
~\\\\\\\~

--:\-b~ .

To order Intel literature write or call:

Intel Literature Sales
P.O. Box 58130

LITERATURE

Toll Free Number:
(800) 548-4725*

Santa Clara, CA 95052-8130

Use the order blank on the facing page or call our Toll Free Number listed above to order literature.
Remember to add your local sales tax and a 10% postage charge for U.S. and Canada customers, 20% for
customers outside the U.S. Prices are subject to change.

1988 HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design information.

NAME

COMPLETE SET OF 8 HANDBOOKS
Save $50.00 off the retail price of $175.00

AUTOMOTIVE HANDBOOK
(Not included in handbook Set)

COMPONENTS QUALITY/RELIABILITY HANDBOOK
(Available in July)

EMBEDDED CONTROLLER HANDBOOK
(2 Volume Set)

MEMORY COMPONENTS HANDBOOK

MICROCOMMUNICATIONS HANDBOOK

MICROPROCESSOR AND PERIPHERAL HANDBOOK
(2 Volume Set)

MILITARY HANDBOOK
(Not included in handbook Set)

OEM BOARDS AND SYSTEMS HANDBOOK

PROGRAMMABLE LOGIC HANDBOOK

SYSTEMS QUALITY/RELIABILITY HANDBOOK

PRODUCT GUIDE
Overview of Intel's complete product lines

DEVELOPMENT TOOLS CATALOG

INTEL PACKAGING OUTLINES AND DIMENSIONS
Packaging types, number of leads, etc.

LITERATURE PRICE LIST
List of Intel Literature

"Good in the U.S. and Canada

*"PRICE IN
ORDER NUMBER U.S. DOLLARS

231003 $125.00

231792 $20.00

210997 $20.00

2lO918 $23.00

210830 $18.00

231658 $22.00

230843 $25.00

210461 $18.00

280407 $18.00

296083 $18.00

231762 $20.00

210846 N/C

280199 N/C

231369 N/C

210620 N/C

* "These prices are for the U.S. and Canada only. In Europe and other international locations, please contact
your local Intel Sales Office or Distributor for literature prices.

LITERATURE SALES ORDER FORM

NAME: __ _

COMPANY: __ __

ADDRESS: __ ___

CITY: _______________________________ STATE: _______ ZIP: ______ _

COUNTRY: __ ___

PHONE NO.: -'--__ ----''--__ _

ORDER NO.

Must add appropriate postage to subtotal
(10% U.S. and Canada, 20% all other).

TITLE QTY. PRICE TOTAL

____ X ___ = ___ __

____ X ___ = ___ __

____ X ___ = ___ __

____ X ___ = ___ __

___ X _____ = ____ __

___ X ___ = ____ __

____ X __ = ____ __

____ X ___ = ____ __

____ X __ = ____ __

___ X ___ = ____ __

Subtotal _____ __

Must Add Your
Local Sales Tax _____ __

-----------i .. ~ Postage _____ __

Total _____ __

Pay by Visa, MasterCard, American Express, Check, Money Order, or company purchase order payable to
Intel Literature Sales. Allow 2-4 weeks for delivery.
o Visa 0 MasterCard 0 American Express Expiration Date ________ _

Account No. ______________________________ _

Signature _______________________________ _

Mail To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA 95052-8130

International Customers outside the U.S. and Canada
should contact their local Intel Sales Office or Distributor
listed in the back of most Intel literature.

Call Toll Free: (800) 548-4725 for phone orders
Prices good until 12/31/88.

Source HB

CG/LSOF 1062188

80960MC
PROGRAMMER'S

REFERENCE MANUAL

1988

intJ

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH,
GENIUS, i, t. ICE, iCEL, iCS, iDBP, iDIS, 121CE, iLBX, im, iMDDX, iMMX,
Inboard, Insite, Intel, intel, intelBOS, Intel Certified, Intelevision,
inteligent Identifier, inteligent Programming, Intellec, Intellink, iOSP,
iPDS, iPSC, iRMK, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, Library
Manager, MAP-NET, MCS, Megachassis, MICROMAINFRAME,
MUL TIBUS, MULTICHANNEL, MUL TIMODULE, MultiSERVER, ONCE,
OpenNET, OTP, PC-BUBBLE, Plug-A-Bubble, PROMPT, Promware,
QUEST, QueX, Quick-Pulse Programming, Ripplemode, RMX/SO, RUPI,
Seamless, SLD, SugarCube, SupportNET, UPI, and VLSiCEL, and the
combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a
numerical suffix, 4-SITE.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation.

*MUL TIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Distribution
Mail Stop SC6-59
3065 Bowers Avenue
Santa Clara, CA 95051

© INTEL CORPORATION 1988

TABLE OF CONTENTS

CHAPTER 1
GUIDE TO THIS MANUAL

Manual Structure ... 1-1
Chapter Overview ... 1-1
Notation and Terminology .. 1-3

Reserved and Preserved .. 1-3
Set and Clear ... 1-4

CHAPTER 2
INTRODUCTION TO THE 80960 ARCHITECTURE

A New 32-Bit Architecture from Intel 2-1
High Performance Program Execution 2-2

Load and Store Model .. 2-2
On-Chip Caching of Code and Data 2-2
Overlapped Instruction Execution 2-3

Single-Clock Instructions .. 2-3
Efficient Interrupt Model ... 2-3

Simplified Programming Environment 2-4
Highly Efficient Procedure Call Mechanism 2-4
Versatile Instruction Set and Addressing 2-4
Extensive Fault Handling Capability 2-4
Debugging and Monitoring ... 2-5

Support for Architectural Extensions 2-5
Extensions Included in the 80960MC Processor 2-5

On-Chip Floating Point .. 2-5
String and Decimal Operations .. 2-6
Virtual-Memory Support ... 2-6
Protection .. 2-6
Multitasking ... 2-6
Multiprocessing .. 2-7
Fault Tolerance .. 2-7

Look for More in the Future ... 2-7

CHAPTER 3
EXECUTION ENVIRONMENT

Overview of the Execution Environment 3-1
Address Space ... 3-1
Register Model ... 3-2

Global Registers ... 3-4
Floating-Point Registers ... 3-4
Storage of Global and Floating-Point Registers 3-4

iii

TABLE OF CONTENTS

Local Registers .. 3-4
Register Alignment ... 3-4
Register Scoreboarding ... 3-5

Instruction Pointer ... 3-5
Arithmetic Controls .. 3-6

Initializing and Modifying the Arithmetic Controls 3-6
Functions of the Arithmetic-Controls Bits 3-7

Condition-Code Flags .. 3-7
Arithmetic-Status Flags .. 3-8
Integer-Overflow Flag and Mask 3-8
No-Imprecise-Faults Flag ... 3-9
Floating-Point Flags and Masks 3-9
Floating-Point-Normalizing-Mode Flag 3-9
Floating-Point-Rounding Control 3-9

Process and Trace Controls ... 3-10
Partitioning the Address Space .. 3-10
Instruction Caching .. 3-12

CHAPTER 4
PROCEDURE CALLS

Types of Procedure Calls ... 4-1
Call/Return Mechanism .. 4-1

Local Registers and the Procedure Stack 4-3
Procedure-Linking Information .. 4-3

Frame Pointer .. 4-3
Stack Pointer .. 4-3
Padding Area .. 4-5
Previous-Frame Pointer .. 4-5
Return Status and Prereturn-Trace Information 4-5
Return-Instruction Pointer ... 4-6

Mapping the Local Registers to the Procedure Stack 4-7
Local Call ... 4-8

Local-Call Operation .. 4-8
Local-Return Operation ... 4-8

Parameter Passing .. 4-9
Passing Parameters in Global Registers 4-9
Passing Parameters in an Argument List 4-9
Passing Parameters Through the Stack 4-9

System Call ... 4-1 0
Procedure Table .. 4-11

Procedure Entries .. 4-11
Supervisor-Stack Pointer .. 4-12
Trace-Control Flag ... 4-13
System Call to a Local Procedure 4-13

iv

TABLE OF CONTENTS

User-Supervisor Protection Model .. 4-13
User and Supervisor Modes .. 4-13
Supervisor Calls ... 4-14
Supervisor Stack .. 4-14

Branch and Li nk .. 4-15

CHAPTER 5
DATA TYPES AND ADDRESSING MODES

Data Types .. 5-1
Integers .. 5-1
Ordinals ... 5-1
Reals ... 5-2
Decimals ... 5-3
Bits and Bit Fields .. 5-4
Byte String ... 5-4
Triple and Quad Words ... 5-5

Byte, Word, and Bit Addressing .. 5-5
Literals ... 5-5
Register Addressing ... 5-6
Memory-Addressing Modes ... 5-6

Absolute ... 5-7
Register Indirect ... 5-7
Register Indirect with Index .. 5-7
Index with Displacement ... 5-7
IP with Displacement ... 5-7

CHAPTER 6
INSTRUCTION-SET SUMMARY

Instruction Formats .. 6-1
Assembly-Language Format ... 6-1
Machine Formats .. 6-1

Instruction Groups .. 6-2
Data Movement .. 6-4

Load .. 6-5
Store .. 6-5
Move .. 6-6
Load Address ... 6-6

Arithmetic ... 6-6
Add, Subtract, Multiply, and Divide 6-8
Extended Arithmetic .. 6-8
Remainder and Modulo ... 6-8
Shift and Rotate ..•.. 6-9

Logical ... 6-10
Bit and Bit Field .. 6-10

Bit Operations ... 6-1 0

v

TABLE OF CONTENTS

Bit-Field Operations .. 6-11
Byte Operations .. 6-11
Conversion .. 6-11
Comparison ... 6-11

Compare and Conditional Compare 6-11
Compare and Increment or Decrement :-.................... 6-12

Branch ... 6-12
Unconditional Branch ... 6-13
Conditional Branch ... 6-13
Compare and Branch ... 6-14
Test Condition Codes ... 6-14

Call and Return ... 6-15
Conditional Faults ... 6-15
Debug .. 6-16
Atomic Instructions .. 6-16
Processor Management .. 6-16
S0960MC Non-Floating-Point Instruction-Set Extensions 6-17

Process Management ... 6-17
Process Control .. 6-17
Interprocess Communication 6-1S

String ... 6-19
Decimal .. 6-19
Miscellaneous Instructions ... 6-20

Synchronous Load and Move 6-20
Memory-Management Functions 6-20

CHAPTER 7
FLOATING-POINT OPERATION

Introducing the S0960MC Floating-Point Architecture 7-1
Real Numbers and Floating-Point Format 7-1

Real Number System ... 7-1
Floating-Point Format ... 7-2

Normalized Numbers .. 7-3
Biased Exponent ... 7-4

Real Number and Non-Number Encodings 7-4
Signed Zeros .. 7-4
Signed, Nonzero, Finite Values 7-4
Denormalized Numbers .. 7-5

Signed Infinities ... 7-6
NaNs .. 7-6

Real Data Types .. 7-7
Execution Environment for Floating-Point Operations 7-7

Registers .. 7-S
Loading and Storing Floating-Point Values 7-9

vi

inter TABLE OF CONTENTS

Moving Floating-Point Values ... 7-10
Arithmetic Controls ... 7-11
Normalizing Mode .. 7-12
Rounding Control .. 7-12

Instruction Format ... 7-14
Instruction Operands .. 7-14
Summary of Floating-Point Instructions 7-15

Data Movement ... 7-15
Data-Type Conversion .. 7-15
Basic Arithmetic ... 7-17
Comparison, Branching, and Classification 7-17
Trigonometric ... 7-18
Pi ... 7-18
Logarithmic, Exponential, and Scale 7-19
Arithmetic Versus Nonarithmetic Instructions 7-20

Operations on NaNs ... 7-20
Exceptions and Fault Handling ... 7-21

Fault Handler ... 7-22
Floating-Reserved-Encoding Exception 7-22
Floating-Invalid-Operation Exception 7-23
Floating-Zero-Divide Exception 7-23
Floating-Overflow Exception .. 7-24
Floating-Underflow Exception ... 7-24
Floating-Inexact Exception ... 7-25
Floating-Point-Underflow Condition 7-26

CHAPTERS
MEMORY MANAGEMENT

Introduction .. 8-1
PhYSical-Addressing Mode Versus Virtual-Addressing Mode 8-1
PhYSical Memory ... 8-2

Physical-Memory Restrictions .. 8-2
Caching of Memory Accesses .. 8-3

Virtual-Memory-Management System 8-3
Segment-Table Overview ... 8-4
Uses of Segments .. 8-5
Segment-Table Data Structures .. 8-6

Segment Selector .. 8-7
Segment Table .. 8-8
Segment Descriptors ... 8-9

Base Address .. 8-9
Size .. 8-10
Access Status .. 8-1 0
Valid Flag ... 8-10

vii

inter TABLE OF CONTENTS

Paging Method ... 8-11
Segment Types .. 8-11
Region Descriptors .. 8-11
Process, Port, and Procedure-Table Descriptors 8-13
Segment-Table Descriptors 8-14
Semaphore Descriptor ... 8-15
Invalid Descriptor ... 8-16

Page Tables and Page-Table Directories 8-16
Page Table and Page-Table-Directory Structure 8-18
Page Table and Page-Table-Directory Entries 8-18

Page-Table Entry ... 8-19
Page-Table-Directory Entry 8-20
Invalid Page Table or Page-Table-Directory Entry 8-20
Page Rights ... 8-20

Address Translation in Virtual Mode 8-21
SS Translation .. 8-21

Small Segment Table SS Translation 8-21
Large Segment Table SS Translation 8-22

Virtual-Address Translation .. 8-22
Simple-Region Address Translation 8-24
Paged-Region Address Translation 8-24
Bipaged Region-Address Translation 8-24

Load Physical Address Instruction 8-25
Spanning Page, Region, and Address-Space Boundaries 8-25
Translation Look-Aside Buffer .. 8-25

Operating-System Considerations .. 8-26
Address Space Structure .. 8-26
Region Gaps and Boundaries .. 8-28

Making Region Boundaries Transparent 8-28
Accessing System Data Structures 8-28

CHAPTER 9
PROCESSOR MANAGEMENT AND INITIALIZATION

Overview of Processor Configurations 9-1
Processes and Tasks .. 9-1
Processor-Management Facilities .. 9-2

Instruction List .. 9-2
System Data Structures ... 9-2
Interrupts .. 9-4
lACs .. 9-4
Faults ... 9-5
Process Scheduling and Dispatching 9-5

Processor-Control Block .. 9-5
Processor-Controls Word .. 9-5

viii

TABLE OF CONTENTS

System-Data-Structure Pointers 9-8
Miscellaneous PRCB Fields .. 9-9
Changing the PRCB .. 9-9

Priorities .. 9-10
Processor and Process States ... 9-10

Process-Executing and Process-Interrupted State 9-11
Stopped State ... 9-11
Idle and Idle-Interrupted States 9-11

Address-Translation Modes ... 9-12
Changing the Address-Translation Mode 9-12

Processor Timing ... 9-13
Duration of a Tick .. 9-13
Idle Timing ... 9-13

I nstruction Suspension ... 9-13
Software Requirements for Processor Management 9-14
Processor Initialization ... 9-15

Initial Memory Image ... 9-17
Check-Sum Words .. 9-17
Initialization Segment Table 9-17
Initialization PRCB .. 9-19
Initialization Code ... 9-19

Building a Memory Image .. 9-19
Typical Initialization Scenario .. 9-21

First Stage of Initialization ... 9-21
Second Stage of Initialization ... 9-23

CHAPTER 10
INTERRUPTS

Overview of the Interrupt Facilities .. 10-1
Software Requirements for Interrupt Handling 10-1
Vectors and Priority ... 10-2
Interrupt Table ... 10-2
Interrupt-Table Sharing ... 10-4
Interrupt-Handler Procedures .. 10-4

Location of Interrupt Handler ... 10-4
Interrupt-Handler Restrictions ... 10-5

Interrupt Stack ... 10-5
Process Timing While Handling an Interrupt 10-6
Signaling Interrupts .. 10-6

Interrupts From Interrupt Pins ... 10-6
lAC Interrupts ... 10-7
System-Error Interrupt .. 10-8

Interrupt-Handling Actions .. 10-8
Receiving an Interrupt .. 10-8

ix

intel" TABLE OF CONTENTS

Servicing an Interrupt ... 10-8
Process-Executing-State Interrupt 10-9
Process-Interrupted-State Interrupt 10-10
Interrupt Record ... 10-10
Idle-State Interrupt ... 10-10
Idle-Interrupted State Interrupt .. 10-12
Pending Interrupts ... 10-12

Posting Pending Interrupts .. 10-12
Checking for Pending Interrupts 10-13
Handling Pending Interrupts 10-13

CHAPTER 11
INTERAGENT COMMUNICATION

Introduction to lAC Messages ... 11-1
Software Requirement for Handling Internal lACs 11-1
Summary of lAC Messages ... 11-2
lAC-Message Format .. 11-2
Sending and Receiving an Internal lAC 11-3
Internal-lAC-Handling Action .. 11-3
lAC Faults ... 11-3
lAC-Message Reference ... 11-4

Check Process Notice .. 11-5
Continue Initialization ... 11-6
Flush Local Registers ... 11-7
Flush Process ... 11-8
Flush TLB .. 11-9
Flush TLB Page Table Entry ... 11-10
Flush TLB Physical Page .. 11-11
Flush TLB Segment Entry ... 11-12
Freeze .. 11-13
Interrupt ... 11-14
Modify Processor Controls ... 11-15
Preempt Process .. 11-16
Purge Instruction Cache ... 11-17
Reinitialize Processor ... 11-18
Restart Processor .. 11-19
Set Breakpoint Register ... 11-20
Stop Processor .. 11-21
Store Processor ... 11-22
Store System Base ... 11-23
Test Pending Interrupts ... 11-24
Warmstart Processor ... 11-25

x

TABLE OF CONTENTS

CHAPTER 12
FAULT HANDLING

Overview of the Fault-Handling Facilities 12-1
Fault Types .. 12-1
Fault-Handling Methods .. 12-3

Normal Fault-Handling Method .. 12-3
Overrides .. 12-4
System-Error Interrupt .. 12-4
Halt .. 12-5
Multiple Fault Conditions .. 12-5

Software Requirements for Handling Faults 12-5
Fault Table .. 12-5

Location of the Fault Table in Memory 12-7
Fault-Table Entries ... 12-7

Trace-Fault Handling .. 12-8
Fault-Handler Procedures .. 12-8

Possible Fault-Handler Actions 12-9
Process and Instruction Resumption Following a Fault 12-9

Returning With Resumption 12-10
Return Without Resumption 12-11

Aborting a Process ... 12-11
Fault Controls .. 12-12
Faults and Interrupts ... 12-13
Processing Timing While Handling a Fault 12-13
Generating a Fault .. 12-13

Fault-If and Mark Instructions ... 12-13
Event-Notice Fault ... 12-13

Fault Record ... 12-14
Saved Instruction Pointer ... ; .. 12-15
Resumption Record .. 12-15
Location of the Fault and Resumption Records 12-15

Fault-Handling Action ; 12-16
Selecting the Fault-Handling-Action Method 12-18
Normal Fault-Handling Action ... 12-18

Local Call/Return ... 12-18
Local Procedure-Table Call/Return 12-19
Supervisor Call/Return ... 12-19

Trace-Fault-Handler Call/Return 12-20
Override Fault-Handling Action 12-20
System-Error-Interrupt Action , 12-21
Halt Action ... 12-22

Precise and Imprecise Faults .. 12-22
Fault Reference .. 12-24

Fault-Reference Notation .. 12-24

xi

inter TABLE OF CONTENTS

Fault Type and Subtype .. 12-24
Function .. 12-24
Fault Record ... 12-24
Saved IP ... 12-24
Process State Changes .. 12-24

Arithmetic Faults ... 12-25
Constraint Faults .. 12-26
Descriptor Faults .. 12-27
Event Faults .. 12-28
Floating-Point Faults 12-29
Machine Faults .. 12-31
Operation Faults ... 12-32
Process Faults .. 12-33
Protection Faults ... 12-34
Structural Faults ... 12-36
Trace Faults .. 12-37
Type Faults ... 12-39
Virtual-Memory Faults .. 12-40

CHAPTER 13
PROCESS MANAGEMENT

Process-Management Overview ... 13-1
Process Structure .. 13-1
Process State ... 13-1
Using Processes ... 13-2

Process-Control Block ... 13-2
Process Controls .. 13-4
Process-State Fields ... 13-5
Process Scheduling and Communication Fields 13-6
Process-Timing Fields .. 13-7
Storing of PCB Fields in the Processor 13-7
Changing the Process Controls 13-8
Changing the Arithmetic Controls 13-9
Changing the Process-Notice Field 13-9

Required Software Support for a Single-Process System 13-9
Physical Addressing Verses Virtual Addressing 13-9
Process Handling in a Single-Process System 13-11

CHAPTER 14
MULTIPLE-PROCESS MANAGEMENT

Overview of Multiple-Process-Management Facilities 14-1
Process Management Concepts ... 14-2

Scheduling and Dispatching .. 14-2
Process States .. 14-2
State-Transition Actions ... 14-3

xii

inter TABLE OF CONTENTS

Explicit Process-Dispatching .. 14-4
Process Timing ... 14-5

Time-Slice Scheduling .. 14-5
Execution-Time Counting .. 14-6

Overview of High-Level Process Management Facilities 14-6
Ports .. 14-7

FIFO Port ... 14-7
Priority Port .. 14-8

Message ... 14-9
Port Uses .. 14-9

Automatic Process Dispatching .. 14-10
Process-Scheduling Instructions 14-10
Process-Dispatching Action .. 14-10
Process Suspension .. 14-11

Process Synchronization ... 14-12
Use of Semaphores .. 14-12
Semaphore Structure ... 14-12
Semaphore-Handling Instructions 14-13
Semaphore-Access Actions .. 14-13

Process Preemption ... 14-14
Process-Preemption Action .. 14-15

Interprocess Communication .. 14-15
Communication Ports ... 14-15
Interprocess-Communication Mechanism 14-16

Send Message ... 14-16
Receive a Message ... 14-17
Send Service .. 14-18

Kernel Support for Message Passing 14-18
Applications of Messages .. 14-19

CHAPTER 15
MULTIPLE-PROCESSOR OPERATION

Overview of Multiprocessor-Support Facilities 15-1
External lAC Messages .. 15-1

Sending External lACs .. 15-1
Receiving and Handling External lACs 15-2

High-Level Process Management Facilities 15-3
Process Scheduling and Dispatching 15-4
Multiprocessor Preemption ... 15-4

Preemption Control .. 15-4
Multiprocessor-Preemption Action 15-6

Atomic Instructions .. 15-6
Interrupt Handling in a Multiprocessor System 15-7

xiii

inter TABLE OF CONTENTS

CHAPTER 16
DEBUGGING

Overview of the Trace-Control Facilities 16-1
Required Software Support for Tracing 16-1
Trace Controls ... 16-1

Trace-Controls Word ... 16-2
Trace-Enable and Trace-Fault-Pending Flags 16-3
Trace Control on Supervisor Calls 16-3

Trace Modes . 16-4
Instruction Trace ... 16-4
Branch Trace ... 16-4
Call Trace ... ,...... 16-4
Return Trace .. 16-5
Prereturn Trace ... 16-5
Supervisor Trace .. 16-5
Breakpoint Trace .. 16-5

Trace-Fault Handler ... 16-6
Signaling a Trace Event .. 16-6
Handling Multiple Trace Events .. 16-6
Trace-Handling Action ... 16-7

Normal Handling of Trace Events 16-7
Prereturn-Trace Handling .. 16-7
Tracing and Interrupt Handlers .. 16-7
Tracing and Fault Handlers .. 16-8

CHAPTER 17
INSTRUCTION REFERENCE

Introduction .. 17-1
Notation .. 17-1

Alphabetic Reference ... 17-2
Mnemonic .. 17-2
Format .. 17-2
Description ,.................................. 17-3
Action ... 17-3
Faults ... 17-3
Example ... 17-5
Opcode and Instruction Format 17-5
See Also ... 17-5

Instructions .. 17-5

APPENDIX A
INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Instruction Quick Reference ... A-1
Instruction List by Assembler Mnemonic A-2
Instruction List by Opcode ... A-7

xiv

inter TABLE OF CONTENTS

Summary of System Data Structures A-12
Execution Environment .. A-12
Memory Management A-15
Processor Management ... A-20
Interrupt Handling .. A-23
lACs .. A-25
Fault Handling .. A-25
Process Management ... A-27
Trace Control ... A-30

APPENDIX B
MACHINE-LEVEL INSTRUCTION FORMATS

General Instruction Format .. B-1
REG Format ... B-2
COBR Format .. B-3
CTRL Format .. B-4
MEM Format ... B-4

MEMA Format Addressing ... B-5
MEMB Format Addressing ... B-6

APPENDIXC
INSTRUCTION TIMING

Introduction .. C-1
Internal Structure of the 80960MC Processor C-1

Memory Management Unit ... C-1
Bus Control Logic .. C-2
Instruction Fetch Unit and Instruction Cache C-3
Instruction Decoder .. C-4

Simple Instructions .. C-4
Floating Point and Branch Instructions C-4
Complex Instructions .. C-5
Load and Store Instructions ' C-5

Micro-Instruction Sequencer and ROM C-6
Instruction Execution Unit .. C-6

Register Bypassing .. C-7
Floating Point Unit ... C-8

Execution times for the 80960 Architecture Instructions C-8
Logical Instructions ... C-9
Bit Instructions .. C-10
Register Moves C-10
Integer and Ordinal Arithmetic .. C-11
Multiply and Divide Instructions C-12
Branching .. C-12
Call/Return Instructions ... C-13
Miscellaneous Complex Instructions C-14

xv

inter TABLE OF CONTENTS

Load Instructions .. C-14
Store Operations .. C-16

Execution times for the Extended Instructions C-16
Decimal Instructions .. C-17
Floating-Point Instructions ... C-17
Process-Management Instructions C-17

APPENDIX D
INITIALIZATION CODE

Overview . D-1
Example Code ... D-2

startup.s ... D-4
f_table.lst .. D-9
i_table. 1st .. D-10
initiaUrame.lst .. D-14
macs.m4 ... D-15
f_handle.c .. D-16
i_handle.c .. D-16
fix_pte.c ... D-16
prog1.c .. D-18
prog2.c .. D-19
led.h .. D-19
pass1.ld ... D-20
pass1 a.ld .. D-20
pass2.ld ... D-21

APPENDIX E
CONSIDERATIONS FOR WRITING PORTABLE SOFTWARE

Architecture Restrictions .. E-1
SALIGN Parameter .. E-1
Boundary Alignment ... E-2
Faults .. E-2
Physical Memory ... E-2
lACs ... E-2
Timing .. E-2
Interrupts ... E-3
Initialization .. E-3
Multiprocessor Preemption .. E-3
Breakpoints .,. E-3
Implementation Dependent Instructions E-3
Lock Pin .. E-3

xvi

inter TABLE OF CONTENTS

Figures

3-1. Execution Environment .. 3-2
3-2. Registers Available to a Single Procedure 3-3
3-3. Arithmetic Controls .. 3-6
3-4. Address Space Regions .. 3-10
3-5. Typical Use of Address-Space Regions 3-11
4-1. Local Registers and Procedure Stack 4-2
4-2. Procedure Stack Structure .. 4-4
4-3. System-Call Mechanism .. 4-10
4-4. Procedure-Table Structure .. 4-12
5-1. Integer Format and Range .. 5-2
5-2. Ordinal Format and Range .. 5-3
5-3. Decimal Format .. 5-4
5-4. Bits and Bit Fields 5-4
7-1. Binary Number System .. 7-2
7-2. Binary Floating-Point Format .. 7-3
7-3. Real Numbers and NaNs ... 7-5
7-4. Real-Number Formats ... 7-7
7-5. Storage of Real Values in Global and Local Registers 7-9
7-6. Interaction of Floating Underflow and Inexact Exceptions 7-27
8-1. Conceptual View of the Segment Table 8-4
8-2. Segment Addressing .. 8-5
8-3. Uses of Segments .. 8-6
8-4. Segment Selector ... 8-7
8-5. Segment Table ... 8-8
8-6. Generic Segment Descriptor .. 8-9
8-7. Region Segment Descriptors .. 8-12
8-8. Process, Port, and Procedure-Table Segment Descriptors 8-14
8-9. Segment-Table Segment Descriptors 8-15
8-10. Semaphore Segment Descriptor 8-15
8-11. Invalid Segment Descriptor .. 8-16
8-12. Conceptual View of Segment Paging 8-17
8-13. Page Table or Page-Table-Directory Structure 8-18
8-14. Page Table or Page-Table-Directory Entries , 8-19
8-15. Virtual-Address Translation .. 8-23
8-16. Address Space Structure .. 8-27
8-17. Making Region Boundaries Transparent 8-29
8-18. Mapping of PhYSical Memory to Region 3 8-31
9-1. System Data Structures .. 9-3
9-2. Processor-Control Block (PRCB) 9-6
9-3. Processor-Controls Word ... 9-7
9-4. Required Fields in PRCB for Single-Task Configuration 9-16
9-5. Initial Memory Image .. 9-18

xvii

inter TABLE OF CONTENTS

9-6. Algorithm for First Stage of Initialization Procedure 9-22
10-1. Interrupt Table .. 10-3
10-2. Interrupt-Control Register .. 10-6
10-3. Storage of an Interrupt Record on the Stack 10-11
11-1. lAC-Message Format ... 11-2
12-1. Fault Table and Fault-Table Entries 12-6
12-2. Fault Record .. 12-14
12-3. Storage of the Fault and Resumption Records on the Stack 12-17
13-1. Process-Control Block (PCB) 13-3
13-2. Process-Controls Word ... 13-4
13-3. Process Notice Field and Event-Fault Flags 13-7
13-4. Process-Control Block for Single-Process System 13-10
14-1. Process States .. 14-3
14-2. Ports .. 14-8
14-3. Queue Record .. 14-9
14-4. Semaphore Structure ... 14-13
15-1. Encoding of Address for Processor Receiving an lAC 15-2
16-1. Trace-Controls Word ... 16-2
A-i. Arithmetic Controls (Chapter 3) A-12
A-2. Registers Available to a Single Procedure (Chapter 3) A-13
A-3. Procedure Stack Structure (Chapter 4) A-14
A-4. SS's, Segment Table, and Segments (Chapter 8) A-15
A-5. Generic Segment Descriptor (Chapter 8) A-15
A-6. Region Segment Descriptors (Chapter 8) A-16
A-7. Process, Port, and Procedure Table Segment Descriptors (Chapter 8) A-17
A-8. Segment-Table Segment Descriptors (Chapter 8) A-17
A-9. Semaphore Segment Descriptor (Chapter 8) A-18
A-10. Invalid Segment Descriptor (Chapter 8) A-18
A-11. Page Table or Page-Table Directory Entries (Chapter 8) A-19
A-12. Processor Controls (Chapter 9) A-20
A-i3. PRCB (Chapter 9) ... A-21
A-14. Initial Memory Image (Chapter 9) A-22
A-i5. Interrupt Table (Chapter 10) A-23
A-16. Interrupt Record on Stack (Chapter 10) A-24
A-17. lAC Message Format (Chapter 11) A-25
A-18. Fault Record (Chapter 12) ... A-25
1-\-19. Fault Table and Fault-Table Entries (Chapter 12) A-26
A-20. PCB (Chapter 13) ... A-27
A-21. Process Controls (Chapter 13) A-28
A-22. Ports (Chapter 14) ... A-29
A-23. Trace Controls (Chapter 16) A-30
B-1. Instruction Formats ... B-1
C-1. Block Diagram of the 80960MC Processor C-2
C-2. Execution Time of an Instruction C-8

xviii

inter TABLE OF CONTENTS

C-3. Load Where the Next Instruction Requires the Fetched Data C-15
C-4. Load Where the Next Instruction Does Not Require the Fetched Data C-15
C-5. Back-to-Back Load Instructions C-16

Tables

1-1. Chapters of Interest to Specific Users 1-1
3-1. Condition Codes for True or False Conditions 3-7
3-2. Condition Codes for Inequality Conditions 3-8
3-3. Encoding of Arithmetic-Status Field : 3-8
3-4. Encoding of Floating-Point-Rounding-Control Field 3-9
4-1. Encoding of Return-Status Field 4-6
4-2. Encodings of Entry Type Field in Procedure Table Entry 4-11
5-1. Addressing Modes .. 5-6
6-1. Summary of the 80960 Instruction Set 6-3
6-2. Summary of the 80960MC Instruction-Set Extensions 6-4
6-3. Arithmetic Operations .. 6-7
7 -1. Real-Number Notation ... 7-3
7 -2. Denormalization Process ... 7-6
7-3. Real Numbers and NaN Encodings 7-8
7 -4. Arithmetic Controls Used in Floating-Point Operations 7-11
7 -5. Rounding Methods .. 7-13
7 -6. Rounding of Positive Numbers 7-13
7-7. Rounding of Negative Numbers 7-13
7-8. Format of QNaN Results ... 7-21
8-1. Page Access Rights Interpretation 8-20
9-1. Encoding of the State Field ... 9-7
9-2. ROM and RAM Resident Data Structures 9-20
11-1. lAC Messages .. 11-2
12-1. Fault Types and Subtypes ... 12-2
12-2. Fault Flags or Masks ... 12-12
13-1. Encoding of the Process-State Field 13-5
B-1. Encoding of Src1 and Src2 Fields in REG Format B-2
B-2. Encoding of Src/Dst Field in REG Format B-3
B-3. Addressing Modes for MEM Format Instructions B-5
B-4. Encoding of Scale Field .. B-6
C-1. Registers Scoreboarded According to Registers Referenced C-7
C-2. Logical Instruction Timing .. C-9
C-3. Bit Instruction Timing .. C-10
C-4. Scan and Span Bit Instruction Timing C-10
C-5. Move Instruction Timing .. C-10

xix

inter TABLE OF CONTENTS

C-S. Integer and Ordinal Arithmetic Instruction Timing C-11
C-7. Compare Instruction Timing ... C-11
C-8. Multiply and Divide Instruction Timing C-12
C-9. Multiply/Divide Execution Times Based on Significant Bits C-12
C-10. Branch Instruction Timing ... C-13
C-11. Miscellaneous Complex Instruction Timing C-14
C-12. Decimal Instruction Timing .. C-17
C-13. Simple Floating-Point Instruction Timing C-18
C-14. Complex Floating-Point Instruction Timing C-19
C-1S. Process-Management Instruction Timing C-19

xx

Guide to this Manual 1

CHAPTER 1
GUIDE TO THIS MANUAL

This chapter describes the organization of this manual, the contents of each chapter, and
terminology used in the manual. It also outlines the chapters of the manual that are of most
interest to applications programmers, compiler designers, and designers of operating-system
kernels (or system executives).

MANUAL STRUCTURE

This manual is a reference manual for the Intel 80960MC processor. It gives programmers and
system designers detailed information about the processor's programming environment and its
operating -system-support facilities.

The book is divided into three parts. Chapters 2 through 7 describe the processor's program­
ming environment, which includes the instruction-execution environment, data types, address­
ing modes, floating-point operations, and instruction .set. Chapters 8 through 16 describe the
facilities to support kernel functions, which include the memory management, processor
management, interrupt handling, fault handling, process management, and debug facilities.
Chapter 17 provides detailed descriptions of all the instructions in the instruction set, organized
in alphabetical order.

Table 1-1 shows those chapters that will be of most interest to applications programmers,
compiler designers, or kernel designers.

Table 1-1: Chapters of Interest to Specific Users

User Chapters

Applications Programmer Chapters 2 through 7; Chapter 17.

Compiler Designer Chapters 2 through 7; Chapters 10, 12, and 17;
and Appendices A, B, C, and.E.

Kernel Designer Chapters 2 through 17; and Appendices D andE.

CHAPTER OVERVIEW

The following is. a brief overview of the contents of each chapter:

Chapter 1 - Guide to This Manual. Overview of this manual.

Chapter 2 -Introduction to the 80960 Archite<;ture. Overview of the Intel ~0960 architec­
ture, the architecture on which the 80960MC processor is based.

Chapter 3 - Execution Environment. Description of the environment in which instructions
are executed. The topics 9iscussed in this chapter include the address space, registers, instruc­
tion pointer, and arithmetic controls.

1-1

inter GUIDE TO THIS MANUAL

Chapter 4 - Procedure Calls. Description of the various mechanisms available for making
procedure calls. The topics discussed here include the local call/return mechanism, procedure
stack, branch-and-link procedure calls, procedure table calls, and supervisor/user protection
model.

Chapter 5 - Data Types and Addressing Modes. Description of the non-floating-point data
types and how bit and byte strings are addressed. The addressing modes provided for address­
ing data in memory are also described in this chapter.

Chapter 6 - Instruction-Set Summary. Overview of all the non-floating point instructions
in the 80960MC instruction set, arranged by functional groups. Also included is a brief
description of the assembly-language instruction format.

Chapter 7 - Floating-Point Operation. Description of the processor's floating-point
processing facilities. This chapter includes an overview of floating-point numbers and a
description of the 80960MC floating-point data types and their relationship to the IEEE
floating-point standard. Descriptions of the floating-point instructions, exceptions, and faults
are. also included.

Chapter 8 - Memory Management. Description of the memory management facilities. The
topics discussed here include the physical-memory requirements, physical addressing, and the
virtual-memory management facilities.

Chapter 9 - Processor Management and Initialization. Description of the processor
management facilities. Included is a discussion of the processor control block (PRCB), proces­
sor states, priorities, processor timing, and the software requirements for processor manage­
ment. The requirements for processor initialization are described at the end of the chapter.

Chapter 10 - Interrupts. Description of the interrupt mechanism, interrupt priority, interrupt
table, interrupt-handling procedures, and the software requirements for handling interrupts.

Chapter 11 - Interagent Communication. Description of the interprocessor communication
(lAC) mechanism, which allows several processors to communicate with one another on the
bus. The topics covered in this chapter include the lAC mechanism and software requirements
for using internal lACs. A detailed description of each lAC is given in a reference section at
the end of the chapter.

Chapter 12 - Fault Handling. Description of the processor's fault-handling mechanism.
Included here is a discussion of the fault-table structure, fault-handling procedures, and the
software requirements for handling faults. A detailed description of each fault is given in a
reference section at the end of the chapter.

Chapter 13 - Process Management. Description of the process management facilities. The
topics discussed here include the process control block (PCB) and the software requirements
for running a single process.

Chapter 14 - Multiple-Process Management. Overview of the facilities provided to manage
mUltiple processes. The topics discussed in this chapter include explicit process dispatching,
process timing, automatic process dispatching, process synchronization, and interprocess com­
munication.

1·2

GUIDE TO THIS MANUAL

Chapter 15 - Multiple-Processor Operation. Overview of the facilities to support multiple
processor configurations. Included are descriptions of the external lAC handling mechanism.
process preemption, and the atomic instructions.

Chapter 16 - Debugging. Description of the debugging and monitoring support facilities,
including the trace control register.

Chapter 17 - Instruction Reference. Alphabetical listing of the complete 80960MC instruc­
tion set with detailed descriptions of each instruction, assembly-language syntax, examples,
and algorithms.

Appendix A - Instruction and Data Structure Quick Reference. Two lists of the
80960MC instructions: one sorted alphabetically by assembly-language mnemonic and one
sorted by machine language opcode. A collection of illustrations showing the system data
structures is also provided here.

Appendix B - Machine-Level Instruction Formats. Description of the machine-level in­
struction formats.

Appendix C - Instruction Timing. Description of the 80960MC processor's instruction
pipeline and how it affects instruction timing. The numbers of clock cycles required for each
instruction are also given.

Appendix D - Initialization Code. Listing of sample code to initialize the 80960MC proces­
sor.

Appendix E - Considerations for Writing Portable Software. Discussion of various aspects
of the 80960 architecture that should be considered if code written for the 80960MC processor
is intended to be ported at a later date to other processors in the Intel 80960 family.

NOTATION AND TERMINOLOGY

The following paragraphs describe the notation and terminology used in this manual that have
special meaning.

Reserved and Preserved

Certain fields in the processor's system data structures are described as being either reserved
fields or preserved fields. A reserved field is one that is used by other implementations of the
processor architecture. To help insure that a current software design is compatible with future
processors based on the 80960 architecture, the bits in reserved fields should be set to 0 when
the data structure is initially created. Thereafter, software should not access these fields.

Some fields in system data structures are shown as being required to be set to either 1 or O.
These fields should be treated as if they were reserved fields. They should be set to the
specified value when the data structure is created and not accessed by software thereafter.

1-3

inter GUIDE TO THIS MANUAL

A preserved field is one that the processor does not use. Software may use preserved fields for
any function.

Set and Clear

The terms set and clear are used in this manual to refer to the value of a bit field in a system
data structure. If a bit is set, its value is 1; if the bit is clear, its value is O. Likewise, setting a
bit means giving it a value of 1 and clearing a bit means giving it a value of O.

1-4

Introduction to the
80960 Architecture

2

CHAPTER 2
INTRODUCTION TO THE 80960 ARCHITECTURE

This chapter provides an overview of the architecture on which the 80960MC processor is
based.

A NEW 32-BIT ARCHITECTURE FROM INTEL

The 80960MC processor is the military-grade member of a new family of processors from
Intel. This processor family is based on a new 32-bit architecture called the 80960 architec­
ture. The 80960 architecture has been designed specifically to meet the needs of embedded
applications such as avionics, aerospace, weapons systems, robotics, and instrumentation,
where high reliability is critical. It represents a renewed commitment from Intel to provide
reliable, high-performance processors and controllers for the embedded processor marketplace.

The 80960 architecture can best be characterized as a high-performance computing engine. It
features high-speed instruction execution and ease of programming. It is also easily extensible,
allowing processors and controllers based on this architecture to be conveniently customized to
meet the needs of specific processing and control applications.

Some of the important attributes of the 80960 architecture include:

• full 32-bit registers

• high-speed, pipelined instruction execution

• a convenient program execution environment with 32 general-purpose registers and a
versatile set of special-function registers

• a highly optimized procedure call mechanism that features on-chip caching of local vari-
ables and parameters

• extensive facilities for handling interrupts and faults

• extensive tracing facilities to support efficient program debugging and monitoring

• register scoreboarding and write buffering to permit efficient operation with lower perfor­
mance memory subsystems

The 80960MC processor implements the 80960 architecture, plus it offers several extensions to
the architecture. Some of these extensions, such as. on-chip support for floating-point arith­
metic, virtual memory management, and multitasking, are designed to enhance overall system
performance. Several other extensions are designed to enhance system reliability and robust­
ness. These extensions include facilities for hardware enforced protection of software modules
and for creating fault tolerant systems through the use of redundant processors.

The following sections describe those features of the 80960 architecture that are provided to
streamline code execution and simplify programming. The extensions to this architecture
provided in the 80960MC processor are described at the end of the chapter.

2-1

inter INTRODUCTION TO THE 80960 ARCHITECTURE

HIGH PERFORMANCE PROGRAM EXECUTION

Much of the design of the 80960 architecture has been aimed at maximizing the processor's
computational and data processing speed through increased parallelism. The following
paragraphs describe several of the mechanisms and techniques used to accomplish this goal,
including:

• an efficient load and store memory-access model

• caching of code and procedural data

• overlapped execution of instructions

• many one or two clock-cycle instructions

Load and Store Model

One of the more important features of the 80960 architecture is that most of its operations are
performed on operands in registers, rather than in memory. For example, all the arithmetic,
logical, comparison, branching, and bit operations are performed with registers and literals.

This feature provides two benefits. First, it increases program execution speed by minimizing
the number of memory accesses required to execute a program. Second, it reduces memory
latency encountered when using slower, lower-cost memory parts.

To support this concept, the architecture provides a generous supply of general-purpose
registers. For each procedure, 32 registers are available (28 of which are available for general
use). These registers are divided into two types: global and local. Both these types of
registers can be used for general storage of operands. The only difference is that global
registers retain their contents across procedure boundaries, whereas the processor allocates a
new set of local registers each time a new procedure is called.

The architecture also provides a set of fast, versatile load and store instructions,- These instruc­
tions allow burst transfers of 1, 2, 4, 8, 12, or 16 bytes of information between memory and the
registers.

On-Chip Caching of Code and Data

To further reduce memory accesses, the architecture offers two mechanisms for caching code
and data on chip: an instruction cache and multiple sets of local registers. The instruction
cache allows prefetching of blocks of instruction from memory, which helps insure that the
instruction execution pipeline is supplied with a steady stream of instructions. It also reduces
the number of memory accesses required when performing iterative operations such as loops.
(The size of the instruction cache can vary. With the 80960MC processor, it is 512 bytes.)

To optimize the architecture's procedure call mechanism, the processor provides multiple sets
of local registers. This allows the processor to perform most procedure calls without having to
write the local registers out to the stack in memory.

2-2

INTRODUCTION TO THE 80960 ARCHITECTURE

(The number of local-register sets provided depends on the processor implementation. The
80960MC processor provides four sets of local registers.)

Overlapped Instruction Execution

Another technique that the 80960 architecture employs to enhance program execution speed is
overlapping the execution of some instructions. This is accomplished through two
mechanisms: register scoreboarding and branch prediction.

Register scoreboarding permits instruction execution to continue while data is being fetched
from memory. When a load instruction is executed, the processor sets one or more scoreboard
bits to indicate the target registers to be loaded. After the target registers are loaded, the
scoreboard bits are cleared. While the target registers are being loaded, the processor is
allowed to execute other instructions that do not use these registers. The processor uses the
scoreboard bits to insure that target registers are not used until the loads are complete. (The
checking of scoreboard bits is transparent to software.) The net result of using this technique is
that code can often be optimized in such a way as to allow some instructions to be executed
parallel.

Single-Clock Instructions

It is the intent of the 80960 architecture that a processor be able to execute commonly used
instructions such as move, add, subtract, logical operations, compare and branch in a minimum
number of clock cycles (preferable one clock cycle). The architecture supports this concept in
several ways. For example, the load and store model described earlier in this chapter (with its
concentration on register-to-register operations) allows simple operations to be performed
without the overhead of memory-to-memory operations.

Also, all the instructions in the 80960 architecture are 32 bits or 64 bits long and aligned on
32-bit boundaries. This feature allows instructions to be decoded in one clock cycle. It also
eliminates the need for an instruction-alignment stage in the pipeline.

The design of the 80960MC processor takes full advantage of these features of the architecture,
resulting in more than 50 instructions that can be executed in a single clock-cycle.

Efficient Interrupt Model

The 80960 architecture provides an efficient mechanism for servicing interrupts from external
sources. To handle interrupts, the processor maintains an interrupt table of 248 interrupt
vectors (240 of which are available for general use). When an interrupt is signaled, the
processor uses a pointer from the interrupt table to perform an implicit call to an interrupt
handler procedure. In performing this call, the processor automatically saves the state of the
processor prior to receiving the interrupt; performs the interrupt routine; and then restores the
state of the processor. A separate interrupt stack is also provided to segregate interrupt
handling from application programs.

2-3

inter INTRODUCTION TO THE 80960 ARCHITECTURE

The interrupt handling facilities also feature a method of prioritizing interrupts. Using this
technique, the processor is able to store interrupts that are lower in priority than the task the
processor is currently working on in a pending interrupt section of the interrupt table. At
certain defined times, the processor checks the pending interrupts and services them.

SIMPLIFIED PROGRAMMING ENVIRONMENT

Partly as a side benefit of its streamlined execution environment and partly by design, proces­
sors based on the 80960 architecture are particularly easy to program. For example, the large
number of general-purpose registers allows relatively complex algorithms to be executed with
a minimum number of memory accesses. The following paragraphs describe some of the other
features that simplify programming.

Highly Efficient Procedure Call Mechanism

The procedure call mechanism makes procedure calls and parameter passing between
procedures simple and compact. Each time a call instruction is issued, the processor automati­
cally saves the current set of local registers and allocates a new set of local registers for the
called procedure. Likewise, on a return from a procedure, the current set of local registers is
deallocated and the local registers for the procedure being returned to are restored. On a
procedure call, the program thus never has to explicitly save and restore those local variables
and parameters that are stored in local registers.

Versatile Instruction Set and Addressing

The selection of instructions and addressing modes also simplifies programming. The architec­
ture offers a full set of load, store, move, arithmetic, comparison, and branch instructions, with
operations on both integer and ordinal data types. It also provides a complete set of Boolean
and bit-field instructions, to simplify operations on bits and bit strings.

The addressing modes are efficient and straightforward, while at the same time providing the
necessary indexing and scaling modes required to address complex arrays and record struc­
tures.

The large 4-gigabyte address space provides ample room to store programs and data. The
availability of 32 addressing lines allows some address lines to be memory-mapped to control
hardware functions.

Extensive Fault Handling Capability

To aid in program development, the 80960 architecture defines a wide selection of faults that
the processor detects, including arithmetic faults, invalid operands, invalid operations, and
machine faults. When a fault is detected, the processor makes an implicit call to a fault handler
routine, using a mechanism similar to that described above for interrupts. The information
collected for each fault allows program developers to quickly correct faulting code. It also
allows automatic recovery from some faults.

2-4

INTRODUCTION TO THE 80960 ARCHITECTURE

Debugging and Monitoring

To support debugging systems, the 80960 architecture provides a mechanism for monitoring
processor activity by means of trace events. The processor can be configured to detect as many
as seven different trace events, including branches, calls, supervisor calls, returns, prereturns,
breakpoints, and the execution of any instruction. When the processor detects a trace event, it
signals a trace fault and calls a fault handler. Intel provides several tools that use this feature,
including an in-circuit emulator (ICE) device.

SUPPORT FOR ARCHITECTURAL EXTENSIONS

The 80960 architecture described earlier in this chapter provides a high-performance comput­
ing engine for use as the computational and data-processing core of embedded processors or
controllers. The architecture also provides several features that enable processors based on this
architecture to be easily customized to meet the needs of specific embedded applications, such
as signal processing, array processing, or graphics processing.

The most important of these features is a set of 32 special-function registers. These registers
provide a convenient interface to circuitry in the processor or to pins that can be connected to
external hardware. They can be used to control timers, to perform operations on special data
types, or to perform I/O functions.

The special-function registers are similar to the global registers. They can be addressed by all
the register-access instructions.

EXTENSIONS INCLUDED IN THE 80960MC PROCESSOR

The extensions to the 80960 architecture included in the 80960MC processor are built on top of
the processor's core computing engine. These extensions are aimed at improving the ef­
ficiency and reliability of embedded systems.

On-Chip Floating Point

The 80960MC processor provides a complete implementation of the IEEE standard for binary
floating-point arithmetic (IEEE 754-185). This implementation includes a full set of floating­
point operations, including add, subtract, multiply, divide, trigonometric functions, and
logarithmic functions. These operations are performed on single precision (32-bit), double
precision (64-bit), and extended precision (80-bit) real numbers.

One of the benefits of this implementation is that the floating-point handling facilities are
completely integrated into the normal instruction execution environment. Single- and double­
precision floating-point values are stored in the same registers as non-floating point values.
Also, four 80-bit floating-point registers are provided to hold extended-precision values.

2-5

inter INTRODUCTION TO THE 80960 ARCHITECTURE

String and Decimal Operations

The 80960MC processor provides several instructions for moving, filling, and comparing byte
strings in memory. These instructions speed up string operations and reduce the amount of
code required to handle strings.

The decimal instructions perform move, add with carry, and subtract with carry operations on
binary-coded decimal (BCD) strings.

Virtual-Memory Support

Another of the 80960MC processor's important features is support for virtual-memory
management. When using the processor in virtual-memory mode, the processor provides each
process (or task) with an address space of up to 232 bytes. This address space is paged into
physical memory in 4K-byte pages. On-chip memory-management facilities handle virtual-to­
physical address translation. A translation look-aside buffer (TLB) speeds address translation
by storing virtual-to-physical address translations for frequently accessed parts of memory,
such as the location of the page tables and the location of often used system data structures.

Protection

The 80960MC processor offers two mechanisms for protecting critical data structures or
software modules. The first is the ability to use page rights bits to restrict access to individual
pages. Page rights allow various levels of access to be assigned to a page, ranging from no
access to read only to read-write.

The second protection mechanism is a user/supervisor protection model. This two-level
protection model provides hardware enforced protection of kernel procedures and data struc­
tures. When using this protection mechanism, privileged procedures and data are placed in
protected pages of memory. These pages can then be accessed only through a procedure table,
which provides a tightly controlled interface to kernel functions.

Multitasking

The 80960MC processor offers a variety of process management facilities to support concur­
rent execution of multiple tasks. These facilities can be divided into two groups: process
scheduling and interprocess communications.

The process scheduling facilities consist of a set of general-purpose data structures and instruc­
tions, which are designed to support several different multitasking schemes. For example, the
processor provides a set of instructions that allow the kernel to explicitly dispatch a task (bind
it to the processor) and to suspend a task (save the current state of a task so that another task
can be bound to the processor). These instructions can be used within kernel procedures to
schedule, dispatch, and preempt multiple tasks.

The processor also provides a unique feature called self dispatching. Here, the kernel
schedules tasks by queuing them to a dispatch port. Thereafter, the processor handles the

2-6

INTRODUCTION TO THE 80960 ARCHITECTURE

dispatching, preempting, and rescheduling of the tasks automatically, independent of the ker­
nel. When using this mechanism, tasks can be scheduled by priority, with up to 32 priority
levels to choose from.

The processor's interprocess communication facilities include support for semaphores and
communication ports. These facilities allow synchronization of interdependent tasks and
asynchronous communication between tasks.

Multiprocessing

The 80960MC processor provides several mechanisms designed to simplify the design of
multiple-processor systems, allowing several processors to run in parallel, using shared
memory resources. One of these mechanisms is the self-dispatching capability described
above. Here, two or more processors can schedule and dispatch processes from a single
dispatch port, with each processor equally sharing the processing load.

The processor also provides an interagent communication (lAC) mechanism that allows
processors to exchange messages among themselves on the bus. This mechanism operates
similarly to the interrupt mechanism, except that lAC messages are passed through dedicated
sections of memory. The lAC mechanism can be used to preempt processes running on
another processor, to manage interrupt handling, or to initialize and synchronize several
processors.

A set of atomic instructions are also provided to synchronize memory accesses. Multiple
processors can then access shared memory without inserting inaccuracies and ambiguities into
shared data structures.

Fault Tolerance

The 80960 family of components supports fault-tolerant system design through the use of the
M82965 Bus Extension Unit component. The M82965 allows two processors to be operated in
tandem to form a self-checking module. The two M82965s check the outputs of two proces­
sors (a master and a checker) cycle-by-cycle. If the checking M82965 detects a difference
between outputs, it signals an error. A software recovery procedure can then be initiated.

This fault detection mechanism supports several fault detection and recovery techniques, in­
cluding self healing, and continuous-operation (non-stop) systems.

LOOK FOR MORE IN THE FUTURE

The 80960 architecture offers exceptional performance, plus a wealth of useful features to help
in the design of efficient and reliable embedded systems. But equally important, it offers lots
of room to grow. The 80960MC processor provides average instruction processing rates of 7.5
million instructions per second (7.5 MIPS) at 20 MHz clock rate and 10 MIPS at a 25 MHz
clock rate1. This performance places the 80960MC at the top of the performance range for
advanced, VLSI processor architectures.

'I MIP is equivalent to the performance of a Digital Equipment Corp. V AX 11/780.

2-7

\

INTRODUCTION TO THE 80960 ARCHITECTURE

However, the 80960MC is only the beginning. With improvements in VLSI technology, future
implementations of the 80960 architecture will offer even greater performance. They will also
offer a variety of useful extensions to solve specific control and monitoring needs in the field
of embedded applications.

2·8

Execution Environment 3

CHAPTER 3
EXECUTION ENVIRONMENT

This chapter describes how the 80960MC processor executes instructions and how it stores and
manipulates data. The parts of the execution environment that are discussed include the address
space, the register model, the instruction pointer, and the arithmetic controls.

The execution environment's procedure stack and procedure-call mechanism are described in
Chapter 4.

OVERVIEW OF THE EXECUTION ENVIRONMENT

When a process (or a program running within the context of a process) is run on the 80960MC
processor, the processor first sets up an execution environment for that process. It then begins
executing instructions for that process, using this execution environment to store and manipu­
late data.

Figure 3-1 shows the part of the execution environment that the frocessor sets up to run a
single procedure within a process. This environment consists of a 2 2-byte address space, a set
of global and floating-point registers, a set of local registers, a set of arithmetic-controls bits,
the instruction pointer, a set of process-controls bits, and a set of trace-controls bits. All of
these items reside on the 80960MC chip except the address space.

When the instruction stream for the process includes a procedure call, a procedure stack and
some additional elements are added to this execution environment. These procedure-call
related elements are shown and discussed in Chapter 4.

ADDRESS SPACE

Each process running on the processor is assigned a separate address space. From the point of
view of the processor, this address space is flat (unsegmented) and byte addressable, with
addresses running contiguously from 0 to 232 - 1. The process can allocate space for data,
instructions, and the stack anywhere within this space.

The address space being described here is a logical address space that the operating system can
map into physical memory either directly or indirectly (using the processor's virtual-addressing
mechanism). The memory mapping method used is immaterial to this discussion. Once a
process has been bound to the processor, the processor sees only the logical address space for
that process.

NOTE

The memory-management method that the operating system uses can place some minor limita­
tions on how the address space may be allocated. These limitations are described later in this
chapter in the section titled "Partitioning the Address Space."

3-1

EXECUTION ENVIRONMENT

90 ..-------.

SIXTEEN
32-BIT

REGISTERS
91S ____

fpO

GLOBAL
REGISTERS'

FOUR 80-81T REGISTERS
FLOATING­
POINT
REGISTERS fp3 ________ --'

rO..-------.
SIXTEEN
32-81T

REGISTERS
r1S ____

32-81TS

32-BITS

32-81TS

32-81TS

Notes:

LOCAL
REGISTERS2

ARITHMETIC CONTROLS

INSTRUCTION POINTER

PROCESS CONTROLS

TRACE CONTROLS

0,.....----..,

1 Register g 15 is reserved for stack management functions.

ADDRESS
SPACE

2 Registers rO, r1, and r2 are reserved for stack management functions.

Figure 3-1: Execution Environment

REGISTER MODEL

The processor provides three types of data registers: global, floating-point, and local. The 16
global registers constitute a set of general-purpose registers, the contents of which are
preserved across procedure boundaries. The 4 floating-point registers are provided to support
extended floating-point arithmetic. Their contents are also preserved across procedure boun­
daries. The 16 local registers are provided to hold parameters specific to a procedure (i.e.,

3-2

EXECUTION ENVIRONMENT

local variables). For each procedure that is called, the processor allocates a separate set of 16
local registers.

For anyone procedure within a process, 36 registers are thus available (as shown in Figure
3-2); the 16 global registers, the 4 floating-point registers, and the 16 local registers. All of
these registers are maintained on the processor chip.

gO

CONTENTS OF
GLOBAL AND

FLOATING-POINT
REGISTERS
PRESERVED

ACROSS
PROCEDURE

BOUNDARIES

REGISTERS gO THROUGH g14
AVAILABLE FOR GENERAL USE

g15 FRAME POINTER (FP)

GLOBAL
REGISTERS

fpO I
AVAILABLE FOR GENERAL USE FLOATING-POINT

REGISTERS
fp3 ~ _______________ ~

NEWSETOF
LOCAL

REGISTERS
ALLOCATED

FOR EACH
PROCEDURE

rO PREVIOUS FRAME POINTER (PFP)

r1 STACK POINTER (SP)

r2 RETURN INSTRUCTION POINTER (RIP)

REGISTERS r3 THROUGH r15
AVAILABLE FOR GENERAL USE

L ,:, '--------'
LOCAL

REGISTERS

Figure 3-2: Registers Available to a Single Procedure

3-3

EXECUTION ENVIRONMENT

Global Registers

The 16 global registers (gO through g15) are 32-bit registers. Each register can thus hold a
word (32 bits) of data. Registers gO through g14 are general-purpose registers; g15 is reserved
for the current frame pointer (FP). The FP contains the address of the first byte in the current
(topmost) stack frame. (The FP and the procedure stack are discussed in detail in Chapter 4.)

The general-purpose global registers (gO through g14) can hold any of the data types that the
processor recognizes (i.e., ordinals, integers, reals, byte strings).

Floating-Point Registers

The four floating-point registers (fpO through fp3) are 80-bit registers. These registers can be
accessed only as operands of floating-point instructions. All numbers stored in these registers
are stored in extended-real format. (This format is described in Chapter 7.) The processor
automatically converts floating-point values from real or long-real format into extended-real
format when a floating-point register is used as a destination for an instruction.

Storage of Global and Floating-Point Registers

The global and floating-point registers are associated with the current process. When execu­
tion of the current process is suspended, the values in these registers are stored in the process
control block (PCB) for the process. (The PCB is described in Chapter 13.)

Local Registers

The 16 local registers (rO through rl5) are 32-bit registers, like the global registers. The
purpose of the local registers is to provide a separate set of registers, aside from the global and
floating-point registers, for each active procedure. Each time a procedure is called, the proces­
sor automatically sets up a new set of local registers for that procedure and saves the local
registers for the calling procedure. The program does not have to explicitly save and restore
these registers.

Local registers r3 through rl5 are general-purpose registers. Registers rO through r2 are
reserved for special functions, as follows: register rO contains the previous frame pointer
(PFP); r1 contains the stack pointer (SP); and r2 contains the return instruction pointer (RIP).
(The PFP, SP, and RIP are discussed in detail in Chapter 4.) The processor accesses the local
registers at the same speed as it does the global registers.

Register Alignment

Several of the processor's instructions operate on multiple-word operands. For example, the
load-long instruction (ldl) loads two words from memory into two consecutive registers. Here,
the register number for the least significant word is specified in the instruction and the most­
significant word is automatically loaded into the next higher-numbered register.

3-4

EXECUTION ENVIRONMENT

In cases where an instruction specifies a register number and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., gO, g2) and an
integral multiple of four if three or four registers are accessed (e.g., gO, g4). If a register
reference for a source value is not properly aligned, the value is undefined. If a register
reference for a destination value is not properly aligned, the registers that the processor writes
to are undefined.

Register Scoreboarding

The 80960MC provides a mechanism called register score boarding that in certain situations
permits instructions to be executed concurrently. This mechanism works as follows. While an
instruction is being executed, the processor sets a scoreboard bit to indicate that a particular
register or group of registers is being used in an operation. If the instructions that follow do
not use registers in that group, the processor in some instances is able to execute those instruc­
tions before execution of the prior instruction is complete. In effect, the register scoreboarding
mechanism allows some instructions to be executed in parallel.

A common application of this feature is to execute one or more fast instructions (instructions
that take one to three clock cycles) concurrently with load instructions. A load instruction
typically takes 3 to 9 clock cycles (depending on the design of system memory and the
addressing mode used). Register scoreboarding allows other instructions to be executed con­
currently with the load instruction, providing that the other instructions do not affect the
registers being loaded. For example, the following group of instructions loads a group of local
registers while performing some other operations on data in global registers.

Id xyz, r6 # r6 ~ data from address xyz
addi g4, g6, g7 # g7 ~ g4 + g6
addi g9, glO, gll # gll ~ g9 + glO
Id abc, r8 # r6 ~ data from address abc
and gO, Oxffff, gl # gl ~ gO AND Oxffff
addi r6, r8, r7 # r7 ~ r6 + r8

Here, the two addi instructions following the first load and the and instruction following the
second load are performed concurrently with the bus accesses of the two load instructions.

(Appendix C provides a detailed discussion of the processor's instruction-execution pipeline
and register scoreboarding.)

INSTRUCTION POINTER

The instruction pointer (IP) is the address (in the address space of the current process) of the
instruction currently being executed. This address is 32 bits; however, since instructions are
required to be aligned on word boundaries in memory, the 2 least-significant bits of the IP are
always zero.

The IP is stored in the processor and cannot be read directly. However, the IP-with­
displacement addressing mode allows the IP to be used as an offset into the address space.
This addressing mode can also be used with the Ida (load address) instruction to read the
current value of the IP.

3·5

EXECUTION ENVIRONMENT

When a break occurs in the execution of a program or process (due to an interrupt, procedure
call, or process suspension action), the IP of the next instruction to be executed (i.e., the RIP) is
stored in local register r2, which is then stored on the stack. Refer to Chapter 4 for further
discussion of this operation.

ARITHMETIC CONTROLS

The processor's arithmetic controls are made up of a set of 32 bits, which are cached on the
processor chip in the arithmetic-controls register. Figure 3-3 shows the arrangement of the
arithmetic controls bits. The arithmetic controls bits include condition code flags; floating­
point control and status flags and masks; integer control and status flags; and a flag that
controls faulting on imprecise faults.

I .. RESERVED
L---J...J...J....J....I.., ..J...J...J, (INITIALIZE TO 0)

t ~CONOITION COOE

- ARITHMETIC STATUS

'----------INTEGER OVERFLOW FLAG

'-------------INTEGER OVERFLOW MASK

'-----,-------------NO IMPRECISE FAULTS

'----------------FLOATING OVERFLOW FLAG

'----------------FLOATING UNOERFLOWFLAG

'------------------FLOATING INVALID-OPFLAG

'-------------------FLOATINGZERO-DIVIDE FLAG

'-------------------FLOATING INEXACT FLAG

'----------------------FLOATING OVERFLOW MASK

'----------------------FLOATINGUNDERfLOWMASK

'-----------------------fLOATINGINVALlD·OPMASK

'-------------------------FLOATINGZERO-DIVIOE MASK

'-------------------------FLOATINGINEXACTMASK

'-------------------------FLOATING-POINT NORMALIZING MODE

'---------------------------FLOATING-POINTROUNDINGCONTROL

Figure 3-3: Arithmetic Controls

The processor sets or clears these bits to show the results of certain operations. For example,
the processor modifies the condition code flags after each comparison operation to show the
result of the comparison. Other arithmetic control bits, such as the floating-point fault masks,
are set by the currently running program to tell the processor how to respond to certain fault
conditions.

Initializing and Modifying the Arithmetic Controls

The state of the processor's arithmetic controls is undefined at processor initialization, on a
processor restart (initiated with a restart processor lAC), or on a warmstart processor (initiated
with a warmstart processor lAC). Part of the initialization code or restart code should thus be
to set the arithmetic controls to a specific state.

The arithmetic controls can be examined and modified using the modify arithmetic controls
(modac) instruction. This instruction uses a mask to allow specific bits to be changed.

3-6

EXECUTION ENVIRONMENT

When the processor binds itself to a process, it loads the arithmetic controls word in the
process's PCB into its arithmetic controls register. When the processor suspends a process, it
automatically stores the state of the arithmetic controls register in the PCB.

The processor also automatically saves and restores the arithmetic controls when it services an
interrupt or handles a fault. Here, the processor saves the current state of the arithmetic
controls in an interrupt record or fault record, then restores the arithmetic controls upon return­
ing from the interrupt or fault handler, respectively.

Functions of the Arithmetic-Controls Bits

The functions of the various arithmetic controls bits are as follows:

NOTE

In the following discussion, some of the arithmetic controls bits are referred to as "sticky flags."
A sticky flag is one that the processor never implicitly clears. Once the processor sets a sticky
flag to indicate that a particular condition has occurred, the flag remains set until the program
explicitly clears it.

Condition-Code Flags

The processor sets the condition-code flags (bits 0-2) to indicate the results of certain instruc­
tions (usually compare instructions). Other instructions, such as conditional-branch instruc­
tions, examine these flags and perform functions according to their state. Once the processor
has set these flags, it leaves them unchanged until it executes another instruction that uses these
flags to store results.

These flags are used to show either true or false conditions or inequalities (greater-than, equal,
or less-than conditions). Table 3-1 shows how the processor sets the flags to show true or false
conditions.

Table 3-1: Condition Codes for True or False Conditions

Condition Condition
Code

010 true

000 false

Table 3-2 shows how the processor sets the condition-code flags to show inequalities. The
term unordered is used when comparing floating-point numbers. If, when comparing two
floating-point values, one of the values is a NaN (not a number), the relationship is said to be
"unordered." Refer to the section in Chapter 7 titled "Comparison and Classification" for
further information about the ordered and unordered conditions.

3-7

EXECUTION ENVIRONMENT

Table 3-2: Condition Codes for Inequality Conditions

Condition Condition
Code

000 unordered

001 greater than

010 equal

100 less than

Certain instructions (such as the branch-if instructions) use a 3-bit mask to evaluate the
condition-code flags. For example the branch-if-greater-or-equal instruction (bge) uses a mask
of 011 2 to determine if the condition code is set to either greater-than or equal. These masks
cover the additional conditions of greater-or-equal, less-or-equal (1102)' not-equal (101 2), and
ordered (111 2).

Arithmetic-Status Flags

The processor uses the arithmetic-status field (bits 3-6) in conjunction with the classify instruc­
tions (c1assr and c1assrl) to show the class of a floating-point number. When executing these
instructions, the processor sets the bits in the arithmetic-status field as shown in Table 3-3,
according to the class of the value being classified. The "s" bit in Table 3-3 is set to the sign of
the value being classified.

Table 3-3: Encoding of Arithmetic-Status Field

Arithmetic Classification
Status

sOOO zero

sOOl denormalized number

sOlO normal finite number

sOIl infinity

s100 quiet NaN

s101 signaling NaN

s110 reserved operand

The remainder real instructions (remr and remrl) also use the arithmetic-status field as
described in Chapter 17.

Integer-Overflow Flag and Mask

The integer-overflow flag (bit 8) and the integer-overflow mask (bit 12) are used in conjunc­
tion with the arithmetic integer-overflow fault. The mask bit masks the integer-overflow fault.
When the fault is masked, the processor sets the integer-overflow flag whenever integer over­
flow occurs, to indicate that the fault condition has occurred even though the fault has been
masked. If the fault is not masked, the fault is allowed to occur and the flag is not set. The

3-8

EXECUTION ENVIRONMENT

integer-overflow flag is a sticky flag. (Refer to the discussion of the arithmetic integer­
overflow fault in Chapter 12 for more information about the integer-overflow mask and flag.)

No-Imprecise-Faults Flag

The no-imprecise-faults flag (bit 15) determines whether or not imprecise faults are allowed to
be raised. If set, faults are required to be precise; if clear, certain faults can be imprecise.
(Refer to the section in Chapter 12 titled "Precise and Imprecise Faults" for more information
about this flag.)

Floating-Point Flags and Masks

The floating-point flags (bits 16 through 20) and masks (bits 24 through 28) perform the same
functions as the integer-overflow flag and mask, except they are used for operations on real
(floating point) numbers. When a mask is set, its associated floating-point fault is masked.
When a mask is clear, the processor sets the flag for the associated fault whenever the fault
condition occurs, but does not generate a fault. All the floating-point flags are sticky bits.
Refer to the section in Chapter 7 titled "Exceptions and Fault Handling" for a detailed discus­
sion of the floating-point faults and their associated flags and masks in the arithmetic controls.

Floating-Point-Normalizing-Mode Flag

The floating-point-normalizing-mode flag (bit 29) determines whether or not floating-point
instructions are allowed to operate on denormalized numbers. If set, floating-point instructions
are allowed to operate on denormalized numbers; if clear, the processor generates a floating
reserved-operand fault when it detects denormalized numbers that are used as operands for
floating-point instructions. (Refer to the section in Chapter 7 titled "Normalizing Mode" for
more information on the use of this flag.)

Floating-Point-Rounding Control

The floating-point-rounding-control field (bits 30-31) indicates which rounding mode is in
effect for floating point computations. These bits are set as shown in Table 3-4, depending on
the rounding mode to be selected.

Table 3-4: Encoding of Floating-Point-Rounding-Control Field

Rounding Rounding Mode
Control

00 round to nearest (even)

01 Round down (toward negative infinity)

10 Round up (toward positive infinity)

11 Truncate (round toward zero)

(Refer to the section in Chapter 7 titled "Rounding Control" for more information on the use of
the floating-point-rounding-control field.)

3·9

inter EXECUTION ENVIRONMENT

All the unused bits in the arithmetic controls are reserved and must be set to O.

PROCESS AND TRACE CONTROLS

The processor's process controls and trace controls are also cached on the processor chip. The
process controls are a set of 32 bits that control or show the status of the currently running
process. The process controls are described in detail in Chapter 13.

The trace controls are a set of 32 bits that control the tracing facilities of the processor. The
trace controls are described in Chapter 16.

PARTITIONING THE ADDRESS SPACE

Instructions, data, or stacks can be located anywhere in the address space, with the following
exceptions. Instructions must be aligned on word boundaries. When handling a 32-bit instruc­
tion pointer, the processor generally assumes that the 2 least-significant bits of the address are
zero.

The processor's virtual-memory management system requires that the address space be divided
into four regions, as shown in Figure 3-4.

MAXIMUM ADDRESS
RANGE OF EACH

REGION

00000000

3FFF FFFF
40000000

7FFF FFFF
80000000

BFFF FFFF
COOO 0000

FFFF FFFF ------..

REGION 0

REGION 1

REGION 2

PROCESS
SPECIFIC

]
SHARED BY ALL

REGION 3 PROCESSES

Figure 3·4: Address Space Regions

3-10

EXECUTION ENVIRONMENT

Each of these regions is managed with a separate page table or set of page tables. This allows
the read and write rights of a region to be assigned on a page-by-page basis.

In addition, region 3 is defined to be processor specific, meaning that it is shared by all the
processes that are running on the processor.

NOTE

Dividing the address space into regions and pages is a memory management convention that
does not affect the processor's view of the address space. The processor still views the address
space as being fiat, with one exception. When an operand spans across one of the region
boundaries shown in Figure 3-4, the results are unpredictable. This exception should be of only
minor concern. However, if it does cause a problem, the section in Chapter 8 titled "Making
Region Boundaries Transparent" describes how to overcome this limitation by mapping regions
0, I, and 2 into a single page-table directory.

In the physical-addressing mode, there is no paging of the address space; so, the restriction on
operands crossing region boundaries does not apply.

Figure 3-5 shows one way that the regions of the address space can be used. Here the process
specific regions, regions 0, 1, and 2, are used to store the data, instructions, and procedure
stack, respectively. Region 3, which all the processes share, contains system code and data,
and the interrupt stack.

READIWRITE [REGION 0

READ ONLY [REGION 1

READIWRITE [REGION 2

READIWRITE [SUPERVISOR
ONLY

REGION 3

Figure 3-5: Typical Use of Address-Space Regions

This partitioning of the address space provides two benefits. First, the region containing code
can be write protected. Second, the system area will not have to be swapped in and out each
time there is a process switch, which reduces process switching time.

3-11

inler EXECUTION ENVIRONMENT

INSTRUCTION CACHING

The processor provides a 512-byte cache for instructions. When the processor fetches an
instruction or group of instructions from memory, they are stored in this cache before being fed
into the instruction-execution pipeline. The processor manages this cache transparently from
the program being run.

This instruction cache is a read-only cache, meaning that once bytes from the instruction
stream are written into the instruction cache, they cannot be changed. Because of this, the
processor does not support self-modified programs in a transparent fashion. The only way to
change the instruction stream once it has been written into the instruction cache is to purge the
instruction cache. The lAC message "purge instruction cache" is provided for this purpose, as
described in Chapter 11.

3-12

Procedure Calls 4

CHAPTER 4
PROCEDURE CALLS

This chapter describes the 80960MC processor's procedure call and stack mechanism. It also
describes the user-supervisor protection model, which provides protection for privileged
procedures such as operating-system procedures.

TYPES OF PROCEDURE CALLS

The processor supports three types of procedure calls:

• Local call

• System call

• Branch and link

A local call uses the processor's call/return mechanism, in which a new set of local registers
and a new frame on the stack are allocated for the called procedure. A system call is similar to
a local call, except that it provides access to procedures through a procedure table. The most
important use of a system call is to call privileged procedures, called supervisor procedures. A
system call to a supervisor procedure is called a supervisor call. A branch and link is merely a
branch to a new instruction with the return IP stored in a global register.

In this chapter, the call/return mechanism is introduced first and is followed by a discussion of
how this mechanism is used to make local calls and system calls.

NOTE
The processor's interrupt- and fault-handling mechanisms use implicit procedure calls. Implicit
calls to interrupt-handler and fault-handler procedures are described in detail in Chapters 10 and
12, respectively.

CALL/RETURN MECHANISM

The processor's call/return mechanism has been designed to simplify procedure calls and to
provide a flexible method for storing and handling variables that are local to a procedure.

Two structures support this mechanism: the local registers (on the processor chip) and the
procedure stack (in memory). Figure 4-1 shows the relationship of the local registers to the
procedure stack. For each procedure, the processor automatically allocates a set of local
registers and a frame on the procedure stack. Since the local registers are on-chip, they provide
fast-access storage for local variables. If additional space for local variables is required, it can
be allocated in the stack frame.

When a procedure call is made, the processor automatically saves the contents of the local
registers and the stack frame for the calling procedure and sets up a new set of local registers
and a new stack frame for the called procedure.

4·1

inter

SET OF 16 LOCAL
REGISTERS ON THE
PROCESSOR CHIP

Note:

PROCEDURE CALLS

n+O

n+64

STACK
GROWTH*

PROCEDURE STACK
IN MEMORY

LOCAL REGISTER
SAVE AREA

OPTIONAL SPACE
FOR ADDITIONAL

VARIABLES

LOCAL REGISTER
SAVE AREA

* Stack grows from low addresses to high addresses.

Figure 4·1: Local Registers and Procedure Stack

STACK FRAME
FOR CALLING
PROCEDURE

STACK FRAME
FOR CALLED
PROCEDURE

This procedure-call mechanism provides two benefits. First, it provides a structure for storing
a virtually unlimited number of local variables for each procedure: the on-chip local registers
provide quick access to often-used variables and the stack provides space for additional vari­
ables.

Second, a program does not have to explicitly save and restore the variables stored in the local
registers and stack frames. The processor does this implicitly on procedure calls and on
returns.

A detailed description of the call/return mechanism is given in the following paragraphs.

4-2

inter PROCEDURE CALLS

Local Registers and the Procedure Stack

For each procedure, the processor allocates a set of 16 local registers. Three of these registers
(rO, r1, and r2) are reserved for linkage information to tie procedures together. The remaining
13 local registers are available for general storage of variables.

For each process, the processor maintains a procedure stack in memory. This stack can be
located anywhere in the address space and grows from low addresses to high addresses.

The stack consists of contiguous frames, one frame for each active procedure. As shown in
Figure 4-2, each stack frame provides a save area for the local registers and an optional area for
additional variables.

To increase the speed of procedure calls, the 80960MC processor provides four sets of local
registers. Thus, when a procedure call is made, the contents of the current set of local registers
often do not have to be stored in the procedure stack. Instead, a new set of local registers is
assigned to the called procedure. When the number of nested procedure calls exceeds the
number of register sets, the processor automatically stores the contents of the oldest set of local
registers on the stack to free up a set of local registers for the most recently called procedure.

Refer to the section later in this chapter titled "Mapping the Local Registers to the Procedure
Stack" for further discussion of the relationship between the local-register sets and the proce­
dure stack.

Procedure-Linking Information

Global register glS (FP) and local registers rO (PFP), r1 (SP), and r2 (RIP) contain information
to link procedures together and to link the local registers to the procedure stack. The following
paragraphs describe this linkage information.

Frame Pointer

The FP is the address of the first byte of the current (topmost) stack frame. It is stored in
global register giS. The 80960MC processor aligns each new stack frame on a 64-byte
boundary. Since the resulting FP always points to a 64-byte boundary, the processor ignores
the 6 low-order bits of the FP and interprets them to be zero.

Stack Pointer

The SP is the address of the next available byte of the stack frame, which can also be thought
of as the last byte of the stack frame plus one. It is stored in local register r1. The procedure
stack grows upward (i.e., toward higher addresses). To determine the initial SP value, the
processor adds 64 to the FP.

4·3

PREVIOUS
FRAME

CURRENT
FRAME

PROCEDURE CALLS

rO n + 0
r1
r2

~------------------------~r15

OPTIONAL VARIABLES

rO
r1

n + 64

STACK
GROWTH

STACK
GROWS

FROM LOW
ADDRESSES

TO HIGH
ADDRESSES

I
r2 THE CURRENT FRAME

r---------------------~
r15

Figure 4·2: Procedure Stack Structure

4·4

POINTER (FP) STORED
IN g15 POINTS TO

THIS WORD IN THE
STACK.

inter PROCEDURE CALLS

If additional space is needed on the stack for local variables, the SP may be incremented in
one-byte increments. For example, the following instruction adds six words of additional
space to the stack:

addo sp, 24, sp # sp f- sp + 24

With the Intel 80960MC Assembler, the keyword "sp" stands for register rlo

NOTE

The SP should be incremented before additional variables are added to the stack. This practice
prevents errors that might occur if data is added to the stack and a process switch occurs before
the SP has been incremented.

Padding Area

When the processor creates a new frame on a procedure call, it will, if necessary, add a
padding area to the stack so that the new frame starts on a 64 byte boundary. To create the
padding area, the processor rounds off the SP for the current stack frame (the value in rl) to the
next highest 64 byte boundary. This value becomes the FP for the new stack frame.

Previous-Frame Pointer

The PFP is the address of the first byte of the previous stack frame. It is stored in local register
rOo Since the 80960MC ignores the 6 low-order bits of the FP, only the 26 most-significant bits
of the PFP are stored here. The 4 least-significant bits of rO are then used to store return status
information.

Return Status and Prereturn-Trace Information

Bits 0 through 2 of local register rO contain return status information for the calling procedure
and bit 3 contains the prereturn-trace flag. When a procedure call is made (either explicit or
implicit), the processor records the call type in the return status field. The processor then uses
this information to select the proper return mechanism when returning to the calling procedure.

Table 4-1 shows the encoding of the return status field according to the different types of calls
that the processor supports. Of the five types of calls allowed, the fault call (described in
Chapter 12) and the interrupt and idle-interrupt calls (described in Chapter 10) are implicit
calls that the processor initiates. The local call (described in this section) is an explicit call that
a program initiates using the call or calix instruction. The supervisor call (described at the end
of this chapter in the section titled "System Call1Return Mechanism") is an explicit call that a
program makes using the calls instruction.

The third column of Table 4-1 shows the type of a return action that the processor takes
depending on the state of the return status field.

The processor records two versions of the supervisor call: one for when the trace-enable flag
in the process controls is set prior to a supervisor call and one for when the flag is clear prior to
the call. The trace controls are described in detail in Chapter 16.

4·5

inter PROCEDURE CALLS

Table 4-1: Encoding of Return-Status Field

Encoding Call Type Return Action

000 Local call or supervisor call made Local return
from the supervisor mode

001 Fault call Fault return

010 Supervisor call from user mode, Supervisor return, with the trace
trace was disabled before call enable flag in the process controls

set to 0 and the execution mode
flag set to 0

011 Supervisor call from user mode, Supervisor return, with the trace
trace was enabled before call enable flag in the process controls

set to 1 and the execution mode
flag set to 0

100 reserved

101 reserved

110 Idle-interrupt call Idle-interrupt return

111 Interrupt call Interrupt return

The preretum-trace flag is used in conjunction with the call-trace and prereturn-trace modes. If
the call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag;
otherwise it clears the flag. Then, if this flag is set and the prereturn-trace mode is enabled, a
prereturn trace event is generated on a return before any actions associated with the return
operation are performed. Refer to Chapter 16 for a detailed discussion of the interaction of the
call-trace and prereturn-trace modes and the prereturn-trace flag.

Return-Instruction Pointer

The RIP is the address of the instruction that the processor is to execute after returning from a
procedure call. It is stored in local register r2. When the processor executes a procedure call it
sets the RIP to the address of the instruction immediately following the procedure call instruc­
tion. (Refer to the section later in this chapter titled "Local-Call Operation" for further infor­
mation the RIP.)

Since the processor uses the same procedure call mechanism to make implicit procedure calls
to service faults and interrupts, programs should not use register r2 for purposes other than to
hold the RIP.

When a process is suspended, the IP of the next instruction is stored in r2 of the current set of
local registers. When the process resumes, the processor sets the IP to the value in this
register.

4·6

inter PROCEDURE CALLS

Mapping the Local Registers to the Procedure Stack

The availability of multiple register sets cached on the processor chip and the saving and
restoring of these register sets in stack frames should be transparent to most programs.
However, the following additional information about how the local registers and procedure
stack are mapped to one another can help avoid problems.

Since the local-register sets reside on the processor chip, the processor will often not have to
access the stack frame in the procedure stack, even though space has been allocated on the
stack for the current frame. The processor only accesses the current frame in the procedure
stack in the following instances:

1. to read or write variables other than those held in the local registers,

2. to read local registers that were stored in the procedure stack when the number of nested
procedures calls exceeded the number of local registers, or

3. to read local registers that were stored in the procedure stack due to the suspension of the
process.

This method of mapping the local registers to the register-save areas in the procedure stack has
several implications. First, storing information in a local register does not guarantee that it will
be stored in its associated word in the current stack frame. Likewise, storing information in the
first 16 words of a stack frame does not guarantee that the local registers associated with the
stack frame are modified.

Second, if you try to read the contents of the current set of local registers through a memory
access to the first 16 words of the current stack frame, you may not get the expected result.
This is also true if you try to read the contents of a previously stored set of local registers
through a memory address to its associated stack frame.

The processor automatically stores the contents of a local register set into the register-save area
of its associated stack frame only in the following two circumstances:

1. if procedure calls (local or supervisor) are nested deeper than the number of local-register
sets, or

2. if the process is suspended.

Occasionally, it is necessary to have the contents of all local-register sets match the contents of
the register-save areas in their associated stack frames. For example, when debugging software
it may be necessary to trace the call history back through the nested procedures. This can not
be done unless the cached local-register frames are flushed (i.e., written out to the procedure
stack).

The processor provides two methods of voluntarily flushing the local registers: the flushreg
(flush local registers) instruction and the flush-local-registers lAC. Both the flushreg instruc­
tion and the flush-local-registers lAC cause the contents of all the local-register sets, except the
current set, to be written to their associated stack frames in memory.

Third, if you need to modify the PFP in register rO, you should precede this operation with the
flushreg instruction, or else the behavior of the ret (return) instruction is not predictable.

4-7

PROCEDURE CALLS

Fourth, local registers should not be used for passing parameters between procedures.
(Parameter passing is discussed in the following section.)

Fifth, when a set of local registers is assigned to a new procedure, the processor may not clear
or initialize these registers. The initial contents of these registers are therefore unpredictable.
Also, the processor does not initialize the local register-save area in the newly created stack
frame for the procedure, so its contents are equally unpredictable.

LOCAL CALL

A local call is made using either of two local call instructions: call and calix. These instruc­
tions initiate a procedure call using the call/return mechanism described earlier in this chapter.

The call instruction sfcecifies the address of the called procedures as the IP plus a signed, 24-bit
displacement (i.e., -2 3 to 223 - 4).

The calix instruction allows any of the addressing modes to be used to specify the procedure
address. The IP with displacement addressing mode allows full 32-bit IP relative addressing.

The ret instruction initiates a procedure switch back to the last procedure that issued a call.

Local-Call Operation

During a local call, the processor performs the following operations:

1. Stores the RIP in current local-register r2.

2. Allocates a new set of local registers for the called procedure.

3. Allocates a new frame on the procedure stack.

4. Changes the instruction pointer to point to the first instruction in the called procedure.

5. Stores the FP for the calling procedure in new local-register rO (PFP).

6. Stores the FP for the new frame in global register gIS.

7. Allocates a save area for the new local registers in the new stack frame.

8. Stores the SP in new local-register rI.

Local-Return Operation

On a return, the processor performs these operations:

1. Sets the FP in global register gIS to the value of the PFP in current local-register rD.

2. Deallocates the current local registers for the procedure that initiated the return and
switches to the local registers assigned to the procedure being returned to.

3. Deallocates the stack frame for the procedure that initiated the return.

4. Sets the IP to the value of the RIP in new local-register r2.

4-8

PROCEDURE CALLS

The algorithms that the call, calix, and ret instructions use are described in greater detail in
Chapter 17.

PARAMETER PASSING

The processor supports two mechanisms for passing parameters between procedures: global
registers and argument list.

Passing Parameters in Global Registers

The global registers provide the fastest method of passing parameters. Here, the calling
procedure copies the parameters to be passed into global registers. The called procedure then
copies the parameters (if necessary) out of the global registers after the call.

On a return, the called procedure can copy result parameters into global registers prior to the
return, with the calling procedure copying them out of the global registers after the return.

Passing Parameters in an Argument List

When more parameters need to be passed than will fit in the global registers, they can be
placed in an argument list. This argument list can be stored anywhere in memory providing
that the procedure being called has a pointer to the list. Commonly, a pointer to the argument
list is placed in a global register.

Parameters can also be returned to the calling procedure through an argument list. Here again,
a pointer to the argument is generally returned to the calling procedure through a global
register.

The argument list method of passing parameters should be thought of as an escape mechanism
and used only when there are not enough global registers available for passing parameters.

Passing Parameters Through the Stack

A convenient place to store an argument list is in the stack frame for the calling procedure.
Storing the argument list in the stack provides the benefit of having the list automatically
deallocated upon returning from the procedure that set up the list. Space for the argument list
is created by incrementing the SP, as described earlier in this chapter in the section titled
"Stack Pointer."

Parameters can also be returned to the calling procedure through an argument list in the stack.
However, care should be taken when doing this. The return argument list must not be placed in
the frame for the called procedure, since this frame is deallocated on the return. Also, if the
return list is to be placed in the frame of the calling procedure, the calling procedure must
allocate space for this list prior to making the call.

4-9

PROCEDURE CALLS

SYSTEM CALL

A system call is made using the call system instruction calls. This call is similar to a local call
except that the processor gets the IP for the called procedure from a data structure called the
procedure table. (System calls are sometimes referred to in this manual as "system-procedure­
table calls.")

Figure 4-3 illustrates the use of the procedure table in a system call. The calls instruction
requires a procedure-number operand. This procedure number provides an index into the
procedure table, which contains IPs for specific procedures.

ADDRESS
SPACE

ENTRY IN THE PROCEDURE
TABLE CONTAINS AN
INSTRUCTION POINTER TO
THE CALLED PROCEDURE.

CALLING PROCEDURE
ISSUES A calls
INSTRUCTION, WHICH
CONTAINS AN INDEX FOR
AN ENTRY IN THE
PROCEDURE TABLE.

PROCEDURE
TABLE

HEADER

IP

IP

IP

IP

IP

IP

Figure 4-3: System-Call Mechanism

ENTRY 1

ENTRY 2

ENTRY 3

ENTRY 4

ENTRY 5

ENTRY 6

The system-call mechanism suppoits two types of procedure calls: local calls and supervisor
calls. A local call is the same as that made with the call and calix instructions, except that the
processor gets the IP of the called procedure from a procedure table. The supervisor call
differs from the local call in two ways: (1) it causes the processor to switch to another stack
(called the supervisor stack), and (2) it causes the processor to switch to a different execution
mode.

4-10

PROCEDURE CALLS

The system-call mechanism offers two benefits. First, it supports portability for application
software. System calls are commonly used to call kernel services. By calling these services
with a procedure number rather than a specific IP, applications software does not have to be
changed each time the implementation of the kernel services is modified.

