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CHAPTER 1 
GUIDE TO THIS MANUAL 

This chapter describes the organization of this manual, the contents of each chapter, and 
terminology used in the manual. It also outlines the chapters of the manual that are of most 
interest to applications programmers, compiler designers, and designers of operating-system 
kernels (or system executives). 

MANUAL STRUCTURE 

This manual is a reference manual for the Intel 80960MC processor. It gives programmers and 
system designers detailed information about the processor's programming environment and its 
operating -system-support facilities. 

The book is divided into three parts. Chapters 2 through 7 describe the processor's program­
ming environment, which includes the instruction-execution environment, data types, address­
ing modes, floating-point operations, and instruction .set. Chapters 8 through 16 describe the 
facilities to support kernel functions, which include the memory management, processor 
management, interrupt handling, fault handling, process management, and debug facilities. 
Chapter 17 provides detailed descriptions of all the instructions in the instruction set, organized 
in alphabetical order. 

Table 1-1 shows those chapters that will be of most interest to applications programmers, 
compiler designers, or kernel designers. 

Table 1-1: Chapters of Interest to Specific Users 

User Chapters 

Applications Programmer Chapters 2 through 7; Chapter 17. 

Compiler Designer Chapters 2 through 7; Chapters 10, 12, and 17; 
and Appendices A, B, C, and.E. 

Kernel Designer Chapters 2 through 17; and Appendices D andE. 

CHAPTER OVERVIEW 

The following is. a brief overview of the contents of each chapter: 

Chapter 1 - Guide to This Manual. Overview of this manual. 

Chapter 2 -Introduction to the 80960 Archite<;ture. Overview of the Intel ~0960 architec­
ture, the architecture on which the 80960MC processor is based. 

Chapter 3 - Execution Environment. Description of the environment in which instructions 
are executed. The topics 9iscussed in this chapter include the address space, registers, instruc­
tion pointer, and arithmetic controls. 
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Chapter 4 - Procedure Calls. Description of the various mechanisms available for making 
procedure calls. The topics discussed here include the local call/return mechanism, procedure 
stack, branch-and-link procedure calls, procedure table calls, and supervisor/user protection 
model. 

Chapter 5 - Data Types and Addressing Modes. Description of the non-floating-point data 
types and how bit and byte strings are addressed. The addressing modes provided for address­
ing data in memory are also described in this chapter. 

Chapter 6 - Instruction-Set Summary. Overview of all the non-floating point instructions 
in the 80960MC instruction set, arranged by functional groups. Also included is a brief 
description of the assembly-language instruction format. 

Chapter 7 - Floating-Point Operation. Description of the processor's floating-point 
processing facilities. This chapter includes an overview of floating-point numbers and a 
description of the 80960MC floating-point data types and their relationship to the IEEE 
floating-point standard. Descriptions of the floating-point instructions, exceptions, and faults 
are. also included. 

Chapter 8 - Memory Management. Description of the memory management facilities. The 
topics discussed here include the physical-memory requirements, physical addressing, and the 
virtual-memory management facilities. 

Chapter 9 - Processor Management and Initialization. Description of the processor 
management facilities. Included is a discussion of the processor control block (PRCB), proces­
sor states, priorities, processor timing, and the software requirements for processor manage­
ment. The requirements for processor initialization are described at the end of the chapter. 

Chapter 10 - Interrupts. Description of the interrupt mechanism, interrupt priority, interrupt 
table, interrupt-handling procedures, and the software requirements for handling interrupts. 

Chapter 11 - Interagent Communication. Description of the interprocessor communication 
(lAC) mechanism, which allows several processors to communicate with one another on the 
bus. The topics covered in this chapter include the lAC mechanism and software requirements 
for using internal lACs. A detailed description of each lAC is given in a reference section at 
the end of the chapter. 

Chapter 12 - Fault Handling. Description of the processor's fault-handling mechanism. 
Included here is a discussion of the fault-table structure, fault-handling procedures, and the 
software requirements for handling faults. A detailed description of each fault is given in a 
reference section at the end of the chapter. 

Chapter 13 - Process Management. Description of the process management facilities. The 
topics discussed here include the process control block (PCB) and the software requirements 
for running a single process. 

Chapter 14 - Multiple-Process Management. Overview of the facilities provided to manage 
mUltiple processes. The topics discussed in this chapter include explicit process dispatching, 
process timing, automatic process dispatching, process synchronization, and interprocess com­
munication. 
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Chapter 15 - Multiple-Processor Operation. Overview of the facilities to support multiple 
processor configurations. Included are descriptions of the external lAC handling mechanism. 
process preemption, and the atomic instructions. 

Chapter 16 - Debugging. Description of the debugging and monitoring support facilities, 
including the trace control register. 

Chapter 17 - Instruction Reference. Alphabetical listing of the complete 80960MC instruc­
tion set with detailed descriptions of each instruction, assembly-language syntax, examples, 
and algorithms. 

Appendix A - Instruction and Data Structure Quick Reference. Two lists of the 
80960MC instructions: one sorted alphabetically by assembly-language mnemonic and one 
sorted by machine language opcode. A collection of illustrations showing the system data 
structures is also provided here. 

Appendix B - Machine-Level Instruction Formats. Description of the machine-level in­
struction formats. 

Appendix C - Instruction Timing. Description of the 80960MC processor's instruction 
pipeline and how it affects instruction timing. The numbers of clock cycles required for each 
instruction are also given. 

Appendix D - Initialization Code. Listing of sample code to initialize the 80960MC proces­
sor. 

Appendix E - Considerations for Writing Portable Software. Discussion of various aspects 
of the 80960 architecture that should be considered if code written for the 80960MC processor 
is intended to be ported at a later date to other processors in the Intel 80960 family. 

NOTATION AND TERMINOLOGY 

The following paragraphs describe the notation and terminology used in this manual that have 
special meaning. 

Reserved and Preserved 

Certain fields in the processor's system data structures are described as being either reserved 
fields or preserved fields. A reserved field is one that is used by other implementations of the 
processor architecture. To help insure that a current software design is compatible with future 
processors based on the 80960 architecture, the bits in reserved fields should be set to 0 when 
the data structure is initially created. Thereafter, software should not access these fields. 

Some fields in system data structures are shown as being required to be set to either 1 or O. 
These fields should be treated as if they were reserved fields. They should be set to the 
specified value when the data structure is created and not accessed by software thereafter. 
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A preserved field is one that the processor does not use. Software may use preserved fields for 
any function. 

Set and Clear 

The terms set and clear are used in this manual to refer to the value of a bit field in a system 
data structure. If a bit is set, its value is 1; if the bit is clear, its value is O. Likewise, setting a 
bit means giving it a value of 1 and clearing a bit means giving it a value of O. 
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CHAPTER 2 
INTRODUCTION TO THE 80960 ARCHITECTURE 

This chapter provides an overview of the architecture on which the 80960MC processor is 
based. 

A NEW 32-BIT ARCHITECTURE FROM INTEL 

The 80960MC processor is the military-grade member of a new family of processors from 
Intel. This processor family is based on a new 32-bit architecture called the 80960 architec­
ture. The 80960 architecture has been designed specifically to meet the needs of embedded 
applications such as avionics, aerospace, weapons systems, robotics, and instrumentation, 
where high reliability is critical. It represents a renewed commitment from Intel to provide 
reliable, high-performance processors and controllers for the embedded processor marketplace. 

The 80960 architecture can best be characterized as a high-performance computing engine. It 
features high-speed instruction execution and ease of programming. It is also easily extensible, 
allowing processors and controllers based on this architecture to be conveniently customized to 
meet the needs of specific processing and control applications. 

Some of the important attributes of the 80960 architecture include: 

• full 32-bit registers 

• high-speed, pipelined instruction execution 

• a convenient program execution environment with 32 general-purpose registers and a 
versatile set of special-function registers 

• a highly optimized procedure call mechanism that features on-chip caching of local vari-
ables and parameters 

• extensive facilities for handling interrupts and faults 

• extensive tracing facilities to support efficient program debugging and monitoring 

• register scoreboarding and write buffering to permit efficient operation with lower perfor­
mance memory subsystems 

The 80960MC processor implements the 80960 architecture, plus it offers several extensions to 
the architecture. Some of these extensions, such as. on-chip support for floating-point arith­
metic, virtual memory management, and multitasking, are designed to enhance overall system 
performance. Several other extensions are designed to enhance system reliability and robust­
ness. These extensions include facilities for hardware enforced protection of software modules 
and for creating fault tolerant systems through the use of redundant processors. 

The following sections describe those features of the 80960 architecture that are provided to 
streamline code execution and simplify programming. The extensions to this architecture 
provided in the 80960MC processor are described at the end of the chapter. 
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HIGH PERFORMANCE PROGRAM EXECUTION 

Much of the design of the 80960 architecture has been aimed at maximizing the processor's 
computational and data processing speed through increased parallelism. The following 
paragraphs describe several of the mechanisms and techniques used to accomplish this goal, 
including: 

• an efficient load and store memory-access model 

• caching of code and procedural data 

• overlapped execution of instructions 

• many one or two clock-cycle instructions 

Load and Store Model 

One of the more important features of the 80960 architecture is that most of its operations are 
performed on operands in registers, rather than in memory. For example, all the arithmetic, 
logical, comparison, branching, and bit operations are performed with registers and literals. 

This feature provides two benefits. First, it increases program execution speed by minimizing 
the number of memory accesses required to execute a program. Second, it reduces memory 
latency encountered when using slower, lower-cost memory parts. 

To support this concept, the architecture provides a generous supply of general-purpose 
registers. For each procedure, 32 registers are available (28 of which are available for general 
use). These registers are divided into two types: global and local. Both these types of 
registers can be used for general storage of operands. The only difference is that global 
registers retain their contents across procedure boundaries, whereas the processor allocates a 
new set of local registers each time a new procedure is called. 

The architecture also provides a set of fast, versatile load and store instructions,- These instruc­
tions allow burst transfers of 1, 2, 4, 8, 12, or 16 bytes of information between memory and the 
registers. 

On-Chip Caching of Code and Data 

To further reduce memory accesses, the architecture offers two mechanisms for caching code 
and data on chip: an instruction cache and multiple sets of local registers. The instruction 
cache allows prefetching of blocks of instruction from memory, which helps insure that the 
instruction execution pipeline is supplied with a steady stream of instructions. It also reduces 
the number of memory accesses required when performing iterative operations such as loops. 
(The size of the instruction cache can vary. With the 80960MC processor, it is 512 bytes.) 

To optimize the architecture's procedure call mechanism, the processor provides multiple sets 
of local registers. This allows the processor to perform most procedure calls without having to 
write the local registers out to the stack in memory. 
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(The number of local-register sets provided depends on the processor implementation. The 
80960MC processor provides four sets of local registers.) 

Overlapped Instruction Execution 

Another technique that the 80960 architecture employs to enhance program execution speed is 
overlapping the execution of some instructions. This is accomplished through two 
mechanisms: register scoreboarding and branch prediction. 

Register scoreboarding permits instruction execution to continue while data is being fetched 
from memory. When a load instruction is executed, the processor sets one or more scoreboard 
bits to indicate the target registers to be loaded. After the target registers are loaded, the 
scoreboard bits are cleared. While the target registers are being loaded, the processor is 
allowed to execute other instructions that do not use these registers. The processor uses the 
scoreboard bits to insure that target registers are not used until the loads are complete. (The 
checking of scoreboard bits is transparent to software.) The net result of using this technique is 
that code can often be optimized in such a way as to allow some instructions to be executed 
parallel. 

Single-Clock Instructions 

It is the intent of the 80960 architecture that a processor be able to execute commonly used 
instructions such as move, add, subtract, logical operations, compare and branch in a minimum 
number of clock cycles (preferable one clock cycle). The architecture supports this concept in 
several ways. For example, the load and store model described earlier in this chapter (with its 
concentration on register-to-register operations) allows simple operations to be performed 
without the overhead of memory-to-memory operations. 

Also, all the instructions in the 80960 architecture are 32 bits or 64 bits long and aligned on 
32-bit boundaries. This feature allows instructions to be decoded in one clock cycle. It also 
eliminates the need for an instruction-alignment stage in the pipeline. 

The design of the 80960MC processor takes full advantage of these features of the architecture, 
resulting in more than 50 instructions that can be executed in a single clock-cycle. 

Efficient Interrupt Model 

The 80960 architecture provides an efficient mechanism for servicing interrupts from external 
sources. To handle interrupts, the processor maintains an interrupt table of 248 interrupt 
vectors (240 of which are available for general use). When an interrupt is signaled, the 
processor uses a pointer from the interrupt table to perform an implicit call to an interrupt 
handler procedure. In performing this call, the processor automatically saves the state of the 
processor prior to receiving the interrupt; performs the interrupt routine; and then restores the 
state of the processor. A separate interrupt stack is also provided to segregate interrupt 
handling from application programs. 
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The interrupt handling facilities also feature a method of prioritizing interrupts. Using this 
technique, the processor is able to store interrupts that are lower in priority than the task the 
processor is currently working on in a pending interrupt section of the interrupt table. At 
certain defined times, the processor checks the pending interrupts and services them. 

SIMPLIFIED PROGRAMMING ENVIRONMENT 

Partly as a side benefit of its streamlined execution environment and partly by design, proces­
sors based on the 80960 architecture are particularly easy to program. For example, the large 
number of general-purpose registers allows relatively complex algorithms to be executed with 
a minimum number of memory accesses. The following paragraphs describe some of the other 
features that simplify programming. 

Highly Efficient Procedure Call Mechanism 

The procedure call mechanism makes procedure calls and parameter passing between 
procedures simple and compact. Each time a call instruction is issued, the processor automati­
cally saves the current set of local registers and allocates a new set of local registers for the 
called procedure. Likewise, on a return from a procedure, the current set of local registers is 
deallocated and the local registers for the procedure being returned to are restored. On a 
procedure call, the program thus never has to explicitly save and restore those local variables 
and parameters that are stored in local registers. 

Versatile Instruction Set and Addressing 

The selection of instructions and addressing modes also simplifies programming. The architec­
ture offers a full set of load, store, move, arithmetic, comparison, and branch instructions, with 
operations on both integer and ordinal data types. It also provides a complete set of Boolean 
and bit-field instructions, to simplify operations on bits and bit strings. 

The addressing modes are efficient and straightforward, while at the same time providing the 
necessary indexing and scaling modes required to address complex arrays and record struc­
tures. 

The large 4-gigabyte address space provides ample room to store programs and data. The 
availability of 32 addressing lines allows some address lines to be memory-mapped to control 
hardware functions. 

Extensive Fault Handling Capability 

To aid in program development, the 80960 architecture defines a wide selection of faults that 
the processor detects, including arithmetic faults, invalid operands, invalid operations, and 
machine faults. When a fault is detected, the processor makes an implicit call to a fault handler 
routine, using a mechanism similar to that described above for interrupts. The information 
collected for each fault allows program developers to quickly correct faulting code. It also 
allows automatic recovery from some faults. 
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Debugging and Monitoring 

To support debugging systems, the 80960 architecture provides a mechanism for monitoring 
processor activity by means of trace events. The processor can be configured to detect as many 
as seven different trace events, including branches, calls, supervisor calls, returns, prereturns, 
breakpoints, and the execution of any instruction. When the processor detects a trace event, it 
signals a trace fault and calls a fault handler. Intel provides several tools that use this feature, 
including an in-circuit emulator (ICE) device. 

SUPPORT FOR ARCHITECTURAL EXTENSIONS 

The 80960 architecture described earlier in this chapter provides a high-performance comput­
ing engine for use as the computational and data-processing core of embedded processors or 
controllers. The architecture also provides several features that enable processors based on this 
architecture to be easily customized to meet the needs of specific embedded applications, such 
as signal processing, array processing, or graphics processing. 

The most important of these features is a set of 32 special-function registers. These registers 
provide a convenient interface to circuitry in the processor or to pins that can be connected to 
external hardware. They can be used to control timers, to perform operations on special data 
types, or to perform I/O functions. 

The special-function registers are similar to the global registers. They can be addressed by all 
the register-access instructions. 

EXTENSIONS INCLUDED IN THE 80960MC PROCESSOR 

The extensions to the 80960 architecture included in the 80960MC processor are built on top of 
the processor's core computing engine. These extensions are aimed at improving the ef­
ficiency and reliability of embedded systems. 

On-Chip Floating Point 

The 80960MC processor provides a complete implementation of the IEEE standard for binary 
floating-point arithmetic (IEEE 754-185). This implementation includes a full set of floating­
point operations, including add, subtract, multiply, divide, trigonometric functions, and 
logarithmic functions. These operations are performed on single precision (32-bit), double 
precision (64-bit), and extended precision (80-bit) real numbers. 

One of the benefits of this implementation is that the floating-point handling facilities are 
completely integrated into the normal instruction execution environment. Single- and double­
precision floating-point values are stored in the same registers as non-floating point values. 
Also, four 80-bit floating-point registers are provided to hold extended-precision values. 
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String and Decimal Operations 

The 80960MC processor provides several instructions for moving, filling, and comparing byte 
strings in memory. These instructions speed up string operations and reduce the amount of 
code required to handle strings. 

The decimal instructions perform move, add with carry, and subtract with carry operations on 
binary-coded decimal (BCD) strings. 

Virtual-Memory Support 

Another of the 80960MC processor's important features is support for virtual-memory 
management. When using the processor in virtual-memory mode, the processor provides each 
process (or task) with an address space of up to 232 bytes. This address space is paged into 
physical memory in 4K-byte pages. On-chip memory-management facilities handle virtual-to­
physical address translation. A translation look-aside buffer (TLB) speeds address translation 
by storing virtual-to-physical address translations for frequently accessed parts of memory, 
such as the location of the page tables and the location of often used system data structures. 

Protection 

The 80960MC processor offers two mechanisms for protecting critical data structures or 
software modules. The first is the ability to use page rights bits to restrict access to individual 
pages. Page rights allow various levels of access to be assigned to a page, ranging from no 
access to read only to read-write. 

The second protection mechanism is a user/supervisor protection model. This two-level 
protection model provides hardware enforced protection of kernel procedures and data struc­
tures. When using this protection mechanism, privileged procedures and data are placed in 
protected pages of memory. These pages can then be accessed only through a procedure table, 
which provides a tightly controlled interface to kernel functions. 

Multitasking 

The 80960MC processor offers a variety of process management facilities to support concur­
rent execution of multiple tasks. These facilities can be divided into two groups: process 
scheduling and interprocess communications. 

The process scheduling facilities consist of a set of general-purpose data structures and instruc­
tions, which are designed to support several different multitasking schemes. For example, the 
processor provides a set of instructions that allow the kernel to explicitly dispatch a task (bind 
it to the processor) and to suspend a task (save the current state of a task so that another task 
can be bound to the processor). These instructions can be used within kernel procedures to 
schedule, dispatch, and preempt multiple tasks. 

The processor also provides a unique feature called self dispatching. Here, the kernel 
schedules tasks by queuing them to a dispatch port. Thereafter, the processor handles the 
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dispatching, preempting, and rescheduling of the tasks automatically, independent of the ker­
nel. When using this mechanism, tasks can be scheduled by priority, with up to 32 priority 
levels to choose from. 

The processor's interprocess communication facilities include support for semaphores and 
communication ports. These facilities allow synchronization of interdependent tasks and 
asynchronous communication between tasks. 

Multiprocessing 

The 80960MC processor provides several mechanisms designed to simplify the design of 
multiple-processor systems, allowing several processors to run in parallel, using shared 
memory resources. One of these mechanisms is the self-dispatching capability described 
above. Here, two or more processors can schedule and dispatch processes from a single 
dispatch port, with each processor equally sharing the processing load. 

The processor also provides an interagent communication (lAC) mechanism that allows 
processors to exchange messages among themselves on the bus. This mechanism operates 
similarly to the interrupt mechanism, except that lAC messages are passed through dedicated 
sections of memory. The lAC mechanism can be used to preempt processes running on 
another processor, to manage interrupt handling, or to initialize and synchronize several 
processors. 

A set of atomic instructions are also provided to synchronize memory accesses. Multiple 
processors can then access shared memory without inserting inaccuracies and ambiguities into 
shared data structures. 

Fault Tolerance 

The 80960 family of components supports fault-tolerant system design through the use of the 
M82965 Bus Extension Unit component. The M82965 allows two processors to be operated in 
tandem to form a self-checking module. The two M82965s check the outputs of two proces­
sors (a master and a checker) cycle-by-cycle. If the checking M82965 detects a difference 
between outputs, it signals an error. A software recovery procedure can then be initiated. 

This fault detection mechanism supports several fault detection and recovery techniques, in­
cluding self healing, and continuous-operation (non-stop) systems. 

LOOK FOR MORE IN THE FUTURE 

The 80960 architecture offers exceptional performance, plus a wealth of useful features to help 
in the design of efficient and reliable embedded systems. But equally important, it offers lots 
of room to grow. The 80960MC processor provides average instruction processing rates of 7.5 
million instructions per second (7.5 MIPS) at 20 MHz clock rate and 10 MIPS at a 25 MHz 
clock rate1. This performance places the 80960MC at the top of the performance range for 
advanced, VLSI processor architectures. 

'I MIP is equivalent to the performance of a Digital Equipment Corp. V AX 11/780. 
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However, the 80960MC is only the beginning. With improvements in VLSI technology, future 
implementations of the 80960 architecture will offer even greater performance. They will also 
offer a variety of useful extensions to solve specific control and monitoring needs in the field 
of embedded applications. 
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CHAPTER 3 
EXECUTION ENVIRONMENT 

This chapter describes how the 80960MC processor executes instructions and how it stores and 
manipulates data. The parts of the execution environment that are discussed include the address 
space, the register model, the instruction pointer, and the arithmetic controls. 

The execution environment's procedure stack and procedure-call mechanism are described in 
Chapter 4. 

OVERVIEW OF THE EXECUTION ENVIRONMENT 

When a process (or a program running within the context of a process) is run on the 80960MC 
processor, the processor first sets up an execution environment for that process. It then begins 
executing instructions for that process, using this execution environment to store and manipu­
late data. 

Figure 3-1 shows the part of the execution environment that the frocessor sets up to run a 
single procedure within a process. This environment consists of a 2 2-byte address space, a set 
of global and floating-point registers, a set of local registers, a set of arithmetic-controls bits, 
the instruction pointer, a set of process-controls bits, and a set of trace-controls bits. All of 
these items reside on the 80960MC chip except the address space. 

When the instruction stream for the process includes a procedure call, a procedure stack and 
some additional elements are added to this execution environment. These procedure-call 
related elements are shown and discussed in Chapter 4. 

ADDRESS SPACE 

Each process running on the processor is assigned a separate address space. From the point of 
view of the processor, this address space is flat (unsegmented) and byte addressable, with 
addresses running contiguously from 0 to 232 - 1. The process can allocate space for data, 
instructions, and the stack anywhere within this space. 

The address space being described here is a logical address space that the operating system can 
map into physical memory either directly or indirectly (using the processor's virtual-addressing 
mechanism). The memory mapping method used is immaterial to this discussion. Once a 
process has been bound to the processor, the processor sees only the logical address space for 
that process. 

NOTE 

The memory-management method that the operating system uses can place some minor limita­
tions on how the address space may be allocated. These limitations are described later in this 
chapter in the section titled "Partitioning the Address Space." 
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Figure 3-1: Execution Environment 

REGISTER MODEL 

The processor provides three types of data registers: global, floating-point, and local. The 16 
global registers constitute a set of general-purpose registers, the contents of which are 
preserved across procedure boundaries. The 4 floating-point registers are provided to support 
extended floating-point arithmetic. Their contents are also preserved across procedure boun­
daries. The 16 local registers are provided to hold parameters specific to a procedure (i.e., 
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local variables). For each procedure that is called, the processor allocates a separate set of 16 
local registers. 

For anyone procedure within a process, 36 registers are thus available (as shown in Figure 
3-2); the 16 global registers, the 4 floating-point registers, and the 16 local registers. All of 
these registers are maintained on the processor chip. 
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Figure 3-2: Registers Available to a Single Procedure 
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Global Registers 

The 16 global registers (gO through g15) are 32-bit registers. Each register can thus hold a 
word (32 bits) of data. Registers gO through g14 are general-purpose registers; g15 is reserved 
for the current frame pointer (FP). The FP contains the address of the first byte in the current 
(topmost) stack frame. (The FP and the procedure stack are discussed in detail in Chapter 4.) 

The general-purpose global registers (gO through g14) can hold any of the data types that the 
processor recognizes (i.e., ordinals, integers, reals, byte strings). 

Floating-Point Registers 

The four floating-point registers (fpO through fp3) are 80-bit registers. These registers can be 
accessed only as operands of floating-point instructions. All numbers stored in these registers 
are stored in extended-real format. (This format is described in Chapter 7.) The processor 
automatically converts floating-point values from real or long-real format into extended-real 
format when a floating-point register is used as a destination for an instruction. 

Storage of Global and Floating-Point Registers 

The global and floating-point registers are associated with the current process. When execu­
tion of the current process is suspended, the values in these registers are stored in the process 
control block (PCB) for the process. (The PCB is described in Chapter 13.) 

Local Registers 

The 16 local registers (rO through rl5) are 32-bit registers, like the global registers. The 
purpose of the local registers is to provide a separate set of registers, aside from the global and 
floating-point registers, for each active procedure. Each time a procedure is called, the proces­
sor automatically sets up a new set of local registers for that procedure and saves the local 
registers for the calling procedure. The program does not have to explicitly save and restore 
these registers. 

Local registers r3 through rl5 are general-purpose registers. Registers rO through r2 are 
reserved for special functions, as follows: register rO contains the previous frame pointer 
(PFP); r1 contains the stack pointer (SP); and r2 contains the return instruction pointer (RIP). 
(The PFP, SP, and RIP are discussed in detail in Chapter 4.) The processor accesses the local 
registers at the same speed as it does the global registers. 

Register Alignment 

Several of the processor's instructions operate on multiple-word operands. For example, the 
load-long instruction (ldl) loads two words from memory into two consecutive registers. Here, 
the register number for the least significant word is specified in the instruction and the most­
significant word is automatically loaded into the next higher-numbered register. 
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In cases where an instruction specifies a register number and multiple, consecutive registers are 
implied, the register number must be even if two registers are accessed (e.g., gO, g2) and an 
integral multiple of four if three or four registers are accessed (e.g., gO, g4). If a register 
reference for a source value is not properly aligned, the value is undefined. If a register 
reference for a destination value is not properly aligned, the registers that the processor writes 
to are undefined. 

Register Scoreboarding 

The 80960MC provides a mechanism called register score boarding that in certain situations 
permits instructions to be executed concurrently. This mechanism works as follows. While an 
instruction is being executed, the processor sets a scoreboard bit to indicate that a particular 
register or group of registers is being used in an operation. If the instructions that follow do 
not use registers in that group, the processor in some instances is able to execute those instruc­
tions before execution of the prior instruction is complete. In effect, the register scoreboarding 
mechanism allows some instructions to be executed in parallel. 

A common application of this feature is to execute one or more fast instructions (instructions 
that take one to three clock cycles) concurrently with load instructions. A load instruction 
typically takes 3 to 9 clock cycles (depending on the design of system memory and the 
addressing mode used). Register scoreboarding allows other instructions to be executed con­
currently with the load instruction, providing that the other instructions do not affect the 
registers being loaded. For example, the following group of instructions loads a group of local 
registers while performing some other operations on data in global registers. 

Id xyz, r6 # r6 ~ data from address xyz 
addi g4, g6, g7 # g7 ~ g4 + g6 
addi g9, glO, gll # gll ~ g9 + glO 
Id abc, r8 # r6 ~ data from address abc 
and gO, Oxffff, gl # gl ~ gO AND Oxffff 
addi r6, r8, r7 # r7 ~ r6 + r8 

Here, the two addi instructions following the first load and the and instruction following the 
second load are performed concurrently with the bus accesses of the two load instructions. 

(Appendix C provides a detailed discussion of the processor's instruction-execution pipeline 
and register scoreboarding.) 

INSTRUCTION POINTER 

The instruction pointer (IP) is the address (in the address space of the current process) of the 
instruction currently being executed. This address is 32 bits; however, since instructions are 
required to be aligned on word boundaries in memory, the 2 least-significant bits of the IP are 
always zero. 

The IP is stored in the processor and cannot be read directly. However, the IP-with­
displacement addressing mode allows the IP to be used as an offset into the address space. 
This addressing mode can also be used with the Ida (load address) instruction to read the 
current value of the IP. 
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When a break occurs in the execution of a program or process (due to an interrupt, procedure 
call, or process suspension action), the IP of the next instruction to be executed (i.e., the RIP) is 
stored in local register r2, which is then stored on the stack. Refer to Chapter 4 for further 
discussion of this operation. 

ARITHMETIC CONTROLS 

The processor's arithmetic controls are made up of a set of 32 bits, which are cached on the 
processor chip in the arithmetic-controls register. Figure 3-3 shows the arrangement of the 
arithmetic controls bits. The arithmetic controls bits include condition code flags; floating­
point control and status flags and masks; integer control and status flags; and a flag that 
controls faulting on imprecise faults. 

I .. RESERVED 
L---J...J...J....J....I.., ..J...J...J, (INITIALIZE TO 0) 

t ~CONOITION COOE 

- ARITHMETIC STATUS 

'----------INTEGER OVERFLOW FLAG 

'-------------INTEGER OVERFLOW MASK 

'-----,-------------NO IMPRECISE FAULTS 

'----------------FLOATING OVERFLOW FLAG 

'----------------FLOATING UNOERFLOWFLAG 

'------------------FLOATING INVALID-OPFLAG 

'-------------------FLOATINGZERO-DIVIDE FLAG 

'-------------------FLOATING INEXACT FLAG 

'----------------------FLOATING OVERFLOW MASK 

'----------------------FLOATINGUNDERfLOWMASK 

'-----------------------fLOATINGINVALlD·OPMASK 

'-------------------------FLOATINGZERO-DIVIOE MASK 

'-------------------------FLOATINGINEXACTMASK 

'-------------------------FLOATING-POINT NORMALIZING MODE 

'---------------------------FLOATING-POINTROUNDINGCONTROL 

Figure 3-3: Arithmetic Controls 

The processor sets or clears these bits to show the results of certain operations. For example, 
the processor modifies the condition code flags after each comparison operation to show the 
result of the comparison. Other arithmetic control bits, such as the floating-point fault masks, 
are set by the currently running program to tell the processor how to respond to certain fault 
conditions. 

Initializing and Modifying the Arithmetic Controls 

The state of the processor's arithmetic controls is undefined at processor initialization, on a 
processor restart (initiated with a restart processor lAC), or on a warmstart processor (initiated 
with a warmstart processor lAC). Part of the initialization code or restart code should thus be 
to set the arithmetic controls to a specific state. 

The arithmetic controls can be examined and modified using the modify arithmetic controls 
(modac) instruction. This instruction uses a mask to allow specific bits to be changed. 
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When the processor binds itself to a process, it loads the arithmetic controls word in the 
process's PCB into its arithmetic controls register. When the processor suspends a process, it 
automatically stores the state of the arithmetic controls register in the PCB. 

The processor also automatically saves and restores the arithmetic controls when it services an 
interrupt or handles a fault. Here, the processor saves the current state of the arithmetic 
controls in an interrupt record or fault record, then restores the arithmetic controls upon return­
ing from the interrupt or fault handler, respectively. 

Functions of the Arithmetic-Controls Bits 

The functions of the various arithmetic controls bits are as follows: 

NOTE 

In the following discussion, some of the arithmetic controls bits are referred to as "sticky flags." 
A sticky flag is one that the processor never implicitly clears. Once the processor sets a sticky 
flag to indicate that a particular condition has occurred, the flag remains set until the program 
explicitly clears it. 

Condition-Code Flags 

The processor sets the condition-code flags (bits 0-2) to indicate the results of certain instruc­
tions (usually compare instructions). Other instructions, such as conditional-branch instruc­
tions, examine these flags and perform functions according to their state. Once the processor 
has set these flags, it leaves them unchanged until it executes another instruction that uses these 
flags to store results. 

These flags are used to show either true or false conditions or inequalities (greater-than, equal, 
or less-than conditions). Table 3-1 shows how the processor sets the flags to show true or false 
conditions. 

Table 3-1: Condition Codes for True or False Conditions 

Condition Condition 
Code 

010 true 

000 false 

Table 3-2 shows how the processor sets the condition-code flags to show inequalities. The 
term unordered is used when comparing floating-point numbers. If, when comparing two 
floating-point values, one of the values is a NaN (not a number), the relationship is said to be 
"unordered." Refer to the section in Chapter 7 titled "Comparison and Classification" for 
further information about the ordered and unordered conditions. 
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Table 3-2: Condition Codes for Inequality Conditions 

Condition Condition 
Code 

000 unordered 

001 greater than 

010 equal 

100 less than 

Certain instructions (such as the branch-if instructions) use a 3-bit mask to evaluate the 
condition-code flags. For example the branch-if-greater-or-equal instruction (bge) uses a mask 
of 011 2 to determine if the condition code is set to either greater-than or equal. These masks 
cover the additional conditions of greater-or-equal, less-or-equal (1102)' not-equal (101 2), and 
ordered (111 2). 

Arithmetic-Status Flags 

The processor uses the arithmetic-status field (bits 3-6) in conjunction with the classify instruc­
tions (c1assr and c1assrl) to show the class of a floating-point number. When executing these 
instructions, the processor sets the bits in the arithmetic-status field as shown in Table 3-3, 
according to the class of the value being classified. The "s" bit in Table 3-3 is set to the sign of 
the value being classified. 

Table 3-3: Encoding of Arithmetic-Status Field 

Arithmetic Classification 
Status 

sOOO zero 

sOOl denormalized number 

sOlO normal finite number 

sOIl infinity 

s100 quiet NaN 

s101 signaling NaN 

s110 reserved operand 

The remainder real instructions (remr and remrl) also use the arithmetic-status field as 
described in Chapter 17. 

Integer-Overflow Flag and Mask 

The integer-overflow flag (bit 8) and the integer-overflow mask (bit 12) are used in conjunc­
tion with the arithmetic integer-overflow fault. The mask bit masks the integer-overflow fault. 
When the fault is masked, the processor sets the integer-overflow flag whenever integer over­
flow occurs, to indicate that the fault condition has occurred even though the fault has been 
masked. If the fault is not masked, the fault is allowed to occur and the flag is not set. The 
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integer-overflow flag is a sticky flag. (Refer to the discussion of the arithmetic integer­
overflow fault in Chapter 12 for more information about the integer-overflow mask and flag.) 

No-Imprecise-Faults Flag 

The no-imprecise-faults flag (bit 15) determines whether or not imprecise faults are allowed to 
be raised. If set, faults are required to be precise; if clear, certain faults can be imprecise. 
(Refer to the section in Chapter 12 titled "Precise and Imprecise Faults" for more information 
about this flag.) 

Floating-Point Flags and Masks 

The floating-point flags (bits 16 through 20) and masks (bits 24 through 28) perform the same 
functions as the integer-overflow flag and mask, except they are used for operations on real 
(floating point) numbers. When a mask is set, its associated floating-point fault is masked. 
When a mask is clear, the processor sets the flag for the associated fault whenever the fault 
condition occurs, but does not generate a fault. All the floating-point flags are sticky bits. 
Refer to the section in Chapter 7 titled "Exceptions and Fault Handling" for a detailed discus­
sion of the floating-point faults and their associated flags and masks in the arithmetic controls. 

Floating-Point-Normalizing-Mode Flag 

The floating-point-normalizing-mode flag (bit 29) determines whether or not floating-point 
instructions are allowed to operate on denormalized numbers. If set, floating-point instructions 
are allowed to operate on denormalized numbers; if clear, the processor generates a floating 
reserved-operand fault when it detects denormalized numbers that are used as operands for 
floating-point instructions. (Refer to the section in Chapter 7 titled "Normalizing Mode" for 
more information on the use of this flag.) 

Floating-Point-Rounding Control 

The floating-point-rounding-control field (bits 30-31) indicates which rounding mode is in 
effect for floating point computations. These bits are set as shown in Table 3-4, depending on 
the rounding mode to be selected. 

Table 3-4: Encoding of Floating-Point-Rounding-Control Field 

Rounding Rounding Mode 
Control 

00 round to nearest (even) 

01 Round down (toward negative infinity) 

10 Round up (toward positive infinity) 

11 Truncate (round toward zero) 

(Refer to the section in Chapter 7 titled "Rounding Control" for more information on the use of 
the floating-point-rounding-control field.) 
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All the unused bits in the arithmetic controls are reserved and must be set to O. 

PROCESS AND TRACE CONTROLS 

The processor's process controls and trace controls are also cached on the processor chip. The 
process controls are a set of 32 bits that control or show the status of the currently running 
process. The process controls are described in detail in Chapter 13. 

The trace controls are a set of 32 bits that control the tracing facilities of the processor. The 
trace controls are described in Chapter 16. 

PARTITIONING THE ADDRESS SPACE 

Instructions, data, or stacks can be located anywhere in the address space, with the following 
exceptions. Instructions must be aligned on word boundaries. When handling a 32-bit instruc­
tion pointer, the processor generally assumes that the 2 least-significant bits of the address are 
zero. 

The processor's virtual-memory management system requires that the address space be divided 
into four regions, as shown in Figure 3-4. 

MAXIMUM ADDRESS 
RANGE OF EACH 

REGION 

00000000 

3FFF FFFF 
40000000 

7FFF FFFF 
80000000 

BFFF FFFF 
COOO 0000 

FFFF FFFF ------.. 

REGION 0 

REGION 1 

REGION 2 

PROCESS 
SPECIFIC 

] 
SHARED BY ALL 

REGION 3 PROCESSES 

Figure 3·4: Address Space Regions 
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Each of these regions is managed with a separate page table or set of page tables. This allows 
the read and write rights of a region to be assigned on a page-by-page basis. 

In addition, region 3 is defined to be processor specific, meaning that it is shared by all the 
processes that are running on the processor. 

NOTE 

Dividing the address space into regions and pages is a memory management convention that 
does not affect the processor's view of the address space. The processor still views the address 
space as being fiat, with one exception. When an operand spans across one of the region 
boundaries shown in Figure 3-4, the results are unpredictable. This exception should be of only 
minor concern. However, if it does cause a problem, the section in Chapter 8 titled "Making 
Region Boundaries Transparent" describes how to overcome this limitation by mapping regions 
0, I, and 2 into a single page-table directory. 

In the physical-addressing mode, there is no paging of the address space; so, the restriction on 
operands crossing region boundaries does not apply. 

Figure 3-5 shows one way that the regions of the address space can be used. Here the process 
specific regions, regions 0, 1, and 2, are used to store the data, instructions, and procedure 
stack, respectively. Region 3, which all the processes share, contains system code and data, 
and the interrupt stack. 

READIWRITE [ REGION 0 

READ ONLY [ REGION 1 

READIWRITE [ REGION 2 

READIWRITE [ SUPERVISOR 
ONLY 

REGION 3 

Figure 3-5: Typical Use of Address-Space Regions 

This partitioning of the address space provides two benefits. First, the region containing code 
can be write protected. Second, the system area will not have to be swapped in and out each 
time there is a process switch, which reduces process switching time. 
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INSTRUCTION CACHING 

The processor provides a 512-byte cache for instructions. When the processor fetches an 
instruction or group of instructions from memory, they are stored in this cache before being fed 
into the instruction-execution pipeline. The processor manages this cache transparently from 
the program being run. 

This instruction cache is a read-only cache, meaning that once bytes from the instruction 
stream are written into the instruction cache, they cannot be changed. Because of this, the 
processor does not support self-modified programs in a transparent fashion. The only way to 
change the instruction stream once it has been written into the instruction cache is to purge the 
instruction cache. The lAC message "purge instruction cache" is provided for this purpose, as 
described in Chapter 11. 
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CHAPTER 4 
PROCEDURE CALLS 

This chapter describes the 80960MC processor's procedure call and stack mechanism. It also 
describes the user-supervisor protection model, which provides protection for privileged 
procedures such as operating-system procedures. 

TYPES OF PROCEDURE CALLS 

The processor supports three types of procedure calls: 

• Local call 

• System call 

• Branch and link 

A local call uses the processor's call/return mechanism, in which a new set of local registers 
and a new frame on the stack are allocated for the called procedure. A system call is similar to 
a local call, except that it provides access to procedures through a procedure table. The most 
important use of a system call is to call privileged procedures, called supervisor procedures. A 
system call to a supervisor procedure is called a supervisor call. A branch and link is merely a 
branch to a new instruction with the return IP stored in a global register. 

In this chapter, the call/return mechanism is introduced first and is followed by a discussion of 
how this mechanism is used to make local calls and system calls. 

NOTE 
The processor's interrupt- and fault-handling mechanisms use implicit procedure calls. Implicit 
calls to interrupt-handler and fault-handler procedures are described in detail in Chapters 10 and 
12, respectively. 

CALL/RETURN MECHANISM 

The processor's call/return mechanism has been designed to simplify procedure calls and to 
provide a flexible method for storing and handling variables that are local to a procedure. 

Two structures support this mechanism: the local registers (on the processor chip) and the 
procedure stack (in memory). Figure 4-1 shows the relationship of the local registers to the 
procedure stack. For each procedure, the processor automatically allocates a set of local 
registers and a frame on the procedure stack. Since the local registers are on-chip, they provide 
fast-access storage for local variables. If additional space for local variables is required, it can 
be allocated in the stack frame. 

When a procedure call is made, the processor automatically saves the contents of the local 
registers and the stack frame for the calling procedure and sets up a new set of local registers 
and a new stack frame for the called procedure. 
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Figure 4·1: Local Registers and Procedure Stack 

STACK FRAME 
FOR CALLING 
PROCEDURE 

STACK FRAME 
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PROCEDURE 

This procedure-call mechanism provides two benefits. First, it provides a structure for storing 
a virtually unlimited number of local variables for each procedure: the on-chip local registers 
provide quick access to often-used variables and the stack provides space for additional vari­
ables. 

Second, a program does not have to explicitly save and restore the variables stored in the local 
registers and stack frames. The processor does this implicitly on procedure calls and on 
returns. 

A detailed description of the call/return mechanism is given in the following paragraphs. 
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Local Registers and the Procedure Stack 

For each procedure, the processor allocates a set of 16 local registers. Three of these registers 
(rO, r1, and r2) are reserved for linkage information to tie procedures together. The remaining 
13 local registers are available for general storage of variables. 

For each process, the processor maintains a procedure stack in memory. This stack can be 
located anywhere in the address space and grows from low addresses to high addresses. 

The stack consists of contiguous frames, one frame for each active procedure. As shown in 
Figure 4-2, each stack frame provides a save area for the local registers and an optional area for 
additional variables. 

To increase the speed of procedure calls, the 80960MC processor provides four sets of local 
registers. Thus, when a procedure call is made, the contents of the current set of local registers 
often do not have to be stored in the procedure stack. Instead, a new set of local registers is 
assigned to the called procedure. When the number of nested procedure calls exceeds the 
number of register sets, the processor automatically stores the contents of the oldest set of local 
registers on the stack to free up a set of local registers for the most recently called procedure. 

Refer to the section later in this chapter titled "Mapping the Local Registers to the Procedure 
Stack" for further discussion of the relationship between the local-register sets and the proce­
dure stack. 

Procedure-Linking Information 

Global register glS (FP) and local registers rO (PFP), r1 (SP), and r2 (RIP) contain information 
to link procedures together and to link the local registers to the procedure stack. The following 
paragraphs describe this linkage information. 

Frame Pointer 

The FP is the address of the first byte of the current (topmost) stack frame. It is stored in 
global register giS. The 80960MC processor aligns each new stack frame on a 64-byte 
boundary. Since the resulting FP always points to a 64-byte boundary, the processor ignores 
the 6 low-order bits of the FP and interprets them to be zero. 

Stack Pointer 

The SP is the address of the next available byte of the stack frame, which can also be thought 
of as the last byte of the stack frame plus one. It is stored in local register r1. The procedure 
stack grows upward (i.e., toward higher addresses). To determine the initial SP value, the 
processor adds 64 to the FP. 
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If additional space is needed on the stack for local variables, the SP may be incremented in 
one-byte increments. For example, the following instruction adds six words of additional 
space to the stack: 

addo sp, 24, sp # sp f- sp + 24 

With the Intel 80960MC Assembler, the keyword "sp" stands for register rlo 

NOTE 

The SP should be incremented before additional variables are added to the stack. This practice 
prevents errors that might occur if data is added to the stack and a process switch occurs before 
the SP has been incremented. 

Padding Area 

When the processor creates a new frame on a procedure call, it will, if necessary, add a 
padding area to the stack so that the new frame starts on a 64 byte boundary. To create the 
padding area, the processor rounds off the SP for the current stack frame (the value in rl) to the 
next highest 64 byte boundary. This value becomes the FP for the new stack frame. 

Previous-Frame Pointer 

The PFP is the address of the first byte of the previous stack frame. It is stored in local register 
rOo Since the 80960MC ignores the 6 low-order bits of the FP, only the 26 most-significant bits 
of the PFP are stored here. The 4 least-significant bits of rO are then used to store return status 
information. 

Return Status and Prereturn-Trace Information 

Bits 0 through 2 of local register rO contain return status information for the calling procedure 
and bit 3 contains the prereturn-trace flag. When a procedure call is made (either explicit or 
implicit), the processor records the call type in the return status field. The processor then uses 
this information to select the proper return mechanism when returning to the calling procedure. 

Table 4-1 shows the encoding of the return status field according to the different types of calls 
that the processor supports. Of the five types of calls allowed, the fault call (described in 
Chapter 12) and the interrupt and idle-interrupt calls (described in Chapter 10) are implicit 
calls that the processor initiates. The local call (described in this section) is an explicit call that 
a program initiates using the call or calix instruction. The supervisor call (described at the end 
of this chapter in the section titled "System Call1Return Mechanism") is an explicit call that a 
program makes using the calls instruction. 

The third column of Table 4-1 shows the type of a return action that the processor takes 
depending on the state of the return status field. 

The processor records two versions of the supervisor call: one for when the trace-enable flag 
in the process controls is set prior to a supervisor call and one for when the flag is clear prior to 
the call. The trace controls are described in detail in Chapter 16. 
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Table 4-1: Encoding of Return-Status Field 

Encoding Call Type Return Action 

000 Local call or supervisor call made Local return 
from the supervisor mode 

001 Fault call Fault return 

010 Supervisor call from user mode, Supervisor return, with the trace 
trace was disabled before call enable flag in the process controls 

set to 0 and the execution mode 
flag set to 0 

011 Supervisor call from user mode, Supervisor return, with the trace 
trace was enabled before call enable flag in the process controls 

set to 1 and the execution mode 
flag set to 0 

100 reserved 

101 reserved 

110 Idle-interrupt call Idle-interrupt return 

111 Interrupt call Interrupt return 

The preretum-trace flag is used in conjunction with the call-trace and prereturn-trace modes. If 
the call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag; 
otherwise it clears the flag. Then, if this flag is set and the prereturn-trace mode is enabled, a 
prereturn trace event is generated on a return before any actions associated with the return 
operation are performed. Refer to Chapter 16 for a detailed discussion of the interaction of the 
call-trace and prereturn-trace modes and the prereturn-trace flag. 

Return-Instruction Pointer 

The RIP is the address of the instruction that the processor is to execute after returning from a 
procedure call. It is stored in local register r2. When the processor executes a procedure call it 
sets the RIP to the address of the instruction immediately following the procedure call instruc­
tion. (Refer to the section later in this chapter titled "Local-Call Operation" for further infor­
mation the RIP.) 

Since the processor uses the same procedure call mechanism to make implicit procedure calls 
to service faults and interrupts, programs should not use register r2 for purposes other than to 
hold the RIP. 

When a process is suspended, the IP of the next instruction is stored in r2 of the current set of 
local registers. When the process resumes, the processor sets the IP to the value in this 
register. 
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Mapping the Local Registers to the Procedure Stack 

The availability of multiple register sets cached on the processor chip and the saving and 
restoring of these register sets in stack frames should be transparent to most programs. 
However, the following additional information about how the local registers and procedure 
stack are mapped to one another can help avoid problems. 

Since the local-register sets reside on the processor chip, the processor will often not have to 
access the stack frame in the procedure stack, even though space has been allocated on the 
stack for the current frame. The processor only accesses the current frame in the procedure 
stack in the following instances: 

1. to read or write variables other than those held in the local registers, 

2. to read local registers that were stored in the procedure stack when the number of nested 
procedures calls exceeded the number of local registers, or 

3. to read local registers that were stored in the procedure stack due to the suspension of the 
process. 

This method of mapping the local registers to the register-save areas in the procedure stack has 
several implications. First, storing information in a local register does not guarantee that it will 
be stored in its associated word in the current stack frame. Likewise, storing information in the 
first 16 words of a stack frame does not guarantee that the local registers associated with the 
stack frame are modified. 

Second, if you try to read the contents of the current set of local registers through a memory 
access to the first 16 words of the current stack frame, you may not get the expected result. 
This is also true if you try to read the contents of a previously stored set of local registers 
through a memory address to its associated stack frame. 

The processor automatically stores the contents of a local register set into the register-save area 
of its associated stack frame only in the following two circumstances: 

1. if procedure calls (local or supervisor) are nested deeper than the number of local-register 
sets, or 

2. if the process is suspended. 

Occasionally, it is necessary to have the contents of all local-register sets match the contents of 
the register-save areas in their associated stack frames. For example, when debugging software 
it may be necessary to trace the call history back through the nested procedures. This can not 
be done unless the cached local-register frames are flushed (i.e., written out to the procedure 
stack). 

The processor provides two methods of voluntarily flushing the local registers: the flushreg 
(flush local registers) instruction and the flush-local-registers lAC. Both the flushreg instruc­
tion and the flush-local-registers lAC cause the contents of all the local-register sets, except the 
current set, to be written to their associated stack frames in memory. 

Third, if you need to modify the PFP in register rO, you should precede this operation with the 
flushreg instruction, or else the behavior of the ret (return) instruction is not predictable. 
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Fourth, local registers should not be used for passing parameters between procedures. 
(Parameter passing is discussed in the following section.) 

Fifth, when a set of local registers is assigned to a new procedure, the processor may not clear 
or initialize these registers. The initial contents of these registers are therefore unpredictable. 
Also, the processor does not initialize the local register-save area in the newly created stack 
frame for the procedure, so its contents are equally unpredictable. 

LOCAL CALL 

A local call is made using either of two local call instructions: call and calix. These instruc­
tions initiate a procedure call using the call/return mechanism described earlier in this chapter. 

The call instruction sfcecifies the address of the called procedures as the IP plus a signed, 24-bit 
displacement (i.e., -2 3 to 223 - 4). 

The calix instruction allows any of the addressing modes to be used to specify the procedure 
address. The IP with displacement addressing mode allows full 32-bit IP relative addressing. 

The ret instruction initiates a procedure switch back to the last procedure that issued a call. 

Local-Call Operation 

During a local call, the processor performs the following operations: 

1. Stores the RIP in current local-register r2. 

2. Allocates a new set of local registers for the called procedure. 

3. Allocates a new frame on the procedure stack. 

4. Changes the instruction pointer to point to the first instruction in the called procedure. 

5. Stores the FP for the calling procedure in new local-register rO (PFP). 

6. Stores the FP for the new frame in global register gIS. 

7. Allocates a save area for the new local registers in the new stack frame. 

8. Stores the SP in new local-register rI. 

Local-Return Operation 

On a return, the processor performs these operations: 

1. Sets the FP in global register gIS to the value of the PFP in current local-register rD. 

2. Deallocates the current local registers for the procedure that initiated the return and 
switches to the local registers assigned to the procedure being returned to. 

3. Deallocates the stack frame for the procedure that initiated the return. 

4. Sets the IP to the value of the RIP in new local-register r2. 
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The algorithms that the call, calix, and ret instructions use are described in greater detail in 
Chapter 17. 

PARAMETER PASSING 

The processor supports two mechanisms for passing parameters between procedures: global 
registers and argument list. 

Passing Parameters in Global Registers 

The global registers provide the fastest method of passing parameters. Here, the calling 
procedure copies the parameters to be passed into global registers. The called procedure then 
copies the parameters (if necessary) out of the global registers after the call. 

On a return, the called procedure can copy result parameters into global registers prior to the 
return, with the calling procedure copying them out of the global registers after the return. 

Passing Parameters in an Argument List 

When more parameters need to be passed than will fit in the global registers, they can be 
placed in an argument list. This argument list can be stored anywhere in memory providing 
that the procedure being called has a pointer to the list. Commonly, a pointer to the argument 
list is placed in a global register. 

Parameters can also be returned to the calling procedure through an argument list. Here again, 
a pointer to the argument is generally returned to the calling procedure through a global 
register. 

The argument list method of passing parameters should be thought of as an escape mechanism 
and used only when there are not enough global registers available for passing parameters. 

Passing Parameters Through the Stack 

A convenient place to store an argument list is in the stack frame for the calling procedure. 
Storing the argument list in the stack provides the benefit of having the list automatically 
deallocated upon returning from the procedure that set up the list. Space for the argument list 
is created by incrementing the SP, as described earlier in this chapter in the section titled 
"Stack Pointer." 

Parameters can also be returned to the calling procedure through an argument list in the stack. 
However, care should be taken when doing this. The return argument list must not be placed in 
the frame for the called procedure, since this frame is deallocated on the return. Also, if the 
return list is to be placed in the frame of the calling procedure, the calling procedure must 
allocate space for this list prior to making the call. 
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SYSTEM CALL 

A system call is made using the call system instruction calls. This call is similar to a local call 
except that the processor gets the IP for the called procedure from a data structure called the 
procedure table. (System calls are sometimes referred to in this manual as "system-procedure­
table calls.") 

Figure 4-3 illustrates the use of the procedure table in a system call. The calls instruction 
requires a procedure-number operand. This procedure number provides an index into the 
procedure table, which contains IPs for specific procedures. 

ADDRESS 
SPACE 

ENTRY IN THE PROCEDURE 
TABLE CONTAINS AN 
INSTRUCTION POINTER TO 
THE CALLED PROCEDURE. 

CALLING PROCEDURE 
ISSUES A calls 
INSTRUCTION, WHICH 
CONTAINS AN INDEX FOR 
AN ENTRY IN THE 
PROCEDURE TABLE. 

PROCEDURE 
TABLE 

HEADER 

IP 

IP 

IP 

IP 

IP 

IP 

Figure 4-3: System-Call Mechanism 

ENTRY 1 

ENTRY 2 

ENTRY 3 

ENTRY 4 

ENTRY 5 

ENTRY 6 

The system-call mechanism suppoits two types of procedure calls: local calls and supervisor 
calls. A local call is the same as that made with the call and calix instructions, except that the 
processor gets the IP of the called procedure from a procedure table. The supervisor call 
differs from the local call in two ways: (1) it causes the processor to switch to another stack 
(called the supervisor stack), and (2) it causes the processor to switch to a different execution 
mode. 
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The system-call mechanism offers two benefits. First, it supports portability for application 
software. System calls are commonly used to call kernel services. By calling these services 
with a procedure number rather than a specific IP, applications software does not have to be 
changed each time the implementation of the kernel services is modified. 

Second, the ability to switch to a different execution mode and stack allows kernel procedures 
and data to be insulated from applications code. This benefit is described in more detail later 
in this chapter in the section titled "User-Supervisor Protection Model". 

PROCEDURE TABLE 

The procedure table is a general structure, which the processor uses in two ways. The first way 
is as a place for storing IPs for kernel procedures, which can then be accessed through the 
system-call mechanism described above. Here, the procedure table is called the 
system-procedure table. The processor gets a pointer to the system-procedure table from the 
processor control block (PRCB) as described in Chapter 9 in the section titled "System Data­
Structure Pointers." 

The second way a procedure table is used is as a place for storing IPs for fault-handler 
procedures. Here, the processor gets a pointer to the procedure table from entries in the fault 
table, as described in Chapter 12 in the section titled "Fault-Table Entries." 

The structure of the procedure table is shown in Figure 4-4. It is 1088 bytes in length and can 
have up to 260 procedure entries. The following sections describe the fields in a procedure 
table. 

Procedure Entries 

The procedure entries specify the target IPs for the procedures that can be accessed through the 
procedure table. Each entry is one word in length and is made up of an address (or IP) field 
and a type field. The address field gives the address of the first instruction of the target 
procedure. Since all instructions are word aligned, only the 30 most-significant bits of the 
address are given. The processor automatically provides zeros for the least-significant bits. 
Entry 0 begins at byte 48 of the procedure table; the table can contain up to 260 entries. 

The procedure entry type field indicates the type of call to execute: local or supervisor. The 
encodings of this field are shown in Table 4-2. 

Table 4·2: Encodings of Entry Type Field in Procedure Table Entry 

Entry Type Procedure Type 
Field 

00 local procedure 

01 reserved 

10 supervisor procedure 

11 reserved 
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Figure 4-4: Procedure-Table Structure 

Supervisor-Stack Pointer 

When a supervisor call is made, the processor switches to a new stack called the supervisor 
stack. The processor gets a pointer to this stack from the supervisor-stack-pointer entry (bytes 
12-15, bits 2-31) in the procedure table. Only the 30 most-significant bits of the supervisor­
stack pointer are given. The processor aligns this value to the next 64-byte boundary to 
determine the first byte of the new stack frame. 
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Trace-Control Flag 

The trace-control flag (byte 12, bit 0) specifies the new value of the trace-enable flag of the 
process when a supervisor call causes a switch from user mode to supervisor mode. Setting 
this flag to 1 enables tracing; setting it to ° disables tracing. The use of this flag is described in 
the section in Chapter 16 titled "Trace Control on Supervisor Calls." 

System Call to a Local Procedure 

When a calls instruction references a procedure entry designated as a local type (002)' the 
processor executes a local call to the procedure selected from the system procedure table. 
Neither a mode switch nor a stack switch occurs. 

The ret instruction permits returns from either a local procedure or a supervisor procedure. 
The return status field in local register rO determines the type of return action that the processor 
is to take. If the return status field is set to 0002' a local return is executed. In a local return, 
no stack or mode switching is carried out. 

USER-SUPERVISOR PROTECTION MODEL 

The processor provides a two-state protection model called the user-supervisor protection 
model. With this model, access to selected procedures and data structures can be restricted by 
means of page protection and mode switching between two execution modes: user and super­
visor. 

This protection model allows a system to be designed in which kernel code and data reside in 
the same address space as user code and data, but access to the kernel procedures (called 
supervisor procedures) is only allowed through a procedure table, which forms a tightly con­
trolled and protected interface. This interface is provided by the system procedure table. 

The user-supervisor protection model also allows kernel procedures to be executed using a 
different stack (the supervisor stack) than is used to execute applications program procedures. 
The ability to switch stacks helps maintain the integrity of the kernel. For example, it would 
allow system debugging software or a system monitor to be accessed, even if an applications 
program crashes. 

User and Supervisor Modes 

When using the user-supervisor protection model, a process can be in either of two execution 
modes: user or supervisor. The difference between the two modes is that when the process is 
in the supervisor mode, it has the following additional privileges: 

• It may access pages that have supervisor-only rights. (A program cannot access these 
pages in the address space when the process is in the user mode.) 

• It may use additional instructions. These instructions typically control process manage­
ment and kernel functions. 
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Supervisor Calls 

Mode switching between the user and supervisor execution modes is accomplished through a 
supervisor call. Asupervisor call is a call executed with.the calls instruction that references a 
supervisor procedure in the system procedure table (Le., a procedure with an entry type 102), 

When the processor is in the user mode and it executes a calls instruction, the processor 
performs the following actions: 

• It switches to supervisor mode 

• It switches to the supervisor stack 

• It sets the return status field in register RO of the calling procedure to OIX2, indicating that 
a mode and stack switch has occurred. 

The processor remains in the supervisor mode until a return is performed from the procedure 
that caused the original mode switch. While in the supervisor mode, either the local call 
instructions (call and calIx) or the calls instruction can be used to call supervisor procedures. 

(The call and calIx instructions call local (or user) procedures in user mode and supervisor 
procedures in supervisor mode. There is no stack or processor state switching associated with 
these instructions.) 

When a ret instruction is executed and the return status field is set to OlX2, the processor 
performs a supervisor return. Here, the processor switches from the supervisor· stack to the 
local stack, and the execution mode is switched from supervisor to user. 

Supervisor Stack 

When using the user-supervisor mechanism, the processor maintains separate stacks in the 
address space, one for procedures executed in the user mode (local procedures) and another for 
procedures executed in the supervisor mode (supervisor procedures). When in the user mode, 
the local procedure stack (described at the beginning of this chapter) is used. When a super­
visor call is made, the processor switches to the supervisor stack. It continues to use the 
supervisor stack until a return is made to the user mode. 

The structure of the supervisor stack is identical to that of the local procedure stack (shown in 
Figure 4-2). The processor obtains the SP for the supervisor stack from the procedure table. 
When a supervisor call is executed while in the user mode (causing a switch to the supervisor 
stack), the processor aligns this SP to the next 64-byte boundary to form the new FP for the 
supervisor stack. When a local call or supervisor call is made while in the supervisor mode, 
the processor aligns the SP in the current frame of the supervisor stack to the next 64-byte 
boundary to form the FP pointer. This operation allows supervisor procedures to be called 
from supervisor procedures. 
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BRANCH AND LINK 

The bal (branch and link) and balx (branch and link extended) instructions provide an alternate 
method of making procedure calls. These instructions save the address of the next instruction 
(RIP) in a specified location, then branch to a target instruction or set of instructions. The state 
of the local registers and stack remains unchanged. (For the bal instruction, the RIP is 
automatically stored in global register g14; for the balx instruction, the location of the RIP is 
specified with one of the instruction operands.) 

A return is accomplished with a bx (branch extended) instruction, where the address of the 
target instruction is the one saved with the branch and link instruction. 

Branch and link procedure calls are recommended for calls to procedures that (1) do not call 
other procedures (i.e., for procedure calls that do not result in nesting of procedures) and (2) do 
not need many local variables (i.e., allocation of a new set of local registers does not provide 
any benefit). Here, local registers as well as global registers can be used for parameter passing. 
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CHAPTER 5 
DATA TYPES AND ADDRESSING MODES 

This chapter describes the data types that the 80960MC processor recognizes and the address­
ing modes that are available for accessing memory locations. 

DATA TVPES 

The processor defines and operates on the following data types: 

• Integer (8, 16,32, and 64 bits) 

• Ordinal (8, 16,32, and 64 bits) 

• Real (32, 64, and 80 bits) 

• Decimal (ASCII digits) 

• Bit Field 

• Byte String 

• Triple-Word (96 bit) 

• Quad-Word (128 bit) 

The integer, ordinal, real, and decimal data types can be thought of as numeric data types 
because some operations on these data types produce numeric results (e.g., add, subtract). 

The remaining data types (bit field, byte string, triple word, and quad word) represent group­
ings of bits or bytes that the processor can operate on as a whole, regardless of the nature of the 
data contained in the group. These data types facilitate moving and operating on blocks of bits 
or bytes. 

Integers 

Integers are signed whole numbers, which are stored and operated on in two's complement 
format. The processor recognizes four sizes of integers: 8 bit (byte integers), 16 bit (short 
integers), 32 bit (integers), and 64 bit (long integers). Figure 5-1 shows the formats for the 
four integer sizes and the ranges of values allowed for each size. 

Ordinals 

Ordinals are a general-purpose data type. The processor recognizes four sizes of ordinals: 8 
bit (byte ordinals), 16 bit (short ordinals), 32 bit (ordinals), and 64 bit (long ordinals). Figure 
5-2 shows the formats for the four ordinal sizes and the ranges of numeric values allowed for 
each size. 
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DATA TYPE 
Byte Integer 
Short Integer 
Integer 
Long Integer 

32 
BITS 

RANGE 
_27 to 27_1 
-2 15 to2 15_1 
_231 to 231 - 1 
_263 to 263 - 1 

SIGN 

DECIMAL EQUIVALENT 
-128 to 127 
-32,768 to 32,767 
-2.14 x 1;09 to 2.14 X 109 

-9.22 x 1018 to 9.22 x 1018 

Figure 5·1: Integer Format and Range 

o 

The processor uses ordinals for both numeric and non-numeric operations. For numeric opera­
tions, ordinals are treated as unsigned whole numbers. The processor provides several arith­
metic instructions that operate on ordinals. For non-numeric operations, ordinals contain bit 
fields, byte strings, and Boolean values. 

When ordinals are used to represent Boolean values, a 12 represents a TRUE and a O2 
represents a FALSE. 

Reals 

Reals are floating-point numbers. The processor recognizes three sizes of reals: 32 bit (reals), 
64 bit (long reals), and 80 bit (extended reals). The real-number format conforms to 
ANSI/lEEE Std. 754-1985, the IEEE Standard For Binary Floating-Point Arithmetic. Real 
numbers are discussed in greater detail in Chapter 7. 
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64 
BITS 

DATA TVPE 
Byte Ordinal 
Short Ordinal 
Ordinal 
Long Ordinal 

Decimals 

RANGE DECIMAL EQUIVALENT 
o to 28_1 o to 255 o to 216_1 o to 65,535 
o to 232 - 1 o to 4.29 X 109 

o to 264 - 1 o to 1.84 x 1019 

Figure 5·2: Ordinal Format and Range 

o 

The processor provides three instructions that perform operations on decimal values when the 
values are presented in ASCII format. Figure 5-3 shows the ASCII format for decimal digits. 
Each decimal digit is contained in the least-significant byte of an ordinal (32 bits). The 
decimal digit must be of the form OOlldddd2, where dddd2 is a binary-coded decimal value 
from 0 to 9. For decimal operations, bits 8 through 31 of the ordinal containing the decimal 
digit are ignored. 
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ASCII FORMAT 

7 o 

Figure 5·3: Decimal Format 

Bits and Bit Fields 

The processor provides several instructions that perform operations on individual bits or fields 
of bits within an ordinal (32 bit) operand. Figure 5-4 shows these data types. 

31 

LENGTH 

o 

L BIT NUMBER OF 
LOWEST­
NUMBERED BIT 

Figure 5·4: Bits and Bit Fields 

An individual bit is specified for a bit operation by giving its bit number in the ordinal in which 
it resides. The least-significant bit of a 32-bit ordinal is bit 0; the most-significant bit is bit 31. 

A bit field is a contiguous sequence of bits of from 0 to 32 bits in length within a 32-bit 
ordinal. A bit field is defined by giving its length in bits and the bit number of its lowest­
numbered bit. 

A bit field cannot span a register boundary. 

Byte String 

A byte string is a contiguous sequence of byte ordinals. The length of a byte string is the 
number of bytes in the string; a length of zero specifies an empty string. The maximum length 
of a byte string is 232 - 1 bytes. 

Byte-string operations are performed on byte strings in memory. The address of a byte string 
is the address of the first byte in the string. Consecutive bytes of the string are stored in 
increasing byte addresses. 
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Triple and Quad Words 

Triple and quad words refer to consecutive bytes in memory or in registers: a triple word is 12 
bytes and a quad word is 16 bytes. These data types facilitate the moving of blocks of bytes. 
The triple-word data type is useful for moving extended-real numbers (80 bits). 

The quad-word instructions (ldq, stq, and movq) offer the most efficient way to move large 
blocks of data. 

BYTE, WORD, AND BIT ADDRESSING 

The processor provides instructions for moving blocks of data values of various lengths from 
memory to registers (load) and from registers to memory (store). The allowable sizes for 
blocks are bytes, half-words (2 bytes), words (4 bytes), double words, triple words, and quad 
words. For example, the stI (store long) instruction stores an 8-byte (double word) block of 
data in memory. 

When a block of data is stored in memory, the least-significant byte of the block is stored at a 
base memory address and the more significant bytes are stored at successively higher ad­
dresses. 

When loading a byte, half-word, or word from memory to a register, the least-significant bit of 
the block is always loaded in bit 0 of the register. When loading double words, triple words, 
and quad words, the least-significant word is stored in the base register. The more significant 
words are then stored at successively higher numbered registers. Double words, triple words, 
and quad words must also be aligned in registers to natural boundaries as described in Chapter 
3 in the section titled "Register Alignment." 

Bits can only be addressed in data that resides in a register. Bit 0 in a register is the least­
significant bit and bit 31 is the most-significant bit. 

LITERALS 

The processor recognizes two types of literals (ordinal literals and floating-point literals), 
which can be used as operands in some instructions. An ordinal literal can range from 0 to 31 
(5 bits). When an ordinal literal is used as an operand, the processor expands it to 32 bits by 
adding leading zeros. If the instruction defines an operand larger than 32 bits, the processor 
zero-extends the value to the operand size. If an ordinal literal is used in an instruction that 
requires integer operands, the processor treats the literal as a positive integer value. 

The processor also recognizes two floating-point literals (+0.0 and + 1.0). These floating-point 
literals can only be used with floating-point instructions. As with the ordinal literals, the 
processor converts the floating-point literals to the operand size specified by the instruction. 

NOTE 

A few of the floating-point instructions use both floating-point and non-floating-point operands 
(e.g., the convert integer-to-real instructions). Ordinal literals can be used in these instructions 
for non-floating-point operands. 
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REGISTER ADDRESSING 

A register maybe used as an operand in an instruction by giving the register's number (e.g., 
gO, r5, fp3). Both floating-point and non-floating-point instructions can reference global and 
local registers in this way. However, floating-point registers can only be referenced in conjunc­
tion with a floating-point instruction. 

MEMORY-ADDRESSING MODES 

The processor offers 9 modes for addressing operands in memory. These modes are grouped 
as follows: 

• Absolute 

• Register Indirect 

• Register Indirect with Index 

• Index with Displacement 

• IP with Displacement 

Each addressing mode is used to reference a byte address in the processor's address space. 
Table 5-1 shows all the memory-addressing modes, a brief description of the elements of the 
address in each mode, and the assembly-code syntax for each mode. 

Table 5-1: Addressing Modes 

Mode Description Assembler Syntax 

Absolute offset offset exp 

Register Indirect abase (reg) 

Register Indirect abase + offset exp (reg) 
with offset 

Register Indirect abase + (index*scale) (reg) [reg*scale] 
with index 

Register Indirect abase + (index*scale) exp (reg) [reg*scale] 
with index and + displacement 
displacement 

Index with (index * scale) exp [reg*scale] 
displacement + displacement 

IP with IP + displacement + 8 exp (IP) 
displacement 

Where: reg is register and exp is expression 
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Absolute 

Absolute addressing is used to reference a memory location directly as an offset from address 0 
of the address space, ranging from _231 to 231 - 1. Typically, an assembler will allow absolute 
addresses to be specified through arithmetic expressions (e.g., x + 44), symbolic labels, and 
absolute values. 

At the machine-level, two absolute-addressing modes are provided, depending on the instruc­
tion format (i.e., MEMA or MEMB). For the MEMA format, the offset is an ordinal number 
ranging from 0 to 2047; for the MEMB format, the offset is an integer (called a displacement) 
ranging from _231 to 231 -1. After evaluating an absolute address, the assembler will convert 
the address into an offset and select the appropriate machine-level instruction type and address­
ing mode. (The machine-level addressing modes and instruction formats are described in 
Appendix B.) 

Register Indirect 

The register indirect addressing modes allow an address to be specified with an ordinal value 
(32 bits) in a register or with an offset or a displacement added to a value in a register. Here. 
the value in the register is referred to as the address base (abase). 

Again, an assembler will allow the offset and displacement to be specified with an expression 
or symbolic label, then evaluate the address to determine whether an offset or a displacement is 
appropriate. 

Register Indirect with Index 

The register indirect with index addressing modes allow a scaled index to be added to the value 
in a register. The index is specified by means of a value placed in a register. This index value is 
then multiplied by the scale factor. The allowable scale factors are 1,2,4,8, and 16. 

A displacement may also be added to the abase value and scaled index. 

Index with Displacement 

A scaled index can also be used with a displacement alone. Again, the index is contained in a 
register and is mUltiplied by a scaling constant before the displacement is added to it. 

IP with Displacement 

The IP with displacement addressing mode is often used with load and store instructions to 
make them IP relative. 

Note that with this mode the displacement plus a constant of 8 is added to the IP of the 
instruction. 
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CHAPTER 6 
INSTRUCTION-SET SUMMARY 

This chapter provides an overview of the instruction set for the 80960MC processor. Included 
is a discussion of the instruction format and a summary of the instruction groups and the· 
instructions in each group. 

Chapter 17 gives detailed descriptions of each of the instructions. The instructions are listed in 
this chapter in alphabetical order. Included for each instruction are the assembly-language 
format, the action taken when the instruction is executed, and examples of how the instruction 
might be used. 

Appendix C provides a detailed description of the factors that affect instruction timing. It also 
gives the number of clock cycles required for each instruction. 

INSTRUCTION FORMATS 

Instructions are described in this reference manual in two formats: assembly language and 
machine level. 

Assembly-Language Format 

Throughout most of this manual, the instructions are referred to by their assembly-language 
mnemonics. For example, the add ordinal instruction is referred to as the addo instruction. 

An assembly-language statement consists of an instruction mnemonic, followed by from 0 to 3 
operands, separated by commas. The following example shows the assembly-language state­
ment for the addo instruction: 

addo g5, g9, g7 

Here, the ordinal operands in global registers g5 and g9 are added together and the result is 
stored in g7. 

A detailed description of the nomenclature used to describe assembly-language instructions is 
given in Chapter 17. 

Machine Formats 

At the machine level of the processor, all instructions are word aligned. Most of the instruc­
tions are one word long, although some memory-addressing modes make use of a two-word 
format. 

There are four instruction formats: register (REG), compare and branch (COBR), control 
(CTRL), and memory (MEM). Each instruction uses one of these formats, which is deter­
mined by the opcode field of the instruction. 
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The machine-level formats for the instructions are described in detail in Appendix B. 

INSTRUCTION GROUPS 

The 80960MC processor implements all the instructions in the 80960 instruction set, which 
includes all of the data-movement, arithmetic, logical, and program-control instructions com­
monly found in computer architectures. The processor also includes a set of floating-point 
instructions and several instructions to handle architectural extensions found in the processor. 

The 80960 instruction set is made up of the following groups of instructions: 

• Data Movement 

• Arithmetic (Ordinal and Integer) 

• Logical 

• Bit, Bit Field, and Byte 

• Comparison 

• Branch 

• Call1Retum 

• Fault 

• Debug 

• Atomic 

• Processor Management 

The instruction-set extensions found in the 80960MC processor include the following groups 
of instructions: 

• Integer-to-Real Conversion 

• Floating Point 

• Process Management 

• String 

• Decimal 

',~ables 6-1 and 6-2 give a summary of the 80960 instructions and the 80960MC instruction-set 
extensions, respectively. The actual number of instructions is greater than those shown in this 
list, because for some operations, several different instructions are provided to handle different 
operand sizes, data types, or branch conditions. 
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Table 6-1: Summary of the 80960 Instruction Set 

Data Movement Arithmetic Logical Bit, Bit Field, 
and Byte 

Load Add And Set Bit 
Store Subtract Not And Clear Bit 
Move Multiply And Not Not Bit 
Load Address Divide Or Check Bit 

Extended Exclusive Or Alter Bit 
Multiply Not Or Scan For Bit 

Extended arNot Scan Over Bit 
Divide Nor Extract 

Remainder Exclusive Nor Modify 
Modulo Not Scan Byte For 
Shift Nand Equal 
Rotate 

Comparison Branch Call/Return Fault 

Compare Unconditional Call Conditional Fault 
Conditional Branch Call Extended Synchronize Faults 

Compare Conditional Branch Call System 
Compare and Compare and Return 

Increment Branch Branch and Link 
Compare and Test Condition 

Decrement Code 

Debug Atomic Processor 

Modify Trace Atomic Add Flush Local 
Controls Atomic Modify Registers 

Mark Modify Arithmetic 
Force Mark Controls 

Modify Process 
Controls 
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Table 6-2: Summary of the 80960MC Instruction-Set Extensions 

Conversion Floating Point Process Control 

Convert Real-to-Integer Move Real Schedule Process 
Convert Integer-to-Real Add Save Process 

Subtract Resume Process 
Multiply Load Process Time 
Divide Signal 
Remainder Wait 
Scale Conditional Wait 
Round Send 
Square Root Receive 
Sine Conditional Receive 
Cosine Send Service 
Tangent 
Arctangent 
Log 
Log Binary 
Log Natural 
Exponent 
Classify 
Copy Real Extended 
Compare 

String Decimal Miscellaneous 

Move String Move Inspect Access 
Move Quick String Add With Carry Load Physical Address 
Fill String Subtract With Carry Synchronous Move 
Compare String Synchronous Load 

The following sections give a brief overview of the instructions in each of these groups. The 
floating-point instructions are described in Chapter 7. 

DATA MOVEMENT 

The data movement instructions include those instructions that move data from memory to the 
global and local registers; that move data from the global and local registers to memory; and 
that move data among these registers. 
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Load 

The load instructions (listed below) copy bytes or words from memory to a selected register or 
group of registers: 

Id 
Idob 
Idos 
Idib 
Idis 
Idl 
Idt 
Idq 

load 
load byte ordinal 
load short ordinal 
load byte integer 
load short integer 
load long 
load triple 
load quad 

For the Id, Idob, Idos, Idib, and Idis instructions, a memory address and a register are specified 
in the instruction and the value at the memory address is copied into the register. Zero and sign 
extending is performed automatically for byte and short (half-word) operands. 

The Id, Idl, Idt, and Idq instructions copy 4, 8, 12, and 16 bytes from memory into successive 
registers. 

NOTE 

When using the load, store, and move instructions that move 8, 12, or 16 bytes at a time, the 
rules for register alignment must be followed. Refer to the section in Chapter 3 titled "Register 
Alignment" for a discussion of these rules. 

Store 

For each load instruction there is a corresponding store instruction (listed below), which copies 
bytes or words from a selected register or group of registers to memory: 

st 
stob 
stos 
stib 
stis 
stl 
stt 
stq 

store 
store byte ordinal 
store short ordinal 
store byte integer 
store short integer 
store long 
store triple 
store quad 

For the st, stob, stos, stib, and stis instructions, a register and memory address are specified in 
the instruction and the value in the register is copied into memory. For the byte and short 
instructions, the value in the register is automatically reformatted for the shorter memory 
location. For the stib and stis instructions, this reformatting can lead to overflow if the ,register 
value is too large to be represented in the shorter memory location. 

The st, stl, stt, and stq instructions copy 4, 8, 12, and 16 bytes from successive registers into 
memory. 
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Move 

The move instructions, listed below, copy data from a register or group of registers to another 
register or group of registers. 

mov 
movl 
movt 
movq 

move word 
move long word 
move triple word 
move quad word 

These move instructions can only be used to move data among the global and local registers. 
A set of move-real instructions (movr, movrl, and movre) are provided for moving real 
number values between the global and local registers and the floating-point registers. The 
move-real instructions are described in Chapter 7. 

Load Address 

The Ida instruction computes an effective address in the address space from an operand 
presented in one of the addressing modes. A common use of this instruction is to load a 
constant into a register. ) 

ARITHMETIC 

Table 6-3 lists all the arithmetic operations for which the 80960MC processor provides instruc­
tions and the data types that the instructions operate on. An "X" in this table indicates that the 
80960 architecture provides an instruction for the specified operation and data type; an "E" 
indicates that an 80960MC instruction-set extension provides an instruction for the specified 
operation and data type. An. '!E*" indicates that the specified operation can be performed on 
the specified data type using 80960MC extended-instruction-set instructions, but that a unique 
instruction for this operation is not provided. For example, a specific instruction is not 
provided to add two extended-real values. However, this operation can be carried out with 
either the add real (addr) or the add long real (addrl) instruction. 

With two exceptions, all the processor's arithmetic operations are carried out o~ operands in 
registers. The processor does not provide instructions that perform arithmetic operations on 
operands in memory. 

The two instructions that are exceptions are the atadd(atomic add) and atmod (atomic 
modify) instructions, which are discussed later in this chapter. 

A summary of the aritlunetic instructions for real (floating-point) data types is provided in 
Chapter 7. The following sections describe the arithmetic instructions for ordinal and integer 
data types: 

I.';, 
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Table 6·3: Arithmetic Operations 

Arithmetic Integer Ordinal Real Long Extended 
Operations Real Real 

Add X X E E E* 

Subtract X X E E E* 

Multiply X X E E E* 

Divide X X E E E* 

Remainder X X E E E* 

Modulo X 

Shift Left X X 

Shift Right X X 

Shift Right X 
Dividing 

Scale E E E* 

Round E E E* 

Square Root E E E* 

Sine E E E* 

Cosine E E E* 

Tangent E E E* 

Arctangent E E E* 

Exponent E E E* 

Log E E E* 

Log Binary E E E* 

Log Epsilon E E E* 

Classify E E E* 

Copy Sign E 

Copy Reversed E 
Sign 
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Add, Subtract, Multiply, and Divide 

The following instructions perform add, subtract, multiply, or divide operations on integers and 
ordinals: 

addi add integer 
addo add ordinal 
subi subtract integer 
subo subtract ordinal 
muli multiply integer 
mulo multiply ordinal 
divi divide integer 
divo divide ordinal 

These instructions perform operations on one-word operands in registers and store the results 
in a register. 

Extended Arithmetic 

The following four instructions are provided to support extended arithmetic operations to be 
performed (i.e., arithmetic operations on operands greater than one word in length): 

adde add ordinal with carry 
sube subtract ordinal with carry 
ernul extended mUltiply 
ediv extended divide 

The ad de and sube instructions add or subtract two words (contained in registers) plus a 
condition code bit (used as a carry bit). If the result has a carry, the carry bit in the condition 
code is set. Also, a second condition code bit is set if the operation would have resulted in an 
integer overflow condition. (The three-bit condition code is contained in the arithmetic con­
trols as described in Chapter 3.) 

These instructions treat the operands as ordinals; however, the indication of overflow in the 
condition code facilitates a software implementation of extended-integer arithmetic. 

The ernul instruction multiplies two ordinals (each contained in a register), producing long 
ordinal result (stored in two registers). The ediv instruction divides a long ordinal by an 
ordinal, producing an ordinal quotient and an ordinal remainder. 

Remainder and Modulo 

The following instructions divide one operand by another and retain the remainder of the 
operation: 

remi 
remo 
modi 

remainder integer 
remainder ordinal 
modulo integer 
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The difference between the remainder and modulo instructions lies in the sign of the result. 
For the remi and remo instructions, the result has the same sign as the dividend; for the modi 
instruction, the result has the same sign as the divisor. 

Shift and Rotate 

The processor provides the following five shift instructions: 

shlo shift left ordinal 
shro shift right ordinal 
shli shift left integer 
shri shift right integer 
shrdi shift right dividing integer 

These instructions shift the operand a specified number of bits to the left or to the right. Bits 
shifted beyond the register boundary are discarded. 

The shlo instruction shift zeros in from the least-significant bit, and the shro instruction shifts 
zeros in from the most-significant bit. These instructions are equivalent to mulo and divo by 
the power of 2, respectively. 

The shli instruction shifts zeros in from the least-significant bit; if the bits shifted out are not 
the same as the sign bit, an overflow fault is generated. 

The shri instruction performs a conventional arithmetic shift-right operation by shifting the 
sign bit in from the most-significant bit. When this instruction is used to divide an negative 
integer operand by the power of 2, however, it produces an incorrect quotient. (The discarding 
of the bits shifted out has the effect of rounding the result toward negative.) 

The shrdi instruction is provided for dividing integers by the power of 2. With this instruction, 
1 is added to the result if the bits shifted out are non-zero and the operand is negative, which 
produces the correct result for negative operands. 

The shli and shrdi instructions are equivalent to muli and divi by the power of 2. 

The rotate instruction rotates the bits of the operand to the left (toward higher significance) by 
a specified number of bits. Bits shifted beyond the left boundary of the register (bit 31) appear 
at the right boundary (bit 0). 
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LOGICAL 

The following instructions perfonn bitwise Boolean operations on the specified operands: 

and A andB 
notand (not A) and B 
andnot A and (not B) 
xor not (A = B) 
or A orB 
nor not (A or B) 
xnor A = B 
not not A 
notor (not A) or B 
ornot A or (not B) 
nand not (A and B) 

BIT AND BIT FIELD 

The bit instructions perfonn operations on a specific bit in an ordinal operand or on a bit field. 

Bit Operations 

The following instructions operate on a specified bit: 

setbit set bit 
clrbit clear bit 
notbit not bit 
chkbit check bit 
alterbit alter bit 
scan bit 
spanbit 

scan for bit 
span over bit 

The setbit, clrbit, and notbit instructions set, clear, or complement (toggle) a specified bit in 
an ordinal. 

The chkbit instruction causes the condition-code bits to be set according to the state of a 
specified bit in a register. The condition code is set to 01°2 if the bit is set and 0002 otherwise. 

The alterbit instruction alters the state of a specified bit in an ordinal according to the con­
dition code. If the condition code is 0102, the bit is set; if the condition code is 0002' the bit is 
cleared. 

The scanbit and spanbit instructions find the most significant set bit and clear bit, respec­
tively, in an ordinal. 
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Bit-Field Operations 

There are two bit field instructions extract and modify. The extract instruction converts a 
specified bit field, taken from an ordinal value, into an ordinal value. In essence, this instruc­
tion shifts a bit field in a register to the right and fills in the bits to the left of the bit field with 
zeros. 

The modify instruction copies bits from one register, under control of a mask, into another 
register. Only the unmasked bits in the destination register are modified. 

BYTE OPERATIONS 

The scan byte instruction performs a byte-by-byte comparison of two ordinals to determine if 
any two corresponding bytes are equal. The condition code is set according to the results of 
the comparison. 

CONVERSION 

Data can be converted from one length to another by means of the load and store instructions. 
For example, the Idis instruction loads a short integer from memory to a register and automati­
cally converts the integer from a half word to a full word. 

The 80960MC extended instruction set provides instructions to perform conversions between 
integer and real data types. These instructions are described in Chapter 7. 

COMPARISON 

The processor provides several types of instructions that are used to compare two operands. 
The following sections describe the compare instructions for ordinal and integer data types. 
The compare instructions for real data types are discussed in Chapter 7. 

Compare and Conditional Compare 

The compare instructions listed below compare two operands, then set the condition-code bits 
in the arithmetic controls according to the results. 

cmpi 
cmpo 
concmpi 
concmpo 

compare integer 
compare ordinal 
conditional compare integer 
conditional compare ordinal 

The condition-code bits are set to indicate whether one operand is less than, equal to, or greater 
than the other operand. (Refer to the section in Chapter 3 titled "Functions of the Arithmetic 
Controls Bits" for a discussion of meanings of the condition-code bits for conditional 
operations.) 
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The cmpi and cmpo instructions simply compare the two operands and set the condition-code 
bits accordingly. 

The concmpi and concmpo instructions first check the status of bit 2 of the condition code. If 
it is not set, the operands are compared as with the cmpi and cmpo instructions. If bit 2 is set, 
no comparison is performed and the condition-code bits are not changed. 

The conditional compare instructions are provided specifically to optimize two-sided range 
comparisons to check if A is between Band C (i.e., B :s; A :s; C). Here,acompare instruction 
(cmpi or cmpo) is used to check one side of the range (e.g., A ;;?: B) and a conditional compare 
instruction (concmpi or concmpo) is used to check the other side (e.g., A :s; C)according to the 
result of the first comparison. 

Compare and Increment or Decrement 

The following instructions compare two operands, set the condition-code bits according to the 
results, then increment or decrement one of the operands: 

cmpinci 
cmpinco 
cmpdeci 
cmpdeco 

compare and increment integer 
compare and· increment ordinal 
compare and decrement integer 
compare and decrement ordinal 

These instructions are intended for use at the end ofiterative loops. 

BRANCH 

The branch instructions allow the direction of program flow to be changed by explicitly 
modifying the IP. The processor provides three types of branch instructions: 

• unconditional branch 

• conditional branch 

• compare and branch 

The processor also provides a set of instructions for testing the condition code flags of the 
arithmetic controls. These instructions can be used in conjunction with the compare instruc­
tions and the branch instructions as a alternate means of performing conditional branch, and 
compare and branch operations. 

Most of the branch instructions specify the target IP by specifying a signed displacement to be 
added to the current IP. Other branch instructions specify the memory address of the target IP 
using one of the processor's addressing modes. This latter group of instructions are called 
extended-addressing instructions (e.g., branch e~tended, branch and link extended). 
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Unconditional Branch 

The following four instructions are used for unconditional branching: 

b 
bx 
bal 
balx 

Branch 
Branch Extended 
Branch and Link 
Branch and Link Extended 

The band bx instructions cause program execution to jump to the specified target IP. As 
described in Chapter 17, these two instructions perform the same function; however, they use 
different machine-level instruction formats. 

The bal and balx instructions store the address of the next instruction in a specified register, 
then jump to the specified target IP. (For the bal instruction, the RIP is automatically stored in 
register g14; for the balx instruction the location of the RIP is specified with an instruction 
operand.) As described in Chapter 4, the branch and link instructions provide a method of 
performing procedure calls that does not use the processor's call/return mechanism. Here, the 
saved instruction address is used as a return IP. 

The bx and balx instructions can be made IP-relative by using the IP with displacement 
addressing mode. 

Conditional Branch 

With the conditional branch (branch if) instructions, the processor checks the condition-code 
bits in the arithmetic controls. If these bits match the value specified with the instruction, the 
processor jumps to the target IP. These instructions use the displacement plus IP method of 
specifying the target IP: 

be 
bne 
bl 
ble 
bg 
bge 
bo 
bno 

branch if equal 
branch if not equal 
branch if less 
branch if less or equal 
branch if greater 
branch if greater or equal 
branch if ordered 
branch if unordered 

(Refer to the section in Chapter 3 titled "Functions of the Arithmetic Controls Bits" for a 
discussion of meanings of the condition-code bits for conditional operations.) 

The bo and bno instructions refer to comparisons of real numbers. Ordered and unordered real 
numbers are described in Chapter 7. 
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Compare and Branch 

The compare and branch instructions compare two operands, then branch according to the 
results. There are three subtypes of instructions in this group: compare integer, compare 
ordinal, and check bit: 

cmpibe 
cmpibne 
cmpibl 
cmpible 
cmpibg 
cmpibge 
cmpibo 
cmpibno 
cmpobe 
cmpobne 
cmpobl 
cmpoble 
cmpobg 
cmpobge 
bbs 
bbc 

compare integer and branch if equal 
compare integer and branch if not equal 
compare integer and branch if less 
compare integer and branch if less or equal 
compare integer and branch if greater 
compare integer and branch if greater or equal 
compare integer and branch if ordered 
compare int;eger and branch if unordered 
compare ordinal and branch if equal 
compare ordinal and branch if not equal 
compare ordinal and branch if less 
compare ordinal and branch if less or equal 
compare ordinal and branch if greater 
compare ordinal and branch if greater or equal 
check bit and branch if set 
check bit and branch if clear 

With the compare-ordinal-and-branch and compare-integer-and-branch instructions, two 
operands are compared and the condition-code bits are set, as with the compare instructions 
described earlier in this chapter. A conditional branch is then executed as with the conditional 
branch (branch if) instructions. 

With the check-bit-and-branch instructions, one operand specifies a bit to be checked in the 
other operand. The condition-code bits are set according to the state of the specified bit (i.e., 
0102 if the bit is set and 0002 if the bit is clear). A conditional branch is then executed 
according to the setting of the condition-code bits. 

Test Condition Codes 

The following test instructions allow the state of the condition-code bits to be tested: 

teste test if equal 
testne test if not equal 
testl test if less 
testle test if less or equal 
testg test if greater 
testge test if greater or equal 
testo test if ordered 
testno test if unordered 

These instructions cause a TRUE (1 2)to be stored in a destination register if the condition code 
matches the condition specified with the instruction. Otherwise, a FALSE (02) is stored in the 
register. 
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CALL AND RETURN 

The processor offers an on-chip call/return mechanism for making procedure calls to local 
procedures and kernel procedures. This call/return mechanism is described in detail in Chapter 
4. The following four instructions are provided to support this mechanism. 

call call 
calIx 
calls 
ret 

call extended 
call system 
return 

The call and calIx instructions call local procedures. The call instruction specifies the target 
procedure (the first instruction of the procedure) by adding a signed displacement to the IP. 
The calIx instruction uses extended addressing, as described for the bx and balx instructions, 
to specify the target procedure. For both of these instructions, a new set of local registers and a 
new stack frame are allocated for the called procedure. 

The calls instruction operates similarly to the call and calIx instructions, except that it gets its 
target procedure address from the system procedure table. An index number included as an 
operand in the instruction provides an entry point into the procedure table. 