Second, the ability to switch to a different execution mode and stack allows kernel procedures
and data to be insulated from applications code. This benefit is described in more detail later
in this chapter in the section titled "User-Supervisor Protection Model".

PROCEDURE TABLE

The procedure table is a general structure, which the processor uses in two ways. The first way
is as a place for storing IPs for kernel procedures, which can then be accessed through the
system-call mechanism described above. Here, the procedure table is called the
system-procedure table. The processor gets a pointer to the system-procedure table from the
processor control block (PRCB) as described in Chapter 9 in the section titled "System Data­
Structure Pointers."

The second way a procedure table is used is as a place for storing IPs for fault-handler
procedures. Here, the processor gets a pointer to the procedure table from entries in the fault
table, as described in Chapter 12 in the section titled "Fault-Table Entries."

The structure of the procedure table is shown in Figure 4-4. It is 1088 bytes in length and can
have up to 260 procedure entries. The following sections describe the fields in a procedure
table.

Procedure Entries

The procedure entries specify the target IPs for the procedures that can be accessed through the
procedure table. Each entry is one word in length and is made up of an address (or IP) field
and a type field. The address field gives the address of the first instruction of the target
procedure. Since all instructions are word aligned, only the 30 most-significant bits of the
address are given. The processor automatically provides zeros for the least-significant bits.
Entry 0 begins at byte 48 of the procedure table; the table can contain up to 260 entries.

The procedure entry type field indicates the type of call to execute: local or supervisor. The
encodings of this field are shown in Table 4-2.

Table 4·2: Encodings of Entry Type Field in Procedure Table Entry

Entry Type Procedure Type
Field

00 local procedure

01 reserved

10 supervisor procedure

11 reserved

4·11

inter PROCEDURE CALLS

31 1 0

HEADER

PROCEDURE ENTRIES

PROCEDURE ENTRY
2 1 0

ADDRESS I x x I
LJ
L OO-LOCAL

10 - SUPERVISOR

RESERVED (INITIALIZE TO 0)

~ PRESERVED

Figure 4-4: Procedure-Table Structure

Supervisor-Stack Pointer

When a supervisor call is made, the processor switches to a new stack called the supervisor
stack. The processor gets a pointer to this stack from the supervisor-stack-pointer entry (bytes
12-15, bits 2-31) in the procedure table. Only the 30 most-significant bits of the supervisor­
stack pointer are given. The processor aligns this value to the next 64-byte boundary to
determine the first byte of the new stack frame.

4-12

inter PROCEDURE CALLS

Trace-Control Flag

The trace-control flag (byte 12, bit 0) specifies the new value of the trace-enable flag of the
process when a supervisor call causes a switch from user mode to supervisor mode. Setting
this flag to 1 enables tracing; setting it to ° disables tracing. The use of this flag is described in
the section in Chapter 16 titled "Trace Control on Supervisor Calls."

System Call to a Local Procedure

When a calls instruction references a procedure entry designated as a local type (002)' the
processor executes a local call to the procedure selected from the system procedure table.
Neither a mode switch nor a stack switch occurs.

The ret instruction permits returns from either a local procedure or a supervisor procedure.
The return status field in local register rO determines the type of return action that the processor
is to take. If the return status field is set to 0002' a local return is executed. In a local return,
no stack or mode switching is carried out.

USER-SUPERVISOR PROTECTION MODEL

The processor provides a two-state protection model called the user-supervisor protection
model. With this model, access to selected procedures and data structures can be restricted by
means of page protection and mode switching between two execution modes: user and super­
visor.

This protection model allows a system to be designed in which kernel code and data reside in
the same address space as user code and data, but access to the kernel procedures (called
supervisor procedures) is only allowed through a procedure table, which forms a tightly con­
trolled and protected interface. This interface is provided by the system procedure table.

The user-supervisor protection model also allows kernel procedures to be executed using a
different stack (the supervisor stack) than is used to execute applications program procedures.
The ability to switch stacks helps maintain the integrity of the kernel. For example, it would
allow system debugging software or a system monitor to be accessed, even if an applications
program crashes.

User and Supervisor Modes

When using the user-supervisor protection model, a process can be in either of two execution
modes: user or supervisor. The difference between the two modes is that when the process is
in the supervisor mode, it has the following additional privileges:

• It may access pages that have supervisor-only rights. (A program cannot access these
pages in the address space when the process is in the user mode.)

• It may use additional instructions. These instructions typically control process manage­
ment and kernel functions.

4-13

PROCEDURE CALLS

Supervisor Calls

Mode switching between the user and supervisor execution modes is accomplished through a
supervisor call. Asupervisor call is a call executed with.the calls instruction that references a
supervisor procedure in the system procedure table (Le., a procedure with an entry type 102),

When the processor is in the user mode and it executes a calls instruction, the processor
performs the following actions:

• It switches to supervisor mode

• It switches to the supervisor stack

• It sets the return status field in register RO of the calling procedure to OIX2, indicating that
a mode and stack switch has occurred.

The processor remains in the supervisor mode until a return is performed from the procedure
that caused the original mode switch. While in the supervisor mode, either the local call
instructions (call and calIx) or the calls instruction can be used to call supervisor procedures.

(The call and calIx instructions call local (or user) procedures in user mode and supervisor
procedures in supervisor mode. There is no stack or processor state switching associated with
these instructions.)

When a ret instruction is executed and the return status field is set to OlX2, the processor
performs a supervisor return. Here, the processor switches from the supervisor· stack to the
local stack, and the execution mode is switched from supervisor to user.

Supervisor Stack

When using the user-supervisor mechanism, the processor maintains separate stacks in the
address space, one for procedures executed in the user mode (local procedures) and another for
procedures executed in the supervisor mode (supervisor procedures). When in the user mode,
the local procedure stack (described at the beginning of this chapter) is used. When a super­
visor call is made, the processor switches to the supervisor stack. It continues to use the
supervisor stack until a return is made to the user mode.

The structure of the supervisor stack is identical to that of the local procedure stack (shown in
Figure 4-2). The processor obtains the SP for the supervisor stack from the procedure table.
When a supervisor call is executed while in the user mode (causing a switch to the supervisor
stack), the processor aligns this SP to the next 64-byte boundary to form the new FP for the
supervisor stack. When a local call or supervisor call is made while in the supervisor mode,
the processor aligns the SP in the current frame of the supervisor stack to the next 64-byte
boundary to form the FP pointer. This operation allows supervisor procedures to be called
from supervisor procedures.

4-14

inter PROCEDURE CALLS

BRANCH AND LINK

The bal (branch and link) and balx (branch and link extended) instructions provide an alternate
method of making procedure calls. These instructions save the address of the next instruction
(RIP) in a specified location, then branch to a target instruction or set of instructions. The state
of the local registers and stack remains unchanged. (For the bal instruction, the RIP is
automatically stored in global register g14; for the balx instruction, the location of the RIP is
specified with one of the instruction operands.)

A return is accomplished with a bx (branch extended) instruction, where the address of the
target instruction is the one saved with the branch and link instruction.

Branch and link procedure calls are recommended for calls to procedures that (1) do not call
other procedures (i.e., for procedure calls that do not result in nesting of procedures) and (2) do
not need many local variables (i.e., allocation of a new set of local registers does not provide
any benefit). Here, local registers as well as global registers can be used for parameter passing.

4-15

Data Types and
Addressing Modes

5

CHAPTER 5
DATA TYPES AND ADDRESSING MODES

This chapter describes the data types that the 80960MC processor recognizes and the address­
ing modes that are available for accessing memory locations.

DATA TVPES

The processor defines and operates on the following data types:

• Integer (8, 16,32, and 64 bits)

• Ordinal (8, 16,32, and 64 bits)

• Real (32, 64, and 80 bits)

• Decimal (ASCII digits)

• Bit Field

• Byte String

• Triple-Word (96 bit)

• Quad-Word (128 bit)

The integer, ordinal, real, and decimal data types can be thought of as numeric data types
because some operations on these data types produce numeric results (e.g., add, subtract).

The remaining data types (bit field, byte string, triple word, and quad word) represent group­
ings of bits or bytes that the processor can operate on as a whole, regardless of the nature of the
data contained in the group. These data types facilitate moving and operating on blocks of bits
or bytes.

Integers

Integers are signed whole numbers, which are stored and operated on in two's complement
format. The processor recognizes four sizes of integers: 8 bit (byte integers), 16 bit (short
integers), 32 bit (integers), and 64 bit (long integers). Figure 5-1 shows the formats for the
four integer sizes and the ranges of values allowed for each size.

Ordinals

Ordinals are a general-purpose data type. The processor recognizes four sizes of ordinals: 8
bit (byte ordinals), 16 bit (short ordinals), 32 bit (ordinals), and 64 bit (long ordinals). Figure
5-2 shows the formats for the four ordinal sizes and the ranges of numeric values allowed for
each size.

5·1

64
BITS

DATA TYPES AND ADDRESSING MODES

63

DATA TYPE
Byte Integer
Short Integer
Integer
Long Integer

32
BITS

RANGE
_27 to 27_1
-2 15 to2 15_1
_231 to 231 - 1
_263 to 263 - 1

SIGN

DECIMAL EQUIVALENT
-128 to 127
-32,768 to 32,767
-2.14 x 1;09 to 2.14 X 109

-9.22 x 1018 to 9.22 x 1018

Figure 5·1: Integer Format and Range

o

The processor uses ordinals for both numeric and non-numeric operations. For numeric opera­
tions, ordinals are treated as unsigned whole numbers. The processor provides several arith­
metic instructions that operate on ordinals. For non-numeric operations, ordinals contain bit
fields, byte strings, and Boolean values.

When ordinals are used to represent Boolean values, a 12 represents a TRUE and a O2
represents a FALSE.

Reals

Reals are floating-point numbers. The processor recognizes three sizes of reals: 32 bit (reals),
64 bit (long reals), and 80 bit (extended reals). The real-number format conforms to
ANSI/lEEE Std. 754-1985, the IEEE Standard For Binary Floating-Point Arithmetic. Real
numbers are discussed in greater detail in Chapter 7.

5·2

DATA TYPES AND ADDRESSING MODES

64
BITS

DATA TVPE
Byte Ordinal
Short Ordinal
Ordinal
Long Ordinal

Decimals

RANGE DECIMAL EQUIVALENT
o to 28_1 o to 255 o to 216_1 o to 65,535
o to 232 - 1 o to 4.29 X 109

o to 264 - 1 o to 1.84 x 1019

Figure 5·2: Ordinal Format and Range

o

The processor provides three instructions that perform operations on decimal values when the
values are presented in ASCII format. Figure 5-3 shows the ASCII format for decimal digits.
Each decimal digit is contained in the least-significant byte of an ordinal (32 bits). The
decimal digit must be of the form OOlldddd2, where dddd2 is a binary-coded decimal value
from 0 to 9. For decimal operations, bits 8 through 31 of the ordinal containing the decimal
digit are ignored.

5-3

DATA TYPES AND ADDRESSING MODES

ASCII FORMAT

7 o

Figure 5·3: Decimal Format

Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or fields
of bits within an ordinal (32 bit) operand. Figure 5-4 shows these data types.

31

LENGTH

o

L BIT NUMBER OF
LOWEST­
NUMBERED BIT

Figure 5·4: Bits and Bit Fields

An individual bit is specified for a bit operation by giving its bit number in the ordinal in which
it resides. The least-significant bit of a 32-bit ordinal is bit 0; the most-significant bit is bit 31.

A bit field is a contiguous sequence of bits of from 0 to 32 bits in length within a 32-bit
ordinal. A bit field is defined by giving its length in bits and the bit number of its lowest­
numbered bit.

A bit field cannot span a register boundary.

Byte String

A byte string is a contiguous sequence of byte ordinals. The length of a byte string is the
number of bytes in the string; a length of zero specifies an empty string. The maximum length
of a byte string is 232 - 1 bytes.

Byte-string operations are performed on byte strings in memory. The address of a byte string
is the address of the first byte in the string. Consecutive bytes of the string are stored in
increasing byte addresses.

5-4

DATA TYPES AND ADDRESSING MODES

Triple and Quad Words

Triple and quad words refer to consecutive bytes in memory or in registers: a triple word is 12
bytes and a quad word is 16 bytes. These data types facilitate the moving of blocks of bytes.
The triple-word data type is useful for moving extended-real numbers (80 bits).

The quad-word instructions (ldq, stq, and movq) offer the most efficient way to move large
blocks of data.

BYTE, WORD, AND BIT ADDRESSING

The processor provides instructions for moving blocks of data values of various lengths from
memory to registers (load) and from registers to memory (store). The allowable sizes for
blocks are bytes, half-words (2 bytes), words (4 bytes), double words, triple words, and quad
words. For example, the stI (store long) instruction stores an 8-byte (double word) block of
data in memory.

When a block of data is stored in memory, the least-significant byte of the block is stored at a
base memory address and the more significant bytes are stored at successively higher ad­
dresses.

When loading a byte, half-word, or word from memory to a register, the least-significant bit of
the block is always loaded in bit 0 of the register. When loading double words, triple words,
and quad words, the least-significant word is stored in the base register. The more significant
words are then stored at successively higher numbered registers. Double words, triple words,
and quad words must also be aligned in registers to natural boundaries as described in Chapter
3 in the section titled "Register Alignment."

Bits can only be addressed in data that resides in a register. Bit 0 in a register is the least­
significant bit and bit 31 is the most-significant bit.

LITERALS

The processor recognizes two types of literals (ordinal literals and floating-point literals),
which can be used as operands in some instructions. An ordinal literal can range from 0 to 31
(5 bits). When an ordinal literal is used as an operand, the processor expands it to 32 bits by
adding leading zeros. If the instruction defines an operand larger than 32 bits, the processor
zero-extends the value to the operand size. If an ordinal literal is used in an instruction that
requires integer operands, the processor treats the literal as a positive integer value.

The processor also recognizes two floating-point literals (+0.0 and + 1.0). These floating-point
literals can only be used with floating-point instructions. As with the ordinal literals, the
processor converts the floating-point literals to the operand size specified by the instruction.

NOTE

A few of the floating-point instructions use both floating-point and non-floating-point operands
(e.g., the convert integer-to-real instructions). Ordinal literals can be used in these instructions
for non-floating-point operands.

5·5

DATA TYPES AND ADDRESSING MODES

REGISTER ADDRESSING

A register maybe used as an operand in an instruction by giving the register's number (e.g.,
gO, r5, fp3). Both floating-point and non-floating-point instructions can reference global and
local registers in this way. However, floating-point registers can only be referenced in conjunc­
tion with a floating-point instruction.

MEMORY-ADDRESSING MODES

The processor offers 9 modes for addressing operands in memory. These modes are grouped
as follows:

• Absolute

• Register Indirect

• Register Indirect with Index

• Index with Displacement

• IP with Displacement

Each addressing mode is used to reference a byte address in the processor's address space.
Table 5-1 shows all the memory-addressing modes, a brief description of the elements of the
address in each mode, and the assembly-code syntax for each mode.

Table 5-1: Addressing Modes

Mode Description Assembler Syntax

Absolute offset offset exp

Register Indirect abase (reg)

Register Indirect abase + offset exp (reg)
with offset

Register Indirect abase + (index*scale) (reg) [reg*scale]
with index

Register Indirect abase + (index*scale) exp (reg) [reg*scale]
with index and + displacement
displacement

Index with (index * scale) exp [reg*scale]
displacement + displacement

IP with IP + displacement + 8 exp (IP)
displacement

Where: reg is register and exp is expression

5·6

inter DATA TYPES AND ADDRESSING MODES

Absolute

Absolute addressing is used to reference a memory location directly as an offset from address 0
of the address space, ranging from _231 to 231 - 1. Typically, an assembler will allow absolute
addresses to be specified through arithmetic expressions (e.g., x + 44), symbolic labels, and
absolute values.

At the machine-level, two absolute-addressing modes are provided, depending on the instruc­
tion format (i.e., MEMA or MEMB). For the MEMA format, the offset is an ordinal number
ranging from 0 to 2047; for the MEMB format, the offset is an integer (called a displacement)
ranging from _231 to 231 -1. After evaluating an absolute address, the assembler will convert
the address into an offset and select the appropriate machine-level instruction type and address­
ing mode. (The machine-level addressing modes and instruction formats are described in
Appendix B.)

Register Indirect

The register indirect addressing modes allow an address to be specified with an ordinal value
(32 bits) in a register or with an offset or a displacement added to a value in a register. Here.
the value in the register is referred to as the address base (abase).

Again, an assembler will allow the offset and displacement to be specified with an expression
or symbolic label, then evaluate the address to determine whether an offset or a displacement is
appropriate.

Register Indirect with Index

The register indirect with index addressing modes allow a scaled index to be added to the value
in a register. The index is specified by means of a value placed in a register. This index value is
then multiplied by the scale factor. The allowable scale factors are 1,2,4,8, and 16.

A displacement may also be added to the abase value and scaled index.

Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a
register and is mUltiplied by a scaling constant before the displacement is added to it.

IP with Displacement

The IP with displacement addressing mode is often used with load and store instructions to
make them IP relative.

Note that with this mode the displacement plus a constant of 8 is added to the IP of the
instruction.

5·7

Instruction-Set Summary 6

CHAPTER 6
INSTRUCTION-SET SUMMARY

This chapter provides an overview of the instruction set for the 80960MC processor. Included
is a discussion of the instruction format and a summary of the instruction groups and the·
instructions in each group.

Chapter 17 gives detailed descriptions of each of the instructions. The instructions are listed in
this chapter in alphabetical order. Included for each instruction are the assembly-language
format, the action taken when the instruction is executed, and examples of how the instruction
might be used.

Appendix C provides a detailed description of the factors that affect instruction timing. It also
gives the number of clock cycles required for each instruction.

INSTRUCTION FORMATS

Instructions are described in this reference manual in two formats: assembly language and
machine level.

Assembly-Language Format

Throughout most of this manual, the instructions are referred to by their assembly-language
mnemonics. For example, the add ordinal instruction is referred to as the addo instruction.

An assembly-language statement consists of an instruction mnemonic, followed by from 0 to 3
operands, separated by commas. The following example shows the assembly-language state­
ment for the addo instruction:

addo g5, g9, g7

Here, the ordinal operands in global registers g5 and g9 are added together and the result is
stored in g7.

A detailed description of the nomenclature used to describe assembly-language instructions is
given in Chapter 17.

Machine Formats

At the machine level of the processor, all instructions are word aligned. Most of the instruc­
tions are one word long, although some memory-addressing modes make use of a two-word
format.

There are four instruction formats: register (REG), compare and branch (COBR), control
(CTRL), and memory (MEM). Each instruction uses one of these formats, which is deter­
mined by the opcode field of the instruction.

6-1

inter INSTRUCTION-SET SUMMARY

The machine-level formats for the instructions are described in detail in Appendix B.

INSTRUCTION GROUPS

The 80960MC processor implements all the instructions in the 80960 instruction set, which
includes all of the data-movement, arithmetic, logical, and program-control instructions com­
monly found in computer architectures. The processor also includes a set of floating-point
instructions and several instructions to handle architectural extensions found in the processor.

The 80960 instruction set is made up of the following groups of instructions:

• Data Movement

• Arithmetic (Ordinal and Integer)

• Logical

• Bit, Bit Field, and Byte

• Comparison

• Branch

• Call1Retum

• Fault

• Debug

• Atomic

• Processor Management

The instruction-set extensions found in the 80960MC processor include the following groups
of instructions:

• Integer-to-Real Conversion

• Floating Point

• Process Management

• String

• Decimal

',~ables 6-1 and 6-2 give a summary of the 80960 instructions and the 80960MC instruction-set
extensions, respectively. The actual number of instructions is greater than those shown in this
list, because for some operations, several different instructions are provided to handle different
operand sizes, data types, or branch conditions.

6·2

INSTRUCTION-SET SUMMARY

Table 6-1: Summary of the 80960 Instruction Set

Data Movement Arithmetic Logical Bit, Bit Field,
and Byte

Load Add And Set Bit
Store Subtract Not And Clear Bit
Move Multiply And Not Not Bit
Load Address Divide Or Check Bit

Extended Exclusive Or Alter Bit
Multiply Not Or Scan For Bit

Extended arNot Scan Over Bit
Divide Nor Extract

Remainder Exclusive Nor Modify
Modulo Not Scan Byte For
Shift Nand Equal
Rotate

Comparison Branch Call/Return Fault

Compare Unconditional Call Conditional Fault
Conditional Branch Call Extended Synchronize Faults

Compare Conditional Branch Call System
Compare and Compare and Return

Increment Branch Branch and Link
Compare and Test Condition

Decrement Code

Debug Atomic Processor

Modify Trace Atomic Add Flush Local
Controls Atomic Modify Registers

Mark Modify Arithmetic
Force Mark Controls

Modify Process
Controls

6-3

INSTRUCTION-SET SUMMARY

Table 6-2: Summary of the 80960MC Instruction-Set Extensions

Conversion Floating Point Process Control

Convert Real-to-Integer Move Real Schedule Process
Convert Integer-to-Real Add Save Process

Subtract Resume Process
Multiply Load Process Time
Divide Signal
Remainder Wait
Scale Conditional Wait
Round Send
Square Root Receive
Sine Conditional Receive
Cosine Send Service
Tangent
Arctangent
Log
Log Binary
Log Natural
Exponent
Classify
Copy Real Extended
Compare

String Decimal Miscellaneous

Move String Move Inspect Access
Move Quick String Add With Carry Load Physical Address
Fill String Subtract With Carry Synchronous Move
Compare String Synchronous Load

The following sections give a brief overview of the instructions in each of these groups. The
floating-point instructions are described in Chapter 7.

DATA MOVEMENT

The data movement instructions include those instructions that move data from memory to the
global and local registers; that move data from the global and local registers to memory; and
that move data among these registers.

6-4

inter INSTRUCTION-SET SUMMARY

Load

The load instructions (listed below) copy bytes or words from memory to a selected register or
group of registers:

Id
Idob
Idos
Idib
Idis
Idl
Idt
Idq

load
load byte ordinal
load short ordinal
load byte integer
load short integer
load long
load triple
load quad

For the Id, Idob, Idos, Idib, and Idis instructions, a memory address and a register are specified
in the instruction and the value at the memory address is copied into the register. Zero and sign
extending is performed automatically for byte and short (half-word) operands.

The Id, Idl, Idt, and Idq instructions copy 4, 8, 12, and 16 bytes from memory into successive
registers.

NOTE

When using the load, store, and move instructions that move 8, 12, or 16 bytes at a time, the
rules for register alignment must be followed. Refer to the section in Chapter 3 titled "Register
Alignment" for a discussion of these rules.

Store

For each load instruction there is a corresponding store instruction (listed below), which copies
bytes or words from a selected register or group of registers to memory:

st
stob
stos
stib
stis
stl
stt
stq

store
store byte ordinal
store short ordinal
store byte integer
store short integer
store long
store triple
store quad

For the st, stob, stos, stib, and stis instructions, a register and memory address are specified in
the instruction and the value in the register is copied into memory. For the byte and short
instructions, the value in the register is automatically reformatted for the shorter memory
location. For the stib and stis instructions, this reformatting can lead to overflow if the ,register
value is too large to be represented in the shorter memory location.

The st, stl, stt, and stq instructions copy 4, 8, 12, and 16 bytes from successive registers into
memory.

6-5

INSTRUCTION-SET·SUMMARV

Move

The move instructions, listed below, copy data from a register or group of registers to another
register or group of registers.

mov
movl
movt
movq

move word
move long word
move triple word
move quad word

These move instructions can only be used to move data among the global and local registers.
A set of move-real instructions (movr, movrl, and movre) are provided for moving real
number values between the global and local registers and the floating-point registers. The
move-real instructions are described in Chapter 7.

Load Address

The Ida instruction computes an effective address in the address space from an operand
presented in one of the addressing modes. A common use of this instruction is to load a
constant into a register.)

ARITHMETIC

Table 6-3 lists all the arithmetic operations for which the 80960MC processor provides instruc­
tions and the data types that the instructions operate on. An "X" in this table indicates that the
80960 architecture provides an instruction for the specified operation and data type; an "E"
indicates that an 80960MC instruction-set extension provides an instruction for the specified
operation and data type. An. '!E*" indicates that the specified operation can be performed on
the specified data type using 80960MC extended-instruction-set instructions, but that a unique
instruction for this operation is not provided. For example, a specific instruction is not
provided to add two extended-real values. However, this operation can be carried out with
either the add real (addr) or the add long real (addrl) instruction.

With two exceptions, all the processor's arithmetic operations are carried out o~ operands in
registers. The processor does not provide instructions that perform arithmetic operations on
operands in memory.

The two instructions that are exceptions are the atadd(atomic add) and atmod (atomic
modify) instructions, which are discussed later in this chapter.

A summary of the aritlunetic instructions for real (floating-point) data types is provided in
Chapter 7. The following sections describe the arithmetic instructions for ordinal and integer
data types:

I.';,

6-6

INSTRUCTION·SET SUMMARY

Table 6·3: Arithmetic Operations

Arithmetic Integer Ordinal Real Long Extended
Operations Real Real

Add X X E E E*

Subtract X X E E E*

Multiply X X E E E*

Divide X X E E E*

Remainder X X E E E*

Modulo X

Shift Left X X

Shift Right X X

Shift Right X
Dividing

Scale E E E*

Round E E E*

Square Root E E E*

Sine E E E*

Cosine E E E*

Tangent E E E*

Arctangent E E E*

Exponent E E E*

Log E E E*

Log Binary E E E*

Log Epsilon E E E*

Classify E E E*

Copy Sign E

Copy Reversed E
Sign

6·7

INSTRUCTION-SET SUMMARY

Add, Subtract, Multiply, and Divide

The following instructions perform add, subtract, multiply, or divide operations on integers and
ordinals:

addi add integer
addo add ordinal
subi subtract integer
subo subtract ordinal
muli multiply integer
mulo multiply ordinal
divi divide integer
divo divide ordinal

These instructions perform operations on one-word operands in registers and store the results
in a register.

Extended Arithmetic

The following four instructions are provided to support extended arithmetic operations to be
performed (i.e., arithmetic operations on operands greater than one word in length):

adde add ordinal with carry
sube subtract ordinal with carry
ernul extended mUltiply
ediv extended divide

The ad de and sube instructions add or subtract two words (contained in registers) plus a
condition code bit (used as a carry bit). If the result has a carry, the carry bit in the condition
code is set. Also, a second condition code bit is set if the operation would have resulted in an
integer overflow condition. (The three-bit condition code is contained in the arithmetic con­
trols as described in Chapter 3.)

These instructions treat the operands as ordinals; however, the indication of overflow in the
condition code facilitates a software implementation of extended-integer arithmetic.

The ernul instruction multiplies two ordinals (each contained in a register), producing long
ordinal result (stored in two registers). The ediv instruction divides a long ordinal by an
ordinal, producing an ordinal quotient and an ordinal remainder.

Remainder and Modulo

The following instructions divide one operand by another and retain the remainder of the
operation:

remi
remo
modi

remainder integer
remainder ordinal
modulo integer

6-8

inter INSTRUCTION-SET SUMMARY

The difference between the remainder and modulo instructions lies in the sign of the result.
For the remi and remo instructions, the result has the same sign as the dividend; for the modi
instruction, the result has the same sign as the divisor.

Shift and Rotate

The processor provides the following five shift instructions:

shlo shift left ordinal
shro shift right ordinal
shli shift left integer
shri shift right integer
shrdi shift right dividing integer

These instructions shift the operand a specified number of bits to the left or to the right. Bits
shifted beyond the register boundary are discarded.

The shlo instruction shift zeros in from the least-significant bit, and the shro instruction shifts
zeros in from the most-significant bit. These instructions are equivalent to mulo and divo by
the power of 2, respectively.

The shli instruction shifts zeros in from the least-significant bit; if the bits shifted out are not
the same as the sign bit, an overflow fault is generated.

The shri instruction performs a conventional arithmetic shift-right operation by shifting the
sign bit in from the most-significant bit. When this instruction is used to divide an negative
integer operand by the power of 2, however, it produces an incorrect quotient. (The discarding
of the bits shifted out has the effect of rounding the result toward negative.)

The shrdi instruction is provided for dividing integers by the power of 2. With this instruction,
1 is added to the result if the bits shifted out are non-zero and the operand is negative, which
produces the correct result for negative operands.

The shli and shrdi instructions are equivalent to muli and divi by the power of 2.

The rotate instruction rotates the bits of the operand to the left (toward higher significance) by
a specified number of bits. Bits shifted beyond the left boundary of the register (bit 31) appear
at the right boundary (bit 0).

6-9

INSTRUCTION-SET SUMMARY

LOGICAL

The following instructions perfonn bitwise Boolean operations on the specified operands:

and A andB
notand (not A) and B
andnot A and (not B)
xor not (A = B)
or A orB
nor not (A or B)
xnor A = B
not not A
notor (not A) or B
ornot A or (not B)
nand not (A and B)

BIT AND BIT FIELD

The bit instructions perfonn operations on a specific bit in an ordinal operand or on a bit field.

Bit Operations

The following instructions operate on a specified bit:

setbit set bit
clrbit clear bit
notbit not bit
chkbit check bit
alterbit alter bit
scan bit
spanbit

scan for bit
span over bit

The setbit, clrbit, and notbit instructions set, clear, or complement (toggle) a specified bit in
an ordinal.

The chkbit instruction causes the condition-code bits to be set according to the state of a
specified bit in a register. The condition code is set to 01°2 if the bit is set and 0002 otherwise.

The alterbit instruction alters the state of a specified bit in an ordinal according to the con­
dition code. If the condition code is 0102, the bit is set; if the condition code is 0002' the bit is
cleared.

The scanbit and spanbit instructions find the most significant set bit and clear bit, respec­
tively, in an ordinal.

6-10

inter INSTRUCTION-SET SUMMARY

Bit-Field Operations

There are two bit field instructions extract and modify. The extract instruction converts a
specified bit field, taken from an ordinal value, into an ordinal value. In essence, this instruc­
tion shifts a bit field in a register to the right and fills in the bits to the left of the bit field with
zeros.

The modify instruction copies bits from one register, under control of a mask, into another
register. Only the unmasked bits in the destination register are modified.

BYTE OPERATIONS

The scan byte instruction performs a byte-by-byte comparison of two ordinals to determine if
any two corresponding bytes are equal. The condition code is set according to the results of
the comparison.

CONVERSION

Data can be converted from one length to another by means of the load and store instructions.
For example, the Idis instruction loads a short integer from memory to a register and automati­
cally converts the integer from a half word to a full word.

The 80960MC extended instruction set provides instructions to perform conversions between
integer and real data types. These instructions are described in Chapter 7.

COMPARISON

The processor provides several types of instructions that are used to compare two operands.
The following sections describe the compare instructions for ordinal and integer data types.
The compare instructions for real data types are discussed in Chapter 7.

Compare and Conditional Compare

The compare instructions listed below compare two operands, then set the condition-code bits
in the arithmetic controls according to the results.

cmpi
cmpo
concmpi
concmpo

compare integer
compare ordinal
conditional compare integer
conditional compare ordinal

The condition-code bits are set to indicate whether one operand is less than, equal to, or greater
than the other operand. (Refer to the section in Chapter 3 titled "Functions of the Arithmetic
Controls Bits" for a discussion of meanings of the condition-code bits for conditional
operations.)

6-11

INSTRUCTION·SET SUMMARY

The cmpi and cmpo instructions simply compare the two operands and set the condition-code
bits accordingly.

The concmpi and concmpo instructions first check the status of bit 2 of the condition code. If
it is not set, the operands are compared as with the cmpi and cmpo instructions. If bit 2 is set,
no comparison is performed and the condition-code bits are not changed.

The conditional compare instructions are provided specifically to optimize two-sided range
comparisons to check if A is between Band C (i.e., B :s; A :s; C). Here,acompare instruction
(cmpi or cmpo) is used to check one side of the range (e.g., A ;;?: B) and a conditional compare
instruction (concmpi or concmpo) is used to check the other side (e.g., A :s; C)according to the
result of the first comparison.

Compare and Increment or Decrement

The following instructions compare two operands, set the condition-code bits according to the
results, then increment or decrement one of the operands:

cmpinci
cmpinco
cmpdeci
cmpdeco

compare and increment integer
compare and· increment ordinal
compare and decrement integer
compare and decrement ordinal

These instructions are intended for use at the end ofiterative loops.

BRANCH

The branch instructions allow the direction of program flow to be changed by explicitly
modifying the IP. The processor provides three types of branch instructions:

• unconditional branch

• conditional branch

• compare and branch

The processor also provides a set of instructions for testing the condition code flags of the
arithmetic controls. These instructions can be used in conjunction with the compare instruc­
tions and the branch instructions as a alternate means of performing conditional branch, and
compare and branch operations.

Most of the branch instructions specify the target IP by specifying a signed displacement to be
added to the current IP. Other branch instructions specify the memory address of the target IP
using one of the processor's addressing modes. This latter group of instructions are called
extended-addressing instructions (e.g., branch e~tended, branch and link extended).

6·12

INSTRUCTION-SET SUMMARY

Unconditional Branch

The following four instructions are used for unconditional branching:

b
bx
bal
balx

Branch
Branch Extended
Branch and Link
Branch and Link Extended

The band bx instructions cause program execution to jump to the specified target IP. As
described in Chapter 17, these two instructions perform the same function; however, they use
different machine-level instruction formats.

The bal and balx instructions store the address of the next instruction in a specified register,
then jump to the specified target IP. (For the bal instruction, the RIP is automatically stored in
register g14; for the balx instruction the location of the RIP is specified with an instruction
operand.) As described in Chapter 4, the branch and link instructions provide a method of
performing procedure calls that does not use the processor's call/return mechanism. Here, the
saved instruction address is used as a return IP.

The bx and balx instructions can be made IP-relative by using the IP with displacement
addressing mode.

Conditional Branch

With the conditional branch (branch if) instructions, the processor checks the condition-code
bits in the arithmetic controls. If these bits match the value specified with the instruction, the
processor jumps to the target IP. These instructions use the displacement plus IP method of
specifying the target IP:

be
bne
bl
ble
bg
bge
bo
bno

branch if equal
branch if not equal
branch if less
branch if less or equal
branch if greater
branch if greater or equal
branch if ordered
branch if unordered

(Refer to the section in Chapter 3 titled "Functions of the Arithmetic Controls Bits" for a
discussion of meanings of the condition-code bits for conditional operations.)

The bo and bno instructions refer to comparisons of real numbers. Ordered and unordered real
numbers are described in Chapter 7.

6-13

inter INSTRUCTION·SET SUMMARY

Compare and Branch

The compare and branch instructions compare two operands, then branch according to the
results. There are three subtypes of instructions in this group: compare integer, compare
ordinal, and check bit:

cmpibe
cmpibne
cmpibl
cmpible
cmpibg
cmpibge
cmpibo
cmpibno
cmpobe
cmpobne
cmpobl
cmpoble
cmpobg
cmpobge
bbs
bbc

compare integer and branch if equal
compare integer and branch if not equal
compare integer and branch if less
compare integer and branch if less or equal
compare integer and branch if greater
compare integer and branch if greater or equal
compare integer and branch if ordered
compare int;eger and branch if unordered
compare ordinal and branch if equal
compare ordinal and branch if not equal
compare ordinal and branch if less
compare ordinal and branch if less or equal
compare ordinal and branch if greater
compare ordinal and branch if greater or equal
check bit and branch if set
check bit and branch if clear

With the compare-ordinal-and-branch and compare-integer-and-branch instructions, two
operands are compared and the condition-code bits are set, as with the compare instructions
described earlier in this chapter. A conditional branch is then executed as with the conditional
branch (branch if) instructions.

With the check-bit-and-branch instructions, one operand specifies a bit to be checked in the
other operand. The condition-code bits are set according to the state of the specified bit (i.e.,
0102 if the bit is set and 0002 if the bit is clear). A conditional branch is then executed
according to the setting of the condition-code bits.

Test Condition Codes

The following test instructions allow the state of the condition-code bits to be tested:

teste test if equal
testne test if not equal
testl test if less
testle test if less or equal
testg test if greater
testge test if greater or equal
testo test if ordered
testno test if unordered

These instructions cause a TRUE (1 2)to be stored in a destination register if the condition code
matches the condition specified with the instruction. Otherwise, a FALSE (02) is stored in the
register.

6·14

inter INSTRUCTION-SET SUMMARY

CALL AND RETURN

The processor offers an on-chip call/return mechanism for making procedure calls to local
procedures and kernel procedures. This call/return mechanism is described in detail in Chapter
4. The following four instructions are provided to support this mechanism.

call call
calIx
calls
ret

call extended
call system
return

The call and calIx instructions call local procedures. The call instruction specifies the target
procedure (the first instruction of the procedure) by adding a signed displacement to the IP.
The calIx instruction uses extended addressing, as described for the bx and balx instructions,
to specify the target procedure. For both of these instructions, a new set of local registers and a
new stack frame are allocated for the called procedure.

The calls instruction operates similarly to the call and calIx instructions, except that it gets its
target procedure address from the system procedure table. An index number included as an
operand in the instruction provides an entry point into the procedure table.

Depending on the type of entry being pointed to in the procedure table, the calls instruction can
cause a supervisor call to be executed. A supervisor call causes the processor to switch to the
supervisor stack and to switch to supervisor mode. The supervisor call is described in detail in
Chapter 4.

The ret instruction performs a return from a called procedure to the calling procedure (the
procedure that made the call). This instruction obtains its target IP (return IP) from linkage
information that was saved for the calling procedure. The ret instruction is used to return from
local and supervisor calls and from implicit calls to interrupt and fault handlers.

CONDITIONAL FAULTS

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling routines are then invoked to handle the various types of faults without explicit inter­
vention by the currently running process. (Faults are discussed in detail in Chapter 12.)

The following conditional fault instructions permit a fault to be generated explicitly according
to the state of the condition-code bits:

faulte
faultne
faultl
faultle
faultg
faultge
faulto
faultno

fault if equal
fault if not equal
fault if less
fault if less or equal
fault if greater
fault if greater or equal
fault if ordered
fault if unordered

6-15

INSTRUCTION-SET SUMMARY

The synchronize faults (synef) instruction is provided to force all faults to be precise in
situations when the processor is executing two instructions in parallel. The function and use of
this instruction is discussed in detail in the section in Chapter 12 titled "Precise and Imprecise
Faults."

DEBUG

The processor supports debugging and monitoring of program activity through the use of trace
events. The following instructions support these debugging and monitoring tools:

modte modify trace controls
mark mark
fmark force mark

The trace functions are controlled through the processor's trace controls bits. Some of these
bits allow various types of tracing to be enabled or disabled. Other bits act as flags to indicate
when an enabled trace event has been detected. (Trace controls are described in detail in
Chapter 16.)

The modte instruction permits the trace controls bits to be modified.

The mark instruction causes a breakpoint trace event to be generated if the breakpoint trace
mode is enabled. The fmark instruction generates a breakpoint trace independent of the state
of the breakpoint trace mode flag. The latter two instructions allow a breakpoint to be placed
anywhere in a program.

ATOMIC INSTRUCTIONS

The atomic instructions perform read-modify-write operations on operands in memory. They
insure that when one atomic operation is performed on a specific block of memory it will be
completed before another atomic operation can be performed on the same block. These
instructions are particularly useful in systems that use multiple processors where all of the
processors have access to system memory.

There are two atomic instructions: atomic add (atadd) and atomic modify (atmod). The
atadd instruction causes an operand to be added to the value in the specified memory location.
The atmod causes bits in the specified memory location to be modified under control of a
mask.

PROCESSOR MANAGEMENT

The processor provides several instructions for use in controlling processor-related functions.

The modpe instruction provides a method of reading and modifying the contents of the process
controls.

In certain instances, it is necessary to insure that the contents of the local-register save area of
the stack frames are the same as the local registers. The flush local registers instruction

6·16

INSTRUCTION-SET SUMMARY

(flushreg) automatically stores the contents of all the local register sets, except the current set,
in the register save area of their associated stack frames.

The arithmetic controls cannot be addressed with the load, move, and store instructions or the
bit instructions. Instead, special instructions are provided for this purpose.

The modify arithmetic controls instruction (modac) permits bits in the arithmetic controls
register to be modified under the control of a mask.

80960MC NON-FLOATING-POINT INSTRUCTION-SET EXTENSIONS

The following non-floating-point instructions are extensions to the 80960-architecture instruc­
tion set. These instructions are provided to support extended non-floating-point features such
as string operations, decimal arithmetic, multiprocessing, process management, and virtual
memory management.

Process Management

The processor provides several instructions for use in process management. These instructions
do not dictate a particular process management scheme. Instead they provide support for a
wide variety of process management mechanisms. These instructions can be divided into two
groups: process control and interprocess communication.

The processor must be in the supervisor mode to execute the process management instructions.
Process management is described in detail in Chapters 13 and 14.

Process Control

The following instructions provide process control services:

saveprcs
resumprcs
schedprcs
Idtime

save process
resume process
schedule process
load process time

The processor defines two data structures for use in process control: a process control block
(PCB) and a dispatching port. The PCB is used to maintain information about the process such
as the status of the execution environment when the process was last suspended and system
resources allocated to the process. The dispatching port is used for queuing processes that are
waiting to be worked on by the processor.

The resumprcs instruction causes the processor to switch to the specified process. The
saveprcs instruction causes the current state of the currently running process to be saved in the
PCB.

These two instructions perform roughly the same functions as the RESUME and SAVE func­
tions of most UNIXTM kernels. A dispatching port is not needed with these instructions.

6-17

INSTRUCTION-SET SUMMARY

The schedprcs instruction causes a process to be enqueued at a dispatching port.

The processor provides a mechanism for keeping track of process execution time. The Idtime
instruction supports this mechanism by providing a method of loading the elapsed execution
time of the currently running process into a specified register.

The modpc instruction, which is described earlier in this chapter, provides a method of reading
and modifying the contents of the process controls for the currently running process.

Interprocess Communication

The processor supports two techniques for communication among processes: semaphores and
communication ports.

Semaphores. A semaphore is essentially a queue for synchronizing the activities of in'ter­
dependent processes. The following instructions support communication through semaphores:

wait
condwait
signal

wait
conditional wait
signal

The wait instruction causes the processor to check the specified semaphore for a signal, in the
form of a semaphore count. If the semaphore count is non-zero, the processor decrements the
count and continues execution of the current process. If the count is zero, the processor
suspends the current process and queues it to the semaphore. The process is then said to be
blocked.

The condwait instruction performs the same function as the wait instruction, except that if a
signal is not found, the process is not blocked. Instead, the condition-code bits are set to
indicate whether or not the signal was received.

The signal instruction causes the processor to send a signal to the specified semaphore. If
processes are queued at the semaphore, the first process in the queue is unblocked. Otherwise,
the semaphore count is incremented by one.

Communication Ports. A communication port is similar to a semaphore except that it also
provides a message-passing mechanism. A communication port can thus be used both for
synchronizing processes and as a means of passing messages among processes.

Messages are one word long. This message word can contain anything. Commonly, it con­
tains a one word message, a process number, or the address of a longer message.

The following instructions support communication ports:

receive
condrec
send
sendserv

receive
conditional receive
send
send service

6-18

INSTRUCTION-SET SUMMARY

With the receive instruction, the processor checks the specified communication port for a
message. If a message is queued at the port, it loads the message into a specified register and
continues execution of the current process. If the message queue is empty, the processor
suspends the current process and queues it at the communication port (i.e., blocks the process).

The condrec instruction is similar to the receive instruction except that the process is not
blocked if the message queue is empty. Instead the processor sets the condition-code bits to
indicate whether or not the receive operation was carried out.

The send instruction causes the processor to send a message to a specified communication
port. If there are no processes at the port for messages, the processor enqueues the message at
the port and continues executing the current process. If there are queued processes at the port,
the first process in the queue is unblocked, given the message, and rescheduled at the dispatch­
ing port. The processor then resumes execution of the current process.

The sendserv instruction causes the processor to suspend the current process and send it as a
message to the specified communication port.

String

The 80960MC extended instruction set provides the following string instructions perform
operations on byte strings in memory:

movstr
movqstr
fill
cmpstr

move string
move quick string
fill string
compare string

The movstr and movqstr instructions move a byte string from one location in memory to
another. These instructions operate identically except that the movstr instruction guarantees
that if the strings overlap, no byte in the source string is overwritten until it is copied to the
destination string. If the strings being moved do not overlap, the movqstr instruction should
be used because it performs the move operation faster.

The fill instruction copies an ordinal operanq repeatedly into a byte string in memory.

The cmpstr instruction compares two byte strings of equal length, then sets the condition-code
bits to show whether or not the strings are identical.

Decimal

The following three instructions are provided for use in decimal-arithmetic algorithms:

dmovt move and test decimal
daddc decimal add with carry
dsubc decimal subtract with carry

These instructions operate on 32-bit decimal operands that contain an 8-bit, ASCII-coded
decimal in the least-significant byte ofthe word (as shown in Figure 5-3).

6-19

INSTRUCTION-SET SUMMARY

The dmovt instruction moves a decimal operand from one register to another and tests the least
significant byte of the operand to determine if it is a decimal digit (0 to 9). It sets the condition
code according to the results of the test: 0 I O2 if the operand contains a decimal digit and 0002
otherwise.

The daddc anddsubc instructions operate similarly to the addc and subc instructions. They
add or subtract two decimal digits plus bit 1 of the condition code (used as a carry-in bit). If
the operation produces a decimal carry, the condition code is set accordingly. The subtraction
operation is carried out in lO's complement arithmetic.

These instructions can be used iteratively to add or subtract decimal values of any length.

With the 80960MC processor, the most efficient method of mUltiplying or dividing decimal
numbers is to convert them into extended-real numbers and use the muir and divr instructions.
Decimal values of up to 18 decimal digits can be handled with this technique.

Miscellaneous Instructions

The following instructions perform two special synchronous operations on operands in
memory and two memory management functions.

Synchronous Load and Move

The processor's store instructions are executed asynchronously with the memory controller.
Once the processor sends data out on its bus for storage in main memory, it continues with the
next instruction in the instruction stream, assuming that its bus control logic will carry out the
operation.

The 80960MC processor provides four special instructions for performing memory operations
that perform store and move operations synchronously with memory.

The synchronous load instruction (synld) loads a word from memory into a register. When
this instruction is performed, the processor waits until a condition code bit is set in the arith­
metic controls, indicating that the operation has been completed, before it begins executing the
next instruction. The synld instruction is used primarily to read the contents of the interrupt­
control register, as described in Chapter 10.

The synchronous move instructions (synmov, synmovl, and synmovq) perform synchronous
moves of data from one location in memory to another. These instructions are used primarily
for sending lAC messages, as described in Chapter 11. .

Memory-Management Functions

The inspect access instruction (inspacc) returns the respective page rights of a specified page.
This instruction is used in memory management routines.

6-20

INSTRUCTION-SET SUMMARY

The load physical address (Idphy) instruction translates an address in the address space into a
physical address. The primary function of this instruction is to translate virtual addresses into
physical addresses.

6-21

Floating-Point Operation 7

CHAPTER 7
FLOATING-POINT OPERATION

This chapter describes the floating-point processing capabilities of the 80960MC processor.
The subjects discussed include the real number data types, the execution environment for
floating-point operations, the floating-point instructions, and fault and exception handling.

INTRODUCING THE 80960MC FLOATING-POINT ARCHITECTURE

The floating-point architecture used in the 80960MC processor is designed to allow a con­
venient implementation of the IEEE Standard 754-1985 for Binary Floating-Point Arithmetic.
This hardware architecture, along with a small amount of software support, conforms to the
IEEE standard and provides support for the following data structures and operations:

• Real (32-bit), long-real (64-bit), and extended-real (80-bit) floating-point number formats.

• Add, subtract, multiply, divide, square root, remainder, and compare operations

• Conversion between integer and floating-point formats

• Conversion between different floating-point formats

• Handling of floating-point exceptions, including non-numbers (NaNs)

The software to support the 80960MC floating-point architecture is needed primarily to handle
conversions between real numbers and decimal strings.

In addition, the 80960MC floating-point architecture supports several functions that go beyond
the IEEE standard. These functions fall into two categories:

• functions recommended in the appendix to the IEEE standard, such as copy sign and
classify, and

• commonly used transcendental functions, including trigonometric, logarithmic, and ex­
ponential functions.

REAL NUMBERS AND FLOATING-POINT FORMAT

This section provides an introduction to real numbers and how they are represented in floating­
point format. Readers who are already familiar with numeric processing techniques and the
IEEE standard may wish to skip this section.

Real Number System

As shown at the top of Figure 7-1, the real-number system comprises the continuum of real
numbers from minus infinity (-00) to plus infinity (+00).

7-1

-100

-\\

-100

-~~ 1

FLOATING·POINT OPERATION

BINARY REAL NUMBER SYSTEM

-10 -1 0 10

SUBSET OF BINARY REAL-NUMBERS THAT CAN BE REPRESENTED WITH
IEEE SINGLE-PRECISION (32-BIT) FLOATING-POINT FORMAT

-10 -1 0

1-········/·········/·· .. ·····/·· ..

I NUMBERS WITHIN THIS RANGE
CANNOT BE REPRESENTED

Figure 7·1: Binary Number System

100

,;-

100

1 . ,;-

Because the size and number of registers that any computer can have is limited, only a subset
of the real-number continuum can be used in real-number calculations. As shown at the
bottom of Figure 7-1, the subset of real numbers that a particular processor supports represents
an approximation of the real number system. The range and precision of this real-number
subset is determined by the format that the processor uses to represent real numbers.

Floating·Point Format

To increase the speed and efficiency of real number computations, computers or numeric
processors typically represent real numbers in a binary floating-point format. In this format, a
real number has three parts: a sign, a significand, and an exponent. Figure 7-2 shows the
binary floating-point format that the processor uses. This format conforms to the IEEE stan­
dard.

The sign is a binary value that indicates whether the number is positive (0) or negative (1).
The significand has two parts: a one-bit binary integer (also referred to as the j-bit) and a
binary fraction. The j-bit is often not represented, but instead is an implied value. The
exponent is a binary integer that represents the base-2 power that the significand is raised to.

7-2

inter FLOATING-POINT OPERATION

SIGN

I I EXPONENT SIGNIFICAND

G I FRACTION

INTEGER OR J-BIT J'--I-I-----------...I

Figure 7-2: Binary Floating-Point Format

Table 7-1 shows how the real number 201.187 (in ordinary decimal format) is stored in
floating-point format. The table lists a progression of real number notations that leads to the
format that the 80960MC processor uses. In this format, the binary real number is normalized
and the exponent is biased.

Table 7-1: Real-Number Notation

NOTATION VALUE

ORDINARY DECIMAL 201.187

SCIENTIFIC DECIMAL 2.01187E,02

SCIENTIFIC BINARY 1.1001001001011111 E2111

SCIENTIFIC BINARY 1.1001001001011111E210000110
(BIASED EXPONENT)

32-BIT SIGN BIASED EXPONENT SIGNIFICAND

FLOATING-POINT

FORMAT 0 10000110 1001001001011111

(NORMALIZED) L-1• (IMPLIED)

Normalized Numbers

In most cases, the processor represents real numbers in normalized form. This means that
except for zero, the significand is always made up of an integer of 1 and a fraction as follows:

l.fff ... ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the
exponent is decremented by one.)

7-3

FLOATING-POINT OPERATION

Representing numbers in normalized form maximizes the number of significant digits that can
be accommodated in a significand of a given width. To summarize, a normalized real number
consists of a normalized significand that represents a real number between 1 and 2 and an
exponent that gives the number's binary point.

Biased Exponent

The processor represents exponents in a biased form. This means that a constant is added to
the actual exponent so that the biased exponent is always a positive number. The value of the
biasing constant depends on the number of bits available for representing exponents in the
floating-point format being used. The biasing constant is chosen so that the smallest normal­
ized number can be reciprocated without overflow.

(The biasing constants for the various sizes of real data types that the processor supports are
given in the section later in this chapter titled "Real Data Types".)

Real Number and Non-Number Encodings

The real numbers that are encoded in the floating-point format described above are generally
divided into three classes: ± 0, ± nonzero-finite numbers, and ± 00. Encodings for non­
numbers (NaNs) are also defined. The term NaN stands for "Not a Number."

Figure 7-3 shows how the encodings for these numbers and non-numbers fit into the real
number continuum. The encodings shown here are for the IEEE single-precision (32-bit)
format, where the term "s" indicates the sign bit, "e" the biased exponent, and "f' the fraction.
(The exponent values are given in decimal.)

Signed Zeros

Zero can be represented as a +0 or a -0 depending on the sign bit. Both encodings are equal in
value. The sign of a zero result depends on the operation being performed and the rounding
mode being used. Signed zeros have been provided to aid in implementing interval arithmetic.
The sign of a zero may indicate the direction from which underflow occurred, or it may
indicate the sign of an 00 that has been reciprocated.

Signed, Nonzero, Finite Values

The class of signed, nonzero, finite values is divided into two groups: normalized and denor­
malized. The normalized finite numbers comprise all the nonzero finite values that can be
encoded in a normalized real number format from zero to 00. In the 32-bit form shown in
Figure 7-3, this group of numbers includes all the numbers with biased exponents ranging from
1 to 25410 (unbiased, the exponent range is from -12610 to + 12710).

7·4

in1er FLOATING-POINT OPERATION

Denormalized Numbers

When real numbers become very close to zero, the normalized-number format can no longer be
used to represent the numbers. This is because the range of the exponent is not large enough to
compensate for shifting the binary point to the right to eliminate leading zeros.

-DENORMALIZED FINITE + DENORMALIZED FINITE

-NORMALIZED FINITE '\. -0 + 0 / + NORMALIZED FINITE
I '\. I I I I

+ <X>

I I
-<X>

I I

REAL NUMBER AND NaN ENCODINGS FOR 32-BIT FLOATING-POINT FORMAT

S E F S E

11 1 0 0 I -0 +0 10 1 0 0

11 I 0 NONZERO
-DENORMALIZED + DENORMALIZED

1 0 I 0 NONZERO FINITE FINITE

11 11 ... 254 1 ANYVALUE 1 -NORMALIZED + NORMALIZED 1 0 11 ... 254 1 ANY VALUE FINITE FINITE

11 1 255 0 +00 101 255 0

IX' I 255 1.0XX' -SNaN +SNaN I X, I 255 1.0XX'

IX' I 255 1.1XX -QNaN +QNaN I x'i 255 1.1XX

Notes:
1. Sign bit ignored
2. Fractions must be nonzero

Figure 7-3: Real Numbers and NaNs

When the biased exponent is zero, smaller numbers can only be represented by making the
integer bit (and perhaps other leading bits) of the significand zero. The numbers in this range
are called denormalized numbers. The use of leading zeros with denormalized numbers allows
smaller numbers to be represented. However, this denormalization causes a loss of precision
(the number of significant bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, a processor normally operates on
normalized numbers and produces normalized numbers as results. Denormalized numbers
represent an underflow condition.

A denormalized number is computed through a technique called gradual underflow. Table 7-2
gives an example of gradual underflow in the denormalization process. Here the 32-bit format
is being used, so the minimum exponent (unbiased) is -12610, The true result in this example
requires an exponent of -12910 in order to have a normalized number. Since -12910 is beyond
the allowable exponent range, the result is denormalized by inserting leading zeros until the
minimum exponent of -12610 is reached.

7-5

FLOATING-POINT OPERATION

Table 7-2: Denormalization Process

Operation Sign Exponent* Significand

True Result 0 -129 1.01011100 ... 00

Denormalize 0 -128 0.101011100 ... 00

Denormalize 0 -127 0.0101011100 ... 00

Denormalize 0 -126 0.00101011100 ... 00

Denormal Result 0 -126 0.00101011100 ... 00

Note: *Expressed as unbiased, decimal number.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating
a zero result.

Signed Infinities

The two infinities, +00 and _00, represent the maximum positive and negative real numbers,
respectively, that can be represented in the floating-poiht format. Infinity is always represented
by a zero fraction and the maximum biased exponent allowed in the specified format (e.g.,
255 10 for the 32-bit format).

Whereas denormalized numbers represent an underflow condition, the two infinity numbers
represent the result of an overflow condition. Here, the normalized result of a computation has
a biased exponent greater than the largest allowable exponent for the selected result format.

NaNs

Since NaNs are non-numbers, they are not part of the real number line. In Figure 7-3, the
encoding space for NaNs in the 80960MC floating-point formats is shown above the ends of
the real number line. This space includes any value with the maximum allowable biased
exponent and a non-zero fraction. (The sign bit is ignored for NaNs.)

The IEEE standard defines two specific NaN values: a quiet NaN (QNaN) and a signaling
NaN (SNaN). A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN
with the most significant fraction bit clear. QNaNs are allowed to propagate through most
arithmetic operations without signaling an exception. SNaNs signal an invalid-operation ex­
ception whenever they appear as operands in arithmetic operations. Exceptions are discussed
later in this chapter in the section titled "Exceptions and Fault Handling."

The section at the end of this chapter titled "Operations on NaNs" provides detailed infor-
mation on how the processor handles NaNs. .

7·6

FLOATING-POINT OPERATION

REAL OAT A TYPES

The processor supports three real-number data formats: real, long real, and extended real.
These formats correspond directly to the single-precision, double-precision, and double­
extended precision formats in the IEEE standard. Figure 7-4 shows these data formats and
gives the resolution that each provides.

80
BITS

DATA TYPE

Real
Long Real
Extended Real

SIGN REAL

B~is II~~i~~~T.··_l-l!e.~ •• ••••• ••• ••· · ••••••••• ··.··.11
31 30 23 22 "" INTEGER

64
BITS

RANGE
2_126 to 2127 L 10-45 to -, 038)

2_ 1022 to 2 1023 (~1O-324 to -, 0308)

2_16382 to 216383 L, 0-4950 to -, a + 4932)

Figure 7-4: Real-Number Formats

IMPLIED

As described earlier in this chapter, the processor represents exponents in a biased format. For
real values, the biasing constant is 127; for long-real values, it is 1023; and for extended-real
values, it is 16383.

For the real and long-real formats, only the fraction is given for the significand. The integer is
assumed to be 1 for all numbers except 0 and denormalized finite numbers. For the extended­
real format, the integer is contained in bit 63, and the most-significant fraction bit is bit 62.
Here, the integer is explicitly set to 1 for normalized numbers, infinities, and NaNs, and to 0
for zero and denormalized numbers. A non-zero exponent with the integer bit set to zero is a
reserved encoding, which will result in a floating reserved-encoding exception being signaled.

Table 7-3 shows the encodings for all the classes of real numbers (i.e., zero, denormalized
finite, normalized finite, and 00) and NaN s, for each of the three real data-types.

EXECUTION ENVIRONMENT FOR FLOATING-POINT OPERATIONS

An important feature of the 80960MC processor is that the floating-point processing
capabilities have been integrated into the execution environment of the processor. Operations
on floating-point numbers are carried out using the same registers that are used for ordinals and
integers. In addition, four floating-point registers have been provided for extended-precision
floating-point arithmetic. The following sections describe how floating-point operations are
handled in the processor's execution environment.

7·7

inter FLOATING·POINT OPERATION

Table 7·3: Real Numbers and NaN Encodings

CLASS SIGN BIASED EXPONENT

+00 0 11 ... 11

0 11...10

+ NORMALS · ·
· ·

POSITIVE 0 00 ... 01

0 00 ... 00

+DENORMALS · ·
· ·
0 00 ... 00

+ ZERO 0 00 ... 00

·ZERO 1 00 ... 00

1 00.;.00

·DENORMALS · ·
· ·

NEGATIVE 1 00 ... 00

1 00 ... 01

· ·
·NORMALS · ·

· ·
1 11 ... 10

.00 1 11 ... 11

SNaN X 11 ... 11
NaN

QNaN X 11 ... 11

REAL: ~ 8BITS~
_11BITS

15 BITS

LONG REAL:

EXTENDED REAL:

Notes:

1.lnteger is implied for real and long real formats and is not stored.

2.Fraction for SNaN must be non-zero.

Registers

INTEGER1

1

1

·
·
1

0

·
·
0

0

0

0

·
·
0

1

·
·
·
1

1

1

1

FRACTION

00 ... 00

11 ... 11

00 ... 00

11 ... 11

·
00 .. 01

00 .. 00

00 .. 00

00 ... 01

·
·

11 ... 11

00 ... 00

11...11

00 ... 00

OX ... XX2

1X ... XX

~ 23BITS ~
.... 52 BITS

63 BITS

All of the registers in the processor's execution environment, (i.e., global, local, and floating
point) can be used for floating-point operations. When using global or local registers, real
values (i.e., 32 bits) are contained in one register; long-real values (i.e., 64 bits) are contained
in two successive registers; and extended-real values (i.e., 80 bits) are contained in three
successive registers.

inter FLOATING-POINT OPERATION

Figure 7-5 shows how the three forms of the real data type are encoded when stored in global
and local registers. Note that long-real values must be aligned on even-numbered register
boundaries (e.g., gO, g2, ...). Extended-real values must be aligned on register boundaries that
are an integral multiple of four (e.g., gO, g4, ...).

31 23 22
REAL

REGISTER
DISPLACEMENT

I I EXPONENT I ~~ ____________ ~ _______________ F_RA_C_T_IO_N ____________________ ~I n

SIGN

LONG REAL
31 20 19

FRACTION (LEAST SIGNIFICANT BITS) n '

I EXPONENT I FRACTION (MOST SIGNIFICANT BITS) n + 1

SIGN

EXTENDED REAL

FRACTION (LEAST SIGNIFICANT BITS) n'

n + 1

EXPONENT n+2

INTEGER SIGN

Notes:
1. Register number must be even.
2. Register number must be an integral multiple of four.

r4iUirG RESERVED (INITIALIZE TO 0)

Figure 7-5: Storage of Real Values in Global and Local Registers

Real values in the floating-point registers are always in the extended-real format. When a real
or long-real value is moved from global or local registers to a floating-point register, the
processor automatically reformats it for the extended-real format.

Loading and Storing Floating-Point Values

Floating-point values are loaded from memory into global or local registers using the load (ld),
load long (ldl), and load triple (ldt) instructions. Likewise, floating-point values in global or
local registers are stored in memory using the store (st), store long (stl), and store triple (stt)
instructions.

Loading a floating-point value into a floating-point register requires two steps (two
instructions). First, a floating-point value must be loaded from memory into one or more
global or local registers. Then, the value must be moved to the floating-point register using a
move real (movr), move long-real (movrl), or move extended-real (movre) instruction.

7-9

FLOATING-POINT OPERATION

A similar two-step procedure is required to store a value from a floating-point register into
memory. The value must first be moved into one or more global or local registers (using a
movr, movrl, or movre instruction), then stored in memory.

This two-step method for moving values from memory into floating-point registers and vice
versa may seem a little cumbersome; however, in practice it generally is not. Floating-point
registers are most often used to store and accumulate intermediate results of computations.
The contents of these registers are not normally stored in memory.

For example, the following instruction

divr r3, r4, fp2

causes the real value in local register r4 to be divided by the value in r3, with the extended-real
result stored in floating-point register fp2. Here, a move operation from the local registers to
the floating-point registers is not required, since it is implicit in the divide operation.

Moving Floating-Point Values

Either the move instructions (mov, movl, or movt) or the move-real instructions (movr,
movrl, or movre) can be used to move real values among global and local registers. The move
real instructions are generally used to convert a real value from one format to another or for
moving real values between the global or local registers and floating-point registers. The move
instructions are used to move real values while keeping them in the same format.

When using the movr and movrl instructions to move floating-point numbers between the
global or local registers and the floating-point registers, the processor automatically converts
values from real and long-real format, respectively, into the extended-real format and vice
versa.

For example, the following instruction

movr g3, fpl

causes a 32-bit, real value in global register g3 to be converted to SO-bit, extended-real format
and placed in floating-point register fpI.

Going the opposite direction, the instruction

movrl fpO, r4

causes an extended-real value in floating-point register fpO to be converted to 64-bit, long-real
format and placed in local registers r4 and r5.

The movre instruction moves SO-bit, extended-real values between registers, without format
conversion. When this instruction is used to move a value from three global or local registers
to a floating-point register, the processor extracts the SO-bit value from the three word
extended-real format. When moving a value from a floating-point register to global or local
registers, the processor inserts the SO-bit value into the three registers in the three-word format.

7-10

inter FLOATING-POINT OPERATION

Arithmetic Controls

The arithmetic controls are used extensively to control the arithmetic and faulting properties of
floating-point operations. Table 7-4 shows the bits in the arithmetic controls that are used in
floating-point operations.

Table 7-4: Arithmetic Controls Used in Floating-Point Operations

Arithmetic Function
Control
Bits

0-2 Condition code

3-6 Arithmetic status field

8 Integer overt1ow t1ag

12 Integer overt1ow mask

16 Floating overt1ow flag

17 Floating underflow flag

18 Floating invalid-operation t1ag

19 Floating zero-divide flag

20 Floating inexact flag

24 Floating overt1ow mask

25 Floating undert10w mask

26 Floating invalid-operation mask

27 Floating zero-divide mask

28 Floating inexact mask

29 Normalizing mode flag

30 - 31 Rounding control

The condition code flags are used to indicate the results of comparisons of real numbers, just as
they are for integers and ordinals.

The arithmetic status field is used to record results from the classify real (c1assr and c1assrl)
and remainder real (remr and remrl) instructions. These instructions are discussed later in this
chapter.

The floating-point flags indicate exceptions to floating-point operations. Here, the term excep­
tion refers to a potentially undesirable operation (such as dividing a number by zero) or an
undesirable. result (such as undert1ow). The flags provide a means of recording the occurrence
of specific exceptions.

The floating-point masks provide a method of inhibiting the processor from invoking a fault
handler when an exception is detected.

7-11

FLOATING·POINT OPERATION

Use of the floating-point flag and mask bits are discussed later in this chapter in the section
titled "Exceptions and Fault Handling."

Normalizing Mode

The normalizing-mode flag specifies whether the processor operates in normalizing mode (set)
or not (clear).

Normalizing mode is the most common mode of operation. Here, the processor operates on
valid floating-point operands, regardless of whether they are normalized or denormalized
values.

When the processor is not operating in normalizing mode, it signals a reserved-encoding
exception whenever it encounters a denormalized floating-point value as a source operand. In
either mode, denormalized numbers are produced if the underflow exception is masked.

There are no flag or mask bits in the arithmetic controls for this exception. When a reserved­
encoding exception is detected, the processor generates a floating reserved-encoding fault and
leaves the destination operand unchanged (Le., no result is stored).

The unnormalized mode of operation is provided to allow unnormalized arithmetic to be
simulated with software. Here, a fault handler routine can be used to perform unnormalized
arithmetic whenever a reserved-encoding exception is signaled.

Rounding Control

Often the infinitely precise result of an arithmetic operation cannot be encoded exactly in the
format of the destination operand. For example, the following value has a 24-bit fraction. The
least-significant bit of this fraction (the underlined bit) cannot be encoded exactly in the real
(32-bit) format:

1. 0001 0000 1000 0011 1001 011JE2 10 1

The processor must then round the result to one of the following two values:

1. 0001 0000 1000 0011 1001 011 E2 10 1

1.0001 0000 10000011 1001 100E2 101

A rounded result is called an inexact result. When an inexact result is produced, the floating­
point inexact flag bit in the arithmetic controls is set.

The processor rounds results according to the destination format (real, long real, or extended
real) and the setting of the rounding-mode flags of the arithmetic controls. Four types of
rounding are allowed, as described in Table 7-5.

7-12

inter FLOATING-POINT OPERATION

Table 7-5: Rounding Methods

Rounding Mode Description

Round up (toward +00) Rounded result is close to but no
less than the infinitely precise
result

Round down (toward -00) Rounded result is close to but no
greater than the infinitely precise
result

Round toward zero (Truncate) Rounded result is close to but no
greater in absolute value than the
infinitely precise result

Round to nearest (even) Rounded result is close to the in-
finitely precise result. If two
values are equally close, the result
is the even value (i.e., the one with
the least-significant bit of zero).

When the infinitely precise result is between the largest positive finite value allowed in a
particular format and +00, the processor rounds the result as shown in Table 7-6.

Table 7-6: Rounding of Positive Numbers

Rounding Mode Description

Round up (toward +00) +00

Round down (toward -00) Maximum, positive finite value

Round toward zero (Truncate) Maximum, positive finite value

Round to nearest (even) +00

When the infinitely precise result is between the largest negative finite value allowed in a
particular format and -00, the processor rounds the result as shown in Table 7-7.

Table 7-7: Rounding of Negative Numbers

Rounding Mode Description

Round up (toward +00) Maximum, negative finite value

Round down (toward -00) -00

Round toward zero (Truncate) Maximum, negative finite value

Round to nearest (even) -00

The rounding modes have no effect on comparison operations, operations that produce exact
results, or operations that produce NaN results.

7-13

inter FLOATING·POINT OPERATION

The floating-point instructions allow a result to be stored in a shorter destination than the
source operands. For example, the instruction

addr fpl, fp2, g5

produces a real (32-bit) result from two extended-real (80-bit) source operands. In all such
operations, only one rounding error occurs: the error that occurs when rounding the infinitely
precise result to the size of the destination format.

Technically, an operation which computes a narrow result from wide operands is in violation
of the IEEE standard. However, systems that are designed to conform to the IEEE standard do
not need to use this capability of the processor.

INSTRUCTION FORMAT

The instruction format for floating-point instructions is the same as for the other processor
instructions. When programming in assembly language, an assembly language statement
begins with an instruction mnemonic and is followed by from one to three operands. For
example, the multiply-real instruction muir might be used as follows:

muIr r8, r9, fp3

Here, real operands in local registers r8 and r9 are multiplied together and the result is stored in
floating-point register fp3.

From the machine level point of view, all floating-point instructions use the REG format.
Refer to Appendix B for details on the REG format instructions.

INSTRUCTION OPERANDS

Operands for floating-point instructions can be either floating-point literals or registers. The
processor recognizes two encodings for floating-point literals: +0.0 and + 1.0.

All of the registers in the processor's execution environment (global registers gO through gi5,
local registers rO through rl5, and floating-point registers fpO through fp3) can be used as
operands in floating-point instructions. (Of course, registers gi5, rO, rl, and r2 would
generally not be used for storing floating-point numbers, since they are reserved for stack
management functions.)

When global or local registers are specified as operands, the instruction mnemonic (or opcode)
determines how the values in these registers are interpreted. For example, there are two
floating-point divide instructions: divide real (divr) and divide long real (divrl). When using
the divr instruction, the processor assumes that global- or local-register operands contain real
(32-bit) values. When using the divrl instruction, global- or local-register operands are as­
sumed to contain long-real (64-bit) values.

With either instruction, floating-point registers (containing extended-real values) can also be
used as operands.

7·14

inter FLOATING-POINT OPERATION

Using floating-point registers as operands allows mixed format or mixed precision arithmetic
to be performed with either real and extended-real values or long-real and extended-real
values. Mixed-format operations with real and long-real values are not supported.

SUMMARY OF FLOATING-POINT INSTRUCTIONS

The processor's floating-point instructions consist of all instructions for which at least one
operand is a real data type.

These instructions can be divided into the following groups:

• Data Movement

• Data-Type Conversion

• Basic Arithmetic

• Comparison and Classification

• Trigonometric

• Logarithmic and Exponential

The following sections give a brief overview of the instructions in each group. Detailed
descriptions of the operations of these instructions are given in Chapter 17.

Data Movement

As has been described earlier in this chapter, the non-floating-point load and store instructions
are used to move real values between registers and memory. Once in registers, the non­
floating-point move instructions (mov, movl, and movt) are used to move real values between
global and local registers without format conversion; whereas, the floating-point move instruc­
tions (movr, movrl, and movre) are used to move real values between global and local
registers and floating-point registers.

The copy-sign-real-extended (cpysre) and copy-reverse-sign-real-extended (cpyrsre) instruc­
tions provide a means of copying the sign of one extended-real value to another, if one of the
values is in a floating-point register. This operation is best performed on real and long-real
values using the bit instructions chkbit and alterbit.

Data-Type Conversion

Two types of data-type conversions are provided: conversion from one floating-point format
to another (e.g., real to extended real) and conversion between integer and real.

Conversion between floating-point formats is handled in either of two ways: explicitly by
move instructions or implicitly by using the floating-point registers as operands in instructions.

As described earlier in this chapter, the movr instruction implicitly converts values from real to
extended real, and vice versa, when moving values between global or local registers and
floating-point registers. Likewise, the movrl instruction implicitly converts values from long
real to extended real, and vice versa.

7-15

FLOATING-POINT OPERATION

Conversion between real and long-real formats requires the use of both instructions. For
example, the following two instructions convert a real value in global register g6 to a long-real
value contained in g6 and g7, using a floating-point register for intermediate storage of the
value:

movr g6, fpl
movrl fpl, g6

Implicit format conversion is also provided through the arithmetic, trigonometric, logarithmic,
and exponential instructions. For example, the instruction

addr r4, r5, fp2

adds two real values together and produces an extended-real result.

The following six instructions allow conversion between integers and reals:

cvtir
cvtilr
cvtri
cvtril
cvtzri
cvtzril

convert integer to real
convert long integer to long real
convert real to integer
convert real to long integer
convert truncated real to integer
convert truncated real to long integer

Both the cvtir and cvtilr instructions can be used to convert an integer to an extended-real
value by specifying that the result be placed in a floating-point register.

The convert real-to-integer instructions round off the real value to the nearest integer or
long-integer value. For the cvtri and cvtril instructions, the rounding mode determines the
direction the real number is rounded. For the convert truncated real-to-integer instructions
(cvtzri and cvtzril), rounding is always toward zero. The latter two instructions are provided
to allow efficient implementation of FORTRAN-like truncation semantics.

Extended-real values can be converted to integers by using a floating-point register as a source
operand in either of the convert real-to-integer instructions.

Converting long-real values to integers requires two instructions, as in the following example:

movrl g6, fp3
cvtzri fp3, g6

The first instruction moves the long-real value to a floating-point register. The second instruc­
tion converts the extended-real value to an integer.

7·16

inter FLOATING-POINT OPERATION

Basic Arithmetic

The following instructions perform the basic arithmetic operations specified in the IEEE stan­
dard:

addr
addrl
subr
subrl
muir
mulrl
divr
divrl
remr
remrl
rouodr
roundrl
sqrtr
sqrtrl

add real
add long real
subtract real
subtract long real
multiply real
mUltiply long real
divide real
divide long real
remainder real
remainder long real
round real
round long real
square root real
square root long real

The round instructions round the floating-point operand to its nearest integral (i.e., integer)
value, based on the current rounding mode. These instructions perform a function similar to
the convert real-to-integer instructions except that the result is in floating-point format.

Comparison, Branching, and Classification

Comparison of floating-point values differs from comparison of integers or ordinals because
with floating-point values there are four, rather than the usual three, mutually exclusive
relationships: less than, equal to, greater than, and unordered.

The unordered relationship is true when at least one of the two values being compared is a
NaN. This additional relationship is required because, by definition, NaNs are not numbers, so
they cannot have greater than, equal, or less than relationships with other floating-point values.

The following instructions are provided for comparing floating-point values:

empr
emprl
empor
emporl

compare real
compare long real
compare ordered real
compare ordered long real

All of these instructions set the condition code flags in the arithmetic controls to indicate the
results of the comparison. With the compare instructions (empr and emprl), the condition
code flags are set to 0002 for the unordered condition. With the compare ordered instructions
(empor and emporl), the condition code flags are set to 0002 and an invalid-operation excep­
tion is signaled for the unordered condition.

Two branch instructions (bo and boo) allow conditional branching to be performed on an
ordered or unordered condition, respectively. With these instructions, the processor checks the
condition code flags for unordered (0002) or ordered (1112) and branches accordingly.

7-17

inter FLOATING·POINT OPERATION

The classify-real instructions (cIassr and classrl) provide a means of determining the class of a
floating-point value (i.e., zero, denormalized finite, normalized finite, 00, SNaN, or QNaN).
The result of this operation is stored in the arithmetic status field of the arithmetic controls.

Trigonometric

The following instructions provide four common trigonometric functions:

sinr
sinrl
cosr
cosrl
tanr
tanrl
atanr
atanrl

sine real
sine long real
cosine real
cosine long real
tangent real
tangent long real
arctangent real
arctangent long real

The arctangent instructions facilitate conversion from rectangular to polar coordinates.

Pi

The processor uses the following value for 1t in its computations:

1t = OJ * 2e

where:

f = C90FDAA2 2168C234 C16

e = 2 if significand is O.f

(The spaces in the fraction above indicate 32-bit boundaries.)

This value has a 66-bit mantissa, which is 2 bits more than is allowed in the significand of an
extended-real value. (Since 66 bits is not an even number of hex digits, two additional zeros
have been added to the value so that it can be represented in a hexadecimal·format. The
least-significant hex digit (C16) is thus 11002, where the two least significant bits represent bits
67 and 68 ofthe mantissa.)

If the results of computations that explicitly use 1t are to be used in the sine, cosine, or tangent
instructions, the full 66-bit fraction for 1t should be used. This insures that the results are
consistent with the argument-reduction algorithms that these instructions use. Using a rounded
version of 1t can cause inaccuracies in result values, which if propagated through several
calculations, might result in meaningless results.

7·18

FLOATING·POINT OPERATION

A common method of representing the full 66-bit fraction of n is to separate the value into two
numbers. For example, the following two long-real values added together give the value for n
shown above with the full 66-bit fraction:

n = highn + lown

where:

highn = 400921FB 5440000016

lown = 3DDOB461 lA60000016

Here highn gives the most significant 33 bits of nand lown gives the least significant 33 bits.
Similar versions of n can also be written in the extended-real format.

When using this two-part n value in an algorithm, parallel computations should be performed
on each part, with the results kept separate. When all the computations are complete, the two
results can be added together to form the final result.

Logarithmic, Exponential, and Scale

The following instructions provide three different logarithmic functions, an exponenti~l func­
tion, and a scale function:

logbnr
logbnrl
logr
logrl
logepr
logeprl
expr
exprl
scaler
scalerl

log binary real
log binary long real
log real
log long real
log epsilon real
log epsilon long real
exponent real
exponent long real
scale real
scale long real

These instructions are described in detail in Chapter 17. The following is a brief description of
their functions.

The log binary instructions compute the IEEE recommended function 10gb (X). The result is an
integral value that is the binary log of X.

The log instructions compute the function Y * log (X), where the log of X is the base-2
logarithm.

The log epsilon instructions compute the function Y * log (X + 1), where the log of X + 1 is a
base-2 logarithm.

7·19

FLOATING-POINT OPERATION

The exponent instructions compute the value 2x - 1.

The scale instructions perform a multiplication of a floating-point value by a power of 2.

Arithmetic Versus Nonarithmetic Instructions
I
The floating-point instructions can be divided into two groups: arithmetic and nonarithmetic.
Arithmetic instructions are those that are sensitive to real values, meaning that they distinguish
among NaN, 00, normalized finite, denormalized finite, and zero values.

All but five of the floating-point instructions are arithmetic. The five non arithmetic instruc­
tions are move-real extended (movre), copy-sign real extended (cpysre), copy-reversed-sign
real extended (cpyrsre), and classify real (classr and classrl). These nonarithmetic instruc­
tions are insensitive to real values and cannot generate floating-point exceptions or faults.

This distinction between arithmetic and nonarithmetic instructions is important because
floating-point exceptions and faults can be signaled only during the execution of arithmetic
instructions.

OPERATIONS ON NANS

As was described earlier in this chapter, the processor supports two types of NaNs: QNaN and
SNaN. An SNaN is any NaN value with its most-significant fraction bit set to 0 and at least
one other fraction bit set to 1. (If all the fraction bits are set to 0, the value is an 00.) A QNaN
is any NaN value with the most-significant fraction bit set to 1. The sign bit of a NaN is not
interpreted.

In general, when a QNaN is used in one or more arithmetic floating-point instructions, it is
allowed to propagate through a computation. An SNaN on the other hand causes a floating
invalid-operation exception to be signaled.

The floating invalid-operation exception has a flag and a mask bit associated with it in the
arithmetic controls. The mask bit determines how the processor handles an SNaN value. If the
floating invalid-operation mask bit is set, the SNaN is converted to a QNaN by setting the most
significant fraction bit of the value to a 1. The result is then stored in the destination and the
floating invalid-operation flag is set. If the invalid operation mask is clear, a floating invalid­
operation fault is signaled and no result is stored in the destination.

When the result is a QNaN, the format of the result is as shown in Table 7-8, depending on the
form of the source operands.

7-20

FLOATING-POINT OPERATION

Table 7-8: Format of QNaN Results

Source Operands QNaNResult

Only one operand is NaN, destina- QNaN version of NaN source
tion is same width

Only one operand is NaN, destina- QNaN version of NaN source, with
tion is longer fraction extended with zeros

Only one operand is NaN, destina- QNaN version of NaN source, with
tion is shorter fraction truncated

Both operands are NaN s QNaN version of source whose
fraction field has greatest mag-
nitude, with fraction extended or
truncated as described above

In some cases, a QNaN result is returned when none of the source operands are NaNs. Here, a
standard QNaN is returned. The significand for the standard QNaN is as follows:

1.1000 ... 00

(For real and long-real destinations, the integer bit will be an implied 1.)

Other than the rules specified above, software is free to use the other bits of a NaN for any
purpose.

EXCEPTIONS AND FAULT HANDLING

Occasionally, a floating-point instruction can result in an exception being signaled. The
processor recognizes six floating-point exceptions:

• Floating Reserved Encoding

• Floating Invalid Operation

• Floating Zero Divide

• Floating Overflow

• Floating Underflow

• Floating Inexact

These exceptions can be divided into two categories:

1. Situations in which one or more source operands are inappropriate for an operation and
would cause an exception to be signaled.

2. Situations in which the result of an operation is exceptional.

The reserved encoding, invalid operation, and division-by-zero exceptions fall in the first
category; the overflow, underflow, and inexact exceptions fall in the second category.

7-21

FLOATING-POINT OPERATION

Except for the floating reserved-encoding exception, each of these exceptions has a flag and a
mask bit associated with it in the arithmetic controls. When an exception condition occurs, the
processor performs one of the following operations:

• If the mask bit for the exception is set, the flag for the exception is set and instruction
execution continues, substituting a default value in place of the result.

• If the mask bit for the exception is clear, the flag for the exception is not set and a
floating-point arithmetic fault is raised. The processor then stores diagnostic information
in the fault information area and diverts instruction execution to a fault handler.

Since the floating. reserved-encoding exception does not have a flag or mask bit, it always
results in a fault.

NOTE

The floating-point exception flags are "sticky," which means that the processor does not
implicitly clear them while carrying out floating-point operations. They may be cleared by
software.

Fault Handler

As is described in Chapter 12, when a floating-point fault is signaled, the processor calls a
single fault handler. This fault handler determines how to handle the specific fault subtype by
interpreting the floating-point exception flags and the information in the fault record.

Floating-Reserved-Encoding Exception

A reserved-encoding exception occurs as a result of either of the following two conditions:

• When a reserved encoding is used as an operand in a floating-point instruction, or

• When a denormalized value is used as an operand in a floating-point instruction and the
normalizing-mode bit in the arithmetic controls is clear.

The first condition is rare. It can only occur if a program presents an extended-real value to the
processor that has a zero j-bit (integer part) and a non-zero biased exponent.

The second condition was discussed earlier in this chapter in the section titled "Normalizing
Mode." This condition is also rare, since the vast majority of programs run with the normaliz­
ing mode enabled.

There is neither a flag nor a mask bit for this exception. When a reserved-encoding exception
occurs, the processor raises a floating-reserved-encoding fault and does not store a result.

7-22

FLOATING-POINT OPERATION

Floating-Invalid-Operation Exception

The invalid-operation exception indicates that one of the source operands is inappropriate for
the type of operation being performed. The following conditions cause this exception to be
signaled:

• Any arithmetic operation on an SNaN

• Addition of infinities of unlike sign

• Subtraction of infinities of like sign

• Multiplication of zero by 00

• Division of zero by zero or 00 by 00

• Remainder of x by y, if Y is zero or x is 00

• Square root of a negative, nonzero value

• Conversion of a NaN from floating-point format to integer format

• Sine, cosine, or tangent of 00

• Y * log (x), if:

x is negative and nonzero,

y is zero and x is 00,

y and x are zero, or

y is 00 and x is I

• Log epsilon of (y, x), if y is 00 and x is 0

• Compare ordered, if a source operand is a NaN

When a floating-invalid-operation exception occurs and its mask is set, the following occurs:

• When the result is a floating-point value, the standard QNaN value is stored in the destina­
tion and the floating-invalid-operation flag is set. (A discussion of how the processor
handles NaNs was provided earlier in this chapter in the section titled ;'Openltions on
NaNs.")

• When the result is an integer, the maximum negative integer is stored in the destination
and the floating-invalid-operation flag is set.

When the mask is clear, no result is stored; the floating-invalid-operation flag is not set; and
the floating-invalid-operation fault is signaled.

Floating-Zero-Divide Exception

The floating-zero-divide exception is signaled when an exact non-finite result would be
produced from finite operands. (Note that a different exception, overflow, is signaled when an
infinite result is produced inexactly from finite operands.) The most common example of this
exception is a division operation, where the divisor is zero and the dividend is a nonzero, finite
value.

7-23

FLOATING-POINT OPERATION

When the floating-zero-divide mask is set: a correctly signed 00 is stored in the destination and
the floating-zero-divide flag is set. When the mask is clear, no result is stored; the floating­
zero-divide flag is not set; and a floating-zero-divide fault is signaled.

Floating-Overflow Exception

The overflow exception occurs when the infinitely precise result of a floating-point instruction
exceeds the largest allowable finite value for the specified destination format. For example, if
the destination format is real (32 bits), overflow occurs when the infinitely precise result falls
outside the range -1.0 * 2128 to 1.0 * 2128 (exclusive), where 128 is the unbiased exponent of
the result. For long-real (64 bits) values, the overflow threshold range is -1.0 * 21024 to 1.0 *
21024; for extended-real (80 bits) values, it is -1.0 * 216384 to 1.0 * 216384.

When the floating-overflow mask is set, a rounded result is stored in the destination and the
floating-overflow flag is set. The current rounding mode determines the method used to round
the result.

When the mask is clear: no result is stored in the destination and the floating-overflow flag is
not set. Instead, the processor stores the result in extended-real format in the fault information
area. The fraction of the extended-real value is rounded to the instruction's destination preci­
sion. For example, if the destination operand's format is real (32 bits), the extended-real
fraction is rounded to 23 bits, with the 40 least-significant bits filled with zeros.

If the exponent exceeds the range of the extended-real format (16383 unbiased), then the
exponent is divided by 224576 and a flag (bit 1 of the fault flags byte or override flags byte) is
set in the fault information area to indicate that the exponent has been bias adjusted. After this
fault information is stored, a floating-overflow fault is signaled.

When using the scale instructions (scaler or scalerl), massive overflow can occur, where the
infinitely precise result is too large to be represented, even with a bias-adjusted exponent.
Here, a properly signed 00 is stored in the fault record.

The floating-overflow exception cannot occur on a conversion from floating-point format to
integer format (although an integer overflow exception can occur).

Floating-Underflow Exception

An underflow condition occurs when the infinitely precise result of a floating-point instruction
is less than the smallest possible normalized, finite value for the specified destination format.
For example, for the real (32-bit) format, underflow occurs when an infinitely precise result
falls in the range -1.0 * 2-126 to 1.0 * 2-126 (exclusive), where -126 is the unbiased exgonent.
For long-real (64 bits) values, the underflow threshold ran~e is -1.0 * 21022 to 1.0 * 21 22; for
extended-real (80 bits) values, it is -1.0 * 216382 to 1.0 * 21 382.

When a floating-underflow condition occurs, the setting of the floating-underflow mask deter­
mines how the processor handles the condition.

7-24

FLOATING-POINT OPERATION

If the mask is set when an underflow condition occurs, the processor goes ahead and denor­
malizes the result. Then if the result is exact, it is stored in the destination and the floating­
underflow exception is not signaled, nor is the floating-underflow flag set. If, on the other
hand, the denormalized result is inexact, the floating-underflow flag is set and the processor
goes on to handle the inexact condition as described in the next section.

If the floating-underflow mask is clear when an underflow-condition occurs, no result is stored
in the destination and the floating-underflow flag is not set. Instead, the processor stores the
result in extended-real format in the fault information area, with the fraction of the extended­
real value rounded to the instruction's destination precision. For example, if the destination
precision is real (23-bit fraction), the 40 least-significant bits of the fraction are set to O.

If the exponent of the value stored is less than the minimum allowable value in the extended­
real format (-16,382 unbiased), then the exponent is multiplied by 224576 and a flag (bit I of the
fault or override flags byte) is set in the fault information area to indicate that the exponent has
been bias adjusted. After this information is stored, a floating-underflow fault is signaled.

The scale instructions can cause massive underflow to occur, where the infinitely precise result
is too small to be represented, even with a bias-adjusted exponent. Here, a properly signed
zero is stored in the fault record.

Refer to the section later in this chapter titled "Floating-Point Underflow Condition" for more
information on the interaction of the floating underflow and inexact exceptions.

Floating-Inexact Exception

The floating-inexact exception occurs when an infinitely precise result cannot be encoded in
the format specified for the destination operand. Either of the following two conditions can
cause an inexact exception to be signaled:

• When a result is rounded and the result is not exact

• When overflow occurs and the floating-overf1ow mask is set

If the f1oating-inexact mask is set when an inexact condition occurs and an unmasked overflow
or underf10w condition does not occur, the rounded result is stored in the destination and the
floating-inexact flag is set. The current rounding mode determines the method used to round
the result.

If the floating-inexact mask is clear when an inexact condition occurs, the floating-inexact flag
is not set and one of the following operations is carried out:

• If only the inexact condition has occurred, the processor stores the rounded result in the
specified destination, then raises a floating-inexact fault.

• If the inexact condition occurs along with overflow or underf1ow, no result is stored in the
destination. Instead, the processor stores the result in extended-real format in the fault
information area, as described for the f10ating overflow and underflow exceptions, then
raises a floating-inexact fault.

7-25

inter FLOATING-POINT OPERATION

Refer to the following section for more information on the interaction of the floating underflow
and inexact exceptions.

Floating-Point-Underflow Condition

Two aspects of underflow are important in numeric processing: the "tininess" of a number and
"loss of accuracy." A result is tiny when it is nonzero and its exponent is between ± 2Emm,

where Emin is the smallest unbiased exponent allowed in the destination format. For example,
if the destination format is 10nB-real (64-b!t. format), a res~lt is tiny ~f ~t is nonzero and in the
range of + 1 * 2-1022 to -1 * 2-1 22. The abilIty to detect a tmy result is important because such
a result may cause an exception to be signaled in a later operation (e.g., overflow on a
division).

Loss of accuracy occurs when a tiny result is approximated as part of the denormalization
process so that it will fit into the destination format.

In the 80960MC processor, tininess is detected after rounding as an underflow condition. Loss
of accuracy is detected as an inexact condition.

The algorithm in Figure 7-6 shows how the processor responds to these two conditions, when a
floating-point operation produces a tiny result.

An important point to note in this algorithm is that if the underflow mask is set, an underflow
exception is signaled only if the denormalized result is inexact. If the denormalized number is
exact, no flags are set and no faults are signaled.

7·26

FLOATING-POINT OPERATION

generate infinitely precise result # exponent and significand;
if exponent < underflow threshold

then
if underflow fault mask clear

then
goto underflow fault handler;
exit algorithm;

else generate denormalized number
if denormalized significand equals infinitely precise significand

then
store denormalized result in destination;
no underflow is signaled;

else
set underflow flag in AC;
if inexact fault mask is clear

then
goto inexact fault handler;
exit algorithm;

else
set inexact flag in AC;
store denormalized result in destination;

end if;
end if;

end if;
else

if infinitely precise result is inexact
then

if inexact fault mask is clear
then

goto inexact fault handler;
exit algorithm;

else
set inexact flag in AC;
store normalized result in destination;

end if;
else

store normalized result in destination;
end if;

end if;
exit algorithm

Figure 7-6: Interaction of Floating Underflow and Inexact Exceptions

7-27

Memory Management 8

CHAPTERS
MEMORY MANAGEMENT

This chapter describes the 80960MC processor's memory management facilities. Included is a
discussion of the physical memory requirements, physical addressing, and the virtual-memory­
management system. The information presented here should be of interest only to operating­
system designers, particularly those designing the virtual-memory-management mechanism for
the operating-system kernel. Application programmers and compiler writers may skip this
chapter.

INTRODUCTION

A major feature of the 80960MC processor is its virtual-memory-management facilities. These
facilities support a conventional demand-paged, virtual-memory system, in which 4K-byte
pages of virtual memory are mapped to physical memory. This general purpose system can be
used in any of the follow applications:

• In a single-process system to map a large virtual address space into a smaller physical
address space.

• In a multitasking system to provide each process with a separate address space.

• In a multiprocessing system to provide a means for multiple processors to share a common
memory.

The processor's virtual-memory-management facilities consists of a set of memory­
management data structures and on-chip address translation capabilities. Once the operating
system has set up these data structures, the processor provides automatic translation of virtual
addresses into physical addresses.

The majority of this chapter is devoted to a discussion of the virtual-memory system. If the
processor is going to be used strictly in the physical-addressing mode, only the first sections of
this chapter, which describe the physical address space and physical memory requirements,
need to be read.

PHYSICAL-ADDRESSING MODE VERSUS VIRTUAL-ADDRESSING MODE

The 80960MC processor provides two address-interpretation modes: physical-addressing
mode and. virtual-addressing mode. When operating in physical-addressing mode, the proces­
sor interprets each address operand in an instruction as a physical address and sends the
address out to the bus unchanged.

In virtual-addressing mode, the processor interprets each address operand as a virtual address.
An on-chip memory management unit (MMU) translates the virtual address into a physical
address, which the processor then sends out to the bus.

The addressing mode flag in the processor controls determines which addressing mode the
processor is operating in. When this flag is clear, the processor operates in physical-addressing
mode; when the flag is set, the processor operates in virtual-addressing mode.

8-1

MEMORY MANAGEMENT

PHYSICAL MEMORY

The processor can address a physical address space of up to 232 bytes. This address space can
be mapped to read-write memory, read-only memory, and memory-mapped I/O.

The physical address space is linear (or flat): there are no subdivisions of the address space
such as segments. For the purpose of memory management, the kernel may subdivide physical
memory into pages. But from the point of view of the processor, the physical address space is
linear.

All of the physical address space is available for general use except the upper 16M bytes
(FFOOOOOO I6 to FFFFFFFFI6), which are reserved for special functions. (These functions are
described in Chapter 11.)

A physical address is a 32-bit value in the range 0 to FFFFFFFF 16. A physical address can be
used to reference a single byte, 2 bytes, 4 bytes, 8 bytes, 12 bytes or 16 bytes of memory
depending on the instruction being used. (Refer to the descriptions of the load and store
instructions in Chapter 17 for information on multiple-byte addressing.)

Physical-Memory Restrictions

The processor requires that the physical memory that it accesses has the following capabilities:

• It must be byte addressable.

• It must support burst transfers (i.e., transfers of blocks of contiguous bytes up to 16 bytes
in length).

• It must guarantee indivisible access (read or write) for memory addresses that fall within
16-byte boundaries.

• It must guarantee atomic access for memory addresses that fall within 16-byte boundaries.

The latter two capabilities are required to allow multiple processors to share a common physi­
cal address space conveniently.

An indivisible access guarantees that a processor reading or writing a set of memory locations
will complete the operation before another processor can read or write the same location. The
processor requires indivisible access within an aligned, 16-byte block of memory.

An atomic access is a read-modify-write operation. Here the memory controller guarantees
that once a processor begins a read-modify-write operation on a set of memory locations, it is
allowed to complete the operation before another processor is allowed to access the same
location.

As described above, the processor requires that when one processor is performing an atomic
operation within an aligned, 16-byte block, other processors are delayed from performing
another atomic operation within that block until the first operation has been completed.

The 80960MC processor provides two features to aid in implementing the requirements of
physical memory described above: SIZE lines and a LOCK line on the local bus.

8-2

MEMORY MANAGEMENT

The SIZE lines indicate the length of a memory access in bytes. These lines can be used to
specify 1-, 2-, 4-, 8-, 12-, or 16-byte lengths. When making a multiple-byte access, the
processor thus sends the memory controller a base address, on the address lines, and a length,
on the SIZE lines.

The LOCK line is used to synchronize atomic operations. When a processor performs an
atomic operation, it first examines the LOCK line. If it is asserted, the processor waits until the
line is not asserted (i.e., spins on the LOCK line). If the line is not asserted, the processor
asserts the LOCK line when it is performing an atomic read and deasserts the line when it
performs the companion atomic write.

For systems that use only the processor's local bus, the LOCK line mechanism allows only one
atomic operation to be carried out in memory at one time. For larger systems that use the Intel
advanced processor bus (AP Bus), the Bus Extension Unit (BXU) component allows mUltiple
processors on the bus to execute several atomic operations at once on different blocks of
memory. Refer to the 80960MC Hardware Designer's Reference Manual for detailed infor­
mation on atomic operations.

Caching of Memory Accesses

The processor supports caching of memory accesses. Caching allows a memory access to be
delayed (e.g., write back) or grouped with contiguous memory accesses to form a single
memory transaction (e.g., cache fill).

The processor does not perform the caching function; however, it does provide a means of
informing a cache manager whether or not a memory access is "cacheable."

When operating in the physical-address mode, all memory accesses are considered cacheable.

VIRTUAL-MEMORY-MANAGEMENT SYSTEM

The processor's virtual-memory-management system is designed to perform the following
functions:

• Allow the mapping of a large, virtual address space into a smaller physical address space
using 1- or 2-level page tables.

• Provide a convenient means of managing multiple process address spaces in multitasking
operating systems.

• Provide a method of addressing architecture-defined data structures.

The first function is handled by means of a traditional paging mechanism that uses page tables
and optional page-table directories to map the virtual address space into physical address space
in 4K-byte pages.

The second and third functions are handled through a central table, called the segment table,
which the processor uses to locate a specific address space or system data-structure in physical
memory.

8-3

MEMORY MANAGEMENT

The following discussion first presents the concept of the segment table and the mechanism
used to implement this concept. Then, the paging mechanism is described. Finally, the
method the operating system uses to set up and maintain these memory management structures
is given.

SEGMENT-TABLE OVERVIEW

The segment table is a data structure that resides in physical memory. This table provides the
processor with a system-wide addressing mechanism, which allows the processor to locate all
the process address spaces and system data structures that the kernel has created. It also allows
many process address spaces and data structures to be mapped into physical memory at one
time. Figure 8-1 shows a conceptual view of the segment table.

SEGMENT
SELECTORS (SS's)

~ I SS2 h:
I 5S3 ~

I SS4 r
I SSS ~

~

SEGMENT TABLE

SEGMENT DESCRIPTOR 1

SEGMENT DESCRIPTOR 2

SEGMENT DESCRIPTOR 3

SEGMENT DESCRIPTOR 4

SEGMENT DESCRIPTOR S

SEGMENT DESCRIPTOR 6

SEGMENT DESCRIPTOR N

SEGMENT 1

D
SEGMENT2

- D
SEGMENT4

SEGMENTS

D SEGMENT6

--0
UP TO 262,144 SEGMENT -
DESCRIPTORS ARE ALLOWED.

Figure 8-1: Conceptual View of the Segment Table

SEGMENT 3

L.....-

The segment table is made up of a collection of segment descriptors. Each segment descriptor
points to an individual segment. A segment is defined as a contiguous address space of from
16 to 232 - 1 bytes. Figure 8-2 shows a segment and the mechanism used to address a byte in a
segment.

8-4

inter MEMORY MANAGEMENT

SEGMENT
TABLE

I 32·BIT SEGMENT SELECTOR h--..----II-
BASE PHYSICAL

ADDRESS OF
SEGMENT

I 32·BITSEGMENT OFFSET III------------~~
SEGMENT OFFSET MAY

BE TRANSLATED
THROUGH ONE OR

TWO LEVELS OF PAGE
TABLES

BASE PHYSICAL
ADDRESS + OFFSET

Figure 8-2: Segment Addressing

PHYSICAL
ADDRESS SPACE
,....--.,0

SEGMENTIN
PHYSICAL
MEMORY

I------i~

...... --... 2"

A segment is addressed by means of a 32-bit data structure called a segment selector (SS). An
SS contains an index into the segment table to the location of the segment descriptor for the
segment. When the operating system creates a segment, it assigns a unique SS to the segment.

To locate a byte in a segment, the processor then needs two items: the SS for the segment and
a 32-bit offset into the segment. The processor uses the SS to locate the segment descriptor for
the segment in the segment table. From this segment descriptor, it gets the physical address of
the base (first byte) of the segment. It then uses the offset to locate the selected byte in the
segment.

When paging is used, the offset is translated through page tables and an optional page table
directory to get the physical address of the selected byte in the segment.

USES OF SEGMENTS

The processor uses segments in two ways, as shown in Figure 8-3. The first way is as a means
of addressing the four regions that make up the address space for a process.

8-5

inter

SEGMENT.
SELECTORS (SS's)

SS
REGION 0

SS
REGION 1

SS
REGION 2

SS
REGION 3

SS
SYSTEM DATA

STRUCTURE

SS
SYSTEM DATA

STRUCTURE

MEMORY MANAGEMENT

SEGMENTTABLE

SEGMENT DESCRIPTOR
REGION 0

SEGMENT DESCRIPTOR
REGION 1

SEGMENT DESCRIPTOR
.REGION2

SEGMENT DESCRIPTOR
REGION 3

SEGMENT DESCRIPTOR
SYSTEM DATA STRUCTURE

SEGMENT DESCRIPTOR
SYSTEM DATA STRUCTURE

SEGMENT DESCRIPTOR N

SVSTEMDATA
STRUCTURE

"""-""0
SVSTEMDATA

STRUCTURE

UP TO 262,144 SEGMENT
DESCRIPTORS ARE ALLOWED.

Figure 8-3: Uses of Segments

REGION
o

B
EJ
B

PROCESS
ADDRESS

SPACE

As was described in Chapter 3, part of the execution environment for the processor is the
address space, which can range from 1 to 232 bytes. When using the processor's virtual­
memory system, the address space is divided into four regions. Each of these regions is
contained in a segment. To access the address space, the processor must have four SS's, one
for each region.

In a multitasking system, each process is assigned its own address space. Each process address
space is made up of foul-regions, which the processor locates with four SS's.

The second way that the processor uses segments is to address system data structures. The
processor defines several system data structures such as the PCB and the system procedure
table. Each of these data structures is contained in a segment. The processor is able to access
data in these data structures by means of the SS for the segment that contains the data structure.

SEGMENT~TABLE DATA STRUCTURES

The following sections describe the actual structure of an SS, a segment table, and a segment
descriptor.

8-6

MEMORY MANAGEMENT

Segment Selector

Figure 8-4 shows the structure of an SS. The first six bits are always set to 1. Bits 6 through
31 give the entry number of the segment selector in the segment table. (Since segment
descriptors are aligned in the segment table on 16-byte boundaries, the segment index actually
gives the 26 most significant bits of the offset into the segment table of the first byte of the
segment selector. The processor assumes the six least-significant bits are zero.) This structure
allows the operating system to create uR to 226 unique SS's. However, the largest allowable
segment table can have only 262,144 (2 8) segment descriptors.

31 6 5 0

SEGMENT INDEX

Figure 8-4: Segment Selector

A segment selector can be stored anywhere in the address space for a process or in specific
places in system data structures. They are, however, useful for only two purposes:

• Certain instructions use an SS as an operand. These instructions can only be executed
while in the supervisor mode and are thus normally used only by the operating system.

• The processor fetches SS's from various system data structures and uses them to access
system management information. For example, the processor gets the SS for region 3 of
the process address space from the processor control block.

Applications programs will generally not use SS's.

NOTE

When the processor uses an SS for its intended purpose (as a pointer to a segment), it expects
the 6 least-significant bits of the SS to be set to 1. If they are not, the processor's behavior is
unpredictable.

Once the processor uses an SS, however, it clears some of these bits; and, if a program
examines an SS that the processor has used, some of these bits may be zero.

To insure predictable behavior of the processor, it is good programming practice to reset the 6
least-significant bits of the SS to I any time a program moves an SS that the processor has
already used.

For example, if a program removes an SS for a PCB from a dispatch port, it should set these
bits to I as a matter of course, before it places the SS in a data structure or instruction where the
processor will use the SS for its intended purpose.

8-7

MEMORY MANAGEMENT

Segment Table

The segment table is itself contained in a segment and has an SS. This allows the processor to
locate the segment table in physical memory.

Figure 8-5 shows the structure of a segment table. It is simply a collection of 16-byte segment
descriptors, with no header.

SEGMENT
TABLESS

ENTRY 0

I 23F16 ~ SEGMENT TABLE SEGMENT DESCRIPTOR

.. ~

Figure 8-5: Segment Table

o
16

32

48

64

80

96

112

128

144

.. ~ !
4K bytes or
4M bytes

Except for index entry eight (with entry zero being the lowest numbered entry), the segment
descriptors can be assigned to any segment. Entry eight is reserved for the segment descriptor
for the segment table. The SS for the segment table is thus always 0000023F16.

There are two sizes of segment tables: a small segment table and a large segment table. A
small segment table is 4096 bytes (1 page) in length and can contain up to 256 segment
descriptor entries. A large segment table can be up to 4M bytes in length and can contain up to
262,144 segment descriptors.

8·8

MEMORY MANAGEMENT

Segment Descriptors

A 16-byte segment descriptor provides mapping information to allow the processor to locate a
specific segment in physical memory. It also provides type information and in some cases
access information to tell the processor how the segment may be used or how it has been used.

The segment descriptor fields contain the following pieces of information:

• The base physical address of the segment

• The size of the segment

• The access status

• Whether or not the segment is in physical memory

• The paging method

• The segment type

Figure 8-6 shows a generic segment descriptor with the fields labeled. The function of each of
these fields is described in the following paragraphs. The entries required in each fields for
specific types of segment descriptors (such as, port segment descriptors, process segment
descriptors, etc.) are given later in this chapter in the section titled "Segment Types".

BYTE DISPLACEMENT

n + 4

n + 8

n + 12

3 2 1 0

t LVALID

~ PAGING METHOD

L-----ACCESS STATUS

L-----------L-------SIZE

'--------------------------- SEGMENT TYPE

~ RESERVED (INITIALIZE TO 0)

~ PRESERVED

Figure 8-6: Generic Segment Descriptor

NOTE

The shaded areas in Figure 8-6 and in the following figures indicate reserved and preserved
areas of a segment descriptor. Refer to Chapter 1 for an explanation of these terms.

Base Address

The base address field gives the physical address of byte 0 of the segment being referenced. If
the segment is a paged segment, this field gives the base address of a page table or a page-table
directory.

8-9

inter MEMORY MANAGEMENT

Size

The size field determines the length of the segment according to the following relationship:

segment length in bytes = 64 * (SIZE + 1)

For most segment types, the size field is either not used or the value to be placed in this field is
predefined. However, for a few segment types this field is used to determine the size of the
segment, as shown later in this chapter.

Access Status

The three flags in the access status field determine how a segment or page can be used or has
been used. The processor and kernel use these flags to facilitate page swapping. For paged
segments, some of these flags may not be used at the segment descriptor level. Instead, they
are set in the page table or page-table-directory entries.

The cacheable flag (bit 6) determines whether or not a segment or page of a segment can be
cached. When this flag is set the segment or page is cacheable. Caching of memory accesses
was described earlier in this chapter in the section titled "Caching of Memory Accesses."

The accessed flag (bit 3) shows whether a segment or page of a segment has been accessed
since it was loaded into physical memory; the altered flag (bit 4) shows whether the page has
been written to. The kernel clears these flags when it loads a segment or page into memory.
The processor then sets the flags when it accesses or writes to a byte in the page.

The kernel uses the accessed and altered flags in page swapping to determine the relative age
of a page and to determine whether a page can be discarded or must be written to secondary
storage when it is swapped out of memory.

The two other bits in the access status field (bits 5 and 7) are reserved. For some segment
types these bits are set to 1 and for others they are set to 0, as is shown in the following pages.

Valid Flag

The valid flag shows whether or not a segment or page of a segment is present in memory.
When this flag is set, the segment is present; when it is clear, the page is not present. When the
processor attempts to access a segment or page, it checks this flag to determine if the segment
or page is present. If the valid flag is clear, the processor raises a virtual-memory fault. The
fault handler routine then calls upon the kernel to load the segment or page into memory.

When the valid flag is set to 0, the processor does not interpret the other bits in the segment
descriptor. Software is then free to use these bits for other purposes. For example, if a
segment is not in physical memory, the base address field might be used to store the location of
the segment in a mass storage device (such as a disk).

8·10

MEMORY MANAGEMENT

Paging Method

The paging method field shows whether the segment is unpaged (01), paged (10), or bipaged
(11). The value in this field must be as is shown in the following sections for each segment
descriptor type.

Segment Types

The processor recognizes the following nine types of segments:

• Simple Region

• Paged Region

• Bipaged Region

• Process Control Block

• Port

• Procedure Table

• Semaphore

• Small Segment Table

• Large Segment Table

The segment descriptor is set up differently for each segment type, as is described in the
following paragraphs. For some of these segment types (but not all), the type is shown in the
type field. For those segments types where the type is specified, the processor checks this type
field before accessing the rest of the data in the segment descriptor to insure that the segment
being accessed is the correct type. In cases where the processor performs type checking on
segment descriptors, it signals a type fault if an inappropriate type is found.

The following paragraphs describe what must be placed in each of the segment-descriptor
fields, depending on the type of segment that the segment descriptor is pointing to.

Region Descriptors

Each region of an address space is contained in a segment. A region segment can be a simple
region, a paged region, or a bipaged region. For each of these three types of regions, the
segment descriptor is set up slightly different. Figure 8-7 shows the segment descriptors for
the three types of regions.

Simple Region. A simple region is a one-page segment (4096 bytes) that is mapped into
physical memory as a contiguous page.

The base address for a simple region must fall on a page boundary in physical memory, so the
12 least-significant bits of the base address field are set to zero. The size field is set to 6310,

indicating 4K bytes length.

8-11

MEMORY MANAGEMENT

Since the simple region descriptor points directly to the segment in memory. the three access
flags (accessed, altered, and cacheable) are set and examined by the processor and kernel.

SIMPLE·REGION SEGMENT DESCRIPTOR

PAGED·REGION SEGMENT DESCRIPTOR

31 23

BIPAGED·REGION SEGMENT DESCRIPTOR

_ RESERVED (INITIALIZE TO 0)

~ PRESERVED

Figure 8-7: Region Segment Descriptors

BYTE DISPLACEMENT

" "+4
"+B
n + 12

BYTE DISPLACEMENT

"
"+4

" + B

" + 12
2 1 0

LVALID

BYTE DISPLACEMENT

" + 4
"+8

" + 12

Paged Region. A paged region is a segment that is mapped into physical memory by means of
a page table. A paged region may be from 4096 bytes to 4096K bytes in length.

The base address field for. a paged-region· descriptor points to the base physical-address of a
page table. This address must fallon a 64-byte boundary, so the 6 least-significant bits of th,e
base address field are set to zero.

A page-table can be up to a page in length as determined by the size field. Each page-table
entry is 4 bytes, so the number of entries in the page table is as follows:

Number of Page-Table Entries = 16 * (SIZE + 1)

For a paged region, the access information is stored in the page-table entries. The access status
flags in the segment descriptor are thus set to 0 and the valid flag shows whether or not the
page table is present in memory.

8-12

MEMORY MANAGEMENT

Bipaged Region. A bipaged region is a segment that is mapped into physical memory by
means of two levels of page tables. A page-table directory forms the first level. Entries in the
page-table directory then point to up to 1024 page tables. A bipaged region may be from 4096
bytes to 4096M bytes in length.

The segment descriptor for a bipaged region is similar to that of a paged region descriptor. The
base address field gives the base physical-address of a page-table directory, which must fall on
a 64-byte boundary.

A page-table directory can be up to a page in length as determined by the size field. The
number of 4-byte entries in the page-table-directory is determined by the same relationship, as
is shown above for a page table in a paged region.

As with paged regions, all of the access information except the valid flag is stored in the
page-table-directory and page-table entries.

Process, Port, and Procedure-Table Descriptors

A process-segment descriptor points to a segment that contains a process control block (PCB);
a port-segment descriptor points to a segment that contains a dispatch port or a communication
port; and a procedure-table segment descriptor points to a segment that contains a procedure
table. Figure 8-8 shows the format for each of these types of segment descriptors.

NOTE
A PCB and a port are architecture-defined data structures. The PCB is described in Chapter 13;
the port is described in Chapter 14.

The formats for these segment descriptors are identical, except that the value in the type field is
different for each type of descriptor.

The base address for each of these segments must fall on a 64-byte boundary in physical
memory and the segment as a whole must not span a 4096-byte boundary. Spanning a
4096-byte boundary will cause unpredictable results when the segment is accessed.

The sizes of the process and port segments are defined by the PCB and port data structures.
The size of the procedure table segment is 1088 bytes.

These segments must always be present in physical memory, so the valid, accessed, and altered
flags are always set to 1. The cacheable flag can be set to allow caching of the segment.

8-13

inter MEMORY MANAGEMENT

PROCESS-CONTROL-BLOCK SEGMENT DESCRIPTOR

PORT-SEGMENT DESCRIPTOR

PROCEDURE-TABLE-SEGMENT DESCRIPTOR

31 28

.... RESERVED(INITIALIZETOO)

~ PRESERVED

BYTE DISPLACEMENT

" + 4

" + 8
n + 12

'------- CACHEABLE

BYTE DISPLACEMENT

" + 4

" + 8
n + 12

'------- CACHEABLE

BYTE DISPLACEMENT

" + 4

" + 8
n + 12

L-_____ CACHEABLE

Figure 8-8: Process, Port, and Procedure-Table Segment Descriptors

Segment-Table Descriptors

Figure 8-9 shows the formats for the two types of segment-table descriptors: one for a small
segment table and another for a large segment table.

A small segment table is mapped to a page of physical memory. The base address in the small
segment table descriptor must point to a 4096-byte (page) boundary in physical memory. The
12 least-significant bits of the base address are thus set to zero.

A small segment table must always be in physical memory, so the accessed, altered, and valid
flags are set to 1. Whether or not a small segment table is cacheable is optional.

A large segment table is mapped to physical memory by means of a page table_ The base
address in the large segment table descriptor then points to the base address of a page table,
which must be located on a page boundary.

8-14

MEMORY MANAGEMENT

SMALL SEGMENT·TABLE SEGMENT DESCRIPTDR

LARGE SEGMENT· TABLE SEGMENT DESCRIPTOR

... RESERVED (INITIALIZE TO 0)

~ PRESERVED

BYTE DISPLACEMENT

n.4
n.8
n + 12

L-_____ CACHEABLE

BYTE DISPLACEMENT

n.4

n.8
n + 12

Figure 8-9: Segment-Table Segment Descriptors

The valid flag is set to 1, indicating that the page table associated with the large segment table
must always be present in memory. However, the individual pages that are associated with a
large segment table may be swapped in and out of physical memory as determined by the
access flags for their individual page-table entries.

Semaphore Descriptor

A semaphore is a system data structure that is small enough that it does not need to be mapped
into a segment. Instead it is encoded in the segment descriptor itself. Such a segment
descriptor is called an embedded descriptor. Figure 8-10 shows the format for a semaphore
descriptor.

NOTE

A semaphore is an architecture-defined data structure. It is described in Chapter 14.

BYTE DISPLACEMENT

SEMAPHORE DATA STRUCTURE

- -I-I ,I ;::, W fed
31 28 2 1 0

... RESERVED (INITIALIZE TO 0)

Figure 8-10: Semaphore Segment Descriptor

Here the data structure for the semaphore is contained in the first three words of the descriptor.

8-15

MEMORY MANAGEMENT

Invalid. Descriptor

Since both the small and large segment tables have fixed sizes, a certain number of the segment
descriptors in these tables, at a particular time, will be unused. These unused segment descrip­
tors should be formatted as an invalid segment descriptor, as shown in Figure 8-11.

~ PRESERVED

Figure 8·11: Invalid Segment Descriptor

PAGE TABLES AND PAGE·TABLE DIRECTORIES

BYTE DISPLACEMENT

"
"+4

" + 8
" + 12

Any segment that is greater than 4096 bytes in length is mapped into physical memory in
pages. The segment types that fall into this category are the paged and bipaged regions and the
large segment table. All the other segment types described earlier in this section are mapped
directly into physical memory from the segment table.

The mapping of segments into pages of physical memory is handled by means of page tables
and page-table directories. Figure 8-12 shows a conceptual view of this paging mechanism.

The first segment is unpaged, so the segment descriptor points directly to the segment. This
method of paging is used for architecture-defined data structures that are less than a page long,
and for simple regions.

The second segment is paged through a single page table. Here, the segment descriptor for the
segment points to the page table. Entries in the page table then point to the individual pages
that make up the segment. This method of paging is used for paged regions and for a large
segment table.

The third segment is paged in two levels. The first level of paging is through a page-table
directory, which points to one or more page tables. The second level of paging is through the
page tables, which point to the individual pages of the segment. This method of paging is only
used for regions.

8·16

inter

SEGMENT TABLE

T r

PAGE TABLE
DIRECTORY

MEMORY MANAGEMENT

PAGE TABLE

UPT01024 J.
ENTRIES ~ :~

PAGE TABLES

PAGE

D
PAGES

SIMPLE
REGION
4K bytes

Dl ---'il~D PAGED
REGION
4K bytes

to
4096K bytes

oj
PAGES

I

D

-

BIPAGED
REGION
4K bytes

to
4096M bytes

t------;.~ PAGES

t------t ... ~ PAGES

-
Figure 8-12: Conceptual View of Segment Paging

8-17

inter MEMORY MANAGEMENT

Page Table and Page-Table-Directory Structure

As is shown in Figure 8-13, page tables and page-table directories are made up of 4-byte
entries. (There is no table header.) Both types of tables can be up to one page in length, which
allows up to 1024 entries per table.

PAGE TABLE (DIRECTORY) ENTRY

.. ~

o
4

8

12

16

20

4~

UPTO 1024
ENTRIES

Figure 8-13: Page Table or Page-Table-Directory Structure

One-level paging can be used to page segments of from 4096 bytes to 4096K bytes in length;
two-level paging can be used to page segments of from 4096 bytes to 4096M bytes in length.

When using one-level paging, the size field in the paged segment descriptor determines the
number of entries in a page table. Likewise, when using two-level paging, the size field in the
bipaged segment descriptor determines the number of entries in the page-table directory.
However, when setting up a bipaged segment, the page tables that the page-table directory
points to have a set length of one page.

Page Table and Page-Table-Directory Entries

Figure 8-14 shows the structure of the page table and page-table-directory entries.

8-18

MEMORY MANAGEMENT

PAGE-TABLE-DIRECTDRY ENTRY

PAGE-TABLE BASE ADDRESS ~Ivi
31 12 2 1 0

~VALID
PAGE RIGHTS

PAGE-TABLE ENTRY

PAGE BASE ADDRESS

31 12 7 6 5 4 3 2 1 0

l§~LvALID PAGE RIGHTS

ACCESSED

ALTERED

CACHEABLE

INVALID PAGE-TABLE OR PAGE-TABLE-DIRECTORY
ENTRY

.01
~ 0

II1II RESERVED (INITIALIZE TO 0)

~ PRESERVED

Figure 8-14: Page Table or Page-Table-Directory Entries

Page-Table Entry

LVALID

In a page-table entry, the base address points to the base physical address of a page. The page
must be a full 4096 bytes in length and be aligned on a page boundary in physical memory.
Only the 20 most-significant bits of the base address are given.

For paged or bipaged segments, the accessed, altered, and cacheable information is shown at
the page level in the page-table entry.

Each page-table entry also has a valid flag. This flag can be either 1 or 0, depending on
whether or not the page is present in physical memory. However, as described in a following
section titled "Invalid Page Table Or Page-Table-Directory Entry," this flag will normally be
set to 1.

The page rights field shows what operations (i.e., read or write) can be performed on the
contents of the page. Page rights are discussed in a following section titled "Page Rights."

8-19

MEMORY MANAGEMENT

Page-Table-Directory Entry

In a page-table-directory entry, the base address points to the base physical address of a page
table. Page tables are one page in length and must be aligned on page boundaries in physical
memory. Only the 20 most-significant bits of the base address are given in the page-table­
directory entry.

Each page-table-directory entry has a valid flag and page rights field as in a page-table entry.

Invalid Page Table or Page-Table-Directory Entry

When a page is not in physical memory, the valid flag for its associated page-table entry is set
to zero. The entry is then an invalid page-table entry. Any entry in a page table that does not
point to a valid page must have its valid flag set to zero.

Bits 1 through 31 of an invalid page-table entry are not looked at by the processor, so they are
available for software to use. A typical use of these bits is to store the location of the page in a
mass storage device.

An invalid page-table-directory entry is the same as an invalid page-table entry, except that it
indicates that its associated page table is not in memory. Again, bits I through 31 of an invalid
page-table-directory entry are available to software and are typically used to store the mass
storage address of the page table.

Page Rights

When operating in virtual-addressing mode, the processor allows access to information in
physical memory to be restricted on a page by page basis. The page rights field in the page
table and page-table-directory entries determines the access rights for a particular page or
group of pages, respectively.

The processor checks these page rights each time it accesses memory.

Three levels of access rights are allowed: no access, read-only, and read-write. The page
rights bits are interpreted differently depending on the execution mode (i.e, user or supervisor)
that the processor is operating in, as shown in Table 8-1.

Table 8-1: Page Access Rights Interpretation

Rights Execution Mode

User Supervisor

00 no access read only

01 no access read-write

10 read only read-write

11 read-write read-write

8-20

inter MEMORY MANAGEMENT

When the processor accesses a page in a paged segment (e.g., a paged region), the page rights
from the page's page-table entry determine the access rights for the page. When the processor
accesses a page in a bipaged segment, the minimum page rights from a page's associated
page-table entry and page-table-directory entry determine the access rights for the page.

For example, in a bipaged segment, if the page rights in the page-table entry are read-write, but
the page rights in the page-table-directory entry are read-only, the processor will be allowed
only to read the page.

The inspect access instruction (inspacc) returns the effective page rights of the access path for
a specified address. This instruction is useful in fault handling routines.

When the processor is in physical-addressing mode, virtual address translation is turned off,
which disables page rights checking.

ADDRESS TRANSLATION IN VIRTUAL MODE

This section describes how the processor uses the memory management data structures
described in the previous sections to translate an SS into the location of a segment descriptor in
a segment table. It also describes how the processor translates a 32-bit virtual address into a
32-bit physical address.

SS Translation

The processor can get an SS either from a system data structure or from an instruction operand
issued by a kernel routine. Once it has received an SS, the processor translates it into an offset
into the segment table. This offset is to the physical address of the least significant byte of the
SS's associated segment descriptor.

As is described in the following sections, the translation is slightly different depending on
whether the segment table is a small or a large table. In either case, the processor has already
translated the SS for the segment table to determine the base address of the segment table itself.

Small Segment Table SS Translation

The processor uses the following procedure to locate a segment descriptor in a small segment
table:

1. If the segment index in the SS is greater than 255 10, signal a segment-length fault.

2. Locate the segment descriptor whose base address is the base address of the segment table
plus 16 times the segment index.

3. If the valid flag for the descriptor is set to 0, signal the invalid segment-descriptor fault.

8-21

inter MEMORY MANAGEMENT

Large Segment Table SS Translation

The processor uses the following procedure to locate a segment descriptor in a large segment
table:

1. If the segment index is greater than 262,143 10, signal the segment-length fault.

2. Get the address of the page table from the large-segment-table segment descriptor at
segment index 8.

3. Locate the page-table entry, whose word offset is given by bits 14 through 23 of the SS.

4. If the valid flag in the page-table entry is 0, signal the invalid page-table entry fault.

5. Locate the segment descriptor whose base address is the base address from the page-table
entry plus 16 times bits 6 through 13 of the SS.

6. If the valid flag for the descriptor is set to 0, signal the invalid segment-descriptor fault.

Virtual-Address Translation

The term virtual address refers to an address in the address space for the currently running
process (i.e., the process address space). That address is a virtual address if the address space
has been mapped into physical memory using the virtual memory mapping mechanism (i.e.,
region segments, page tables, and pages) described earlier in this chapter.

The processor receives addresses as operands in instructions. If the processor is operating in
virtual-addressing mode, it assumes that any address it receives is a virtual address. The
processor then translates the address automatically into a physical address.

Figure 8-15 shows how a virtual address is broken down into a physical address depending on
whether the region that contains the address is a simple region, a paged region, or a bipaged
region.

In the first step of the translation process, the processor uses bits 30-31 of the virtual address to
determine which region the address is in. The processor already has SS's for the four regions
of the current address space, so it uses the SS for the selected region to locate the segment
descriptor for that region.

If the descriptor is an invalid segment-table entry, the invalid-descriptor fault is signaled. If the
descriptor is not one for a simple, paged, or bipaged region, the action is unpredictable. If the
valid flag in the descriptor is 0, the invalid segment-table entry fault is signaled.

The following procedures describe the rest of the translation process, depending on the type of
region being accessed.

8-22

inter

Bits 12 through 21 select
offset into the page table.

Bits 22 through 29 select
the offset into the page

table directory.

MEMORY MANAGEMENT

SIMPLE REGION

VIRTUAL ADDRESS I
L-, Bits 0 through 11 select

• offset into the page.

PAGED REGION

VIRTUAL ADDRESS

~ PAGE

~ TABLE

BIPAGED REGION

VIRTUAL ADDRESS

PAGE

~
Bits 0 through 11 select

offset into the page.

Bits 0 through 11
select offset into

the page.

PAGE

Figure 8·15: Virtual·Address Translation

8-23

MEMORY MANAGEMENT

Simple-Region Address Translation

1. If bits 12 through 29 of the virtual address are not zero, signal the segment length fault.

2. If the accessed flag in the segment descriptor is 0, set it. If the altered flag is 0 and the
operation is a write, set it. If one or both of these flags need to be set, write the entry into
memory as the completion of an atomic read-modify-write operation.

3. The physical address is the 20-bit base address from the segment descriptor, followed by
bits 0 through 11 of the virtual address.

Paged-Region Address Translation

1. If bits 12 through 21 of the virtual address are not less than the value 64 * (SIZE + 1), size
being a field in the descriptor, signal the segment length fault.

2. Locate the page table using the base address from the segment descriptor.

3. Locate the page-table entry, whose word offset from the base of the page table is given by
bits 12 through 21 of the virtual address.

4. If the valid flag in the page-table entry is 0, signal the invalid page-table entry fault.

5. If the page rights in the entry are 00 or 01 and the execution mode is user, if the page
rights are 00 and the operation is a write while in supervisor mode, or if the page rights are
10 and the operation is a write while in user mode, signal the page-rights fault.

6. If the accessed flag in the page-table entry is 0, set it. If the altered flag is 0 and the
operation is a write, set it. If one or both of these flags need to be set, write the entry into
memory as the completion of an atomic read-modify-write operation.

7. The physical address is the 20-bit base address from the page-table entry, followed by bits
o through 11 of the virtual address.

Bipaged Region-Address Translation

1. If bits 22 through 29 of the virtual address are not less than the value 64 * (SIZE + 1), size
being a field in the descriptor, signal the segment length fault.

2. Locate the page-table directory using the base address in the segment descriptor entry.

3. Locate the page-table-directory entry, whose word offset from the base is given by bits 22
through 29 of the virtual address.

4. If the valid flag in the entry is 0, signal the invalid page-table-directory entry fault.

5. If the page rights in the entry are 00 or 01 and the execution mode is user, if the page
rights are 00 and the operation is a write while in supervisor mode, or if the page rights are
10 and the operation is a write while in user mode, signal the page-rights fault.

6. Locate the page table using the base address from the page-table-directory entry.

7. Locate the page-table entry, whose word offset from the base of the page table is given by
bits 12 through 21 of the virtual address.

8. If the valid flag in the page-table entry is 0, signal the invalid page-table entry fault.

8·24

MEMORY MANAGEMENT

9. If the page rights in the entry are 00 or 01 and the execution mode is user, if the page
rights are 00 and the operation is a write while in supervisor mode, or if the page rights are
10 and the operation is a write while in user mode, signal the page-rights fault.

10. If the accessed flag in the page-table entry is 0, set it. If the altered flag is 0 and the
operation is a write, set it. If one or both of these flags need to be set, write the entry into
memory as the completion of an atomic read-modify-write operation.

11. The physical address is the 20-bit base address from the page-table entry, followed by bits
o through 11 of the virtual address.

Load Physical Address Instruction

The load physical address instruction (Jdpby) returns a physical address for a given virtual
address. This instruction allows the kernel to determine the physical address of specific data
structures when only the virtual address is known.

Spanning Page, Region, and Address-Space Boundaries

Page boundaries are completely transparent, except in cases where a memory access spans a
page boundary and the pages have different rights. For example, if one page has read-write
access and the adjacent page has read-only access, a write operation that spans the page
boundaries will fault when it gets to the read-only page.

Region boundaries are not transparent, because each region is mapped with a different segment
descriptor and page table (or set of page tables). Multiple-byte accesses that cross region
boundaries can thus cause unpredictable results. This limitation can be circumvented by
mapping two or more regions with the same set of page tables. This technique is described in
detail later in this chapter in the section titled "Making Region Boundaries Transparent."

NOTE

When a multiple-byte access spans the 232-byte boundary of the address space, the address
wraps around to zero.

Translation Look-Aside Buffer

To make the virtual-to-physical address translation mechanism more efficient, the processor
provides a special buffer to hold address-translation information. This buffer is called the
translation look-aside buffer (TLB).

When the processor receives a virtual address to be translated, it first looks in the TLB to see if
it has already been translated. If it has, the processor skips the translation process and takes the
physical address from the TLB.

The information stored in the TLB includes the following:

• Segment descriptors for the segment-table segment and the region-3 segment

8-25

inter MEMORY MANAGEMENT

• Segment descriptors for the current PCB segment and the region-O, -1, and -2 segments

• The page-table entry for the page that contains the bottom of the interrupt stack

• Page-table entries for pages that have been addressed at some point in the control flow of
the processor

Page-table-directory entries are not stored in the TLB.

Several lACs are provided for flushing (i.e., invalidating) specified entries in the TLB to insure
that it is consistent with the current state of the segment table and page tables. These lAC
messages are described in Chapter 12.

OPERATING-SYSTEM CONSIDERATIONS

The preceding discussion of the processor's virtual-memory mechanism describes the data
structures required to support virtual memory and how the processor uses these structures to
translate virtual addresses into physical addresses. For this mechanism to work, however, the
kernel must set up and maintain these memory-management data structures.

This section suggests some ways to configure the memory-management data structures and the
kernel to allow convenient management of the virtual memory system.

Address Space Structure

Of the four regions that make up the address space, the first three regions are specific to the
currently running process. The processor gets the SS's for these regions from the PCB for the
current process. The fourth region is shared by all processes. The processor gets the SS for
this region from the processor control block (PRCB).

NOTE
The PRCB is an architecture-defined data structure. It is described in Chapter 9.

Figure 8-16 shows an example of how these regions might be used to best advantage.

The address space is divided into regions primarily to improve performance in multitasking
applications that require a lot of process switching. For example, if the kernel is placed in
region 3, it can be shared by all processes. It can then remain in memory on a process switch,
which saves page swapping time. The kernel can also be protected from the various applica­
tion programs running on the system by defining the access rights for the whole of region 3 as
supervisor only.

The availability of regions also facilitates the separation and protection of the major parts of an
application program running in the current process. Figure 8-16 shows an example of how the
code (or program text), the static data, the heap (dynamically allocated data), and the stacks
(user and supervisor) might be placed in regions 0, 1, and 2.

8-26

FROM PCB FOR
CURRENT PROCESS

FROM PRCB

SS
REGION 0

SS
REGION 1

SS
REGION 2

SS
REGION 3

MEMORY MANAGEMENT

REGION 0

REGION 1

REGION 2

REGION 3

MAY BE SHARED
BY SEVERAL

PROCESSES; READ
ONLY ACCESS

SHARED BY ALL PROCESSES;
SELECTED PAGES IN REGION

MAY BE RESTRICTED TO
SUPERVISOR ONLY ACCESS

Figure 8-16: Address Space Structure

8-27

MEMORY MANAGEMENT

Placing code in its own region provides the same benefit as providing a separate region for the
kernel. It allows the code to be shared by several processes, without requiring that it be
swapped each time there is a process switch. This sharing is accomplished merely by giving
each process that needs to use the code the same region 0 SS. Also, access rights to the code,
which in this case would be read only, can be assigned on a region by region basis.

Placing the heap and the stacks in their own regions permits uninterrupted growth of these data
structures. Here, access to the supervisor-stack pages might be restricted to supervisor mode
only.

Region Gaps and Boundaries

Two aspects of this region mechanism should be noted in passing. First, by using separate
page tables or groups of page tables for each region, the size of each region can be changed
independently. If a region is less than 1G byte, which will commonly be the case, a gap is
formed at the end of the region. Second, if an operand spans a 1G-byte region boundary, the
result is unpredictable.

Making Region Boundaries Transparent

These factors should not ordinarily prove an obstacle in kernel design. However, if a design
does require transparent region boundaries, it can be accomplished in the following manner.

As shown in Figure 8-17, the boundaries between retfions 0, 1, and 2 can be made transparent
by defining a single segment that is 3G bytes (3 * 23) in size. This segment is represented by
a single page-table directory with 768 entries. The segment descriptors for regions 0, 1, and 2
are then set to point to this page-table directory: the region-O segment descriptor points to the
base address of the page-table directory, the region-1 segment descriptor points to the base
address plus 1024, and the region-2 segment descriptor points to the base address plus 2048.

Since region 3 is shared by all processes, this region would most likely be defined as a separate
segment.

Accessing System Data Structures

The kernel or an application program can only access that part of physical memory that has
been mapped into the four regions of the current, process address space. This is because the
processor does not provide any addressing modes that allow a program to access a memory
location by means of an SS. The processor can make these accesses, but a program cannot.

An important implication of this restriction is that the kernel cannot access directly those
segments that lie outside the current process address space (such as process segments, port
segments, or the segment table itself) except in physical-addressing mode.

8-28

T

SEGMENT
TABLE

REGION 0
DESCRIPTOR

REGION 1
DESCRIPTOR

REGION 2
DESCRIPTOR

MEMORY MANAGEMENT

PAGE TABLE
DIRECTORY PAGE TABLES

0

11
1024 - CJJ--. REGION 0

2048 -

T
PAGE TABLES

~, CJJ--. REGION 1

PAGE TABLES

CJJ--. REGION2

Figure 8-17: Making Region Boundaries Transparent

8-29

MEMORY MANAGEMENT

For the kernel to access the system defined data structures, their physical memory locations
must be mapped both into the current process address space and into their individual segments.

This dual mapping can be done in a variety of ways. Figure 8-18 shows one of the simplest
methods. Here, all of physical memory is mapped into region 3 of the address space. For
example, if the physical memory size is 16M bytes, page tables for the first 16M bytes of
region 3 point to the physical address space. The kernel can then read or write to any location
in physical memory merely by accessing the first 16M bytes of region 3.

The data structures in physical memory are also mapped to other segments through separate
SS's and segment-table entries. The processor then uses these SS's to access the segments
through its virtual-memory translation mechanism.

8-30

inter

REGION 3

MEMORY MANAGEMENT

MAPPED TO
REGION 3

l1li(

PHYSICAL
MEMORY

16M Bytes

MAPPED TO
PHYSICAL

l1li(MEMORY

PROCESS ADDRESS
SPACES AND

SYSTEM DEFINED
SEGMENTS

D

D

Figure 8-18: Mapping of Physical Memory to Region 3

8-31

Processor Management 9
and Initialization

CHAPTER 9
PROCESSOR MANAGEMENT AND INITIALIZATION

This chapter describes the facilities for initializing and managing the operation of the
80960MC processor. Included is an overview of the processor-management facilities and a
description of the processor-control block (PRCB). The steps required to initialize the proces­
sor are also given.

OVERVIEW OF PROCESSOR CONFIGURATIONS

The 80960MC processor has been designed for use in a variety of system configurations. For
the purpose of discussion in this manual, the possible configurations have been divided into the
following three groups:

• Single-Task System -- Single processor performs a single task, often running from a
ROM-based operating system kernel and application program.

• Multitasking System -- Single processor is able to perform several tasks concurrently.

• Multiprocessing System -- Multiple processors are able to perform several tasks, with the
possibility of some tasks being processed simultaneously.

This chapter and the following chapters describe the processor and process management
facilities the 80960MC processor provides. These facilities allow one or more 80960MC
processors to be configured for any of the above applications. The facilities discussed are
primarily software related, although some hardware considerations are also discussed.

The processor-management facilities are described in this chapter and in Chapters 10, 11, and
12. The process management facilities that support multitasking systems are described in
Chapters 13 and 14. Chapter 15 describes the process and processor management facilities that
support multiple-processor configurations.

PROCESSES AND TASKS

In this manual, the terms process and task are used somewhat synonymously; however, a slight
distinction between the two words should be noted. The term process refers to a unit of work
that the processor is able to schedule and work on. A process is defined by information
contained in a process control block (PCB).

The term task is a more general term that refers to units of work that can be scheduled at either
the processor or the operating-system kernel level. For example, a multitasking system is one
that performs multiple tasks. Each task may be presented to the processor in the form of a
process with its own PCB. Or, each task may be scheduled and dispatched in software, with all
the tasks executed in the context ofa single process.

9-1

PROCESSOR MANAGEMENT AND INITIALIZATION

PROCESSOR-MANAGEMENT FACILITIES

The following processor-management facilities are used to initialize, communicate with, and
control the processor:

• Instruction List

• System Data Structures

• Interrupts

• lACs

• Faults

• Process Scheduling and Dispatching

These facilities allow system hardware and the operating system or kernel to initialize the
processor and initiate instruction execution. They also provide software or external agents
with methods of interrupting the processor to change jobs or to service external I/O devices. In
more advanced systems, these facilities provide a means of synchronizing mUltiple tasks and
mUltiple processors.

The following paragraphs give an overview of these processor-management facilities.

Instruction List

At the most rudimentary level, the processor is controlled through a stream of instructions that
the processor fetches from memory and executes one at a time. Once the processor is initial­
ized, it begins executing instructions and continues until it is stopped or goes into an idle state.

System Data Structures

The processor requires several system data structures that reside in memory. These data
structures offer a means of configuring the processor to operate in a specific way. They also
contain state information that the processor and kernel use to keep track of processor and
process management functions.

Figure 9-1 shows the system data structures required to run a single process, using the virtual­
addressing mode. In this illustration, the dashed lines indicate physical-address pointers and
the solid lines indicate SS pointers.

The processor contains pointers to two of these data structures: the processor-control block
(PRCB) and the segment table. The PRCB contains setup information for the processor itself
and pointers· to the other system data structures that the processor must access. There is one
PRCB for each processor in a system.

The segment table provides address translation information for virtual-memory management,
as described in Chapter 8. It should be noted that even though a segment table is not generally
used when using strictly physical addressing, a rudimentary segment table is required to initial­
ize the processor. This initialization segment table is described later in this chapter in the
section titled "Processor Initialization."

9-2

inter PROCESSOR MANAGEMENT AND INITIALIZATION

PROCESSOR h
L..-___ ...II:

L.-

--..-

.... ~

PROCESSOR
CONTROL

BLOCK
(PRCB)

LADDRESS PHYSICA
POINTER S

SS POINT

VIRTUAL
POINTER

ERS

ADDRESS

,.

----,
__ ,1

I
_II

- 1..-
I - I

· I
I

· L.-
· · · · ·
·

~

·

SEGMENT
TABLE

PROCESS
CONTROL

BLOCK
(PCB)

INTERRUPT
TABLE

FAULT TABLE

SYSTEM
PROCEDURE

TABLE

=1l1 REGION 0 I
-+-1 REGION 1 1

........ 1 REGION' 1

REGION 3
,

......................... ~
INTERRUPT

STACK*

* When using the physical-addressing mode, the pointer to the
interrupt stack is a physical-address pointer.

Figure 9-1: System Data Structures

Figure 9-1 shows the pointer from the processor to the segment table as an SS pointer. When
initializing a processor, the first segment-table pointer that the processor receives is a physical­
address pointer. (This pointer is supplied in the initial memory image.) It uses this physical
address to get the SS pointer that it uses from then on. Even when using strictly physical
addressing, the pointer to the segment table is always an SS pointer.

The PCB contains state information and processing requirements for the currently running
process. In multiple-process systems, each process has its own PCB. A major function of the
PCB is to provide pointers to regions 0, 1, and 2 of the address space for the process. (The
pointer to Region 3 is given in the PRCB.) The PCB is described in detail in Chapter 13.

9-3

PROCESSOR MANAGEMENT AND INITIALIZATION

The interrupt table provides pointers to interrupt-handling procedures. The interrupt vector
numbers act as indices into this table. For the purpose of handling interrupts, a separate
interrupt stack is maintained in region 3 of the address space. The interrupt mechanism is
described in Chapter 10.

The fault table provides pointers to fault-handling procedures. When the processor detects a
fault, it generates a fault vector number internally that provides an index into the fault table.
The fault mechanism is described in Chapter 12.

The system procedure table contains pointers to the kernel procedures, which are accessed
using the system call (calls) mechanism. The system table structure is described in Chapter 4
in the section titled "Procedure Table."

The processor uses two stacks (not shown in Figure 9-1) for procedure calls: the local
procedure stack and the (optional) supervisor stack. These stacks are described in Chapter 4.

Interrupts

The processor supports two methods of asynchronously requesting services from the processor:
interrupts and lAC messages. Interrupts are the more common of the two.

An interrupt is a break in the control flow of a process so that the processor can handle a more
urgent chore. Interrupt requests are generally sent to the processor from an external source,
often to request I/O services. When the processor receives an interrupt request, it temporarily
stops work on the current process and begins work on an interrupt-handling procedure. Upon
completion of the interrupt-handling procedure, the processor generally returns to the process
that was interrupted and continues work where it left off.

Interrupts also have apriority, which the processor uses to determine whether to service the
interrupt immediately or to postpone service until work on the current process is complete.

lACs

The 80960MC processor provides an alternate method of communicating with other processors
in the system called lAC messages, or simply lACs. Using the lAC mechanism, other agents
on the system bus are able to communicate with the processor through messages that are
exchanged in a reserved section of memory.

Like interrupts, lACs are used to request that the processor stop work on the current process
and begin work on another chore. However, where an interrupt generally causes a temporary
break in the execution of a process, an lAC often causes a permanent change in the control
flow of the processor. An important application of lACs is to coordinate the activities of
multiple processors.

The lAC mechanism is described in Chapter 11.

9-4

inter PROCESSOR MANAGEMENT AND INITIALIZATION

Faults

While executing instructions, the processor is able to recognize certain conditions that could
cause it to return an inappropriate result or that could cause it to go down a wrong and possibly
disastrous path. One example of such a condition is a divisor operand of zero in a divide
operation. Another example is an attempt to access a memory location in a page that is not in
physical memory. These conditions are called faults.

The processor handles faults almost the same way that it handles interrupts. When the proces­
sor detects a fault, it automatically stops its current processing activity and begins work on a
fault-handling procedure.

Process Scheduling and Dispatching

The processor also provides some advanced process-management facilities that are able to
signal the processor internally to suspend the process it is currently working on and begin work
on another process. These features, which are useful in the scheduling and dispatching of
processes, are described in Chapter 14.

PROCESSOR-CONTROL BLOCK

The processor is controlled through the PRCB, which contains information related to the
processor's operation. The PRCB is 176 bytes in length and is contained in physical memory,
not in a segment. Each CPU processor in a 80960MC-based system has its own PRCB. The
processor locates and reads its PRCB at initialization by means of a physical-address pointer to
the first byte of the block.

The processor caches parts of the PRCB on chip and updates these cached fields internally.
After the processor has initially cached these fields, it does not check or update the original
PRCB in memory. lACs are provided that allow those parts of the PRCB that the processor
has copied into internal storage to be changed. These lACs are discussed later in this chapter
in the section titled "Changing the PRCB." This section also lists the fields of the PRCB that
are cached on the chip.

Figure 9-2 shows the structure of the PRCB and Figure 9-3 shows the structure of the
processor-controls word in the PRCB. The following paragraphs describe the use of each of
the fields in the PRCB.

Processor-Controls Word

The processor-controls word contains several miscellaneous pieces of information to control
processor operation. The function of the various fields in this word are as follows.

The multiprocessor-preempt flag, when set, enables a high-level process preemption function
that allows multiple processors to handle preempting processes. This function is only useful in
multiple-processor systems and should be set to 0 for single-processor systems. Refer to the
section titled "Process Preemption" in Chapter 14 for more information on this function.

9-5

PROCESSOR MANAGEMENT AND INITIALIZATION

o

4

8

CURRENT PROCESS SS 12

DISPATCH PORT SS 16

INTERRUPT TABLE PHYSICAL ADDRESS 20

INTERRUPT STACK POINTER 24

76

RESUMPTION RECORD

128

SYSTEM ERROR FAULT RECORD

~ ________________________ ~172

RESERVED
(INITIALIZE TO 0)

Figure 9-2: Processor-Control Block (PRCB)

9·6

inter PROCESSOR MANAGEMENT AND INITIALIZATION

1 tt t ~ MULTIPROCESSOR PREEMPT

STATE
NONPREEMPT LIMIT
ADDRESSING MODE

CHECK DISPATCH PORT
INTERIM PRIORITY

WRITE EXTERNAL PRIORITY

RESERVED (INITIALIZE TO 0)

Figure 9-3: Processor-Controls Word

The state field determines the state of the processor when it is initialized or restarted. The
encoding of this field is shown in Table 9-1.

Table 9-1: Encoding of the State Field

State State
Field

00 Stopped

01 Reserved

10 Idle

11 Process executing

The section later in this chapter titled "Processor and Process States" describes the activities of
the processor while it is in these different states.

The nonpreempt-limit field sets a threshold priority that the processor uses in determining
whether or not to allow one process to preempt another. If the priority of the preempting
process is at or below that of the current process or the nonpreempt limit, the processor will not
preempt the cjlrrent process. This field is used during process preemption and on returns from
interrupts. Further discussion of this limit is given in Chapter 10 in the section titled "Process­
Executing-State Interrupts" and in Chapter 15 in the section titled "Multiprocessor
Preemption. "

The addressing-mode flag determines the address-translation mode of the processor: physical
addressing (0) or virtual addressing (1). The section later in this chapter titled "Address­
Translation Modes" discusses these modes.

The check-dispatch-port flag instructs the processor to check the dispatch port for processes of
higher priority than the current process, during returns from interrupts. Only the processor
uses this flag. Software should set it to 0 at processor initialization or restart. A discussion of

9-7

inter PROCESSOR MANAGEMENT AND INITIALIZATION

how the processor uses this flag is given in Chapter 10 in the section titled "Process-Executing­
State Interrupt" and in Chapter 14 in the section titled "Process Preemption."

The interim-priority field sets a threshold priority that is used to block lAC messages from
being sent to the processor when it is executing the send, send service (sendserv), and signal
instructions. This field is used in conjunction with the write-external-priority flag as described
in Chapter 15 in the section titled "Multiprocessor Preemption."

The write-external-priority flag instructs the processor to write the priority of the current
process to the IAC-message-control field whenever a process switch, an interrupt (not caused
by an lAC message), or the execution of a modpc instruction (modify process controls) occurs.
The use of this flag is described in Chapter 15 in the sections titled "Receiving and Handling
External lACs" and "Multiprocessor Preemption."

The remaining bits in the processor-controls word (bit 0, bit 4, and bits 12 through 30) are
reserved. These bits should be set to 0 at processor initialization or restart and should not be
altered after that.

System-Oata-Structure Pointers

As is shown in Figure 9-1, the PRCB contains pointers to several system data structures, which
are summarized in the following paragraphs.

The current-process-SS field points to the PCB for the process that is currently bound to the
processor. (The mechanism for binding a process to the processor is described in Chapters 13
and 14.)

If the processor is restarted in the process-executing state, the processor binds itself to the
process specified in the current-process-SS field. For single process systems this is the only
process bind action that is carried out.

For systems that execute multiple processes, the current-process-SS field is updated each time
a new process is dispatched and bound to the processor.

When the processor is not in the process-executing state, this field is not used. Also, this field
is not cached on the processor chip.

The dispatch port SS field points to the dispatch port that the processor goes to for new
processes during a dispatching operation. This field is only used for mUltiple process systems
that use the processor's high-level process management functions.

The interrupt table physical address points to the first byte of the interrupt table.

The interrupt-stack pointer points to the top (first available byte) of the interrupt stack. In the
virtual-addressing mode, the processor interprets the interrupt-stack pointer as a virtual address
in the current-process address space. (When using the virtual-addressing mode, the interrupt
stack should be placed in region 3 of the process address space.) When using the physical­
addressing mode, the interrupt-stack pointer is interpreted as a physical address.

9-8

inter PROCESSOR MANAGEMENT AND INITIALIZATION

The region 3 SS points to the region segment that contains region 3.

The system procedure-table SS points to the system procedure table.

The fault-table physical address points to the first byte of the fault table.

Miscellaneous PRCe Fields

The following fields in the PRCB provide miscellaneous processor-control functions.

The idle time field contains a long ordinal that gives the time that the processor has spent in the
idle or idle-interrupted state. Idle timing is discussed later in this chapter in the section titled
"Idle Timing."

When a system-error fault occurs, the type and subtype of the fault are stored in bits 16 through
23 and bits 0 through 7 of the system error fault field, respectively. The fault record is stored
in the system-error fault record field. System-error faults are described in Chapter 12.

The resumption record field contains the intermediate state of an instruction that has been
interrupted. This information is generally stored in the PCB for the interrupted process.
However, when the processor is interrupted while in the idle-interrupted state, the resumption
information is stored in the PRCB. This field should be set to all zeros at initialization or
restart of the processor and not accessed by software thereafter.

The processor uses multiprocessor preemption field while handling preempting processes in
multiprocessor applications. The use of this field is described in Chapter 15 in the section
titled "Preemption Control."

The remaining fields in the PRCB (bytes 8 through 11, bytes 28 through 31, bytes 44 through
47, bytes 60 through 63, and bytes 76 through 79) are reserved. They should be set to all zeros
at initialization or restart and not accessed by software thereafter.

Changing the PRCe

At initialization, on a restart processor lAC, or on a warmstart processor lAC, the processor
reads the following fields from the PRCB in memory and caches them:

• Processor controls

• Dispatch port SS

• Interrupt table physical address

• Interrupt stack pointer

• Region 3 SS

• System procedure table SS

• Fault table physical address

• Idle time

9-9

PROCESSOR MANAGEMENT AND INITIALIZATION

In general, to change any of the PRCB fields that have been cached on the processor chip, the
kernel must first modify the PRCB in memory, then restart the processor using the restart
processor lAC. The processor then rereads the PRCB and reloads the cached fields in its
internal cache.

The store processor lAC may also be useful here. This lAC causes any of the cached parts of
the PRCB that have been changed since initialization or the last restart to be written to the
PRCB in memory. Software is thus able to examine the current state of the PRCB, modify it,
then restart the processor.

The modify-processor-controls lAC allows any of the fields in the processor-controls word,
except the state field, to be changed without restarting the processor. If this lAC is used to
change the state field, the processor must be restarted for the change in state to become
effective.

PRIORITIES

The processor provides a priority mechanism for determining the order in which processes and
interrupts are worked on. Priorities range from 0 to 31, with 31 being the highest priority.
Each process and interrupt vector is assigned a priority.

In multitasking systems, process priorities are used to determine which processes are worked
on first. Process priorities also allow a process of higher priority to preempt the current
process if the current process has a lower priority. The term preempt means that the current
process is suspended and the preempting process is bound to the processor.

Interrupt priorities serve two functions. First, they determine if the processor will service an
interrupt immediately or delay servicing it with respect to the priority of the current process.
Second, they determine which interrupt of several interrupts is serviced first.

The processor always handles an lAC as soon as it is received (i.e., lACs are assumed to have a
priority of 31). However, in certain system designs lACs can be prioritized. Here, external
hardware is required to compare the priority of the lAC with that of the current process, then
determine whether to send the lAC message to the processor immediately or reject it. The
M82965 is designed to perform this operation.

PROCESSOR AND PROCESS STATES

The processor has three different operating states: process executing, idle, and stopped. In
addition, a process can be in either of two states: excuting and interrupted. When the
processor and process states are combined, five states are possible for the the processor and its
current process: process executing, process interrupted, idle, idle interrupted, and stopped.
The processor is placed in one of three states (process executing, idle, or stopped) at initializa­
tion or restart. After that, the processor and software control the state of the processor and
process.

The processor can switch between the process-executing, process-interrupted, idle, and idle­
interrupted states. However, the processor never switches from the process-executing or idle
states to the stopped state, unless a system-error fault occurs.

9-10

inter PROCESSOR MANAGEMENT AND INITIALIZATION

Software can change the state of the processor in either of two ways: (1) restart the processor
in the desired state, or (2) issue a stop processor lAC message.

The following paragraphs describe the five combined processor and process states.

Process-Executing and Process-Interrupted State

In the process-executing state, the processor is executing the process specified in the current
process SS field of the PRCB.

If the processor is interrupted while in the process-executing state, it saves the state of the
current process, switches to the process-interrupted state, and services the interrupt. Upon
returning from the interrupt handler, the processor resumes work on the current process.

Stopped State

In the stopped state the processor ceases all activity. The only task it can perform while in this
state is to service an lAC. If the lAC handling action does not result in a change in the
processor's state, the processor switches back to the stopped state when it finishes the lAC
handling action.

The only way to get the processor out of the stopped state is to restart the processor in a
different state.

Idle and Idle-Interrupted States

The idle and idle-interrupted states are used primarily with the processor's high-level process­
management functions. Here, the processor switches to the idle state when it examines the
dispatch port and finds no processes available for processing. The idle state eliminates the
need for the kernel to provide a special process for the processor to run when no other
processes are scheduled.

Note that even if a process is available at the dispatch port, the processor is considered to be in
the idle state while it is "between" processes (i.e., after suspending the current process and
before dispatching another process).

The processor may be interrupted while in the idle state. While servicing the interrupt, the
processor switches to the idle-interrupted state. Upon completion of the interrupt routine, the
processor returns to the idle state and begins polling the dispatch port again for a process to
run.

While in the idle state, the processor polls the dispatch port once every tick (i.e., once every
256 clock cycles). When running at a 16-MHz clock rate, this polling rate equates to once
every 8 microseconds. (Refer to the section later in this chapter titled "Processor Timing" for
more information on ticks.)

9-11

inter PROCESSOR MANAGEMENT AND INITIALIZATION

The other use of the idle state is at initialization. During the first stage of initialization, the
processor is placed in the idle state. From there, the processor goes into the idle-interrupted
state to execute initialization code.

If a system does not have a dispatch port, the processor will never go into the idle state except
at initialization. If the processor is restarted in the idle state when there is no dispatch port, the
behavior of the processor is unpredictable.

ADDRESS-TRANSLATION MODES

As was discussed in Chapter 8, the processor can operate in either of two address-translation
modes: physical-addressing mode and virtual-addressing mode. The addressing-mode flag in
the processor controls determines which address-translation mode the processor is using.

These modes only apply to the translation of addresses in the address space for the current
process. In the physical-addressing mode, all addresses are assumed to be physical addresses
and are sent out on the bus unchanged. In the virtual-addressing mode, addresses are assumed
to be virtual addresses. The processor memory-management unit (MMU) then translates these
addresses into physical addresses before they are sent out on the bus.

Regardless of the mode, SS's are treated the same. When the processor receives an SS, it
locates the selected segment in memory and uses an internally generated or explicit offset to
access the selected byte in the segment. Thus, even if the processor is operating in physical­
addressing mode, it still uses the SS's in the PRCB to locate system data structures. Likewise,
privileged supervisor-mode instructions that use SS's as operands are treated the same way in
both address-translation modes.

Changing the Address-Translation Mode

Generally, the kernel will run the processor in one address-translation mode or the other. If
strictly physical addressing of memory is used, the processor will be run in physical-addressing
mode, and if a virtual-memory system is supported, the processor will run in virtual-addressing
mode. '

It is possible to design a system in which the address-translation mode is changed on occasion.
In such instances, the change of mode can be accomplished in either of two ways.

The safest way is to establish an up-to-date image of the PRCB in memory, perhaps by using
the store processor lAC. The addressing-mode flag is then changed and the processor is
restarted.

The other way is to use the modify-processor-controls lAC. When this lAC is used to change
the address-mode flag, the processor reads the new value and changes its mode accordingly.

Changing the address-translation mode in this manner can have serious consequences. For
example, clearing the flag causes the IP for the next instruction to be interpreted as a physical
address, which might take the processor down an unpredictable path. Also, the system may be
maintaining a memory cache for the processor. Changing the address-translation mode would
cause the cached addresses to be interpreted differently.

9-12

inter PROCESSOR MANAGEMENT AND INITIALIZATION

If the address-translation mode is to be changed in this latter manner, the safest way to do so is
to map the addresses of at least the code and the stacks into the same locations in both the
virtual and physical address spaces. It will be necessary to purge the instruction cache of the
processor (using the purge instruction cache lAC).

PROCESSOR TIMING

The processor provides several counting functions such as process execution timing and idle
timing. Counting for these functions is in terms of ticks.

Duration of a Tick

For the 80960MC processor, a tick is defined as 256 external clock periods (128 internal clock
periods). For a 16-MHz processor clock rate (32-MHz external clock), a tick is then 8
microseconds. For a 20-MHz processor clock rate, a tick is 6.4 microseconds.

Idle Timing

The idle time field of the PRCB is used to count the amount of time that the processor is in the
idle state. When the processor goes into the idle state it begins incrementing the count in the
idle time field one count for each tick. When the processor switches to another processor state,
idle-time counting is stopped.

The idle time field, like others in the PRCB, may be cached in the processor. If this is the case,
the value must be periodically written out to the PRCB in memory so software can read it. The
interval that the processor uses to update the count is once every 32 ticks.

The processor writes the idle time field periodically, but it only reads this field at initialization.
As a result, if software changes the idle time field after initialization, the count will be incon­
sistent.

NOTE

If the interrupt handler sets the timing flag in the process controls word, the processor will
begin counting idle time for the interrupted state. This practice is not advisable because it can
cause unpredictable events, most notably an unwanted time-slice fault.

INSTRUCTION SUSPENSION

When a process is suspended or interrupted while the processor is in the midst of executing an
instruction, the processor does one of three things before it suspends the process or services the
interrupt:

I. It completes the instruction.

2. It terminates the instruction and sets the process state so that it is as if execution of that
instruction had not yet begun.

9-13

PROCESSOR MANAGEMENT AND INITIALIZATION

3. It suspends the instruction and saves the necessary resumption information so that execu­
tion of the instruction can be continued when the processor begins work on the process
again. This courSe of action .is generally reserved for instructions that have a long execu­
tion time and that alter the internal and external process state as they execute.

Which of these steps the processor takes depends on the instruction being executed. However,
whichever step it takes is transparent to the software. The processor automatically saves the
necessary state information so that work on the process can be resumed with no loss of
information.

Refer to the section in Chapter 13 titled "Resumption Record" for more information on how
resumption information for a suspended instruction is saved when a process is suspended.
Refer to the section in Chapter 10 titled "Interrupt-Handling Action" for more information on
how resumption information is saved when an interrupt is serviced.

SOFTWARE REQUIREMENTS FOR PROCESSOR MANAGEMENT

The processor-management facilities described earlier in this chapter allow the processor to be
configured and operated in a variety of ways. This section lists the data structures that the
kernel must supply to operate the processor in a single-task configuration. (Chapter 14 lists the
required data structures for a multitasking system that uses the processor's high-level process
management facilities and Chapter 15 lists the requirements for a multiprocessing system.)

When using the processor in a single-task system, the kernel must provide the following items:

• Initial Memory Image

• Set of System Data Structures

• Address Space

• Stacks

• Code

The initial memory image comprises the minimum data structures that the processor needs to
initialize the system. It is described later in this chapter in the section titled "Initial Memory
Image."

As part of the initialization procedure, a more complete set of system data structures are
established in memory. If the virtual-addressing mode of the processor is to be used, all of the
data structures shown in Figure 9-1 must be set up. These data structures include a PRCB,
segment table, PCB, interrupt table, interrupt stack, fault table, and the four address-space
regions for the current process. If the user-supervisor protection mechanism is not going to be
used, a system procedure table is not required.

NOTE
When using the virtual-addressing mode, the kernel code and the interrupt stack would typically
be located in region 3 of the process address space. However, in a single-process system, these
items can be located anywhere since only one address space is used. .

9-14

inter PROCESSOR MANAGEMENT AND INITIALIZATION

If the processor is going to be used strictly in physical-addressing mode, all of the data
structures listed above must be set up except the four address space regions and the system
procedure table. The system procedure table is not required; however, it can be set up and used
in a physical-addressing environment.

Note that when operating in physical-addressing mode, a segment table is still required. This
segment table is part of the initial system image and is generally not used after the first stage of
initialization. The required entries for this initialization segment table are given in the section
later in this chapter titled "Initialization Segment Table."

Figure 9-4 shows the fields in the PRCB and the processor-controls word that are used in a
single-task configuration, using the virtual-addressing mode. When using strictly physical
addressing, the system procedure table SS is not required. (Chapter 10 describes the required
fields for the interrupt table and interrupt stack; Chapter 12 describes the fault table; and
Chapter 13 describes the PCB.)

Two stacks are required: an interrupt stack and a local (or user) procedure stack. The initial
stack pointer for the interrupt stack is given in thePRCB; the initial stack pointer for the
local-procedure stack is given in the local registers and is established by initialization code. If
the user-supervisor protection mechanism is to be used, a supervisor stack must also be
provided. The initial stack pointer for this stack is given in the system-procedure table. The
supervisor stack can be placed anywhere in the address space.

Finally, three levels of code are required: initialization code, kernel code, and user (or
applications) code. The initialization code is part of the initial memory image. The starting IP
for the initialization code is also provided in the initial memory image. This IP will be
interpreted as a physical address or a virtual address depending on the setting of the
addressing-mode flag in the initial processor-controls word.

When using the virtual-addressing mode, the kernel code and user code are located in the
current process-address space; when using the physical-addressing mode, this code is located
in the physical address space.

The starting IP for the kernel code or the user code, whichever is run first, is provided in the
RIP word in the first frame of the kernel or user stack. One of the jobs of the initialization
code is thus to establish a stack in memory for the kernel or user code to use. The FP for this
stack is stored in global register field g 15 of the PCB.

PROCESSOR INITIALIZATION

This section describes how to initialize the 80960MC processor. It defines the mechanism that
the processor uses to establish its initial state and begin instruction execution. It also describes
some general guidelines for writing code to complete the initialization of the processor for
specific applications.

This initialization procedure can be used in both single-processor and mUltiprocessing systems.
In a multiprocessing system, one processor generally performs the first stage of initialization in
which an initial memory image is established and instruction execution begins.

9-15

PROCESSOR MANAGEMENT AND INITIALIZATION

RESERVED
(INITIALIZE TO 0)

RESUMPTION RECORD

SYSTEM ERROR FAULT RECORD

~~ ______________________ ~172

PROCESSOR CONTROLS WORD

t 11 t ~ MULTIPROCESSOR PREEMPT

STATE

NONPREEMPT LIMIT

ADDRESSING MODE

CHECK DISPATCH PORT

INTERIM PRIORITY

WRITE EXTERNAL PRIORITY

Figure 9-4: Required Fields in PRCe for Single-Task Configuration

9-16

inter PROCESSOR MANAGEMENT AND INITIALIZATION

In the next stage of initialization, the initializing processor copies additional system data
structures into memory to build the memory image up to a more useful level. At this point the
processor is generally restarted with this expanded memory image.

Finally, if there are additional processors in the system, the initializing processor initializes
these processors by restarting them one at a time.

Initial Memory Image

Figure 9-5 shows the minimum requirements for the memory image at initialization. This
image will generally be held in ROM.

Check-Sum Words

The first eight words (called the check-sum words) must be in physical memory locations
0000000016 to 0000001F16• The first of these words is a physical-address pointer to the base
of the initialization segment table. The second word is a physical-address pointer to the base of
the initialization PRCB.

The fourth word is the instruction pointer to the first instruction of the initialization code. This
address can be either a physical address or a virtual address, depending on the address­
translation mode specified in the processor-controls word of the initialization PRCB.

The remaining words (word 3 and words 5 through 8) are check words. During the first stage
of initialization of the processor, these words are added to the pointers for the initialization
segment table, PRCB, and initialization code to determine a check sum. The check words must
be chosen such that when the check sum is computed (as shown in initialization algorithm in
Figure 9-6), the result is equal to O.

Initialization Segment Table

The initialization segment table has two required entries: one for the segment table itself
(which must be located at entry 8) and one for the region 3 segment. When using the
virtual-addressing mode, a segment descriptor must also be provided for at least one PCB. The
valid bit for each of these segment descriptors must be set to 1.

The segment descriptor for the segment table contains the base physical address of the table.
This address may be the same as the address given in word 1 of the check-sum words. If the
address is different, the processor essentially switches to a new segment table, which would
have to be part of the initial memory image.

When operating strictly in physical-addressing mode, the region 3 segment will generally not
be accessed. However, a segment descriptor is still required for it in the segment table. The
base-address pointer in this segment descriptor does not have to be valid.

Even though segment tables have a minimum size of 4096 bytes, only the three entries
described above must be mapped into the initial memory image. Additional segment descrip­
tors may be defined, depending on the needs of the initialization code.

9-17

inter PROCESSOR MANAGEMENT AND INITIALIZATION

PHYSICAL
INITIALIZATION

CHECK-SUM WORDS ADDRESSES SEGMENT TABLE OFFSET

SEGMENT TABLE POINTER 0 .. 0

PRCB POINTER 4 - ~ ~
CHECK WORD 8

INSTRUCTION POINTER 12 - 112
SEGMENT DESCRIPTOR

4 CHECK WORDS 16 FOR REGION 3*

20

24 128

28 SEGMENT DESCRIPTOR
FOR SEGMENT TABLE

INITIALIZATION PROCESSOR
CONTROL BLOCK OFFSET

~ 0

PROCESSOR CONTROLS 4

8

12

16

20

INTERRUPT STACK POINTER 24

28

REGION 3 SS 32

36

~ .~

172

INITIALIZATION CODE OFFSET

0

Note:
.~ ~

* The region 3 segment descriptor must
have its valid bit set. n

Figure 9-5: Initial Memory Image

9-18

PROCESSOR MANAGEMENT AND INITIALIZATION

Initialization PRCB

The initialization PRCB must have at least three entries: the processor-controls word, the
interrupt-stack pointer, and the region-3 SS. The state field in the processor-controls word
should be set to 1°2 (idle or idle-interrupts state).

The interrupt-stack pointer can be a virtual address in region 3 or a physical address depending
on the initial address-translation mode.

Although the region-3 SS must be specified, its associated segment descriptor in the segment
table does not have to point to an actual region segment in memory, unless the initialization
code and interrupt stack are to be contained in this region. Note that as described in the
previous section, the valid bit for the region 3 segment descriptor does have to be set.

Additional fields may be included in the PRCB, again depending on the needs of the initializa­
tion code. For example, if faults can occur during the second stage of initialization, the
fault-table physical address should be valid. Likewise, if interrupts can occur, the interrupt­
table physical address should be valid.

Initialization Code

The initialization instruction list can be mapped directly to physical memory or through region
3, depending on the initial address-translation mode.

Building a Memory Image

The initial memory image shown in Figure 9-5 contains the minimum data structures required
for the processor to initialize itself and begin executing code. All of the required initialization
data structures are generally stored in ROM.

To build a useful system, additional data structures are required, such as an interrupt table, a
fault table, a system procedure table, a set of kernel procedures, a set of stacks, and a heap.
Some of these data structures can be located in ROM along with the initial memory image;
however, others must be in RAM because they must be writable.

Table 9-2 lists the various system data structures and shows which can be in ROM and which
must be in RAM.

The following paragraphs give the system limitations if a data structure is included in ROM.

The segment table may be contained in ROM, providing it is not going to be changed. Other­
wise, an expended segment table should be copied to RAM as part of the second stage of
initialization. Also, any referenced and modified bits should already be set.

9-19

PROCESSOR MANAGEMENT AND INITIALIZATION

Table 9-2: ROM and RAM Resident Data Structures

Data Structure May Be in ROM May Bein ROM Must Be in RAM
with Limitations

Initial memory X
image

PRCB X

PCB X

Segment table X

Page tables X

Stack and heap X

Interrupt table X

Fault table X

Kernel Procedures X

Part of the second stage of initialization should be to copy a new PRCB into RAM. This
PRCB along with the new segment table will then be used after the processor is restarted.

The PRCB may remain in ROM; however, if it does, the following restrictions will apply:

1. Multiple processes cannot be executed. To execute multiple processes, the processor must
be able to write the SS for the current process in the PRCB.

2. System-error faults will not be recoverable. On a system-error fault, the processor writes
the fault record into the PRCB. If the PRCB is in ROM, this information is lost. One way
around this limitation is to position the PRCB over a ROM/RAM boundary such that the
fault record fields fall in RAM.

3. The processor will not be able to handle interrupts properly that occur during the execution
of an instruction with long execution times. This is because a resumption record cannot be
stored in the PRCB.

The PCB should be in RAM. However, if it is left in ROM, the following restrictions apply:

1. The processor will only be able to run a single process, and this process must not time out.

2. Interrupts that create a resumption record will not work properly because the record cannot
be stored in the PCB.

3. The initial state of the global registers is fixed, so the stack pointer cannot be changed
before the process is run.

4. The timer will not be usable since the processor periodically writes out the current value of
the timer to the PCB.

Page tables are generally used to support systems that allow dynamic memory allocation, so
they will generally need to be in RAM. If they are contained in ROM, paging of the address
space will not be allowed, since the processor will not be able to access the valid, altered, and
accessed bits.

9-20

PROCESSOR MANAGEMENT AND INITIALIZATION

An alternative would be to have the page tables for fixed data structures in ROM and those for
address spaces or data structures that will change in RAM.

The stack, heap, and interrupt table must all be in RAM for the processor to operate properly.
The reason the interrupt table must be in RAM is that it contains the interrupt pending fields,
which the processor must be able to write to.

The fault table can be in ROM, providing it will never be necessary to relocate the fault
handler routines.

The kernel procedures can be in either ROM or RAM or both, depending on the design of the
kernel.

TYPICAL INITIALIZATION SCENARIO

Initialization of the 80960MC processor typically is handled in two stages. In the first stage of
initialization, the processor performs a self test and reads pointers from the initial memory
image. During the second stage, the processor executes initialization code designed to build
the remainder of the memory image so that execution of applications code can begin.

First Stage of Initialization

The following procedure shows the steps that system hardware and the processor go through in
the first stage of initialization. The algorithm in Figure 9-6 gives the details of this procedure.

1. Hardware asserts the RESET pin on the processor.

2. The processor samples LPN to get its local processor number (1 or 0). (LPN and STAR­
TUP are signals that come from multiplexed information received on several processor
pins.)

3. The processor asserts the FAILURE pin and performs a self test. If the processor passes
the self test, it deasserts the FAILURE pin.

4. The processor samples STARTUP to determine whether it is the initializing processor (1)
or not (0). If the processor is the initializing processor, it continues with the initialization
procedure; if it is not, it goes into the stopped state. (In multiprocessing systems, all
processors except the initializing processor are put in the stopped state.)

5. The processor reads the 8 check-sum words and checks that the check sum is o.
6. Using the contents of the check-sum words, the processor determines the location of the

initialization segment table, PRCB, and first instruction to be executed.

7. The processor sets its process priority to 31 (highest possible) and its state to idle inter­
rupted.

8. The processor clears any latched external interrupt or lAC signals. This means that the
processor will not service any interrupts or lACs prior to beginning instruction execution.

9. The processor begins executing the initialization instruction list.

9-21

inter PROCESSOR MANAGEMENT AND INITIALIZATION

assert FAILURE pin;
perform self test;
if self test fails

then enter stopped state;
else

endif;

deassert FAILURE pin;
enter predefined state;
if STARTUP pin = 0

then enter stopped state;
else

endif;

x f- memory(O); read 8 words from
physical address 0

AC.cc f- 0002;
temp f- FFFFFFFF16 add_with_carry x(O);
temp f- temp add_ with3arry x(1);
temp f- temp add_ with_carry x(2);
temp f- temp add_ with_carry x(3);
temp f- temp add_with_carry x(4);
temp f- temp add_with_carry x(5);
temp f- temp add_with_carry x(6);
temp f- temp add_ with_carry x(7);
if temp "* 0

then
assert FAILURE pin;
enter stopped state;

else
segmenctable_descriptor f-

memory(x(O) + 128);
IP f- memory (12)
fetchPRCB;
process.priority f- 31;
process.state f- interrupted;
FP f- PRCB.interrupt_stack_pointer;
clear any latched external interrupt/lAC

signals;
begin execution;

endif;

Figure 9-6: Algorithm for First Stage of Initialization Procedure

After self test, the processor establishes its initial state. For the initializing processor this state
is idle; for any other processors in the system this state is stopped. Also at initialization, the
trace controls are set to zero; the breakpoint registers are disabled; and the process controls are
set to zero (except for the execution mode, which is set to supervisor, and the priority, which is
set to 31).

9-22

PROCESSOR MANAGEMENT AND INITIALIZATION

When the initializing processor begins instruction execution, it goes into idle-interrupted state.
The initialization code is thus treated as a special interrupt-handler procedure.

Second Stage of Initialization

The processor activity during the second stage of initialization, which occurs once the proces­
sor begins instruction execution, is up to software. In general, this stage of initialization is
used to copy or create additional data structures in memory, such as page tables, one or more
PRCBs, the interrupt table, the system-procedure table, and the fault table (if not in the initial
memory image).

To complete the initialization procedure, software will ordinarily bind a process to the proces­
sor to begin process execution. Refer to Chapter 13 for a full discussion of binding a process
to a processor.

Once these jobs are completed, the processor can begin executing applications code.

Appendix D gives an example of the 80960MC code that might be used to carry out this
second stage of initialization.

A common initialization technique is to create a new segment table and PRCB in memory
along with the other system data structures that are placed in memory in the second initializa­
tion stage. The processor is then restarted using the new segment table and PRCB. (The code
in Appendix D uses this technique.)

A processor is restarted using the restart lAC. The restart lAC message includes new physical­
address pointers to the segment table and PRCB. The processor reads the new PRCB, then
begins instruction execution according to the control information contained in the PRCB.

In a mUltiprocessing system, one of the processor's tasks following restart would be to com­
plete the initialization of the other processors in the system. Further discussion of the in­
itialization of mUltiprocessing systems is given in Chapter 15.

9-23

Interrupts 10

CHAPTER 10
INTERRUPTS

This chapter describes the 80960MC processor's interrupt handling facilities. It also describes
how interrupts are signaled.

OVERVIEW OF THE INTERRUPT FACILITIES

An interrupt is a temporary break in the control stream of a process so that the processor can
handle another chore. Interrupts are generally requested from an external source. The inter­
rupt request either contains a vector number or else points to a vector that tells the processor
what chore to do while in the interrupted state. When the processor has finished servicing the
interrupt, it generally returns to the process that it was last working on when the interrupt
occurred and resumes execution where it left off.

The processor provides a mechanism for servicing interrupts, which uses an implicit procedure
call to a selected interrupt-handling procedure, called an interrupt handler.

When an interrupt occurs, the current state of the process is saved. If the interrupt occurs
during an instruction that requires many machine cycles, the instruction state is also saved and
execution of the instruction is suspended.

The processor then creates a new frame on the interrupt stack and executes an implicit call to
the interrupt handler selected with the interrupt vector.

Upon returning from the interrupt handler, the processor switches back to the process that was
running when the interrupt occurred, restores this process to the state it was in when the
interrupt occurred, and resumes work on the process.

Another feature of this interrupt handling mechanism is that it allows interrupts to be
prioritized. If an interrupt is signaled that has the same or a lower priority than the process that
the processor is currently working on, the processor saves the interrupt and services it at a later
time. Interrupts that are waiting to be serviced are called pending interrupts.

SOFTWARE REQUIREMENTS FOR INTERRUPT HANDLING

To use the processor's interrupt handling facilities, software must provide the following items
in memory:

• Interrupt Table

• Interrupt Handler Routines

• Interrupt Stack

These items are generally established in memory as part of the initialization procedure. Once
these items are present in memory and pointers to them have been entered in the appropriate
system data structures, the processor then handles interrupts automatically and independently
from software.

10-1

INTERRUPTS

The requirements for these items are given in following sections of this chapter.

VECTORS AND PRIORITY

Each interrupt vector is 8 bits in length, which allows up to 256 unique vectors to be defined.
In practice, vectors 0 through 7 cannot be used, and vectors 244 through 247 and 249 through
251 are reserved and should not be used by software. Vector 248 is reserved for a processor
generated interrupt called a system-error interrupt. This interrupt is described in Chapter 12 in
the section titled "System-Error Interrupt."

Each vector has a predefined priority, which is defined by the following expression:

priority = vector/8

Thus, at each priority level, there are 8 possible vectors (e.g., vectors 8 through 15 have a
priority of 1, vectors 16 through 23 a priority of 2, and so on to vectors 246 through 255, which
have a priority of 31).

The processor uses the priority of an interrupt to determine whether or not to service the
interrupt immediately or to delay service. If the interrupt priority is greater than the priority of
the current process, the processor services the interrupt immediately; if the interrupt priority is
equal to or lower than the priority of the current process, the processor saves the interrupt
vector as a pending interrupt so that it can be serviced after work on the current process is
complete.

A priority-31 interrupt is always serviced immediately.

Note that the lowest process priority allowed is O. If the current process has a 0 priority, a
priority-O interrupt will never be accepted. This is why vectors 0 through 7 cannot be used. In
fact, there are no entries provided for these vectors in the interrupt table.

INTERRUPT TABLE

The interrupt table contains instruction pointers (addresses in the address space) to interrupt
handlers. This table is located in physical memory and must be aligned on a word boundary.
The processor determines the location of the interrupt table by means of a physical address
pointer in the PRCB.

As shown in Figure 10-1, the interrupt table contains one entry (i.e., one pointer) for each
allowable vector. The structure of an interrupt-table entry is given at the bottom of Figure
10-1. Each interrupt procedure must begin on a word boundary, so the two least-significant
bits of the entry are set to O.

10-2

in1er INTERRUPTS

31 0

0

4

PENDING INTERRUPTS

32

36 (VECTOR 8)

40 (VECTOR 9)

ENTRY 10 44 (VECTOR 10)

976 (VECTOR 243)

980 (VECTOR 244)

992 (VECTOR 247)

996 (VECTOR 248)

1000 (VECTOR 249)

1008 (VECTOR 251)

1012 (VECTOR 252)

1024 (VECTOR 255)

31 2 1 0
I INSTRUCTION POINTER 10 10 I

RESERVED (INITIALIZE TO 0)

Figure 10-1: Interrupt Table

10-3

inter INTERRUPTS

The instruction pointers can be either physical or virtual addresses. Which kind of address is
used depends on the address-translation mode that the processor is set for: physical addressing
or virtual addressing.

The first 36 bytes of the interrupt table are used to record pending interrupts. This section of
the table is divided into two fields: pending priorities (byte-offset 0 through 3) and pending
interrupts (byte-offset 4 through 35).

The pending priorities field contains a 32-bit string in which each bit represents an interrupt
priority. The bit number in the string represents the priority number. When the processor
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt's priority
is set. For example, if an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is
set.

The pending interrupts field contains a 256-bit string in which each bit represtints an interrupt
vector. For example, byte-offset 4 is reserved, byte-offset 5 is for vectors 8 through 15,
byte-offset 6 is for vectors 16 through 23, and so on. When a pending interrupt is logged, its
corresponding bit in the pending interrupt field is set.

This encoding of the pending priority and pending interrupt fields permits the processor to first
check if there are any pending interrupts with a priority greater than the current process and
then to determine the vector number of the interrupt with the highest priority. Software should
set these fields to 0 at initialization and not access these fields after that.

INTERRUPT-TABLE SHARING

One of the reasons that the interrupt table is located in physical memory is to enable systems
that use multiple processors to share the interrupt table. Then when one processor receives an
interrupt and posts it as a pending interrupt in the interrupt table, another processor can service
the interrupt. Refer to the section in Chapter 15 titled "Interrupt Handling in a Multiprocessor
System" for further information on interrupt table sharing.

INTERRUPT-HANDLER PROCEDURES

An interrupt handler is a procedure that is designed to perform a specific action that has been
associated with a particular interrupt vector. For example, a typical job for an interrupt handler
is to read a character from a keyboard.

Location of Interrupt Handler

The interrupt handler procedures can be located in physical memory or virtual memory,
depending on the address-translation mode to be used. If the procedures are located in virtual
memory, they are generally mapped in region 3 of the address space so that they are available
to all processes. As stated in the previous section, each procedure must begin on a word
boundary.

10-4

INTERRUPTS

Interrupt-Handler Restrictions

The processor execution mode is always switched to supervisor while an interrupt is being
handled. The pages that contain interrupt handler routines may thus have their page rights set
for supervisor only access.

When an interrupt-handler procedure is called, the states of the process controls and arithmetic
controls for the interrupted process are saved. However, the interrupt handler shares the other
resources of the interrupted process, in particular the global registers and the address space.
This sharing of resources imposes two important restrictions on the interrupt handler
procedures.