Depending on the type of entry being pointed to in the procedure table, the calls instruction can 
cause a supervisor call to be executed. A supervisor call causes the processor to switch to the 
supervisor stack and to switch to supervisor mode. The supervisor call is described in detail in 
Chapter 4. 

The ret instruction performs a return from a called procedure to the calling procedure (the 
procedure that made the call). This instruction obtains its target IP (return IP) from linkage 
information that was saved for the calling procedure. The ret instruction is used to return from 
local and supervisor calls and from implicit calls to interrupt and fault handlers. 

CONDITIONAL FAULTS 

Generally, the processor generates faults automatically as the result of certain operations. Fault 
handling routines are then invoked to handle the various types of faults without explicit inter­
vention by the currently running process. (Faults are discussed in detail in Chapter 12.) 

The following conditional fault instructions permit a fault to be generated explicitly according 
to the state of the condition-code bits: 

faulte 
faultne 
faultl 
faultle 
faultg 
faultge 
faulto 
faultno 

fault if equal 
fault if not equal 
fault if less 
fault if less or equal 
fault if greater 
fault if greater or equal 
fault if ordered 
fault if unordered 
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The synchronize faults (synef) instruction is provided to force all faults to be precise in 
situations when the processor is executing two instructions in parallel. The function and use of 
this instruction is discussed in detail in the section in Chapter 12 titled "Precise and Imprecise 
Faults." 

DEBUG 

The processor supports debugging and monitoring of program activity through the use of trace 
events. The following instructions support these debugging and monitoring tools: 

modte modify trace controls 
mark mark 
fmark force mark 

The trace functions are controlled through the processor's trace controls bits. Some of these 
bits allow various types of tracing to be enabled or disabled. Other bits act as flags to indicate 
when an enabled trace event has been detected. (Trace controls are described in detail in 
Chapter 16.) 

The modte instruction permits the trace controls bits to be modified. 

The mark instruction causes a breakpoint trace event to be generated if the breakpoint trace 
mode is enabled. The fmark instruction generates a breakpoint trace independent of the state 
of the breakpoint trace mode flag. The latter two instructions allow a breakpoint to be placed 
anywhere in a program. 

ATOMIC INSTRUCTIONS 

The atomic instructions perform read-modify-write operations on operands in memory. They 
insure that when one atomic operation is performed on a specific block of memory it will be 
completed before another atomic operation can be performed on the same block. These 
instructions are particularly useful in systems that use multiple processors where all of the 
processors have access to system memory. 

There are two atomic instructions: atomic add (atadd) and atomic modify (atmod). The 
atadd instruction causes an operand to be added to the value in the specified memory location. 
The atmod causes bits in the specified memory location to be modified under control of a 
mask. 

PROCESSOR MANAGEMENT 

The processor provides several instructions for use in controlling processor-related functions. 

The modpe instruction provides a method of reading and modifying the contents of the process 
controls. 

In certain instances, it is necessary to insure that the contents of the local-register save area of 
the stack frames are the same as the local registers. The flush local registers instruction 
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(flushreg) automatically stores the contents of all the local register sets, except the current set, 
in the register save area of their associated stack frames. 

The arithmetic controls cannot be addressed with the load, move, and store instructions or the 
bit instructions. Instead, special instructions are provided for this purpose. 

The modify arithmetic controls instruction (modac) permits bits in the arithmetic controls 
register to be modified under the control of a mask. 

80960MC NON-FLOATING-POINT INSTRUCTION-SET EXTENSIONS 

The following non-floating-point instructions are extensions to the 80960-architecture instruc­
tion set. These instructions are provided to support extended non-floating-point features such 
as string operations, decimal arithmetic, multiprocessing, process management, and virtual 
memory management. 

Process Management 

The processor provides several instructions for use in process management. These instructions 
do not dictate a particular process management scheme. Instead they provide support for a 
wide variety of process management mechanisms. These instructions can be divided into two 
groups: process control and interprocess communication. 

The processor must be in the supervisor mode to execute the process management instructions. 
Process management is described in detail in Chapters 13 and 14. 

Process Control 

The following instructions provide process control services: 

saveprcs 
resumprcs 
schedprcs 
Idtime 

save process 
resume process 
schedule process 
load process time 

The processor defines two data structures for use in process control: a process control block 
(PCB) and a dispatching port. The PCB is used to maintain information about the process such 
as the status of the execution environment when the process was last suspended and system 
resources allocated to the process. The dispatching port is used for queuing processes that are 
waiting to be worked on by the processor. 

The resumprcs instruction causes the processor to switch to the specified process. The 
saveprcs instruction causes the current state of the currently running process to be saved in the 
PCB. 

These two instructions perform roughly the same functions as the RESUME and SAVE func­
tions of most UNIXTM kernels. A dispatching port is not needed with these instructions. 
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The schedprcs instruction causes a process to be enqueued at a dispatching port. 

The processor provides a mechanism for keeping track of process execution time. The Idtime 
instruction supports this mechanism by providing a method of loading the elapsed execution 
time of the currently running process into a specified register. 

The modpc instruction, which is described earlier in this chapter, provides a method of reading 
and modifying the contents of the process controls for the currently running process. 

Interprocess Communication 

The processor supports two techniques for communication among processes: semaphores and 
communication ports. 

Semaphores. A semaphore is essentially a queue for synchronizing the activities of in'ter­
dependent processes. The following instructions support communication through semaphores: 

wait 
condwait 
signal 

wait 
conditional wait 
signal 

The wait instruction causes the processor to check the specified semaphore for a signal, in the 
form of a semaphore count. If the semaphore count is non-zero, the processor decrements the 
count and continues execution of the current process. If the count is zero, the processor 
suspends the current process and queues it to the semaphore. The process is then said to be 
blocked. 

The condwait instruction performs the same function as the wait instruction, except that if a 
signal is not found, the process is not blocked. Instead, the condition-code bits are set to 
indicate whether or not the signal was received. 

The signal instruction causes the processor to send a signal to the specified semaphore. If 
processes are queued at the semaphore, the first process in the queue is unblocked. Otherwise, 
the semaphore count is incremented by one. 

Communication Ports. A communication port is similar to a semaphore except that it also 
provides a message-passing mechanism. A communication port can thus be used both for 
synchronizing processes and as a means of passing messages among processes. 

Messages are one word long. This message word can contain anything. Commonly, it con­
tains a one word message, a process number, or the address of a longer message. 

The following instructions support communication ports: 

receive 
condrec 
send 
sendserv 

receive 
conditional receive 
send 
send service 
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With the receive instruction, the processor checks the specified communication port for a 
message. If a message is queued at the port, it loads the message into a specified register and 
continues execution of the current process. If the message queue is empty, the processor 
suspends the current process and queues it at the communication port (i.e., blocks the process). 

The condrec instruction is similar to the receive instruction except that the process is not 
blocked if the message queue is empty. Instead the processor sets the condition-code bits to 
indicate whether or not the receive operation was carried out. 

The send instruction causes the processor to send a message to a specified communication 
port. If there are no processes at the port for messages, the processor enqueues the message at 
the port and continues executing the current process. If there are queued processes at the port, 
the first process in the queue is unblocked, given the message, and rescheduled at the dispatch­
ing port. The processor then resumes execution of the current process. 

The sendserv instruction causes the processor to suspend the current process and send it as a 
message to the specified communication port. 

String 

The 80960MC extended instruction set provides the following string instructions perform 
operations on byte strings in memory: 

movstr 
movqstr 
fill 
cmpstr 

move string 
move quick string 
fill string 
compare string 

The movstr and movqstr instructions move a byte string from one location in memory to 
another. These instructions operate identically except that the movstr instruction guarantees 
that if the strings overlap, no byte in the source string is overwritten until it is copied to the 
destination string. If the strings being moved do not overlap, the movqstr instruction should 
be used because it performs the move operation faster. 

The fill instruction copies an ordinal operanq repeatedly into a byte string in memory. 

The cmpstr instruction compares two byte strings of equal length, then sets the condition-code 
bits to show whether or not the strings are identical. 

Decimal 

The following three instructions are provided for use in decimal-arithmetic algorithms: 

dmovt move and test decimal 
daddc decimal add with carry 
dsubc decimal subtract with carry 

These instructions operate on 32-bit decimal operands that contain an 8-bit, ASCII-coded 
decimal in the least-significant byte ofthe word (as shown in Figure 5-3). 
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The dmovt instruction moves a decimal operand from one register to another and tests the least 
significant byte of the operand to determine if it is a decimal digit (0 to 9). It sets the condition 
code according to the results of the test: 0 I O2 if the operand contains a decimal digit and 0002 
otherwise. 

The daddc anddsubc instructions operate similarly to the addc and subc instructions. They 
add or subtract two decimal digits plus bit 1 of the condition code (used as a carry-in bit). If 
the operation produces a decimal carry, the condition code is set accordingly. The subtraction 
operation is carried out in lO's complement arithmetic. 

These instructions can be used iteratively to add or subtract decimal values of any length. 

With the 80960MC processor, the most efficient method of mUltiplying or dividing decimal 
numbers is to convert them into extended-real numbers and use the muir and divr instructions. 
Decimal values of up to 18 decimal digits can be handled with this technique. 

Miscellaneous Instructions 

The following instructions perform two special synchronous operations on operands in 
memory and two memory management functions. 

Synchronous Load and Move 

The processor's store instructions are executed asynchronously with the memory controller. 
Once the processor sends data out on its bus for storage in main memory, it continues with the 
next instruction in the instruction stream, assuming that its bus control logic will carry out the 
operation. 

The 80960MC processor provides four special instructions for performing memory operations 
that perform store and move operations synchronously with memory. 

The synchronous load instruction (synld) loads a word from memory into a register. When 
this instruction is performed, the processor waits until a condition code bit is set in the arith­
metic controls, indicating that the operation has been completed, before it begins executing the 
next instruction. The synld instruction is used primarily to read the contents of the interrupt­
control register, as described in Chapter 10. 

The synchronous move instructions (synmov, synmovl, and synmovq) perform synchronous 
moves of data from one location in memory to another. These instructions are used primarily 
for sending lAC messages, as described in Chapter 11. . 

Memory-Management Functions 

The inspect access instruction (inspacc) returns the respective page rights of a specified page. 
This instruction is used in memory management routines. 
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The load physical address (Idphy) instruction translates an address in the address space into a 
physical address. The primary function of this instruction is to translate virtual addresses into 
physical addresses. 
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CHAPTER 7 
FLOATING-POINT OPERATION 

This chapter describes the floating-point processing capabilities of the 80960MC processor. 
The subjects discussed include the real number data types, the execution environment for 
floating-point operations, the floating-point instructions, and fault and exception handling. 

INTRODUCING THE 80960MC FLOATING-POINT ARCHITECTURE 

The floating-point architecture used in the 80960MC processor is designed to allow a con­
venient implementation of the IEEE Standard 754-1985 for Binary Floating-Point Arithmetic. 
This hardware architecture, along with a small amount of software support, conforms to the 
IEEE standard and provides support for the following data structures and operations: 

• Real (32-bit), long-real (64-bit), and extended-real (80-bit) floating-point number formats. 

• Add, subtract, multiply, divide, square root, remainder, and compare operations 

• Conversion between integer and floating-point formats 

• Conversion between different floating-point formats 

• Handling of floating-point exceptions, including non-numbers (NaNs) 

The software to support the 80960MC floating-point architecture is needed primarily to handle 
conversions between real numbers and decimal strings. 

In addition, the 80960MC floating-point architecture supports several functions that go beyond 
the IEEE standard. These functions fall into two categories: 

• functions recommended in the appendix to the IEEE standard, such as copy sign and 
classify, and 

• commonly used transcendental functions, including trigonometric, logarithmic, and ex­
ponential functions. 

REAL NUMBERS AND FLOATING-POINT FORMAT 

This section provides an introduction to real numbers and how they are represented in floating­
point format. Readers who are already familiar with numeric processing techniques and the 
IEEE standard may wish to skip this section. 

Real Number System 

As shown at the top of Figure 7-1, the real-number system comprises the continuum of real 
numbers from minus infinity (-00) to plus infinity (+00). 
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Because the size and number of registers that any computer can have is limited, only a subset 
of the real-number continuum can be used in real-number calculations. As shown at the 
bottom of Figure 7-1, the subset of real numbers that a particular processor supports represents 
an approximation of the real number system. The range and precision of this real-number 
subset is determined by the format that the processor uses to represent real numbers. 

Floating·Point Format 

To increase the speed and efficiency of real number computations, computers or numeric 
processors typically represent real numbers in a binary floating-point format. In this format, a 
real number has three parts: a sign, a significand, and an exponent. Figure 7-2 shows the 
binary floating-point format that the processor uses. This format conforms to the IEEE stan­
dard. 

The sign is a binary value that indicates whether the number is positive (0) or negative (1). 
The significand has two parts: a one-bit binary integer (also referred to as the j-bit) and a 
binary fraction. The j-bit is often not represented, but instead is an implied value. The 
exponent is a binary integer that represents the base-2 power that the significand is raised to. 
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SIGN 

I I EXPONENT SIGNIFICAND 

G I FRACTION 

INTEGER OR J-BIT J'--I-I-----------...I 

Figure 7-2: Binary Floating-Point Format 

Table 7-1 shows how the real number 201.187 (in ordinary decimal format) is stored in 
floating-point format. The table lists a progression of real number notations that leads to the 
format that the 80960MC processor uses. In this format, the binary real number is normalized 
and the exponent is biased. 

Table 7-1: Real-Number Notation 

NOTATION VALUE 

ORDINARY DECIMAL 201.187 

SCIENTIFIC DECIMAL 2.01187E,02 

SCIENTIFIC BINARY 1.1001001001011111 E2111 

SCIENTIFIC BINARY 1.1001001001011111E210000110 
(BIASED EXPONENT) 

32-BIT SIGN BIASED EXPONENT SIGNIFICAND 

FLOATING-POINT 

FORMAT 0 10000110 1001001001011111 

(NORMALIZED) L-1• (IMPLIED) 

Normalized Numbers 

In most cases, the processor represents real numbers in normalized form. This means that 
except for zero, the significand is always made up of an integer of 1 and a fraction as follows: 

l.fff ... ff 

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the 
exponent is decremented by one.) 
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Representing numbers in normalized form maximizes the number of significant digits that can 
be accommodated in a significand of a given width. To summarize, a normalized real number 
consists of a normalized significand that represents a real number between 1 and 2 and an 
exponent that gives the number's binary point. 

Biased Exponent 

The processor represents exponents in a biased form. This means that a constant is added to 
the actual exponent so that the biased exponent is always a positive number. The value of the 
biasing constant depends on the number of bits available for representing exponents in the 
floating-point format being used. The biasing constant is chosen so that the smallest normal­
ized number can be reciprocated without overflow. 

(The biasing constants for the various sizes of real data types that the processor supports are 
given in the section later in this chapter titled "Real Data Types".) 

Real Number and Non-Number Encodings 

The real numbers that are encoded in the floating-point format described above are generally 
divided into three classes: ± 0, ± nonzero-finite numbers, and ± 00. Encodings for non­
numbers (NaNs) are also defined. The term NaN stands for "Not a Number." 

Figure 7-3 shows how the encodings for these numbers and non-numbers fit into the real 
number continuum. The encodings shown here are for the IEEE single-precision (32-bit) 
format, where the term "s" indicates the sign bit, "e" the biased exponent, and "f' the fraction. 
(The exponent values are given in decimal.) 

Signed Zeros 

Zero can be represented as a +0 or a -0 depending on the sign bit. Both encodings are equal in 
value. The sign of a zero result depends on the operation being performed and the rounding 
mode being used. Signed zeros have been provided to aid in implementing interval arithmetic. 
The sign of a zero may indicate the direction from which underflow occurred, or it may 
indicate the sign of an 00 that has been reciprocated. 

Signed, Nonzero, Finite Values 

The class of signed, nonzero, finite values is divided into two groups: normalized and denor­
malized. The normalized finite numbers comprise all the nonzero finite values that can be 
encoded in a normalized real number format from zero to 00. In the 32-bit form shown in 
Figure 7-3, this group of numbers includes all the numbers with biased exponents ranging from 
1 to 25410 (unbiased, the exponent range is from -12610 to + 12710). 
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Denormalized Numbers 

When real numbers become very close to zero, the normalized-number format can no longer be 
used to represent the numbers. This is because the range of the exponent is not large enough to 
compensate for shifting the binary point to the right to eliminate leading zeros. 

-DENORMALIZED FINITE + DENORMALIZED FINITE 

-NORMALIZED FINITE '\. -0 + 0 / + NORMALIZED FINITE 
I '\. I I I I 

+ <X> 

I I 
-<X> 

I I 

REAL NUMBER AND NaN ENCODINGS FOR 32-BIT FLOATING-POINT FORMAT 

S E F S E 

11 1 0 0 I -0 +0 10 1 0 0 

11 I 0 NONZERO 
-DENORMALIZED + DENORMALIZED 

1 0 I 0 NONZERO FINITE FINITE 

11 11 ... 254 1 ANYVALUE 1 -NORMALIZED + NORMALIZED 1 0 11 ... 254 1 ANY VALUE FINITE FINITE 

11 1 255 0 +00 101 255 0 

IX' I 255 1.0XX' -SNaN +SNaN I X, I 255 1.0XX' 

IX' I 255 1.1XX -QNaN +QNaN I x'i 255 1.1XX 

Notes: 
1. Sign bit ignored 
2. Fractions must be nonzero 

Figure 7-3: Real Numbers and NaNs 

When the biased exponent is zero, smaller numbers can only be represented by making the 
integer bit (and perhaps other leading bits) of the significand zero. The numbers in this range 
are called denormalized numbers. The use of leading zeros with denormalized numbers allows 
smaller numbers to be represented. However, this denormalization causes a loss of precision 
(the number of significant bits in the fraction is reduced by the leading zeros). 

When performing normalized floating-point computations, a processor normally operates on 
normalized numbers and produces normalized numbers as results. Denormalized numbers 
represent an underflow condition. 

A denormalized number is computed through a technique called gradual underflow. Table 7-2 
gives an example of gradual underflow in the denormalization process. Here the 32-bit format 
is being used, so the minimum exponent (unbiased) is -12610, The true result in this example 
requires an exponent of -12910 in order to have a normalized number. Since -12910 is beyond 
the allowable exponent range, the result is denormalized by inserting leading zeros until the 
minimum exponent of -12610 is reached. 
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Table 7-2: Denormalization Process 

Operation Sign Exponent* Significand 

True Result 0 -129 1.01011100 ... 00 

Denormalize 0 -128 0.101011100 ... 00 

Denormalize 0 -127 0.0101011100 ... 00 

Denormalize 0 -126 0.00101011100 ... 00 

Denormal Result 0 -126 0.00101011100 ... 00 

Note: *Expressed as unbiased, decimal number. 

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating 
a zero result. 

Signed Infinities 

The two infinities, +00 and _00, represent the maximum positive and negative real numbers, 
respectively, that can be represented in the floating-poiht format. Infinity is always represented 
by a zero fraction and the maximum biased exponent allowed in the specified format (e.g., 
255 10 for the 32-bit format). 

Whereas denormalized numbers represent an underflow condition, the two infinity numbers 
represent the result of an overflow condition. Here, the normalized result of a computation has 
a biased exponent greater than the largest allowable exponent for the selected result format. 

NaNs 

Since NaNs are non-numbers, they are not part of the real number line. In Figure 7-3, the 
encoding space for NaNs in the 80960MC floating-point formats is shown above the ends of 
the real number line. This space includes any value with the maximum allowable biased 
exponent and a non-zero fraction. (The sign bit is ignored for NaNs.) 

The IEEE standard defines two specific NaN values: a quiet NaN (QNaN) and a signaling 
NaN (SNaN). A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN 
with the most significant fraction bit clear. QNaNs are allowed to propagate through most 
arithmetic operations without signaling an exception. SNaNs signal an invalid-operation ex­
ception whenever they appear as operands in arithmetic operations. Exceptions are discussed 
later in this chapter in the section titled "Exceptions and Fault Handling." 

The section at the end of this chapter titled "Operations on NaNs" provides detailed infor-
mation on how the processor handles NaNs. . 
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REAL OAT A TYPES 

The processor supports three real-number data formats: real, long real, and extended real. 
These formats correspond directly to the single-precision, double-precision, and double­
extended precision formats in the IEEE standard. Figure 7-4 shows these data formats and 
gives the resolution that each provides. 

80 
BITS 

DATA TYPE 

Real 
Long Real 
Extended Real 

SIGN REAL 

B~is II~~i~~~T.··_l-l!e.~ •• ••••• ••• ••· · ••••••••• ··.··.11 
31 30 23 22 "" INTEGER 

64 
BITS 

RANGE 
2_126 to 2127 L 10-45 to -, 038) 

2_ 1022 to 2 1023 (~1O-324 to -, 0308) 

2_16382 to 216383 L, 0-4950 to -, a + 4932) 

Figure 7-4: Real-Number Formats 

IMPLIED 

As described earlier in this chapter, the processor represents exponents in a biased format. For 
real values, the biasing constant is 127; for long-real values, it is 1023; and for extended-real 
values, it is 16383. 

For the real and long-real formats, only the fraction is given for the significand. The integer is 
assumed to be 1 for all numbers except 0 and denormalized finite numbers. For the extended­
real format, the integer is contained in bit 63, and the most-significant fraction bit is bit 62. 
Here, the integer is explicitly set to 1 for normalized numbers, infinities, and NaNs, and to 0 
for zero and denormalized numbers. A non-zero exponent with the integer bit set to zero is a 
reserved encoding, which will result in a floating reserved-encoding exception being signaled. 

Table 7-3 shows the encodings for all the classes of real numbers (i.e., zero, denormalized 
finite, normalized finite, and 00) and NaN s, for each of the three real data-types. 

EXECUTION ENVIRONMENT FOR FLOATING-POINT OPERATIONS 

An important feature of the 80960MC processor is that the floating-point processing 
capabilities have been integrated into the execution environment of the processor. Operations 
on floating-point numbers are carried out using the same registers that are used for ordinals and 
integers. In addition, four floating-point registers have been provided for extended-precision 
floating-point arithmetic. The following sections describe how floating-point operations are 
handled in the processor's execution environment. 
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Table 7·3: Real Numbers and NaN Encodings 

CLASS SIGN BIASED EXPONENT 

+00 0 11 ... 11 

0 11...10 

+ NORMALS · · 
· · 

POSITIVE 0 00 ... 01 

0 00 ... 00 

+DENORMALS · · 
· · 
0 00 ... 00 

+ ZERO 0 00 ... 00 

·ZERO 1 00 ... 00 

1 00.;.00 

·DENORMALS · · 
· · 

NEGATIVE 1 00 ... 00 

1 00 ... 01 

· · 
·NORMALS · · 

· · 
1 11 ... 10 

.00 1 11 ... 11 

SNaN X 11 ... 11 
NaN 

QNaN X 11 ... 11 

REAL: ~ 8BITS~ 
_11BITS 

15 BITS 

LONG REAL: 

EXTENDED REAL: 

Notes: 

1.lnteger is implied for real and long real formats and is not stored. 

2.Fraction for SNaN must be non-zero. 

Registers 

INTEGER1 

1 

1 

· 
· 
1 

0 

· 
· 
0 

0 

0 

0 

· 
· 
0 

1 

· 
· 
· 
1 

1 

1 

1 

FRACTION 

00 ... 00 

11 ... 11 

00 ... 00 

11 ... 11 

· 
00 .. 01 

00 .. 00 

00 .. 00 

00 ... 01 

· 
· 

11 ... 11 

00 ... 00 

11...11 

00 ... 00 

OX ... XX2 

1X ... XX 

~ 23BITS ~ 
.... 52 BITS 

63 BITS 

All of the registers in the processor's execution environment, (i.e., global, local, and floating 
point) can be used for floating-point operations. When using global or local registers, real 
values (i.e., 32 bits) are contained in one register; long-real values (i.e., 64 bits) are contained 
in two successive registers; and extended-real values (i.e., 80 bits) are contained in three 
successive registers. 
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Figure 7-5 shows how the three forms of the real data type are encoded when stored in global 
and local registers. Note that long-real values must be aligned on even-numbered register 
boundaries (e.g., gO, g2, ... ). Extended-real values must be aligned on register boundaries that 
are an integral multiple of four (e.g., gO, g4, ... ). 

31 23 22 
REAL 

REGISTER 
DISPLACEMENT 

I I EXPONENT I ~~ ____________ ~ _______________ F_RA_C_T_IO_N ____________________ ~I n 

SIGN 

LONG REAL 
31 20 19 

FRACTION (LEAST SIGNIFICANT BITS) n ' 

I EXPONENT I FRACTION (MOST SIGNIFICANT BITS) n + 1 

SIGN 

EXTENDED REAL 

FRACTION (LEAST SIGNIFICANT BITS) n' 

n + 1 

EXPONENT n+2 

INTEGER SIGN 

Notes: 
1. Register number must be even. 
2. Register number must be an integral multiple of four. 

r4iUirG RESERVED (INITIALIZE TO 0) 

Figure 7-5: Storage of Real Values in Global and Local Registers 

Real values in the floating-point registers are always in the extended-real format. When a real 
or long-real value is moved from global or local registers to a floating-point register, the 
processor automatically reformats it for the extended-real format. 

Loading and Storing Floating-Point Values 

Floating-point values are loaded from memory into global or local registers using the load (ld), 
load long (ldl), and load triple (ldt) instructions. Likewise, floating-point values in global or 
local registers are stored in memory using the store (st), store long (stl), and store triple (stt) 
instructions. 

Loading a floating-point value into a floating-point register requires two steps (two 
instructions). First, a floating-point value must be loaded from memory into one or more 
global or local registers. Then, the value must be moved to the floating-point register using a 
move real (movr), move long-real (movrl), or move extended-real (movre) instruction. 
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A similar two-step procedure is required to store a value from a floating-point register into 
memory. The value must first be moved into one or more global or local registers (using a 
movr, movrl, or movre instruction), then stored in memory. 

This two-step method for moving values from memory into floating-point registers and vice 
versa may seem a little cumbersome; however, in practice it generally is not. Floating-point 
registers are most often used to store and accumulate intermediate results of computations. 
The contents of these registers are not normally stored in memory. 

For example, the following instruction 

divr r3, r4, fp2 

causes the real value in local register r4 to be divided by the value in r3, with the extended-real 
result stored in floating-point register fp2. Here, a move operation from the local registers to 
the floating-point registers is not required, since it is implicit in the divide operation. 

Moving Floating-Point Values 

Either the move instructions (mov, movl, or movt) or the move-real instructions (movr, 
movrl, or movre) can be used to move real values among global and local registers. The move 
real instructions are generally used to convert a real value from one format to another or for 
moving real values between the global or local registers and floating-point registers. The move 
instructions are used to move real values while keeping them in the same format. 

When using the movr and movrl instructions to move floating-point numbers between the 
global or local registers and the floating-point registers, the processor automatically converts 
values from real and long-real format, respectively, into the extended-real format and vice 
versa. 

For example, the following instruction 

movr g3, fpl 

causes a 32-bit, real value in global register g3 to be converted to SO-bit, extended-real format 
and placed in floating-point register fpI. 

Going the opposite direction, the instruction 

movrl fpO, r4 

causes an extended-real value in floating-point register fpO to be converted to 64-bit, long-real 
format and placed in local registers r4 and r5. 

The movre instruction moves SO-bit, extended-real values between registers, without format 
conversion. When this instruction is used to move a value from three global or local registers 
to a floating-point register, the processor extracts the SO-bit value from the three word 
extended-real format. When moving a value from a floating-point register to global or local 
registers, the processor inserts the SO-bit value into the three registers in the three-word format. 
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Arithmetic Controls 

The arithmetic controls are used extensively to control the arithmetic and faulting properties of 
floating-point operations. Table 7-4 shows the bits in the arithmetic controls that are used in 
floating-point operations. 

Table 7-4: Arithmetic Controls Used in Floating-Point Operations 

Arithmetic Function 
Control 
Bits 

0-2 Condition code 

3-6 Arithmetic status field 

8 Integer overt1ow t1ag 

12 Integer overt1ow mask 

16 Floating overt1ow flag 

17 Floating underflow flag 

18 Floating invalid-operation t1ag 

19 Floating zero-divide flag 

20 Floating inexact flag 

24 Floating overt1ow mask 

25 Floating undert10w mask 

26 Floating invalid-operation mask 

27 Floating zero-divide mask 

28 Floating inexact mask 

29 Normalizing mode flag 

30 - 31 Rounding control 

The condition code flags are used to indicate the results of comparisons of real numbers, just as 
they are for integers and ordinals. 

The arithmetic status field is used to record results from the classify real (c1assr and c1assrl) 
and remainder real (remr and remrl) instructions. These instructions are discussed later in this 
chapter. 

The floating-point flags indicate exceptions to floating-point operations. Here, the term excep­
tion refers to a potentially undesirable operation (such as dividing a number by zero) or an 
undesirable. result (such as undert1ow). The flags provide a means of recording the occurrence 
of specific exceptions. 

The floating-point masks provide a method of inhibiting the processor from invoking a fault 
handler when an exception is detected. 
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Use of the floating-point flag and mask bits are discussed later in this chapter in the section 
titled "Exceptions and Fault Handling." 

Normalizing Mode 

The normalizing-mode flag specifies whether the processor operates in normalizing mode (set) 
or not (clear). 

Normalizing mode is the most common mode of operation. Here, the processor operates on 
valid floating-point operands, regardless of whether they are normalized or denormalized 
values. 

When the processor is not operating in normalizing mode, it signals a reserved-encoding 
exception whenever it encounters a denormalized floating-point value as a source operand. In 
either mode, denormalized numbers are produced if the underflow exception is masked. 

There are no flag or mask bits in the arithmetic controls for this exception. When a reserved­
encoding exception is detected, the processor generates a floating reserved-encoding fault and 
leaves the destination operand unchanged (Le., no result is stored). 

The unnormalized mode of operation is provided to allow unnormalized arithmetic to be 
simulated with software. Here, a fault handler routine can be used to perform unnormalized 
arithmetic whenever a reserved-encoding exception is signaled. 

Rounding Control 

Often the infinitely precise result of an arithmetic operation cannot be encoded exactly in the 
format of the destination operand. For example, the following value has a 24-bit fraction. The 
least-significant bit of this fraction (the underlined bit) cannot be encoded exactly in the real 
(32-bit) format: 

1. 0001 0000 1000 0011 1001 011JE2 10 1 

The processor must then round the result to one of the following two values: 

1. 0001 0000 1000 0011 1001 011 E2 10 1 

1.0001 0000 10000011 1001 100E2 101 

A rounded result is called an inexact result. When an inexact result is produced, the floating­
point inexact flag bit in the arithmetic controls is set. 

The processor rounds results according to the destination format (real, long real, or extended 
real) and the setting of the rounding-mode flags of the arithmetic controls. Four types of 
rounding are allowed, as described in Table 7-5. 
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Table 7-5: Rounding Methods 

Rounding Mode Description 

Round up (toward +00) Rounded result is close to but no 
less than the infinitely precise 
result 

Round down (toward -00) Rounded result is close to but no 
greater than the infinitely precise 
result 

Round toward zero (Truncate) Rounded result is close to but no 
greater in absolute value than the 
infinitely precise result 

Round to nearest (even) Rounded result is close to the in-
finitely precise result. If two 
values are equally close, the result 
is the even value (i.e., the one with 
the least-significant bit of zero). 

When the infinitely precise result is between the largest positive finite value allowed in a 
particular format and +00, the processor rounds the result as shown in Table 7-6. 

Table 7-6: Rounding of Positive Numbers 

Rounding Mode Description 

Round up (toward +00) +00 

Round down (toward -00) Maximum, positive finite value 

Round toward zero (Truncate) Maximum, positive finite value 

Round to nearest (even) +00 

When the infinitely precise result is between the largest negative finite value allowed in a 
particular format and -00, the processor rounds the result as shown in Table 7-7. 

Table 7-7: Rounding of Negative Numbers 

Rounding Mode Description 

Round up (toward +00) Maximum, negative finite value 

Round down (toward -00) -00 

Round toward zero (Truncate) Maximum, negative finite value 

Round to nearest (even) -00 

The rounding modes have no effect on comparison operations, operations that produce exact 
results, or operations that produce NaN results. 
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The floating-point instructions allow a result to be stored in a shorter destination than the 
source operands. For example, the instruction 

addr fpl, fp2, g5 

produces a real (32-bit) result from two extended-real (80-bit) source operands. In all such 
operations, only one rounding error occurs: the error that occurs when rounding the infinitely 
precise result to the size of the destination format. 

Technically, an operation which computes a narrow result from wide operands is in violation 
of the IEEE standard. However, systems that are designed to conform to the IEEE standard do 
not need to use this capability of the processor. 

INSTRUCTION FORMAT 

The instruction format for floating-point instructions is the same as for the other processor 
instructions. When programming in assembly language, an assembly language statement 
begins with an instruction mnemonic and is followed by from one to three operands. For 
example, the multiply-real instruction muir might be used as follows: 

muIr r8, r9, fp3 

Here, real operands in local registers r8 and r9 are multiplied together and the result is stored in 
floating-point register fp3. 

From the machine level point of view, all floating-point instructions use the REG format. 
Refer to Appendix B for details on the REG format instructions. 

INSTRUCTION OPERANDS 

Operands for floating-point instructions can be either floating-point literals or registers. The 
processor recognizes two encodings for floating-point literals: +0.0 and + 1.0. 

All of the registers in the processor's execution environment (global registers gO through gi5, 
local registers rO through rl5, and floating-point registers fpO through fp3) can be used as 
operands in floating-point instructions. (Of course, registers gi5, rO, rl, and r2 would 
generally not be used for storing floating-point numbers, since they are reserved for stack 
management functions.) 

When global or local registers are specified as operands, the instruction mnemonic (or opcode) 
determines how the values in these registers are interpreted. For example, there are two 
floating-point divide instructions: divide real (divr) and divide long real (divrl). When using 
the divr instruction, the processor assumes that global- or local-register operands contain real 
(32-bit) values. When using the divrl instruction, global- or local-register operands are as­
sumed to contain long-real (64-bit) values. 

With either instruction, floating-point registers (containing extended-real values) can also be 
used as operands. 
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Using floating-point registers as operands allows mixed format or mixed precision arithmetic 
to be performed with either real and extended-real values or long-real and extended-real 
values. Mixed-format operations with real and long-real values are not supported. 

SUMMARY OF FLOATING-POINT INSTRUCTIONS 

The processor's floating-point instructions consist of all instructions for which at least one 
operand is a real data type. 

These instructions can be divided into the following groups: 

• Data Movement 

• Data-Type Conversion 

• Basic Arithmetic 

• Comparison and Classification 

• Trigonometric 

• Logarithmic and Exponential 

The following sections give a brief overview of the instructions in each group. Detailed 
descriptions of the operations of these instructions are given in Chapter 17. 

Data Movement 

As has been described earlier in this chapter, the non-floating-point load and store instructions 
are used to move real values between registers and memory. Once in registers, the non­
floating-point move instructions (mov, movl, and movt) are used to move real values between 
global and local registers without format conversion; whereas, the floating-point move instruc­
tions (movr, movrl, and movre) are used to move real values between global and local 
registers and floating-point registers. 

The copy-sign-real-extended (cpysre) and copy-reverse-sign-real-extended (cpyrsre) instruc­
tions provide a means of copying the sign of one extended-real value to another, if one of the 
values is in a floating-point register. This operation is best performed on real and long-real 
values using the bit instructions chkbit and alterbit. 

Data-Type Conversion 

Two types of data-type conversions are provided: conversion from one floating-point format 
to another (e.g., real to extended real) and conversion between integer and real. 

Conversion between floating-point formats is handled in either of two ways: explicitly by 
move instructions or implicitly by using the floating-point registers as operands in instructions. 

As described earlier in this chapter, the movr instruction implicitly converts values from real to 
extended real, and vice versa, when moving values between global or local registers and 
floating-point registers. Likewise, the movrl instruction implicitly converts values from long 
real to extended real, and vice versa. 
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Conversion between real and long-real formats requires the use of both instructions. For 
example, the following two instructions convert a real value in global register g6 to a long-real 
value contained in g6 and g7, using a floating-point register for intermediate storage of the 
value: 

movr g6, fpl 
movrl fpl, g6 

Implicit format conversion is also provided through the arithmetic, trigonometric, logarithmic, 
and exponential instructions. For example, the instruction 

addr r4, r5, fp2 

adds two real values together and produces an extended-real result. 

The following six instructions allow conversion between integers and reals: 

cvtir 
cvtilr 
cvtri 
cvtril 
cvtzri 
cvtzril 

convert integer to real 
convert long integer to long real 
convert real to integer 
convert real to long integer 
convert truncated real to integer 
convert truncated real to long integer 

Both the cvtir and cvtilr instructions can be used to convert an integer to an extended-real 
value by specifying that the result be placed in a floating-point register. 

The convert real-to-integer instructions round off the real value to the nearest integer or 
long-integer value. For the cvtri and cvtril instructions, the rounding mode determines the 
direction the real number is rounded. For the convert truncated real-to-integer instructions 
(cvtzri and cvtzril), rounding is always toward zero. The latter two instructions are provided 
to allow efficient implementation of FORTRAN-like truncation semantics. 

Extended-real values can be converted to integers by using a floating-point register as a source 
operand in either of the convert real-to-integer instructions. 

Converting long-real values to integers requires two instructions, as in the following example: 

movrl g6, fp3 
cvtzri fp3, g6 

The first instruction moves the long-real value to a floating-point register. The second instruc­
tion converts the extended-real value to an integer. 
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Basic Arithmetic 

The following instructions perform the basic arithmetic operations specified in the IEEE stan­
dard: 

addr 
addrl 
subr 
subrl 
muir 
mulrl 
divr 
divrl 
remr 
remrl 
rouodr 
roundrl 
sqrtr 
sqrtrl 

add real 
add long real 
subtract real 
subtract long real 
multiply real 
mUltiply long real 
divide real 
divide long real 
remainder real 
remainder long real 
round real 
round long real 
square root real 
square root long real 

The round instructions round the floating-point operand to its nearest integral (i.e., integer) 
value, based on the current rounding mode. These instructions perform a function similar to 
the convert real-to-integer instructions except that the result is in floating-point format. 

Comparison, Branching, and Classification 

Comparison of floating-point values differs from comparison of integers or ordinals because 
with floating-point values there are four, rather than the usual three, mutually exclusive 
relationships: less than, equal to, greater than, and unordered. 

The unordered relationship is true when at least one of the two values being compared is a 
NaN. This additional relationship is required because, by definition, NaNs are not numbers, so 
they cannot have greater than, equal, or less than relationships with other floating-point values. 

The following instructions are provided for comparing floating-point values: 

empr 
emprl 
empor 
emporl 

compare real 
compare long real 
compare ordered real 
compare ordered long real 

All of these instructions set the condition code flags in the arithmetic controls to indicate the 
results of the comparison. With the compare instructions (empr and emprl), the condition 
code flags are set to 0002 for the unordered condition. With the compare ordered instructions 
(empor and emporl), the condition code flags are set to 0002 and an invalid-operation excep­
tion is signaled for the unordered condition. 

Two branch instructions (bo and boo) allow conditional branching to be performed on an 
ordered or unordered condition, respectively. With these instructions, the processor checks the 
condition code flags for unordered (0002) or ordered (1112) and branches accordingly. 
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The classify-real instructions (cIassr and classrl) provide a means of determining the class of a 
floating-point value (i.e., zero, denormalized finite, normalized finite, 00, SNaN, or QNaN). 
The result of this operation is stored in the arithmetic status field of the arithmetic controls. 

Trigonometric 

The following instructions provide four common trigonometric functions: 

sinr 
sinrl 
cosr 
cosrl 
tanr 
tanrl 
atanr 
atanrl 

sine real 
sine long real 
cosine real 
cosine long real 
tangent real 
tangent long real 
arctangent real 
arctangent long real 

The arctangent instructions facilitate conversion from rectangular to polar coordinates. 

Pi 

The processor uses the following value for 1t in its computations: 

1t = OJ * 2e 

where: 

f = C90FDAA2 2168C234 C16 

e = 2 if significand is O.f 

(The spaces in the fraction above indicate 32-bit boundaries.) 

This value has a 66-bit mantissa, which is 2 bits more than is allowed in the significand of an 
extended-real value. (Since 66 bits is not an even number of hex digits, two additional zeros 
have been added to the value so that it can be represented in a hexadecimal·format. The 
least-significant hex digit (C16) is thus 11002, where the two least significant bits represent bits 
67 and 68 ofthe mantissa.) 

If the results of computations that explicitly use 1t are to be used in the sine, cosine, or tangent 
instructions, the full 66-bit fraction for 1t should be used. This insures that the results are 
consistent with the argument-reduction algorithms that these instructions use. Using a rounded 
version of 1t can cause inaccuracies in result values, which if propagated through several 
calculations, might result in meaningless results. 
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A common method of representing the full 66-bit fraction of n is to separate the value into two 
numbers. For example, the following two long-real values added together give the value for n 
shown above with the full 66-bit fraction: 

n = highn + lown 

where: 

highn = 400921FB 5440000016 

lown = 3DDOB461 lA60000016 

Here highn gives the most significant 33 bits of nand lown gives the least significant 33 bits. 
Similar versions of n can also be written in the extended-real format. 

When using this two-part n value in an algorithm, parallel computations should be performed 
on each part, with the results kept separate. When all the computations are complete, the two 
results can be added together to form the final result. 

Logarithmic, Exponential, and Scale 

The following instructions provide three different logarithmic functions, an exponenti~l func­
tion, and a scale function: 

logbnr 
logbnrl 
logr 
logrl 
logepr 
logeprl 
expr 
exprl 
scaler 
scalerl 

log binary real 
log binary long real 
log real 
log long real 
log epsilon real 
log epsilon long real 
exponent real 
exponent long real 
scale real 
scale long real 

These instructions are described in detail in Chapter 17. The following is a brief description of 
their functions. 

The log binary instructions compute the IEEE recommended function 10gb (X). The result is an 
integral value that is the binary log of X. 

The log instructions compute the function Y * log (X), where the log of X is the base-2 
logarithm. 

The log epsilon instructions compute the function Y * log (X + 1), where the log of X + 1 is a 
base-2 logarithm. 
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The exponent instructions compute the value 2x - 1. 

The scale instructions perform a multiplication of a floating-point value by a power of 2. 

Arithmetic Versus Nonarithmetic Instructions 
I 
The floating-point instructions can be divided into two groups: arithmetic and nonarithmetic. 
Arithmetic instructions are those that are sensitive to real values, meaning that they distinguish 
among NaN, 00, normalized finite, denormalized finite, and zero values. 

All but five of the floating-point instructions are arithmetic. The five non arithmetic instruc­
tions are move-real extended (movre), copy-sign real extended (cpysre), copy-reversed-sign 
real extended (cpyrsre), and classify real (classr and classrl). These nonarithmetic instruc­
tions are insensitive to real values and cannot generate floating-point exceptions or faults. 

This distinction between arithmetic and nonarithmetic instructions is important because 
floating-point exceptions and faults can be signaled only during the execution of arithmetic 
instructions. 

OPERATIONS ON NANS 

As was described earlier in this chapter, the processor supports two types of NaNs: QNaN and 
SNaN. An SNaN is any NaN value with its most-significant fraction bit set to 0 and at least 
one other fraction bit set to 1. (If all the fraction bits are set to 0, the value is an 00.) A QNaN 
is any NaN value with the most-significant fraction bit set to 1. The sign bit of a NaN is not 
interpreted. 

In general, when a QNaN is used in one or more arithmetic floating-point instructions, it is 
allowed to propagate through a computation. An SNaN on the other hand causes a floating 
invalid-operation exception to be signaled. 

The floating invalid-operation exception has a flag and a mask bit associated with it in the 
arithmetic controls. The mask bit determines how the processor handles an SNaN value. If the 
floating invalid-operation mask bit is set, the SNaN is converted to a QNaN by setting the most 
significant fraction bit of the value to a 1. The result is then stored in the destination and the 
floating invalid-operation flag is set. If the invalid operation mask is clear, a floating invalid­
operation fault is signaled and no result is stored in the destination. 

When the result is a QNaN, the format of the result is as shown in Table 7-8, depending on the 
form of the source operands. 
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Table 7-8: Format of QNaN Results 

Source Operands QNaNResult 

Only one operand is NaN, destina- QNaN version of NaN source 
tion is same width 

Only one operand is NaN, destina- QNaN version of NaN source, with 
tion is longer fraction extended with zeros 

Only one operand is NaN, destina- QNaN version of NaN source, with 
tion is shorter fraction truncated 

Both operands are NaN s QNaN version of source whose 
fraction field has greatest mag-
nitude, with fraction extended or 
truncated as described above 

In some cases, a QNaN result is returned when none of the source operands are NaNs. Here, a 
standard QNaN is returned. The significand for the standard QNaN is as follows: 

1.1000 ... 00 

(For real and long-real destinations, the integer bit will be an implied 1.) 

Other than the rules specified above, software is free to use the other bits of a NaN for any 
purpose. 

EXCEPTIONS AND FAULT HANDLING 

Occasionally, a floating-point instruction can result in an exception being signaled. The 
processor recognizes six floating-point exceptions: 

• Floating Reserved Encoding 

• Floating Invalid Operation 

• Floating Zero Divide 

• Floating Overflow 

• Floating Underflow 

• Floating Inexact 

These exceptions can be divided into two categories: 

1. Situations in which one or more source operands are inappropriate for an operation and 
would cause an exception to be signaled. 

2. Situations in which the result of an operation is exceptional. 

The reserved encoding, invalid operation, and division-by-zero exceptions fall in the first 
category; the overflow, underflow, and inexact exceptions fall in the second category. 
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Except for the floating reserved-encoding exception, each of these exceptions has a flag and a 
mask bit associated with it in the arithmetic controls. When an exception condition occurs, the 
processor performs one of the following operations: 

• If the mask bit for the exception is set, the flag for the exception is set and instruction 
execution continues, substituting a default value in place of the result. 

• If the mask bit for the exception is clear, the flag for the exception is not set and a 
floating-point arithmetic fault is raised. The processor then stores diagnostic information 
in the fault information area and diverts instruction execution to a fault handler. 

Since the floating. reserved-encoding exception does not have a flag or mask bit, it always 
results in a fault. 

NOTE 

The floating-point exception flags are "sticky," which means that the processor does not 
implicitly clear them while carrying out floating-point operations. They may be cleared by 
software. 

Fault Handler 

As is described in Chapter 12, when a floating-point fault is signaled, the processor calls a 
single fault handler. This fault handler determines how to handle the specific fault subtype by 
interpreting the floating-point exception flags and the information in the fault record. 

Floating-Reserved-Encoding Exception 

A reserved-encoding exception occurs as a result of either of the following two conditions: 

• When a reserved encoding is used as an operand in a floating-point instruction, or 

• When a denormalized value is used as an operand in a floating-point instruction and the 
normalizing-mode bit in the arithmetic controls is clear. 

The first condition is rare. It can only occur if a program presents an extended-real value to the 
processor that has a zero j-bit (integer part) and a non-zero biased exponent. 

The second condition was discussed earlier in this chapter in the section titled "Normalizing 
Mode." This condition is also rare, since the vast majority of programs run with the normaliz­
ing mode enabled. 

There is neither a flag nor a mask bit for this exception. When a reserved-encoding exception 
occurs, the processor raises a floating-reserved-encoding fault and does not store a result. 
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Floating-Invalid-Operation Exception 

The invalid-operation exception indicates that one of the source operands is inappropriate for 
the type of operation being performed. The following conditions cause this exception to be 
signaled: 

• Any arithmetic operation on an SNaN 

• Addition of infinities of unlike sign 

• Subtraction of infinities of like sign 

• Multiplication of zero by 00 

• Division of zero by zero or 00 by 00 

• Remainder of x by y, if Y is zero or x is 00 

• Square root of a negative, nonzero value 

• Conversion of a NaN from floating-point format to integer format 

• Sine, cosine, or tangent of 00 

• Y * log (x), if: 

x is negative and nonzero, 

y is zero and x is 00, 

y and x are zero, or 

y is 00 and x is I 

• Log epsilon of (y, x), if y is 00 and x is 0 

• Compare ordered, if a source operand is a NaN 

When a floating-invalid-operation exception occurs and its mask is set, the following occurs: 

• When the result is a floating-point value, the standard QNaN value is stored in the destina­
tion and the floating-invalid-operation flag is set. (A discussion of how the processor 
handles NaNs was provided earlier in this chapter in the section titled ;'Openltions on 
NaNs.") 

• When the result is an integer, the maximum negative integer is stored in the destination 
and the floating-invalid-operation flag is set. 

When the mask is clear, no result is stored; the floating-invalid-operation flag is not set; and 
the floating-invalid-operation fault is signaled. 

Floating-Zero-Divide Exception 

The floating-zero-divide exception is signaled when an exact non-finite result would be 
produced from finite operands. (Note that a different exception, overflow, is signaled when an 
infinite result is produced inexactly from finite operands.) The most common example of this 
exception is a division operation, where the divisor is zero and the dividend is a nonzero, finite 
value. 
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When the floating-zero-divide mask is set: a correctly signed 00 is stored in the destination and 
the floating-zero-divide flag is set. When the mask is clear, no result is stored; the floating­
zero-divide flag is not set; and a floating-zero-divide fault is signaled. 

Floating-Overflow Exception 

The overflow exception occurs when the infinitely precise result of a floating-point instruction 
exceeds the largest allowable finite value for the specified destination format. For example, if 
the destination format is real (32 bits), overflow occurs when the infinitely precise result falls 
outside the range -1.0 * 2128 to 1.0 * 2128 (exclusive), where 128 is the unbiased exponent of 
the result. For long-real (64 bits) values, the overflow threshold range is -1.0 * 21024 to 1.0 * 
21024; for extended-real (80 bits) values, it is -1.0 * 216384 to 1.0 * 216384. 

When the floating-overflow mask is set, a rounded result is stored in the destination and the 
floating-overflow flag is set. The current rounding mode determines the method used to round 
the result. 

When the mask is clear: no result is stored in the destination and the floating-overflow flag is 
not set. Instead, the processor stores the result in extended-real format in the fault information 
area. The fraction of the extended-real value is rounded to the instruction's destination preci­
sion. For example, if the destination operand's format is real (32 bits), the extended-real 
fraction is rounded to 23 bits, with the 40 least-significant bits filled with zeros. 

If the exponent exceeds the range of the extended-real format (16383 unbiased), then the 
exponent is divided by 224576 and a flag (bit 1 of the fault flags byte or override flags byte) is 
set in the fault information area to indicate that the exponent has been bias adjusted. After this 
fault information is stored, a floating-overflow fault is signaled. 

When using the scale instructions (scaler or scalerl), massive overflow can occur, where the 
infinitely precise result is too large to be represented, even with a bias-adjusted exponent. 
Here, a properly signed 00 is stored in the fault record. 

The floating-overflow exception cannot occur on a conversion from floating-point format to 
integer format (although an integer overflow exception can occur). 

Floating-Underflow Exception 

An underflow condition occurs when the infinitely precise result of a floating-point instruction 
is less than the smallest possible normalized, finite value for the specified destination format. 
For example, for the real (32-bit) format, underflow occurs when an infinitely precise result 
falls in the range -1.0 * 2-126 to 1.0 * 2-126 (exclusive), where -126 is the unbiased exgonent. 
For long-real (64 bits) values, the underflow threshold ran~e is -1.0 * 21022 to 1.0 * 21 22; for 
extended-real (80 bits) values, it is -1.0 * 216382 to 1.0 * 21 382. 

When a floating-underflow condition occurs, the setting of the floating-underflow mask deter­
mines how the processor handles the condition. 
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If the mask is set when an underflow condition occurs, the processor goes ahead and denor­
malizes the result. Then if the result is exact, it is stored in the destination and the floating­
underflow exception is not signaled, nor is the floating-underflow flag set. If, on the other 
hand, the denormalized result is inexact, the floating-underflow flag is set and the processor 
goes on to handle the inexact condition as described in the next section. 

If the floating-underflow mask is clear when an underflow-condition occurs, no result is stored 
in the destination and the floating-underflow flag is not set. Instead, the processor stores the 
result in extended-real format in the fault information area, with the fraction of the extended­
real value rounded to the instruction's destination precision. For example, if the destination 
precision is real (23-bit fraction), the 40 least-significant bits of the fraction are set to O. 

If the exponent of the value stored is less than the minimum allowable value in the extended­
real format (-16,382 unbiased), then the exponent is multiplied by 224576 and a flag (bit I of the 
fault or override flags byte) is set in the fault information area to indicate that the exponent has 
been bias adjusted. After this information is stored, a floating-underflow fault is signaled. 

The scale instructions can cause massive underflow to occur, where the infinitely precise result 
is too small to be represented, even with a bias-adjusted exponent. Here, a properly signed 
zero is stored in the fault record. 

Refer to the section later in this chapter titled "Floating-Point Underflow Condition" for more 
information on the interaction of the floating underflow and inexact exceptions. 

Floating-Inexact Exception 

The floating-inexact exception occurs when an infinitely precise result cannot be encoded in 
the format specified for the destination operand. Either of the following two conditions can 
cause an inexact exception to be signaled: 

• When a result is rounded and the result is not exact 

• When overflow occurs and the floating-overf1ow mask is set 

If the f1oating-inexact mask is set when an inexact condition occurs and an unmasked overflow 
or underf10w condition does not occur, the rounded result is stored in the destination and the 
floating-inexact flag is set. The current rounding mode determines the method used to round 
the result. 

If the floating-inexact mask is clear when an inexact condition occurs, the floating-inexact flag 
is not set and one of the following operations is carried out: 

• If only the inexact condition has occurred, the processor stores the rounded result in the 
specified destination, then raises a floating-inexact fault. 

• If the inexact condition occurs along with overflow or underf1ow, no result is stored in the 
destination. Instead, the processor stores the result in extended-real format in the fault 
information area, as described for the f10ating overflow and underflow exceptions, then 
raises a floating-inexact fault. 
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Refer to the following section for more information on the interaction of the floating underflow 
and inexact exceptions. 

Floating-Point-Underflow Condition 

Two aspects of underflow are important in numeric processing: the "tininess" of a number and 
"loss of accuracy." A result is tiny when it is nonzero and its exponent is between ± 2Emm, 

where Emin is the smallest unbiased exponent allowed in the destination format. For example, 
if the destination format is 10nB-real (64-b!t. format), a res~lt is tiny ~f ~t is nonzero and in the 
range of + 1 * 2-1022 to -1 * 2-1 22. The abilIty to detect a tmy result is important because such 
a result may cause an exception to be signaled in a later operation (e.g., overflow on a 
division). 

Loss of accuracy occurs when a tiny result is approximated as part of the denormalization 
process so that it will fit into the destination format. 

In the 80960MC processor, tininess is detected after rounding as an underflow condition. Loss 
of accuracy is detected as an inexact condition. 

The algorithm in Figure 7-6 shows how the processor responds to these two conditions, when a 
floating-point operation produces a tiny result. 

An important point to note in this algorithm is that if the underflow mask is set, an underflow 
exception is signaled only if the denormalized result is inexact. If the denormalized number is 
exact, no flags are set and no faults are signaled. 
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generate infinitely precise result # exponent and significand; 
if exponent < underflow threshold 

then 
if underflow fault mask clear 

then 
goto underflow fault handler; 
exit algorithm; 

else generate denormalized number 
if denormalized significand equals infinitely precise significand 

then 
store denormalized result in destination; 
# no underflow is signaled; 

else 
set underflow flag in AC; 
if inexact fault mask is clear 

then 
goto inexact fault handler; 
exit algorithm; 

else 
set inexact flag in AC; 
store denormalized result in destination; 

end if; 
end if; 

end if; 
else 

if infinitely precise result is inexact 
then 

if inexact fault mask is clear 
then 

goto inexact fault handler; 
exit algorithm; 

else 
set inexact flag in AC; 
store normalized result in destination; 

end if; 
else 

store normalized result in destination; 
end if; 

end if; 
exit algorithm 

Figure 7-6: Interaction of Floating Underflow and Inexact Exceptions 
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CHAPTERS 
MEMORY MANAGEMENT 

This chapter describes the 80960MC processor's memory management facilities. Included is a 
discussion of the physical memory requirements, physical addressing, and the virtual-memory­
management system. The information presented here should be of interest only to operating­
system designers, particularly those designing the virtual-memory-management mechanism for 
the operating-system kernel. Application programmers and compiler writers may skip this 
chapter. 

INTRODUCTION 

A major feature of the 80960MC processor is its virtual-memory-management facilities. These 
facilities support a conventional demand-paged, virtual-memory system, in which 4K-byte 
pages of virtual memory are mapped to physical memory. This general purpose system can be 
used in any of the follow applications: 

• In a single-process system to map a large virtual address space into a smaller physical 
address space. 

• In a multitasking system to provide each process with a separate address space. 

• In a multiprocessing system to provide a means for multiple processors to share a common 
memory. 

The processor's virtual-memory-management facilities consists of a set of memory­
management data structures and on-chip address translation capabilities. Once the operating 
system has set up these data structures, the processor provides automatic translation of virtual 
addresses into physical addresses. 

The majority of this chapter is devoted to a discussion of the virtual-memory system. If the 
processor is going to be used strictly in the physical-addressing mode, only the first sections of 
this chapter, which describe the physical address space and physical memory requirements, 
need to be read. 

PHYSICAL-ADDRESSING MODE VERSUS VIRTUAL-ADDRESSING MODE 

The 80960MC processor provides two address-interpretation modes: physical-addressing 
mode and. virtual-addressing mode. When operating in physical-addressing mode, the proces­
sor interprets each address operand in an instruction as a physical address and sends the 
address out to the bus unchanged. 

In virtual-addressing mode, the processor interprets each address operand as a virtual address. 
An on-chip memory management unit (MMU) translates the virtual address into a physical 
address, which the processor then sends out to the bus. 

The addressing mode flag in the processor controls determines which addressing mode the 
processor is operating in. When this flag is clear, the processor operates in physical-addressing 
mode; when the flag is set, the processor operates in virtual-addressing mode. 
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PHYSICAL MEMORY 

The processor can address a physical address space of up to 232 bytes. This address space can 
be mapped to read-write memory, read-only memory, and memory-mapped I/O. 

The physical address space is linear (or flat): there are no subdivisions of the address space 
such as segments. For the purpose of memory management, the kernel may subdivide physical 
memory into pages. But from the point of view of the processor, the physical address space is 
linear. 

All of the physical address space is available for general use except the upper 16M bytes 
(FFOOOOOO I6 to FFFFFFFFI6), which are reserved for special functions. (These functions are 
described in Chapter 11.) 

A physical address is a 32-bit value in the range 0 to FFFFFFFF 16. A physical address can be 
used to reference a single byte, 2 bytes, 4 bytes, 8 bytes, 12 bytes or 16 bytes of memory 
depending on the instruction being used. (Refer to the descriptions of the load and store 
instructions in Chapter 17 for information on multiple-byte addressing.) 

Physical-Memory Restrictions 

The processor requires that the physical memory that it accesses has the following capabilities: 

• It must be byte addressable. 

• It must support burst transfers (i.e., transfers of blocks of contiguous bytes up to 16 bytes 
in length). 

• It must guarantee indivisible access (read or write) for memory addresses that fall within 
16-byte boundaries. 

• It must guarantee atomic access for memory addresses that fall within 16-byte boundaries. 

The latter two capabilities are required to allow multiple processors to share a common physi­
cal address space conveniently. 

An indivisible access guarantees that a processor reading or writing a set of memory locations 
will complete the operation before another processor can read or write the same location. The 
processor requires indivisible access within an aligned, 16-byte block of memory. 

An atomic access is a read-modify-write operation. Here the memory controller guarantees 
that once a processor begins a read-modify-write operation on a set of memory locations, it is 
allowed to complete the operation before another processor is allowed to access the same 
location. 

As described above, the processor requires that when one processor is performing an atomic 
operation within an aligned, 16-byte block, other processors are delayed from performing 
another atomic operation within that block until the first operation has been completed. 

The 80960MC processor provides two features to aid in implementing the requirements of 
physical memory described above: SIZE lines and a LOCK line on the local bus. 
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The SIZE lines indicate the length of a memory access in bytes. These lines can be used to 
specify 1-, 2-, 4-, 8-, 12-, or 16-byte lengths. When making a multiple-byte access, the 
processor thus sends the memory controller a base address, on the address lines, and a length, 
on the SIZE lines. 

The LOCK line is used to synchronize atomic operations. When a processor performs an 
atomic operation, it first examines the LOCK line. If it is asserted, the processor waits until the 
line is not asserted (i.e., spins on the LOCK line). If the line is not asserted, the processor 
asserts the LOCK line when it is performing an atomic read and deasserts the line when it 
performs the companion atomic write. 

For systems that use only the processor's local bus, the LOCK line mechanism allows only one 
atomic operation to be carried out in memory at one time. For larger systems that use the Intel 
advanced processor bus (AP Bus), the Bus Extension Unit (BXU) component allows mUltiple 
processors on the bus to execute several atomic operations at once on different blocks of 
memory. Refer to the 80960MC Hardware Designer's Reference Manual for detailed infor­
mation on atomic operations. 

Caching of Memory Accesses 

The processor supports caching of memory accesses. Caching allows a memory access to be 
delayed (e.g., write back) or grouped with contiguous memory accesses to form a single 
memory transaction (e.g., cache fill). 

The processor does not perform the caching function; however, it does provide a means of 
informing a cache manager whether or not a memory access is "cacheable." 

When operating in the physical-address mode, all memory accesses are considered cacheable. 

VIRTUAL-MEMORY-MANAGEMENT SYSTEM 

The processor's virtual-memory-management system is designed to perform the following 
functions: 

• Allow the mapping of a large, virtual address space into a smaller physical address space 
using 1- or 2-level page tables. 

• Provide a convenient means of managing multiple process address spaces in multitasking 
operating systems. 

• Provide a method of addressing architecture-defined data structures. 

The first function is handled by means of a traditional paging mechanism that uses page tables 
and optional page-table directories to map the virtual address space into physical address space 
in 4K-byte pages. 

The second and third functions are handled through a central table, called the segment table, 
which the processor uses to locate a specific address space or system data-structure in physical 
memory. 

8-3 



MEMORY MANAGEMENT 

The following discussion first presents the concept of the segment table and the mechanism 
used to implement this concept. Then, the paging mechanism is described. Finally, the 
method the operating system uses to set up and maintain these memory management structures 
is given. 

SEGMENT-TABLE OVERVIEW 

The segment table is a data structure that resides in physical memory. This table provides the 
processor with a system-wide addressing mechanism, which allows the processor to locate all 
the process address spaces and system data structures that the kernel has created. It also allows 
many process address spaces and data structures to be mapped into physical memory at one 
time. Figure 8-1 shows a conceptual view of the segment table. 

SEGMENT 
SELECTORS (SS's) 

~ I SS2 h: 
I 5S3 ~ 

I SS4 r 
I SSS ~ 

~ 

SEGMENT TABLE 

SEGMENT DESCRIPTOR 1 

SEGMENT DESCRIPTOR 2 

SEGMENT DESCRIPTOR 3 

SEGMENT DESCRIPTOR 4 

SEGMENT DESCRIPTOR S 

SEGMENT DESCRIPTOR 6 

SEGMENT DESCRIPTOR N 

SEGMENT 1 

D 
SEGMENT2 

- D 
SEGMENT4 

SEGMENTS 

D SEGMENT6 

--0 
UP TO 262,144 SEGMENT -
DESCRIPTORS ARE ALLOWED. 

Figure 8-1: Conceptual View of the Segment Table 

SEGMENT 3 

L.....-

The segment table is made up of a collection of segment descriptors. Each segment descriptor 
points to an individual segment. A segment is defined as a contiguous address space of from 
16 to 232 - 1 bytes. Figure 8-2 shows a segment and the mechanism used to address a byte in a 
segment. 
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Figure 8-2: Segment Addressing 
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A segment is addressed by means of a 32-bit data structure called a segment selector (SS). An 
SS contains an index into the segment table to the location of the segment descriptor for the 
segment. When the operating system creates a segment, it assigns a unique SS to the segment. 

To locate a byte in a segment, the processor then needs two items: the SS for the segment and 
a 32-bit offset into the segment. The processor uses the SS to locate the segment descriptor for 
the segment in the segment table. From this segment descriptor, it gets the physical address of 
the base (first byte) of the segment. It then uses the offset to locate the selected byte in the 
segment. 

When paging is used, the offset is translated through page tables and an optional page table 
directory to get the physical address of the selected byte in the segment. 

USES OF SEGMENTS 

The processor uses segments in two ways, as shown in Figure 8-3. The first way is as a means 
of addressing the four regions that make up the address space for a process. 
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As was described in Chapter 3, part of the execution environment for the processor is the 
address space, which can range from 1 to 232 bytes. When using the processor's virtual­
memory system, the address space is divided into four regions. Each of these regions is 
contained in a segment. To access the address space, the processor must have four SS's, one 
for each region. 

In a multitasking system, each process is assigned its own address space. Each process address 
space is made up of foul-regions, which the processor locates with four SS's. 

The second way that the processor uses segments is to address system data structures. The 
processor defines several system data structures such as the PCB and the system procedure 
table. Each of these data structures is contained in a segment. The processor is able to access 
data in these data structures by means of the SS for the segment that contains the data structure. 

SEGMENT~TABLE DATA STRUCTURES 

The following sections describe the actual structure of an SS, a segment table, and a segment 
descriptor. 
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Segment Selector 

Figure 8-4 shows the structure of an SS. The first six bits are always set to 1. Bits 6 through 
31 give the entry number of the segment selector in the segment table. (Since segment 
descriptors are aligned in the segment table on 16-byte boundaries, the segment index actually 
gives the 26 most significant bits of the offset into the segment table of the first byte of the 
segment selector. The processor assumes the six least-significant bits are zero.) This structure 
allows the operating system to create uR to 226 unique SS's. However, the largest allowable 
segment table can have only 262,144 (2 8) segment descriptors. 

31 6 5 0 

SEGMENT INDEX 

Figure 8-4: Segment Selector 

A segment selector can be stored anywhere in the address space for a process or in specific 
places in system data structures. They are, however, useful for only two purposes: 

• Certain instructions use an SS as an operand. These instructions can only be executed 
while in the supervisor mode and are thus normally used only by the operating system. 

• The processor fetches SS's from various system data structures and uses them to access 
system management information. For example, the processor gets the SS for region 3 of 
the process address space from the processor control block. 

Applications programs will generally not use SS's. 

NOTE 

When the processor uses an SS for its intended purpose (as a pointer to a segment), it expects 
the 6 least-significant bits of the SS to be set to 1. If they are not, the processor's behavior is 
unpredictable. 

Once the processor uses an SS, however, it clears some of these bits; and, if a program 
examines an SS that the processor has used, some of these bits may be zero. 

To insure predictable behavior of the processor, it is good programming practice to reset the 6 
least-significant bits of the SS to I any time a program moves an SS that the processor has 
already used. 

For example, if a program removes an SS for a PCB from a dispatch port, it should set these 
bits to I as a matter of course, before it places the SS in a data structure or instruction where the 
processor will use the SS for its intended purpose. 
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Segment Table 

The segment table is itself contained in a segment and has an SS. This allows the processor to 
locate the segment table in physical memory. 

Figure 8-5 shows the structure of a segment table. It is simply a collection of 16-byte segment 
descriptors, with no header. 
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Figure 8-5: Segment Table 
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Except for index entry eight (with entry zero being the lowest numbered entry), the segment 
descriptors can be assigned to any segment. Entry eight is reserved for the segment descriptor 
for the segment table. The SS for the segment table is thus always 0000023F16. 

There are two sizes of segment tables: a small segment table and a large segment table. A 
small segment table is 4096 bytes (1 page) in length and can contain up to 256 segment 
descriptor entries. A large segment table can be up to 4M bytes in length and can contain up to 
262,144 segment descriptors. 
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Segment Descriptors 

A 16-byte segment descriptor provides mapping information to allow the processor to locate a 
specific segment in physical memory. It also provides type information and in some cases 
access information to tell the processor how the segment may be used or how it has been used. 

The segment descriptor fields contain the following pieces of information: 

• The base physical address of the segment 

• The size of the segment 

• The access status 

• Whether or not the segment is in physical memory 

• The paging method 

• The segment type 

Figure 8-6 shows a generic segment descriptor with the fields labeled. The function of each of 
these fields is described in the following paragraphs. The entries required in each fields for 
specific types of segment descriptors (such as, port segment descriptors, process segment 
descriptors, etc.) are given later in this chapter in the section titled "Segment Types". 

BYTE DISPLACEMENT 

n + 4 

n + 8 

n + 12 

3 2 1 0 

t LVALID 

~ PAGING METHOD 

L-----ACCESS STATUS 

L-----------L-------SIZE 

'--------------------------- SEGMENT TYPE 

~ RESERVED (INITIALIZE TO 0) 

~ PRESERVED 

Figure 8-6: Generic Segment Descriptor 

NOTE 

The shaded areas in Figure 8-6 and in the following figures indicate reserved and preserved 
areas of a segment descriptor. Refer to Chapter 1 for an explanation of these terms. 

Base Address 

The base address field gives the physical address of byte 0 of the segment being referenced. If 
the segment is a paged segment, this field gives the base address of a page table or a page-table 
directory. 

8-9 



inter MEMORY MANAGEMENT 

Size 

The size field determines the length of the segment according to the following relationship: 

segment length in bytes = 64 * (SIZE + 1) 

For most segment types, the size field is either not used or the value to be placed in this field is 
predefined. However, for a few segment types this field is used to determine the size of the 
segment, as shown later in this chapter. 

Access Status 

The three flags in the access status field determine how a segment or page can be used or has 
been used. The processor and kernel use these flags to facilitate page swapping. For paged 
segments, some of these flags may not be used at the segment descriptor level. Instead, they 
are set in the page table or page-table-directory entries. 

The cacheable flag (bit 6) determines whether or not a segment or page of a segment can be 
cached. When this flag is set the segment or page is cacheable. Caching of memory accesses 
was described earlier in this chapter in the section titled "Caching of Memory Accesses." 

The accessed flag (bit 3) shows whether a segment or page of a segment has been accessed 
since it was loaded into physical memory; the altered flag (bit 4) shows whether the page has 
been written to. The kernel clears these flags when it loads a segment or page into memory. 
The processor then sets the flags when it accesses or writes to a byte in the page. 

The kernel uses the accessed and altered flags in page swapping to determine the relative age 
of a page and to determine whether a page can be discarded or must be written to secondary 
storage when it is swapped out of memory. 

The two other bits in the access status field (bits 5 and 7) are reserved. For some segment 
types these bits are set to 1 and for others they are set to 0, as is shown in the following pages. 

Valid Flag 

The valid flag shows whether or not a segment or page of a segment is present in memory. 
When this flag is set, the segment is present; when it is clear, the page is not present. When the 
processor attempts to access a segment or page, it checks this flag to determine if the segment 
or page is present. If the valid flag is clear, the processor raises a virtual-memory fault. The 
fault handler routine then calls upon the kernel to load the segment or page into memory. 

When the valid flag is set to 0, the processor does not interpret the other bits in the segment 
descriptor. Software is then free to use these bits for other purposes. For example, if a 
segment is not in physical memory, the base address field might be used to store the location of 
the segment in a mass storage device (such as a disk). 
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Paging Method 

The paging method field shows whether the segment is unpaged (01), paged (10), or bipaged 
(11). The value in this field must be as is shown in the following sections for each segment 
descriptor type. 

Segment Types 

The processor recognizes the following nine types of segments: 

• Simple Region 

• Paged Region 

• Bipaged Region 

• Process Control Block 

• Port 

• Procedure Table 

• Semaphore 

• Small Segment Table 

• Large Segment Table 

The segment descriptor is set up differently for each segment type, as is described in the 
following paragraphs. For some of these segment types (but not all), the type is shown in the 
type field. For those segments types where the type is specified, the processor checks this type 
field before accessing the rest of the data in the segment descriptor to insure that the segment 
being accessed is the correct type. In cases where the processor performs type checking on 
segment descriptors, it signals a type fault if an inappropriate type is found. 

The following paragraphs describe what must be placed in each of the segment-descriptor 
fields, depending on the type of segment that the segment descriptor is pointing to. 

Region Descriptors 

Each region of an address space is contained in a segment. A region segment can be a simple 
region, a paged region, or a bipaged region. For each of these three types of regions, the 
segment descriptor is set up slightly different. Figure 8-7 shows the segment descriptors for 
the three types of regions. 

Simple Region. A simple region is a one-page segment (4096 bytes) that is mapped into 
physical memory as a contiguous page. 

The base address for a simple region must fall on a page boundary in physical memory, so the 
12 least-significant bits of the base address field are set to zero. The size field is set to 6310, 

indicating 4K bytes length. 
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Since the simple region descriptor points directly to the segment in memory. the three access 
flags (accessed, altered, and cacheable) are set and examined by the processor and kernel. 

SIMPLE·REGION SEGMENT DESCRIPTOR 

PAGED·REGION SEGMENT DESCRIPTOR 

31 23 

BIPAGED·REGION SEGMENT DESCRIPTOR 

_ RESERVED (INITIALIZE TO 0) 

~ PRESERVED 

Figure 8-7: Region Segment Descriptors 

BYTE DISPLACEMENT 

" "+4 
"+B 
n + 12 

BYTE DISPLACEMENT 

" 
"+4 

" + B 

" + 12 
2 1 0 

LVALID 

BYTE DISPLACEMENT 

" + 4 
"+8 

" + 12 

Paged Region. A paged region is a segment that is mapped into physical memory by means of 
a page table. A paged region may be from 4096 bytes to 4096K bytes in length. 

The base address field for. a paged-region· descriptor points to the base physical-address of a 
page table. This address must fallon a 64-byte boundary, so the 6 least-significant bits of th,e 
base address field are set to zero. 

A page-table can be up to a page in length as determined by the size field. Each page-table 
entry is 4 bytes, so the number of entries in the page table is as follows: 

Number of Page-Table Entries = 16 * (SIZE + 1) 

For a paged region, the access information is stored in the page-table entries. The access status 
flags in the segment descriptor are thus set to 0 and the valid flag shows whether or not the 
page table is present in memory. 
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Bipaged Region. A bipaged region is a segment that is mapped into physical memory by 
means of two levels of page tables. A page-table directory forms the first level. Entries in the 
page-table directory then point to up to 1024 page tables. A bipaged region may be from 4096 
bytes to 4096M bytes in length. 

The segment descriptor for a bipaged region is similar to that of a paged region descriptor. The 
base address field gives the base physical-address of a page-table directory, which must fall on 
a 64-byte boundary. 

A page-table directory can be up to a page in length as determined by the size field. The 
number of 4-byte entries in the page-table-directory is determined by the same relationship, as 
is shown above for a page table in a paged region. 

As with paged regions, all of the access information except the valid flag is stored in the 
page-table-directory and page-table entries. 

Process, Port, and Procedure-Table Descriptors 

A process-segment descriptor points to a segment that contains a process control block (PCB); 
a port-segment descriptor points to a segment that contains a dispatch port or a communication 
port; and a procedure-table segment descriptor points to a segment that contains a procedure 
table. Figure 8-8 shows the format for each of these types of segment descriptors. 

NOTE 
A PCB and a port are architecture-defined data structures. The PCB is described in Chapter 13; 
the port is described in Chapter 14. 

The formats for these segment descriptors are identical, except that the value in the type field is 
different for each type of descriptor. 

The base address for each of these segments must fall on a 64-byte boundary in physical 
memory and the segment as a whole must not span a 4096-byte boundary. Spanning a 
4096-byte boundary will cause unpredictable results when the segment is accessed. 

The sizes of the process and port segments are defined by the PCB and port data structures. 
The size of the procedure table segment is 1088 bytes. 

These segments must always be present in physical memory, so the valid, accessed, and altered 
flags are always set to 1. The cacheable flag can be set to allow caching of the segment. 
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PROCESS-CONTROL-BLOCK SEGMENT DESCRIPTOR 

PORT-SEGMENT DESCRIPTOR 

PROCEDURE-TABLE-SEGMENT DESCRIPTOR 

31 28 

.... RESERVED(INITIALIZETOO) 

~ PRESERVED 

BYTE DISPLACEMENT 

" + 4 

" + 8 
n + 12 

'------- CACHEABLE 

BYTE DISPLACEMENT 

" + 4 

" + 8 
n + 12 

'------- CACHEABLE 

BYTE DISPLACEMENT 

" + 4 

" + 8 
n + 12 

L-_____ CACHEABLE 

Figure 8-8: Process, Port, and Procedure-Table Segment Descriptors 

Segment-Table Descriptors 

Figure 8-9 shows the formats for the two types of segment-table descriptors: one for a small 
segment table and another for a large segment table. 

A small segment table is mapped to a page of physical memory. The base address in the small 
segment table descriptor must point to a 4096-byte (page) boundary in physical memory. The 
12 least-significant bits of the base address are thus set to zero. 

A small segment table must always be in physical memory, so the accessed, altered, and valid 
flags are set to 1. Whether or not a small segment table is cacheable is optional. 

A large segment table is mapped to physical memory by means of a page table_ The base 
address in the large segment table descriptor then points to the base address of a page table, 
which must be located on a page boundary. 
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SMALL SEGMENT·TABLE SEGMENT DESCRIPTDR 

LARGE SEGMENT· TABLE SEGMENT DESCRIPTOR 

... RESERVED (INITIALIZE TO 0) 

~ PRESERVED 

BYTE DISPLACEMENT 

n.4 
n.8 
n + 12 

L-_____ CACHEABLE 

BYTE DISPLACEMENT 

n.4 

n.8 
n + 12 

Figure 8-9: Segment-Table Segment Descriptors 

The valid flag is set to 1, indicating that the page table associated with the large segment table 
must always be present in memory. However, the individual pages that are associated with a 
large segment table may be swapped in and out of physical memory as determined by the 
access flags for their individual page-table entries. 

Semaphore Descriptor 

A semaphore is a system data structure that is small enough that it does not need to be mapped 
into a segment. Instead it is encoded in the segment descriptor itself. Such a segment 
descriptor is called an embedded descriptor. Figure 8-10 shows the format for a semaphore 
descriptor. 

NOTE 

A semaphore is an architecture-defined data structure. It is described in Chapter 14. 

BYTE DISPLACEMENT 

SEMAPHORE DATA STRUCTURE 

- -I-I ,I ;::, W fed 
31 28 2 1 0 

... RESERVED (INITIALIZE TO 0) 

Figure 8-10: Semaphore Segment Descriptor 

Here the data structure for the semaphore is contained in the first three words of the descriptor. 
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Invalid. Descriptor 

Since both the small and large segment tables have fixed sizes, a certain number of the segment 
descriptors in these tables, at a particular time, will be unused. These unused segment descrip­
tors should be formatted as an invalid segment descriptor, as shown in Figure 8-11. 

~ PRESERVED 

Figure 8·11: Invalid Segment Descriptor 

PAGE TABLES AND PAGE·TABLE DIRECTORIES 

BYTE DISPLACEMENT 

" 
"+4 

" + 8 
" + 12 

Any segment that is greater than 4096 bytes in length is mapped into physical memory in 
pages. The segment types that fall into this category are the paged and bipaged regions and the 
large segment table. All the other segment types described earlier in this section are mapped 
directly into physical memory from the segment table. 

The mapping of segments into pages of physical memory is handled by means of page tables 
and page-table directories. Figure 8-12 shows a conceptual view of this paging mechanism. 

The first segment is unpaged, so the segment descriptor points directly to the segment. This 
method of paging is used for architecture-defined data structures that are less than a page long, 
and for simple regions. 

The second segment is paged through a single page table. Here, the segment descriptor for the 
segment points to the page table. Entries in the page table then point to the individual pages 
that make up the segment. This method of paging is used for paged regions and for a large 
segment table. 

The third segment is paged in two levels. The first level of paging is through a page-table 
directory, which points to one or more page tables. The second level of paging is through the 
page tables, which point to the individual pages of the segment. This method of paging is only 
used for regions. 
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Page Table and Page-Table-Directory Structure 

As is shown in Figure 8-13, page tables and page-table directories are made up of 4-byte 
entries. (There is no table header.) Both types of tables can be up to one page in length, which 
allows up to 1024 entries per table. 

PAGE TABLE (DIRECTORY) ENTRY 

.. ~ 

o 
4 

8 

12 

16 

20 

4~ 

UPTO 1024 
ENTRIES 

Figure 8-13: Page Table or Page-Table-Directory Structure 

One-level paging can be used to page segments of from 4096 bytes to 4096K bytes in length; 
two-level paging can be used to page segments of from 4096 bytes to 4096M bytes in length. 

When using one-level paging, the size field in the paged segment descriptor determines the 
number of entries in a page table. Likewise, when using two-level paging, the size field in the 
bipaged segment descriptor determines the number of entries in the page-table directory. 
However, when setting up a bipaged segment, the page tables that the page-table directory 
points to have a set length of one page. 

Page Table and Page-Table-Directory Entries 

Figure 8-14 shows the structure of the page table and page-table-directory entries. 
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PAGE-TABLE-DIRECTDRY ENTRY 

PAGE-TABLE BASE ADDRESS ~Ivi 
31 12 2 1 0 

~VALID 
PAGE RIGHTS 

PAGE-TABLE ENTRY 

PAGE BASE ADDRESS 

31 12 7 6 5 4 3 2 1 0 

l§~LvALID PAGE RIGHTS 

ACCESSED 

ALTERED 

CACHEABLE 

INVALID PAGE-TABLE OR PAGE-TABLE-DIRECTORY 
ENTRY 

.01 
~ 0 

II1II RESERVED (INITIALIZE TO 0) 

~ PRESERVED 

Figure 8-14: Page Table or Page-Table-Directory Entries 

Page-Table Entry 

LVALID 

In a page-table entry, the base address points to the base physical address of a page. The page 
must be a full 4096 bytes in length and be aligned on a page boundary in physical memory. 
Only the 20 most-significant bits of the base address are given. 

For paged or bipaged segments, the accessed, altered, and cacheable information is shown at 
the page level in the page-table entry. 

Each page-table entry also has a valid flag. This flag can be either 1 or 0, depending on 
whether or not the page is present in physical memory. However, as described in a following 
section titled "Invalid Page Table Or Page-Table-Directory Entry," this flag will normally be 
set to 1. 

The page rights field shows what operations (i.e., read or write) can be performed on the 
contents of the page. Page rights are discussed in a following section titled "Page Rights." 
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Page-Table-Directory Entry 

In a page-table-directory entry, the base address points to the base physical address of a page 
table. Page tables are one page in length and must be aligned on page boundaries in physical 
memory. Only the 20 most-significant bits of the base address are given in the page-table­
directory entry. 

Each page-table-directory entry has a valid flag and page rights field as in a page-table entry. 

Invalid Page Table or Page-Table-Directory Entry 

When a page is not in physical memory, the valid flag for its associated page-table entry is set 
to zero. The entry is then an invalid page-table entry. Any entry in a page table that does not 
point to a valid page must have its valid flag set to zero. 

Bits 1 through 31 of an invalid page-table entry are not looked at by the processor, so they are 
available for software to use. A typical use of these bits is to store the location of the page in a 
mass storage device. 

An invalid page-table-directory entry is the same as an invalid page-table entry, except that it 
indicates that its associated page table is not in memory. Again, bits I through 31 of an invalid 
page-table-directory entry are available to software and are typically used to store the mass 
storage address of the page table. 

Page Rights 

When operating in virtual-addressing mode, the processor allows access to information in 
physical memory to be restricted on a page by page basis. The page rights field in the page 
table and page-table-directory entries determines the access rights for a particular page or 
group of pages, respectively. 

The processor checks these page rights each time it accesses memory. 

Three levels of access rights are allowed: no access, read-only, and read-write. The page 
rights bits are interpreted differently depending on the execution mode (i.e, user or supervisor) 
that the processor is operating in, as shown in Table 8-1. 

Table 8-1: Page Access Rights Interpretation 

Rights Execution Mode 

User Supervisor 

00 no access read only 

01 no access read-write 

10 read only read-write 

11 read-write read-write 

8-20 



inter MEMORY MANAGEMENT 

When the processor accesses a page in a paged segment (e.g., a paged region), the page rights 
from the page's page-table entry determine the access rights for the page. When the processor 
accesses a page in a bipaged segment, the minimum page rights from a page's associated 
page-table entry and page-table-directory entry determine the access rights for the page. 

For example, in a bipaged segment, if the page rights in the page-table entry are read-write, but 
the page rights in the page-table-directory entry are read-only, the processor will be allowed 
only to read the page. 

The inspect access instruction (inspacc) returns the effective page rights of the access path for 
a specified address. This instruction is useful in fault handling routines. 

When the processor is in physical-addressing mode, virtual address translation is turned off, 
which disables page rights checking. 

ADDRESS TRANSLATION IN VIRTUAL MODE 

This section describes how the processor uses the memory management data structures 
described in the previous sections to translate an SS into the location of a segment descriptor in 
a segment table. It also describes how the processor translates a 32-bit virtual address into a 
32-bit physical address. 

SS Translation 

The processor can get an SS either from a system data structure or from an instruction operand 
issued by a kernel routine. Once it has received an SS, the processor translates it into an offset 
into the segment table. This offset is to the physical address of the least significant byte of the 
SS's associated segment descriptor. 

As is described in the following sections, the translation is slightly different depending on 
whether the segment table is a small or a large table. In either case, the processor has already 
translated the SS for the segment table to determine the base address of the segment table itself. 

Small Segment Table SS Translation 

The processor uses the following procedure to locate a segment descriptor in a small segment 
table: 

1. If the segment index in the SS is greater than 255 10, signal a segment-length fault. 

2. Locate the segment descriptor whose base address is the base address of the segment table 
plus 16 times the segment index. 

3. If the valid flag for the descriptor is set to 0, signal the invalid segment-descriptor fault. 
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Large Segment Table SS Translation 

The processor uses the following procedure to locate a segment descriptor in a large segment 
table: 

1. If the segment index is greater than 262,143 10, signal the segment-length fault. 

2. Get the address of the page table from the large-segment-table segment descriptor at 
segment index 8. 

3. Locate the page-table entry, whose word offset is given by bits 14 through 23 of the SS. 

4. If the valid flag in the page-table entry is 0, signal the invalid page-table entry fault. 

5. Locate the segment descriptor whose base address is the base address from the page-table 
entry plus 16 times bits 6 through 13 of the SS. 

6. If the valid flag for the descriptor is set to 0, signal the invalid segment-descriptor fault. 

Virtual-Address Translation 

The term virtual address refers to an address in the address space for the currently running 
process (i.e., the process address space). That address is a virtual address if the address space 
has been mapped into physical memory using the virtual memory mapping mechanism (i.e., 
region segments, page tables, and pages) described earlier in this chapter. 

The processor receives addresses as operands in instructions. If the processor is operating in 
virtual-addressing mode, it assumes that any address it receives is a virtual address. The 
processor then translates the address automatically into a physical address. 

Figure 8-15 shows how a virtual address is broken down into a physical address depending on 
whether the region that contains the address is a simple region, a paged region, or a bipaged 
region. 

In the first step of the translation process, the processor uses bits 30-31 of the virtual address to 
determine which region the address is in. The processor already has SS's for the four regions 
of the current address space, so it uses the SS for the selected region to locate the segment 
descriptor for that region. 

If the descriptor is an invalid segment-table entry, the invalid-descriptor fault is signaled. If the 
descriptor is not one for a simple, paged, or bipaged region, the action is unpredictable. If the 
valid flag in the descriptor is 0, the invalid segment-table entry fault is signaled. 

The following procedures describe the rest of the translation process, depending on the type of 
region being accessed. 
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Simple-Region Address Translation 

1. If bits 12 through 29 of the virtual address are not zero, signal the segment length fault. 

2. If the accessed flag in the segment descriptor is 0, set it. If the altered flag is 0 and the 
operation is a write, set it. If one or both of these flags need to be set, write the entry into 
memory as the completion of an atomic read-modify-write operation. 

3. The physical address is the 20-bit base address from the segment descriptor, followed by 
bits 0 through 11 of the virtual address. 

Paged-Region Address Translation 

1. If bits 12 through 21 of the virtual address are not less than the value 64 * (SIZE + 1), size 
being a field in the descriptor, signal the segment length fault. 

2. Locate the page table using the base address from the segment descriptor. 

3. Locate the page-table entry, whose word offset from the base of the page table is given by 
bits 12 through 21 of the virtual address. 

4. If the valid flag in the page-table entry is 0, signal the invalid page-table entry fault. 

5. If the page rights in the entry are 00 or 01 and the execution mode is user, if the page 
rights are 00 and the operation is a write while in supervisor mode, or if the page rights are 
10 and the operation is a write while in user mode, signal the page-rights fault. 

6. If the accessed flag in the page-table entry is 0, set it. If the altered flag is 0 and the 
operation is a write, set it. If one or both of these flags need to be set, write the entry into 
memory as the completion of an atomic read-modify-write operation. 

7. The physical address is the 20-bit base address from the page-table entry, followed by bits 
o through 11 of the virtual address. 

Bipaged Region-Address Translation 

1. If bits 22 through 29 of the virtual address are not less than the value 64 * (SIZE + 1), size 
being a field in the descriptor, signal the segment length fault. 

2. Locate the page-table directory using the base address in the segment descriptor entry. 

3. Locate the page-table-directory entry, whose word offset from the base is given by bits 22 
through 29 of the virtual address. 

4. If the valid flag in the entry is 0, signal the invalid page-table-directory entry fault. 

5. If the page rights in the entry are 00 or 01 and the execution mode is user, if the page 
rights are 00 and the operation is a write while in supervisor mode, or if the page rights are 
10 and the operation is a write while in user mode, signal the page-rights fault. 

6. Locate the page table using the base address from the page-table-directory entry. 

7. Locate the page-table entry, whose word offset from the base of the page table is given by 
bits 12 through 21 of the virtual address. 

8. If the valid flag in the page-table entry is 0, signal the invalid page-table entry fault. 
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9. If the page rights in the entry are 00 or 01 and the execution mode is user, if the page 
rights are 00 and the operation is a write while in supervisor mode, or if the page rights are 
10 and the operation is a write while in user mode, signal the page-rights fault. 

10. If the accessed flag in the page-table entry is 0, set it. If the altered flag is 0 and the 
operation is a write, set it. If one or both of these flags need to be set, write the entry into 
memory as the completion of an atomic read-modify-write operation. 

11. The physical address is the 20-bit base address from the page-table entry, followed by bits 
o through 11 of the virtual address. 

Load Physical Address Instruction 

The load physical address instruction (Jdpby) returns a physical address for a given virtual 
address. This instruction allows the kernel to determine the physical address of specific data 
structures when only the virtual address is known. 

Spanning Page, Region, and Address-Space Boundaries 

Page boundaries are completely transparent, except in cases where a memory access spans a 
page boundary and the pages have different rights. For example, if one page has read-write 
access and the adjacent page has read-only access, a write operation that spans the page 
boundaries will fault when it gets to the read-only page. 

Region boundaries are not transparent, because each region is mapped with a different segment 
descriptor and page table (or set of page tables). Multiple-byte accesses that cross region 
boundaries can thus cause unpredictable results. This limitation can be circumvented by 
mapping two or more regions with the same set of page tables. This technique is described in 
detail later in this chapter in the section titled "Making Region Boundaries Transparent." 

NOTE 

When a multiple-byte access spans the 232-byte boundary of the address space, the address 
wraps around to zero. 

Translation Look-Aside Buffer 

To make the virtual-to-physical address translation mechanism more efficient, the processor 
provides a special buffer to hold address-translation information. This buffer is called the 
translation look-aside buffer (TLB). 

When the processor receives a virtual address to be translated, it first looks in the TLB to see if 
it has already been translated. If it has, the processor skips the translation process and takes the 
physical address from the TLB. 

The information stored in the TLB includes the following: 

• Segment descriptors for the segment-table segment and the region-3 segment 
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• Segment descriptors for the current PCB segment and the region-O, -1, and -2 segments 

• The page-table entry for the page that contains the bottom of the interrupt stack 

• Page-table entries for pages that have been addressed at some point in the control flow of 
the processor 

Page-table-directory entries are not stored in the TLB. 

Several lACs are provided for flushing (i.e., invalidating) specified entries in the TLB to insure 
that it is consistent with the current state of the segment table and page tables. These lAC 
messages are described in Chapter 12. 

OPERATING-SYSTEM CONSIDERATIONS 

The preceding discussion of the processor's virtual-memory mechanism describes the data 
structures required to support virtual memory and how the processor uses these structures to 
translate virtual addresses into physical addresses. For this mechanism to work, however, the 
kernel must set up and maintain these memory-management data structures. 

This section suggests some ways to configure the memory-management data structures and the 
kernel to allow convenient management of the virtual memory system. 

Address Space Structure 

Of the four regions that make up the address space, the first three regions are specific to the 
currently running process. The processor gets the SS's for these regions from the PCB for the 
current process. The fourth region is shared by all processes. The processor gets the SS for 
this region from the processor control block (PRCB). 

NOTE 
The PRCB is an architecture-defined data structure. It is described in Chapter 9. 

Figure 8-16 shows an example of how these regions might be used to best advantage. 

The address space is divided into regions primarily to improve performance in multitasking 
applications that require a lot of process switching. For example, if the kernel is placed in 
region 3, it can be shared by all processes. It can then remain in memory on a process switch, 
which saves page swapping time. The kernel can also be protected from the various applica­
tion programs running on the system by defining the access rights for the whole of region 3 as 
supervisor only. 

The availability of regions also facilitates the separation and protection of the major parts of an 
application program running in the current process. Figure 8-16 shows an example of how the 
code (or program text), the static data, the heap (dynamically allocated data), and the stacks 
(user and supervisor) might be placed in regions 0, 1, and 2. 
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Placing code in its own region provides the same benefit as providing a separate region for the 
kernel. It allows the code to be shared by several processes, without requiring that it be 
swapped each time there is a process switch. This sharing is accomplished merely by giving 
each process that needs to use the code the same region 0 SS. Also, access rights to the code, 
which in this case would be read only, can be assigned on a region by region basis. 

Placing the heap and the stacks in their own regions permits uninterrupted growth of these data 
structures. Here, access to the supervisor-stack pages might be restricted to supervisor mode 
only. 

Region Gaps and Boundaries 

Two aspects of this region mechanism should be noted in passing. First, by using separate 
page tables or groups of page tables for each region, the size of each region can be changed 
independently. If a region is less than 1G byte, which will commonly be the case, a gap is 
formed at the end of the region. Second, if an operand spans a 1G-byte region boundary, the 
result is unpredictable. 

Making Region Boundaries Transparent 

These factors should not ordinarily prove an obstacle in kernel design. However, if a design 
does require transparent region boundaries, it can be accomplished in the following manner. 

As shown in Figure 8-17, the boundaries between retfions 0, 1, and 2 can be made transparent 
by defining a single segment that is 3G bytes (3 * 23 ) in size. This segment is represented by 
a single page-table directory with 768 entries. The segment descriptors for regions 0, 1, and 2 
are then set to point to this page-table directory: the region-O segment descriptor points to the 
base address of the page-table directory, the region-1 segment descriptor points to the base 
address plus 1024, and the region-2 segment descriptor points to the base address plus 2048. 

Since region 3 is shared by all processes, this region would most likely be defined as a separate 
segment. 

Accessing System Data Structures 

The kernel or an application program can only access that part of physical memory that has 
been mapped into the four regions of the current, process address space. This is because the 
processor does not provide any addressing modes that allow a program to access a memory 
location by means of an SS. The processor can make these accesses, but a program cannot. 

An important implication of this restriction is that the kernel cannot access directly those 
segments that lie outside the current process address space (such as process segments, port 
segments, or the segment table itself) except in physical-addressing mode. 
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MEMORY MANAGEMENT 

For the kernel to access the system defined data structures, their physical memory locations 
must be mapped both into the current process address space and into their individual segments. 

This dual mapping can be done in a variety of ways. Figure 8-18 shows one of the simplest 
methods. Here, all of physical memory is mapped into region 3 of the address space. For 
example, if the physical memory size is 16M bytes, page tables for the first 16M bytes of 
region 3 point to the physical address space. The kernel can then read or write to any location 
in physical memory merely by accessing the first 16M bytes of region 3. 

The data structures in physical memory are also mapped to other segments through separate 
SS's and segment-table entries. The processor then uses these SS's to access the segments 
through its virtual-memory translation mechanism. 
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CHAPTER 9 
PROCESSOR MANAGEMENT AND INITIALIZATION 

This chapter describes the facilities for initializing and managing the operation of the 
80960MC processor. Included is an overview of the processor-management facilities and a 
description of the processor-control block (PRCB). The steps required to initialize the proces­
sor are also given. 

OVERVIEW OF PROCESSOR CONFIGURATIONS 

The 80960MC processor has been designed for use in a variety of system configurations. For 
the purpose of discussion in this manual, the possible configurations have been divided into the 
following three groups: 

• Single-Task System -- Single processor performs a single task, often running from a 
ROM-based operating system kernel and application program. 

• Multitasking System -- Single processor is able to perform several tasks concurrently. 

• Multiprocessing System -- Multiple processors are able to perform several tasks, with the 
possibility of some tasks being processed simultaneously. 

This chapter and the following chapters describe the processor and process management 
facilities the 80960MC processor provides. These facilities allow one or more 80960MC 
processors to be configured for any of the above applications. The facilities discussed are 
primarily software related, although some hardware considerations are also discussed. 

The processor-management facilities are described in this chapter and in Chapters 10, 11, and 
12. The process management facilities that support multitasking systems are described in 
Chapters 13 and 14. Chapter 15 describes the process and processor management facilities that 
support multiple-processor configurations. 

PROCESSES AND TASKS 

In this manual, the terms process and task are used somewhat synonymously; however, a slight 
distinction between the two words should be noted. The term process refers to a unit of work 
that the processor is able to schedule and work on. A process is defined by information 
contained in a process control block (PCB). 

The term task is a more general term that refers to units of work that can be scheduled at either 
the processor or the operating-system kernel level. For example, a multitasking system is one 
that performs multiple tasks. Each task may be presented to the processor in the form of a 
process with its own PCB. Or, each task may be scheduled and dispatched in software, with all 
the tasks executed in the context ofa single process. 
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PROCESSOR-MANAGEMENT FACILITIES 

The following processor-management facilities are used to initialize, communicate with, and 
control the processor: 

• Instruction List 

• System Data Structures 

• Interrupts 

• lACs 

• Faults 

• Process Scheduling and Dispatching 

These facilities allow system hardware and the operating system or kernel to initialize the 
processor and initiate instruction execution. They also provide software or external agents 
with methods of interrupting the processor to change jobs or to service external I/O devices. In 
more advanced systems, these facilities provide a means of synchronizing mUltiple tasks and 
mUltiple processors. 

The following paragraphs give an overview of these processor-management facilities. 

Instruction List 

At the most rudimentary level, the processor is controlled through a stream of instructions that 
the processor fetches from memory and executes one at a time. Once the processor is initial­
ized, it begins executing instructions and continues until it is stopped or goes into an idle state. 

System Data Structures 

The processor requires several system data structures that reside in memory. These data 
structures offer a means of configuring the processor to operate in a specific way. They also 
contain state information that the processor and kernel use to keep track of processor and 
process management functions. 

Figure 9-1 shows the system data structures required to run a single process, using the virtual­
addressing mode. In this illustration, the dashed lines indicate physical-address pointers and 
the solid lines indicate SS pointers. 

The processor contains pointers to two of these data structures: the processor-control block 
(PRCB) and the segment table. The PRCB contains setup information for the processor itself 
and pointers· to the other system data structures that the processor must access. There is one 
PRCB for each processor in a system. 

The segment table provides address translation information for virtual-memory management, 
as described in Chapter 8. It should be noted that even though a segment table is not generally 
used when using strictly physical addressing, a rudimentary segment table is required to initial­
ize the processor. This initialization segment table is described later in this chapter in the 
section titled "Processor Initialization." 
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Figure 9-1: System Data Structures 

Figure 9-1 shows the pointer from the processor to the segment table as an SS pointer. When 
initializing a processor, the first segment-table pointer that the processor receives is a physical­
address pointer. (This pointer is supplied in the initial memory image.) It uses this physical 
address to get the SS pointer that it uses from then on. Even when using strictly physical 
addressing, the pointer to the segment table is always an SS pointer. 

The PCB contains state information and processing requirements for the currently running 
process. In multiple-process systems, each process has its own PCB. A major function of the 
PCB is to provide pointers to regions 0, 1, and 2 of the address space for the process. (The 
pointer to Region 3 is given in the PRCB.) The PCB is described in detail in Chapter 13. 
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The interrupt table provides pointers to interrupt-handling procedures. The interrupt vector 
numbers act as indices into this table. For the purpose of handling interrupts, a separate 
interrupt stack is maintained in region 3 of the address space. The interrupt mechanism is 
described in Chapter 10. 

The fault table provides pointers to fault-handling procedures. When the processor detects a 
fault, it generates a fault vector number internally that provides an index into the fault table. 
The fault mechanism is described in Chapter 12. 

The system procedure table contains pointers to the kernel procedures, which are accessed 
using the system call (calls) mechanism. The system table structure is described in Chapter 4 
in the section titled "Procedure Table." 

The processor uses two stacks (not shown in Figure 9-1) for procedure calls: the local 
procedure stack and the (optional) supervisor stack. These stacks are described in Chapter 4. 

Interrupts 

The processor supports two methods of asynchronously requesting services from the processor: 
interrupts and lAC messages. Interrupts are the more common of the two. 

An interrupt is a break in the control flow of a process so that the processor can handle a more 
urgent chore. Interrupt requests are generally sent to the processor from an external source, 
often to request I/O services. When the processor receives an interrupt request, it temporarily 
stops work on the current process and begins work on an interrupt-handling procedure. Upon 
completion of the interrupt-handling procedure, the processor generally returns to the process 
that was interrupted and continues work where it left off. 

Interrupts also have apriority, which the processor uses to determine whether to service the 
interrupt immediately or to postpone service until work on the current process is complete. 

lACs 

The 80960MC processor provides an alternate method of communicating with other processors 
in the system called lAC messages, or simply lACs. Using the lAC mechanism, other agents 
on the system bus are able to communicate with the processor through messages that are 
exchanged in a reserved section of memory. 

Like interrupts, lACs are used to request that the processor stop work on the current process 
and begin work on another chore. However, where an interrupt generally causes a temporary 
break in the execution of a process, an lAC often causes a permanent change in the control 
flow of the processor. An important application of lACs is to coordinate the activities of 
multiple processors. 

The lAC mechanism is described in Chapter 11. 
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Faults 

While executing instructions, the processor is able to recognize certain conditions that could 
cause it to return an inappropriate result or that could cause it to go down a wrong and possibly 
disastrous path. One example of such a condition is a divisor operand of zero in a divide 
operation. Another example is an attempt to access a memory location in a page that is not in 
physical memory. These conditions are called faults. 

The processor handles faults almost the same way that it handles interrupts. When the proces­
sor detects a fault, it automatically stops its current processing activity and begins work on a 
fault-handling procedure. 

Process Scheduling and Dispatching 

The processor also provides some advanced process-management facilities that are able to 
signal the processor internally to suspend the process it is currently working on and begin work 
on another process. These features, which are useful in the scheduling and dispatching of 
processes, are described in Chapter 14. 

PROCESSOR-CONTROL BLOCK 

The processor is controlled through the PRCB, which contains information related to the 
processor's operation. The PRCB is 176 bytes in length and is contained in physical memory, 
not in a segment. Each CPU processor in a 80960MC-based system has its own PRCB. The 
processor locates and reads its PRCB at initialization by means of a physical-address pointer to 
the first byte of the block. 

The processor caches parts of the PRCB on chip and updates these cached fields internally. 
After the processor has initially cached these fields, it does not check or update the original 
PRCB in memory. lACs are provided that allow those parts of the PRCB that the processor 
has copied into internal storage to be changed. These lACs are discussed later in this chapter 
in the section titled "Changing the PRCB." This section also lists the fields of the PRCB that 
are cached on the chip. 

Figure 9-2 shows the structure of the PRCB and Figure 9-3 shows the structure of the 
processor-controls word in the PRCB. The following paragraphs describe the use of each of 
the fields in the PRCB. 

Processor-Controls Word 

The processor-controls word contains several miscellaneous pieces of information to control 
processor operation. The function of the various fields in this word are as follows. 

The multiprocessor-preempt flag, when set, enables a high-level process preemption function 
that allows multiple processors to handle preempting processes. This function is only useful in 
multiple-processor systems and should be set to 0 for single-processor systems. Refer to the 
section titled "Process Preemption" in Chapter 14 for more information on this function. 
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The state field determines the state of the processor when it is initialized or restarted. The 
encoding of this field is shown in Table 9-1. 

Table 9-1: Encoding of the State Field 

State State 
Field 

00 Stopped 

01 Reserved 

10 Idle 

11 Process executing 

The section later in this chapter titled "Processor and Process States" describes the activities of 
the processor while it is in these different states. 

The nonpreempt-limit field sets a threshold priority that the processor uses in determining 
whether or not to allow one process to preempt another. If the priority of the preempting 
process is at or below that of the current process or the nonpreempt limit, the processor will not 
preempt the cjlrrent process. This field is used during process preemption and on returns from 
interrupts. Further discussion of this limit is given in Chapter 10 in the section titled "Process­
Executing-State Interrupts" and in Chapter 15 in the section titled "Multiprocessor 
Preemption. " 

The addressing-mode flag determines the address-translation mode of the processor: physical 
addressing (0) or virtual addressing (1). The section later in this chapter titled "Address­
Translation Modes" discusses these modes. 

The check-dispatch-port flag instructs the processor to check the dispatch port for processes of 
higher priority than the current process, during returns from interrupts. Only the processor 
uses this flag. Software should set it to 0 at processor initialization or restart. A discussion of 
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how the processor uses this flag is given in Chapter 10 in the section titled "Process-Executing­
State Interrupt" and in Chapter 14 in the section titled "Process Preemption." 

The interim-priority field sets a threshold priority that is used to block lAC messages from 
being sent to the processor when it is executing the send, send service (sendserv), and signal 
instructions. This field is used in conjunction with the write-external-priority flag as described 
in Chapter 15 in the section titled "Multiprocessor Preemption." 

The write-external-priority flag instructs the processor to write the priority of the current 
process to the IAC-message-control field whenever a process switch, an interrupt (not caused 
by an lAC message), or the execution of a modpc instruction (modify process controls) occurs. 
The use of this flag is described in Chapter 15 in the sections titled "Receiving and Handling 
External lACs" and "Multiprocessor Preemption." 

The remaining bits in the processor-controls word (bit 0, bit 4, and bits 12 through 30) are 
reserved. These bits should be set to 0 at processor initialization or restart and should not be 
altered after that. 

System-Oata-Structure Pointers 

As is shown in Figure 9-1, the PRCB contains pointers to several system data structures, which 
are summarized in the following paragraphs. 

The current-process-SS field points to the PCB for the process that is currently bound to the 
processor. (The mechanism for binding a process to the processor is described in Chapters 13 
and 14.) 

If the processor is restarted in the process-executing state, the processor binds itself to the 
process specified in the current-process-SS field. For single process systems this is the only 
process bind action that is carried out. 

For systems that execute multiple processes, the current-process-SS field is updated each time 
a new process is dispatched and bound to the processor. 

When the processor is not in the process-executing state, this field is not used. Also, this field 
is not cached on the processor chip. 

The dispatch port SS field points to the dispatch port that the processor goes to for new 
processes during a dispatching operation. This field is only used for mUltiple process systems 
that use the processor's high-level process management functions. 

The interrupt table physical address points to the first byte of the interrupt table. 

The interrupt-stack pointer points to the top (first available byte) of the interrupt stack. In the 
virtual-addressing mode, the processor interprets the interrupt-stack pointer as a virtual address 
in the current-process address space. (When using the virtual-addressing mode, the interrupt 
stack should be placed in region 3 of the process address space.) When using the physical­
addressing mode, the interrupt-stack pointer is interpreted as a physical address. 
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The region 3 SS points to the region segment that contains region 3. 

The system procedure-table SS points to the system procedure table. 

The fault-table physical address points to the first byte of the fault table. 

Miscellaneous PRCe Fields 

The following fields in the PRCB provide miscellaneous processor-control functions. 

The idle time field contains a long ordinal that gives the time that the processor has spent in the 
idle or idle-interrupted state. Idle timing is discussed later in this chapter in the section titled 
"Idle Timing." 

When a system-error fault occurs, the type and subtype of the fault are stored in bits 16 through 
23 and bits 0 through 7 of the system error fault field, respectively. The fault record is stored 
in the system-error fault record field. System-error faults are described in Chapter 12. 

The resumption record field contains the intermediate state of an instruction that has been 
interrupted. This information is generally stored in the PCB for the interrupted process. 
However, when the processor is interrupted while in the idle-interrupted state, the resumption 
information is stored in the PRCB. This field should be set to all zeros at initialization or 
restart of the processor and not accessed by software thereafter. 

The processor uses multiprocessor preemption field while handling preempting processes in 
multiprocessor applications. The use of this field is described in Chapter 15 in the section 
titled "Preemption Control." 

The remaining fields in the PRCB (bytes 8 through 11, bytes 28 through 31, bytes 44 through 
47, bytes 60 through 63, and bytes 76 through 79) are reserved. They should be set to all zeros 
at initialization or restart and not accessed by software thereafter. 

Changing the PRCe 

At initialization, on a restart processor lAC, or on a warmstart processor lAC, the processor 
reads the following fields from the PRCB in memory and caches them: 

• Processor controls 

• Dispatch port SS 

• Interrupt table physical address 

• Interrupt stack pointer 

• Region 3 SS 

• System procedure table SS 

• Fault table physical address 

• Idle time 

9-9 



PROCESSOR MANAGEMENT AND INITIALIZATION 

In general, to change any of the PRCB fields that have been cached on the processor chip, the 
kernel must first modify the PRCB in memory, then restart the processor using the restart 
processor lAC. The processor then rereads the PRCB and reloads the cached fields in its 
internal cache. 

The store processor lAC may also be useful here. This lAC causes any of the cached parts of 
the PRCB that have been changed since initialization or the last restart to be written to the 
PRCB in memory. Software is thus able to examine the current state of the PRCB, modify it, 
then restart the processor. 

The modify-processor-controls lAC allows any of the fields in the processor-controls word, 
except the state field, to be changed without restarting the processor. If this lAC is used to 
change the state field, the processor must be restarted for the change in state to become 
effective. 

PRIORITIES 

The processor provides a priority mechanism for determining the order in which processes and 
interrupts are worked on. Priorities range from 0 to 31, with 31 being the highest priority. 
Each process and interrupt vector is assigned a priority. 

In multitasking systems, process priorities are used to determine which processes are worked 
on first. Process priorities also allow a process of higher priority to preempt the current 
process if the current process has a lower priority. The term preempt means that the current 
process is suspended and the preempting process is bound to the processor. 

Interrupt priorities serve two functions. First, they determine if the processor will service an 
interrupt immediately or delay servicing it with respect to the priority of the current process. 
Second, they determine which interrupt of several interrupts is serviced first. 

The processor always handles an lAC as soon as it is received (i.e., lACs are assumed to have a 
priority of 31). However, in certain system designs lACs can be prioritized. Here, external 
hardware is required to compare the priority of the lAC with that of the current process, then 
determine whether to send the lAC message to the processor immediately or reject it. The 
M82965 is designed to perform this operation. 

PROCESSOR AND PROCESS STATES 

The processor has three different operating states: process executing, idle, and stopped. In 
addition, a process can be in either of two states: excuting and interrupted. When the 
processor and process states are combined, five states are possible for the the processor and its 
current process: process executing, process interrupted, idle, idle interrupted, and stopped. 
The processor is placed in one of three states (process executing, idle, or stopped) at initializa­
tion or restart. After that, the processor and software control the state of the processor and 
process. 

The processor can switch between the process-executing, process-interrupted, idle, and idle­
interrupted states. However, the processor never switches from the process-executing or idle 
states to the stopped state, unless a system-error fault occurs. 
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Software can change the state of the processor in either of two ways: (1) restart the processor 
in the desired state, or (2) issue a stop processor lAC message. 

The following paragraphs describe the five combined processor and process states. 

Process-Executing and Process-Interrupted State 

In the process-executing state, the processor is executing the process specified in the current 
process SS field of the PRCB. 

If the processor is interrupted while in the process-executing state, it saves the state of the 
current process, switches to the process-interrupted state, and services the interrupt. Upon 
returning from the interrupt handler, the processor resumes work on the current process. 

Stopped State 

In the stopped state the processor ceases all activity. The only task it can perform while in this 
state is to service an lAC. If the lAC handling action does not result in a change in the 
processor's state, the processor switches back to the stopped state when it finishes the lAC 
handling action. 

The only way to get the processor out of the stopped state is to restart the processor in a 
different state. 

Idle and Idle-Interrupted States 

The idle and idle-interrupted states are used primarily with the processor's high-level process­
management functions. Here, the processor switches to the idle state when it examines the 
dispatch port and finds no processes available for processing. The idle state eliminates the 
need for the kernel to provide a special process for the processor to run when no other 
processes are scheduled. 

Note that even if a process is available at the dispatch port, the processor is considered to be in 
the idle state while it is "between" processes (i.e., after suspending the current process and 
before dispatching another process). 

The processor may be interrupted while in the idle state. While servicing the interrupt, the 
processor switches to the idle-interrupted state. Upon completion of the interrupt routine, the 
processor returns to the idle state and begins polling the dispatch port again for a process to 
run. 

While in the idle state, the processor polls the dispatch port once every tick (i.e., once every 
256 clock cycles). When running at a 16-MHz clock rate, this polling rate equates to once 
every 8 microseconds. (Refer to the section later in this chapter titled "Processor Timing" for 
more information on ticks.) 
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The other use of the idle state is at initialization. During the first stage of initialization, the 
processor is placed in the idle state. From there, the processor goes into the idle-interrupted 
state to execute initialization code. 

If a system does not have a dispatch port, the processor will never go into the idle state except 
at initialization. If the processor is restarted in the idle state when there is no dispatch port, the 
behavior of the processor is unpredictable. 

ADDRESS-TRANSLATION MODES 

As was discussed in Chapter 8, the processor can operate in either of two address-translation 
modes: physical-addressing mode and virtual-addressing mode. The addressing-mode flag in 
the processor controls determines which address-translation mode the processor is using. 

These modes only apply to the translation of addresses in the address space for the current 
process. In the physical-addressing mode, all addresses are assumed to be physical addresses 
and are sent out on the bus unchanged. In the virtual-addressing mode, addresses are assumed 
to be virtual addresses. The processor memory-management unit (MMU) then translates these 
addresses into physical addresses before they are sent out on the bus. 

Regardless of the mode, SS's are treated the same. When the processor receives an SS, it 
locates the selected segment in memory and uses an internally generated or explicit offset to 
access the selected byte in the segment. Thus, even if the processor is operating in physical­
addressing mode, it still uses the SS's in the PRCB to locate system data structures. Likewise, 
privileged supervisor-mode instructions that use SS's as operands are treated the same way in 
both address-translation modes. 

Changing the Address-Translation Mode 

Generally, the kernel will run the processor in one address-translation mode or the other. If 
strictly physical addressing of memory is used, the processor will be run in physical-addressing 
mode, and if a virtual-memory system is supported, the processor will run in virtual-addressing 
mode. ' 

It is possible to design a system in which the address-translation mode is changed on occasion. 
In such instances, the change of mode can be accomplished in either of two ways. 

The safest way is to establish an up-to-date image of the PRCB in memory, perhaps by using 
the store processor lAC. The addressing-mode flag is then changed and the processor is 
restarted. 

The other way is to use the modify-processor-controls lAC. When this lAC is used to change 
the address-mode flag, the processor reads the new value and changes its mode accordingly. 

Changing the address-translation mode in this manner can have serious consequences. For 
example, clearing the flag causes the IP for the next instruction to be interpreted as a physical 
address, which might take the processor down an unpredictable path. Also, the system may be 
maintaining a memory cache for the processor. Changing the address-translation mode would 
cause the cached addresses to be interpreted differently. 

9-12 



inter PROCESSOR MANAGEMENT AND INITIALIZATION 

If the address-translation mode is to be changed in this latter manner, the safest way to do so is 
to map the addresses of at least the code and the stacks into the same locations in both the 
virtual and physical address spaces. It will be necessary to purge the instruction cache of the 
processor (using the purge instruction cache lAC). 

PROCESSOR TIMING 

The processor provides several counting functions such as process execution timing and idle 
timing. Counting for these functions is in terms of ticks. 

Duration of a Tick 

For the 80960MC processor, a tick is defined as 256 external clock periods (128 internal clock 
periods). For a 16-MHz processor clock rate (32-MHz external clock), a tick is then 8 
microseconds. For a 20-MHz processor clock rate, a tick is 6.4 microseconds. 

Idle Timing 

The idle time field of the PRCB is used to count the amount of time that the processor is in the 
idle state. When the processor goes into the idle state it begins incrementing the count in the 
idle time field one count for each tick. When the processor switches to another processor state, 
idle-time counting is stopped. 

The idle time field, like others in the PRCB, may be cached in the processor. If this is the case, 
the value must be periodically written out to the PRCB in memory so software can read it. The 
interval that the processor uses to update the count is once every 32 ticks. 

The processor writes the idle time field periodically, but it only reads this field at initialization. 
As a result, if software changes the idle time field after initialization, the count will be incon­
sistent. 

NOTE 

If the interrupt handler sets the timing flag in the process controls word, the processor will 
begin counting idle time for the interrupted state. This practice is not advisable because it can 
cause unpredictable events, most notably an unwanted time-slice fault. 

INSTRUCTION SUSPENSION 

When a process is suspended or interrupted while the processor is in the midst of executing an 
instruction, the processor does one of three things before it suspends the process or services the 
interrupt: 

I. It completes the instruction. 

2. It terminates the instruction and sets the process state so that it is as if execution of that 
instruction had not yet begun. 
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3. It suspends the instruction and saves the necessary resumption information so that execu­
tion of the instruction can be continued when the processor begins work on the process 
again. This courSe of action .is generally reserved for instructions that have a long execu­
tion time and that alter the internal and external process state as they execute. 

Which of these steps the processor takes depends on the instruction being executed. However, 
whichever step it takes is transparent to the software. The processor automatically saves the 
necessary state information so that work on the process can be resumed with no loss of 
information. 

Refer to the section in Chapter 13 titled "Resumption Record" for more information on how 
resumption information for a suspended instruction is saved when a process is suspended. 
Refer to the section in Chapter 10 titled "Interrupt-Handling Action" for more information on 
how resumption information is saved when an interrupt is serviced. 

SOFTWARE REQUIREMENTS FOR PROCESSOR MANAGEMENT 

The processor-management facilities described earlier in this chapter allow the processor to be 
configured and operated in a variety of ways. This section lists the data structures that the 
kernel must supply to operate the processor in a single-task configuration. (Chapter 14 lists the 
required data structures for a multitasking system that uses the processor's high-level process 
management facilities and Chapter 15 lists the requirements for a multiprocessing system.) 

When using the processor in a single-task system, the kernel must provide the following items: 

• Initial Memory Image 

• Set of System Data Structures 

• Address Space 

• Stacks 

• Code 

The initial memory image comprises the minimum data structures that the processor needs to 
initialize the system. It is described later in this chapter in the section titled "Initial Memory 
Image." 

As part of the initialization procedure, a more complete set of system data structures are 
established in memory. If the virtual-addressing mode of the processor is to be used, all of the 
data structures shown in Figure 9-1 must be set up. These data structures include a PRCB, 
segment table, PCB, interrupt table, interrupt stack, fault table, and the four address-space 
regions for the current process. If the user-supervisor protection mechanism is not going to be 
used, a system procedure table is not required. 

NOTE 
When using the virtual-addressing mode, the kernel code and the interrupt stack would typically 
be located in region 3 of the process address space. However, in a single-process system, these 
items can be located anywhere since only one address space is used. . 
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If the processor is going to be used strictly in physical-addressing mode, all of the data 
structures listed above must be set up except the four address space regions and the system 
procedure table. The system procedure table is not required; however, it can be set up and used 
in a physical-addressing environment. 

Note that when operating in physical-addressing mode, a segment table is still required. This 
segment table is part of the initial system image and is generally not used after the first stage of 
initialization. The required entries for this initialization segment table are given in the section 
later in this chapter titled "Initialization Segment Table." 

Figure 9-4 shows the fields in the PRCB and the processor-controls word that are used in a 
single-task configuration, using the virtual-addressing mode. When using strictly physical 
addressing, the system procedure table SS is not required. (Chapter 10 describes the required 
fields for the interrupt table and interrupt stack; Chapter 12 describes the fault table; and 
Chapter 13 describes the PCB.) 

Two stacks are required: an interrupt stack and a local (or user) procedure stack. The initial 
stack pointer for the interrupt stack is given in thePRCB; the initial stack pointer for the 
local-procedure stack is given in the local registers and is established by initialization code. If 
the user-supervisor protection mechanism is to be used, a supervisor stack must also be 
provided. The initial stack pointer for this stack is given in the system-procedure table. The 
supervisor stack can be placed anywhere in the address space. 

Finally, three levels of code are required: initialization code, kernel code, and user (or 
applications) code. The initialization code is part of the initial memory image. The starting IP 
for the initialization code is also provided in the initial memory image. This IP will be 
interpreted as a physical address or a virtual address depending on the setting of the 
addressing-mode flag in the initial processor-controls word. 

When using the virtual-addressing mode, the kernel code and user code are located in the 
current process-address space; when using the physical-addressing mode, this code is located 
in the physical address space. 

The starting IP for the kernel code or the user code, whichever is run first, is provided in the 
RIP word in the first frame of the kernel or user stack. One of the jobs of the initialization 
code is thus to establish a stack in memory for the kernel or user code to use. The FP for this 
stack is stored in global register field g 15 of the PCB. 

PROCESSOR INITIALIZATION 

This section describes how to initialize the 80960MC processor. It defines the mechanism that 
the processor uses to establish its initial state and begin instruction execution. It also describes 
some general guidelines for writing code to complete the initialization of the processor for 
specific applications. 

This initialization procedure can be used in both single-processor and mUltiprocessing systems. 
In a multiprocessing system, one processor generally performs the first stage of initialization in 
which an initial memory image is established and instruction execution begins. 
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Figure 9-4: Required Fields in PRCe for Single-Task Configuration 
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In the next stage of initialization, the initializing processor copies additional system data 
structures into memory to build the memory image up to a more useful level. At this point the 
processor is generally restarted with this expanded memory image. 

Finally, if there are additional processors in the system, the initializing processor initializes 
these processors by restarting them one at a time. 

Initial Memory Image 

Figure 9-5 shows the minimum requirements for the memory image at initialization. This 
image will generally be held in ROM. 

Check-Sum Words 

The first eight words (called the check-sum words) must be in physical memory locations 
0000000016 to 0000001F16• The first of these words is a physical-address pointer to the base 
of the initialization segment table. The second word is a physical-address pointer to the base of 
the initialization PRCB. 

The fourth word is the instruction pointer to the first instruction of the initialization code. This 
address can be either a physical address or a virtual address, depending on the address­
translation mode specified in the processor-controls word of the initialization PRCB. 

The remaining words (word 3 and words 5 through 8) are check words. During the first stage 
of initialization of the processor, these words are added to the pointers for the initialization 
segment table, PRCB, and initialization code to determine a check sum. The check words must 
be chosen such that when the check sum is computed (as shown in initialization algorithm in 
Figure 9-6), the result is equal to O. 

Initialization Segment Table 

The initialization segment table has two required entries: one for the segment table itself 
(which must be located at entry 8) and one for the region 3 segment. When using the 
virtual-addressing mode, a segment descriptor must also be provided for at least one PCB. The 
valid bit for each of these segment descriptors must be set to 1. 

The segment descriptor for the segment table contains the base physical address of the table. 
This address may be the same as the address given in word 1 of the check-sum words. If the 
address is different, the processor essentially switches to a new segment table, which would 
have to be part of the initial memory image. 

When operating strictly in physical-addressing mode, the region 3 segment will generally not 
be accessed. However, a segment descriptor is still required for it in the segment table. The 
base-address pointer in this segment descriptor does not have to be valid. 

Even though segment tables have a minimum size of 4096 bytes, only the three entries 
described above must be mapped into the initial memory image. Additional segment descrip­
tors may be defined, depending on the needs of the initialization code. 
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Figure 9-5: Initial Memory Image 
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Initialization PRCB 

The initialization PRCB must have at least three entries: the processor-controls word, the 
interrupt-stack pointer, and the region-3 SS. The state field in the processor-controls word 
should be set to 1°2 (idle or idle-interrupts state). 

The interrupt-stack pointer can be a virtual address in region 3 or a physical address depending 
on the initial address-translation mode. 

Although the region-3 SS must be specified, its associated segment descriptor in the segment 
table does not have to point to an actual region segment in memory, unless the initialization 
code and interrupt stack are to be contained in this region. Note that as described in the 
previous section, the valid bit for the region 3 segment descriptor does have to be set. 

Additional fields may be included in the PRCB, again depending on the needs of the initializa­
tion code. For example, if faults can occur during the second stage of initialization, the 
fault-table physical address should be valid. Likewise, if interrupts can occur, the interrupt­
table physical address should be valid. 

Initialization Code 

The initialization instruction list can be mapped directly to physical memory or through region 
3, depending on the initial address-translation mode. 

Building a Memory Image 

The initial memory image shown in Figure 9-5 contains the minimum data structures required 
for the processor to initialize itself and begin executing code. All of the required initialization 
data structures are generally stored in ROM. 

To build a useful system, additional data structures are required, such as an interrupt table, a 
fault table, a system procedure table, a set of kernel procedures, a set of stacks, and a heap. 
Some of these data structures can be located in ROM along with the initial memory image; 
however, others must be in RAM because they must be writable. 

Table 9-2 lists the various system data structures and shows which can be in ROM and which 
must be in RAM. 

The following paragraphs give the system limitations if a data structure is included in ROM. 

The segment table may be contained in ROM, providing it is not going to be changed. Other­
wise, an expended segment table should be copied to RAM as part of the second stage of 
initialization. Also, any referenced and modified bits should already be set. 
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Table 9-2: ROM and RAM Resident Data Structures 

Data Structure May Be in ROM May Bein ROM Must Be in RAM 
with Limitations 

Initial memory X 
image 

PRCB X 

PCB X 

Segment table X 

Page tables X 

Stack and heap X 

Interrupt table X 

Fault table X 

Kernel Procedures X 

Part of the second stage of initialization should be to copy a new PRCB into RAM. This 
PRCB along with the new segment table will then be used after the processor is restarted. 

The PRCB may remain in ROM; however, if it does, the following restrictions will apply: 

1. Multiple processes cannot be executed. To execute multiple processes, the processor must 
be able to write the SS for the current process in the PRCB. 

2. System-error faults will not be recoverable. On a system-error fault, the processor writes 
the fault record into the PRCB. If the PRCB is in ROM, this information is lost. One way 
around this limitation is to position the PRCB over a ROM/RAM boundary such that the 
fault record fields fall in RAM. 

3. The processor will not be able to handle interrupts properly that occur during the execution 
of an instruction with long execution times. This is because a resumption record cannot be 
stored in the PRCB. 

The PCB should be in RAM. However, if it is left in ROM, the following restrictions apply: 

1. The processor will only be able to run a single process, and this process must not time out. 

2. Interrupts that create a resumption record will not work properly because the record cannot 
be stored in the PCB. 

3. The initial state of the global registers is fixed, so the stack pointer cannot be changed 
before the process is run. 

4. The timer will not be usable since the processor periodically writes out the current value of 
the timer to the PCB. 

Page tables are generally used to support systems that allow dynamic memory allocation, so 
they will generally need to be in RAM. If they are contained in ROM, paging of the address 
space will not be allowed, since the processor will not be able to access the valid, altered, and 
accessed bits. 

9-20 



PROCESSOR MANAGEMENT AND INITIALIZATION 

An alternative would be to have the page tables for fixed data structures in ROM and those for 
address spaces or data structures that will change in RAM. 

The stack, heap, and interrupt table must all be in RAM for the processor to operate properly. 
The reason the interrupt table must be in RAM is that it contains the interrupt pending fields, 
which the processor must be able to write to. 

The fault table can be in ROM, providing it will never be necessary to relocate the fault 
handler routines. 

The kernel procedures can be in either ROM or RAM or both, depending on the design of the 
kernel. 

TYPICAL INITIALIZATION SCENARIO 

Initialization of the 80960MC processor typically is handled in two stages. In the first stage of 
initialization, the processor performs a self test and reads pointers from the initial memory 
image. During the second stage, the processor executes initialization code designed to build 
the remainder of the memory image so that execution of applications code can begin. 

First Stage of Initialization 

The following procedure shows the steps that system hardware and the processor go through in 
the first stage of initialization. The algorithm in Figure 9-6 gives the details of this procedure. 

1. Hardware asserts the RESET pin on the processor. 

2. The processor samples LPN to get its local processor number (1 or 0). (LPN and STAR­
TUP are signals that come from multiplexed information received on several processor 
pins.) 

3. The processor asserts the FAILURE pin and performs a self test. If the processor passes 
the self test, it deasserts the FAILURE pin. 

4. The processor samples STARTUP to determine whether it is the initializing processor (1) 
or not (0). If the processor is the initializing processor, it continues with the initialization 
procedure; if it is not, it goes into the stopped state. (In multiprocessing systems, all 
processors except the initializing processor are put in the stopped state.) 

5. The processor reads the 8 check-sum words and checks that the check sum is o. 
6. Using the contents of the check-sum words, the processor determines the location of the 

initialization segment table, PRCB, and first instruction to be executed. 

7. The processor sets its process priority to 31 (highest possible) and its state to idle inter­
rupted. 

8. The processor clears any latched external interrupt or lAC signals. This means that the 
processor will not service any interrupts or lACs prior to beginning instruction execution. 

9. The processor begins executing the initialization instruction list. 
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assert FAILURE pin; 
perform self test; 
if self test fails 

then enter stopped state; 
else 

endif; 

deassert FAILURE pin; 
enter predefined state; 
if STARTUP pin = 0 

then enter stopped state; 
else 

endif; 

x f- memory(O); read 8 words from 
physical address 0 

AC.cc f- 0002; 
temp f- FFFFFFFF16 add_with_carry x(O); 
temp f- temp add_ with3arry x(1); 
temp f- temp add_ with_carry x(2); 
temp f- temp add_ with_carry x(3); 
temp f- temp add_with_carry x(4); 
temp f- temp add_with_carry x(5); 
temp f- temp add_with_carry x(6); 
temp f- temp add_ with_carry x(7); 
if temp "* 0 

then 
assert FAILURE pin; 
enter stopped state; 

else 
segmenctable_descriptor f-

memory(x(O) + 128); 
IP f- memory (12) 
fetchPRCB; 
process.priority f- 31; 
process.state f- interrupted; 
FP f- PRCB.interrupt_stack_pointer; 
clear any latched external interrupt/lAC 

signals; 
begin execution; 

endif; 

Figure 9-6: Algorithm for First Stage of Initialization Procedure 

After self test, the processor establishes its initial state. For the initializing processor this state 
is idle; for any other processors in the system this state is stopped. Also at initialization, the 
trace controls are set to zero; the breakpoint registers are disabled; and the process controls are 
set to zero (except for the execution mode, which is set to supervisor, and the priority, which is 
set to 31). 
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When the initializing processor begins instruction execution, it goes into idle-interrupted state. 
The initialization code is thus treated as a special interrupt-handler procedure. 

Second Stage of Initialization 

The processor activity during the second stage of initialization, which occurs once the proces­
sor begins instruction execution, is up to software. In general, this stage of initialization is 
used to copy or create additional data structures in memory, such as page tables, one or more 
PRCBs, the interrupt table, the system-procedure table, and the fault table (if not in the initial 
memory image). 

To complete the initialization procedure, software will ordinarily bind a process to the proces­
sor to begin process execution. Refer to Chapter 13 for a full discussion of binding a process 
to a processor. 

Once these jobs are completed, the processor can begin executing applications code. 

Appendix D gives an example of the 80960MC code that might be used to carry out this 
second stage of initialization. 

A common initialization technique is to create a new segment table and PRCB in memory 
along with the other system data structures that are placed in memory in the second initializa­
tion stage. The processor is then restarted using the new segment table and PRCB. (The code 
in Appendix D uses this technique.) 

A processor is restarted using the restart lAC. The restart lAC message includes new physical­
address pointers to the segment table and PRCB. The processor reads the new PRCB, then 
begins instruction execution according to the control information contained in the PRCB. 

In a mUltiprocessing system, one of the processor's tasks following restart would be to com­
plete the initialization of the other processors in the system. Further discussion of the in­
itialization of mUltiprocessing systems is given in Chapter 15. 
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CHAPTER 10 
INTERRUPTS 

This chapter describes the 80960MC processor's interrupt handling facilities. It also describes 
how interrupts are signaled. 

OVERVIEW OF THE INTERRUPT FACILITIES 

An interrupt is a temporary break in the control stream of a process so that the processor can 
handle another chore. Interrupts are generally requested from an external source. The inter­
rupt request either contains a vector number or else points to a vector that tells the processor 
what chore to do while in the interrupted state. When the processor has finished servicing the 
interrupt, it generally returns to the process that it was last working on when the interrupt 
occurred and resumes execution where it left off. 

The processor provides a mechanism for servicing interrupts, which uses an implicit procedure 
call to a selected interrupt-handling procedure, called an interrupt handler. 

When an interrupt occurs, the current state of the process is saved. If the interrupt occurs 
during an instruction that requires many machine cycles, the instruction state is also saved and 
execution of the instruction is suspended. 

The processor then creates a new frame on the interrupt stack and executes an implicit call to 
the interrupt handler selected with the interrupt vector. 

Upon returning from the interrupt handler, the processor switches back to the process that was 
running when the interrupt occurred, restores this process to the state it was in when the 
interrupt occurred, and resumes work on the process. 

Another feature of this interrupt handling mechanism is that it allows interrupts to be 
prioritized. If an interrupt is signaled that has the same or a lower priority than the process that 
the processor is currently working on, the processor saves the interrupt and services it at a later 
time. Interrupts that are waiting to be serviced are called pending interrupts. 

SOFTWARE REQUIREMENTS FOR INTERRUPT HANDLING 

To use the processor's interrupt handling facilities, software must provide the following items 
in memory: 

• Interrupt Table 

• Interrupt Handler Routines 

• Interrupt Stack 

These items are generally established in memory as part of the initialization procedure. Once 
these items are present in memory and pointers to them have been entered in the appropriate 
system data structures, the processor then handles interrupts automatically and independently 
from software. 
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The requirements for these items are given in following sections of this chapter. 

VECTORS AND PRIORITY 

Each interrupt vector is 8 bits in length, which allows up to 256 unique vectors to be defined. 
In practice, vectors 0 through 7 cannot be used, and vectors 244 through 247 and 249 through 
251 are reserved and should not be used by software. Vector 248 is reserved for a processor 
generated interrupt called a system-error interrupt. This interrupt is described in Chapter 12 in 
the section titled "System-Error Interrupt." 

Each vector has a predefined priority, which is defined by the following expression: 

priority = vector/8 

Thus, at each priority level, there are 8 possible vectors (e.g., vectors 8 through 15 have a 
priority of 1, vectors 16 through 23 a priority of 2, and so on to vectors 246 through 255, which 
have a priority of 31). 

The processor uses the priority of an interrupt to determine whether or not to service the 
interrupt immediately or to delay service. If the interrupt priority is greater than the priority of 
the current process, the processor services the interrupt immediately; if the interrupt priority is 
equal to or lower than the priority of the current process, the processor saves the interrupt 
vector as a pending interrupt so that it can be serviced after work on the current process is 
complete. 

A priority-31 interrupt is always serviced immediately. 

Note that the lowest process priority allowed is O. If the current process has a 0 priority, a 
priority-O interrupt will never be accepted. This is why vectors 0 through 7 cannot be used. In 
fact, there are no entries provided for these vectors in the interrupt table. 

INTERRUPT TABLE 

The interrupt table contains instruction pointers (addresses in the address space) to interrupt 
handlers. This table is located in physical memory and must be aligned on a word boundary. 
The processor determines the location of the interrupt table by means of a physical address 
pointer in the PRCB. 

As shown in Figure 10-1, the interrupt table contains one entry (i.e., one pointer) for each 
allowable vector. The structure of an interrupt-table entry is given at the bottom of Figure 
10-1. Each interrupt procedure must begin on a word boundary, so the two least-significant 
bits of the entry are set to O. 
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PENDING INTERRUPTS 
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ENTRY 10 44 (VECTOR 10) 
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980 (VECTOR 244) 

992 (VECTOR 247) 
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1024 (VECTOR 255) 
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I INSTRUCTION POINTER 10 10 I 

RESERVED ( INITIALIZE TO 0) 

Figure 10-1: Interrupt Table 
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The instruction pointers can be either physical or virtual addresses. Which kind of address is 
used depends on the address-translation mode that the processor is set for: physical addressing 
or virtual addressing. 

The first 36 bytes of the interrupt table are used to record pending interrupts. This section of 
the table is divided into two fields: pending priorities (byte-offset 0 through 3) and pending 
interrupts (byte-offset 4 through 35). 

The pending priorities field contains a 32-bit string in which each bit represents an interrupt 
priority. The bit number in the string represents the priority number. When the processor 
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt's priority 
is set. For example, if an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is 
set. 

The pending interrupts field contains a 256-bit string in which each bit represtints an interrupt 
vector. For example, byte-offset 4 is reserved, byte-offset 5 is for vectors 8 through 15, 
byte-offset 6 is for vectors 16 through 23, and so on. When a pending interrupt is logged, its 
corresponding bit in the pending interrupt field is set. 

This encoding of the pending priority and pending interrupt fields permits the processor to first 
check if there are any pending interrupts with a priority greater than the current process and 
then to determine the vector number of the interrupt with the highest priority. Software should 
set these fields to 0 at initialization and not access these fields after that. 

INTERRUPT-TABLE SHARING 

One of the reasons that the interrupt table is located in physical memory is to enable systems 
that use multiple processors to share the interrupt table. Then when one processor receives an 
interrupt and posts it as a pending interrupt in the interrupt table, another processor can service 
the interrupt. Refer to the section in Chapter 15 titled "Interrupt Handling in a Multiprocessor 
System" for further information on interrupt table sharing. 

INTERRUPT-HANDLER PROCEDURES 

An interrupt handler is a procedure that is designed to perform a specific action that has been 
associated with a particular interrupt vector. For example, a typical job for an interrupt handler 
is to read a character from a keyboard. 

Location of Interrupt Handler 

The interrupt handler procedures can be located in physical memory or virtual memory, 
depending on the address-translation mode to be used. If the procedures are located in virtual 
memory, they are generally mapped in region 3 of the address space so that they are available 
to all processes. As stated in the previous section, each procedure must begin on a word 
boundary. 
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Interrupt-Handler Restrictions 

The processor execution mode is always switched to supervisor while an interrupt is being 
handled. The pages that contain interrupt handler routines may thus have their page rights set 
for supervisor only access. 

When an interrupt-handler procedure is called, the states of the process controls and arithmetic 
controls for the interrupted process are saved. However, the interrupt handler shares the other 
resources of the interrupted process, in particular the global registers and the address space. 
This sharing of resources imposes two important restrictions on the interrupt handler 
procedures. 

First, the interrupt handler procedures must preserve and restore the state of any of the 
resources that it uses. For example, the processor allocates a set of local registers to the 
interrupt handler, just as it does on a local procedure call. If the interrupt handler needs to use 
the global or floating-point registers, however, it should save their contents before using them 
and restore them before returning from the interrupt. 

Second, the interrupt handler should not do anything that would cause the interrupted process 
to be unbound from the processor and rescheduled, because doing so would leave the processor 
in an indeterminate state. To avoid rescheduling the process, an interrupt handler should not 
use the sendserv (send service), receive, and wait instructions. Also, the interrupt handler 
should not enable timing (set the timing flag in the process controls register), since this can 
result in an end-of-time-slice event that can also cause the interrupted process to be res­
cheduled. 

The resumprcs instruction (resume process) can be used; however, the state of the interrupted 
process will be lost. 

An interrupt-handler procedure can also be called when the processor is not currently executing 
a process. One example of this situation is when the processor receives an interrupt while it is 
servicing another interrupt. Here, execution of the Idtime instruction (load process time) or the 
condrec instruction (conditional receive) returns an undefined result. 

INTERRUPT STACK 

The interrupt stack is usually located in region 3 of the address space. The processor deter­
mines the location of the interrupt stack by means of a pointer in the PRCB. To avoid raising a 
fault while processing an interrupt, the interrupt stack must be frozen in physical memory, 
meaning that the pages that contain the stack must always be valid. 

The interrupt stack has the same structure as the local procedure stack described in Chapter 4 
in the section titled "Procedure Stack." 
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PROCESS TIMING WHILE HANDLING AN INTERRUPT 

When an interrupt occurs while the processor is executing a process, the processor stops 
counting process time (i.e., stops counting down the residual-time-slice value) while it is 
executing the interrupt-handler procedure. Thus, the time required to handle an interrupt is not 
counted as part of the process's time slice. 

SIGNALING INTERRUPTS 

The processor can be interrupted in any of the following six ways: 

• Signal on its interrupt pins 

• Signal on its interrupt pins from an external interrupt controller 

• An lAC message from external source 

• An lAC message from a program in the processor 

• A system-error fault interrupt 

• A pending interrupt (described at the end of the chapter) 

Interrupts From Interrupt Pins 

The processor has four interrupt pins, called INTO, INTI, INT2, and INT3. These pins can be 
configured in either of the following three ways: 

• as four interrupt-signal inputs; 

• as two interrupt inputs and two pins for handshaking with an interrupt controller such as 
the Intel M8259A Programmable Interrupt Controller; or 

• as one lAC input and three interrupt inputs. 

A 32-bit, interrupt-control register in the processor determines how these pins are used. Each 
interrupt pin is associated with one 8-bit field in the register, as shown in Figure 10-2. 

31 2423 1615 8 7 o 
INT3 VECTOR INT2 VECTOR INTl VECTOR INTO VECTOR 

Figure 10-2: Interrupt-Control Register 

If the interrupt pins are to be used as four inputs, a different interrupt vector is stored in each of 
the four fields in the interrupt-control register. Then when an interrupt is signaled on one of 
the pins, the processor reads the vector from the pin's associated field in the register. For 
example, if an interrupt is signaled on pin INTO, the processor reads the vector from bits ° 
through 7. 
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The processor assumes that the interrupt vectors in the interrupt register are arranged in des­
cending order from the INTO field to the INT3 field (e.g., the priority of INTO;::: INTI ;::: INT2 
;::: INT3). To insure that interrupts are handled in the proper order, software should follow this 
convention. 

If the INTO vector field is set to 0, the function of the INTO pin is changed to lAC, and it is 
used to signal the processor that an external lAC message has been sent to it. In fact, the INTO 
pin must be configured in this manner for the processor to service external lAC messages. 

If the INT2 vector field is set to 0, the functions of the INT2 and INT3 pins are changed to 
INTR and INTA, respectively. Here, the INTR pin is used to receive signals from an interrupt 
controller and the INT A pin is used to send acknowledge signals back to the controller. When 
the processor receives a signal on the INTR pin, it reads an interrupt vector from the least­
significant 8 bits of the local bus, then sends an acknowledge signal to the controller through 
INT A. When the INT2 and INT3 pins are configured in this manner, the processor ignores the 
INT3 vector field. 

The interrupt-control register is memory mapped to physical addresses FF00000416 through 
FF000007 16. Only the processor can read or write this register using the synchronous load 
(synld) and synchronous move (synmov) instructions. External agents on the bus cannot 
access this register. 

NOTE 
If the virtual-addressing mode is going to be used, a page in region 3 will need to be mapped to 
the page in the physical address space that contains the addresses ranging from FF000004 16 
through FF000007 16. Software can then read from or write to the interrupt control register by 
referencing the addresses in region 3 that are mapped to the physical addresses of the register. 

The value in the interrupt-control register after the processor is initialized is FF00000016. With 
this setting, interrupt pin INTO is used to signal an lAC; INTI is inactive; and INT2 and INT3 
are configured to perform handshaking with an interrupt controller. 

lAC Interrupts 

The processor can also receive an interrupt request by means of the lAC mechanism. (The 
lAC mechanism is described in detail in Chapters 11 and 15.) The interrupt lAC message can 
be sent to the processor either from an external bus agent, such as an I/O processor or another 
CPU, or internally as part of the currently running process. The interrupt vector is contained in 
the interrupt lAC message. 

As with any other lAC message, the processor receives notice of an external interrupt-lAC 
message through the INTO pin, which has been configured as an lAC pin, as described in the 
previous section. The processor then reads the lAC message to get the interrupt vector. 

A program running on the processor can signal an interrupt through an internal interrupt-lAC 
message. An internal lAC is sent to the processor by means of a synchronous move instruc­
tion. When the processor executes a synchronous move to its lAC message space, it signals an 
lAC message internally. The processor then reads the lAC message as it would for an external 
lAC. 
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System-Error Interrupt 

Under certain conditions, a system-error interrupt is signaled internally in the processor. This 
interrupt causes an explicit call to interrupt vector 248. The system-error interrupt mechanism, 
action, and possible handling methods are described in Chapter 12 in the section titled 
"System-Error Interrupt Action." 

INTERRUPT-HANDLING ACTIONS 

As was described earlier in this chapter, when the processor receives an interrupt, it handles it 
automatically. The processor takes care of saving the process state, calling the interrupt­
handler routine, and restoring the process state once the interrupt has been serviced. Software 
support is not required. 

The following section describes the actions the processor takes while handling interrupts. It is 
not necessary to read this section to use the interrupt mechanism or write an interrupt handler 
routine. This discussion is provided for those readers who wish to know the details of the 
interrupt handling mechanism. 

Receiving an Interrupt 

Whenever the processor receives an interrupt signal, it performs the following action: 

1. It temporarily stops work on its current job, whether it is working on a process or another 
interrupt handler procedure. 

2. It reads the interrupt vector from the interrupt register, the bus, or the lAC message space. 

3. It compares the priority of the vector with the priority of the current process or the 
interrupt it is currently handling. 

4. If the priority of the new interrupt is higher than that of the current process or interrupt, the 
processor services the new interrupt immediately as described in the next sections. 

5. If the interrupt priority is equal to or less than that of the current process or interrupt, the 
processor records new interrupt in the pending interrupt record and continues work on the 
current process or interrupt. 

Servicing an Interrupt 

The method that the processor uses to service an interrupt depends on the state the processor is 
in when it receives the interrupt. The following sections describe the interrupt handling actions 
for various states of the processor. In all of these cases, it is assumed that the interrupt is a 
higher priority than the current process and will thus be serviced immediately after the proces­
sor receives it. The handling of lower priority interrupts is described later in this chapter in the 
section titled "Servicing a Pending Interrupt." 
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Process-Executing-State Interrupt 

When the processor receives an interrupt while it is in the process-executing state, it performs 
the following actions to service the interrupt; this procedure is the same regardless of whether 
the processor is in the user or the supervisor mode when the interrupt occurs: 

1. The processor switches to the interrupt stack (as shown in Figure 10-3). The interrupt 
stack pointer becomes the new stack pointer (NSP) for the processor. 

2. The processor saves the current state of process controls and arithmetic controls in an 
interrupt record on the interrupt stack. (The interrupt record is described later in this 
chapter in the section titled "Interrupt Record".) 

3. If the execution of an instruction was suspended, the processor includes a resumption 
record for the instruction in the interrupt record and sets the resume flag in the saved 
process controls. (Refer to the section in Chapter 9 titled "Instruction Suspension" for a 
discussion of the criteria for suspending instructions.) 

4. The processor allocates a new frame on the interrupt stack and loads the new frame pointer 
(NFP) in global register g15. 

5. The processor switches to the process-interrupted state. 

6. The processor sets the process state flag in its internal process controls to interrupted, its 
execution mode to supervisor, and its priority to the priority of the interrupt. Setting the 
processor's priority to that of the interrupt insures that lower priority interrupts can not 
interrupt the servicing of the current interrupt. 

7. Also in the current process controls, the processor clears the trace-fault-pending, timing, 
trace-enable, and time-slice flags. Clearing these flags allows the interrupt to be handled 
without trace faults being raised and without the process timing out. 

8. The processor sets the frame return status field (associated with the PFP in rO) to 1112. 

9. The processor performs an implicit call-extended operation (similar to that performed for 
the calix instruction). The address for the procedure that is called is that which is 
specified in the interrupt table for the specified interrupt vector. 

Once the processor has completed the interrupt procedure, it performs the following action on 
the return: 

1. The processor copies the arithmetic controls field from the interrupt record into its arith­
metic controls register. 

2. The processor copies the process controls field from the interrupt record into its internal 
process controls. 

3. If the resume flag of the process controls is set, the processor copies the resumption record 
from the interrupt record to the resumption record field of the PCB for the process being 
resumed. 

4. The processor deallocates the current stack frame and interrupt record from the interrupt 
stack and switches to the local stack or the supervisor stack (whichever one it was using 
when it was interrupted). 

5. The processor checks the interrupt table for pending interrupts that are higher than the 
priority of the process being returned to. If a higher-priority pending interrupt is found, it 
is handled as if the interrupt occurred at this point. 
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6. Assuming that there are no pending interrupts to be serviced, tht;! processor switches to the 
process-executing state and resumes work on the current process. 

If the processor is configured to use the high-level process management facilities or multiple 
processors or both, the processor performs the following additionF\1 operations prior to resum-
ing work on the interrupted process: I 

l. If either the mUltiprocessor-preempt flag or the check-dispatch-port flag in the processor 
controls is set, the processor checks the dispatch port and clears the check-dispatch-port 
flag. Otherwise, it goes to step 4. 

2. If the dispatch port contains a process whose priority is higher than that of both the current 
process and the value in the nonpreempt-limit field in the processor controls, the processor 
suspends the current process and enqueues it at the front of the queue for its associated 
dispatch port. The processor then dispatches the higher priority process, which becomes 
the current process. 

3. If a higher priority process was not found on the dispatch port, the process that was 
interrupted remains the current process. 

4. The processor then begins work on the current process. 

Process-Interrupted-State Interrupt 

If the processor receives an interrupt while It IS servIcmg another interrupt, and the new 
interrupt has a higher priority than the interrupt currently being serviced, the current interrupt­
handler routine is interrupted. Here, the processor performs the same action to save the state of 
the current interrupt-handler routine as is described at the beginning of this section. The 
interrupt record is saved on the top of the interrupt stack, prior to the new frame that is created 
for use in servicing the new interrupt. 

On the return from the current interrupt handler to the previous interrupt handler, the processor 
deallocates the current stack frame and interrupt record, and stays on the interrupt stack. 

Interrupt Record 

The processor saves the state of the interrupted process in an interrupt record. Figure 10-3 
shows the structure of this interrupt record. The resumption record within the interrupt record 
is used to save the state of a suspended instruction. If no instruction is suspended, the 
resumption record is not created. 

Idle-State Interrupt 

The processor can also be interrupted while in the idle state. The processor handles such 
interrupts in essentially the same way that it handles interrupts that occur while the processor is 
in the process-executing state, with the following exception. When the processor allocates the 
new frame on the interrupt stack, it sets the frame return field to 1102. This causes the 
processor to revert to the idle state when the processor returns from the interrupt-handler 
procedure. 
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Idle-Interrupted State Interrupt 

If the processor receives an interrupt while it is in the idle-interrupted state, it handles the 
interrupt just as it would if it occurred in the process-interrupted state. 

Pending Interrupts 

As is described earlier in this chapter, the processor provides a mechanism for evaluating 
interrupts according to their priority. If the interrupt priority is equal to or lower than the 
priority of the current process, the processor does not service the interrupt immediately. In­
stead, it posts the interrupt in the pending interrupt section of the interrupt table. The processor 
checks the interrupt table at specific times and services those interrupts that have a higher 
priority than its current priority. This pending interrupt mechanism provides two benefits: 

1. The ability to delay the servicing of low priority interrupts (by posting them in the pending 
interrupt section of the interrupt table) allows the processor to concentrate its processing 
activity on higher priority tasks. 

2. In a system that uses two or more 80960MC processors, both processors can share the 
same interrupt table. This interrupt-table sharing allows the processors to share the inter­
rupt handling load. 

The following paragraphs describe how the processor handles pending interrupts. 

NOTE 
The 80960 architecture defines the section of the interrupt table for storing pending interrupts 
and a mechanism for checking the interrupt table for pending interrupts. The method used for 
posting interrupts to the interrupt table and circumstances under which the processor check the 
interrupt table for pending interrupts is not defined. 

In the following description of the pending interrupt mechanism, the information given in the 
sections titled "Posting Pending Interrupts" and "Checking for Pending Interrupts" is specific to 
the 80960MC processor, The information given in the section titled "Handling Pending 
Interrupts" is defined in the 80960 architecture and should be common in all processors that 
implement this part of the architecture. 

Posting Pending Interrupts 

An interrupt can be posted in the pending-interrupt record of the interrupt table in either of the 
following two ways: 

1. The processor receives an interrupt with a priority equal to or lower than that of the 
process the processor is currently working on. The processor then automatically posts the 
interrupt in the pending-interrupt record. 

2. The kernel can set the desired pending-interrupt and pending-priority bits in the interrupt 
table. 

Using the first method, the processor performs an atomic read/write operation that locks the 
interrupt table until the posting operation has been completed. Locking the interrupt table 
prevents other agents on the bus from accessing the interrupt table during this time. 

10·12 



inter INTERRUPTS 

The second method of posting an interrupt is risky, because it does not use this locking 
technique. (The processor's atomic instructions are not able to perform a locking operation 
that spans several instructions.) This method will work only if the kernel can insure the 
following: 

• that no external I/O agent will attempt to post a pending interrupt simultaneously with the 
processor, and 

• that an interrupt cannot occur after one bit (e.g., the pending priority bit) of the pending­
interrupt record is set but before the other bit (the pending interrupt vector) is set. 

Checking for Pending Interrupts 

The processor automatically checks the interrupt table for pending interrupts at the following 
times: 

• After returning from an interrupt-handler procedure 

• While executing a modify-process-controls instruction (modpc), if the instruction causes 
the process's priority to be lowered. 

• After receiving a test pending interrupts lAC message. 

Handling Pending Interrupts 

The processor uses the same type of atomic read/write operation to check the interrupt table for 
pending interrupts as it does for posting pending interrupts. Again, this technique prevents 
other agents on the bus from accessing the interrupt table until the pending-interrupt check has 
been completed. 

When the processor finds a pending interrupt, it handles it as if it had just received the 
interrupt. The handling mechanism is the same as is described earlier in this chapter for 
interrupts that are serviced as soon as they are received. 

If the processor finds two pending interrupts at the same priority, it services the interrupt with 
the highest vector number first. 
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CHAPTER 11 
INTERAGENT COMMUNICATION 

This chapter describes the interagent communication (lAC) mechanism for the 80960MC 
processor. Included is a description of the lAC-message structure, the internal-lAC-message 
sending and receiving mechanism, and reference information on the available lAC messages. 

The mechanism for sending and receiving external-lAC messages is described in Chapter 15. 

INTRODUCTION TO lAC MESSAGES 

The lAC facilities provide a mechanism for agents on the local bus or AP bus to communicate 
with one another by means of messages. The agents that use these facilities are primarily CPU 
processors such as the 80960MC and I/O processors. However, special processors that have a 
need to communicate with the other processors in the system may also use the lAC facilities. 

The primary function of these facilities is to give multiple processors within a system a simple 
means of coordinating their activities. This capability is particularly important when the 
processors share a common memory space. 

The lAC facilities are also used in single-processor systems for functions such as changing the 
processor's state or updating address-translation information. 

lAC messages (referred to here as lACs) are four words in length and are exchanged by means 
of message buffers that are mapped to physical memory. All the usable lACs are predefined. 
The processor handles an lAC in much the same way as it handles an instruction. 

The processor provides two mechanisms for exchanging lACs: external and internal. The 
external lAC mechanism is used to pass lACs between two agents, either on the local bus or on 
the AP bus. A processor uses the internal lAC mechanism to pass an lAC to itself. 

This chapter describes the internal lAC mechanism, which is the only mechanism used in 
single-processor systems. The external lAC mechanism is described in Chapter 15 in the 
section titled "External lAC Message Passing." 

SOFTWARE REQUIREMENT FOR HANDLING INTERNAL lACS 

No special software, such as dedicated data structures or stacks, are required to handle internal 
lACs. An internal lAC is sent with a quad synchronous move instruction (synmovq). The 
processor receives and handles the lAC internally. 
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SUMMARY OF lAC MESSAGES 

Table 11-1 gives a list of the lAC messages that the processor can send either internally or 
externally. The messages marked with an asterisk are generally not used with single-processor 
systems. Detailed reference information on these messages is given at the end of this chapter. 

Table 11-1: lAC Messages 

Interrupt Handling Process Management 
Interrupt Flush Local Registers 
Test Pending Interrupt Flush Process 

Preempt Process* 
Processor Management Purge Instruction Cache 
Store System Base Set Breakpoint Register 
Store Processor Check Process Notice* 
Modify Processor Controls 
Stop Processor* Memory Management 
Freeze * Flush TLB Physical Page 
Restart Processor Flush TLB 
Warms tart Processor Flush TLB Segment Entry 
Continue Initialization Flush TLB Page Table Entry 
Reinitialize Processor 

lAC-MESSAGE FORMAT 

Figure 11-1 shows the format for an lAC message. Each message is four words in length and 
consists of a message-type field and up to five parameter fields. 

31 2423 161S 

MESSAGE TYPE I FIELD 1 I FIELD2 

FIELD3 

FIELD4 

FIELDS 

Figure 11-1: lAC-Message Format 

o 
o 

4 

8 

12 

The message type is an 8-bit binary code. Each lAC has a unique message type. The 
parameters can be 8, 16, or 32-bits in length, depending on the specified field. Many of the 
lACs do not require parameters. When a message type does require one or more parameters, 
the processor only looks at the required parameter fields. Those fields not used are ignored. 
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SENDING AND RECEIVING AN INTERNAL lAC 

To send an internal lAC, software must perform the following steps: 

1. Load the message into four consecutive words in memory, with the first word aligned on a 
word boundary. 

2. Execute a synmovq instruction to move the message from its source address to the des­
tination address FFOOOO1016, where FF00001016 is a physical address. 

When the destination operand of a synmovq instruction is FFOOOO10 16, the processor inter­
prets the instruction as a send internal-lAC instruction. The processor then receives the lAC 
by moving the message from memory into an internal message buffer. 

The action of the synmovq move instruction insures that the loading of the message into the 
processor is completed before the processor is allowed to perform any other chores. 

NOTE 

If the virtual-addressing mode is going to be used, a page in region 3 will need to be mapped to 
the page in the physical address space that contains address FFOOOOlO16. Software can then 
send an internal lAC by writing to the address in region 3 that is mapped to physical address 
FFOOOOlO16· 

INTERNAL-lAC-HANDLING ACTION 

All internal lACs are assumed to have a priority of 31, so the processor executes the action 
requested in the lAC message immediately, even if the processor is currently working on a 
process or interrupt with a priority of 31. 

The processor handles lACs internally. It does not use any of the resources of the execution 
environment such as the registers (global or local), the stack, or memory. Thus, the state of the 
process or processor when the lAC is received does not need to be saved. 

Some lACs, such as the flush TLB lACs, do not affect the process or pr,ocessor state. The 
processor treats these lACs as if they were an instruction inserted in the control flow of the 
process. When the lAC action is complete, the processor resumes work on the current process. 

Other lACs, such as the restart processor and preemption lACs, cause the state of the processor 
or the control of the current process to be permanently changed. In these instances, the 
processor resumes activity in its new processor state or process state or both, following the 
execution of the lAC. 

While the processor is handling an lAC, it will not respond to interrupts signaled on the 
interrupt pins, 

lAC FAULTS 

If a fault condition occurs during the handling of an lAC message, a structural lAC fault is 
signaled. If when a structural lAC fault occurs, the processor is in the process-executing state, 
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the fault is handled within the environment of the current process. If the processor is not in the 
process-executing-state, the fault is handled by means of a system-error interrupt. 

lAC-MESSAGE REFERENCE 

The. following section provides detailed descriptions of the operations carried out for each of 
the lACs. This section is organized alphabetically by lAC title for easy reference. 
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Message Type: 

Parameters: 

Function: 

INTERAGENT COMMUNICATION 

9°16 
Fields 1 - 2 

Field 3 

Fields 4 - 5 

Not Used 

SS of PCB 

Not Used 

Examines the process-notice field of the PCB for the current 
process. If the event-fault-request flags in this field are set, the flags 
are cleared and an event-notice fault is signaled. Otherwise, no 
action is taken. 

The field 3 parameter contains the SS of the PCB. When the 
processor receive this lAC, it checks this parameter for either of the 
following conditions: (1) the field is zero or (2) the field contains 
the SS for the current process PCB. If either of these conditions is 
true and the process is not in an interrupted state, the processor 
checks the uncached process-notice field from the PCB in memory, 
as described above. If neither condition is true, no action is taken. 
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Continue Initialization 

Message Type: 

Function: 

INTERAGENT COMMUNICATION 

9216 

Carries out the initialization procedure that follows the processor 
self test. If the processor is the initializing processor, it puts itself in 
the idle state and executes the initialization procedure beginning 
with reading the initial memory image from ROM. The self test is 
not performed. 

If the processor is not the initializing processor, it puts itself in the 
stopped state and no further action is performed. 

Refer to the section in Chapter 12 titled "Processor Initialization" 
for further details on the initialization process. 
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Message Type: 

Parameters: 

Function: 

INTERAGENT COMMUNICATION 

8416 

Fields 1 - 2 

Field 3 

Fields 4 - 5 

Not Used 

Physical Address of Stack Page 

Not Used 

Writes the contents of the all local-register sets (located in the on­
chip local-register cache) to their associated stack frames in 
memory. The field 3 parameter contains the base physical-address 
of a page that contains all or part of the stack to be written to. If any 
of the local register sets are associated with a stack frame in the 
specified page, all of the local register sets are flushed to memory. 
Then, all the register sets except the current set (the set for the 
active frame) are marked as purged. This means that on a return to 
a register set that has been purged, the processor will load these 
registers from the stack. 

No action is taken if (1) none of the register sets are associated with 
a stack frame in the specified page or (2) the processor is in the 
stopped or idle state. 
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Message Type: 

Function: 

INTERAGENT COMMUNICATION 

8716 

Suspends the current process, then rebinds the processor to that 
process. This action is carried out only if the processor is in the 
process-executing state. Since the process is literally suspended and 
rebound, process timing is turned off then back on again as a result 
of this action. 

This lAC also causes the following items to be invalidated in the 
TLB: the segment descriptor for the current PCB, the segment 
descriptors for regions 0, 1, and 2 for the current process; and the 
page-table entries for pages addressed by addresses in regions 0, 1, 
and 2. 

If the processor is not in the process-executing state, no action is 
taken. 
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Flush TLB 

Message Type: 

Function: 

INTERAGENT COMMUNICATION 

8A16 

Invalidates all TLB entries except the following: (1) the segment 
descriptors for the segment-table and region 3, (2) the segment 
descriptor for the current process, (3) the segment descriptors for 
regions 0, 1, and 2 of the current process, and (4) the page-table 
entry for the page in which the interrupt stack begins. 
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Flush TLB Page Table Entry 

Message Type: 

Parameters: 

Function: 

8C16 

Fields 1 - 2 

Field 3 

Field 4 

Field 5 

Not Used 

Offset From Segment Base 

SS of Segment That Contains Page 

Not Used 

Invalidates the page-table entry for the page specified with the field 
3 and field 4 parameters. The processor determines the page that 
contains the address specified by the SS and offset in fields 4 and 3, 
respectively. If a TLB entry exists for this page, the processor 
flushes the entry. 

This lAC can generate a protection-length fault if the specified ad­
dress is beyond the specified length of the segment. 

Note that field 3 is not interpreted as an address within the address 
space, but as an offset within a segment. Thus, to flush an entry for 
a page in an address space that contains a particular address, the 
following steps must be taken. (1) The SS for the region that 
contains the address is supplied in field 4. (2) The two most­
significant bits of the address are cleared to form the offset into the 
region. This offset is then supplied in field 3. 

This lAC should not be used to flush page-table-directory entries, 
because they are never saved in the TLB. 
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Flush TLB Physical Page 

Message Type: 

Parameters: 

Function: 

88 16 

Fields 1 - 2 

Field 3 

Fields 4 - 5 

Not Used 

Base Physical Address of Page 

Not Used 

Invalidates all the entries in the TLB that point directly to the page 
specified with the field 3 parameter. The entries that may be 
flushed with this lAC include (1) segment descriptors and page­
table entries that point to the page, (2) the segment descriptors for 
paged segments that point to a page table in that page, and (3) the 
segment descriptors for bipaged segments that point to a page-table 
directory in that page. 

Also, the function of the flush-local-registers lAC message is per­
formed. And, if the segment descriptor for the PCB of the current 
process or the segment descriptors for regions 0, 1, or 2 of the 
current process are invalidated, the function of the flush-process 
lAC message is performed. 

Note that this function is slower than the flush functions of the other 
lAC messages. However, the function that this lAC performs is 
needed for situations where processes share pages. 
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Flush TLB Segment Entry 

Message Type: 

Parameters: 

Function: 

8B 16 

Fields 1 - 2 

Field 3 

Fields 4 - 5 

Not Used 

SS for Segment 

Not Used 

Invalidates all entries in the TLB that pertain to the segment 
specified in the field 3 parameter. The entries that may be flushed 
include (1) any segment-descriptor entry for the segment and (2) 
any associated page-table entries. 
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Message Type: 

Function: 

INTERAGENT COMMUNICATION 

91 16 

Stops the processor without suspending the current process. The 
processor puts itself in the stopped state. If the processor is in the 
process-executing state when this lAC is received, the current 
process is not suspended. 
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Interrupt 

Message Type: 

Parameters: 

Function: 

INTERAGENT COMMUNICATION 

4°16 
Field 1 

Fields 2 - 5 

Interrupt vector 

Not Used 

Generates an interrupt request. The interrupt vector is given in field 
1 of the lAC message. The processor handles the interrupt request 
just as it does interrupts received from other sources. If the inter­
rupt priority is higher than the priority of the current process, the 
processor services the interrupt request immediately. Otherwise, it 
posts the interrupt in the pending interrupts section of the interrupt 
table. 

Refer to Chapter 10 for further information on the servicing of 
interrupt lACs. 
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Modify Processor Controls 

Message Type: 

Parameters: 

Function: 

8D16 

Fields 1 - 2 

Field 3 

Field 4 

Field 5 

Not Used 

New Processor Controls Word 

Mask 

Not Used 

Modifies the processor controls word in the PRCB according to the 
new value given in field 3 and under control of the mask given in 
field 4. The mask determines which bits of the processor controls 
word may be changed according to the following relationship: 

processoccontrols_ word f- (new value and mask) 
or (processor_controls_word 
and not (mask» 

If any parts of the processor-controls word have been cached on the 
chip, they are updated as a result of this operation, with the excep­
tion of the processor-state bits. To explicitly change the state of the 
processor, the processor must be restarted (using the restart lAC) in 
the new state. 

Refer to the section in Chapter 9 titled "Changing the Address­
Translation Mode" for information on the effects of using the 
modify processor controls lAC to change the address-translation­
mode flag. 
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Preempt Process 

Message Type: 

Function: 

INTERAGENT COMMUNICATION 

85 16 

Suspends the current process and binds the processor to a higher 
priority process from the dispatch port. If the processor is in the 
idle or process-executing state, it checks the queue status field of the 
dispatch port. If the processor finds a process with a higher priority 
than that of both the current process and the nonpreempt-limit in the 
process controls, the processor performs the preemption action. 

No action is taken if (1) the processor is in the stopped or an inter­
rupted state, or (2) the priority of the highest priority process on the 
dispatch port is less than that of the current process or the 
nonpreempt-limit. More information on process preemption is 
given in Chapter 14 in the section titled "Process Preemption" and 
in Chapter 15 in the section "Multiprocessor Process Preemption." 
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Purge Instruction Cache 

Message Type: 89 16 

Function: Invalidates all entries in the processor's internal instruction cache. 
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Reinitialize Processor 

Message Type: 93 16 

Parameters: 

Function: 

Fields 1 - 2 

Field-3 

Field-4 

Field 5 

Not Used 

Address of System Address Table 

Address of Processor Control Block 

Start Instruction IP 

Reestablishes the processor state. In reinitializing itself, the proces­
sor first locates the system address table and the processor control 
block in the IMI from the addresses given in fields 3 and 4. 

The processor then begins executing the instruction list beginning 
with the IP given in field 5. 
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Restart Processor 

Message Type: 

Parameters: 

Function: 

INTERAGENT COMMUNICATION 

81 16 

Fields 1 - 2 

Field-3 

Field-4 

Field 5 

Not Used 

Physical Address of Segment Table 

Physical Address of PRCB 

Not Used 

Reestablishes the processor state. In restarting itself, the processor 
first locates the segment table and PRCB from the base physical 
addresses given in fields 3 and 4. (Field 3 is only used to locate the 
eighth segment-table entry, which is used thereafter to locate the 
segment table.) 

Next, the processor checks the state field in the processor-controls 
word in the PRCB and enters that state. If the PRCB state is 
process-executing, the processor performs a bind action on the 
process whose SS is in the current-process-SS field in the PRCB. 
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Set Breakpoint Register 

Message Type: 

Parameters: 

Function: 

8F16 

Fields 1 - 2 Not Used 

Field 3 Breakpoint IP 

Field 4 Breakpoint IP 

Field 5 Not Used 

Enables or disables two breakpoints. When the processor receives 
this lAC, it conditionally loads the parameters from fields 3 and 4 
into breakpoint registers 0 and 1, respectively. Field 3 provides a 
breakpoint IP for breakpoint register 0, and field 4 provides a break­
point IP for breakpoint register 1. Bit 1 in each of these fields is a 
breakpoint-disable flag. 

If the disable flag in one of these fields is set, the breakpoint for the 
corresponding breakpoint register is disabled. Otherwise, the IP 
value in the field is loaded into the corresponding breakpoint 
register and the breakpoint is enabled. 

Breakpoints are described in the section in Chapter 16 titled 
"Breakpoint-Trace Mode." 

11-20 



inter 

Stop Processor 

Message Type: 

Function: 

INTERAGENT COMMUNICATION 

83 16 

Stops processor. The processor puts itself into the stopped state. If 
the processor is in the process-executing state when this lAC is 
received, the current process is suspended (but not rescheduled). 
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Store Processor 

Message Type: 

Function: 

INTERAGENT COMMUNICATION 

8616 

Writes any cached parts of the PRCB (including the processor con­
troIs word) back to the PRCB in memory. This lAC allows the 
PRCB in memory to be updated with any changes that have been 
made to the fields of the PRCB that are cached in the processor. 
Refer to the section in Chapter 9 titled "Caching PRCB Fields" for 
information on the fields in the PRCB that are cached. 
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Message Type: 

Parameters: 

Function: 

INTERAGENT COMMUNICATION 

8°16 
Fields 1 - 2 

Field 3 

Fields 4 - 5 

Not Used 

Destination Physical Address 

Not Used 

Stores the current locations of the segment table and the PRCB in a 
specified location in memory. The base physical address of the 
segment table is stored in the word starting at the byte specified in 
field 3, and the base physical address of the PRCB is stored in the 
next word in memory (field 3 address plus 4). 
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Test Pending Interrupts 

Message Type: 

Function: 

41 16 

Tests for pending interrupts. The processor checks the pending 
interrupt section of the interrupt table for a pending interrupt with a 
priority higher than the priority of the current process. If a higher 
priority interrupt is found, it is serviced immediately. Otherwise, no 
action is taken. 

11·24 



inter 

Warmstart Processor 

Message Type: 

Parameters: 

Function: 

INTERAGENT COMMUNICATION 

8E16 

Fields 1 - 2 

Field 3 

Field 4 

Fields 4 - 5 

Not Used 

Physical Address of Segment Table 

Physical Address of PRCB 

Not Used 

Writes any part of the PRCB that has been cached on the chip to the 
current PRCB in memory, then reestablishes the processor state. 
This lAC performs a similar function to the restart processor lAC, 
except that it writes the cached parts of the PRCB to memory before 
restarting the processor. 

In restarting itself, the processor first locates the segment table and 
PRCB from the base physical addresses given in fields 3 and 4. 
Field 4 may point to the current PRCB or a new PRCB. (Field 3 is 
only used to locate the eighth segment-table entry, which is used 
thereafter to locate the segment table.) 

Next, the processor checks the state field in the processor-controls 
word in the PRCB and enters that state. If the PRCB state is 
process-executing, the processor performs a bind action on the 
process whose SS is in the current-process-SS field in the PRCB. 

Refer to the section in Chapter 9 titled "Caching PRCB Fields" for 
information on the fields in the PRCB that are cached. 
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CHAPTER 12 
FAULT HANDLING 

This chapter describes the fault handling facilities of the 80960MC processor. The subjects 
covered include the fault-handling data structures, the required software support required for 
fault handling, and the fault handling mechanism. A reference section that contains detailed 
information on each fault type is provided at the end of the chapter. 

OVERVIEW OF THE FAULT-HANDLING FACILITIES 

The processor is able to detect various conditions in code or in its internal state (called "fault 
conditions") that could cause the processor to deliver incorrect or inappropriate results or that 
could cause it to head down an undesirable control path. For example, the processor recog­
nizes divide-by-zero and overflow conditions on both integer and real-number calculations. It 
also detects inappropriate operand values, references to incomplete or non-existent 
architecture-defined data structures, or references to virtual-memory pages that are not cur­
rently in physical memory. 

The processor can detect a fault while it is working on a process, an interrupt handler, or a fault 
handler, or while it is in the idle state. (In this chapter, when a process is referred to, it 
generally also means any interrupt handler or fault handler that may have been invoked while 
the processor was working on the process.) 

When the processor detects a fault, it handles the fault immediately and independently of the 
process or handler it is currently working on, using a mechanism similar to that used to service 
interrupts. 

A fault is generally handled with a fault-handling procedure (called a fault handler), which the 
processor invokes through an implicit procedure call. Prior to making the call, the processor 
saves the state of the current process and in some cases the state of an incomplete instruction. 
It also saves information about the fault, which the fault handler can use to correct or recover 
from the condition that caused the fault. 

If the fault handler is able to recover from the fault, the processor can then restore the process 
to its state prior to the fault and resume work on the process. If, on the other hand, the fault has 
catastrophic effects on the system, facilities are provided that allow the processor to shut itself 
or the whole system down gracefully. 

FAULT TYPES 

All of the faults that the processor detects are predefined. These faults are divided into types 
and SUbtypes, each of which is given a number. Table 12-1 lists the faults, arranged by type 
and SUbtype. 
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Table 12-1: Fault Types and Subtypes 

Fault Type Fault Subtype Fault Record 

No.lBit 
No. Name Position Name 

1 Trace Bit 1 Instruction Trace OxXXOI XX02 
Bit 2 Branch Trace OxXXOI XX04 
Bit 3 Call Trace OxXXOI XX08 
Bit4 Return Trace OxXXOI XXIO 
Bit 5 Prereturn Trace OxXXOI XX20 
Bit 6 Supervisor Trace OxXXOI XX40 
Bit 7 Breakpoint Trace OxXXOI XX80 

2 Operation 1 Invalid Opcode OxXX02XXOI 
4 Invalid Operand OxXX02XX04 

3 Arithmetic 1 Integer Overflow OxXX03 XXOI 
2 Arithmetic Zero-Divide OxXX03XX02 

4 Floating 
Point 

BitO Floating Overflow OxXX04XXOI 

Bit 1 Floating Underflow OxXX04XX02 
Bit2 Floating Invalid-Operation OxXX04XX04 
Bit 3 Floating Zero-Divide OxXX04XX08 
Bit 4 Floating Inexact OxXX04XXlO 
Bit5 Floating Reserved-Encoding OxXX04XX20 

5 Constraint 1 Constraint Range OxXX05 XXOI 
2 Invalid SS OxXX05 XX02 

6 Virtual 
Memory 

1 Invalid Segment-Table Entry OxXX06XXOI 

2 Invalid Pafr Table-Directory- OxXX06XX02 
Entry (PT E) 

3 Invalid Page-Table-Entry OxXX06XX03 
(PTE) 

7 Protection Bit 1 Segment Length OxXX07 XXOI 
Bit 2 Page Rights OxXX07 XX02 

8 Machine 1 Bad Access OxXX08 XXOI 

9 Structural 1 Control OxXX09XXOI 
2 Dispatch OxXX09XX02 
3 lAC OxXX09XX03 

A Type 1 Type Mismatch OxXXOAXXOI 
2 Contents OxXXOAXX02 

C Process 1 Time Slice OxXXOCXXOl 

D Descriptor 1 Invalid Descriptor OxXXODXXOI 

E Event 1 Event Notice OxXXOEXXOl 
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When the processor detects a fault, it records the fault type and subtype in a fault record. It 
then uses the type number to select a fault handler. The fault handler has the option of using 
the subtype number to select a specific fault-handling procedure. The fifth column of Table 
12-1 shows each fault as it appears in the fault record (the word at offset 40 of the fault record 
is shown later in this chapter). 

For convenience, individual faults are referred to in this manual by their fault-subtype name. 
Thus a machine bad-access fault is referred to as simply a bad-access fault, or a 
virtual-memory, invalid page-table-directory-entry fault is referred to as an invalid PTDE fault. 

For some fault types, mUltiple sUbtypes can occur at the same time. Here, each subtype is 
assigned a separate bit position in the subtype field in the fault record. The fault handler can 
then use this information to select a specific fault handling scheme to take care of the whole 
group of fault sUbtypes. 

FAULT-HANDLING METHODS 

The processor handles faults using one or more of the following methods: 

• Implicit procedure call to a fault handler 

• Implicit procedure call to an override fault handler 

• System-error interrupt that invokes a special interrupt handler through the interrupt 
mechanism 

• Change of the processor state to stopped 

These four fault-handling methods provide the processor with an efficient mechanism for 
recovering from faults or for gradually degrading its processing activity when serious or 
catastrophic fault conditions are encountered. The scenario for handling faults with this 
mechanism is as follows. 

Normal Fault-Handling Method 

When a fault occurs while the processor is executing a process, the processor determines the 
fault type, then selects a fault handler for that type from an architecture-defined data structure 
called the fault table. It then invokes the fault handler (by means of an implicit call). As 
described later in this chapter, the fault-handler call can be a local call (call-extended 
operation), a local procedure-table call (local system-call operation), a supervisor call, or a 
trace-fault -handler-procedure-table call. 

Before the processor begins executing the fault-handler procedure, it creates a fault record on 
its current stack (i.e., the stack being used by the fault handler). This record includes infor­
mation on the state of the process and data on the fault. If the fault occurred while the 
processor was in the midst of executing an instruction, a resumption record for the instruction 
may also be saved on the stack. 

Following the creation of the fault and resumption records, the processor begins executing the 
selected fault-handler procedure. 
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This same procedure call method is used to handle faults that occur while the processor is 
servicing an interrupt or that occur while the processor is working on another fault handler. 

Overrides 

If a fault should occur while the processor is selecting a fault handler (i.e., between the time the 
processor begins storing the fault and resumption records for a fault and the time it begins 
work on the fault handler for that fault), an override is said to occur. When an override occurs, 
the processor stores a fault record for both faults (i.e., the primary fault and the secondary 
fault). The processor then invokes an override fault handler to perform the recovery action. 

The action of the override-fault handler is software dependent. Commonly, the override-fault 
handler handles the secondary fault, then returns. On the return, the processor refaults on the 
primary fault (that is, recreates the primary fault). That fault is then handled as described in the 
previous section. 

A common cause of an override condition is a virtual-memory fault that occurs while the 
processor is trying to store the fault record or create a stack frame for the fault handler. For 
example, assume that the execution of a divide instruction results in an arithmetic-zero-divide 
fault being generated, and that, while storing the fault record for this fault, a virtual-memory 
fault is generated. Here, the processor saves the fault data on both faults (the primary 
arithmetic-zero-divide fault and the secondary virtual-memory fault). The override-fault hand­
ler then handles the virtual-memory fault, by copying the required page into memory. On the 
return from the override-fault handler, the processor refaults on the arithmetic-zero-divide 
fault, which is handled by the arithmetic-fault handler. 

System-Error Interrupt 

If a second override should occur (i.e., if a fault occurs between the time the processor begins 
storing the fault record for an override fault and the time it begins work on the fault handler for 
the override fault), the processor handles the second override by means of a system-error 
interrupt. 

Here, the processor saves the process state and fault information for all three faults in the 
PRCB, then performs a recovery action, using a interrupt handler that it accesses through the 
interrupt table. (Interrupt vector 248 in the interrupt table is reserved for system-error 
mterrupts.) The processor does not provide a mechanism for returning from a system-error 
interrupt handler. A system-error interrupt thus represents a fatal condition, which results at 
the very least in the current process being aborted. 

This system-error interrupt mechanism is also used when a fault occurs while the processor is 
in the idle or stopped state. For example, assume that the processor has suspended one process 
and is attempting to dispatch another process. While the processor is in between processes, it 
is in the idle state. If a structural fault occurs while the processor is attempting to dispatch a 
process, this fault results in a system-error interrupt. 
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Halt 

Finally, if a fault occurs while the processor is generating a system-error interrupt, the proces­
sor halts. As part of the halt action, the processor collects as much information as possible 
about the last fault, then puts itself into the stopped state. 

Multiple Fault Conditions 

It is possible for multiple fault conditions to occur simultaneously. For certain fault types, such 
as trace faults or protection faults, bit positions in the fault-subtype field are used to indicate 
the occurrence of multiple faults of the same type. As a general rule, however, the processor 
does not indicate situations where multiple faults occur. Instead, it generates one of the faults 
and does not report on the faults that were not generated. 

SOFTWARE REQUIREMENTS FOR HANDLING FAULTS 

To use the processor's fault-handling facilities, the following data structures and procedures 
must be present in memory: 

• Fault table 

• Trace-Fault-Handler Procedure Table 

• Fault-Handler Procedure Table (Optional) 

• Fault-Handler Procedures 

• Interrupt Table 

• Interrupt Stack 

Software should generally load these items in memory as part of the initialization procedure. 
Once they are present in memory and pointers to them have been entered in the appropriate 
data structures, the processor then handles faults automatically and independently from 
software. 

NOTE 

If the virtual-memory-management features of the processor are being used, the fault-handling 
data structures should be frozen in memory (i.e., they should never be swapped out of memory). 

Requirements for the fault table, trace-fault-handler-procedure table, and fault-handler 
procedures are given in the following sections. Requirements for the interrupt table and 
interrupt stack are given in Chapter 10. 

FAULT TABLE 

The fault table provides the processor with a pathway to the fault-handler procedures. As 
shown in Figure 12-1, there is one entry in the fault table for each fault type plus an entry for 
overrides. When a fault occurs, the processor uses the fault type to select an entry in the fault 
table. From this entry, the processor then obtains a pointer to the fault-handler procedure for 
the type of fault that occurred. 
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Figure 12-1: Fault Table and Fault-Table Entries 
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Once a fault-handler procedure has been called, it has the option of reading the fault subtype or 
subtypes from the fault record to detennine the appropriate fault recovery action. 

Location of the Fault Table in Memory 

The fault table is located in physical memory. The processor obtains a physical-address 
pointer to the fault table from the PRCB. 

The fault table is placed in physical memory for two reasons: to avoid a virtual memory fault 
while handling a fault and to provide access to the fault-handling procedures during initializa­
tion. 

Fault-Table Entries 

As shown at the bottom of Figure 12-1, three types of fault-table entries are allowed: a 
local-procedure entry, a procedure-table entry, and a trace-fault-handler-procedure-table entry. 
Each entry type is two words long. The entry-type field (bits 0 and 1 of the first word of the 
entry) and the SS in the second word of the entry detennines the entry type. 

A local-procedure entry (entry type 002) provides an instruction pointer (address in the address 
space) for the fault-handler procedure. Using this entry, the processor invokes the specified 
fault handler by means of an implicit call-extended operation (similar to that performed for the 
callx instruction). The second word of a local-procedure entry is reserved. It should be set to 
zero when the fault table is created and not accessed after that. 

A procedure-table entry provides a procedure number in a procedure table. This entry must 
have and entry type of 102 and an SS for the procedure table in the second word. Using this 
entry, the processor invokes the specified fault handler by means of an implicit call-system 
operation (similar to that perfonned for the calls instruction). Fault-handling procedures in the 
procedure table can be local procedures or supervisor procedures. 