First, the interrupt handler procedures must preserve and restore the state of any of the
resources that it uses. For example, the processor allocates a set of local registers to the
interrupt handler, just as it does on a local procedure call. If the interrupt handler needs to use
the global or floating-point registers, however, it should save their contents before using them
and restore them before returning from the interrupt.

Second, the interrupt handler should not do anything that would cause the interrupted process
to be unbound from the processor and rescheduled, because doing so would leave the processor
in an indeterminate state. To avoid rescheduling the process, an interrupt handler should not
use the sendserv (send service), receive, and wait instructions. Also, the interrupt handler
should not enable timing (set the timing flag in the process controls register), since this can
result in an end-of-time-slice event that can also cause the interrupted process to be res­
cheduled.

The resumprcs instruction (resume process) can be used; however, the state of the interrupted
process will be lost.

An interrupt-handler procedure can also be called when the processor is not currently executing
a process. One example of this situation is when the processor receives an interrupt while it is
servicing another interrupt. Here, execution of the Idtime instruction (load process time) or the
condrec instruction (conditional receive) returns an undefined result.

INTERRUPT STACK

The interrupt stack is usually located in region 3 of the address space. The processor deter­
mines the location of the interrupt stack by means of a pointer in the PRCB. To avoid raising a
fault while processing an interrupt, the interrupt stack must be frozen in physical memory,
meaning that the pages that contain the stack must always be valid.

The interrupt stack has the same structure as the local procedure stack described in Chapter 4
in the section titled "Procedure Stack."

10·5

INTERRUPTS

PROCESS TIMING WHILE HANDLING AN INTERRUPT

When an interrupt occurs while the processor is executing a process, the processor stops
counting process time (i.e., stops counting down the residual-time-slice value) while it is
executing the interrupt-handler procedure. Thus, the time required to handle an interrupt is not
counted as part of the process's time slice.

SIGNALING INTERRUPTS

The processor can be interrupted in any of the following six ways:

• Signal on its interrupt pins

• Signal on its interrupt pins from an external interrupt controller

• An lAC message from external source

• An lAC message from a program in the processor

• A system-error fault interrupt

• A pending interrupt (described at the end of the chapter)

Interrupts From Interrupt Pins

The processor has four interrupt pins, called INTO, INTI, INT2, and INT3. These pins can be
configured in either of the following three ways:

• as four interrupt-signal inputs;

• as two interrupt inputs and two pins for handshaking with an interrupt controller such as
the Intel M8259A Programmable Interrupt Controller; or

• as one lAC input and three interrupt inputs.

A 32-bit, interrupt-control register in the processor determines how these pins are used. Each
interrupt pin is associated with one 8-bit field in the register, as shown in Figure 10-2.

31 2423 1615 8 7 o
INT3 VECTOR INT2 VECTOR INTl VECTOR INTO VECTOR

Figure 10-2: Interrupt-Control Register

If the interrupt pins are to be used as four inputs, a different interrupt vector is stored in each of
the four fields in the interrupt-control register. Then when an interrupt is signaled on one of
the pins, the processor reads the vector from the pin's associated field in the register. For
example, if an interrupt is signaled on pin INTO, the processor reads the vector from bits °
through 7.

10-6

INTERRUPTS

The processor assumes that the interrupt vectors in the interrupt register are arranged in des­
cending order from the INTO field to the INT3 field (e.g., the priority of INTO;::: INTI ;::: INT2
;::: INT3). To insure that interrupts are handled in the proper order, software should follow this
convention.

If the INTO vector field is set to 0, the function of the INTO pin is changed to lAC, and it is
used to signal the processor that an external lAC message has been sent to it. In fact, the INTO
pin must be configured in this manner for the processor to service external lAC messages.

If the INT2 vector field is set to 0, the functions of the INT2 and INT3 pins are changed to
INTR and INTA, respectively. Here, the INTR pin is used to receive signals from an interrupt
controller and the INT A pin is used to send acknowledge signals back to the controller. When
the processor receives a signal on the INTR pin, it reads an interrupt vector from the least­
significant 8 bits of the local bus, then sends an acknowledge signal to the controller through
INT A. When the INT2 and INT3 pins are configured in this manner, the processor ignores the
INT3 vector field.

The interrupt-control register is memory mapped to physical addresses FF00000416 through
FF000007 16. Only the processor can read or write this register using the synchronous load
(synld) and synchronous move (synmov) instructions. External agents on the bus cannot
access this register.

NOTE
If the virtual-addressing mode is going to be used, a page in region 3 will need to be mapped to
the page in the physical address space that contains the addresses ranging from FF000004 16
through FF000007 16. Software can then read from or write to the interrupt control register by
referencing the addresses in region 3 that are mapped to the physical addresses of the register.

The value in the interrupt-control register after the processor is initialized is FF00000016. With
this setting, interrupt pin INTO is used to signal an lAC; INTI is inactive; and INT2 and INT3
are configured to perform handshaking with an interrupt controller.

lAC Interrupts

The processor can also receive an interrupt request by means of the lAC mechanism. (The
lAC mechanism is described in detail in Chapters 11 and 15.) The interrupt lAC message can
be sent to the processor either from an external bus agent, such as an I/O processor or another
CPU, or internally as part of the currently running process. The interrupt vector is contained in
the interrupt lAC message.

As with any other lAC message, the processor receives notice of an external interrupt-lAC
message through the INTO pin, which has been configured as an lAC pin, as described in the
previous section. The processor then reads the lAC message to get the interrupt vector.

A program running on the processor can signal an interrupt through an internal interrupt-lAC
message. An internal lAC is sent to the processor by means of a synchronous move instruc­
tion. When the processor executes a synchronous move to its lAC message space, it signals an
lAC message internally. The processor then reads the lAC message as it would for an external
lAC.

10·7

INTERRUPTS

System-Error Interrupt

Under certain conditions, a system-error interrupt is signaled internally in the processor. This
interrupt causes an explicit call to interrupt vector 248. The system-error interrupt mechanism,
action, and possible handling methods are described in Chapter 12 in the section titled
"System-Error Interrupt Action."

INTERRUPT-HANDLING ACTIONS

As was described earlier in this chapter, when the processor receives an interrupt, it handles it
automatically. The processor takes care of saving the process state, calling the interrupt­
handler routine, and restoring the process state once the interrupt has been serviced. Software
support is not required.

The following section describes the actions the processor takes while handling interrupts. It is
not necessary to read this section to use the interrupt mechanism or write an interrupt handler
routine. This discussion is provided for those readers who wish to know the details of the
interrupt handling mechanism.

Receiving an Interrupt

Whenever the processor receives an interrupt signal, it performs the following action:

1. It temporarily stops work on its current job, whether it is working on a process or another
interrupt handler procedure.

2. It reads the interrupt vector from the interrupt register, the bus, or the lAC message space.

3. It compares the priority of the vector with the priority of the current process or the
interrupt it is currently handling.

4. If the priority of the new interrupt is higher than that of the current process or interrupt, the
processor services the new interrupt immediately as described in the next sections.

5. If the interrupt priority is equal to or less than that of the current process or interrupt, the
processor records new interrupt in the pending interrupt record and continues work on the
current process or interrupt.

Servicing an Interrupt

The method that the processor uses to service an interrupt depends on the state the processor is
in when it receives the interrupt. The following sections describe the interrupt handling actions
for various states of the processor. In all of these cases, it is assumed that the interrupt is a
higher priority than the current process and will thus be serviced immediately after the proces­
sor receives it. The handling of lower priority interrupts is described later in this chapter in the
section titled "Servicing a Pending Interrupt."

10-8

INTERRUPTS

Process-Executing-State Interrupt

When the processor receives an interrupt while it is in the process-executing state, it performs
the following actions to service the interrupt; this procedure is the same regardless of whether
the processor is in the user or the supervisor mode when the interrupt occurs:

1. The processor switches to the interrupt stack (as shown in Figure 10-3). The interrupt
stack pointer becomes the new stack pointer (NSP) for the processor.

2. The processor saves the current state of process controls and arithmetic controls in an
interrupt record on the interrupt stack. (The interrupt record is described later in this
chapter in the section titled "Interrupt Record".)

3. If the execution of an instruction was suspended, the processor includes a resumption
record for the instruction in the interrupt record and sets the resume flag in the saved
process controls. (Refer to the section in Chapter 9 titled "Instruction Suspension" for a
discussion of the criteria for suspending instructions.)

4. The processor allocates a new frame on the interrupt stack and loads the new frame pointer
(NFP) in global register g15.

5. The processor switches to the process-interrupted state.

6. The processor sets the process state flag in its internal process controls to interrupted, its
execution mode to supervisor, and its priority to the priority of the interrupt. Setting the
processor's priority to that of the interrupt insures that lower priority interrupts can not
interrupt the servicing of the current interrupt.

7. Also in the current process controls, the processor clears the trace-fault-pending, timing,
trace-enable, and time-slice flags. Clearing these flags allows the interrupt to be handled
without trace faults being raised and without the process timing out.

8. The processor sets the frame return status field (associated with the PFP in rO) to 1112.

9. The processor performs an implicit call-extended operation (similar to that performed for
the calix instruction). The address for the procedure that is called is that which is
specified in the interrupt table for the specified interrupt vector.

Once the processor has completed the interrupt procedure, it performs the following action on
the return:

1. The processor copies the arithmetic controls field from the interrupt record into its arith­
metic controls register.

2. The processor copies the process controls field from the interrupt record into its internal
process controls.

3. If the resume flag of the process controls is set, the processor copies the resumption record
from the interrupt record to the resumption record field of the PCB for the process being
resumed.

4. The processor deallocates the current stack frame and interrupt record from the interrupt
stack and switches to the local stack or the supervisor stack (whichever one it was using
when it was interrupted).

5. The processor checks the interrupt table for pending interrupts that are higher than the
priority of the process being returned to. If a higher-priority pending interrupt is found, it
is handled as if the interrupt occurred at this point.

10-9

inter INTERRUPTS

6. Assuming that there are no pending interrupts to be serviced, tht;! processor switches to the
process-executing state and resumes work on the current process.

If the processor is configured to use the high-level process management facilities or multiple
processors or both, the processor performs the following additionF\1 operations prior to resum-
ing work on the interrupted process: I

l. If either the mUltiprocessor-preempt flag or the check-dispatch-port flag in the processor
controls is set, the processor checks the dispatch port and clears the check-dispatch-port
flag. Otherwise, it goes to step 4.

2. If the dispatch port contains a process whose priority is higher than that of both the current
process and the value in the nonpreempt-limit field in the processor controls, the processor
suspends the current process and enqueues it at the front of the queue for its associated
dispatch port. The processor then dispatches the higher priority process, which becomes
the current process.

3. If a higher priority process was not found on the dispatch port, the process that was
interrupted remains the current process.

4. The processor then begins work on the current process.

Process-Interrupted-State Interrupt

If the processor receives an interrupt while It IS servIcmg another interrupt, and the new
interrupt has a higher priority than the interrupt currently being serviced, the current interrupt­
handler routine is interrupted. Here, the processor performs the same action to save the state of
the current interrupt-handler routine as is described at the beginning of this section. The
interrupt record is saved on the top of the interrupt stack, prior to the new frame that is created
for use in servicing the new interrupt.

On the return from the current interrupt handler to the previous interrupt handler, the processor
deallocates the current stack frame and interrupt record, and stays on the interrupt stack.

Interrupt Record

The processor saves the state of the interrupted process in an interrupt record. Figure 10-3
shows the structure of this interrupt record. The resumption record within the interrupt record
is used to save the state of a suspended instruction. If no instruction is suspended, the
resumption record is not created.

Idle-State Interrupt

The processor can also be interrupted while in the idle state. The processor handles such
interrupts in essentially the same way that it handles interrupts that occur while the processor is
in the process-executing state, with the following exception. When the processor allocates the
new frame on the interrupt stack, it sets the frame return field to 1102. This causes the
processor to revert to the idle state when the processor returns from the interrupt-handler
procedure.

10-10

inter

STACK
GROWTH

STACK
GROWTH

INTERRUPTS

LOCAL. SUPERVISOR. OR INTERRUPT STACK

31 0

FP

REGISTER SAVE AREA

~ FOR CURRENT FRAME .~

~
ADDITIONAL VARIABLES

~ AND PADDING AREA
(OPTIONAL)

SP

INTERRUPT STACK

31 7 0

NSP*

PADDING AREA

RESUMPTION RECORD
FOR SUSPENDED INSTRUCTION

(OPTIONAL)

*If the interrupt is serviced while the processor is working on another
interrupt procedure. the new stack pointer (NSP) will be the same as
the SP.

RESERVED

Figure 10-3: Storage of an Interrupt Record on the Stack

10-11

r
INTERRUPT

RECORD

INTERRUPTS

Idle-Interrupted State Interrupt

If the processor receives an interrupt while it is in the idle-interrupted state, it handles the
interrupt just as it would if it occurred in the process-interrupted state.

Pending Interrupts

As is described earlier in this chapter, the processor provides a mechanism for evaluating
interrupts according to their priority. If the interrupt priority is equal to or lower than the
priority of the current process, the processor does not service the interrupt immediately. In­
stead, it posts the interrupt in the pending interrupt section of the interrupt table. The processor
checks the interrupt table at specific times and services those interrupts that have a higher
priority than its current priority. This pending interrupt mechanism provides two benefits:

1. The ability to delay the servicing of low priority interrupts (by posting them in the pending
interrupt section of the interrupt table) allows the processor to concentrate its processing
activity on higher priority tasks.

2. In a system that uses two or more 80960MC processors, both processors can share the
same interrupt table. This interrupt-table sharing allows the processors to share the inter­
rupt handling load.

The following paragraphs describe how the processor handles pending interrupts.

NOTE
The 80960 architecture defines the section of the interrupt table for storing pending interrupts
and a mechanism for checking the interrupt table for pending interrupts. The method used for
posting interrupts to the interrupt table and circumstances under which the processor check the
interrupt table for pending interrupts is not defined.

In the following description of the pending interrupt mechanism, the information given in the
sections titled "Posting Pending Interrupts" and "Checking for Pending Interrupts" is specific to
the 80960MC processor, The information given in the section titled "Handling Pending
Interrupts" is defined in the 80960 architecture and should be common in all processors that
implement this part of the architecture.

Posting Pending Interrupts

An interrupt can be posted in the pending-interrupt record of the interrupt table in either of the
following two ways:

1. The processor receives an interrupt with a priority equal to or lower than that of the
process the processor is currently working on. The processor then automatically posts the
interrupt in the pending-interrupt record.

2. The kernel can set the desired pending-interrupt and pending-priority bits in the interrupt
table.

Using the first method, the processor performs an atomic read/write operation that locks the
interrupt table until the posting operation has been completed. Locking the interrupt table
prevents other agents on the bus from accessing the interrupt table during this time.

10·12

inter INTERRUPTS

The second method of posting an interrupt is risky, because it does not use this locking
technique. (The processor's atomic instructions are not able to perform a locking operation
that spans several instructions.) This method will work only if the kernel can insure the
following:

• that no external I/O agent will attempt to post a pending interrupt simultaneously with the
processor, and

• that an interrupt cannot occur after one bit (e.g., the pending priority bit) of the pending­
interrupt record is set but before the other bit (the pending interrupt vector) is set.

Checking for Pending Interrupts

The processor automatically checks the interrupt table for pending interrupts at the following
times:

• After returning from an interrupt-handler procedure

• While executing a modify-process-controls instruction (modpc), if the instruction causes
the process's priority to be lowered.

• After receiving a test pending interrupts lAC message.

Handling Pending Interrupts

The processor uses the same type of atomic read/write operation to check the interrupt table for
pending interrupts as it does for posting pending interrupts. Again, this technique prevents
other agents on the bus from accessing the interrupt table until the pending-interrupt check has
been completed.

When the processor finds a pending interrupt, it handles it as if it had just received the
interrupt. The handling mechanism is the same as is described earlier in this chapter for
interrupts that are serviced as soon as they are received.

If the processor finds two pending interrupts at the same priority, it services the interrupt with
the highest vector number first.

10·13

Interagent Communication 11

CHAPTER 11
INTERAGENT COMMUNICATION

This chapter describes the interagent communication (lAC) mechanism for the 80960MC
processor. Included is a description of the lAC-message structure, the internal-lAC-message
sending and receiving mechanism, and reference information on the available lAC messages.

The mechanism for sending and receiving external-lAC messages is described in Chapter 15.

INTRODUCTION TO lAC MESSAGES

The lAC facilities provide a mechanism for agents on the local bus or AP bus to communicate
with one another by means of messages. The agents that use these facilities are primarily CPU
processors such as the 80960MC and I/O processors. However, special processors that have a
need to communicate with the other processors in the system may also use the lAC facilities.

The primary function of these facilities is to give multiple processors within a system a simple
means of coordinating their activities. This capability is particularly important when the
processors share a common memory space.

The lAC facilities are also used in single-processor systems for functions such as changing the
processor's state or updating address-translation information.

lAC messages (referred to here as lACs) are four words in length and are exchanged by means
of message buffers that are mapped to physical memory. All the usable lACs are predefined.
The processor handles an lAC in much the same way as it handles an instruction.

The processor provides two mechanisms for exchanging lACs: external and internal. The
external lAC mechanism is used to pass lACs between two agents, either on the local bus or on
the AP bus. A processor uses the internal lAC mechanism to pass an lAC to itself.

This chapter describes the internal lAC mechanism, which is the only mechanism used in
single-processor systems. The external lAC mechanism is described in Chapter 15 in the
section titled "External lAC Message Passing."

SOFTWARE REQUIREMENT FOR HANDLING INTERNAL lACS

No special software, such as dedicated data structures or stacks, are required to handle internal
lACs. An internal lAC is sent with a quad synchronous move instruction (synmovq). The
processor receives and handles the lAC internally.

11-1

INTERAGENT COMMUNICATION

SUMMARY OF lAC MESSAGES

Table 11-1 gives a list of the lAC messages that the processor can send either internally or
externally. The messages marked with an asterisk are generally not used with single-processor
systems. Detailed reference information on these messages is given at the end of this chapter.

Table 11-1: lAC Messages

Interrupt Handling Process Management
Interrupt Flush Local Registers
Test Pending Interrupt Flush Process

Preempt Process*
Processor Management Purge Instruction Cache
Store System Base Set Breakpoint Register
Store Processor Check Process Notice*
Modify Processor Controls
Stop Processor* Memory Management
Freeze * Flush TLB Physical Page
Restart Processor Flush TLB
Warms tart Processor Flush TLB Segment Entry
Continue Initialization Flush TLB Page Table Entry
Reinitialize Processor

lAC-MESSAGE FORMAT

Figure 11-1 shows the format for an lAC message. Each message is four words in length and
consists of a message-type field and up to five parameter fields.

31 2423 161S

MESSAGE TYPE I FIELD 1 I FIELD2

FIELD3

FIELD4

FIELDS

Figure 11-1: lAC-Message Format

o
o

4

8

12

The message type is an 8-bit binary code. Each lAC has a unique message type. The
parameters can be 8, 16, or 32-bits in length, depending on the specified field. Many of the
lACs do not require parameters. When a message type does require one or more parameters,
the processor only looks at the required parameter fields. Those fields not used are ignored.

11-2

inter INTERAGENT COMMUNICATION

SENDING AND RECEIVING AN INTERNAL lAC

To send an internal lAC, software must perform the following steps:

1. Load the message into four consecutive words in memory, with the first word aligned on a
word boundary.

2. Execute a synmovq instruction to move the message from its source address to the des­
tination address FFOOOO1016, where FF00001016 is a physical address.

When the destination operand of a synmovq instruction is FFOOOO10 16, the processor inter­
prets the instruction as a send internal-lAC instruction. The processor then receives the lAC
by moving the message from memory into an internal message buffer.

The action of the synmovq move instruction insures that the loading of the message into the
processor is completed before the processor is allowed to perform any other chores.

NOTE

If the virtual-addressing mode is going to be used, a page in region 3 will need to be mapped to
the page in the physical address space that contains address FFOOOOlO16. Software can then
send an internal lAC by writing to the address in region 3 that is mapped to physical address
FFOOOOlO16·

INTERNAL-lAC-HANDLING ACTION

All internal lACs are assumed to have a priority of 31, so the processor executes the action
requested in the lAC message immediately, even if the processor is currently working on a
process or interrupt with a priority of 31.

The processor handles lACs internally. It does not use any of the resources of the execution
environment such as the registers (global or local), the stack, or memory. Thus, the state of the
process or processor when the lAC is received does not need to be saved.

Some lACs, such as the flush TLB lACs, do not affect the process or pr,ocessor state. The
processor treats these lACs as if they were an instruction inserted in the control flow of the
process. When the lAC action is complete, the processor resumes work on the current process.

Other lACs, such as the restart processor and preemption lACs, cause the state of the processor
or the control of the current process to be permanently changed. In these instances, the
processor resumes activity in its new processor state or process state or both, following the
execution of the lAC.

While the processor is handling an lAC, it will not respond to interrupts signaled on the
interrupt pins,

lAC FAULTS

If a fault condition occurs during the handling of an lAC message, a structural lAC fault is
signaled. If when a structural lAC fault occurs, the processor is in the process-executing state,

INTERAGENT COMMUNICATION

the fault is handled within the environment of the current process. If the processor is not in the
process-executing-state, the fault is handled by means of a system-error interrupt.

lAC-MESSAGE REFERENCE

The. following section provides detailed descriptions of the operations carried out for each of
the lACs. This section is organized alphabetically by lAC title for easy reference.

11-4

inter

Check Process Notice

Message Type:

Parameters:

Function:

INTERAGENT COMMUNICATION

9°16
Fields 1 - 2

Field 3

Fields 4 - 5

Not Used

SS of PCB

Not Used

Examines the process-notice field of the PCB for the current
process. If the event-fault-request flags in this field are set, the flags
are cleared and an event-notice fault is signaled. Otherwise, no
action is taken.

The field 3 parameter contains the SS of the PCB. When the
processor receive this lAC, it checks this parameter for either of the
following conditions: (1) the field is zero or (2) the field contains
the SS for the current process PCB. If either of these conditions is
true and the process is not in an interrupted state, the processor
checks the uncached process-notice field from the PCB in memory,
as described above. If neither condition is true, no action is taken.

11-5

inter

Continue Initialization

Message Type:

Function:

INTERAGENT COMMUNICATION

9216

Carries out the initialization procedure that follows the processor
self test. If the processor is the initializing processor, it puts itself in
the idle state and executes the initialization procedure beginning
with reading the initial memory image from ROM. The self test is
not performed.

If the processor is not the initializing processor, it puts itself in the
stopped state and no further action is performed.

Refer to the section in Chapter 12 titled "Processor Initialization"
for further details on the initialization process.

11-6

Flush Local Registers

Message Type:

Parameters:

Function:

INTERAGENT COMMUNICATION

8416

Fields 1 - 2

Field 3

Fields 4 - 5

Not Used

Physical Address of Stack Page

Not Used

Writes the contents of the all local-register sets (located in the on­
chip local-register cache) to their associated stack frames in
memory. The field 3 parameter contains the base physical-address
of a page that contains all or part of the stack to be written to. If any
of the local register sets are associated with a stack frame in the
specified page, all of the local register sets are flushed to memory.
Then, all the register sets except the current set (the set for the
active frame) are marked as purged. This means that on a return to
a register set that has been purged, the processor will load these
registers from the stack.

No action is taken if (1) none of the register sets are associated with
a stack frame in the specified page or (2) the processor is in the
stopped or idle state.

11-7

Flush Process

Message Type:

Function:

INTERAGENT COMMUNICATION

8716

Suspends the current process, then rebinds the processor to that
process. This action is carried out only if the processor is in the
process-executing state. Since the process is literally suspended and
rebound, process timing is turned off then back on again as a result
of this action.

This lAC also causes the following items to be invalidated in the
TLB: the segment descriptor for the current PCB, the segment
descriptors for regions 0, 1, and 2 for the current process; and the
page-table entries for pages addressed by addresses in regions 0, 1,
and 2.

If the processor is not in the process-executing state, no action is
taken.

11-8

in1er

Flush TLB

Message Type:

Function:

INTERAGENT COMMUNICATION

8A16

Invalidates all TLB entries except the following: (1) the segment
descriptors for the segment-table and region 3, (2) the segment
descriptor for the current process, (3) the segment descriptors for
regions 0, 1, and 2 of the current process, and (4) the page-table
entry for the page in which the interrupt stack begins.

11-9

inter INTERAGENT COMMUNICATION

Flush TLB Page Table Entry

Message Type:

Parameters:

Function:

8C16

Fields 1 - 2

Field 3

Field 4

Field 5

Not Used

Offset From Segment Base

SS of Segment That Contains Page

Not Used

Invalidates the page-table entry for the page specified with the field
3 and field 4 parameters. The processor determines the page that
contains the address specified by the SS and offset in fields 4 and 3,
respectively. If a TLB entry exists for this page, the processor
flushes the entry.

This lAC can generate a protection-length fault if the specified ad­
dress is beyond the specified length of the segment.

Note that field 3 is not interpreted as an address within the address
space, but as an offset within a segment. Thus, to flush an entry for
a page in an address space that contains a particular address, the
following steps must be taken. (1) The SS for the region that
contains the address is supplied in field 4. (2) The two most­
significant bits of the address are cleared to form the offset into the
region. This offset is then supplied in field 3.

This lAC should not be used to flush page-table-directory entries,
because they are never saved in the TLB.

11-10

INTERAGENT COMMUNICATION

Flush TLB Physical Page

Message Type:

Parameters:

Function:

88 16

Fields 1 - 2

Field 3

Fields 4 - 5

Not Used

Base Physical Address of Page

Not Used

Invalidates all the entries in the TLB that point directly to the page
specified with the field 3 parameter. The entries that may be
flushed with this lAC include (1) segment descriptors and page­
table entries that point to the page, (2) the segment descriptors for
paged segments that point to a page table in that page, and (3) the
segment descriptors for bipaged segments that point to a page-table
directory in that page.

Also, the function of the flush-local-registers lAC message is per­
formed. And, if the segment descriptor for the PCB of the current
process or the segment descriptors for regions 0, 1, or 2 of the
current process are invalidated, the function of the flush-process
lAC message is performed.

Note that this function is slower than the flush functions of the other
lAC messages. However, the function that this lAC performs is
needed for situations where processes share pages.

11-11

inter INTERAGENT COMMUNICATION

Flush TLB Segment Entry

Message Type:

Parameters:

Function:

8B 16

Fields 1 - 2

Field 3

Fields 4 - 5

Not Used

SS for Segment

Not Used

Invalidates all entries in the TLB that pertain to the segment
specified in the field 3 parameter. The entries that may be flushed
include (1) any segment-descriptor entry for the segment and (2)
any associated page-table entries.

11-12

Freeze

Message Type:

Function:

INTERAGENT COMMUNICATION

91 16

Stops the processor without suspending the current process. The
processor puts itself in the stopped state. If the processor is in the
process-executing state when this lAC is received, the current
process is not suspended.

11·13

inter

Interrupt

Message Type:

Parameters:

Function:

INTERAGENT COMMUNICATION

4°16
Field 1

Fields 2 - 5

Interrupt vector

Not Used

Generates an interrupt request. The interrupt vector is given in field
1 of the lAC message. The processor handles the interrupt request
just as it does interrupts received from other sources. If the inter­
rupt priority is higher than the priority of the current process, the
processor services the interrupt request immediately. Otherwise, it
posts the interrupt in the pending interrupts section of the interrupt
table.

Refer to Chapter 10 for further information on the servicing of
interrupt lACs.

11-14

inter INTERAGENT COMMUNICATION

Modify Processor Controls

Message Type:

Parameters:

Function:

8D16

Fields 1 - 2

Field 3

Field 4

Field 5

Not Used

New Processor Controls Word

Mask

Not Used

Modifies the processor controls word in the PRCB according to the
new value given in field 3 and under control of the mask given in
field 4. The mask determines which bits of the processor controls
word may be changed according to the following relationship:

processoccontrols_ word f- (new value and mask)
or (processor_controls_word
and not (mask»

If any parts of the processor-controls word have been cached on the
chip, they are updated as a result of this operation, with the excep­
tion of the processor-state bits. To explicitly change the state of the
processor, the processor must be restarted (using the restart lAC) in
the new state.

Refer to the section in Chapter 9 titled "Changing the Address­
Translation Mode" for information on the effects of using the
modify processor controls lAC to change the address-translation­
mode flag.

11·15

intel"

Preempt Process

Message Type:

Function:

INTERAGENT COMMUNICATION

85 16

Suspends the current process and binds the processor to a higher
priority process from the dispatch port. If the processor is in the
idle or process-executing state, it checks the queue status field of the
dispatch port. If the processor finds a process with a higher priority
than that of both the current process and the nonpreempt-limit in the
process controls, the processor performs the preemption action.

No action is taken if (1) the processor is in the stopped or an inter­
rupted state, or (2) the priority of the highest priority process on the
dispatch port is less than that of the current process or the
nonpreempt-limit. More information on process preemption is
given in Chapter 14 in the section titled "Process Preemption" and
in Chapter 15 in the section "Multiprocessor Process Preemption."

11-16

INTERAGENT COMMUNICATION

Purge Instruction Cache

Message Type: 89 16

Function: Invalidates all entries in the processor's internal instruction cache.

11-17

INTERAGENT COMMUNICATION

Reinitialize Processor

Message Type: 93 16

Parameters:

Function:

Fields 1 - 2

Field-3

Field-4

Field 5

Not Used

Address of System Address Table

Address of Processor Control Block

Start Instruction IP

Reestablishes the processor state. In reinitializing itself, the proces­
sor first locates the system address table and the processor control
block in the IMI from the addresses given in fields 3 and 4.

The processor then begins executing the instruction list beginning
with the IP given in field 5.

11-18

inter

Restart Processor

Message Type:

Parameters:

Function:

INTERAGENT COMMUNICATION

81 16

Fields 1 - 2

Field-3

Field-4

Field 5

Not Used

Physical Address of Segment Table

Physical Address of PRCB

Not Used

Reestablishes the processor state. In restarting itself, the processor
first locates the segment table and PRCB from the base physical
addresses given in fields 3 and 4. (Field 3 is only used to locate the
eighth segment-table entry, which is used thereafter to locate the
segment table.)

Next, the processor checks the state field in the processor-controls
word in the PRCB and enters that state. If the PRCB state is
process-executing, the processor performs a bind action on the
process whose SS is in the current-process-SS field in the PRCB.

11-19

INTERAGENT COMMUNICATION

Set Breakpoint Register

Message Type:

Parameters:

Function:

8F16

Fields 1 - 2 Not Used

Field 3 Breakpoint IP

Field 4 Breakpoint IP

Field 5 Not Used

Enables or disables two breakpoints. When the processor receives
this lAC, it conditionally loads the parameters from fields 3 and 4
into breakpoint registers 0 and 1, respectively. Field 3 provides a
breakpoint IP for breakpoint register 0, and field 4 provides a break­
point IP for breakpoint register 1. Bit 1 in each of these fields is a
breakpoint-disable flag.

If the disable flag in one of these fields is set, the breakpoint for the
corresponding breakpoint register is disabled. Otherwise, the IP
value in the field is loaded into the corresponding breakpoint
register and the breakpoint is enabled.

Breakpoints are described in the section in Chapter 16 titled
"Breakpoint-Trace Mode."

11-20

inter

Stop Processor

Message Type:

Function:

INTERAGENT COMMUNICATION

83 16

Stops processor. The processor puts itself into the stopped state. If
the processor is in the process-executing state when this lAC is
received, the current process is suspended (but not rescheduled).

11·21

inter

Store Processor

Message Type:

Function:

INTERAGENT COMMUNICATION

8616

Writes any cached parts of the PRCB (including the processor con­
troIs word) back to the PRCB in memory. This lAC allows the
PRCB in memory to be updated with any changes that have been
made to the fields of the PRCB that are cached in the processor.
Refer to the section in Chapter 9 titled "Caching PRCB Fields" for
information on the fields in the PRCB that are cached.

11-22

Store System Base

Message Type:

Parameters:

Function:

INTERAGENT COMMUNICATION

8°16
Fields 1 - 2

Field 3

Fields 4 - 5

Not Used

Destination Physical Address

Not Used

Stores the current locations of the segment table and the PRCB in a
specified location in memory. The base physical address of the
segment table is stored in the word starting at the byte specified in
field 3, and the base physical address of the PRCB is stored in the
next word in memory (field 3 address plus 4).

11-23

inter INTERAGENT COMMUNICATION

Test Pending Interrupts

Message Type:

Function:

41 16

Tests for pending interrupts. The processor checks the pending
interrupt section of the interrupt table for a pending interrupt with a
priority higher than the priority of the current process. If a higher
priority interrupt is found, it is serviced immediately. Otherwise, no
action is taken.

11·24

inter

Warmstart Processor

Message Type:

Parameters:

Function:

INTERAGENT COMMUNICATION

8E16

Fields 1 - 2

Field 3

Field 4

Fields 4 - 5

Not Used

Physical Address of Segment Table

Physical Address of PRCB

Not Used

Writes any part of the PRCB that has been cached on the chip to the
current PRCB in memory, then reestablishes the processor state.
This lAC performs a similar function to the restart processor lAC,
except that it writes the cached parts of the PRCB to memory before
restarting the processor.

In restarting itself, the processor first locates the segment table and
PRCB from the base physical addresses given in fields 3 and 4.
Field 4 may point to the current PRCB or a new PRCB. (Field 3 is
only used to locate the eighth segment-table entry, which is used
thereafter to locate the segment table.)

Next, the processor checks the state field in the processor-controls
word in the PRCB and enters that state. If the PRCB state is
process-executing, the processor performs a bind action on the
process whose SS is in the current-process-SS field in the PRCB.

Refer to the section in Chapter 9 titled "Caching PRCB Fields" for
information on the fields in the PRCB that are cached.

11-25

Fault Handling 12

CHAPTER 12
FAULT HANDLING

This chapter describes the fault handling facilities of the 80960MC processor. The subjects
covered include the fault-handling data structures, the required software support required for
fault handling, and the fault handling mechanism. A reference section that contains detailed
information on each fault type is provided at the end of the chapter.

OVERVIEW OF THE FAULT-HANDLING FACILITIES

The processor is able to detect various conditions in code or in its internal state (called "fault
conditions") that could cause the processor to deliver incorrect or inappropriate results or that
could cause it to head down an undesirable control path. For example, the processor recog­
nizes divide-by-zero and overflow conditions on both integer and real-number calculations. It
also detects inappropriate operand values, references to incomplete or non-existent
architecture-defined data structures, or references to virtual-memory pages that are not cur­
rently in physical memory.

The processor can detect a fault while it is working on a process, an interrupt handler, or a fault
handler, or while it is in the idle state. (In this chapter, when a process is referred to, it
generally also means any interrupt handler or fault handler that may have been invoked while
the processor was working on the process.)

When the processor detects a fault, it handles the fault immediately and independently of the
process or handler it is currently working on, using a mechanism similar to that used to service
interrupts.

A fault is generally handled with a fault-handling procedure (called a fault handler), which the
processor invokes through an implicit procedure call. Prior to making the call, the processor
saves the state of the current process and in some cases the state of an incomplete instruction.
It also saves information about the fault, which the fault handler can use to correct or recover
from the condition that caused the fault.

If the fault handler is able to recover from the fault, the processor can then restore the process
to its state prior to the fault and resume work on the process. If, on the other hand, the fault has
catastrophic effects on the system, facilities are provided that allow the processor to shut itself
or the whole system down gracefully.

FAULT TYPES

All of the faults that the processor detects are predefined. These faults are divided into types
and SUbtypes, each of which is given a number. Table 12-1 lists the faults, arranged by type
and SUbtype.

12-1

FAULT HANDLING

Table 12-1: Fault Types and Subtypes

Fault Type Fault Subtype Fault Record

No.lBit
No. Name Position Name

1 Trace Bit 1 Instruction Trace OxXXOI XX02
Bit 2 Branch Trace OxXXOI XX04
Bit 3 Call Trace OxXXOI XX08
Bit4 Return Trace OxXXOI XXIO
Bit 5 Prereturn Trace OxXXOI XX20
Bit 6 Supervisor Trace OxXXOI XX40
Bit 7 Breakpoint Trace OxXXOI XX80

2 Operation 1 Invalid Opcode OxXX02XXOI
4 Invalid Operand OxXX02XX04

3 Arithmetic 1 Integer Overflow OxXX03 XXOI
2 Arithmetic Zero-Divide OxXX03XX02

4 Floating
Point

BitO Floating Overflow OxXX04XXOI

Bit 1 Floating Underflow OxXX04XX02
Bit2 Floating Invalid-Operation OxXX04XX04
Bit 3 Floating Zero-Divide OxXX04XX08
Bit 4 Floating Inexact OxXX04XXlO
Bit5 Floating Reserved-Encoding OxXX04XX20

5 Constraint 1 Constraint Range OxXX05 XXOI
2 Invalid SS OxXX05 XX02

6 Virtual
Memory

1 Invalid Segment-Table Entry OxXX06XXOI

2 Invalid Pafr Table-Directory- OxXX06XX02
Entry (PT E)

3 Invalid Page-Table-Entry OxXX06XX03
(PTE)

7 Protection Bit 1 Segment Length OxXX07 XXOI
Bit 2 Page Rights OxXX07 XX02

8 Machine 1 Bad Access OxXX08 XXOI

9 Structural 1 Control OxXX09XXOI
2 Dispatch OxXX09XX02
3 lAC OxXX09XX03

A Type 1 Type Mismatch OxXXOAXXOI
2 Contents OxXXOAXX02

C Process 1 Time Slice OxXXOCXXOl

D Descriptor 1 Invalid Descriptor OxXXODXXOI

E Event 1 Event Notice OxXXOEXXOl

12·2

inter FAULT HANDLING

When the processor detects a fault, it records the fault type and subtype in a fault record. It
then uses the type number to select a fault handler. The fault handler has the option of using
the subtype number to select a specific fault-handling procedure. The fifth column of Table
12-1 shows each fault as it appears in the fault record (the word at offset 40 of the fault record
is shown later in this chapter).

For convenience, individual faults are referred to in this manual by their fault-subtype name.
Thus a machine bad-access fault is referred to as simply a bad-access fault, or a
virtual-memory, invalid page-table-directory-entry fault is referred to as an invalid PTDE fault.

For some fault types, mUltiple sUbtypes can occur at the same time. Here, each subtype is
assigned a separate bit position in the subtype field in the fault record. The fault handler can
then use this information to select a specific fault handling scheme to take care of the whole
group of fault sUbtypes.

FAULT-HANDLING METHODS

The processor handles faults using one or more of the following methods:

• Implicit procedure call to a fault handler

• Implicit procedure call to an override fault handler

• System-error interrupt that invokes a special interrupt handler through the interrupt
mechanism

• Change of the processor state to stopped

These four fault-handling methods provide the processor with an efficient mechanism for
recovering from faults or for gradually degrading its processing activity when serious or
catastrophic fault conditions are encountered. The scenario for handling faults with this
mechanism is as follows.

Normal Fault-Handling Method

When a fault occurs while the processor is executing a process, the processor determines the
fault type, then selects a fault handler for that type from an architecture-defined data structure
called the fault table. It then invokes the fault handler (by means of an implicit call). As
described later in this chapter, the fault-handler call can be a local call (call-extended
operation), a local procedure-table call (local system-call operation), a supervisor call, or a
trace-fault -handler-procedure-table call.

Before the processor begins executing the fault-handler procedure, it creates a fault record on
its current stack (i.e., the stack being used by the fault handler). This record includes infor­
mation on the state of the process and data on the fault. If the fault occurred while the
processor was in the midst of executing an instruction, a resumption record for the instruction
may also be saved on the stack.

Following the creation of the fault and resumption records, the processor begins executing the
selected fault-handler procedure.

12-3

FAULT HANDLING

This same procedure call method is used to handle faults that occur while the processor is
servicing an interrupt or that occur while the processor is working on another fault handler.

Overrides

If a fault should occur while the processor is selecting a fault handler (i.e., between the time the
processor begins storing the fault and resumption records for a fault and the time it begins
work on the fault handler for that fault), an override is said to occur. When an override occurs,
the processor stores a fault record for both faults (i.e., the primary fault and the secondary
fault). The processor then invokes an override fault handler to perform the recovery action.

The action of the override-fault handler is software dependent. Commonly, the override-fault
handler handles the secondary fault, then returns. On the return, the processor refaults on the
primary fault (that is, recreates the primary fault). That fault is then handled as described in the
previous section.

A common cause of an override condition is a virtual-memory fault that occurs while the
processor is trying to store the fault record or create a stack frame for the fault handler. For
example, assume that the execution of a divide instruction results in an arithmetic-zero-divide
fault being generated, and that, while storing the fault record for this fault, a virtual-memory
fault is generated. Here, the processor saves the fault data on both faults (the primary
arithmetic-zero-divide fault and the secondary virtual-memory fault). The override-fault hand­
ler then handles the virtual-memory fault, by copying the required page into memory. On the
return from the override-fault handler, the processor refaults on the arithmetic-zero-divide
fault, which is handled by the arithmetic-fault handler.

System-Error Interrupt

If a second override should occur (i.e., if a fault occurs between the time the processor begins
storing the fault record for an override fault and the time it begins work on the fault handler for
the override fault), the processor handles the second override by means of a system-error
interrupt.

Here, the processor saves the process state and fault information for all three faults in the
PRCB, then performs a recovery action, using a interrupt handler that it accesses through the
interrupt table. (Interrupt vector 248 in the interrupt table is reserved for system-error
mterrupts.) The processor does not provide a mechanism for returning from a system-error
interrupt handler. A system-error interrupt thus represents a fatal condition, which results at
the very least in the current process being aborted.

This system-error interrupt mechanism is also used when a fault occurs while the processor is
in the idle or stopped state. For example, assume that the processor has suspended one process
and is attempting to dispatch another process. While the processor is in between processes, it
is in the idle state. If a structural fault occurs while the processor is attempting to dispatch a
process, this fault results in a system-error interrupt.

12·4

FAULT HANDLING

Halt

Finally, if a fault occurs while the processor is generating a system-error interrupt, the proces­
sor halts. As part of the halt action, the processor collects as much information as possible
about the last fault, then puts itself into the stopped state.

Multiple Fault Conditions

It is possible for multiple fault conditions to occur simultaneously. For certain fault types, such
as trace faults or protection faults, bit positions in the fault-subtype field are used to indicate
the occurrence of multiple faults of the same type. As a general rule, however, the processor
does not indicate situations where multiple faults occur. Instead, it generates one of the faults
and does not report on the faults that were not generated.

SOFTWARE REQUIREMENTS FOR HANDLING FAULTS

To use the processor's fault-handling facilities, the following data structures and procedures
must be present in memory:

• Fault table

• Trace-Fault-Handler Procedure Table

• Fault-Handler Procedure Table (Optional)

• Fault-Handler Procedures

• Interrupt Table

• Interrupt Stack

Software should generally load these items in memory as part of the initialization procedure.
Once they are present in memory and pointers to them have been entered in the appropriate
data structures, the processor then handles faults automatically and independently from
software.

NOTE

If the virtual-memory-management features of the processor are being used, the fault-handling
data structures should be frozen in memory (i.e., they should never be swapped out of memory).

Requirements for the fault table, trace-fault-handler-procedure table, and fault-handler
procedures are given in the following sections. Requirements for the interrupt table and
interrupt stack are given in Chapter 10.

FAULT TABLE

The fault table provides the processor with a pathway to the fault-handler procedures. As
shown in Figure 12-1, there is one entry in the fault table for each fault type plus an entry for
overrides. When a fault occurs, the processor uses the fault type to select an entry in the fault
table. From this entry, the processor then obtains a pointer to the fault-handler procedure for
the type of fault that occurred.

12-5

inter FAULT HANDLING

31 0

0

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

252

FAULT-TABLE ENTRIES

LOCAL-PROCEDURE ENTRY

n

n+4

PROCEDURE-TABLE ENTRY
31

FAULT-HANDLER PROCEDURE NUMBER

PROCEDURE TABLE SS n+4

TRACE-FAULT-PROCEDURE-TABLE ENTRY
31

TRACE-FAULT-HANDLER PROCEDURE NUMBER

PROCEDURE TABLE SS n+4

RESERVED (INITIALIZE TO 0)

Figure 12-1: Fault Table and Fault-Table Entries

12-6

inter FAULT HANDLING

Once a fault-handler procedure has been called, it has the option of reading the fault subtype or
subtypes from the fault record to detennine the appropriate fault recovery action.

Location of the Fault Table in Memory

The fault table is located in physical memory. The processor obtains a physical-address
pointer to the fault table from the PRCB.

The fault table is placed in physical memory for two reasons: to avoid a virtual memory fault
while handling a fault and to provide access to the fault-handling procedures during initializa­
tion.

Fault-Table Entries

As shown at the bottom of Figure 12-1, three types of fault-table entries are allowed: a
local-procedure entry, a procedure-table entry, and a trace-fault-handler-procedure-table entry.
Each entry type is two words long. The entry-type field (bits 0 and 1 of the first word of the
entry) and the SS in the second word of the entry detennines the entry type.

A local-procedure entry (entry type 002) provides an instruction pointer (address in the address
space) for the fault-handler procedure. Using this entry, the processor invokes the specified
fault handler by means of an implicit call-extended operation (similar to that performed for the
callx instruction). The second word of a local-procedure entry is reserved. It should be set to
zero when the fault table is created and not accessed after that.

A procedure-table entry provides a procedure number in a procedure table. This entry must
have and entry type of 102 and an SS for the procedure table in the second word. Using this
entry, the processor invokes the specified fault handler by means of an implicit call-system
operation (similar to that perfonned for the calls instruction). Fault-handling procedures in the
procedure table can be local procedures or supervisor procedures.

The procedure table can be the system procedure table that the kernel provides as an entry
point for supervisor calls or a special procedure table, which is reserved for fault-handling
procedures alone. If a special, fault-handler procedure table is created, it must have the same
fonnat as the procedure table shown in Figure 4-4. The supervisor stack pointer in this table
should point to the same stack that is pointed to in the system procedure table.

The trace-fault-handler-procedure-table entry provides a procedure number in a special proce­
dure table called the tracelault-handler procedure table. This entry must have and entry type
of 102 and an SS for the trace-fault-handler procedure table in the second word. The function
of this entry is described in the following section titled "Handling Trace Faults."

To summarize, a fault handler can be invoked through the fault table in any of four ways: a
local procedure call; a local procedure-table call; a supervisor call; or a trace-fault-handler
procedure-table call.

12-7

inter FAULT HANDLING

TRACE-FAULT HANDLING

When handling trace faults, the 80960 architecture requires that tracing be disabled (i.e., the
trace-enable flag of the process controls must be set to 0). To support this requirement, the
architecture defines a special trace-fault-handler procedure table. This procedure table has the
same structure as the procedure table shown in Figure 4-4, but with the following two restric­
tions:

• All entries must be supervisor entries (102 in bits 0 and 1).

• The trace control flag (byte 12, bit 0) must be set to o.

The supervisor stack pointer in the trace fault-handler procedure table should be the same as
the stack pointer given in the system procedure table.

The effect of these restrictions is that on a call to a trace-fault handler routine, the processor
saves the current state of the trace-enable flag and then clears. the flag to disable tracing. On
the return from the trace fau.lt handler, the processor automatically restores the trace7enable
flag to the state it was in prior to the trace fault.

The trace-fault-handler procedure table will generally have only one procedure entry, which
points to the trace-fault handler procedure. However, this procedure table can be used as a
pathway to other fault-handler routines.

This method of handling trace faults must always be used except for the followingcir­
cumstances:

• If tracing is never going to be used (i.e., the trace-enable. flag of the process controls is
always set to 0), the trace fault-handler procedure table is not required. .

• If tracing is never going to be used on supervisor calls, the system-procedure table can be
used in place of the trace-fault-handler procedure table, since the trace-control flag of the
system-procedure table will then be set to O.

In the latter case, the trace-fault handler must still be called with a supervisor call.

FAUL~HANDLERPROCEDURES

The fault-handler procedures are generally located in region 3 of virtual memory, although
they can be located in any region. By locating the procedures in region 3, the processor always
has access to them whether it is bound to a process or not. (The fault-handler procedures can
also be located in physical memory if the physical-addressing translation mode is being used.)
Each procedure must begin on a word boundary.

The processor can execute the procedure in the user mode or the supervisor mode, depending
on the type of fault table entry. If a fault handler is intended to be executed from the
supervisor mode, the page rights for the page or pages that contain the handler may be setfor
supervisor-only access. .

12-8

FAULT HANDLING

NOTE

To resume work on a process at the point where a fault occurred (following the recovery action
of the fault handler), the fault handler must be executed in the supervisor mode. The reason for
this requirement is described in a following section titled "Returning with Resumption."

Possible Fault-Handler Actions

Many of the faults that occur can be recovered from easily. For example, recovery from an
invalid PTE fault merely involves copying the page from the disk into memory and marking
the page-table entry as valid.

When recovery from the fault is possible, the processor's fault-handling mechanism allows the
processor to automatically resume work on the process or interrupt it was working on when the
fault occurred. The resumption action is initiated with a ret instruction in the fault-handler
procedure.

If recovery from the fault is not possible or not desirable, the fault handler can take one of the
following actions, depending on the nature and severity of the fault condition (or conditions, in
the case of multiple faults):

• Return to a point in the process or interrupt code other than the point of the fault

• Suspend the current process and rebind it to the processor

• Suspend the current process and bind a new process to the processor

• Suspend the current process and place the processor in the idle or stopped state

• Explicitly write the fault record and instruction resumption record into the fields provided
for them in PRCB, suspend the current process, and place the processor in the idle or
stopped state.

• Explicitly write the fault record and instruction resumption record into the fields provided
for them in PRCB and place the processor in the idle or stopped state, without suspending
the current process.

• Place the processor in the idle or stopped state without explicitly saving the process state
or the fault information.

When working with the processor at the development level, a common action of the fault
handler is to save the fault and processor state information and make a call to a debugging
device such as a debugging monitor. This device can then be used to analyze the fault.

Process and Instruction Resumption Following a Fault

Faults can occur prior to the execution of the faulting instruction (i.e., the instruction that
causes the fault), during the instruction, or after the instruction. When the fault occurs before
the faulting instruction is executed, the instruction can theoretically be executed on the return
from the fault handler. So, the fault can be handled in such as way as to not interrupt in the
control flow of the process.

12-9

FAULT HANDLING

When a fault occurs during or after the instruction that caused a fault, the fault may be
accompanied by a change in the process state such that the execution of the process can not be
resumed after the fault has been handled. For example, when an integer-overflow fault occurs,
the overflow value is stored in the destination. If the destination register was the same as one
of the source registers, the source value is lost, making recovery from the fault impossible.

In general, resumption of process execution with no changes in the process's control flow is
always possible with the following fault types or sUbtypes:

• All Operation SUbtypes

• Arithmetic Zero-Divide

• All Floating-Point Subtypes Except Floating Inexact

• All Constraint Subtypes

• All Trace Subtypes

• Invalid Descriptor

• All Virtual Memory Subtypes

• Time Slice

• Event Notice

Resumption of the process mayor may not be possible with the following fault types and
subtypes:

• Integer Overflow

• Floating Inexact

• All Structural Subtypes

• Bad Access

• All Protection Subtypes

• All Type Subtypes

The effect that specific fault types have on a process is given in the fault reference section at
the end of this chapter under the heading "Process State Changes."

Returning With Resumption

As described above, certain faults do not change the state of the process when they occur, even
if the execution of the instruction was suspended as part of the fault-generation mechanism.
Here, the processor allows work on a process to be resumed at the point where the fault
occurred (including resumption of a suspended instruction), following a return from a fault
handler. The resumption mechanism is similar to that provided for returning from an interrupt
handler.

To use this mechanism, the fault handler must be invoked using a supervisor call. This method
is required because to resume work on the process and a suspended instruction at the point
where the fault occurred, the saved process controls in the fault record must be copied back

12·10

inter FAULT HANDLING

into the process's PCB on the return from the fault handler. The processor only performs this
action if the processor is in the supervisor mode on the return.

If the fault handler is invoked with a local-procedure call or a local-procedure-table call, the
return IP determines where in the process the processor resumes work, following a return from
a fault handler. Here, the return is handled in a similar manner to a return from an explicit call
with a call or calix instruction.

The return IP (referred to later in this chapter as the saved IP) is saved in the RIP register (r2)
of the stack frame that was in use when the fault occurred. This IP may be the instruction the
processor faulted on or the next instruction that the processor would have executed if the fault
had not occurred. In either case, the resumption record is not used, so the processor might
continue work on the process without completing the instruction that the fault occurred on.

A fault handler should thus be invoked with a local-procedure or local-procedure-table call
only if it is not required or desirable to resume the process at the point where the fault
occurred. The section later in this chapter titled "Returning Without Resumption" discusses
returning to a point in the process code other than the point of the fault.

Return Without Resumption

There may be situations where the fault handler needs to return to a point in the process other
than where the fault occurred. This can be done by altering the return IP in the previous frame.
However, if resumption information was collected with the fault (resulting in the resume flag
being set in the saved process controls), such a return can cause unpredictable results.

To predictably perform a return from a fault handler to an alternate point in the process, the
fault handler should perform the following two steps:

1. Flush the local register sets to the stack with a flushreg instruction.

2. Clear the following information in the process-controls field of the fault record before the
return: the resume and trace-fault-pending flags; the internal state field.

NOTE

This technique should be used carefully and only in situations where the fault handler is closely
coupled with the application program. Also, a return of this type can only be perfonned if the
processor is in supervisor mode prior to the return.

Aborting a Process

Where it is not possible to return to the process in which a fault occurred, the fault handler can
be designed to abort the process. Several possible actions that a fault handler can take when
aborting a process are given in the section earlier in this chapter titled "Possible Fault-Handler
Actions."

12-11

inter FAULT HANDLING

FAULT CONTROLS

Certain fault types and sUbtypes have masks or flags associated with them that determine
whether or not a fault is generated when a fault condition occurs. Table 12-2 lists these flags
and masks, the data structures in which they are located, and the fault subtype they affect.

Table 12-2: Fault Flags or Masks

Flag or Mask Name Location Fault Affected

Integer Overflow Mask Arithmetic Controls Integer Overflow

Floating Overflow Mask Arithmetic Controls Floating Overflow

Floating Underflow Mask Arithmetic Controls Floating Underflow

Floating Invalid Operation Mask Arithmetic Controls Floating
Invalid Operation

Floating Zero-Divide Mask Arithmetic Controls Floating Zero-Divide

Floating-point Inexact Mask Arithmetic Controls Floating Inexact

No Imprecise Faults Flag Arithmetic Controls All Imprecise Faults

Refault Flag Process Controls All Faults

Trace-Enable Flag Process Controls All Trace Faults

Trace-Mode Flags Trace Controls All Trace Faults

Event-Fault Request Flags PCB Event Notice Fault

The integer and floating-point mask bits inhibit faults from being raised for specific fault
conditions (i.e., integer overflow and floating-point overflow, underflow, zero divide, invalid
operation, and inexact). The use of these masks is discussed in the fault-reference section at
the end of this chapter. Also, the floating-point fault masks are described in Chapter 7 in the
section titled "Exceptions and Fault Handling."

The no-imprecise-faults (NIF) flag controls the synchronizing of faults for a category of faults
called imprecise faults. This flag should be set to 1. The function of this flag is described later
in this chapter in the section titled "Precise and Imprecise Faults."

The refault flag causes a fault to be generated on a return from a fault handler. This flag is
used in the handling of override conditions and can also be used by the kernel. Refer to the
sections in this chapter titled "Generating Faults" and "Override Fault-Handling Action" for
further information on the refault flag.

The trace-mode flags (in the trace controls) and trace-enable flag (in the process controls)
support trace faults. The trace-mode flags enable trace modes; the trace-enable flag enables the
generation of trace faults. The use of these flags is described in the fault reference section on
trace faults at the end of this chapter. Further discussion of these flags is provided in Chapter
16 in the section titled "Trace-Enable and Trace-Fault-Pending Flags."

The event-fault request flags cause an event-notice fault to be generated under specific cir­
cumstances. These flags are discussed in the fault reference section on event faults at the end
of this chapter.

12-12

FAULT HANDLING

FAULTS AND INTERRUPTS

If an interrupt occurs during an instruction that will fault, that has just faulted, or that has
faulted while the processor is in the midst of selecting the fault handler, the processor will
handle the fault in the following way. It completes the selection of the fault handler, then
services the interrupt just prior to executing the first instruction of the fault handler. On
returning from the interrupt, the fault is handled.

PROCESSING TIMING WHILE HANDLING A FAULT

When a fault occurs while the processor is executing a process, the processor continues to
count process time (i.e., count down the residual-time-slice value) while it is executing the
fault-handler procedure. If an end-of-time-slice event occurs while the fault handler is being
executed, the processor handles the event just as it would if the event occurred while the
process was being executed. For example, if the process-timing controls are configured to
suspend a process at the end of a time slice, the processor suspends the process in the midst of
the fault-handler routine. The next time the process is dispatched, the processor begins work­
ing on the fault handler where it left off.

GENERATING A FAULT

The processor generates faults implicitly when fault conditions occur and explicitly at the
request of software. Most faults are generated implicitly. The fault control bits described in
the previous section allow the implicit generation of some faults to be either enabled (as with
the trace faults) or masked (as with the floating-point faults).

The following paragraphs describe faults that software can cause to be generated explicitly.

Fault-If and Mark Instructions

Two sets of instructions allows faults to be generated explicitly anywhere within an application
program, kernel procedure, interrupt handler, or fault handler. The fault-if instructions (fauIte,
faultne, faultl, faultle, faultg, faultge, faulto, and faultno) allow a conditional fault to be
generated. When one of these instructions is executed, the processor checks the condition code
bits in the arithmetic controls, then generates a constraint-range fault if the condition specified
with the instruction is met.

The mark and force mark (fmark) instructions allows a breakpoint trace fault to be generated
anywhere in the instruction stream.

Event-Notice Fault

The process-notice field in the PCB (shown in Figure 13-3) has two event-fault request flags.
When these flags are set, an event notice fault is generated in either of the following two
instances:

12-13

inter FAULT HANDLING

• While the process associated with the PCB is being bound to the processor.

• If the process is already bound to the processor and the process notice lAC is sent to the
processor.

In the latter case, software would set the event-fault request flags after the process had been
bound to the processor, then send the lAC.

This faulting technique is used primarily by kernel procedures within multiprocessor systems.
It can only be used within a procedure that is being executed in supervisor mode.

Further information on the event-notice fault is given in the fault reference section at the end of
this chapter.

FAULT RECORD

When a fault occurs, the processor records information about the fault in a fault record. (The
location of the fault record is described later in this chapter in the section titled "Location of
the Fault and Resumption Records.") The fault handler and processor use the information in
the fault record to recover from or correct the fault condition and resume execution of the
process. Figure 12-2 shows the structure of the fault record. The use of the fields in this
record are described in the following paragraphs.

OVERRIDE FAULT DATA

o
4

12

~--i 16

FAULT DATA

24 -----1 28

32

r-------------~~~~~~~------------~36
40 -----I

L... ___ ~~~~~~~~~~~ ___ ~ 44

RESERVED

Figure 12-2: Fault Record

The fault record provides space for fault information on two faults: a normal fault and (if one
occurs) an override fault.

12-14

inter FAULT HANDLING

The type number (byte ordinal) of a fault is stored in the fault type (normal fault) and override
type (override fault) fields; the sUbtype number or bit positions (byte ordinal) is stored in the
fault sUbtype (normal fault) and override subtype (override fault) fields.

Two sets of eight flags, fault flags field (normal fault) and override flags field (override fault)
are also provided. Of these flags, only FO and FI (bits 24 and 25) are used. Most of the faults
do not use these flags, in which case the flags have no defined values.

The address-of-the-faulting-instruction field contains the IP of the instruction that caused the
fault or that was being executed when the fault occurred.

The states of the process controls and arithmetic controls at the time that a normal fault is
generated are stored in their respective fields in the fault record. This information is used to
resume work on the process after the fault has been handled.

Finally, a three-word fault data field is provided for both a normal fault and an override fault.
The information that is stored in these fields depends on the type of fault that occurs. Any part
of a fault-data field that is not used for a particular fault has no defined value. The information
that is stored in these fields for each fault type is given in the fault reference section at the end
of this chapter.

Saved Instruction Pointer

The saved IP (the RIP that is saved in r2 of the stack frame in use when the fault occurred) is
also part of the fault information that the processor saves when a fault occurs. This IP
generally points to the next instruction that the processor would have executed if the fault had
not occurred, although it may point to the faulting instruction. It is this instruction that the
processor begins working on when the return from the fault handler is initiated.

Resumption Record

If the processor suspends an instruction as the result of a fault, it creates a 48-byte resumption
record. The criteria that the processor uses to determine whether or not to suspend an inslruc­
tion and the structure of the resumption record are the same as are used when an interrupt
occurs.

Location of the Fault and Resumption Records

The fault and instruction-resumption records are stored in the fault handler's stack, the PRCB,
or both places, depending on the circumstances under which the fault occurred. If the fault
occurs while the processor is doing any of the following things, the fault and resumption
records is stored in the stack that the processor will use to execute the fault-handler procedure:

• Executing a process

• Servicing an interrupt

• Handling another fault

12-15

FAULT HANDLING

• Selecting a fault handler (first override fault)

As shown in Figure 12-3, this stack can be the local stack, the supervisor stack; or the interrupt
stack. The fault record begins at the byte address of the new frame pointer (NFP) minus 48,
and the instruction resumption record begins at NFP minus 96.

If the fault occurs while the processor is doing any of the following things, the fault record is
stored in the PRCB:

• Selecting the override-fault handler (second override fault)

• In the idle processor-state

Both of the above situations cause a system-error interrupt. When the system-error interrupt is
the result of a second override fault, the fault-record is stored in two fields in the PRCB: the
system-error-fault field (bytes 72 through 75) and the system-error-fault-record field (bytes 128
through 175).

The fault record for the first two faults (the normal fault and the first override fault) is stored in
the system-error-fault record in the format shown in Figure 12-2. The fault type and SUbtype of
the second override fault is stored in the system-error-fault field, but no fault data is stored for
this fault.

The system-error interrupt handler thus has the following information available to it for the
purposes of handling a system-error interrupt: (1) the process state when the first fault oc­
curred, (2) complete fault data on the first two faults, and (3) the fault type and SUbtype of the
third fault.

When the system-error interrupt occurs while the processor is in the idle state, a record for this
fault is stored in the system-error-fault-record field. Here, the system-error-fault field is not
used, because the fault type and SUbtype are contained in the system-error-fault-record field.

Finally, if a fault occurs while the processor is selecting the system-error fault handler (which
causes a halt), the fault information collected in the PRCB for all the faults that occurred up
through the first system-error interrupt is maintained. However, no fault information on the
fault that occurred while the system-error interrupt handler was being selected is recorded
before the processor places itself in the stopped state.

FAUL T·HANDLING ACTION

Once a fault has occurred, the processor saves the process state, calls the fault handler, and
restores the process state (if this is possible) once the fault recovery action has been completed.
No software other than the fault-handler procedures is required to support this activity.

The following sections describe the action that the processor takes while handling a fault.

12-16

inter

STACK
GROWTH

STACK
GROWTH

31

~

31

.~

.~

FAULT HANDLING

CURRENT STACK (LOCAL, SUPERVISOR, OR INTERRUPT STACK)

REGISTER SAVE AREA
FOR CURRENT FRAME

ADDITIONAL VARIABLES
AND PADDING AREA

(OPTIONAL)

CURRENT STACK OR SUPERVISOR STACK**

PADDING AREA

RESUMPTION RECORD
FOR SUSPENDED INSTRUCTION

0

FP

.~

~

SP

0

NSP*

~

NFP-96

r ~ FAU
(OPTIONAL)

LT
RD RECO

~ FAULT RECORD j ~

NEW FRAME NFP

~ .:

* If the call to the fault-handler procedure does not require a stack switch, the new stack
pointer (NSP) will be the same as the SP.

** If the processor is in user mode and the fault-handler procedure is called with an implicit
supervisor call, the processor switches to the supervisor stack.

RESERVED

Figure 12-3: Storage of the Fault and Resumption Records on the Stack

12-17

intel" FAULT HANDLING

Selecting the Fault-Handling-Action Method

The criteria that the processor uses to determine the fault-handling method are described in the
section earlier in this chapter titled "Fault Handling Methods." Once the processor settles on
the handling method, it performs the respective action described in the following paragraphs.

Normal Fault-Handling Action

Four different types of procedure calls can be used to handle the first (or primary) fault that
occurs: a local call, a local call through a procedure table, a supervisor call (also through
procedure table), and a supervisor call through the trace-fault~handler procedure table. The
processor determines the type of call to make from the information in the selected fault-table
entry. As was mentioned earlier in this chapter, the procedure table may be the system table
that the processor uses to access kernel services, a special fault-handler procedure table, or the
trace fault-handler procedure table.

Local Call/Return

When the selected fault-handler entry in the fault table is an entry type 002 (local procedure),
the processor performs the following action:

1. The processor creates a new frame on the stack that the processor is currently using, with
the frame-return status field set to 001 2. The stack can be the local stack, the supervisor
stack, or the interrupt stack. As shown in Figure 12-3, the new frame pointer (NFP)
resides on a 64-byte boundary and provides enough room between the current stack
pointer and the NFP for a 48-byte fault record and an optional 48-byte instruction resump­
tion record. (For local calls to fault handling procedures, the current stack pointer (SP)
shown in Figure 12-3 is the same as the new stack pointer (NSP).)

2. The processor stores a fault record as shown in Figure 12-2 on the stack, beginning at NFP
minus 48.

3. If the fault caused an instruction to be suspended, the processor includes an instruction­
resumption record on current stack (beginning at NFP minus 96) and sets the resume flag
in the saved process controls.

4. Using the procedure address from the selected fault-table entry, the processor performs an
implicit call-extended operation to the fault handler.

If the fault handler is not able to perform a recovery action, it performs one of the actions
described in the section earlier in this chapter titled "Fault-Handler Procedures."

If the handler action results in a recovery from the fault, a ret instruction in the fault handler
allows processor control to return to the process that was being worked on when the fault
occurred. On the return, the processor performs the following action:

1. The processor copies the arithmetic controls field from the fault record into the arithmetic
controls register in the processor.

2. If the resume flag of the process conttols is set, the processor reads the resumption record
from the stack.

12-18

FAULT HANDLING

3. The processor deallocates the stack frame created for the fault handler.

4. The processor then resumes work on the process it was working on when the fault oc­
curred at the instruction in the return IP register.

NOTE

The saved process controls are not copied back into the PCB, unless the execution mode is
supervisor at the time of the return, which would not ordinarily be the case with a local call to
the fault handler. Thus any changes in the process controls that the fault handler makes become
part of the process state when the processor resumes work on the process.

Local Procedure-Table Call/Return

When the fault-handler entry selects an entry in a special fault-handler procedure table (or the
system procedure table) and the procedure-table entry is for a local procedure, the processor
performs the same action as is described in the previous section for a local-procedure call and
return. The only difference is that the processor gets the address of the fault handler from the
procedure table rather than from the fault table.

Supervisor Call/Return

When the fault-handler entry selects an entry in a fault-handler procedure table (or the system
procedure table) and the procedure-table entry is for a supervisor procedure, the processor
performs the following actions:

1. If the processor is in user mode when the fault occurs, the processor then reads the
supervisor-stack pointer from the procedure table and switches to the supervisor stack.
The supervisor-stack pointer then becomes the NSP shown in Figure 12-3. Also, the
execution mode is set to supervisor.

2. If the processor is already in supervisor mode when the fault occurs, the processor stays on
the current stack. Here, the SP and the NSP in Figure 12-3 are the same. (If the processor
was executing a supervisor procedure when the fault occurred, the current stack will be the
supervisor stack; if it was executing an interrupt-handler procedure, the current stack will
be the interrupt stack. The processor switches to supervisor mode when handling
interrupts.)

3. The processor copies the state of the trace-control flag (byte 12, bit 1) of the procedure
table into the trace-enable flag field of the process controls.

4. The processor creates a new frame on the current stack (as described above for the local
call); stores the fault record and optional instruction resumption record in the areas al­
located for them on the stack; and begins work on the fault-handler procedure selected
from the procedure table.

On a return from the fault handler, the processor performs the following actions:

1. The processor copies the arithmetic-controls field from the fault record into the arithmetic­
controls register in the processor.

2. If the processor is in supervisor mode prior to the return from the fault handler (which it
should be), it copies the saved process controls into its internal process controls.

12-19

FAULT HANDLING

3. If the resume flag of the process controls is set, the processor reads the resumption record
from the stack.

4. The processor deallocates the stack frame created for the fault handler and returns to the
stack is was using prior to the call to the fault handler routine.

5. If the processor was in user mode prior to the supervisor call, the mode is set back to user
mode; otherwise, the processor remains in supervisor mode.

6. The processor resumes work on the process it was working on when the fault occurred, at
the instruction in the return IP register.

The restoration of the process controls causes any changes in the process controls through the
action of the fault handler to be lost. In particular, if the ret instruction from the fault handler
caused the trace-fault-pending flag in the process controls to be set, this setting would be lost
on the return.

Trace-Fault-Handler Call/Return

When the fault table entry is for a trace fault, the processor performs the same action as is
described in the previous section for a supervisor call and return. The only difference is that
the processor uses the trace-fault-handler procedure table instead of the normal-fault-handler
procedure table (or system procedure table).

Override Fault-Handling Action

When an override fault occurs, the processor can call the override-fault handler using any of
the techniques described above (local call, local call through a procedure table, supervisor call,
or trace-fault-handler procedure table call). The processor performs the same actions on the
call and return as described above except for the follow things.

When calling the override-fault handler, the processor performs the following additional ac­
tions:

1. The processor saves an override fault record (that contains the primary and the secondary
fault data) on the stack.

2. The processor sets the refault and resume flags in the saved process controls. (The resume
flag is set even if a resumption record is not saved.)

3. The processor begins work on the selected override-fault handler.

The override-fault handler can be designed to attempt to correct both faults or correct the
override fault and then refault on the original fault, allowing the fault handler for that fault to
be called. The latter technique is allowed only if the override-fault handler is called with a
supervisor procedure call.

On the return from the override-fault handler, the processor performs the following additional
actions:

1. If the processor is in user mode on the return from the fault handler, the saved arithmetic
controls are copied into the arithmetic controls register and the processor begins work at
the point in the process or interrupt designated with the saved IP.

12·20

FAULT HANDLING

2. If the processor is in supervisor mode on the return from the fault handler, the saved
arithmetic controls are copied into the arithmetic controls register and the saved process
controls are copied into the peB for the process being resumed. The refault and resume
flags are then cleared, and the processor refaults on the original (first) fault.

NOTE

If the fault handler is not called with a supervisor call, the override-fault handler must handle
both the original fault and the override fault. If this is not done, the process might be put into
an unpredictable state on the return from the fault handler.

System-Error-Interrupt Action

When a system-error interrupt occurs, the processor collects data on the faults that caused the
condition and calls the system-error interrupt fault handler. The processor does not, however,
provide a mechanism for resuming the process, once the handling of the interrupt is complete.

When a system-error interrupt occurs as the result of a second override fault, the processor
takes the following action:

1. The processor stores the fault record for the original fault and the first override fault in the
system-error-fault-record field of the PReB.

2. The processor stores the type and subtype of the second override fault in the system-error
fault field of the PReB.

3. The processor switches to the interrupt stack.

4. The processor performs an implicit call operation to vector 248 (the predefined system­
error interrupt vector) in the interrupt table.

When a system-error interrupt occurs as the result of a fault occurring while the processor is in
the idle state, the processor takes the following action:

1. The processor stores the fault record for the fault in the system-error-fault-record field of
the PReB.

2. The processor switches to the interrupt stack.

3. The processor performs an implicit call operation to vector 248 (the predefined system­
error interrupt vector) in the interrupt table.

When a system-error interrupt occurs, the processor does not provide a mechanism for resum­
ing processing at the point that the fault occurred as with the other fault conditions described in
this chapter. The action of the system-error interrupt fault-handler is limited to the following
actions:

• Suspend the current process and rebind it to the processor.

• Rebind the current process to the processor, without suspending the process first.

• Suspend the current process and bind the processor to a new process.

• Bind the processor to a new process, without suspending the current process first.

12-21

inter FAULT HANDLING

• Suspend the current process and place the processor in the idle or stopped state.

• Place the processor in the idle or stopped state, without suspending the current process.

• Call a system debugging monitor for use in analyzing the fault data.

• Write the fault record and other pertinent state data to disk memory, then shut down the
system, with or without first suspending the current process.

• Shut down the system without explicitly saving state or fault information.

• In a multiprocessor system, a second processor might be called upon to reinitialize the
processor with a restart processor lAC.

Halt Action

When a fault occurs while the processor is selecting the system-error interrupt handler, the
processor takes the following action:

1. If possible, it stores a fault record for the latest fault in the PRCB. This is only possible if
the system-error interrupt occurred while the processor was in the idle state.

2. It places itself in the stopped state and asserts the #FAILURE pin.

When the processor experiences enough faults to halt it in the manner described above, its
resulting state often prohibits it from reliably executing instructions or even reliably accessing
memory. A reinitialization of the processor either through a restart processor lAC or a
hardware reset is generally required. If the system uses multiple processors, the still active
processor can attempt to save the fault record for later use in a diagnostics routine, before the
stopped processor is restarted.

PRECISE AND IMPRECISE FAULTS

As described in the section in Chapter 3 titled "Register Scoreboarding," the 80960MC proces­
sor is, in some instances, able to execute instructions concurrently. When two instructions are
being executed concurrently, it is possible for them to generate faults simultaneously. When
this occurs, one of the faults may not be generated or may be generated out of order, making it
impossible to recover from that fault.

The processor provides two mechanisms to allow the circumstances under which faults are
generated to be controlled. These mechanisms are the no imprecise faults flag (NIF) in the
arithmetic controls and the synchronize faults instruction (syncf). The following paragraphs
describe how these mechanisms can be used.

Faults are grouped into the following categories: precise, imprecise, and asynchronous. Precise
faults are those that are intended to be recoverable by software. For any instruction that can
generate a precise fault, the processor will (1) not execute the instruction if an unfinished prior
instruction will fault and (2) not execute subsequent out-of-order instructions that will fault.

12·22

FAULT HANDLING

The following faults are always precise:

• trace

• virtual memory

• protection

• descriptor faults

Imprecise faults are those that in some instances are allowed to occur and not be generated or
be generated out of order. These faults include the following:

• operation

• arithmetic

• floating point

• constraint

• structural

• type

Asynchronous faults are those whose occurrence has no direct relationship to the instruction
pointer. This category includes the machine, event, and process faults.

The NIF controls whether or not imprecise faults are allowed. When this flag is set, all faults
must be precise. In this mode, the ability to execute instructions concurrently is essentially
disabled. All faults that occur are generated.

When the NIF is clear, faults in the imprecise category can in some instances occur and not be
generated. In this mode, the following conditions hold true:

1. When an imprecise fault occurs, the saved IP is undefined (but the address of the faulting
instruction in the fault record is valid).

2. If instructions are executed concurrently when an imprecise fault occurs, the results
produced by these instructions are undefined.

3. If instructions are executed out-of-order and multiple imprecise faults occur, only one of
the faults is generated. The one that is selected is not predictable.

The syncf instruction forces the processor to complete execution of all instructions that occur
prior to the syncf instruction and to generate all faults, before it begins work on instructions
that occur after the syncf instruction. This instruction has two uses. One use is to force faults
to be precise when the NIF is clear. The other use is to insure that all instructions are complete
and all faults generated in one block of code before execution of another block of code (for
example, on Ada block boundaries when the blocks have different exception handlers).

The intent of these fault-generating modes is that compiled code should execute with the NIF
clear, using the syncf instruction where necessary to ensure that faults occur in order. In this
mode, imprecise faults are considered as catastrophic errors from which recovery is not
needed.

12-23

inter FAULT HANDLING

If recovery from one or more of the imprecise faults is required (for example, a program that
needs to handle unmasked floating-point exceptions and recover from them) and the fault
handler cannot be closely coupled with the application to perform recovery even if the faults
are imprecise, the NIF should be set. Executing with the NIF set will likely lead to slower
execution times.

FAULT REFERENCE

This section describes each of the fault types and sUbtypes and gives detailed information
about what is stored in the various fields of the fault record. The section is organized al­
phabetically by fault type.

Fault-Reference Notation

The following paragraphs describe the information that is provided for each fault type.

Fault Type and Subtype

The fault-type section gives the number entered in the fault-type field of the fault record for the
given fault type. The fault-subtype section lists the fault subtypes and their associated number
or bit position in the fault-subtype field of the fault record.

Function

The function section gives a general description of the purpose of the fault type, then describes
the purpose of each of the fault subtypes in detail. It also describes how the processor handles
each fault subtype.

Fault Record

The fault record section describes how the flags, fault-data, and address-of-faulting-instruction
fields of the fault record are used for the fault type and sUbtypes.

SavedlP

The saved IP section describes what value is saved in the RIP register (r2) of the stack frame
the processor was using when the fault occurred.

Process State Changes

The process state changes section describes the effects that the fault sUbtypes have on the state
of the process.

12-24

inter

Arithmetic Faults

Fault Type:

Fault Subtype:

Function:

Fault Record:

Saved IP:

Proc. State Changes:

o
1
2
3-F

FAULT HANDLING

Name

Reserved
Integer Overflow
Arithmetic Zero-Divide
Reserved

Indicates that there is a problem with an operand or the result of an
arithmetic instruction. This fault type applies only to ordinal and
integer instruction, not floating-point instructions.

The integer-overflow fault occurs when the result of an integer in­
struction overflows the destination and the integer-overflow mask in
the arithmetic-controls register is cleared. Here, the n least sig­
nificant bits of the result are stored in the destination, where n is the
destination size.

The arithmetic zero-divide fault occurs when the divisor operand of
an ordinal or integer divide instruction is zero.

Flags: Not used.

Fault Data: Not used.

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted.

IP for the instruction that would have been executed next, if the
fault had not occurred.

A process-state change accompanies the integer-overflow fault, be­
cause the result is stored in the destination before the fault is
generated. The faulting instruction can thus not be reexecuted.

A process-state change does not accompany the arithmetic zero­
divide fault, because the fault occurs before the execution of the
faulting instruction.

12-25

Constraint Faults·

Fault Type:

Fault Subtype:

Function:

Fault Record:

Saved IP:

Proc. State Changes:

o
I
2
3-F

FAULT HANDLING

Name

Reserved
Constraint Range
Invalid SS
Reserved

Indicates that the processor is either in or not in the required state
for the instruction to be executed.

The constraint-range fault occurs when a fault-if instruction is ex­
ecuted and the condition code in the arithmetic controls matches the
condition required by the instruction.

The invalid-SS fault occurs when an instruction attempts to refer­
ence a segment by means of an SS, when the processor is not in the
supervisor mode.

Flags: Not used.

Fault Data: Not used.

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted

Not used.

No process-state changes accompany either of these faults. For the
constraint-range fault, the fault occurs after the fault-if instruction
has been executed, but the instruction has no effect on the process
state.

The invalid-SS fault occurs before the faulting instruction.

12·26

Descriptor Faults

Fault Type:

Fault Subtype:

Function:

Fault Record:

Saved IP:

Proc. State Changes:

o
1
2-F

FAULT HANDLING

Name

Reserved
Invalid Descriptor
Reserved

Indicates that an address or SS cannot be translated into a physical
address because of an invalid segment-table entry.

The descriptor-invalid fault is the only one of this fault type. This
fault occurs in either of two situations: (1) when an SS points to a
segment descriptor that has an invalid type or (2) when an SS points
to a segment descriptor that is an embedded type, but the descriptor
is not being used in a semaphore operation.

Flags: Not used.

Fault Data: The segment index for the invalid descriptor
is stored in bits 5 through 31 of the second
word of the fault-data field.

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted.

Same as the address-of-faulting-instruction field.

A process-state change does not accompany the invalid-descriptor
fault, because the fault occurs before the execution of the faulting
instruction.

12-27

Event Faults

Fault Type:

Fault Subtype:

Function:

Fault Record:

Saved IP:

Proc. State Changes:

E16

Number16

o
1
2-F

FAULT HANDLING

Name

Reserved
Event Notice
Reserved

Indicates that software has generated a fault event.

The event-notice fault is the only one of this fault type. This fault
occurs in either of the following situations: (1) when a process is
dispatched and the event-fau1t-request flags in the process's PCB
are set, or (2) when a processor receives a process notice lAC and
the event-fau1t-request flags are set for the process currently running
on that processor.

Flags: Not used.

Fault Data: Not used.

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted.

IP for the instruction that would have been executed next, if the
fault had not occurred.

If this fault occurs while a process is being dispatched, the fault is
generated before work on the process begins. This allows the fault
handler to either never begin work on the process or to return to the
process and begin work on it.

If this fault occurs while an instruction is being executed, the
processor does one of the following: (1) terminates the instruction
as if it had not yet begun execution, (2) completes execution of the
instruction, or (3) suspends the instruction, saving the intermediate
state in the resumption record. The instruction being executed
determines which action is taken.

The process state thus may change in conjunction with the occur­
rence of this fault. However, when the state does change, the
processor saves sufficient state information to allow the state of the
process to be saved when the process is suspended or to allow
resumption of the instruction on a return from the fault handler.

12·28

Floating-Point Faults

Fault Type:

Fault Subtype:

Function:

FAULT HANDLING

416

Bit Number

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bits 6 and 7

Name

Floating Overflow
Floating Underflow
Floating Invalid-Operation
Floating Zero-Divide
Floating Inexact
Floating Reserved-Encoding
Reserved

Indicates that there is a problem with an operand or the result of a
floating-point instruction. Each floating-point fault is assigned a bit
in the fault-subtype field. Multiple floating-point faults can only
occur simultaneously, however, with the floating-overflow,
floating-underflow, and floating-inexact faults.

The floating-point faults are described in detail in the section in
Chapter 7 titled "Exceptions and Fault Handling." The following
paragraphs give a brief description of each floating-point fault.

A floating-overflow fault occurs when (1) the floating-point over­
flow mask is clear and (2) the infinitely precise result of a floating­
point instruction exceeds the largest allowable finite value for the
specified destination format. This fault interacts with the floating­
inexact fault (as described in Chapter 7).

A floating-underflow fault occurs when (1) the floating-point under­
flow mask is clear and (2) the infinitely precise result of a floating­
point instruction is less than the smallest possible normalized, finite
value for the specified destination format. This fault interacts with
the floating-inexact fault (as described in Chapter 7).

The floating invalid-operation fault occurs when (1) the floating­
point invalid-operation mask is clear and (2) one of the source
operands for a floating-point instruction is inappropriate for the type
of operation being performed.

The floating zero-divide fault occurs when (1) the floating-point
zero-divide mask is clear and (2) the divisor operand of a floating­
point divide instruction is zero.

The floating-inexact fault occurs when (1) the floating-point inexact
mask is clear and (2) an infinitely precise result cannot be encoded
in the format specified for the destination operand. This fault inter­
acts with the floating-overflow and floating-underflow faults (as
described in Chapter 7).

The floating reserved-encoding fault occurs when a denormalized
value is used as an operand in a floating-point instruction and the
normalizing-mode bit in the arithmetic controls is clear.

12-29

Fault Record:

Saved IP:

Proc. State Changes:

Flags:

FAULT HANDLING

FO - Used if inexact fault occurs in conjunc­
tion with overflow or underflow fault. If set,
FO indicates that the adjusted result has been
rounded toward +00; if clear, FO indicates that
the adjusted result has been rounded toward
-00.

Fl - Used with overflow and underflow
faults only. If set, FI indicates that the ad­
justed result has been bias adjusted, because
its exponent was outside the range of the
extended-real format.

Fault Data: Used only with overflow and underflow
faults. Adjusted result is stored in this field
in extended-real format (as shown in Figure
7-5).

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted

IP for the instruction that would have been executed next, if the
fault had not occurred.

Process-state changes accompany the floating -overflow, floating­
underflow, and floating-inexact faults, because a result is stored in
the destination before the fault is generated. The faulting instruc­
tion can thus not be reexecuted.

Process-state changes do not accompany the floating invalid­
operation, floating zero-divide, and floating reserved-encoding
faults, because the faults occur before the execution of the faulting
instruction.

12-30

Machine Faults

Fault Type:

Fault Subtype:

Function:

Fault Record:

Saved IP:

Proc. State Changes:

816

Number 16

o
1
2-F

FAULT HANDLING

Name

Reserved
Bad Access
Reserved

Indicates that the processor has detected a hardware or memory­
system error.

The bad-access fault is the only one of this fault type. This fault
occurs whenever an unrecoverable memory error occurs on a physi­
cal memory operation.

Flags: Not used.

Fault Data: Not used.

Addr. Fault. Inst.: Not used.

Not used.

This fault may occur at any time. When it does occur, the accom­
panying state of the process is undefined. As a result, the processor
is not able to return predictably from the fault handler to the point in
the process where the fault occurred.

If this fault occurs during an atomic operation, there is no guarantee
that the locking mechanism the memory subsystem uses for
synchronization is unlocked. This is a fatal condition.

12-31

inter

Operation Faults

Fault Type:

Fault Subtype:

Function:

Fault Record:

Saved IP:

Proc. State Changes:

o
1
2
3
4
5-F

FAUL THANDLING

Name

Reserved
Invalid Opcode
Reserved
Reserved
Invalid Operand
Reserved

Indicates that the processor cannot execute the current instruction
because of invalid instruction syntax or operand semantics.

The invalid-opcode fault occurs when the processor attempts to ex­
ecute an instruction that contains an undefined opcode or addressing
mode.

The invalid-operand fault occurs when the processor attempts to
execute an instruction for which one or more of the operands have
special requirements and one or more of the operands do not meet
these requirements. This fault subtype is not generated on floating­
point instructions.

Flags: Not used.

Fault Data: Not used.

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted.

Not used.

A process-state change does not accompany the operation faults,
because the faults occur before the execution of the faulting instruc­
tion.

12·32

Process Faults

Fault Type:

Fault Subtype:

Function:

Fault Record:

Saved IP:

Proc. State Changes:

o
1
2-F

FAULT HANDLING

Name

Reserved
Time Slice
Reserved

Indicates that the current state of a process prohibits the processor
from continuing to work on it.

There is only one process fault subtype, the time-slice fault. This
fault occurs when an end-of-time-slice event occurs and the time­
slice-reschedule flag in the process-controls word is clear.

The intended action following this fault is for the fault handler to
collect information on the current state of the process. The fault
handler can then store this information in the PCB for the process
and suspend the process. Or, as an alternative, the fault handler can
return to the process and use the saved process-state and instruction­
resumption information to continue executing the process.

Flags: Not used.

Fault Data: Not used.

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted.

IP for the instruction that would have been executed next, if the
fault had not occurred.

Since this fault often occurs while an instruction is being executed,
it is often accompanied by a process-state change. However, when
the state does change, the processor saves sufficient state infor­
mation to allow the processor to resume work on the instruction on
a return from the fault handler or to allow the state of the process to
be saved when the process is suspended.

When the fault occurs, the processor does one of the following: (1)
terminates the instruction as if it had not yet begun execution, (2)
completes execution of the instruction, or (3) suspends the instruc­
tion, saving the intermediate state in the resumption record. The
instruction being executed determines which action is taken.

12-33

Protection Faults

Fault Type:

Fault Subtype:

Function:

Fault Record:

FAULT HANDLING

716

Bit Number

Bit a
Bit 1
Bit 2
Bit 3-7

Name

Reserved
Segment Length
Page Rights
Reserved

Indicates that an instruction has attempted to violate the addressing­
protection rules of the processor architecture. Each protection fault
is assigned a bit in the fault-subtype field. Both protection faults
can occur simultaneously, in which case, the bits for both faults are
set.

The segment-length fault can occur in either of the two following
situations: (1) when an address operand in an instruction falls
beyond the defined boundaries of a region, or (2) when the segment
index within an SS is greater than the last entry in the segment table.

The page-rights fault occurs when the following two situations both
occur: (l) an address operand references a page in a paged or
bipaged region and (2) the page-table-directory entry or page-table
entry associated with the reference page does not have the necessary
page rights for the current execution mode of the processor.

The action that the processor takes when these faults occur allows
the fault handler to modify the segment table, page-table-directory,
or page-table when appropriate to correct the fault condition, then
resume work on the process from the point where the fault occurred.

Flags: FO - Used with page-rights fault only. If set,

Fault Data:

Fa indicates that an attempted write operation
caused the fault; if clear, Fa indicates that an
attempted read operation caused the fault.

Fl - Not used.

For a page-rights fault, the first two words of
the fault-data field specify the page that was
being accessed when the fault occurred. The
20 most-significant bits of the address that
caused the fault are stored in bits 12 through
31 of the first word. (The two most­
significant bits of the address are set to 0,
which means that the processor interprets the
value as an offset into a region). The seg­
ment index associated with the region that
contains the address is stored in bits 5
through 31 of the second word.

12·34

Saved IP:

Proc. State Changes:

FAULT HANDLING

For a segment-length fault where an address
in the faulting instruction is beyond the
specified size of the segment or region, the
page that the address is trying to reference is
specified in the first two words of the fault­
data field as described for the page-rights
fault.

For a segment-length fault where a segment
index given in the faulting instruction is
greater than the last index in the segment
table, the segment index is given in the
second word of the fault-data field as
described for the page-rights fault.

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted.

Same as the address-of-faulting-instruction field.

A process-state change accompanies each of the protection faults;
however, sufficient state information is saved to permit either
reexecution or completion of the faulting instruction on a return
from the fault handler.

These faults occur while the faulting instruction is being executed.
When the fault occurs, the processor will either (1) terminate the
instruction as if it had not yet begun execution or (2) suspend the
instruction, saving the intermediate state in the resumption record.
The instruction being executed determines which action is taken.

12-35

Structural Faults

Fault Type:

Fault Subtype:

Function:

Fault Record:

Saved IP:

Proc. State Changes:

o
1
2
3
4-F

FAULT HANDLING

Name

Reserved
Control
Dispatch
lAC
Reserved

Indicates that the state of one of the architecture-defined data struc­
tures is preventing the processor from performing a system opera­
tion. Examples of things that can cause a structural fault include a
pointer in one data structure to a non-existent data structure or in­
valid state information in a data-structure field. These faults often
occur while the processor is performing an internal (implicit) opera­
tion and may not be related to a particular instruction.

The control fault occurs either when (1) the invalid contents of a
data structure are preventing a fault or interrupt from being handled
or when (2) a fault occurs during the process of invoking an inter­
rupt handler.

The dispatch fault occurs when the invalid contents of a data struc­
ture are preventing a process-dispatching action from being per­
formed.

The lAC fault occurs when the invalid contents of a data structure
are preventing an lAC from being executed.

Flags: Not used.

Fault Data: Not used.

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted

Not used.

When a structural fault occurs, the accompanying state of the
process is undefined. The processor is thus not able to return
predictably from the fault handler to the point in the process where
the fault occurred. This condition is usually fatal.