The procedure table can be the system procedure table that the kernel provides as an entry 
point for supervisor calls or a special procedure table, which is reserved for fault-handling 
procedures alone. If a special, fault-handler procedure table is created, it must have the same 
fonnat as the procedure table shown in Figure 4-4. The supervisor stack pointer in this table 
should point to the same stack that is pointed to in the system procedure table. 

The trace-fault-handler-procedure-table entry provides a procedure number in a special proce­
dure table called the tracelault-handler procedure table. This entry must have and entry type 
of 102 and an SS for the trace-fault-handler procedure table in the second word. The function 
of this entry is described in the following section titled "Handling Trace Faults." 

To summarize, a fault handler can be invoked through the fault table in any of four ways: a 
local procedure call; a local procedure-table call; a supervisor call; or a trace-fault-handler 
procedure-table call. 
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TRACE-FAULT HANDLING 

When handling trace faults, the 80960 architecture requires that tracing be disabled (i.e., the 
trace-enable flag of the process controls must be set to 0). To support this requirement, the 
architecture defines a special trace-fault-handler procedure table. This procedure table has the 
same structure as the procedure table shown in Figure 4-4, but with the following two restric­
tions: 

• All entries must be supervisor entries (102 in bits 0 and 1). 

• The trace control flag (byte 12, bit 0) must be set to o. 

The supervisor stack pointer in the trace fault-handler procedure table should be the same as 
the stack pointer given in the system procedure table. 

The effect of these restrictions is that on a call to a trace-fault handler routine, the processor 
saves the current state of the trace-enable flag and then clears. the flag to disable tracing. On 
the return from the trace fau.lt handler, the processor automatically restores the trace7enable 
flag to the state it was in prior to the trace fault. 

The trace-fault-handler procedure table will generally have only one procedure entry, which 
points to the trace-fault handler procedure. However, this procedure table can be used as a 
pathway to other fault-handler routines. 

This method of handling trace faults must always be used except for the followingcir­
cumstances: 

• If tracing is never going to be used (i.e., the trace-enable. flag of the process controls is 
always set to 0), the trace fault-handler procedure table is not required. . 

• If tracing is never going to be used on supervisor calls, the system-procedure table can be 
used in place of the trace-fault-handler procedure table, since the trace-control flag of the 
system-procedure table will then be set to O. 

In the latter case, the trace-fault handler must still be called with a supervisor call. 

FAUL~HANDLERPROCEDURES 

The fault-handler procedures are generally located in region 3 of virtual memory, although 
they can be located in any region. By locating the procedures in region 3, the processor always 
has access to them whether it is bound to a process or not. (The fault-handler procedures can 
also be located in physical memory if the physical-addressing translation mode is being used.) 
Each procedure must begin on a word boundary. 

The processor can execute the procedure in the user mode or the supervisor mode, depending 
on the type of fault table entry. If a fault handler is intended to be executed from the 
supervisor mode, the page rights for the page or pages that contain the handler may be setfor 
supervisor-only access. . 
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NOTE 

To resume work on a process at the point where a fault occurred (following the recovery action 
of the fault handler), the fault handler must be executed in the supervisor mode. The reason for 
this requirement is described in a following section titled "Returning with Resumption." 

Possible Fault-Handler Actions 

Many of the faults that occur can be recovered from easily. For example, recovery from an 
invalid PTE fault merely involves copying the page from the disk into memory and marking 
the page-table entry as valid. 

When recovery from the fault is possible, the processor's fault-handling mechanism allows the 
processor to automatically resume work on the process or interrupt it was working on when the 
fault occurred. The resumption action is initiated with a ret instruction in the fault-handler 
procedure. 

If recovery from the fault is not possible or not desirable, the fault handler can take one of the 
following actions, depending on the nature and severity of the fault condition (or conditions, in 
the case of multiple faults): 

• Return to a point in the process or interrupt code other than the point of the fault 

• Suspend the current process and rebind it to the processor 

• Suspend the current process and bind a new process to the processor 

• Suspend the current process and place the processor in the idle or stopped state 

• Explicitly write the fault record and instruction resumption record into the fields provided 
for them in PRCB, suspend the current process, and place the processor in the idle or 
stopped state. 

• Explicitly write the fault record and instruction resumption record into the fields provided 
for them in PRCB and place the processor in the idle or stopped state, without suspending 
the current process. 

• Place the processor in the idle or stopped state without explicitly saving the process state 
or the fault information. 

When working with the processor at the development level, a common action of the fault 
handler is to save the fault and processor state information and make a call to a debugging 
device such as a debugging monitor. This device can then be used to analyze the fault. 

Process and Instruction Resumption Following a Fault 

Faults can occur prior to the execution of the faulting instruction (i.e., the instruction that 
causes the fault), during the instruction, or after the instruction. When the fault occurs before 
the faulting instruction is executed, the instruction can theoretically be executed on the return 
from the fault handler. So, the fault can be handled in such as way as to not interrupt in the 
control flow of the process. 
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When a fault occurs during or after the instruction that caused a fault, the fault may be 
accompanied by a change in the process state such that the execution of the process can not be 
resumed after the fault has been handled. For example, when an integer-overflow fault occurs, 
the overflow value is stored in the destination. If the destination register was the same as one 
of the source registers, the source value is lost, making recovery from the fault impossible. 

In general, resumption of process execution with no changes in the process's control flow is 
always possible with the following fault types or sUbtypes: 

• All Operation SUbtypes 

• Arithmetic Zero-Divide 

• All Floating-Point Subtypes Except Floating Inexact 

• All Constraint Subtypes 

• All Trace Subtypes 

• Invalid Descriptor 

• All Virtual Memory Subtypes 

• Time Slice 

• Event Notice 

Resumption of the process mayor may not be possible with the following fault types and 
subtypes: 

• Integer Overflow 

• Floating Inexact 

• All Structural Subtypes 

• Bad Access 

• All Protection Subtypes 

• All Type Subtypes 

The effect that specific fault types have on a process is given in the fault reference section at 
the end of this chapter under the heading "Process State Changes." 

Returning With Resumption 

As described above, certain faults do not change the state of the process when they occur, even 
if the execution of the instruction was suspended as part of the fault-generation mechanism. 
Here, the processor allows work on a process to be resumed at the point where the fault 
occurred (including resumption of a suspended instruction), following a return from a fault 
handler. The resumption mechanism is similar to that provided for returning from an interrupt 
handler. 

To use this mechanism, the fault handler must be invoked using a supervisor call. This method 
is required because to resume work on the process and a suspended instruction at the point 
where the fault occurred, the saved process controls in the fault record must be copied back 
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into the process's PCB on the return from the fault handler. The processor only performs this 
action if the processor is in the supervisor mode on the return. 

If the fault handler is invoked with a local-procedure call or a local-procedure-table call, the 
return IP determines where in the process the processor resumes work, following a return from 
a fault handler. Here, the return is handled in a similar manner to a return from an explicit call 
with a call or calix instruction. 

The return IP (referred to later in this chapter as the saved IP) is saved in the RIP register (r2) 
of the stack frame that was in use when the fault occurred. This IP may be the instruction the 
processor faulted on or the next instruction that the processor would have executed if the fault 
had not occurred. In either case, the resumption record is not used, so the processor might 
continue work on the process without completing the instruction that the fault occurred on. 

A fault handler should thus be invoked with a local-procedure or local-procedure-table call 
only if it is not required or desirable to resume the process at the point where the fault 
occurred. The section later in this chapter titled "Returning Without Resumption" discusses 
returning to a point in the process code other than the point of the fault. 

Return Without Resumption 

There may be situations where the fault handler needs to return to a point in the process other 
than where the fault occurred. This can be done by altering the return IP in the previous frame. 
However, if resumption information was collected with the fault (resulting in the resume flag 
being set in the saved process controls), such a return can cause unpredictable results. 

To predictably perform a return from a fault handler to an alternate point in the process, the 
fault handler should perform the following two steps: 

1. Flush the local register sets to the stack with a flushreg instruction. 

2. Clear the following information in the process-controls field of the fault record before the 
return: the resume and trace-fault-pending flags; the internal state field. 

NOTE 

This technique should be used carefully and only in situations where the fault handler is closely 
coupled with the application program. Also, a return of this type can only be perfonned if the 
processor is in supervisor mode prior to the return. 

Aborting a Process 

Where it is not possible to return to the process in which a fault occurred, the fault handler can 
be designed to abort the process. Several possible actions that a fault handler can take when 
aborting a process are given in the section earlier in this chapter titled "Possible Fault-Handler 
Actions." 
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FAULT CONTROLS 

Certain fault types and sUbtypes have masks or flags associated with them that determine 
whether or not a fault is generated when a fault condition occurs. Table 12-2 lists these flags 
and masks, the data structures in which they are located, and the fault subtype they affect. 

Table 12-2: Fault Flags or Masks 

Flag or Mask Name Location Fault Affected 

Integer Overflow Mask Arithmetic Controls Integer Overflow 

Floating Overflow Mask Arithmetic Controls Floating Overflow 

Floating Underflow Mask Arithmetic Controls Floating Underflow 

Floating Invalid Operation Mask Arithmetic Controls Floating 
Invalid Operation 

Floating Zero-Divide Mask Arithmetic Controls Floating Zero-Divide 

Floating-point Inexact Mask Arithmetic Controls Floating Inexact 

No Imprecise Faults Flag Arithmetic Controls All Imprecise Faults 

Refault Flag Process Controls All Faults 

Trace-Enable Flag Process Controls All Trace Faults 

Trace-Mode Flags Trace Controls All Trace Faults 

Event-Fault Request Flags PCB Event Notice Fault 

The integer and floating-point mask bits inhibit faults from being raised for specific fault 
conditions (i.e., integer overflow and floating-point overflow, underflow, zero divide, invalid 
operation, and inexact). The use of these masks is discussed in the fault-reference section at 
the end of this chapter. Also, the floating-point fault masks are described in Chapter 7 in the 
section titled "Exceptions and Fault Handling." 

The no-imprecise-faults (NIF) flag controls the synchronizing of faults for a category of faults 
called imprecise faults. This flag should be set to 1. The function of this flag is described later 
in this chapter in the section titled "Precise and Imprecise Faults." 

The refault flag causes a fault to be generated on a return from a fault handler. This flag is 
used in the handling of override conditions and can also be used by the kernel. Refer to the 
sections in this chapter titled "Generating Faults" and "Override Fault-Handling Action" for 
further information on the refault flag. 

The trace-mode flags (in the trace controls) and trace-enable flag (in the process controls) 
support trace faults. The trace-mode flags enable trace modes; the trace-enable flag enables the 
generation of trace faults. The use of these flags is described in the fault reference section on 
trace faults at the end of this chapter. Further discussion of these flags is provided in Chapter 
16 in the section titled "Trace-Enable and Trace-Fault-Pending Flags." 

The event-fault request flags cause an event-notice fault to be generated under specific cir­
cumstances. These flags are discussed in the fault reference section on event faults at the end 
of this chapter. 
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FAULTS AND INTERRUPTS 

If an interrupt occurs during an instruction that will fault, that has just faulted, or that has 
faulted while the processor is in the midst of selecting the fault handler, the processor will 
handle the fault in the following way. It completes the selection of the fault handler, then 
services the interrupt just prior to executing the first instruction of the fault handler. On 
returning from the interrupt, the fault is handled. 

PROCESSING TIMING WHILE HANDLING A FAULT 

When a fault occurs while the processor is executing a process, the processor continues to 
count process time (i.e., count down the residual-time-slice value) while it is executing the 
fault-handler procedure. If an end-of-time-slice event occurs while the fault handler is being 
executed, the processor handles the event just as it would if the event occurred while the 
process was being executed. For example, if the process-timing controls are configured to 
suspend a process at the end of a time slice, the processor suspends the process in the midst of 
the fault-handler routine. The next time the process is dispatched, the processor begins work­
ing on the fault handler where it left off. 

GENERATING A FAULT 

The processor generates faults implicitly when fault conditions occur and explicitly at the 
request of software. Most faults are generated implicitly. The fault control bits described in 
the previous section allow the implicit generation of some faults to be either enabled (as with 
the trace faults) or masked (as with the floating-point faults). 

The following paragraphs describe faults that software can cause to be generated explicitly. 

Fault-If and Mark Instructions 

Two sets of instructions allows faults to be generated explicitly anywhere within an application 
program, kernel procedure, interrupt handler, or fault handler. The fault-if instructions (fauIte, 
faultne, faultl, faultle, faultg, faultge, faulto, and faultno) allow a conditional fault to be 
generated. When one of these instructions is executed, the processor checks the condition code 
bits in the arithmetic controls, then generates a constraint-range fault if the condition specified 
with the instruction is met. 

The mark and force mark (fmark) instructions allows a breakpoint trace fault to be generated 
anywhere in the instruction stream. 

Event-Notice Fault 

The process-notice field in the PCB (shown in Figure 13-3) has two event-fault request flags. 
When these flags are set, an event notice fault is generated in either of the following two 
instances: 
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• While the process associated with the PCB is being bound to the processor. 

• If the process is already bound to the processor and the process notice lAC is sent to the 
processor. 

In the latter case, software would set the event-fault request flags after the process had been 
bound to the processor, then send the lAC. 

This faulting technique is used primarily by kernel procedures within multiprocessor systems. 
It can only be used within a procedure that is being executed in supervisor mode. 

Further information on the event-notice fault is given in the fault reference section at the end of 
this chapter. 

FAULT RECORD 

When a fault occurs, the processor records information about the fault in a fault record. (The 
location of the fault record is described later in this chapter in the section titled "Location of 
the Fault and Resumption Records.") The fault handler and processor use the information in 
the fault record to recover from or correct the fault condition and resume execution of the 
process. Figure 12-2 shows the structure of the fault record. The use of the fields in this 
record are described in the following paragraphs. 

OVERRIDE FAULT DATA 

o 
4 

12 

~----------------------------------------i 16 

FAULT DATA 

24 -----1 28 

32 

r-------------~~~~~~~------------~36 
40 -----I 

L... ___ ~~~~~~~~~~~ ___ ~ 44 

RESERVED 

Figure 12-2: Fault Record 

The fault record provides space for fault information on two faults: a normal fault and (if one 
occurs) an override fault. 
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The type number (byte ordinal) of a fault is stored in the fault type (normal fault) and override 
type (override fault) fields; the sUbtype number or bit positions (byte ordinal) is stored in the 
fault sUbtype (normal fault) and override subtype (override fault) fields. 

Two sets of eight flags, fault flags field (normal fault) and override flags field (override fault) 
are also provided. Of these flags, only FO and FI (bits 24 and 25) are used. Most of the faults 
do not use these flags, in which case the flags have no defined values. 

The address-of-the-faulting-instruction field contains the IP of the instruction that caused the 
fault or that was being executed when the fault occurred. 

The states of the process controls and arithmetic controls at the time that a normal fault is 
generated are stored in their respective fields in the fault record. This information is used to 
resume work on the process after the fault has been handled. 

Finally, a three-word fault data field is provided for both a normal fault and an override fault. 
The information that is stored in these fields depends on the type of fault that occurs. Any part 
of a fault-data field that is not used for a particular fault has no defined value. The information 
that is stored in these fields for each fault type is given in the fault reference section at the end 
of this chapter. 

Saved Instruction Pointer 

The saved IP (the RIP that is saved in r2 of the stack frame in use when the fault occurred) is 
also part of the fault information that the processor saves when a fault occurs. This IP 
generally points to the next instruction that the processor would have executed if the fault had 
not occurred, although it may point to the faulting instruction. It is this instruction that the 
processor begins working on when the return from the fault handler is initiated. 

Resumption Record 

If the processor suspends an instruction as the result of a fault, it creates a 48-byte resumption 
record. The criteria that the processor uses to determine whether or not to suspend an inslruc­
tion and the structure of the resumption record are the same as are used when an interrupt 
occurs. 

Location of the Fault and Resumption Records 

The fault and instruction-resumption records are stored in the fault handler's stack, the PRCB, 
or both places, depending on the circumstances under which the fault occurred. If the fault 
occurs while the processor is doing any of the following things, the fault and resumption 
records is stored in the stack that the processor will use to execute the fault-handler procedure: 

• Executing a process 

• Servicing an interrupt 

• Handling another fault 
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• Selecting a fault handler (first override fault) 

As shown in Figure 12-3, this stack can be the local stack, the supervisor stack; or the interrupt 
stack. The fault record begins at the byte address of the new frame pointer (NFP) minus 48, 
and the instruction resumption record begins at NFP minus 96. 

If the fault occurs while the processor is doing any of the following things, the fault record is 
stored in the PRCB: 

• Selecting the override-fault handler (second override fault) 

• In the idle processor-state 

Both of the above situations cause a system-error interrupt. When the system-error interrupt is 
the result of a second override fault, the fault-record is stored in two fields in the PRCB: the 
system-error-fault field (bytes 72 through 75) and the system-error-fault-record field (bytes 128 
through 175). 

The fault record for the first two faults (the normal fault and the first override fault) is stored in 
the system-error-fault record in the format shown in Figure 12-2. The fault type and SUbtype of 
the second override fault is stored in the system-error-fault field, but no fault data is stored for 
this fault. 

The system-error interrupt handler thus has the following information available to it for the 
purposes of handling a system-error interrupt: (1) the process state when the first fault oc­
curred, (2) complete fault data on the first two faults, and (3) the fault type and SUbtype of the 
third fault. 

When the system-error interrupt occurs while the processor is in the idle state, a record for this 
fault is stored in the system-error-fault-record field. Here, the system-error-fault field is not 
used, because the fault type and SUbtype are contained in the system-error-fault-record field. 

Finally, if a fault occurs while the processor is selecting the system-error fault handler (which 
causes a halt), the fault information collected in the PRCB for all the faults that occurred up 
through the first system-error interrupt is maintained. However, no fault information on the 
fault that occurred while the system-error interrupt handler was being selected is recorded 
before the processor places itself in the stopped state. 

FAUL T·HANDLING ACTION 

Once a fault has occurred, the processor saves the process state, calls the fault handler, and 
restores the process state (if this is possible) once the fault recovery action has been completed. 
No software other than the fault-handler procedures is required to support this activity. 

The following sections describe the action that the processor takes while handling a fault. 
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Figure 12-3: Storage of the Fault and Resumption Records on the Stack 
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Selecting the Fault-Handling-Action Method 

The criteria that the processor uses to determine the fault-handling method are described in the 
section earlier in this chapter titled "Fault Handling Methods." Once the processor settles on 
the handling method, it performs the respective action described in the following paragraphs. 

Normal Fault-Handling Action 

Four different types of procedure calls can be used to handle the first (or primary) fault that 
occurs: a local call, a local call through a procedure table, a supervisor call (also through 
procedure table), and a supervisor call through the trace-fault~handler procedure table. The 
processor determines the type of call to make from the information in the selected fault-table 
entry. As was mentioned earlier in this chapter, the procedure table may be the system table 
that the processor uses to access kernel services, a special fault-handler procedure table, or the 
trace fault-handler procedure table. 

Local Call/Return 

When the selected fault-handler entry in the fault table is an entry type 002 (local procedure), 
the processor performs the following action: 

1. The processor creates a new frame on the stack that the processor is currently using, with 
the frame-return status field set to 001 2. The stack can be the local stack, the supervisor 
stack, or the interrupt stack. As shown in Figure 12-3, the new frame pointer (NFP) 
resides on a 64-byte boundary and provides enough room between the current stack 
pointer and the NFP for a 48-byte fault record and an optional 48-byte instruction resump­
tion record. (For local calls to fault handling procedures, the current stack pointer (SP) 
shown in Figure 12-3 is the same as the new stack pointer (NSP).) 

2. The processor stores a fault record as shown in Figure 12-2 on the stack, beginning at NFP 
minus 48. 

3. If the fault caused an instruction to be suspended, the processor includes an instruction­
resumption record on current stack (beginning at NFP minus 96) and sets the resume flag 
in the saved process controls. 

4. Using the procedure address from the selected fault-table entry, the processor performs an 
implicit call-extended operation to the fault handler. 

If the fault handler is not able to perform a recovery action, it performs one of the actions 
described in the section earlier in this chapter titled "Fault-Handler Procedures." 

If the handler action results in a recovery from the fault, a ret instruction in the fault handler 
allows processor control to return to the process that was being worked on when the fault 
occurred. On the return, the processor performs the following action: 

1. The processor copies the arithmetic controls field from the fault record into the arithmetic 
controls register in the processor. 

2. If the resume flag of the process conttols is set, the processor reads the resumption record 
from the stack. 
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3. The processor deallocates the stack frame created for the fault handler. 

4. The processor then resumes work on the process it was working on when the fault oc­
curred at the instruction in the return IP register. 

NOTE 

The saved process controls are not copied back into the PCB, unless the execution mode is 
supervisor at the time of the return, which would not ordinarily be the case with a local call to 
the fault handler. Thus any changes in the process controls that the fault handler makes become 
part of the process state when the processor resumes work on the process. 

Local Procedure-Table Call/Return 

When the fault-handler entry selects an entry in a special fault-handler procedure table (or the 
system procedure table) and the procedure-table entry is for a local procedure, the processor 
performs the same action as is described in the previous section for a local-procedure call and 
return. The only difference is that the processor gets the address of the fault handler from the 
procedure table rather than from the fault table. 

Supervisor Call/Return 

When the fault-handler entry selects an entry in a fault-handler procedure table (or the system 
procedure table) and the procedure-table entry is for a supervisor procedure, the processor 
performs the following actions: 

1. If the processor is in user mode when the fault occurs, the processor then reads the 
supervisor-stack pointer from the procedure table and switches to the supervisor stack. 
The supervisor-stack pointer then becomes the NSP shown in Figure 12-3. Also, the 
execution mode is set to supervisor. 

2. If the processor is already in supervisor mode when the fault occurs, the processor stays on 
the current stack. Here, the SP and the NSP in Figure 12-3 are the same. (If the processor 
was executing a supervisor procedure when the fault occurred, the current stack will be the 
supervisor stack; if it was executing an interrupt-handler procedure, the current stack will 
be the interrupt stack. The processor switches to supervisor mode when handling 
interrupts.) 

3. The processor copies the state of the trace-control flag (byte 12, bit 1) of the procedure 
table into the trace-enable flag field of the process controls. 

4. The processor creates a new frame on the current stack (as described above for the local 
call); stores the fault record and optional instruction resumption record in the areas al­
located for them on the stack; and begins work on the fault-handler procedure selected 
from the procedure table. 

On a return from the fault handler, the processor performs the following actions: 

1. The processor copies the arithmetic-controls field from the fault record into the arithmetic­
controls register in the processor. 

2. If the processor is in supervisor mode prior to the return from the fault handler (which it 
should be), it copies the saved process controls into its internal process controls. 
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3. If the resume flag of the process controls is set, the processor reads the resumption record 
from the stack. 

4. The processor deallocates the stack frame created for the fault handler and returns to the 
stack is was using prior to the call to the fault handler routine. 

5. If the processor was in user mode prior to the supervisor call, the mode is set back to user 
mode; otherwise, the processor remains in supervisor mode. 

6. The processor resumes work on the process it was working on when the fault occurred, at 
the instruction in the return IP register. 

The restoration of the process controls causes any changes in the process controls through the 
action of the fault handler to be lost. In particular, if the ret instruction from the fault handler 
caused the trace-fault-pending flag in the process controls to be set, this setting would be lost 
on the return. 

Trace-Fault-Handler Call/Return 

When the fault table entry is for a trace fault, the processor performs the same action as is 
described in the previous section for a supervisor call and return. The only difference is that 
the processor uses the trace-fault-handler procedure table instead of the normal-fault-handler 
procedure table (or system procedure table). 

Override Fault-Handling Action 

When an override fault occurs, the processor can call the override-fault handler using any of 
the techniques described above (local call, local call through a procedure table, supervisor call, 
or trace-fault-handler procedure table call). The processor performs the same actions on the 
call and return as described above except for the follow things. 

When calling the override-fault handler, the processor performs the following additional ac­
tions: 

1. The processor saves an override fault record (that contains the primary and the secondary 
fault data) on the stack. 

2. The processor sets the refault and resume flags in the saved process controls. (The resume 
flag is set even if a resumption record is not saved.) 

3. The processor begins work on the selected override-fault handler. 

The override-fault handler can be designed to attempt to correct both faults or correct the 
override fault and then refault on the original fault, allowing the fault handler for that fault to 
be called. The latter technique is allowed only if the override-fault handler is called with a 
supervisor procedure call. 

On the return from the override-fault handler, the processor performs the following additional 
actions: 

1. If the processor is in user mode on the return from the fault handler, the saved arithmetic 
controls are copied into the arithmetic controls register and the processor begins work at 
the point in the process or interrupt designated with the saved IP. 
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2. If the processor is in supervisor mode on the return from the fault handler, the saved 
arithmetic controls are copied into the arithmetic controls register and the saved process 
controls are copied into the peB for the process being resumed. The refault and resume 
flags are then cleared, and the processor refaults on the original (first) fault. 

NOTE 

If the fault handler is not called with a supervisor call, the override-fault handler must handle 
both the original fault and the override fault. If this is not done, the process might be put into 
an unpredictable state on the return from the fault handler. 

System-Error-Interrupt Action 

When a system-error interrupt occurs, the processor collects data on the faults that caused the 
condition and calls the system-error interrupt fault handler. The processor does not, however, 
provide a mechanism for resuming the process, once the handling of the interrupt is complete. 

When a system-error interrupt occurs as the result of a second override fault, the processor 
takes the following action: 

1. The processor stores the fault record for the original fault and the first override fault in the 
system-error-fault-record field of the PReB. 

2. The processor stores the type and subtype of the second override fault in the system-error 
fault field of the PReB. 

3. The processor switches to the interrupt stack. 

4. The processor performs an implicit call operation to vector 248 (the predefined system­
error interrupt vector) in the interrupt table. 

When a system-error interrupt occurs as the result of a fault occurring while the processor is in 
the idle state, the processor takes the following action: 

1. The processor stores the fault record for the fault in the system-error-fault-record field of 
the PReB. 

2. The processor switches to the interrupt stack. 

3. The processor performs an implicit call operation to vector 248 (the predefined system­
error interrupt vector) in the interrupt table. 

When a system-error interrupt occurs, the processor does not provide a mechanism for resum­
ing processing at the point that the fault occurred as with the other fault conditions described in 
this chapter. The action of the system-error interrupt fault-handler is limited to the following 
actions: 

• Suspend the current process and rebind it to the processor. 

• Rebind the current process to the processor, without suspending the process first. 

• Suspend the current process and bind the processor to a new process. 

• Bind the processor to a new process, without suspending the current process first. 
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• Suspend the current process and place the processor in the idle or stopped state. 

• Place the processor in the idle or stopped state, without suspending the current process. 

• Call a system debugging monitor for use in analyzing the fault data. 

• Write the fault record and other pertinent state data to disk memory, then shut down the 
system, with or without first suspending the current process. 

• Shut down the system without explicitly saving state or fault information. 

• In a multiprocessor system, a second processor might be called upon to reinitialize the 
processor with a restart processor lAC. 

Halt Action 

When a fault occurs while the processor is selecting the system-error interrupt handler, the 
processor takes the following action: 

1. If possible, it stores a fault record for the latest fault in the PRCB. This is only possible if 
the system-error interrupt occurred while the processor was in the idle state. 

2. It places itself in the stopped state and asserts the #FAILURE pin. 

When the processor experiences enough faults to halt it in the manner described above, its 
resulting state often prohibits it from reliably executing instructions or even reliably accessing 
memory. A reinitialization of the processor either through a restart processor lAC or a 
hardware reset is generally required. If the system uses multiple processors, the still active 
processor can attempt to save the fault record for later use in a diagnostics routine, before the 
stopped processor is restarted. 

PRECISE AND IMPRECISE FAULTS 

As described in the section in Chapter 3 titled "Register Scoreboarding," the 80960MC proces­
sor is, in some instances, able to execute instructions concurrently. When two instructions are 
being executed concurrently, it is possible for them to generate faults simultaneously. When 
this occurs, one of the faults may not be generated or may be generated out of order, making it 
impossible to recover from that fault. 

The processor provides two mechanisms to allow the circumstances under which faults are 
generated to be controlled. These mechanisms are the no imprecise faults flag (NIF) in the 
arithmetic controls and the synchronize faults instruction (syncf). The following paragraphs 
describe how these mechanisms can be used. 

Faults are grouped into the following categories: precise, imprecise, and asynchronous. Precise 
faults are those that are intended to be recoverable by software. For any instruction that can 
generate a precise fault, the processor will (1) not execute the instruction if an unfinished prior 
instruction will fault and (2) not execute subsequent out-of-order instructions that will fault. 
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The following faults are always precise: 

• trace 

• virtual memory 

• protection 

• descriptor faults 

Imprecise faults are those that in some instances are allowed to occur and not be generated or 
be generated out of order. These faults include the following: 

• operation 

• arithmetic 

• floating point 

• constraint 

• structural 

• type 

Asynchronous faults are those whose occurrence has no direct relationship to the instruction 
pointer. This category includes the machine, event, and process faults. 

The NIF controls whether or not imprecise faults are allowed. When this flag is set, all faults 
must be precise. In this mode, the ability to execute instructions concurrently is essentially 
disabled. All faults that occur are generated. 

When the NIF is clear, faults in the imprecise category can in some instances occur and not be 
generated. In this mode, the following conditions hold true: 

1. When an imprecise fault occurs, the saved IP is undefined (but the address of the faulting 
instruction in the fault record is valid). 

2. If instructions are executed concurrently when an imprecise fault occurs, the results 
produced by these instructions are undefined. 

3. If instructions are executed out-of-order and multiple imprecise faults occur, only one of 
the faults is generated. The one that is selected is not predictable. 

The syncf instruction forces the processor to complete execution of all instructions that occur 
prior to the syncf instruction and to generate all faults, before it begins work on instructions 
that occur after the syncf instruction. This instruction has two uses. One use is to force faults 
to be precise when the NIF is clear. The other use is to insure that all instructions are complete 
and all faults generated in one block of code before execution of another block of code (for 
example, on Ada block boundaries when the blocks have different exception handlers). 

The intent of these fault-generating modes is that compiled code should execute with the NIF 
clear, using the syncf instruction where necessary to ensure that faults occur in order. In this 
mode, imprecise faults are considered as catastrophic errors from which recovery is not 
needed. 
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If recovery from one or more of the imprecise faults is required (for example, a program that 
needs to handle unmasked floating-point exceptions and recover from them) and the fault 
handler cannot be closely coupled with the application to perform recovery even if the faults 
are imprecise, the NIF should be set. Executing with the NIF set will likely lead to slower 
execution times. 

FAULT REFERENCE 

This section describes each of the fault types and sUbtypes and gives detailed information 
about what is stored in the various fields of the fault record. The section is organized al­
phabetically by fault type. 

Fault-Reference Notation 

The following paragraphs describe the information that is provided for each fault type. 

Fault Type and Subtype 

The fault-type section gives the number entered in the fault-type field of the fault record for the 
given fault type. The fault-subtype section lists the fault subtypes and their associated number 
or bit position in the fault-subtype field of the fault record. 

Function 

The function section gives a general description of the purpose of the fault type, then describes 
the purpose of each of the fault subtypes in detail. It also describes how the processor handles 
each fault subtype. 

Fault Record 

The fault record section describes how the flags, fault-data, and address-of-faulting-instruction 
fields of the fault record are used for the fault type and sUbtypes. 

SavedlP 

The saved IP section describes what value is saved in the RIP register (r2) of the stack frame 
the processor was using when the fault occurred. 

Process State Changes 

The process state changes section describes the effects that the fault sUbtypes have on the state 
of the process. 
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Arithmetic Faults 

Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

Saved IP: 

Proc. State Changes: 

o 
1 
2 
3-F 

FAULT HANDLING 

Name 

Reserved 
Integer Overflow 
Arithmetic Zero-Divide 
Reserved 

Indicates that there is a problem with an operand or the result of an 
arithmetic instruction. This fault type applies only to ordinal and 
integer instruction, not floating-point instructions. 

The integer-overflow fault occurs when the result of an integer in­
struction overflows the destination and the integer-overflow mask in 
the arithmetic-controls register is cleared. Here, the n least sig­
nificant bits of the result are stored in the destination, where n is the 
destination size. 

The arithmetic zero-divide fault occurs when the divisor operand of 
an ordinal or integer divide instruction is zero. 

Flags: Not used. 

Fault Data: Not used. 

Addr. Fault. Inst.: IP for the instruction on which the processor 
faulted. 

IP for the instruction that would have been executed next, if the 
fault had not occurred. 

A process-state change accompanies the integer-overflow fault, be­
cause the result is stored in the destination before the fault is 
generated. The faulting instruction can thus not be reexecuted. 

A process-state change does not accompany the arithmetic zero­
divide fault, because the fault occurs before the execution of the 
faulting instruction. 
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Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

Saved IP: 

Proc. State Changes: 

o 
I 
2 
3-F 
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Name 

Reserved 
Constraint Range 
Invalid SS 
Reserved 

Indicates that the processor is either in or not in the required state 
for the instruction to be executed. 

The constraint-range fault occurs when a fault-if instruction is ex­
ecuted and the condition code in the arithmetic controls matches the 
condition required by the instruction. 

The invalid-SS fault occurs when an instruction attempts to refer­
ence a segment by means of an SS, when the processor is not in the 
supervisor mode. 

Flags: Not used. 

Fault Data: Not used. 

Addr. Fault. Inst.: IP for the instruction on which the processor 
faulted 

Not used. 

No process-state changes accompany either of these faults. For the 
constraint-range fault, the fault occurs after the fault-if instruction 
has been executed, but the instruction has no effect on the process 
state. 

The invalid-SS fault occurs before the faulting instruction. 

12·26 



Descriptor Faults 

Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

Saved IP: 

Proc. State Changes: 

o 
1 
2-F 

FAULT HANDLING 

Name 

Reserved 
Invalid Descriptor 
Reserved 

Indicates that an address or SS cannot be translated into a physical 
address because of an invalid segment-table entry. 

The descriptor-invalid fault is the only one of this fault type. This 
fault occurs in either of two situations: (1) when an SS points to a 
segment descriptor that has an invalid type or (2) when an SS points 
to a segment descriptor that is an embedded type, but the descriptor 
is not being used in a semaphore operation. 

Flags: Not used. 

Fault Data: The segment index for the invalid descriptor 
is stored in bits 5 through 31 of the second 
word of the fault-data field. 

Addr. Fault. Inst.: IP for the instruction on which the processor 
faulted. 

Same as the address-of-faulting-instruction field. 

A process-state change does not accompany the invalid-descriptor 
fault, because the fault occurs before the execution of the faulting 
instruction. 
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Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

Saved IP: 

Proc. State Changes: 

E16 

Number16 

o 
1 
2-F 

FAULT HANDLING 

Name 

Reserved 
Event Notice 
Reserved 

Indicates that software has generated a fault event. 

The event-notice fault is the only one of this fault type. This fault 
occurs in either of the following situations: (1) when a process is 
dispatched and the event-fau1t-request flags in the process's PCB 
are set, or (2) when a processor receives a process notice lAC and 
the event-fau1t-request flags are set for the process currently running 
on that processor. 

Flags: Not used. 

Fault Data: Not used. 

Addr. Fault. Inst.: IP for the instruction on which the processor 
faulted. 

IP for the instruction that would have been executed next, if the 
fault had not occurred. 

If this fault occurs while a process is being dispatched, the fault is 
generated before work on the process begins. This allows the fault 
handler to either never begin work on the process or to return to the 
process and begin work on it. 

If this fault occurs while an instruction is being executed, the 
processor does one of the following: (1) terminates the instruction 
as if it had not yet begun execution, (2) completes execution of the 
instruction, or (3) suspends the instruction, saving the intermediate 
state in the resumption record. The instruction being executed 
determines which action is taken. 

The process state thus may change in conjunction with the occur­
rence of this fault. However, when the state does change, the 
processor saves sufficient state information to allow the state of the 
process to be saved when the process is suspended or to allow 
resumption of the instruction on a return from the fault handler. 

12·28 



Floating-Point Faults 

Fault Type: 

Fault Subtype: 

Function: 

FAULT HANDLING 

416 

Bit Number 

Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bit 5 
Bits 6 and 7 

Name 

Floating Overflow 
Floating Underflow 
Floating Invalid-Operation 
Floating Zero-Divide 
Floating Inexact 
Floating Reserved-Encoding 
Reserved 

Indicates that there is a problem with an operand or the result of a 
floating-point instruction. Each floating-point fault is assigned a bit 
in the fault-subtype field. Multiple floating-point faults can only 
occur simultaneously, however, with the floating-overflow, 
floating-underflow, and floating-inexact faults. 

The floating-point faults are described in detail in the section in 
Chapter 7 titled "Exceptions and Fault Handling." The following 
paragraphs give a brief description of each floating-point fault. 

A floating-overflow fault occurs when (1) the floating-point over­
flow mask is clear and (2) the infinitely precise result of a floating­
point instruction exceeds the largest allowable finite value for the 
specified destination format. This fault interacts with the floating­
inexact fault (as described in Chapter 7). 

A floating-underflow fault occurs when (1) the floating-point under­
flow mask is clear and (2) the infinitely precise result of a floating­
point instruction is less than the smallest possible normalized, finite 
value for the specified destination format. This fault interacts with 
the floating-inexact fault (as described in Chapter 7). 

The floating invalid-operation fault occurs when (1) the floating­
point invalid-operation mask is clear and (2) one of the source 
operands for a floating-point instruction is inappropriate for the type 
of operation being performed. 

The floating zero-divide fault occurs when (1) the floating-point 
zero-divide mask is clear and (2) the divisor operand of a floating­
point divide instruction is zero. 

The floating-inexact fault occurs when (1) the floating-point inexact 
mask is clear and (2) an infinitely precise result cannot be encoded 
in the format specified for the destination operand. This fault inter­
acts with the floating-overflow and floating-underflow faults (as 
described in Chapter 7). 

The floating reserved-encoding fault occurs when a denormalized 
value is used as an operand in a floating-point instruction and the 
normalizing-mode bit in the arithmetic controls is clear. 
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Fault Record: 

Saved IP: 

Proc. State Changes: 

Flags: 

FAULT HANDLING 

FO - Used if inexact fault occurs in conjunc­
tion with overflow or underflow fault. If set, 
FO indicates that the adjusted result has been 
rounded toward +00; if clear, FO indicates that 
the adjusted result has been rounded toward 
-00. 

Fl - Used with overflow and underflow 
faults only. If set, FI indicates that the ad­
justed result has been bias adjusted, because 
its exponent was outside the range of the 
extended-real format. 

Fault Data: Used only with overflow and underflow 
faults. Adjusted result is stored in this field 
in extended-real format (as shown in Figure 
7-5). 

Addr. Fault. Inst.: IP for the instruction on which the processor 
faulted 

IP for the instruction that would have been executed next, if the 
fault had not occurred. 

Process-state changes accompany the floating -overflow, floating­
underflow, and floating-inexact faults, because a result is stored in 
the destination before the fault is generated. The faulting instruc­
tion can thus not be reexecuted. 

Process-state changes do not accompany the floating invalid­
operation, floating zero-divide, and floating reserved-encoding 
faults, because the faults occur before the execution of the faulting 
instruction. 
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Machine Faults 

Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

Saved IP: 

Proc. State Changes: 

816 

Number 16 

o 
1 
2-F 

FAULT HANDLING 

Name 

Reserved 
Bad Access 
Reserved 

Indicates that the processor has detected a hardware or memory­
system error. 

The bad-access fault is the only one of this fault type. This fault 
occurs whenever an unrecoverable memory error occurs on a physi­
cal memory operation. 

Flags: Not used. 

Fault Data: Not used. 

Addr. Fault. Inst.: Not used. 

Not used. 

This fault may occur at any time. When it does occur, the accom­
panying state of the process is undefined. As a result, the processor 
is not able to return predictably from the fault handler to the point in 
the process where the fault occurred. 

If this fault occurs during an atomic operation, there is no guarantee 
that the locking mechanism the memory subsystem uses for 
synchronization is unlocked. This is a fatal condition. 
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Operation Faults 

Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

Saved IP: 

Proc. State Changes: 

o 
1 
2 
3 
4 
5-F 

FAUL THANDLING 

Name 

Reserved 
Invalid Opcode 
Reserved 
Reserved 
Invalid Operand 
Reserved 

Indicates that the processor cannot execute the current instruction 
because of invalid instruction syntax or operand semantics. 

The invalid-opcode fault occurs when the processor attempts to ex­
ecute an instruction that contains an undefined opcode or addressing 
mode. 

The invalid-operand fault occurs when the processor attempts to 
execute an instruction for which one or more of the operands have 
special requirements and one or more of the operands do not meet 
these requirements. This fault subtype is not generated on floating­
point instructions. 

Flags: Not used. 

Fault Data: Not used. 

Addr. Fault. Inst.: IP for the instruction on which the processor 
faulted. 

Not used. 

A process-state change does not accompany the operation faults, 
because the faults occur before the execution of the faulting instruc­
tion. 
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Process Faults 

Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

Saved IP: 

Proc. State Changes: 

o 
1 
2-F 

FAULT HANDLING 

Name 

Reserved 
Time Slice 
Reserved 

Indicates that the current state of a process prohibits the processor 
from continuing to work on it. 

There is only one process fault subtype, the time-slice fault. This 
fault occurs when an end-of-time-slice event occurs and the time­
slice-reschedule flag in the process-controls word is clear. 

The intended action following this fault is for the fault handler to 
collect information on the current state of the process. The fault 
handler can then store this information in the PCB for the process 
and suspend the process. Or, as an alternative, the fault handler can 
return to the process and use the saved process-state and instruction­
resumption information to continue executing the process. 

Flags: Not used. 

Fault Data: Not used. 

Addr. Fault. Inst.: IP for the instruction on which the processor 
faulted. 

IP for the instruction that would have been executed next, if the 
fault had not occurred. 

Since this fault often occurs while an instruction is being executed, 
it is often accompanied by a process-state change. However, when 
the state does change, the processor saves sufficient state infor­
mation to allow the processor to resume work on the instruction on 
a return from the fault handler or to allow the state of the process to 
be saved when the process is suspended. 

When the fault occurs, the processor does one of the following: (1) 
terminates the instruction as if it had not yet begun execution, (2) 
completes execution of the instruction, or (3) suspends the instruc­
tion, saving the intermediate state in the resumption record. The 
instruction being executed determines which action is taken. 
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Protection Faults 

Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

FAULT HANDLING 

716 

Bit Number 

Bit a 
Bit 1 
Bit 2 
Bit 3-7 

Name 

Reserved 
Segment Length 
Page Rights 
Reserved 

Indicates that an instruction has attempted to violate the addressing­
protection rules of the processor architecture. Each protection fault 
is assigned a bit in the fault-subtype field. Both protection faults 
can occur simultaneously, in which case, the bits for both faults are 
set. 

The segment-length fault can occur in either of the two following 
situations: (1) when an address operand in an instruction falls 
beyond the defined boundaries of a region, or (2) when the segment 
index within an SS is greater than the last entry in the segment table. 

The page-rights fault occurs when the following two situations both 
occur: (l) an address operand references a page in a paged or 
bipaged region and (2) the page-table-directory entry or page-table 
entry associated with the reference page does not have the necessary 
page rights for the current execution mode of the processor. 

The action that the processor takes when these faults occur allows 
the fault handler to modify the segment table, page-table-directory, 
or page-table when appropriate to correct the fault condition, then 
resume work on the process from the point where the fault occurred. 

Flags: FO - Used with page-rights fault only. If set, 

Fault Data: 

Fa indicates that an attempted write operation 
caused the fault; if clear, Fa indicates that an 
attempted read operation caused the fault. 

Fl - Not used. 

For a page-rights fault, the first two words of 
the fault-data field specify the page that was 
being accessed when the fault occurred. The 
20 most-significant bits of the address that 
caused the fault are stored in bits 12 through 
31 of the first word. (The two most­
significant bits of the address are set to 0, 
which means that the processor interprets the 
value as an offset into a region). The seg­
ment index associated with the region that 
contains the address is stored in bits 5 
through 31 of the second word. 
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Saved IP: 

Proc. State Changes: 

FAULT HANDLING 

For a segment-length fault where an address 
in the faulting instruction is beyond the 
specified size of the segment or region, the 
page that the address is trying to reference is 
specified in the first two words of the fault­
data field as described for the page-rights 
fault. 

For a segment-length fault where a segment 
index given in the faulting instruction is 
greater than the last index in the segment 
table, the segment index is given in the 
second word of the fault-data field as 
described for the page-rights fault. 

Addr. Fault. Inst.: IP for the instruction on which the processor 
faulted. 

Same as the address-of-faulting-instruction field. 

A process-state change accompanies each of the protection faults; 
however, sufficient state information is saved to permit either 
reexecution or completion of the faulting instruction on a return 
from the fault handler. 

These faults occur while the faulting instruction is being executed. 
When the fault occurs, the processor will either (1) terminate the 
instruction as if it had not yet begun execution or (2) suspend the 
instruction, saving the intermediate state in the resumption record. 
The instruction being executed determines which action is taken. 
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Structural Faults 

Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

Saved IP: 

Proc. State Changes: 

o 
1 
2 
3 
4-F 

FAULT HANDLING 

Name 

Reserved 
Control 
Dispatch 
lAC 
Reserved 

Indicates that the state of one of the architecture-defined data struc­
tures is preventing the processor from performing a system opera­
tion. Examples of things that can cause a structural fault include a 
pointer in one data structure to a non-existent data structure or in­
valid state information in a data-structure field. These faults often 
occur while the processor is performing an internal (implicit) opera­
tion and may not be related to a particular instruction. 

The control fault occurs either when (1) the invalid contents of a 
data structure are preventing a fault or interrupt from being handled 
or when (2) a fault occurs during the process of invoking an inter­
rupt handler. 

The dispatch fault occurs when the invalid contents of a data struc­
ture are preventing a process-dispatching action from being per­
formed. 

The lAC fault occurs when the invalid contents of a data structure 
are preventing an lAC from being executed. 

Flags: Not used. 

Fault Data: Not used. 

Addr. Fault. Inst.: IP for the instruction on which the processor 
faulted 

Not used. 

When a structural fault occurs, the accompanying state of the 
process is undefined. The processor is thus not able to return 
predictably from the fault handler to the point in the process where 
the fault occurred. This condition is usually fatal. 
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Trace Faults 

Fault Type: 

Fault Subtype: 

Function: 

FAULT HANDLING 

1'6 
Bit Number 

Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit4 
Bit 5 
Bit 6 
Bit 7 

Name 

Reserved 
Instruction Trace 
Branch Trace 
Call Trace 
Return Trace 
Preretum Trace 
Supervisor Trace 
Breakpoint Trace 

Indicates that the processor has detected one or more trace events. 
The processor's event tracing mechanism is described in detail in 
Chapter 16. 

A trace event is the occurrence of a particular instruction or type of 
instruction in the instruction stream. The processor recognizes 
seven different trace events (instruction, branch, call, return, 
preretum, supervisor, and breakpoint). It detects these events, 
however, only if a mode bit is set for the event in the process 
trace-controls word, which is cached in the processor chip. If, in 
addition, the trace-enable flag in the process controls is set, the 
processor generates a fault when a trace event is detected. 

The fault is generated following the instruction that causes a trace 
event (or prior to the instruction for the preretum trace event). 

The following trace modes are available: 

• Instruction - Generate trace event following any instruction. 

• Branch - Generate trace event following any branch instruc­
tion when branch is taken. (Does not occur on branch and link 
and call instructions.) 

• Call - Generate trace event following any call or branch-and­
link instruction, or implicit procedure call (i.e., call to fault or 
interrupt handler). 

• Return - Generate trace event following any return instruc­
tion. 

• Prereturn - Generate trace event prior to any return instruc­
tion, providing the preretum-trace flag in rO is set. (The proces­
sor sets this flag automatically when prereturn tracing is 
enabled.) 

• Supervisor - Generate trace event following any call-system 
instruction that references a supervisor procedure entry in a 
procedure table. 
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Fault Record: 

Saved IP: 

Proc. State Changes: 

• Breakpoint - Generate trace event following any processor 
action that causes a breakpoint condition (such as a mark or 
fmark instruction). 

There is a trace fault subtype and a bit in the fault-subtype field 
associated with each of these modes. Multiple fault sUbtypes can 
occur simultaneously, with the fault-subtype bit set for each sUbtype 
that occurs. 

When a fault type other than a trace fault occurs during the execu­
tion of an instruction that causes a trace event, the non-trace-fault is 
handled before the trace fault. An exception to this rule is the 
prereturn trace fault. The prereturn trace fault will occur before the 
processor has a chance to detect a non-trace-fault, so it is handled 
first. 

Likewise, if an interrupt occurs during an instruction that causes a 
trace event, the interrupt is serviced before the trace fault is handled. 
Again, the prereturn trace fault is an exception. Since it occurs 
before the instruction, it will be handled before any interrupt that 
might occur during the execution of the instruction. 

Flags: Not used. 

Fault Data: Not used. 

Addr. Fault. Inst.: IP for the instruction that caused the trace 
event, except for the prereturn trace fault. 
For the prereturn trace fault, this field has no 
defined value. 

IP for the instruction that would have been executed next, if the 
fault had not occurred. 

A process state change accompanies all the trace faults (except the 
prereturn trace fault), because the events that can cause a trace fault 
occur after the faulting instruction is completed. As a result, the 
faulting instruction cannot be reexecuted upon returning from the 
fault handler. 

Since the prereturn trace fault occurs before the ret instruction is 
executed, a process state change does not accompany this fault and 
the faulting instruction can be executed upon returning from the 
fault handler. 
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Type Faults 

Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

Saved IP: 

Proc. State Changes: 

AI6 

Number l6 

o 
I 
2 
3-F 

FAULT HANDLING 

Name 

Reserved 
Type Mismatch 
Contents 
Reserved 

Indicates that the contents of an architecture-defined data structure 
or its descriptor are inconsistent with the operation that the proces­
sor is trying to perform. 

The type-mismatch fault occurs when the type information in a 
segment descriptor does not match the operation the processor is 
being asked to perform. For example, a type-mismatch fault occurs 
when the SS given in a resume-process instruction (resumprcs) 
does not point to a PCB segment. 

The contents fault occurs when the information in a segment is not 
defined or is inconsistent. 

Flags: Not used. 

Fault Data: Not used. 

Addr. Fault. Inst.: IP for the instruction on which the processor 
faulted 

Not used. 

When a type fault occurs, the accompanying state of the process is 
undefined. The processor is thus not able to return predictably from 
the fault handler to the point in the process where the fault occurred. 

12-39 



intel~ 

Virtual-Memory Faults 

Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

Saved IP: 

Proc. State Changes: 

FAULT HANDLING 

° 1 
2 
3 
4-F 

Name 

Reserved 
Invalid Segment-Table-Entry 
Invalid Page-Table-Directory-Entry (PTDE) 
Invalid Page-Table-Entry (PTE) 
Reserved 

Indicates that an address or an SS in an instruction cannot be trans­
lated into a physical address, because the segment or page being 
referenced is not in physical memory. 

The invalid-segment-table-entry fault occurs when the valid flag in 
a segment descriptor is 0, which can mean that the segment, the 
page-table directory, or the page table that the segment descriptor 
points to is not in physical memory. 

The invalid-PTDE fault occurs when the valid flag in a page-table­
directory entry is 0, which means that the page table that the entry 
points to is not in physical memory. 

The invalid-PTE fault occurs when the valid flag in a page-table 
entry is 0, which means that the page that the entry points to is not 
in physical memory. 

The action that the processor takes when these faults occur allows 
the fault handler to copy the missing segment or page from the disk 
into physical memory, then resume work on the process from the 
point where the fault occurred. 

Flags: Not used. 

Fault Data: For an invalid-PTE or invalid-PTDE fault, 
the 20 most-significant bits of the address 
that the instruction faulted on is stored in bits 
12 through 31 of the first word of the fault 
data field. 

For an invalid-segment-table-entry fault or 
for an invalid-PTE fault for a large-segment 
table, the segment index is stored in bits 5 
through 31 of the second word of the fault­
data field. 

Addr. Fault. Inst.: IP for the instruction on which the processor 
faulted 

Same as the address-of-faulting-instruction field. 

A process-state change accompanies each of the virtual-memory 
faults, however, sufficient state information is saved to permit either 
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reexecution or completion of the faulting instruction on a return 
from the fault handler. 

These faults occur while the faulting instruction is being executed. 
When the fault occurs, the processor will either (1) terminate the 
instruction as if it had not yet begun execution or (2) suspend the 
instruction, saving the intermediate state in the resumption record. 
The instruction being executed determines which action is taken. 
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CHAPTER 13 
PROCESS MANAGEMENT 

This chapter introduces the 80960MC processor's process-management facilities. Included is a 
discussion of process-management concepts, the process-control block (PCB), and the require­
ments for managing a single process. Chapter 14 describes the management of multiple 
processes. 

PROCESS-MANAGEMENT OVERVIEW 

The processor provides a set of low-level and high-level process-management facilities. With 
these tools, the kernel or system-executive is able to efficiently allocate processor resources to 
one or more processes, using any of a wide variety of process-management techniques. 

The following section provides an overview of these process-management facilities. 

Process Structure 

A process is a unit of work that the processor can schedule, dispatch, and execute. It can be 
used to execute an application task, a kernel utility, or a monitor command shell. 

A process is made up of two parts: an address space and a PCB. The address space contains 
the code, stacks, static data, and heap data for the process. When the processor's virtual­
addressing mode is being used, the address space for a process consists of three process­
specific regions (0, 1, and 2). When the process is bound to the processor for execution, these 
regions are joined with region 3, which is shared by all processes, to form the process­
execution address space (or process address space) for the process. When the physical­
addressing mode is being used, the address space for a process consists of all of physical 
memory. 

The PCB defines the address space for the process and provides a repository of state infor­
mation for the process. In a multitasking system, the PCB also provides a device for schedul­
ing and dispatching multiple processes. 

Process State 

The following items define the state of a process at any given time: 

• The address-space image 

• The state of the global registers 

• The state of the stack, including the local registers 

• The state of the arithmetic controls 

• The state of the process controls 
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• The state of the trace controls 

When a process is bound to the processor, the state of the process is contained within the 
processor, the address space, and the PCB. When a process is suspended, the state of the 
process is contained in the address space and the PCB. The PCB and region mechanism allows 
a processor to work on several processes concurrently, merely by switching among PCBs and 
address spaces. 

Using Processes 

The process-management facilities of the processor support single-process systems, multitask­
ing systems, and mUltiprocessor systems. In a single-process system, a process is bound to the 
processor at initialization time. The processor then executes this process alone. This single 
process can be used to support a dedicated or embedded activity or to run a user-defined, 
process-management mechanism. In the latter case, the user-defined processes are transparent 
to the processor. 

The processor provides several mechanisms for managing a multitasking system. These 
mechanisms can be roughly divided into two categories: explicit process-dispatching and 
self-dispatching. When using explicit dispatching, the kernel binds a process to the processor 
or suspends a process by means of explicit instructions to the processor. 

The processor also provides a set of high-level process-management facilities that allow 
processes to be dispatched automatically, independently from the activity of the kernel. This 
self-dispatching mechanism makes use of a system-defined dispatch port, which the processor 
uses to schedule and dispatch processes. 

In a multiprocessor system, these high-level process-management facilities greatly simplify the 
allocation of processor resources to ready and executing processes. 

PROCESS·CONTROL BLOCK 

The PCB defines a process for the processor. It specifies the execution environment for the 
process, provides a place to record the execution status of the process, and maintains infor­
mation about the system resources that have been allocated to the process. 

Figure 13-1 shows the structure of the PCB and Figure 13-2 shows the structure of the 
process-controls word, which is one of the fields of the PCB. The following paragraphs 
describe the function of each field of the PCB. 
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31 7 0 
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~------------------------------------~ 
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RESERVED ( INITIALIZE TO 0) 

Figure 13-1: Process-Control Block (PCB) 
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31 

1~ 

RESERVED ( INITIALIZE TO 0) 

Figure 13-2: Process-Controls Word 

Process Controls 

TRACE ENABLE 

EXECUTION MODE 

TIME·SLlCE RESCHEDULE 

TIME SLICE 

TIMING 

RESUME 

TRACE·FAULT PENDING 

PREEMPT 

REFAULT 

STATE 

PRIORITY 

INTERNAL STATE 

The process-controls word contains miscellaneous pieces of information to control processor 
activity, while the processor is executing the process. The various functions of this field are as 
follows: 

The execution-mode flag determines whether the processor is operating in the user mode 
(clear) or supervisor mode (set). The processor automatically sets this flag on a supervisor call 
and clears it on a return from supervisor mode. The kernel can also set this value so that the 
processor is automatically put in one or the other of these modes when the process is initially 
bound to the processor. 

The priority field determines the priority (from 0 to 31) of the process. When the process is in 
the executing state, the processor sets its priority according to this value. 

The state field determines the state of the process: The encoding of these bits is shown in 
Table 13-1. 

These bits tell the processor or software whether the process either 

• has been interrupted so the processor can service an interrupt (01 2), or 

• is currently being executed or waiting to be executed (002), 
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Table 13-1: Encoding of the Process-State Field 

State Process State 
Field 

00 Executing, ready, or blocked 

01 Interrupted 

10 Reserved 

11 Reserved 

The timing, time-slice, and time-slice-reschedule flags control the timing and time-slice 
scheduling of processes. This subject is discussed in Chapter 14 in the section titled "Time­
Slice Scheduling." 

The preempt flag determines whether or not a process is eligible to preempt another processes. 
Process preemption is described in Chapter 14 in the section titled "Process Preemption." 

The resume flag signals the processor that an instruction has been suspended. The processor 
sets this flag whenever it suspends an instruction to handle an interrupt or fault. On a return 
from the interrupt or fault handler, the processor checks this flag and performs an instruction 
resumption action if the flag is set. 

The refault flag is used in conjunction with the handling of override faults. When an override 
fault is detected, the processor sets this flag. On a return from an override-fault handler, the 
processor checks this flag and refaults on the original fault (the one that occurred before the 
override fault). Further discussion of this flag is provided in Chapter 12 in the sections titled 
"Override Call/Return Action" and "Refault Operation." 

The trace-enable and trace-fault-pending flags control tracing. The trace-enable flag deter­
mines whether trace faults are to be generated (set) or not-generated (clear). The processor 
uses the trace-fault-pending flag to determine if a trace event has been detected (set) or not 
(clear). The use of these flags are discussed in detail in Chapter 16. 

Bits 2 through 5, 15, and 21 through 31 are reserved. These bits should be set to 0 when the 
PCB is created and not altered after that. 

The kernel can alter the settings of the process-controls bits in several ways, as described later 
in this chapter in the section titled "Changing the Process-Controls." 

Process-State Fields 

Several fields are provided in the PCB for storing the state of the process. These fields define 
the state of the process when the process is bound to the process and provide a place to store 
state information when the process is suspended. 

The arithmetic-controls field contains the state of the arithmetic controls. 
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The trace-controls field contains the state of the trace controls. 

The region 0 SS, region 1 SS, and region 2 SS fields contain SS's for the three process-specific 
regions of the process's address space. 

The global and floating-point registers field provides a place to store the state of the global and 
floating-point registers when a process is suspended. The kernel should not normally access 
these fields except to clear them when the PCB is created. Also, on creation of the PCB, a 
pointer to the base of the local stack must be placed in bytes 236 through 239 (global register 
gIS). 

The resumption-record field provides storage space for instruction resumption information. If 
an instruction is suspended to handle an interrupt or a fault, the resumption record for the 
instruction is copied into this field when the processor returns from the interrupt or fault 
handler. Refer to the section in Chapter 10 titled "Servicing an Interrupt" and the section in 
Chapter 12 titled "Fault-Handling Action" for further discussion of the use of the resumption­
record field. 

Process Scheduling and Communication Fields 

The following fields are provided to support the processor's high-level process management 
facilities. These fields are not used when the processor is operated in a single-process applica­
tion. 

The dispatch-port-SS field provides an SS pointer to the dispatch port that the process is to be 
queued to when the process is suspended. 

The queue-record field allows several PCBs to be linked together to form a queue. Processes 
are typically queued to ports or semaphores. The structure of the queue-record field is given in 
Chapter 14 in the section titled "Queue Record." 

The processor provides a means of passing I-word messages between processes. The 
receive-message field provides a temporary storage location for such messages. The message 
passing mechanism is described in Chapter 14 in the section titled "Interprocess 
Communication. " 

The lock field allows the processor to lock the PCB for the process it is working on, by setting 
bit 0 of the lock to 1. This lock supports multiprocessor systems. It provides a means for one 
processor to determine if another processor is currently working on a process, by reading the 
lock in the process's PCB. This lock does not prevent a processor from reading or altering a 
PCB. It merely acts as a flag to show whether or not a process is currently bound to a 
processor. 

The process-notice field consists of two flags at bits 16 and 31 (as shown in Figure 13-3). 
(Bits 17 through 30 are available to software.) If these event-fault-request flags are set, the 
processor signals an event-notice fault either (1) when a processor attempts to dispatch the 
process, or (2) when the process is already bound to a processor and the processor receives a 
check-process-notice lAC from another processor. This field is cleared when an event-notice 
fault is generated. 
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Figure 13-3: Process Notice Field and Event-Fault Flags 

The process-notice field also supports mUltiprocessor systems. It offers a means for one 
processor to preempt a process running on another processor or for a processor to dequeue a 
process from a dispatching port. (Note that this is only one of the methods that the processor 
provides for preempting a process.) Further discussion of the process-notice field is provided 
in Chapter 12 in the section titled "Event-Notice Fault." 

Process-Timing Fields 

The processor provides facilities for counting the amount of time that a processor spends 
working on a process. It also provides facilities for scheduling mUltiple processes on the basis 
of time slices. The following fields support these facilities. The use of these fields are 
discussed in detail in Chapter 14 in the section titled "Time-Slice Scheduling." 

The processor uses the execution-time field to keep a running count of the amount of time the 
process has spent in the execution state. The field contains a long-ordinal value (64 bits). The 
count saved in this field is in units of ticks. The processor updates this field in the PCB at the 
end of each time slice. 

The processor uses the next-time-slice and residual-time-slice fields for time-slice scheduling. 
The next-time-slice field contains an ordinal value (32 bits) that gives the software preset time 
(in ticks) that the processor is allowed to work on the process before a time-slice event is 
generated. The processor keeps a count of the time remaining in the current time-slice in the 
residual-time-slice field (which also contains an ordinal value). 

Refer to the section in Chapter 14 titled "Process Timing" for a detailed discussion of how the 
processor uses the execution-time, next-time-slice, and residual-time-slice fields for process 
timing. 

Storing of PCB Fields in the Processor 

When a process is bound to the processor,certain fields from the PCB are copied into the 
processor and altered as the state of the process changes. When the processor alters an 
internally held field of the PCB, it does not generally update the field in memory. As a result, 
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the memory image of a PCB that is bound to the processor may not accurately reflect the actual 
state of the process at a given time. 

The only fields that the processor updates in the PCB while it is working on the process are the 
residual-time-slice and resumption-record fields. The remainder of the fields are only updated 
in the PCB when the process is suspended. 

Likewise, changing a field in the PCB currently bound to the processor does not necessarily 
insure that the change will be reflected in the processor's internal process image. 

The only fields in the PCB that software can change while the process is being executed and 
have the effects of these changes sent to the processor are the process-controls, arithmetic­
controls, and process-notice fields (as described in the following sections). 

NOTE 

At initialization, all the fields of the processor's internal process-controls image are set to 0 
except execution mode, which is set to I (supervisor mode). 

Changing the Process Controls 

The kernel can change the process controls for the current process using any of the following 
three methods: 

• Modify-process-controls instruction (modpc) 

• Alter the saved process controls prior to a return from an interrupt handler 

• Alter the saved process controls prior to a return from a fault handler 

The modpc instruction reads and modifies the process controls cached in the processor. (It 
does not change the process controls word in the PCB for the current process.) 

In the latter two methods, the kernel changes the process controls in the interrupt or fault 
record that is saved on the stack. On the return from the interrupt or fault handler, the modified 
process controls are copied into the processor's internal process controls. 

Two things should be noted with regard to modifying the saved process controls. First, this 
technique for changing the process controls can be used on a fault only if the fault handler was 
invoked by means of an implicit supervisor call. Second, the saved process controls are only 
copied into the process-controls image contained in the processor; the process controls in the 
PCB are not affected. 

When the process controls are changed as described above, the processor acts on the changes 
as soon as it receives the new information, except for the following situations. 

There is no guarantee that the processor will act on the changt( to the process-state field. The 
only case where such a change will have the desired result is if the process state in the 
saved-process controls is changed to "executing" prior to a return from an interrupt handler. 
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Changing the resume flag can cause the execution of the subsequent instruction to yield 
unpredictable results. 

If the modpc instruction is used to change the trace-enable flag, the processor does not 
guarantee to act on the change until after up to four more instructions have been executed. 

Changing the Arithmetic Controls 

The kernel or an applications program can change the arithmetic controls using the modac 
instruction. This instruction only affects the internally cached arithmetic controls. The arith­
metic controls word in the PCB for the current process is not changed. 

Changing the Process-Notice Field 

The process-notice field of the PCB is not cached in the processor. However, the check 
process-notice lAC can be used to cause the processor to check the process-notice field in the 
PCB for the currently running process. (Refer to the discussion of the process-notice field 
earlier in this chapter in the section titled "Process Scheduling and Communication Fields.") 

REQUIRED SOFTWARE SUPPORT FOR A SINGLE-PROCESS SYSTEM 

Figure 9-1 shows the system-data structures required to support a single-process system. Note 
that the single process is defined by means of a PCB and the three process-specific regions of 
the address space. 

Figure 13-4 shows the required fields of the PCB for a single-process system. The PCB in this 
application is used primarily to contain initialization information. Once the process is bound to 
the processor at initialization, the only field of the PCB that the processor will use is the 
resumption record field. 

Also, in single-process applications, the timing flag in the process-controls word should be set 
to 0, to disable timing. 

PHYSICAL ADDRESSING VERSES VIRTUAL ADDRESSING 

If the processor is going to execute the process using strictly the physical-addressing mode, the 
region pointers in the PCB are not required. 

However, an SS and a process-segment descriptor for the PCB are required, with the base 
address in the segment descriptor aligned to a 64-byte boundary and pointing to the first byte in 
physical memory of the PCB. 
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Figure 13-4: Process-Control Block for Single-Process System 
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PROCESS HANDLING IN A SINGLE·PROCESS SYSTEM 

In a single-process system, the initialization code must bind the process to the processor using 
a resume-process instruction (resumprcs). Once this binding is complete, the processor works 
on this process until the processor is either shut down or placed in the stopped state. 

For diagnostic purposes, the PCB fields that are held internally in the processor can be written 
out to the PCB in memory using the save process instruction (saveprcs). 
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CHAPTER 14 
MULTIPLE-PROCESS MANAGEMENT 

This chapter discusses the facilities that the processor provides to manage multiple processes in 
multitasking systems. Included are descriptions of the process management tools provided for 
explicit process dispatching, self-dispatching, process synchronization, and interprocess com­
munication. 

OVERVIEW OF MUL TIPLE-PROCESS-MANAGEMENT FACILITIES 

The process management facilities described in this chapter, and in Chapters 13 and 15, 
provide a general set of tools for designing a wide variety of process management mechanisms. 
In showing how these facilities can be used to support multitasking kernels, three general 
process-management scenarios are presented: 

• A completely software-implemented system that runs within the context of a single 
80960MC-defined process. 

• A largely software-implemented system that uses several of the processor's low-level 
process management tools to explicitly schedule and dispatch mUltiple processes. 

• A partly software-implemented system that uses the processor's high-level process 
management tools for automatic scheduling and dispatching of multiple processes, process 
synchronization, and interprocess communication. 

The process management tools to support the first scenario are described in Chapter 13. 

The tools to support the second and third techniques are described in this chapter. These tools 
are divided into two groups: low-level tools and high-level tools. 

The low-level tools include the following: 

• The PCB presented in Chapter 13, which allows a kernel to define a process and bind it to 
the processor for execution. 

• Two process-handling instructions that permit the kernel to explicitly bind a process to the 
processor or suspend work on the process. 

• A process timing mechanism that provides the kernel with a method of scheduling mul­
tiple processes on the basis of time slices. 

The high-level tools include the following: 

• A dispatch port data structure that supports automatic scheduling and dispatching of 
processes. 

• Semaphore and communication port data structures that allow synchronization of inter­
acting processes. 

• Message-passing facilities that permit messages to be passed among processes. 
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These high-level tools are a unique feature of the 80960MC architecture. They provide silicon­
based support for several advanced process-management mechanisms. 

PROCESS MANAGEMENT CONCEPTS 

This section presents several process management concepts that will help you in understanding 
the functions of and the actions taken by the low-level and high-level process management 
tools. 

Scheduling and Dispatching 

The concepts of scheduling and dispatching are central to the development of process manage­
ment schemes. Dispatching is the activity of assigning a process to a processor. Scheduling is 
the activity of maintaining a list of processes that are waiting to be dispatched. In designing a 
process management system, the major goal of the dispatching mechanism is to deploy proces­
sor resources rapidly, whereas the major goal of the scheduling mechanism is to provide 
efficient allocation of the processor resources to the executable processes. 

Process States 

Once the kernel has created a process to run on the 80960MC processor, it will always be in 
one of the following states: 

• Executing 

• Interrupted (but executing) 

• Ready 

• Blocked 

Figure 14-1 shows the relationship of these states. 

In the executing state, the process is bound to the processor and is being executed. Being 
bound to the processor means that the processor has read the contents of the process's PCB, 
and knows the location of the address-space regions for the processor. It has also copied 
process-state information, such as the process controls and arithmetic controls, from the PCB 
into internal registers or buffers. 

Only one process can be bound to the processor at a time. In general, a processor should not be 
instructed to bind itself to another process until it has first suspended the current process. To 
suspend a process, the processor copies the parts of the process's PCB that it holds internally 
back into the PCB in memory, so that the PCB accurately defines the state of the suspended 
process. The save process (saveprcs) and resume process (resumprcs) instructions cause the 
processor to explicitly save a process or bind itself to a process. When using self-dispatching, 
the processor performs these tasks automatically. (The saveprcs and resumprcs instructions 
and self-dispatching of processes are described later in this chapter.) 
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Figure 14-1: Process States 

While in the executing state, a process can be interrupted. In the interrupted state, the process 
remains bound to the processor, but the processor is executing an interrupt-handler procedure. 

A process is in the ready state when a PCB exists for the process and the PCB is enqueued on a 
dispatch port. A process is also said to be in ready if it is available to be bound to the 
processor using the resumprcs instruction. A process in the ready state is suspended. 

The blocked state is used with the processor's process-synchronization and message-passing 
mechanisms. A process is blocked either when it is enqueued to a semaphore (waiting to 
receive a signal) or when it is enqueued to a communication port (waiting to receive a 
message). A process in the blocked state is suspended. 

State-Transition Actions 

To aid in managing multiple processes, the processor supports a set of actions that moves 
processes among the four possible process states. These actions are listed below. 

• Schedule process 

• Dispatch and bind process 
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• Suspend process 

• Interrupt 

• Return from interrupt 

• Block process 

• Unblock process 

The processor is able to carry out some or all of these actions depending on the process 
management technique that the kernel uses. For example, in the single-process application 
described in Chapter 13, the process would be placed in the executing state at initialization. 
Thereafter it would move back and forth between the executing and interrupted states. 

Also, for some of the actions listed above, the processor provides several different tools for 
performing the action. For example, a process can be dispatched by means of (1) the 
resumpres instruction or (2) an automatic dispatch action from a dispatch port. 

The following sections describe how the process states and state-transition actions are used in 
systems that use explicit process dispatching and self-dispatching. Later in this chapter, the 
ability to block a process for the purposes of process synchronization and interprocess com­
munication is discussed. 

EXPLICIT PROCESS-DISPATCHING 

Two instructions, resumpres and savepres, allow the kernel to explicitly dispatch and suspend 
processes, respectively. These instructions perform similar functions to the RESUME and 
SA VE functions provided in most UNIXTM kernels. 

The resumpres instruction takes a process in the ready state and binds it to the processor, at 
which time the processor begins executing the process. Here, the process is considered in the 
ready state if a PCB has been created for the process and a segment descriptor for the PCB 
exists in the segment table. 

The savepres instruction causes the processor to write any internally held parts of the PCB out 
to the PCB in memory. Following the execution of this instruction, the process is still bound to 
the processor, but the state of the PCB in memory is like it would be if the process had just 
been suspended. A resumpres instruction can then be safely executed to bind a new process to 
the processor. 

It should be noted that resumpres and save pres instructions are tools to assist the kernel in 
dispatching and suspending processes, but they do not do the whole job. These instructions will 
most often be used in a fault- or interrupt-handler procedure, in which case the kernel will need 
to modify the PCB for the suspended process in between the savepres instruction to suspend 
the current process and the resumpres instruction to dispatch the next process. This work 
involves changing the PCB to reflect the state of the process prior to invoking the fault or 
interrupt handler. This can often be done merely by changing the frame pointer in the saved 
global registers and the process-state bits in the process controls. 
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PROCESS TIMING 

The processor provides an on-chip counter that can be used for both process and idle timing. 
When used for process timing, the counter's primary function is to support time-slice schedul­
ing. It can be used, however, strictly to count execution time, as described at the end of this 
section. 

The counter counts ticks. The time interval of a tick is described in Chapter 9 in the section 
titled "Processor Timing." 

Time-Slice Scheduling 

With time-slice scheduling, the processor works on each process for a set duration, called a 
time-slice. When the processor begins work on a newly bound process, it begins counting. At 
the end of the time-slice, it generates a time-slice event, which either causes a time-slice fault 
to be signaled or causes the current process to be suspended and another process dispatched. 

Six fields in the PCB support time-slice scheduling: the residual-time-slice, next-time-slice, 
and execution-time fields; and the timing, time-slice, and time-slice-reschedule flags in the 
process controls. These fields are used as follows. 

The timing flag (if set) enables the timing function. If this flag is clear, the processor does not 
perform process timing. The modpc instruction can be used to toggle the timing flag, turning 
timing on and off. Also, the processor automatically clears this flag when it invokes an 
interrupt handler and restores the flag on the return from the handler. This action causes 
process timing to be turned off while the processor is servicing an interrupt. 

The next-time-slice field determines the duration of a time-slice for the process. Each process 
can have a different time-slice value, ranging from 16 ticks to 232 - 1 ticks. 

The residual-time-slice field is used to count the remaining time for the current time-slice. 
When the process is initially bound to the processor, the next-time-slice and residual-time-slice 
fields are the same. As the processor counts (while working on the process), it decrements the 
residual-time-slice field. When this field reaches 0, the processor generates the end-of-time­
slice event. 

The time-slice flag enables the generation of the end-of-time-slice event. Alternately, it can be 
used to prevent an end-of-time-slice event. If this bit is cleared, the processor will continue to 
execute the process beyond the expiration of its time-slice. 

The time-slice-reschedule flag determines what the processor does when an end-of-time-slice 
event is generated. It can do either of two things: (1) generate a time-slice fault or (2) 
automatically suspend the current process and dispatch a new process. The latter function is 
one of the high-level process management actions discussed later in this chapter. 

When an end-of-time-slice event is generated, the processor performs the following actions: 

1. It copies the next-time-slice value into the residual-time-slice field, setting the count for 
the next time the process is worked on. 
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2. It updates the execution time by adding the next-time-slice value to the value in the 
execution-time field. 

3. It checks the time-slice flag. If the flag is clear, the processor continues working on the 
process; if the flag is set, it goes to the next step. 

4. It checks the time-slice-reschedule flag. If the flag is set, it automatically suspends the 
current process and dispatches a new process. If the flag is clear, it signals a time-slice 
fault and invokes the time-slice fault handler. 

The time-slice fault action has two uses. One use is to allow the fault handler to alter process 
attributes such as the next-time-slice value or the priority before the process is suspended. 

The other use of the time-slice fault is to support a kernel that is using the saveprcs and 
resumprcs instructions to suspend and dispatch processes. Here, the fault handler can carry 
out process suspension and dispatching action. 

Execution-Time Counting 

The execution-time field gives the elapsed execution time of the process. As shown in the 
above action statement, this field is only updated at the end of each time-slice, by adding the 
value in the next-time-slice field to the value in the execution-time field. (At the beginning of 
a time slice, the value in the execution-time field is thus equal to the actual elapsed time of the 
process plus the value of the next time slice.) The time that a process has spent in the 
execution state, at any given time, is then the value in the execution-time field minus the value 
in the residual-time-slice field. 

The load-process-time instruction (Idtime) allows a process to determine its elapsed time 
during execution. This instruction stores the execution-time minus the residual-time-slice 
value in a specified register. 

In a new PCB, the execution-time field should be set equal to the next-time-slice field. 

The execution-time field can be used to count elapsed process-execution time even if time-slice 
scheduling is not used. To do this, the timing flag in the process controls must be set and the 
time-slice flag must be cleared. The processor then updates the execution-time field at the end 
of each time slice, but continues working on the process until the process is killed or blocked. 

OVERVIEW OF HIGH-LEVEL PROCESS MANAGEMENT FACILITIES 

The processor's high-level process management facilities, introduced earlier in this chapter, 
allow the processor to handle the scheduling and dispatching of multiple processes automati­
cally. The major benefits of these facilities are that: 

• they provide a flexible and highly-efficient mechanism for managing processes in a mul­
titasking system. 

• they relieve a significant burden from the kernel. 

• they simplify the design of mUltiple-processor systems. 
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The remainder of this chapter describes how these high-level facilities can be used for process 
scheduling and dispatching, process synchronization, and interprocess communication. 

Ports 

The processor's high-level process-management facilities are based on ports. A port is a 
device for exchanging messages. It allows messages to be exchanged between two or more 
processes. A port can also be used to maintain a list of ready-to-execute processes for the 
processor. 

A message is a segment that contains a queue record so that it can be queued to a port. A 
common type of message segment is a PCB that represents a ready-to-be-executed or blocked 
process. A message segment can also contain data that is to be exchanged between two 
processes. Messages are identified by their respective SS's. 

A port is contained in a port segment. (The segment-descriptor format for port segments is 
given in Chapter 8.) As shown in Figure 14-2, the processor recognizes two types of ports: a 
first-in, first-out port (FIFO port) and a priority port. A FIFO port supports a single message 
queue; a priority port supports 32 message queues arranged in order of message priority. 

Bit 16 of the first word of a port segment determines whether it is a FIFO port (clear) or a 
priority port (set). 

FIFO Port 

A FIFO port contains a single, linked list (i.e., queue) of messages, arranged in FIFO order. 
When a message is received from a FIFO port, the message comes from the head (first 
message) of the queue. 

The functions of the fields in a FIFO port are as follows. The lock field is used to synchronize 
the manipulation of a port by several processors. When a processor requires access to a port, it 
first checks bit 0 of the lock field. If this bit is 0, the processor atomically sets the bit to 1. The 
processor then accesses the port as needed. If the bit is 1 when the processor checks it, 
indicating that another processor is already accessing the port, the processor spins on the port, 
until the port becomes available for access. 

Bit 17 of the first word of the port (the queue-state flag) shows what the port's queue is being 
used for. If this bit is set to 1, the queue contains blocked processes, waiting for messages; if 
the bit is set to 0, the queue contains messages waiting to be received or is empty. 

The queue-head SS and queue-tail SS fields contains the SS of the message at the head of the 
queue and the tail of the queue, respectively. The messages in the queue are linked together 
through their respective queue records (described later in this chapter). A value of 0 in the 
queue-head-SS field indicates an empty queue. 
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Figure 14-2: Ports 

Priority Port 

A priority port contains 32 queues (linked lists) of messages, with each queue arranged in 
FIFO order. When a message is received from a priority port, the message comes from the 
head of the highest priority non-empty queue. The priorities of the queues range from 0 to 31, 
with 31 being the highest priority. 

The functions of the fields in a priority port are as follows. The lock field and the queue-state 
flag perform the same functions in the priority port as in the FIFO port. 
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The queue-status field shows the status of each queue in the port. Each bit in this field 
represents the state of one queue (with bit ° representing the priority ° queue, bit 1 the priority 
1 queue, etc.). If a bit is set to 1, it indicates that the queue contains one or more messages; if 
the bit is set to 0, the queue is empty. If all the bits in the queue-status field are 0, the port is 
empty. 

Each of the 32 queues in the priority port is represented by a queue header. Each queue header 
is made up of a queue-head-SS field and a queue-tail-SS field. These fields perform the same 
functions as the corresponding fields in the FIFO port. 

Message 

Any of the unpaged segments described in Chapter 8 can be used as a message segment, 
including a process segment, port segment, procedure-table segment, simple-region segment, 
and semaphore segment. When any of these segments is used as a message segment, the 
processor assumes that the first two words of the segment contain a queue record, shown in 
Figure 14-3. 

31 

LINK 55 

CURRENT PORT OR SEMAPHORE 55 

=~ REMAINDER OF SEGMENT 

Figure 14-3: Queue Record 

o 

BYTE OFFSET 
WITHIN A 
SEGMENT 

o 
4 

=::: 

The queue record has two fields. The link SS field contains the SS of the message segment 
behind it in the queue. The current-port SS or current-semaphore SS field gives the port or 
semaphore that the message is queued to. The processor maintains the information in the 
queue record, independently from the software. When a message segment is created, the link 
SS and current-port-or-semaphore-SS fields should be set to 0. 

Refer to the section later in this chapter titled "Interprocess Communication" for a discussion 
of how messages can be used for passing information between processes. 

Port Uses 

The processor uses ports in two ways: as dispatch ports or as communication ports. A 
dispatch port is a device to assist the processor in scheduling processes. When the kernel 
creates a process, it queues it to the dispatch port for the processor. The processor then 
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dispatches processes from the dispatch port one at a time to work on them. When the proces­
sor suspends a process, it reschedules it at its dispatch port. The use of dispatch ports is 
described in the next section. 

A communication port is used to pass messages between processes. These messages can be 
used to synchronize multiple processes in a multitasking environment or to share data among 
processes. The use of communication ports is discussed in the section later in this chapter 
titled "Interprocess Communication." 

AUTOMATIC PROCESS DISPATCHING 

The priority-port data structure (described earlier in this chapter) provides a mechanism for the 
processor to maintain a list of scheduled processes, which it can then dispatch one at a time, 
independently from the kernel. Referring to Figure 14-1, when a priority port is used as a 
dispatch port, it contains a list of all the processes in the ready state. 

A dispatch port must always be a priority port with its queue-state bit set to 0, indicating that 
all queues contain messages waiting to be received. In this application, the messages are 
processes waiting to be executed. 

When this scheduling and dispatching mechanism is used, each processor in the system is 
assigned to a dispatch port. In a mUltiprocessor system, each processor may have its own 
dispatch port or several processors may share the same dispatch port. The SS for the dispatch 
port that a processor is assigned to is stored in the processor's PRCB. 

Each process is also assigned to a dispatch port through the dispatch-port-SS field in its PCB. 
When the processor initially schedules a process or when it suspends a process, the process is 
queued to the dispatch port specified in the process's PCB. 

Process-Scheduling Instructions 

The processor provides two instructions to support this automatic-dispatching mechanism. The 
schedule-process instruction (schedprcs) causes the processor to enqueue a process (i.e., its 
PCB) to a dispatch port. For example, if the kernel issues a schedprcs instruction for a process 
with a priority of 23, the process is placed at the front (or head) of the priority-23 queue of the 
dispatch port. 

The send-service instruction (sendserv) causes the processor to suspend the process that it is 
currently executing and enqueue it at a specified port. This port may be the process's dispatch 
port or a communication port. If the port is a priority port, the processor checks the process's 
priority and places the process at the end (or tail) of queue for that priority. 

Process-Dispatching Action 

The actions that the kernel and processor take to dispatch processes using the automatic­
dispatching mechanism are as follows: 
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1. The kernel creates a process. In doing this, it allocates segments for regions 0, 1, and 2 of 
the process and for the process's PCB. It then creates an initial PCB for the process. 

2. The kernel enqueues the process to the process's dispatch port, using the schedprcs 
instruction. 

3. When the processor completes work on its current process, it suspends the process and 
reschedules it on the dispatch port. 

4. The processor examines the dispatch port. If the port contains waiting processes, the 
processor goes to the highest priority, non-empty queue and dispatches the process from 
the head of this queue. The processor then binds itself to the process and begins executing 
it. 

S. Upon completion of work on this process, the processor repeats steps 3 and 4 to reschedule 
the current process and dispatch another process. 

Note that since the processor always goes to the highest, non-empty queue to dispatch a 
process, it will work on one priority queue alone until all the processes in that queue have been 
completed or killed (resulting in the processes being removed from the dispatch port); blocked 
at communication ports; or moved to lower priority queues. 

Process Suspension 

Once the processor begins work on a process it will continue to work on it until it receives a 
signal to suspend the process. This signal can be caused by several events: 

• End-of-time-slice event 

• Process becomes receive or wait blocked 

• Execution of a sendserv instruction 

• Process becomes preempted by another higher-priority process 

The end-of-time-slice event is used by the time-slice-scheduling mechanism described earlier 
in this chapter. 

Process blocking is related to the semaphore and interproccss communication mechanisms 
described later in this chapter. A process can become blocked in either of two ways. One way 
is if the process attempts to receive a message from a communication port, but the message is 
not available. The processor then suspends the process and enqueues it on the communication 
port to await the message. The other way is if the process attempts to receive a signal from a 
semaphore, but none is available. Here, the processor suspends the process and enqueues it on 
the semaphore to await the signal. 

A sendserv instruction can be executed from a fault or interrupt handler, or it can be included 
in the process code, if it is known beforehand that the process must always be suspended at a 
certain point. 

Process preemption is described later in this chapter in the section titled "Process Preemption." 
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PROCESS SYNCHRONIZATION 

The process synchronization facilities of the processor allow the activities ~f several inter­
acting processes to be synchronized. An important application of these facilities is to prevent 
race conditions between processes, particularly in multiprocessor systems, where two or more 
processes are being worked on simultaneously. 

The processor provides two mechanisms that can be used to synchronize processes: 
semaphores and communication ports. Semaphores are described in this section. The use of 
communication ports for process synchronization are described later in this chapter in the 
section titled "Interprocess Communication." 

Use of Semaphores 

A semaphore is a device for synchronizing the activities of several agents, in this case several 
processes. The following example shows one application of a semaphore. 

Assume that process A and process B perform different but interdependent tasks and that at 
various points within the execution of process A, it must check that process B has completed 
execution of a particular task. To exchange information about the state of the task, the 
processes use a semaphore. 

Each time process B completes the task, it increments a counter at the semaphore. Each time 
process A reaches a point in its execution where it needs to know if process B has completed 
the task or not, it checks the count at the semaphore. If the count has been incremented, 
process A decrements the count and continues executing. If the count has not be incremented 
(meaning that process B has not yet completed the task), the processor suspends process A and 
queues it to the semaphore. Process A is then said to be blocked at the semaphore. 

When process B completes the task and goes to the semaphore, the processor sees process A 
queued to the semaphore. Then, instead of incrementing the count, the processor unblocks 
process A from the semaphore, freeing both process A and process B to continue execution. 

Semaphore Structure 

A semaphore is contained in an embedded segment. (The segment-descriptor format for an 
embedded segment is given in Chapter 8.) The format for a semaphore is shown in Figure 
14-4. The following paragraphs describe the fields of a semaphore. 

The lock field of a semaphore performs the same function as the corresponding field of a port. 
It synchronizes the manipulation of a semaphore by several processors. When a processor 
needs to access a semaphore, it first checks bit 0 of the lock field. If this bit is 0, it atomically 
sets the bit to 1 and accesses the semaphore. If the bit is set to 1, the processor spins on the 
lock until the semaphore is available. 

The count field contains a 16-bit ordinal. This field shows the number of times that one 
process has sent a signal to another process without the signal being received. The mechanism 
for incrementing and decrementing the count is described later in this chapter in the section 
titled "Semaphore-Access Actions." 
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Figure 14-4: Semaphore Structure 

LOCK o 
4 
8 

The semaphore-queue-tail-SS field contains the SS of the last process in the semaphore queue. 
If no processes are queued to the semaphore, this field is set to O. 

The semaphore queue consists of a linked list of PCBs, with the linking carried out through 
their queue records. The processes in the queue are arranged in decreasing-priority order and 
FIFO within the same priority level. The link field in the queue record of the last process in 
the queue contains the SS of the first process in the queue. 

Semaphore-Handling Instructions 

Three instructions are provided to handle communication with a semaphore. A process uses 
the signal instruction to send a signal to a semaphore that a task is complete. This instruction 
causes the processor to check the semaphore-queue-tail-SS field and either (1) increment the 
semaphore count, if the queue-tail value is 0, or (2) dequeue and reschedule the first process 
from the queue. 

A process uses the wait and condwait (conditional-wait) instructions to receive a signal from a 
semaphore. The wait instruction causes the processor to check the semaphore count field and 
either (1) decrement the count, if it is non-zero, or (2) suspend the process and queue it to the 
semaphore, if the count is O. 

The condwait instruction performs a similar function, except that the process is not suspended 
and sent to the semaphore to wait if the count is O. Instead, the processor either (1) decrements 
the count, if it is non-zero, or (2) does nothing to the semaphore, if the count is o. In either 
case, the processor sets the condition code bits to indicate which action was taken. 

Semaphore-Access Actions 

The actions that processes and the processor take to communicate through the semaphore 
mechanism are as follows. 

When the current process needs to signal another process that a task is complete, it performs 
the following action: 
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1. The process issues a signal instruction. 

2. The processor locks the semaphore and checks the semaphore-queue-tail-SS field. 

3. If the field is 0, the processor increments the semaphore count by 1. If the field is 
non-zero, the processor dequeues the process from the head of the semaphore queue (the 
highest-priority, first-in process in the queue) and reschedules it at its dispatch port. 

4. The processor unlocks the semaphore and continues executing the current process. 

When the current process needs to receive a signal from another process and cannot continue 
until it receives this signal, it performs the following action: 

1. The process issues a wait instruction. 

2. The processor locks the semaphore and checks the semaphore count field. 

3. If the count is non-zero, the processor decrements the semaphore count by I, unlocks the 
semaphore, and continues executing the current process. 

4. If the count is 0, the processor suspends the current process, queues it in the semaphore 
queue, unlocks the semaphore, and goes to the dispatch port to dispatch another process. 
Processes are enqueued in a semaphore queue in decreasing priority order and FIFO 
within a priority level. 

When the current process needs to receive a signal from another process, but does not need to 
discontinue processing if the signal is not available, it performs the following action: 

1. The process issues a condwait instruction. 

2. The processor locks the semaphore and checks the semaphore count field. 

3. If the count is non-zero, the processor decrements the semaphore count by 1. If the count 
is 0, the processor does nothing further to the semaphore. 

4. The processor sets the condition code bits to 0102 if the signal was received or to 0002 if a 
signal was not received. 

5. The processor unlocks the semaphore and continues executing the current process. 

PROCESS PREEMPTION 

The processor provides a mechanism that allows a process (called a preempting process) to 
cause the processor to check the dispatch port and to suspend (or preempt) the current process 
if a higher priority process is found. To be a preempting process, the preempt flag is the 
process's process-controls word must be set. Preemption can occur in two situations: when a 
preempting process becomes unblocked from a semaphore or communications port; and when 
a processor receives a preemption lAC from another processor. 

This preemption mechanism performs two functions. First, it provides a means of coordinating 
the activities of several processes that are performing cooperative tasks. Second, in mul­
tiprocessor systems, to helps insure that the available processors are working on highest 
priority tasks. 
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The following paragraphs describe the preemption action that a single processor takes when a 
preempting process becomes unblocked; the section in Chapter 15 titled "Multiprocessor 
Preemption" describes preemption in multiprocessor systems. 

Process-Preemption Action 

If a process becomes unblocked from a semaphore or a communication port and its preempt 
flag is set, the processor performs the following action. (Communication ports are described in 
the following section titled "Interprocess Communication".) 

1. The processor enqueues the preempting process at the dispatch port. 

2. If the current process is in the interrupted state, the processor sets the check-dispatch-port 
flag in the processor controls skips the remaining preemption actions. (When the proces­
sor returns from the interrupt, it checks the dispatch port automatically and dispatches the 
highest priority process that has a priority higher than the current process.) 

3. The processor compares the priority of the preempting process with that of the current 
process. 

4. If the priority of the preempting process is equal to or lower than that of the current 
process, the processor does not perform the preemption action. 

5. If the priority of the preempting process is higher than that of the current process, the 
processor performs the remaining preemption steps. 

6. The processor suspends the current process and places it on the dispatch port at the head of 
its priority queue. 

7. The processor dispatches the highest priority process from the dispatch port and begins 
executing that process. 

Two things should be noted about this mechanism. First, it is intended that the preempt flag be 
set for processes above a given priority level so that they will preempt lower priority processes 
immediately. Second, this mechanism does not insure that the preempting process is the next 
process dispatched, unless it is the highest priority process queued at the dispatch port. 

INTERPROCESS COMMUNICATION 

The semaphore data structure, described in the previous section, provides a simple, efficient 
means of synchronizing the activity of several interacting processes. This section describes the 
use of the communication port data structure and messages in interprocess communication. As 
is shown in this section, a communication port is a more general data structure that not only 
supports process synchronization, but also can be used to pass messages and data structures 
between processes. 

Communication Ports 

A communication port is similar to a dispatch port except that it queues messages waiting to be 
received or processes waiting to receive messages. (A dispatch port queues processes waiting 
to be executed.) For example, if process A needs to send a message to process B, it sends the 
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message to a mutually agreed upon communication port. The processor then checks to see if 
process B is queued at the port, waiting for a message. If it is, the processor passes the 
message to process B and schedules process B at its dispatching port. If process B has a higher 
priority than process A, process A is preempted (suspended) and process B is dispatched. 
Otherwise, the processor resumes executing process A. 

If process B is not waiting at the communication port when the message is sent, the processor 
queues the message on the port. Then when process B attempts to receive a message from the 
communication port, the processor takes the message from the message queue, passes it to 
process B, and continues executing process B. ' 

A communication port can be either a FIFO port or a priority port (as shown in Figure 14-2). 
Bit 16 of the first word of the port data structure determines the port type. If the port is a FIFO 
port, messages or processes are queued to a single FIFO queue. If a port is a priority port, 
messages are queued to any of 32 queues according to their priority. 

The Q bit (bit 17) of the first word determines whether a port contains blocked processes that 
are waiting to receive messages (the Q bit is set to 1) or whether it contains messages waiting 
to be received (the Q bit is set to 0). If the port is empty (it contains neither waiting processes 
or waiting messages) the Q bit is set to O. ' 

Thus, when a port is initially created, bit 16 of the first word should be set to 0 or 1, depending 
on the type of port being created, and bit 17 should be set to 0, indicating an empty port. 
Thereafter, the processor sets or clears the Q bit. 

Interprocess-Communication Mechanism 

As with the self-dispatching mechanism of the processor, the processor handles the passing of 
message SS's back and forth among processors automatically and independently from the 
kemel. All the kemel is required to do is to set up the communication ports and create and fill 
the message segments. 

To initiate the sending and receiving of messages, the processor provides four instructions: 
send, receive, condrec (conditional receive), and sendserv (send service), The processor must 
be in the supervisor mode to execute any of these instructions. 

The following paragraphs summarize the actions that the processor performs for each of these 
instructions. Refer to the reference information on each instruction in Chapter 17 for more 
detailed descriptions of the instruction actions. 

Send Message 

The send instruction has three operands: communications port SS, message SS, and message 
priority. When a process issues a send instruction, the processor performs the following 
actions: 

1. It checks the Q bit 6f the selected port. If the bit is set (indicating' that processes are 
queued at the port waiting for messages), the processor finds the highest priority queue 
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that contains waiting (blocked) processes and finds the first process from this queue. (If 
the port is a FIFO port, it finds the first process from the queue.) 

2. It unblocks this process, loads the message SS into the message SS field of the process's 
PCB, and reschedules the process at its dispatching port. 

3. If the Q bit is clear (indicating an empty port or a port with waiting messages), the 
processor queues the message segment at the end of the queue specified with the message 
priority operand in the send instruction. (If the port is a FIFO port, the message priority is 
ignored.) 

4. Following either of the above actions, the processor resumes execution of the current 
process (the process that sent the message). 

Receive a Message 

The two receive instructions (receive and condrec) allow a process to pick up a message SS 
from a communication port. The receive instruction has two operands: a port SS and a 
destination register where the receive message is to be stored. When a process issues a receive 
instruction, the processor performs the following actions: 

1. It checks the Q bit of the selected port. If the bit is clear (indicating a port with waiting 
messages or an empty port), the processor finds the highest priority queue that contains 
queued messages. (If the port is a FIFO port, it looks only at the single FIFO queue.) 

2. The processor then takes the first message from the queue, stores it in the destination 
register specified in the receive instruction, and resumes execution of the process. 

3. If the port is empty (all queues are empty) or has waiting processes (Q bit is set), the 
processor suspends the current process (receiving process) and queues it at the end of the 
queue specified with the priority field in the process's process controls word. (If the port 
is a FIFO port, the process priority is ignored.) 

4. The processor then dispatches another process from the dispatch port and begins executing 
that process. 

With the condrec instruction, the processor performs the same operation as it does with the 
receive instruction, except that it does not block the process at the communication port if there 
is no message available. Instead it sets the condition code bits in the arithmetic controls to 
indicate that a message was not received and resumes execution of the receiving process. 

The condrec instruction has the same operands as the receive instruction: port SS and a 
destination register where the receive message is to be stored. When a process issues a 
condrec instruction, the processor performs the following actions: 

1. It checks the Q bit of the selected port. If the bit is clear (indicating that there is a port 
with waiting messages or the port is empty), the processor finds the highest priority queue 
that contains queued messages. (If the port is a FIFO port, it looks only at the single FIFO 
queue.) 

2. The processor then takes the first message from the queue, stores it in the destination 
register specified in the condrec instruction, sets the condition code to 0102, and resumes 
execution of the process. 

14·17 



inter MULTIPLE-PROCESS MANAGEMENT 

3. If the port is empty (all queues are empty) or has waiting processes (Q bit is set), the 
processor sets the condition code to 0002 and resumes execution of the process. 

If a process fails to receive a message after issuing a condrec instruction, one action that the 
process can take is to wait for several ticks, then issue a condrec instruction again. 

Send Service 

The sendserv instruction offers a special application of the message passing mechanism. This 
instruction causes the processor to suspend the current process and send its SS as a message to 
a communication port. 

This instruction has one operand, the SS of the communication port to receive the suspended 
process's SS. When the sendserv instruction is issued, the processor performs the following 
action: 

1. It suspends the current process and goes to the communication port specified in the port 
SS operand of the instruction. 

2. It checks the Q bit of the selected port. If the bit is set (indicating that processes are 
queued at the port), the processor finds the highest priority queue that contains waiting 
processes and finds the first process from this queue. (If the port is a FIFO port, it finds 
the first process from the queue.) 

3. It unblocks this process, loads the SS for the suspended process into the message SS field 
of the waiting process's PCB, and reschedules the waiting process at its dispatching port. 

4. If the Q bit is clear (indicating an empty port or a port with waiting messages), the 
processor queues the suspended process's PCB at the end of the queue specified with the 
process's priority field in its process controls. (If the port is a FIFO port, the process 
priority is ignored.) 

5. Following either of the above actions, the processor dispatches a new process from the 
dispatching port and begins executing it. 

The use of this instruction is described in the section later in this chapter titled "Applications of 
Messages." 

Kernel Support for Message Passing 

In general, the kernel must provide some support code to make interprocess-communication 
services available to application programs. Typically, kernel procedures are written that allow 
an application program to send and receive messages by making system calls (calls instruction) 
to the kernel. 

These kernel procedures take care of setting up communication ports and creating message 
segments. Then, to send a message to another process, all that an application program has to 
do is supply a data word or a pointer to a data structure as a parameter in a system call to a 
send procedure. The kernel procedure will then load the word, the pointer, or a whole data 
structure into a message segment and issue a send instruction to send the message segment to a 
communication port. 
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Likewise, to receive a message from another process, an application program issues a system 
call to a receive procedure. The kernel then issues a receive or condrec instruction, gets the 
message SS, retrieves the data word, pointer, or data structure from the message segment, and 
returns it to the application program as a parameter. 

Applications of Messages 

The message passing mechanism can be used in several ways for either process synchroniza­
tion or the passing of information between processes. 

One application of a communication port is to synchronize processes in a manner similar to 
that described for a semaphore. Here, instead of incrementing a counter as a signal from one 
process to another, a message segment is left at a communication port. 

The message segment can be used in two ways. First, it can contain a null message, in which 
case the passing of message SS's would be used strictly to synchronize processes. Second, the 
message segment can be encoded to contain information about the respective processes. 

One of the benefits of using communication ports instead of semaphores for process 
synchronization is that processes waiting for messages can be prioritized. 

When messages are used to pass information between processes, the message segments are 
typically mapped into predefined areas of region 3, and cooperating processes know the con­
ventions of this mapping. One process can then pass data to another process by writing the 
data into a predefined message area and sending a pointer to that area to the kernel. The kernel 
then handles the message passing and returns the pointer to the receiving process. 

The message being passed can also be a processor-defined data structure such as a port or a 
PCB. For example, a kernel may create communication ports dynamically. It could then send 
a new port as an SS to a process for use in the future for sending and receiving messages. 

The sendserv instruction as is described above is specifically designed to send PCBs as 
messages. This instruction allows a process to explicitly suspend itself at a specific point in its 
activity. This capability has two common applications. One is to allow the process to suspend 
itself and have the processor reschedule it at a dispatch port. The other is to allow the 
processor to automatically kill processes that have completed their tasks. Here, the sendserv 
instruction sends the process's PCB to a communication port set up to handle dead processes. 
Another process then periodically takes the PCB messages from this communication port, 
deallocates the system resources that have been allocated to them, and deletes or frees up the 
PCBs. 
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CHAPTER 15 
MULTIPLE-PROCESSOR OPERATION 

This chapter presents several features of the processor that support multiprocessor systems. 
Included are discussions of external lAC messages, high-level process management facilities, 
atomic instructions, and interrupt handling. 

OVERVIEW OF MULTIPROCESSOR-SUPPORT FACILITIES 

The processor provides several facilities that greatly simplify the design of systems that use 
multiple processors, particularly in applications in which the processors share memory and 
processing tasks. These facilities include the following items: 

External lAC messages 

High-level process management facilities 

• Atomic instructions 

• Shared interrupt-handling facilities 

EXTERNAL lAC MESSAGES 

Chapter 11 presents the concept of an interagent communication (lAC) and describes how 
internal lACs are sent. (An internal lAC is one that a processor sends to itself). This section 
describes how external lACs are sent from one processor to another. 

External lACs are used by agents external to the processor to initiate processor actions such as 
testing for pending interrupts or freezing the processor. External lACs can be sent between 
two 80960MC processors that are connected to the same bus or by external logic that dupli­
cates the external lAC sending mechanism. The following sections describe how one proces­
sor sends an lAC to another processor. The 80960MC Hardware Designer's Reference 
Manual describes the requirements that external logic must meet to perform these same func­
tions. 

Sending External lACs 

Sending an external lAC message is similar to sending an internal lAC message, except that 
the address of the receiving processor is specified in a slightly different way. (Internal lACs 
are always sent to address FFOOOOI016.) 

The lAC message format is the same as is shown in Figure 11-1. Figure 15-1 shows how the 
address for the receiving processor is encoded. 
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10101111101 10 1 0 1 0 10 I 
14 13 9 8 4 3 0 

'------- PRIORITY 

'------------------AOORESSOFIAC 
RECIPIENT 

Figure 15-1: Encoding of Address for Processor Receiving an lAC 

At initialization each processor is assigned a unique physical address in the range of 
FFOOOC0016 to FFFFCC0016. To send an lAC to a processor, the sending processor sends the 
message to the physical address assigned to the receiving processor. As shown in Figure 15-1, 
only bits 14 through 23 of this address are interpreted to determine the address of the receiving 
processor. Bits 4 through 8 of this address are used to encode the priority of the message. 

For example, to send a priority 25 10 lAC to the processor at address 00000000012, the message 
physical address would be FF004D9016. 

NOTE 

If virtual addressing is being used, the address accompanying the lAC must be mapped to the 
physical address assigned to the receiving processor. 

To send an external lAC, software must perform the following steps: 

1. Load the message into four consecutive words in memory, with the first word aligned on a 
word boundary. 

2. Execute a synmovq instruction to move the message from its source address to the address 
of the receiving processor (encoded in the form shown in Figure 15-1). 

3. Check the condition code in the arithmetic controls to determine if the message was 
received (0102) or rejected (0002), 

The action of the synmovq move instruction insures that the sending processor does not 
execute any other instructions until the synmovq instruction is complete. It also sets the 
condition code bits to indicate whether or not the move was successful. A successful move is 
interpreted as the lAC being received by the processor. As is discussed in the next section, 
external logic may be employed to intercept lACs and reject them if their priorities (as encoded 
in the message address) are equal to or less than the task the processor is currently working on. 
The process running on the sending processor then has the option of sending the lAC again at a 
higher priority or sending the lAC repeatedly at the same priority until it is accepted. 

Receiving and Handling External lACs 

A processor receives and handles an external lAC in somewhat the same manner as it receives 
and handles an interrupt. To configure a processor to receive external lACs, vector INTO of 
the interrupt-control register (shown in Figure 10-2) is set to O. The INTO pin on the processor 
chip then becomes the lAC pin. (Refer to the section in Chapter 10 titled "Interrupts From 
Interrupt Pins" for further discussion of the interrupt pins and interrupt-control register.) 
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When the processor receives a signal on the lAC pin, it handles it initially as if it were 
receiving an interrupt. It reads the vector number associated with this pin (bits 0 through 7 of 
the interrupt-control register). If it is zero, the processor recognizes that it is receiving an 
external lAC. It then reads the four-word lAC message from the local bus and performs the 
requested lAC. 

Since the processor handles lACs with a mechanism that is separate from the process­
execution mechanism, it does not save the state of the current process prior to handling an lAC. 
Once a processor has finished handling an lAC, it resumes work on the current process, unless 
the action specified with the lAC (such as a processor restart or a process preemption) makes 
this impossible. 

The processor acts immediately on any lAC that it receives. For efficient system operation, 
external logic must thus be provided to insure that low priority lAC messages do not interrupt 
the processor while it is handling a higher priority task. This logic is usually supplied by the 
M82965 component. 

To support the M82965 (or other external logic) in this job, the processor provides a 
mechanism, called the write-external-priority mechanism, which periodically writes the 
priority of the processor's current task out on the bus as an lAC message. (The write-external­
priority flag in the processor controls word enables this mechanism, as described in Chapter 9). 
The M82965 reads this message and keeps track of the current priority of the processor. 

When an lAC is sent to the processor, the M82965 intercepts it and reads the priority encoded 
in the lAC address. It then determines whether the lAC priority is above that of the process 
currently running on the processor or not. If the lAC has a higher priority, the M82965 sends 
an acknowledge signal to the sending processor, then signals the receiving processor by assert­
ing its lAC pin. If the lAC has an equal or lower priority, the M82965 sends a not­
acknowledged signal to the sending processor. 

The sending processor uses the acknowledge or not-acknowledged signals to set the condition 
codes to complete the synmovq instruction. 

While a processor is servicing an lAC, it performs some handshaking with its M82965 so that 
the M82965 knows when the processor has finished work on an lAC. The M82965 is then able 
to reject any lAC that it receives while the processor is servicing another lAC. 

Refer to the 80960MC Hardware Designer's Reference Manual for further information on how 
the M82965 handles lAC messages. 

HIGH·LEVEL PROCESS MANAGEMENT FACILITIES 

All of the process-management facilities are available for use in multiprocessor systems. Of 
these, two are of particular importance: process scheduling and dispatching, and process 
preemption. 
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Process Scheduling and Dispatching 

The processor's high-level process management facilities are particularly useful for scheduling 
and dispatching processes in a mUltiprocessor system. They provide an efficient method of 
distributing the processor resources among the tasks to be handled by the system. They also 
remove a significant burden from the kernel for handling process management. 

How these facilities are used centers around how the dispatch port is used. If the intent of the 
system is to share the processing tasks evenly among the available processors, the system can 
use a single dispatch port that is shared by all the processors. All processes are thus scheduled 
and dispatched from the same place. The lock on the dispatch port allows processors to take 
tums dispatching and enqueuing processes from the port. 

An alternate use of a dispatch port is to give each processor in the system its own port. The 
kernel is then responsible for determining the load on each processor, which it does by 
scheduling the ready processes on selected dispatch ports. 

Multiprocessor Preemption 

When using the high-level process management facilities described in Chapter 14, the proces­
sor provides the ability for a higher priority process to preempt a lower priority process. This 
means that the processor suspends the current lower-priority process and dispatches the higher 
priority, preempting process. A process can be a preempting process only if the preempt flag 
in its process controls is set. 

Typically, preemption happens when a process becomes unblocked from a semaphore after 
receiving a signal or from a communication port after receiving a message. If the unblocked 
process has a higher priority than the current process, the processor preempts the current 
process. 

Often the preempted process is also a preempting process. If there are other processors in the 
system, the multiprocessor-preempt mechanism provides a means for the processor that 
suspended a preempting process to check if one of the processors in the system can handle the 
process. It does this by sending a preempt process lAC message to one or two other proces­
sors, as described in the next section. From the priority of the message, the receiving processor 
determines whether the priority of the preempting process is higher than the process it is 
currently working on. If it is, the receiving processor suspends its current process and dis­
patches the higher priority process from the dispatch port. If both of the processors are 
working on higher priority processes, the sending processor begins work on its current process. 

This technique insures that if there are n processors in the system, the n highest-priority 
processes are always being run. 

Preemption Control 

The following fields in the PRCB and PCB control the mUltiprocessor-preemption mechanism: 
the multiprocessor-preempt flag, nonpreempt-limit field, interim-priority field, and write­
external-priority flag in the processor controls; the mUltiprocessor-preemption field of the 
PRCB; and the preempt flag of the process controls. 
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The multiprocessor-preempt flag enables the mUltiprocessor-preemption mechanism. When 
this flag is set, the processor carries out the multiprocessor-preemption actions automatically, 
with no intervention from the kernel required. 

In carrying out the mUltiprocessor-preemption action, the processor sends preempt process lAC 
messages (8500000016) to one or two other processors in the system. The lAC message and 
the addresses of the lAC message buffers for the two processors are contained in the 
multiprocessor-preemption field of the PRCB. The addresses are placed in the first two words 
of the field and the preempt process lAC message is placed in the third word. The addresses 
are stored in the form shown in Figure 15-1. The priority encoded in the address word is 
generally chosen to be a low value. For example, if the priority is set to 1, only idle processors 
(those with a 0 priority) will accept the lAC message. Any lAC message can be stored in the 
message word, but preempt process lAC is used for multiprocessor-preemption applications. 

The nonpreempt-limit field contains a threshold priority that a processor uses to determine 
whether or not to perform a preemption action when it receives a preemption lAC message. If 
the priority of the preempting process (as contained in the lAC message) is equal to or lower 
than the priority of the processor's current process or the nonpreempt limit, the processor 
rejects the lAC and continues work on its current process. Typically, the nonpreempt-limit 
field is set to the middle of the priority range (12 to 10) to prevent a processor from carrying 
out process switches to service low-priority preempting processes. 

The write-external-priority flag controls whether or not the priority of the currently running 
process is written out on the processor's bus. When this bit is set, the current priority is written 
out to the bus (in the form of an lAC message) whenever the following things occur: a process 
switch, an interrupt not caused by an lAC message, the execution of a modpc instruction 
(modify process controls). 

The purpose of the write-external-priority mechanism is to keep external agents on the bus 
appraised of the priority of the task the processor is currently performing. The agent can then 
block lAC messages that are of lower priority. For example, if M82965s are being used in the 
system, the M82965 associated with each processor keeps track of the processor's priority by 
means of write-external-priority messages from the processor. When one processor sends a 
preempt process lAC message to another processor, the M82965 for the receiving processor 
checks the priority of the message and rejects it if it is not higher than the current priority of the 
processor. 

The interim-priority field of the processor controls provides a means of setting the processor's 
priority to a high-enough level to avoid being interrupted by lACs. This field is only used 
when the write-external-priority function is enabled. When this function is enabled, the 
processor writes the value in the interim-priority field out on the bus any time one of the 
following instructions are executed: send, sendserv, signal, and schedprcs. This field is 
typically set to a high priority value (25 to 30) to insure that these instructions are able to be 
completed before the processor is forced to service an lAC message. 
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Multiprocessor-Preemption Action 

The processor performs the following actions when the multiprocessor-preempt flag is set and 
the processor schedules a preempting process at the dispatch port: 

1. The processor sends a preempt process lAC message from the mUltiprocessor-preemption 
field of the PRCB to the first address given in this field. 

2. The M82965 associated with the receiving processor compares the priority of the lAC 
with the processor's current priority. If lAC priority is higher, the M82965 sends the lAC 
on to the receiving processor and sends an ACK signal back to the sending processor. 

3. If the receiving processor is not interrupted or stopped, it checks the dispatch port to 
determine the priority of the highest-priority process queued at the port. It then compares 
this priority with that of its current process and its nonpreempt-limit field. If the priority 
of the process at the dispatch port is higher than that of either the current process or the 
nonpreempt limit, the receiving processor suspends its current process and dispatches the 
higher-priority process from the dispatch port. If the priority is lower, the receiving 
process resumes work on its current process. 

4. Upon receiving the ACK signal from the M82965 for the receiving processor, the sending 
processor then resumes work on its current process. 

5. If in step 2 the priority of the first receiving processor is higher than the lAC priority, the 
M82965 sends a NACK signal back to the sending processor indicating that it has rejected 
the lAC message. 

6. The sending processor then sends the message to the next address in the multiprocessor­
preemption field of the PRCB. 

7. If the second receiving processor also rejects the lAC message, the sending processor 
sends an lAC back to the first receiving processor, but this time it sets the priority of the 
message equal to that of the preempting process. 

8. Again, if this message is rejected, the sending processor sends the higher priority message 
to the second receiving processor. 

9. If the lAC is rejected at both priorities by both receiving processors, the sending processor 
abandons its attempt to find a processor to preempt and resumes work on its current 
process. 

10. If in process suspended in step 3 is also a preempting process, the receiving processor then 
performs this mUltiprocessor-preemption action to attempt to get either of two processors 
to work on the process. 

11. This action is continued until the available processors are servicing the highest-priority 
processes. 

ATOMIC INSTRUCTIONS 

The atomic instructions allow a processor in a multiprocessor system to perform certain read­
modify-write operations on a memory location, with the guarantee that the write will be 
completed before another processor is allowed access to the memory location. This capability 
is essential for performing operations on certain data structures, where it is important that one 
processor does not alter the data structure while another processor is trying to perform a 
read-modify-write on it. 
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The processor provides two atomic instructions: atomic add (atadd) and atomic modify 
(atmod). The atadd instruction adds a 32-bit ordinal value to a 32-bit target value in memory. 
The atmod instruction inserts a 32-bit value into a memory location, under the control of a 
mask. The mask determines which of the target bits in memory are actually modified. 

INTERRUPT HANDLING IN A MULTIPROCESSOR SYSTEM 

A useful feature of the interrupt table in a multiprocessor system is that it allows the handling 
of interrupts to be shared. In a multiprocessor system, each processor has its own interrupt 
stack, but all the processors can share the interrupt table. 

If a processor receives an interrupt that is at an equal or lower priority than the process that it is 
currently working on, it posts the interrupt as a pending interrupt in the interrupt table. All the 
processors check for pending interrupts at certain times as described in Chapter lOin the 
section titled "Pending Interrupts." If one processor is not able to handle an interrupt, another 
one is likely to be available. 

The test-pending-interrupts lAC provides a means for one processor to explicitly request that 
another processor check for pending interrupts and handle them if they exist. 
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CHAPTER 16 
DEBUGGING 

This chapter describes the tracing facilities of the 80960MC processor, which allow the 
monitoring of instruction execution. 

OVERVIEW OF THE TRACE-CONTROL FACILITIES 

The 80960MC processor provides facilities for monitoring the activity of the processor by 
means of trace events. A trace event in the 80960MC is a condition where the processor has 
just completed executing a particular instruction or type of instruction, or where the processor 
is about to execute a particular instruction. 

By monitoring trace events, debugging software is able to display or analyze the activity of the 
processor or of a program. This analysis can be used to locate software or hardware bugs or 
for general system monitoring during the development of system or applications programs. 

The typical way to use this tracing capability is to set the processor to detect certain trace 
events either by means of the trace-controls word or a set of breakpoint registers. An alternate 
method of creating a trace event is with the mark and force mark (fmark) instructions. These 
instructions cause an explicit trace event to be generated when the processor detects them in 
the instruction stream. 

If tracing is enabled, the processor signals a trace fault when it detects a trace event. The fault 
handler for trace faults can then call the debugging monitor software to display or analyze the 
state of the processor when the trace event occurred. 

REQUIRED SOFTWARE SUPPORT FOR TRACING 

To use the processor's tracing facilities, software must provide trace-fault handling procedures, 
perhaps interfaced with a debugging monitor. Software must also manipulate several control 
flags to enable the various tracing modes and to enable or disable tracing in general. These 
control flags are located in the system-data structures described in the next section. 

TRACE CONTROLS 

The following flags or fields control tracing: 

• Trace controls 

• Trace-enable flag in the process controls 

• Trace-fault-pending flag in the process controls 

• Trace flag (bit 0) in the return-status field of register rO 

• Trace-control flag in the supervisor-stack-pointer field of the system table or a procedure 
table 
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Trace-Controls Word 

The trace-controls word is located in the PCB for the current process. When a process is 
bound to the processor, the contents of the trace-controls word are cached internally in the 
processor. 

The trace controls allow software to define the conditions under which trace events are 
generated. Figure 16-1 shows the structure of the trace-controls word. 

31 23222120191817 7 6 5 4 3 2 1 0 

I ..... IIIIIII.I.I.IIIIIIII~I 

~ELINSTRUCTION TRACE MODE 
BRANCH TRACE MODE 

CALL TRACE MODE 

RETURN TRACE MODE 

'-------PRERETURN TRACE MODE 

L-------SUPERVISOR TRACE MODE 

L-------BREAKPOINT TRACE MODE 

L--------------INSTRUCTION TRACE EVENT 

'------------------BRANCHTRACEEVENT 
'-----------------CALLTRACEEVENT 

'--------------------RETURNTRACEEVENT 
L-_________________ PRERETURN TRACE EVENT 

L-________________ SUPERVISOR TRACE EVENT 

L-___________________ BREAKPOINT TRACE EVENT 

.. RESERVED (MUST BE INITIALIZED TO 0) 

Figure 16-1: Trace-Controls Word 

This word contains two sets of bits: the mode flags and the event flags. The mode flags define 
a set of trace modes that the processor can use to generate trace events. A mode represents a 
subset of instructions that will cause trace events to be generated. For example, when the 
call-trace mode is enabled, the processor generates a trace event whenever a call or branch­
and-link operation is executed. To enable a trace mode, the kernel sets the mode flag for the 
selected trace mode in the trace controls. The trace modes are described later in this chapter. 

The processor uses the event flags to keep track of which trace events (for those trace modes 
that have been enabled) have been detected. 

A special instruction, the modify-trace-controls (modtc) instruction, allows software to set or 
clear flags in the trace controls. On initialization, all the flags in the processor's internal trace 
controls are cleared. The modtc instruction can then be used to set or clear trace mode flags as 
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required. (This instruction does not affect the trace controls word in the PCB for the current 
process.) 

Software can access the event flags using the modtc instruction; however, there is no reason to. 
The processor modifies these flags as part of its trace-handling mechanism. 

Bits 0, 8 through 16, and 24 through 31 of the trace controls are reserved. Software should 
initialize these bits to zero and not access or modify them thereafter. 

Trace-Enable and Trace-Fault-Pending Flags 

The trace-enable flag and the trace-fault-pending flag, located in the process controls (shown in 
Figure 13-2), control tracing. The trace-enable flag enables the processor's tracing facilities. 
When this flag is set, the processor generates trace faults on all trace events. 

Typically, software selects the trace modes to be used through the trace controls. It then sets 
the trace-enable flag when tracing is to begin. This flag is also altered as part of some of the 
call and return operations that the processor carries out, as described at the end of this chapter. 

The trace-fault-pending flag allows the processor to keep track of the fact that an enabled trace 
event has been detected. The processor uses this flag as follows. When the processor detects 
an enabled trace event, it sets this flag. Before executing an instruction, the processor checks 
this flag. If the flag is set, it signals a trace fault. By providing a means of recording the 
occurrence of a trace event, the trace-fault-pending flag allows the processor to service an 
interrupt or handle a fault other than a trace fault, before handling the trace fault. Software 
should not modify this flag. 

Trace Control on Supervisor Calls 

The trace flag and the trace-control flag allow tracing to be enabled or disabled when a 
call-system instruction (calls) is executed that results in a switch to supervisor mode. This 
action occurs independent of whether or not tracing is enabled prior to the call. 

When a supervisor call is executed (calls instruction that references an entry in a procedure 
table with an entry type 11 2), the processor saves the current state of the trace-enable flag 
(from the process controls) in the trace flag (bit 0) of the return-status field of register rOo 

Then, when the processor selects the supervisor procedure from the procedure table, it sets the 
trace-enable flag in the process controls according to the setting in the trace-control flag in the 
procedure table (bit 0 of the word that contains the supervisor-stack pointer). When the 
trace-control flag is set, tracing is enabled; when it is clear, tracing is disabled. 

On a return from the supervisor procedure, the trace-enable flag in the process controls is 
restored to the value saved in the return-status field of register rOo 
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TRACE MODES 

The following trace modes can be enabled through the trace controls: 

• Instruction trace 

• Branch trace 

• Call trace 

• Return trace 

• Preretum trace 

• Supervisor trace 

• Breakpoint trace 

These modes can be enabled individually or several modes can be enabled at once. Some of 
these modes overlap, such as the call-trace mode and the supervisor-trace mode. The section 
later in this chapter titled "Handling Multiple Trace Events" describes what the processor does 
when multiple trace events occur. 

The following sections describe each of the trace modes. 

Instruction Trace 

When the instruction-trace mode is enabled, the processor generates an instruction-trace event 
each time an instruction is executed. This mode can be used within a debugging monitor to 
single-step the processor. 

Branch Trace 

When the branch-trace mode is enabled, the processor generates a branch-trace event any time 
a branch instruction that branches is executed. A branch-trace event is not generated for 
conditional-branch instructions that do not branch. Also, branch-and-link, call, and return 
instructions do not cause branch-trace events to be generated. 

Call Trace 

When the call-trace mode is enabled, the processor generates a call-trace event any time a call 
instruction (call, calIx, or calls) or a branch-and-link instruction (bal or balx) is executed. An 
implicit call, such as the action used to invoke a fault handler or an interrupt handler, also 
causes a call-trace event to be generated. 

When the processor detects a call-trace event, it also sets the preretum-trace flag (bit 3 of 
register rO) in the new frame created by the call operation or in the current frame if a branch­
and-link operation was performed. The processor uses this flag to determine whether or not to 
signal a preretum-trace event on a ret instruction. 
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Return Trace 

When the return-trace mode is enabled, the processor generates a return-trace event any time a 
ret instruction is executed. 

Prereturn Trace 

The preretum-trace mode causes the processor to generate a preretum-trace event prior to the 
execution of any ret instruction, providing the preretum-trace flag in rO is set. (Preretum 
tracing cannot be used without enabling call tracing.) 

The processor sets the preretum-trace flag whenever it detects a call-trace event (as described 
above for the call-trace mode). This flag performs a preretum-trace-pending function. If 
another trace event occurs at the same time as the preretum-trace event, the preretum-trace flag 
allows the processor to fault on the non-preretum-trace event first, then come back and fault 
again on the preretum-trace event. The preretum trace is the only trace event that can cause 
two successive trace faults to be generated between instruction boundaries. 

Supervisor Trace 

When the supervisor-trace mode is enabled, the processor generates a supervisor-trace event 
any time (1) a call-system instruction (calls) is executed, where the procedure table entry is a 
supervisor procedure, or (2) when a ret instruction is executed and the return-status field is set 
to 0102 or 0112 (Le., return from supervisor mode). 

This trace mode allows a debugging program to determine the boundaries of operating-system 
calls within the instruction stream. 

Breakpoint Trace 

The breakpoint-trace mode allows trace events to be generated at places other than those 
specified with the other trace modes. This mode is used in conjunction with the mark and 
force-mark (fmark) instructions, and the breakpoint registers. 

The mark and fmark instructions allow breakpoint-trace events to be generated at specific 
points in the instruction stream. When the breakpoint-trace mode is enabled, the processor 
generates a breakpoint-trace event any time it encounters a mark instruction. The fmark 
causes the processor to generate a breakpoint-trace event regardless of whether the breakpoint­
trace mode is enabled or not. 

The processor has two, one-word breakpoint registers, designated as breakpoint 0 and break­
point 1. Using the set-breakpoint-register lAC, one instruction pointer can be loaded into each 
register. The processor then generates a breakpoint trace any time it executes an instruction 
referenced in a breakpoint register. 
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TRACE-FAULT HANDLER 

A fault handler is a procedure that the processor calls to handle faults that occur. The require­
ments for fault handlers are given in Chapter 12 in the section titled "Fault-Handler 
Procedures. " 

A trace-fault handler has one additional restriction. It must be called with an implicit super­
visor call, and the trace-control flag in the procedure-table entry must be clear. This restriction 
insures that tracing is turned off when a trace fault is being handled, which is necessary to 
prevent an endless loop. 

SIGNALING A TRACE EVENT 

To summarize the information presented in the previous sections, the processor signals a trace 
event when it detects any of the following conditions: 

• 

• 
• 
• 
• 

An instruction included in a trace-mode group is executed or about to be executed (in the 
case of a prereturn trace event) and the trace mode for that instruction is enabled. 

An implicit call operation has been executed and the call-trace mode is enabled. 

A mark instruction has been executed and the breakpoint-trace mode is enabled. 

An fmark instruction has been executed. 

An instruction specified in a breakpoint register is executed and the bteakpoint-trace mode 
is enabled. 

When the processor detects a trace event and the trace-enable flag in the process controls is set, 
the processor performs the following action: 

1. The processor sets the appropriate trace-event flag in the trace controls. If a trace event 
meets the conditions of more than one of the enabled trace modes, a trace-event flag is set 
for each trace mode condition that is met. 

2. The processor sets the trace-fault-pending flag in the process controls. 

NOTE 

The processor may set a trace-event flag and the trace-fault-pending flag before it has com­
pleted execution of the instruction that caused the event. However, the processor only handles 
trace events in between the execution of instructions. 

If, when the processor detects a trace event, the trace-enable flag in the process controls is 
clear, the processor sets the appropriate event flags, but does not set the trace-fault-pending 
flag. 

HANDLING MULTIPLE TRACE EVENTS 

If the processor detects multiple trace events, it records one or more of them based on the 
following precedence, where 1 is the highest precedence: 
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1. Supervisor-trace event 

2. Breakpoint- (from mark or fmark instruction, or from a breakpoint register), branch-, 
. call-, or return-trace event 

3. Instruction-trace event 

When multiple trace events are detected, the processor may not signal each event; however, it 
will signal at least the one with the highest precedence. 

TRACE-HANDLING ACTION 

Once a trace event has been signaled, the processor determines how to handle the trace event, 
according to the setting of the trace-enable and trace-fault-pending flags in the process controls 
and to other events that might occur simultaneously with the trace event such as an interrupt or 
a non-trace fault. 

The following sections describe how the processor handles trace events for various situations. 

Normal Handling of Trace Events 

Prior to executing an instruction,. the processor performs the following action regarding trace 
events: 

1. The processor checks the state of the trace-fault pending flag. If this flag is clear, the 
processor begins execution of the next instruction. If the flag is set, the processor per­
forms the following actions. 

2. The processor checks the state of the trace-enable flag. If the trace-enable flag is clear, the 
processor clears any trace event flags that have been set, prior to starting execution of the 
next instruction. If the trace-enable flag is set, the processor performs the following 
action. 

3. The processor signals a trace fault and begins the fault handling action, as described in 
Chapter 12. 

Prereturn-Trace Handling 

The processor handles a prereturn-trace event the same as described above except when it 
occurs at the same time as a non-trace fault. Here, the non-trace fault is handled first. 

On returning from the fault handler for the non-trace fault, the processor checks the prereturn­
trace flag in register rOo If this flag is set, the processor generates a prereturn-trace event, then 
handles it as described above. 

Tracing and Interrupt Handlers 

When the processor invokes an interrupt handler to service an interrupt, it disables tracing. It 
does this by saving the current state of the process controls, then clearing the trace-enable and 
trace-fault-pending flags in the current process controls . 
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On returning from the interrupt handler, the processor restores the process controls to the state 
they were in prior to handling the interrupt, which restores the state of the trace-enable and 
trace-fault-pending flags. If these two flags were set prior to calling the interrupt handler, a 
trace fault will be signaled on the return from the interrupt handler. 

Tracing and Fault Handlers 

The processor can invoke a fault handler with either an implicit local call or an implicit 
supervisor call. On a local call, the trace-enable and trace-fault-pending flags are neither saved 
on the call nor restored on the return. The state of these flags on the return is thus dependent 
on the action of the fault handler. 

ana supervisor call, the trace-enable and trace-fault-pending flags are saved, as part of the 
saved process controls, and restored on the return. So, if these two flags were set prior to 
calling the fault handler, a trace fault will be signaled on the return from the fault handler. 

NOTE 

On a return from an interrupt handler, the trace-fault-pending flag is restored. If this flag is set 
as a result of the handler's ret instruction (Le., indicating a return trace event), the detected 
trace event is lost. 

The action described above is also true on a return from a fault handler, when the fault handler 
has been called with an implicit supervisor call. 
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CHAPTER 17 
INSTRUCTION REFERENCE 

This chapter provides detailed infonnation about each of the instructions for the 80960MC 
processor. To provide quick access to infonnation on a particular instruction, the instructions 
are listed alphabetically by assembly-language mnemonic. An explanation of the fonnat and 
abbreviations used in this chapter is given in the following section. 

INTRODUCTION 

The infonnation in this chapter is oriented toward programmers who are writing assembly­
language code for the 80960MC processor. The infonnation provided for each instruction 
includes the following: 

• Alphabetic reference 

• Assembly-language mnemonic and name 

• Assembly-language fonnat 

• Description of the instruction's operation 

• Action the instruction carries out when executed (generally presented in the fonn of an 
algorithm) 

• Faults that can occur during execution 

• Assembly-language example 

• Opcode and instruction fonnat 

• Related instructions 

Additional infonnation about the instruction set can be found in the following chapters and 
appendices in this manual: 

• Chapter 6 - Summary of the instruction set by group and description of the assembly-
language instruction fonnat 

• Appendix A - Instruction Quick Reference 

• Appendix B - Machine-Level Instruction Fonnats 

• Appendix C - Instruction Timing 

NOTATION 

To simplify the presentation of infonnation about the instructions, a simple notation has been 
adopted in this chapter. The following paragraphs describe this notation. 
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Alphabetic Reference 

The instructions are listed alphabetically by assembly-language mnemonic. If several instruc­
tions are related and fall together alphabetically, they are described as a group on a single page. 

The reference at the top of each page gives the assembly-language mnemonics for the instruc­
tions covered on that page (e.g., subc). Occasionally, there are so many instructions covered 
on the page that it is not practical to give all the mnemonics in the page reference. In these 
cases, the name of the instruction group is given in capital letters (e.g., BRANCH or FAULT 
IF) 

A box around the alphabetic reference (such as I addr, addrl I) indicates that the instruction or 

group of instructions are extensions to the 80960 architecture instruction set. 

Mnemonic 

The Mnemonic section gives the complete mnemonic (in bold-face type) and instruction name 
for each instruction covered on the page, for example: 

subi Subtract Integer 

Format 

The Format section gives the assembly-language format of the instruction and the type of 
operands allowed. The format is given in two or three lines. The following is an example of a 
two line format: 

sub* src1 , 
reg/lit 

src2, 
reg/lit 

dst 
reg 

The first line gives the assembly-language mnemonic (bold-face type) and the operands 
(italics). When the format is used for two or more instructions, an abbreviated form of the 
mnemonic is used. The" * " sign at the end of the mnemonic indicates that the mnemonic has 
been abbreviated. 

The operand names are designed to describe the functions of the operands (e.g., src, len, mask). 

The second line of the format shows what is allowed to be entered for each operand. The 
notation used on this line is as follows: 

reg Global (gO ... g15) or local (rO ... r15) register 

freg Global (gO ... g15) or local (rO ... r15) register, or floating-point (fpO ... 
fp3) register, where the registers contain floating-point numbers 

lit Integer or ordinal literal of the range 0 ... 31 

flit Floating-point literal of value 1.0 or 0.0 

disp Signed displacement ofrange _222 ... (222 - 1) 
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mem Address defined with the full range of addressing modes 

In some cases, a third line will be added to show specifically what will be in a register or 
memory location. For example, it may be useful to know that a register is to contain an 
address. The notation used in this line is as follows: 

addr Address 

efa Effective address 

SS Segment selector 

Description 

The Description section describes what the instruction does and the functions of the operands. 
It also gives programming hints when appropriate. 

Action 

The Action section gives an algorithm written in a pseudo-code that describes in detail what 
actions the processor takes when executing the instruction and the precise order of these 
actions. The main purpose of this section is to show the possible side effects of the instruction. 
The following is an example of the action algorithm for the alterbit instruction: 

if (AC.cc and 2#010#) = 0 
then dst ~ src and not (2"(bitpos mod 32»; 
else dst ~ src or 2"(bitpos mod 32); 

end if; 

In these action statements, the term AC.cc means the condition-code bits in the arithmetic 
controls. The notation 2#value# means that the value enclosed in the "#" signs is in base 2. 

Faults 

The Faults section lists the faults that can be signaled as the result of execution of the instruc­
tion. Faults listed with all-capital letters refer to a group of faults; faults listed with initial­
capital letters refer to a specific fault. 

All instructions can signal a group of general faults which are referred to as STANDARD 
FAULTS. The list of standard faults is as follows: 

STANDARD FAULTS 
Trace Instruction 
Trace Process 
Process Time Slice 
Machine Bad Access 
Virtual Memory Segment 
Virtual Memory PTD 
Virtual Memory PTE 
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Protection Length 
Protection Page Rights 

Note that the virtual memory and protection faults listed above can occur on instructions thar 
only access registers. Here, they can occur as a result of the memory access to fetch the· 
instruction. 

The following list shows the various fault groups and the individual faults in each group: 

TRACE FAULTS 
Instruction Trace 
Branch Trace 
Call Trace 
Return Trace 
Preretum Trace 
Supervisor Trace 
Breakpoint Trace 

OPERATION 
Invalid Opcode 
Invalid Operand 

ARITHMETIC 
Integer Overflow 
Arithmetic Zero-Divide 

FLOATING-POINT 
Floating Overflow 
Floating Underflow 
Floating Invalid-Operation 
Floating ~ro-Divide 
Floating Inexact 
Floating Reserved-Encoding 

CONSTRAINT 
Constraint Range 
Invalid SS 

VIRTUAL MEMORY 
Invalid Segment 
Invalid Page-Table-Directory-Entry (PTDE) 
Invalid Page-Table-Entry (PTE) 

PROTECTION 
Segment Length 
Page Rights 

MACHINE 
Bad Access 
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STRUCTURAL 
Control 
Dispatch 
lAC 

TYPE 
Type Mismatch 
Contents 

PROCESS 
Time Slice 

DESCRIPTOR 
Invalid Descriptor 

EVENT 
Event Notice 

Example 

The Example section gives an assembly-language example of an application of the instruction. 

Opcode and Instruction Format 

The Opcode and Instruction Format section gives the opcode and machine language instruction 
format for each instruction, for example: 

subi 593 REG 

The opcode is given in hexadecimal format. 

The machine language format is one of four possible formats: REG, COBR, CTRL, and 
MEM. Refer to Appendix B for more information on the machine-language instruction for­
mats. 

See Also 

The See Also section gives the mnemonics of related instructions, which can then be looked up 
alphabetically in this chapter for comparison. For instructions that are grouped on one page 
(such as addr and addrl), only the first mnemonic is given. 

INSTRUCTIONS 

This section contains reference information on the processor's instructions. It is arranged 
alphabetically by instruction or instruction group. 
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inter 

addc 

Mnemonic: ad de 

Format: adde 

INSTRUCTION REFERENCE 

Add Ordinal With Carry 

src1 , 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Description: Adds the src2 and srcJ values, and bit 1 of the condition code (used here as a 
carry in), and stores the result in dst. If the ordinal addition results in a carry, 
bit 1 of the condition code is set; otherwise, bit 1 is cleared. If integer 
addition results in an overflow, bit 0 of the condition code is set; otherwise, 
bit 0 is cleared. Regardless of the results of the addition, bits 0 and 1 of the 
arithmetic controls are always written. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

The addc instruction can be used for either ordinal or integer arithmetic. The 
instruction does not distinguish between ordinal and integer source operands. 
Instead, the processor evaluates the result for both data types and sets bits 0 
and 1 of the condition code accordingly. 

An integer overflow fault is never signaled with this instruction. 

# Let the value of the condition code be xCx. 
dst f- src2 + src1 + C; 
AC.cc f- 2#OCV#; 
# C is carry from ordinal addition. 
# V is 1 if integer addition would have generated an overflow. 

STANDARD 

# Example of double-precision arithmetic 
# Assume 64-bit source operands 
# in gO,gl and g2,g3 
cmpo 1, 0 # clears Bit 1 (carry bit) of 

# the AC.cc 
addc gO, g2, gO # add low-order 32 bits; 

# gO f- g2 + gO + Carry Bit 
addc gl, g3, gl # add high-order 32 bits; 

# gl f- g3 + gl + Carry Bit 
# 64-bit result is in gO, gl 

ad de 5BO REG 

addo, subc 
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Mnemonic: 

Format: 

addi 
addo 

add* 

INSTRUCTION REFERENCE 

Add Integer 
Add Ordinal 

srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

addi, addo 

Description: Adds the src2 and src 1 values and stores the result in dst. 

Action: dst f-- src2 + srcl; 

Faults: 

Example: 

Opcode: 

See Also: 

STANDARD 

Integer Overflow 

addi r4, gS, r9 

addi 
addo 

591 
590 

addc, addr, subi, subo 

Refer to discussion of faults at the begin­
ning of this chapter. 

Result is too large for destination fonnat. 
This fault is signaled only when execut­
ing the addi instruction and if both of the 
following conditions are met: (l) the 
integer-overflow mask in the arithmetic­
controls registers is clear and (2) the 
source operands have like signs and the 
sign of the result operand is different 
than the signs of the source operands. 

# r9 f-- gS + r4 

REG 
REG 

17-7 



INSTRUCTION REFERENCE 

I addr, addrl I 

Mnemonics: addr Add Real 
addrl 

Format: addr* 

Add Long Real 

srcl, 
freg/flit 

src2, 
freg/flit 

dst 
freg 

Description: Adds the src2 and srcl values and stores the result in dst. 

Src2 

Action: 

For the addrl instruction, if the srcl, src2, or dst operand references a global 
or local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when adding various classes 
of numbers, assuming that neither overflow nor underflow occurs. 

Srcl 

.co ·F ·0 +0 +F +co NaN 

.co _00 _00 _00 _00 _00 * NaN 
·F -00 -F src2 src2 ±For ±O +00 NaN 

·0 _00 srcl -0 ±O src1 +00 NaN 

+0 _00 srcl ±O +0 srcl +00 NaN 

+F _00 ±For ±O src2 src2 +F +00 NaN 
+co * +00 +00 +00 +00 +00 NaN 

NaN NaN NaN NaN NaN NaN NaN NaN 

Notes: 

F Means finite-real number 

'" Indicates floating invalid-operation exception 

When the sum of two operands with opposite signs is zero, the result is +0, 
except for the round toward -00 mode, in which case, the result is -0. When 
zero is added to itself (e.g. srcl + srcl, where srcl is 0), the result retains the 
sign of the source. 

dst ~ src2 + srcl; 
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inter 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

STANDARD 

Floating Reserved Encoding 

I addr, addrll 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

addrl g6, g8, fp3 

addr 
addrl 

addi, subr 

78F 
79F 

REG 
REG 

17·9 

Result is too large for destination format. 

Normalized result is too small for des­
tination format. 

Source operands are infinities of unlike 
sign. 

One or more operands is an SNaN value. 

Result cannot be represented exactly in 
destination format. 

Floating overflow occurred and the over­
flow exception was masked. 

#fp3 f- g6,g7 + g8,g9 



alterbit 

Mnemonic: alterbit 

Format: alterbit 

INSTRUCTION REFERENCE 

Alter Bit 

bitpos, 
reg/lit 

src, 
reg/lit 

dst 
reg 

Description: Copies the src value to dst with one bit altered. The bitpos operand specifies 
the bit to be changed; the condition code determines the value the bit is to be 
changed to. If the condition code is XIX2, the selected bit is set; otherwise, 
it is cleared. 

Action: if (AC.cc and 2#010#) = 0 
then dst ~ src and not (2A(bitpos mod 32)); 
else dst ~ src or 2A(bitpos mod 32); 

end if; 

Faults: STANDARD 

Example: # assume AC. cc = 010 
alterbit 24, g4, g9 
# g9 ~ g4, with bit 24 set 

Opcode: alterbit 58P REG 

See Also: check bit, clear bit, notbit, setbit 
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inter INSTRUCTION REFERENCE 

and, andnot 

Mnemonics: and And 
andnot And Not 

Format: and srcJ, src2, dst 
reg/lit reg/lit reg 

andnot srcJ, src2, dst 
reg/lit reg/lit reg 

Description: Performs a bitwise AND (and instruction) or AND NOT (andnot 
instruction) operation on the src2 and srcl values and stores the result in dst. 
Note in the action expressions below, the src2 operand comes first, so that 
with the andnot instruction the expression is evaluated as 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

(src2 andnot (srcl) } 

rather than 

{srcl andnot (src2) }. 

and: dst f- src2 and srcJ; 

andnot: dst f- src2 and not (srcJ); 

STANDARD 

and Ox17, g8, g2 
andnot r3, r12, r9 

# g2 f- g8 AND Ox17 

and 
andnot 

581 
582 

REG 
REG 

# r9 f- r12 AND NOT r3 

nand,nor,not,notand,notor,or,ornot,xnor,xor 
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inter 

atadd 

Mnemonic: atadd 

Format: atadd 

INSTRUCTION REFERENCE 

Atomic Add 

srcldst, 
reg 
addr 

src, 
reg/lit 

dst 
reg 

Description: Adds the src value (full word) to the value in the memory location specified 
with the srcldst operand. The initial value from memory is stored in dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

The read and write of memory are done atomically (i.e., other processors are 
prevented from accessing the word of memory specified with the srcldst 
operand until the operation has been completed). 

The memory location in srcldst is the address of the first byte (least sig­
nificant byte) of the word. The address is automatically aligned to a word 
boundary. (Note that the srcldst operand maps to the srci operand of the 
REG machine-code format. Refer to Appendix B for a description of the 
REG format.) 

tempa +- src/dst and not (3); # force alignment to word boundary 
temp +- atomic_read (tempa); 
atomic_write (tempa) +- temp + src; 
dst +- temp; 

STANDARD 

at add r8, r2, rll # r8 +- r2 + address r8, 
# where r8 specifies the 
# address of a word in 

atadd 612 

atmod 

# memory; rll +- initial 
# value stored at address 
# r8 in memory 

REG 
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inter INSTRUCTION REFERENCE 

I atanr, atanrll 

Mnemonics: atanr Arctangent Real 
Arctangent Long Real atanrl 

Format: atanr* srel, 
freg/flit 

sre2, 
freg/flit 

dst 
freg 

Description: Calculates the arctangent of the quotient of sre2lsrc1 and stores the result in 
dst. The result is returned in radians and is in the range of -1t to +1t, in­
clusive. The sign of the result is always the sign of src2. 

Src2 

For the atanrl instruction, if the src1 , src2, or dst operand references a global 
or local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

These instructions are commonly used as part of an algorithm to convert 
rectangular coordinates to polar coordinates. They can also be used to imple­
ment the FORTRAN intrinsic functions ATAN and ATAN2. If src1 is the 
floating-point literal value + 1.0, then these instructions return a result in the 
range of -1t/2 to +1t/2. 

The following table gives the range of results for various values of src2 and 
src1 , assuming that neither overflow nor underflow occurs. 

Srcl 

-00 -F -0 +0 +F +00 NaN 

-00 -3n/4 -n/2 -n/2 -n/2 -n/2 -n/4 NaN 

-F -n -n to -n/2 -n/2 -n/2 -n/2 to-O -0 NaN 

-0 -n -n -n -0 -0 -0 NaN 

+0 +n +n +n +0 +0 +0 NaN 

+F +n +n to +n/2 +n/2 +n/2 +n/2to +0 +0 NaN 

+00 +3n/4 +n/2 +n/2 +n/2 +n/2 +n/4 NaN 

NaN NaN NaN NaN NaN NaN NaN NaN 

Notes: 

F Means finite-real number. 
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INSTRUCTION REFERENCE 

I atanr, atanrl I 

Action: 

Faults: 

Example: 

Opcode: 

dst f- arctan (src2/srcl); 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

Result is too small for destination format. 

One or more operands are an SN aN 
value. 

Result cannot be represented exactly in 
destination format. 

atanrl g8, g10, fp3 # fp3 f-
# arctan (g10,gll/g8,g9) 

atanrl 1.0, gO, gO # gO,gl f- arctan (gO,gl) 

atanr 
atanrl 

680 
690 

REG 
REG 

See Also: tanr 
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Mnemonic: atmod 

Format: atmod 

INSTRUCTION REFERENCE 

Atomic Modify 

src, 
reg 
addr 

mask, 
reg/lit 

src!dst 
reg 

atmod 

Description: Copies the srcldst value into the memory location specified in src. The bits 
set in the mask operand select the bits to be modified in memory. The initial 
value from memory is stored in src/dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

The read and write of memory are done atomically (i.e., other processors are 
prevented from accessing the word of memory specified with the srcldst 
operand until the operation has been completed). 

The memory location in src is the address of the first byte (least significant 
byte) of the word to be modified. The address is automatically aligned to a 
word boundary. 

tempa f--- src and not (3); # force alignment to word boundary 
temp f--- atomic_read (tempa); 
atomic_write (tempa) f--- (src!dst and mask) 

or (temp and not(mask»; 
src!dst f--- temp; 

STANDARD 

atmod g5, g7, glO # g5 f--- g5 masked by g7, 
# where g5 specifies the 
# address of a word in 

atmod 610 

atadd 

# memory; 
# glO f--- initial value 
# stored at address g5 
# in memory 

REG 
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b,bx 

Mnemonic: 

Format: 

b 
bx 

b 

bx 

INSTRUCTION REFERENCE 

Branch 
Branch Extended 

targ 
disp 

targ 
mem 

Description: Branches to the instruction specified with the targ operand. When using the 
Intel 80960MC Assembler, the targ operand must be a label, which specifies 
the IP of the target instruction. 

With the b instruction, the IP specified with the targ operand can be no 
farther than _223 to (223 - 4) bytes from the current IP. 

The bx instruction performs the same operation as the b instruction except 
that the target instruction can be farther than _223 to (223 - 4) bytes from the 
current IP. Here, the the targ operand is a memory type, which allows the 
full range of addressing modes to be used to specify the IP of the target 
instruction. The "IP + displacement" addressing mode allows the instruction 
to be IP-relative. Indirect branching can be performed by placing the target 
address in a register and then using one of the register-indirect addressing 
modes. 

Refer to Chapter 5 for a complete discussion of the addressing modes avail­
able with memory-type operands. 

NOTE 

At the machine level, the b instruction uses the CTRL instruction fonnat. 
With this fonnat, the target instruction for the branch is specified by means 
of a word-displacement (represented by displacement in the following ac­
tion statement for the b instruction), which can range from _221 to (221 - 1). 
To detennine the IP of the target instruction, the processor converts this 
displacement value to a byte displacement (Le., multiplies the value by 4). 
It then adds the resulting byte displacement to the current IP. 

17-16 



b,bx 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

b: 

INSTRUCTION REFERENCE 

To allow labels to be used in the assembly-language version of the b 
instruction, the Intel 80960MC Assembler performs the following calcula­
tion to convert the targ value in an assembly-language instruction to the 
displacement value required by the machine-instruction format: 

displacement = (targ - IP)/4 

For further information about the CTRL instruction format, refer to Appen­
dixB. 

IP f- IP + displacement; # resume execution at new IP 

bx: IP f- targ; # resume execution at new IP 

STANDARD 

b xyz # IP f- xyz; 

bx 1332 (ip) # IP f- IP + 1332; 
# this example uses ip-relative 
# addressing. 

b 08 CTRL 
bx 84 MEM 

bal, balx, BRANCH IF, COMPARE INTEGER AND BRANCH, COM­
PARE ORDINAL AND BRANCH 
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bal, balx 

Mnemonic: 

Format: 

bal 
balx 

bal 

balx 

INSTRUCTION REFERENCE 

Branch And Link 
Branch And Link Extended 

targ 
disp 

targ, 
mem 

dst 
reg 

Description: Stores the address of the next instruction (the instruction following the bal or 
balx instruction) and branches to the instruction specified with the targ 
operand. When using the Intel 80960MC Assembler, the targ operand must 
be a label, which specifies the IP of the target instruction. 

With the bal instruction, the address of the next instruction is stored in 
register g14. The targ operand value can be no farther than _223 to (223 - 4) 
bytes from the current IP. 

The balx instruction performs almost the same operation as the bal instruc­
tion except that the address of the next instruction is stored in dst. With the 
balx instruction, the target instruction can be farther than _223 to (223 - 4) 
bytes from the current IP. Here, the targ operand is a memory type, which 
allows the full range of addressing modes to be used to specify the IP of the 
target instruction. The "IP + displacement" addressing mode allows the 
instruction to be IP-relative. Indirect branching can be performed by placing 
the target address in a register and then using one of the register-indirect 
addressing modes. 

Refer to Chapter 5 for a complete discussion of the addressing modes avail­
able with memory-type operands. 

NOTE 
At the machine level, the bal instruction uses the CTRL instruction format. 
With this format, the target instruction for the branch is specified by means 
of a word-displacement (represented by displacement in the following ac­
tion statement for the bal instruction), which can range from _221 to (221 -
I). To determine the IP of the target instruction, the processor converts this 
displacement value to a byte displacement (i.e., multiplies the value by 4). 
It then adds the resulting byte displacement to the current IP. 
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Action: 

Faults: 

Example: 

Opcode: 

bal: 

INSTRUCTION REFERENCE 

bal, balx 

To allow labels or absolute addresses to be used in the assembly-language 
version of the bal instruction, the Intel 80960MC Assembler perfonns the 
following calculation to convert the targ value in an assembly-language 
instruction to the displacement value required by the machine instruction 
format: 

displacement = (targ - IP)/4 

For further information about the CTRL instruction format, refer to Appen­
dix B. 

014 ~ IP + 4; # destination next IP is always g14 
IP ~ IP + targ; # resume execution at the new IP 

balx: dst ~ IP + inst length; # instruction length 
# is 4 or 8 bytes 

IP ~ targ; # resume execution at the new IP 

STANDARD 

bal xyz # IP ~ xyz; 

balx (g2), g4 # IP ~ (g2); 

bal 
balx 

OB 
85 

# address of return instruction 
# is stored in g4; example of 
# indirect addressing. 

CTRL 
MEM 

See Also: b, bx 
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inter 

bbc,bbs 

Mnemonic: 

Format: 

bbc 
bbs 

bb* 

INSTRUCTION REFERENCE 

Check Bit and Branch If Clear 
Check Bit and Branch If Set 

bitpos, 
reg/lit 

src, 
reg 

targ 
disp 

Description: Checks the bit in src (designated by bitpos) and sets the condition code in the 
arithmetic controls according to the value found. The processor then per­
forms a conditional branch to the instruction specified with the targ operand, 
according on the state of the condition code. When using the Intel 80960MC 
Assembler, the targ operand must be a label, which specifies the IP of the 
target instruction. 

For the bbc instruction, if the selected bit in src is clear, the processor sets 
the condition code to 0102 and branches to the instruction specified with the 
targ operand; otherwise, it sets the condition code to 0002 and goes to the 
next instruction. 

For the bbs instruction, if the selected bit is set, the processor sets the con­
dition code to 0102 and branches to targ; otherwise, it sets the condition code 
to 0002 and goes to the next instruction. 

The targ operand can be no farther than _212 to (2 12 - 4) bytes from the 
current IP. 

NOTE 

At the machine level, the bbc and bbs instructions use the COBR instruc­
tion format. With this format, the target instruction for the branch is 
specified by means of a word-displacement (represented by displacement in 
the following action statement), which can range from _2 10 to (2 10 - 1). To 
determine the IP of the target instruction, the processor converts this 
displacement value to a byte displacement (i.e., multiplies the value by 4). 
It then adds the resulting byte displacement to the current IP. 

To allow labels to be used in the assembly-language versions of the bbc 
and bbs instructions, the Intel 80960MC Assembler performs the following 
calculation to convert the targ value in an assembly-language instruction to 
the displacement value required by the machine instruction format: 

displacement = (targ - IP)/4 

For further information about the COBR instruction format, refer to Appen­
dix B. 
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inter INSTRUCTION REFERENCE 

Action: bbc: 

Faults: 

Example: 

Opcode: 

See Also: 

if (src and 2A(bitpos mod 32» = 0 
then AC.cc f- 2#010#; 

IP f- IP + 4 + (displacement * 4); 
# resume execution at the new IP 

else AC.cc f- 2#000#; 
IP f- IP + 4; # resume execution at the next IP 

end if; 

bbs: 

if (src and 2A(bitpos mod 32» = 1 
then AC.cc f- 2#010#; 

IP f- IP + 4 + (displacement * 4); 
# resume execution at the new IP 

else AC.cc f- 2#000#; 
IP f- IP + 4; # resume execution at the next IP 

end if; 

STANDARD 

# assume bit 
bbc 

bbc 
bbs 

chkbit 

10, r6, 

30 
37 

10 
xyz 

of r6 is clear 
# bit 10 of r6 is 
# and found clear; 
# AC.cc f- 010 
# IP 

COBR 
COBR 
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BRANCH IF 

Mnemonics: be 
boe 
bl 
ble 
bg 
bge 
bo 
boo 

Format: b* 

INSTRUCTION REFERENCE 

Branch If Equal 
Branch If Not Equal 
Branch If Less 
Branch If Less Or Equal 
Branch If Greater 
Branch If Greater Or Equal 
Branch If Ordered 
Branch If Unordered 

targ 
disp 

Description: Branches to the instruction specified with the targ operand, according to the 
state of the condition code in the arithmetic controls. When using the Intel 
80960MC Assembler, the targ operand must be a label, which specifies the 
IP of the target instruction. 

For all branch-if instructions except the boo instruction, the processor 
branches to the instruction specified with the targ operand, if the logical 
AND of the condition code and the mask-part of the opcode is not zero. 
Otherwise, it goes to the next instruction. 

For the boo instruction, the processor branches to the instruction specified 
with targ, if the logical AND of the condition code and the mask-part of the 
opcode is zero. Otherwise, it goes to the next instruction. 

The targ operand value can be no farther than _223 to (223 - 4) bytes from the 
current IP. 

NOTE 
At the machine level, the branch-if instructions use the CTRL instruction 
format. With this format, the target instruction for the branch is specified 
by means of a word-displacement (represented by displacement in the 
following action statements), which can range from _221 to (221 - 1). To 
determine the IP of the target instruction, the processor converts this 
displacement value to a byte displacement (Le., multiplies the value by 4). 
It then adds the resulting byte displacement to the current IP. 
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Action: 

INSTRUCTION REFERENCE 

BRANCH IF 

To allow labels to be used in the assembly-language version of the branch­
if instructions, the Intel 80960MC Assembler performs the following cal­
culation to convert the targ value in an assembly-language instruction to the 
displacement value required by the machine instruction format: 

displacement = (targ - IP)/4 

For further information about the CTRL instruction format, refer to Appen­
dix B. 

The following table shows the condition-code mask for each instruction: 

Instruction Mask Condition 

bno 000 Unordered 

bg 001 Greater 

be 010 Equal 

bge 011 Greater or equal 

bl 100 Less 

bne 101 Not equal 

ble 110 Less or equal 

bo 111 Ordered 

For the bno instruction (unordered), the branch is taken if the condition code 
is equal to 0002. 

The mask is in bits 0-2 of the opcode. 

For All Instructions Except bno: 

if (mask and AC.cc)"* 2#000# 
then IP f- IP + displacement; # resume execution at new IP 

end if; 

bno: 

if AC.cc = 2#000# 
then IP f- IP + displacement; # resume execution at new IP 

end if; 
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INSTRUCTION REFERENCE 

BRANCH IF 

Faults: STANDARD 

Example: # assume (AC.cc AND 100) ::;:. a 
bl xyz # IP f- xyz; 

Opcode: be 12 CTRL 
boe 15 CTRL 
bl 14 CTRL 
ble 16 CTRL 
bg 11 CTRL 
bge 13 CTRL 
bo 17 CTRL 
boo 10 CTRL 

See Also: b,bx 
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Mnemonic: call 

Format: call 

INSTRUCTION REFERENCE 

Call 

targ 
disp 

call 

Description: Calls a new procedure. The targ operand specifies the IP of the first instruc­
tion of the called procedure. When using the Intel 80960MC Assembler, the 
targ operand must be a label. 

In executing this instruction, the processor perfonns a local call operation as 
described in Chapter 4 in the section titled "Local Calls." As part of this 
operation, the processor allocates a new set of local registers and a new stack 
frame for the called procedure. The processor then goes to the instruction 
specified with the targ argument and begins execution of the new procedure. 

The targ operand can be no farther than _223 to (223 - 4) bytes from the 
current IP. 

NOTE 

At the machine level, the call instruction uses the CTRL instruction format. 
With this format, the first instruction of the called procedure is specified by 
means of a word-displacement (represented by displacement in the follow­
ing action statement), which can range from _221 to (221 - 1). To determine 
the IP of the target instruction, the processor converts this displacement 
value to a byte displacement (i.e., multiplies the value by 4). It then adds 
the resulting byte displacement to the current IP. 

To allow labels to be used in the assembly-language version of the call 
instruction, the Intel 80960MC Assembler performs the following calcula­
tion to convert the targ value in an assembly-language instruction to the 
displacement value required by the machine instruction format: 

displacement = (targ - IP)/4 

For further information about the CTRL instruction format, refer to Appen­
dix B. 
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inter 

call 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

wait for any uncompleted instructions to finish; 
temp f- (SP + 63) and not (63); # round to next boundary 
RIP f- IP; 
if register_secavailable 

then allocate as new frame; 
else save a registecset in memory at its FP; 

allocate as new frame; 
# local register references now refer to new frame 
IP f- IP + displacement; 
PFP f- FP; 
FP f- temp; 
SP f- temp + 64; 

STANDARD 

call xyz # IP f- xyz 

call 09 CTRL 

bal, calls, calix 
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Mnemonic: calls 

Format: calls 

INSTRUCTION REFERENCE 

Call System 

targ 
reg/lit 

calls 

Description: Calls a system procedure. The targ operand gives the number of the proce­
dure being called. 

Action: 

For this instruction, the processor performs the system call operation 
described in Chapter 4 in the section titled "System Calls." The targ operand 
provides an index to an entry in the system procedure table. From this entry, 
the processor gets the IP of the called procedure. 

The procedure called can be either a local procedure or a supervisor proce­
dure, depending on the entry type in the procedure table. If it is a supervisor 
procedure, the processor also switches to supervisor mode (if it is not already 
in this mode). 

As part of this operation, the processor allocates a new set of local registers 
and a new stack frame for the called procedure. If the processor switches to 
the supervisor mode, the new stack frame is created on the supervisor stack. 

if targ > 259 then raise Protection Length Fault; 
wait for any uncompleted instructions to finish; 
temp_p_e f-- memory (SPTSS, 48 + (4 * targ»; 
# SPTSS is SS to system procedure table from PRCB 
RIP f-- IP; 
IP f-- temp_p_e.address; if (temp_p_e.type = local) or 
execution_mode = supervisor 

then temp f-- (SP + 63) and not(63); 
tempRRR f-- 2#000#; 

else temp f-- memory (SPTSS, 12); # supervisor call 
tempRRR f-- 2#01T#; # T is process_controls.T 
execution_mode f-- supervisor; 
process_controls.T f-- temp.T; 

endif; 
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inter 

calls 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

if frame_available 
then allocate as new frame; 
else save a frame in memory at its FP; 

allocate as new frame; 
# local register references now refer to new frame 
endif; 
PFP f--- FP; 
LO.RRR f--- tempRRR; 
FP f--- temp; 
SP f--- temp + 64; 

STANDARD 

calls r12 # IP f--- value obtained from 

calls 660 

bal, call, calix 

# procedure table for procedure 
# number given in r12 

REG 
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Mnemonic: calix 

Format: calix 

INSTRUCTION REFERENCE 

Call Extended 

targ 
mem 

calix 

Description: Calls a new procedure. The targ operand specifies the IP of the first instruc­
tion of the called procedure. When using the Intel 80960MC Assembler, the 
targ operand must be a label. 

Action: 

In executing this instruction, the processor performs a local call operation as 
described in Chapter 4 in the section titled "Local Calls." As part of this 
operation, the processor allocates a new set of local registers and a new stack 
frame for the called procedure. The processor then goes to the instruction 
specified with the targ argument and begins execution of the new procedure. 

This instruction performs the same operation as the call instruction except 
that the target instruction can be farther than _223 to (223 - 4) bytes from the 
current IP. 

The targ operand is a memory type, which allows the full range of address­
ing modes to be used to specify the IP of the target instruction. The "IP + 
displacement" addressing mode allows the instruction to be IP-relative. In­
direct calls can be performed by placing the target address in a register and 
then using one of the register-indirect addressing modes. 

Refer to Chapter 5 for a complete discussion of the addressing modes avail­
able with memory-type operands. 

wait for any uncompleted instructions to finish; 
temp ~ (SP + 63) and not (63); # round to next boundary 
RIP ~IP; 
if registecsecavailable 

then allocate as new frame; 
else save a registecset in memory at its FP; 

allocate as new frame; 
# local register references now refer to new frame 
endif; 
IP ~ targ; 
PFP~FP; 

FP~temp; 

SP ~ temp + 64; 
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calix 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

STANDARD 

calIx (g5) # IP ~ (g5), where the address 

calix 86 

call,calls 

# in g5 is the address of the new 
# procedure 

MEM 

17·30 



Mnemonic: chkbit 

Format: chkbit 

INSTRUCTION REFERENCE 

Check Bit 

bitpos, 
reg/lit 

src 
reg/lit 

chkbit 

Description: Checks the bit in src designated by bitpos and sets the condition code accord­
ing to the value found. If the bit is set, the condition code is set to OlO2; if 
the bit is clear, the condition code is set to 0002, 

Action: if (src and 2A(bitpos mod 32» = 0 
then AC.cc f- 2#000#; 
else AC.cc f- 2#010#; 

end if; 

Faults: STANDARD 

Example: chkbit 13, g8 # checks bit 13 in g8 

Opcode: chkbit 5AE REG 

See Also: alterbit, clrbit, notbit, setbit 
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INSTRUCTION REFERENCE 

I classr, classrl I 

Mnemonic: 

Format: 

classr 
classrl 

classr* 

Classify Real 
Classify Long Real 

src 
freg/flit 

Description: Checks the classification of the real number in src and stores the class in 
arithmetic-status bits (3 through 6) of the arithmetic controls. 

For the cIassrl instruction, if the· src operand references a global or local 
register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the setting of the arithmetic-status bits depending 
on the classification of the operand. 

AStatus Classification 

sOOO Zero 

sOOl Denormalized number 

sOlO Normal finite number 

sOlI Infinity 

s100 Quiet NaN 

s101 Signaling NaN 

sIlO Reserved operand 

The "s" bit is set to the sign of the src operand. 

Refer to Chapter 7 for a discussion of the different real number classifica­
tions. 
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inter 

Action: 

Faults: 

Example: 

Opcode: 

INSTRUCTION REFERENCE 

Sf--- sign_of(src) 
if src = a 

then arithmetic_status f--- sOOO; 
elseif src = denormalized 

then arithmetic _status f--- sao I; 
elseif src = normal finite 

then arithmetic_status f--- sOlO; 
elseif src = 00 

then arithmetic_status f--- sOlI; 
elseif src = QNaN 

then arithmetic _status f--- s 100; 
elseif src = SNaN 

then arithmetic_status f--- sIal; 
elseif src = reserved operand 

then arithmetic_status f--- sIlO; 
end if 

\ classr, classtl\ 

STANDARD Refer to the discussion of faults at the 
beginning of this chapter. 

None of the floating-point exceptions can be raised. 

classrl g12 

classr 
classrl 

68F 
69F 

# classifies long real in g12,g13 

REG 
REG 
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clrbit 

Mnemonic: clrbit 

Format: clrbit 

INSTRUCTION REFERENCE 

Clear Bit 

bitpos, 
reg/lit 

src, 
reg/lit 

dst 
reg 

Description: Copies the src value to dst with one bit cleared. The bitpos operand specifies 
the bit to be cleared. 

Action: dst ~ src and not(2"(bitpos mod 32»; 

Faults: STANDARD 

Example: 

Opcode: 

See Also: 

clrbit 23, g3, g6 # g6 ~ g3 with bit 23 
# cleared 

clrbit 58C REG 

alterbit, chkbit, notbit, setbit 
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INSTRUCTION REFERENCE 

cmpi, cmpo 

Mnemonics: cmpi Compare Integer 
Compare Ordinal cmpo 

Format: cmp* srcl , 
reg/lit 

src2 
reg/lit 

Description: Compares the src2 and srcl values and sets the condition code according to 
the results of the comparison. The following table shows the setting of the 
condition code for the three possible results of the comparison. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Condition Comparison 
Code 

100 srcl < src2 

010 srcl = src2 

001 srcl > src2 

The cmpi instruction followed by one of the branch-if instructions is equiv­
alent to one of the compare-integer-and-branch instructions. The latter 
method of comparing and branching produces more compact code; however, 
the former method can result in faster running code because it takes advan­
tage of the processor's pipelined architecture. The same is true for the cmpo 
instruction and the compare-ordinal-and-branch instructions. 

if srcl < src2 then AC.cc f- 2#100#; 
else if srcl = src2 then AC.cc f- 2#010#; 
else AC.cc f- 2#001#; 
end if; 

STANDARD 

cmpo OxlO, r9 

cmpi 
cmpo 

SAl 
SAO 

# compare values in r9 and OxlO 
# and set AC.cc 

REG 
REG 

cmpibe, cmpr, cmpdeci, cmpdeco 
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INSTRUCTION REFERENCE 

cmpdeci, cmpdeco 

Mnemonics: 

Format: 

cmpdeci 
cmpdeco 

Compare and Decrement Integer 
Compare and Decrement Ordinal 

cmpdec* src1 , 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Description: Compares the src2 and src1 values and sets the condition code according to 
the results of the comparison. The src2 operand is then decremented by one 
and the result is stored in dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

The following table shows the setting of the condition code for the three 
possible results of the comparison. 

Condition Comparison 
Code 

100 src1 < src2 

010 src1 = src2 

001 src1 > src2 

These instructions are intended for use in ending iterative loops. For the 
cmpdeci instruction, interger overflow is ignored to allow looping down 
through the minimum integer values. 

if src1 < src2 then AC.cc ~ 2#100#; 
elseif src1 = src2 then AC.cc ~ 2#010#; 
elseif src1 > src2 then AC.cc ~2#001#; 
end if; 
dst ~ src2 - 1; #overflow suppressed for cmpdeci 

# instruction 

STANDARD 

cmpdeci 12, g7, gl 

cmpdeci 
cmpdeco 

5A? 
5A6 

cmpinco, cmpo 

REG 
REG 
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INSTRUCTION REFERENCE 

cmpinci, cmpinco 

Mnemonics: empinci Compare and Increment Integer 
Compare and Increment Ordinal 

Format: 

empineo 

empine* srcl , 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Description: Compares the src2 and src1 values and sets the condition code according to 
the results of the comparison. The src2 operand is then incremented by one 
and the result is stored in dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

The following table shows the setting of the condition code for the three 
possible results of the comparison. 

Condition Comparison 
Code 

100 src1 < src2 

010 src1 = src2 

001 src1 > src2 

These instructions are intended for use in ending iterative loops. For the 
empinci instruction, integer overflow is ignored to allow looping up through 
the maximum integer values. 

if srcl < src2 then AC.cc f--- 2#100#; 
elseif srcl = src2 then AC.cc f--- 2#010#; 
elseif srcl > src2 then AC.cc f--- 2#001 #; 
end if; 
dst f--- src2 + 1; # overflow suppressed for empinci 

# instruction 

STANDARD 

cmpinco r8, g2, g9 

empinci 5A5 
em pineo 5A4 

cmpdeco, cmpo 

REG 
REG 
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INSTRUCTION REFERENCE 

I empor, emporl I 

Mnemonics: cmpor Compare Ordered Real 
Compare Ordered Long Real cmporl 

Format: cmpor* srcl, 
freg/flit 

src2 
freg/flit 

Description: Compares the src2 and src1 values and sets the condition code according to 
the results of the comparison. 

Action: 

For the cmporl instruction, if the src1 or src2 operand references a global or 
local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the setting of the condition code for the four 
possible results of the comparison. 

Condition Comparison 
Code 

100 src1 < src2 

010 src1 = src2 

001 src1 > src2 

000 if either src1 or src2 
is a NaN 

The algorithm for these instructions checks the classification of the operands. 
If either is in the NaN class, the condition code is set to 0002 and a floating 
invalid-operation exception is raised. The cmpor and cmporl instructions 
operate the same as the cmpr and cmprl instructions, except that the latter 
instructions do not signal an exception if a NaN value is detected. 

If a floating-reserved-encoding fault occurs, the condition code results are 
undefined. 

if srcl < src2 then AC.cc ~ 2#100#; 
else if srcl = src2 then AC.cc ~ 2#010#; 
else if srcl > src2 then AC.cc ~ 2#001#; 
else AC.cc ~ 2#000#; # indicates one number is a NaN 

raise floating invalid operation fault 
end if; 
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Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

STANDARD 

I empor, emporll 

Refer to the discussion of faults at the 
beginning of this chapter. 

Floating Reserved Encoding One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exception can be raised. Whether or not the 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Invalid Operation 

cmporl g6, g12 

cmpor 
cmporl 

684 
694 

One or more operands are a NaN value. 

# compare value in g12,g13 
# with value in g6,g7 

REG 
REG 

cmpr, cmpi, BRANCH IF 
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INSTRUCTION REFERENCE 

I cmpr, cmprl I 

Mnemonics: cmpr Compare Real 
Compare Long Real cmprl 

Format: cmpr* src1, 
freg/flit 

src2 
freg/flit 

Description: Compares the src2 and src1 values and sets the condition code according to 
the results of the comparison. For the cmprl instruction, if the src1 or src2 
operand references a global or local register, this register is the first (lowest 
numbered) of two successive registers. 

Action: 

The following table shows the setting of the condition code for the four 
possible results of the comparison. 

Condition Comparison 
Code 

100 src1 < src2 

010 src1 = src2 

001 src1 > src2 

000 if either src1 or src2 
is a NaN 

The algorithm for these instructions checks the classification of the operands. 
If either is in the NaN class, the condition code is set to 0002, but no fault is 
raised. The cmpr and cmprl instructions operate the same as the cmpor and 
cmporl instructions, except that the latter instructions raise an invalid­
operand exception if a NaN value is detected. 

If a floating-reserved-encoding fault occurs, the condition code results are 
undefined. 

if srcl < src2 then AC.cc f- 2#100#; 
elseif srcl = src2 then AC.cc f- 2#010#; 
elseif srcl > src2 then AC.cc f- 2#001#; 
else AC.cc f- 2#000#; # indicates one number is a NaN 
end if; 
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inter 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

STANDARD 

Floating Reserved Encoding 

I cmpr, cmprll 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exception can be raised. Whether or not the 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Invalid Operation One or more operands are an SNaN 
value. 

cmprl g2, g6 # compare values in g6,g7 
# and g2,g3 

cmpr 
cmprl 

685 
695 

REG 
REG 

cmpor, cmpi, BRANCH IF 
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inter INSTRUCTION REJ=ERENCE 

Icmpstr I, 
Mnem~nic: cmpstr 

Format: onpstr 

Compare String 

srcl, 
reg 
addr 

src2" 
reg 
addr 

len 
reg/lit 

Description: Compares two strings of equal length and sets the condition code according 
to the result. The src1 and src2 operands specify the addresses of the first 
byte in each string, and the len operand specifies the string length, in bytes. 
The len operand can range from 0 to 232 - 1. 

Action: 

If the strings are identical, the condition code is set to 0102; if they are not 
identical, the condition code is set to 1002 or 001 2, as explained in the next 
paragraph. 

The two strings are compared in lexicographical order. This means that the 
processor compares the strings byte-by-byte according to their ASCII value. 
If the byte-by-byte comparison shows that the two strings are identical, the 
condition code is set to 0102. When two bytes of different ASCII value are 
found, the processor sets the condition code to 0012 if the value of the byte 
from the src1 string is greater than the value of the byte from the src2 string 
or to 1002 if the byte from the src1 string is less than the byte from the src2 
string. 

AC.cc f- 2#010#; 
for i in 0 .. len - 1 loop 

if byte (srcl + i) > byte (src2 + i) 
then AC.cc f- 2#001#; 

Exit; 
elseif byte (srcl + i) < byte (src2 + i) 

then AC.cc f- 2#100#; 
Exit; 

end if; 
end loop; 



inter 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

I cmpstr I 

STANDARD 

cmpstr g3, g8, 25 
# compare strings that are 25 bytes long and 
# that begin at the addresses given in 
# registers g3 and g8 

cmpstr 603 REG 

movstr, movqstr, fill 
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INSTRUCTION REFERENCE 

COMPARE AND BRANCH 

Mnemonics: 

Format: 

cmpibe 
cmpibne 
cmpibl 
cmpible 
cmpibg 
cmpibge 
cmpibo 
cmpibno 

cmpobe 
cmpobne 
cmpobl 
cmpoble 
cmpobg 
cmpobge 

cmpib* 

cmpob* 

Compare Integer And Branch If Equal 
Compare Integer And Branch If Not Equal 
Compare Integer And Branch If Less 
Compare Integer And Branch If Less Or Equal 
Compare Integer And Branch If Greater 
Compare Integer And Branch If Greater Or Equal 
Compare Integer And Branch If Ordered 
Compare Integer And Branch If Unordered 

Compare Ordinal And Branch If Equal 
Compare Ordinal And Branch If Not Equal 
Compare Ordinal And Branch If Less 
Compare Ordinal And Branch If Less Or Equal 
Compare Ordinal And Branch If Greater 
Compare Ordinal And Branch If Greater Or Equal 

srci, src2, targ 
reg/lit reg disp 

srci, src2, targ 
reg/lit reg disp 

Description: Compares the src2 and srcl values and sets the condition code in the arith­
metic controls according to the results of the comparison. If the logical AND 
of the condition code and the mask-part of the opcode is not zero, the proces­
sor branches to the instruction specified with the targ operand; otherwise, the 
processor goes to the next instruction. When using the Intel 80960MC 
Assembler, the targ operand must be a label, which specifies the IP of the 
target instruction. 

The targ operand can be no farther than _212 to (212 - 4) bytes from the 
current IP. 

NOTE 

At the machine level, the compare-and-branch instructions use the COBR 
instruction format. With this format, the target instruction for the branch is 
specified by means of a word-displacement (represented by displacement in 
the following action statement), which can range from _2 10 to (210 - 1). To 
determine the IP of the target instruction, the processor converts this 
displacement value to a byte displacement (i.e., multiplies the value by 4). 
It then adds the resulting byte displacement to the current IP. 
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INSTRUCTION REFERENCE 

COMPARE AND BRANCH 

To allow labels to be used in the assembly-language versions of these 
instructions, the Intel 80960MC Assembler performs the following calcula­
tion to convert the targ value in an assembly-language instruction to the 
displacement value required by the machine instruction format: 

displacement = (targ - IP)/4 

For further information about the COBR instruction format, refer to Appen­
dix B. 

The following table shows the condition-code mask for each instruction: 

Instruction Mask Branch Condition 

cmpibno 000 No Condition 

cmpibg 001 srcl > src2 

cmpibe 010 src1 = src2 

cmpibge 011 src1 :2: src2 

cmpibl 100 srcl < src2 

cmpibne 101 src1 'f::. src2 

cmpible 110 src1 <::: src2 

cmpibo 111 Any Condition 

cmpobg 001 src1 > src2 

cmpobe 010 src1 = src2 

cmpobge 011 src1 :2: src2 

cmpobI 100 src1 < src2 

cmpobne 101 srcl 'f::. src2 

cmpoble 110 src1 <::: src2 

The cmpibo instruction always branches; the cmpibno instruction never 
branches. 

The functions that these instructions perform can be duplicated with a cmpi 
instruction followed by a branch-if instruction, as described in the descrip­
tion of the cmpi instruction in this chapter. 
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INSTRUCTION REFERENCE 

COMPARE AND BRANCH 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

if srcl < src2 then AC.cc f- 2#100#; 
elseif srcl = src2 then AC.cc f- 2#010#; 
else AC.cc f- 2#001#; 
end if; 
if mask and AC.cc =F- 2#000# 

then IP f- IP + 4 + (displacement * 4); 
# resume execution at the new IP 
else IP f- IP + 4; 

# resume execution at the next IP 
end if; 

STANDARD 

# assume g3 < g9 
cmpibl g3, g9, xyz # g9 is compared 

# IP f- xyz. 

# assume r7 ~ 19 
cmpobge r7, 19, xyz # 19 is compared 

# IP f- xyz. 

cmpibe 3A COBR 
cmpibne 3D COBR 
cmpibl 3C COBR 
cmpible 3E COBR 
cmpibg 39 COBR 
cmpibge 3B COBR 
cmpibo 3F COBR 
cmpibno 38 COBR 

cmpobe 32 COBR 
cmpobne 35 COBR 
cmpobl 34 COBR 
cmpoble 36 COBR 
cmpobg 31 COBR 
cmpobge 33 COBR 

BRANCH IF, cmpi 
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INSTRUCTION REFERENCE 

concmpi, concmpo 

Mnemonics: concmpi Conditional Compare Integer 
concmpo Conditional Compare Ordinal 

Format: concmp* srcl , 
reg/lit 

src2 
reg/lit 

Description: Compares the src2 and srcl values if bit 2 of the condition code is not set. If 
the comparison is performed, the condition code is set according to the 
results of the comparison. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

These instructions are provided to facilitate bounds checking by means of 
two-sided range comparisons (e.g., is A between Band C?). They are 
generally used after a compare instruction to test whether a value is in­
clusively between two other values. 

The example below illustrates this application by testing whether the value in 
g3 is between the values in g5 and g6, where g5 is assumed to be less than 
g6. First a comparison (cmpo) of g3 and g6 is performed. If g3 is less than 
or equal to g6 (i.e., condition code is either 0102 or 0012), a conditional 
comparison (concmpo) of g3 and g5 is then performed. If g3 is greater than 
or equal to g5 (indicating that g3 is within the bounds of g5 and g6), the 
condition code is set to 0102; otherwise, it is set to 001 2. 

if (AC.cc and 2#100#) = 0 then 
if srcl ~ src2 

then AC.cc f- 2#010; 
else AC.cc f- 2#001; 

endif; 
endif; 

STANDARD 

cmpo g6, g3 # compares g6 and g3 and 
# sets AC.cc 

concmpo gS, g3 # if AC.cc is not lXX, 

concmpi 
concmpo 

cmpo, cmpi 

5A3 
5A2 

# gS is compared with g3 

REG 
REG 

17-47 



inter INSTRUCTION REFERENCE 

Icondrec I 

Mnemonic: condrec Conditional Receive 

Format: condrec src, dst 
reg reg 
SS SS 

Description: Attempts to receive a message from a port and sets the condition code to 
indicate whether the message was received successfully or not. The src 
operand contains the SS of the port. 

Action: 

The processor must be in the supervisor mode to execute this instruction. 

If the message is received successfully, the SS of the message is stored in the 
dst operand, the condition code is set to 0102, and execution of the process 
continues. 

If a message is not available, the condition code is set to 0002 and execution 
of the process continues. 

This instruction is similar to the receive instruction, except that with the 
receive instruction, the process blocks and is suspended if a message is not 
available at the port. 

x f- atomic_read(port.lock); 
if leascsignificant_bit(x) = 1 

then atomic_ write(port.lock) f- x; 
go to condrec; 

else atomic_ write(port.lock) f- x or 1; 
if port.Q = 1 or port is empty 
then AC.cc f- 2#000#; 
else if port is fifo 

then dequeue first message; 
else dequeue first message from 

highest-priority nonempty queue; 
dst f- message_SS; 
AC.cc f- 2#010#; 
x f- atomicJead(port.lock); 
atomic_ write(port.lock) f- x xor 1; 

endif; 
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inter 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

I condrec I 

STANDARD 

# Assume message is available at port 
condrec r8, r9 
# message SS from port specified in 
# r8 is stored in r9; 
# AC.cc is set to 2#010# 

condrec 646 REG 

receive, send 
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INSTRUCTION REFERENCE 

Icondwait I 

Mnemonics: condwait Conditional Wait 

Format: condwait src 
reg 
SS 

Description: Attempts to wait on the semaphore and sets the condition code to indicate 
whether the wait was completed successfully or not. The src operand con­
tains the SS of the semaphore. 

Action: 

The processor must be in the supervisor mode to execute this instruction. 

The processor checks the semaphore count and the semaphore queue tail. If 
the count is non-zero and the queue tail is zero, the count is decremented by 
one, the condition code is set to 0102 (indicating a successful wait), and 
execution of the process continues. 

If the count is zero or the queue tail is non-zero, the condition code is set to 
0002 (indicating an unsuccessful wait) and execution of the process con­
tinues. 

This instruction is similar to the wait instruction, except that with the wait 
instruction, the process is suspended and enqueued on the semaphore if the 
semaphore count is zero or the semaphore queue tail is non-zero. 

x f- atomic_read (semaphore.lock); 
if least_significanchit(x) = 1 

then atomic_write (semaphore.lock) f- x; 
go to condwait; 

else atomic_write (semaphore.lock) f- x or 1; 
if (semaphore. count = 0) or (semaphore.tail) '# 0) 

then AC.cc f- 2#000#; 
else semaphore. count f- semaphore.count - 1; 

AC.cc f- 2#010#; 
end if; 
x f- atomic_read (semaphore.lock); 
atomic_write (semaphore.lock) f- x xor 1; 

end if 
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inter 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

I condwait I 

STANDARD 

# Assume semaphore count is non-zero and no 
# processes are queued at the semaphore. 
condwait g3 
# successful wait is performed on semaphore 
# specified with g3; AC.cc set to 2#010# 

condwait 668 REG 

wait, signal 
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inter INSTRUCTION REFERENCE 

I cosr, cosrl I 

Mnemonics: cosr Cosine Real 
Cosine Long Real cosrl 

Format: cosr* src, 
freg/flit 

dst 
freg 

Description: Calculates the cosine of the value in src and stores the result in dst. The src 
value is an angle given in radians. The resulting dst value is in the range -1 
to + 1, inclusive. 

Action: 

For the cosrl instruction, if the src or dst operand references a global or local 
register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when taking the cosine of 
various classes of numbers with neither overflow nor underflow. 

Src Dst 
-00 * 
-F -1 to+ 1 
-0 +1 
+0 +1 
+F -1 to + 1 

+00 * 
NaN NaN 

Notes: 
F Means finite-real number 

Indicates floating invalid-operation exception 

In the trigonometric instructions, the 80960MC uses a value for 1t with a 
66-bit mantissa which is 2 bits more than are available in the extended-real 
format. The section in Chapter 7 titled "Pi" gives this 1t value, along with 
some suggestions for representing this value in a program. 

dst f- cosine (src); 
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inter 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

STANDARD 

I cosr, cosrll 

Refer to the discussion of faults at the 
beginning of this chapter. 

Floating Reserved Encoding One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Invalid Operation The src operand is 00. 