12-36

inter

Trace Faults

Fault Type:

Fault Subtype:

Function:

FAULT HANDLING

1'6
Bit Number

Bit 0
Bit 1
Bit 2
Bit 3
Bit4
Bit 5
Bit 6
Bit 7

Name

Reserved
Instruction Trace
Branch Trace
Call Trace
Return Trace
Preretum Trace
Supervisor Trace
Breakpoint Trace

Indicates that the processor has detected one or more trace events.
The processor's event tracing mechanism is described in detail in
Chapter 16.

A trace event is the occurrence of a particular instruction or type of
instruction in the instruction stream. The processor recognizes
seven different trace events (instruction, branch, call, return,
preretum, supervisor, and breakpoint). It detects these events,
however, only if a mode bit is set for the event in the process
trace-controls word, which is cached in the processor chip. If, in
addition, the trace-enable flag in the process controls is set, the
processor generates a fault when a trace event is detected.

The fault is generated following the instruction that causes a trace
event (or prior to the instruction for the preretum trace event).

The following trace modes are available:

• Instruction - Generate trace event following any instruction.

• Branch - Generate trace event following any branch instruc­
tion when branch is taken. (Does not occur on branch and link
and call instructions.)

• Call - Generate trace event following any call or branch-and­
link instruction, or implicit procedure call (i.e., call to fault or
interrupt handler).

• Return - Generate trace event following any return instruc­
tion.

• Prereturn - Generate trace event prior to any return instruc­
tion, providing the preretum-trace flag in rO is set. (The proces­
sor sets this flag automatically when prereturn tracing is
enabled.)

• Supervisor - Generate trace event following any call-system
instruction that references a supervisor procedure entry in a
procedure table.

12-37

inter FAULT HANDLING

Fault Record:

Saved IP:

Proc. State Changes:

• Breakpoint - Generate trace event following any processor
action that causes a breakpoint condition (such as a mark or
fmark instruction).

There is a trace fault subtype and a bit in the fault-subtype field
associated with each of these modes. Multiple fault sUbtypes can
occur simultaneously, with the fault-subtype bit set for each sUbtype
that occurs.

When a fault type other than a trace fault occurs during the execu­
tion of an instruction that causes a trace event, the non-trace-fault is
handled before the trace fault. An exception to this rule is the
prereturn trace fault. The prereturn trace fault will occur before the
processor has a chance to detect a non-trace-fault, so it is handled
first.

Likewise, if an interrupt occurs during an instruction that causes a
trace event, the interrupt is serviced before the trace fault is handled.
Again, the prereturn trace fault is an exception. Since it occurs
before the instruction, it will be handled before any interrupt that
might occur during the execution of the instruction.

Flags: Not used.

Fault Data: Not used.

Addr. Fault. Inst.: IP for the instruction that caused the trace
event, except for the prereturn trace fault.
For the prereturn trace fault, this field has no
defined value.

IP for the instruction that would have been executed next, if the
fault had not occurred.

A process state change accompanies all the trace faults (except the
prereturn trace fault), because the events that can cause a trace fault
occur after the faulting instruction is completed. As a result, the
faulting instruction cannot be reexecuted upon returning from the
fault handler.

Since the prereturn trace fault occurs before the ret instruction is
executed, a process state change does not accompany this fault and
the faulting instruction can be executed upon returning from the
fault handler.

12-38

inter

Type Faults

Fault Type:

Fault Subtype:

Function:

Fault Record:

Saved IP:

Proc. State Changes:

AI6

Number l6

o
I
2
3-F

FAULT HANDLING

Name

Reserved
Type Mismatch
Contents
Reserved

Indicates that the contents of an architecture-defined data structure
or its descriptor are inconsistent with the operation that the proces­
sor is trying to perform.

The type-mismatch fault occurs when the type information in a
segment descriptor does not match the operation the processor is
being asked to perform. For example, a type-mismatch fault occurs
when the SS given in a resume-process instruction (resumprcs)
does not point to a PCB segment.

The contents fault occurs when the information in a segment is not
defined or is inconsistent.

Flags: Not used.

Fault Data: Not used.

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted

Not used.

When a type fault occurs, the accompanying state of the process is
undefined. The processor is thus not able to return predictably from
the fault handler to the point in the process where the fault occurred.

12-39

intel~

Virtual-Memory Faults

Fault Type:

Fault Subtype:

Function:

Fault Record:

Saved IP:

Proc. State Changes:

FAULT HANDLING

° 1
2
3
4-F

Name

Reserved
Invalid Segment-Table-Entry
Invalid Page-Table-Directory-Entry (PTDE)
Invalid Page-Table-Entry (PTE)
Reserved

Indicates that an address or an SS in an instruction cannot be trans­
lated into a physical address, because the segment or page being
referenced is not in physical memory.

The invalid-segment-table-entry fault occurs when the valid flag in
a segment descriptor is 0, which can mean that the segment, the
page-table directory, or the page table that the segment descriptor
points to is not in physical memory.

The invalid-PTDE fault occurs when the valid flag in a page-table­
directory entry is 0, which means that the page table that the entry
points to is not in physical memory.

The invalid-PTE fault occurs when the valid flag in a page-table
entry is 0, which means that the page that the entry points to is not
in physical memory.

The action that the processor takes when these faults occur allows
the fault handler to copy the missing segment or page from the disk
into physical memory, then resume work on the process from the
point where the fault occurred.

Flags: Not used.

Fault Data: For an invalid-PTE or invalid-PTDE fault,
the 20 most-significant bits of the address
that the instruction faulted on is stored in bits
12 through 31 of the first word of the fault
data field.

For an invalid-segment-table-entry fault or
for an invalid-PTE fault for a large-segment
table, the segment index is stored in bits 5
through 31 of the second word of the fault­
data field.

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted

Same as the address-of-faulting-instruction field.

A process-state change accompanies each of the virtual-memory
faults, however, sufficient state information is saved to permit either

12-40

inter FAULT HANDLING

reexecution or completion of the faulting instruction on a return
from the fault handler.

These faults occur while the faulting instruction is being executed.
When the fault occurs, the processor will either (1) terminate the
instruction as if it had not yet begun execution or (2) suspend the
instruction, saving the intermediate state in the resumption record.
The instruction being executed determines which action is taken.

12·41

Process Management 13

CHAPTER 13
PROCESS MANAGEMENT

This chapter introduces the 80960MC processor's process-management facilities. Included is a
discussion of process-management concepts, the process-control block (PCB), and the require­
ments for managing a single process. Chapter 14 describes the management of multiple
processes.

PROCESS-MANAGEMENT OVERVIEW

The processor provides a set of low-level and high-level process-management facilities. With
these tools, the kernel or system-executive is able to efficiently allocate processor resources to
one or more processes, using any of a wide variety of process-management techniques.

The following section provides an overview of these process-management facilities.

Process Structure

A process is a unit of work that the processor can schedule, dispatch, and execute. It can be
used to execute an application task, a kernel utility, or a monitor command shell.

A process is made up of two parts: an address space and a PCB. The address space contains
the code, stacks, static data, and heap data for the process. When the processor's virtual­
addressing mode is being used, the address space for a process consists of three process­
specific regions (0, 1, and 2). When the process is bound to the processor for execution, these
regions are joined with region 3, which is shared by all processes, to form the process­
execution address space (or process address space) for the process. When the physical­
addressing mode is being used, the address space for a process consists of all of physical
memory.

The PCB defines the address space for the process and provides a repository of state infor­
mation for the process. In a multitasking system, the PCB also provides a device for schedul­
ing and dispatching multiple processes.

Process State

The following items define the state of a process at any given time:

• The address-space image

• The state of the global registers

• The state of the stack, including the local registers

• The state of the arithmetic controls

• The state of the process controls

13-1

PROCESS MANAGEMENT

• The state of the trace controls

When a process is bound to the processor, the state of the process is contained within the
processor, the address space, and the PCB. When a process is suspended, the state of the
process is contained in the address space and the PCB. The PCB and region mechanism allows
a processor to work on several processes concurrently, merely by switching among PCBs and
address spaces.

Using Processes

The process-management facilities of the processor support single-process systems, multitask­
ing systems, and mUltiprocessor systems. In a single-process system, a process is bound to the
processor at initialization time. The processor then executes this process alone. This single
process can be used to support a dedicated or embedded activity or to run a user-defined,
process-management mechanism. In the latter case, the user-defined processes are transparent
to the processor.

The processor provides several mechanisms for managing a multitasking system. These
mechanisms can be roughly divided into two categories: explicit process-dispatching and
self-dispatching. When using explicit dispatching, the kernel binds a process to the processor
or suspends a process by means of explicit instructions to the processor.

The processor also provides a set of high-level process-management facilities that allow
processes to be dispatched automatically, independently from the activity of the kernel. This
self-dispatching mechanism makes use of a system-defined dispatch port, which the processor
uses to schedule and dispatch processes.

In a multiprocessor system, these high-level process-management facilities greatly simplify the
allocation of processor resources to ready and executing processes.

PROCESS·CONTROL BLOCK

The PCB defines a process for the processor. It specifies the execution environment for the
process, provides a place to record the execution status of the process, and maintains infor­
mation about the system resources that have been allocated to the process.

Figure 13-1 shows the structure of the PCB and Figure 13-2 shows the structure of the
process-controls word, which is one of the fields of the PCB. The following paragraphs
describe the function of each field of the PCB.

13-2

inter PROCESS MANAGEMENT

31 7 0

QUEUE RECORD
0
4

RECEIVE MESSAGE 8
DISPATCH PORT SS 12

E 16
PROCESS CONTROLS 20

OCK 24
TRACE CONTROLS 28

32

44
48

REGION 1 SS 52
REGION 2 SS 56

60
64

NEXT TIME SLICE 68

EXECUTION TIME
72
76
80

RESUMPTION RECORD

GLOBAL AND FLOATING-POINT REGISTERS

~------------------------------------~
236

RESERVED (INITIALIZE TO 0)

Figure 13-1: Process-Control Block (PCB)

13·3

PROCESS MANAGEMENT

31

1~

RESERVED (INITIALIZE TO 0)

Figure 13-2: Process-Controls Word

Process Controls

TRACE ENABLE

EXECUTION MODE

TIME·SLlCE RESCHEDULE

TIME SLICE

TIMING

RESUME

TRACE·FAULT PENDING

PREEMPT

REFAULT

STATE

PRIORITY

INTERNAL STATE

The process-controls word contains miscellaneous pieces of information to control processor
activity, while the processor is executing the process. The various functions of this field are as
follows:

The execution-mode flag determines whether the processor is operating in the user mode
(clear) or supervisor mode (set). The processor automatically sets this flag on a supervisor call
and clears it on a return from supervisor mode. The kernel can also set this value so that the
processor is automatically put in one or the other of these modes when the process is initially
bound to the processor.

The priority field determines the priority (from 0 to 31) of the process. When the process is in
the executing state, the processor sets its priority according to this value.

The state field determines the state of the process: The encoding of these bits is shown in
Table 13-1.

These bits tell the processor or software whether the process either

• has been interrupted so the processor can service an interrupt (01 2), or

• is currently being executed or waiting to be executed (002),

13·4

PROCESS MANAGEMENT

Table 13-1: Encoding of the Process-State Field

State Process State
Field

00 Executing, ready, or blocked

01 Interrupted

10 Reserved

11 Reserved

The timing, time-slice, and time-slice-reschedule flags control the timing and time-slice
scheduling of processes. This subject is discussed in Chapter 14 in the section titled "Time­
Slice Scheduling."

The preempt flag determines whether or not a process is eligible to preempt another processes.
Process preemption is described in Chapter 14 in the section titled "Process Preemption."

The resume flag signals the processor that an instruction has been suspended. The processor
sets this flag whenever it suspends an instruction to handle an interrupt or fault. On a return
from the interrupt or fault handler, the processor checks this flag and performs an instruction
resumption action if the flag is set.

The refault flag is used in conjunction with the handling of override faults. When an override
fault is detected, the processor sets this flag. On a return from an override-fault handler, the
processor checks this flag and refaults on the original fault (the one that occurred before the
override fault). Further discussion of this flag is provided in Chapter 12 in the sections titled
"Override Call/Return Action" and "Refault Operation."

The trace-enable and trace-fault-pending flags control tracing. The trace-enable flag deter­
mines whether trace faults are to be generated (set) or not-generated (clear). The processor
uses the trace-fault-pending flag to determine if a trace event has been detected (set) or not
(clear). The use of these flags are discussed in detail in Chapter 16.

Bits 2 through 5, 15, and 21 through 31 are reserved. These bits should be set to 0 when the
PCB is created and not altered after that.

The kernel can alter the settings of the process-controls bits in several ways, as described later
in this chapter in the section titled "Changing the Process-Controls."

Process-State Fields

Several fields are provided in the PCB for storing the state of the process. These fields define
the state of the process when the process is bound to the process and provide a place to store
state information when the process is suspended.

The arithmetic-controls field contains the state of the arithmetic controls.

13-5

inter PROCESS MANAGEMENT

The trace-controls field contains the state of the trace controls.

The region 0 SS, region 1 SS, and region 2 SS fields contain SS's for the three process-specific
regions of the process's address space.

The global and floating-point registers field provides a place to store the state of the global and
floating-point registers when a process is suspended. The kernel should not normally access
these fields except to clear them when the PCB is created. Also, on creation of the PCB, a
pointer to the base of the local stack must be placed in bytes 236 through 239 (global register
gIS).

The resumption-record field provides storage space for instruction resumption information. If
an instruction is suspended to handle an interrupt or a fault, the resumption record for the
instruction is copied into this field when the processor returns from the interrupt or fault
handler. Refer to the section in Chapter 10 titled "Servicing an Interrupt" and the section in
Chapter 12 titled "Fault-Handling Action" for further discussion of the use of the resumption­
record field.

Process Scheduling and Communication Fields

The following fields are provided to support the processor's high-level process management
facilities. These fields are not used when the processor is operated in a single-process applica­
tion.

The dispatch-port-SS field provides an SS pointer to the dispatch port that the process is to be
queued to when the process is suspended.

The queue-record field allows several PCBs to be linked together to form a queue. Processes
are typically queued to ports or semaphores. The structure of the queue-record field is given in
Chapter 14 in the section titled "Queue Record."

The processor provides a means of passing I-word messages between processes. The
receive-message field provides a temporary storage location for such messages. The message
passing mechanism is described in Chapter 14 in the section titled "Interprocess
Communication. "

The lock field allows the processor to lock the PCB for the process it is working on, by setting
bit 0 of the lock to 1. This lock supports multiprocessor systems. It provides a means for one
processor to determine if another processor is currently working on a process, by reading the
lock in the process's PCB. This lock does not prevent a processor from reading or altering a
PCB. It merely acts as a flag to show whether or not a process is currently bound to a
processor.

The process-notice field consists of two flags at bits 16 and 31 (as shown in Figure 13-3).
(Bits 17 through 30 are available to software.) If these event-fault-request flags are set, the
processor signals an event-notice fault either (1) when a processor attempts to dispatch the
process, or (2) when the process is already bound to a processor and the processor receives a
check-process-notice lAC from another processor. This field is cleared when an event-notice
fault is generated.

13-6

inter PROCESS MANAGEMENT

'--_________ --'-___________ EVENT·FAULT
REQUEST FLAGS

RESERVED (INITIALIZE TO 0)

~ PRESERVED

Figure 13-3: Process Notice Field and Event-Fault Flags

The process-notice field also supports mUltiprocessor systems. It offers a means for one
processor to preempt a process running on another processor or for a processor to dequeue a
process from a dispatching port. (Note that this is only one of the methods that the processor
provides for preempting a process.) Further discussion of the process-notice field is provided
in Chapter 12 in the section titled "Event-Notice Fault."

Process-Timing Fields

The processor provides facilities for counting the amount of time that a processor spends
working on a process. It also provides facilities for scheduling mUltiple processes on the basis
of time slices. The following fields support these facilities. The use of these fields are
discussed in detail in Chapter 14 in the section titled "Time-Slice Scheduling."

The processor uses the execution-time field to keep a running count of the amount of time the
process has spent in the execution state. The field contains a long-ordinal value (64 bits). The
count saved in this field is in units of ticks. The processor updates this field in the PCB at the
end of each time slice.

The processor uses the next-time-slice and residual-time-slice fields for time-slice scheduling.
The next-time-slice field contains an ordinal value (32 bits) that gives the software preset time
(in ticks) that the processor is allowed to work on the process before a time-slice event is
generated. The processor keeps a count of the time remaining in the current time-slice in the
residual-time-slice field (which also contains an ordinal value).

Refer to the section in Chapter 14 titled "Process Timing" for a detailed discussion of how the
processor uses the execution-time, next-time-slice, and residual-time-slice fields for process
timing.

Storing of PCB Fields in the Processor

When a process is bound to the processor,certain fields from the PCB are copied into the
processor and altered as the state of the process changes. When the processor alters an
internally held field of the PCB, it does not generally update the field in memory. As a result,

13-7

inter PROCESS MANAGEMENT

the memory image of a PCB that is bound to the processor may not accurately reflect the actual
state of the process at a given time.

The only fields that the processor updates in the PCB while it is working on the process are the
residual-time-slice and resumption-record fields. The remainder of the fields are only updated
in the PCB when the process is suspended.

Likewise, changing a field in the PCB currently bound to the processor does not necessarily
insure that the change will be reflected in the processor's internal process image.

The only fields in the PCB that software can change while the process is being executed and
have the effects of these changes sent to the processor are the process-controls, arithmetic­
controls, and process-notice fields (as described in the following sections).

NOTE

At initialization, all the fields of the processor's internal process-controls image are set to 0
except execution mode, which is set to I (supervisor mode).

Changing the Process Controls

The kernel can change the process controls for the current process using any of the following
three methods:

• Modify-process-controls instruction (modpc)

• Alter the saved process controls prior to a return from an interrupt handler

• Alter the saved process controls prior to a return from a fault handler

The modpc instruction reads and modifies the process controls cached in the processor. (It
does not change the process controls word in the PCB for the current process.)

In the latter two methods, the kernel changes the process controls in the interrupt or fault
record that is saved on the stack. On the return from the interrupt or fault handler, the modified
process controls are copied into the processor's internal process controls.

Two things should be noted with regard to modifying the saved process controls. First, this
technique for changing the process controls can be used on a fault only if the fault handler was
invoked by means of an implicit supervisor call. Second, the saved process controls are only
copied into the process-controls image contained in the processor; the process controls in the
PCB are not affected.

When the process controls are changed as described above, the processor acts on the changes
as soon as it receives the new information, except for the following situations.

There is no guarantee that the processor will act on the changt(to the process-state field. The
only case where such a change will have the desired result is if the process state in the
saved-process controls is changed to "executing" prior to a return from an interrupt handler.

13-8

PROCESS MANAGEMENT

Changing the resume flag can cause the execution of the subsequent instruction to yield
unpredictable results.

If the modpc instruction is used to change the trace-enable flag, the processor does not
guarantee to act on the change until after up to four more instructions have been executed.

Changing the Arithmetic Controls

The kernel or an applications program can change the arithmetic controls using the modac
instruction. This instruction only affects the internally cached arithmetic controls. The arith­
metic controls word in the PCB for the current process is not changed.

Changing the Process-Notice Field

The process-notice field of the PCB is not cached in the processor. However, the check
process-notice lAC can be used to cause the processor to check the process-notice field in the
PCB for the currently running process. (Refer to the discussion of the process-notice field
earlier in this chapter in the section titled "Process Scheduling and Communication Fields.")

REQUIRED SOFTWARE SUPPORT FOR A SINGLE-PROCESS SYSTEM

Figure 9-1 shows the system-data structures required to support a single-process system. Note
that the single process is defined by means of a PCB and the three process-specific regions of
the address space.

Figure 13-4 shows the required fields of the PCB for a single-process system. The PCB in this
application is used primarily to contain initialization information. Once the process is bound to
the processor at initialization, the only field of the PCB that the processor will use is the
resumption record field.

Also, in single-process applications, the timing flag in the process-controls word should be set
to 0, to disable timing.

PHYSICAL ADDRESSING VERSES VIRTUAL ADDRESSING

If the processor is going to execute the process using strictly the physical-addressing mode, the
region pointers in the PCB are not required.

However, an SS and a process-segment descriptor for the PCB are required, with the base
address in the segment descriptor aligned to a 64-byte boundary and pointing to the first byte in
physical memory of the PCB.

13-9

inter PROCESS MANAGEMENT

31 87 0

REGION 0 SS
~--------------------------------------~

0
4
8
12
16
20
24
28
32

44
48

~ ______________ ~~ __ ~ ______________ ~52
~ ____________________ ~ ______________ ~56

60
64

RESUMPTION RECORD

GLOBAL REGISTERS

_ RESERVED (INITIALIZE TO 0)

Figure 13-4: Process-Control Block for Single-Process System

13-10

inter PROCESS MANAGEMENT

PROCESS HANDLING IN A SINGLE·PROCESS SYSTEM

In a single-process system, the initialization code must bind the process to the processor using
a resume-process instruction (resumprcs). Once this binding is complete, the processor works
on this process until the processor is either shut down or placed in the stopped state.

For diagnostic purposes, the PCB fields that are held internally in the processor can be written
out to the PCB in memory using the save process instruction (saveprcs).

13-11

Multiple-Process
Management

14

CHAPTER 14
MULTIPLE-PROCESS MANAGEMENT

This chapter discusses the facilities that the processor provides to manage multiple processes in
multitasking systems. Included are descriptions of the process management tools provided for
explicit process dispatching, self-dispatching, process synchronization, and interprocess com­
munication.

OVERVIEW OF MUL TIPLE-PROCESS-MANAGEMENT FACILITIES

The process management facilities described in this chapter, and in Chapters 13 and 15,
provide a general set of tools for designing a wide variety of process management mechanisms.
In showing how these facilities can be used to support multitasking kernels, three general
process-management scenarios are presented:

• A completely software-implemented system that runs within the context of a single
80960MC-defined process.

• A largely software-implemented system that uses several of the processor's low-level
process management tools to explicitly schedule and dispatch mUltiple processes.

• A partly software-implemented system that uses the processor's high-level process
management tools for automatic scheduling and dispatching of multiple processes, process
synchronization, and interprocess communication.

The process management tools to support the first scenario are described in Chapter 13.

The tools to support the second and third techniques are described in this chapter. These tools
are divided into two groups: low-level tools and high-level tools.

The low-level tools include the following:

• The PCB presented in Chapter 13, which allows a kernel to define a process and bind it to
the processor for execution.

• Two process-handling instructions that permit the kernel to explicitly bind a process to the
processor or suspend work on the process.

• A process timing mechanism that provides the kernel with a method of scheduling mul­
tiple processes on the basis of time slices.

The high-level tools include the following:

• A dispatch port data structure that supports automatic scheduling and dispatching of
processes.

• Semaphore and communication port data structures that allow synchronization of inter­
acting processes.

• Message-passing facilities that permit messages to be passed among processes.

14-1

MULTIPLE-PROCESS MANAGEMENT

These high-level tools are a unique feature of the 80960MC architecture. They provide silicon­
based support for several advanced process-management mechanisms.

PROCESS MANAGEMENT CONCEPTS

This section presents several process management concepts that will help you in understanding
the functions of and the actions taken by the low-level and high-level process management
tools.

Scheduling and Dispatching

The concepts of scheduling and dispatching are central to the development of process manage­
ment schemes. Dispatching is the activity of assigning a process to a processor. Scheduling is
the activity of maintaining a list of processes that are waiting to be dispatched. In designing a
process management system, the major goal of the dispatching mechanism is to deploy proces­
sor resources rapidly, whereas the major goal of the scheduling mechanism is to provide
efficient allocation of the processor resources to the executable processes.

Process States

Once the kernel has created a process to run on the 80960MC processor, it will always be in
one of the following states:

• Executing

• Interrupted (but executing)

• Ready

• Blocked

Figure 14-1 shows the relationship of these states.

In the executing state, the process is bound to the processor and is being executed. Being
bound to the processor means that the processor has read the contents of the process's PCB,
and knows the location of the address-space regions for the processor. It has also copied
process-state information, such as the process controls and arithmetic controls, from the PCB
into internal registers or buffers.

Only one process can be bound to the processor at a time. In general, a processor should not be
instructed to bind itself to another process until it has first suspended the current process. To
suspend a process, the processor copies the parts of the process's PCB that it holds internally
back into the PCB in memory, so that the PCB accurately defines the state of the suspended
process. The save process (saveprcs) and resume process (resumprcs) instructions cause the
processor to explicitly save a process or bind itself to a process. When using self-dispatching,
the processor performs these tasks automatically. (The saveprcs and resumprcs instructions
and self-dispatching of processes are described later in this chapter.)

14-2

inter MULTIPLE-PROCESS MANAGEMENT

UNBLOCK

BLOCK

DISPATCH
AND BIND

\

~ SCHEDULE

SUSPEND

Figure 14-1: Process States

While in the executing state, a process can be interrupted. In the interrupted state, the process
remains bound to the processor, but the processor is executing an interrupt-handler procedure.

A process is in the ready state when a PCB exists for the process and the PCB is enqueued on a
dispatch port. A process is also said to be in ready if it is available to be bound to the
processor using the resumprcs instruction. A process in the ready state is suspended.

The blocked state is used with the processor's process-synchronization and message-passing
mechanisms. A process is blocked either when it is enqueued to a semaphore (waiting to
receive a signal) or when it is enqueued to a communication port (waiting to receive a
message). A process in the blocked state is suspended.

State-Transition Actions

To aid in managing multiple processes, the processor supports a set of actions that moves
processes among the four possible process states. These actions are listed below.

• Schedule process

• Dispatch and bind process

14-3

MULTIPLE-PROCESS MANAGEMENT

• Suspend process

• Interrupt

• Return from interrupt

• Block process

• Unblock process

The processor is able to carry out some or all of these actions depending on the process
management technique that the kernel uses. For example, in the single-process application
described in Chapter 13, the process would be placed in the executing state at initialization.
Thereafter it would move back and forth between the executing and interrupted states.

Also, for some of the actions listed above, the processor provides several different tools for
performing the action. For example, a process can be dispatched by means of (1) the
resumpres instruction or (2) an automatic dispatch action from a dispatch port.

The following sections describe how the process states and state-transition actions are used in
systems that use explicit process dispatching and self-dispatching. Later in this chapter, the
ability to block a process for the purposes of process synchronization and interprocess com­
munication is discussed.

EXPLICIT PROCESS-DISPATCHING

Two instructions, resumpres and savepres, allow the kernel to explicitly dispatch and suspend
processes, respectively. These instructions perform similar functions to the RESUME and
SA VE functions provided in most UNIXTM kernels.

The resumpres instruction takes a process in the ready state and binds it to the processor, at
which time the processor begins executing the process. Here, the process is considered in the
ready state if a PCB has been created for the process and a segment descriptor for the PCB
exists in the segment table.

The savepres instruction causes the processor to write any internally held parts of the PCB out
to the PCB in memory. Following the execution of this instruction, the process is still bound to
the processor, but the state of the PCB in memory is like it would be if the process had just
been suspended. A resumpres instruction can then be safely executed to bind a new process to
the processor.

It should be noted that resumpres and save pres instructions are tools to assist the kernel in
dispatching and suspending processes, but they do not do the whole job. These instructions will
most often be used in a fault- or interrupt-handler procedure, in which case the kernel will need
to modify the PCB for the suspended process in between the savepres instruction to suspend
the current process and the resumpres instruction to dispatch the next process. This work
involves changing the PCB to reflect the state of the process prior to invoking the fault or
interrupt handler. This can often be done merely by changing the frame pointer in the saved
global registers and the process-state bits in the process controls.

14-4

inter MULTIPLE-PROCESS MANAGEMENT

PROCESS TIMING

The processor provides an on-chip counter that can be used for both process and idle timing.
When used for process timing, the counter's primary function is to support time-slice schedul­
ing. It can be used, however, strictly to count execution time, as described at the end of this
section.

The counter counts ticks. The time interval of a tick is described in Chapter 9 in the section
titled "Processor Timing."

Time-Slice Scheduling

With time-slice scheduling, the processor works on each process for a set duration, called a
time-slice. When the processor begins work on a newly bound process, it begins counting. At
the end of the time-slice, it generates a time-slice event, which either causes a time-slice fault
to be signaled or causes the current process to be suspended and another process dispatched.

Six fields in the PCB support time-slice scheduling: the residual-time-slice, next-time-slice,
and execution-time fields; and the timing, time-slice, and time-slice-reschedule flags in the
process controls. These fields are used as follows.

The timing flag (if set) enables the timing function. If this flag is clear, the processor does not
perform process timing. The modpc instruction can be used to toggle the timing flag, turning
timing on and off. Also, the processor automatically clears this flag when it invokes an
interrupt handler and restores the flag on the return from the handler. This action causes
process timing to be turned off while the processor is servicing an interrupt.

The next-time-slice field determines the duration of a time-slice for the process. Each process
can have a different time-slice value, ranging from 16 ticks to 232 - 1 ticks.

The residual-time-slice field is used to count the remaining time for the current time-slice.
When the process is initially bound to the processor, the next-time-slice and residual-time-slice
fields are the same. As the processor counts (while working on the process), it decrements the
residual-time-slice field. When this field reaches 0, the processor generates the end-of-time­
slice event.

The time-slice flag enables the generation of the end-of-time-slice event. Alternately, it can be
used to prevent an end-of-time-slice event. If this bit is cleared, the processor will continue to
execute the process beyond the expiration of its time-slice.

The time-slice-reschedule flag determines what the processor does when an end-of-time-slice
event is generated. It can do either of two things: (1) generate a time-slice fault or (2)
automatically suspend the current process and dispatch a new process. The latter function is
one of the high-level process management actions discussed later in this chapter.

When an end-of-time-slice event is generated, the processor performs the following actions:

1. It copies the next-time-slice value into the residual-time-slice field, setting the count for
the next time the process is worked on.

14-5

MULTIPLE-PROCESS MANAGEMENT

2. It updates the execution time by adding the next-time-slice value to the value in the
execution-time field.

3. It checks the time-slice flag. If the flag is clear, the processor continues working on the
process; if the flag is set, it goes to the next step.

4. It checks the time-slice-reschedule flag. If the flag is set, it automatically suspends the
current process and dispatches a new process. If the flag is clear, it signals a time-slice
fault and invokes the time-slice fault handler.

The time-slice fault action has two uses. One use is to allow the fault handler to alter process
attributes such as the next-time-slice value or the priority before the process is suspended.

The other use of the time-slice fault is to support a kernel that is using the saveprcs and
resumprcs instructions to suspend and dispatch processes. Here, the fault handler can carry
out process suspension and dispatching action.

Execution-Time Counting

The execution-time field gives the elapsed execution time of the process. As shown in the
above action statement, this field is only updated at the end of each time-slice, by adding the
value in the next-time-slice field to the value in the execution-time field. (At the beginning of
a time slice, the value in the execution-time field is thus equal to the actual elapsed time of the
process plus the value of the next time slice.) The time that a process has spent in the
execution state, at any given time, is then the value in the execution-time field minus the value
in the residual-time-slice field.

The load-process-time instruction (Idtime) allows a process to determine its elapsed time
during execution. This instruction stores the execution-time minus the residual-time-slice
value in a specified register.

In a new PCB, the execution-time field should be set equal to the next-time-slice field.

The execution-time field can be used to count elapsed process-execution time even if time-slice
scheduling is not used. To do this, the timing flag in the process controls must be set and the
time-slice flag must be cleared. The processor then updates the execution-time field at the end
of each time slice, but continues working on the process until the process is killed or blocked.

OVERVIEW OF HIGH-LEVEL PROCESS MANAGEMENT FACILITIES

The processor's high-level process management facilities, introduced earlier in this chapter,
allow the processor to handle the scheduling and dispatching of multiple processes automati­
cally. The major benefits of these facilities are that:

• they provide a flexible and highly-efficient mechanism for managing processes in a mul­
titasking system.

• they relieve a significant burden from the kernel.

• they simplify the design of mUltiple-processor systems.

14-6

inter MULTIPLE-PROCESS MANAGEMENT

The remainder of this chapter describes how these high-level facilities can be used for process
scheduling and dispatching, process synchronization, and interprocess communication.

Ports

The processor's high-level process-management facilities are based on ports. A port is a
device for exchanging messages. It allows messages to be exchanged between two or more
processes. A port can also be used to maintain a list of ready-to-execute processes for the
processor.

A message is a segment that contains a queue record so that it can be queued to a port. A
common type of message segment is a PCB that represents a ready-to-be-executed or blocked
process. A message segment can also contain data that is to be exchanged between two
processes. Messages are identified by their respective SS's.

A port is contained in a port segment. (The segment-descriptor format for port segments is
given in Chapter 8.) As shown in Figure 14-2, the processor recognizes two types of ports: a
first-in, first-out port (FIFO port) and a priority port. A FIFO port supports a single message
queue; a priority port supports 32 message queues arranged in order of message priority.

Bit 16 of the first word of a port segment determines whether it is a FIFO port (clear) or a
priority port (set).

FIFO Port

A FIFO port contains a single, linked list (i.e., queue) of messages, arranged in FIFO order.
When a message is received from a FIFO port, the message comes from the head (first
message) of the queue.

The functions of the fields in a FIFO port are as follows. The lock field is used to synchronize
the manipulation of a port by several processors. When a processor requires access to a port, it
first checks bit 0 of the lock field. If this bit is 0, the processor atomically sets the bit to 1. The
processor then accesses the port as needed. If the bit is 1 when the processor checks it,
indicating that another processor is already accessing the port, the processor spins on the port,
until the port becomes available for access.

Bit 17 of the first word of the port (the queue-state flag) shows what the port's queue is being
used for. If this bit is set to 1, the queue contains blocked processes, waiting for messages; if
the bit is set to 0, the queue contains messages waiting to be received or is empty.

The queue-head SS and queue-tail SS fields contains the SS of the message at the head of the
queue and the tail of the queue, respectively. The messages in the queue are linked together
through their respective queue records (described later in this chapter). A value of 0 in the
queue-head-SS field indicates an empty queue.

14·7

MULTIPLE-PROCESS MANAGEMENT

FIFO PORT

7

LOCK 0
QUEUE HEAD SS 4

~----------------~--~----------------------~
8

PRIORITY PORT

0

LOCK 0
4
8
12
16

QUEUE HEADERS

(PRIORITIES = 1 THROUGH 30)

252
256
260

RESERVED (INITIALIZE TO 0)

~ PRESERVED

Figure 14-2: Ports

Priority Port

A priority port contains 32 queues (linked lists) of messages, with each queue arranged in
FIFO order. When a message is received from a priority port, the message comes from the
head of the highest priority non-empty queue. The priorities of the queues range from 0 to 31,
with 31 being the highest priority.

The functions of the fields in a priority port are as follows. The lock field and the queue-state
flag perform the same functions in the priority port as in the FIFO port.

14-8

MULTIPLE-PROCESS MANAGEMENT

The queue-status field shows the status of each queue in the port. Each bit in this field
represents the state of one queue (with bit ° representing the priority ° queue, bit 1 the priority
1 queue, etc.). If a bit is set to 1, it indicates that the queue contains one or more messages; if
the bit is set to 0, the queue is empty. If all the bits in the queue-status field are 0, the port is
empty.

Each of the 32 queues in the priority port is represented by a queue header. Each queue header
is made up of a queue-head-SS field and a queue-tail-SS field. These fields perform the same
functions as the corresponding fields in the FIFO port.

Message

Any of the unpaged segments described in Chapter 8 can be used as a message segment,
including a process segment, port segment, procedure-table segment, simple-region segment,
and semaphore segment. When any of these segments is used as a message segment, the
processor assumes that the first two words of the segment contain a queue record, shown in
Figure 14-3.

31

LINK 55

CURRENT PORT OR SEMAPHORE 55

=~ REMAINDER OF SEGMENT

Figure 14-3: Queue Record

o

BYTE OFFSET
WITHIN A
SEGMENT

o
4

=:::

The queue record has two fields. The link SS field contains the SS of the message segment
behind it in the queue. The current-port SS or current-semaphore SS field gives the port or
semaphore that the message is queued to. The processor maintains the information in the
queue record, independently from the software. When a message segment is created, the link
SS and current-port-or-semaphore-SS fields should be set to 0.

Refer to the section later in this chapter titled "Interprocess Communication" for a discussion
of how messages can be used for passing information between processes.

Port Uses

The processor uses ports in two ways: as dispatch ports or as communication ports. A
dispatch port is a device to assist the processor in scheduling processes. When the kernel
creates a process, it queues it to the dispatch port for the processor. The processor then

14-9

MULTIPLE-PROCESS MANAGEMENT

dispatches processes from the dispatch port one at a time to work on them. When the proces­
sor suspends a process, it reschedules it at its dispatch port. The use of dispatch ports is
described in the next section.

A communication port is used to pass messages between processes. These messages can be
used to synchronize multiple processes in a multitasking environment or to share data among
processes. The use of communication ports is discussed in the section later in this chapter
titled "Interprocess Communication."

AUTOMATIC PROCESS DISPATCHING

The priority-port data structure (described earlier in this chapter) provides a mechanism for the
processor to maintain a list of scheduled processes, which it can then dispatch one at a time,
independently from the kernel. Referring to Figure 14-1, when a priority port is used as a
dispatch port, it contains a list of all the processes in the ready state.

A dispatch port must always be a priority port with its queue-state bit set to 0, indicating that
all queues contain messages waiting to be received. In this application, the messages are
processes waiting to be executed.

When this scheduling and dispatching mechanism is used, each processor in the system is
assigned to a dispatch port. In a mUltiprocessor system, each processor may have its own
dispatch port or several processors may share the same dispatch port. The SS for the dispatch
port that a processor is assigned to is stored in the processor's PRCB.

Each process is also assigned to a dispatch port through the dispatch-port-SS field in its PCB.
When the processor initially schedules a process or when it suspends a process, the process is
queued to the dispatch port specified in the process's PCB.

Process-Scheduling Instructions

The processor provides two instructions to support this automatic-dispatching mechanism. The
schedule-process instruction (schedprcs) causes the processor to enqueue a process (i.e., its
PCB) to a dispatch port. For example, if the kernel issues a schedprcs instruction for a process
with a priority of 23, the process is placed at the front (or head) of the priority-23 queue of the
dispatch port.

The send-service instruction (sendserv) causes the processor to suspend the process that it is
currently executing and enqueue it at a specified port. This port may be the process's dispatch
port or a communication port. If the port is a priority port, the processor checks the process's
priority and places the process at the end (or tail) of queue for that priority.

Process-Dispatching Action

The actions that the kernel and processor take to dispatch processes using the automatic­
dispatching mechanism are as follows:

14-10

inter MUL TIPLE·PROCESS MANAGEMENT

1. The kernel creates a process. In doing this, it allocates segments for regions 0, 1, and 2 of
the process and for the process's PCB. It then creates an initial PCB for the process.

2. The kernel enqueues the process to the process's dispatch port, using the schedprcs
instruction.

3. When the processor completes work on its current process, it suspends the process and
reschedules it on the dispatch port.

4. The processor examines the dispatch port. If the port contains waiting processes, the
processor goes to the highest priority, non-empty queue and dispatches the process from
the head of this queue. The processor then binds itself to the process and begins executing
it.

S. Upon completion of work on this process, the processor repeats steps 3 and 4 to reschedule
the current process and dispatch another process.

Note that since the processor always goes to the highest, non-empty queue to dispatch a
process, it will work on one priority queue alone until all the processes in that queue have been
completed or killed (resulting in the processes being removed from the dispatch port); blocked
at communication ports; or moved to lower priority queues.

Process Suspension

Once the processor begins work on a process it will continue to work on it until it receives a
signal to suspend the process. This signal can be caused by several events:

• End-of-time-slice event

• Process becomes receive or wait blocked

• Execution of a sendserv instruction

• Process becomes preempted by another higher-priority process

The end-of-time-slice event is used by the time-slice-scheduling mechanism described earlier
in this chapter.

Process blocking is related to the semaphore and interproccss communication mechanisms
described later in this chapter. A process can become blocked in either of two ways. One way
is if the process attempts to receive a message from a communication port, but the message is
not available. The processor then suspends the process and enqueues it on the communication
port to await the message. The other way is if the process attempts to receive a signal from a
semaphore, but none is available. Here, the processor suspends the process and enqueues it on
the semaphore to await the signal.

A sendserv instruction can be executed from a fault or interrupt handler, or it can be included
in the process code, if it is known beforehand that the process must always be suspended at a
certain point.

Process preemption is described later in this chapter in the section titled "Process Preemption."

14·11

inter MUL TIPLE"PROCESS MANAGEMENT

PROCESS SYNCHRONIZATION

The process synchronization facilities of the processor allow the activities ~f several inter­
acting processes to be synchronized. An important application of these facilities is to prevent
race conditions between processes, particularly in multiprocessor systems, where two or more
processes are being worked on simultaneously.

The processor provides two mechanisms that can be used to synchronize processes:
semaphores and communication ports. Semaphores are described in this section. The use of
communication ports for process synchronization are described later in this chapter in the
section titled "Interprocess Communication."

Use of Semaphores

A semaphore is a device for synchronizing the activities of several agents, in this case several
processes. The following example shows one application of a semaphore.

Assume that process A and process B perform different but interdependent tasks and that at
various points within the execution of process A, it must check that process B has completed
execution of a particular task. To exchange information about the state of the task, the
processes use a semaphore.

Each time process B completes the task, it increments a counter at the semaphore. Each time
process A reaches a point in its execution where it needs to know if process B has completed
the task or not, it checks the count at the semaphore. If the count has been incremented,
process A decrements the count and continues executing. If the count has not be incremented
(meaning that process B has not yet completed the task), the processor suspends process A and
queues it to the semaphore. Process A is then said to be blocked at the semaphore.

When process B completes the task and goes to the semaphore, the processor sees process A
queued to the semaphore. Then, instead of incrementing the count, the processor unblocks
process A from the semaphore, freeing both process A and process B to continue execution.

Semaphore Structure

A semaphore is contained in an embedded segment. (The segment-descriptor format for an
embedded segment is given in Chapter 8.) The format for a semaphore is shown in Figure
14-4. The following paragraphs describe the fields of a semaphore.

The lock field of a semaphore performs the same function as the corresponding field of a port.
It synchronizes the manipulation of a semaphore by several processors. When a processor
needs to access a semaphore, it first checks bit 0 of the lock field. If this bit is 0, it atomically
sets the bit to 1 and accesses the semaphore. If the bit is set to 1, the processor spins on the
lock until the semaphore is available.

The count field contains a 16-bit ordinal. This field shows the number of times that one
process has sent a signal to another process without the signal being received. The mechanism
for incrementing and decrementing the count is described later in this chapter in the section
titled "Semaphore-Access Actions."

14-12

inter MULTIPLE-PROCESS MANAGEMENT

COUNT

~ PRESERVED

Figure 14-4: Semaphore Structure

LOCK o
4
8

The semaphore-queue-tail-SS field contains the SS of the last process in the semaphore queue.
If no processes are queued to the semaphore, this field is set to O.

The semaphore queue consists of a linked list of PCBs, with the linking carried out through
their queue records. The processes in the queue are arranged in decreasing-priority order and
FIFO within the same priority level. The link field in the queue record of the last process in
the queue contains the SS of the first process in the queue.

Semaphore-Handling Instructions

Three instructions are provided to handle communication with a semaphore. A process uses
the signal instruction to send a signal to a semaphore that a task is complete. This instruction
causes the processor to check the semaphore-queue-tail-SS field and either (1) increment the
semaphore count, if the queue-tail value is 0, or (2) dequeue and reschedule the first process
from the queue.

A process uses the wait and condwait (conditional-wait) instructions to receive a signal from a
semaphore. The wait instruction causes the processor to check the semaphore count field and
either (1) decrement the count, if it is non-zero, or (2) suspend the process and queue it to the
semaphore, if the count is O.

The condwait instruction performs a similar function, except that the process is not suspended
and sent to the semaphore to wait if the count is O. Instead, the processor either (1) decrements
the count, if it is non-zero, or (2) does nothing to the semaphore, if the count is o. In either
case, the processor sets the condition code bits to indicate which action was taken.

Semaphore-Access Actions

The actions that processes and the processor take to communicate through the semaphore
mechanism are as follows.

When the current process needs to signal another process that a task is complete, it performs
the following action:

14-13

MUL TIPLE·PROCESS MANAGEMENT

1. The process issues a signal instruction.

2. The processor locks the semaphore and checks the semaphore-queue-tail-SS field.

3. If the field is 0, the processor increments the semaphore count by 1. If the field is
non-zero, the processor dequeues the process from the head of the semaphore queue (the
highest-priority, first-in process in the queue) and reschedules it at its dispatch port.

4. The processor unlocks the semaphore and continues executing the current process.

When the current process needs to receive a signal from another process and cannot continue
until it receives this signal, it performs the following action:

1. The process issues a wait instruction.

2. The processor locks the semaphore and checks the semaphore count field.

3. If the count is non-zero, the processor decrements the semaphore count by I, unlocks the
semaphore, and continues executing the current process.

4. If the count is 0, the processor suspends the current process, queues it in the semaphore
queue, unlocks the semaphore, and goes to the dispatch port to dispatch another process.
Processes are enqueued in a semaphore queue in decreasing priority order and FIFO
within a priority level.

When the current process needs to receive a signal from another process, but does not need to
discontinue processing if the signal is not available, it performs the following action:

1. The process issues a condwait instruction.

2. The processor locks the semaphore and checks the semaphore count field.

3. If the count is non-zero, the processor decrements the semaphore count by 1. If the count
is 0, the processor does nothing further to the semaphore.

4. The processor sets the condition code bits to 0102 if the signal was received or to 0002 if a
signal was not received.

5. The processor unlocks the semaphore and continues executing the current process.

PROCESS PREEMPTION

The processor provides a mechanism that allows a process (called a preempting process) to
cause the processor to check the dispatch port and to suspend (or preempt) the current process
if a higher priority process is found. To be a preempting process, the preempt flag is the
process's process-controls word must be set. Preemption can occur in two situations: when a
preempting process becomes unblocked from a semaphore or communications port; and when
a processor receives a preemption lAC from another processor.

This preemption mechanism performs two functions. First, it provides a means of coordinating
the activities of several processes that are performing cooperative tasks. Second, in mul­
tiprocessor systems, to helps insure that the available processors are working on highest
priority tasks.

14-14

inter MULTIPLE-PROCESS MANAGEMENT

The following paragraphs describe the preemption action that a single processor takes when a
preempting process becomes unblocked; the section in Chapter 15 titled "Multiprocessor
Preemption" describes preemption in multiprocessor systems.

Process-Preemption Action

If a process becomes unblocked from a semaphore or a communication port and its preempt
flag is set, the processor performs the following action. (Communication ports are described in
the following section titled "Interprocess Communication".)

1. The processor enqueues the preempting process at the dispatch port.

2. If the current process is in the interrupted state, the processor sets the check-dispatch-port
flag in the processor controls skips the remaining preemption actions. (When the proces­
sor returns from the interrupt, it checks the dispatch port automatically and dispatches the
highest priority process that has a priority higher than the current process.)

3. The processor compares the priority of the preempting process with that of the current
process.

4. If the priority of the preempting process is equal to or lower than that of the current
process, the processor does not perform the preemption action.

5. If the priority of the preempting process is higher than that of the current process, the
processor performs the remaining preemption steps.

6. The processor suspends the current process and places it on the dispatch port at the head of
its priority queue.

7. The processor dispatches the highest priority process from the dispatch port and begins
executing that process.

Two things should be noted about this mechanism. First, it is intended that the preempt flag be
set for processes above a given priority level so that they will preempt lower priority processes
immediately. Second, this mechanism does not insure that the preempting process is the next
process dispatched, unless it is the highest priority process queued at the dispatch port.

INTERPROCESS COMMUNICATION

The semaphore data structure, described in the previous section, provides a simple, efficient
means of synchronizing the activity of several interacting processes. This section describes the
use of the communication port data structure and messages in interprocess communication. As
is shown in this section, a communication port is a more general data structure that not only
supports process synchronization, but also can be used to pass messages and data structures
between processes.

Communication Ports

A communication port is similar to a dispatch port except that it queues messages waiting to be
received or processes waiting to receive messages. (A dispatch port queues processes waiting
to be executed.) For example, if process A needs to send a message to process B, it sends the

14-15

inter MULTIPLE-PROCESS MANAGEMENT

message to a mutually agreed upon communication port. The processor then checks to see if
process B is queued at the port, waiting for a message. If it is, the processor passes the
message to process B and schedules process B at its dispatching port. If process B has a higher
priority than process A, process A is preempted (suspended) and process B is dispatched.
Otherwise, the processor resumes executing process A.

If process B is not waiting at the communication port when the message is sent, the processor
queues the message on the port. Then when process B attempts to receive a message from the
communication port, the processor takes the message from the message queue, passes it to
process B, and continues executing process B. '

A communication port can be either a FIFO port or a priority port (as shown in Figure 14-2).
Bit 16 of the first word of the port data structure determines the port type. If the port is a FIFO
port, messages or processes are queued to a single FIFO queue. If a port is a priority port,
messages are queued to any of 32 queues according to their priority.

The Q bit (bit 17) of the first word determines whether a port contains blocked processes that
are waiting to receive messages (the Q bit is set to 1) or whether it contains messages waiting
to be received (the Q bit is set to 0). If the port is empty (it contains neither waiting processes
or waiting messages) the Q bit is set to O. '

Thus, when a port is initially created, bit 16 of the first word should be set to 0 or 1, depending
on the type of port being created, and bit 17 should be set to 0, indicating an empty port.
Thereafter, the processor sets or clears the Q bit.

Interprocess-Communication Mechanism

As with the self-dispatching mechanism of the processor, the processor handles the passing of
message SS's back and forth among processors automatically and independently from the
kemel. All the kemel is required to do is to set up the communication ports and create and fill
the message segments.

To initiate the sending and receiving of messages, the processor provides four instructions:
send, receive, condrec (conditional receive), and sendserv (send service), The processor must
be in the supervisor mode to execute any of these instructions.

The following paragraphs summarize the actions that the processor performs for each of these
instructions. Refer to the reference information on each instruction in Chapter 17 for more
detailed descriptions of the instruction actions.

Send Message

The send instruction has three operands: communications port SS, message SS, and message
priority. When a process issues a send instruction, the processor performs the following
actions:

1. It checks the Q bit 6f the selected port. If the bit is set (indicating' that processes are
queued at the port waiting for messages), the processor finds the highest priority queue

14-16

inter MUL TIPLE·PROCESS MANAGEMENT

that contains waiting (blocked) processes and finds the first process from this queue. (If
the port is a FIFO port, it finds the first process from the queue.)

2. It unblocks this process, loads the message SS into the message SS field of the process's
PCB, and reschedules the process at its dispatching port.

3. If the Q bit is clear (indicating an empty port or a port with waiting messages), the
processor queues the message segment at the end of the queue specified with the message
priority operand in the send instruction. (If the port is a FIFO port, the message priority is
ignored.)

4. Following either of the above actions, the processor resumes execution of the current
process (the process that sent the message).

Receive a Message

The two receive instructions (receive and condrec) allow a process to pick up a message SS
from a communication port. The receive instruction has two operands: a port SS and a
destination register where the receive message is to be stored. When a process issues a receive
instruction, the processor performs the following actions:

1. It checks the Q bit of the selected port. If the bit is clear (indicating a port with waiting
messages or an empty port), the processor finds the highest priority queue that contains
queued messages. (If the port is a FIFO port, it looks only at the single FIFO queue.)

2. The processor then takes the first message from the queue, stores it in the destination
register specified in the receive instruction, and resumes execution of the process.

3. If the port is empty (all queues are empty) or has waiting processes (Q bit is set), the
processor suspends the current process (receiving process) and queues it at the end of the
queue specified with the priority field in the process's process controls word. (If the port
is a FIFO port, the process priority is ignored.)

4. The processor then dispatches another process from the dispatch port and begins executing
that process.

With the condrec instruction, the processor performs the same operation as it does with the
receive instruction, except that it does not block the process at the communication port if there
is no message available. Instead it sets the condition code bits in the arithmetic controls to
indicate that a message was not received and resumes execution of the receiving process.

The condrec instruction has the same operands as the receive instruction: port SS and a
destination register where the receive message is to be stored. When a process issues a
condrec instruction, the processor performs the following actions:

1. It checks the Q bit of the selected port. If the bit is clear (indicating that there is a port
with waiting messages or the port is empty), the processor finds the highest priority queue
that contains queued messages. (If the port is a FIFO port, it looks only at the single FIFO
queue.)

2. The processor then takes the first message from the queue, stores it in the destination
register specified in the condrec instruction, sets the condition code to 0102, and resumes
execution of the process.

14·17

inter MULTIPLE-PROCESS MANAGEMENT

3. If the port is empty (all queues are empty) or has waiting processes (Q bit is set), the
processor sets the condition code to 0002 and resumes execution of the process.

If a process fails to receive a message after issuing a condrec instruction, one action that the
process can take is to wait for several ticks, then issue a condrec instruction again.

Send Service

The sendserv instruction offers a special application of the message passing mechanism. This
instruction causes the processor to suspend the current process and send its SS as a message to
a communication port.

This instruction has one operand, the SS of the communication port to receive the suspended
process's SS. When the sendserv instruction is issued, the processor performs the following
action:

1. It suspends the current process and goes to the communication port specified in the port
SS operand of the instruction.

2. It checks the Q bit of the selected port. If the bit is set (indicating that processes are
queued at the port), the processor finds the highest priority queue that contains waiting
processes and finds the first process from this queue. (If the port is a FIFO port, it finds
the first process from the queue.)

3. It unblocks this process, loads the SS for the suspended process into the message SS field
of the waiting process's PCB, and reschedules the waiting process at its dispatching port.

4. If the Q bit is clear (indicating an empty port or a port with waiting messages), the
processor queues the suspended process's PCB at the end of the queue specified with the
process's priority field in its process controls. (If the port is a FIFO port, the process
priority is ignored.)

5. Following either of the above actions, the processor dispatches a new process from the
dispatching port and begins executing it.

The use of this instruction is described in the section later in this chapter titled "Applications of
Messages."

Kernel Support for Message Passing

In general, the kernel must provide some support code to make interprocess-communication
services available to application programs. Typically, kernel procedures are written that allow
an application program to send and receive messages by making system calls (calls instruction)
to the kernel.

These kernel procedures take care of setting up communication ports and creating message
segments. Then, to send a message to another process, all that an application program has to
do is supply a data word or a pointer to a data structure as a parameter in a system call to a
send procedure. The kernel procedure will then load the word, the pointer, or a whole data
structure into a message segment and issue a send instruction to send the message segment to a
communication port.

14-18

inter MUL TIPLE·PROCESS MANAGEMENT

Likewise, to receive a message from another process, an application program issues a system
call to a receive procedure. The kernel then issues a receive or condrec instruction, gets the
message SS, retrieves the data word, pointer, or data structure from the message segment, and
returns it to the application program as a parameter.

Applications of Messages

The message passing mechanism can be used in several ways for either process synchroniza­
tion or the passing of information between processes.

One application of a communication port is to synchronize processes in a manner similar to
that described for a semaphore. Here, instead of incrementing a counter as a signal from one
process to another, a message segment is left at a communication port.

The message segment can be used in two ways. First, it can contain a null message, in which
case the passing of message SS's would be used strictly to synchronize processes. Second, the
message segment can be encoded to contain information about the respective processes.

One of the benefits of using communication ports instead of semaphores for process
synchronization is that processes waiting for messages can be prioritized.

When messages are used to pass information between processes, the message segments are
typically mapped into predefined areas of region 3, and cooperating processes know the con­
ventions of this mapping. One process can then pass data to another process by writing the
data into a predefined message area and sending a pointer to that area to the kernel. The kernel
then handles the message passing and returns the pointer to the receiving process.

The message being passed can also be a processor-defined data structure such as a port or a
PCB. For example, a kernel may create communication ports dynamically. It could then send
a new port as an SS to a process for use in the future for sending and receiving messages.

The sendserv instruction as is described above is specifically designed to send PCBs as
messages. This instruction allows a process to explicitly suspend itself at a specific point in its
activity. This capability has two common applications. One is to allow the process to suspend
itself and have the processor reschedule it at a dispatch port. The other is to allow the
processor to automatically kill processes that have completed their tasks. Here, the sendserv
instruction sends the process's PCB to a communication port set up to handle dead processes.
Another process then periodically takes the PCB messages from this communication port,
deallocates the system resources that have been allocated to them, and deletes or frees up the
PCBs.

14-19

Multiple-Processor
Operation

15

CHAPTER 15
MULTIPLE-PROCESSOR OPERATION

This chapter presents several features of the processor that support multiprocessor systems.
Included are discussions of external lAC messages, high-level process management facilities,
atomic instructions, and interrupt handling.

OVERVIEW OF MULTIPROCESSOR-SUPPORT FACILITIES

The processor provides several facilities that greatly simplify the design of systems that use
multiple processors, particularly in applications in which the processors share memory and
processing tasks. These facilities include the following items:

External lAC messages

High-level process management facilities

• Atomic instructions

• Shared interrupt-handling facilities

EXTERNAL lAC MESSAGES

Chapter 11 presents the concept of an interagent communication (lAC) and describes how
internal lACs are sent. (An internal lAC is one that a processor sends to itself). This section
describes how external lACs are sent from one processor to another.

External lACs are used by agents external to the processor to initiate processor actions such as
testing for pending interrupts or freezing the processor. External lACs can be sent between
two 80960MC processors that are connected to the same bus or by external logic that dupli­
cates the external lAC sending mechanism. The following sections describe how one proces­
sor sends an lAC to another processor. The 80960MC Hardware Designer's Reference
Manual describes the requirements that external logic must meet to perform these same func­
tions.

Sending External lACs

Sending an external lAC message is similar to sending an internal lAC message, except that
the address of the receiving processor is specified in a slightly different way. (Internal lACs
are always sent to address FFOOOOI016.)

The lAC message format is the same as is shown in Figure 11-1. Figure 15-1 shows how the
address for the receiving processor is encoded.

15-1

31 24 23

MULTIPLE-PROCESSOR OPERATION

10101111101 10 1 0 1 0 10 I
14 13 9 8 4 3 0

'------- PRIORITY

'------------------AOORESSOFIAC
RECIPIENT

Figure 15-1: Encoding of Address for Processor Receiving an lAC

At initialization each processor is assigned a unique physical address in the range of
FFOOOC0016 to FFFFCC0016. To send an lAC to a processor, the sending processor sends the
message to the physical address assigned to the receiving processor. As shown in Figure 15-1,
only bits 14 through 23 of this address are interpreted to determine the address of the receiving
processor. Bits 4 through 8 of this address are used to encode the priority of the message.

For example, to send a priority 25 10 lAC to the processor at address 00000000012, the message
physical address would be FF004D9016.

NOTE

If virtual addressing is being used, the address accompanying the lAC must be mapped to the
physical address assigned to the receiving processor.

To send an external lAC, software must perform the following steps:

1. Load the message into four consecutive words in memory, with the first word aligned on a
word boundary.

2. Execute a synmovq instruction to move the message from its source address to the address
of the receiving processor (encoded in the form shown in Figure 15-1).

3. Check the condition code in the arithmetic controls to determine if the message was
received (0102) or rejected (0002),

The action of the synmovq move instruction insures that the sending processor does not
execute any other instructions until the synmovq instruction is complete. It also sets the
condition code bits to indicate whether or not the move was successful. A successful move is
interpreted as the lAC being received by the processor. As is discussed in the next section,
external logic may be employed to intercept lACs and reject them if their priorities (as encoded
in the message address) are equal to or less than the task the processor is currently working on.
The process running on the sending processor then has the option of sending the lAC again at a
higher priority or sending the lAC repeatedly at the same priority until it is accepted.

Receiving and Handling External lACs

A processor receives and handles an external lAC in somewhat the same manner as it receives
and handles an interrupt. To configure a processor to receive external lACs, vector INTO of
the interrupt-control register (shown in Figure 10-2) is set to O. The INTO pin on the processor
chip then becomes the lAC pin. (Refer to the section in Chapter 10 titled "Interrupts From
Interrupt Pins" for further discussion of the interrupt pins and interrupt-control register.)

15-2

MUL TIPLE·PROCESSOR OPERATION

When the processor receives a signal on the lAC pin, it handles it initially as if it were
receiving an interrupt. It reads the vector number associated with this pin (bits 0 through 7 of
the interrupt-control register). If it is zero, the processor recognizes that it is receiving an
external lAC. It then reads the four-word lAC message from the local bus and performs the
requested lAC.

Since the processor handles lACs with a mechanism that is separate from the process­
execution mechanism, it does not save the state of the current process prior to handling an lAC.
Once a processor has finished handling an lAC, it resumes work on the current process, unless
the action specified with the lAC (such as a processor restart or a process preemption) makes
this impossible.

The processor acts immediately on any lAC that it receives. For efficient system operation,
external logic must thus be provided to insure that low priority lAC messages do not interrupt
the processor while it is handling a higher priority task. This logic is usually supplied by the
M82965 component.

To support the M82965 (or other external logic) in this job, the processor provides a
mechanism, called the write-external-priority mechanism, which periodically writes the
priority of the processor's current task out on the bus as an lAC message. (The write-external­
priority flag in the processor controls word enables this mechanism, as described in Chapter 9).
The M82965 reads this message and keeps track of the current priority of the processor.

When an lAC is sent to the processor, the M82965 intercepts it and reads the priority encoded
in the lAC address. It then determines whether the lAC priority is above that of the process
currently running on the processor or not. If the lAC has a higher priority, the M82965 sends
an acknowledge signal to the sending processor, then signals the receiving processor by assert­
ing its lAC pin. If the lAC has an equal or lower priority, the M82965 sends a not­
acknowledged signal to the sending processor.

The sending processor uses the acknowledge or not-acknowledged signals to set the condition
codes to complete the synmovq instruction.

While a processor is servicing an lAC, it performs some handshaking with its M82965 so that
the M82965 knows when the processor has finished work on an lAC. The M82965 is then able
to reject any lAC that it receives while the processor is servicing another lAC.

Refer to the 80960MC Hardware Designer's Reference Manual for further information on how
the M82965 handles lAC messages.

HIGH·LEVEL PROCESS MANAGEMENT FACILITIES

All of the process-management facilities are available for use in multiprocessor systems. Of
these, two are of particular importance: process scheduling and dispatching, and process
preemption.

15-3

MULTIPLE-PROCESSOR OPERATION

Process Scheduling and Dispatching

The processor's high-level process management facilities are particularly useful for scheduling
and dispatching processes in a mUltiprocessor system. They provide an efficient method of
distributing the processor resources among the tasks to be handled by the system. They also
remove a significant burden from the kernel for handling process management.

How these facilities are used centers around how the dispatch port is used. If the intent of the
system is to share the processing tasks evenly among the available processors, the system can
use a single dispatch port that is shared by all the processors. All processes are thus scheduled
and dispatched from the same place. The lock on the dispatch port allows processors to take
tums dispatching and enqueuing processes from the port.

An alternate use of a dispatch port is to give each processor in the system its own port. The
kernel is then responsible for determining the load on each processor, which it does by
scheduling the ready processes on selected dispatch ports.

Multiprocessor Preemption

When using the high-level process management facilities described in Chapter 14, the proces­
sor provides the ability for a higher priority process to preempt a lower priority process. This
means that the processor suspends the current lower-priority process and dispatches the higher
priority, preempting process. A process can be a preempting process only if the preempt flag
in its process controls is set.

Typically, preemption happens when a process becomes unblocked from a semaphore after
receiving a signal or from a communication port after receiving a message. If the unblocked
process has a higher priority than the current process, the processor preempts the current
process.

Often the preempted process is also a preempting process. If there are other processors in the
system, the multiprocessor-preempt mechanism provides a means for the processor that
suspended a preempting process to check if one of the processors in the system can handle the
process. It does this by sending a preempt process lAC message to one or two other proces­
sors, as described in the next section. From the priority of the message, the receiving processor
determines whether the priority of the preempting process is higher than the process it is
currently working on. If it is, the receiving processor suspends its current process and dis­
patches the higher priority process from the dispatch port. If both of the processors are
working on higher priority processes, the sending processor begins work on its current process.

This technique insures that if there are n processors in the system, the n highest-priority
processes are always being run.

Preemption Control

The following fields in the PRCB and PCB control the mUltiprocessor-preemption mechanism:
the multiprocessor-preempt flag, nonpreempt-limit field, interim-priority field, and write­
external-priority flag in the processor controls; the mUltiprocessor-preemption field of the
PRCB; and the preempt flag of the process controls.

15-4

inter MULTIPLE-PROCESSOR OPERATION

The multiprocessor-preempt flag enables the mUltiprocessor-preemption mechanism. When
this flag is set, the processor carries out the multiprocessor-preemption actions automatically,
with no intervention from the kernel required.

In carrying out the mUltiprocessor-preemption action, the processor sends preempt process lAC
messages (8500000016) to one or two other processors in the system. The lAC message and
the addresses of the lAC message buffers for the two processors are contained in the
multiprocessor-preemption field of the PRCB. The addresses are placed in the first two words
of the field and the preempt process lAC message is placed in the third word. The addresses
are stored in the form shown in Figure 15-1. The priority encoded in the address word is
generally chosen to be a low value. For example, if the priority is set to 1, only idle processors
(those with a 0 priority) will accept the lAC message. Any lAC message can be stored in the
message word, but preempt process lAC is used for multiprocessor-preemption applications.

The nonpreempt-limit field contains a threshold priority that a processor uses to determine
whether or not to perform a preemption action when it receives a preemption lAC message. If
the priority of the preempting process (as contained in the lAC message) is equal to or lower
than the priority of the processor's current process or the nonpreempt limit, the processor
rejects the lAC and continues work on its current process. Typically, the nonpreempt-limit
field is set to the middle of the priority range (12 to 10) to prevent a processor from carrying
out process switches to service low-priority preempting processes.

The write-external-priority flag controls whether or not the priority of the currently running
process is written out on the processor's bus. When this bit is set, the current priority is written
out to the bus (in the form of an lAC message) whenever the following things occur: a process
switch, an interrupt not caused by an lAC message, the execution of a modpc instruction
(modify process controls).

The purpose of the write-external-priority mechanism is to keep external agents on the bus
appraised of the priority of the task the processor is currently performing. The agent can then
block lAC messages that are of lower priority. For example, if M82965s are being used in the
system, the M82965 associated with each processor keeps track of the processor's priority by
means of write-external-priority messages from the processor. When one processor sends a
preempt process lAC message to another processor, the M82965 for the receiving processor
checks the priority of the message and rejects it if it is not higher than the current priority of the
processor.

The interim-priority field of the processor controls provides a means of setting the processor's
priority to a high-enough level to avoid being interrupted by lACs. This field is only used
when the write-external-priority function is enabled. When this function is enabled, the
processor writes the value in the interim-priority field out on the bus any time one of the
following instructions are executed: send, sendserv, signal, and schedprcs. This field is
typically set to a high priority value (25 to 30) to insure that these instructions are able to be
completed before the processor is forced to service an lAC message.

15-5

MULTIPLE-PROCESSOR OPERATION

Multiprocessor-Preemption Action

The processor performs the following actions when the multiprocessor-preempt flag is set and
the processor schedules a preempting process at the dispatch port:

1. The processor sends a preempt process lAC message from the mUltiprocessor-preemption
field of the PRCB to the first address given in this field.

2. The M82965 associated with the receiving processor compares the priority of the lAC
with the processor's current priority. If lAC priority is higher, the M82965 sends the lAC
on to the receiving processor and sends an ACK signal back to the sending processor.

3. If the receiving processor is not interrupted or stopped, it checks the dispatch port to
determine the priority of the highest-priority process queued at the port. It then compares
this priority with that of its current process and its nonpreempt-limit field. If the priority
of the process at the dispatch port is higher than that of either the current process or the
nonpreempt limit, the receiving processor suspends its current process and dispatches the
higher-priority process from the dispatch port. If the priority is lower, the receiving
process resumes work on its current process.

4. Upon receiving the ACK signal from the M82965 for the receiving processor, the sending
processor then resumes work on its current process.

5. If in step 2 the priority of the first receiving processor is higher than the lAC priority, the
M82965 sends a NACK signal back to the sending processor indicating that it has rejected
the lAC message.

6. The sending processor then sends the message to the next address in the multiprocessor­
preemption field of the PRCB.

7. If the second receiving processor also rejects the lAC message, the sending processor
sends an lAC back to the first receiving processor, but this time it sets the priority of the
message equal to that of the preempting process.

8. Again, if this message is rejected, the sending processor sends the higher priority message
to the second receiving processor.

9. If the lAC is rejected at both priorities by both receiving processors, the sending processor
abandons its attempt to find a processor to preempt and resumes work on its current
process.

10. If in process suspended in step 3 is also a preempting process, the receiving processor then
performs this mUltiprocessor-preemption action to attempt to get either of two processors
to work on the process.

11. This action is continued until the available processors are servicing the highest-priority
processes.

ATOMIC INSTRUCTIONS

The atomic instructions allow a processor in a multiprocessor system to perform certain read­
modify-write operations on a memory location, with the guarantee that the write will be
completed before another processor is allowed access to the memory location. This capability
is essential for performing operations on certain data structures, where it is important that one
processor does not alter the data structure while another processor is trying to perform a
read-modify-write on it.

15-6

MULTIPLE-PROCESSOR OPERATION

The processor provides two atomic instructions: atomic add (atadd) and atomic modify
(atmod). The atadd instruction adds a 32-bit ordinal value to a 32-bit target value in memory.
The atmod instruction inserts a 32-bit value into a memory location, under the control of a
mask. The mask determines which of the target bits in memory are actually modified.

INTERRUPT HANDLING IN A MULTIPROCESSOR SYSTEM

A useful feature of the interrupt table in a multiprocessor system is that it allows the handling
of interrupts to be shared. In a multiprocessor system, each processor has its own interrupt
stack, but all the processors can share the interrupt table.

If a processor receives an interrupt that is at an equal or lower priority than the process that it is
currently working on, it posts the interrupt as a pending interrupt in the interrupt table. All the
processors check for pending interrupts at certain times as described in Chapter lOin the
section titled "Pending Interrupts." If one processor is not able to handle an interrupt, another
one is likely to be available.

The test-pending-interrupts lAC provides a means for one processor to explicitly request that
another processor check for pending interrupts and handle them if they exist.

15-7

Debugging 16

CHAPTER 16
DEBUGGING

This chapter describes the tracing facilities of the 80960MC processor, which allow the
monitoring of instruction execution.

OVERVIEW OF THE TRACE-CONTROL FACILITIES

The 80960MC processor provides facilities for monitoring the activity of the processor by
means of trace events. A trace event in the 80960MC is a condition where the processor has
just completed executing a particular instruction or type of instruction, or where the processor
is about to execute a particular instruction.

By monitoring trace events, debugging software is able to display or analyze the activity of the
processor or of a program. This analysis can be used to locate software or hardware bugs or
for general system monitoring during the development of system or applications programs.

The typical way to use this tracing capability is to set the processor to detect certain trace
events either by means of the trace-controls word or a set of breakpoint registers. An alternate
method of creating a trace event is with the mark and force mark (fmark) instructions. These
instructions cause an explicit trace event to be generated when the processor detects them in
the instruction stream.

If tracing is enabled, the processor signals a trace fault when it detects a trace event. The fault
handler for trace faults can then call the debugging monitor software to display or analyze the
state of the processor when the trace event occurred.

REQUIRED SOFTWARE SUPPORT FOR TRACING

To use the processor's tracing facilities, software must provide trace-fault handling procedures,
perhaps interfaced with a debugging monitor. Software must also manipulate several control
flags to enable the various tracing modes and to enable or disable tracing in general. These
control flags are located in the system-data structures described in the next section.

TRACE CONTROLS

The following flags or fields control tracing:

• Trace controls

• Trace-enable flag in the process controls

• Trace-fault-pending flag in the process controls

• Trace flag (bit 0) in the return-status field of register rO

• Trace-control flag in the supervisor-stack-pointer field of the system table or a procedure
table

16·1

DEBUGGING

Trace-Controls Word

The trace-controls word is located in the PCB for the current process. When a process is
bound to the processor, the contents of the trace-controls word are cached internally in the
processor.

The trace controls allow software to define the conditions under which trace events are
generated. Figure 16-1 shows the structure of the trace-controls word.

31 23222120191817 7 6 5 4 3 2 1 0

I IIIIIII.I.I.IIIIIIII~I

~ELINSTRUCTION TRACE MODE
BRANCH TRACE MODE

CALL TRACE MODE

RETURN TRACE MODE

'-------PRERETURN TRACE MODE

L-------SUPERVISOR TRACE MODE

L-------BREAKPOINT TRACE MODE

L--------------INSTRUCTION TRACE EVENT

'------------------BRANCHTRACEEVENT
'-----------------CALLTRACEEVENT

'--------------------RETURNTRACEEVENT
L-_________________ PRERETURN TRACE EVENT

L-________________ SUPERVISOR TRACE EVENT

L-___________________ BREAKPOINT TRACE EVENT

.. RESERVED (MUST BE INITIALIZED TO 0)

Figure 16-1: Trace-Controls Word

This word contains two sets of bits: the mode flags and the event flags. The mode flags define
a set of trace modes that the processor can use to generate trace events. A mode represents a
subset of instructions that will cause trace events to be generated. For example, when the
call-trace mode is enabled, the processor generates a trace event whenever a call or branch­
and-link operation is executed. To enable a trace mode, the kernel sets the mode flag for the
selected trace mode in the trace controls. The trace modes are described later in this chapter.

The processor uses the event flags to keep track of which trace events (for those trace modes
that have been enabled) have been detected.

A special instruction, the modify-trace-controls (modtc) instruction, allows software to set or
clear flags in the trace controls. On initialization, all the flags in the processor's internal trace
controls are cleared. The modtc instruction can then be used to set or clear trace mode flags as

16-2

DEBUGGING

required. (This instruction does not affect the trace controls word in the PCB for the current
process.)

Software can access the event flags using the modtc instruction; however, there is no reason to.
The processor modifies these flags as part of its trace-handling mechanism.

Bits 0, 8 through 16, and 24 through 31 of the trace controls are reserved. Software should
initialize these bits to zero and not access or modify them thereafter.

Trace-Enable and Trace-Fault-Pending Flags

The trace-enable flag and the trace-fault-pending flag, located in the process controls (shown in
Figure 13-2), control tracing. The trace-enable flag enables the processor's tracing facilities.
When this flag is set, the processor generates trace faults on all trace events.

Typically, software selects the trace modes to be used through the trace controls. It then sets
the trace-enable flag when tracing is to begin. This flag is also altered as part of some of the
call and return operations that the processor carries out, as described at the end of this chapter.

The trace-fault-pending flag allows the processor to keep track of the fact that an enabled trace
event has been detected. The processor uses this flag as follows. When the processor detects
an enabled trace event, it sets this flag. Before executing an instruction, the processor checks
this flag. If the flag is set, it signals a trace fault. By providing a means of recording the
occurrence of a trace event, the trace-fault-pending flag allows the processor to service an
interrupt or handle a fault other than a trace fault, before handling the trace fault. Software
should not modify this flag.

Trace Control on Supervisor Calls

The trace flag and the trace-control flag allow tracing to be enabled or disabled when a
call-system instruction (calls) is executed that results in a switch to supervisor mode. This
action occurs independent of whether or not tracing is enabled prior to the call.

When a supervisor call is executed (calls instruction that references an entry in a procedure
table with an entry type 11 2), the processor saves the current state of the trace-enable flag
(from the process controls) in the trace flag (bit 0) of the return-status field of register rOo

Then, when the processor selects the supervisor procedure from the procedure table, it sets the
trace-enable flag in the process controls according to the setting in the trace-control flag in the
procedure table (bit 0 of the word that contains the supervisor-stack pointer). When the
trace-control flag is set, tracing is enabled; when it is clear, tracing is disabled.

On a return from the supervisor procedure, the trace-enable flag in the process controls is
restored to the value saved in the return-status field of register rOo

16·3

DEBUGGING

TRACE MODES

The following trace modes can be enabled through the trace controls:

• Instruction trace

• Branch trace

• Call trace

• Return trace

• Preretum trace

• Supervisor trace

• Breakpoint trace

These modes can be enabled individually or several modes can be enabled at once. Some of
these modes overlap, such as the call-trace mode and the supervisor-trace mode. The section
later in this chapter titled "Handling Multiple Trace Events" describes what the processor does
when multiple trace events occur.

The following sections describe each of the trace modes.

Instruction Trace

When the instruction-trace mode is enabled, the processor generates an instruction-trace event
each time an instruction is executed. This mode can be used within a debugging monitor to
single-step the processor.

Branch Trace

When the branch-trace mode is enabled, the processor generates a branch-trace event any time
a branch instruction that branches is executed. A branch-trace event is not generated for
conditional-branch instructions that do not branch. Also, branch-and-link, call, and return
instructions do not cause branch-trace events to be generated.

Call Trace

When the call-trace mode is enabled, the processor generates a call-trace event any time a call
instruction (call, calIx, or calls) or a branch-and-link instruction (bal or balx) is executed. An
implicit call, such as the action used to invoke a fault handler or an interrupt handler, also
causes a call-trace event to be generated.

When the processor detects a call-trace event, it also sets the preretum-trace flag (bit 3 of
register rO) in the new frame created by the call operation or in the current frame if a branch­
and-link operation was performed. The processor uses this flag to determine whether or not to
signal a preretum-trace event on a ret instruction.

16-4

inter DEBUGGING

Return Trace

When the return-trace mode is enabled, the processor generates a return-trace event any time a
ret instruction is executed.

Prereturn Trace

The preretum-trace mode causes the processor to generate a preretum-trace event prior to the
execution of any ret instruction, providing the preretum-trace flag in rO is set. (Preretum
tracing cannot be used without enabling call tracing.)

The processor sets the preretum-trace flag whenever it detects a call-trace event (as described
above for the call-trace mode). This flag performs a preretum-trace-pending function. If
another trace event occurs at the same time as the preretum-trace event, the preretum-trace flag
allows the processor to fault on the non-preretum-trace event first, then come back and fault
again on the preretum-trace event. The preretum trace is the only trace event that can cause
two successive trace faults to be generated between instruction boundaries.

Supervisor Trace

When the supervisor-trace mode is enabled, the processor generates a supervisor-trace event
any time (1) a call-system instruction (calls) is executed, where the procedure table entry is a
supervisor procedure, or (2) when a ret instruction is executed and the return-status field is set
to 0102 or 0112 (Le., return from supervisor mode).

This trace mode allows a debugging program to determine the boundaries of operating-system
calls within the instruction stream.

Breakpoint Trace

The breakpoint-trace mode allows trace events to be generated at places other than those
specified with the other trace modes. This mode is used in conjunction with the mark and
force-mark (fmark) instructions, and the breakpoint registers.

The mark and fmark instructions allow breakpoint-trace events to be generated at specific
points in the instruction stream. When the breakpoint-trace mode is enabled, the processor
generates a breakpoint-trace event any time it encounters a mark instruction. The fmark
causes the processor to generate a breakpoint-trace event regardless of whether the breakpoint­
trace mode is enabled or not.

The processor has two, one-word breakpoint registers, designated as breakpoint 0 and break­
point 1. Using the set-breakpoint-register lAC, one instruction pointer can be loaded into each
register. The processor then generates a breakpoint trace any time it executes an instruction
referenced in a breakpoint register.

16-5

inter DEBUGGING

TRACE-FAULT HANDLER

A fault handler is a procedure that the processor calls to handle faults that occur. The require­
ments for fault handlers are given in Chapter 12 in the section titled "Fault-Handler
Procedures. "

A trace-fault handler has one additional restriction. It must be called with an implicit super­
visor call, and the trace-control flag in the procedure-table entry must be clear. This restriction
insures that tracing is turned off when a trace fault is being handled, which is necessary to
prevent an endless loop.

SIGNALING A TRACE EVENT

To summarize the information presented in the previous sections, the processor signals a trace
event when it detects any of the following conditions:

•

•
•
•
•

An instruction included in a trace-mode group is executed or about to be executed (in the
case of a prereturn trace event) and the trace mode for that instruction is enabled.

An implicit call operation has been executed and the call-trace mode is enabled.

A mark instruction has been executed and the breakpoint-trace mode is enabled.

An fmark instruction has been executed.

An instruction specified in a breakpoint register is executed and the bteakpoint-trace mode
is enabled.

When the processor detects a trace event and the trace-enable flag in the process controls is set,
the processor performs the following action:

1. The processor sets the appropriate trace-event flag in the trace controls. If a trace event
meets the conditions of more than one of the enabled trace modes, a trace-event flag is set
for each trace mode condition that is met.

2. The processor sets the trace-fault-pending flag in the process controls.

NOTE

The processor may set a trace-event flag and the trace-fault-pending flag before it has com­
pleted execution of the instruction that caused the event. However, the processor only handles
trace events in between the execution of instructions.

If, when the processor detects a trace event, the trace-enable flag in the process controls is
clear, the processor sets the appropriate event flags, but does not set the trace-fault-pending
flag.

HANDLING MULTIPLE TRACE EVENTS

If the processor detects multiple trace events, it records one or more of them based on the
following precedence, where 1 is the highest precedence:

16-6

DEBUGGING

1. Supervisor-trace event

2. Breakpoint- (from mark or fmark instruction, or from a breakpoint register), branch-,
. call-, or return-trace event

3. Instruction-trace event

When multiple trace events are detected, the processor may not signal each event; however, it
will signal at least the one with the highest precedence.

TRACE-HANDLING ACTION

Once a trace event has been signaled, the processor determines how to handle the trace event,
according to the setting of the trace-enable and trace-fault-pending flags in the process controls
and to other events that might occur simultaneously with the trace event such as an interrupt or
a non-trace fault.

The following sections describe how the processor handles trace events for various situations.

Normal Handling of Trace Events

Prior to executing an instruction,. the processor performs the following action regarding trace
events:

1. The processor checks the state of the trace-fault pending flag. If this flag is clear, the
processor begins execution of the next instruction. If the flag is set, the processor per­
forms the following actions.

2. The processor checks the state of the trace-enable flag. If the trace-enable flag is clear, the
processor clears any trace event flags that have been set, prior to starting execution of the
next instruction. If the trace-enable flag is set, the processor performs the following
action.

3. The processor signals a trace fault and begins the fault handling action, as described in
Chapter 12.

Prereturn-Trace Handling

The processor handles a prereturn-trace event the same as described above except when it
occurs at the same time as a non-trace fault. Here, the non-trace fault is handled first.

On returning from the fault handler for the non-trace fault, the processor checks the prereturn­
trace flag in register rOo If this flag is set, the processor generates a prereturn-trace event, then
handles it as described above.

Tracing and Interrupt Handlers

When the processor invokes an interrupt handler to service an interrupt, it disables tracing. It
does this by saving the current state of the process controls, then clearing the trace-enable and
trace-fault-pending flags in the current process controls .

. 16·7

inter DEBUGGING

On returning from the interrupt handler, the processor restores the process controls to the state
they were in prior to handling the interrupt, which restores the state of the trace-enable and
trace-fault-pending flags. If these two flags were set prior to calling the interrupt handler, a
trace fault will be signaled on the return from the interrupt handler.

Tracing and Fault Handlers

The processor can invoke a fault handler with either an implicit local call or an implicit
supervisor call. On a local call, the trace-enable and trace-fault-pending flags are neither saved
on the call nor restored on the return. The state of these flags on the return is thus dependent
on the action of the fault handler.

ana supervisor call, the trace-enable and trace-fault-pending flags are saved, as part of the
saved process controls, and restored on the return. So, if these two flags were set prior to
calling the fault handler, a trace fault will be signaled on the return from the fault handler.

NOTE

On a return from an interrupt handler, the trace-fault-pending flag is restored. If this flag is set
as a result of the handler's ret instruction (Le., indicating a return trace event), the detected
trace event is lost.

The action described above is also true on a return from a fault handler, when the fault handler
has been called with an implicit supervisor call.

16-8

Instruction Reference 17

CHAPTER 17
INSTRUCTION REFERENCE

This chapter provides detailed infonnation about each of the instructions for the 80960MC
processor. To provide quick access to infonnation on a particular instruction, the instructions
are listed alphabetically by assembly-language mnemonic. An explanation of the fonnat and
abbreviations used in this chapter is given in the following section.

INTRODUCTION

The infonnation in this chapter is oriented toward programmers who are writing assembly­
language code for the 80960MC processor. The infonnation provided for each instruction
includes the following:

• Alphabetic reference

• Assembly-language mnemonic and name

• Assembly-language fonnat

• Description of the instruction's operation

• Action the instruction carries out when executed (generally presented in the fonn of an
algorithm)

• Faults that can occur during execution

• Assembly-language example

• Opcode and instruction fonnat

• Related instructions

Additional infonnation about the instruction set can be found in the following chapters and
appendices in this manual:

• Chapter 6 - Summary of the instruction set by group and description of the assembly-
language instruction fonnat

• Appendix A - Instruction Quick Reference

• Appendix B - Machine-Level Instruction Fonnats

• Appendix C - Instruction Timing

NOTATION

To simplify the presentation of infonnation about the instructions, a simple notation has been
adopted in this chapter. The following paragraphs describe this notation.

17-1

inter INSTRUCTION REFERENCE

Alphabetic Reference

The instructions are listed alphabetically by assembly-language mnemonic. If several instruc­
tions are related and fall together alphabetically, they are described as a group on a single page.

The reference at the top of each page gives the assembly-language mnemonics for the instruc­
tions covered on that page (e.g., subc). Occasionally, there are so many instructions covered
on the page that it is not practical to give all the mnemonics in the page reference. In these
cases, the name of the instruction group is given in capital letters (e.g., BRANCH or FAULT
IF)

A box around the alphabetic reference (such as I addr, addrl I) indicates that the instruction or

group of instructions are extensions to the 80960 architecture instruction set.

Mnemonic

The Mnemonic section gives the complete mnemonic (in bold-face type) and instruction name
for each instruction covered on the page, for example:

subi Subtract Integer

Format

The Format section gives the assembly-language format of the instruction and the type of
operands allowed. The format is given in two or three lines. The following is an example of a
two line format:

sub* src1 ,
reg/lit

src2,
reg/lit

dst
reg

The first line gives the assembly-language mnemonic (bold-face type) and the operands
(italics). When the format is used for two or more instructions, an abbreviated form of the
mnemonic is used. The" * " sign at the end of the mnemonic indicates that the mnemonic has
been abbreviated.

The operand names are designed to describe the functions of the operands (e.g., src, len, mask).

The second line of the format shows what is allowed to be entered for each operand. The
notation used on this line is as follows:

reg Global (gO ... g15) or local (rO ... r15) register

freg Global (gO ... g15) or local (rO ... r15) register, or floating-point (fpO ...
fp3) register, where the registers contain floating-point numbers

lit Integer or ordinal literal of the range 0 ... 31

flit Floating-point literal of value 1.0 or 0.0

disp Signed displacement ofrange _222 ... (222 - 1)

17-2

INSTRUCTION REFERENCE

mem Address defined with the full range of addressing modes

In some cases, a third line will be added to show specifically what will be in a register or
memory location. For example, it may be useful to know that a register is to contain an
address. The notation used in this line is as follows:

addr Address

efa Effective address

SS Segment selector

Description

The Description section describes what the instruction does and the functions of the operands.
It also gives programming hints when appropriate.

Action

The Action section gives an algorithm written in a pseudo-code that describes in detail what
actions the processor takes when executing the instruction and the precise order of these
actions. The main purpose of this section is to show the possible side effects of the instruction.
The following is an example of the action algorithm for the alterbit instruction:

if (AC.cc and 2#010#) = 0
then dst ~ src and not (2"(bitpos mod 32»;
else dst ~ src or 2"(bitpos mod 32);

end if;

In these action statements, the term AC.cc means the condition-code bits in the arithmetic
controls. The notation 2#value# means that the value enclosed in the "#" signs is in base 2.

Faults

The Faults section lists the faults that can be signaled as the result of execution of the instruc­
tion. Faults listed with all-capital letters refer to a group of faults; faults listed with initial­
capital letters refer to a specific fault.

All instructions can signal a group of general faults which are referred to as STANDARD
FAULTS. The list of standard faults is as follows:

STANDARD FAULTS
Trace Instruction
Trace Process
Process Time Slice
Machine Bad Access
Virtual Memory Segment
Virtual Memory PTD
Virtual Memory PTE

17·3

inter INSTRUCTION REFERENCE

Protection Length
Protection Page Rights

Note that the virtual memory and protection faults listed above can occur on instructions thar
only access registers. Here, they can occur as a result of the memory access to fetch the·
instruction.

The following list shows the various fault groups and the individual faults in each group:

TRACE FAULTS
Instruction Trace
Branch Trace
Call Trace
Return Trace
Preretum Trace
Supervisor Trace
Breakpoint Trace

OPERATION
Invalid Opcode
Invalid Operand

ARITHMETIC
Integer Overflow
Arithmetic Zero-Divide

FLOATING-POINT
Floating Overflow
Floating Underflow
Floating Invalid-Operation
Floating ~ro-Divide
Floating Inexact
Floating Reserved-Encoding

CONSTRAINT
Constraint Range
Invalid SS

VIRTUAL MEMORY
Invalid Segment
Invalid Page-Table-Directory-Entry (PTDE)
Invalid Page-Table-Entry (PTE)

PROTECTION
Segment Length
Page Rights

MACHINE
Bad Access

17·4

inter INSTRUCTION REFERENCE

STRUCTURAL
Control
Dispatch
lAC

TYPE
Type Mismatch
Contents

PROCESS
Time Slice

DESCRIPTOR
Invalid Descriptor

EVENT
Event Notice

Example

The Example section gives an assembly-language example of an application of the instruction.

Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and machine language instruction
format for each instruction, for example:

subi 593 REG

The opcode is given in hexadecimal format.

The machine language format is one of four possible formats: REG, COBR, CTRL, and
MEM. Refer to Appendix B for more information on the machine-language instruction for­
mats.

See Also

The See Also section gives the mnemonics of related instructions, which can then be looked up
alphabetically in this chapter for comparison. For instructions that are grouped on one page
(such as addr and addrl), only the first mnemonic is given.

INSTRUCTIONS

This section contains reference information on the processor's instructions. It is arranged
alphabetically by instruction or instruction group.

17-5

inter

addc

Mnemonic: ad de

Format: adde

INSTRUCTION REFERENCE

Add Ordinal With Carry

src1 ,
reg/lit

src2,
reg/lit

dst
reg

Description: Adds the src2 and srcJ values, and bit 1 of the condition code (used here as a
carry in), and stores the result in dst. If the ordinal addition results in a carry,
bit 1 of the condition code is set; otherwise, bit 1 is cleared. If integer
addition results in an overflow, bit 0 of the condition code is set; otherwise,
bit 0 is cleared. Regardless of the results of the addition, bits 0 and 1 of the
arithmetic controls are always written.

Action:

Faults:

Example:

Opcode:

See Also:

The addc instruction can be used for either ordinal or integer arithmetic. The
instruction does not distinguish between ordinal and integer source operands.
Instead, the processor evaluates the result for both data types and sets bits 0
and 1 of the condition code accordingly.