Floating Inexact 

cosrl r8, g2 

cosr 
cosrl 

68D 
69D 

sinr, sinrl, tanr, tanrl 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 

# cosine of value in rB,r9 is 
# stored in g2,g3 

REG 
REG 
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inter INSTRUCTION REFERENCE 

I cpyrsre, cpysre I 

Mnemonics: cpysre Copy Sign Real Extended 
cpyrsre 

Format: cpy* 

Copy Reversed Sign Real Extended 

srci, 
freg/flit 

src2, 
freg/flit 

dst 
freg 

Description: Copies the absolute value of srcl into dst. For the cpysre instruction, the 
sign of src2 is copied to dst; for the cpyrsre instruction, the opposite of the 
sign of src2 is copied to dst. 

Action: 

Faults: 

Example: 

Opcode: 

If the srcl, src2, or dst operand references a global or local register, this 
register is the first (lowest numbered) of three successive registers. Also, the 
number of this register must be a multiple of four (e.g., gO, g4, g8). 

These instructions only operate on values in the extended-real format. The 
same operations can be performed on real- and long-real values using the 
setbit and clear bit instructions, or a combination of the chkbit and alterbit 
instructions. 

cpysre: if src2 is positive then dst f- abs (srcl); 
else dst f- -abs (srcl); 
endif; 

cpyrsre: if src2 is negative then dst f- abs (srcl); 
else dst f- -abs (srcl); 
endif; 

STANDARD 

Floating Reserved Encoding 

cpysre fpO, fpl, fp2 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is a denormalized 
value and the normalizing-mode bit in 
the arithmetic controls is set. 

# absolute value from fpO is copied to 
# fp2; sign from fpl is copied to fp2 

cpysre 
cpyrsre 

6E2 
6E3 

REG 
REG 
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inter INSTRUCTION REFERENCE 

I cvtilr, cvtir I 

Mnemonics: cvtilr Convert Long Integer to Real 
Convert Integer to Real cvtir 

Format: cvti* src, 
reg/lit 

dst 
freg 

Description: Converts the integer in src to a real and stores the result in dst. For the cvtilr 
instruction, the src operand references the first (lowest numbered) of two 
successive registers. Also, this register must be even numbered (e.g., gO, g2, 
g4). 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Converting an integer to long real format requires two instructions. First, the 
integer is converted to extended real format by using the cvtir or cvtilr 
instruction with a floating-point register as a destination. Then the movrl 
instruction is used to move the value from the floating-point register to two 
global or local registers, causing an explicit conversion to long real format. 
(Note that this conversion is always exact.) The example section below 
illustrates this conversion. 

dst ~ real (src); 

STANDARD Refer to the discussion of faults at the 
beginning of this chapter. 

The following floating-point exception can be raised. Whether or not the 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Inexact Can only be signaled when converting an 
integer to real (32-bit) format 

# Conversion of an integer to a long real value 
cvtir g6, fp3 
rnovrl fp3, g8 # result stored in g8,g9 

cvtir 
cvtilr 

cvtri, movr 

674 
675 

REG 
REG 
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inter INSTRUCTION REFERENCE 

I cvtri, cvtril, cvtzri, cvtzril I 

Mnemonics: cvtri Convert Real To Integer 

Format: 

cvtril 
cvtzri 
cvtzril 

cvtri* 

Convert Real To Integer Long 
Convert Truncated Real To Integer 
Convert Truncated Real To Long Integer 

src, 
freg/flit 

dst 
reg 

Description: Converts the real value in src to an integer and stores the result in dst. 

Action: 

For the cvtril and cvtzril instructions, the dst operand references the first 
(lowest numbered) of two successive registers. Also, this register must be 
even numbered (e.g., gO, g2, g4). 

The non truncated versions of these instructions round according to the cur­
rent rounding mode in the Arithmetic Controls register. The truncated ver­
sions always round toward zero. 

Converting a long real value to an integer requires two instructions. First, 
the long real value is converted to extended real format by using the movrl 
instruction with a floating-point register as a destination. (Note that this 
operation is always exact.) Then one of the convert real-to-integer instruc­
tions is used to move the value from the floating-point register to one or two 
global or local registers. The example section below illustrates this conver­
sion. 

If the magnitude of the result cannot be represented in the destination, an 
integer-overflow fault is raised, and the maximum positive or maximum 
negative value is stored in the destination (depending on whether the real 
value was positive or negative, respectively). 

dst f- integer (src); 
# src is rounded to integer value 
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inter 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

STANDARD 

I cvtri, cvtril, cvtzri, cvtzrill 

Refer to the discussion of faults at the 
beginning of this chapter. 

The following exception can be raised. Whether or not the exception results 
in a fault being raised depends on the state of its associated mask bit in the 
arithmetic controls register. 

Integer Overflow 

# Conversion of 
movrl g4, fp2 

Result is too large for destination format. 

long real value to an integer 
# long-real source is 
# converted to extended-real 
# format and moved to fp2 

cvtril fp2, g12 # extended-real value is 
# converted to long integer 

cvtri 6CO REG 
cvtril 6Cl REG 
cvtzri 6C2 REG 
cvtzril 6C3 REG 

cvtir, movr 
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inter 

Idaddc I 

Mnemonic: daddc 

Format: daddc 

INSTRUCTION REFERENCE 

Decimal Add With Carry 

srcJ, 
reg 

src2, 
reg 

dst 
reg 

Description: Adds bits 0 through 3 of src2 and srcl and bit 1 of the condition code (used 
here as a carry bit). The result is stored in bits 0 through 3 of dst. If the 
addition results in a carry, bit 1 of the condition code is set. Bits 4 through 
31 of src2 are copied to dst unchanged. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

This instruction is intended to be used iteratively to add binary-coded­
decimal (BCD) values in which the least-significant four bits of the operands 
represent the decimal numbers 0 to 9. The instruction asssumes that the least 
significant 4 bits of both operands are valid BCD numbers. If these bits are 
not valid BCD numbers, the resulting value in dst is unpredictable. 

# Let the value of the condition code be xCx. 
dst f- src2 + srcJ + C; 
AC.cc f- 2#OCO#; 
# C is carry from addition of bits 0 through 3 of operands 
# Bits 4 - 31 of dst are same as bits 4 - 31 of src2 

STANDARD 

daddc gS, g9, glO # glO f- g9 + gS + Carry Bit 
# where arithmetic is 

daddc 642 

dsubc, dmovt 

# carried out only on bits 0 
# through 3 of the operands 

REG 
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INSTRUCTION REFERENCE 

divi, divo 

Mnemonic: divi Divide Integer 
divo Divide Ordinal 

Format: div* srcl, src2, dst 
reg/lit reg/lit reg 

Description: Divides the src2 value by the srcl value and stores the result in dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

For the divi instruction, and integer-overflow fault can be signaled. 

dst ~ src2 / srcl; 

STANDARD 

Arithmetic Zero Divide 

Refer to discussion of faults at the begin­
ning of this chapter. 

The srcl operand is o. 
The following fault condition can be raised with the divi instruction. 
Whether or not a fault is raised depends on the state of its associated mask bit 
in the arithmetic-controls register. 

Integer Overflow Result is too large for destination format. 

diva r3, r8, r13 # r13 ~ r8/r3 

divi 
divo 

ediv, mulo 

74B 
70B 

REG 
REG 
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inter INSTRUCTION REFERENCE 

I divr, divrl I 

Mnemonic: 

Format: 

divr 
divrl 

divr* 

Divide Real 
Divide Long Real 

srcl, 
freg/flit 

src2, 
freg/flit 

dst 
freg 

Description: Divides the src2 value by the srcl value and stores the result in dst. 

Sre2 

Action: 

For the divrl instruction, if the src1, src2, or dst operand references a global 
or local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The sign of the result is always the exclusive-OR of the source signs, even if 
one or more of the source values is 0, 00, or a NaN. 

The following table shows the results obtained when dividing various classes 
of numbers, assuming that neither overflow nor underflow occurs. 

-00 

-F 

-0 

+0 

+F 

+00 

NaN 

Notes: 

F 
... 

...... 

Srel 

-00 -F -0 +0 

* +00 +00 -00 

+0 +F ** ** 
+0 ~ +0 * * 
-0 -0 * * 
-0 -F ** ** 
* -00 -00 +00 

NaN NaN NaN NaN 

Means finite-real number. 
Indicates floating invalid-operation exception . 
Indicates floating zero-divide exception . 

dst f- src2 / srcl; 
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+F +00 NaN 

-00 * NaN 

-F -0 NaN 

-0 -0 NaN 

+0 +0 NaN 

+F +0 NaN 

+00 * NaN 

NaN NaN NaN 



Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

STANDARD 

Floating Reserved Encoding 

I divr, divrll 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Zero Divide 

Floating Invalid Operation 

Floating Inexact 

Result is too large for destination format. 

Result is too small for destination format. 

The srci operand is 0 and the src2 
operand is numeric and finite. 

Both source operands are 0 or both are 
00, 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 

divrl glO, gO, fpl # fpl ~ gO,gl / glO,gll 

divr 
divrl 

78B 
79B 

ediv, muir, mulrl 

REG 
REG 
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inter INSTRUCTION REFERENCE 

Idmovt I 

Mnemonic: dmovt Decimal Move And Test 

Format: dmovt src, dst 
reg reg 

Description: Copies the src value into dst. The least-significant eight bits of the src value 
are tested to determine whether or not they constitute a valid ASCII decimal 
(001100002 .. 00111001 2), and the condition code is set accordingly. If the 
value is a valid ASCII decimal, the condition code is set to 0002; otherwise, 
it is set to 0102. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

This instruction is intended to be used iteratively to validate decimal strings. 

dst f- src; 
if src = 2#0011000# .. 2#00111001# 

then AC.cc f- 2#000#; 
else AC.cc f- 2#010#; 

end if; 

STANDARD 

dmovt gl, g6 # g6 f- gl; 
# gl tested for decimal value 

dmovt 644 REG 

daddc,dsubc 
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Mnemonic: dsubc 

Format: dsubc 

INSTRUCTION REFERENCE 

Decimal Subtract With Carry 

src1, 
reg 

src2, 
reg 

dst 
reg 

I dsubcl 

Description: Subtracts bits 0 through 3 of src2 and srcl and bit 1 of the condition code 
(used here as a carry bit). The result is stored in bits 0 through 3 of dst. If 
the subtraction results in a carry, bit 1 of the condition code is set. Bits 4 
through 31 of src are copied to dst unchanged. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

This instruction is intended to be used iteratively to subtract binary-coded­
decimal (BCD) values in which the least-significant four bits of the operands 
represent the decimal numbers 0 to 9. The instruction asssumes that the least 
significant 4 bits of both operands are. valid BCD numbers. If these bits are 
not valid BCD numbers, the resulting value in dst is unpredictable. 

# Let the value of the condition code be xCx. 
dst ~ src2 - src1 - 1 + C; 
AC.cc ~ 2#OCO#; 
# C is carry from subtraction of bits 0 through 4 of operands 
# Bits 4 - 31 of dst are same as bits 4 - 31 of src2 

STANDARD 

dsubc r1, r2, r12 # r12 ~ r2 - r1 -1 + Carry 
# Bit, where arithmetic is 

dsubc 643 

dad dc, dmovt 

# carried out only on bits 0 
# through 3 of the operands 

REG 
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ediv 

Mnemonic: ediv 

Format: ediv 

INSTRUCTION REFERENCE 

Extended Divide 

srcJ, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Description: Divides src2 by src1 and stores the result in dst. The src2 value is a long 
ordinal (i.e., 64 bits), which is contained in two adjacent registers. The src2 
operand specifies the lower numbered register, which contains the least sig­
nificant bits of the operand. The· src2 operand must be an even numbered 
register (i.e., rO, r2, r4, ... or gO, g2, ... ). The src1 value is a normal ordinal 
(i.e., 32 bits). 

Action: 

Faults: 

Example: 

Opcode: 

The remainder is stored in the register designated by dst and the quotient is 
stored in the next highest numbered register. The dst operand must be an 
even numbered register (i.e., rO, r2, r4, ... or gO, g2, ... ). 

This instruction performs ordinal arithmetic. 

If this operation overflows (i.e., the quotient or remainder do not fit in 32-
bits), no fault is raised and the result is undefined. 

dst f- (src2 - (src2 / srcJ) * srcJ); # remainder 
dst + 1 f- (src2 / srcl); # quotient 

STANDARD, Arithmetic Zero-Divide 

ediv g3, g4, glO # glO f- remainder of g4,g5/g3 
# gIl f- quotient of g4,g5/g3 

ediv 671 REG 

See Also: ernul 
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inter 

Mnemonic: emul 

Format: emul 

INSTRUCTION REFERENCE 

Extended Multiply 

srcJ, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

emul 

Description: Multiplies src2 by src1 and stores the result in dst. The result is a long 
ordinal (i.e., 64 bits), which is stored in two adjacent registers. The dst 
operand specifies the lower numbered register, which receives the least sig­
nificant bits of the result. The dst operand must be an even numbered 
register (i.e., rO, r2, r4, ... or gO, g2, ... ). 

Action: 

Faults: 

Example: 

Opcode: 

This instruction performs ordinal arithmetic. 

dst f- (srcJ * src2) mod 2A32; 
dst + 1 f- (src * src2)/mod 2A32; 

STANDARD 

ernul r4, r5, g2 # g2,g3 f- r4 * r5 

emul 670 REG 

See Also: ediv 
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inter INSTRUCTION REFERENCE 

I expr, exprl I 

Mnemonic: 

Format: 

expr 
exprl 

exp* 

Exponent Real 
Exponent Long Real 

src, 
freg/flit 

dst 
freg 

Description: Calculates an approximation of the exponential value of 2 to the src power, 
minus 1, and stores the result in dst. The src value must be within the range 
of -0.5 to +0.5, inclusive. If the src value is outside this range, the result is 
undefined. 

Action: 

For the exprl instruction, if the src or dst operand references a global or local 
register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when computing the exponent 
of various classes of numbers. 

Src Dst 

-0.5 to-O -(1IV2)-1 to-O 

-0 -0 

+0 +0 

+0 to +0.5 +Otov'2-1 

Notes: 
......... Results are unpredictable 

dst f- (2Asrc) - 1; 
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inter 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

STANDARD 

I expr, exprll 

Refer to the discussion of faults at the 
beginning of this chapter. 

Floating Reserved Encoding One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Underflow 

Floating Invalid Operation 

Result is too small for destination format. 

One or more operands are an SNaN 
value. 

Floating Inexact Result cannot be represented exactly in 
destination format. 

# y = 2 Ax (y and x in gO) 
# uses identity 
# 2AX 2 A(I+f) 
# = 2AI * ((2Af - 1)+1) 
# where: I integer, -0.5 <= f <= +0.5 
# assumes round-to-nearest 
# does not handle infinities or NaNs 
_pow2x: 

expr 
exprl 

scaler. logr 

roundr 
subr 
expr 
addr 
cvtri 
scaler 

689 
699 

gO,fpO 
fpO,gO,gO 
gO,gO 
o f1 . 0, gO, gO 
fpO,gl 
gl,fpO,gO 

REG 
REG 
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inter 

extract 

Mnemonic: extract 

Format: extract 

INSTRUCTION REFERENCE 

Extract 

bitpos, 
reg/lit 

len, 
reg/lit 

src/dst 
reg 

Description: Shifts a specified bit field in srcldst right and fills the bits to the left of the 
shifted bit field with zeros. The bitpos value specifies the least significant bit 
of the bit field to be shifted, and the len value specifies the length of the bit 
field. 

Action: src/dst f- (src/dst / 2"(bitpos mod 32» 
and (2"len - 1); 

Faults: STANDARD 

Example: extract 5, 12, g4 # g4 f- g4 with bits 5 
# through 16 shifted right 

Opcode: extract 651 REG 

See Also: modify 
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Mnemonic: faulte 
faultne 
faultl 
faultle 
faultg 
faultge 
faulto 
faultno 

INSTRUCTION REFERENCE 

Fault If Equal 
Fault If Not Equal 
Fault If Less 
Fault If Less Or Equal 
Fault If Greater 
Fault If Greater Or Equal 
Fault If Ordered 
Fault If Unordered 

FAULT IF 

Format: fault* 

Description: Raises a constraint-range fault if the logical AND of the condition code and 
the mask-part of the opcode is not zero. 

Action: 

The following table shows the condition-code mask for each instruction: 

Instruction Mask Condition 

faultno 000 Unordered 

faultg 001 Greater 

faulte 010 Equal 

faultge 011 Greater or equal 

faultl 100 Less 

faultne 101 Not equal 

faultle 110 Less or equal 

faulto 111 Ordered 

For the faultno instruction (unordered), the fault is raised if the condition 
code is equal to 2#000#. 

For all instructions except faultno: 

if (mask and AC.cc) *" 2#000# 
then raise constraint-range fault; 

end if; 

faultno: 

if AC.cc = 2#000# 
then raise constraint-range fault; 

end if; 
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FAULT IF 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

STANDARD, Constraint Range 

# assume AC.cc AND 110 # 000 
faultle 
# Constraint Range Fault is generated 

faulte lA CTRL 
faultne ID CTRL 
faultl lC CTRL 
faultle IE CTRL 
faultg 19 CTRL 
faultge 1B CTRL 
faulto IF CTRL 
faultno 18 CTRL 

be, teste 
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Format: fill 

Mnemonic: fill 

INSTRUCTION REFERENCE 

dst 
reg 
addr 

Fill String 

value 
reg/lit 

len 
reg/lit 

Description: Fills a string in memory with repeated copies of the word value given in 
value. The dst operand specifies the address of the first byte of the string, 
and the len operand specifies the length of the string in bytes. 

Action: for i in 0 .. (len/4) - 1 loop 

Faults: 

Example: 

Opcode: 

See Also: 

word (dst + i) f- value; 
end loop; 
case len rem 4 is 

when 0: null; 
when 1: byte (dst + len - 1) f- value; 
when 2: halfword(dst + len - 2) f- value; 
when 3: halfword(dst + len - 3) f- value; 

byte (dst + len - 1) f- value/65536; 
end case; 

STANDARD 

fill g2, g8, g3 # fills string beginning at 
# address g2 with word value 
# in g8; string length given 
# in g3 

fill 617 REG 

cmpstr 
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INSTRUCTION REFERENCE 

flushreg 

Mnemonic: flush reg Flush Local Registers 

Format: flushreg 

Description: Copies the contents of all the cached local-register sets into their associated 
register-save areas in the procedure stack. The contents of all the local­
register sets except for the current set are then marked as invalid. On a 
return, the local registers for the frame being returned to are then loaded from 
the stack. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

This operation is also carried out when the save process (saveprcs) instruc­
tion is executed, although the saveprcs instruction also updates additional 
process specific information. 

The flushreg instruction is provided to allow a compiler or applications 
program to circumvent the normal call/return mechanism of the processor. 
For example, a compiler may need to back up several frames in the stack on 
the next return, rather than using the normal return mechanism that returns 
one frame at a time. Here, the compiler uses the flushreg instruction to 
update the stack with the current states of the saved register sets. The 
compiler can then return to any frame in the stack without losing the contents 
of the saved local-register sets. To return to a frame other than the frame 
directly below the current frame, the compiler merely modifies the PFP in 
register rO of the current frame to point to the frame that it wishes to return 
to. 

Each register set except the current set is flushed to its associated stack frame 
in memory and marked as purged, meaning that they will be reloaded from 
memory if and when they become the current local register set. 

STANDARD 

flushreg 

flushreg 66D REG 

saveprcs 
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INSTRUCTION REFERENCE 

fmark 

Mnemonic: fmark Force Mark 

Format: fmark 

Description: Generates a breakpoint trace-event. This instruction causes a breakpoint 
trace-event to be generated, regardless of the setting of the breakpoint trace 
mode flag, providing the trace-enable bit (bit 0) of the process controls is set. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

When a breakpoint trace event is detected, the trace-fault-pending flag (bit 
10) of the process controls word and the breakpoint-trace-event flag (bit 23) 
of the trace controls are set. Before the next instruction is executed, a trace 
fault is generated. 

For more information on trace-fault generation, refer to Chapter 12. 

if process. trace_enable 
then 

raise trace breakpoint fault 
end if 

STANDARD, Breakpoint Trace 

ld xyz, r4 
addi r4, r5, r6 
fmark 
# Breakpoint trace event is generated at 
# this point in the instruction stream. 

fmark 66C REG 

mark 
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inter INSTRUCTION REFERENCE 

linspacc I 

Mnemonic: inspacc Inspect Access 

Format: inspacc src dst 
reg reg 
addr 

Description: Loads the effective page representation rights of the byte specified with src 
in dst. The src operand is an address contained in a register. 

Action: 

Faults: 

Example: 

Opcode: 

The page representation rights are contained in a two-bit field (bits 1 and 2) 
in the page table entry for the page that contains the selected byte. This field 
is loaded into bits 0 and 1 of the dst. 

if segment descriptor invalid 
raise invalid-segment-descriptor fault 

else if offset> segment length 
raise segment-length fault 

else 
dst ~ effective page-representation rights 

endif 

STANDARD, Invalid Descriptor, Segment Length 

inspacc g5 g9 # Loads page representation 

inspacc 613 

# rights of byte specified in g5 
# into g9 

REG 



inter 

Mnemonic: 

Format: 

Id 
Idob 
Idos 
Idib 
Idis 
Idl 
Idt 
Idq 

INSTRUCTION REFERENCE 

Load 
Load Ordinal Byte 
Load Ordinal Short 
Load Integer Byte 
Load Integer Short 
Load Long 
Load Triple 
Load Quad 

src, dst 
mem reg 

LOAD 

Description: Copies a byte or string of bytes from memory into a register or group of 
successive registers. The src operand specifies the address of the first byte to 
be loaded. The full range of addressing modes may be used in specifying 
src. (Refer to Chapter 5 for a complete discussion of the addressing modes 
available with memory-type operands.) 

Action: 

Faults: 

Example: 

The dst operand specifies a register or the first (lowest numbered) register of 
successive registers. 

The Idob and Idib, and Idos and Idis instructions load a byte and half word, 
respectively, and convert it to a full 32-bit word. The Id, Idl, Idt, and Idq 
instructions copy 4, 8, 12, and 16 bytes, respectively, from memory into 
successive registers. 

For the Idl instruction, dst must specify an even numbered register (e.g., gO, 
g2, ... , gI2). For the Idt and Idq instructions, dst must specify a register 
number that is a multiple of four (e.g., gO, g4, g8). If the data extends 
beyond register g15 or r15 for the Idl, Idt, or Idq instruction, the results are 
unpredictable. 

dst f- memory (src); 

STANDARD 

ldl 2456 (r3), rIO # rIO, rll f- value of two 
# words beginning at offset 
# 2456 plus the address in 
# r3 in memory 
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LOAD 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

Id 
Idob 
Idos 
Idib 
Idis 
Idl 
Idt 
Idq 

90 
80 
88 
CO 
C8 
98 
AO 
BO 

MOVE,STORE 

MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
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inter 

Mnemonic: Ida 

Format: Ida 

INSTRUCTION REFERENCE 

Load Address 

src 
mem 
efa 

dst 
reg 

Ida 

Description: Computes the effective address specified with src and stores it in dst. The 
src address is not checked for validity. 

Action: 

Faults: 

Example: 

Opcode: 

An important application of this instruction is to load a constant longer than 
5 bits into a register. (To load a register with a constant of 5 bits or less, the 

• move instruction (mov) can be used with a literal as the src operand.) 

dst f--- efa (src); 

STANDARD 

Ida 58 (g9), gl # Computes the effective 
# address specified with 

Ida Ox749, r8 

Ida 8C 

# 58 (g9) and stores it in gl 

# loads the constant Ox749 
# in r8 

MEM 
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INSTRUCTION REFERENCE 

Iidphy I 

Mnemonic: Idpby Load Physical Address 

Format: Idpby src, dst 
reg reg 
addr 

Description: Translates the address in src into a physical address and stores the result in 
dst. This instruction is provided to convert virtual addresses into physical 
addresses. 

Action: 

Faults: 

Example: 

Opcode: 

The address to be translated must reside in a register. The Ida instruction can 
be used to compute an effective virtual address from an address specified 
with one of the processor's addressing modes. The Idphy instruction can 
then be used to translate this virtual address into a physical address. 

dst f- physical address (src) 

STANDARD 

lda 58 (g9), g3 # Computes the effective 
# address specified with 
# 58 (g9) and stores it in g3 

ldphy g3, r7 # r7 f- physical address 
# of address specified with g3 

ldpby 614 REG 

See Also: Ida 
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Mnemonic: Idtime 

Format: Idtime 

INSTRUCTION REFERENCE 

Load Process Time 

dst 
reg 

Iidtime I 

Description: Loads the elapsed execution time (in units of ticks) of the current process up 
until the time of execution of this instruction in dst. The elapsed time is 
computed by subtracting the execution time (ET) from the residual time slice 
(RTS). Both of these values are cached in the processor. 

Action: 

Faults: 

Example: 

Opcode: 

At the beginning of a time slice, the ET for the process is always equal to the 
actual execution time of the process plus the next time slice (NTS) value 
(i.e., the number of ticks in a time slice for that process). The RTS value at 
the beginning of a time slice is also equal to the NTS value. As the process 
is executed, the processor counts the RTS value down. So the elapsed 
execution time of a process at any given time is always ET minus RST. 

Refer to the section in Chapter 14 titled "Process Timing" for an additional 
discussion of process timing. 

dst f- ET - RTS; 

STANDARD 

ldtime g7 

Idtime 673 

# g7 f- elapsed execution time of 
# current process 

REG 
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inter INSTRUCTION REFERENCE 

Ilogbnr, logbnrl I 

Mnemonic: 

Format: 

logbnr 
logbnrl 

logbnr* 

Log Binary Real 
Log Binary Long Real 

src, 
freg/flit 

dst 
freg 

Description: Calculates the log2 (src) and stores the integral part of this value (i.e., the 
part to the left of the binary point) as a real number in dst. The result of this 
operation is an unbiased exponent. When src is a denormalized number, dst 
is the unbiased exponent that src would have if the format had unlimited 
exponent range. 

(The fractional part of log2 (src) is ignored. If the fractional part is needed, 
use the logr or logrl instruction.) 

This instruction implements the IEEE recommended function 10gb. It is 
useful for calculating the order of magnitude of a number. 

For the logbnrl instruction, if the src or dst operand references a global or 
local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when taking the log binary of 
various classes of numbers, assuming that neither overflow nor underflow 
occurs. 

Src Dst 

-00 +00 
-F ±F 
-0 ** 
+0 ** 
+F ±F 

+00 +00 
NaN NaN 

Notes: 
F Means finite-real number 

.... Indicates floating zero-divide exception 
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Action: 

Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

Ilogbnr, logbnrll 

Note that the significand of the src operand can be extracted by using the 
scaler or scalerl instruction. 

dst f- (Iog2 (unbiased exponent (src» - fraction); 
# the integral part of the unbiased exponent of src 
# is stored in dst as a biased real 

STANDARD Refer to the discussion of faults at the 
beginning of this chapter. 

Floating Reserved Encoding One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

Floating Zero Divide 

logbnrl g12, fp3 

logbnr 
logbnrl 

logr, scaler 

68A 
69A 

Result is too small for destination format. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 

The src operand is O. 

# fp3 f- integral part 
# of log2 (g12, g13) 

REG 
REG 
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INSTRUCTION REFERENCE 

Ilogepr, logeprl I 

Mnemonic: 

Format: 

logepr 
logeprl 

logepr* 

Log Epsilon Real 
Log Epsilon Long Real 

srci, 
freg/flit 

src2, 
freg/flit 

dst 
freg 

Description: Calculates (src2 * log2 (srcJ + 1), and stores the result in dst. 

Src2 

For the logeprl instruction, if the srcJ, src2, or dst operand references a 
global or local register, this register is the first (lowest numbered) of two 
successive registers. Also, this register must be even numbered (e.g., gO, g2, 
g4). 

The following table shows the results obtained when taking the log epsilon of 
various classes of numbers, assuming that neither overflow nor underflow 
occurs. 

Srel 

(1Iv'i).1 to·O ·0 +0 +0 toV2·1 NaN 

.00 -00 * * -00 NaN 
·F +F +0 -0 -F NaN 
·0 +0 +0 -0 -0 NaN 

+0 -0 -0 +0 +0 NaN 
+F -F -0 +0 +F NaN 
+00 +00 * * +00 NaN 

NaN NaN NaN NaN NaN NaN 
Notes: 

F Means finite-real number. 
• Indicates floating invalid-operation exception . 

This instruction offers optimal accuracy for values of srcJ + 1 close to 1 (i.e., 
for values of srcl close to 0). This expression is commonly found in com­
pound interest and annuity calculations. The result can be simply converted 
into a value in another logarithm base by including a scale factor in src2. 
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Action: 

Faults: 

INSTRUCTION REFERENCE 

I logepr, logeprll 

The following equation is used to calculate the scale factor for a particular 
logarithm base, where n is the logarithm base desired for the result stored in 
dst: 

scale factor = logn 2 

The range of srcl is restricted to the following: 

l/sqrt (2) :5: srcl + 1 :5: sqrt (2) 

When the srcl operand is outside this range, the logr or logrl instruction can 
be used with very insignificant loss of accuracy by adding 1.0 to srcl. 

dst f- src2 * log2 (src1 + 1); 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 
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Result is too large for destination format. 

Result is too small for destination format. 

The srcl operand is 0 and the src2 
operand is 00. 

The srcl operand does not fall within the 
range defined in the above description 
section. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 



inter INSTRUCTION REFERENCE 

Ilogepr, logeprl I 

Example: 10gepr g8, g4, fp2 
# fp2 ~ g4,g5 * 10g2 (g8,g9 + 1) 

Opcode: logepr 
logeprl 

See Also: logr 

681 
691 

REG 
REG 
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inter 

Mnemonic: 

Format: 

logr 
logrl 

logr* 

INSTRUCTION REFERENCE 

Log Real 
Log Long Real 

srcl, 
freg/flit 

src2, 
freg/flit 

dst 
freg 

ilogr, logrO 

Description: Calculates (src2 * log2 (src1)), and stores the result in dst. (The logbnr and 
logbnrl instructions perform this function more efficiently, if only an es­
timate is needed.) 

Src2 

For the logrl instruction, if the src1, src2, or dst operand references a global 
or local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when taking the log of 
various classes of numbers, assuming that neither overflow nor undertlow 
occurs. 

_00 

-F 

-0 

+0 

+F 

+00 

NaN 

Notes: 

F 

* 
** 

Srcl 
_00 -F -0 +0 

* * ** ** 
* * ** ** 
* * * * 
* * * * 
* * ** ** 
* * ** ** 

NaN NaN NaN NaN 

Means finite-real number. 
Indicates floating invalid-operation exception. 
Indicates floating zero-divide exception. 

+F +00 NaNl --1-----
±oo _00 NaN 

±F -00 NaN 
----l 

±O * NaN ~ 
±O * N~N __ ~ 
±F +00 NaN I 
±oo +00 NaN I 

NaN NaN NaN J 

The logr instruction combined with the expr instruction forms the basis for 
the power function xY• 
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INSTRUCTION REFERENCE 

Ilogr, logrl I 

Action: 

Faults: 

Adding 1.0 to a number to be used as the src1 operand will cause infor­
mation to be lost. To perform this function, use the logepr or logeprl 
instruction. 

These instructions provide a simple method of converting the result of the 
log2 arithmetic into a value in another logarithm base by including a scale 
factor in src2. The following equation is used to calculate the scale factor for 
a particular logarithm base, where n is the logarithm base desired for the 
result stored in dst; 

scale factor = logn 2 

dst f- src2 * log2 (srcl); 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Zero Divide 

Floating Invalid Operation 

Floating Inexact 
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Result is too large for destination format. 

Result is too small for destination format. 

The src1 operand is 0 and src2 is non­
zero. 

The src1 and src2 operands are both O. 

The src1 operand IS 00 and the src2 
operand is O. 

The src1 operand is 1 and the src2 
operand is 00. 

The src1 operand is negative and non­
zero. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 



inter 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

logrl r2, g8, g2 
# g2,g3 f- g8,g9 * log2(r2,r3) 

logr 
logrl 

expr,logepr 

682 
692 

REG 
REG 
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INSTRUCTION REFERENCE 

mark 

Mnemonic: mark Mark 

Format: mark 

Description: Generates a breakpoint trace event if the breakpoint trace mode has been 
enabled. The breakpoint trace mode is enabled if the trace-enable bit (bit 0) 
of the process controls and the breakpoint-trace mode bit (bit 7) of the trace 
controls have been set. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

When a breakpoint trace event is detected, the trace-fault-pending flag (bit 
10) of the process controls and the breakpoint-trace-event flag (bit 23) of the 
trace controls are set. Before the next instruction is executed, a trace fault is 
generated. 

If the breakpoint-trace mode has not been enabled, the mark instruction 
behaves like a no-op. 

For more information on trace-fault generation, refer to Chapter 12. 

if process. trace_enable and breakpoint_trace_flag 
then 

raise trace breakpoint fault 
endif 

STANDARD, Breakpoint Trace 

# Assume that the breakpoint trace mode is 
# enabled. 
ld xyz, r4 
addi r4, r5, r6 
mark 
# Breakpoint trace event is generated at 
# this point in the instruction stream. 

mark 66B REG 

fmark, modpc, modtc 
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Mnemonic: modac 

Format: modac 

INSTRUCTION REFERENCE 

Modify AC 

mask, 
reg/lit 

src, 
reg/lit 

dst 
reg 

modac 

Description: Reads and modifies the arithmetic controls for the current process. The 
processor changes its internally cached arithmetic controls as specified with 
mask and src. The src operand contains the value to be placed in the arith­
metic controls and the mask operand specifies the bits that may be changed. 
Only the bits set in mask are modified in the arithmetic controls. Once the 
arithmetic controls have been changed, their initial state is copied into dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

This instruction only affects the arithmetic controls cached in the processor. 
The arithmetic controls in the PCB for the current process are not affected. 

temp t-- AC 
AC t-- (src and mask) or 

(AC and not (mask)); 
dst t-- temp; 

STANDARD 

modac gl, g9, g12 # AC t-- g9, masked by gl 
# g12 t-- initial value of AC 

modac 645 REG 

mod pc, modtc 
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modi 

Mnemonic: modi 

Format: modi 

INSTRUCTION REFERENCE 

Modulo Integer 

src1, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Description: Divides src2 by src1, where both are integers, and stores the modulo 
remainder of the result in dst. If the result is nonzero, dst has the same sign 
as src1. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

dst f- src2 - «src2Isrc1) * src1); 
if src2 * src1 < 0 

then dst f- dst + src1; 
end if; 

STANDARD, Arithmetic Zero Divide 

modi r9, r2, r5 # r5 f- modulo (r2/r9) 

modi 749 REG 

div, remi 
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Mnemonic: modify 

Format: modify 

INSTRUCTION REFERENCE 

Modify 

mask, 
reg/lit 

src, 
reg/lit 

srcldst 
reg 

modify 

Description: Modifies selected bits in srcldst with bits from src. The mask operand 
selects the bits to be modified: only the bits set in the mask operand are 
modified in srcldst. 

Action: srcldst ~ (src and mask) or (srcldst and not (mask»; 

Faults: STANDARD 

Example: modify g8, glO, r4 # r4 ~ glO masked by g8 

Opcode: modify 650 REG 

See Also: alterbit, extract 
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modpc 

Mnemonic: modpc 

Format: modpc 

INSTRUCTION REFERENCE 

Modify Process Controls 

src, 
reg/lit 

mask, 
reg/lit 

srcldst 
reg 

Description: Reads and modifies the process controls for the current process. The proces­
sor changes its internally cached process controls as specified with mask and 
src/dst. The src/dst operand contains the value to be placed in the process 
controls and the mask operand specifies the bits that may be changed. Only 
the bits set in the mask are modified in the process controls. Once the 
process controls have been changed, their initial value is copied into src/dst. 
The src operand is a dummy operand that should be set equal to the mask 
operand. 

Action: 

The processor must be in the supervisor mode to modify the process controls 
using this instruction. If the mask operand is set to 0, this instruction can be 
used to read the process controls, without the processor being in the super­
visor mode. 

This instruction only affects the process controls cached in processor. The 
process controls in the PCB for the current process are not affected. If the 
action of this instruction results in the priority of the current process being 
lowered, the interrupt table and dispatch port are checked. 

Changing the state, resume, internal state, and trace enable fields of the 
process controls can lead to unpredictable behavior, as described in Chapter 
13 in the section titled "Changing the Process-Controls Word." 

if mask i:- 0 
then if process.process_controls.execution_mode i:- supervisor 

then raise type-mismatch fault; 
end if; 
temp ~ process. process_controls; 
process. process_controls ~ 

(mask and srcldst) or 
(process.process_controls and not (mask)); 

srcldst ~ temp; 
if temp.priority > process.process_controls.priority 

then check_pending_interrupts; 
# if continue here, no interrupt to do 

end if; 
else srcldst ~ process.process_controls; 

end if; 
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Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

modpc 

STANDARD, Type Mismatch 

modpc g9, g9, g8 

modpc 655 

modac, modtc 

# process controls f- g8 
# masked by g9 

REG 
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inter 

modtc 

Mnemonic: modtc 

Format: modtc 

INSTRUCTION REFERENCE 

Modify Trace Controls 

mask, 
reg/lit 

src, 
reg/lit 

dst 
reg 

Description: Reads and modifies the trace controls for the current process. The processor 
changes its internally cached trace controls as specified with mask andsrc. 
The src operand contains the value to be placed in the trace controls and the 
mask operand specifies the bits that may be changed. Only the bits set in the 
mask are modified in the trace controls. Once the trace controls have been 
changed, their initial state is copied into dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

This instruction only affects the trace controls cached in processor. The trace 
controls in the PCB for the current process are not affected. 

Since bits 8 through 15 and 24 through 31 of the trace-controls word are 
reserved, the mask operand is ANDed with OOFFOOFF16 to insure that these 
bits are not set in the mask. 

The changed trace controls take effect on the first non-branching instruction 
fetched from memory. Since instructions are prefetched four at a time, the 
trace controls may not take effect for up to the next four instructions ex­
ecuted. 

For more information on the trace controls, refer to Chapters 12 and 16. 

temp f- process. trace_controls; 
tempI f- I6#OOFFOOFF# and mask; 
process.trace_controls f-

(tempI and src) or 
(process.trace30ntrols and not(templ)); 

dst f- temp; 

STANDARD 

modtc g12, glO, g2 
# trace controls f- glO masked by g12; 
# previous trace controls stored in g2 

modtc 654 REG 

modac, modpc 
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Mnemonic: 

Format: 

mov 
movl 
movt 
movq 

mov* 

INSTRUCTION REFERENCE 

Move 
Move Long 
Move Triple 
Move Quad 

src, 
reg/lit 

dst 
reg 

MOVE 

Description: Copies the content of one or more source registers (specified with the src 
operand) to one or more destination registers (specified with the dst 
operand). 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

For the movl, movt, and movq instructions, the src and dst operands specify 
the first (lowest numbered) register of several successive registers. The src 
and dst registers must be even numbered (e.g., gO, g2) for the movl instruc­
tion and an integral multiple of four (e.g., gO, g4) for the movt and movq 
instructions. 

When the src and dst operands overlap, the value moved is unpredictable. 

dst f- src; 

STANDARD 

movt g8, r4 # r4, r5, r6 f- g8, g9, g10 

mov 5CC REG 
movl 5DC REG 
movt 5EC REG 
movq 5FC REG 

ld, movr, st 
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INSTRUCTION REFERENCE 

I movqstr I 

Mnemonic: 

Format: 

movqstr Move Quick String 

movqstr dst, 
reg 
addr 

src, 
reg 
addr 

len 
reg/lit 

Description: Copies a string of bytes from one location in memory to another, where the 
source and destination strings are assumed not to overlap. The src operand 
specifies the address of the first byte of the source string and the dst operand 
specifies the address of the first byte of the destination string. The len 
operand specifies the length of the string in bytes and can range from 1 to 
232_1. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

The src operand and the dst operand each specify a register, which contains 
an address. 

If the strings overlap, the value copied is not predictable. (Use the movstr 
instruction instead.) 

for i in 0 .. len - 1 loop 
byte (dst + i) ~ byte (src + i); 

end loop; 

STANDARD 

movqstr r9, r2 ,r12 # Copies string beginning 
# at r2, which is 
# r12 bytes long, to 
# string beginning at r9 

movqstr 604 REG 

cmpstr, fill, movstr 
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Mnemonic: 

Format: 

movr 
movrl 
movre 

movr* 

INSTRUCTION REFERENCE 

Move Real 
Move Long Real 
Move Extended Real 

src, 
freg/flit 

dst 
freg 

I movr, movre, movrll 

Description: Copies a real value from one or more source registers (specified with the src 
operand) to one or more destination registers (specified with the dst 
operand). 

Action: 

For the movrl instruction, if the src or dst operand references a global or 
local register, this register is the first (lowest numbered) of two successive 
registers. For the movre instruction, if the src or dst operand references a 
global or local register, this register is the first (lowest numbered) of three 
successive registers. 

When copying real numbers between global or local registers and floating­
point registers, conversion between real or long-real format to extended-real 
format is performed implicitly. Conversion between real and long-real for­
mats must be done through floating-point registers and requires two instruc­
tions, as illustrated in the example below. 

When the movre instruction moves an operand from global or local registers 
to a floating-point register, it automatically truncates the most-significant 16 
bits of the word in the third register (refer to Figure 7-5). Likewise, when 
this instruction is used to move an operand from a floating-point register to 
global or local registers, it adds 16 zeros to the third word. The movre 
instruction is not a numeric instruction; it merely manipulates bits. 

The movr and movrl instructions can cause a floating-point exception to be 
raised, which might result in a fault being raised, as is explained in the 
section below on faults. The movre instruction can never raise an exception 
and thus never faults. 

dst f- src; 

17·97 



INSTRUCTION REFERENCE 

I movr, movre, movrl I 

Faults: 

Example: 

Opcode: 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

Result is too large for destination format. 

Result is too small for destination format. 

Source operand is an SNaN value. 

Result cannot be represented exactly in 
destination format. 

# Conversion of real value in g3 
# to a long real value, which is 
# stored in g4,g5 
movr g3, fp2 
movrl fp2, g4 

movr 
movrl 
movre 

6C9 
6D9 
6E9 

REG 
REG 
REG 

See Also: mov 
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Mnemonic: movstr 

Format: movstr 

INSTRUCTION REFERENCE 

Move String 

dst, 
reg 
addr 

src, 
reg 
addr 

len 
reg/lit 

I movstr I 

Description: Copies a string of bytes from one location in memory to another. The src 
operand specifies the address of the first byte of the source string and the dst 
operand specifies the address of the first byte of the destination string. The 
len operand specifies the length of the string in bytes and can range from 1 to 
232_1. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

The src operand and the dst operand each specify a register, which contains 
an address. 

If the strings overlap, the movstr algorithm guarantees that no byte of the 
source string is overwritten before it is copied into the destination string. If it 
is guaranteed that there are no overlaps, the movqstr instruction performs 
this operation faster. 

if src:::; dst 
then 

for i in 1 .. len loop 
byte (dst + len - i) 

f- byte (src + len - i); 
end loop; 

else 
for i in 0 .. len - 1 loop 

byte (dst + i) f- byte (src + i); 
end loop; 

end if; 

STANDARD 

movstr g5, gl, g9 
# Copies string, which is g9 bytes long and 
# begins at address gl, to address g5 

movstr 605 REG 

cmpstr, fill, movqstr 
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INSTRUCTION REFERENCE 

muli, mula 

Mnemonic: 

Format: 

muli 
mulo 

mul* 

Multiply Integer 
Multiply Ordinal 

srcl , 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Description: Multiplies the src2 value by the src1 value and stores the result in dst. 

Action: dst ~ src2 * srcl; 

Faults: STANDARD, Integer Overflow 

Example: 

Opcode: 

See Also: 

muli r3, r4, r9 

muli 
mulo 

ernul, muIr 

741 
701 

# r9 ~ r4 TIMES r3 

REG 
REG 
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INSTRUCTION REFERENCE 

I muir, mulrl\ 

Mnemonic: muir Multiply Real 
mulrl Multiply Long Real 

Format: mulr* srcl, src2, dst 
freg/flit freg/flit freg 

Description: Multiplies the src2 value by the src1 value and stores the result in dst. 

Src2 

For the mulrl instruction, if the srcl, src2, or dst operand references a global 
or local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The sign of the result is always the exclusive-OR of the source signs, even if 
one or more of the source values is 0, 00, or a NaN. 

The following table shows the results obtained when multiplying various 
classes of numbers together, assuming that neither overflow nor underflow 
occurs. 

Srcl 

-00 -F -0 +0 +F +00 NaN 

-00 +00 +00 * * _00 _00 NaN 

-F +00 +F +0 -0 -F -00 NaN 

-0 * +0 +0 -0 -0 * NaN 

+0 * -0 -0 +0 +0 * NaN 

+F _00 -F -0 +0 +F +00 NaN 

+00 -00 -00 * * +00 +00 NaN 

NaN NaN NaN NaN NaN NaN NaN NaN 

Notes: 

F Means finite-real number. .. Indicates floating invalid-operation exception . 

When you need to multiply by the power of 2, the scaler and scalerl instruc­
tions can also be used. 
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INSTRUCTION REFERENCE 

I muir, mulrl I 

Action: 

Faults: 

Examp-Ie: 

Opcode: 

See Also: 

dst f- src2 * src1; 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

mulrl g12, g4, fp2 

muir 
mulrl 

78C 
79C 

ernUl, rnuli, scaler 

REG 
REG 

17·102 

Result is too large for destination format. 

Result is too small for destination format. 

One source operand is 0 and the other is 
00. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 

# fp2 f- g4,g5 * g12,g13 



inter INSTRUCTION REFERENCE 

nand 

Mnemonic: nand Nand 

Format: nand srcl, src2, dst 
reg/lit reg/lit reg 

Description: Performs a bitwise NAND operation on the src2 and srci values and stores 
the result in dst. 

Action: dst +- (not (src2» or (not (srcl»; 

Faults: STANDARD 

Example: nand g5, r3, r7 # r7 +- r3 NAND g5 

Opcode: nand 58E REG 

See Also: and,andnot, nor, not, notand,notor,or, ornot, xnor, xor 
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nor 

Mnemonic: nor 

Format: nor 

INSTRUCTION REFERENCE 

Nor 

srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Description: Performs a bitwise NOR operation on the src2 and src1 values and stores the 
result in dst. 

Action: dst f- not (src2) and not (srcl); 

Faults: STANDARD 

Example: nor g8, 28, r5 # r5 f- 28 NOR g8 

Opcode: nor 588 REG 

See Also: and,andnot,nand,not,notand,notor,or,ornot,xnor,xor 
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inter INSTRUCTION REFERENCE 

not, notand 

Mnemonic: not Not 
notand Not And 

Format: not src, dst 
reg/lit reg 

notand srcl, src2, dst 
reg/lit reg/lit reg 

Description: Perfonns a bitwise NOT (not instruction) or NOT AND (notand instruction) 
operation on the src2 and src1 values and stores the result in dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

not: dst f- not (src); 

notand: dst f- (not (src2)) and srcl; 

STANDARD 

not g2, g4 
notand r5, r6, r7 

not 
notand 

58A 
584 

REG 
REG 

# g4 f- NOT g2 
# r7 f- NOT r6 AND r5 

and, andnot, nand, nor, notor, or, ornot, xnor, xor 
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notbit 

Mnemonic: notbit 

Format: notbit 

INSTRUCTION REFERENCE 

Not Bit 

bitpos, 
reg/lit 

src, 
reg/lit 

dst 
reg 

Description: Copies the src value to dst with one bit toggled. The bitpos operand 
specifies the bit to be toggled. 

Action: dst f- src xor 2/'(bitpos mod 32); 

Faults: STANDARD 

Example: notbit r3, r12, r7 # r7 f- r12 with the bit 
# specified in r3 toggled 

Opcode: notbit 580 REG 

See Also: aiterbit, chkbit, clrbit, setbit 
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inter 

Mnemonic: Dotor 

Format: Dotor 

INSTRUCTION REFERENCE 

Not Or 

src1, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

notor 

Description: Perfonns a bitwise NOT OR operation on the src2 and src1 values and stores 
the result in dst. 

Action: dst ~ (Dot (src2)) or src1; 

Faults: STANDARD 

Example: notor g12, g3, g6 # g6 ~ NOT g3 OR g12 

Opcode: Dotor 58D REG 

See Also: and,andnot,nand,nor,not,notand,or,ornot,xnor,xor 
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inter 

or,ornot 

Mnemonic: 

Format: 

or 
ornot 

or 

ornot 

INSTRUCTION REFERENCE 

Or 
Or Not 

srcl, src2, dst 
reg/lit reg/lit reg 

srcl, src2, dst 
reg/lit reg/lit reg 

Description: Performs a bitwise OR (or instruction) or aRNOT (ornot instruction) opera­
tion on the src2 and src1 values and stores the result in dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

or: dst f- src2 or srcl; 

ornot: dst f- src2 or not (srcl); 

STANDARD 

or 14, g9, g3 
ornot r3, r8, r11 

or 
ornot 

587 
58B 

REG 
REG 

# g3 f- g9 OR 14 
# r11 f- r8 OR NOT r3 

and, andnot, nand, nor, not, notand, notor, xnor, xor 
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INSTRUCTION REFERENCE 

I receive I 

Mnemonic: receive Receive 

Format: receive src, dst 
reg reg 
SS SS 

Description: Attempts to receive a message from a communications port. The src operand 
contains the SS of the port. If the port has enqueued messages, the SS of the 
message at the head of the message queue is stored in dst and execution 
continues. 

Action: 

The processor must be in the supervisor mode to execute this instruction. 

If the port is empty (i.e., has no messages queued), the process is suspended, 
with its IP left pointing to the current instruction. The process is then 
enqueued at the port at the tail of the blocked-processes queue. 

The receive-blocked process remains blocked until it reaches the head of the 
blocked-processes queue and a message is received at the port. This message 
is then stored in the PCB of the blocked process, and the process is dequeued 
from the communications port and enqueued to its dispatching port. 

When the process is again dispatched, the processor resumes the receive 
instruction, but this time it reads the message stored in its PCB, rather than 
going to the communication port again. 

x f-- atomic_read(port.1ock); 
if leasCsignificanCbit(x) = 1 

then atomic_ write(port.lock) f-- x; 
go to receive; 

else atomic_ write(port.1ock) f-- x or 1; 
if port.Q = 1 or port is empty 

then if port is fifo 
then enqueue process on port 

port.queue_tail_SS f-- process_SS; 
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Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

I receive I 

else enqueue process on port.queue(process.priority); 
port.queue_taiCSS(process.priority) ~ process_SS; 

x ~ atomic_read(port.lock); 
atomic_ write(portJock) ~ x xor 1; 
perform process suspension action; 

# IP continues to point at receive inst 
x ~ atomic_read(currencprocess.lock); 
atomic_write(currenCprocess.lock) ~ x xor 1; 
perform dispatch action; 

else if port is fifo 
then dequeue first message; 
else dequeue first message from highest-priority 

nonempty queue; 
dst ~ message_SS; 
x ~ atomic_read(port.lock); 
atomic_write(port.lock) ~ x xor 1; 

endif; 

STANDARD 

receive g8, g3 # receives message from port g8 
# and store message in g3 

receive 656 REG 

conrec, send 
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INSTRUCTION REFERENCE 

remi, remo 

Mnemonic: remi Remainder Integer 
remo Remainder Ordinal 

Format: rem* srcl, src2, dst 
reg/lit reg/lit reg 

Description: Divides src2 by src1 and stores the remainder in dst. The sign of the result 
(if nonzero) is the same as the sign of src2. 

Action: dst f- src2 - ((src2 / srcl) * srcl); 

Faults: 

Example: 

Opcode: 

See Also: 

STANDARD 

Integer Overflow 

remo r4, r5, r6 

remi 
remo 

remr, modi 

748 
708 

Refer to discussion of faults at the begin­
ning of this chapter. 

Result is too large for destination format. 
This fault is signaled only when execut­
ing the remi instruction and if both of 
the following conditions are met: (1) the 
integer-overflow mask in the arithmetic­
controls registers is clear and (2) the 
source operands have like signs and the 
sign of the result operand is different 
than the signs of the source operands. 

# r6 f- r5 rem r4 

REG 
REG 
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INSTRUCTION REFERENCE 

I remr, remrl I 

Mnemonic: 

Format: 

remr 
remrl 

remr* 

Remainder Real 
Remainder Long Real 

srci, 
freg/flit 

src2, 
freg/flit 

dst 
freg 

Description: Divides src2 by src1 and stores the remainder in dst. The sign of the result 
(if nonzero) is the same as the sign of src2. 

Src2 

For the remrl instruction, if the src1 , src2, or dst operand references a global 
or local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when computing the 
remainder of various classes of numbers, assuming that neither overflow nor 
underflow occurs. 

Srcl 
_00 -F -0 +0 +F +00 NaN 

_00 * * * * * * NaN 

-F src2 -F or -0 ** ** -F or -0 src2 NaN 

-0 -0 -0 * * -0 -0 NaN 

+0 +0 +0 * * +0 +0 NaN 

+F src2 +For +0 ** ** +For +0 src2 NaN 

+00 * * * * * * NaN 

NaN NaN NaN NaN NaN NaN NaN NaN 

Notes: 

F Means finite-real number. 
Indicates floating invalid-operation exception. 

'" '" Indicates floating zero-divide exception. 

When the result is 0, its sign is the same as that of src2. When the srcl is 00, 

the result is equal to the src2. 

The result of this operation is always exact if the destination format is at least 
as wide as the src2 and src1. 
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inter 

Action: 

INSTRUCTION REFERENCE 

I remr, remrl I 

The remainder provided with the remr and remrl instructions is different 
from the remainder described in the IEEE floating-point standard. The dif­
ference is related to how the quotient (N) of the expression (src2/src1) is 
determined. 

As shown below in the action statement, N for the remr and remrl instruc­
tions is the nearest integer value obtained when the exact result (E) of the 
expression (src2/src1) is truncated toward zero. N will always be less than 
or equal to the absolute value of E. 

For the IEEE standard, N is simply the nearest integer value to E. Here, N 
may be less than, equal to, or greater than the absolute value of E. 

To help determine the IEEE remainder from the result given by the remr and 
remrl instructions, the following information about the quotient is given in 
the arithmetic-status field in the arithmetic controls: 

Arithmetic Meaning 
Status Bit 

6 Ql, the next-to-Iast quotient bit 

5 QO, the last quotient bit 

4 QR, the value the next quotient bit 
would have if one more reduction were 
performed (the "round" bit of the 
quotient) 

3 QS, set if the remainder after the QR 
reduction would be nonzero (the 
"sticky" bit of the quotient) 

The information can then be used to determine the IEEE standard remainder, 
as shown in the example on the next page. 

dst f-- src2 - (N * srcl); 
# where N = truncate (src2/srcl. 
# Here, (src2/srcl) is truncated 
# toward zero to the nearest integer. 
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inter INSTRUCTION REFERENCE 

I remr, remrl I 

Faults: 

Example: 

Opcode: 

See Also: 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Zero Divide 

Floating Invalid Operation 

Floating Inexact 

# z = ieee rem (x, y) 

Result is too large for destination format. 

Result is too small for destination format. 

The srcl operand is O. 

The src2 operand is 00. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 

# z is in gO,gl; x is in gO,gl; y is in g2,g3 
ieee rem: 

remrl g2, gO, gO 
modac 0, 0, g4 
bbc 4, g4, 2f 
# QR=O, implies gO < y/2 and z=gO 
bbs 3, g4, 1f 
# QR=l,QS=l, implies gO > y/2 and z=gO-y 
bbc 5, g4, 2f 
# QR=l,QS=O,QO=O, implies gO=y/2 and z=gO 

1: clrbit 31, g3, g2 # Iyl 
subrl g2, gO, gO 

2: ret 

remr 
remrl 

remi, modi 

683 
693 

REG 
REG 
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INSTRUCTION REFERENCE 

I resumprcs I 

Mnemonic: resumprcs Resume Process 

Format: resumprcs src 
reg 
SS 

Description: Switches the processor from one process to another process. The SS of the 
new process is specified with the src operand. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

The processor must be in the supervisor mode to execute this instruction. 

Any state information for the current process that has been cached on the 
processor chip, such as the PCB and the stack frames, is discarded (i.e., not 
updated in memory, not unlocked). Thus, to save the state of the current 
process, the resumprcs instruction should be preceded by a saveprcs in­
struction. 

The saveprcs and resumprcs instructions are similar to the save and resume 
functions in most UNIX kernels. These instructions allow task (or process) 
switching without using the processor's automatic dispatching mechanism. 

if src1 is not a SS to a PCB 
then raise Type Mismatch Fault; 

endif; 
perform process-bind action 

STANDARD, Type Mismatch 

resumprcs r4 

resumprcs 664 

saveprcs 

# processor is bound 
# to process 
# specified in r4 

REG 
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inter INSTRUCTION REFERENCE 

ret 

Mnemonic: ret Return 

Format: ret 

Description: Returns process control to the calling procedure. The current stack frame 
(Le., that of the called procedure) is deallocated and the FP is changed to 
point to the stack frame of the calling procedure. Instruction execution is 
continued at the instruction pointed to by the RIP in the calling procedure's 
stack frame, which is the instruction immediately following the call instruc­
tion. 

Action: 

As shown in the action statement below, the return status field and prereturn 
trace flag determine the action that the processor takes on the return. These 
fields are contained in bits 0 through 3 of register rO of the calling 
procedure's local registers. 

Refer to Chapter 4 for further discussion of the ret instruction. 

wait for any uncompleted instructions to finish; 
case return_status is 

2#000#: FP ~ PFP; 
free current registecset; 
if registecset (FP) not allocated 

then retrieve from memory(FP); 
end if; 
IP~RIP; 

2#001#: x ~ memory(FP-16); 
y ~ memory(FP-12); 
go to case 000 action; 
arithmetic_controls ~ y; 
if execution_mode = supervisor 

then process_controls ~ x; 
end if; 

2#010#: if execution_mode * supervisor 
then go to case 000 action; 
else process_controls.T ~ 0; 

execution_mode ~ user; 
go to case 000 action; 

end if; 
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Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

2#011#: if execution_mode ;f. supervisor 
then go to case 000 action; 
else process_controls.T f-- 1; 

execution_mode f-- user; 
go to case 000 action; 

end if; 
2#100#: undefined 

2#101#: undefined 

2#110#: if execution_mode = supervisor 
then free current register set; 

check_pending_interrupts; 
# if continue here, no interrupt to do 
enter idle state; 

else go to case 000 action; 
end if; 

2#111 #: x f-- memory(FP-16); 
y f-- memory(FP-12); 
go to case 000 action; 
arithmetic_controls f-- y; 
if execution_mode = supervisor 

then process_controls f-- x; 
check_pending_interrupts; 

end if; 

STANDARD 

ret 

ret 

# process control returns to 
# calling procedure 
# environment 

OA CTRL 

call, calls, calix 
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inter 

rotate 

Mnemonic: rotate 

Format: rotate 

INSTRUCTION REFERENCE 

Rotate 

len, 
reg/lit 

src, 
reg/lit 

dst 
reg 

Description: Copies src to dst and rotates the bits in the resulting dst operand to the left 
(toward higher significance). (The bits shifted off the left end of the word 
are inserted at the right end of the word.) The len operand specifies the 
number of bits that the dst operand is rotated. The len operand can range 
from 0 to 31. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

This instruction can also be used to rotate bits to the right. Here, the number 
of bits the word is to be rotated right is subtracted from 32 to get the len 
operand. 

dst f- rotate (len mod 32 (src» 

STANDARD 

rotate r4, r8, r12 

rotate 59D REG 

SHIFT 
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# r12 f- r8 
# with bits rotated 
# r4 bits to left 



inter 

Mnemonic: 

Format: 

roundr 
roundrl 

INSTRUCTION REFERENCE 

Round Real 
Round Long Real 

roundr* src, dst 
freg freg/flit 

I roundr, roundrll 

Description: Rounds src to the nearest integral value, depending on the rounding mode, 
and stores the result in dst. 

Action: 

Faults: 

Example: 

Opcode: 

For the roundrl instruction, if the src or dst operand references a global or 
local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

If the src operand is 00 the result is src. If the src operand is not an integral 
value, a floating-inexact exception is raised. 

dst f- round_to_integraCvalue (src); 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

roundrl r4, rIO 

Result is too large for destination format. 

Result is too small for destination format. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 

# rlO,rll f- r4,r5 rounded 

roundr 
roundrl 

68B 
69B 

REG 
REG 
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inter INSTRUCTION REFERENCE 

Isaveprcs I 

Mnemonic: saveprcs Save Process 

Format: saveprcs 

Description: Updates the state of the current process in memory by saving that part of the 
process state that is cached on the processor chip during the execution of the 
process. The part of the process state that is cached includes part of the PCB 
and any cached local-register frames. The process is not unlocked and con­
tinues to execute with its cached state. 

Action: 

Faults: 

Opcode: 

See Also: 

The processor must be in the supervisor mode to execute this instruction. 

The saveprcs and resumprcs instructions are similar to the save and resume 
functions in most UNIX kernels. These instructions allow task (or process) 
switching without using the processor's automatic dispatching mechanism. 

The primary function of the saveprcs instruction is to save the state of a 
process prior to switching processes using the resumprcs instruction. 

if PRCB.processoccontrols.state = process_executing 
then perform process-suspension action 
else flush any local register sets; 

endif; 

STANDARD 

saveprcs 666 REG 

resumprcs 
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inter 

Mnemonic: 

Format: 

scaler 
scalerl 

scaler* 

INSTRUCTION REFERENCE 

Scale Real 
Scale Long Real 

srci, 
reg/lit 

src2, 
freg/flit 

dst 
freg 

I scaler, scalerll 

Description: Multiplies src2 by 2 to the power of src1 and stores the result in dst. The 
src1 operand is an integer; whereas, src2 and dst are reals. 

For the scalerl instruction, if the src2 or dst operand references a global or 
local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when scaling various classes 
of numbers, assuming that neither overflow nor underflow occurs. 

Src2 

-co 

-F 

-0 

+0 

+F 

+co 

NaN 

Notes: 

F 
N 

Srcl 

-N 0 +N 

-co -co -co 

-F -F -F 

-0 -0 -0 

+0 +0 +0 

+F +F +F 

+00 +00 +co 

NaN NaN NaN 

Means finite-real number. 
Means integer. 

In most cases, only the exponent is changed and the mantissa (fraction) 
remains unchanged. However, when the src2 operand is a denormalized 
value, the mantissa is also changed and the result may tum out to be a 
normalized number. Similarly, if overflow or underflow results from a scale 
operation, the resulting mantissa will differ from the source's mantissa. 
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inter INSTRUCTION REFERENCE 

I scaler, scalerl I 

Action: 

Faults: 

Example: 

Opcode: 

Refer to the sections titled "Floating Overflow Exception" and "Floating 
Underflow Exception" in Chapter 7 for further discussion of how overflow 
and underflow are handled. 

dst f- src2 * (2Asrcl) 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Zero Divide 

Floating Invalid Operation 

Floating Inexact 

scalerl g6, g2, fpO 
# fpO f- g2,g3 * 2Ag6 

scaler 
scalerl 

677 
676 

REG 
REG 

Result is too large for destination format. 

Result is too small for destination format. 

The src1 operand is O. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 

See Also: muir 
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Mnemonic: scanbit 

Format: scanbit 

INSTRUCTION REFERENCE 

Scan For Bit 

src, 
reg/lit 

dst 
reg 

scanbit 

Description: Searches the src value for the most-significant set bit (1 bit). If a most­
significant I bit is found, its bit number is stored in dst and the condition 
code is set to 0102• If the src value is zero, all l's are stored in dst and the 
condition code is set to 0002. 

Action: dst ~ 16#FFFFFFFF#; 
AC.cc ~ 2#000#; 

Faults: 

Example: 

Opcode: 

See Also: 

for i in 31..0 reverse loop 

end loop; 

if (src and 21\i) '* 0 
then 

end if; 

dst~ i; 
AC.cc ~ 2#010#; 
exit; 

STANDARD 

# assume g8 is nonzero 
scanbit g8, glO 
# glO ~ bit number of 
# most-significant set bit 
# in g8; AC.cc ~ 010 

scanbit 641 REG 

spanbit 
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inter 

scanbyte 

Mnemonic: 

Format: 

INSTRUCTION REFERENCE 

scanbyte Scan Byte Equal 

scanbyte src1 , 
reg/lit 

src2 
reg/lit 

Description: Performs a byte-by-byte comparison of src1 and src2 and sets the condition 
code to 0102 if any two corresponding bytes are equal. If no corresponding 
bytes are equal, the condition code is set to 0002, 

Action: if (src1 and 16#000000FF#) = (src2 and 16#000000FF#) or 
(srcl and 16#0000FFOO#) = (src2 and 16#0000FFOO#) or 
(src1 and 16#00FFOOOO#) = (src2 and 16#00FFOOOO#) or 
(srcl and 16#FFOOOOOO#) = (src2 and 16#FFOOOOOO#) 

then AC.cc f- 2#010#; 
else AC.cc f- 2#000#; 

endif; 

Faults: STANDARD 

Examp~: # assume r9 = Ox11AB1100 
scanbyte OxOOAB0011, r9 
# AC. cc f- 010 

Opcode: scanbyte 5AC REG 

See Also: cmpstr, fill, movqstr, movstr 
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Mnemonic: scbedprcs 

Format: scbedprcs 

INSTRUCTION REFERENCE 

Schedule Process 

src 
reg 
SS 

I schedprcs I 

Description: Sends a process to its dispatching port. The src operand specifies the SS of 
the PCB for the process to be scheduled. If the preempt bit in PCB of the 
process is set and if its priority is higher than the currently running process, a 
preemption action is initiated. Otherwise, the process is enqueued at the 
head of its priority queue at the dispatching port. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

The processor must be in the supervisor mode to execute this instruction. 

The SS of the dispatching port and the priority of the process are determined 
from the process's PCB. 

perform unblock action on process specified with src; 

STANDARD 

schedprcs g3 
# process specified in g3 is scheduled 

scbedprcs 665 REG 

sendserv 
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/send / 

Mnemonic: send 

Format: send 

INSTRUCTION REFERENCE 

Send 

dst, 
reg 
SS 

srcl, 
reg/lit 

src2 
reg 
SS 

Description: Sends a message to a communications port. The src2 operand specifies the 
SS of the message being sent and the dst operand specifies the SS of the port 
the message is to be sent to. 

Action: 

The processor must be in the supervisor mode to execute this instruction. 

If the port is a priority-type port, the message is handled as follows. If there 
are processes enqueued at the port, the message is bound to the process at the 
head of the highest priority queue that has queued processes. The process is 
then rescheduled at its dispatching port. If there are no processes enqueued 
at the port, the message is enqueued at the end of the queue of the priority 
specified in the srcl operand. The srcl operand can range from 0 to 31. 

If the port is a FIFO port, the message is handled in the same way, except 
that the priority operand (srcl) is ignored. 

The message is bound to a process by writing the SS of the message in the 
receive message field of the process's PCB. 

When the process is rescheduled, a preemption action is initiated if the 
preempt bit in the process's PCB is set and if the process has a higher 
priority than the currently running process. 

x f- atomic_read(port.lock); 
if leasCsignificancbit(x) = 1 

then atomic_ write(port.lock) f- x; 
go to send; 

else atomic_ write(port.lock) f- x or 1; 
ifport.Q = 0 

then if port is fifo 
then enqueue src2 on port 

port.queue_tail_SS f- src2; 
else enqueue src2 on port.queue(srcl mod 32); 

port.queue_taiCSS(srcl mod 32) f- src2; 
x f- atomic_read(port.lock); 
atomic_write(port.lock) f- x xor 1; 
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Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

else if port is fifo 
then dequeue first process; 
else dequeue first process from highest-priority 

nonempty queue; 
dequeued_process.received_message ~ src2; 
x ~ atomic_read(port.lock); 
atomic_ write(port.lock) ~ x xor 1; 
perform unblock action on dequeued process; 

end if; 

STANDARD 

send g8, 21, g2 
# message with the SS given 
# in g2 is sent to the priority 
# port with the SS given in g8; 
# if the port is empty, the 
# message is queued at 
# priority queue 21 

send 662 REG 

condrec, receive 
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INSTRUCTION REFERENCE 

Isendserv I 

Mnemonic: 

Format: 

sendserv Send Service 

sendserv src 
reg 
SS 

Description: Suspends the current process and sends the SS of its PCB as a message to the 
port specified in src. If the port is a FIFO port, the process SS is queued at 
the end of the queue. 

Action: 

The processor must be in the supervisor mode to execute this instruction. 

If the port is a priority port, the process SS is queued at the end of the queue 
for its specified priority or given to the highest priority process waiting at the 
priority port, if one is available. The priority of the process is determined 
from the Process Controls word in the PCB for the process. 

perform process suspension action; 
x f- atomicJead(port.lock); 
if leascsignificant_bit(x) = 1 

then atomic_ write(port.lock) f- x; 
go to sendserv; 

else atomic_write(port.lock) f- (x or 1); 
ifport.Q = 0 

then if port is fifo 
then enqueue currenCprocess as message on port 

port.queue_tail_SS f- currencprocess_SS; 
else enqueue currenCprocess as message on 

port.queue( current_process. priority); 
port.queue_tail_SS(currenCprocess.priority) f-

current_process_SS; 
x f- atomicJead(port.lock); 
atomic_ write(port.lock) f- x xor 1; 
x f- atomic_read( current_process.lock); 
perform dispatch action; 
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Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

Isendserv I 

else if port is fifo 
then dequeue first process; 
else dequeue first process from highest-priority 

nonempty queue; 
dequeued_process.received_message f- currenCprocess.SS; 
x f- atomic_read(port.lock); 
atomic_ write(port.1ock) f- x xor 1; 
x f- atomic_read(current_process.lock); 
atomic_write(currenCprocess.lock) f- x xor 1; 
perform steps 1 .. 3 of unblock action on dequeued process; 
perform dispatch action; 

end if; 

STANDARD 

sendserv r4 
# process is suspended and sent 
# to the port with the SS 
# given in r4 

sendserv 663 REG 

schedprcs 
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INSTRUCTION REFERENCE 

setbit 

Mnemonic: setbit 

Format: setbit 

Set Bit 

bitpos, 
reg/lit 

src, 
reg/lit 

dst 
reg 

Description: Copies the src value to dst with one bit set. The bitpos operand specifies the 
bit to be set. 

Action: dst f- src or 2A(bitpos mod 32); 

Faults: STANDARD 

Example: setbit 15, r9, rl 
# rl f- r9 with bit 15 set 

Opcode: setbit 583 REG 

See Also: alter bit, chkbit. clrbit, notbit 
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inter INSTRUCTION REFERENCE 

SHIFT 

Mnemonic: shlo Shift Left Ordinal 
shro Shift Right Ordinal 
shli Shift Left Integer 
shri Shift Right Integer 
shrdi Shift Right Dividing Integer 

Format: sh* len, src, dst 
reg/lit reg/lit reg 

Description: Shifts src left or right by the number of bits indicated with the len operand 
and stores the result in dst. Bits shifted beyond the register boundary are 
discarded. For values of len greater than 32, the processor interpretes the 
value as 32. 

The shlo instruction shift zeros in from the least-significant bit, and the shro 
instruction shifts zeros in from the most-significant bit. These instructions 
are equivalent to mulo and divo by the power of 2, respectively. 

The shli instruction shifts zeros in from the least-significant bit; if the bits 
shifted out are not the same as the sign bit, an overflow fault is generated. If 
overflow occurs, the sign of the result is the same as the sign of the src 
operand. 

The shri instruction performs a conventional arithmetic shift-right operation 
by shifting the sign bit in from the most-significant bit. When this instruc­
tion is used to divide an negative integer operand by the power of 2, it 
produces an incorrect quotient. (The discarding of the bits shifted out has the 
effect of rounding the result toward negative.) 

The shrdi instruction is provided for dividing integers by the power of 2. 
With this instruction, 1 is added to the result if the bits shifted out are 
non-zero and the operand is negative, which produces the correct result for 
negative operands. 

The shli and shrdi instructions are equivalent to muli and divi by the power 
of 2. 
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SHIFT 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

shlo: 

shro: 

shli: 

shri: 

shrdi: 

INSTRUCTION REFERENCE 

if len < 32 
then dst ~ sre* 2Alen; 
else dst ~ 0; 
end if; 

if len < 32 
then dst ~ sre/2Alen; 
else dst ~ 0; 
end if; 

dst ~ sre* 2A len; 

if sre:2: 0 
then if len < 32 

then dst ~ sre/2A len; 
else dst ~ 0; 

else if len < 32 
then dst ~ (sre - 2Alen + 1)/2Alen; 
else dst ~ -1; 
end if; 

end if; 

dst ~ sre/2A len; 

STANDARD, Integer Overflow 

shli 13, g4, r6 
# g6 ~ g4 shifted left 13 bits 

shlo 
shro 
shli 
shri 
shrdi 

59C 
598 
59E 
59B 
59A 

divi, muli, rotate 

REG 
REG 
REG 
REG 
REG 
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Mnemonic: signal 

Format: signal 

INSTRUCTION REFERENCE 

Signal 

dst 
reg 
SS 

I signal I 

Description: Unblocks (dequeues) a process from the semaphore queue if there are 
processes enqueued. If there is no process queued at the semaphore, the 
semaphore count is incremented by one. The dst operand gives the SS of the 
semaphore being signaled. If a process is dequeued, it is rescheduled at its 
dispatching port. The processor must be in the supervisor mode to execute 
this instruction. 

Action: x ~ atomic_read (semaphore.lock); 
if leasCsignificanCbit(x) = 1 

then atomic_write (semaphore.lock) ~ x; 
go to signal; 

else atomic_write (semaphore.lock) ~ x or 1; 
if semaphore.tail "# 0 

then dequeue first process; 
x ~ atomic_read (semaphore.lock); 
atomic_write (semaphore.lock) ~ x xor 1; 
perform unblock action 

on dequeued process; 
else semaphore.count ~ 

semaphore. count + 1; 

end if; 

x ~ atomic_read (semaphore.lock); 
atomic_write (semaphore.lock) ~ x xor 1; 

Faults: STANDARD 

Example: signal r8 

Opcode: 

See Also: 

# semaphore with SS given 
# in r8 is signaled 

signal 66A REG 

condwait, wait 
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INSTRUCTION REFERENCE 

I sinr, sinrl I 

Mnemonics: sinr Sine Real 
sinrl 

Format: sinr* 

Sine Long Real 

src, 
freg/flit 

dst 
freg 

Description: Calculates the sine of src and stores the result in dst. The src value is an 
angle given in radians. The resulting dst value is in the range -1 to + 1, 
inclusive. 

Action: 

For the sinrl instruction, if the src or dst operand references a global or local 
register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when taking the sine of 
various classes of numbers, assuming that neither overflow nor underflow 
occurs. 

Src Dst 
-00 * 
-F -1 to + 1 

-0 -0 
+0 +0 

+F -1 to + 1 

+00 * 
NaN NaN 

Notes: 
F Means finite-real number 

* Indicates floating invalid-operation exception 

In the trigonmetic instructions, the 80960MC uses a value for 1t with a 66-bit 
mantissa which is 2 bits more than are available in the extended-real format. 
The section in Chapter 7 titled "Pi" gives this 1t value, along with some 
suggestions for representing this value in a program. 

dst f- sine (src); 
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Faults: 

Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

STANDARD 

Floating Reserved Encoding 

sinr, sinrl! 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Invalid Operation 

Floating Inexact 

sinrl g6, gO 

The src operand is 00. 

One or more operands is an SNaN value. 

Result cannot be represented exactly in 
destination format. 

# sine of value in g6,g7 
# is stored in gO,gl 

sinr 
sinrl 

cosr, tanr 

68C 
69C 

REG 
REG 
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inter 

spanbit 

Mnemonic: spanbit 

Format: spanbit 

INSTRUCTION REFERENCE 

Span Over Bit 

src, 
reg/lit 

dst 
reg 

Description: Searches the src value for the most-significant clear bit (0 bit). If a most­
significant ° bit is found, its bit number is stored in dst and the condition 
code is set to 0102' If the src value is all 1 's, all 1 's are stored in dst and the 
condition code is set to 0002' 

Action: dst f- 16#FFFFFFFF#; 
AC.cc f- 2#000#; 

FaultS: 

Example: 

Opcode: 

See Also: 

for i in 31..0 reverse loop 
if (src and 21\i) = 0 
then 

dst f- i; 
AC.cc f- 2#010#; 
exit; 

end if; 
end loop; 

STANDARD 

# assume r2 is not Oxffffffff 
spanbit r2 r9 
# r9 f- bit number of 
# most-significant clear bit 
# in r2; AC.cc f- 010 

spanbit 640 REG 

scanbit 
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inter 

Mnemonic: 

Format: 

sqrtr 
sqrtrl 

sqrtr* 

INSTRUCTION REFERENCE 

Square Root Real 
Square Root Long Real 

src, 
freg/flit 

dst 
freg 

I sqrtr, sqrtrlj 

Description: Calculates the square root of src and stores it in dst. 

Action: 

For the sqrtrl instruction, if the src or dst operand references a global or 
local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when taking the square root 
of various classes of numbers, assuming that neither overflow nor underflow 
occurs. 

Src Dst 
-00 * 
-F * 
-0 -0 
+0 +0 
+F +F 
+00 +00 

NaN NaN 

Notes: 

F Means finite-real number 
Indicates floating invalid-operation exception 

With these instructions, it is not possible to raise a floating overflow or 
floating underflow fault unless the src operand is in a floating-point register 
and the dst operand is not. 

dst f- sqrt (src); 
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inter INSTRUCTION REFERENCE 

I sqrtr, sqrtrl I 

Faults: 

Example: 

Opcode: 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

sqrtrl g6, fpO 
# fpO ~ sqrt of g6,g7 

sqrtr 
sqrtrl 

688 
698 

REG 
REG 
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Result is too large for destination format. 

Result is too small for destination format. 

The src operand is less than -0. 

The src operand is an SNaN value. 

Result cannot be represented exactly in 
destination format. 



Mnemonic: 

Format: 

st 
stob 
stos 
stib 
stis 
stl 
stt 
stq 

st* 

INSTRUCTION REFERENCE 

Store 
Store Ordinal Byte 
Store Ordinal Short 
Store Integer Byte 
Store Integer Short 
Store Long 
Store Triple 
Store Quad 

src, dst 
reg mem 

STORE 

Description: Copies a byte or string of bytes from a register or group of registers to 
memory. The src operand specifies a register or the first (lowest numbered) 
register of successive registers. 

Action: 

Faults: 

Example: 

The dst operand specifies the address of the memory location where the byte 
or the first byte of a string of bytes is to be stored. The full range of 
addressing modes may be used in specifying dst. (Refer to Chapter 5 for a 
complete discussion of the addressing modes available with memory-type 
operands.) 

The stob and stib, and stos and stis instructions store a byte and half word, 
respectively, from the low order bytes of the src register. The st, stl, stt, and 
stq instructions copy 4, 8, 12, and 16 bytes, respectively, from successive 
registers to memory. 

For the stt instruction, src must specify an even numbered register (e.g., gO, 
g2, ... , gI2). For the stt and stq instructions, src must specify a register 
number that is a multiple of four (e.g., gO, g4, g8). 

memory (dst) f- src; 

STANDARD, Integer Overflow Fault (stib and stis instructions only) 

st g2, 1256 (g6) 
# word beginning at offset 
# 1256 + (g6) f- g2 
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inter 

STORE 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

st 
stob 
stos 
stib 
stis 
stl 
stt 
stq 

92 
82 
8A 
C2 
CA 
9A 
A2 
B2 

LOAD, MOVE 

MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
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Mnemonic: sube 

Format: sube 

INSTRUCTION REFERENCE 

Subtract Ordinal With Carry 

srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

subc 

Description: Subtracts (src1 - 1) from src2, adds bit 1 of the condition code (used here as 
a carry bit), and stores the result in dst. If the ordinal subtraction results in a 
carry, bit 1 of the condition code is set. 

Action: 

Faults: 

Example: 

Opcode: 

This instruction can also be used for integer subtraction. Here, if integer 
subtraction results in an overflow, bit 0 of the condition code is set. 

The sube instruction does not distinguish between ordinals and integers: it 
sets bits 0 and 1 of the condition code regardless of the data type. 

# Let the value of the condition code be xCx. 
dst ~ src2 - (srcl - 1) + C; 
AC.cc ~ 2#OCV#; 
# C is carry from ordinal subtraction. 
# V is 1 if integer subtraction would have generated 
# an overflow. 

STANDARD 

subc g5, g6, g7 
# g7 ~ g6 - (g5 - 1) 
# + Carry Bit 

sube 5B2 REG 

See Also: ad de 
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inter INSTRUCTION REFERENCE 

subi, subo 

Mnemonic: 

Format: 

subi 
subo 

sub* 

Subtract Integer 
Subtract Ordinal 

srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Description: Subtracts src1 from src2 and stores the result in dst. The binary results from 
these two instructions are identical. The only difference is that subi can 
signal an integer overflow. 

Action: dst f- src2 - srcl; 

Faults: STANDARD, Integer Overflow (subi instruction only) 

Example: 

Opcode: 

See Also: 

subi g6, g9, g12 

subi 
subo 

593 
592 

addi, addr, subc, subr 

# g12 f- g9 - g6 

REG 
REG 
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inter 

Mnemonic: 

Format: 

subr 
subrl 

subr* 

INSTRUCTION REFERENCE 

Subtract Real 
Subtract Long Real 

srci, 
freg/flit 

src2, 
freg/flit 

dst 
freg 

I subr, subrll 

Description: Subtracts src1 from src2 and stores the result in dst. 

Src2 

For the subrl instruction, if the src1 , src2, or dst operand references a global 
or local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when subtracting various 
classes of numbers, assuming that neither overflow nor underflow occurs. 

Srcl 

.00 ·F ·0 +0 +F +00 NaN 

.00 * _00 _00 _00 -00 -00 NaN 

-F +00 ±For ±O src2 src2 -F -00 NaN 

·0 +00 srcl ±O -0 srcl _00 NaN 

+0 +00 srcl +0 ±O srcl _00 NaN 

+F +00 +F src2 src2 ±For± 0 _00 NaN 

+00 +00 +00 +00 +00 +00 * NaN 

NaN NaN NaN NaN NaN NaN NaN NaN 

Notes: 

F Means finite-real number. 
... Indicates floating invalid-operation exception . 

When the difference between two operands of like sign is zero, the result is 
+0, except for the round toward -00 mode, in which case the result is -0. This 
instruction also guarantees that +0 - (-0) = +0, and that -0 - (+0) = -0. 

When one source operand is 00, the result is 00 of the expected sign. If both 
source operands are 00 of the same sign, an invalid-operation exception is 
raised. 
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INSTRUCTION REFERENCE 

I subr, subrl I 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

dst f- src2 - srcl; 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

subrl g6, fpO, fpl 
# fpl f- fpO - g6,g7 

subr 
subrl 

78D 
79D 

subi, subc, addr 

REG 
REG 

17-144 

Result is too large for destination format. 

Result is too small for destination format. 

Source operands are infinities of like 
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INSTRUCTION REFERENCE 

syncf 

Mnemonic: syncf Synchronize Faults 

Format: syncf 

Description: Waits for any faults to be generated associated with any prior uncompleted 
instructions. 

Action: if arithmetic_controls.nif 

Faults: 

Example: 

Opcode: 

See Also: 

then; 
else wait until no imprecise faults can occur 

associated with any uncompleted instructions; 
end if; 

STANDARD 

ld xyz, g6 
addi r6, r8, r8 
syncf 
and g6, OxFFFF, g8 
# the syncf instruction insures that any faults 
# that may occur during the execution of the 
# ld and addi instructions occur before the 
# and instruction is executed 

syncf 66F REG 

mark, fmark 
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INSTRUCTION REFERENCE 

I synld I 

Mnemonic: synld Synchronous Load 

Format: synld src, dst 
reg reg 
addr 

Description: Copies a word from the memory location specified with src into dst and 
waits for the completion of all memory operations, including those initiated 
prior to the synld instruction. When the load has been successfully com­
pleted, the condition code is set to 0102. 

Action: 

Faults: 

The primary function of this instruction is for reading lAC messages, the 
lAC Message Control word, or the lAC Interrupt Control Register. 
However, this instruction is not restricted to lAC applications. It may be 
used when it is important to guarantee the completion of the load operation 
before proceeding or to avoid a bad-access fault. 

The setting of the condition code indicates whether or not the load was 
completed successfully. If the load operation results in a bad access con­
dition (e.g., reading an AP-bus interconnect register), the condition code is 
set to 0002, but the bad-access fault is not raised. 

if PRCB.addressing_mode = physical 
then tempa f-- src; 
else tempa f-- physical_address (src); 

end if; 
tempa f-- tempa and 16#FFFFFFFC#; # force alignment 
if tempa = 16#FF000004# 

then dst f-- interrupt_controCreg; 
AC.cc f-- 2#010#; 

else dst f-- memory (tempa); 
if bad_access 

then AC.cc f-- 2#000#; 
else AC.cc f-- 2#010#; 

end if; 
end if; 

STANDARD 
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Example: 

Opcode: 

See Also: 

INSTRUCTION REFERENCE 

I synld I 

Ida Oxff000004, g8 
# g8 ~ address of interrupt-control register 
synld g8, g9 
# g9 ~ contents of interrupt-control register 
# AC.cc = 010 

synld 615 REG 

synmov 
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INSTRUCTION REFERENCE 

I synmov, synmovl, synmovg I 

Mnemonic: 

Format: 

synmov 
synmovl 
synmovq 

Synchronous Move 
Synchronous Move Long 
Synchronous Move Quad 

synmov* dst, src 
reg reg 
addr addr 

Description: Copies 1 (synmov), 2 (synmovl), or 4 (synmovq) words from the memory 
location specified with src to the memory location specified with dst and 
waits for the completion of all memory operations, including those initiated 
prior to this instruction. When the move has been successfully completed, 
the condition code is set to 0102, 

Action: 

The src and dst operands specify the address of the first (lowest address) 
word. These addresses should be for word boundaries (synmov), double­
word boundaries (synmovl), or quad-word boundaries (synmovq). If not, 
the processor forces alignment to these boundaries. 

The primary function of these instructions is for sending lAC messages. 
However, this instruction is not restricted to lAC applications. It may be 
used when it is important to guarantee the completion of the move operation 
before proceeding or to avoid a Bad Access Fault. 

The setting of the condition code indicates whether or not the move was 
completed successfully. If the move operation results in a bad access con­
dition (e.g., sending an lAC message to a non-existent agent on the AP-bus), 
the condition code is set to 0002, but the Bad Access Fault is not raised. 

Address FFOOOO1016 is used to send an lAC message to the processor upon 
which the instruction is executed. Refer to Chapter 11 for further infor­
mation about sending internal lAC messages. 

synmov: 

if PRCB.addressing_mode = physical 
then tempa f- dst; 
# dst is used as a physical address 
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INSTRUCTION REFERENCE 

Isynmov, synmovl, synmovq I 

else tempa f- physical_address (dst); 
# dst translated into a physical address 

end if; 
tempa f- tempa and 16#FFFFFFFC#; 
# force alignment 
if tempa = 16#FF000004# 

then interrupCcontrol_reg f- memory (src) 
AC.cc f- 2#010#; 

else temp f- memory (src); 
memory (tempa) f- temp; 
# write operations into memory (tempa) are 
# interpreted as noncacheable 
wait for completion; 
if bad_access 

then AC.cc f- 2#000#; 
else AC.cc f- 2#010#; 

end if; 
end if; 

synmovl: 

if PRCB.addressing_mode = physical 
then tempa f- dst; 
# dst is used as a physical address 
else tempa f- physical_address (dst); 
# dst is translated into as a physical address 

end if; 
tempa f- tempa and 16#FFFFFFF8#; # force alignment 
temp f- memory (src); 
memory (tempa) f- temp; 
# write operations into memory (tempa) are interpreted 
# as noncacheable 
wait for completion; 
if bad_access 

then AC.cc f- 2#000#; 
else AC.cc f- 2#010#; 

end if; 
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I synmov, synmovl, synmovq I 

Faults: 

Example: 

Opcode: 

synmovq: 

if PRCB.addressing_mode = physical 
then tempa ~ dst; 
# dst is used as a physical address 
else tempa ~ physicaCaddress (dst); 
# dst is translated into as a physical address 

end if; 
tempa ~ tempa and 16#FFFFFFFO#; # force alignment 
temp ~ memory (src); 
if tempa = 16#FFOOOO 1 0# 

then AC.cc ~ 2#010#; 
use temp as a received iac message; 
else memory (tempa) ~ temp; 
# write operations into memory (tempa) are interpreted 
# as noncacheable 

wait for completion; 
if bad_access 

then AC.cc ~ 2#000#; 
else AC.cc ~ 2#010#; 

end if; 
end if; 

STANDARD 

Ida Oxff000010, g7 
# g7 ~ Oxff000010 
synmovq g7, g8 
# g8 ~ IAC message from address Oxff000010 
# AC.cc = 010 

synmov 600 
synmovl 601 
synmovq 602 

REG 
REG 
REG 

See Also: synld 

17·150 



intel" INSTRUCTION REFERENCE 

I tanr, tanrll 

Mnemonics: tanr Tangent Real 
Tangent Long Real tanrl 

Format: tanr* src, 
freg/flit 

dst 
freg 

Description: Calculates the tangent of src and stores the result in dst. The src value is an 
angle given in radians. The resulting dst value is in the range of -00 to +00, 
inclusive; a result of _00 or +00 will result in a floating invalid-operation 
exception being signaled. 

For the tanrl instruction, if the src or dst operand references a global or local 
register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when taking the tangent of 
various classes of numbers, assuming that neither overflow nor underflow 
occurs. 

Src Dst 
-00 * 
-F -Fto +F 
-0 -0 

+0 +0 

+F -Fto +F 

+00 * 
NaN NaN 

Notes: 

F Means finite· real number 
• Indicates floating invalid·operation exception 

If the source operand is a finite value, the result will be finite, unless the src 
operand is in a floating-point register and the dst operand is not. 
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INSTRUCTION REFERENCE 

I tanr, tanrl I 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

In the trigonmetic instructions, the 80960MC uses a value for 1t with a 66-bit 
mantissa which is 2 bits more than are available in the extended-real format. 
The section in Chapter 7 titled "Pi" gives this 1t value, along with some 
suggestions for representing this value in a program. 

dst f--- tangent (src); 

STANDARD Refer to the discussion of faults at the 
beginning of this chapter. 

Floating Reserved Encoding One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

tanrl g4, fpO 

tanr 
tanrl 

cosr, sinr 

68E 
69E 

Result is too large for destination format. 

Result is too small for destination format. 

The src operand is 00. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 

# tangent of value in g4,g5 is 
# stored in fpO 

REG 
REG 
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TEST 

Mnemonic: teste Test For Equal 
testne Test For Not Equal 
testl Test For Less 
testle Test For Less or Equal 
testg Test For Greater 
testge Test For Greater or Equal 
testo Test For Ordered 
testno Test For Unordered 

Format: test* dst 
reg 

Description: Stores a true (1) in dst if the logical AND of the condition code and the 
mask-part of the ope ode is not zero. Otherwise, the instruction stores a false 
(0) in dst. 

The following table shows the condition-code mask for each instruction: 

Instruction Mask Condition 

testno 000 Unordered 

testg 001 Greater 

teste 010 Equal 

testge 011 Greater or equal 

testl 100 Less 

testne 101 Not equal 

testle 110 Less or equal 

testo 111 Ordered 

For the testno instruction (Unordered), a true is stored if the condition code 
is 0002; otherwise a false is stored. 
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TEST 

Action: For All Instructions Except testno: 

if (mask and AC.cc) -:t 2#000# 
then dst t--- 1; # dst set for true 
else dst t--- 0; # dst set for false 

end if; 

testno: 

if AC.cc = 2#000# 
then dst t--- 1; # dst set for true 
else dst t--- 0; # dst set for false 

end if; 

Faults: STANDARD 

Example: # assume AC.cc = 100 
testl g9 # g9 t--- OxOOOOOO01 

Opcode: teste 22 COBR 
testne 25 COBR 
testl 24 COBR 
testle 26 COBR 
testg 21 COBR 
testge 23 COBR 
testo 27 COBR 
testno 20 COBR 

See Also: cmpi, cmpdeci, cmpinci 
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Mnemonic: wait 

Format: wait 

INSTRUCTION REFERENCE 

Wait 

src 
reg 
SS 

wait 

Description: Waits on the semaphore. The src operand contains the SS of the semaphore. 

Action: 

The processor must be in the supervisor mode to execute this instruction. 

The processor checks the semaphore count and the semaphore queue tail. If 
the count is non-zero and the queue tail is zero, the count is decremented by 
one and execution of the process continues. 

If the count is zero or the queue tail is non-zero, the process is suspended and 
enqueued on the semaphore. 

The process remains queued on the semaphore until it reaches the beginning 
of the queue and the semaphore receives a signal instruction. The process is 
then dequeued and rescheduled at its dispatching port. 

x f- atomic_read (semaphore.lock); 
if leascsignificanCbit(x) = 1 

then atomic_write (semaphore.lock) f- x; 
go to wait; 

else atomic_write (semaphore.lock) f- x or 1; 
if (semaphore. count = 0) or (semaphore. tail * 0) 

then enqueue process on semaphore; 
x f- atomic_read (semaphore.lock); 
atomic_write (semaphore.lock) f- x xor 1; 
perform process suspension action; 
x f- atomic_read (currenCprocess.lock); 
atomic_write (currenCprocess.lock) f- x xor 1; 
perform process dispatching action; 

else semaphore. count f- semaphore. count - 1; 
x f- atomic_read (semaphore.lock); 
atomic_write (semaphore.lock) f- x xor 1; 

end if; 
end if; 
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inter INSTRUCTION REFERENCE 

Iwait I 

Faults: STANDARD 

Example: wait g8 # waits on semaphore specified in g8 

Opcode: wait 669 REG 

See Also: condwait, signal 
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xnor, xor 

Mnemonic: xnor Exclusive Nor 
xor Exclusive Or 

Format: xnor srcl , src2, dst 
reg/lit reg/lit reg 

xor srcl , src2, dst 
reg/lit reg/lit reg 

Description: Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction) 
operation on the src2 and srcl values and stores the result in dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

xnor: dst ~ not (src2 or srcl) or 
(src2 and srcl); 

xor: dst ~ (src2 or srcl) and 
not (src2 and srcl); 

STANDARD 

xnor r3, r9, r12 
xor gl, g7, g4 

xnor 
xor 

589 
586 

# r12 ~ r9 XNOR r3 
# g4 ~ g7 XOR gl) 

REG 
REG 

and, andnot, nand, nor, not, notand, notor, or, ornot 
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APPENDIX A 
INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE 

This appendix provides quick reference for the 80960MC instructions and data structures. 

INSTRUCTION QUICK REFERENCE 

This section provides two lists of 80960MC instructions: one sorted by assembly-language 
mnemonic and another sorted by machine-level opcode. In these lists, each entry includes the 
assembly-language mnemonic for an instruction; the operands (given in the required order); the 
machine-level opcode and instruction type (i.e., REG, MEM, COBR, CTRL); and the page 
number in Chapter 17 where the detailed description of the instruction is given. 
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inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE 

Instruction List by Assembler Mnemonic 

Mnemonic Operands Opcode Inst. Type Page 

addc srcl, src2, dst 5BO REG 17-6 
addi srcl, src2, dst 591 REG 17-7 
addo srcl, src2, dst 590 REG 17-7 
addr srcl, src2, dst 78F REG 17-8 
addrl srcl, src2, dst 79F REG 17-8 
alterbit bitpos, src, dst 58F REG 17-10 
and srcl, src2, dst 581 REG 17-11 
andnot srcl, src2, dst 582 REG 17-11 
atadd src!dst, src, dst 612 REG 17-12 
atanr srcl, src2, dst 680 REG 17-13 
atanrl srcl , src2, dst 690 REG 17-13 
atmod src, mask, src!dst 610 REG 17-15 
b targ 08 CTRL 17-16 
bal targ OB CTRL 17-18 
balx targ, dst 85 MEM 17-18 
bbc bitpos, src, targ 30 COBR 17-20 
bbs bitpos, src, targ 37 COBR 17-20 
be targ 12 CTRL 17-22 
bg targ 11 CTRL 17-22 
bge targ 13 CTRL 17-22 
bl targ 14 CTRL 17-22 
ble targ 16 CTRL 17-22 
bne targ 15 CTRL 17-22 
bno targ 10 CTRL 17-22 
bo targ 11 CTRL 17-22 
bx targ 84 MEM 17-16 
call targ 09 CTRL 17-25 
calls targ 660 REG 17-27 
calix targ 86 MEM 17-29 
chkbit bitpos, src 5AE REG 17-31 
classr src 68F REG 17-32 
classrl src 69F REG 17-32 
clrbit bitpos, src, dst 58C REG 17-34 
cmpdeci srcl, src2, dst 5A7 REG 17-36 
cmpdeco srcl, src2, dst 5A6 REG 17-36 
cmpi srcl, src2 5Al REG 17-35 
cmpibe srcl, src2, targ 3A COBR 17-44 
cmpibg srcl , src2, targ 39 COBR 17-44 
cmpibge srcl, src2, targ 3B COBR 17-44 
cmpibl srcl, src2, targ 3C COBR 17-44 
cmpible srcl, src2, targ 3E COBR 17-44 
cmpibne srcl, src2, targ 3D COBR 17-44 
cmpibno srcl, src2, targ 38 COBR 17-44 
cmpibo srcl, src2, targ 3F COBR 17-44 
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inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE 

Mnemonic Operands Opcode Inst. Type Page 

cmpinci srcl, src2, dst 5A5 REG 17-37 
cmpinco srcl, src2, dst 5A4 REG 17-37 
cmpo srcl, src2 5AO REG 17-35 
cmpobe srcl, src2, targ 32 COBR 17-44 
cmpobg srcl, src2, targ 31 COBR 17-44 
cmpobge srcl, src2, targ 33 COBR 17-44 
cmpobl srcl, src2, targ 34 COBR 17-44 
cmpoble srcl, src2, targ 36 COBR 17-44 
cmpobne srcl, src2, targ 35 COBR 17-44 
cmpor srcl, src2 684 REG 17-38 
cmporl srcl, src2 694 REG 17-38 
cmpr srcl, src2 685 REG 17-40 
cmprl srcl, src2 695 REG 17-40 
cmpstr srcl, src2, len 603 REG 17-42 
concmpi srcl, src2 5A3 REG 17-47 
concmpo srcl, src2 5A2 REG 17-47 
condrec src, dst 646 REG 17-48 
condwait src 668 REG 17-50 
cosr src, dst 68D REG 17-52 
cosrl src, dst 69D REG 17-52 
cpyrsre srcl, src2, dst 6E3 REG 17-54 
cpysre srcl, src2, dst 6E2 REG 17-54 
cvtilr src, dst 675 REG 17-55 
cvtir src, dst 674 REG 17-55 
cvtri src, dst 6CO REG 17-56 
cvtril src, dst 6Cl REG 17-56 
cvtzri src, dst 6C2 REG 17-56 
cvtzril src, dst 6C3 REG 17-56 
daddc srcl, src2, dst 642 REG 17-58 
divi srcl, src2, dst 74B REG 17-59 
divo srcl, src2, dst 70B REG 17-59 
divr srcl, src2, dst 78B REG 17-60 
divrl srcl, src2, dst 79B REG 17-60 
dmovt src, dst 644 REG 17-62 
dsubc srcl, src2, dst 643 REG 17-63 
ediv srcl, src2, dst 671 REG 17-64 
ernul srcl , src2, dst 670 REG 17-65 
expr src, dst 689 REG 17-66 
exprl src, dst 699 REG 17-66 
extract bitpos, len, srcldst 651 REG 17-68 
faulte lA CTRL 17-69 
faultg 19 CTRL 17-69 
faultge 1B CTRL 17-69 
faultl lC CTRL 17-69 
faultle 1E CTRL 17-69 
faultne 10 CTRL 17-69 
faultno 18 CTRL 17-69 
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inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE 

Mnemonic Operands Opcode Inst. Type Page 

faulto IF CTRL 17-69 
fill dst value len 617 REG 17-71 
flushreg 66D REG 17-72 
fmark 66C REG 17-73 
inspacc src dst 613 REG 17-74 
Id src, dst 90 MEM 17-75 
Ida src dst 8C MEM 17-77 
Idib src, dst CO MEM 17-75 
Idis src, dst C8 MEM 17-75 
Idl src, dst 98 MEM 17-75 
Idob src, dst 80 MEM 17-75 
Idos src, dst 88 MEM 17-75 
Idphy src, dst 614 REG 17-78 
Idq src, dst BO MEM 17-75 
Idt src, dst AO MEM 17-75 
Idtime dst 673 REG 17-79 
logbnr src, dst 68A REG 17-80 
logbnrl src, dst 69A REG 17-80 
logepr srcl, src2, dst 681 REG 17-82 
logeprl srcl, src2, dst 691 REG 17-82 
logr srcl, src2, dst 682 REG 17-85 
logrl srcJ, src2, dst 692 REG 17-85 
mark 66B REG 17-88 
modac mask, src, dst 645 REG 17-89 
modi srcJ, src2, dst 749 REG 17-90 
modify mask, src, srcldst 650 REG 17-91 
modpc src, mask, srcldst 655 REG 17-92 
modtc mask, src, dst 654 REG 17-94 
mov src, dst 5CC REG 17-95 
movl src, dst 5DC REG 17-95 
movq src, dst 5FC REG 17-95 
movqstr dst, src, len 604 REG 17-96 
movr src, dst 6C9 REG 17-97 
movre src, dst 6E9 REG 17-97 
movrl src, dst 6D9 REG 17-97 
movstr dst, src, len 605 REG 17-99 
movt src, dst 5EC REG 17-95 
muli srcl, src2, dst 741 REG 17-100 
mulo srcJ, src2, dst 701 REG 17-100 
muir srcJ, src2, dst 78C REG 17-101 
mulrl srcJ, src2, dst 79C REG 17-101 
nand srcl, src2, dst 58E REG 17-103 
nor srcJ, src2, dst 588 REG 17-104 
not src, dst 58A REG 17-105 
notand srcJ, src2, dst 584 REG 17-105 
notbit bitpos, src, dst 580 REG 17-106 
notor srcJ , src2, dst 58D REG 17-107 
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inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE 

Mnemonic Operands Opcode Inst. Type Page 

or srcl, src2, dst 587 REG 17-108 
ornot srcl, src2, dst 58B REG 17-108 
receive src, dst 656 REG 17-109 
remi srcl, src2, dst 748 REG 17-111 
remo srcl, src2, dst 708 REG 17-111 
remr srcl, src2, dst 683 REG 17-112 
remrl srcl, src2, dst 693 REG 17-112 
resumprcs src 664 REG 17-115 
ret OA CTRL 17-116 
rotate len, src, dst 59D REG 17-118 
roundr src, dst 68B REG 17-119 
roundrl src, dst 69B REG 17-119 
saveprcs 666 REG 17-120 
scaler srcl, src2, dst 677 REG 17-121 
scalerl srcl, src2, dst 676 REG 17-121 
scan bit src, dst 641 REG 17-123 
scanbyte srcl, src2 5AC REG 17-124 
schedprcs src 665 REG 17-125 
send dst, src1, src2 662 REG 17-126 
sendserv src 663 REG 17-128 
setbit bitpos, src, dst 583 REG 17-130 
shli len, src, dst 59E REG 17-131 
shlo len, src, dst 59C REG 17-131 
shrdi len, src, dst 59A REG 17-131 
shri len, src, dst 59B REG 17-131 
shro len, src, dst 598 REG 17-131 
signal dst 66A REG 17-133 
sinr src, dst 68C REG 17-134 
sinrl src, dst 69C REG 17-134 
spanbit src, dst 640 REG 17-136 
sqrtr src, dst 688 REG 17-137 
sqrtrl src, dst 698 REG 17-137 
st src, dst 92 MEM 17-139 
stib src, dst C2 MEM 17-139 
stis src, dst CA MEM 17-139 
stl src, dst 9A MEM 17-139 
stob src, dst 82 MEM 17-139 
stos src, dst 8A MEM 17-139 
stq src, dst B2 MEM 17-139 
stt src, dst A2 MEM 17-139 
subc src1, src2, dst 5B2 REG 17-141 
subi src1, src2, dst 593 REG 17-142 
subo srcl, src2, dst 592 REG 17-142 
subr srcl, src2, dst 78D REG 17-143 
subrl src1, src2, dst 79D REG 17-143 
syncf 66F REG 17-145 
synld src, dst 615 REG 17-146 
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inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE 

Mnemonic Operands Opcode Inst. Type Page 

synmov dst, src 600 REG 17-148 
synmovl dst, src 601 REG 17-148 
synmovq dst, src 602 REG 17-148 
tanr src, dst 68E REG 17-151 
tanrl src, dst 69E REG 17-151 
teste dst 22 COBR 17-153 
testg dst 21 COBR 17-153 
testge dst 23 COBR 17-153 
testl dst 24 COBR 17-153 
testle dst 26 COBR 17-153 
testne dst 25 COBR 17-153 
testno dst 20 COBR 17-153 
testo dst 27 COBR 17-153 
wait src 669 REG 17-155 
xnor srcl, src2, dst 589 REG 17-157 
xor srcl, src2, dst 586 REG 17-157 
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Instruction List by Opcode 

Opcode Inst. Type Mnemonic Operands Page 

08 CTRL b targ 17-16 
09 CTRL call targ 17-25 
OA CTRL ret 17-116 
OB CTRL bal targ 17-18 
10 CTRL bno targ 17-22 
11 CTRL bg targ 17-22 
12 CTRL be targ 17-22 
13 CTRL bge targ 17-22 
14 CTRL bl targ 17-22 
15 CTRL bne targ 17-22 
16 CTRL ble targ 17-22 
17 CTRL bo targ 17-22 
18 CTRL faultno 17-69 
19 CTRL faultg 17-69 
lA CTRL faulte 17-69 
1B CTRL faultge 17-69 
lC CTRL faultl 17-69 
1D CTRL faultne 17-69 
IE CTRL faultle 17-69 
IF CTRL faulto 17-69 
20 COBR testno dst 17-153 
21 COBR testg dst 17-153 
22 COBR teste dst 17-153 
23 COBR testge dst 17-153 
24 COBR testl dst 17-153 
25 COBR testne dst 17-153 
26 COBR testle dst 17-153 
27 COBR testo dst 17-153 
30 COBR bbc bitpos, src, targ 17-20 
31 COBR cmpobg srcl, src2, targ 17-16 
32 COBR cmpobe srcl, src2, targ 17-44 
33 COBR cmpobge src1 , src2, targ 17-44 
34 COBR cmpobl src1, src2, targ 17-44 
35 COBR cmpobne srcl, src2, targ 17-44 
36 COBR cmpoble src1 , src2, targ 17-44 
37 COBR bbs bitpos, src, targ 17-20 
38 COBR cmpibno srcl, src2, targ 17-44 
39 COBR cmpibg src1, src2, targ 17-44 
3A COBR cmpibe src1, src2, targ 17-44 
3B COBR cmpibge srcl, src2, targ 17-44 
3C COBR cmpibl src1, src2, targ 17-44 
3D COBR cmpibne src1, src2, targ 17-44 
3E COBR cmpible src1, src2, targ 17-44 
3F COBR cmpibo src1, src2, targ 17-44 
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inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE 

Opcode Inst. Type Mnemonic Operands Page 

80 MEM Idob src, dst 17-75 
82 MEM stob src, dst 17-139 
84 MEM bx targ 17-16 
85 MEM balx targ, dst 17-18 
86 MEM calix targ 17-29 
88 MEM Idos src, dst 17-75 
8A MEM stos src, dst 17-139 
8C MEM Ida src dst 17-77 
90 MEM Id src, dst 17-75 
92 MEM st src, dst 17-139 
98 MEM Idl src, dst 17-75 
9A MEM stl src, dst 17-139 
AO MEM Idt src, dst 17-75 
A2 MEM stt src, dst 17-139 
BO MEM Idq src, dst 17-75 
B2 MEM stq src, dst 17-139 
CO MEM Idib src, dst 17-75 
C2 MEM stib src, dst 17-139 
C8 MEM Idis src, dst 17-75 
CA MEM stis src, dst 17-139 
580 REG notbit bitpos, src, dst 17-106 
581 REG and srcl, src2, dst 17-11 
582 REG and not srcl, src2, dst 17-11 
583 REG setbit bitpos, src, dst 17-130 
584 REG notand srcl, src2, dst 17-105 
586 REG xor srcl, src2, dst 17-157 
587 REG or srcl, src2, dst 17-108 
588 REG nor srcl, src2, dst 17-104 
589 REG xnor srcl, src2, dst 17-157 
58A REG not , src, dst 17-105 
58B REG ornot i~rcl, src2, dst 17-108 
58C REG c1rbit bitpos, src, dst 17-34 
58D REG notor srcl, src2, dst 17-107 
58E REG nand srcl, src2, dst 17-103 
58F REG alterbit bitpos, src, dst 17-10 
590 REG addo srcl, src2, dst 17-7 
591 REG addi srcl, src2, dst 17-7 
592 REG subo srcl, src2, dst 17-142 
593 REG subi srcl, src2, dst 17-142 
598 REG shro len, src, dst 17-131 
59A REG shrdi len, src, dst 17-131 
59B REG shri len, src, dst 17-131 
59C REG shlo len, src, dst 17-131 
59D REG rotate len, src, dst 17-118 
59E REG shli len, src, dst 17-131 
5AO REG cmpo srcl, src2 17-35 
5A1 REG cmpi srcl, src2 17-35 
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Opcode Inst. Type Mnemonic Operands Page 

5A2 REG concmpo srcl, src2 17-47 
5A3 REG concmpi srcl, src2 17-47 
5A4 REG cmpinco srcl , src2, dst 17-37 
5A5 REG cmpinci srcl, src2, dst 17-37 
5A6 REG cmpdeco srcl, src2, dst 17-36 
5A7 REG cmpdeci srcl, src2, dst 17-36 
5AC REG scan byte srcl, src2 17-124 
5AE REG chkbit bitpos, src 17-31 
5BO REG addc srcl , src2, dst 17-6 
5B2 REG subc srcl, src2, dst 17-141 
5CC REG mov src, dst 17-95 
5DC REG movl src, dst 17-95 
5EC REG movt src, dst 17-95 
5FC REG movq src, dst 17-95 
600 REG synmov dst, src 17-148 
601 REG synmovl dst, src 17-148 
602 REG synmovq dst, src 17-148 
603 REG cmpstr srcl, src2, len 17-42 
604 REG movqstr dst, src, len 17-96 
605 REG movstr dst, src, len 17-99 
610 REG atmod src, mask, src!dst 17-15 
612 REG atadd src!dst, src, dst 17-12 
613 REG inspacc src dst 17-74 
614 REG ldphy src, dst 17-78 
615 REG synld src, dst 17-146 
617 REG fill dst value len 17-71 
640 REG span bit src, dst 17-136 
641 REG scan bit src, dst 17-123 
642 REG daddc srcl, src2, dst 17-58 
643 REG dsubc srcl, src2, dst 17-63 
644 REG dmovt src, dst 17-62 
645 REG modac mask, src, dst 17-89 
646 REG condrec src, dst 17-48 
650 REG modify mask, src, src!dst 17-91 
651 REG extract bitpos, len, src!dst 17-68 
654 REG modtc mask, src, dst 17-94 
655 REG modpc src, mask, src!dst 17-92 
656 REG receive src, dst 17-109 
660 REG calls targ 17-27 
662 REG send dst, srcl, src2 17-126 
663 REG sendserv src 17-128 
664 REG resumprcs src 17-115 
665 REG schedprcs src 17-125 
666 REG saveprcs 17-120 
668 REG condwait src 17-50 
669 REG wait src 17-155 
66A REG signal dst 17-133 
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Opcode Inst. Type Mnemonic Operands Page 

66B REG mark 17-88 
66C REG fmark 17-73 
66D REG flushreg 17-72 
66F REG syncf 17-145 
670 REG ernul srcl, src2, dst 17-65 
671 REG ediv srcl , src2, dst 17-64 
673 REG Idtime dst 17-79 
674 REG cvtir src, dst 17-55 
675 REG cvtilr src, dst 17-55 
676 REG scalerl srcl, src2, dst 17-121 
677 REG scaler srcl, src2, dst 17-121 
680 REG atanr srcl, src2, dst 17-13 
681 REG logepr srcl, src2, dst 17-82 
682 REG logr srcl, src2, dst 17-85 
683 REG remr srcl , src2, dst 17-112 
684 REG cmpor srcl, src2 17-38 
685 REG cmpr srcl, src2 17-40 
688 REG sqrtr src, dst 17-137 
689 REG expr src, dst 17-66 
68A REG logbnr src, dst 17-80 
68B REG roundr src, dst 17-119 
68C REG sinr src, dst 17-134 
68D REG cosr src, dst 17-52 
68E REG tanr src, dst 17-151 
68F REG c1assr src 17-32 
690 REG atanrl srcl, src2, dst 17-13 
691 REG logeprl srcl, src2, dst 17-82 
692 REG logrl srcl, src2, dst 17-85 
693 REG remrl srcl, src2, dst 17-112 
694 REG cmporl srcl, src2 17-38 
695 REG cmprl srcl, src2 17-40 
698 REG sqrtrl src, dst 17-137 
699 REG exprl src, dst 17-66 
69A REG logbnrl src, dst 17-80 
69B REG roundrl src, dst 17-119 
69C REG sinrl src, dst 17-134 
69D REG cosrl src, dst 17-52 
69E REG tanrl src, dst 17-151 
69F REG c1assrl src 17-32 
6CO REG cvtri src, dst 17-56 
6Cl REG cvtril src, dst 17-56 
6C2 REG cvtzri src, dst 17-56 
6C3 REG cvtzril src, dst 17-56 
6C9 REG movr src, dst 17-97 
6D9 REG movrl src, dst 17-97 
6E2 REG cpysre srcl, src2, dst 17-54 
6E3 REG cpyrsre srcl, src2, dst 17-54 
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Opcode Inst. Type Mnemonic Operands Page 

6E9 REG movre src, dst 17-97 
701 REG mulo srcl, src2, dst 17-100 
708 REG remo srcl, src2, dst 17-111 
70B REG divo srci, src2, dst 17-59 
741 REG muli srcl, src2, dst 17-100 
748 REG remi srcl, src2, dst 17-111 
749 REG modi srcl, src2, dst 17-90 
74B REG divi srci, src2, dst 17-59 
78B REG divr srcl, src2, dst 17-60 
78C REG muir srci, src2, dst 17-101 
78D REG subr srci, src2, dst 17-143 
78F REG addr srci, src2, dst 17-8 
79B REG divrl srcl, src2, dst 17-60 
79C REG mulrl srcl, src2, dst 17-101 
79D REG subrl srcl, src2, dst 17-143 
79F REG addrl srcl, src2, dst 17-8 
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SUMMARY OF SYSTEM DATA STRUCTURES 

The following pages provide a collection of the system data structures presented in this 
manual. They are are grouped by function. The chapter reference below each data structure 
shows where in this manual this data structure is described. 

Execution Environment 

31 30292827262524 201918171615 12 8 6 3 2 0 

I I I I I I I I ttl;;lll I I I I I 1:li] ml~;'tJ !,~~I I I I I I I I 

L,....J 1 W' t_'~ ~CONOITION CODE 

ARITHMETIC STATUS 

-----INTEGER OVERFLOW FLAG 

,-----INTEGER OVERFLOW MASK 

NO IMPRECISE FAULTS 

'------------------FLOATING OVERFLOW FLAG 

'------------------FLOATING UNDERFLOW FLAG 

'--------------------FLOATING INVALID-OP FLAG 

'-------------------FLOATING ZERO-DIVIDE FLAG 

'--------------------FLOATING INEXACT FLAG 

'-----------------------------FLOATING OVERFLOW MASK 

'-----------------------------FLOATING UNDERflOW MASK 

'--------------------------FLOATING INVALID-OP MASK 

'--------------------------FLOATlNGZERO-DIVIDE MASK 

'--------------------------FLOATING INEXACT MASK 

'---------------.-----------.----- FLOATING-POINT NORMALIZING MODE 

'--------------------------------FLOATING-POINT ROUNDING CONTROL 

Figure A-1: Arithmetic Controls (Chapter 3) 
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Figure A-2: Registers Available to a Single Procedure (Chapter 3) 
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Figure A-3: Procedure Stack Structure (Chapter 4) 

A-14 



inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE 

Memory Management 
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Figure A·4: SS's, Segment Table, and Segments (Chapter 8) 
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Figure A·5: Generic Segment Descriptor (Chapter 8) 
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SIMPLE·REGION SEGMENT DESCRIPTOR 
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Figure A-6: Region Segment Descriptors (Chapter 8) 
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PROCESS-CONTROL-BLOCK SEGMENT DESCRIPTOR 

PORT-SEGMENT DESCRIPTOR 

PROCEDURE-TABLE-SEGMENT DESCRIPTOR 
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~ PRESERVED 

BYTE DISPLACEMENT 

n + 4 

n + 8 

n + 12 

L-______ CACHEABlE 

BYTE DISPLACEMENT 

n + 4 

n + 8 

n + 12 

'--------- CACHEABlE 

76543210 

BYTE DISPLACEMENT 

n + 4 

n + B 

n + 12 

t .... _______ CACHEABlE 

Figure A-7: Process, Port, and Procedure Table Segment Descriptors (Chapter 8) 
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Figure A-8: Segment-Table Segment Descriptors (Chapter 8) 
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Figure A-9: Semaphore Segment Descriptor (Chapter 8) 
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Figure A-10: Invalid Segment Descriptor (Chapter 8) 
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Figure A-11 : Page Table or Page-Table Directory Entries (Chapter 8) 
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Processor Management 
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Figure A·12: Processor Controls (Chapter 9) 
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Figure A·14: Initial Memory Image (Chapter 9) 

A-22 



inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE 

Interrupt Handling 
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Figure A-15: Interrupt Table (Chapter 10) 
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* If the interrupt is serviced while the processor is working on another 
interrupt procedure. the new stack pointer (NSP) will be the same as 
the SP. 

RESERVED 

Figure A·16: Interrupt Record on Stack (Chapter 10) 
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lACs 
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Figure A-17: lAC Message Format (Chapter 11) 
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Figure A-18: Fault Record (Chapter 12) 
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Figure A·19: Fault Table and Fault·Table Entries (Chapter 12) 

A·26 

o 
8 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 

104 

112 

120 

252 

n 

n+4 

n 

n+4 

n 

n+4 



inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE 

Process Management 
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Figure A-20: PCB (Chapter 13) 
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Figure A-21 : Process Controls (Chapter 13) 
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Figure A-22: Ports (Chapter 14) 
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Figure A-23: Trace Controls (Chapter 16) 
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APPENDIX B 
MACHINE-LEVEL INSTRUCTION FORMATS 

This appendix describes the machine-level format for 80960MC instructions. Included is a 
description of the four instruction formats and how the addressing modes relate to these 
formats. Also, a table is given that shows the relationship between the machine-level instruc­
tion operands and the assembly-language-level instruction operands. 

GENERAL INSTRUCTION FORMAT 

At the machine-level, all the 80960MC instructions are one word long and begin on word 
boundaries. (One group of instructions allows a second word, which contains a 32-bit 
displacement. ) 

There are four basic instruction formats: REG, COBR, CTRL, and MEM. Figure B-1 shows 
these formats. Each instruction has only one format, which is defined by the opcode field of 
the instruction. 

31 2423 19 18 1413121110 7 6 5 4 0 REG 
I OPCODE I SRClDST I SRC2 I I I I OPCODE 10 0 I SRC1 I 

1 t 
t M1 

M2 

M3 

31 2423 19 18 14 13 12 2 1 0 COBR 
I OPCODE I SRC1 SRC2 I I DISPLACEMENT 10 0 I 

t M1 

31 2423 2 1 0 CTRL I OPCODE I DISPLACEMENT 10 0 I 

31 2423 19 18 14131211 0 MEMA 
OPCODE SRClDST ABASE I 10 1 OFFSET I 

t MODE 

31 7 6 5 4 MEMB 
OPCODE 

Figure 8-1: Instruction Formats 

The following sections describe the fields in the instruction word for each format. 
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REG FORMAT 

The REG format is for operations that are performed on data contained in the global, local, and 
floating-point registers. The majority of the 80960MC instructions use this format. 

The opcode for the REG instructions is 12 bits long (3 hexadecimal digits) and is split between 
bits 7 through 10 and bits 24 through 31. For example, the opcode for the addi instruction is 
591 16. Here, 5916 is contained in bits 24 through 31 and 116 is contained in bits 7 through 10. 

The srci and src2 fields specify source operands for the instruction. The operands can be 
either registers or literals. The mode bits (ml for srci and m2 for src2) and the instruction type 
(non-floating point or floating point) determine whether an operand is a register or a literal. 
Table B-1 shows the relationship between the instruction type, the mode bits, and the srci and 
src2 operands. 

Table B-1: Encoding of Src1 and Src2 Fields in REG Format 

Inst. Type Ml or M2 Src1 or Src2 Register Literal 
Operand Number Value 
Value 

Non-FP 0 00000 rO 

01111 r15 
10000 gO 

11111 g15 
1 00000 0 

11111 31 
FP 0 00000 rO 

01111 r15 
10000 gO 

11111 g15 
1 00000 fpO 

00011 fp3 
00100 to reserved 

01111 
10000 +0.0 

10001 to reserved 
10101 
10110 +1.0 

10111 to reserved 
11111 
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For non-floating-point instructions, if a mode bit is set to 0, the respective src1 or src2 field 
specifies a global or local register. If the mode bit is set to 1, the field specifies an ordinal 
li teral in the range of 0 to 31. 

For floating-point instructions, if the mode bit is set to 0, the respective src1 or src2 field 
specifies a global or local register (just as it does for non-floating-point instructions). If the 
mode bit is set to 1, the field specifies either a floating-point register or one of two real-number 
literals (+0.0 or + 1.0). All of the other encoding when the mode bit is set to 1 are reserved. 
When a reserved encoding is used as a source, the processor either signals an invalid opcode 
fault or produces an undefined value. 

The src!dst field can specify either a source operand or a destination operand or both, depend­
ing on the instruction. Here again, the mode bit (m3) and the instruction type (non-floating 
point or floating point) determine how this field is used. Table B-2 shows this relationship. 

Table B-2: Encoding of Src/Ost Field in REG Format 

Inst. Type m3 SrclDst Src Only Dst Only 

Non-FP 0 gO .. g15 gO .. gI5 gO .. gI5 
rO .. r15 rO .. r15 rO .. r15 

1 NA Literal NA 
FP 0 NA NA gO .. g15 

rO .. r15 

1 NA NA fpO .. fp3 

Note: NA means not allowed 

For non-floating-point instructions, if M3 is clear, the src!dst operand is a global or local 
register that is encoded as shown in Table B-l. If M3 is set, the src!dst operand can be used 
only as a src operand that is an ordinal literal. 

For floating-point instructions, the src!dst field is only used to encode destination operands. 
Here, the encoding is the same as shown in Table B-1, except that the encodings for floating­
point literals are not allowed. That is, if M3 is clear, the destination operand is a global or 
local register; if M3 is set, the destination operand is a floating-point register. When a reserved 
encoding or literal encoding is used as a destination, the processor either signals an invalid 
opcode fault or produces an undefined result. 

COBR FORMAT 

The COBR format is used primarily for control-and-branch instructions. (The test-if instruc­
tions also use this format.) The opcode field for this format is 8 bits (two hexadecimal digits). 

The srcl and src2 fields specify source operands for the instruction. The srcl field can specify 
either a global or local register or a literal as determined by mode bit mI. (The encoding of the 
srcl field is the same as is shown in Table B-1 for the non-floating point instructions.) The 
src2 field can only specify a local or global register. 
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The displacement field contains a signed, twos complement number that specifies a word 
displacement. The processor uses this value to compute the address of a target instruction that 
the processor goes to as the result of a comparison. The displacement field can range from _210 

to (210 -1). To determine the JP of the target instruction, the processor converts the displace­
ment value to a byte displacement (i.e., mUltiplies the value by 4). It then adds the resulting 
byte displacement to the JP of the current instruction. 

NOTE 

To allow labels or absolute addresses to be used in the assembly-language version of the COBR 
format instructions, the Intel 80960MC Assembler converts a targ (target) operand value in an 
assembly-language instruction into the displacement value required for the COBR format, using 
the following calculation: 

displacement = (targ - IP)!4 

For the test-if instructions, only the src1 field is used. Here, this field specifies a destination 
global or local register (m I is ignored). 

CTRL FORMAT 

The CTRL format is used for instructions that branch to a new JP, including the branch, 
branch-if, bal, and call instructions. The return instruction also uses this format. The opcode 
field for this format is 8 bits (two hexadecimal digits). 

The target address for a branch is specified with the displacement field in the same manner as 
is done with the COBR format instructions. Here, the displacement field specifies a word 
displacement (also a signed, twos complement number) that can range from _22 to 221 -1. 

The processor ignores the displacement field for the return instruction. 

MEM FORMAT 

The MEM format is used for instructions that require a memory address to be computed. 
These instructions include the load, store, and Ida instructions. Also, the extended versions of 
the branch, branch-and-link, and call instructions (bx, balx, and calix) uses this format. 

There are two MEM formats, MEMA and MEMB. The MEMB format offers the option of 
including a 32-bit displacement (contained in a second word) to the instruction. Bit 12 of the 
first word of the instruction determines whether the format is MEMA (clear) or MEMB (set). 

For both formats the opcode field is 8 bits long. The srcldst field specifies a global or local 
register. For load instructions, the srcldst field specifies the destination register for a word 
loaded into the processor from memory or, for operands larger than one word, the first of 
successive destination registers. For store instructions, this field specifies the register or group 
of registers that contain the source operand to be stored in memory. 

The mode bit (or bits for the MEMB format) determine the address mode used for the instruc­
tion. Table B-3 summarizes the addressing modes for the two versions of the MEM format. 
The fields used in these addressing modes are described in the following sections. 
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Table 8-3: Addressing Modes for MEM Format Instructions 

Format Mode Address Computation 
Bit(s) 

MEMA 0 offset 

1 (abase) + offset 

MEMB 0100 (abase) 

0101 (lP) + displacement + 8 

0110 reserved 

0111 (abase) + (index) * 2scale 

1100 displacement 

1101 (abase) + displacement 

1110 (index) * 2scale + displacement 

1111 (abase) + (index) * 2scale + displacement 

Note: 

1. In the address computations above, a field in 
parentheses (e.g., (abase» indicates that the value 
in the specified register is used in the computation. 

2. The use of a reserved encoding causes an invalid 
opcode fault to be signaled. 

MEMA Format Addressing 

The MEMA format provides two addressing modes: 

• absolute offset 

• register indirect with offset 

The offset field specifies an unsigned byte offset from 0 to 4096. The abase field specifies a 
global or local register that contains an address in memory. The address is interpreted as either 
a virtual address or a physical address depending on whether the processor is operating in 
virtual-addressing or physical-addressing mode, respectively. 

For the absolute offset addressing mode (the mode bit is clear), the processor interprets the 
offset field as an offset from byte 0 of the current process address space. The abase field is 
ignored. Using this addressing mode along with the Ida instruction allows a constant of from 0 
to 4096 to be loaded into a register. 

For the register indirect with offset addressing mode (the mode bit is set), the value in the 
offset field is added to the address in the abase register. Setting the offset value to zero creates 
a register indirect addressing mode; however, this operation can generally be carried out faster 
by using the MEMB version of this addressing mode. 
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MEMB Format Addressing 

The MEMB format provides the following seven addressing modes: 

• absolute displacement 

• register indirect 

• register indirect with displacement 

• register indirect with index 

• register indirect with index and displacement 

• index with displacement 

• IP with displacement 

The abase and index fields specify local or global registers, the contents of which are used in 
the address computation. When the index field is used in an addressing mode, the processor 
automatically scales the value in the index register by the amount specified in the scale field. 
Table B-4 gives the encoding of the scale field. The optional displacement field is contained in 
the word following the instruction word. The displacement is a 32-bit, signed, twos comple­
ment value. 

Table 8-4: Encoding of Scale Field 

Scale Scale Factor 
(Multiplier) 

000 1 

001 2 

010 4 

all 8 

100 16 

101 to 111 reserved 

Note: 

The use of a reserved encoding 
causes an invalid opcode fault 
to be signaled. 

For the IP with displacement mode, the value of the displacement field plus 8 is added to the 
address of the current instruction. 
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APPENDIX C 
INSTRUCTION TIMING 

This appendix describes the 80960MC processor's instruction pipeline and how it affects the 
timing of instructions. The number of clock cycles required for each instruction are also given 
here. 

INTRODUCTION 

The 80960 architecture defines several mechanisms for increasing processor performance 
through the use of pipe lining and parallel execution of instructions. This appendix describes 
how these mechanisms have been incorporated into the design of the 80960MC processor and 
provides information to help programmers maximize the performance of the processor. 

INTERNAL STRUCTURE OF THE 80960MC PROCESSOR 

The 80960MC processor is composed of the following six major functional units (shown in 
Figure C-l): 

• Memory Management Unit 

• Bus Control Logic 

• Instruction Fetch Unit and Instruction Cache 

• Instruction Decoder 

• Micro-Instruction Sequencer and ROM 

• Instruction Execution Unit 

• Floating Point Unit 

These units function independently from one another, but in close cooperation. The functions 
of each of these units is described in the following sections. 

Memory Management Unit 

The Memory Management Unit (MMU) translates virtual addresses into physical addresses 
and sends the resulting address to the Bus Control Logic (BCL). When the processor is in the 
physical addressing mode, the MMU is effectively bypassed and addresses are passed directly 
to the Bus Control Logic (BCL). The MMU becomes active in address translation, in the 
following situations: 

• When the virtual addressing mode is used. 

• When the processor accesses system data structures (such as the PRCB, dispatch ports, 
PCBs, etc.) as part of high-level primitive operations like dispatching a process or sending 
a signal to a semaphore. 
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EXTENTIONS TO THE 80960 ARCHITECTURE 
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To streamline the address translation process, the MMU maintains a 44 entry cache on the chip 
called the translation lookaside buffer (TLB). This cache is used to store often-used addresses 
that have already been translated. The first 12 entries in the TLB hold addresses for system 
defined data structures such as pointers to the page tables for the four regions of the address 
space for the current process. The next 32 entries contain pointers to 32 pages currently 
mapped into the physical address space. These 32 entries point to l28K bytes of memory, 
which yields a cache hit ratio of 98% for typical applications. 

The MMU is also able to perform type checks when referencing certain types of system data 
structures (such as PCBs, ports, or procedure tables), while instructions are being executed in 
other parts of the processor. Type checking is thus often overlapped with other processor 
activities. 

Bus Control Logic 

The BCL provides the interface between the processor and the external world. This interface 
consists of a multiplexed, burst bus, which is capable of memory-access rates of over 53 
Megabytes/second (with a 20 Mhz CPU clock). The BCL accepts requests from the MMU, 
prioritizes them, and executes them. It attempts to maximize bus access efficiency through 
buffering and burst accesses. 
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The BCL provides a queuing mechanism that can buffer up to three outstanding requests at any 
given time. This mechanism, coupled with other 80960MC features (such as scoreboarding, 
which is discussed later), allow other units in the 80960MC to continue operation without 
waiting for bus requests to be completed. As a result, the execution of most memory reference 
instructions require little or no delay in the instruction execution pipeline. 

The BCL generates burst cycles on the external bus, which allow from one to 16 bytes of data 
to be read or written in a single operation. The processor takes advantage of burst transfers in 
several ways. First, multiple-register load or store operations can be carried out in a single bus 
operation, using the ldl (load long), ldt (load triple), and ldq (load quad) instructions and the 
corresponding stl (store long) stt (store triple), and stq (store quad) instructions. Second, 
instructions can be fetched in 16-byte bursts, thereby reducing bus traffic for instruction 
fetches. Third, floating-point values of 32, 64 or 80 bits can be stored in a single bus opera­
tion. Fourth, the reading and writing of system data structures as part of process management 
tasks (such as switching processes or sending messages) can be carried out at very fast rates. 

Instruction Fetch Unit and Instruction Cache 

The Instruction Fetch Unit (IFU) acts as an intelligent "buffer" for the Instruction Decoder 
(ID). Its purpose is to present the instruction stream to the ID in the fastest and most trans­
parent way possible. The IFU uses several mechanisms to accomplish this goal, as described 
in the following paragraphs. 

The IFU maintains a 512 byte, direct-mapped instruction cache. This cache allows very fast 
access to instructions. While the other units in the processor are executing instructions, the 
IFU looks ahead in flow of instructions stored in the instruction cache. If a cache miss is 
detected (that is, an instruction that will soon be needed is not in the instruction cache), the IFU 
issues a prefetch request to the MMU. Upon receiving the requested instruction, the IFU 
updates the instruction cache. In most cases, this fetch and load will take place before the ID 
requires the instruction. The major exception to this rule happens on branch conditions. 

The IFU works closely with the ID in handling branch conditions. The ID informs the IFU of 
any branch operations that are about to take place. Such notifications take place on uncon­
ditional branches and on conditional branches in which the condition code is valid. When the 
IFU is notified of a branch, it checks for a cache hit on the desired instruction. If the 
instruction is not present, the IFU begins fetching instructions for the new control path. 

To further minimize delays in the instruction pipeline, the ID sends a special signal to the IFU 
whenever instructions are required immediately. The lFU then passes the fetched instructions 
to the ID directly, rather than writing them to the cache and reading them back out again. This 
technique is called an instruction-cache bypassing. 

The instruction pointer (IP) register in the processor and the IFU maintain several instruction 
pointers. These pointers point to instructions at various stages of the fetch-decode-execute 
pipeline. If a fault is signaled from any unit, the processor uses these pointers to determine the 
problem and preserve the state of the processor. 
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Instruction Decoder 

The ID decodes the instructions it receives from the IFU and routes them to the appropriate 
execution units. In doing this, it attempts to keep the computing resources of the processor 
working at the highest possible levels. 

Instructions are decoded into the following four groups, according to how the instructions are 
executed: 

• Simple Instructions 

• Floating Point and Branch Instructions 

• Complex Instructions 

• Load and Store Instructions 

The following paragraphs list the instructions in each of these groups and describe how the ID 
handles them. 

Simple Instructions 

The instructions in the simple-instruction group require very little decoding. These instructions 
include logical; comparison; shift; integer add and subtract; and ordinal add and subtract 
instructions. The ID decodes these instructions and passes them to the instruction execution 
unit (lEU), where they are executed, usually in a single clock period. 

Floating Point and Branch Instructions 

All floating-point instructions are executed by the floating-point unit (FPU). Often, the execu­
tion of floating-point instructions requires interaction between the FPU, ID, and Micro­
Instruction Sequencer (MIS). For example, the FPU may require access to the general-purpose 
registers (maintained by the lEU). Here, the ID assists in supplying data to the FPU. Also, 
many of the floating-point instructions are executed by means of microcode. The FPU gets the 
microcode from the MIS. 

The ID executes branch instructions directly. If the branches are unconditional, no interaction 
with the processor's other execution units is required. 

On conditional branch instructions, the ID uses a condition code scoreboard to streamline the 
branching process. Scoreboarding is a mechanism by which various resources within the 
processor can be marked as in use (or pending a result). When one of the execution units in 
the processor is in the process of altering the condition code, it marks the condition code 
scoreboard. When the ID prepares to execute a conditional branch instruction, it checks the 
condition code scoreboard. If the scoreboard is marked as in use, the ID waits for the result 
before proceeding. If the condition code scoreboard is clear, the ID signals the IFU im­
mediately if a change in program flow is about to happen. 

Conditional fault instructions (fault-if instructions) are also executed in the ID. These opera­
tions differ from conditional branches in that they result in a fault event being generated, 
followed by an implicit call to the appropriate fault-handler routine. 
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As a result of the pipe lining described above, branches can often be carried out in zero clock 
cycles. For example, the branch instruction (b) shown below will execute in zero cycles, since 
the branch time is overlapped completely by the execution time of the floating-point instruction 
(sinr). 

sinr 
b 

gO, gl 
some location 

some location: 
mov gl,g2 

The branch-if instruction (be) in the following example is also executed in zero cycles: 

cmp OxlO, r9 
divi rIO, rll, rIO 
be go here 

-

go here: 
mov gl,g2 

Here, the comparison instruction (cmp) is placed early in the instruction stream, allowing the 
branch condition based on the value of r9 to take place while the integer divide instruction 
(divi) is being executed. 

Complex Instructions 

Complex instructions are those that are executed using one or more microcode instructions. 
Examples of such instructions are the flushreg (flush local registers), mark, and fmark (force 
mark) instructions. The ID decodes complex instructions and forwards them to the MIS unit. 
The MIS then sends the equivalent microcode to the lEU. 

Load and Store Instructions 

Load and store instructions are those that request data to be read from or written into memory. 
The ID sends these instructions directly to the MMU and BCL, which executes them. 

The ID is responsible for converting the addressing information encoded in load, store, branch, 
and call instructions into an effective memory addresses. The circuitry that actually performs 
effective-address calculations resides in the IFU, but the ID oversees these operations. The 
generation of effective addresses is performed within a separate carry look-ahead adder, used 
with hardware shift logic. The ability to calculate effective addresses independently from 
instruction execution allows address calculation to be overlapped with computation. The time 
required to calculate an effective address ranges from zero to four cycles; but, for the most 
commonly used addressing modes, this time is less than two cycles. 

Instructions that require effective addresses are executed by either the ID or the MMU and 
BCL, thus preserving the pipeline and eliminating delays or resource constraints on the lEU or 
FPU. 
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Micro-Instruction Sequencer and ROM 

The MIS is a mUltipurpose unit designed to help in the execution of instructions that use 
microcode. All of the processor's microcode is stored in ROM, which is accessed through the 
MIS. When the ID receives a complex instruction (one that requires microcode to be 
executed), the MIS supplies the microcode to the lEU as described earlier in the discussion of 
complex instructions. 

The MIS also supplies microcode for floating-point instructions; the power-up and self-test 
performed during processor initialization; interrupt handling; and fault handling. 

The MIS is able to access parts of the processor that are not accessible to a program, such as 
the cached local register sets and parts of system data structures that have been cached on the 
chip. This capability offers two benefits. First it allows certain operations such as flushing the 
local registers sets to be carried out, even though software does not have direct access to these 
registers. Second, it enables the processor to execute complex process management operations 
very quickly. 

Instruction Execution Unit 

The lEU contains the Arithmetic Logic Unit (ALU) and the mechanism for register and 
condition-code scoreboarding. It also manages the 16 global registers and the 4 sets of 16 local 
registers. 

The ALU performs the following functions for the lEU: 

• Addition and subtraction of integers and ordinals 

• Moves between registers 

• Logical operations 

• Bit operations 

• Shifts and rotates 

• Comparisons 

It is capable of performing any of these operations in a single clock cycle. 

The lEU can also work with integer literals in the range of 0 to +31, which are encoded in the 
REG instruction format. This method of encoding literals performs two functions. First, it 
provides a more compact instruction stream. Second, when a literal is used as an argument for 
an instruction, the lEU is able to execute the instruction in one less clock cycle. 

The lEU handles the reading and writing of global and local registers. It also handles the 
allocation of local registers sets on procedure calls. The lEU allocates a new set of local 
registers on each procedure call. If all four register sets become allocated, the lEU automati­
cally flushes the oldest frame to the stack on the next procedure call. The lEU also automati­
cally retrieves any local register frame from the stack when required by a return operation. The 
majority of procedure calls or returns do not require the processor to flush local registers to 
memory. Call instructions that can be executed without flushing a register set require only 9 
cycles to complete, with the corresponding return taking only 7 cycles. 
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The register scoreboard provides scoreboarding for the global and local registers. When one or 
more registers are being used in an operation, they are marked as in use. The register 
score boarding mechanism allows the processor to continue executing subsequent instructions, 
as long as those instructions do not require the contents of the scoreboarded registers. 

A typical event that would cause scoreboarding is a load operation. For a load from memory, 
the contents of the affected registers are not valid until the MMU and BCL fetch the data and 
the registers are loaded. For example, consider the sequence: 

Id 
addi 
addi 
subi 

(gl), gO 
g2, g3, g4 
g5, g4 ,g6 
gO, g6, g6 

Here, when the MMU and BCL initiate the Id operation, register gO is scoreboarded. As long 
as subsequent instructions do not require the contents of gO, the ID continues to dispatch 
instructions. For example, the two addi instructions above are executed while the BCL is 
fetching the data for gO. If gO is not loaded by the time the subi instruction is ready to be 
executed, the lEU delays execution of the instruction until the loading of gO has been com­
pleted. 

If an operation accesses a single register, only that register is scoreboarded. However, if 
multiple registers are accessed (such as, with the Idl, Idt, or Idq instructions), registers are 
score boarded as shown in Table C-l, according to the base register of the group being ac­
cessed. 

Table C-1 : Registers Scoreboarded According to Registers Referenced 

Base Register Block of Registers 
Accessed Score boarded 

gO 0-3 

g2 0-7 

g4 4-7 

g6 0-15 

g8 8-11 

g10 8-15 

g12 12-15 

g14 0-15 

Register Bypassing 

The execution times of instructions in the lEU are dependent on the instruction flow. One 
feature of the lEU that can enhance processor performance is register bypassing. Register 
bypassing is a mechanism that allows an instruction that would ordinarily require source 
operands to be placed in registers to be executed without accessing one or both of the source 
registers. Register bypassing occurs in either of two circumstances. First, when the lEU 
executes an instruction with two source operands, register bypassing occurs ifone or both of 
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the operands are literals. Second, register bypassing will also occur when the second of two 
source operands is the result of the previous instruction. The net result of register bypassing is 
the saving of one clock cycle. Most instructions that the lEU executes can be executed in a 
single cycle when register bypassing occurs. 

Floating Point Unit 

The FPU performs all the floating-point computations for the processor, as well as the integer 
multiply and divide operations. It shares the resources of the processor. For example, it can 
use the global and local registers as operands for floating-point operations, and it gets 
microcode for the execution of complex floating-point instructions from the MIS. It also 
manages the four 80-bit floating-point registers, which it uses for extended-precision, floating­
point calculations. 

To perform integer multiplication and several floating-point calculations, the FPU contains a 
32-bit integer Booth-Multiplier. This multiplier performs integer multiplication operation in a 
variable amount of time, depending on the number of significant bits. It is used for integer 
multiplications and several floating-point calculations. 

EXECUTION TIMES FOR THE 80960 ARCHITECTURE INSTRUCTIONS 

This section describes the execution times for the instructions defined the 80960 architecture. 
As illustrated earlier in this appendix, the execution time for an instruction can vary, according 
to (1) the types of arguments used and the state of the on-chip resources and (2) how the 
processor's pipelining and instruction-overlapping features are used. 

In the following discussion, an instruction's execution time is defined as the time between the 
beginning of execution of a decoded instruction and the beginning of execution for the next 
decoded instruction. For example, the illustration in Figure C-2 shows the execution time of a 
two operand instruction to be two clocks, with respect to the next instruction to be executed. 

FIRST INSTRUCTION 

FETCH DECODE EXECUTE 
src1 

src2 

EXECUTION TIME 

RESULT 

SECOND INSTRUCTION 
,..-----r----.,... - - - - .,-----,----..., 

FETCH DECODE WAIT EXECUTE RESULT 
'---___ .L.-___ ...L.. ____ -'-___ -'-___ ...... 

Figure C-2: Execution Time of an Instruction 
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Logical Instructions 

The timing of the logical instructions depends on the lEU bypass mechanism described earlier 
in this appendix, in particular for any instruction of the form: 

alu_instruction srcJ, src2, dst 

If srcJ or src2 is a literal or if src2 is the result of the previous operation, a bypass hit occurs. 
Otherwise, there is no bypass hit and the instruction requires an extra clock to load the second 
operand. Table C-2 shows the timing of the logical instructions depending on whether or not a 
bypass hit occurs. 

NOTE 

In all the following tables, execution time is given in number of clock cycles. 

Table C-2: Logical Instruction Timing 

Instruction Normal Case Worst Case 
Execution Time Execution Time 

(Bypass Hit) (Bypass Miss) 

and 1 2 

nand 1 2 

or 1 2 

nor 1 2 

xor 1 2 

xnor 1 2 

andnot 1 2 

notand 1 2 

not 1 1 

notor 1 2 

ornot 1 2 

rotate 1 2 

shlo 1 2 

shro 1 2 

shli 2 3 

shri 2 3 

shrdi 2 3 
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Bit Instructions 

The execution times for the bit instructions are also dependent on whether or not a register 
bypass has occurred or not, as is shown in Table C-3. 

Table C-3: Bit Instruction Timing 

Instruction Normal Case Worst Case 
Execution Time Execution Time 

(Bypass Hit) (Bypass Miss) 

notbit 2 3 

setbit 2 3 

clrbit 2 3 

aIterbit 2 3 

chkbit 2 3 

extract 7 7 

modify 8 8 

The execution times of the scanbit and spanbit instructions (shown in Table C-4) depend on 
condition code scoreboarding. If the condition code is not set by the previous instruction 
execution, the instruction will complete in one less clock cycle. Execution time is also depend­
ent on the number of bits operated upon. 

Table C-4: Scan and Span Bit Instruction Timing 

Instruction Best Case Normal Case Worst Case 
Execution Time Execution Time Execution Time 

scanbit 8 11 14 

spanbit 8 11 14 

Register Moves 

The timing of instructions that move data between registers is directly related to the number of 
words moved. One clock cycle is required to move one (as shown in Table C-5). 

Table C-5: Move Instruction Timing 

Instruction Execution Time 

mov 1 

movl 2 

movt 3 

movq 4 
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Integer and Ordinal Arithmetic 

The execution times for the basic add and subtract instructions (as shown in Table C-6) depend 
on register bypass. The normal-case results are achieved when a register bypass occurs. 

Table C-6: Integer and Ordinal Arithmetic Instruction Timing 

Instruction Normal Case Worst Case 
Execution Time Execution Time 

(Bypass Hit) (Bypass Miss) 

addo 1 2 

addi 1 2 

subo 1 2 

subi 1 2 

addc 1 2 

subc I 2 

Table C-7 shows the execution times of the compare instructions, which also depend on 
whether or not a bypass hit occurs. 

Table C-7: Compare Instruction Timing 

Instruction Normal Case Worst Case 
Execution Time Execution Time 

(Bypass Hit) (Bypass Miss) 

cmpo 1 2 

cmpi 1 2 

cmpinco 2 3 

cmpdeco 2 3 

cmpinci 2 3 

cmpdeci 2 3 

condmpo 1 2 

concmpi 1 2 
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Multiply and Divide Instructions 

Table C-8 shows the typical instruction execution times for the multiply and divide instruc­
tions: 

Table CoB: Multiply and Divide Instruction Timing 

Instruction Range of Typical Case 
Significant Bits Execution Time 

mulo 9 to 21 18 

muli 9 to 21 18 

divi 37 37 

divo 37 37 

remo 37 37 

remi 37 37 

modi 37 37 

ernul 37 24 

ediv 37 40 

Since the processor contains a Booth Multiplier with early out, the execution times on the 
multiply and divide instructions (shown in Table C-8) depend on the number of significant bits 
in the srci operand. For example, Table C-9 shows the execution times based on the number 
of significant bits in src 1: 

Table Cog: Multiply/Divide Execution Times Based on Significant Bits 

Src1 Significant Bits Execution Time 

2 9 

4 10 

8 11 

32 21 

Note that the shift instructions or the add and subtract instructions may be faster than the 
multiply instructions in certain instances (for example, when multiplying by 3, 5, 15, etc.). 

Branching 

Branch instructions are executed directly by the ID and do not require lEU or FPU resources. 
Because of this, branch instructions can in most cases be programmed so that their execution is 
overlapped with other operations. Table C-10 lists the ranges of times for execution of branch 
instructions, from best (maximum overlap) to worst (no overlap). (The instructions in capital 
letters indicate groups of instructions that branch on condition codes, such the BRANCH IF 
instructions, be, bg, bl, etc.) 
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Table C·10: Branch Instruction Timing 

Instruction Best Case Worst Case 
Execution Time Execution Time 
(CC Available) (CC Not Available) 

b l o to 2 (0 to 2) 

BRANCH IF Ot02(Oto1) o to 3 (0 to 2) 

bx l o to 6 (0 to 6) 

BRANCH AND 2 to 8 (2 to 8) 
LINK I 

COMPARE AND 4 to 5 (3 to 4) 
BRANCH2 

bbs, bbc2 4 to 5 (3 to 4) 

TEST IF o to 3 (0 to 2) o to 4 (0 to 3) 

FAULT IF o to 2 (0 to 1) o to 3 (0 to 2) 

Notes: 
I. Condition code is not used. 
2. Condition code is set and checked as part of instruction execution. 

The second column of numbers lists execution-time ranges for conditional branches in which 
the condition code was not set in the previous instruction, and the third column lists ranges for 
branches in which the condition code was set by the previous instruction. Also, the first range 
in each column is for the case in which the branch is taken, and the range in parentheses is for 
the case in which the branch is not taken. 

When writing optimized code for the 80960MC processor, it is best to perform conditional 
tests at least two instructions before a conditional branch. This practice allows the execution 
times in column two to be achieved. It is also important to note that the "not taken" branch 
case executes in one less cycle, because there is no break in the pipeline. (Remember, instruc­
tion time is defined as the time from the start of execution of one instruction to the start of 
execution of the next instruction. If the pipeline is stalled, the fetch of the next instruction will 
be delayed one clock. This delay may or may not be hidden by the parallelism of the 
80960MC processor). 

Call/Return Instructions 

As described earlier in this appendix, the 80960MC processor provides four sets of local 
registers. When a call instruction is executed, the processor allocates a new set of local 
registers to the called procedure or interrupt routine. If, when a call or calix instruction is 
executed, a set of local registers is available, the processor executes the instruction in 9 clock 
cycles. 

If a set of local registers is not available, the processor flushes the oldest set of registers to the 
stack in memory to free up a register set. Flushing a set of local registers requires four 
quad-word stores to memory. Assuming zero-wait-state memory, this operation adds 24 clocks 
to the 9 clocks normally required to execute a call. 
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The ret (return) instruction nonnally requires 7 clock cycles. If the local registers being 
returned to have been flushed to the stack, an additional 24 clocks must be added to this 
execution time (with zero-wait-state memory) for the processor to reload the local registers 
from the stack. It is important to note that the processor only reloads the local registers when 
they are required, thus eliminating unnecessary memory cycles. 

Miscellaneous Complex Instructions 

The miscellaneous complex instructions shown in Table C-ll are carried out by the MIS. 
Their execution times depend on the execution state of the environment at the time of execu­
tion. The execution times given here are typical values. 

Table C-11 : Miscellaneous Complex Instruction Timing 

Instruction Execution Time 

atadd 17 

atmod 20 

flushreg 27 

mark 6 (not taken) 

fmark 6 (plus fault time) 

modac 10 

modpc 29 

modtc 18 

Ida 1 to 5 (typical 2) 

Idphy 17 

inspacc 29 

Load Instructions 

A load instruction requires the following steps: 

1. Instruction Fetch 

2. Decode 

3. Compute Effective Address/Scoreboard Register(s) 

4. Address translation through the MMU 

5. Place Address on Bus 

6. Wait State(s) 

7. Receive Data on Bus 

8. Place Data in target register 

Of these steps, only steps 3 through 8 are included in the definition of execution time for an 
instruction. The following figures show several examples of load instruction timing depending 
on where the load instruction is placed in the instruction stream. 
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The example in Figure C-3 illustrates a load instruction where the instruction that follows 
requires the fetched data. Here, the pipeline is stalled while the processor waits for the load to 
complete. Assuming a one-clock-cycle effective-address calculation, the load will require 4 or 
5 clock cycles to be executed, depending on whether or not zero-wait-state memory is used. 

PREVIOUS INSTRUCTION 

I DECODE I EXECUTE 

Id INSTRUCTION 

EXECUTION TIME 

WAIT 

INSTRUCTION USING Id RESULT 

FETCH DECODE EXECUTE RESULT 

Figure C-3: Load Where the Next Instruction Requires the Fetched Data 

Figure C-4 gives an example of a load instruction where the instruction that follows does not 
require the data being fetched from memory. Here, the unrelated instruction can be executed 
while the load is being completed. The 2 clock cycles required to execute the unrelated 
instruction are then overlapped with the 4 or 5 cycles required to execute the load (again 
depending on whether or not zero-wait-state memory is used). The load instruction thus 
requires a net of 1 or 2 clock cycles from the pipeline to be executed. 

PREVIOUS INSTRUCTION 

I DECODE I EXECUTE 

Id INSTRUCTION 

UNRELATED INSTRUCTION 

FETCH I DECODE I EXECUTE 

WAIT 

EXECUTION TIME 

RESULT 

Figure C-4: Load Where the Next Instruction Does Not Require the Fetched Data 

Finally, Figure C-5 shows an example of two load instructions being executed back-to-back. 
These two instructions can be executed in 5 or 6 clock cycles, as long as the number of BCL 
requests is limited to 3 or less (which is the size of the output request FIFO in the BCL's 
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control queue). Here, the second load is almost completely overlapped by the first load. Times 
for multiple word loads will be lengthened 1 cycle plus wait states for each additional word. If 
more than 3 requests become outstanding, the processor will wait until the number of outstand­
ing load operations goes below the size of the output FIFO. 

FIRST Id INSTRUCTION 

WAIT 

SECOND Id INSTRUCTION 

WAIT 

EXECUTION TIME FOR BOTH INSTRUCTIONS 

Figure CoS: Back-to-Back Load Instructions 

In all of the above load operations, it is assumed that the page table entry for the page that 
contains the word is present in the TLB (which is normally the case). If not, the translation 
takes considerably longer, since the processor has to perform several memory reads to thread 
its way through the segment table and page tables to find the physical address of the page that 
contains the word to be loaded. 

Store Operations 

Store instructions involve a posting of an address and data request to the MMU and BCL and 
are usually executed in 2 to 3 clock cycles. (They do not require register scoreboarding.) If 
the instruction following a store instruction is another store instruction, the second store in­
struction is usually executed in 2 clock cycles. If the following instruction uses the lEU, the 
execution time is 3 clock cycles. The only case in which this time will increase is when the 
three-request output FIFO in the BCL becomes full. Here, if another store instruction is issued, 
the processor waits for the BCL to complete its operations before other instructions can ex­
ecute. 

EXECUTION TIMES FOR THE EXTENDED INSTRUCTIONS 

The following sections give the execution times for those 80960MC instructions that are 
extensions to the 80960 architecture. 
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Decimal Instructions 

Table C-12 shows the instruction times for the decimal instructions. 

Table C-12: Decimal Instruction Timing 

Instruction Execution Time 

dmovt 7 

daddc 8 

dsubc 8 

Floating-Point Instructions 

Table C-13 shows the instruction execution times for the simple floating-point instructions. 
Where applicable, a range and a typical observed average are given. 

The instructions given in Table C-14 consist of the complex floating point instructions. Only 
typical instruction execution rates are given here. In many cases, the clock count can vary by 
30-40%. Execution time is dependent on the operands. 

It is important to note that the complex floating-point instructions are interruptible. When an 
interrupt is received while one of these instructions is being executed, the processor can 
suspend execution, service the external request, then resume execution of the instruction. 

Process-Management Instructions 

The MIS executes the process management instructions. The execution times for these instruc­
tions depend heavily on the state of the execution environment when execution of the instruc­
tion begins. For example, if a signal instruction is executed, the execution time will vary 
depending on whether or not there is a process waiting at the semaphore. 

Table C-IS gives typical execution times for these instructions. The following assumptions are 
made in computing these times: 

• The system is assumed to be a single-processor system 

• Regions are assumed to be paged 

• Faults do not occur 

• When enqueuing occurs, the queue is empty 

• When dequeuing occurs, one entry is on the queue 

• All communication ports are assumed to be FIFO ports 

• Process preemption does not occur as the result of any operation 
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Table C-13: Simple Floating-Point Instruction Timing 

Instruction Execution Time 

movr 5 

movrl 5 to 7 

movre 7 to 8 

cpysre 8 

cpyrsre 8 

addr 9 to 17 (typical 10) 

addrl 12 to 20 (typical 13) 

subr 9 to 17 (typical 10) 

subrl 12 to 20 (typical13) 

muir 11 to 22 (typical 20) 

mulrl 14 to 43 (typical 36) 

divr 35 

divrl 77 

cmpr 10 

cmprl 12 

cmpor 10 

cmporl 12 

cvtri 25 to 33 

cvtril 26 to 35 

cvtilr 41 to 45 

cvtilr 42 to 46 

cvtzri 41 to 45 

cvtzril 42 to 46 

roundr 56 to 69 

roundrl 56 to 70 

scaler 28 

scalerl 30 

logbnr 32 to 41 

logbnrl 32 to 43 

classr 22 to 24 

classrl 22 to 24 
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Table C-14: Complex Floating-Point Instruction Timing 

Instruction Execution Time 

sqrtrl 104 

expr 300 

exprl 334 

logepr 400 

logeprl 420 

logr 438 

logrl 438 

remr (67 to 75878) 

remrl (67 to 75878) 

atanr 267 

atanrl 350 

cosr 406 

cosrl 441 

tanr 293 

tanrl 323 

Table C-15: Process-Management Instruction Timing 

Instruction Execution Time 

wait 47 (no blocking) 

condwait 47 

signal 42 (no waiting process) 
137 (waiting process) 

send 110 (no waiting process) 
172 (waiting process) 

receive 73 (message available) 

condrec 69 (message not available) 
92 (message available) 

schedprcs 107 

sendserv 185 

Idtime 15 

saveprcs 200 

resumprcs 375 
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APPENDIX D 
INITIALIZATION CODE 

This appendix provides an example of the initialization code required to initialize the 
80960MC processor. 

OVERVIEW 

The code given in this appendix demonstrates one of the methods that can be used to initialize 
the 80960MC processor. To use this code, the programmer must assemble (and compile, in the 
case of the C program modules) the individual files into object modules. These modules must 
then be loaded into ROM (generally EPROM). The resulting EPROM will contain the follow­
ing: 

• An initial memory image (as shown in Figure 9-5 

• An interrupt table 

• A fault table 

• A system procedure table 

• A set of dummy interrupt and fault handler routines 

• A dispatch port 

• A set of dummy system procedures 

• Two small processes 

The dummy interrupt and fault handler routines merely perform a return to the initialization 
code if an interrupt or fault occurs during initialization. Likewise, the dummy system 
procedures perform returns. These routines may be changed to suit the needs of a particular 
application. 

Each process consists of a PCB and a code block. The code block is located in physical 
memory; however, one of the jobs of the initialization code will be to map the code into a 
virtual memory page. 

The dispatch port has the two processes already queued to it. 

When the processor's RESET pin is asserted, the processor performs its self test and comes up 
in physical mode. The processor then begins executing the initialization code. This code 
directs the processor to perform the following rudimentary steps of initialization: 

1. Copy the PRCB from the IMI into RAM. 

2. Copy the interrupt table into RAM. 

3. Copy the dispatch port in RAM. 

4. Copy page tables for the two processes in RAM. 
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5. Copy a page table for a region 3 in RAM, to be shared by the two processes. 

6. Copy the PCBs fQr the two processes into RAM. 

7. Execute a restart processor lAC, to enable the processor to load the new pointers to PRCB 
and interrupt table. During restart, the processor is brought up in virtual mode and in the 
idle state. 

The PRCB, interrupt table, dispatch port, and process PCBs are copied into RAM because 
these data structures have fields that the processor must be able to write. 

In a system where processes are created dynamically, the segment table would also have to be 
copied into RAM during initialization. In this example, the segment table remains in ROM. 
The pointers in the segment table to the page tables, PCBs, dispatch port, and system procedure 
table are predefined to point to the locations in RAM where these data structures are to be 
loaded during initialization. 

Prior to restarting the processor, additional initialization steps can be carried out to configure 
the processor for a particular application. The following items are examples of further in­
itialization actions that might be included in the initialization code: 

• Copy the segment table into RAM (as discussed above). 

• Copy new interrupt handler routines into RAM and change the pointers in the interrupt 
table to point to these new routines. 

• Copy the fault table into RAM; copy new fault handler routines into RAM; change the 
pointers in the fault table to point to the new fault handler routines; and change the pointer 
in the PRCB to point to the relocated fault table. 

• Create a new system procedure table in RAM; copy the system procedures into RAM; 
change the pointer in the PRCB to point to the new system procedure table. 

• Create additional processes, made up of page tables for the process address space, a PCB, 
and code and data for the process. 

Alternatively, the interrupt handler routines, fault handler routines, and system procedures can 
all be loaded into ROM. 

Following the restart of the processor, the processor checks the dispatch port. It dispatches the 
first process and begins executing it. It executes the process for one time slice of 4096 ticks, 
then dispatches the second process. It continues to switch back and forth between the two 
processes in this manner. 

EXAMPLE CODE 

The example code consists of the following sixteen files: 

• startup.s 

• Ctable.lst 

• i_table.lst 
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• initialjrame.lst 

• macs.m4 

• Chandle.c 

• Lhandle.c 

• fix_pte.c 

• prog1.c 

• prog2.c 

• led.h 

• passl.ld 

• pass 1a.ld 

• pass2.ld 

The startup.s,Ltable.lst, i_table.lst, initiaIJrame.lst, and macs.m4 files contain assembly code 
for the Intel 80960MC Assembler. (The files with an .lst extensions are listings from the 
assembler that include assembly code, such as would be included in an .s file, and the resulting 
object code. The macs.m4 file contains assembler code for macros.) The code in these files is 
used to build the initial memory image. The startup.s code builds all of the system data 
structures except the interrupt table and fault table, which are built by the i _table. 1st and 
Ltable.lst code, respectively. The startup.s code uses the macros in macs.m4. Also, the 
startup.s code contains the initialization code that the processor executes following the first 
stage of initialization. The initial Jrame .Ist code creates a stack frame for each process. 

Lhandle.c, i_handle.c, and fixyte.c files contain C program modules that are also used to 
build the initial memory image. The Lhandle.c and i_handle.c programs create the dummy 
fault and interrupt handler routines; the fix yte.c program creates the page tables. 

The progl.c, prog2.c, and led.h files contain C program modules for the two processes. 

Finally, the passl.ld, passl a.ld, and pass2 .ld files contain instructions for the loader. 

The following steps describe how to use the code in these files: 

1. Assemble the assembly code in files startup.s,Ltable.lst, i_table.lst, initiaIJrame.lst, and 
macs.m4. (Here the ".s" files are made up of the assembly code only from the ".1st" files 
listed above.) 

2. Compile the C code in files Lhandle.c, i_handle.c,fixyte.c, progl.c, and prog2.c. The 
led.h code is included in the progl.c and prog2.c code. 

3. Run the passl.ld command file. The script in this file do two things. First, it links the 
object modules progl.o and initial Jrame.O, using the 80960 linker. This operation creates 
the virtual address space for process 1, with code starting at address 016, data at address 
4000000016, the stack at address 8000000016, and region 3 at C0000000l6" Second, the 
interrupt and fault tables are located in region 3. (The interrupt and faults tables are not 
related to process 1. They are located using passl.ld, merely for convenience.) 
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4. Run the pass] a.ld command file. The script in this file create a virtual address space for 
process 2, by linking the object modules prog2.o and initiaIJrame.O. 

5. Run the pass2.ld command file. The script in this file combine the two processes with the 
initial memory image. The script in pass2.ld directs the linker to locate the linked code at 
address O. 

6. Burn the output file from pass2 .ld from the linker in an EPROM. 

startup.s 

/* 
*/ 

include ('macs .m4') 

/ * ------ externals --------------------------------------------------- * / 

.globl 
· globl 
.globl 
.globl 
.globl 
.globl 
.globl 
.globl 
.globl 
· globl 
· globl 

seg~table_ptr 

prcb_ptr 

esl 
yl_regioD_O_pte 
yl_regioD_l_pte 
_pl_regioD_2_pte 
_p2_regioD_O_pte 
_p2_region_l_pte 
_p2_region_2_pte 

reglon _ 3 _pte 

/ * ------ core initialization block ----------------------------------- * / 

.word se9_ table _ptr 

.word prcb_ptr 

.word 0 

.word start _ip 

.word esl 1* calculated at link time */ 

.word 0 /* csl = -(segtab + PRCB + startup) */ 

.word 0 

.word -1 

1* ------ segment table offsets --------------------------------------- */ 

· set sys_proc_table_st,2 
.set pl reglon 0 st,3 
· set pl=region_l_st,4 
· set pl_region_2_st,5 
.set region_3_st,6 
.set d_port_st,7 
· set segtab_st,8 
,set p2 region 0 st,9 
.set p2=region=1=st,lO 
· set p2_region_2_st,11 
.set LPCBl_st,12 
.set LPCB2_st,13 

/ * ------ region sizes ------------------------------------------------ * / 
/* nominal object size"" (size+l) * 64kb */ 
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.set 
· set 
· set 

pl_region_O_size,O 
pl_reglon 1 8lze,0 
pl_region_2_size,O 

· set p2_reglon 0 slze,O 
.set p2_reglon 1 812e,0 
.set p2 reglon 2 81ze,0 

INITIALIZATION CODE 

.set region_3_size,Ox3f /* as large as possible */ 

/* initial PReB ------------------------------------------------ *1 
1* 

This PReB (Processor Control Block) is used to bring 
the 80960 out of reset and into an executing state. The 
processor will set up all necessary tables and structures, 
then restart itself using the Linear PRes (below) 

* 1 

.align 
prcb ptr: 

.word OxO 1* - reserved * 1 

.word OxOOOOOO08 1* - processor state idle * 1 

.word OxO 1* - reserved * 1 

.word OxO 1* 12 - current process * 1 

.word OxO 1* 16 - dispatch port *1 

.word intr table 1* 20 - table physical address * 1 

.word intr stack 1* 24 - interrupt stack pointer * 1 
1* Note: GIS is the frame pointer and * 1 
1* is initialized to int stack at reset *1 -

.word OxO 1* 28 - reserved * 1 
SS(region_3_ st) 1* 32 - region 3 * 1 
.word sys_proc - table 1* 36 - system procedure table * 1 
.word fault table 1* 40 - fault table * 1 
.word OxO 1* 44 - reserved * 1 
· space 12 1* 48 - reserved * 1 
.word OxO 1* 60 - reserved * 1 
. space 8 1* 64 - idle time * 1 
.word OxO 1* 72 - system error fault * 1 
.word OxO 1* 76 - reserved * 1 
.space 48 1* 80 - resumption record * 1 
.space 44 1* 128 - system error fault record * 1 

1* ------ linear PReE ------------------------------------------------ * I 

.align 12 
lprcbytr: 

.word OxO 1* 

.word (1«10) I (1«3) 1* 

.word OxO 1* 

.word OxO 1* 
SS (dyort_st) 1* 
.word intr table 1* 
.word OxcOOOOOOO 1* 

1* 
1* 

.word OxO 1* 
S5 (region_3_st) 1* 
SS (sysyroc_ table st) 1* 
.word fault _table 1* 
.word OxO 1* 
· space 12 1* 
.word OxO 1* 
· space 8 1* 
.word OxO 1* 
.word OxO 1* 
.space 48 1* 
.space 44 1* 
.text 

- reserved 
- addr. trans. on (linear) 

state idle 
- reserved 

12 - current process 
16 - dispatch port 
20 - table physical address 
24 - interrupt stack pointer 

(beginning of region 3) 
Note: G1S lS the frame pointer and 
is initialized to int stack at reset 

28 - reserved 
32 - region 3 
36 - system procedure table 
40 - fault table phys. addr. 
44 - reserved 
48 - reserved 
60 - reserved 
64 - idle time 
72 - system error fault 
76 - reserved 
80 - resumption record 

128 - system error fault record 

/* ****************************************************************** */ 
/* The system procedure table will only be used if software puts the */ 
/* processor into user mode and makes a supervisor procedure call */ 

.align 6 
sysyroc_table: 

.word # Reserved 

0·5 

* 1 

* 1 
* 1 
*1 
* 1 
* 1 

* 1 
* 1 
* 1 
* 1 
* 1 
* 1 
* 1 
* 1 
* 1 
* 1 
* 1 
* 1 
* 1 
* 1 
* 1 



.word 

.word 

.word sup_stack 

.word 0 

.word a 

.word 

.word 

.word 

.word 

.word 

.word 

.word proc_entry_O 

.word proc_entrY_l 

INITIALIZATION CODe 

Reserved 
Reserved 
Supervisor stack pointer 12 
Preserved 
Preserved 
Preserved 
Preserved 
Preserved 
Preserved 
Preserved 
Preserved 
Procedure entry 
Procedure entry 

sup_stack: 
.word 

proc_entry_O: 
.word 

proc_entry_l: 
.word 

Dummy 

place 

stack 

stack 

and procedure code space 

in ram if used, 

/* ---------------- linear process #1 ---------------------------------- *1 
/* 

* / 

This is the Process Control Block for Process 1. We set up the 
Queue links statically, such that the dispatch port contains 
processes ready to be executed. 

I dyort I ---> I PCB 1 I ---> I PCB 2 I 

The PCB blocks are set with timing enabled, and a time slice 
period. When the time slice expires, the bits in the process 
control word indicate that the processor should place the expired 
task at the end of the dispatch port and dispatch another process. 

.align 12 
lpcblytr: 

SS (LPCB2_st) 1* queue record * / 
55 (d_port_st) 
.word 0 1* received mess. */ 

*/ 
*/ 

SS (d_port_st) 1* disp. port SS 
.word OxlOOO 1* resid. time slice 
.word (1«1) I (1«8) I (1«7) I (1«6) 

1* priority 0, supervisor mode timing 
and time slice enabled */ 

*/ .word 
.word 
.word 
.word 
.word 
.word 
SS (pI region 0 st) 
SS (pI-region -1-st) 
SS (pl-region-2-st) 
.word- Ox10000000 
· word 0 
.word Ox1000 
· space 8 
· space 48 
· space 60 
.word Ox80000000 
· space 48 

1* process notice 
1* trace controls 
1* reserved 
1* reserved 
1* reserved 
1* reserved 
1* region 0 Segment selector 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

1* region Segment Selector *1 
/* region Segment Selector *1 
1* arith. controls:inexact mask *1 
/* reserved * 1 
1* next time slice *1 
1* execution time *1 
1* resumption record *1 
1* global registers gO .. gI4 *1 
1* initial frame pointer * 1 
1* floating point registers * 1 

1* ---------------- linear process #2 ---------------------------------- *1 
.align 12 

1pcb2ytr: 
S8 (LPCB1_st) 1* queue record */ 
S5 (d_port_st) 
.word a 1* received'mess. *1 
SS(d_port_st) 1* disp. port SS *1 
.word Ox1000 1* resid. time slice *1 
.word (1«1) I (1«8) I (1«7) I (1«6) 

1* priority 1, supervisor mode *1 
.word 1* process notice *1 
· word 1* trace controls * 1 
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.word 

.word 

.word 

.word 
SS(p2_reglon 0 st) 
SS(p2_reglon 1 st) 
SS(p2_reglon 2 st) 
. word OxlOOOOOOO 
.word 0 
.word Ox1000 
· space 8 
· space 48 
· space 60 
.word Ox80000000 
.space 48 

/* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 

reserved * / 
reserved * 1 
reserved * 1 
reserved * 1 
region Segment selector * / 
region Segment Selector * 1 
region Segment Selector * 1 
arith . controls: inexact mask * 1 
reserved * 1 
next time slice * 1 
execution time * 1 
resumption record * 1 
global registers gO .. g14 * 1 
initial frame pointer * 1 
floating point registers * 1 

/* ---------------- initial segment table ------------------------------ */ 

.align 12 
seg_table_ptr: 

null seg () 
null_seg () 

/* ste No 
/* ste 1 No 

entry */ 
entry * / 

small_seg (sys_proc_table) 
paged_region (_pl_ region _ 0 yte, pI_region _ 0 _ size) 
paged_region (_pl_ region _1 yte, pl_ region _1_ size) 
paged_region (_p1_region_2-pte, p1_region_2_size) 
paged_reglon (_reg1oD_3_pte, reg10n 3 slze) 
port seg(d_port) 
simple_region (seg_table_ptr) 
paged_region (-p2_region_O_pte,p2_region_O_size) 
paged region( p2 region 1 pte,p2 region 1 size) 
paged=region{=p2=region=2~te'P2=region=2=size) 
small_ seg (lpcb1_ptr) 
small_seg (lpcb2ytr) 

/* ste 
/* ste 
/* ste 
/* ste 
/* ste 
/* ste 

1* ste 

1* ste 
/* ste 

1* ste 

1* ste 
/* ste 

* 1 
* 1 
* 1 
* 1 
* 1 
* 1 
* 1 

9 *1 
10 * 1 
11 * 1 
12 *1 
13 *1 

/* -------------- other misc. stuff ----------------------------------- */ 
/* these are the entries for the page tables in memory. We will allocate 

page tables for regions 0 1 and 2 for each process based on region 
size. This value will be provided at linkage time by the linker, 
and allow the second pass of the linker to create page tables of 
the appropriate size. Region 3 page tables contain entries 
for memory mapped I/O (located at physical address Oxl1000000, 
Ox12000000, Ox13000000, Ox14000000) which will be mapped to the 
corresponding linear addresses 

* 1 
.data 
· align 

_p1_reglon_O_pte: .space (p1_region_O_size+1) *64 
_p1_region_1_pte: .space (p1_reglon 1 slze+1)*64 
_p1_region_2_pte: .space (pl_reglon 2 slze+1) *64 
_p2_region_O_pte: .space (p2_reglon 0 slze+1) *64 
_p2 _region _1_pte: . space (p2 _region _1_ size+ 1) * 64 
_p2_region_2_pte: .space (p2 reg1on_2_s1ze+l)*64 

region_3_pte: . space (256*3) *4 
page_entry (Ox11000000) /* lin: Oxc0300000 */ 
page_entry (Ox12000000) /* lin: Oxc0301000 */ 
page_entry(Ox13000000) /* lin: Oxc0302000 */ 
page_entry(Ox14000000) /* lin: Oxc0303000 */ 
.space (256-4)*4 

/* the space below contains the dispatch port. This structure will be 
statically created in this module, to indicate a priority port 
with processes ready to dispatch. The entry for Priority 

*1 

/* 

a contains a head pointer to process 1 and a tail pointer to 
process 2. 

· align 
.word (1«16) 1* Priority Port * 1 
.word Oxl 1* 1 message at 0 * 1 
SS (LPCB1_st) /* Queue Head prior * 1 
SS (LPCB2 st) 1* Queue Tail prior * 1 
. space 31*2 /* Head & Tail for 1-31 

proirity entries *1 

The processor begins code execution here after reset . * 1 

. align 
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.text 
start lp: 

INITIALIZATION CODE 

/* set up an initial stack frame in memory *1 

callnext: 

Ida _intr_stack, fp 
Ida -Ox40(fp), pfp 
Ida Ox40(fp), sp 
Idconst Oxd8, r3 
st r3, 8 (p£p) 
st fp, 4 (pfp) 
call callnext 

mov 
Ida 
modac 

0, g14 
Ox3bOOlOOO, gO 
gO, gO, gO 

1* Call routine to build the Page tables in memory. The routine 
will insert all the appropriate bits (present, read/write 
privileges, etc.) into the table and then add the 
appropriate memory addresses. 