An integer overflow fault is never signaled with this instruction.

Let the value of the condition code be xCx.
dst f- src2 + src1 + C;
AC.cc f- 2#OCV#;
C is carry from ordinal addition.
V is 1 if integer addition would have generated an overflow.

STANDARD

Example of double-precision arithmetic
Assume 64-bit source operands
in gO,gl and g2,g3
cmpo 1, 0 # clears Bit 1 (carry bit) of

the AC.cc
addc gO, g2, gO # add low-order 32 bits;

gO f- g2 + gO + Carry Bit
addc gl, g3, gl # add high-order 32 bits;

gl f- g3 + gl + Carry Bit
64-bit result is in gO, gl

ad de 5BO REG

addo, subc

17·6

Mnemonic:

Format:

addi
addo

add*

INSTRUCTION REFERENCE

Add Integer
Add Ordinal

srcl,
reg/lit

src2,
reg/lit

dst
reg

addi, addo

Description: Adds the src2 and src 1 values and stores the result in dst.

Action: dst f-- src2 + srcl;

Faults:

Example:

Opcode:

See Also:

STANDARD

Integer Overflow

addi r4, gS, r9

addi
addo

591
590

addc, addr, subi, subo

Refer to discussion of faults at the begin­
ning of this chapter.

Result is too large for destination fonnat.
This fault is signaled only when execut­
ing the addi instruction and if both of the
following conditions are met: (l) the
integer-overflow mask in the arithmetic­
controls registers is clear and (2) the
source operands have like signs and the
sign of the result operand is different
than the signs of the source operands.

r9 f-- gS + r4

REG
REG

17-7

INSTRUCTION REFERENCE

I addr, addrl I

Mnemonics: addr Add Real
addrl

Format: addr*

Add Long Real

srcl,
freg/flit

src2,
freg/flit

dst
freg

Description: Adds the src2 and srcl values and stores the result in dst.

Src2

Action:

For the addrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when adding various classes
of numbers, assuming that neither overflow nor underflow occurs.

Srcl

.co ·F ·0 +0 +F +co NaN

.co _00 _00 _00 _00 _00 * NaN
·F -00 -F src2 src2 ±For ±O +00 NaN

·0 _00 srcl -0 ±O src1 +00 NaN

+0 _00 srcl ±O +0 srcl +00 NaN

+F _00 ±For ±O src2 src2 +F +00 NaN
+co * +00 +00 +00 +00 +00 NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

F Means finite-real number

'" Indicates floating invalid-operation exception

When the sum of two operands with opposite signs is zero, the result is +0,
except for the round toward -00 mode, in which case, the result is -0. When
zero is added to itself (e.g. srcl + srcl, where srcl is 0), the result retains the
sign of the source.

dst ~ src2 + srcl;

17·8

inter

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

STANDARD

Floating Reserved Encoding

I addr, addrll

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

addrl g6, g8, fp3

addr
addrl

addi, subr

78F
79F

REG
REG

17·9

Result is too large for destination format.

Normalized result is too small for des­
tination format.

Source operands are infinities of unlike
sign.

One or more operands is an SNaN value.

Result cannot be represented exactly in
destination format.

Floating overflow occurred and the over­
flow exception was masked.

#fp3 f- g6,g7 + g8,g9

alterbit

Mnemonic: alterbit

Format: alterbit

INSTRUCTION REFERENCE

Alter Bit

bitpos,
reg/lit

src,
reg/lit

dst
reg

Description: Copies the src value to dst with one bit altered. The bitpos operand specifies
the bit to be changed; the condition code determines the value the bit is to be
changed to. If the condition code is XIX2, the selected bit is set; otherwise,
it is cleared.

Action: if (AC.cc and 2#010#) = 0
then dst ~ src and not (2A(bitpos mod 32));
else dst ~ src or 2A(bitpos mod 32);

end if;

Faults: STANDARD

Example: # assume AC. cc = 010
alterbit 24, g4, g9
g9 ~ g4, with bit 24 set

Opcode: alterbit 58P REG

See Also: check bit, clear bit, notbit, setbit

17-10

inter INSTRUCTION REFERENCE

and, andnot

Mnemonics: and And
andnot And Not

Format: and srcJ, src2, dst
reg/lit reg/lit reg

andnot srcJ, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise AND (and instruction) or AND NOT (andnot
instruction) operation on the src2 and srcl values and stores the result in dst.
Note in the action expressions below, the src2 operand comes first, so that
with the andnot instruction the expression is evaluated as

Action:

Faults:

Example:

Opcode:

See Also:

(src2 andnot (srcl) }

rather than

{srcl andnot (src2) }.

and: dst f- src2 and srcJ;

andnot: dst f- src2 and not (srcJ);

STANDARD

and Ox17, g8, g2
andnot r3, r12, r9

g2 f- g8 AND Ox17

and
andnot

581
582

REG
REG

r9 f- r12 AND NOT r3

nand,nor,not,notand,notor,or,ornot,xnor,xor

17-11

inter

atadd

Mnemonic: atadd

Format: atadd

INSTRUCTION REFERENCE

Atomic Add

srcldst,
reg
addr

src,
reg/lit

dst
reg

Description: Adds the src value (full word) to the value in the memory location specified
with the srcldst operand. The initial value from memory is stored in dst.

Action:

Faults:

Example:

Opcode:

See Also:

The read and write of memory are done atomically (i.e., other processors are
prevented from accessing the word of memory specified with the srcldst
operand until the operation has been completed).

The memory location in srcldst is the address of the first byte (least sig­
nificant byte) of the word. The address is automatically aligned to a word
boundary. (Note that the srcldst operand maps to the srci operand of the
REG machine-code format. Refer to Appendix B for a description of the
REG format.)

tempa +- src/dst and not (3); # force alignment to word boundary
temp +- atomic_read (tempa);
atomic_write (tempa) +- temp + src;
dst +- temp;

STANDARD

at add r8, r2, rll # r8 +- r2 + address r8,
where r8 specifies the
address of a word in

atadd 612

atmod

memory; rll +- initial
value stored at address
r8 in memory

REG

17-12

inter INSTRUCTION REFERENCE

I atanr, atanrll

Mnemonics: atanr Arctangent Real
Arctangent Long Real atanrl

Format: atanr* srel,
freg/flit

sre2,
freg/flit

dst
freg

Description: Calculates the arctangent of the quotient of sre2lsrc1 and stores the result in
dst. The result is returned in radians and is in the range of -1t to +1t, in­
clusive. The sign of the result is always the sign of src2.

Src2

For the atanrl instruction, if the src1 , src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

These instructions are commonly used as part of an algorithm to convert
rectangular coordinates to polar coordinates. They can also be used to imple­
ment the FORTRAN intrinsic functions ATAN and ATAN2. If src1 is the
floating-point literal value + 1.0, then these instructions return a result in the
range of -1t/2 to +1t/2.

The following table gives the range of results for various values of src2 and
src1 , assuming that neither overflow nor underflow occurs.

Srcl

-00 -F -0 +0 +F +00 NaN

-00 -3n/4 -n/2 -n/2 -n/2 -n/2 -n/4 NaN

-F -n -n to -n/2 -n/2 -n/2 -n/2 to-O -0 NaN

-0 -n -n -n -0 -0 -0 NaN

+0 +n +n +n +0 +0 +0 NaN

+F +n +n to +n/2 +n/2 +n/2 +n/2to +0 +0 NaN

+00 +3n/4 +n/2 +n/2 +n/2 +n/2 +n/4 NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

F Means finite-real number.

17-13

INSTRUCTION REFERENCE

I atanr, atanrl I

Action:

Faults:

Example:

Opcode:

dst f- arctan (src2/srcl);

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Underflow

Floating Invalid Operation

Floating Inexact

Result is too small for destination format.

One or more operands are an SN aN
value.

Result cannot be represented exactly in
destination format.

atanrl g8, g10, fp3 # fp3 f-
arctan (g10,gll/g8,g9)

atanrl 1.0, gO, gO # gO,gl f- arctan (gO,gl)

atanr
atanrl

680
690

REG
REG

See Also: tanr

17-14

Mnemonic: atmod

Format: atmod

INSTRUCTION REFERENCE

Atomic Modify

src,
reg
addr

mask,
reg/lit

src!dst
reg

atmod

Description: Copies the srcldst value into the memory location specified in src. The bits
set in the mask operand select the bits to be modified in memory. The initial
value from memory is stored in src/dst.

Action:

Faults:

Example:

Opcode:

See Also:

The read and write of memory are done atomically (i.e., other processors are
prevented from accessing the word of memory specified with the srcldst
operand until the operation has been completed).

The memory location in src is the address of the first byte (least significant
byte) of the word to be modified. The address is automatically aligned to a
word boundary.

tempa f--- src and not (3); # force alignment to word boundary
temp f--- atomic_read (tempa);
atomic_write (tempa) f--- (src!dst and mask)

or (temp and not(mask»;
src!dst f--- temp;

STANDARD

atmod g5, g7, glO # g5 f--- g5 masked by g7,
where g5 specifies the
address of a word in

atmod 610

atadd

memory;
glO f--- initial value
stored at address g5
in memory

REG

17-15

b,bx

Mnemonic:

Format:

b
bx

b

bx

INSTRUCTION REFERENCE

Branch
Branch Extended

targ
disp

targ
mem

Description: Branches to the instruction specified with the targ operand. When using the
Intel 80960MC Assembler, the targ operand must be a label, which specifies
the IP of the target instruction.

With the b instruction, the IP specified with the targ operand can be no
farther than _223 to (223 - 4) bytes from the current IP.

The bx instruction performs the same operation as the b instruction except
that the target instruction can be farther than _223 to (223 - 4) bytes from the
current IP. Here, the the targ operand is a memory type, which allows the
full range of addressing modes to be used to specify the IP of the target
instruction. The "IP + displacement" addressing mode allows the instruction
to be IP-relative. Indirect branching can be performed by placing the target
address in a register and then using one of the register-indirect addressing
modes.

Refer to Chapter 5 for a complete discussion of the addressing modes avail­
able with memory-type operands.

NOTE

At the machine level, the b instruction uses the CTRL instruction fonnat.
With this fonnat, the target instruction for the branch is specified by means
of a word-displacement (represented by displacement in the following ac­
tion statement for the b instruction), which can range from _221 to (221 - 1).
To detennine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (Le., multiplies the value by 4).
It then adds the resulting byte displacement to the current IP.

17-16

b,bx

Action:

Faults:

Example:

Opcode:

See Also:

b:

INSTRUCTION REFERENCE

To allow labels to be used in the assembly-language version of the b
instruction, the Intel 80960MC Assembler performs the following calcula­
tion to convert the targ value in an assembly-language instruction to the
displacement value required by the machine-instruction format:

displacement = (targ - IP)/4

For further information about the CTRL instruction format, refer to Appen­
dixB.

IP f- IP + displacement; # resume execution at new IP

bx: IP f- targ; # resume execution at new IP

STANDARD

b xyz # IP f- xyz;

bx 1332 (ip) # IP f- IP + 1332;
this example uses ip-relative
addressing.

b 08 CTRL
bx 84 MEM

bal, balx, BRANCH IF, COMPARE INTEGER AND BRANCH, COM­
PARE ORDINAL AND BRANCH

17-17

inter

bal, balx

Mnemonic:

Format:

bal
balx

bal

balx

INSTRUCTION REFERENCE

Branch And Link
Branch And Link Extended

targ
disp

targ,
mem

dst
reg

Description: Stores the address of the next instruction (the instruction following the bal or
balx instruction) and branches to the instruction specified with the targ
operand. When using the Intel 80960MC Assembler, the targ operand must
be a label, which specifies the IP of the target instruction.

With the bal instruction, the address of the next instruction is stored in
register g14. The targ operand value can be no farther than _223 to (223 - 4)
bytes from the current IP.

The balx instruction performs almost the same operation as the bal instruc­
tion except that the address of the next instruction is stored in dst. With the
balx instruction, the target instruction can be farther than _223 to (223 - 4)
bytes from the current IP. Here, the targ operand is a memory type, which
allows the full range of addressing modes to be used to specify the IP of the
target instruction. The "IP + displacement" addressing mode allows the
instruction to be IP-relative. Indirect branching can be performed by placing
the target address in a register and then using one of the register-indirect
addressing modes.

Refer to Chapter 5 for a complete discussion of the addressing modes avail­
able with memory-type operands.

NOTE
At the machine level, the bal instruction uses the CTRL instruction format.
With this format, the target instruction for the branch is specified by means
of a word-displacement (represented by displacement in the following ac­
tion statement for the bal instruction), which can range from _221 to (221 -
I). To determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the current IP.

17-18

Action:

Faults:

Example:

Opcode:

bal:

INSTRUCTION REFERENCE

bal, balx

To allow labels or absolute addresses to be used in the assembly-language
version of the bal instruction, the Intel 80960MC Assembler perfonns the
following calculation to convert the targ value in an assembly-language
instruction to the displacement value required by the machine instruction
format:

displacement = (targ - IP)/4

For further information about the CTRL instruction format, refer to Appen­
dix B.

014 ~ IP + 4; # destination next IP is always g14
IP ~ IP + targ; # resume execution at the new IP

balx: dst ~ IP + inst length; # instruction length
is 4 or 8 bytes

IP ~ targ; # resume execution at the new IP

STANDARD

bal xyz # IP ~ xyz;

balx (g2), g4 # IP ~ (g2);

bal
balx

OB
85

address of return instruction
is stored in g4; example of
indirect addressing.

CTRL
MEM

See Also: b, bx

17-19

inter

bbc,bbs

Mnemonic:

Format:

bbc
bbs

bb*

INSTRUCTION REFERENCE

Check Bit and Branch If Clear
Check Bit and Branch If Set

bitpos,
reg/lit

src,
reg

targ
disp

Description: Checks the bit in src (designated by bitpos) and sets the condition code in the
arithmetic controls according to the value found. The processor then per­
forms a conditional branch to the instruction specified with the targ operand,
according on the state of the condition code. When using the Intel 80960MC
Assembler, the targ operand must be a label, which specifies the IP of the
target instruction.

For the bbc instruction, if the selected bit in src is clear, the processor sets
the condition code to 0102 and branches to the instruction specified with the
targ operand; otherwise, it sets the condition code to 0002 and goes to the
next instruction.

For the bbs instruction, if the selected bit is set, the processor sets the con­
dition code to 0102 and branches to targ; otherwise, it sets the condition code
to 0002 and goes to the next instruction.

The targ operand can be no farther than _212 to (2 12 - 4) bytes from the
current IP.

NOTE

At the machine level, the bbc and bbs instructions use the COBR instruc­
tion format. With this format, the target instruction for the branch is
specified by means of a word-displacement (represented by displacement in
the following action statement), which can range from _2 10 to (2 10 - 1). To
determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the current IP.

To allow labels to be used in the assembly-language versions of the bbc
and bbs instructions, the Intel 80960MC Assembler performs the following
calculation to convert the targ value in an assembly-language instruction to
the displacement value required by the machine instruction format:

displacement = (targ - IP)/4

For further information about the COBR instruction format, refer to Appen­
dix B.

17-20

inter INSTRUCTION REFERENCE

Action: bbc:

Faults:

Example:

Opcode:

See Also:

if (src and 2A(bitpos mod 32» = 0
then AC.cc f- 2#010#;

IP f- IP + 4 + (displacement * 4);
resume execution at the new IP

else AC.cc f- 2#000#;
IP f- IP + 4; # resume execution at the next IP

end if;

bbs:

if (src and 2A(bitpos mod 32» = 1
then AC.cc f- 2#010#;

IP f- IP + 4 + (displacement * 4);
resume execution at the new IP

else AC.cc f- 2#000#;
IP f- IP + 4; # resume execution at the next IP

end if;

STANDARD

assume bit
bbc

bbc
bbs

chkbit

10, r6,

30
37

10
xyz

of r6 is clear
bit 10 of r6 is
and found clear;
AC.cc f- 010
IP

COBR
COBR

17-21

f- xyz;

bbc,bbs

checked

BRANCH IF

Mnemonics: be
boe
bl
ble
bg
bge
bo
boo

Format: b*

INSTRUCTION REFERENCE

Branch If Equal
Branch If Not Equal
Branch If Less
Branch If Less Or Equal
Branch If Greater
Branch If Greater Or Equal
Branch If Ordered
Branch If Unordered

targ
disp

Description: Branches to the instruction specified with the targ operand, according to the
state of the condition code in the arithmetic controls. When using the Intel
80960MC Assembler, the targ operand must be a label, which specifies the
IP of the target instruction.

For all branch-if instructions except the boo instruction, the processor
branches to the instruction specified with the targ operand, if the logical
AND of the condition code and the mask-part of the opcode is not zero.
Otherwise, it goes to the next instruction.

For the boo instruction, the processor branches to the instruction specified
with targ, if the logical AND of the condition code and the mask-part of the
opcode is zero. Otherwise, it goes to the next instruction.

The targ operand value can be no farther than _223 to (223 - 4) bytes from the
current IP.

NOTE
At the machine level, the branch-if instructions use the CTRL instruction
format. With this format, the target instruction for the branch is specified
by means of a word-displacement (represented by displacement in the
following action statements), which can range from _221 to (221 - 1). To
determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (Le., multiplies the value by 4).
It then adds the resulting byte displacement to the current IP.

17-22

Action:

INSTRUCTION REFERENCE

BRANCH IF

To allow labels to be used in the assembly-language version of the branch­
if instructions, the Intel 80960MC Assembler performs the following cal­
culation to convert the targ value in an assembly-language instruction to the
displacement value required by the machine instruction format:

displacement = (targ - IP)/4

For further information about the CTRL instruction format, refer to Appen­
dix B.

The following table shows the condition-code mask for each instruction:

Instruction Mask Condition

bno 000 Unordered

bg 001 Greater

be 010 Equal

bge 011 Greater or equal

bl 100 Less

bne 101 Not equal

ble 110 Less or equal

bo 111 Ordered

For the bno instruction (unordered), the branch is taken if the condition code
is equal to 0002.

The mask is in bits 0-2 of the opcode.

For All Instructions Except bno:

if (mask and AC.cc)"* 2#000#
then IP f- IP + displacement; # resume execution at new IP

end if;

bno:

if AC.cc = 2#000#
then IP f- IP + displacement; # resume execution at new IP

end if;

17-23

INSTRUCTION REFERENCE

BRANCH IF

Faults: STANDARD

Example: # assume (AC.cc AND 100) ::;:. a
bl xyz # IP f- xyz;

Opcode: be 12 CTRL
boe 15 CTRL
bl 14 CTRL
ble 16 CTRL
bg 11 CTRL
bge 13 CTRL
bo 17 CTRL
boo 10 CTRL

See Also: b,bx

17·24

Mnemonic: call

Format: call

INSTRUCTION REFERENCE

Call

targ
disp

call

Description: Calls a new procedure. The targ operand specifies the IP of the first instruc­
tion of the called procedure. When using the Intel 80960MC Assembler, the
targ operand must be a label.

In executing this instruction, the processor perfonns a local call operation as
described in Chapter 4 in the section titled "Local Calls." As part of this
operation, the processor allocates a new set of local registers and a new stack
frame for the called procedure. The processor then goes to the instruction
specified with the targ argument and begins execution of the new procedure.

The targ operand can be no farther than _223 to (223 - 4) bytes from the
current IP.

NOTE

At the machine level, the call instruction uses the CTRL instruction format.
With this format, the first instruction of the called procedure is specified by
means of a word-displacement (represented by displacement in the follow­
ing action statement), which can range from _221 to (221 - 1). To determine
the IP of the target instruction, the processor converts this displacement
value to a byte displacement (i.e., multiplies the value by 4). It then adds
the resulting byte displacement to the current IP.

To allow labels to be used in the assembly-language version of the call
instruction, the Intel 80960MC Assembler performs the following calcula­
tion to convert the targ value in an assembly-language instruction to the
displacement value required by the machine instruction format:

displacement = (targ - IP)/4

For further information about the CTRL instruction format, refer to Appen­
dix B.

17·25

inter

call

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

wait for any uncompleted instructions to finish;
temp f- (SP + 63) and not (63); # round to next boundary
RIP f- IP;
if register_secavailable

then allocate as new frame;
else save a registecset in memory at its FP;

allocate as new frame;
local register references now refer to new frame
IP f- IP + displacement;
PFP f- FP;
FP f- temp;
SP f- temp + 64;

STANDARD

call xyz # IP f- xyz

call 09 CTRL

bal, calls, calix

17·26

Mnemonic: calls

Format: calls

INSTRUCTION REFERENCE

Call System

targ
reg/lit

calls

Description: Calls a system procedure. The targ operand gives the number of the proce­
dure being called.

Action:

For this instruction, the processor performs the system call operation
described in Chapter 4 in the section titled "System Calls." The targ operand
provides an index to an entry in the system procedure table. From this entry,
the processor gets the IP of the called procedure.

The procedure called can be either a local procedure or a supervisor proce­
dure, depending on the entry type in the procedure table. If it is a supervisor
procedure, the processor also switches to supervisor mode (if it is not already
in this mode).

As part of this operation, the processor allocates a new set of local registers
and a new stack frame for the called procedure. If the processor switches to
the supervisor mode, the new stack frame is created on the supervisor stack.

if targ > 259 then raise Protection Length Fault;
wait for any uncompleted instructions to finish;
temp_p_e f-- memory (SPTSS, 48 + (4 * targ»;
SPTSS is SS to system procedure table from PRCB
RIP f-- IP;
IP f-- temp_p_e.address; if (temp_p_e.type = local) or
execution_mode = supervisor

then temp f-- (SP + 63) and not(63);
tempRRR f-- 2#000#;

else temp f-- memory (SPTSS, 12); # supervisor call
tempRRR f-- 2#01T#; # T is process_controls.T
execution_mode f-- supervisor;
process_controls.T f-- temp.T;

endif;

17·27

inter

calls

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

if frame_available
then allocate as new frame;
else save a frame in memory at its FP;

allocate as new frame;
local register references now refer to new frame
endif;
PFP f--- FP;
LO.RRR f--- tempRRR;
FP f--- temp;
SP f--- temp + 64;

STANDARD

calls r12 # IP f--- value obtained from

calls 660

bal, call, calix

procedure table for procedure
number given in r12

REG

17-28

Mnemonic: calix

Format: calix

INSTRUCTION REFERENCE

Call Extended

targ
mem

calix

Description: Calls a new procedure. The targ operand specifies the IP of the first instruc­
tion of the called procedure. When using the Intel 80960MC Assembler, the
targ operand must be a label.

Action:

In executing this instruction, the processor performs a local call operation as
described in Chapter 4 in the section titled "Local Calls." As part of this
operation, the processor allocates a new set of local registers and a new stack
frame for the called procedure. The processor then goes to the instruction
specified with the targ argument and begins execution of the new procedure.

This instruction performs the same operation as the call instruction except
that the target instruction can be farther than _223 to (223 - 4) bytes from the
current IP.

The targ operand is a memory type, which allows the full range of address­
ing modes to be used to specify the IP of the target instruction. The "IP +
displacement" addressing mode allows the instruction to be IP-relative. In­
direct calls can be performed by placing the target address in a register and
then using one of the register-indirect addressing modes.

Refer to Chapter 5 for a complete discussion of the addressing modes avail­
able with memory-type operands.

wait for any uncompleted instructions to finish;
temp ~ (SP + 63) and not (63); # round to next boundary
RIP ~IP;
if registecsecavailable

then allocate as new frame;
else save a registecset in memory at its FP;

allocate as new frame;
local register references now refer to new frame
endif;
IP ~ targ;
PFP~FP;

FP~temp;

SP ~ temp + 64;

17·29

calix

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

STANDARD

calIx (g5) # IP ~ (g5), where the address

calix 86

call,calls

in g5 is the address of the new
procedure

MEM

17·30

Mnemonic: chkbit

Format: chkbit

INSTRUCTION REFERENCE

Check Bit

bitpos,
reg/lit

src
reg/lit

chkbit

Description: Checks the bit in src designated by bitpos and sets the condition code accord­
ing to the value found. If the bit is set, the condition code is set to OlO2; if
the bit is clear, the condition code is set to 0002,

Action: if (src and 2A(bitpos mod 32» = 0
then AC.cc f- 2#000#;
else AC.cc f- 2#010#;

end if;

Faults: STANDARD

Example: chkbit 13, g8 # checks bit 13 in g8

Opcode: chkbit 5AE REG

See Also: alterbit, clrbit, notbit, setbit

17·31

INSTRUCTION REFERENCE

I classr, classrl I

Mnemonic:

Format:

classr
classrl

classr*

Classify Real
Classify Long Real

src
freg/flit

Description: Checks the classification of the real number in src and stores the class in
arithmetic-status bits (3 through 6) of the arithmetic controls.

For the cIassrl instruction, if the· src operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the setting of the arithmetic-status bits depending
on the classification of the operand.

AStatus Classification

sOOO Zero

sOOl Denormalized number

sOlO Normal finite number

sOlI Infinity

s100 Quiet NaN

s101 Signaling NaN

sIlO Reserved operand

The "s" bit is set to the sign of the src operand.

Refer to Chapter 7 for a discussion of the different real number classifica­
tions.

17·32

inter

Action:

Faults:

Example:

Opcode:

INSTRUCTION REFERENCE

Sf--- sign_of(src)
if src = a

then arithmetic_status f--- sOOO;
elseif src = denormalized

then arithmetic _status f--- sao I;
elseif src = normal finite

then arithmetic_status f--- sOlO;
elseif src = 00

then arithmetic_status f--- sOlI;
elseif src = QNaN

then arithmetic _status f--- s 100;
elseif src = SNaN

then arithmetic_status f--- sIal;
elseif src = reserved operand

then arithmetic_status f--- sIlO;
end if

\ classr, classtl\

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

None of the floating-point exceptions can be raised.

classrl g12

classr
classrl

68F
69F

classifies long real in g12,g13

REG
REG

17·33

clrbit

Mnemonic: clrbit

Format: clrbit

INSTRUCTION REFERENCE

Clear Bit

bitpos,
reg/lit

src,
reg/lit

dst
reg

Description: Copies the src value to dst with one bit cleared. The bitpos operand specifies
the bit to be cleared.

Action: dst ~ src and not(2"(bitpos mod 32»;

Faults: STANDARD

Example:

Opcode:

See Also:

clrbit 23, g3, g6 # g6 ~ g3 with bit 23
cleared

clrbit 58C REG

alterbit, chkbit, notbit, setbit

17·34

INSTRUCTION REFERENCE

cmpi, cmpo

Mnemonics: cmpi Compare Integer
Compare Ordinal cmpo

Format: cmp* srcl ,
reg/lit

src2
reg/lit

Description: Compares the src2 and srcl values and sets the condition code according to
the results of the comparison. The following table shows the setting of the
condition code for the three possible results of the comparison.

Action:

Faults:

Example:

Opcode:

See Also:

Condition Comparison
Code

100 srcl < src2

010 srcl = src2

001 srcl > src2

The cmpi instruction followed by one of the branch-if instructions is equiv­
alent to one of the compare-integer-and-branch instructions. The latter
method of comparing and branching produces more compact code; however,
the former method can result in faster running code because it takes advan­
tage of the processor's pipelined architecture. The same is true for the cmpo
instruction and the compare-ordinal-and-branch instructions.

if srcl < src2 then AC.cc f- 2#100#;
else if srcl = src2 then AC.cc f- 2#010#;
else AC.cc f- 2#001#;
end if;

STANDARD

cmpo OxlO, r9

cmpi
cmpo

SAl
SAO

compare values in r9 and OxlO
and set AC.cc

REG
REG

cmpibe, cmpr, cmpdeci, cmpdeco

17·35

INSTRUCTION REFERENCE

cmpdeci, cmpdeco

Mnemonics:

Format:

cmpdeci
cmpdeco

Compare and Decrement Integer
Compare and Decrement Ordinal

cmpdec* src1 ,
reg/lit

src2,
reg/lit

dst
reg

Description: Compares the src2 and src1 values and sets the condition code according to
the results of the comparison. The src2 operand is then decremented by one
and the result is stored in dst.

Action:

Faults:

Example:

Opcode:

See Also:

The following table shows the setting of the condition code for the three
possible results of the comparison.

Condition Comparison
Code

100 src1 < src2

010 src1 = src2

001 src1 > src2

These instructions are intended for use in ending iterative loops. For the
cmpdeci instruction, interger overflow is ignored to allow looping down
through the minimum integer values.

if src1 < src2 then AC.cc ~ 2#100#;
elseif src1 = src2 then AC.cc ~ 2#010#;
elseif src1 > src2 then AC.cc ~2#001#;
end if;
dst ~ src2 - 1; #overflow suppressed for cmpdeci

instruction

STANDARD

cmpdeci 12, g7, gl

cmpdeci
cmpdeco

5A?
5A6

cmpinco, cmpo

REG
REG

17-36

g7 and 12 are compared;
gl ~ g7 - 1

INSTRUCTION REFERENCE

cmpinci, cmpinco

Mnemonics: empinci Compare and Increment Integer
Compare and Increment Ordinal

Format:

empineo

empine* srcl ,
reg/lit

src2,
reg/lit

dst
reg

Description: Compares the src2 and src1 values and sets the condition code according to
the results of the comparison. The src2 operand is then incremented by one
and the result is stored in dst.

Action:

Faults:

Example:

Opcode:

See Also:

The following table shows the setting of the condition code for the three
possible results of the comparison.

Condition Comparison
Code

100 src1 < src2

010 src1 = src2

001 src1 > src2

These instructions are intended for use in ending iterative loops. For the
empinci instruction, integer overflow is ignored to allow looping up through
the maximum integer values.

if srcl < src2 then AC.cc f--- 2#100#;
elseif srcl = src2 then AC.cc f--- 2#010#;
elseif srcl > src2 then AC.cc f--- 2#001 #;
end if;
dst f--- src2 + 1; # overflow suppressed for empinci

instruction

STANDARD

cmpinco r8, g2, g9

empinci 5A5
em pineo 5A4

cmpdeco, cmpo

REG
REG

17-37

g2 and r8 are compared;
g9 f--- g2 + 1

INSTRUCTION REFERENCE

I empor, emporl I

Mnemonics: cmpor Compare Ordered Real
Compare Ordered Long Real cmporl

Format: cmpor* srcl,
freg/flit

src2
freg/flit

Description: Compares the src2 and src1 values and sets the condition code according to
the results of the comparison.

Action:

For the cmporl instruction, if the src1 or src2 operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the setting of the condition code for the four
possible results of the comparison.

Condition Comparison
Code

100 src1 < src2

010 src1 = src2

001 src1 > src2

000 if either src1 or src2
is a NaN

The algorithm for these instructions checks the classification of the operands.
If either is in the NaN class, the condition code is set to 0002 and a floating
invalid-operation exception is raised. The cmpor and cmporl instructions
operate the same as the cmpr and cmprl instructions, except that the latter
instructions do not signal an exception if a NaN value is detected.

If a floating-reserved-encoding fault occurs, the condition code results are
undefined.

if srcl < src2 then AC.cc ~ 2#100#;
else if srcl = src2 then AC.cc ~ 2#010#;
else if srcl > src2 then AC.cc ~ 2#001#;
else AC.cc ~ 2#000#; # indicates one number is a NaN

raise floating invalid operation fault
end if;

17-38

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

STANDARD

I empor, emporll

Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exception can be raised. Whether or not the
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Invalid Operation

cmporl g6, g12

cmpor
cmporl

684
694

One or more operands are a NaN value.

compare value in g12,g13
with value in g6,g7

REG
REG

cmpr, cmpi, BRANCH IF

17·39

INSTRUCTION REFERENCE

I cmpr, cmprl I

Mnemonics: cmpr Compare Real
Compare Long Real cmprl

Format: cmpr* src1,
freg/flit

src2
freg/flit

Description: Compares the src2 and src1 values and sets the condition code according to
the results of the comparison. For the cmprl instruction, if the src1 or src2
operand references a global or local register, this register is the first (lowest
numbered) of two successive registers.

Action:

The following table shows the setting of the condition code for the four
possible results of the comparison.

Condition Comparison
Code

100 src1 < src2

010 src1 = src2

001 src1 > src2

000 if either src1 or src2
is a NaN

The algorithm for these instructions checks the classification of the operands.
If either is in the NaN class, the condition code is set to 0002, but no fault is
raised. The cmpr and cmprl instructions operate the same as the cmpor and
cmporl instructions, except that the latter instructions raise an invalid­
operand exception if a NaN value is detected.

If a floating-reserved-encoding fault occurs, the condition code results are
undefined.

if srcl < src2 then AC.cc f- 2#100#;
elseif srcl = src2 then AC.cc f- 2#010#;
elseif srcl > src2 then AC.cc f- 2#001#;
else AC.cc f- 2#000#; # indicates one number is a NaN
end if;

17-40

inter

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

STANDARD

Floating Reserved Encoding

I cmpr, cmprll

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exception can be raised. Whether or not the
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Invalid Operation One or more operands are an SNaN
value.

cmprl g2, g6 # compare values in g6,g7
and g2,g3

cmpr
cmprl

685
695

REG
REG

cmpor, cmpi, BRANCH IF

17-41

inter INSTRUCTION REJ=ERENCE

Icmpstr I,
Mnem~nic: cmpstr

Format: onpstr

Compare String

srcl,
reg
addr

src2"
reg
addr

len
reg/lit

Description: Compares two strings of equal length and sets the condition code according
to the result. The src1 and src2 operands specify the addresses of the first
byte in each string, and the len operand specifies the string length, in bytes.
The len operand can range from 0 to 232 - 1.

Action:

If the strings are identical, the condition code is set to 0102; if they are not
identical, the condition code is set to 1002 or 001 2, as explained in the next
paragraph.

The two strings are compared in lexicographical order. This means that the
processor compares the strings byte-by-byte according to their ASCII value.
If the byte-by-byte comparison shows that the two strings are identical, the
condition code is set to 0102. When two bytes of different ASCII value are
found, the processor sets the condition code to 0012 if the value of the byte
from the src1 string is greater than the value of the byte from the src2 string
or to 1002 if the byte from the src1 string is less than the byte from the src2
string.

AC.cc f- 2#010#;
for i in 0 .. len - 1 loop

if byte (srcl + i) > byte (src2 + i)
then AC.cc f- 2#001#;

Exit;
elseif byte (srcl + i) < byte (src2 + i)

then AC.cc f- 2#100#;
Exit;

end if;
end loop;

inter

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

I cmpstr I

STANDARD

cmpstr g3, g8, 25
compare strings that are 25 bytes long and
that begin at the addresses given in
registers g3 and g8

cmpstr 603 REG

movstr, movqstr, fill

17-43

INSTRUCTION REFERENCE

COMPARE AND BRANCH

Mnemonics:

Format:

cmpibe
cmpibne
cmpibl
cmpible
cmpibg
cmpibge
cmpibo
cmpibno

cmpobe
cmpobne
cmpobl
cmpoble
cmpobg
cmpobge

cmpib*

cmpob*

Compare Integer And Branch If Equal
Compare Integer And Branch If Not Equal
Compare Integer And Branch If Less
Compare Integer And Branch If Less Or Equal
Compare Integer And Branch If Greater
Compare Integer And Branch If Greater Or Equal
Compare Integer And Branch If Ordered
Compare Integer And Branch If Unordered

Compare Ordinal And Branch If Equal
Compare Ordinal And Branch If Not Equal
Compare Ordinal And Branch If Less
Compare Ordinal And Branch If Less Or Equal
Compare Ordinal And Branch If Greater
Compare Ordinal And Branch If Greater Or Equal

srci, src2, targ
reg/lit reg disp

srci, src2, targ
reg/lit reg disp

Description: Compares the src2 and srcl values and sets the condition code in the arith­
metic controls according to the results of the comparison. If the logical AND
of the condition code and the mask-part of the opcode is not zero, the proces­
sor branches to the instruction specified with the targ operand; otherwise, the
processor goes to the next instruction. When using the Intel 80960MC
Assembler, the targ operand must be a label, which specifies the IP of the
target instruction.

The targ operand can be no farther than _212 to (212 - 4) bytes from the
current IP.

NOTE

At the machine level, the compare-and-branch instructions use the COBR
instruction format. With this format, the target instruction for the branch is
specified by means of a word-displacement (represented by displacement in
the following action statement), which can range from _2 10 to (210 - 1). To
determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the current IP.

17-44

INSTRUCTION REFERENCE

COMPARE AND BRANCH

To allow labels to be used in the assembly-language versions of these
instructions, the Intel 80960MC Assembler performs the following calcula­
tion to convert the targ value in an assembly-language instruction to the
displacement value required by the machine instruction format:

displacement = (targ - IP)/4

For further information about the COBR instruction format, refer to Appen­
dix B.

The following table shows the condition-code mask for each instruction:

Instruction Mask Branch Condition

cmpibno 000 No Condition

cmpibg 001 srcl > src2

cmpibe 010 src1 = src2

cmpibge 011 src1 :2: src2

cmpibl 100 srcl < src2

cmpibne 101 src1 'f::. src2

cmpible 110 src1 <::: src2

cmpibo 111 Any Condition

cmpobg 001 src1 > src2

cmpobe 010 src1 = src2

cmpobge 011 src1 :2: src2

cmpobI 100 src1 < src2

cmpobne 101 srcl 'f::. src2

cmpoble 110 src1 <::: src2

The cmpibo instruction always branches; the cmpibno instruction never
branches.

The functions that these instructions perform can be duplicated with a cmpi
instruction followed by a branch-if instruction, as described in the descrip­
tion of the cmpi instruction in this chapter.

17-45

INSTRUCTION REFERENCE

COMPARE AND BRANCH

Action:

Faults:

Example:

Opcode:

See Also:

if srcl < src2 then AC.cc f- 2#100#;
elseif srcl = src2 then AC.cc f- 2#010#;
else AC.cc f- 2#001#;
end if;
if mask and AC.cc =F- 2#000#

then IP f- IP + 4 + (displacement * 4);
resume execution at the new IP
else IP f- IP + 4;

resume execution at the next IP
end if;

STANDARD

assume g3 < g9
cmpibl g3, g9, xyz # g9 is compared

IP f- xyz.

assume r7 ~ 19
cmpobge r7, 19, xyz # 19 is compared

IP f- xyz.

cmpibe 3A COBR
cmpibne 3D COBR
cmpibl 3C COBR
cmpible 3E COBR
cmpibg 39 COBR
cmpibge 3B COBR
cmpibo 3F COBR
cmpibno 38 COBR

cmpobe 32 COBR
cmpobne 35 COBR
cmpobl 34 COBR
cmpoble 36 COBR
cmpobg 31 COBR
cmpobge 33 COBR

BRANCH IF, cmpi

17·46

with g3;

with r7

INSTRUCTION REFERENCE

concmpi, concmpo

Mnemonics: concmpi Conditional Compare Integer
concmpo Conditional Compare Ordinal

Format: concmp* srcl ,
reg/lit

src2
reg/lit

Description: Compares the src2 and srcl values if bit 2 of the condition code is not set. If
the comparison is performed, the condition code is set according to the
results of the comparison.

Action:

Faults:

Example:

Opcode:

See Also:

These instructions are provided to facilitate bounds checking by means of
two-sided range comparisons (e.g., is A between Band C?). They are
generally used after a compare instruction to test whether a value is in­
clusively between two other values.

The example below illustrates this application by testing whether the value in
g3 is between the values in g5 and g6, where g5 is assumed to be less than
g6. First a comparison (cmpo) of g3 and g6 is performed. If g3 is less than
or equal to g6 (i.e., condition code is either 0102 or 0012), a conditional
comparison (concmpo) of g3 and g5 is then performed. If g3 is greater than
or equal to g5 (indicating that g3 is within the bounds of g5 and g6), the
condition code is set to 0102; otherwise, it is set to 001 2.

if (AC.cc and 2#100#) = 0 then
if srcl ~ src2

then AC.cc f- 2#010;
else AC.cc f- 2#001;

endif;
endif;

STANDARD

cmpo g6, g3 # compares g6 and g3 and
sets AC.cc

concmpo gS, g3 # if AC.cc is not lXX,

concmpi
concmpo

cmpo, cmpi

5A3
5A2

gS is compared with g3

REG
REG

17-47

inter INSTRUCTION REFERENCE

Icondrec I

Mnemonic: condrec Conditional Receive

Format: condrec src, dst
reg reg
SS SS

Description: Attempts to receive a message from a port and sets the condition code to
indicate whether the message was received successfully or not. The src
operand contains the SS of the port.

Action:

The processor must be in the supervisor mode to execute this instruction.

If the message is received successfully, the SS of the message is stored in the
dst operand, the condition code is set to 0102, and execution of the process
continues.

If a message is not available, the condition code is set to 0002 and execution
of the process continues.

This instruction is similar to the receive instruction, except that with the
receive instruction, the process blocks and is suspended if a message is not
available at the port.

x f- atomic_read(port.lock);
if leascsignificant_bit(x) = 1

then atomic_ write(port.lock) f- x;
go to condrec;

else atomic_ write(port.lock) f- x or 1;
if port.Q = 1 or port is empty
then AC.cc f- 2#000#;
else if port is fifo

then dequeue first message;
else dequeue first message from

highest-priority nonempty queue;
dst f- message_SS;
AC.cc f- 2#010#;
x f- atomicJead(port.lock);
atomic_ write(port.lock) f- x xor 1;

endif;

17-48

inter

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

I condrec I

STANDARD

Assume message is available at port
condrec r8, r9
message SS from port specified in
r8 is stored in r9;
AC.cc is set to 2#010#

condrec 646 REG

receive, send

17·49

INSTRUCTION REFERENCE

Icondwait I

Mnemonics: condwait Conditional Wait

Format: condwait src
reg
SS

Description: Attempts to wait on the semaphore and sets the condition code to indicate
whether the wait was completed successfully or not. The src operand con­
tains the SS of the semaphore.

Action:

The processor must be in the supervisor mode to execute this instruction.

The processor checks the semaphore count and the semaphore queue tail. If
the count is non-zero and the queue tail is zero, the count is decremented by
one, the condition code is set to 0102 (indicating a successful wait), and
execution of the process continues.

If the count is zero or the queue tail is non-zero, the condition code is set to
0002 (indicating an unsuccessful wait) and execution of the process con­
tinues.

This instruction is similar to the wait instruction, except that with the wait
instruction, the process is suspended and enqueued on the semaphore if the
semaphore count is zero or the semaphore queue tail is non-zero.

x f- atomic_read (semaphore.lock);
if least_significanchit(x) = 1

then atomic_write (semaphore.lock) f- x;
go to condwait;

else atomic_write (semaphore.lock) f- x or 1;
if (semaphore. count = 0) or (semaphore.tail) '# 0)

then AC.cc f- 2#000#;
else semaphore. count f- semaphore.count - 1;

AC.cc f- 2#010#;
end if;
x f- atomic_read (semaphore.lock);
atomic_write (semaphore.lock) f- x xor 1;

end if

17-50

inter

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

I condwait I

STANDARD

Assume semaphore count is non-zero and no
processes are queued at the semaphore.
condwait g3
successful wait is performed on semaphore
specified with g3; AC.cc set to 2#010#

condwait 668 REG

wait, signal

17-51

inter INSTRUCTION REFERENCE

I cosr, cosrl I

Mnemonics: cosr Cosine Real
Cosine Long Real cosrl

Format: cosr* src,
freg/flit

dst
freg

Description: Calculates the cosine of the value in src and stores the result in dst. The src
value is an angle given in radians. The resulting dst value is in the range -1
to + 1, inclusive.

Action:

For the cosrl instruction, if the src or dst operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when taking the cosine of
various classes of numbers with neither overflow nor underflow.

Src Dst
-00 *
-F -1 to+ 1
-0 +1
+0 +1
+F -1 to + 1

+00 *
NaN NaN

Notes:
F Means finite-real number

Indicates floating invalid-operation exception

In the trigonometric instructions, the 80960MC uses a value for 1t with a
66-bit mantissa which is 2 bits more than are available in the extended-real
format. The section in Chapter 7 titled "Pi" gives this 1t value, along with
some suggestions for representing this value in a program.

dst f- cosine (src);

17-52

inter

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

STANDARD

I cosr, cosrll

Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Invalid Operation The src operand is 00.

Floating Inexact

cosrl r8, g2

cosr
cosrl

68D
69D

sinr, sinrl, tanr, tanrl

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

cosine of value in rB,r9 is
stored in g2,g3

REG
REG

17·53

inter INSTRUCTION REFERENCE

I cpyrsre, cpysre I

Mnemonics: cpysre Copy Sign Real Extended
cpyrsre

Format: cpy*

Copy Reversed Sign Real Extended

srci,
freg/flit

src2,
freg/flit

dst
freg

Description: Copies the absolute value of srcl into dst. For the cpysre instruction, the
sign of src2 is copied to dst; for the cpyrsre instruction, the opposite of the
sign of src2 is copied to dst.

Action:

Faults:

Example:

Opcode:

If the srcl, src2, or dst operand references a global or local register, this
register is the first (lowest numbered) of three successive registers. Also, the
number of this register must be a multiple of four (e.g., gO, g4, g8).

These instructions only operate on values in the extended-real format. The
same operations can be performed on real- and long-real values using the
setbit and clear bit instructions, or a combination of the chkbit and alterbit
instructions.

cpysre: if src2 is positive then dst f- abs (srcl);
else dst f- -abs (srcl);
endif;

cpyrsre: if src2 is negative then dst f- abs (srcl);
else dst f- -abs (srcl);
endif;

STANDARD

Floating Reserved Encoding

cpysre fpO, fpl, fp2

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is a denormalized
value and the normalizing-mode bit in
the arithmetic controls is set.

absolute value from fpO is copied to
fp2; sign from fpl is copied to fp2

cpysre
cpyrsre

6E2
6E3

REG
REG

17-54

inter INSTRUCTION REFERENCE

I cvtilr, cvtir I

Mnemonics: cvtilr Convert Long Integer to Real
Convert Integer to Real cvtir

Format: cvti* src,
reg/lit

dst
freg

Description: Converts the integer in src to a real and stores the result in dst. For the cvtilr
instruction, the src operand references the first (lowest numbered) of two
successive registers. Also, this register must be even numbered (e.g., gO, g2,
g4).

Action:

Faults:

Example:

Opcode:

See Also:

Converting an integer to long real format requires two instructions. First, the
integer is converted to extended real format by using the cvtir or cvtilr
instruction with a floating-point register as a destination. Then the movrl
instruction is used to move the value from the floating-point register to two
global or local registers, causing an explicit conversion to long real format.
(Note that this conversion is always exact.) The example section below
illustrates this conversion.

dst ~ real (src);

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

The following floating-point exception can be raised. Whether or not the
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Inexact Can only be signaled when converting an
integer to real (32-bit) format

Conversion of an integer to a long real value
cvtir g6, fp3
rnovrl fp3, g8 # result stored in g8,g9

cvtir
cvtilr

cvtri, movr

674
675

REG
REG

17·55

inter INSTRUCTION REFERENCE

I cvtri, cvtril, cvtzri, cvtzril I

Mnemonics: cvtri Convert Real To Integer

Format:

cvtril
cvtzri
cvtzril

cvtri*

Convert Real To Integer Long
Convert Truncated Real To Integer
Convert Truncated Real To Long Integer

src,
freg/flit

dst
reg

Description: Converts the real value in src to an integer and stores the result in dst.

Action:

For the cvtril and cvtzril instructions, the dst operand references the first
(lowest numbered) of two successive registers. Also, this register must be
even numbered (e.g., gO, g2, g4).

The non truncated versions of these instructions round according to the cur­
rent rounding mode in the Arithmetic Controls register. The truncated ver­
sions always round toward zero.

Converting a long real value to an integer requires two instructions. First,
the long real value is converted to extended real format by using the movrl
instruction with a floating-point register as a destination. (Note that this
operation is always exact.) Then one of the convert real-to-integer instruc­
tions is used to move the value from the floating-point register to one or two
global or local registers. The example section below illustrates this conver­
sion.

If the magnitude of the result cannot be represented in the destination, an
integer-overflow fault is raised, and the maximum positive or maximum
negative value is stored in the destination (depending on whether the real
value was positive or negative, respectively).

dst f- integer (src);
src is rounded to integer value

17-56

inter

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

STANDARD

I cvtri, cvtril, cvtzri, cvtzrill

Refer to the discussion of faults at the
beginning of this chapter.

The following exception can be raised. Whether or not the exception results
in a fault being raised depends on the state of its associated mask bit in the
arithmetic controls register.

Integer Overflow

Conversion of
movrl g4, fp2

Result is too large for destination format.

long real value to an integer
long-real source is
converted to extended-real
format and moved to fp2

cvtril fp2, g12 # extended-real value is
converted to long integer

cvtri 6CO REG
cvtril 6Cl REG
cvtzri 6C2 REG
cvtzril 6C3 REG

cvtir, movr

17-57

inter

Idaddc I

Mnemonic: daddc

Format: daddc

INSTRUCTION REFERENCE

Decimal Add With Carry

srcJ,
reg

src2,
reg

dst
reg

Description: Adds bits 0 through 3 of src2 and srcl and bit 1 of the condition code (used
here as a carry bit). The result is stored in bits 0 through 3 of dst. If the
addition results in a carry, bit 1 of the condition code is set. Bits 4 through
31 of src2 are copied to dst unchanged.

Action:

Faults:

Example:

Opcode:

See Also:

This instruction is intended to be used iteratively to add binary-coded­
decimal (BCD) values in which the least-significant four bits of the operands
represent the decimal numbers 0 to 9. The instruction asssumes that the least
significant 4 bits of both operands are valid BCD numbers. If these bits are
not valid BCD numbers, the resulting value in dst is unpredictable.

Let the value of the condition code be xCx.
dst f- src2 + srcJ + C;
AC.cc f- 2#OCO#;
C is carry from addition of bits 0 through 3 of operands
Bits 4 - 31 of dst are same as bits 4 - 31 of src2

STANDARD

daddc gS, g9, glO # glO f- g9 + gS + Carry Bit
where arithmetic is

daddc 642

dsubc, dmovt

carried out only on bits 0
through 3 of the operands

REG

17-58

INSTRUCTION REFERENCE

divi, divo

Mnemonic: divi Divide Integer
divo Divide Ordinal

Format: div* srcl, src2, dst
reg/lit reg/lit reg

Description: Divides the src2 value by the srcl value and stores the result in dst.

Action:

Faults:

Example:

Opcode:

See Also:

For the divi instruction, and integer-overflow fault can be signaled.

dst ~ src2 / srcl;

STANDARD

Arithmetic Zero Divide

Refer to discussion of faults at the begin­
ning of this chapter.

The srcl operand is o.
The following fault condition can be raised with the divi instruction.
Whether or not a fault is raised depends on the state of its associated mask bit
in the arithmetic-controls register.

Integer Overflow Result is too large for destination format.

diva r3, r8, r13 # r13 ~ r8/r3

divi
divo

ediv, mulo

74B
70B

REG
REG

17-59

inter INSTRUCTION REFERENCE

I divr, divrl I

Mnemonic:

Format:

divr
divrl

divr*

Divide Real
Divide Long Real

srcl,
freg/flit

src2,
freg/flit

dst
freg

Description: Divides the src2 value by the srcl value and stores the result in dst.

Sre2

Action:

For the divrl instruction, if the src1, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The sign of the result is always the exclusive-OR of the source signs, even if
one or more of the source values is 0, 00, or a NaN.

The following table shows the results obtained when dividing various classes
of numbers, assuming that neither overflow nor underflow occurs.

-00

-F

-0

+0

+F

+00

NaN

Notes:

F
...

......

Srel

-00 -F -0 +0

* +00 +00 -00

+0 +F ** **
+0 ~ +0 * *
-0 -0 * *
-0 -F ** **
* -00 -00 +00

NaN NaN NaN NaN

Means finite-real number.
Indicates floating invalid-operation exception .
Indicates floating zero-divide exception .

dst f- src2 / srcl;

17-60

+F +00 NaN

-00 * NaN

-F -0 NaN

-0 -0 NaN

+0 +0 NaN

+F +0 NaN

+00 * NaN

NaN NaN NaN

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

STANDARD

Floating Reserved Encoding

I divr, divrll

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Zero Divide

Floating Invalid Operation

Floating Inexact

Result is too large for destination format.

Result is too small for destination format.

The srci operand is 0 and the src2
operand is numeric and finite.

Both source operands are 0 or both are
00,

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

divrl glO, gO, fpl # fpl ~ gO,gl / glO,gll

divr
divrl

78B
79B

ediv, muir, mulrl

REG
REG

17-61

inter INSTRUCTION REFERENCE

Idmovt I

Mnemonic: dmovt Decimal Move And Test

Format: dmovt src, dst
reg reg

Description: Copies the src value into dst. The least-significant eight bits of the src value
are tested to determine whether or not they constitute a valid ASCII decimal
(001100002 .. 00111001 2), and the condition code is set accordingly. If the
value is a valid ASCII decimal, the condition code is set to 0002; otherwise,
it is set to 0102.

Action:

Faults:

Example:

Opcode:

See Also:

This instruction is intended to be used iteratively to validate decimal strings.

dst f- src;
if src = 2#0011000# .. 2#00111001#

then AC.cc f- 2#000#;
else AC.cc f- 2#010#;

end if;

STANDARD

dmovt gl, g6 # g6 f- gl;
gl tested for decimal value

dmovt 644 REG

daddc,dsubc

17-62

Mnemonic: dsubc

Format: dsubc

INSTRUCTION REFERENCE

Decimal Subtract With Carry

src1,
reg

src2,
reg

dst
reg

I dsubcl

Description: Subtracts bits 0 through 3 of src2 and srcl and bit 1 of the condition code
(used here as a carry bit). The result is stored in bits 0 through 3 of dst. If
the subtraction results in a carry, bit 1 of the condition code is set. Bits 4
through 31 of src are copied to dst unchanged.

Action:

Faults:

Example:

Opcode:

See Also:

This instruction is intended to be used iteratively to subtract binary-coded­
decimal (BCD) values in which the least-significant four bits of the operands
represent the decimal numbers 0 to 9. The instruction asssumes that the least
significant 4 bits of both operands are. valid BCD numbers. If these bits are
not valid BCD numbers, the resulting value in dst is unpredictable.

Let the value of the condition code be xCx.
dst ~ src2 - src1 - 1 + C;
AC.cc ~ 2#OCO#;
C is carry from subtraction of bits 0 through 4 of operands
Bits 4 - 31 of dst are same as bits 4 - 31 of src2

STANDARD

dsubc r1, r2, r12 # r12 ~ r2 - r1 -1 + Carry
Bit, where arithmetic is

dsubc 643

dad dc, dmovt

carried out only on bits 0
through 3 of the operands

REG

17·63

ediv

Mnemonic: ediv

Format: ediv

INSTRUCTION REFERENCE

Extended Divide

srcJ,
reg/lit

src2,
reg/lit

dst
reg

Description: Divides src2 by src1 and stores the result in dst. The src2 value is a long
ordinal (i.e., 64 bits), which is contained in two adjacent registers. The src2
operand specifies the lower numbered register, which contains the least sig­
nificant bits of the operand. The· src2 operand must be an even numbered
register (i.e., rO, r2, r4, ... or gO, g2, ...). The src1 value is a normal ordinal
(i.e., 32 bits).

Action:

Faults:

Example:

Opcode:

The remainder is stored in the register designated by dst and the quotient is
stored in the next highest numbered register. The dst operand must be an
even numbered register (i.e., rO, r2, r4, ... or gO, g2, ...).

This instruction performs ordinal arithmetic.

If this operation overflows (i.e., the quotient or remainder do not fit in 32-
bits), no fault is raised and the result is undefined.

dst f- (src2 - (src2 / srcJ) * srcJ); # remainder
dst + 1 f- (src2 / srcl); # quotient

STANDARD, Arithmetic Zero-Divide

ediv g3, g4, glO # glO f- remainder of g4,g5/g3
gIl f- quotient of g4,g5/g3

ediv 671 REG

See Also: ernul

17·64

inter

Mnemonic: emul

Format: emul

INSTRUCTION REFERENCE

Extended Multiply

srcJ,
reg/lit

src2,
reg/lit

dst
reg

emul

Description: Multiplies src2 by src1 and stores the result in dst. The result is a long
ordinal (i.e., 64 bits), which is stored in two adjacent registers. The dst
operand specifies the lower numbered register, which receives the least sig­
nificant bits of the result. The dst operand must be an even numbered
register (i.e., rO, r2, r4, ... or gO, g2, ...).

Action:

Faults:

Example:

Opcode:

This instruction performs ordinal arithmetic.

dst f- (srcJ * src2) mod 2A32;
dst + 1 f- (src * src2)/mod 2A32;

STANDARD

ernul r4, r5, g2 # g2,g3 f- r4 * r5

emul 670 REG

See Also: ediv

17-65

inter INSTRUCTION REFERENCE

I expr, exprl I

Mnemonic:

Format:

expr
exprl

exp*

Exponent Real
Exponent Long Real

src,
freg/flit

dst
freg

Description: Calculates an approximation of the exponential value of 2 to the src power,
minus 1, and stores the result in dst. The src value must be within the range
of -0.5 to +0.5, inclusive. If the src value is outside this range, the result is
undefined.

Action:

For the exprl instruction, if the src or dst operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when computing the exponent
of various classes of numbers.

Src Dst

-0.5 to-O -(1IV2)-1 to-O

-0 -0

+0 +0

+0 to +0.5 +Otov'2-1

Notes:
......... Results are unpredictable

dst f- (2Asrc) - 1;

17-66

inter

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

STANDARD

I expr, exprll

Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Underflow

Floating Invalid Operation

Result is too small for destination format.

One or more operands are an SNaN
value.

Floating Inexact Result cannot be represented exactly in
destination format.

y = 2 Ax (y and x in gO)
uses identity
2AX 2 A(I+f)
= 2AI * ((2Af - 1)+1)
where: I integer, -0.5 <= f <= +0.5
assumes round-to-nearest
does not handle infinities or NaNs
_pow2x:

expr
exprl

scaler. logr

roundr
subr
expr
addr
cvtri
scaler

689
699

gO,fpO
fpO,gO,gO
gO,gO
o f1 . 0, gO, gO
fpO,gl
gl,fpO,gO

REG
REG

17·67

I in fpO
f in gO

inter

extract

Mnemonic: extract

Format: extract

INSTRUCTION REFERENCE

Extract

bitpos,
reg/lit

len,
reg/lit

src/dst
reg

Description: Shifts a specified bit field in srcldst right and fills the bits to the left of the
shifted bit field with zeros. The bitpos value specifies the least significant bit
of the bit field to be shifted, and the len value specifies the length of the bit
field.

Action: src/dst f- (src/dst / 2"(bitpos mod 32»
and (2"len - 1);

Faults: STANDARD

Example: extract 5, 12, g4 # g4 f- g4 with bits 5
through 16 shifted right

Opcode: extract 651 REG

See Also: modify

17-68

Mnemonic: faulte
faultne
faultl
faultle
faultg
faultge
faulto
faultno

INSTRUCTION REFERENCE

Fault If Equal
Fault If Not Equal
Fault If Less
Fault If Less Or Equal
Fault If Greater
Fault If Greater Or Equal
Fault If Ordered
Fault If Unordered

FAULT IF

Format: fault*

Description: Raises a constraint-range fault if the logical AND of the condition code and
the mask-part of the opcode is not zero.

Action:

The following table shows the condition-code mask for each instruction:

Instruction Mask Condition

faultno 000 Unordered

faultg 001 Greater

faulte 010 Equal

faultge 011 Greater or equal

faultl 100 Less

faultne 101 Not equal

faultle 110 Less or equal

faulto 111 Ordered

For the faultno instruction (unordered), the fault is raised if the condition
code is equal to 2#000#.

For all instructions except faultno:

if (mask and AC.cc) *" 2#000#
then raise constraint-range fault;

end if;

faultno:

if AC.cc = 2#000#
then raise constraint-range fault;

end if;

17-69

FAULT IF

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

STANDARD, Constraint Range

assume AC.cc AND 110 # 000
faultle
Constraint Range Fault is generated

faulte lA CTRL
faultne ID CTRL
faultl lC CTRL
faultle IE CTRL
faultg 19 CTRL
faultge 1B CTRL
faulto IF CTRL
faultno 18 CTRL

be, teste

17-70

Format: fill

Mnemonic: fill

INSTRUCTION REFERENCE

dst
reg
addr

Fill String

value
reg/lit

len
reg/lit

Description: Fills a string in memory with repeated copies of the word value given in
value. The dst operand specifies the address of the first byte of the string,
and the len operand specifies the length of the string in bytes.

Action: for i in 0 .. (len/4) - 1 loop

Faults:

Example:

Opcode:

See Also:

word (dst + i) f- value;
end loop;
case len rem 4 is

when 0: null;
when 1: byte (dst + len - 1) f- value;
when 2: halfword(dst + len - 2) f- value;
when 3: halfword(dst + len - 3) f- value;

byte (dst + len - 1) f- value/65536;
end case;

STANDARD

fill g2, g8, g3 # fills string beginning at
address g2 with word value
in g8; string length given
in g3

fill 617 REG

cmpstr

17-71

INSTRUCTION REFERENCE

flushreg

Mnemonic: flush reg Flush Local Registers

Format: flushreg

Description: Copies the contents of all the cached local-register sets into their associated
register-save areas in the procedure stack. The contents of all the local­
register sets except for the current set are then marked as invalid. On a
return, the local registers for the frame being returned to are then loaded from
the stack.

Action:

Faults:

Example:

Opcode:

See Also:

This operation is also carried out when the save process (saveprcs) instruc­
tion is executed, although the saveprcs instruction also updates additional
process specific information.

The flushreg instruction is provided to allow a compiler or applications
program to circumvent the normal call/return mechanism of the processor.
For example, a compiler may need to back up several frames in the stack on
the next return, rather than using the normal return mechanism that returns
one frame at a time. Here, the compiler uses the flushreg instruction to
update the stack with the current states of the saved register sets. The
compiler can then return to any frame in the stack without losing the contents
of the saved local-register sets. To return to a frame other than the frame
directly below the current frame, the compiler merely modifies the PFP in
register rO of the current frame to point to the frame that it wishes to return
to.

Each register set except the current set is flushed to its associated stack frame
in memory and marked as purged, meaning that they will be reloaded from
memory if and when they become the current local register set.

STANDARD

flushreg

flushreg 66D REG

saveprcs

17-72

INSTRUCTION REFERENCE

fmark

Mnemonic: fmark Force Mark

Format: fmark

Description: Generates a breakpoint trace-event. This instruction causes a breakpoint
trace-event to be generated, regardless of the setting of the breakpoint trace
mode flag, providing the trace-enable bit (bit 0) of the process controls is set.

Action:

Faults:

Example:

Opcode:

See Also:

When a breakpoint trace event is detected, the trace-fault-pending flag (bit
10) of the process controls word and the breakpoint-trace-event flag (bit 23)
of the trace controls are set. Before the next instruction is executed, a trace
fault is generated.

For more information on trace-fault generation, refer to Chapter 12.

if process. trace_enable
then

raise trace breakpoint fault
end if

STANDARD, Breakpoint Trace

ld xyz, r4
addi r4, r5, r6
fmark
Breakpoint trace event is generated at
this point in the instruction stream.

fmark 66C REG

mark

17-73

inter INSTRUCTION REFERENCE

linspacc I

Mnemonic: inspacc Inspect Access

Format: inspacc src dst
reg reg
addr

Description: Loads the effective page representation rights of the byte specified with src
in dst. The src operand is an address contained in a register.

Action:

Faults:

Example:

Opcode:

The page representation rights are contained in a two-bit field (bits 1 and 2)
in the page table entry for the page that contains the selected byte. This field
is loaded into bits 0 and 1 of the dst.

if segment descriptor invalid
raise invalid-segment-descriptor fault

else if offset> segment length
raise segment-length fault

else
dst ~ effective page-representation rights

endif

STANDARD, Invalid Descriptor, Segment Length

inspacc g5 g9 # Loads page representation

inspacc 613

rights of byte specified in g5
into g9

REG

inter

Mnemonic:

Format:

Id
Idob
Idos
Idib
Idis
Idl
Idt
Idq

INSTRUCTION REFERENCE

Load
Load Ordinal Byte
Load Ordinal Short
Load Integer Byte
Load Integer Short
Load Long
Load Triple
Load Quad

src, dst
mem reg

LOAD

Description: Copies a byte or string of bytes from memory into a register or group of
successive registers. The src operand specifies the address of the first byte to
be loaded. The full range of addressing modes may be used in specifying
src. (Refer to Chapter 5 for a complete discussion of the addressing modes
available with memory-type operands.)

Action:

Faults:

Example:

The dst operand specifies a register or the first (lowest numbered) register of
successive registers.

The Idob and Idib, and Idos and Idis instructions load a byte and half word,
respectively, and convert it to a full 32-bit word. The Id, Idl, Idt, and Idq
instructions copy 4, 8, 12, and 16 bytes, respectively, from memory into
successive registers.

For the Idl instruction, dst must specify an even numbered register (e.g., gO,
g2, ... , gI2). For the Idt and Idq instructions, dst must specify a register
number that is a multiple of four (e.g., gO, g4, g8). If the data extends
beyond register g15 or r15 for the Idl, Idt, or Idq instruction, the results are
unpredictable.

dst f- memory (src);

STANDARD

ldl 2456 (r3), rIO # rIO, rll f- value of two
words beginning at offset
2456 plus the address in
r3 in memory

17-75

LOAD

Opcode:

See Also:

INSTRUCTION REFERENCE

Id
Idob
Idos
Idib
Idis
Idl
Idt
Idq

90
80
88
CO
C8
98
AO
BO

MOVE,STORE

MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM

17·76

inter

Mnemonic: Ida

Format: Ida

INSTRUCTION REFERENCE

Load Address

src
mem
efa

dst
reg

Ida

Description: Computes the effective address specified with src and stores it in dst. The
src address is not checked for validity.

Action:

Faults:

Example:

Opcode:

An important application of this instruction is to load a constant longer than
5 bits into a register. (To load a register with a constant of 5 bits or less, the

• move instruction (mov) can be used with a literal as the src operand.)

dst f--- efa (src);

STANDARD

Ida 58 (g9), gl # Computes the effective
address specified with

Ida Ox749, r8

Ida 8C

58 (g9) and stores it in gl

loads the constant Ox749
in r8

MEM

17-77

INSTRUCTION REFERENCE

Iidphy I

Mnemonic: Idpby Load Physical Address

Format: Idpby src, dst
reg reg
addr

Description: Translates the address in src into a physical address and stores the result in
dst. This instruction is provided to convert virtual addresses into physical
addresses.

Action:

Faults:

Example:

Opcode:

The address to be translated must reside in a register. The Ida instruction can
be used to compute an effective virtual address from an address specified
with one of the processor's addressing modes. The Idphy instruction can
then be used to translate this virtual address into a physical address.

dst f- physical address (src)

STANDARD

lda 58 (g9), g3 # Computes the effective
address specified with
58 (g9) and stores it in g3

ldphy g3, r7 # r7 f- physical address
of address specified with g3

ldpby 614 REG

See Also: Ida

17-78

Mnemonic: Idtime

Format: Idtime

INSTRUCTION REFERENCE

Load Process Time

dst
reg

Iidtime I

Description: Loads the elapsed execution time (in units of ticks) of the current process up
until the time of execution of this instruction in dst. The elapsed time is
computed by subtracting the execution time (ET) from the residual time slice
(RTS). Both of these values are cached in the processor.

Action:

Faults:

Example:

Opcode:

At the beginning of a time slice, the ET for the process is always equal to the
actual execution time of the process plus the next time slice (NTS) value
(i.e., the number of ticks in a time slice for that process). The RTS value at
the beginning of a time slice is also equal to the NTS value. As the process
is executed, the processor counts the RTS value down. So the elapsed
execution time of a process at any given time is always ET minus RST.

Refer to the section in Chapter 14 titled "Process Timing" for an additional
discussion of process timing.

dst f- ET - RTS;

STANDARD

ldtime g7

Idtime 673

g7 f- elapsed execution time of
current process

REG

17-79

inter INSTRUCTION REFERENCE

Ilogbnr, logbnrl I

Mnemonic:

Format:

logbnr
logbnrl

logbnr*

Log Binary Real
Log Binary Long Real

src,
freg/flit

dst
freg

Description: Calculates the log2 (src) and stores the integral part of this value (i.e., the
part to the left of the binary point) as a real number in dst. The result of this
operation is an unbiased exponent. When src is a denormalized number, dst
is the unbiased exponent that src would have if the format had unlimited
exponent range.

(The fractional part of log2 (src) is ignored. If the fractional part is needed,
use the logr or logrl instruction.)

This instruction implements the IEEE recommended function 10gb. It is
useful for calculating the order of magnitude of a number.

For the logbnrl instruction, if the src or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when taking the log binary of
various classes of numbers, assuming that neither overflow nor underflow
occurs.

Src Dst

-00 +00
-F ±F
-0 **
+0 **
+F ±F

+00 +00
NaN NaN

Notes:
F Means finite-real number

.... Indicates floating zero-divide exception

17·80

Action:

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

Ilogbnr, logbnrll

Note that the significand of the src operand can be extracted by using the
scaler or scalerl instruction.

dst f- (Iog2 (unbiased exponent (src» - fraction);
the integral part of the unbiased exponent of src
is stored in dst as a biased real

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Underflow

Floating Invalid Operation

Floating Inexact

Floating Zero Divide

logbnrl g12, fp3

logbnr
logbnrl

logr, scaler

68A
69A

Result is too small for destination format.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

The src operand is O.

fp3 f- integral part
of log2 (g12, g13)

REG
REG

17·81

INSTRUCTION REFERENCE

Ilogepr, logeprl I

Mnemonic:

Format:

logepr
logeprl

logepr*

Log Epsilon Real
Log Epsilon Long Real

srci,
freg/flit

src2,
freg/flit

dst
freg

Description: Calculates (src2 * log2 (srcJ + 1), and stores the result in dst.

Src2

For the logeprl instruction, if the srcJ, src2, or dst operand references a
global or local register, this register is the first (lowest numbered) of two
successive registers. Also, this register must be even numbered (e.g., gO, g2,
g4).

The following table shows the results obtained when taking the log epsilon of
various classes of numbers, assuming that neither overflow nor underflow
occurs.

Srel

(1Iv'i).1 to·O ·0 +0 +0 toV2·1 NaN

.00 -00 * * -00 NaN
·F +F +0 -0 -F NaN
·0 +0 +0 -0 -0 NaN

+0 -0 -0 +0 +0 NaN
+F -F -0 +0 +F NaN
+00 +00 * * +00 NaN

NaN NaN NaN NaN NaN NaN
Notes:

F Means finite-real number.
• Indicates floating invalid-operation exception .

This instruction offers optimal accuracy for values of srcJ + 1 close to 1 (i.e.,
for values of srcl close to 0). This expression is commonly found in com­
pound interest and annuity calculations. The result can be simply converted
into a value in another logarithm base by including a scale factor in src2.

17-82

Action:

Faults:

INSTRUCTION REFERENCE

I logepr, logeprll

The following equation is used to calculate the scale factor for a particular
logarithm base, where n is the logarithm base desired for the result stored in
dst:

scale factor = logn 2

The range of srcl is restricted to the following:

l/sqrt (2) :5: srcl + 1 :5: sqrt (2)

When the srcl operand is outside this range, the logr or logrl instruction can
be used with very insignificant loss of accuracy by adding 1.0 to srcl.

dst f- src2 * log2 (src1 + 1);

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

17-83

Result is too large for destination format.

Result is too small for destination format.

The srcl operand is 0 and the src2
operand is 00.

The srcl operand does not fall within the
range defined in the above description
section.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

inter INSTRUCTION REFERENCE

Ilogepr, logeprl I

Example: 10gepr g8, g4, fp2
fp2 ~ g4,g5 * 10g2 (g8,g9 + 1)

Opcode: logepr
logeprl

See Also: logr

681
691

REG
REG

17-84

inter

Mnemonic:

Format:

logr
logrl

logr*

INSTRUCTION REFERENCE

Log Real
Log Long Real

srcl,
freg/flit

src2,
freg/flit

dst
freg

ilogr, logrO

Description: Calculates (src2 * log2 (src1)), and stores the result in dst. (The logbnr and
logbnrl instructions perform this function more efficiently, if only an es­
timate is needed.)

Src2

For the logrl instruction, if the src1, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when taking the log of
various classes of numbers, assuming that neither overflow nor undertlow
occurs.

_00

-F

-0

+0

+F

+00

NaN

Notes:

F

*
**

Srcl
_00 -F -0 +0

* * ** **
* * ** **
* * * *
* * * *
* * ** **
* * ** **

NaN NaN NaN NaN

Means finite-real number.
Indicates floating invalid-operation exception.
Indicates floating zero-divide exception.

+F +00 NaNl --1-----
±oo _00 NaN

±F -00 NaN
----l

±O * NaN ~
±O * N~N __ ~
±F +00 NaN I
±oo +00 NaN I

NaN NaN NaN J

The logr instruction combined with the expr instruction forms the basis for
the power function xY•

17-85

INSTRUCTION REFERENCE

Ilogr, logrl I

Action:

Faults:

Adding 1.0 to a number to be used as the src1 operand will cause infor­
mation to be lost. To perform this function, use the logepr or logeprl
instruction.

These instructions provide a simple method of converting the result of the
log2 arithmetic into a value in another logarithm base by including a scale
factor in src2. The following equation is used to calculate the scale factor for
a particular logarithm base, where n is the logarithm base desired for the
result stored in dst;

scale factor = logn 2

dst f- src2 * log2 (srcl);

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Zero Divide

Floating Invalid Operation

Floating Inexact

17·86

Result is too large for destination format.

Result is too small for destination format.

The src1 operand is 0 and src2 is non­
zero.

The src1 and src2 operands are both O.

The src1 operand IS 00 and the src2
operand is O.

The src1 operand is 1 and the src2
operand is 00.

The src1 operand is negative and non­
zero.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

inter

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

logrl r2, g8, g2
g2,g3 f- g8,g9 * log2(r2,r3)

logr
logrl

expr,logepr

682
692

REG
REG

17·87

Ilogr, logrll

INSTRUCTION REFERENCE

mark

Mnemonic: mark Mark

Format: mark

Description: Generates a breakpoint trace event if the breakpoint trace mode has been
enabled. The breakpoint trace mode is enabled if the trace-enable bit (bit 0)
of the process controls and the breakpoint-trace mode bit (bit 7) of the trace
controls have been set.

Action:

Faults:

Example:

Opcode:

See Also:

When a breakpoint trace event is detected, the trace-fault-pending flag (bit
10) of the process controls and the breakpoint-trace-event flag (bit 23) of the
trace controls are set. Before the next instruction is executed, a trace fault is
generated.

If the breakpoint-trace mode has not been enabled, the mark instruction
behaves like a no-op.

For more information on trace-fault generation, refer to Chapter 12.

if process. trace_enable and breakpoint_trace_flag
then

raise trace breakpoint fault
endif

STANDARD, Breakpoint Trace

Assume that the breakpoint trace mode is
enabled.
ld xyz, r4
addi r4, r5, r6
mark
Breakpoint trace event is generated at
this point in the instruction stream.

mark 66B REG

fmark, modpc, modtc

17·88

Mnemonic: modac

Format: modac

INSTRUCTION REFERENCE

Modify AC

mask,
reg/lit

src,
reg/lit

dst
reg

modac

Description: Reads and modifies the arithmetic controls for the current process. The
processor changes its internally cached arithmetic controls as specified with
mask and src. The src operand contains the value to be placed in the arith­
metic controls and the mask operand specifies the bits that may be changed.
Only the bits set in mask are modified in the arithmetic controls. Once the
arithmetic controls have been changed, their initial state is copied into dst.

Action:

Faults:

Example:

Opcode:

See Also:

This instruction only affects the arithmetic controls cached in the processor.
The arithmetic controls in the PCB for the current process are not affected.

temp t-- AC
AC t-- (src and mask) or

(AC and not (mask));
dst t-- temp;

STANDARD

modac gl, g9, g12 # AC t-- g9, masked by gl
g12 t-- initial value of AC

modac 645 REG

mod pc, modtc

17-89

modi

Mnemonic: modi

Format: modi

INSTRUCTION REFERENCE

Modulo Integer

src1,
reg/lit

src2,
reg/lit

dst
reg

Description: Divides src2 by src1, where both are integers, and stores the modulo
remainder of the result in dst. If the result is nonzero, dst has the same sign
as src1.

Action:

Faults:

Example:

Opcode:

See Also:

dst f- src2 - «src2Isrc1) * src1);
if src2 * src1 < 0

then dst f- dst + src1;
end if;

STANDARD, Arithmetic Zero Divide

modi r9, r2, r5 # r5 f- modulo (r2/r9)

modi 749 REG

div, remi

17-90

Mnemonic: modify

Format: modify

INSTRUCTION REFERENCE

Modify

mask,
reg/lit

src,
reg/lit

srcldst
reg

modify

Description: Modifies selected bits in srcldst with bits from src. The mask operand
selects the bits to be modified: only the bits set in the mask operand are
modified in srcldst.

Action: srcldst ~ (src and mask) or (srcldst and not (mask»;

Faults: STANDARD

Example: modify g8, glO, r4 # r4 ~ glO masked by g8

Opcode: modify 650 REG

See Also: alterbit, extract

17·91

modpc

Mnemonic: modpc

Format: modpc

INSTRUCTION REFERENCE

Modify Process Controls

src,
reg/lit

mask,
reg/lit

srcldst
reg

Description: Reads and modifies the process controls for the current process. The proces­
sor changes its internally cached process controls as specified with mask and
src/dst. The src/dst operand contains the value to be placed in the process
controls and the mask operand specifies the bits that may be changed. Only
the bits set in the mask are modified in the process controls. Once the
process controls have been changed, their initial value is copied into src/dst.
The src operand is a dummy operand that should be set equal to the mask
operand.

Action:

The processor must be in the supervisor mode to modify the process controls
using this instruction. If the mask operand is set to 0, this instruction can be
used to read the process controls, without the processor being in the super­
visor mode.

This instruction only affects the process controls cached in processor. The
process controls in the PCB for the current process are not affected. If the
action of this instruction results in the priority of the current process being
lowered, the interrupt table and dispatch port are checked.

Changing the state, resume, internal state, and trace enable fields of the
process controls can lead to unpredictable behavior, as described in Chapter
13 in the section titled "Changing the Process-Controls Word."

if mask i:- 0
then if process.process_controls.execution_mode i:- supervisor

then raise type-mismatch fault;
end if;
temp ~ process. process_controls;
process. process_controls ~

(mask and srcldst) or
(process.process_controls and not (mask));

srcldst ~ temp;
if temp.priority > process.process_controls.priority

then check_pending_interrupts;
if continue here, no interrupt to do

end if;
else srcldst ~ process.process_controls;

end if;

17·92

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

modpc

STANDARD, Type Mismatch

modpc g9, g9, g8

modpc 655

modac, modtc

process controls f- g8
masked by g9

REG

17·93

inter

modtc

Mnemonic: modtc

Format: modtc

INSTRUCTION REFERENCE

Modify Trace Controls

mask,
reg/lit

src,
reg/lit

dst
reg

Description: Reads and modifies the trace controls for the current process. The processor
changes its internally cached trace controls as specified with mask andsrc.
The src operand contains the value to be placed in the trace controls and the
mask operand specifies the bits that may be changed. Only the bits set in the
mask are modified in the trace controls. Once the trace controls have been
changed, their initial state is copied into dst.

Action:

Faults:

Example:

Opcode:

See Also:

This instruction only affects the trace controls cached in processor. The trace
controls in the PCB for the current process are not affected.

Since bits 8 through 15 and 24 through 31 of the trace-controls word are
reserved, the mask operand is ANDed with OOFFOOFF16 to insure that these
bits are not set in the mask.

The changed trace controls take effect on the first non-branching instruction
fetched from memory. Since instructions are prefetched four at a time, the
trace controls may not take effect for up to the next four instructions ex­
ecuted.

For more information on the trace controls, refer to Chapters 12 and 16.

temp f- process. trace_controls;
tempI f- I6#OOFFOOFF# and mask;
process.trace_controls f-

(tempI and src) or
(process.trace30ntrols and not(templ));

dst f- temp;

STANDARD

modtc g12, glO, g2
trace controls f- glO masked by g12;
previous trace controls stored in g2

modtc 654 REG

modac, modpc

17·94

Mnemonic:

Format:

mov
movl
movt
movq

mov*

INSTRUCTION REFERENCE

Move
Move Long
Move Triple
Move Quad

src,
reg/lit

dst
reg

MOVE

Description: Copies the content of one or more source registers (specified with the src
operand) to one or more destination registers (specified with the dst
operand).

Action:

Faults:

Example:

Opcode:

See Also:

For the movl, movt, and movq instructions, the src and dst operands specify
the first (lowest numbered) register of several successive registers. The src
and dst registers must be even numbered (e.g., gO, g2) for the movl instruc­
tion and an integral multiple of four (e.g., gO, g4) for the movt and movq
instructions.

When the src and dst operands overlap, the value moved is unpredictable.

dst f- src;

STANDARD

movt g8, r4 # r4, r5, r6 f- g8, g9, g10

mov 5CC REG
movl 5DC REG
movt 5EC REG
movq 5FC REG

ld, movr, st

17-95

INSTRUCTION REFERENCE

I movqstr I

Mnemonic:

Format:

movqstr Move Quick String

movqstr dst,
reg
addr

src,
reg
addr

len
reg/lit

Description: Copies a string of bytes from one location in memory to another, where the
source and destination strings are assumed not to overlap. The src operand
specifies the address of the first byte of the source string and the dst operand
specifies the address of the first byte of the destination string. The len
operand specifies the length of the string in bytes and can range from 1 to
232_1.

Action:

Faults:

Example:

Opcode:

See Also:

The src operand and the dst operand each specify a register, which contains
an address.

If the strings overlap, the value copied is not predictable. (Use the movstr
instruction instead.)

for i in 0 .. len - 1 loop
byte (dst + i) ~ byte (src + i);

end loop;

STANDARD

movqstr r9, r2 ,r12 # Copies string beginning
at r2, which is
r12 bytes long, to
string beginning at r9

movqstr 604 REG

cmpstr, fill, movstr

17·96

Mnemonic:

Format:

movr
movrl
movre

movr*

INSTRUCTION REFERENCE

Move Real
Move Long Real
Move Extended Real

src,
freg/flit

dst
freg

I movr, movre, movrll

Description: Copies a real value from one or more source registers (specified with the src
operand) to one or more destination registers (specified with the dst
operand).

Action:

For the movrl instruction, if the src or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. For the movre instruction, if the src or dst operand references a
global or local register, this register is the first (lowest numbered) of three
successive registers.

When copying real numbers between global or local registers and floating­
point registers, conversion between real or long-real format to extended-real
format is performed implicitly. Conversion between real and long-real for­
mats must be done through floating-point registers and requires two instruc­
tions, as illustrated in the example below.

When the movre instruction moves an operand from global or local registers
to a floating-point register, it automatically truncates the most-significant 16
bits of the word in the third register (refer to Figure 7-5). Likewise, when
this instruction is used to move an operand from a floating-point register to
global or local registers, it adds 16 zeros to the third word. The movre
instruction is not a numeric instruction; it merely manipulates bits.

The movr and movrl instructions can cause a floating-point exception to be
raised, which might result in a fault being raised, as is explained in the
section below on faults. The movre instruction can never raise an exception
and thus never faults.

dst f- src;

17·97

INSTRUCTION REFERENCE

I movr, movre, movrl I

Faults:

Example:

Opcode:

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

Result is too large for destination format.

Result is too small for destination format.

Source operand is an SNaN value.

Result cannot be represented exactly in
destination format.

Conversion of real value in g3
to a long real value, which is
stored in g4,g5
movr g3, fp2
movrl fp2, g4

movr
movrl
movre

6C9
6D9
6E9

REG
REG
REG

See Also: mov

17-98

Mnemonic: movstr

Format: movstr

INSTRUCTION REFERENCE

Move String

dst,
reg
addr

src,
reg
addr

len
reg/lit

I movstr I

Description: Copies a string of bytes from one location in memory to another. The src
operand specifies the address of the first byte of the source string and the dst
operand specifies the address of the first byte of the destination string. The
len operand specifies the length of the string in bytes and can range from 1 to
232_1.

Action:

Faults:

Example:

Opcode:

See Also:

The src operand and the dst operand each specify a register, which contains
an address.

If the strings overlap, the movstr algorithm guarantees that no byte of the
source string is overwritten before it is copied into the destination string. If it
is guaranteed that there are no overlaps, the movqstr instruction performs
this operation faster.

if src:::; dst
then

for i in 1 .. len loop
byte (dst + len - i)

f- byte (src + len - i);
end loop;

else
for i in 0 .. len - 1 loop

byte (dst + i) f- byte (src + i);
end loop;

end if;

STANDARD

movstr g5, gl, g9
Copies string, which is g9 bytes long and
begins at address gl, to address g5

movstr 605 REG

cmpstr, fill, movqstr

17·99

INSTRUCTION REFERENCE

muli, mula

Mnemonic:

Format:

muli
mulo

mul*

Multiply Integer
Multiply Ordinal

srcl ,
reg/lit

src2,
reg/lit

dst
reg

Description: Multiplies the src2 value by the src1 value and stores the result in dst.

Action: dst ~ src2 * srcl;

Faults: STANDARD, Integer Overflow

Example:

Opcode:

See Also:

muli r3, r4, r9

muli
mulo

ernul, muIr

741
701

r9 ~ r4 TIMES r3

REG
REG

17-100

INSTRUCTION REFERENCE

I muir, mulrl\

Mnemonic: muir Multiply Real
mulrl Multiply Long Real

Format: mulr* srcl, src2, dst
freg/flit freg/flit freg

Description: Multiplies the src2 value by the src1 value and stores the result in dst.

Src2

For the mulrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The sign of the result is always the exclusive-OR of the source signs, even if
one or more of the source values is 0, 00, or a NaN.

The following table shows the results obtained when multiplying various
classes of numbers together, assuming that neither overflow nor underflow
occurs.

Srcl

-00 -F -0 +0 +F +00 NaN

-00 +00 +00 * * _00 _00 NaN

-F +00 +F +0 -0 -F -00 NaN

-0 * +0 +0 -0 -0 * NaN

+0 * -0 -0 +0 +0 * NaN

+F _00 -F -0 +0 +F +00 NaN

+00 -00 -00 * * +00 +00 NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

F Means finite-real number. .. Indicates floating invalid-operation exception .

When you need to multiply by the power of 2, the scaler and scalerl instruc­
tions can also be used.

17-101

INSTRUCTION REFERENCE

I muir, mulrl I

Action:

Faults:

Examp-Ie:

Opcode:

See Also:

dst f- src2 * src1;

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

mulrl g12, g4, fp2

muir
mulrl

78C
79C

ernUl, rnuli, scaler

REG
REG

17·102

Result is too large for destination format.

Result is too small for destination format.

One source operand is 0 and the other is
00.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

fp2 f- g4,g5 * g12,g13

inter INSTRUCTION REFERENCE

nand

Mnemonic: nand Nand

Format: nand srcl, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NAND operation on the src2 and srci values and stores
the result in dst.

Action: dst +- (not (src2» or (not (srcl»;

Faults: STANDARD

Example: nand g5, r3, r7 # r7 +- r3 NAND g5

Opcode: nand 58E REG

See Also: and,andnot, nor, not, notand,notor,or, ornot, xnor, xor

17·103

nor

Mnemonic: nor

Format: nor

INSTRUCTION REFERENCE

Nor

srcl,
reg/lit

src2,
reg/lit

dst
reg

Description: Performs a bitwise NOR operation on the src2 and src1 values and stores the
result in dst.

Action: dst f- not (src2) and not (srcl);

Faults: STANDARD

Example: nor g8, 28, r5 # r5 f- 28 NOR g8

Opcode: nor 588 REG

See Also: and,andnot,nand,not,notand,notor,or,ornot,xnor,xor

17·104

inter INSTRUCTION REFERENCE

not, notand

Mnemonic: not Not
notand Not And

Format: not src, dst
reg/lit reg

notand srcl, src2, dst
reg/lit reg/lit reg

Description: Perfonns a bitwise NOT (not instruction) or NOT AND (notand instruction)
operation on the src2 and src1 values and stores the result in dst.

Action:

Faults:

Example:

Opcode:

See Also:

not: dst f- not (src);

notand: dst f- (not (src2)) and srcl;

STANDARD

not g2, g4
notand r5, r6, r7

not
notand

58A
584

REG
REG

g4 f- NOT g2
r7 f- NOT r6 AND r5

and, andnot, nand, nor, notor, or, ornot, xnor, xor

17-105

notbit

Mnemonic: notbit

Format: notbit

INSTRUCTION REFERENCE

Not Bit

bitpos,
reg/lit

src,
reg/lit

dst
reg

Description: Copies the src value to dst with one bit toggled. The bitpos operand
specifies the bit to be toggled.

Action: dst f- src xor 2/'(bitpos mod 32);

Faults: STANDARD

Example: notbit r3, r12, r7 # r7 f- r12 with the bit
specified in r3 toggled

Opcode: notbit 580 REG

See Also: aiterbit, chkbit, clrbit, setbit

17-106

inter

Mnemonic: Dotor

Format: Dotor

INSTRUCTION REFERENCE

Not Or

src1,
reg/lit

src2,
reg/lit

dst
reg

notor

Description: Perfonns a bitwise NOT OR operation on the src2 and src1 values and stores
the result in dst.

Action: dst ~ (Dot (src2)) or src1;

Faults: STANDARD

Example: notor g12, g3, g6 # g6 ~ NOT g3 OR g12

Opcode: Dotor 58D REG

See Also: and,andnot,nand,nor,not,notand,or,ornot,xnor,xor

17·107

inter

or,ornot

Mnemonic:

Format:

or
ornot

or

ornot

INSTRUCTION REFERENCE

Or
Or Not

srcl, src2, dst
reg/lit reg/lit reg

srcl, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise OR (or instruction) or aRNOT (ornot instruction) opera­
tion on the src2 and src1 values and stores the result in dst.

Action:

Faults:

Example:

Opcode:

See Also:

or: dst f- src2 or srcl;

ornot: dst f- src2 or not (srcl);

STANDARD

or 14, g9, g3
ornot r3, r8, r11

or
ornot

587
58B

REG
REG

g3 f- g9 OR 14
r11 f- r8 OR NOT r3

and, andnot, nand, nor, not, notand, notor, xnor, xor

17-108

INSTRUCTION REFERENCE

I receive I

Mnemonic: receive Receive

Format: receive src, dst
reg reg
SS SS

Description: Attempts to receive a message from a communications port. The src operand
contains the SS of the port. If the port has enqueued messages, the SS of the
message at the head of the message queue is stored in dst and execution
continues.

Action:

The processor must be in the supervisor mode to execute this instruction.

If the port is empty (i.e., has no messages queued), the process is suspended,
with its IP left pointing to the current instruction. The process is then
enqueued at the port at the tail of the blocked-processes queue.