* 1 
calIx _fixytes 

1* Generate an lAC to restart the processor using the Linear PReB 

* 1 

Ida Oxff000010,gO 
Ida rstart data,gl 
synmovq gO,g1 -

.data 

.align 
rstart data: .word Ox810DOOOO 

.word seg_table_ptr 

. word Iprcb ptr 

.word 0 -

/* restart Processor lAC */ 
/* pointer to segment table *1 
1* pointer to new PReB */ 
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Ctable.lst 

0000 
0000 
0000 
0000 
0000 
0000 
0000 00000000 
0004 00000000 
0008 00000000 
OOOe 00000000 

10 0010 00000000 
11 0014 00000000 
12 0018 00000000 
13 ODIe 00000000 
14 0020 00000000 
15 0024 00000000 
16 0028 00000000 
17 002e 00000000 
18 0030 00000000 
19 0034 00000000 
20 0038 00000000 
21 003e 00000000 
22 0040 00000000 
23 0044 00000000 
24 0048 00000000 
25 004e 00000000 
26 0050 00000000 
27 0054 00000000 
28 0058 00000000 
29 DOSe 00000000 
30 0060 00000000 
31 0064 00000000 
32 0068 00000000 
33 006e 00000000 
34 0070 00000000 
35 0074 00000000 
36 0078 00000000 
37 007e 00000000 
38 0080 00000000 
39 0084 00000000 
40 0088 00000000 
41 008e 00000000 
42 0090 00000000 
43 0094 00000000 
44 0098 00000000 
45 00ge 00000000 
46 OOaO 00000000 
47 00a4 00000000 
48 00a8 00000000 
49 OOae 00000000 
50 OObO 00000000 
51 00b4 00000000 
52 00b8 00000000 
53 OObe 00000000 
54 ODeD 00000000 
55 00e4 00000000 
56 00e8 00000000 
57 OOee 00000000 
58 OOdO 00000000 
59 00d4 00000000 
60 00d8 00000000 
61 OOde 00000000 
62 OOeO 00000000 
63 00e4 00000000 
64 00e8 00000000 
65 OOee 00000000 
66 OOfO 00000000 
67 00f4 00000000 
68 00f8 00000000 
69 OO£e 00000000 

INITIALIZATION CODE 

# 1 "f table.s" 

.globl fault table 

.align 8 
fault table: 

_user override; 

ouser_trace; 

_user _ ope rat ion; 
o # 
_user _ar i thmetic; 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

_user _ real_ar i thmetic; 
o # 
user_constraint; 

_user yrotection; 
o # 
ouser_maChine: : 

_user_structural; 
o # 
_user_type; 
o 
user_reserved _llf; 

# 
_user_process; 
o 
_user_descriptor; 
o # 
_user_event; 

.word _user_reserved 

. word 0 

.word user reserved 

.word 

.word _user_reserved 

.word 

.word user reserved 

.word 

.word _user_reserved 

.word 

.word _user_reserved 

.word 

.word 

.word _user_reserved 

.word 

.word _user_reserved 

.word 

.word _user_reserved 

.word 

.word 

.word user reserved 

.word 

.word _user_reserved 

.word 

.word _user_reserved 

.word 

.word _user_reserved 

. word 0 

.word _user_reserved 

.word 

.word _user_reserved 

.word 
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Type 15 Reserved Fault Handler 

Type 16 Reserved Fault Handler 

Type 17 Reserved Fault Handler 

Type 18 Reserved Fault Handler 

Type 19 Reserved Fault Handler 

Type 20 Reserved Fault Handler 

Type 21 Reserved Fault Handler 

Type 22 Reserved Fault Handler 

Type 23 Reserved Fault Handler 

Type 24 Reserved Fault Handler 

Type 25 Reserved Fault Handler 

Type 26 Reserved Fault Handler 

Type 27 Reserved Fault Handler 

Type 28 Reserved Fault Handler 

Type 29 Reserved Fault Handler 

Type 30 Reserved Fault Handler 

Type 31 Reserved Fault Handler 



inter 

Uable.lst 

0000 
0000 
0000 
0000 
0000 
0000 00000000 
0004 
0024 00000000 
0028 00000000 
002e 00000000 

10 0030 00000000 
11 0034 00000000 
12 0038 00000000 
13 003e 00000000 
14 0040 00000000 
15 0044 00000000 
16 0048 00000000 
17 004e 00000000 
18 0050 00000000 
19 0054 00000000 
20 0058 00000000 
21 005e 00000000 
22 0060 00000000 
23 0064 00000000 
24 0068 00000000 
25 006e 00000000 
26 0070 00000000 
27 0074 00000000 
28 0078 00000000 
29 007e 00000000 
30 0080 00000000 
31 0084 00000000 
32 0088 00000000 
33 008e 00000000 
34 0090 00000000 
35 0094 00000000 
36 0098 00000000 
37 00ge 00000000 
38 OOaO 00000000 
39 00a4 00000000 
40 00a8 00000000 
41 OOae 00000000 
42 OObO 00000000 
43 00b4 00000000 
44 00b8 00000000 
45 OObe 00000000 
46 OOcO 00000000 
47 00e4 00000000 
48 00c8 00000000 
49 OOce 00000000 
50 OOdO 00000000 
51 00d4 00000000 
52 00d8 00000000 
53 OOde 00000000 
54 OOeO 00000000 
55 00e4 00000000 
56 00e8 00000000 
57 OOee 00000000 
58 OOfO 00000000 
59 00f4 00000000 
60 00f8 00000000 
61 OOfe 00000000 
62 0100 00000000 
63 0104 00000000 
64 0108 00000000 
65 010e 00000000 
66 0110 00000000 
67 0114 00000000 
68 0118 00000000 
69 011e 00000000 
70 0120 00000000 
71 0124 00000000 
72 0128 00000000 
73 012e 00000000 

INITIALIZATION CODE 

1 "i table.s" 

.globl intI~table 

· align 
intr_table: 

· word a -# Pending Priorities 
.fill 8,4,0 -# pending Interrupts 4 + (0->7)*4 

interrupt table entry 8 
interrupt table entry 
interrupt table entry 10 
interrupt table entry 11 
interrupt table entry 12 
interrupt table entry 13 

.word user intrh: # 

.word _user_intrh; -# 

.word _user_intrh; -# 

.word _user_intrh; -# 

.word _llser_intrh; 

.word _llser_intrh; 

.word user_intrh; 

.word user_intrh; 
· word _user_intrh; 
· word _user_intrh; 
.word _user_intrh; 
· word _user_intrh; 
· word user_intrh; 
· word user_intrh; 
· word user_intrh; 
· word user_intrh; 
.word user_intrh; 
.word _user_intrh; 
.word user_intrh; 
.word user_intrh; 
.word _user_intrh; 
.word user_intrh; 
.word user_intrh; 
.word user_intrh; 
· word _user_intrh; 
.word _llser_intrh: 
.word _user_intrh: 
.word user_intrh; 
.word user_intrh; 
.word user_intrh: 
.word _user_intrh: 
.word _user_intrh; 
.word _user_intrh: 
.word _llser_intrh: 
.word _user_intrh; 
· word user _ int rh; 
· word user _ intrh; 
.word _user_intrh; 
.word _user_intrh; 
· word _user_intrh; 
· word _user_intrh; 
.word _user_intrh; 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh; 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _llser_intrh: 
.word _user_intrh: 
· word _us'er_intrh: 
.word _user_intrh: 
.word _user_intrh: 
· word _user_intrh; 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh; 
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interrupt table entry 14 
#- interrupt table entry 15 
#: interrupt table entry 16 
#- interrupt table entry 17 
#: interrupt table entry 18 
-# interrupt table entry 19 
#- interrupt table entry 20 
#- interrupt table entry 21 
#- interrupt table entry 22 
#- interrupt table entry 23 
#- interrupt table entry 24 
#- interrupt table entry 25 
#- interrupt table entry 26 
#- interrupt table entry 27 
#- interrupt table entry 28 
#- interrupt table entry 29 
#: interrupt table entry 30 
#- interrupt table entry 31 
#- interrupt table entry 32 
-# interrupt table entry 33 

interrupt table entry 34 
interrupt table entry 35 
interrupt table entry 36 
interrupt table en-try 37 
interrupt table entry 38 
interrupt table entry 39 
interrupt table entry 40 
interrupt table entry 41 
interrupt table entry 42 

#- oj nt_errupt table entry 43 
#- interrupt table entry 44 
#- interrupt table entry 45 
-# interrupt table entry 46 
-# interrupt table entry 47 
-# interrupt table entry 48 
-# interrupt table entry 49 
#: interrupt table entry 50 
#- interrupt table entry 51 
#- interrupt table entry 52 
-# interrupt table entry 53 
-# interrupt table entry 54 
#: interrupt table entry 55 
# interrupt table entry 56 
#- interrupt table entry 57 
#- interrupt table entry 58 
# interrupt table entry 59 
# interrupt table entry 60 
# interrupt table entry 61 
# interrupt table entry 62 
#: interrupt table entry 63 
# interrupt table entry 64 
# interrupt table entry 65 
# interrupt table entry 66 
#: interrupt table entry 67 
# interrupt table entry 68 
#: interrupt table entry 69 
-# interrupt table entry 70 
#: interrupt table entry 71 
# interrupt table entry 72 
# interrupt table entry 73 
# interrupt table entry 74 



74 0130 00000000 
75 0134 00000000 
76 0138 00000000 
77 013e 00000000 
78 0140 00000000 
79 0144 00000000 
80 0148 00000000 
81 014e 00000000 
82 0150 00000000 
83 0154 00000000 
84 0158 00000000 
85 015e 00000000 
86 0160 00000000 
c'7 0164 OU0UOOUO 

88 0168 00000000 
89 016e 00000000 
90 0170 00000000 
91 0174 00000000 
92 0178 00000000 
93 017e 00000000 
94 0180 00000000 
95 0'84 00000000 
96 0188 00000000 
97 Ol8e 00000000 
98 a i 90 00000000 
99 0194 00000000 

100 0198 00000000 
101 01ge 00000000 
102 01aO 00000000 
103 Ola4 00000000 
104 01a8 00000000 
105 alae 00000000 
106 01bO 00000000 
107 01b4 00000000 
108 01bS 00000000 
109 01be 00000000 
110 OleO 00000000 
111 Olc4 00000000 
112 DIeS 00000000 
113 01ec 00000000 
114 DIdO 00000000 
115 01d4 00000000 
116 01dS 00000000 
117 01de 00000000 
118 OleO 00000000 
119 Ole4 (10000000 
120 01e8 00000000 
121 01ee 00000000 
122 OlfO 00000000 
123 01f4 00000000 
124 01fB 00000000 
125 Olfe 00000000 
126 0200 00000000 
127 0201 00000000 
128 0208 00000000 
129 020e 00000000 
130 0210 00000000 
131 0214 00000000 
132 0218 00000000 
133 D21c nOODOOOD 
134 0220 ",,000000 
135 0224 ooaooooo 
136 0228 00000000 
137 022e 00000000 
138 0230 00000000 
139 0234 00000000 
140 0238 00000000 
141 023c 00000000 
142 0240 00000000 
143 0244 00000000 
144 0248 00000000 
145 024c 00000000 
146 0250 00000000 
147 0254 00000000 
148 0258 00000000 
149 025c 00000000 
150 0260 00000000 

INITIALIZATION CODE 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word 
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interrupt ta.ble entry 75 
interrupt tAble entry 76 
interrupt table entry 77 
interrupt table entry 78 
interrupt table entry 79 
interrupt tab~e entry 7() 
interrupt tdb 1 e entry /1 
interrupt table er~try ·/2 
interrllpt tab 1 e ~'Tlt- ry 7:3 
interrupt table etltry 74 
interrupt tablo ('r\t~y 75 
interrupt rablp ~ntry 76 
interrupt tab2 e r y 
interrupt tab~e e~try 

interrupt table er:t TY 19 
interrupt i,able enLLY 
int errupt ta:b 1 e ent:ry 
inlerrupt table entry 
inLerrupt table entry 83 
interrupt table entry 84 
interrt"..pt table entry 8~ 

in"L-errupt table entry 86 
lnterrup"L- table entry 
interr~pt tab~e entry 88 
inte crupt table £.'ntry 89 
interrupt table entry 
interrupi~ table entry 
interrupL table entry 
interrup"L table entry 93 
interrupt table entry 94 
interrupt table entry 95 
interrupt table entry 
interrupt table entry 
interrupt table entry 98 
interrupt table entry 99 
interrup~ table entry ~O() 

interrupt table entry lOl 
interrupt table entLY 1G2 
interrupt table er.try 103 
interrupt t~able entry 1C4 
interrupt table entry 10') 

interrupt table entry 106 
interrupt table entry lC7 
interrupt table ent ry 108 
interrupt tabIe er.t ry 109 
interrupt table entrv ] ~ 0 
interrupt table entry 11=­
lnter:rupt t_able entry 112 
interrupt table en:.ry 1i3 
interrupt table entry 114 
interrupt table ent:>:::y 115 
interLlpt "(able entry 116 
interLlpt table ent ry 11 7 
interrupt table en~ry 118 
interrupt table enLry 119 
interrupt table entry 120 
interr'Jpt table ent.ry 121 
interrupt "L-able entry 122 
interrupt table entry 123 
interrupt tabie entry 124 
interrupt t~ble entry 125 
interrupt table entry 120 
inLerrupt table entry 
interrupt table entry 128 
interrupt table er.try 129 
interrupt table entry 130 
interrupt table entry 131 
interrupt table entry 132 
interrupt table entry 133 
interrupt table entry 13~ 
interrupt table entry 135 
interrupt table entry 136 
interrupt table entry 137 
intercclpt table entry 138 
interrupt table entry 139 
interrupt table entry 140 
interrupt table entry 14: 



151 0264 00000000 
152 0268 OO~OOOOO 
153 026c 00000000 
154 0270 00000000 
155 0274 00000000 
156 0278 00000000 
157 027c 00000000 
158 0280 00000000 
159 0284 00000000 
160 0288 00000000 
161 028c 00000000 
162 0290 00000000 
163 0294 00000000 
164 0298 00000000 
165 029c 00000000 
166 02aO 00000000 
167 02a4 00000000 
168 02a8 00000000 
169 02ac 00000000 
170 02bO 00000000 
171 02b4 00000000 
172 02b8 00000000 
173 02bc 00000000 
174 02cO 00000000 
175 02c4 00000000 
176 02c8 00000000 
177 02cc 00000000 
178 02dO 00000000 
179 02d4 00000000 
180 02d8 00000000 
181 02dc 00000000 
182 02eO 00000000 
183 02e4 00000000 
184 02e8 00000000 
185 02ec 00000000 
186 02fO 00000000 
187 02f4 00000000 
188 02f8 00000000 
189 02fc 00000000 
190 0300 00000000 
191 0304 00000000 
192 0308 00000000 
193 030c 00000000 
194 0310 00000000 
195 0314 00000000 
196 0318 00000000 
197 031c 00000000 
198 0320 00000000 
199 0324 00000000 
200 0328 00000000 
201 032c 00000000 
202 0330 00000000 
203 0334 00000000 
204 0338 00000000 
205 033c 00000000 
206 0340 00000000 
207 0344 00000000 
208 0348 00000000 
209 034c 00000000 
210 0350 00000000 
211 0354 00000'000 
212 0358 00000000 
213 035c 00000000 
214 0360 00000000 
215 0364 00000000 
216 0368 00000000 
217 036c 00000000 
218 0370 00000000 
219 0374 00000000 
220 0378 00000000 
221 037c 00000000 
222 0380 00000000 
223 0384 00000000 
224 0388 00000000 
225 038c 00000000 
226 0390 00000000 
227 0394 00000000 

INITIALIZATION CODE 

.word _user_intrh; 

.word _user_intrh; 

.word _user_intrh; 

.word _user_intrh; 

.word _user_intrh; 

.word user intrh; 

.word =user=intrh; 

.word _user_intrh; 

.word _user_intrh; 

.word _user_intrh; 

.word _user_intrh; 

.word user intrh; 

.word =user=intrh; 
,word _user_intrh: 
.word user intrh; 
.word =user=intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word user intrh; 
.word =user=intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh: 
.word _user_intrh; 
.word user intrh: 
.word =user=intrh; 
.word _user_intrh: 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word user intrh; 
.word =user=intrh: 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
. word _user_intrh; 
. word _user_intrh; 
.word _user_intrh: 
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* interrupt table entry 142 * interrupt table entry 143 * interrupt table entry 144 * interrupt table entry 145 
"* interrupt table entry 146 * interrupt table entry 147 * interrupt table entry 148 

* * * * * * * * * * * * * * * * * * # 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

* * * * * * * * * # 
# 

* # 

* * * * * # 

* * * * * # 
# 
# 
# 
# 
# 
# 

* # 
# 

interrupt table entry 149 
interrupt table entry 150 
interrupt table entry 151 
interrupt table entry 152 
interrupt table entry 153 
interrupt table entry 154 
interrupt table entry 155 
interrupt table entry 156 
interrupt table entry 157 
interrupt table entry 158 
interrupt table entry 159 
interrupt table entry 160 
interrupt table entry 161 
interrupt table entry 162 
interrupt table entry 163 
interrupt table entry 164 
interrupt table entry 165 
interrupt table entry 166 
interrupt table entry 167 
interrupt table entry 168 
interrupt table entry 169 
interrupt table entry 170 
interrupt table entry 171 
interrupt table entry 172 
interrupt table entry 173 
interrupt table entry 174 
interrupt table entry 175 
interrupt table entry 176 
interrupt table entry 177 
interrupt table entry 178 
interrupt table entry 179 
interrupt table entry 170 
interrupt table entry 171 
interrupt table entry 172 
interrupt table entry 173 
interrupt table entry 174 
interrupt table entry 175 
interrupt table entry 176 
interrupt table entry 177 
interrupt table entry 178 
interrupt table entry 179 
interrupt table entry 180 
interrupt table entry 181 
interrupt table entry 182 
interrupt table entry 183 
interrupt table entry 184 
interrupt table entry 185 
interrupt table entry 186 
interrupt table entry 187 
interrupt table entry 188 
interrupt table entry 189 
interrupt table entry 190 
interrupt table entry 191 
interrupt table entry 192 
interrupt table entry 193 
interrupt table entry 194 
interrupt table entry 195 
interrupt table entry 196 
interrupt table entry 197 
interrupt table entry 198 
interrupt table entry 199 
interrupt table entry 200 
interrupt table entry 201 
interrupt table entry 202 
interrupt 
interrupt 
interrupt 
interrupt 

table entry 203 
table entry 204 
table entry 205 
table entry 206 

interrupt table entry 207 
interrupt table entry 208 



228 0398 00000000 
229 039c 00000000 
230 03aO 00000000 
231 03a4 00000000 
232 03a8 00000000 
233 03ac 00000000 
234 03bO 00000000 
235 03b4 00000000 
236 03b8 00000000 
237 03bc 00000000 
238 03cO 00000000 
239 03c4 00000000 
240 03c8 00000000 
241 03cc 00000000 
242 03dO 00000000 
243 03d4 00000000 
244 03d8 00000000 
245 03dc 00000000 
246 03eO 00000000 
247 03e4 00000000 
248 03e8 00000000 
249 03ec 00000000 
250 03fO 00000000 
251 03f4 00000000 
252 03f8 00000000 
253 03fc 00000000 
254 0400 00000000 
255 0404 00000000 
256 0408 00000000 
257 040c 00000000 
258 0410 00000000 
259 0414 00000000 
260 0418 00000000 
261 041c 00000000 
262 0420 00000000 
263 0424 00000000 
264 0428 00000000 
265 042c 00000000 
266 0430 00000000 
267 0434 00000000 
268 0438 00000000 
269 043c 00000000 
270 0440 00000000 
271 0444 00000000 
272 0448 00000000 
273 044c 00000000 
274 0450 00000000 

INITIALIZATION CODE 

· word _user intrh: 
· word user_intrh: 
· word _user_intrh: 
· word _user_intrhi 
· word _user_intrh: 
· word _user_intrh: 
.word user_intrh: 
.word user_intrhi 
· word user_intrhi 
· word user_intrh: 
.word _user_intrh; 
.word user_intrh; 
.word user_intrh; 
.word _user_intrh: 
· word user _ intrh; 
· word user _ intrh; 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
· word user _ intrh; 
.word user intrh; 
.word =user=intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh; 
.word user intrh; 
.word =user=intrh; 
.word _llser_intrh: 
.word _llser_intrh; 
.word _user_intrh: 
.word user intrh; 
.word _user=intrh; 
.word _user_intrh; 
.word _llser_intrhi 
.word _user_intrhi 
.word _user_intrhi 
· word _user_intrhi 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrhi 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrhi 
.word _user_intrh 
.word _user_intrh 
.word _user_intrh 
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interrupt table entry 209 
interrupt table entry 210 
interrupt table entry 211 
interrupt table entry 212 
interrupt table entry 213 
interrupt table entry 214 
interrupt table entry 215 
interrupt table entry 216 
interrupt table entry 217 
interrupt table entry 218 
interrupt table entry 219 
interrupt table entry 220 
interrupt table entry 221 
interrupt table entry 222 
interrupt table entry 223 
interrupt table entry 224 
interrupt table entry 225 
interrupt table entry 226 
interrupt table entry 227 
interrupt table entry 228 
interrupt table entry 229 
interrupt table entry 230 
interrupt table entry 231 
interrupt table entry 232 
interrupt table entry 233 
interrupt table entry 234 
interrupt table entry 235 
interrupt table entry 236 
interrupt table entry 237 
interrupt table entry 238 
interrupt table entry 239 
interrupt table entry 240 
interrupt table entry 241 

# interrupt table entry 242 
# interrupt table entry 243 
# interrupt table entry 244 
# interrupt table entry 245 
# interrupt table entry 246 
# interrupt table entry 247 
# interrupt table entry 248 
# interrupt table entry 249 
# interrupt table entry 250 
# interrupt table entry 251 
# interrupt table entry 252 
# interrupt table entry 253 
# interrupt table entry 254 
# interrupt table entry 255 



inter INITIALIZATION CODE 

initial _frame. 1st 

a 0000 # 1 "initial frame.s" 
1 0000 
2 0000 
3 0000 
4 0000 
5 0000 
6 0000 
7 0000 

0000 
0000 

10 0000 
11 0000 
12 0000 

13 0000 .data 
14 0000 00000000 · word 
15 0004 80000010 .word Ox80000010 
16 0008 00000000 · word 0 
17 aOOe · space 13*4 
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INITIALIZATION CODe 

macs.m4 

1* 
* some macros for building 80960 data structures. 
* 1 

1* 
* S5 (ste) ==> construct an SS. 

* 1 

define ('55' , '.word (($1)«6) I Ox3f;') 

1* 
* slmple reglon{addr) ==> build seg. table for simple region. 

* 1 

define ('simple region' I 

· space 
· word $1 1* MUST be page-aligned */ 
.word OxOOfcOOa3;') 

1* 
* paged_region(addr,size) ==> build seg. table for paged region. 

addr ==> PTE address 
size ==> encoded size 

* 1 

define ('paged_reglon' , 
.space 8 
.word $1 
.word (($2)«18) 

1* 

1* MUST be 64-byte aligned 
Ox5;' ) 

* 1 

* bipaged_region(addr,size) ==> build seg. table for bipaged region. 
addr ==> PTD address 
Slze ==> encoded size 

* 1 

define ('bipaged_region', , 
· space 8 
.word $1 
.word (($2)«18) 

1* MUST be 64-byte aligned 
Ox7;' ) 

1* 
* page_entry (addr) ==> build page table entry 

addr ==> physical address 
*1 

define('page_entry', ' 
.word ((SI) OxC7);') 

1* 
* small seg(addr) ==> build seg. table for a small segment 
* 1 

define ('small seg', 
· space 8 
.word $1 
.word (Ox3f«18) 

1* 

/* MUST be page-aligned */ 
Oxfb;' ) 

* port seg(addr} ==> build seg. table for a port segment 

* 1 

deflne ('port seg', 
· space 
.word $1 /* MUST be 64-byte aligned */ 

1* 
1* 

.word Ox204000fb;') 

* null seg() ==> a null segment table entry 
*1 

define ('null_seg', '. space 16;') 

0·15 
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inter INITIALIZATION CODe 

Chandle.c 

user_override () 

user_arithmetic () 

{} 

{} 

{} 

user_real_arithmetic() {} 
user_constraint () 
user_vm() 
user_protection () 
user_structural () 
user_type () 

user_process () 
user_descriptor () 
user_event () 
user_reserved () 
user_operation () 
user_machine () 

user intrh () 
{ 

} 

fixJ)te.c 

/* 

{} 

{} 

{} 

{} 

{} 

{} 

{} 

{} 

{} 

{} 

{} 

{} 

This module "fills in" the appropriate page table entries 
with the physical address (obtained at link time) and the 
page table attributes. These tables are built by the 
processor before the processor goes into "linear mode" 

* / 
extern unsigned long pI_reg 0 PA; 
extern unsigned long pl._re9_1_PA; 
extern unsigned long pl re9_2_ PA; 
extern unsigned long re9_3_PA; 
extern unsigned long pl _reg_O_ len; 
extern unsigned long pl_reg_l_len; 
extern unsigned long pI_reg 2 len: 
extern unsigned long reg_3_ len; 
extern unsigned long pl_region_Oyte; 
extern unsigned long pl_region_lyte; 
extern unsigned long pl_region_2_pte; 
extern unsigned long region_3_pte; 
extern unsigned long p2_reg_O_PA; 
extern unsigned long p2_reg_I_PA; 
extern unsigned long p2 reg 2 PA; 
extern unsigned long p2_reg_O_len: 
extern unsigned long p2_reg_l_len: 
extern unsigned long p2 _ reg_ 2 _len: 
extern unsigned long p2_region_Oyte: 
extern unsigned long p2_region_l_pte; 
extern unsigned long p2 reglon_2_pte; 

fixytes () 
{ 

unsigned long i, *pte_ptr, pa_addr; 

1* build page table entries for region *1 
pa addr ~ (unsigned long) &pl reg 0 PA; 
pte ptr = &pl region ° pte: - --
for-(l=O;l< (~nslgned long) &pl reg 0 lenil+=OxlOOO) 

pa addr 
pte_ptr 

*pteytr++ = pa_addr I OXC7; - /* present, userlsupervisor r/w *1 
pa_addr += Oxl000; 
} 
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INITIALIZATION CODE 

for (i=O:i< (unsigned long) &p2 reg a len;i+=DxlOOO) { 
*pte_ptr++ = pa_addr I OxC7; ~ 1* present, user/supervisor r/w */ 
pa_addr += DxlOOD; 
) 

/* build page table entries for region 1 */ 
pa_addr = (unsigned long) &pl_re9_1_PA; 
pte-ptr = &pl_region_l_pte; 
for (i=O;i< (unsigned long) &pl_re9_1_1en;i+=OxlOOO) 

*pte_ptr++ = pa_addr I OXC7; /* present, user/supervisor r/w */ 
pa_addr += OxlOOD; 
) 

pa_addr = (unslgned long) &p2 reg_I_PA; 
pte~tr = &p2_region_l_pte; 
for (i=D;i< (unsigned long) 

*pte_ptr++ = pa_addr 
pa_addr += OxlOOO; 
) 

/* build page table entries for region 2 *1 
pa_addr = (unsigned long) &pl_reg 2 PAl 
pte_ptr = 

for (i=O;i< &pl_re9_2_1en;i+=OxlOOO) 

user/supervisor r/w */ 

*pte_ptr++ = pa_addr I OxC7: /* present, user/supervisor r/w */ 
pa_addr += OxIOOO: 
) 

pa_addr = (unsigned long) &p2 reg 2 PA; 
pte~tr = &p2_region_2_pte: 
for (i=O;i< (unsigned long) i+=OxlOOO) { 

*pte_ptr++ = pa_addr /* present, user/supervisor r/w */ 
pa_addr += OxIOOO; 
) 

/* build page table entries for region 3 */ 
pa addr = (unslgned long) &reg_3_PA: 
pte~tr = &region 3 pte: 
for (i=O;i< (unsign~d long) i+=OxIOOO) { 

*pte ytr++ = pa addr 
pa_addr += OxlOOO: 
) 

/* present, user/supervisor r/w */ 
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prog1.c 

#include "vIed. h" 

main () 
{ 

int i, j,k; 
while (1) 

{ 

VLED (Green, OFF): 
for (i""O: 1<500000: i++) 

k~j ; 
VLED (Green, ON); 
for (i=O: i<500000; i++) 

k~j ; 

VLED (color, state) 
lnt color, state; 

volatile unsigned char *ptr: 

INITIALIZATION CODE 

canst int addr "" CSRC_ADDR; 
unsigned char data: 
ptr == (unsigned char *) addr: 
data ~ *ptr; 1* get current status *1 
if (color "'''''' Green) 

data ~ (data & Oxbf) (state « 6) ; 

else 1* Yellow *1 
data (data & Ox7f) (state « 7) ; 

*ptr ~ data; 1* write with LED * I 
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prog2.c 

#include IIv l e d,h" 

main2 () 
{ 

int i,j,k; 

while (1) 
{ 

VLED2 (Yellow, OFF); 
for (i=O;i<lOOOOOO;i++) 

k~j; 

VLED2 (Yellow, ON); 
for (i~O;i<lOOOOOO;i++) 

k~j; 

VLED2 (color, state) 
int color, state; 

volatile unsigned char *ptr; 

INITIALIZATION CODE 

canst int 
unsigned char 

addr ~ CSRC_ADDR; 
data; 

#ifndef SIM 

#endif 
) 

Jed.h 

#define 
#define 
#define 
#define 
#define 

ptr = (unsigned char *) addr; 
data = *ptr; 
if (color == Green) 

data ~ (data & Oxbf) 
else I'll' Yellow */ 

data (data & Ox7f) 
*ptr == data; 

ON 
OFF 
CSRC_ADDR Ox14000004 
Green 1 
Yellow 

1* get current status * / 

(state « 6); 

(state « 7); 
/* write with LED * I 
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pass1.ld 

/* command file for "pass 111 of building a "linear" system. 
* / 

MEMORY 
{ 

SECTIONS 
{ 

l_reg_O 
l_reg_l 
1 reg 2 
(~reg=) 

.text 

GROUP 

vreg2 

reg3 

pass1a.ld 

org 
org 
org 
org 

OxOOOOOOOO, len 
Ox40000000, len 
Ox80000000, len 
OxCOOOOOOO, len 

.data : {} 

.bss {} 
> l_reg_l 

initial_frame.o 
> 1_reg_2 

intr stack 
-:- += OxlOOO; 
f_handle.o 
f_table.o 
i_handle.o 
i_table.o 

} > 1_reg_3 

OxlOOOO 
OxlOOOO 
OxlOOOO 
OxlOOOO 

1* reserve one page for into stack */ 

1* command file for "pass 1" of building a "linear" system. 
* / 

MEMORY 
{ 

l_reg_O 
l_reg_l 
1_re9_2 

SECTIONS 
{ 

.text 

GROUP 

vreg2 

org OxOOOOOOOO, len 
org Ox40000000, len 
org Ox80000000, len 

.data : {} 
/*.=align{OxlO); */ 
.bss {) 

> l_reg_l 

initial frame.o 
> 1_re9_2 

OxlOOOO 
OxlOOOO 
OxlOOOO 
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pass2.1d 

/* command file for "pass 2" of building a ROM system 
* without RTK. 
* I 

MEMORY 
{ 

SECTIONS 
{ 

image 

GROUP 
{ 

origin OxO, length 

startup 

procl 

proc2 

Ox400000 

startup.o 
fix_pte.o 
· = align{OxlOOO): 

align (OxlOOO); 

_pl_reg_l_PA 
lin1 (. data) 
lin1 (.bssl 
· : align(OxlOOO): 
_pl_re9_2_PA = 0: 
lin1 (vreg2) 
· = align{OxlOOO); 
_re9_3_PA = .; 

lin1 (reg3) 
• = align(OxlOOO); 
re9_3_end = .; 

_pl_re9_0_1en 
_pl_ reg_I_len 
_pl_re9_2_1en 

re9_3_1en 

_pl_re9_1_PA - -pl_reg_O_PA: 
_pl_re9_2_PA - _pl_re9_1_PA; 
_re9_3_PA - -pl_re9_2_PA: 

re9_3_end - reg_3_PA: 

• = align(OxlOOO); 
_p2_reg_O_PA = .; 

1in2 (.text) 
• = align(OxlOOO): 
_p2_reg_l_PA ., 
1in2 (.data) 
1in2 (.bss) 
• = align(OxlOOO): 
y2_re9_2_PA = .; 
1in2 (vreg2) 
• = align(OxlOOO); 
_p2_reg_2_end ., 

_p2_reg_O_len 
_p2_reg_l_len 
_p2_reg_2_1en 
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APPENDIX E 
CONSIDERATIONS FOR WRITING PORTABLE SOFTWARE 

This appendix describes those parts of the 80960MC design that are implementation depend­
ent. This information is provided to facilitate the design of programs and kernel code that will 
be portable to other implementations of the 80960MC architecture. 

ARCHITECTURE RESTRICTIONS 

The following aspects of the 80960MC processor's operation are deviations from the 
80960MC architecture: 

1. Only the low-order 16 bits of the next-time-slice and residual-time-slice fields in the PCB 
are used. The upper 16 bits are ignored. 

2. The minimum value that can be placed in the next-time-slice field is 16 (ticks). Assigning 
it a value less than 16 can result in endless loops. 

3. When the addressing mode is set to physical, the inspacc and ldphy instructions have an 
undefined effect. 

4. On all bus write operations except those of the synmov, synmovl, and synmovq instruc­
tions, the processor ignores the BADAC pin (Le., errors signaled on "normal" writes are 
ignored). 

5. The check for out-of-range input values for the expr, exprl, logepr, and logeprl instruc­
tions is omitted; out-of-range inputs yield an undefined result. 

6. Bits 5 and 6 of a machine-level instruction word in the REG and MEMB formats and bits 
o and 1 of the CTRL format are provided to designate special function registers. The 
80960MC processor has no special function registers. 

7. The 80960MC processor does not guarantee that the value in register r2 of the current 
frame is predictable. 

8. (The following is a note rather than a restriction.) When using the REG-format instruc­
tions, the m bit for every operand that is not defined by the instruction should be set (e.g., 
code the unused operand as an arbitrary literal). This practice may reduce overhead in 
some situations. 

SALIGN PARAMETER 

Stack frames in the 80960MC architecture are aligned on (SALIGN*16) byte boundaries. 
SALIGN is an implementation defined parameter. For the 80960MC processor, SALIGN is 4. 
Stack frames for this processor are thus aligned on 64 byte boundaries. 

The low-order N bits of the FP are ignored and always interpreted to be zero. The N parameter 
is defined by the following expression: SALIGN*16 = 2N. Thus for the 80960MC processor, 
N is 6. 
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BOUNDARY ALIGNMENT 

The physical-address boundaries on which an operand begins has an impact on processor 
performance. For the 80960MC processor, the following is true: 

• An operand that spans more word boundaries than necessary (e.g., addressing a 32-bit 
operand on a nonword boundary) suffers a moderate cost in speed because of extra bus 
and memory cycles. 

• An operand that spans a 16-byte boundary suffers a large cost in speed. 

• String operands that begin on non word boundaries suffer a moderate cost in speed. String 
operands that begin on word boundaries but not on 16-byte boundaries suffer a small cost 
in speed. 

FAULTS 

As described in Chapter 12, the processor enters the stopped state when a fault is detected 
while trying to invoke a procedure as the result of a system-error interrupt. When the proces­
sor enters the stopped state in this circumstance, it asserts the FAILURE pin. 

The size of resumption records conditionally placed on the stack during faults and interrupts is 
16 bytes. 

PHYSICAL MEMORY 

The upper 16M bytes of physical memory are reserved for special functions of local-bus 
components, lACs, and the BXU. 

lACS 

The mechanism for sending, recelvmg, and handling lAC messages is not defined in the 
80960MC architecture. It is a special implementation of the 80960MC processor. 

The write-external-priority flag in the processor controls is not defined in the 80960MC ar­
chitecture. 

TIMING 

A tick is defined for the 80960MC processor as 256 external clock periods (128 internal clock 
periods). Thus, for a 16-MHz processor (32-MHz external clock), a tick is 8 microseconds. 
For a 20-MHz processor, a tick is 6.4 microseconds. 

The frequency at which an idle processor checks the dispatch port is implementation depend­
ent. For the 80960MC processor, it is approximately once every tick. 

The frequency at which a processor updates the idle-time field in the processor controls when it 
is counting idle time is also implementation dependent. For the 809BASE processor, it is 
approximately once every 32 ticks. 
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When the processor is spinning on a lock (e.g., when executing a send, receive, or signal 
instruction), the frequency at which the processor tries the lock is implementation dependent. 
For the 80960MC processor, it is once every tick until it is able to lock it. Provided that the 
execution timer and end-of-time-slice event are enabled, the process may eventually be 
suspended. When redispatched, it will resume execution within the instruction and the locking 
operation will be retried. In the other circumstances where a processor needs to lock a data 
structure and it is already locked, it will try the lock approximately once every tick until it can 
lock the data structure. 

INTERRUPTS 

The interrupt lAC message, the interrupt pins, and the interrupt register are not defined in the 
80960MC architecture. They are special implementations for the 80960MC processor. 

INITIALIZATION 

The 80960MC architecture does not define an initialization mechanism. The initialization 
mechanism and procedures described in this manual are implementation dependent for the 
80960MC processor. 

MULTIPROCESSOR PREEMPTION 

The mUltiprocessor preemption mechanism described in Chapter 15 is implementation depend­
ent for the 80960MC processor. Also, the write external priority flag and the interim priority 
field in the processor controls are implementation dependent. 

BREAKPOINTS 

The breakpoint registers in the 80960MC processor are not defined in the 80960MC architec­
ture. 

IMPLEMENTATION DEPENDENT INSTRUCTIONS 

The synmov, synmovl, synmovq, and synld instructions are not defined in the 80960MC 
architecture and are implementation dependent in the 80960MC processor. 

LOCK PIN 

The LOCK pin is not defined in the 80960MC architecture and is implementation dependent in 
the 80960MC processor. 
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7-15 
support for 2-5 
trigonometric instructions 7 -18 
underflow condition 7-26 
zeros 7-4 
See also Floating point faults 

Floating point faults 12-29 
exceptions 7-6,7-21 
fault handling 7-21,7-22 
floating inexact exception 7-21 
floating invalid operation exception 

7-21 
floating overflow exception 7-21 
floating reserved encoding exception 

7-21 
floating underflow exception 7-21 
floating zero divide exception 7-21 
override flags 7-24,7-25 

Floating point unit 
SeeFPU 

Floating reserved-encoding fault 7-22, 
12-2, 12-29, 17-8, 17-13, 17-38, 
17-40,17-52,17-54,17-60,17-66, 
17-80, 17-82, 17-85, 17-97, 
17-101, 17-112, 17-119, 17-121, 
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17-l34, 17-l37, 17-143, 17-151 

Floating underflow fault 7-25, 7-26, 12-2, 
12-29, 17-8, 17-l3, 17-60, 17-66, 
17-80, 17-82, 17-85, 17-97, 
17-101, 17-112, 17-119, 17-121, 
17-l34, 17-137, 17-143, 17-151 

Floating underflow flag and mask 7-11, 
7-24, 12-12 

Floating zero-divide fault 
12-29, 17-60, 
17-112,17-121 

7-23, 12-2, 
17-80, 17-85, 

Floating zero-divide flag and mask 7-11, 
7-23, 12-12 

Floating-point flags and masks 3-9 

Floating-point normalizing mode flag 3-9, 
7-11,7-12 

Floating-point registers 
description of 3-4 
field in PCB l3-6 
register model 3-2 
storage of 3-4 

See Registers 

Floating-point rounding control field 3-9, 
7-11 

Flush local registers 
flush local registers lAC 4-7, 11-7 
instruction 6-16 

Flush process lAC 11-8 

Flush TLB lAC 11-9 

Flush TLB page table entry lAC 11-10 

Flush TLB physical page lAC 11-11 

Flush TLB segment entry lAC 11-12 

flush reg 4-7,6-16,17-72 

fmark 6-16, 12-l3, 16-1, 16-5, 16-6, 16-7, 
17-73 

Force mark instruction 6-16,12-13 

FP, frame pointer 3-4,4-14 
description of 4-3 
location at initialization 9-15 

FPU C-8 

Fraction, in floating-point format 7-2 

INDEX 

1·7 

Frame pointer 
SeeFP 

Frame return status field 10-9 

Freeze lAC 11-l3 

freg, notation 17-2 

G 
Global registers 

description of 3-4 
field in PCB 13-6 
FP 3-4 
process state 13-1 
register alignment 3-4 
register model 3-2 
storage of 3-4 
storing of RIP on a branch and link in­

struction 4-15 

lAC fault 12-2, 12-36 

lAC pin 10-7,15-2 

lACs 
check process notice lAC 11-5, 12-l3, 

12-28 
continue initialization lAC 11-6 
description of 9-4 
external lAC message format 15-1 
external lACs 11-1,15-1 
faults 11-3 
flush local registers lAC 11-7 
flush process lAC 11-8 
flush TLB lAC 11-9 
flush TLB page table entry lAC 11-10 
flush TLB physical page lAC 11-11 
flush TLB segment entry lAC 11-12 
freeze lAC 11-l3 
lAC fault 12-2, 12-36 
lAC pin 15-2 
internal lACs 11-1 
interrupt lAC 11-14 
introduction to 11-1 
mechanisms for exchanging 11-1 
message, description of 11-1 



message, format of 11-2 
modify processor controls lAC 11-15 
preempt process lAC 11-16 
priorities 9-10 
purge instruction cache lAC 11-17 
receiving and handling external lACs 

15-2 
receiving and handling internal lACs 

11-3 
reference information 11-4 
reinitialize processor lAC 11-18 
restart processorIAC 11-19, 12-22 
sending external lACs 15-1 
sending internal lACs 11-3 
set breakpoint register lAC 11-20 
software requirements for handling inter-

nalIACs 11-1 
stop processor lAC 11-21 
store processor lAC 11-22 
store system base lAC 11-23 
summary of lACs 11-2 
test pending interrupts lAC 11-24 
warmstart processor lAC 11-25 

ID C-4 

Idle time 
idle time field 9-9, 9-13 
idle timing 9-13 

lEU C-6 

IFU C-3 

Index with displacement addressing mode, 
description of 5-7 

Index, description of 5-7 

Indivisible, description of 8-2 

Inexact result, definition of 7-12 

Initial memory image, description of 9-17 

Initialization code example D-l 

Initialization of the processor 
Building a memory image 9-19 
check-sum words 9-17 
continue initialization lAC 11-6 
description of 9-15 
first stage of initialization 9-21 
initial memory image 9-14,9-17 

INDEX 

1·8 

initialization code 9-19 
initialization code example D-l 
initialization fault table 9-21 
initialization heap 9-21 
initialization interrupt table 9-21 
initialization page tables 9-20 
initialization PCB 9-20 
initialization PRCB 9-19,9-20 
initialization segment table 9-17, 9-19 
initialization stack 9-21 
internal PCB fields 13-8 
reading the PRCB 9-9 
reinitialize processor lAC 11-18 
required PRCB for single-task system 

9-15 
restart processor lAC 11-19 
second stage of initialization 9-23 
segment table pointer 9-3 
self test 9-21 
typical initialization scenario 9-21 
warmstart processor lAC 11-25 

Initialization segment table 
description of 9-17 

inspacc 6-20,17-74 

Inspect access instruction 6-20 

Instruction cache 
description of 2-2, 3-12, C-3 
purge instruction cache lAC 11-17 

Instruction decoder 
See ID 

Instruction execution unit 
See lEU 

Instruction fetch unit 
See IFU 

Instruction list 9-2 

Instruction pointer 
See IP 

Instruction reference 
introduction to 17-1 
Notation 17-1 

Instruction suspension 
description of 9-13 
resumption record field in PRCB 9-9 



Instruction timing 
bit instructions C-lO 
branch instructions C-12 
call and return instructions C-13 
decimal instructions C-17 
description of C-8 
floating point instructions C-17 
integer and ordinal arithmetic instruc-

tions C-ll 
load instructions C-14 
logical instructions C-9 
miscellaneous complex instructions 

C-14 
multiply and divide instructions C-12 
register move instructions C-lO 
store instructions C-16 

Instruction trace 
event flag 16-2 
fault 12-2, 12-37 
mode 16-4 
mode flag 16-2 

Instructions 
arithmetic 6-6 
assembly-language format 6-1 
bit and bit field 6-10 
branch 6-12 
call and return 6-15 
comparison 6-11 
data length conversion 6-11 
data movement 6-4 
debug 6-16 
decimal 6-19 
detailed reference information 17-1 
extended arithmetic 6-8 
fault instructions 6-15 
instruction groups 6-2 
logical 6-10 
machine-level instruction formats B-1 
process management 6-17 
processor management 6-16 
quick reference A-I 
string 6-19 
summary of 80960MC instruction-set ex­

tensions 6-3 

INDEX 

I·g 

summary of 80960 instructions 6-2 
See also Machine-level formats 

INTO, INTI, INT2, INT3 pins 10-6, 10-7 

INTA pin 10-7 

Integer overflow 
description of 3-8 
fault 12-2, 12-9, 12-25, 17-7, 17-56, 

17-59, 17-100, 17-111, 17-131, 
17-139,17-142 

flag 3-8,7-11, 12-12, 12-25 
mask 3-8,7-11,12-12,12-25 

Integer, description of 5-1 

Interagent communication messages 
See lACs 

Interim priority field 9-8, 15-5 

Internal state field, of process controls 
12-11 

Interprocess communication 
instructions 6-18 
support for 2-7 

See Messages passing 

Interrupt control register 
addresses mapped to in physical memory 

10-7 
description of 10-6 
uses of 10-6 

Interrupt handler 
used for initialization 9-22 

Interrupt handling 
interrupt control register 10-6 
interrupt handler procedures 10-4 
interrupt stack 10-5 
interrupt table 10-2 
interrupt table sharing 10-4 
location of interrupt handler procedures 

10-4 
restrictions on interrupt handler 10-5 
software requirements for interrupt han­

dling 10-1 
support for 2-3 

Interrupt lAC 10-13,11-14 
description of 10-7 
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Interrupt pins 
description of 10-6 
uses of 10-6 

Interrupt record 
description of 10-10 

Interrupt stack 
description of 9-3, 10-5 
interrupt stack pointer in PRCB 9-8 
required at initialization 9-14 

Interrupt stack pointer 9-8 

Interrupt table 
description of 9-3, 10-2 
interrupt table pointer in PRCB 9-8 
interrupt table sharing 10-4 
required at initialization 9-14 

Interrupt table pointer 9-8 

Interrupt vectors, description of 10-2 

Interrupts 
description of 9-4 
idle state interrupt 10-10 
idle-interrupted state interrupt 10-12 
in a multiprocessor system 15-7 
interrupt control register 15-2 
interrupt handling actions 10-8 
interrupt lAC 10-7,11-14 
interrupt pins 10-6 
interrupt record 10-10 
overview of interrupt facilities 10-1 
pending interrupts 10-12 
priorities 9-10, 10-2 
process executing state interrupt 10-9 
process interrupt state interrupt 10-10 
servicing an interrupt 10-8 
signaling interrupts 10-6 
system-error interrupt 9-9, 10-8, 12-3, 

12-4, 12-5, 12-16, 12-21, 12-22 
system-error interrupt vector 12-4 
test pending interrupts lAC 11-24,15-7 
vectors 10-2 

See also Interrupt handling 

INTR pin 10-7 

Invalid descriptor fault 8-22, 12-2, 12-27, 
17-74 

INDEX 
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Invalid opcode fault 12-2, 12-32 

Invalid operand fault 12-2, 12-32 

Invalid PTDE fault 8-10,8-24,12-2, 12-40 

Invalid PTE fault 8-10, 8-22, 8-24, 12-2, 
12-40 

Invalid segment descriptor 8-16 

Invalid segment descriptor fault 8-21,8-22 

Invalid segment table entry fault 8-10, 
12-2, 12-40 

Invalid SS fault 12-2, 12-26 

IP 
description of 3-5 
procedure table entry 4-11 
storage of 3-5 

IP with displacement addressing mode 5-7 

J 
J-bit 7-2 

K 
Kernel 1-1 

L 

altering process controls 13-8 
process scheduling in multiprocessor 

system 15-4 
supervisor procedure 4-13,4-14 

Large segment table segment descriptor 
8-14 

Id, Idib, Idis, Idl, Idob, Idos, Idq, Idt 5-5, 
6-5,7-9,17-75 

Ida 3-5, 6-6, 17-77 

Idphy 6-20,8-25,17-78 

Idtime 6-17,10-5,14-6,17-79 

lit, notation 17-2 

Literal 
description of 5-5 
floating-point 7 -14 
ordinal 5-5 

Load address instruction 6-6 

Load instructions 6-5 



Load physical address instruction 6-20 

Local call 
call operation 4-8 
description of 4-8 
return operation 4-8 

Local registers 
call/return mechanism 4-1 
description of 2-2, 3-4 
PFP 3-4 
process state 13-1 
purpose of 3-4 
register alignment 3-4 
register model 3-2 
relationship to procedure stack 4-3 
RIP 3-4 
SP 3-4 
stack-frame cache 4-3 

LOCK line 8-2 

logbnr,logbnrl 7-19,17-80 

logepr,logeprl 7-19,17-82 

Logical instructions 6-10 

logr,logrl 7-19,17-85 

M 
Machine faults 12-31 

Machine-level formats 6-1, B-1 

Manual 
guide to 1-1 
structure of 1-1 

mark 6-16, 12-13, 16-1, 16-5, 16-6, 16-7, 
17-88 

Mark instruction 6-16, 12-13 

mem, notation 17-2 

Memory management facilities, introduction 
to 8-1 

Memory management unit 
SeeMMU 

Messages and message passing 
applications of messages 14-19 
communication port 14-15 
current port or semaphore SS 14-9 
high-level process management facilities 

14-1 

INDEX 

1-11 

interprocessor communication 14-15 
kernel support for message passing 

14-18 
link SS 14-9 
mechanism for interprocess communica-

tion 14-16 
message field in PCB 13-6 
message, description of 14-7, 14-9 
receive message mechanism 14-17 
send message mechanism 14-16 
send service mechanism 14-18 

Micro-instruction sequencer 
See MIS 

MIS C-6 

MMU C-l 

Mnemonic 17-2 

modac 3-6, 6-17, 17-89 

modi 6-8, 17-90 

modify 6-11,17-91 

Modify process controls instruction 6-16, 
6-18 

Modify processor controls lAC 9-10, 9-12, 
11-15 

Modify trace controls instruction 6-16 

modpc 6-16, 10-13, 13-8, 14-5, 15-5, 
17-92 

modtc 6-16,16-2,17-94 

Modulo instructions 6-8 

mov, movl, movq, movt 5-5, 6-6, 7-10, 
7-15,17-95 

Move instructions 6-6 

movqstr 6-19,17-96 

movr, movre, movrl 7-9,7-10,7-15,7-20, 
17-97 

movstr 6-19,17-99 

muli, mulo 6-8, 17-100 

muIr, mulrl 7-14,7-17,17-101 

Multiple processor operation 
See Multiprocessing 

Multiply instructions 6-8 



Multiprocessing 
atomic instructions 15-6 
description of 9-1 
dispatch port 15-4 
external lACs 15-1 
high-level process management facilities 

15-3 
interrupt handling 15 -7 
memory management facilities 8-1 
overview of multiple processor support 

facilities 15-1 
preemption 15-4 
preemption action 15-6 
preemption control 15-4 
process scheduling and dispatching 

15-4 
receiving and handling external lACs 

15-2 
sending external lACs 15-1 
support for 2-7 
use of processes 13 -2 

Multiprocessor preempt flag 9-5, 10-10, 
15-5 

Multiprocessor preemption field in PRCB 
9-9 

Multitasking 
description of 9-1 

N 

memory management facilities 8-1 
priorities 9-10 
processes vs. tasks 9-1 
support for 2-6 
use of processes 13-2 

nand 6-10,17-103 

NaNs 
arithmetic vs. non-arithmetic instructions 

7-20 
classify instructions 7-17 
comparison 7 -17 
defined 7-6 
encodings 7-4,7-7 
extended-real format 7-7 

INDEX 

1-12 

invalid-operation exception 7-23 
operations on 7-20 
QNaN 7-6,7-17,7-23 
QNaN, definition of 7-20 
rounding 7 -13 

SNaN 7-6,7-17,7-23 
SNaN, definition of 7-20 
unordered 7 -17 
unordered classification 3-8 

Next time slice field 13-7, 14-5 

No imprecise faults flag 3-9,12-12, 12-22 

Nonpreempt limit field 9-7, 15-5 

nor 6-10,17-104 

Normalized number 7-3 

Normalizing mode, floating-point normaliz-
ing mode flag 3-9 

not, notand 6-10,17-105 

Notation 1-3 

notbit 6-10, 17-106 

notor 6-10,17-107 

o 
Operating-system kernel 

See Kernel 

Operation faults 12-32 

or,ornot 6-10, 17-108 

Ordinal, description of 5-1 

Override faults 
See Faults 

p 
Padding area, description of 4-5 

Page rights 
description of 8-20 
fault 8-24, 12-2, 12-34 

Page Table and Page Table Directory 
invalid page table (directory) entry 

8-20 
page rights 8-20 
page table directory entry 8-20 
page table entry 8-19 
structure of 8-18 



Paged region segment descriptor 8-12 

Paging 
bipaged segment 8-16 
overview of 8-16 
page length 8-3 
page table and page table directory struc-

tures 8-18 
paged segment 8-16 
paging method field 8-11 
protection of pages 2-6 
spanning page boundaries 8-25 
unpaged segment 8-16 

Parameter passing 
description of 4-9 
in an argument list 4-9 
through global registers 4-9 
through the procedure stack 4-9 

PCB 
arithmetic controls field 13-5 
binding process to processor 14-2 
current process SS 9-8 
description of 9-3, 13-1, 13-2 
dispatch port SS field 13-6,14-10 
event-fault request flags 12-13 
execution time field 13-7 
global registers field 13-6 
lock field 13-6 
low-level process management facilities 

14-1 
next time slice field 13-7 
preempt flag 15-4 
process controls 13-4 
process notice field 11-5, 12-13, 13-6 
process resumption following a fault 

12-10 
process state 13-1 
queue record 13-6 
received message field 13-6 
region 0, 1, and 2 SS fields 13-6 
relationship to process 9-1 
required at initialization 9-14,9-20 
residual time slice field 13-7 
resumption record field 9-9, 13-6 
segment descriptor 8-13 

INDEX 

1-13 

storing of PCB fields in processor 13-7 
trace controls field 13-5 

See also Process, Process management 

Pending interrupts 
checking for 10-13 
handling of 10-13 
posting of 10-12 
servicing of 10-12 

PFP 3-4, 10-9 
description of 4-5 

Physical address space 
description of 8-2 
physical address 8-2 

Physical addressing mode 8-1 

Physical memory 
caching of memory accesses 8-3 
description of 8-2 
restrictions 8-2 

Pi 7-18 

Port segment descriptor 8-13 

Ports 
description of 14-7 
FIFO port 14-7 
priority port 14-7, 14-8 
segment descriptor 8-13 
uses of 14-9 
See also Communications port, Dis­

patch port 

PRCB 
caching the PRCB in the processor 9-9 
changing the PRCB 9-9 
current process SS 9-8 
description of 9-2, 9-5 
dispatch port assigned to 14-10 
dispatch port SS field 9-8,14-10 
fault resumption record 12-15 
fault table pointer 9-9, 12~7 
idle time field 9-9 
initialization PRCB 9-14, 9-19 
interrupt stack pointer 9-8 
interrupt table pointer 9-8 
modify processor controls lAC 11-15 
multiprocessor preemption field 9-9 
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pointers to system data structures 9-8 
procedure table pointer 4-11 
processor controls word 9-5 
region 3 SS 9-8 
resumption record field 9-9 
store system base lAC 11-23 
system procedure-table SS 9-9 
system-error fault field 9-9, 12-16, 

12-21 
system-error fault record field 9-9, 

12-16,12-21 
See also Processor controls 

Preempt flag 13-5, 14-14, 15-4 

Preempt process lAC 11-16,15-4,15-5 

Preemption 
description of 14-14 
in a multiprocessor system 15-4 
interim priority field in processor con-

trols 15-5 
multiprocessor preempt flag 9-5, 15-5 
multiprocessor preemption action 15-6 
nonpreempt limit field of processor con-

trols 9-7,15-5 
preempt flag 15-4 
preemption control in a multiprocessing 

system 15-4 
write external priority flag 15-5 

Preemption lAC 14-14 

Prereturn trace 
event flag 16-2 
fault 12-2, 12-37 
mode 16-5 
mode flag 16-2 
pre return trace flag 4-5 

Preserved 1-3 

Previous frame pointer 
See PFP 

Priorities 9-10 

Priority port 14-7 
conditional receive message mechanism 

14-17 
description of 14-8 
lock field 14-8 

INDEX 

1-14 

priority 14-8 
queue head SS 14-9 
queue state flag 14-8 
queue status field 14-8 
queue tail SS 14-9 
receive message mechanism 14-17 
send message mechanism 14-16 
send service mechanism 14-18 

Procedure calls 
branch and link 4-15 
call/return mechanism 4-1 
FP 4-3 
local call 4-8 
local registers 4-3 
overview of 4-1 
padding area 4-5 
parameter passing 4-9 
PFP 4-5 
prereturn trace flag 4-5 
procedure linking information 4-3 
procedure stack 4-3 
procedure table 4-11 
return status field 4-5 
RIP 4-6 
saving of local registers 4-1 
SP 4-3 
supervisor call 4-14 
supervisor stack 4-14 
system call 4-10 
user-supervisor protection model 4-13 

Procedure Stack 
call/return mechanism 4-1 
description of 4-3,9-4 
mapping of local registers to 4-7 
process state 13-1 
register save area 4-3, 4-7 
stack frames 4-3 

Procedure table 
procedure entry structure 4-11 
segment descriptor 8-13 
structure of 4-11 
supervisor-stack-pointer entry 4-12 
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Procedure table call 4-10 
See also System call 

Procedure table segment descriptor 8-13 

Process 
address space 13-1 
binding to processor 14-2 
current process SS in PRCB 9-8 
description of 9-1, 13-1 
execution mode 4-13 
flush process lAC 11-8 
preempt process lAC 11-16 
priority 13-4, 14-8 
procedure stack 4-3 
process controls 13-4 
state 13-1, 13-4 
timing 13-7 
use of 13-2 
See also PCB, Process management 

Process control block 
See PCB 

Process control instructions 6-17 

Process controls 
changing of 13-8 
description of 13-4 
execution mode flag 13-4 
Internal state field 12-11 
next time slice field 14-5 
preempt flag 13-5 
priority field 13-4 
process state 13-1 
refault flag 13-5 
residual time slice field 14-5 
resume flag 13-5 
state field 13-4 
time-slice flag 13-5, 14-5 
time-slice-reschedule flag 13-5, 14-5 
timing flag 13-5, 14-5 
trace enable flag 13-5 
trace fault pending flag 13-5 

Process controls word 
See Process controls 

Process management 
binding process to processor 

14·2 
13-11, 

INDEX 
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changing arithmetic controls 13-9 
changing of process controls 13-8 
changing the process notice field 13-9 
concepts 14-2 
dispatching 9-5, 14-2 
execution time counting 14-6 
explicit process dispatching 14-4 
high-level process management facilities 

14-1, 14-6, 15-3 
instructions 6-17 
kernel support for message passing 

14-18 
low-level process management facilities 

14-1 
messages 14-9 
mUltiple-process management facilities, 

overview of 14-1 
multiprocessor preemption 15-4, 15-6 
overview of 13-1 
PCB 13-2 
physical addressing vs. virtual address-

ing 13-9 
ports 14-7,14-9 
preemption 14-14 
preemption control in a multiprocessing 

system 15-4 
priority field 13-4 
process controls 13-4 
process faults 12-33 
process handling in a single-process sys-

tem 13-11 
process states 14-2 
process suspension 14-11 
required software support for a single-

process system 13-9 
scheduling 9-5, 14-2 
state transition actions 14-3 
time-slice scheduling 14-5 
timing 14-5 
See also Automatic process dispatch­

ing, Messages and message pass­
ing; Process, Process synchroniza­
tion 



Process notice 
changing process notice field 13-9 
check process notice lAC 12-13, 12-28 
field in PCB 11-5,13-6 

Process scheduling and dispatching 
binding process to processor 14-2 
description of 14-2 
explicit process dispatching 14-4 

See also Automatic process dispatching 

Process segment descriptor 8-13 

Process synchronization 
description of 14-12 
semaphores 14-12 

Process timing 14-5,14-6 
end-of-time-slice event 14-11 
time slice fault 12-2, 12-33, 14-5, 14-6 
time-slice scheduling 14-5 
while handling a fault 12-13 
while handling an interrupt 10-6 

Processor 
freeze lAC 11-13 
internal structure of C-l 
modify processor controls lAC 11-15 
multiprocessing system 9-1 
multitasking system 9-1 
overview of processor configurations 

9-1 
priorities 9-10 
purge instruction cache lAC 11-17 
reinitialize processor lAC 11-18 
restart processor lAC 11-19 
self test 9-21 
single-task system 9-1 
stop processor lAC 11-21 

11-22 store processor lAC 
store system base lAC 
warmstart processor lAC 

Processor and process states 
description of 9-10 

11-23 
11-25 

idle state 9-11 
idle-interrupted state 9-11 
process-executing state 9-11 
process-interrupted state 9-11 

INDEX 
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state field 9-7 
stopped state 9-11 

Processor Control Block 
SeePRCB 

Processor controls 
addressing mode flag 9-7 
check dispatch port flag 9-7 
description of 9-5 
interim priority field 9-8, 15-5 
modify processor controls lAC 9-10, 

11-15 
multiprocessor preempt flag 9-5, 15-5 
nonpreempt limit field 9-7 
nonpreempt limit field of processor con­

trols 15-5 
state field 9-7 
write external priority flag 9-8, 15-5 

Processor controls word 
See Processor controls 

Processor management 
instructions 6-16 

Processor management facilities 
faults 9-5 
lACs 9-4 
instruction list 9-2 
interrupts 9-4 
overview of 9-2 
process scheduling and dispatching 9-5 
system data structures 9-2 

Processor management, software require­
ments for 9-14 

Processor timing 
duration of a timing 9-13 
idle timing 9-13 

Programming environment 
See Execution environment 

Protection faults 12-34 

Protection, support for 2-6 

Purge instruction cache lAC 11-17 

Q 



QNaN 
See NaNs 

Quad word, description of 5-5 

Queue linkage infonnation in ports 
queue head SS 14-7 
queue state flag 14-7,14-8 
queue status field 14-8 
queue tail SS 14-7 

Queue record, in PCB 13-6 

R 
Real number 

encodings 7 -4 

system 7-1 

receive 6-18,10-5,14-17,17-109 

Refault flag 12-11, 12-12, 12-20, 12-21, 
13-5 

reg, notation 17-2 

Regions 3-10 
gaps and boundaries 8-28 
making region boundaries transparent 

8-28 
pointers for regions 0, 1, and 2 in PCB 

13-6, 13-9 
region 3 SS in PRCB 9-8 
required at initialization 9-14 
spanning region boundaries 8-25 
typical address space structure 8-26 

Register indirect addressing modes 
description of 5-7 

Register indirect addressing modes, descrip­
tion of 5-7 

Register save area 
See Procedure stack 

Register scoreboarding 2-3,3-5, C-7 

Registers 
addressing of 5-6 
floating-point registers 2-5, 3-2 
flush local registers lAC 11-7 
flush local registers instruction 6-16 
global registers 3-2 
local registers 3-2 
register model 3-2 

INDEX 

1-17 

See also Floating-point registers, 
Global registers, Local registers 

Reinitialize processor lAC 11-18 

Remainder instructions 6-8 

remi, remo 6-8, 17-111 

remr, remrl 7-11,7-17,17-112 

Reserved 1-3 

RESET pin 9-21 

Residual time slice field 13-7, 14-5 

Restart processor lAC 3-6, 9-9, 9-23, 
11-19,12-22 

Resume flag 10-9, 12-11, 12-18, 12-19, 
12-20,12-21,13-5,13-8 

resumprcs 6-17, 10-5, 13-11, 14-2, 14-3, 
14-4,14-6,17-115 

Resumption record field 9-9 

ret 4-8, 6-15, 12-9, 12-18, 12-20, 16-5, 
16-8,17-116 

Return 
from local call 4-8 
from local system call 4-13 
from supervisor call 4-14 

Return instruction 6-15 

Return instruction pointer 
See RIP 

Return status field 12-18 
description of 4-5 
encoding of 4-5 
return from local system call 4-13 
return from supervisor call 4-14 

Return trace 
event flag 16-2 
fault 12-2, 12-37 
mode 16-5 
mode flag 16-2 

RIP 3-4,3-6 
description of 4-6 
on a branch and link 4-15 

rotate 6-9, 17 -118 

Rotate instructions 6-9 

Rounding control 
See Floating-point rounding control 

field 



roundr, roundrl 7-17,17-119 

s 
Saved IP, for fault 12-15 

saveprcs 6-17, 13-11, 14-2, 14-4, 14-6, 
17-120 

Scale factor in addressing, description of 
5-7 

scaler, scaler! 7-19,7-24, 17-121 

scanbit 6-10,17-123 

scanbyte 6-11, 17-124 

schedprcs 6-17,14-10,15-5,17-125 

Scorcboarding 
See Register scoreboarding 

Segment 
bipaged region 8-12 
description of 8-4 
large segment table 8-14 
paged region 8-12 
port 8-13 
procedure table 8-13 
process 8-13 
semaphore 8-15 
simple region 8-11 
small segment table 8-14 
types 8-11 

Segment descriptor 
access status field 8-10 
accessed flag 8-10 
altered flag 8-10 
base address field 8-9 
bipaged region descriptor 8-12 
cacheable flag 8-10 
description of 8-9 
invalid descriptor 8-16 
large segment table descriptor 8-14 
paged region descriptor 8-12 
paging method field 8-11 
port descriptor 8-13 
procedure table descriptor 8-13 
process descriptor 8-13 
region descriptors 8-11 
segment table descriptors 8-14 

INDEX 

1-18 

segment types 8-11 
semaphore descriptor 8-15 
simple region descriptor 8-11 
size field 8-10 
small segment table descriptor 8-14 
valid flag 8-10 

Segment length fault 8-21, 8-22, 8-24, 
12-2,12-34,17-74 

Segment selector 
See SS 

Segment table 
description of 8-8, 9-2 
required at initialization 9-14 

Self dispatching 
See Automatic process dispatching 

Self test, of processor 9-21 

Semaphore 
access action 14-13 
count field 14-12 
description of 14-12 
high-level process management facilities 

14-1 
instructions for handling semaphores 

6-18, 14-13 
lock field 14-12 
semaphore queue tail SS 14-13 
structure of 14-12 

Semaphore segment descriptor 8-15 

send 6-18,14-16,14-18,15-5,17-126 

sendserv 6-18, 10-5, 14-1,0, 14-11, 14-18, 
14-19,15-5,17-128 

Set breakpoint register lAC 11-20 

Set, definition of 1-4 

setbit 6-10,17-130 

Shift instructions 6-9 

shli, shlo, shrdi, shri, shro 6-9,17-131 

signal 6-18,14-13,15-5,17-133 

Significand, in floating-point format 7-2 

Simple region segment descriptor 8-11 

sinr, sinrl 7-18,17-134 

Size field 8-10 



SIZE lines 8-2 

Small segment table segment descriptor 
8-14 

SNaN 
See NaNs 

SP 3-4,4-14 
description of 4-3 

span bit 6-10,17-136 

sqrtr, sqrtrl 7-17,17-137 

SS 
description of 8-5, 8-7 
treatment of, depending on address trans­

latiON mode 9-12 

st, stib, stis, stl, stob, stos, stq, stt 5-5, 
6-5,7-9,17-139 

Stack 
See Procedure stack 

Stack frame cache 4-3 
flush local registers lAC 11-7 
mapping to procedure stack 4-7 

Stack frame, definition of 4-3 

Stack pointer 
See SP 

Standard faults 17-3 

STARTUP pin 9-21 

State field 9-7 

Sticky flags, definition of 3-7 

Stop processorIAC 11-21 

Store instructions 6-5 

Store processor lAC 9-10,9-12,11-22 

Store system base lAC 11-23 

String instructions 6-19 

Structural faults 12-36 

subc 6-8,17-141 

subi, subo 6-8,17-142 

subr, subrl 7-17,17-143 

Subtract instructions 6-8 

Subtract with Carry Instruction 6-8 

Supervisor call 4-14 
system call instruction 6-15 

INDEX 

1·19 

Supervisor mode 
See User-supervisor protection model 

Supervisor stack 
description of 9-4 
structure of 4-14 
supervisor-stack pointer 4-12 

Supervisor trace 
event flag 16-2 
fault 12-2, 12-37 
mode 16-5 
mode flag 16-2 

Supervisor-stack pointer 4-12 

syncf 12-22,17-145 

synld 6~20, 17-146 

synmov, synmovl, synmovq 6-20, 11-1, 
11-3,15-2,15-3,17-148 

System call 

description of 4-1 ° 
mechanism of 4-1 ° 

System data structures 
description of 9-2 

System error fault 
See System error interrupt 

System error interrupt 
description of 10-8, 12-4 
fault handling method 12-3 
halt action 12-22 
handling of 12-21 
interrupt vector 248 12-4 
relationship to halt 12-5 
system-error fault field in PRCB 9-9, 

12-16 
system-error fault record field in PRCB 

9-9, 12-16 
system-error interrupt action 12-21 

System executive 
Kernel 1-\ 

System procedure table 
description of 9-4 
structure of 4-11 
system call instruction 6-15 
system procedure-table SS In PRCB 

9-9 



trace control flag 4-12 

System procedure table SS 9-9 

System-error fault field 9-9 

T 
tanr, tanrl 7-18, 17-151 

Task, des~ription of 9-1 

Terminology 1-3 

Test instructions 6-14 

Test pending interrupts lAC 11-24,15-7 

teste, testne, testl, testle, testg, testge, 
testo, testno 6-14, 17-153 

Tick 9-13 

Time slice 
See Process timing 

time slice flag 10-9, 14-5 

Time-slice-reschedule flag 14-5 

Timing 
See Process timing, Processor timing 

Timing flag 10-5, 10-9, 14-5 

TLB 
description of 8-25 
flush process lAC 11-8 
flush TLB lAC 11-9 
flush TLB page table entry lAC 11-10 
flush TLB physical page lAC 11-11 
flush TLB segment entry lAC 11-12 

Trace control flag (in a procedure table) 
12-] 9 

Trace control flag (in system or procedure 
table) 16-1, 16-3, 16-6 

Trace control flag (in system procedure 
table) 4-12 

Trace controls 
See Tracing 

Trace controls field, in PCB 13-5 

Trace enable flag 10-9, 12-12, 12-19, 13-5, 
16-1, 16-3, 16-6, 16-7, 16-8 

Trace fault handler procedure table 12-7, 
12-8 

INDEX 

1-20 

Trace fault pending flag 10-9, 12-11, 13-5, 
16-1,16-3,16-6,16-7,16-8 

Trace flag (in return-status field of rO) 

16-1,16-3 

Tracing 
branch trace mode 16-4 
breakpoint registers 16-5 
breakpoint trace mode 16-5 
call trace mode 16-4 
fault handlers, tracing with 16-8 
handling multiple trace events 16-6 
instruction trace mode 16-4 
interrupt handlers, tracing with 16-7 
modifying trace controls 16-2 
overvIew of trace-control facilities 

16-1 
pre return trace handling 16-7 
preretum trace mode 16-5 
process state 13-1 
return trace mode 16-5 
signaling a trace event 16-6 
software support required for tracing 

16-1 
supervisor trace mode 16-5 
trace control flag (in system or procedure 

table) 16-3 
trace control on supervisor calls 16-3 
trace controls 16-1 
trace controls word 16-2 
trace enable and mode flags 12-12 
trace enable flag 16-3 
trace event flags 16-2 
trace fault handler 16-6 
trace fault pending flag 16-3 
trace faults 12-37, 16-1, 16-3, 16-5, 

16-6 
trace flag (in return-status field of rO) 

16-3 
trace handling action 16-7 
trace mode flags 16-2 
trace modes 16-4 
tracing instructions 6-16 



inter 

Translation look-aside buffer 
See TLB 

Triple word, description of 5-5 

Type faults 12-39 

Type mismatch fault 8-11, 12-2, 12-39, 
17-92,17-115 

u 
Unconditional branch instructions 6-13 

Unordered 
definition of 3-8 
numbers 7-17 

User-supervisor protection model 
description of 4-13 

v 

mode switching 4-14 
supervisor call 4-14 
supervisor mode 4-13,4-14 
supervisor procedure 4-13,4-14 
user mode 4-13,4-14 

Valid flag, description of 8-10 

Virtual addressing mode 
description of 8-1 
load physical address instruction 8-25 
SS translation action 8-21 
virtual addrj:ss translation action 8-22 

Virtual memory faults 8-10, 12-40 

Virtual memory management facilities 
accessing system data structures 8-28 
address translation action 8-21 
inspect access instruction 6-20 
load physical address instruction 6-20 
operating system considerations 8-26 
overview of 8-3 
page table 8-5 
page table and page table directory struc­

tures 8-18 
page table directory 8-5 
page tables and page table directories 

8-16 
segment 8-4 
segment descriptor 8-4, 8-9 

INDEX 

1-21 

segment selector 8-7 
segment table 8-4, 8-8 
segment table data structures 8-6 
SS 8-5 
TLB 8-25 

typical address space structure 8-26 
use of segments 8-5 

See also Segment table 

Virtual memory, support for 2-6 

W 
wait 6-18,10-5,14-13,17-155 

Warmstart processor lAC 3-6,9-9, 11-25 

Words 
addressing of 5-5 
size 3-4 

Write external priority flag 9-8, 15-5 

x 
xnor, xor 6-10,17-157 
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TWX: 810-260-1794 tArrow Electronics. Inc. IHamiiton/Avnet Electronics 

5230 W. 73rd Street 33 Metro Park 
IOWA Edina 55435 Rochester 14623 

~~~~~b~537~1~~05 Tel: (716) 475-9130 
tHamilton/Avnet Electronics tPioneer Electronics HamiitonjAvnet Electronics TWX: 510"253-5470 
4545 Ridgeview Avenue 112 Main Street 91533rd Avenue, S.w. 

~~~rfb~;9~1~0308 
Norwalk 06651 Cedar Rapids 52404 t~:~'~hh::na~~~~~:~nics l~:~~i~"b~k~e~~~~ctronics 
~i~~b~4563B~5;753 Tel: (319) 362-4757 

Minnetonka 55434 Syracuse 13206 
KANSAS Tel: {612) 932"{)600 ~:i~in~3l-~25~~ tHamilton/Avnet ElectroniCS FLORIDA 

9650 Desoto Avenue Arrow Electronics tPioneer Electronics 
Chatsworth 91311 tArrow Electronics, Inc. 8208 Melrose Dr., Suite 210 76?5 Golden Triange Dr. tMTf Systems Sales 
Tel: (818) 70Q..1161 40~ Fairway Drive Lenexa 66214 SUlteG 38 Harbor Park Drive 

SUite 102 Tel: (913) 541·9542 Eden Prairi 55343 ~~r(~~hJ~r.~~JJ050 tHammon Electro Sales Deerfielo Beach 33441 Tel: {612) 944-3355 
10950 W. Washington Blvd. ~pgn~~5~9~0506 tHamiltonfAvnet Electronics 

~~rv(21gl~ff~~~~8 9219 Qulvera Road MISSOURI tPioneer Electronics 
Overland Park 66215 68 Corporate Drive 

TWX: 910-340-6364 Arrow Etectronics, Inc Tel: (913) 888-8900 tArrow ElectroniCS, Inc Binghamton 13904 

~~i~ek~~~~ Drive TWX: 910-743-0005 2380 Schuetz ~i~gn?2~~:0~~3 Hamilton Electro Safes SI. Louis 63141 
1361B West 190th Street Lake Marv 32746 Pioneer/Tec Gr. Tel: (314) 567-S888 
Gardena 90248 Tei: (407) 323-0252 10551 Lockman Rd. TWX: 910-764-0882 Pioneer ElectroniCS 
Tel: (213) 217-6700 TWX: 51Q..959-6337 Lenexa 66215 40 Oser Avenue 

IHamilton/Avnet Electronics 
Tel: (913) 492-0500 tHamiitonjAvnet ElectroniCS ~:I~rgla6)Q:3~ ~J~60 tHamiltonjAvnet Electronics 13743 Shoreline Court 

002 ·0' Street ~~O~a~d"Z;d~~!h 3~3a~9 KENTUCKY Earth Ci~ 63045 
OntariO 91761 Tel:pl4 344-1200 
Tel: (714) 989-9411 Tel: (305) 971-2900 HamHtonfAvnet ElectroniCS TW : 91 -762-0684 

TWX: 510-956-3097 1051 D. Newton Park 
tAvnet Electronics !r:~i(~J6)2~~:~175 20501 Plummer tHamilton/Avnet Electronics 
Chatsworth 91351 3197 Tech Drive North 

~~~Jn?4~~~l;d7 SI. Petersburg 33702 

~~Jn~l663~0~3704 

tMicrocomputer System Technical Distributor Center CGjSAL2f070788 



DOMESTIC DISTRIBUTORS (Cont'd.) 

NEW YORK (Cont'd.) OKLAHOMA TeXAS {Cont'd.} WISCONSIN ONTARIO (Cont'd.) 

tPioneerElectrOnics ArrowElectronlcs,lnc tHamiltonjAvnet ElectroniCS Arrow Electronics, Inc tHamlltonjAvnet ElectrOnics 
60 Crossway Park West 1211 E 51st5treel 2111W.WalnutHiitLane 200 N. Patrick Blvd., S18.100 190 Colonnade Road South 

~e~~~79il0.~~J~land 11797 
Suite 101 ~~:~r2;~r~~O.6' 11 Brookfield 53005 Napean K2E 7LS 
Tulsa74146 Tel' (414)767-6600 Tel (613) 226-1700 

TWX: 510-221-2164 Tel. (918)252-7537 TWX: 910-860-5929 TWX: 910·262·1193 TWX 05·34'3-71 

1:'ioneerElectronics t~f~"&~~f~n~: ,E~uj:~O~b~~ i~~:~}Yflf~J~ ~~i~!ri~~S 
HamiltonjAvnetElectronics tZantronlCs 

o Fairport Park 2975 Moorland Road 8 Tilbury Court 
Fairport 14450 Tulsa 74146 New Berlin 53151 ~~nf.tt~r 4~~~9~6~ Tel: (716) 381-7070 Tel: (918) 252-7297 Tel: (713) 240-7733 Tel: (414)784-4510 
TWX: 510-253-7001 TWX: 910-681-5523 TWX 910-262-1182 TWX. 06-976-78 

OREGON 
NORTH CAROLINA tPioneerElectronlCS 

CANADA 
tZentrontcs 

tAlmac Electronics Corp. 18260 Kramer 155 Colonnade Road 
tArrow ElectroniCS, Inc. 1885 N.w 169th Place Auslln78758 Unit 17 
5240 Greensdairy Road 8eaverton97005 Tel: (512)635-4000 ALBERTA Nepean K2E 7Kl 

~:i:eiB~9~~~~~3132 Tel: (503)629-8090 TWX: 910-874-1323 Tel: (613) 226-8840 
TWX: 910-467-8746 Hamllton/Avnet ElectroniCS 

TWX: 510-928-1656 tPioneer Electronics 261621st Street N.E. Zentronlcs 
!Hamilton/Avnet ElectrOniCS b;~!~ ~5~3~a Road ~:II?(~63n~0~~~86 

SO-1313 BorderS! 
lHamiiton/Avnet Electronics 024 S.W. Jean Road ~~(~041 ~~4~70~~7 R~~~ Stf2~20~ores' Drive Bldg. C, SUite 10 Tel: (214) 386-7300 TWX.03-827-S42 

~:~(5~~)~j~_j~2~4 TWX: 910-650-5563 
Tel: (B'9) 678-0619 Zentronics QUEBEC 
TWX: 510-928-1636 TWX: 910-455-6179 tPloneer ElectrOnics 

~;60N,04t~ Avenue N E. 5853PoinlWesiDrive tArrow Electronics Inc 

~8~e:~q~~~~~~o~:~~ ~r~~.p, Inc 
Wyle Dlstnbutlon Group Houston 77036 

~:II?(~63T~~2~~621 
4050 Jean Talon Quest 

5250 N.E. Elam Young Parkway Tel: (713)968-5555 Montreal H4P 1 W1 
Charlotte 28210 Suite 600 TWX: 910-881-1606 Tel' (514) 735-5511 
Tel: (919)527-8186 HIlisboro97124 BRITISH COLUMBIA TWX: 05-25590 
TWX: 610-621-0366 Tel: (503) 640-6000 Wyle Distribution Group 

TWX: 910-460-2203 1810 Greenville Avenue 

l~!~~,~~ne~~~~~ectronics 
Arrow Electronics. Inc 

OHIO Richardson 75081 909 Charest Blvd. 
PENNSYLVANIA Tel: (214)235-9953 QuebecJ1N 2C9 

ArrowEleclronlcs, Inc. Tel' (6041437-6667 Tel: (418) 687-4231 
7620 McEwen Road Arrow Electronics, Inc. UTAH TWX: 05-13388 
Centerville 45459 650Seco Road Zentronics 

~:i~Jn~3559~t56~~ Monroeville 15146 Arrow Electronics ~?~h~~g S6~~~ort Road 
Hamllton/Avnet Electronics 

Tel. (412) 856-7000 1946 Parkway Blvd. 2795 Halpern 

~:i~ (~~~i ~~~_g:~j 9 Tel: (604)273-5575 St.laurent H2E7K1 
~Arrow ElectrOniCS, Inc. Hamliton/AvnetElectronics TWX: 04-5077-89 Tel. (514) 335-1000 

238 Cochran Road ~?~2b~I~~'5~3~' TWX: 610-421-3731 
Solon 44139 tHamilton/Avnet Electronics MANITOBA 

~~~Jn~4~i~9949009 Tel:(41~)281-4150 1585 West 2100 South Zentronics 

~)~~~1~~~~J89 Zentronics ~~.\~~~~~~XT 1 M3 Pioneer Electronics 60-1313 Border Unit 60 
~Hamilton/Avnet Electronics 259 Kappa Drive 

~~i:(~041 ~~.t 1~~~ 
Tel: (514) 737-9700 

54 Senate Drive 

~~~~rfb\19~:~~0202 
TWX 05-827-535 

Dayton 45459 WyleDistfibutionGroup 
Tel: (513) 439-6733 1325 West 2200 South ONTARIO 
TWX: 810-450-2531 SUite E 

tPioneer{Technologies Group, Inc. ~~:sJ8~~I)1r7~~~:3 Arrow Electronics, Inc 
Hamilton/Avnet Electronics Delaware VaUey 36 Antares Dr 

~:re~~~~ '~~~~{~a~f~~ 261 GibralterRoad Nepean K2E 7W5 
Horsham 19044 WASHINGTON Tel: (613)226-6903 

Tel: (216) 349-5100 ~i~Jn~l6~~~0708 TWX: 810-427-9452 tAlmac Electronics Corp. Arrow Electronics, Inc 
14360 S.E. Eastgate Way lq93 Meyerside 

tHamiiton/Avnel Electronics TEXAS Bellevue 98007 
~~~(~f~)ue73':~i61 M4 ~:s~:~~s:~Bg,Blvd ~Arrow ElectronICs, Inc. ~)~gn~~~~29tl7 

Tel: (614)862-7004 220 Commander Dnve 
TWX: 06-218213 

Carrolllon7S006 Arrow Electronics, Inc tHamllton/Avnet Electronics 
tPioneer Electronics ~~~Jn~88600~~6ij 19540 68th Ave. South 6845 Rexwood Road 
4433 Interpoint Boulevard Kent 98032 Umts3-4-5 
Dayton 45424 Tel: (206) 575-4420 

mJ~!ib~:~!a~X2 Tel: (513) 236-9900 tArrow Electronics, Inc. 
TWX: 810-459-1622 10699 Kinghurst t~~~il~~~~~~~ts~~::onics Suite 100 
tPioneer Electronics Houston 77099 Bellevue 98005 Hamilton/Avnet Electronics 
4800 E. 131 sl Street ~lJn~:to~403~ Tel: (206) 643-3950 6845 Rexwood Road 
Cleveland 44t05 TWX: 910-443-2469 Unlt6 
Tel: (216) 587-3600 

~~~(~f~)u~77':6I8~R2 TWX: 810-422-2211 tArrowElectronlcs, Inc. f?~~?~.~i.b~~~nS?;~e~P 2227W. Braker lane 
Austin 76758 Redmond 98052 
Tel: (512) 835-4180 
TWX: 910-874-1348 

Tel: (206)881-1150 

tHamliton/Avnet Electronics 
1807 W. Braker Lane 
Austin 78758 
Tel: (512)837-8911 
TWX: 910-874-1319 

tMicrocomputer System Technical Distributor Center CG/SAL3j070788 



DENMARK 

Intel 
Glentevej 61, 3rc! Floor 

~lli~u~n:~n NV 

FIHLAND 

In"" RIJOsiiantle2 
00390 Helsinki 
Tel: +3580544 644 
TL.X: 123332 

FRANCE 

EUROPEAN SALES OFFICES 

WEST GERMANY 

Intel' 
DornacherStrassel 
8016 Feldkirchen bei Muenchen 

~~~~~m7~9 20 

'''''' Hohenzollern Strasse 5 
3000 Hannover 1 

~~~~g1~~081 
Intel 
Abraham Lincoln Stresse 16-18 
6200 Wlesbaden 

+~~::l8!a:a05-O 

ISRAEL 

Intel' 

ITALY 

Intel· 

Park·Neve Sharet 

Milanofiori Palazzo E 
20090 Assago 
Milano 

f~~~1~~4071 
NETHERLANDS 

Intel' 

=e~VM~a~ 
~~~~~~1 0-421.23.77 

NORWAY 

'''''' Hvamvelen 4-PO Box 92 

~~lf%i~~ 

SPAIN 

Intel 
Zurbaran, 28 
28010 Madrid 
Tel: 410 4004 
rLX: 46880 

SWEDEN 

Intel' 

~:~v~~o~~ 
Tel: +46873401 00 
TLX: 12261 

SWITZERLAND 

Inte" 
Talackerstrasse 17 
B065Zuerich 

~~~:OM~~~ 29 77 

UNITED KINGDOM 

Intel' 

~~~O~,aJ:,i"Shlre SN3 1 RJ 

+r~:('f..~~'860 00 

EUROPEAN DISTRIBUTORS/ REPRESENTATIVES 

AUSTRIA WEST GERMANY HETHERLANDS UNITED KINGDOM 

Bacher Electronics G.m.b.H. =: ~:;~n~~~:~~~nts Ltd. Rotenmuehlgasse 26 
1120Wien Letchworth, Herts SGS tTL 

+~~~~~Ja~3 56 46-0 ~~~=~86666 

BELGIUM ~a~~k1orsrnentGmbH NORWAY ~~'W~=a~x::ms 
Inelco Belgium SA Bahnhofstrssse44 Nordlsk Elektronlkk (Norge) AlS 
Av. des Croix de Guerra 94 7141 Moe~"n~en Postboks 123 RW 
1120 Bruxelles Tel: 07141 48 -347 Smedsvingen 4 

?1~'~t~~I:nlaan, 94 TLX: 7264 99 1364 Hvalstad 

~~~~~~~6 01 60 
~~~~5~6210 Jermyn 

PORTUGAL ~~~~=e 
DENMARK Sevenoaks 

Dittam KentTN145EU 
ITT -Multikompooent 
Naverland 29 

Avenlda Marques de Tomar, 46-A 
1000LIsboa ~~~Ws~~2450144 

~~iJiti56645 ~~~V4~~f' 34 MMD 
Unit 8 Southview Park 

SPAIN Caversham 
FINLAND Readinp 

S.A. Berkshire RG4 OAF 
OY Fintronlc AB Viana, 6 ~~~~~~816 66 Melkonkatu 24A 
00210 Helsinki 

m<f~2~~'f22 Rapid Silicon 
Rapid House 

IRELAND m-SESA Denmark Street 
FRANCE ~:b~oM~:~:ngel, 21-3 High Wycombe 

Tel: 419 09 67 ~~ri~:~r:6HP112ER 
TLX: 27461 

as 
SWEDEN Rapid Systems 

Rapid House 
Nordlsk Elektronik AB Denmark$treet 

ISRAEL Huvudstagatan 1 High Wycombe 
Box 1409 ~lli~~~~74HP112ER 17127 Solnl 
Tei: 08-734 97 70 
TLX: 10547 

YUGOSLAVIA 
SWITZERLAND 

Industrade A.G. 
H.R. MicroelectronICs Corp. 

~:~~~R:ieres 2005 de Ia Cruz Blvd., Ste. 223 
ITALY Hertlstrasse31 Santa Clara, CA 95050 

4, av. Laurent-Cely 6304 Wallisellen U.S.A. 
92606 Asnieres Cedex Intesl lli<~\~V~3 05 04 0 ~~~f1'rl4~8-0286 
~~f~1~~:g 82 40 

DlvlSione ITT Industries GmbH 
VlaleMllanoflori 
Palazzo Et5 TURKEY 
20090 Assago 

EMPAElectronlc Milano 

~~~~§~~01 Lindwurmstrasse 95A 
8000 Muenchen 2 

~: ~:rg~:tI~f2~' 
20092 Clnlsello Balsamo 

~~~~~r570 

Milano 

~~~12 

"FI8Id Application location CG/SAL4/070788 



INTERNATIONAL SALES OFFICES 

AUSTRALIA 

Intel Australia Pty, Lid' 

~cgc~~~mcBH~~gLeve' 6 
Crows Nest, NSW, 2065 
Tel: (2)957-2744 
TLX: AA 20097 
FAX: (2) 923-2632 

BRAZIL 

Intel Semlcondutores do Brasil L TOA 
Av, Paulista, 1159-CJS 404/405 
01311 - Sao Paulo - S.P 
Tel: 55-11-287-5899 
TLX: 1153146 SAPI BR 
FAX: 55-11-212-7631 

CHINA/HONG KONG 

Intel PRC Corporation 

j~: G~~I~e~' ~i~iCS~:~~1 
~:1!1~1' :0'6~850 
Tl)(' 22947 INTEL eN 
FAX: (1) 500-2953 

Intel Semiconductor Ltd: 
10fF East Tower 
Bond Center 
Queensway, Central 

~~ri~'-~~IHK HX 
FAX: (5)8681-969 

JAPAN 

InlelJapan K.K. 
5-6 Tokodai, Tsukuba-shl 
Ibaraki,300-26 
Tel: 029747-8511 
TLX: 3656-160 
FAX: 029747-8450 

~!~I~~f~~rS~9~~ld9 
1-8889 Fuchu-cho 

~~~'04~~~6~?7kl711 83 
FAX: 0423-60-0315 

Intel Japan K.K: 
Flower-Hill Shin-machl Bldg. 
1-23-9Shinmachi 

f:~:a8ff_~2~~2i~kYO '54 
FAX: 03-427-7620 

Intel Japan K.K: 

~~~8'HK~n~~~~ya 
~~,7'8235~tj8~fitama 360 
FAX: 0485-24-7518 

~:f~~~~:i~~i'~~sashi-koSU9i Bldg 
915 Shmmaruko, Nakahara-ku 
Kawasaki-shi,Kanagawa211 
Tel: 044-733-7011 
FAX: 044-733-7010 

JAPAN (Cont'd.) 

~~~~X~~;~:~~~9i Bldg. 

~~rW~~S!2~~~3~awa 243 
FAX: 0462-29-3781 

Intel Japan K.K." 
Ryokuchi-Ekl Bldg 
2-4-1 Terauchl 

i~r:~~~~~3~~69~saka 560 
FAX. 06-863-1084 

Int~IJapan KK. 
ShmrraruBldg. 
1-5-1 Marunouchl 
Chiyoda-ku, Tokyo 100 
Tel: 03-201-3621 
FAX. 03-201-6850 

~i:~~agld~.K.K 
1-16-20Nlshiki 
~i~~~:~O Nagoya-shl 
Tel: 052-204-1261 
FAX. 052-204-1285 

KOREA 

~~;li~:;shc~l~t~~ ~~;~' F~~~r 
61, YOldo-Dong, Young Deung Po-Ku 
Seoul 150 
Tel:(2)784-8186,8286,8386 
TLX: K293121NTELKQ 
FAX: (2)784-8096 

SINGAPORE 

TAIWAN 

Intel Technology (Far East) Ltd 
Taiwan Branch 
10/F. No 205, Tun Hua N Aoad 
Talpel,R.O C. 
Tel: 886-2-716-9660 
TLX: 13159 INTEL TWN 
FAX: 886-2-717-2455 

INTERNA TIONAL 
DISTRIBUTORS/ REPRESENTATIVES 

ARGENTINA 

DAFSYS S.RL 
Chacabuco, 90-4 PISO 
1069-Buenos Aires 
Tel: 54-1-334-1871 

54-1-334-7726 
TLX: 25472 

Reycom Electronica S.R.l. 
Arcos 3631 
1429-BuenosAires 
Tel: 54 (1) 701-4462/66 

~~; ~,<~~ ~EVJ6M AR 

AUSTRALIA 

Total Electronics 

~r~:::e~~tr~~ 
Burwood, Victoria 3125 
Tel: 61-3-288-4044 
TLX: AA 31261 
FAX: 61-3-288-9696 

BRAZIL 

Elebra Mlcroelectronica 
R. Geraldo Flausina Gomes, 78 
9 Andar 
04575 - Sao Paulo - S.P. 
Tel: 011-55-11-534-9637 
TLX: 3911125131 ELBR BR 
FAX: 55-11-534-9424 

CHILE 

DIN Instruments 
Suecia 2323 
Casilla 6055, Correo 22 

f:r~~~~-225-6139 
TLX: 440422 RUDY CZ 

CHINA/HONG KONG 

~1~r~,p2gc~~~~~f~~r~~~~I~g~" Ltd. 
Phase 1, 26 Kwai Hei Street 
N.T., Kowloon 

~~~~~O~223-222 
TWX: 39114 JINMI HX 
FAX: 852-0-261-602 

'Fleld Application Location 

INDIA 

Mlcromc Devices 
ArunComplex 
No. 65 D.v.G. Road 
Basavanagudi 

~:I~~~I~f2:gg0~ral 
011-91-812-621-455 

TLX: 0845-8332 MD BG IN 

Micronic Devices 
Flat 403, Gagan Deep 
12, RaJendraPlace 
New Delhi 110 008 
Tel: 91-58-97-71 

011-91-57-23509 
TLX: 03163235 MONO IN 

Micronic Devices 
No. 516 5th Floor 
Swastik Chambers 
Sion, Trombay Road 
Chembur 
Boml'ay 400 071 
Tel: 91-52-39-63 
TLX: 9531171447 MDEV IN 

S&S Corporation 
Camden Business Center 
Suite 6 
1610 Blossom Hill Rd. 
San Jose, CA 95124 
U.S.A. 
Tel: (408) 978-6216 
TLX: 820281 

JAPAN 

Asahi Electronics Co. Ltd. 
KMM Bldg. 2-14-1 Asano 
Kokurakita-ku 
KitakyuShu-shi802 
Tel: 093-511-6471 
FAX: 093-551-7861 

C. Itoh Techno-Science Co., Ltd. 

~f~i~~~d7~4ij~ ~~;ta-Aoyama 
FAX: 03-4974879 

JAPAN (Cont'd.) 

SJ:C~~~~4~nl~7~~~;~~~~jaya 
~:~:a8~!4a8~~d3~~kYO 15 
FAX: 03-487~8088 

Okaya Koki 
2-4-18 Sakae 

~:I~~-~2:2~4?~Jla6shl 460 
FAX: 052-204~2901 

Ryoyo Electro Corp 
KonwaBldg. 
1-12-22 Tsuklji 

~~I~g3~54~~~6fl1 04 
FAX: 03-546-5044 

KOREA 

J-TekCorporation 
6th Floor, Government Pension Bldg. 

~~;~n~d~d~~~~~~u 
Seoul 150 
Tel: 82-2-782-8039 
TLX: 25299 KODIGIT 
FAX' 82-2-784-8391 

Samsung Semiconductor & 
Telecommunications Co., Ltd. 
150, 2-KA, Tafpyung-ro, Chung-ku 
SeoullQO 
Tel: 82-2-751-3987 
TLX: 27970 KORSST 
FAX: 82-2-753-0967 

MEXICO 

DicopelS.A. 
Tochtli 368 Fracc. Ind. San Antonio 

~~~~g2i6~~~eXico, 0 F. 
Tel: 52-5-561-3211 
TLX: 1773790 DICOME 

Northrup Instruments & Systems Ltd 

~~6.KJ~:9~~~ NAe~~arket 
Auckland 1 
Tel: 64~9-501-219, 501-801 
TLK 21570 THERMAL 

Northrup Instruments & Systems Ltd. 
P.O. Box 2406 

'fei:ll~l~~B~:_~~~8 
TLX: NZ3380 NORTHAC 
FAX: 64-4-857276 

StNGAPORE 

Electronic Aesources Pte, Ltd. 
17 Harvey Road #04-01 

~~IP~K3!081~~~89-1618 
TWX: 56541 FRELS 
FAX' 2895327 

SOUTH AFRICA 

Electronic BUilding Elements, Ply. Ltd. 
P.O 80x4609 
Pine Square, 18th Street 
Hazelwood, Pretoria 0001 
T81:27-12-469921 
TLX. 3-227786 SA 
FAX: 0927-012-46-9221 

TAIWAN 

MitacCorporatlon 
No. 585, Mlng Shen East Rd 
Taipei, A O.C 
Tel: 886-2-501-8231 
FAX: 886-2-501-4265 

Sertek 
5FL, 135 Sec. 2 
Chlen-Kuo N. Ad. 
~~8~.10479 
Tel: (02) 5010055 
FAX: (02) 5012521 

(02)5058414 

VENEZUELA 

P. BenavidesS.A 
Avilanesa RIO 
ResldenclaKamarata 
Locales 4 A17 
La Candelaria, Caracas 
Tel: 58-2-571-0396 
TLX: 28450 PBVEN VC 
FAX: 58-2-572-3321 

CG/SAL5/070788 



ALABAMA 

Intel Corp. 
5015 Bradford Dr., #2 
Huntsville 35805 
Tel: (205) 830-4010 

ARIZONA 

Intel Corp. 
11225 N. 26th Dr. 
Suite 0-214 
Phoenix 85029 
Tel: (602) 869-4980 

Intel Corp, 
500 E. Fry Blvd., Suite M-15 
Sierra Vista 85635 
Tel: (602) 459-5010 

~~t~\ ~~r~i Dorado Place 
Suite 301 
Tucson 85715 
Tel: (602) 299-6815 

CAL.IFORNIA 

Intel Corp. 
21515 Vanowen Street 
Suite 116 

¥:,~(31a8r~O~~8~30003 

k~gb ~~rFniperial Highway 
SUIte 218 

f~~(9~3)d64~~grilO 
Intel Corp. 

~~rsOo~~~i33~~tr5~~' 
Tel: (916) 351-6143 

~~!~~:~~ta;~uite 101 

Tel: (916) 920-8096 

Intel Corp. 
4350 Executive Drive 
Suite 105 

~:I~ (~~e~04~~~lJ80 
IntelCorp.' 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 

~XJ~b~~Ji5~1614l4 
Intel Corp,' 
San Tomas 4 
2700 San Tomas Expressway 
2nd Floor 
Santa Clara 95051 

~tgn~:;8~g:~5 
COLORADO 

Intel Corp. 
4445 Northpark Drive 
Suite 100 

¥~II:O[3~~ ~~:~~~~0907 

St.. Suite 915 

6086 
-2289 

CONNECTICUT 

k~e~~o~Fain Road 
2nd Floor 

~:t~~~)076:J.1130 
TWX: 710-456-1199 

CALIFORNIA 

2700 San Tomas Expressway 
Sante Clara 95051 
Tel: (406) 970-1700 

CALIFORNIA 

2700 San Tomas Expressway 
Santa Clara 95051 
Tel: (408) 986-8086 

DOMESTIC SERVICE OFFICES 
FLORIDA MICHIGAN NORTH CAROLINA 

Intel Corp. Intel Corp. Intel Corp 
6363 NW. 6th Way 7071 Orchard Lake Road 5700 Executive Drive 
Suite 100 Suite 100 Suite 213 
Ft. Lauderdale 33309 West Bloomfield 48033 Charlotte 28212 

~~~~~b?;5~?:40007 Tel: (313) 851-8096 Tel: (704) 568-8966 

FAX: 305-772·8193 MINNESOTA Intel Corp 
2306 W. Meadowview Road 

Inlel Corp Intel Corp. Suite 206 
5850 T.G. Lee Blvd 3500 W. 80th St., Suite 360 Greensboro 27407 
Suite 340 

~)~i~t~i5:;J!sJ7 
Tel: (919) 294-1541 

Orlando 32822 

~~I~~3300~_~!g:~gg~ Intel Corp 

~~?t~ ~d2cliff Road 
MISSOURI 

Intel Corp ~:II:e(~~ 9r7~~~8022 11300 4th Street North Intel Corp. 
Suite 170 4203 Earth City Expressway 
SI. Petersburg 33716 Suite 131 OHtO 

~~x~8;?J_~~~~~:b~ ~:r~3~~r 26931~~~90 Intel Corp.' 
3401 Park Center Drive 

GEORGIA NEW JERSEV Suite 220 
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