The receive-blocked process remains blocked until it reaches the head of the
blocked-processes queue and a message is received at the port. This message
is then stored in the PCB of the blocked process, and the process is dequeued
from the communications port and enqueued to its dispatching port.

When the process is again dispatched, the processor resumes the receive
instruction, but this time it reads the message stored in its PCB, rather than
going to the communication port again.

x f-- atomic_read(port.1ock);
if leasCsignificanCbit(x) = 1

then atomic_ write(port.lock) f-- x;
go to receive;

else atomic_ write(port.1ock) f-- x or 1;
if port.Q = 1 or port is empty

then if port is fifo
then enqueue process on port

port.queue_tail_SS f-- process_SS;

17-109

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

I receive I

else enqueue process on port.queue(process.priority);
port.queue_taiCSS(process.priority) ~ process_SS;

x ~ atomic_read(port.lock);
atomic_ write(portJock) ~ x xor 1;
perform process suspension action;

IP continues to point at receive inst
x ~ atomic_read(currencprocess.lock);
atomic_write(currenCprocess.lock) ~ x xor 1;
perform dispatch action;

else if port is fifo
then dequeue first message;
else dequeue first message from highest-priority

nonempty queue;
dst ~ message_SS;
x ~ atomic_read(port.lock);
atomic_write(port.lock) ~ x xor 1;

endif;

STANDARD

receive g8, g3 # receives message from port g8
and store message in g3

receive 656 REG

conrec, send

17·110

INSTRUCTION REFERENCE

remi, remo

Mnemonic: remi Remainder Integer
remo Remainder Ordinal

Format: rem* srcl, src2, dst
reg/lit reg/lit reg

Description: Divides src2 by src1 and stores the remainder in dst. The sign of the result
(if nonzero) is the same as the sign of src2.

Action: dst f- src2 - ((src2 / srcl) * srcl);

Faults:

Example:

Opcode:

See Also:

STANDARD

Integer Overflow

remo r4, r5, r6

remi
remo

remr, modi

748
708

Refer to discussion of faults at the begin­
ning of this chapter.

Result is too large for destination format.
This fault is signaled only when execut­
ing the remi instruction and if both of
the following conditions are met: (1) the
integer-overflow mask in the arithmetic­
controls registers is clear and (2) the
source operands have like signs and the
sign of the result operand is different
than the signs of the source operands.

r6 f- r5 rem r4

REG
REG

17·111

INSTRUCTION REFERENCE

I remr, remrl I

Mnemonic:

Format:

remr
remrl

remr*

Remainder Real
Remainder Long Real

srci,
freg/flit

src2,
freg/flit

dst
freg

Description: Divides src2 by src1 and stores the remainder in dst. The sign of the result
(if nonzero) is the same as the sign of src2.

Src2

For the remrl instruction, if the src1 , src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when computing the
remainder of various classes of numbers, assuming that neither overflow nor
underflow occurs.

Srcl
_00 -F -0 +0 +F +00 NaN

_00 * * * * * * NaN

-F src2 -F or -0 ** ** -F or -0 src2 NaN

-0 -0 -0 * * -0 -0 NaN

+0 +0 +0 * * +0 +0 NaN

+F src2 +For +0 ** ** +For +0 src2 NaN

+00 * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

F Means finite-real number.
Indicates floating invalid-operation exception.

'" '" Indicates floating zero-divide exception.

When the result is 0, its sign is the same as that of src2. When the srcl is 00,

the result is equal to the src2.

The result of this operation is always exact if the destination format is at least
as wide as the src2 and src1.

17-112

inter

Action:

INSTRUCTION REFERENCE

I remr, remrl I

The remainder provided with the remr and remrl instructions is different
from the remainder described in the IEEE floating-point standard. The dif­
ference is related to how the quotient (N) of the expression (src2/src1) is
determined.

As shown below in the action statement, N for the remr and remrl instruc­
tions is the nearest integer value obtained when the exact result (E) of the
expression (src2/src1) is truncated toward zero. N will always be less than
or equal to the absolute value of E.

For the IEEE standard, N is simply the nearest integer value to E. Here, N
may be less than, equal to, or greater than the absolute value of E.

To help determine the IEEE remainder from the result given by the remr and
remrl instructions, the following information about the quotient is given in
the arithmetic-status field in the arithmetic controls:

Arithmetic Meaning
Status Bit

6 Ql, the next-to-Iast quotient bit

5 QO, the last quotient bit

4 QR, the value the next quotient bit
would have if one more reduction were
performed (the "round" bit of the
quotient)

3 QS, set if the remainder after the QR
reduction would be nonzero (the
"sticky" bit of the quotient)

The information can then be used to determine the IEEE standard remainder,
as shown in the example on the next page.

dst f-- src2 - (N * srcl);
where N = truncate (src2/srcl.
Here, (src2/srcl) is truncated
toward zero to the nearest integer.

17·113

inter INSTRUCTION REFERENCE

I remr, remrl I

Faults:

Example:

Opcode:

See Also:

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Zero Divide

Floating Invalid Operation

Floating Inexact

z = ieee rem (x, y)

Result is too large for destination format.

Result is too small for destination format.

The srcl operand is O.

The src2 operand is 00.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

z is in gO,gl; x is in gO,gl; y is in g2,g3
ieee rem:

remrl g2, gO, gO
modac 0, 0, g4
bbc 4, g4, 2f
QR=O, implies gO < y/2 and z=gO
bbs 3, g4, 1f
QR=l,QS=l, implies gO > y/2 and z=gO-y
bbc 5, g4, 2f
QR=l,QS=O,QO=O, implies gO=y/2 and z=gO

1: clrbit 31, g3, g2 # Iyl
subrl g2, gO, gO

2: ret

remr
remrl

remi, modi

683
693

REG
REG

17·114

INSTRUCTION REFERENCE

I resumprcs I

Mnemonic: resumprcs Resume Process

Format: resumprcs src
reg
SS

Description: Switches the processor from one process to another process. The SS of the
new process is specified with the src operand.

Action:

Faults:

Example:

Opcode:

See Also:

The processor must be in the supervisor mode to execute this instruction.

Any state information for the current process that has been cached on the
processor chip, such as the PCB and the stack frames, is discarded (i.e., not
updated in memory, not unlocked). Thus, to save the state of the current
process, the resumprcs instruction should be preceded by a saveprcs in­
struction.

The saveprcs and resumprcs instructions are similar to the save and resume
functions in most UNIX kernels. These instructions allow task (or process)
switching without using the processor's automatic dispatching mechanism.

if src1 is not a SS to a PCB
then raise Type Mismatch Fault;

endif;
perform process-bind action

STANDARD, Type Mismatch

resumprcs r4

resumprcs 664

saveprcs

processor is bound
to process
specified in r4

REG

17·115

inter INSTRUCTION REFERENCE

ret

Mnemonic: ret Return

Format: ret

Description: Returns process control to the calling procedure. The current stack frame
(Le., that of the called procedure) is deallocated and the FP is changed to
point to the stack frame of the calling procedure. Instruction execution is
continued at the instruction pointed to by the RIP in the calling procedure's
stack frame, which is the instruction immediately following the call instruc­
tion.

Action:

As shown in the action statement below, the return status field and prereturn
trace flag determine the action that the processor takes on the return. These
fields are contained in bits 0 through 3 of register rO of the calling
procedure's local registers.

Refer to Chapter 4 for further discussion of the ret instruction.

wait for any uncompleted instructions to finish;
case return_status is

2#000#: FP ~ PFP;
free current registecset;
if registecset (FP) not allocated

then retrieve from memory(FP);
end if;
IP~RIP;

2#001#: x ~ memory(FP-16);
y ~ memory(FP-12);
go to case 000 action;
arithmetic_controls ~ y;
if execution_mode = supervisor

then process_controls ~ x;
end if;

2#010#: if execution_mode * supervisor
then go to case 000 action;
else process_controls.T ~ 0;

execution_mode ~ user;
go to case 000 action;

end if;

17-116

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

2#011#: if execution_mode ;f. supervisor
then go to case 000 action;
else process_controls.T f-- 1;

execution_mode f-- user;
go to case 000 action;

end if;
2#100#: undefined

2#101#: undefined

2#110#: if execution_mode = supervisor
then free current register set;

check_pending_interrupts;
if continue here, no interrupt to do
enter idle state;

else go to case 000 action;
end if;

2#111 #: x f-- memory(FP-16);
y f-- memory(FP-12);
go to case 000 action;
arithmetic_controls f-- y;
if execution_mode = supervisor

then process_controls f-- x;
check_pending_interrupts;

end if;

STANDARD

ret

ret

process control returns to
calling procedure
environment

OA CTRL

call, calls, calix

17·117

ret

inter

rotate

Mnemonic: rotate

Format: rotate

INSTRUCTION REFERENCE

Rotate

len,
reg/lit

src,
reg/lit

dst
reg

Description: Copies src to dst and rotates the bits in the resulting dst operand to the left
(toward higher significance). (The bits shifted off the left end of the word
are inserted at the right end of the word.) The len operand specifies the
number of bits that the dst operand is rotated. The len operand can range
from 0 to 31.

Action:

Faults:

Example:

Opcode:

See Also:

This instruction can also be used to rotate bits to the right. Here, the number
of bits the word is to be rotated right is subtracted from 32 to get the len
operand.

dst f- rotate (len mod 32 (src»

STANDARD

rotate r4, r8, r12

rotate 59D REG

SHIFT

17·118

r12 f- r8
with bits rotated
r4 bits to left

inter

Mnemonic:

Format:

roundr
roundrl

INSTRUCTION REFERENCE

Round Real
Round Long Real

roundr* src, dst
freg freg/flit

I roundr, roundrll

Description: Rounds src to the nearest integral value, depending on the rounding mode,
and stores the result in dst.

Action:

Faults:

Example:

Opcode:

For the roundrl instruction, if the src or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

If the src operand is 00 the result is src. If the src operand is not an integral
value, a floating-inexact exception is raised.

dst f- round_to_integraCvalue (src);

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

roundrl r4, rIO

Result is too large for destination format.

Result is too small for destination format.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

rlO,rll f- r4,r5 rounded

roundr
roundrl

68B
69B

REG
REG

17·119

inter INSTRUCTION REFERENCE

Isaveprcs I

Mnemonic: saveprcs Save Process

Format: saveprcs

Description: Updates the state of the current process in memory by saving that part of the
process state that is cached on the processor chip during the execution of the
process. The part of the process state that is cached includes part of the PCB
and any cached local-register frames. The process is not unlocked and con­
tinues to execute with its cached state.

Action:

Faults:

Opcode:

See Also:

The processor must be in the supervisor mode to execute this instruction.

The saveprcs and resumprcs instructions are similar to the save and resume
functions in most UNIX kernels. These instructions allow task (or process)
switching without using the processor's automatic dispatching mechanism.

The primary function of the saveprcs instruction is to save the state of a
process prior to switching processes using the resumprcs instruction.

if PRCB.processoccontrols.state = process_executing
then perform process-suspension action
else flush any local register sets;

endif;

STANDARD

saveprcs 666 REG

resumprcs

17·120

inter

Mnemonic:

Format:

scaler
scalerl

scaler*

INSTRUCTION REFERENCE

Scale Real
Scale Long Real

srci,
reg/lit

src2,
freg/flit

dst
freg

I scaler, scalerll

Description: Multiplies src2 by 2 to the power of src1 and stores the result in dst. The
src1 operand is an integer; whereas, src2 and dst are reals.

For the scalerl instruction, if the src2 or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when scaling various classes
of numbers, assuming that neither overflow nor underflow occurs.

Src2

-co

-F

-0

+0

+F

+co

NaN

Notes:

F
N

Srcl

-N 0 +N

-co -co -co

-F -F -F

-0 -0 -0

+0 +0 +0

+F +F +F

+00 +00 +co

NaN NaN NaN

Means finite-real number.
Means integer.

In most cases, only the exponent is changed and the mantissa (fraction)
remains unchanged. However, when the src2 operand is a denormalized
value, the mantissa is also changed and the result may tum out to be a
normalized number. Similarly, if overflow or underflow results from a scale
operation, the resulting mantissa will differ from the source's mantissa.

17-121

inter INSTRUCTION REFERENCE

I scaler, scalerl I

Action:

Faults:

Example:

Opcode:

Refer to the sections titled "Floating Overflow Exception" and "Floating
Underflow Exception" in Chapter 7 for further discussion of how overflow
and underflow are handled.

dst f- src2 * (2Asrcl)

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Zero Divide

Floating Invalid Operation

Floating Inexact

scalerl g6, g2, fpO
fpO f- g2,g3 * 2Ag6

scaler
scalerl

677
676

REG
REG

Result is too large for destination format.

Result is too small for destination format.

The src1 operand is O.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

See Also: muir

17-122

Mnemonic: scanbit

Format: scanbit

INSTRUCTION REFERENCE

Scan For Bit

src,
reg/lit

dst
reg

scanbit

Description: Searches the src value for the most-significant set bit (1 bit). If a most­
significant I bit is found, its bit number is stored in dst and the condition
code is set to 0102• If the src value is zero, all l's are stored in dst and the
condition code is set to 0002.

Action: dst ~ 16#FFFFFFFF#;
AC.cc ~ 2#000#;

Faults:

Example:

Opcode:

See Also:

for i in 31..0 reverse loop

end loop;

if (src and 21\i) '* 0
then

end if;

dst~ i;
AC.cc ~ 2#010#;
exit;

STANDARD

assume g8 is nonzero
scanbit g8, glO
glO ~ bit number of
most-significant set bit
in g8; AC.cc ~ 010

scanbit 641 REG

spanbit

17·123

inter

scanbyte

Mnemonic:

Format:

INSTRUCTION REFERENCE

scanbyte Scan Byte Equal

scanbyte src1 ,
reg/lit

src2
reg/lit

Description: Performs a byte-by-byte comparison of src1 and src2 and sets the condition
code to 0102 if any two corresponding bytes are equal. If no corresponding
bytes are equal, the condition code is set to 0002,

Action: if (src1 and 16#000000FF#) = (src2 and 16#000000FF#) or
(srcl and 16#0000FFOO#) = (src2 and 16#0000FFOO#) or
(src1 and 16#00FFOOOO#) = (src2 and 16#00FFOOOO#) or
(srcl and 16#FFOOOOOO#) = (src2 and 16#FFOOOOOO#)

then AC.cc f- 2#010#;
else AC.cc f- 2#000#;

endif;

Faults: STANDARD

Examp~: # assume r9 = Ox11AB1100
scanbyte OxOOAB0011, r9
AC. cc f- 010

Opcode: scanbyte 5AC REG

See Also: cmpstr, fill, movqstr, movstr

17-124

Mnemonic: scbedprcs

Format: scbedprcs

INSTRUCTION REFERENCE

Schedule Process

src
reg
SS

I schedprcs I

Description: Sends a process to its dispatching port. The src operand specifies the SS of
the PCB for the process to be scheduled. If the preempt bit in PCB of the
process is set and if its priority is higher than the currently running process, a
preemption action is initiated. Otherwise, the process is enqueued at the
head of its priority queue at the dispatching port.

Action:

Faults:

Example:

Opcode:

See Also:

The processor must be in the supervisor mode to execute this instruction.

The SS of the dispatching port and the priority of the process are determined
from the process's PCB.

perform unblock action on process specified with src;

STANDARD

schedprcs g3
process specified in g3 is scheduled

scbedprcs 665 REG

sendserv

17·125

/send /

Mnemonic: send

Format: send

INSTRUCTION REFERENCE

Send

dst,
reg
SS

srcl,
reg/lit

src2
reg
SS

Description: Sends a message to a communications port. The src2 operand specifies the
SS of the message being sent and the dst operand specifies the SS of the port
the message is to be sent to.

Action:

The processor must be in the supervisor mode to execute this instruction.

If the port is a priority-type port, the message is handled as follows. If there
are processes enqueued at the port, the message is bound to the process at the
head of the highest priority queue that has queued processes. The process is
then rescheduled at its dispatching port. If there are no processes enqueued
at the port, the message is enqueued at the end of the queue of the priority
specified in the srcl operand. The srcl operand can range from 0 to 31.

If the port is a FIFO port, the message is handled in the same way, except
that the priority operand (srcl) is ignored.

The message is bound to a process by writing the SS of the message in the
receive message field of the process's PCB.

When the process is rescheduled, a preemption action is initiated if the
preempt bit in the process's PCB is set and if the process has a higher
priority than the currently running process.

x f- atomic_read(port.lock);
if leasCsignificancbit(x) = 1

then atomic_ write(port.lock) f- x;
go to send;

else atomic_ write(port.lock) f- x or 1;
ifport.Q = 0

then if port is fifo
then enqueue src2 on port

port.queue_tail_SS f- src2;
else enqueue src2 on port.queue(srcl mod 32);

port.queue_taiCSS(srcl mod 32) f- src2;
x f- atomic_read(port.lock);
atomic_write(port.lock) f- x xor 1;

17·126

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

else if port is fifo
then dequeue first process;
else dequeue first process from highest-priority

nonempty queue;
dequeued_process.received_message ~ src2;
x ~ atomic_read(port.lock);
atomic_ write(port.lock) ~ x xor 1;
perform unblock action on dequeued process;

end if;

STANDARD

send g8, 21, g2
message with the SS given
in g2 is sent to the priority
port with the SS given in g8;
if the port is empty, the
message is queued at
priority queue 21

send 662 REG

condrec, receive

17-127

Isend I

INSTRUCTION REFERENCE

Isendserv I

Mnemonic:

Format:

sendserv Send Service

sendserv src
reg
SS

Description: Suspends the current process and sends the SS of its PCB as a message to the
port specified in src. If the port is a FIFO port, the process SS is queued at
the end of the queue.

Action:

The processor must be in the supervisor mode to execute this instruction.

If the port is a priority port, the process SS is queued at the end of the queue
for its specified priority or given to the highest priority process waiting at the
priority port, if one is available. The priority of the process is determined
from the Process Controls word in the PCB for the process.

perform process suspension action;
x f- atomicJead(port.lock);
if leascsignificant_bit(x) = 1

then atomic_ write(port.lock) f- x;
go to sendserv;

else atomic_write(port.lock) f- (x or 1);
ifport.Q = 0

then if port is fifo
then enqueue currenCprocess as message on port

port.queue_tail_SS f- currencprocess_SS;
else enqueue currenCprocess as message on

port.queue(current_process. priority);
port.queue_tail_SS(currenCprocess.priority) f-

current_process_SS;
x f- atomicJead(port.lock);
atomic_ write(port.lock) f- x xor 1;
x f- atomic_read(current_process.lock);
perform dispatch action;

17-128

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

Isendserv I

else if port is fifo
then dequeue first process;
else dequeue first process from highest-priority

nonempty queue;
dequeued_process.received_message f- currenCprocess.SS;
x f- atomic_read(port.lock);
atomic_ write(port.1ock) f- x xor 1;
x f- atomic_read(current_process.lock);
atomic_write(currenCprocess.lock) f- x xor 1;
perform steps 1 .. 3 of unblock action on dequeued process;
perform dispatch action;

end if;

STANDARD

sendserv r4
process is suspended and sent
to the port with the SS
given in r4

sendserv 663 REG

schedprcs

17·129

INSTRUCTION REFERENCE

setbit

Mnemonic: setbit

Format: setbit

Set Bit

bitpos,
reg/lit

src,
reg/lit

dst
reg

Description: Copies the src value to dst with one bit set. The bitpos operand specifies the
bit to be set.

Action: dst f- src or 2A(bitpos mod 32);

Faults: STANDARD

Example: setbit 15, r9, rl
rl f- r9 with bit 15 set

Opcode: setbit 583 REG

See Also: alter bit, chkbit. clrbit, notbit

17·130

inter INSTRUCTION REFERENCE

SHIFT

Mnemonic: shlo Shift Left Ordinal
shro Shift Right Ordinal
shli Shift Left Integer
shri Shift Right Integer
shrdi Shift Right Dividing Integer

Format: sh* len, src, dst
reg/lit reg/lit reg

Description: Shifts src left or right by the number of bits indicated with the len operand
and stores the result in dst. Bits shifted beyond the register boundary are
discarded. For values of len greater than 32, the processor interpretes the
value as 32.

The shlo instruction shift zeros in from the least-significant bit, and the shro
instruction shifts zeros in from the most-significant bit. These instructions
are equivalent to mulo and divo by the power of 2, respectively.

The shli instruction shifts zeros in from the least-significant bit; if the bits
shifted out are not the same as the sign bit, an overflow fault is generated. If
overflow occurs, the sign of the result is the same as the sign of the src
operand.

The shri instruction performs a conventional arithmetic shift-right operation
by shifting the sign bit in from the most-significant bit. When this instruc­
tion is used to divide an negative integer operand by the power of 2, it
produces an incorrect quotient. (The discarding of the bits shifted out has the
effect of rounding the result toward negative.)

The shrdi instruction is provided for dividing integers by the power of 2.
With this instruction, 1 is added to the result if the bits shifted out are
non-zero and the operand is negative, which produces the correct result for
negative operands.

The shli and shrdi instructions are equivalent to muli and divi by the power
of 2.

17-131

SHIFT

Action:

Faults:

Example:

Opcode:

See Also:

shlo:

shro:

shli:

shri:

shrdi:

INSTRUCTION REFERENCE

if len < 32
then dst ~ sre* 2Alen;
else dst ~ 0;
end if;

if len < 32
then dst ~ sre/2Alen;
else dst ~ 0;
end if;

dst ~ sre* 2A len;

if sre:2: 0
then if len < 32

then dst ~ sre/2A len;
else dst ~ 0;

else if len < 32
then dst ~ (sre - 2Alen + 1)/2Alen;
else dst ~ -1;
end if;

end if;

dst ~ sre/2A len;

STANDARD, Integer Overflow

shli 13, g4, r6
g6 ~ g4 shifted left 13 bits

shlo
shro
shli
shri
shrdi

59C
598
59E
59B
59A

divi, muli, rotate

REG
REG
REG
REG
REG

17·132

Mnemonic: signal

Format: signal

INSTRUCTION REFERENCE

Signal

dst
reg
SS

I signal I

Description: Unblocks (dequeues) a process from the semaphore queue if there are
processes enqueued. If there is no process queued at the semaphore, the
semaphore count is incremented by one. The dst operand gives the SS of the
semaphore being signaled. If a process is dequeued, it is rescheduled at its
dispatching port. The processor must be in the supervisor mode to execute
this instruction.

Action: x ~ atomic_read (semaphore.lock);
if leasCsignificanCbit(x) = 1

then atomic_write (semaphore.lock) ~ x;
go to signal;

else atomic_write (semaphore.lock) ~ x or 1;
if semaphore.tail "# 0

then dequeue first process;
x ~ atomic_read (semaphore.lock);
atomic_write (semaphore.lock) ~ x xor 1;
perform unblock action

on dequeued process;
else semaphore.count ~

semaphore. count + 1;

end if;

x ~ atomic_read (semaphore.lock);
atomic_write (semaphore.lock) ~ x xor 1;

Faults: STANDARD

Example: signal r8

Opcode:

See Also:

semaphore with SS given
in r8 is signaled

signal 66A REG

condwait, wait

17-133

INSTRUCTION REFERENCE

I sinr, sinrl I

Mnemonics: sinr Sine Real
sinrl

Format: sinr*

Sine Long Real

src,
freg/flit

dst
freg

Description: Calculates the sine of src and stores the result in dst. The src value is an
angle given in radians. The resulting dst value is in the range -1 to + 1,
inclusive.

Action:

For the sinrl instruction, if the src or dst operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when taking the sine of
various classes of numbers, assuming that neither overflow nor underflow
occurs.

Src Dst
-00 *
-F -1 to + 1

-0 -0
+0 +0

+F -1 to + 1

+00 *
NaN NaN

Notes:
F Means finite-real number

* Indicates floating invalid-operation exception

In the trigonmetic instructions, the 80960MC uses a value for 1t with a 66-bit
mantissa which is 2 bits more than are available in the extended-real format.
The section in Chapter 7 titled "Pi" gives this 1t value, along with some
suggestions for representing this value in a program.

dst f- sine (src);

17-134

Faults:

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

STANDARD

Floating Reserved Encoding

sinr, sinrl!

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Invalid Operation

Floating Inexact

sinrl g6, gO

The src operand is 00.

One or more operands is an SNaN value.

Result cannot be represented exactly in
destination format.

sine of value in g6,g7
is stored in gO,gl

sinr
sinrl

cosr, tanr

68C
69C

REG
REG

17-135

inter

spanbit

Mnemonic: spanbit

Format: spanbit

INSTRUCTION REFERENCE

Span Over Bit

src,
reg/lit

dst
reg

Description: Searches the src value for the most-significant clear bit (0 bit). If a most­
significant ° bit is found, its bit number is stored in dst and the condition
code is set to 0102' If the src value is all 1 's, all 1 's are stored in dst and the
condition code is set to 0002'

Action: dst f- 16#FFFFFFFF#;
AC.cc f- 2#000#;

FaultS:

Example:

Opcode:

See Also:

for i in 31..0 reverse loop
if (src and 21\i) = 0
then

dst f- i;
AC.cc f- 2#010#;
exit;

end if;
end loop;

STANDARD

assume r2 is not Oxffffffff
spanbit r2 r9
r9 f- bit number of
most-significant clear bit
in r2; AC.cc f- 010

spanbit 640 REG

scanbit

17-136

inter

Mnemonic:

Format:

sqrtr
sqrtrl

sqrtr*

INSTRUCTION REFERENCE

Square Root Real
Square Root Long Real

src,
freg/flit

dst
freg

I sqrtr, sqrtrlj

Description: Calculates the square root of src and stores it in dst.

Action:

For the sqrtrl instruction, if the src or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when taking the square root
of various classes of numbers, assuming that neither overflow nor underflow
occurs.

Src Dst
-00 *
-F *
-0 -0
+0 +0
+F +F
+00 +00

NaN NaN

Notes:

F Means finite-real number
Indicates floating invalid-operation exception

With these instructions, it is not possible to raise a floating overflow or
floating underflow fault unless the src operand is in a floating-point register
and the dst operand is not.

dst f- sqrt (src);

17-137

inter INSTRUCTION REFERENCE

I sqrtr, sqrtrl I

Faults:

Example:

Opcode:

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

sqrtrl g6, fpO
fpO ~ sqrt of g6,g7

sqrtr
sqrtrl

688
698

REG
REG

17-138

Result is too large for destination format.

Result is too small for destination format.

The src operand is less than -0.

The src operand is an SNaN value.

Result cannot be represented exactly in
destination format.

Mnemonic:

Format:

st
stob
stos
stib
stis
stl
stt
stq

st*

INSTRUCTION REFERENCE

Store
Store Ordinal Byte
Store Ordinal Short
Store Integer Byte
Store Integer Short
Store Long
Store Triple
Store Quad

src, dst
reg mem

STORE

Description: Copies a byte or string of bytes from a register or group of registers to
memory. The src operand specifies a register or the first (lowest numbered)
register of successive registers.

Action:

Faults:

Example:

The dst operand specifies the address of the memory location where the byte
or the first byte of a string of bytes is to be stored. The full range of
addressing modes may be used in specifying dst. (Refer to Chapter 5 for a
complete discussion of the addressing modes available with memory-type
operands.)

The stob and stib, and stos and stis instructions store a byte and half word,
respectively, from the low order bytes of the src register. The st, stl, stt, and
stq instructions copy 4, 8, 12, and 16 bytes, respectively, from successive
registers to memory.

For the stt instruction, src must specify an even numbered register (e.g., gO,
g2, ... , gI2). For the stt and stq instructions, src must specify a register
number that is a multiple of four (e.g., gO, g4, g8).

memory (dst) f- src;

STANDARD, Integer Overflow Fault (stib and stis instructions only)

st g2, 1256 (g6)
word beginning at offset
1256 + (g6) f- g2

17-139

inter

STORE

Opcode:

See Also:

INSTRUCTION REFERENCE

st
stob
stos
stib
stis
stl
stt
stq

92
82
8A
C2
CA
9A
A2
B2

LOAD, MOVE

MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM

17-140

Mnemonic: sube

Format: sube

INSTRUCTION REFERENCE

Subtract Ordinal With Carry

srcl,
reg/lit

src2,
reg/lit

dst
reg

subc

Description: Subtracts (src1 - 1) from src2, adds bit 1 of the condition code (used here as
a carry bit), and stores the result in dst. If the ordinal subtraction results in a
carry, bit 1 of the condition code is set.

Action:

Faults:

Example:

Opcode:

This instruction can also be used for integer subtraction. Here, if integer
subtraction results in an overflow, bit 0 of the condition code is set.

The sube instruction does not distinguish between ordinals and integers: it
sets bits 0 and 1 of the condition code regardless of the data type.

Let the value of the condition code be xCx.
dst ~ src2 - (srcl - 1) + C;
AC.cc ~ 2#OCV#;
C is carry from ordinal subtraction.
V is 1 if integer subtraction would have generated
an overflow.

STANDARD

subc g5, g6, g7
g7 ~ g6 - (g5 - 1)
+ Carry Bit

sube 5B2 REG

See Also: ad de

17-141

inter INSTRUCTION REFERENCE

subi, subo

Mnemonic:

Format:

subi
subo

sub*

Subtract Integer
Subtract Ordinal

srcl,
reg/lit

src2,
reg/lit

dst
reg

Description: Subtracts src1 from src2 and stores the result in dst. The binary results from
these two instructions are identical. The only difference is that subi can
signal an integer overflow.

Action: dst f- src2 - srcl;

Faults: STANDARD, Integer Overflow (subi instruction only)

Example:

Opcode:

See Also:

subi g6, g9, g12

subi
subo

593
592

addi, addr, subc, subr

g12 f- g9 - g6

REG
REG

17-142

inter

Mnemonic:

Format:

subr
subrl

subr*

INSTRUCTION REFERENCE

Subtract Real
Subtract Long Real

srci,
freg/flit

src2,
freg/flit

dst
freg

I subr, subrll

Description: Subtracts src1 from src2 and stores the result in dst.

Src2

For the subrl instruction, if the src1 , src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when subtracting various
classes of numbers, assuming that neither overflow nor underflow occurs.

Srcl

.00 ·F ·0 +0 +F +00 NaN

.00 * _00 _00 _00 -00 -00 NaN

-F +00 ±For ±O src2 src2 -F -00 NaN

·0 +00 srcl ±O -0 srcl _00 NaN

+0 +00 srcl +0 ±O srcl _00 NaN

+F +00 +F src2 src2 ±For± 0 _00 NaN

+00 +00 +00 +00 +00 +00 * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Notes:

F Means finite-real number.
... Indicates floating invalid-operation exception .

When the difference between two operands of like sign is zero, the result is
+0, except for the round toward -00 mode, in which case the result is -0. This
instruction also guarantees that +0 - (-0) = +0, and that -0 - (+0) = -0.

When one source operand is 00, the result is 00 of the expected sign. If both
source operands are 00 of the same sign, an invalid-operation exception is
raised.

17-143

INSTRUCTION REFERENCE

I subr, subrl I

Action:

Faults:

Example:

Opcode:

See Also:

dst f- src2 - srcl;

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

subrl g6, fpO, fpl
fpl f- fpO - g6,g7

subr
subrl

78D
79D

subi, subc, addr

REG
REG

17-144

Result is too large for destination format.

Result is too small for destination format.

Source operands are infinities of like
sign.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

INSTRUCTION REFERENCE

syncf

Mnemonic: syncf Synchronize Faults

Format: syncf

Description: Waits for any faults to be generated associated with any prior uncompleted
instructions.

Action: if arithmetic_controls.nif

Faults:

Example:

Opcode:

See Also:

then;
else wait until no imprecise faults can occur

associated with any uncompleted instructions;
end if;

STANDARD

ld xyz, g6
addi r6, r8, r8
syncf
and g6, OxFFFF, g8
the syncf instruction insures that any faults
that may occur during the execution of the
ld and addi instructions occur before the
and instruction is executed

syncf 66F REG

mark, fmark

17-145

INSTRUCTION REFERENCE

I synld I

Mnemonic: synld Synchronous Load

Format: synld src, dst
reg reg
addr

Description: Copies a word from the memory location specified with src into dst and
waits for the completion of all memory operations, including those initiated
prior to the synld instruction. When the load has been successfully com­
pleted, the condition code is set to 0102.

Action:

Faults:

The primary function of this instruction is for reading lAC messages, the
lAC Message Control word, or the lAC Interrupt Control Register.
However, this instruction is not restricted to lAC applications. It may be
used when it is important to guarantee the completion of the load operation
before proceeding or to avoid a bad-access fault.

The setting of the condition code indicates whether or not the load was
completed successfully. If the load operation results in a bad access con­
dition (e.g., reading an AP-bus interconnect register), the condition code is
set to 0002, but the bad-access fault is not raised.

if PRCB.addressing_mode = physical
then tempa f-- src;
else tempa f-- physical_address (src);

end if;
tempa f-- tempa and 16#FFFFFFFC#; # force alignment
if tempa = 16#FF000004#

then dst f-- interrupt_controCreg;
AC.cc f-- 2#010#;

else dst f-- memory (tempa);
if bad_access

then AC.cc f-- 2#000#;
else AC.cc f-- 2#010#;

end if;
end if;

STANDARD

17·146

Example:

Opcode:

See Also:

INSTRUCTION REFERENCE

I synld I

Ida Oxff000004, g8
g8 ~ address of interrupt-control register
synld g8, g9
g9 ~ contents of interrupt-control register
AC.cc = 010

synld 615 REG

synmov

17-147

INSTRUCTION REFERENCE

I synmov, synmovl, synmovg I

Mnemonic:

Format:

synmov
synmovl
synmovq

Synchronous Move
Synchronous Move Long
Synchronous Move Quad

synmov* dst, src
reg reg
addr addr

Description: Copies 1 (synmov), 2 (synmovl), or 4 (synmovq) words from the memory
location specified with src to the memory location specified with dst and
waits for the completion of all memory operations, including those initiated
prior to this instruction. When the move has been successfully completed,
the condition code is set to 0102,

Action:

The src and dst operands specify the address of the first (lowest address)
word. These addresses should be for word boundaries (synmov), double­
word boundaries (synmovl), or quad-word boundaries (synmovq). If not,
the processor forces alignment to these boundaries.

The primary function of these instructions is for sending lAC messages.
However, this instruction is not restricted to lAC applications. It may be
used when it is important to guarantee the completion of the move operation
before proceeding or to avoid a Bad Access Fault.

The setting of the condition code indicates whether or not the move was
completed successfully. If the move operation results in a bad access con­
dition (e.g., sending an lAC message to a non-existent agent on the AP-bus),
the condition code is set to 0002, but the Bad Access Fault is not raised.

Address FFOOOO1016 is used to send an lAC message to the processor upon
which the instruction is executed. Refer to Chapter 11 for further infor­
mation about sending internal lAC messages.

synmov:

if PRCB.addressing_mode = physical
then tempa f- dst;
dst is used as a physical address

17-148

INSTRUCTION REFERENCE

Isynmov, synmovl, synmovq I

else tempa f- physical_address (dst);
dst translated into a physical address

end if;
tempa f- tempa and 16#FFFFFFFC#;
force alignment
if tempa = 16#FF000004#

then interrupCcontrol_reg f- memory (src)
AC.cc f- 2#010#;

else temp f- memory (src);
memory (tempa) f- temp;
write operations into memory (tempa) are
interpreted as noncacheable
wait for completion;
if bad_access

then AC.cc f- 2#000#;
else AC.cc f- 2#010#;

end if;
end if;

synmovl:

if PRCB.addressing_mode = physical
then tempa f- dst;
dst is used as a physical address
else tempa f- physical_address (dst);
dst is translated into as a physical address

end if;
tempa f- tempa and 16#FFFFFFF8#; # force alignment
temp f- memory (src);
memory (tempa) f- temp;
write operations into memory (tempa) are interpreted
as noncacheable
wait for completion;
if bad_access

then AC.cc f- 2#000#;
else AC.cc f- 2#010#;

end if;

17-149

inter INSTRUCTION REFERENCE

I synmov, synmovl, synmovq I

Faults:

Example:

Opcode:

synmovq:

if PRCB.addressing_mode = physical
then tempa ~ dst;
dst is used as a physical address
else tempa ~ physicaCaddress (dst);
dst is translated into as a physical address

end if;
tempa ~ tempa and 16#FFFFFFFO#; # force alignment
temp ~ memory (src);
if tempa = 16#FFOOOO 1 0#

then AC.cc ~ 2#010#;
use temp as a received iac message;
else memory (tempa) ~ temp;
write operations into memory (tempa) are interpreted
as noncacheable

wait for completion;
if bad_access

then AC.cc ~ 2#000#;
else AC.cc ~ 2#010#;

end if;
end if;

STANDARD

Ida Oxff000010, g7
g7 ~ Oxff000010
synmovq g7, g8
g8 ~ IAC message from address Oxff000010
AC.cc = 010

synmov 600
synmovl 601
synmovq 602

REG
REG
REG

See Also: synld

17·150

intel" INSTRUCTION REFERENCE

I tanr, tanrll

Mnemonics: tanr Tangent Real
Tangent Long Real tanrl

Format: tanr* src,
freg/flit

dst
freg

Description: Calculates the tangent of src and stores the result in dst. The src value is an
angle given in radians. The resulting dst value is in the range of -00 to +00,
inclusive; a result of _00 or +00 will result in a floating invalid-operation
exception being signaled.

For the tanrl instruction, if the src or dst operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., gO, g2, g4).

The following table shows the results obtained when taking the tangent of
various classes of numbers, assuming that neither overflow nor underflow
occurs.

Src Dst
-00 *
-F -Fto +F
-0 -0

+0 +0

+F -Fto +F

+00 *
NaN NaN

Notes:

F Means finite· real number
• Indicates floating invalid·operation exception

If the source operand is a finite value, the result will be finite, unless the src
operand is in a floating-point register and the dst operand is not.

17-151

INSTRUCTION REFERENCE

I tanr, tanrl I

Action:

Faults:

Example:

Opcode:

See Also:

In the trigonmetic instructions, the 80960MC uses a value for 1t with a 66-bit
mantissa which is 2 bits more than are available in the extended-real format.
The section in Chapter 7 titled "Pi" gives this 1t value, along with some
suggestions for representing this value in a program.

dst f--- tangent (src);

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal­
ized (including denormalized) value and
the normalizing-mode bit in the arith­
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow

Floating Invalid Operation

Floating Inexact

tanrl g4, fpO

tanr
tanrl

cosr, sinr

68E
69E

Result is too large for destination format.

Result is too small for destination format.

The src operand is 00.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

tangent of value in g4,g5 is
stored in fpO

REG
REG

17·152

INSTRUCTION REFERENCE

TEST

Mnemonic: teste Test For Equal
testne Test For Not Equal
testl Test For Less
testle Test For Less or Equal
testg Test For Greater
testge Test For Greater or Equal
testo Test For Ordered
testno Test For Unordered

Format: test* dst
reg

Description: Stores a true (1) in dst if the logical AND of the condition code and the
mask-part of the ope ode is not zero. Otherwise, the instruction stores a false
(0) in dst.

The following table shows the condition-code mask for each instruction:

Instruction Mask Condition

testno 000 Unordered

testg 001 Greater

teste 010 Equal

testge 011 Greater or equal

testl 100 Less

testne 101 Not equal

testle 110 Less or equal

testo 111 Ordered

For the testno instruction (Unordered), a true is stored if the condition code
is 0002; otherwise a false is stored.

17·153

inter INSTRUCTION REFERENCE

TEST

Action: For All Instructions Except testno:

if (mask and AC.cc) -:t 2#000#
then dst t--- 1; # dst set for true
else dst t--- 0; # dst set for false

end if;

testno:

if AC.cc = 2#000#
then dst t--- 1; # dst set for true
else dst t--- 0; # dst set for false

end if;

Faults: STANDARD

Example: # assume AC.cc = 100
testl g9 # g9 t--- OxOOOOOO01

Opcode: teste 22 COBR
testne 25 COBR
testl 24 COBR
testle 26 COBR
testg 21 COBR
testge 23 COBR
testo 27 COBR
testno 20 COBR

See Also: cmpi, cmpdeci, cmpinci

17·154

Mnemonic: wait

Format: wait

INSTRUCTION REFERENCE

Wait

src
reg
SS

wait

Description: Waits on the semaphore. The src operand contains the SS of the semaphore.

Action:

The processor must be in the supervisor mode to execute this instruction.

The processor checks the semaphore count and the semaphore queue tail. If
the count is non-zero and the queue tail is zero, the count is decremented by
one and execution of the process continues.

If the count is zero or the queue tail is non-zero, the process is suspended and
enqueued on the semaphore.

The process remains queued on the semaphore until it reaches the beginning
of the queue and the semaphore receives a signal instruction. The process is
then dequeued and rescheduled at its dispatching port.

x f- atomic_read (semaphore.lock);
if leascsignificanCbit(x) = 1

then atomic_write (semaphore.lock) f- x;
go to wait;

else atomic_write (semaphore.lock) f- x or 1;
if (semaphore. count = 0) or (semaphore. tail * 0)

then enqueue process on semaphore;
x f- atomic_read (semaphore.lock);
atomic_write (semaphore.lock) f- x xor 1;
perform process suspension action;
x f- atomic_read (currenCprocess.lock);
atomic_write (currenCprocess.lock) f- x xor 1;
perform process dispatching action;

else semaphore. count f- semaphore. count - 1;
x f- atomic_read (semaphore.lock);
atomic_write (semaphore.lock) f- x xor 1;

end if;
end if;

17-155

inter INSTRUCTION REFERENCE

Iwait I

Faults: STANDARD

Example: wait g8 # waits on semaphore specified in g8

Opcode: wait 669 REG

See Also: condwait, signal

17·156

inter INSTRUCTION REFERENCE

xnor, xor

Mnemonic: xnor Exclusive Nor
xor Exclusive Or

Format: xnor srcl , src2, dst
reg/lit reg/lit reg

xor srcl , src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction)
operation on the src2 and srcl values and stores the result in dst.

Action:

Faults:

Example:

Opcode:

See Also:

xnor: dst ~ not (src2 or srcl) or
(src2 and srcl);

xor: dst ~ (src2 or srcl) and
not (src2 and srcl);

STANDARD

xnor r3, r9, r12
xor gl, g7, g4

xnor
xor

589
586

r12 ~ r9 XNOR r3
g4 ~ g7 XOR gl)

REG
REG

and, andnot, nand, nor, not, notand, notor, or, ornot

17·157

Appendix A
Instruction and Data Structure
Quick Reference

APPENDIX A
INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

This appendix provides quick reference for the 80960MC instructions and data structures.

INSTRUCTION QUICK REFERENCE

This section provides two lists of 80960MC instructions: one sorted by assembly-language
mnemonic and another sorted by machine-level opcode. In these lists, each entry includes the
assembly-language mnemonic for an instruction; the operands (given in the required order); the
machine-level opcode and instruction type (i.e., REG, MEM, COBR, CTRL); and the page
number in Chapter 17 where the detailed description of the instruction is given.

A·1

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Instruction List by Assembler Mnemonic

Mnemonic Operands Opcode Inst. Type Page

addc srcl, src2, dst 5BO REG 17-6
addi srcl, src2, dst 591 REG 17-7
addo srcl, src2, dst 590 REG 17-7
addr srcl, src2, dst 78F REG 17-8
addrl srcl, src2, dst 79F REG 17-8
alterbit bitpos, src, dst 58F REG 17-10
and srcl, src2, dst 581 REG 17-11
andnot srcl, src2, dst 582 REG 17-11
atadd src!dst, src, dst 612 REG 17-12
atanr srcl, src2, dst 680 REG 17-13
atanrl srcl , src2, dst 690 REG 17-13
atmod src, mask, src!dst 610 REG 17-15
b targ 08 CTRL 17-16
bal targ OB CTRL 17-18
balx targ, dst 85 MEM 17-18
bbc bitpos, src, targ 30 COBR 17-20
bbs bitpos, src, targ 37 COBR 17-20
be targ 12 CTRL 17-22
bg targ 11 CTRL 17-22
bge targ 13 CTRL 17-22
bl targ 14 CTRL 17-22
ble targ 16 CTRL 17-22
bne targ 15 CTRL 17-22
bno targ 10 CTRL 17-22
bo targ 11 CTRL 17-22
bx targ 84 MEM 17-16
call targ 09 CTRL 17-25
calls targ 660 REG 17-27
calix targ 86 MEM 17-29
chkbit bitpos, src 5AE REG 17-31
classr src 68F REG 17-32
classrl src 69F REG 17-32
clrbit bitpos, src, dst 58C REG 17-34
cmpdeci srcl, src2, dst 5A7 REG 17-36
cmpdeco srcl, src2, dst 5A6 REG 17-36
cmpi srcl, src2 5Al REG 17-35
cmpibe srcl, src2, targ 3A COBR 17-44
cmpibg srcl , src2, targ 39 COBR 17-44
cmpibge srcl, src2, targ 3B COBR 17-44
cmpibl srcl, src2, targ 3C COBR 17-44
cmpible srcl, src2, targ 3E COBR 17-44
cmpibne srcl, src2, targ 3D COBR 17-44
cmpibno srcl, src2, targ 38 COBR 17-44
cmpibo srcl, src2, targ 3F COBR 17-44

A·2

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Mnemonic Operands Opcode Inst. Type Page

cmpinci srcl, src2, dst 5A5 REG 17-37
cmpinco srcl, src2, dst 5A4 REG 17-37
cmpo srcl, src2 5AO REG 17-35
cmpobe srcl, src2, targ 32 COBR 17-44
cmpobg srcl, src2, targ 31 COBR 17-44
cmpobge srcl, src2, targ 33 COBR 17-44
cmpobl srcl, src2, targ 34 COBR 17-44
cmpoble srcl, src2, targ 36 COBR 17-44
cmpobne srcl, src2, targ 35 COBR 17-44
cmpor srcl, src2 684 REG 17-38
cmporl srcl, src2 694 REG 17-38
cmpr srcl, src2 685 REG 17-40
cmprl srcl, src2 695 REG 17-40
cmpstr srcl, src2, len 603 REG 17-42
concmpi srcl, src2 5A3 REG 17-47
concmpo srcl, src2 5A2 REG 17-47
condrec src, dst 646 REG 17-48
condwait src 668 REG 17-50
cosr src, dst 68D REG 17-52
cosrl src, dst 69D REG 17-52
cpyrsre srcl, src2, dst 6E3 REG 17-54
cpysre srcl, src2, dst 6E2 REG 17-54
cvtilr src, dst 675 REG 17-55
cvtir src, dst 674 REG 17-55
cvtri src, dst 6CO REG 17-56
cvtril src, dst 6Cl REG 17-56
cvtzri src, dst 6C2 REG 17-56
cvtzril src, dst 6C3 REG 17-56
daddc srcl, src2, dst 642 REG 17-58
divi srcl, src2, dst 74B REG 17-59
divo srcl, src2, dst 70B REG 17-59
divr srcl, src2, dst 78B REG 17-60
divrl srcl, src2, dst 79B REG 17-60
dmovt src, dst 644 REG 17-62
dsubc srcl, src2, dst 643 REG 17-63
ediv srcl, src2, dst 671 REG 17-64
ernul srcl , src2, dst 670 REG 17-65
expr src, dst 689 REG 17-66
exprl src, dst 699 REG 17-66
extract bitpos, len, srcldst 651 REG 17-68
faulte lA CTRL 17-69
faultg 19 CTRL 17-69
faultge 1B CTRL 17-69
faultl lC CTRL 17-69
faultle 1E CTRL 17-69
faultne 10 CTRL 17-69
faultno 18 CTRL 17-69

A·3

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Mnemonic Operands Opcode Inst. Type Page

faulto IF CTRL 17-69
fill dst value len 617 REG 17-71
flushreg 66D REG 17-72
fmark 66C REG 17-73
inspacc src dst 613 REG 17-74
Id src, dst 90 MEM 17-75
Ida src dst 8C MEM 17-77
Idib src, dst CO MEM 17-75
Idis src, dst C8 MEM 17-75
Idl src, dst 98 MEM 17-75
Idob src, dst 80 MEM 17-75
Idos src, dst 88 MEM 17-75
Idphy src, dst 614 REG 17-78
Idq src, dst BO MEM 17-75
Idt src, dst AO MEM 17-75
Idtime dst 673 REG 17-79
logbnr src, dst 68A REG 17-80
logbnrl src, dst 69A REG 17-80
logepr srcl, src2, dst 681 REG 17-82
logeprl srcl, src2, dst 691 REG 17-82
logr srcl, src2, dst 682 REG 17-85
logrl srcJ, src2, dst 692 REG 17-85
mark 66B REG 17-88
modac mask, src, dst 645 REG 17-89
modi srcJ, src2, dst 749 REG 17-90
modify mask, src, srcldst 650 REG 17-91
modpc src, mask, srcldst 655 REG 17-92
modtc mask, src, dst 654 REG 17-94
mov src, dst 5CC REG 17-95
movl src, dst 5DC REG 17-95
movq src, dst 5FC REG 17-95
movqstr dst, src, len 604 REG 17-96
movr src, dst 6C9 REG 17-97
movre src, dst 6E9 REG 17-97
movrl src, dst 6D9 REG 17-97
movstr dst, src, len 605 REG 17-99
movt src, dst 5EC REG 17-95
muli srcl, src2, dst 741 REG 17-100
mulo srcJ, src2, dst 701 REG 17-100
muir srcJ, src2, dst 78C REG 17-101
mulrl srcJ, src2, dst 79C REG 17-101
nand srcl, src2, dst 58E REG 17-103
nor srcJ, src2, dst 588 REG 17-104
not src, dst 58A REG 17-105
notand srcJ, src2, dst 584 REG 17-105
notbit bitpos, src, dst 580 REG 17-106
notor srcJ , src2, dst 58D REG 17-107

A-4

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Mnemonic Operands Opcode Inst. Type Page

or srcl, src2, dst 587 REG 17-108
ornot srcl, src2, dst 58B REG 17-108
receive src, dst 656 REG 17-109
remi srcl, src2, dst 748 REG 17-111
remo srcl, src2, dst 708 REG 17-111
remr srcl, src2, dst 683 REG 17-112
remrl srcl, src2, dst 693 REG 17-112
resumprcs src 664 REG 17-115
ret OA CTRL 17-116
rotate len, src, dst 59D REG 17-118
roundr src, dst 68B REG 17-119
roundrl src, dst 69B REG 17-119
saveprcs 666 REG 17-120
scaler srcl, src2, dst 677 REG 17-121
scalerl srcl, src2, dst 676 REG 17-121
scan bit src, dst 641 REG 17-123
scanbyte srcl, src2 5AC REG 17-124
schedprcs src 665 REG 17-125
send dst, src1, src2 662 REG 17-126
sendserv src 663 REG 17-128
setbit bitpos, src, dst 583 REG 17-130
shli len, src, dst 59E REG 17-131
shlo len, src, dst 59C REG 17-131
shrdi len, src, dst 59A REG 17-131
shri len, src, dst 59B REG 17-131
shro len, src, dst 598 REG 17-131
signal dst 66A REG 17-133
sinr src, dst 68C REG 17-134
sinrl src, dst 69C REG 17-134
spanbit src, dst 640 REG 17-136
sqrtr src, dst 688 REG 17-137
sqrtrl src, dst 698 REG 17-137
st src, dst 92 MEM 17-139
stib src, dst C2 MEM 17-139
stis src, dst CA MEM 17-139
stl src, dst 9A MEM 17-139
stob src, dst 82 MEM 17-139
stos src, dst 8A MEM 17-139
stq src, dst B2 MEM 17-139
stt src, dst A2 MEM 17-139
subc src1, src2, dst 5B2 REG 17-141
subi src1, src2, dst 593 REG 17-142
subo srcl, src2, dst 592 REG 17-142
subr srcl, src2, dst 78D REG 17-143
subrl src1, src2, dst 79D REG 17-143
syncf 66F REG 17-145
synld src, dst 615 REG 17-146

A·5

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Mnemonic Operands Opcode Inst. Type Page

synmov dst, src 600 REG 17-148
synmovl dst, src 601 REG 17-148
synmovq dst, src 602 REG 17-148
tanr src, dst 68E REG 17-151
tanrl src, dst 69E REG 17-151
teste dst 22 COBR 17-153
testg dst 21 COBR 17-153
testge dst 23 COBR 17-153
testl dst 24 COBR 17-153
testle dst 26 COBR 17-153
testne dst 25 COBR 17-153
testno dst 20 COBR 17-153
testo dst 27 COBR 17-153
wait src 669 REG 17-155
xnor srcl, src2, dst 589 REG 17-157
xor srcl, src2, dst 586 REG 17-157

A·6

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Instruction List by Opcode

Opcode Inst. Type Mnemonic Operands Page

08 CTRL b targ 17-16
09 CTRL call targ 17-25
OA CTRL ret 17-116
OB CTRL bal targ 17-18
10 CTRL bno targ 17-22
11 CTRL bg targ 17-22
12 CTRL be targ 17-22
13 CTRL bge targ 17-22
14 CTRL bl targ 17-22
15 CTRL bne targ 17-22
16 CTRL ble targ 17-22
17 CTRL bo targ 17-22
18 CTRL faultno 17-69
19 CTRL faultg 17-69
lA CTRL faulte 17-69
1B CTRL faultge 17-69
lC CTRL faultl 17-69
1D CTRL faultne 17-69
IE CTRL faultle 17-69
IF CTRL faulto 17-69
20 COBR testno dst 17-153
21 COBR testg dst 17-153
22 COBR teste dst 17-153
23 COBR testge dst 17-153
24 COBR testl dst 17-153
25 COBR testne dst 17-153
26 COBR testle dst 17-153
27 COBR testo dst 17-153
30 COBR bbc bitpos, src, targ 17-20
31 COBR cmpobg srcl, src2, targ 17-16
32 COBR cmpobe srcl, src2, targ 17-44
33 COBR cmpobge src1 , src2, targ 17-44
34 COBR cmpobl src1, src2, targ 17-44
35 COBR cmpobne srcl, src2, targ 17-44
36 COBR cmpoble src1 , src2, targ 17-44
37 COBR bbs bitpos, src, targ 17-20
38 COBR cmpibno srcl, src2, targ 17-44
39 COBR cmpibg src1, src2, targ 17-44
3A COBR cmpibe src1, src2, targ 17-44
3B COBR cmpibge srcl, src2, targ 17-44
3C COBR cmpibl src1, src2, targ 17-44
3D COBR cmpibne src1, src2, targ 17-44
3E COBR cmpible src1, src2, targ 17-44
3F COBR cmpibo src1, src2, targ 17-44

A·7

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Opcode Inst. Type Mnemonic Operands Page

80 MEM Idob src, dst 17-75
82 MEM stob src, dst 17-139
84 MEM bx targ 17-16
85 MEM balx targ, dst 17-18
86 MEM calix targ 17-29
88 MEM Idos src, dst 17-75
8A MEM stos src, dst 17-139
8C MEM Ida src dst 17-77
90 MEM Id src, dst 17-75
92 MEM st src, dst 17-139
98 MEM Idl src, dst 17-75
9A MEM stl src, dst 17-139
AO MEM Idt src, dst 17-75
A2 MEM stt src, dst 17-139
BO MEM Idq src, dst 17-75
B2 MEM stq src, dst 17-139
CO MEM Idib src, dst 17-75
C2 MEM stib src, dst 17-139
C8 MEM Idis src, dst 17-75
CA MEM stis src, dst 17-139
580 REG notbit bitpos, src, dst 17-106
581 REG and srcl, src2, dst 17-11
582 REG and not srcl, src2, dst 17-11
583 REG setbit bitpos, src, dst 17-130
584 REG notand srcl, src2, dst 17-105
586 REG xor srcl, src2, dst 17-157
587 REG or srcl, src2, dst 17-108
588 REG nor srcl, src2, dst 17-104
589 REG xnor srcl, src2, dst 17-157
58A REG not , src, dst 17-105
58B REG ornot i~rcl, src2, dst 17-108
58C REG c1rbit bitpos, src, dst 17-34
58D REG notor srcl, src2, dst 17-107
58E REG nand srcl, src2, dst 17-103
58F REG alterbit bitpos, src, dst 17-10
590 REG addo srcl, src2, dst 17-7
591 REG addi srcl, src2, dst 17-7
592 REG subo srcl, src2, dst 17-142
593 REG subi srcl, src2, dst 17-142
598 REG shro len, src, dst 17-131
59A REG shrdi len, src, dst 17-131
59B REG shri len, src, dst 17-131
59C REG shlo len, src, dst 17-131
59D REG rotate len, src, dst 17-118
59E REG shli len, src, dst 17-131
5AO REG cmpo srcl, src2 17-35
5A1 REG cmpi srcl, src2 17-35

A-8

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Opcode Inst. Type Mnemonic Operands Page

5A2 REG concmpo srcl, src2 17-47
5A3 REG concmpi srcl, src2 17-47
5A4 REG cmpinco srcl , src2, dst 17-37
5A5 REG cmpinci srcl, src2, dst 17-37
5A6 REG cmpdeco srcl, src2, dst 17-36
5A7 REG cmpdeci srcl, src2, dst 17-36
5AC REG scan byte srcl, src2 17-124
5AE REG chkbit bitpos, src 17-31
5BO REG addc srcl , src2, dst 17-6
5B2 REG subc srcl, src2, dst 17-141
5CC REG mov src, dst 17-95
5DC REG movl src, dst 17-95
5EC REG movt src, dst 17-95
5FC REG movq src, dst 17-95
600 REG synmov dst, src 17-148
601 REG synmovl dst, src 17-148
602 REG synmovq dst, src 17-148
603 REG cmpstr srcl, src2, len 17-42
604 REG movqstr dst, src, len 17-96
605 REG movstr dst, src, len 17-99
610 REG atmod src, mask, src!dst 17-15
612 REG atadd src!dst, src, dst 17-12
613 REG inspacc src dst 17-74
614 REG ldphy src, dst 17-78
615 REG synld src, dst 17-146
617 REG fill dst value len 17-71
640 REG span bit src, dst 17-136
641 REG scan bit src, dst 17-123
642 REG daddc srcl, src2, dst 17-58
643 REG dsubc srcl, src2, dst 17-63
644 REG dmovt src, dst 17-62
645 REG modac mask, src, dst 17-89
646 REG condrec src, dst 17-48
650 REG modify mask, src, src!dst 17-91
651 REG extract bitpos, len, src!dst 17-68
654 REG modtc mask, src, dst 17-94
655 REG modpc src, mask, src!dst 17-92
656 REG receive src, dst 17-109
660 REG calls targ 17-27
662 REG send dst, srcl, src2 17-126
663 REG sendserv src 17-128
664 REG resumprcs src 17-115
665 REG schedprcs src 17-125
666 REG saveprcs 17-120
668 REG condwait src 17-50
669 REG wait src 17-155
66A REG signal dst 17-133

A-9

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Opcode Inst. Type Mnemonic Operands Page

66B REG mark 17-88
66C REG fmark 17-73
66D REG flushreg 17-72
66F REG syncf 17-145
670 REG ernul srcl, src2, dst 17-65
671 REG ediv srcl , src2, dst 17-64
673 REG Idtime dst 17-79
674 REG cvtir src, dst 17-55
675 REG cvtilr src, dst 17-55
676 REG scalerl srcl, src2, dst 17-121
677 REG scaler srcl, src2, dst 17-121
680 REG atanr srcl, src2, dst 17-13
681 REG logepr srcl, src2, dst 17-82
682 REG logr srcl, src2, dst 17-85
683 REG remr srcl , src2, dst 17-112
684 REG cmpor srcl, src2 17-38
685 REG cmpr srcl, src2 17-40
688 REG sqrtr src, dst 17-137
689 REG expr src, dst 17-66
68A REG logbnr src, dst 17-80
68B REG roundr src, dst 17-119
68C REG sinr src, dst 17-134
68D REG cosr src, dst 17-52
68E REG tanr src, dst 17-151
68F REG c1assr src 17-32
690 REG atanrl srcl, src2, dst 17-13
691 REG logeprl srcl, src2, dst 17-82
692 REG logrl srcl, src2, dst 17-85
693 REG remrl srcl, src2, dst 17-112
694 REG cmporl srcl, src2 17-38
695 REG cmprl srcl, src2 17-40
698 REG sqrtrl src, dst 17-137
699 REG exprl src, dst 17-66
69A REG logbnrl src, dst 17-80
69B REG roundrl src, dst 17-119
69C REG sinrl src, dst 17-134
69D REG cosrl src, dst 17-52
69E REG tanrl src, dst 17-151
69F REG c1assrl src 17-32
6CO REG cvtri src, dst 17-56
6Cl REG cvtril src, dst 17-56
6C2 REG cvtzri src, dst 17-56
6C3 REG cvtzril src, dst 17-56
6C9 REG movr src, dst 17-97
6D9 REG movrl src, dst 17-97
6E2 REG cpysre srcl, src2, dst 17-54
6E3 REG cpyrsre srcl, src2, dst 17-54

A-10

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Opcode Inst. Type Mnemonic Operands Page

6E9 REG movre src, dst 17-97
701 REG mulo srcl, src2, dst 17-100
708 REG remo srcl, src2, dst 17-111
70B REG divo srci, src2, dst 17-59
741 REG muli srcl, src2, dst 17-100
748 REG remi srcl, src2, dst 17-111
749 REG modi srcl, src2, dst 17-90
74B REG divi srci, src2, dst 17-59
78B REG divr srcl, src2, dst 17-60
78C REG muir srci, src2, dst 17-101
78D REG subr srci, src2, dst 17-143
78F REG addr srci, src2, dst 17-8
79B REG divrl srcl, src2, dst 17-60
79C REG mulrl srcl, src2, dst 17-101
79D REG subrl srcl, src2, dst 17-143
79F REG addrl srcl, src2, dst 17-8

A-11

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

SUMMARY OF SYSTEM DATA STRUCTURES

The following pages provide a collection of the system data structures presented in this
manual. They are are grouped by function. The chapter reference below each data structure
shows where in this manual this data structure is described.

Execution Environment

31 30292827262524 201918171615 12 8 6 3 2 0

I I I I I I I I ttl;;lll I I I I I 1:li] ml~;'tJ !,~~I I I I I I I I

L,....J 1 W' t_'~ ~CONOITION CODE

ARITHMETIC STATUS

-----INTEGER OVERFLOW FLAG

,-----INTEGER OVERFLOW MASK

NO IMPRECISE FAULTS

'------------------FLOATING OVERFLOW FLAG

'------------------FLOATING UNDERFLOW FLAG

'--------------------FLOATING INVALID-OP FLAG

'-------------------FLOATING ZERO-DIVIDE FLAG

'--------------------FLOATING INEXACT FLAG

'-----------------------------FLOATING OVERFLOW MASK

'-----------------------------FLOATING UNDERflOW MASK

'--------------------------FLOATING INVALID-OP MASK

'--------------------------FLOATlNGZERO-DIVIDE MASK

'--------------------------FLOATING INEXACT MASK

'---------------.-----------.----- FLOATING-POINT NORMALIZING MODE

'--------------------------------FLOATING-POINT ROUNDING CONTROL

Figure A-1: Arithmetic Controls (Chapter 3)

A-12

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

gO

CONTENTS OF
GLOBAL AND

FLOATING-POINT
REGISTERS
PRESERVED

ACROSS
PROCEDURE

BOUNDARIES

REGISTERS gO THROUGH g14
AVAILABLE FOR GENERAL USE GLOBAL

REGISTERS

g15 FRAME POINTER (FP)

AVAILABLE FOR GENERAL USE FLOATING-POINT
REGISTERS

fp3 L....-_____________ ---I ~

NEWSETOF
LOCAL

REGISTERS
ALLOCATED

FOR EACH
PROCEDURE

rO PREVIOUS FRAME POINTER (PFP)

r1 STACK POINTER (SP)

r2 RETURN INSTRUCTION POINTER (RIP)

REGISTERS r3 THROUGH r15
AVAILABLE FOR GENERAL USE

LOCAL
REGISTERS

Figure A-2: Registers Available to a Single Procedure (Chapter 3)

A-13

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

PREVIOUS
FRAME

CURRENT
FRAME

rO n + 0
r1
r2

r-------------------------~r15

OPTIONAL VARIABLES

r15
r-------------------------~

n + 64

STACK
GROWTH

STACK
GROWS

FROM LOW
ADDRESSES

TO HIGH
ADDRESSES

THE CURRENT FRAME
POINTER (FP) STORED

IN g15 POINTS TO
THIS WORD IN THE

STACK.

Figure A-3: Procedure Stack Structure (Chapter 4)

A-14

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Memory Management

SEGMENT1
SEGMENT

SELECTORS (55's)

S2l
1

552 h:
I 55] ~

D
SEGMENT TABLE SEGMENT2

SEGMENT DESCRIPTOR 1 f-- D SEGMENT DESCRIPTOR 2

SEGMENT
SEGMENT DESCRIPTOR]

]

1554 r SEGMENT4
SEGMENT DESCRIPTOR 4

SEGMENTS

I SSS ~

5-f
SEGMENT DESCRIPTOR S

D SEGMENT DESCRIPTOR 6 1]' ----
SEGMENT DESCRIPTOR N

UP TO 262,144 SEGMENT -
DESCRIPTORS ARE ALLOWED.

Figure A·4: SS's, Segment Table, and Segments (Chapter 8)

BYTE DISPLACEMENT

n + 4

n + 8

n + 12

t LVALID

L- PAGING METHOD

'------- ACCESS STATUS

'-------------------- SIZE
L... __________________________ SEGMENT TYPE

.. RESERVED (INITIALIZE TO 0)

~ PRESERVED

Figure A·5: Generic Segment Descriptor (Chapter 8)

A·15

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

SIMPLE·REGION SEGMENT DESCRIPTOR

PAGED·REGION SEGMENT DESCRIPTOR

BIPAGED·REGION SEGMENT DESCRIPTOR

IIIIIlI RESERVED (INITIALIZE TO 0)

~ PRESERVED

,

BYTE DISPLACEMENT

"
"+4

"+ B
n + 12

1 t 1 L .. ,,, L-== ACCESSED
ALTERED

CACHEABLE

BYTE DISPLACEMENT

" + 4

" + 8
n + 12

BYTE DISPLACEMENT

" + 4

" + 8
n + 12

Figure A-6: Region Segment Descriptors (Chapter 8)

A-16

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

PROCESS-CONTROL-BLOCK SEGMENT DESCRIPTOR

PORT-SEGMENT DESCRIPTOR

PROCEDURE-TABLE-SEGMENT DESCRIPTOR

IUtli!llt!i:1'! RESERVED (INITIALIZE TO 0)

~ PRESERVED

BYTE DISPLACEMENT

n + 4

n + 8

n + 12

L-______ CACHEABlE

BYTE DISPLACEMENT

n + 4

n + 8

n + 12

'--------- CACHEABlE

76543210

BYTE DISPLACEMENT

n + 4

n + B

n + 12

t _______ CACHEABlE

Figure A-7: Process, Port, and Procedure Table Segment Descriptors (Chapter 8)

5'MAll SEGMENT-TABLE SEGMENT DESCRIPTOR

lARGE SEGMENT-TABLE SEGMENT DESCRIPTOR

•• ;if! RESERVED (INITIALIZE TO 0)

~ PRESERVED

BYTE DISPLACEMENT

n + 4

n + B

n + 12

CACHEABlE

BYTE DISPLACEMENT

n + 4

n + 8

n + 12

Figure A-8: Segment-Table Segment Descriptors (Chapter 8)

A-17

intel"

31 28

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

SEMAPHORE DATA STRUCTURE

BYTE DISPLACEMENT

n + 4

n + 8

o 1 0 11 n + 12
2 1 0

!t41_' RESERVED (INITIALIZE TO 0)

Figure A-9: Semaphore Segment Descriptor (Chapter 8)

~ PRESERVED

Figure A-10: Invalid Segment Descriptor (Chapter 8)

A-18

8YTE DISPLACEMENT

n + 4

n + 8

n + 12

inter

31

31

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

PAGE·TABlE·DIRECTORY ENTRY

PAGE· TABLE BASE ADDRESS ~Ivi
12 2 1 0

~VALID
PAGE RIGHTS

PAGE·TABlE ENTRY

PAGE BASE ADDRESS

12 7 6 S 4 3 2 1 0

INVALID PAGE·TABlE OR PAGE·TABlE·DIRECTORY
ENTRY

~ PAGE RIGHTS l§' ~VALID
ACCESSED

ALTERED

CACHEABlE

.01
~ 0

.. RESERVED (INITIALIZE TO 0)
LVAllD

PRESERVED

Figure A-11 : Page Table or Page-Table Directory Entries (Chapter 8)

A-19

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Processor Management

1 11 t ~ MULTIPROCESSOR PREEMPT

STATE

NONPREEMPT LIMIT

ADDRESSING MODE

CHECK DISPATCH PORT

INTERIM PRIORITY

WRITE EXTERNAL PRIORITY

RESERVED (INITIALIZE TO 0)

Figure A·12: Processor Controls (Chapter 9)

A-20

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

o
4

8

CURRENT PROCESS SS 12

DISPATCH PORTSS 16

INTERRUPT TABLE PHYSICAL ADDRESS 20

INTERRUPT STACK POINTER 24

~------------------------~
~------------------------~

RESUMPTION RECORD

SYSTEM ERROR FAULT RECORD

28

32

36

40

44

48

60

64

72

76

80

128

~ ________________________ ~172

RESERVED
(INITIALIZE TO 0)

Figure A·13: PRCe (Chapter 9)

A-21

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

PHYSICAL
INITIALIZATION

CHECK-SUM WORDS ADDRESSES SEGMENT TABLE OFFSET

SEGMENT TABLE POINTER 0 0

PRCB POINTER 4 - .~ .~

CHECK WORD 8

INSTRUCTION POINTER 12 - 112

SEGMENT DESCRIPTOR
4 CHECK WORDS 16 FOR REGION 3*

20

24 128

28 SEGMENT DESCRIPTOR
FOR SEGMENT TABLE

INITIALIZATION PROCESSOR
CONTROL BLOCK OFFSET

~ 0

PROCESSOR CONTROLS 4

8

12

16

20

INTERRUPT STACK POINTER 24

28

REGION 3 SS 32

36

~ ~

172

INITIALIZATION CODE OFFSET

0

Note:
~ ~

* The region 3 segment descriptor must
have its val id bit set. n

Figure A·14: Initial Memory Image (Chapter 9)

A-22

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Interrupt Handling

31 0

0

4

PENDING INTERRUPTS

32

36 (VECTOR 8)

40 (VECTOR 9)

ENTRY 10 44 (VECTOR 10)

976 (VECTOR 243)

980 (VECTOR 244)

992 (VECTOR 247)

996 (VECTOR 248)

1000 (VECTOR 249)

1008 (VECTOR 251)

1012 (VECTOR 252)

ENTRY 255 1024 (VECTOR 255)

31 2 1 0
I INSTRUCTION POINTER 10 10 I

RESERVED (INITIALIZE TO 0)

Figure A-15: Interrupt Table (Chapter 10)

A·23

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

* If the interrupt is serviced while the processor is working on another
interrupt procedure. the new stack pointer (NSP) will be the same as
the SP.

RESERVED

Figure A·16: Interrupt Record on Stack (Chapter 10)

A·24

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

lACs

31 2423 1615

MESSAGE TYPE I FIELD 1 I FIELD 2

FIELD 3

FIELD4

FIELD 5

Figure A-17: lAC Message Format (Chapter 11)

Fault Handling

OVERRIDE FAULT DATA

o
4

12

~------------------------------------; 16

FAULT DATA

24
-------f 28

32

~------------~~~------------------; 36

40
---------f

44

lil_al RESERVED

Figure A-18: Fault Record (Chapter 12)

A·25

o
o

4

8

12

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

31 o
OVERRIDE ENTRY

TRACE FAU L T ENTRY

OPERATION FAULT ENTRY

ARITHMETIC FAULT ENTRY

FLOATING·POINT FAULT ENTRY

CONSTRAINT FAULT ENTRY

VIRTUAL·MEMORY FAULT ENTRY

PROTECTION FAULT ENTRY

MACHINE FAULT ENTRY

STRUCTURAL FAULT ENTRY

TYPE FAULT ENTRY
'0.1~' ,y.v', 'lI%~f3!\¥7£'-lWI<Bim:@w*'Y*"~·~'"'~*k,.._tm
ME> ,j~, ~?1fuf:h:ti~1@ilit] WEtt~r~1Jfll~~iBb i~

PROCESS FAU L T ENTRY

DESCRIPTOR FAULT ENTRY

EVENT FAULT ENTRY

FAULT·TABLE ENTRIES

LOCAL·PROCEDURE ENTRY

PROCEDURE·TABLE ENTRY
31

FAUL T·HANDLER PROCEDURE NUMBER

PROCEDURE TABLE SS

31
TRACE·FAU L T·PROCEDURE· TABLE ENTRY

TRACE·FAUlT·HANDLER PROCEDURE NUMBER

PROCEDURE TABLE SS

- RESERVED (INITIALIZE TO 0)

Figure A·19: Fault Table and Fault·Table Entries (Chapter 12)

A·26

o
8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

252

n

n+4

n

n+4

n

n+4

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Process Management

31 7 0

QUEUE RECORD
0
4

RECEIVE ESSAGE 8
DISPATCH PORT SS 12

RESIDUAL TIME SLICE 16
PROCESS CON 20

PROCESS NOTICE LOCK 24
TRACE CONTROLS 28

32

44
REGION 0 SS 48

~--------------------------------------~ REGION 1 SS 52
~----------------------~--------------~ REGION 2 SS 56
~--------------------------------------~ ARITHMETIC CONTROLS 60

~--------------------------------------~
EXECUTION TIME

~--------------------------------------~
RESUMPTION RECORD

64
68
72
76
80

124
~------------------------------------~128

GLOBAL AND FLOATING-POINT REGISTERS

~--------------------------------------~
236

RESERVED (INITIALIZE TO 0)

Figure A-20: PCB (Chapter 13)

A·27

inter

31

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

2120 16151413121110987 6 5 2 1 0

M~:I 1 1 1 1 1 1 1 If@;.. IJ

l~ TRACE ENABLE

EXECUTION MODE

TIME-SLICE RESCHEDULE

TIME SLICE

TIMING

RESUME

TRACE-FAULT PENDING

PREEMPT

REFAULT

STATE

PRIORITY

INTERNAL STATE

Iwj. RESERVED (INITIALIZE TO 0)

Figure A-21 : Process Controls (Chapter 13)

A-28

inler INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

FIFO PORT

31 7 0

PRIORITY PORT

31 1716 7

QUEUE STATUS

QUEUE HEAD 55 (PRIORITY = 0)

QUEUE TAIL 55 (PRIORITY = 0)

QUEUE HEADERS

(PRIORITIES = 1 THROUGH 30)

QUEUE HEAD 55 (PRIORITY = 31)

QUEUE TAIL 55 (PRIORITY = 31)

1:::ill::I~~::::;::::::::::i:::::::1 RESERVED (INITIALIZE TO 0)

~ PRESERVED

Figure A-22: Ports (Chapter 14)

A-29

0

LOCK

=~

0
4
8
12
16

252
256
260

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Trace Control

~ELINSTRUCTION TRACE MODE
BRANCH TRACE MODE

CALL TRACE MODE

RETURN TRACE MODE

'------PRERETURN TRACE MODE

'------- SUPERVISOR TRACE MODE

'--------BREAKPOINT TRACE MODE

'---------------INSTRUCTION TRACE EVENT

'--------------- BRANCH TRACE EVENT

'---------------- CALL TRACE EVENT

'----------------- RETURN TRACE EVENT

'------------------ PRERETURN TRACE EVENT

'------------------ SUPERVISOR TRACE EVENT

'-------------------- BREAKPOINT TRACE EVENT

RESERVED (MUST BE INITIALIZED TO 0)

Figure A-23: Trace Controls (Chapter 16)

A·3D

Appendix B
Machine-Level Instruction
Formats

APPENDIX B
MACHINE-LEVEL INSTRUCTION FORMATS

This appendix describes the machine-level format for 80960MC instructions. Included is a
description of the four instruction formats and how the addressing modes relate to these
formats. Also, a table is given that shows the relationship between the machine-level instruc­
tion operands and the assembly-language-level instruction operands.

GENERAL INSTRUCTION FORMAT

At the machine-level, all the 80960MC instructions are one word long and begin on word
boundaries. (One group of instructions allows a second word, which contains a 32-bit
displacement.)

There are four basic instruction formats: REG, COBR, CTRL, and MEM. Figure B-1 shows
these formats. Each instruction has only one format, which is defined by the opcode field of
the instruction.

31 2423 19 18 1413121110 7 6 5 4 0 REG
I OPCODE I SRClDST I SRC2 I I I I OPCODE 10 0 I SRC1 I

1 t
t M1

M2

M3

31 2423 19 18 14 13 12 2 1 0 COBR
I OPCODE I SRC1 SRC2 I I DISPLACEMENT 10 0 I

t M1

31 2423 2 1 0 CTRL I OPCODE I DISPLACEMENT 10 0 I

31 2423 19 18 14131211 0 MEMA
OPCODE SRClDST ABASE I 10 1 OFFSET I

t MODE

31 7 6 5 4 MEMB
OPCODE

Figure 8-1: Instruction Formats

The following sections describe the fields in the instruction word for each format.

8·1

intel" MACHINE-LEVEL INSTRUCTION FORMATS

REG FORMAT

The REG format is for operations that are performed on data contained in the global, local, and
floating-point registers. The majority of the 80960MC instructions use this format.

The opcode for the REG instructions is 12 bits long (3 hexadecimal digits) and is split between
bits 7 through 10 and bits 24 through 31. For example, the opcode for the addi instruction is
591 16. Here, 5916 is contained in bits 24 through 31 and 116 is contained in bits 7 through 10.

The srci and src2 fields specify source operands for the instruction. The operands can be
either registers or literals. The mode bits (ml for srci and m2 for src2) and the instruction type
(non-floating point or floating point) determine whether an operand is a register or a literal.
Table B-1 shows the relationship between the instruction type, the mode bits, and the srci and
src2 operands.

Table B-1: Encoding of Src1 and Src2 Fields in REG Format

Inst. Type Ml or M2 Src1 or Src2 Register Literal
Operand Number Value
Value

Non-FP 0 00000 rO

01111 r15
10000 gO

11111 g15
1 00000 0

11111 31
FP 0 00000 rO

01111 r15
10000 gO

11111 g15
1 00000 fpO

00011 fp3
00100 to reserved

01111
10000 +0.0

10001 to reserved
10101
10110 +1.0

10111 to reserved
11111

B-2

MACHINE-LEVEL INSTRUCTION FORMATS

For non-floating-point instructions, if a mode bit is set to 0, the respective src1 or src2 field
specifies a global or local register. If the mode bit is set to 1, the field specifies an ordinal
li teral in the range of 0 to 31.

For floating-point instructions, if the mode bit is set to 0, the respective src1 or src2 field
specifies a global or local register (just as it does for non-floating-point instructions). If the
mode bit is set to 1, the field specifies either a floating-point register or one of two real-number
literals (+0.0 or + 1.0). All of the other encoding when the mode bit is set to 1 are reserved.
When a reserved encoding is used as a source, the processor either signals an invalid opcode
fault or produces an undefined value.

The src!dst field can specify either a source operand or a destination operand or both, depend­
ing on the instruction. Here again, the mode bit (m3) and the instruction type (non-floating
point or floating point) determine how this field is used. Table B-2 shows this relationship.

Table B-2: Encoding of Src/Ost Field in REG Format

Inst. Type m3 SrclDst Src Only Dst Only

Non-FP 0 gO .. g15 gO .. gI5 gO .. gI5
rO .. r15 rO .. r15 rO .. r15

1 NA Literal NA
FP 0 NA NA gO .. g15

rO .. r15

1 NA NA fpO .. fp3

Note: NA means not allowed

For non-floating-point instructions, if M3 is clear, the src!dst operand is a global or local
register that is encoded as shown in Table B-l. If M3 is set, the src!dst operand can be used
only as a src operand that is an ordinal literal.

For floating-point instructions, the src!dst field is only used to encode destination operands.
Here, the encoding is the same as shown in Table B-1, except that the encodings for floating­
point literals are not allowed. That is, if M3 is clear, the destination operand is a global or
local register; if M3 is set, the destination operand is a floating-point register. When a reserved
encoding or literal encoding is used as a destination, the processor either signals an invalid
opcode fault or produces an undefined result.

COBR FORMAT

The COBR format is used primarily for control-and-branch instructions. (The test-if instruc­
tions also use this format.) The opcode field for this format is 8 bits (two hexadecimal digits).

The srcl and src2 fields specify source operands for the instruction. The srcl field can specify
either a global or local register or a literal as determined by mode bit mI. (The encoding of the
srcl field is the same as is shown in Table B-1 for the non-floating point instructions.) The
src2 field can only specify a local or global register.

8·3

MACHINE·lEVElINSTRUCTION FORMATS

The displacement field contains a signed, twos complement number that specifies a word
displacement. The processor uses this value to compute the address of a target instruction that
the processor goes to as the result of a comparison. The displacement field can range from _210

to (210 -1). To determine the JP of the target instruction, the processor converts the displace­
ment value to a byte displacement (i.e., mUltiplies the value by 4). It then adds the resulting
byte displacement to the JP of the current instruction.

NOTE

To allow labels or absolute addresses to be used in the assembly-language version of the COBR
format instructions, the Intel 80960MC Assembler converts a targ (target) operand value in an
assembly-language instruction into the displacement value required for the COBR format, using
the following calculation:

displacement = (targ - IP)!4

For the test-if instructions, only the src1 field is used. Here, this field specifies a destination
global or local register (m I is ignored).

CTRL FORMAT

The CTRL format is used for instructions that branch to a new JP, including the branch,
branch-if, bal, and call instructions. The return instruction also uses this format. The opcode
field for this format is 8 bits (two hexadecimal digits).

The target address for a branch is specified with the displacement field in the same manner as
is done with the COBR format instructions. Here, the displacement field specifies a word
displacement (also a signed, twos complement number) that can range from _22 to 221 -1.

The processor ignores the displacement field for the return instruction.

MEM FORMAT

The MEM format is used for instructions that require a memory address to be computed.
These instructions include the load, store, and Ida instructions. Also, the extended versions of
the branch, branch-and-link, and call instructions (bx, balx, and calix) uses this format.

There are two MEM formats, MEMA and MEMB. The MEMB format offers the option of
including a 32-bit displacement (contained in a second word) to the instruction. Bit 12 of the
first word of the instruction determines whether the format is MEMA (clear) or MEMB (set).

For both formats the opcode field is 8 bits long. The srcldst field specifies a global or local
register. For load instructions, the srcldst field specifies the destination register for a word
loaded into the processor from memory or, for operands larger than one word, the first of
successive destination registers. For store instructions, this field specifies the register or group
of registers that contain the source operand to be stored in memory.

The mode bit (or bits for the MEMB format) determine the address mode used for the instruc­
tion. Table B-3 summarizes the addressing modes for the two versions of the MEM format.
The fields used in these addressing modes are described in the following sections.

8-4

MACHINE-LEVEL INSTRUCTION FORMATS

Table 8-3: Addressing Modes for MEM Format Instructions

Format Mode Address Computation
Bit(s)

MEMA 0 offset

1 (abase) + offset

MEMB 0100 (abase)

0101 (lP) + displacement + 8

0110 reserved

0111 (abase) + (index) * 2scale

1100 displacement

1101 (abase) + displacement

1110 (index) * 2scale + displacement

1111 (abase) + (index) * 2scale + displacement

Note:

1. In the address computations above, a field in
parentheses (e.g., (abase» indicates that the value
in the specified register is used in the computation.

2. The use of a reserved encoding causes an invalid
opcode fault to be signaled.

MEMA Format Addressing

The MEMA format provides two addressing modes:

• absolute offset

• register indirect with offset

The offset field specifies an unsigned byte offset from 0 to 4096. The abase field specifies a
global or local register that contains an address in memory. The address is interpreted as either
a virtual address or a physical address depending on whether the processor is operating in
virtual-addressing or physical-addressing mode, respectively.

For the absolute offset addressing mode (the mode bit is clear), the processor interprets the
offset field as an offset from byte 0 of the current process address space. The abase field is
ignored. Using this addressing mode along with the Ida instruction allows a constant of from 0
to 4096 to be loaded into a register.

For the register indirect with offset addressing mode (the mode bit is set), the value in the
offset field is added to the address in the abase register. Setting the offset value to zero creates
a register indirect addressing mode; however, this operation can generally be carried out faster
by using the MEMB version of this addressing mode.

8-5

MACHINE-lEVEL INSTRUCTION FORMATS

MEMB Format Addressing

The MEMB format provides the following seven addressing modes:

• absolute displacement

• register indirect

• register indirect with displacement

• register indirect with index

• register indirect with index and displacement

• index with displacement

• IP with displacement

The abase and index fields specify local or global registers, the contents of which are used in
the address computation. When the index field is used in an addressing mode, the processor
automatically scales the value in the index register by the amount specified in the scale field.
Table B-4 gives the encoding of the scale field. The optional displacement field is contained in
the word following the instruction word. The displacement is a 32-bit, signed, twos comple­
ment value.

Table 8-4: Encoding of Scale Field

Scale Scale Factor
(Multiplier)

000 1

001 2

010 4

all 8

100 16

101 to 111 reserved

Note:

The use of a reserved encoding
causes an invalid opcode fault
to be signaled.

For the IP with displacement mode, the value of the displacement field plus 8 is added to the
address of the current instruction.

8-6

Appendix C
Instruction Timing

APPENDIX C
INSTRUCTION TIMING

This appendix describes the 80960MC processor's instruction pipeline and how it affects the
timing of instructions. The number of clock cycles required for each instruction are also given
here.

INTRODUCTION

The 80960 architecture defines several mechanisms for increasing processor performance
through the use of pipe lining and parallel execution of instructions. This appendix describes
how these mechanisms have been incorporated into the design of the 80960MC processor and
provides information to help programmers maximize the performance of the processor.

INTERNAL STRUCTURE OF THE 80960MC PROCESSOR

The 80960MC processor is composed of the following six major functional units (shown in
Figure C-l):

• Memory Management Unit

• Bus Control Logic

• Instruction Fetch Unit and Instruction Cache

• Instruction Decoder

• Micro-Instruction Sequencer and ROM

• Instruction Execution Unit

• Floating Point Unit

These units function independently from one another, but in close cooperation. The functions
of each of these units is described in the following sections.

Memory Management Unit

The Memory Management Unit (MMU) translates virtual addresses into physical addresses
and sends the resulting address to the Bus Control Logic (BCL). When the processor is in the
physical addressing mode, the MMU is effectively bypassed and addresses are passed directly
to the Bus Control Logic (BCL). The MMU becomes active in address translation, in the
following situations:

• When the virtual addressing mode is used.

• When the processor accesses system data structures (such as the PRCB, dispatch ports,
PCBs, etc.) as part of high-level primitive operations like dispatching a process or sending
a signal to a semaphore.

C-1

in1er INSTRUCTION TIMING

EXTENTIONS TO THE 80960 ARCHITECTURE

r--------------------~

TRANSLATION
LOOK-ASIDE

BUFFER

t
MEMORY

MANAGEMENT
UNIT

FLOATING­
POINT

REGISTERS

t
FLOATING-
POINT UNIT

~--t--- ------1-- ___ ..J

~

"'"

!
MICRO- INSTRUCTION

INSTRUCTION FETCH UNIT
SEQUENCER AND
AND ROM INSTRUCTION

CACHE

GLOBAL
REGISTERS AND
LOCAL REGISTER

SETS

t
INSTRUCTION
EXECUTION

UNIT

!
,..

INSTRUCTION
DECODER

BUS
CONTROL .. LOGIC

Figure C-1: Block Diagram of the 80960MC Processor

EXTERNAL
BUS

++

To streamline the address translation process, the MMU maintains a 44 entry cache on the chip
called the translation lookaside buffer (TLB). This cache is used to store often-used addresses
that have already been translated. The first 12 entries in the TLB hold addresses for system
defined data structures such as pointers to the page tables for the four regions of the address
space for the current process. The next 32 entries contain pointers to 32 pages currently
mapped into the physical address space. These 32 entries point to l28K bytes of memory,
which yields a cache hit ratio of 98% for typical applications.

The MMU is also able to perform type checks when referencing certain types of system data
structures (such as PCBs, ports, or procedure tables), while instructions are being executed in
other parts of the processor. Type checking is thus often overlapped with other processor
activities.

Bus Control Logic

The BCL provides the interface between the processor and the external world. This interface
consists of a multiplexed, burst bus, which is capable of memory-access rates of over 53
Megabytes/second (with a 20 Mhz CPU clock). The BCL accepts requests from the MMU,
prioritizes them, and executes them. It attempts to maximize bus access efficiency through
buffering and burst accesses.

C-2

inter INSTRUCTION TIMING

The BCL provides a queuing mechanism that can buffer up to three outstanding requests at any
given time. This mechanism, coupled with other 80960MC features (such as scoreboarding,
which is discussed later), allow other units in the 80960MC to continue operation without
waiting for bus requests to be completed. As a result, the execution of most memory reference
instructions require little or no delay in the instruction execution pipeline.

The BCL generates burst cycles on the external bus, which allow from one to 16 bytes of data
to be read or written in a single operation. The processor takes advantage of burst transfers in
several ways. First, multiple-register load or store operations can be carried out in a single bus
operation, using the ldl (load long), ldt (load triple), and ldq (load quad) instructions and the
corresponding stl (store long) stt (store triple), and stq (store quad) instructions. Second,
instructions can be fetched in 16-byte bursts, thereby reducing bus traffic for instruction
fetches. Third, floating-point values of 32, 64 or 80 bits can be stored in a single bus opera­
tion. Fourth, the reading and writing of system data structures as part of process management
tasks (such as switching processes or sending messages) can be carried out at very fast rates.

Instruction Fetch Unit and Instruction Cache

The Instruction Fetch Unit (IFU) acts as an intelligent "buffer" for the Instruction Decoder
(ID). Its purpose is to present the instruction stream to the ID in the fastest and most trans­
parent way possible. The IFU uses several mechanisms to accomplish this goal, as described
in the following paragraphs.

The IFU maintains a 512 byte, direct-mapped instruction cache. This cache allows very fast
access to instructions. While the other units in the processor are executing instructions, the
IFU looks ahead in flow of instructions stored in the instruction cache. If a cache miss is
detected (that is, an instruction that will soon be needed is not in the instruction cache), the IFU
issues a prefetch request to the MMU. Upon receiving the requested instruction, the IFU
updates the instruction cache. In most cases, this fetch and load will take place before the ID
requires the instruction. The major exception to this rule happens on branch conditions.

The IFU works closely with the ID in handling branch conditions. The ID informs the IFU of
any branch operations that are about to take place. Such notifications take place on uncon­
ditional branches and on conditional branches in which the condition code is valid. When the
IFU is notified of a branch, it checks for a cache hit on the desired instruction. If the
instruction is not present, the IFU begins fetching instructions for the new control path.

To further minimize delays in the instruction pipeline, the ID sends a special signal to the IFU
whenever instructions are required immediately. The lFU then passes the fetched instructions
to the ID directly, rather than writing them to the cache and reading them back out again. This
technique is called an instruction-cache bypassing.

The instruction pointer (IP) register in the processor and the IFU maintain several instruction
pointers. These pointers point to instructions at various stages of the fetch-decode-execute
pipeline. If a fault is signaled from any unit, the processor uses these pointers to determine the
problem and preserve the state of the processor.

C-3

inter INSTRUCTION TIMING

Instruction Decoder

The ID decodes the instructions it receives from the IFU and routes them to the appropriate
execution units. In doing this, it attempts to keep the computing resources of the processor
working at the highest possible levels.

Instructions are decoded into the following four groups, according to how the instructions are
executed:

• Simple Instructions

• Floating Point and Branch Instructions

• Complex Instructions

• Load and Store Instructions

The following paragraphs list the instructions in each of these groups and describe how the ID
handles them.

Simple Instructions

The instructions in the simple-instruction group require very little decoding. These instructions
include logical; comparison; shift; integer add and subtract; and ordinal add and subtract
instructions. The ID decodes these instructions and passes them to the instruction execution
unit (lEU), where they are executed, usually in a single clock period.

Floating Point and Branch Instructions

All floating-point instructions are executed by the floating-point unit (FPU). Often, the execu­
tion of floating-point instructions requires interaction between the FPU, ID, and Micro­
Instruction Sequencer (MIS). For example, the FPU may require access to the general-purpose
registers (maintained by the lEU). Here, the ID assists in supplying data to the FPU. Also,
many of the floating-point instructions are executed by means of microcode. The FPU gets the
microcode from the MIS.

The ID executes branch instructions directly. If the branches are unconditional, no interaction
with the processor's other execution units is required.

On conditional branch instructions, the ID uses a condition code scoreboard to streamline the
branching process. Scoreboarding is a mechanism by which various resources within the
processor can be marked as in use (or pending a result). When one of the execution units in
the processor is in the process of altering the condition code, it marks the condition code
scoreboard. When the ID prepares to execute a conditional branch instruction, it checks the
condition code scoreboard. If the scoreboard is marked as in use, the ID waits for the result
before proceeding. If the condition code scoreboard is clear, the ID signals the IFU im­
mediately if a change in program flow is about to happen.

Conditional fault instructions (fault-if instructions) are also executed in the ID. These opera­
tions differ from conditional branches in that they result in a fault event being generated,
followed by an implicit call to the appropriate fault-handler routine.

C-4

inter INSTRUCTION TIMING

As a result of the pipe lining described above, branches can often be carried out in zero clock
cycles. For example, the branch instruction (b) shown below will execute in zero cycles, since
the branch time is overlapped completely by the execution time of the floating-point instruction
(sinr).

sinr
b

gO, gl
some location

some location:
mov gl,g2

The branch-if instruction (be) in the following example is also executed in zero cycles:

cmp OxlO, r9
divi rIO, rll, rIO
be go here

-

go here:
mov gl,g2

Here, the comparison instruction (cmp) is placed early in the instruction stream, allowing the
branch condition based on the value of r9 to take place while the integer divide instruction
(divi) is being executed.

Complex Instructions

Complex instructions are those that are executed using one or more microcode instructions.
Examples of such instructions are the flushreg (flush local registers), mark, and fmark (force
mark) instructions. The ID decodes complex instructions and forwards them to the MIS unit.
The MIS then sends the equivalent microcode to the lEU.

Load and Store Instructions

Load and store instructions are those that request data to be read from or written into memory.
The ID sends these instructions directly to the MMU and BCL, which executes them.

The ID is responsible for converting the addressing information encoded in load, store, branch,
and call instructions into an effective memory addresses. The circuitry that actually performs
effective-address calculations resides in the IFU, but the ID oversees these operations. The
generation of effective addresses is performed within a separate carry look-ahead adder, used
with hardware shift logic. The ability to calculate effective addresses independently from
instruction execution allows address calculation to be overlapped with computation. The time
required to calculate an effective address ranges from zero to four cycles; but, for the most
commonly used addressing modes, this time is less than two cycles.

Instructions that require effective addresses are executed by either the ID or the MMU and
BCL, thus preserving the pipeline and eliminating delays or resource constraints on the lEU or
FPU.

C-5

INSTRUCTION TIMING

Micro-Instruction Sequencer and ROM

The MIS is a mUltipurpose unit designed to help in the execution of instructions that use
microcode. All of the processor's microcode is stored in ROM, which is accessed through the
MIS. When the ID receives a complex instruction (one that requires microcode to be
executed), the MIS supplies the microcode to the lEU as described earlier in the discussion of
complex instructions.

The MIS also supplies microcode for floating-point instructions; the power-up and self-test
performed during processor initialization; interrupt handling; and fault handling.

The MIS is able to access parts of the processor that are not accessible to a program, such as
the cached local register sets and parts of system data structures that have been cached on the
chip. This capability offers two benefits. First it allows certain operations such as flushing the
local registers sets to be carried out, even though software does not have direct access to these
registers. Second, it enables the processor to execute complex process management operations
very quickly.

Instruction Execution Unit

The lEU contains the Arithmetic Logic Unit (ALU) and the mechanism for register and
condition-code scoreboarding. It also manages the 16 global registers and the 4 sets of 16 local
registers.

The ALU performs the following functions for the lEU:

• Addition and subtraction of integers and ordinals

• Moves between registers

• Logical operations

• Bit operations

• Shifts and rotates

• Comparisons

It is capable of performing any of these operations in a single clock cycle.

The lEU can also work with integer literals in the range of 0 to +31, which are encoded in the
REG instruction format. This method of encoding literals performs two functions. First, it
provides a more compact instruction stream. Second, when a literal is used as an argument for
an instruction, the lEU is able to execute the instruction in one less clock cycle.

The lEU handles the reading and writing of global and local registers. It also handles the
allocation of local registers sets on procedure calls. The lEU allocates a new set of local
registers on each procedure call. If all four register sets become allocated, the lEU automati­
cally flushes the oldest frame to the stack on the next procedure call. The lEU also automati­
cally retrieves any local register frame from the stack when required by a return operation. The
majority of procedure calls or returns do not require the processor to flush local registers to
memory. Call instructions that can be executed without flushing a register set require only 9
cycles to complete, with the corresponding return taking only 7 cycles.

C-6

inter INSTRUCTION TIMING

The register scoreboard provides scoreboarding for the global and local registers. When one or
more registers are being used in an operation, they are marked as in use. The register
score boarding mechanism allows the processor to continue executing subsequent instructions,
as long as those instructions do not require the contents of the scoreboarded registers.

A typical event that would cause scoreboarding is a load operation. For a load from memory,
the contents of the affected registers are not valid until the MMU and BCL fetch the data and
the registers are loaded. For example, consider the sequence:

Id
addi
addi
subi

(gl), gO
g2, g3, g4
g5, g4 ,g6
gO, g6, g6

Here, when the MMU and BCL initiate the Id operation, register gO is scoreboarded. As long
as subsequent instructions do not require the contents of gO, the ID continues to dispatch
instructions. For example, the two addi instructions above are executed while the BCL is
fetching the data for gO. If gO is not loaded by the time the subi instruction is ready to be
executed, the lEU delays execution of the instruction until the loading of gO has been com­
pleted.

If an operation accesses a single register, only that register is scoreboarded. However, if
multiple registers are accessed (such as, with the Idl, Idt, or Idq instructions), registers are
score boarded as shown in Table C-l, according to the base register of the group being ac­
cessed.

Table C-1 : Registers Scoreboarded According to Registers Referenced

Base Register Block of Registers
Accessed Score boarded

gO 0-3

g2 0-7

g4 4-7

g6 0-15

g8 8-11

g10 8-15

g12 12-15

g14 0-15

Register Bypassing

The execution times of instructions in the lEU are dependent on the instruction flow. One
feature of the lEU that can enhance processor performance is register bypassing. Register
bypassing is a mechanism that allows an instruction that would ordinarily require source
operands to be placed in registers to be executed without accessing one or both of the source
registers. Register bypassing occurs in either of two circumstances. First, when the lEU
executes an instruction with two source operands, register bypassing occurs ifone or both of

C-7

inter INSTRUCTION TIMING

the operands are literals. Second, register bypassing will also occur when the second of two
source operands is the result of the previous instruction. The net result of register bypassing is
the saving of one clock cycle. Most instructions that the lEU executes can be executed in a
single cycle when register bypassing occurs.

Floating Point Unit

The FPU performs all the floating-point computations for the processor, as well as the integer
multiply and divide operations. It shares the resources of the processor. For example, it can
use the global and local registers as operands for floating-point operations, and it gets
microcode for the execution of complex floating-point instructions from the MIS. It also
manages the four 80-bit floating-point registers, which it uses for extended-precision, floating­
point calculations.

To perform integer multiplication and several floating-point calculations, the FPU contains a
32-bit integer Booth-Multiplier. This multiplier performs integer multiplication operation in a
variable amount of time, depending on the number of significant bits. It is used for integer
multiplications and several floating-point calculations.

EXECUTION TIMES FOR THE 80960 ARCHITECTURE INSTRUCTIONS

This section describes the execution times for the instructions defined the 80960 architecture.
As illustrated earlier in this appendix, the execution time for an instruction can vary, according
to (1) the types of arguments used and the state of the on-chip resources and (2) how the
processor's pipelining and instruction-overlapping features are used.

In the following discussion, an instruction's execution time is defined as the time between the
beginning of execution of a decoded instruction and the beginning of execution for the next
decoded instruction. For example, the illustration in Figure C-2 shows the execution time of a
two operand instruction to be two clocks, with respect to the next instruction to be executed.

FIRST INSTRUCTION

FETCH DECODE EXECUTE
src1

src2

EXECUTION TIME

RESULT

SECOND INSTRUCTION
,..-----r----.,... - - - - .,-----,----...,

FETCH DECODE WAIT EXECUTE RESULT
'---___ .L.-___ ...L.. ____ -'-___ -'-___

Figure C-2: Execution Time of an Instruction

c-s

inter INSTRUCTION TIMING

Logical Instructions

The timing of the logical instructions depends on the lEU bypass mechanism described earlier
in this appendix, in particular for any instruction of the form:

alu_instruction srcJ, src2, dst

If srcJ or src2 is a literal or if src2 is the result of the previous operation, a bypass hit occurs.
Otherwise, there is no bypass hit and the instruction requires an extra clock to load the second
operand. Table C-2 shows the timing of the logical instructions depending on whether or not a
bypass hit occurs.

NOTE

In all the following tables, execution time is given in number of clock cycles.

Table C-2: Logical Instruction Timing

Instruction Normal Case Worst Case
Execution Time Execution Time

(Bypass Hit) (Bypass Miss)

and 1 2

nand 1 2

or 1 2

nor 1 2

xor 1 2

xnor 1 2

andnot 1 2

notand 1 2

not 1 1

notor 1 2

ornot 1 2

rotate 1 2

shlo 1 2

shro 1 2

shli 2 3

shri 2 3

shrdi 2 3

C-9

inter INSTRUCTION TIMING

Bit Instructions

The execution times for the bit instructions are also dependent on whether or not a register
bypass has occurred or not, as is shown in Table C-3.

Table C-3: Bit Instruction Timing

Instruction Normal Case Worst Case
Execution Time Execution Time

(Bypass Hit) (Bypass Miss)

notbit 2 3

setbit 2 3

clrbit 2 3

aIterbit 2 3

chkbit 2 3

extract 7 7

modify 8 8

The execution times of the scanbit and spanbit instructions (shown in Table C-4) depend on
condition code scoreboarding. If the condition code is not set by the previous instruction
execution, the instruction will complete in one less clock cycle. Execution time is also depend­
ent on the number of bits operated upon.

Table C-4: Scan and Span Bit Instruction Timing

Instruction Best Case Normal Case Worst Case
Execution Time Execution Time Execution Time

scanbit 8 11 14

spanbit 8 11 14

Register Moves

The timing of instructions that move data between registers is directly related to the number of
words moved. One clock cycle is required to move one (as shown in Table C-5).

Table C-5: Move Instruction Timing

Instruction Execution Time

mov 1

movl 2

movt 3

movq 4

C-10

INSTRUCTION TIMING

Integer and Ordinal Arithmetic

The execution times for the basic add and subtract instructions (as shown in Table C-6) depend
on register bypass. The normal-case results are achieved when a register bypass occurs.

Table C-6: Integer and Ordinal Arithmetic Instruction Timing

Instruction Normal Case Worst Case
Execution Time Execution Time

(Bypass Hit) (Bypass Miss)

addo 1 2

addi 1 2

subo 1 2

subi 1 2

addc 1 2

subc I 2

Table C-7 shows the execution times of the compare instructions, which also depend on
whether or not a bypass hit occurs.

Table C-7: Compare Instruction Timing

Instruction Normal Case Worst Case
Execution Time Execution Time

(Bypass Hit) (Bypass Miss)

cmpo 1 2

cmpi 1 2

cmpinco 2 3

cmpdeco 2 3

cmpinci 2 3

cmpdeci 2 3

condmpo 1 2

concmpi 1 2

C-11

INSTRUCTION TIMING

Multiply and Divide Instructions

Table C-8 shows the typical instruction execution times for the multiply and divide instruc­
tions:

Table CoB: Multiply and Divide Instruction Timing

Instruction Range of Typical Case
Significant Bits Execution Time

mulo 9 to 21 18

muli 9 to 21 18

divi 37 37

divo 37 37

remo 37 37

remi 37 37

modi 37 37

ernul 37 24

ediv 37 40

Since the processor contains a Booth Multiplier with early out, the execution times on the
multiply and divide instructions (shown in Table C-8) depend on the number of significant bits
in the srci operand. For example, Table C-9 shows the execution times based on the number
of significant bits in src 1:

Table Cog: Multiply/Divide Execution Times Based on Significant Bits

Src1 Significant Bits Execution Time

2 9

4 10

8 11

32 21

Note that the shift instructions or the add and subtract instructions may be faster than the
multiply instructions in certain instances (for example, when multiplying by 3, 5, 15, etc.).

Branching

Branch instructions are executed directly by the ID and do not require lEU or FPU resources.
Because of this, branch instructions can in most cases be programmed so that their execution is
overlapped with other operations. Table C-10 lists the ranges of times for execution of branch
instructions, from best (maximum overlap) to worst (no overlap). (The instructions in capital
letters indicate groups of instructions that branch on condition codes, such the BRANCH IF
instructions, be, bg, bl, etc.)

C-12

INSTRUCTION TIMING

Table C·10: Branch Instruction Timing

Instruction Best Case Worst Case
Execution Time Execution Time
(CC Available) (CC Not Available)

b l o to 2 (0 to 2)

BRANCH IF Ot02(Oto1) o to 3 (0 to 2)

bx l o to 6 (0 to 6)

BRANCH AND 2 to 8 (2 to 8)
LINK I

COMPARE AND 4 to 5 (3 to 4)
BRANCH2

bbs, bbc2 4 to 5 (3 to 4)

TEST IF o to 3 (0 to 2) o to 4 (0 to 3)

FAULT IF o to 2 (0 to 1) o to 3 (0 to 2)

Notes:
I. Condition code is not used.
2. Condition code is set and checked as part of instruction execution.

The second column of numbers lists execution-time ranges for conditional branches in which
the condition code was not set in the previous instruction, and the third column lists ranges for
branches in which the condition code was set by the previous instruction. Also, the first range
in each column is for the case in which the branch is taken, and the range in parentheses is for
the case in which the branch is not taken.

When writing optimized code for the 80960MC processor, it is best to perform conditional
tests at least two instructions before a conditional branch. This practice allows the execution
times in column two to be achieved. It is also important to note that the "not taken" branch
case executes in one less cycle, because there is no break in the pipeline. (Remember, instruc­
tion time is defined as the time from the start of execution of one instruction to the start of
execution of the next instruction. If the pipeline is stalled, the fetch of the next instruction will
be delayed one clock. This delay may or may not be hidden by the parallelism of the
80960MC processor).

Call/Return Instructions

As described earlier in this appendix, the 80960MC processor provides four sets of local
registers. When a call instruction is executed, the processor allocates a new set of local
registers to the called procedure or interrupt routine. If, when a call or calix instruction is
executed, a set of local registers is available, the processor executes the instruction in 9 clock
cycles.

If a set of local registers is not available, the processor flushes the oldest set of registers to the
stack in memory to free up a register set. Flushing a set of local registers requires four
quad-word stores to memory. Assuming zero-wait-state memory, this operation adds 24 clocks
to the 9 clocks normally required to execute a call.

C·13

inter INSTRUCTION TIMING

The ret (return) instruction nonnally requires 7 clock cycles. If the local registers being
returned to have been flushed to the stack, an additional 24 clocks must be added to this
execution time (with zero-wait-state memory) for the processor to reload the local registers
from the stack. It is important to note that the processor only reloads the local registers when
they are required, thus eliminating unnecessary memory cycles.

Miscellaneous Complex Instructions

The miscellaneous complex instructions shown in Table C-ll are carried out by the MIS.
Their execution times depend on the execution state of the environment at the time of execu­
tion. The execution times given here are typical values.

Table C-11 : Miscellaneous Complex Instruction Timing

Instruction Execution Time

atadd 17

atmod 20

flushreg 27

mark 6 (not taken)

fmark 6 (plus fault time)

modac 10

modpc 29

modtc 18

Ida 1 to 5 (typical 2)

Idphy 17

inspacc 29

Load Instructions

A load instruction requires the following steps:

1. Instruction Fetch

2. Decode

3. Compute Effective Address/Scoreboard Register(s)

4. Address translation through the MMU

5. Place Address on Bus

6. Wait State(s)

7. Receive Data on Bus

8. Place Data in target register

Of these steps, only steps 3 through 8 are included in the definition of execution time for an
instruction. The following figures show several examples of load instruction timing depending
on where the load instruction is placed in the instruction stream.

C-14

inter INSTRUCTION TIMING

The example in Figure C-3 illustrates a load instruction where the instruction that follows
requires the fetched data. Here, the pipeline is stalled while the processor waits for the load to
complete. Assuming a one-clock-cycle effective-address calculation, the load will require 4 or
5 clock cycles to be executed, depending on whether or not zero-wait-state memory is used.

PREVIOUS INSTRUCTION

I DECODE I EXECUTE

Id INSTRUCTION

EXECUTION TIME

WAIT

INSTRUCTION USING Id RESULT

FETCH DECODE EXECUTE RESULT

Figure C-3: Load Where the Next Instruction Requires the Fetched Data

Figure C-4 gives an example of a load instruction where the instruction that follows does not
require the data being fetched from memory. Here, the unrelated instruction can be executed
while the load is being completed. The 2 clock cycles required to execute the unrelated
instruction are then overlapped with the 4 or 5 cycles required to execute the load (again
depending on whether or not zero-wait-state memory is used). The load instruction thus
requires a net of 1 or 2 clock cycles from the pipeline to be executed.

PREVIOUS INSTRUCTION

I DECODE I EXECUTE

Id INSTRUCTION

UNRELATED INSTRUCTION

FETCH I DECODE I EXECUTE

WAIT

EXECUTION TIME

RESULT

Figure C-4: Load Where the Next Instruction Does Not Require the Fetched Data

Finally, Figure C-5 shows an example of two load instructions being executed back-to-back.
These two instructions can be executed in 5 or 6 clock cycles, as long as the number of BCL
requests is limited to 3 or less (which is the size of the output request FIFO in the BCL's

C-15

INSTRUCTION TIMING

control queue). Here, the second load is almost completely overlapped by the first load. Times
for multiple word loads will be lengthened 1 cycle plus wait states for each additional word. If
more than 3 requests become outstanding, the processor will wait until the number of outstand­
ing load operations goes below the size of the output FIFO.

FIRST Id INSTRUCTION

WAIT

SECOND Id INSTRUCTION

WAIT

EXECUTION TIME FOR BOTH INSTRUCTIONS

Figure CoS: Back-to-Back Load Instructions

In all of the above load operations, it is assumed that the page table entry for the page that
contains the word is present in the TLB (which is normally the case). If not, the translation
takes considerably longer, since the processor has to perform several memory reads to thread
its way through the segment table and page tables to find the physical address of the page that
contains the word to be loaded.

Store Operations

Store instructions involve a posting of an address and data request to the MMU and BCL and
are usually executed in 2 to 3 clock cycles. (They do not require register scoreboarding.) If
the instruction following a store instruction is another store instruction, the second store in­
struction is usually executed in 2 clock cycles. If the following instruction uses the lEU, the
execution time is 3 clock cycles. The only case in which this time will increase is when the
three-request output FIFO in the BCL becomes full. Here, if another store instruction is issued,
the processor waits for the BCL to complete its operations before other instructions can ex­
ecute.

EXECUTION TIMES FOR THE EXTENDED INSTRUCTIONS

The following sections give the execution times for those 80960MC instructions that are
extensions to the 80960 architecture.

C·16

INSTRUCTION TIMING

Decimal Instructions

Table C-12 shows the instruction times for the decimal instructions.

Table C-12: Decimal Instruction Timing

Instruction Execution Time

dmovt 7

daddc 8

dsubc 8

Floating-Point Instructions

Table C-13 shows the instruction execution times for the simple floating-point instructions.
Where applicable, a range and a typical observed average are given.

The instructions given in Table C-14 consist of the complex floating point instructions. Only
typical instruction execution rates are given here. In many cases, the clock count can vary by
30-40%. Execution time is dependent on the operands.

It is important to note that the complex floating-point instructions are interruptible. When an
interrupt is received while one of these instructions is being executed, the processor can
suspend execution, service the external request, then resume execution of the instruction.

Process-Management Instructions

The MIS executes the process management instructions. The execution times for these instruc­
tions depend heavily on the state of the execution environment when execution of the instruc­
tion begins. For example, if a signal instruction is executed, the execution time will vary
depending on whether or not there is a process waiting at the semaphore.

Table C-IS gives typical execution times for these instructions. The following assumptions are
made in computing these times:

• The system is assumed to be a single-processor system

• Regions are assumed to be paged

• Faults do not occur

• When enqueuing occurs, the queue is empty

• When dequeuing occurs, one entry is on the queue

• All communication ports are assumed to be FIFO ports

• Process preemption does not occur as the result of any operation

C-17

INSTRUCTION TIMING

Table C-13: Simple Floating-Point Instruction Timing

Instruction Execution Time

movr 5

movrl 5 to 7

movre 7 to 8

cpysre 8

cpyrsre 8

addr 9 to 17 (typical 10)

addrl 12 to 20 (typical 13)

subr 9 to 17 (typical 10)

subrl 12 to 20 (typical13)

muir 11 to 22 (typical 20)

mulrl 14 to 43 (typical 36)

divr 35

divrl 77

cmpr 10

cmprl 12

cmpor 10

cmporl 12

cvtri 25 to 33

cvtril 26 to 35

cvtilr 41 to 45

cvtilr 42 to 46

cvtzri 41 to 45

cvtzril 42 to 46

roundr 56 to 69

roundrl 56 to 70

scaler 28

scalerl 30

logbnr 32 to 41

logbnrl 32 to 43

classr 22 to 24

classrl 22 to 24

C-18

inter INSTRUCTION TIMING

Table C-14: Complex Floating-Point Instruction Timing

Instruction Execution Time

sqrtrl 104

expr 300

exprl 334

logepr 400

logeprl 420

logr 438

logrl 438

remr (67 to 75878)

remrl (67 to 75878)

atanr 267

atanrl 350

cosr 406

cosrl 441

tanr 293

tanrl 323

Table C-15: Process-Management Instruction Timing

Instruction Execution Time

wait 47 (no blocking)

condwait 47

signal 42 (no waiting process)
137 (waiting process)

send 110 (no waiting process)
172 (waiting process)

receive 73 (message available)

condrec 69 (message not available)
92 (message available)

schedprcs 107

sendserv 185

Idtime 15

saveprcs 200

resumprcs 375

C-19

Appendix 0
Initialization Code

APPENDIX D
INITIALIZATION CODE

This appendix provides an example of the initialization code required to initialize the
80960MC processor.

OVERVIEW

The code given in this appendix demonstrates one of the methods that can be used to initialize
the 80960MC processor. To use this code, the programmer must assemble (and compile, in the
case of the C program modules) the individual files into object modules. These modules must
then be loaded into ROM (generally EPROM). The resulting EPROM will contain the follow­
ing:

• An initial memory image (as shown in Figure 9-5

• An interrupt table

• A fault table

• A system procedure table

• A set of dummy interrupt and fault handler routines

• A dispatch port

• A set of dummy system procedures

• Two small processes

The dummy interrupt and fault handler routines merely perform a return to the initialization
code if an interrupt or fault occurs during initialization. Likewise, the dummy system
procedures perform returns. These routines may be changed to suit the needs of a particular
application.

Each process consists of a PCB and a code block. The code block is located in physical
memory; however, one of the jobs of the initialization code will be to map the code into a
virtual memory page.

The dispatch port has the two processes already queued to it.

When the processor's RESET pin is asserted, the processor performs its self test and comes up
in physical mode. The processor then begins executing the initialization code. This code
directs the processor to perform the following rudimentary steps of initialization:

1. Copy the PRCB from the IMI into RAM.

2. Copy the interrupt table into RAM.

3. Copy the dispatch port in RAM.

4. Copy page tables for the two processes in RAM.

0-1

inter INITIALIZATION CODE

5. Copy a page table for a region 3 in RAM, to be shared by the two processes.

6. Copy the PCBs fQr the two processes into RAM.

7. Execute a restart processor lAC, to enable the processor to load the new pointers to PRCB
and interrupt table. During restart, the processor is brought up in virtual mode and in the
idle state.

The PRCB, interrupt table, dispatch port, and process PCBs are copied into RAM because
these data structures have fields that the processor must be able to write.

In a system where processes are created dynamically, the segment table would also have to be
copied into RAM during initialization. In this example, the segment table remains in ROM.
The pointers in the segment table to the page tables, PCBs, dispatch port, and system procedure
table are predefined to point to the locations in RAM where these data structures are to be
loaded during initialization.

Prior to restarting the processor, additional initialization steps can be carried out to configure
the processor for a particular application. The following items are examples of further in­
itialization actions that might be included in the initialization code:

• Copy the segment table into RAM (as discussed above).

• Copy new interrupt handler routines into RAM and change the pointers in the interrupt
table to point to these new routines.

• Copy the fault table into RAM; copy new fault handler routines into RAM; change the
pointers in the fault table to point to the new fault handler routines; and change the pointer
in the PRCB to point to the relocated fault table.

• Create a new system procedure table in RAM; copy the system procedures into RAM;
change the pointer in the PRCB to point to the new system procedure table.

• Create additional processes, made up of page tables for the process address space, a PCB,
and code and data for the process.

Alternatively, the interrupt handler routines, fault handler routines, and system procedures can
all be loaded into ROM.

Following the restart of the processor, the processor checks the dispatch port. It dispatches the
first process and begins executing it. It executes the process for one time slice of 4096 ticks,
then dispatches the second process. It continues to switch back and forth between the two
processes in this manner.

EXAMPLE CODE

The example code consists of the following sixteen files:

• startup.s

• Ctable.lst

• i_table.lst

0·2

inter INITIALIZATION CODE

• initialjrame.lst

• macs.m4

• Chandle.c

• Lhandle.c

• fix_pte.c

• prog1.c

• prog2.c

• led.h

• passl.ld

• pass 1a.ld

• pass2.ld

The startup.s,Ltable.lst, i_table.lst, initiaIJrame.lst, and macs.m4 files contain assembly code
for the Intel 80960MC Assembler. (The files with an .lst extensions are listings from the
assembler that include assembly code, such as would be included in an .s file, and the resulting
object code. The macs.m4 file contains assembler code for macros.) The code in these files is
used to build the initial memory image. The startup.s code builds all of the system data
structures except the interrupt table and fault table, which are built by the i _table. 1st and
Ltable.lst code, respectively. The startup.s code uses the macros in macs.m4. Also, the
startup.s code contains the initialization code that the processor executes following the first
stage of initialization. The initial Jrame .Ist code creates a stack frame for each process.

Lhandle.c, i_handle.c, and fixyte.c files contain C program modules that are also used to
build the initial memory image. The Lhandle.c and i_handle.c programs create the dummy
fault and interrupt handler routines; the fix yte.c program creates the page tables.

The progl.c, prog2.c, and led.h files contain C program modules for the two processes.

Finally, the passl.ld, passl a.ld, and pass2 .ld files contain instructions for the loader.

The following steps describe how to use the code in these files:

1. Assemble the assembly code in files startup.s,Ltable.lst, i_table.lst, initiaIJrame.lst, and
macs.m4. (Here the ".s" files are made up of the assembly code only from the ".1st" files
listed above.)

2. Compile the C code in files Lhandle.c, i_handle.c,fixyte.c, progl.c, and prog2.c. The
led.h code is included in the progl.c and prog2.c code.

3. Run the passl.ld command file. The script in this file do two things. First, it links the
object modules progl.o and initial Jrame.O, using the 80960 linker. This operation creates
the virtual address space for process 1, with code starting at address 016, data at address
4000000016, the stack at address 8000000016, and region 3 at C0000000l6" Second, the
interrupt and fault tables are located in region 3. (The interrupt and faults tables are not
related to process 1. They are located using passl.ld, merely for convenience.)

0-3

INITIALIZATION CODE

4. Run the pass] a.ld command file. The script in this file create a virtual address space for
process 2, by linking the object modules prog2.o and initiaIJrame.O.

5. Run the pass2.ld command file. The script in this file combine the two processes with the
initial memory image. The script in pass2.ld directs the linker to locate the linked code at
address O.

6. Burn the output file from pass2 .ld from the linker in an EPROM.

startup.s

/*
*/

include ('macs .m4')

/ * ------ externals --- * /

.globl
· globl
.globl
.globl
.globl
.globl
.globl
.globl
.globl
· globl
· globl

seg~table_ptr

prcb_ptr

esl
yl_regioD_O_pte
yl_regioD_l_pte
_pl_regioD_2_pte
_p2_regioD_O_pte
_p2_region_l_pte
_p2_region_2_pte

reglon _ 3 _pte

/ * ------ core initialization block ----------------------------------- * /

.word se9_ table _ptr

.word prcb_ptr

.word 0

.word start _ip

.word esl 1* calculated at link time */

.word 0 /* csl = -(segtab + PRCB + startup) */

.word 0

.word -1

1* ------ segment table offsets --------------------------------------- */

· set sys_proc_table_st,2
.set pl reglon 0 st,3
· set pl=region_l_st,4
· set pl_region_2_st,5
.set region_3_st,6
.set d_port_st,7
· set segtab_st,8
,set p2 region 0 st,9
.set p2=region=1=st,lO
· set p2_region_2_st,11
.set LPCBl_st,12
.set LPCB2_st,13

/ * ------ region sizes -- * /
/* nominal object size"" (size+l) * 64kb */

0·4

.set
· set
· set

pl_region_O_size,O
pl_reglon 1 8lze,0
pl_region_2_size,O

· set p2_reglon 0 slze,O
.set p2_reglon 1 812e,0
.set p2 reglon 2 81ze,0

INITIALIZATION CODE

.set region_3_size,Ox3f /* as large as possible */

/* initial PReB -- *1
1*

This PReB (Processor Control Block) is used to bring
the 80960 out of reset and into an executing state. The
processor will set up all necessary tables and structures,
then restart itself using the Linear PRes (below)

* 1

.align
prcb ptr:

.word OxO 1* - reserved * 1

.word OxOOOOOO08 1* - processor state idle * 1

.word OxO 1* - reserved * 1

.word OxO 1* 12 - current process * 1

.word OxO 1* 16 - dispatch port *1

.word intr table 1* 20 - table physical address * 1

.word intr stack 1* 24 - interrupt stack pointer * 1
1* Note: GIS is the frame pointer and * 1
1* is initialized to int stack at reset *1 -

.word OxO 1* 28 - reserved * 1
SS(region_3_ st) 1* 32 - region 3 * 1
.word sys_proc - table 1* 36 - system procedure table * 1
.word fault table 1* 40 - fault table * 1
.word OxO 1* 44 - reserved * 1
· space 12 1* 48 - reserved * 1
.word OxO 1* 60 - reserved * 1
. space 8 1* 64 - idle time * 1
.word OxO 1* 72 - system error fault * 1
.word OxO 1* 76 - reserved * 1
.space 48 1* 80 - resumption record * 1
.space 44 1* 128 - system error fault record * 1

1* ------ linear PReE -- * I

.align 12
lprcbytr:

.word OxO 1*

.word (1«10) I (1«3) 1*

.word OxO 1*

.word OxO 1*
SS (dyort_st) 1*
.word intr table 1*
.word OxcOOOOOOO 1*

1*
1*

.word OxO 1*
S5 (region_3_st) 1*
SS (sysyroc_ table st) 1*
.word fault _table 1*
.word OxO 1*
· space 12 1*
.word OxO 1*
· space 8 1*
.word OxO 1*
.word OxO 1*
.space 48 1*
.space 44 1*
.text

- reserved
- addr. trans. on (linear)

state idle
- reserved

12 - current process
16 - dispatch port
20 - table physical address
24 - interrupt stack pointer

(beginning of region 3)
Note: G1S lS the frame pointer and
is initialized to int stack at reset

28 - reserved
32 - region 3
36 - system procedure table
40 - fault table phys. addr.
44 - reserved
48 - reserved
60 - reserved
64 - idle time
72 - system error fault
76 - reserved
80 - resumption record

128 - system error fault record

/* ** */
/* The system procedure table will only be used if software puts the */
/* processor into user mode and makes a supervisor procedure call */

.align 6
sysyroc_table:

.word # Reserved

0·5

* 1

* 1
* 1
*1
* 1
* 1

* 1
* 1
* 1
* 1
* 1
* 1
* 1
* 1
* 1
* 1
* 1
* 1
* 1
* 1
* 1

.word

.word

.word sup_stack

.word 0

.word a

.word

.word

.word

.word

.word

.word

.word proc_entry_O

.word proc_entrY_l

INITIALIZATION CODe

Reserved
Reserved
Supervisor stack pointer 12
Preserved
Preserved
Preserved
Preserved
Preserved
Preserved
Preserved
Preserved
Procedure entry
Procedure entry

sup_stack:
.word

proc_entry_O:
.word

proc_entry_l:
.word

Dummy

place

stack

stack

and procedure code space

in ram if used,

/* ---------------- linear process #1 ---------------------------------- *1
/*

* /

This is the Process Control Block for Process 1. We set up the
Queue links statically, such that the dispatch port contains
processes ready to be executed.

I dyort I ---> I PCB 1 I ---> I PCB 2 I

The PCB blocks are set with timing enabled, and a time slice
period. When the time slice expires, the bits in the process
control word indicate that the processor should place the expired
task at the end of the dispatch port and dispatch another process.

.align 12
lpcblytr:

SS (LPCB2_st) 1* queue record * /
55 (d_port_st)
.word 0 1* received mess. */

*/
*/

SS (d_port_st) 1* disp. port SS
.word OxlOOO 1* resid. time slice
.word (1«1) I (1«8) I (1«7) I (1«6)

1* priority 0, supervisor mode timing
and time slice enabled */

*/ .word
.word
.word
.word
.word
.word
SS (pI region 0 st)
SS (pI-region -1-st)
SS (pl-region-2-st)
.word- Ox10000000
· word 0
.word Ox1000
· space 8
· space 48
· space 60
.word Ox80000000
· space 48

1* process notice
1* trace controls
1* reserved
1* reserved
1* reserved
1* reserved
1* region 0 Segment selector

*/
*/
*/
*/
*/
*/

1* region Segment Selector *1
/* region Segment Selector *1
1* arith. controls:inexact mask *1
/* reserved * 1
1* next time slice *1
1* execution time *1
1* resumption record *1
1* global registers gO .. gI4 *1
1* initial frame pointer * 1
1* floating point registers * 1

1* ---------------- linear process #2 ---------------------------------- *1
.align 12

1pcb2ytr:
S8 (LPCB1_st) 1* queue record */
S5 (d_port_st)
.word a 1* received'mess. *1
SS(d_port_st) 1* disp. port SS *1
.word Ox1000 1* resid. time slice *1
.word (1«1) I (1«8) I (1«7) I (1«6)

1* priority 1, supervisor mode *1
.word 1* process notice *1
· word 1* trace controls * 1

0-6

INITIALIZATION CODE

.word

.word

.word

.word
SS(p2_reglon 0 st)
SS(p2_reglon 1 st)
SS(p2_reglon 2 st)
. word OxlOOOOOOO
.word 0
.word Ox1000
· space 8
· space 48
· space 60
.word Ox80000000
.space 48

/*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*

reserved * /
reserved * 1
reserved * 1
reserved * 1
region Segment selector * /
region Segment Selector * 1
region Segment Selector * 1
arith . controls: inexact mask * 1
reserved * 1
next time slice * 1
execution time * 1
resumption record * 1
global registers gO .. g14 * 1
initial frame pointer * 1
floating point registers * 1

/* ---------------- initial segment table ------------------------------ */

.align 12
seg_table_ptr:

null seg ()
null_seg ()

/* ste No
/* ste 1 No

entry */
entry * /

small_seg (sys_proc_table)
paged_region (_pl_ region _ 0 yte, pI_region _ 0 _ size)
paged_region (_pl_ region _1 yte, pl_ region _1_ size)
paged_region (_p1_region_2-pte, p1_region_2_size)
paged_reglon (_reg1oD_3_pte, reg10n 3 slze)
port seg(d_port)
simple_region (seg_table_ptr)
paged_region (-p2_region_O_pte,p2_region_O_size)
paged region(p2 region 1 pte,p2 region 1 size)
paged=region{=p2=region=2~te'P2=region=2=size)
small_ seg (lpcb1_ptr)
small_seg (lpcb2ytr)

/* ste
/* ste
/* ste
/* ste
/* ste
/* ste

1* ste

1* ste
/* ste

1* ste

1* ste
/* ste

* 1
* 1
* 1
* 1
* 1
* 1
* 1

9 *1
10 * 1
11 * 1
12 *1
13 *1

/* -------------- other misc. stuff ----------------------------------- */
/* these are the entries for the page tables in memory. We will allocate

page tables for regions 0 1 and 2 for each process based on region
size. This value will be provided at linkage time by the linker,
and allow the second pass of the linker to create page tables of
the appropriate size. Region 3 page tables contain entries
for memory mapped I/O (located at physical address Oxl1000000,
Ox12000000, Ox13000000, Ox14000000) which will be mapped to the
corresponding linear addresses

* 1
.data
· align

_p1_reglon_O_pte: .space (p1_region_O_size+1) *64
_p1_region_1_pte: .space (p1_reglon 1 slze+1)*64
_p1_region_2_pte: .space (pl_reglon 2 slze+1) *64
_p2_region_O_pte: .space (p2_reglon 0 slze+1) *64
_p2 _region _1_pte: . space (p2 _region _1_ size+ 1) * 64
_p2_region_2_pte: .space (p2 reg1on_2_s1ze+l)*64

region_3_pte: . space (256*3) *4
page_entry (Ox11000000) /* lin: Oxc0300000 */
page_entry (Ox12000000) /* lin: Oxc0301000 */
page_entry(Ox13000000) /* lin: Oxc0302000 */
page_entry(Ox14000000) /* lin: Oxc0303000 */
.space (256-4)*4

/* the space below contains the dispatch port. This structure will be
statically created in this module, to indicate a priority port
with processes ready to dispatch. The entry for Priority

*1

/*

a contains a head pointer to process 1 and a tail pointer to
process 2.

· align
.word (1«16) 1* Priority Port * 1
.word Oxl 1* 1 message at 0 * 1
SS (LPCB1_st) /* Queue Head prior * 1
SS (LPCB2 st) 1* Queue Tail prior * 1
. space 31*2 /* Head & Tail for 1-31

proirity entries *1

The processor begins code execution here after reset . * 1

. align

0·7

.text
start lp:

INITIALIZATION CODE

/* set up an initial stack frame in memory *1

callnext:

Ida _intr_stack, fp
Ida -Ox40(fp), pfp
Ida Ox40(fp), sp
Idconst Oxd8, r3
st r3, 8 (p£p)
st fp, 4 (pfp)
call callnext

mov
Ida
modac

0, g14
Ox3bOOlOOO, gO
gO, gO, gO

1* Call routine to build the Page tables in memory. The routine
will insert all the appropriate bits (present, read/write
privileges, etc.) into the table and then add the
appropriate memory addresses.

* 1
calIx _fixytes

1* Generate an lAC to restart the processor using the Linear PReB

* 1

Ida Oxff000010,gO
Ida rstart data,gl
synmovq gO,g1 -

.data

.align
rstart data: .word Ox810DOOOO

.word seg_table_ptr

. word Iprcb ptr

.word 0 -

/* restart Processor lAC */
/* pointer to segment table *1
1* pointer to new PReB */

0-8

Ctable.lst

0000
0000
0000
0000
0000
0000
0000 00000000
0004 00000000
0008 00000000
OOOe 00000000

10 0010 00000000
11 0014 00000000
12 0018 00000000
13 ODIe 00000000
14 0020 00000000
15 0024 00000000
16 0028 00000000
17 002e 00000000
18 0030 00000000
19 0034 00000000
20 0038 00000000
21 003e 00000000
22 0040 00000000
23 0044 00000000
24 0048 00000000
25 004e 00000000
26 0050 00000000
27 0054 00000000
28 0058 00000000
29 DOSe 00000000
30 0060 00000000
31 0064 00000000
32 0068 00000000
33 006e 00000000
34 0070 00000000
35 0074 00000000
36 0078 00000000
37 007e 00000000
38 0080 00000000
39 0084 00000000
40 0088 00000000
41 008e 00000000
42 0090 00000000
43 0094 00000000
44 0098 00000000
45 00ge 00000000
46 OOaO 00000000
47 00a4 00000000
48 00a8 00000000
49 OOae 00000000
50 OObO 00000000
51 00b4 00000000
52 00b8 00000000
53 OObe 00000000
54 ODeD 00000000
55 00e4 00000000
56 00e8 00000000
57 OOee 00000000
58 OOdO 00000000
59 00d4 00000000
60 00d8 00000000
61 OOde 00000000
62 OOeO 00000000
63 00e4 00000000
64 00e8 00000000
65 OOee 00000000
66 OOfO 00000000
67 00f4 00000000
68 00f8 00000000
69 OO£e 00000000

INITIALIZATION CODE

1 "f table.s"

.globl fault table

.align 8
fault table:

_user override;

ouser_trace;

_user _ ope rat ion;
o #
_user _ar i thmetic;

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

_user _ real_ar i thmetic;
o #
user_constraint;

_user yrotection;
o #
ouser_maChine: :

_user_structural;
o #
_user_type;
o
user_reserved _llf;

_user_process;
o
_user_descriptor;
o #
_user_event;

.word _user_reserved

. word 0

.word user reserved

.word

.word _user_reserved

.word

.word user reserved

.word

.word _user_reserved

.word

.word _user_reserved

.word

.word

.word _user_reserved

.word

.word _user_reserved

.word

.word _user_reserved

.word

.word

.word user reserved

.word

.word _user_reserved

.word

.word _user_reserved

.word

.word _user_reserved

. word 0

.word _user_reserved

.word

.word _user_reserved

.word

0·9

Type 15 Reserved Fault Handler

Type 16 Reserved Fault Handler

Type 17 Reserved Fault Handler

Type 18 Reserved Fault Handler

Type 19 Reserved Fault Handler

Type 20 Reserved Fault Handler

Type 21 Reserved Fault Handler

Type 22 Reserved Fault Handler

Type 23 Reserved Fault Handler

Type 24 Reserved Fault Handler

Type 25 Reserved Fault Handler

Type 26 Reserved Fault Handler

Type 27 Reserved Fault Handler

Type 28 Reserved Fault Handler

Type 29 Reserved Fault Handler

Type 30 Reserved Fault Handler

Type 31 Reserved Fault Handler

inter

Uable.lst

0000
0000
0000
0000
0000
0000 00000000
0004
0024 00000000
0028 00000000
002e 00000000

10 0030 00000000
11 0034 00000000
12 0038 00000000
13 003e 00000000
14 0040 00000000
15 0044 00000000
16 0048 00000000
17 004e 00000000
18 0050 00000000
19 0054 00000000
20 0058 00000000
21 005e 00000000
22 0060 00000000
23 0064 00000000
24 0068 00000000
25 006e 00000000
26 0070 00000000
27 0074 00000000
28 0078 00000000
29 007e 00000000
30 0080 00000000
31 0084 00000000
32 0088 00000000
33 008e 00000000
34 0090 00000000
35 0094 00000000
36 0098 00000000
37 00ge 00000000
38 OOaO 00000000
39 00a4 00000000
40 00a8 00000000
41 OOae 00000000
42 OObO 00000000
43 00b4 00000000
44 00b8 00000000
45 OObe 00000000
46 OOcO 00000000
47 00e4 00000000
48 00c8 00000000
49 OOce 00000000
50 OOdO 00000000
51 00d4 00000000
52 00d8 00000000
53 OOde 00000000
54 OOeO 00000000
55 00e4 00000000
56 00e8 00000000
57 OOee 00000000
58 OOfO 00000000
59 00f4 00000000
60 00f8 00000000
61 OOfe 00000000
62 0100 00000000
63 0104 00000000
64 0108 00000000
65 010e 00000000
66 0110 00000000
67 0114 00000000
68 0118 00000000
69 011e 00000000
70 0120 00000000
71 0124 00000000
72 0128 00000000
73 012e 00000000

INITIALIZATION CODE

1 "i table.s"

.globl intI~table

· align
intr_table:

· word a -# Pending Priorities
.fill 8,4,0 -# pending Interrupts 4 + (0->7)*4

interrupt table entry 8
interrupt table entry
interrupt table entry 10
interrupt table entry 11
interrupt table entry 12
interrupt table entry 13

.word user intrh: #

.word _user_intrh; -#

.word _user_intrh; -#

.word _user_intrh; -#

.word _llser_intrh;

.word _llser_intrh;

.word user_intrh;

.word user_intrh;
· word _user_intrh;
· word _user_intrh;
.word _user_intrh;
· word _user_intrh;
· word user_intrh;
· word user_intrh;
· word user_intrh;
· word user_intrh;
.word user_intrh;
.word _user_intrh;
.word user_intrh;
.word user_intrh;
.word _user_intrh;
.word user_intrh;
.word user_intrh;
.word user_intrh;
· word _user_intrh;
.word _llser_intrh:
.word _user_intrh:
.word user_intrh;
.word user_intrh;
.word user_intrh:
.word _user_intrh:
.word _user_intrh;
.word _user_intrh:
.word _llser_intrh:
.word _user_intrh;
· word user _ int rh;
· word user _ intrh;
.word _user_intrh;
.word _user_intrh;
· word _user_intrh;
· word _user_intrh;
.word _user_intrh;
.word _user_intrh:
.word _user_intrh:
.word _user_intrh:
.word _user_intrh;
.word _user_intrh:
.word _user_intrh:
.word _user_intrh:
.word _llser_intrh:
.word _user_intrh:
· word _us'er_intrh:
.word _user_intrh:
.word _user_intrh:
· word _user_intrh;
.word _user_intrh:
.word _user_intrh:
.word _user_intrh:
.word _user_intrh:
.word _user_intrh:
.word _user_intrh:
.word _user_intrh:
.word _user_intrh:
.word _user intrh:
.word _user_intrh:
.word _user_intrh:
.word _user_intrh;

0-10

interrupt table entry 14
#- interrupt table entry 15
#: interrupt table entry 16
#- interrupt table entry 17
#: interrupt table entry 18
-# interrupt table entry 19
#- interrupt table entry 20
#- interrupt table entry 21
#- interrupt table entry 22
#- interrupt table entry 23
#- interrupt table entry 24
#- interrupt table entry 25
#- interrupt table entry 26
#- interrupt table entry 27
#- interrupt table entry 28
#- interrupt table entry 29
#: interrupt table entry 30
#- interrupt table entry 31
#- interrupt table entry 32
-# interrupt table entry 33

interrupt table entry 34
interrupt table entry 35
interrupt table entry 36
interrupt table en-try 37
interrupt table entry 38
interrupt table entry 39
interrupt table entry 40
interrupt table entry 41
interrupt table entry 42

#- oj nt_errupt table entry 43
#- interrupt table entry 44
#- interrupt table entry 45
-# interrupt table entry 46
-# interrupt table entry 47
-# interrupt table entry 48
-# interrupt table entry 49
#: interrupt table entry 50
#- interrupt table entry 51
#- interrupt table entry 52
-# interrupt table entry 53
-# interrupt table entry 54
#: interrupt table entry 55
interrupt table entry 56
#- interrupt table entry 57
#- interrupt table entry 58
interrupt table entry 59
interrupt table entry 60
interrupt table entry 61
interrupt table entry 62
#: interrupt table entry 63
interrupt table entry 64
interrupt table entry 65
interrupt table entry 66
#: interrupt table entry 67
interrupt table entry 68
#: interrupt table entry 69
-# interrupt table entry 70
#: interrupt table entry 71
interrupt table entry 72
interrupt table entry 73
interrupt table entry 74

74 0130 00000000
75 0134 00000000
76 0138 00000000
77 013e 00000000
78 0140 00000000
79 0144 00000000
80 0148 00000000
81 014e 00000000
82 0150 00000000
83 0154 00000000
84 0158 00000000
85 015e 00000000
86 0160 00000000
c'7 0164 OU0UOOUO

88 0168 00000000
89 016e 00000000
90 0170 00000000
91 0174 00000000
92 0178 00000000
93 017e 00000000
94 0180 00000000
95 0'84 00000000
96 0188 00000000
97 Ol8e 00000000
98 a i 90 00000000
99 0194 00000000

100 0198 00000000
101 01ge 00000000
102 01aO 00000000
103 Ola4 00000000
104 01a8 00000000
105 alae 00000000
106 01bO 00000000
107 01b4 00000000
108 01bS 00000000
109 01be 00000000
110 OleO 00000000
111 Olc4 00000000
112 DIeS 00000000
113 01ec 00000000
114 DIdO 00000000
115 01d4 00000000
116 01dS 00000000
117 01de 00000000
118 OleO 00000000
119 Ole4 (10000000
120 01e8 00000000
121 01ee 00000000
122 OlfO 00000000
123 01f4 00000000
124 01fB 00000000
125 Olfe 00000000
126 0200 00000000
127 0201 00000000
128 0208 00000000
129 020e 00000000
130 0210 00000000
131 0214 00000000
132 0218 00000000
133 D21c nOODOOOD
134 0220 ",,000000
135 0224 ooaooooo
136 0228 00000000
137 022e 00000000
138 0230 00000000
139 0234 00000000
140 0238 00000000
141 023c 00000000
142 0240 00000000
143 0244 00000000
144 0248 00000000
145 024c 00000000
146 0250 00000000
147 0254 00000000
148 0258 00000000
149 025c 00000000
150 0260 00000000

INITIALIZATION CODE

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

0-11

interrupt ta.ble entry 75
interrupt tAble entry 76
interrupt table entry 77
interrupt table entry 78
interrupt table entry 79
interrupt tab~e entry 7()
interrupt tdb 1 e entry /1
interrupt table er~try ·/2
interrllpt tab 1 e ~'Tlt- ry 7:3
interrupt table etltry 74
interrupt tablo ('r\t~y 75
interrupt rablp ~ntry 76
interrupt tab2 e r y
interrupt tab~e e~try

interrupt table er:t TY 19
interrupt i,able enLLY
int errupt ta:b 1 e ent:ry
inlerrupt table entry
inLerrupt table entry 83
interrupt table entry 84
interrt"..pt table entry 8~

in"L-errupt table entry 86
lnterrup"L- table entry
interr~pt tab~e entry 88
inte crupt table £.'ntry 89
interrupt table entry
interrupi~ table entry
interrupL table entry
interrup"L table entry 93
interrupt table entry 94
interrupt table entry 95
interrupt table entry
interrupt table entry
interrupt table entry 98
interrupt table entry 99
interrup~ table entry ~O()

interrupt table entry lOl
interrupt table entLY 1G2
interrupt table er.try 103
interrupt t~able entry 1C4
interrupt table entry 10')

interrupt table entry 106
interrupt table entry lC7
interrupt table ent ry 108
interrupt tabIe er.t ry 109
interrupt table entrv] ~ 0
interrupt table entry 11=­
lnter:rupt t_able entry 112
interrupt table en:.ry 1i3
interrupt table entry 114
interrupt table ent:>:::y 115
interLlpt "(able entry 116
interLlpt table ent ry 11 7
interrupt table en~ry 118
interrupt table enLry 119
interrupt table entry 120
interr'Jpt table ent.ry 121
interrupt "L-able entry 122
interrupt table entry 123
interrupt tabie entry 124
interrupt t~ble entry 125
interrupt table entry 120
inLerrupt table entry
interrupt table entry 128
interrupt table er.try 129
interrupt table entry 130
interrupt table entry 131
interrupt table entry 132
interrupt table entry 133
interrupt table entry 13~
interrupt table entry 135
interrupt table entry 136
interrupt table entry 137
intercclpt table entry 138
interrupt table entry 139
interrupt table entry 140
interrupt table entry 14:

151 0264 00000000
152 0268 OO~OOOOO
153 026c 00000000
154 0270 00000000
155 0274 00000000
156 0278 00000000
157 027c 00000000
158 0280 00000000
159 0284 00000000
160 0288 00000000
161 028c 00000000
162 0290 00000000
163 0294 00000000
164 0298 00000000
165 029c 00000000
166 02aO 00000000
167 02a4 00000000
168 02a8 00000000
169 02ac 00000000
170 02bO 00000000
171 02b4 00000000
172 02b8 00000000
173 02bc 00000000
174 02cO 00000000
175 02c4 00000000
176 02c8 00000000
177 02cc 00000000
178 02dO 00000000
179 02d4 00000000
180 02d8 00000000
181 02dc 00000000
182 02eO 00000000
183 02e4 00000000
184 02e8 00000000
185 02ec 00000000
186 02fO 00000000
187 02f4 00000000
188 02f8 00000000
189 02fc 00000000
190 0300 00000000
191 0304 00000000
192 0308 00000000
193 030c 00000000
194 0310 00000000
195 0314 00000000
196 0318 00000000
197 031c 00000000
198 0320 00000000
199 0324 00000000
200 0328 00000000
201 032c 00000000
202 0330 00000000
203 0334 00000000
204 0338 00000000
205 033c 00000000
206 0340 00000000
207 0344 00000000
208 0348 00000000
209 034c 00000000
210 0350 00000000
211 0354 00000'000
212 0358 00000000
213 035c 00000000
214 0360 00000000
215 0364 00000000
216 0368 00000000
217 036c 00000000
218 0370 00000000
219 0374 00000000
220 0378 00000000
221 037c 00000000
222 0380 00000000
223 0384 00000000
224 0388 00000000
225 038c 00000000
226 0390 00000000
227 0394 00000000

INITIALIZATION CODE

.word _user_intrh;

.word _user_intrh;

.word _user_intrh;

.word _user_intrh;

.word _user_intrh;

.word user intrh;

.word =user=intrh;

.word _user_intrh;

.word _user_intrh;

.word _user_intrh;

.word _user_intrh;

.word user intrh;

.word =user=intrh;
,word _user_intrh:
.word user intrh;
.word =user=intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word user intrh;
.word =user=intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh:
.word _user_intrh:
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh:
.word _user_intrh;
.word user intrh:
.word =user=intrh;
.word _user_intrh:
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word user intrh;
.word =user=intrh:
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
. word _user_intrh;
. word _user_intrh;
.word _user_intrh:

0-12

* interrupt table entry 142 * interrupt table entry 143 * interrupt table entry 144 * interrupt table entry 145
"* interrupt table entry 146 * interrupt table entry 147 * interrupt table entry 148

* * * * * * * * * * * * * * * * * * #

* * * * * * * * * #

* #

* * * * * #

* * * * * #

* #

interrupt table entry 149
interrupt table entry 150
interrupt table entry 151
interrupt table entry 152
interrupt table entry 153
interrupt table entry 154
interrupt table entry 155
interrupt table entry 156
interrupt table entry 157
interrupt table entry 158
interrupt table entry 159
interrupt table entry 160
interrupt table entry 161
interrupt table entry 162
interrupt table entry 163
interrupt table entry 164
interrupt table entry 165
interrupt table entry 166
interrupt table entry 167
interrupt table entry 168
interrupt table entry 169
interrupt table entry 170
interrupt table entry 171
interrupt table entry 172
interrupt table entry 173
interrupt table entry 174
interrupt table entry 175
interrupt table entry 176
interrupt table entry 177
interrupt table entry 178
interrupt table entry 179
interrupt table entry 170
interrupt table entry 171
interrupt table entry 172
interrupt table entry 173
interrupt table entry 174
interrupt table entry 175
interrupt table entry 176
interrupt table entry 177
interrupt table entry 178
interrupt table entry 179
interrupt table entry 180
interrupt table entry 181
interrupt table entry 182
interrupt table entry 183
interrupt table entry 184
interrupt table entry 185
interrupt table entry 186
interrupt table entry 187
interrupt table entry 188
interrupt table entry 189
interrupt table entry 190
interrupt table entry 191
interrupt table entry 192
interrupt table entry 193
interrupt table entry 194
interrupt table entry 195
interrupt table entry 196
interrupt table entry 197
interrupt table entry 198
interrupt table entry 199
interrupt table entry 200
interrupt table entry 201
interrupt table entry 202
interrupt
interrupt
interrupt
interrupt

table entry 203
table entry 204
table entry 205
table entry 206

interrupt table entry 207
interrupt table entry 208

228 0398 00000000
229 039c 00000000
230 03aO 00000000
231 03a4 00000000
232 03a8 00000000
233 03ac 00000000
234 03bO 00000000
235 03b4 00000000
236 03b8 00000000
237 03bc 00000000
238 03cO 00000000
239 03c4 00000000
240 03c8 00000000
241 03cc 00000000
242 03dO 00000000
243 03d4 00000000
244 03d8 00000000
245 03dc 00000000
246 03eO 00000000
247 03e4 00000000
248 03e8 00000000
249 03ec 00000000
250 03fO 00000000
251 03f4 00000000
252 03f8 00000000
253 03fc 00000000
254 0400 00000000
255 0404 00000000
256 0408 00000000
257 040c 00000000
258 0410 00000000
259 0414 00000000
260 0418 00000000
261 041c 00000000
262 0420 00000000
263 0424 00000000
264 0428 00000000
265 042c 00000000
266 0430 00000000
267 0434 00000000
268 0438 00000000
269 043c 00000000
270 0440 00000000
271 0444 00000000
272 0448 00000000
273 044c 00000000
274 0450 00000000

INITIALIZATION CODE

· word _user intrh:
· word user_intrh:
· word _user_intrh:
· word _user_intrhi
· word _user_intrh:
· word _user_intrh:
.word user_intrh:
.word user_intrhi
· word user_intrhi
· word user_intrh:
.word _user_intrh;
.word user_intrh;
.word user_intrh;
.word _user_intrh:
· word user _ intrh;
· word user _ intrh;
.word _user_intrh:
.word _user_intrh:
.word _user_intrh:
· word user _ intrh;
.word user intrh;
.word =user=intrh:
.word _user_intrh:
.word _user_intrh:
.word _user_intrh;
.word user intrh;
.word =user=intrh;
.word _llser_intrh:
.word _llser_intrh;
.word _user_intrh:
.word user intrh;
.word _user=intrh;
.word _user_intrh;
.word _llser_intrhi
.word _user_intrhi
.word _user_intrhi
· word _user_intrhi
.word _user_intrh;
.word _user_intrh;
.word _user_intrh;
.word _user_intrhi
.word _user_intrh;
.word _user_intrh;
.word _user_intrhi
.word _user_intrh
.word _user_intrh
.word _user_intrh

0-13

interrupt table entry 209
interrupt table entry 210
interrupt table entry 211
interrupt table entry 212
interrupt table entry 213
interrupt table entry 214
interrupt table entry 215
interrupt table entry 216
interrupt table entry 217
interrupt table entry 218
interrupt table entry 219
interrupt table entry 220
interrupt table entry 221
interrupt table entry 222
interrupt table entry 223
interrupt table entry 224
interrupt table entry 225
interrupt table entry 226
interrupt table entry 227
interrupt table entry 228
interrupt table entry 229
interrupt table entry 230
interrupt table entry 231
interrupt table entry 232
interrupt table entry 233
interrupt table entry 234
interrupt table entry 235
interrupt table entry 236
interrupt table entry 237
interrupt table entry 238
interrupt table entry 239
interrupt table entry 240
interrupt table entry 241

interrupt table entry 242
interrupt table entry 243
interrupt table entry 244
interrupt table entry 245
interrupt table entry 246
interrupt table entry 247
interrupt table entry 248
interrupt table entry 249
interrupt table entry 250
interrupt table entry 251
interrupt table entry 252
interrupt table entry 253
interrupt table entry 254
interrupt table entry 255

inter INITIALIZATION CODE

initial _frame. 1st

a 0000 # 1 "initial frame.s"
1 0000
2 0000
3 0000
4 0000
5 0000
6 0000
7 0000

0000
0000

10 0000
11 0000
12 0000

13 0000 .data
14 0000 00000000 · word
15 0004 80000010 .word Ox80000010
16 0008 00000000 · word 0
17 aOOe · space 13*4

0-14

INITIALIZATION CODe

macs.m4

1*
* some macros for building 80960 data structures.
* 1

1*
* S5 (ste) ==> construct an SS.

* 1

define ('55' , '.word (($1)«6) I Ox3f;')

1*
* slmple reglon{addr) ==> build seg. table for simple region.

* 1

define ('simple region' I

· space
· word $1 1* MUST be page-aligned */
.word OxOOfcOOa3;')

1*
* paged_region(addr,size) ==> build seg. table for paged region.

addr ==> PTE address
size ==> encoded size

* 1

define ('paged_reglon' ,
.space 8
.word $1
.word (($2)«18)

1*

1* MUST be 64-byte aligned
Ox5;')

* 1

* bipaged_region(addr,size) ==> build seg. table for bipaged region.
addr ==> PTD address
Slze ==> encoded size

* 1

define ('bipaged_region', ,
· space 8
.word $1
.word (($2)«18)

1* MUST be 64-byte aligned
Ox7;')

1*
* page_entry (addr) ==> build page table entry

addr ==> physical address
*1

define('page_entry', '
.word ((SI) OxC7);')

1*
* small seg(addr) ==> build seg. table for a small segment
* 1

define ('small seg',
· space 8
.word $1
.word (Ox3f«18)

1*

/* MUST be page-aligned */
Oxfb;')

* port seg(addr} ==> build seg. table for a port segment

* 1

deflne ('port seg',
· space
.word $1 /* MUST be 64-byte aligned */

1*
1*

.word Ox204000fb;')

* null seg() ==> a null segment table entry
*1

define ('null_seg', '. space 16;')

0·15

* 1

inter INITIALIZATION CODe

Chandle.c

user_override ()

user_arithmetic ()

{}

{}

{}

user_real_arithmetic() {}
user_constraint ()
user_vm()
user_protection ()
user_structural ()
user_type ()

user_process ()
user_descriptor ()
user_event ()
user_reserved ()
user_operation ()
user_machine ()

user intrh ()
{

}

fixJ)te.c

/*

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

{}

This module "fills in" the appropriate page table entries
with the physical address (obtained at link time) and the
page table attributes. These tables are built by the
processor before the processor goes into "linear mode"

* /
extern unsigned long pI_reg 0 PA;
extern unsigned long pl._re9_1_PA;
extern unsigned long pl re9_2_ PA;
extern unsigned long re9_3_PA;
extern unsigned long pl _reg_O_ len;
extern unsigned long pl_reg_l_len;
extern unsigned long pI_reg 2 len:
extern unsigned long reg_3_ len;
extern unsigned long pl_region_Oyte;
extern unsigned long pl_region_lyte;
extern unsigned long pl_region_2_pte;
extern unsigned long region_3_pte;
extern unsigned long p2_reg_O_PA;
extern unsigned long p2_reg_I_PA;
extern unsigned long p2 reg 2 PA;
extern unsigned long p2_reg_O_len:
extern unsigned long p2_reg_l_len:
extern unsigned long p2 _ reg_ 2 _len:
extern unsigned long p2_region_Oyte:
extern unsigned long p2_region_l_pte;
extern unsigned long p2 reglon_2_pte;

fixytes ()
{

unsigned long i, *pte_ptr, pa_addr;

1* build page table entries for region *1
pa addr ~ (unsigned long) &pl reg 0 PA;
pte ptr = &pl region ° pte: - --
for-(l=O;l< (~nslgned long) &pl reg 0 lenil+=OxlOOO)

pa addr
pte_ptr

pteytr++ = pa_addr I OXC7; - / present, userlsupervisor r/w *1
pa_addr += Oxl000;
}

0·16

INITIALIZATION CODE

for (i=O:i< (unsigned long) &p2 reg a len;i+=DxlOOO) {
pte_ptr++ = pa_addr I OxC7; ~ 1 present, user/supervisor r/w */
pa_addr += DxlOOD;
)

/* build page table entries for region 1 */
pa_addr = (unsigned long) &pl_re9_1_PA;
pte-ptr = &pl_region_l_pte;
for (i=O;i< (unsigned long) &pl_re9_1_1en;i+=OxlOOO)

pte_ptr++ = pa_addr I OXC7; / present, user/supervisor r/w */
pa_addr += OxlOOD;
)

pa_addr = (unslgned long) &p2 reg_I_PA;
pte~tr = &p2_region_l_pte;
for (i=D;i< (unsigned long)

*pte_ptr++ = pa_addr
pa_addr += OxlOOO;
)

/* build page table entries for region 2 *1
pa_addr = (unsigned long) &pl_reg 2 PAl
pte_ptr =

for (i=O;i< &pl_re9_2_1en;i+=OxlOOO)

user/supervisor r/w */

pte_ptr++ = pa_addr I OxC7: / present, user/supervisor r/w */
pa_addr += OxIOOO:
)

pa_addr = (unsigned long) &p2 reg 2 PA;
pte~tr = &p2_region_2_pte:
for (i=O;i< (unsigned long) i+=OxlOOO) {

pte_ptr++ = pa_addr / present, user/supervisor r/w */
pa_addr += OxIOOO;
)

/* build page table entries for region 3 */
pa addr = (unslgned long) ®_3_PA:
pte~tr = ®ion 3 pte:
for (i=O;i< (unsign~d long) i+=OxIOOO) {

*pte ytr++ = pa addr
pa_addr += OxlOOO:
)

/* present, user/supervisor r/w */

0·17

inter

prog1.c

#include "vIed. h"

main ()
{

int i, j,k;
while (1)

{

VLED (Green, OFF):
for (i""O: 1<500000: i++)

k~j ;
VLED (Green, ON);
for (i=O: i<500000; i++)

k~j ;

VLED (color, state)
lnt color, state;

volatile unsigned char *ptr:

INITIALIZATION CODE

canst int addr "" CSRC_ADDR;
unsigned char data:
ptr == (unsigned char *) addr:
data ~ *ptr; 1* get current status *1
if (color "'''''' Green)

data ~ (data & Oxbf) (state « 6) ;

else 1* Yellow *1
data (data & Ox7f) (state « 7) ;

ptr ~ data; 1 write with LED * I

0·18

inter

prog2.c

#include IIv l e d,h"

main2 ()
{

int i,j,k;

while (1)
{

VLED2 (Yellow, OFF);
for (i=O;i<lOOOOOO;i++)

k~j;

VLED2 (Yellow, ON);
for (i~O;i<lOOOOOO;i++)

k~j;

VLED2 (color, state)
int color, state;

volatile unsigned char *ptr;

INITIALIZATION CODE

canst int
unsigned char

addr ~ CSRC_ADDR;
data;

#ifndef SIM

#endif
)

Jed.h

#define
#define
#define
#define
#define

ptr = (unsigned char *) addr;
data = *ptr;
if (color == Green)

data ~ (data & Oxbf)
else I'll' Yellow */

data (data & Ox7f)
*ptr == data;

ON
OFF
CSRC_ADDR Ox14000004
Green 1
Yellow

1* get current status * /

(state « 6);

(state « 7);
/* write with LED * I

D·19

INITIALIZATION CODe

pass1.ld

/* command file for "pass 111 of building a "linear" system.
* /

MEMORY
{

SECTIONS
{

l_reg_O
l_reg_l
1 reg 2
(~reg=)

.text

GROUP

vreg2

reg3

pass1a.ld

org
org
org
org

OxOOOOOOOO, len
Ox40000000, len
Ox80000000, len
OxCOOOOOOO, len

.data : {}

.bss {}
> l_reg_l

initial_frame.o
> 1_reg_2

intr stack
-:- += OxlOOO;
f_handle.o
f_table.o
i_handle.o
i_table.o

} > 1_reg_3

OxlOOOO
OxlOOOO
OxlOOOO
OxlOOOO

1* reserve one page for into stack */

1* command file for "pass 1" of building a "linear" system.
* /

MEMORY
{

l_reg_O
l_reg_l
1_re9_2

SECTIONS
{

.text

GROUP

vreg2

org OxOOOOOOOO, len
org Ox40000000, len
org Ox80000000, len

.data : {}
/*.=align{OxlO); */
.bss {)

> l_reg_l

initial frame.o
> 1_re9_2

OxlOOOO
OxlOOOO
OxlOOOO

0·20

inter INITIALIZATION CODe

pass2.1d

/* command file for "pass 2" of building a ROM system
* without RTK.
* I

MEMORY
{

SECTIONS
{

image

GROUP
{

origin OxO, length

startup

procl

proc2

Ox400000

startup.o
fix_pte.o
· = align{OxlOOO):

align (OxlOOO);

_pl_reg_l_PA
lin1 (. data)
lin1 (.bssl
· : align(OxlOOO):
_pl_re9_2_PA = 0:
lin1 (vreg2)
· = align{OxlOOO);
_re9_3_PA = .;

lin1 (reg3)
• = align(OxlOOO);
re9_3_end = .;

_pl_re9_0_1en
pl reg_I_len
_pl_re9_2_1en

re9_3_1en

_pl_re9_1_PA - -pl_reg_O_PA:
_pl_re9_2_PA - _pl_re9_1_PA;
_re9_3_PA - -pl_re9_2_PA:

re9_3_end - reg_3_PA:

• = align(OxlOOO);
_p2_reg_O_PA = .;

1in2 (.text)
• = align(OxlOOO):
_p2_reg_l_PA .,
1in2 (.data)
1in2 (.bss)
• = align(OxlOOO):
y2_re9_2_PA = .;
1in2 (vreg2)
• = align(OxlOOO);
_p2_reg_2_end .,

_p2_reg_O_len
_p2_reg_l_len
_p2_reg_2_1en

0-21

_p2_reg 1 PA - _p2_reg_O_PA;
_p2_reg_2_PA - -p2_reg_l_PA;
_p2_reg_2_end - _p2_reg_2_PA;

Appendix E
Considerations for Writing
Portable Software

APPENDIX E
CONSIDERATIONS FOR WRITING PORTABLE SOFTWARE

This appendix describes those parts of the 80960MC design that are implementation depend­
ent. This information is provided to facilitate the design of programs and kernel code that will
be portable to other implementations of the 80960MC architecture.

ARCHITECTURE RESTRICTIONS

The following aspects of the 80960MC processor's operation are deviations from the
80960MC architecture:

1. Only the low-order 16 bits of the next-time-slice and residual-time-slice fields in the PCB
are used. The upper 16 bits are ignored.

2. The minimum value that can be placed in the next-time-slice field is 16 (ticks). Assigning
it a value less than 16 can result in endless loops.

3. When the addressing mode is set to physical, the inspacc and ldphy instructions have an
undefined effect.

4. On all bus write operations except those of the synmov, synmovl, and synmovq instruc­
tions, the processor ignores the BADAC pin (Le., errors signaled on "normal" writes are
ignored).

5. The check for out-of-range input values for the expr, exprl, logepr, and logeprl instruc­
tions is omitted; out-of-range inputs yield an undefined result.

6. Bits 5 and 6 of a machine-level instruction word in the REG and MEMB formats and bits
o and 1 of the CTRL format are provided to designate special function registers. The
80960MC processor has no special function registers.

7. The 80960MC processor does not guarantee that the value in register r2 of the current
frame is predictable.

8. (The following is a note rather than a restriction.) When using the REG-format instruc­
tions, the m bit for every operand that is not defined by the instruction should be set (e.g.,
code the unused operand as an arbitrary literal). This practice may reduce overhead in
some situations.

SALIGN PARAMETER

Stack frames in the 80960MC architecture are aligned on (SALIGN*16) byte boundaries.
SALIGN is an implementation defined parameter. For the 80960MC processor, SALIGN is 4.
Stack frames for this processor are thus aligned on 64 byte boundaries.

The low-order N bits of the FP are ignored and always interpreted to be zero. The N parameter
is defined by the following expression: SALIGN*16 = 2N. Thus for the 80960MC processor,
N is 6.

E-1

CONSIDERATIONS FOR WRITING PORTABLE SOFTWARE

BOUNDARY ALIGNMENT

The physical-address boundaries on which an operand begins has an impact on processor
performance. For the 80960MC processor, the following is true:

• An operand that spans more word boundaries than necessary (e.g., addressing a 32-bit
operand on a nonword boundary) suffers a moderate cost in speed because of extra bus
and memory cycles.

• An operand that spans a 16-byte boundary suffers a large cost in speed.

• String operands that begin on non word boundaries suffer a moderate cost in speed. String
operands that begin on word boundaries but not on 16-byte boundaries suffer a small cost
in speed.

FAULTS

As described in Chapter 12, the processor enters the stopped state when a fault is detected
while trying to invoke a procedure as the result of a system-error interrupt. When the proces­
sor enters the stopped state in this circumstance, it asserts the FAILURE pin.

The size of resumption records conditionally placed on the stack during faults and interrupts is
16 bytes.

PHYSICAL MEMORY

The upper 16M bytes of physical memory are reserved for special functions of local-bus
components, lACs, and the BXU.

lACS

The mechanism for sending, recelvmg, and handling lAC messages is not defined in the
80960MC architecture. It is a special implementation of the 80960MC processor.

The write-external-priority flag in the processor controls is not defined in the 80960MC ar­
chitecture.

TIMING

A tick is defined for the 80960MC processor as 256 external clock periods (128 internal clock
periods). Thus, for a 16-MHz processor (32-MHz external clock), a tick is 8 microseconds.
For a 20-MHz processor, a tick is 6.4 microseconds.

The frequency at which an idle processor checks the dispatch port is implementation depend­
ent. For the 80960MC processor, it is approximately once every tick.

The frequency at which a processor updates the idle-time field in the processor controls when it
is counting idle time is also implementation dependent. For the 809BASE processor, it is
approximately once every 32 ticks.

E-2

inter CONSIDERATIONS FOR WRITING PORTABLE SOFTWARE

When the processor is spinning on a lock (e.g., when executing a send, receive, or signal
instruction), the frequency at which the processor tries the lock is implementation dependent.
For the 80960MC processor, it is once every tick until it is able to lock it. Provided that the
execution timer and end-of-time-slice event are enabled, the process may eventually be
suspended. When redispatched, it will resume execution within the instruction and the locking
operation will be retried. In the other circumstances where a processor needs to lock a data
structure and it is already locked, it will try the lock approximately once every tick until it can
lock the data structure.

INTERRUPTS

The interrupt lAC message, the interrupt pins, and the interrupt register are not defined in the
80960MC architecture. They are special implementations for the 80960MC processor.

INITIALIZATION

The 80960MC architecture does not define an initialization mechanism. The initialization
mechanism and procedures described in this manual are implementation dependent for the
80960MC processor.

MULTIPROCESSOR PREEMPTION

The mUltiprocessor preemption mechanism described in Chapter 15 is implementation depend­
ent for the 80960MC processor. Also, the write external priority flag and the interim priority
field in the processor controls are implementation dependent.

BREAKPOINTS

The breakpoint registers in the 80960MC processor are not defined in the 80960MC architec­
ture.

IMPLEMENTATION DEPENDENT INSTRUCTIONS

The synmov, synmovl, synmovq, and synld instructions are not defined in the 80960MC
architecture and are implementation dependent in the 80960MC processor.

LOCK PIN

The LOCK pin is not defined in the 80960MC architecture and is implementation dependent in
the 80960MC processor.

E-3

Index

M82965 15-3, 15-5

80960 Architecture
implementation dependent aspects of

80960MC processor E-l

M82965 2-7

80960 Architecture

A

debugging and monitoring 2-5
efficient interrupt model 2-3
efficient procedure call mechanism 2-4
extensions included in 80960MC proces-

sor 2-5
fault handling capability 2-4
instruction cache 2-2
load and store model 2-2
local register sets 2-2
overview of 2-1
parallel instruction execution 2-3
register scoreboarding 2-3
simplified programming environment

2-4
single clock instructions 2-3
special function registers 2-5
versatile instruction set and addressing

2-4

Abase 5-7

Absolute addressing mode, description of
5-7

AC.cc 17-3

Access status field 8-10

Accessed flag 8-10

Add instructions 6-8

Add with Carry Instruction 6-8

addc 6-8, 17-6

addi, addo 6-8, 17-7

addr, addrl 7-17,17-8

addr, notation 17-2

INDEX

1-1

Address space
address space boundaries 8-25
of process 13-1
partitioning of 3-10
process state 13-1
regions 3-10
typical use of 3-10

Address translation modes
addressing mode flag 9-7
changing 9-12
consequences of changing 9-12
description of 9-12
physical addressing mode 9-14
physical vs. virtual 8-1
treatment of SS's 9-12
virtual addressing mode 9-14

Addressing mode flag 8-1, 9-7

Addressing modes, used in instructions
abase 5-7
absolute 5-7
description of 5-6
index 5-7
index with displacement 5-7
IP with displacement 5-7
register indirect 5-7
register indirect with index 5-7
scale factor 5-7

alterbit 6-10,7-15,17-10

Altered flag 8-10

and, and not 6-10, 17-11

Architecture
See 80960 Architecture

Arithmetic controls
arithmetic status field 3-8
changing of 13-9
condition code flags 3-7
description of 3-6
fault masks and flags 12-12
floating-point flags and masks 3-9
floating-point normalizing mode flag

3-9

inter

floating-point rounding control field
3-9

functions of bits 3-7
in PCB 3-6, 13-5
initializing 3-6
integer-overflow flag and mask 3-8
modify arithmetic controls instruction

6-17
modifying 3-6
no imprecise faults flag 3-9, 12-22
process state 13-1
saving and restoring 3-7
structure of 3-6
use with conditional receive 14-17

Arithmetic faults 12-25

Arithmetic status field 7-11, 7-17
description of 3-8

Arithmetic zero-divide fault 12-2, 12-25,
17-59,17-64,17-90

atadd 6-6,6-16,15-7,17-12

ataor, ataorl 7-18,17-13

atmod 6-6,6-16,15-7,17-15

Atomic operations
atomic instructions 6-16, 15-6
description of 8-2

Automatic process dispatching
description of 14-10
dispatching action 14-10
process suspension 14-11
scheduling instructions 14-10
self dispatching 2-7
time slice scheduling 14-11

B
b 6-13,17-16

Bad access fault 12-2,12-31

bal, balx 4-15,6-13,16-4,17-18

bbc, bbs 6-14,17-20

BCL C-2

be, bg, bge 6-13,17-22

Biased exponent 7-3,7-4

INDEX

1·2

Bipaged region segment descriptor 8-12

Bits and bit fields
bit addressing 5-5
bit field instructions 6-11
bit operation instructions 6-10
description of 5-4

bl, ble, boe 6-13,17-22

boo, bo 6-13,7-17,17-22

Branch and link
description of 4-15
instructions 6-13

Branch trace
event flag 16-2
fault 12-2, 12-37
mode 16-4
mode flag 16-2

Breakpoint registers
description of 16-5, 16-6
set breakpoint register lAC 11-20,16-5

Breakpoint trace
event flag 16-2
fault 12-2,12-37,17-73,17-88
mode 16-5
mode flag 16-2

Bus control logic
SeeBCL

Bus extension unit
See M82965

bx 6-13,17-16

Byte addressing 5-5

Byte string, description of 5-4

c
Caching of memory accesses

cacheable flag 8-10
description of 8-3

call 4-8,6-15,12-11,16-4,17-25

Call instructions 6-15

Call trace
event flag 16-2
fault 12-2, 12-37
mode 16-4

inter

mode flag 16-2

calls 4-10,4-14,6-15, 12-7, 14-18, 16-3,
16-5, 17-27

calix 4-8,6-15,12-7,12-11,16-4,17-29

Check bit and branch instructions 6-14

Check dispatch port flag 9-7,10-10,14-15

Check process notice lAC 11-5, 12-13,
12-28,13-6, 13-9

Check-sum words 9-17,9-21

chkbit 6-10,7-15,17-31

c1assr, c1assrl 7-11,7-17,7-20, 17-32

Clear, definition of 1-4

c1rbit 6-10,17-34

cmpdeci,cmpdeco 6-12,17-36

cmpi 6-11,17-35

cmpibe, cmpibne, cmpibl, cmpible,
cmpibg, cmpibge, cmpibo,
cmpibno 6-14,17-44

cmpinci, cmpinco 6-12,17-37

cmpo 6-11,17-35

cmpobe, cmpobne, cmpobl, cmpoble,
cmpobg, cmpobge 6-14,17-44

cmpor, cmporl 7-17,17-38

cmpr, cmprl 7-17,17-40

cmpstr 6-19,17-42

Communication port
description of 14-1,14-10,14-15
instructions 6-18
send service instruction 14-10
structure of 14-16
use of 14-12

Compare and branch instructions 6-14

Compare and decrement instructions 6-12

Compare and increment instructions 6-12

Compare instructions 6-11

concmpi, concmpo 6-11,17-47

Condition code
See Condition code flags

Condition code flags
description of 3-7
in floating-point compare instructions

7-17

INDEX

1-3

in floating-point operations 7-11,7-17
in test instructions 6-14
modification of 6-17

condition code scoreboarding C-12

Conditional branch instructions 6-13

Conditional compare instructions 6-11

condrec 6-18,10-5,14-17,17-48

condwait 6-18, 14-13, 17-50

Constraint faults 12-26

Constraint range fault 12-2, 12-26, 17-69

Contents fault 12-2, 12-39

Continue initialization lAC 11-6

Control fault 12-2, 12-36

cosr, cosrl 7-18, 17-52

cpyrsre, cpysre 7-15,7-20,17-54

Current process SS 9-8

cvtilr, cvtir 7-16,17-55

cvtri, cvtril, cvtzri, cvtzril 7-16, 17-56

o
daddc 6-19,17-58

Data length conversion 6-11

Data structures, quick reference A-12

Data types
bits and bit fields 5-4
byte string 5-4
decimal 5-3
description of 5-1
integer 5-1
ordinal 5-1
quad word 5-5
real 5-2
triple word 5-5

Debugging support
overview of 2-5

See also Tracing

Decimal Multiplication and Division 6-20

Decimals
data type 5-3
instructions 6-19
multiplication and division 6-19

inter

Denonnalized numbers
definition of 7-5
denonnalization technique 7-5

Descriptor faults 12-27

disp, notation 17-2

Dispatch fault 12-2, 12-36

Dispatch port
assigned to processor 14-10
assignment of process to 14-10
check dispatch port flag in processor

controls 9-7
description of 14-1, 14-9
dispatch port SS in PRCB 9-8
high-level process management facilities

14-1
in multiprocessor systems 15-4
pointer for in PCB 13-6
structure of 14-lO

divi, divo 6-8,17-59

Divide instructions 6-8

divr, divrl 7-17,17-60

drnovt 6-19,17-62

dsubc 6-19,17-63

E
ediv 6-8, 17-64

efa, notation 17-2

ernul 6-8, 17-65

Event fault
event fault request flags

12-13, 13-6
11-5, 12-12,

event notice fault
12-28

11-5, 12-2, 12-13,

reference infonnation 12-28

Exceptions, floating-point
See Floating point faults

Execution environment
address space 3-1,3-2
arithmetic controls 3-6
description of 3-1
floating-point registers 3-4
global registers 3-4

INDEX

1-4

instruction cache 3-12
instruction pointer 3-5
local registers 3-4
process controls 3-lO
trace controls 3-10

Execution mode
description of 4-13
execution mode flag 4-5, 13-4

Execution time field 13-7

Exponent, in floating point fonnat 7-2

expr, exprl 7-19,17-66

Extended multiply and divide instructions
6-8

External lACs
See lACs

extract 6-11, 17 -68

F
FAILURE pin 9-21

Fault handling
aborting a process 12-11
control flags and masks 12-12
fault handler, description of 12-1
fault handler, procedures 12-8
fault handling actions 12-16
fault handling methods 12-3
local calls to fault handling procedures

12-7
overview of fault-handling facilities

12-1
possible fault-handler actions 12-9
procedure table calls to fault handling

procedures 4-11, 12-7
process and instruction resumption fol­

lowing a fault 12-9
returning from a fault with re,sumption

12-10
returning from a fault without resump­

tion 12-11
software requirements for handling faults

12-5
support for 2-4
trace fault handling 12-7, 12-8

See also Fault record, Fault table, Faults

Fault record
description of 12-14
location of fault record 12-15
location of resumption record 12-15
resumption record 12-15
saved instruction pointer 12-15

Fault table 12-3
description of 9-4, 12-5
fault table entries 12-7
fault table pointer in PRCB 9-9, 12-7
location of in memory 12-7
required at initialization 9-14,9-21

Fault table pointer 9-9

Fault tolerance, support for 2-7

Fault-if instructions 12-13

faulte, faultne, faultl, faultle,
faultge, faulto, faultno
17-69

Faults
arithmetic faults 12-25
constraint faults 12-26
description of 9-5
descriptorfaults 12-27
event faults 12-28
event notice fault 12-13
fault instructions 6-15, 12-13
floating-point faults 12-29
generating a fault 12-13
halt 12-5
halt action 12-22
interrupts and faults 12-13

faultg,
6-15,

location of resumption record 12-15
machine faults 12-31
multiple fault conditions 12-5
operation faults 12-32
override fault-handling action 12-20
overrides 12-4
precise and imprecise faults 12-22
process faults 12-33
process state after a fault 12-9
protection faults 12-34
refault flag 13-5

INDEX

1-5

reference information on faults 12-24
resumption record 12-15
resumption record in PCB 13-6
saved instruction pointer 12-15
saved process controls 12- 19
standard faults 17-3
structural faults 12-36
system error interrupt 12-4, 12-21
trace faults 12-37
type faults 12-39
types and subtypes 12-1
virtual memory faults 12-40

See also Fault handling, Fault record

FIFO port 14-7
conditional receive message mechanism

14-17
description of 14-7
lock field 14-7
queue head SS 14-7
queue state flag 14-7
queue tail SS 14-7
receive message mechanism 14-17
send message mechanism 14-16
send service mechanism 14-18

fill 6-19,17-71

flit, notation 17-2

Floating inexact fault 7-25, 7-26, 12-2,
12-29, 17-8, 17-13, 17-52, 17-55,
17-66,17-80,17-82,17-85,17-97,
17-101, 17-112, 17-119, 17-121,
17-134,17-137,17-143,17-151

Floating inexact flag and mask 7-11, 7-25,
12-12

Floating invalid-operation fault 7-23, 12-2,
12-29, 17-8, 17-13, 17-38, 17-40,
17-52, 17-60, 17-66, 17-80, 17-82,
17-85, 17-97, 17-101, 17-112,
17-119, 17-121, 17-134, 17-137,
17-143,17-151

Floating invalid-operation flag and mask
7-11,7-20,7-23,12-12

Floating overflow fault 7-24, 12-2, 12-29,
17-8, 17-60, 17-82, 17-85, 17-97,
17-101, 17-112, 17-119, 17-121,

inter

17-137,17-143,17-151

Floating overflow flag and mask
7-24,7-25, 12-12

Floating point
architecture support for 7-1
arithmetic controls 7-11

7-11,

arithmetic vs. non-arithmetic instructions
7-20

basic arithmetic instructions 7-17
biased exponent 7-3,7-4
branch instructions 7 -17
classification instructions 7-17
comparison instructions 7 -17
data movement instructions 7-15
data type conversion 7-15
denormalized numbers 7-5
execution environment for floating-point

operations 7 -7
exponent 7-2
exponential instructions 7 -19
finite values 7-4
floating inexact exception 7-25
floating invalid operation exception

7-23
floating overflow exception 7-24
floating reserved encoding exception

7-22
floating underflow exception 7-24
floating zero-divide exception and fault

7-23
format of binary floating-point numbers

7-2
fraction 7-2
IEEE standard 7-1,7-2,7-4,7-6,7-7,

7-14,7-17,7-19
infinities 7-6
instruction format 7 -14
instruction operands 7 -14
integer 7-2
j-bit 7-2
literals 7-14
loading and storing floating-point values

7-9
logarithmic instructions 7 -19

INDEX

1-6

moving floating-point values 7-10
NaNs 7-4,7-20
normalized number 7-3
normalizing mode 7-12
pi 7-18
real data types 5-2,7-7
real number and NaN encodings 7-4,

7-7
real number formats 7-7
real number notation 7-3
real number system 7-1
register alignment for floating-point

values 7-9
registers, storage of floating-point num-

bers in 7-8
rounding control 7-12
scale instructions 7-19
sign bit 7-2
significand 7-2
summary of floating-point instructions

7-15
support for 2-5
trigonometric instructions 7 -18
underflow condition 7-26
zeros 7-4
See also Floating point faults

Floating point faults 12-29
exceptions 7-6,7-21
fault handling 7-21,7-22
floating inexact exception 7-21
floating invalid operation exception

7-21
floating overflow exception 7-21
floating reserved encoding exception

7-21
floating underflow exception 7-21
floating zero divide exception 7-21
override flags 7-24,7-25

Floating point unit
SeeFPU

Floating reserved-encoding fault 7-22,
12-2, 12-29, 17-8, 17-13, 17-38,
17-40,17-52,17-54,17-60,17-66,
17-80, 17-82, 17-85, 17-97,
17-101, 17-112, 17-119, 17-121,

inter

17-l34, 17-l37, 17-143, 17-151

Floating underflow fault 7-25, 7-26, 12-2,
12-29, 17-8, 17-l3, 17-60, 17-66,
17-80, 17-82, 17-85, 17-97,
17-101, 17-112, 17-119, 17-121,
17-l34, 17-137, 17-143, 17-151

Floating underflow flag and mask 7-11,
7-24, 12-12

Floating zero-divide fault
12-29, 17-60,
17-112,17-121

7-23, 12-2,
17-80, 17-85,

Floating zero-divide flag and mask 7-11,
7-23, 12-12

Floating-point flags and masks 3-9

Floating-point normalizing mode flag 3-9,
7-11,7-12

Floating-point registers
description of 3-4
field in PCB l3-6
register model 3-2
storage of 3-4

See Registers

Floating-point rounding control field 3-9,
7-11

Flush local registers
flush local registers lAC 4-7, 11-7
instruction 6-16

Flush process lAC 11-8

Flush TLB lAC 11-9

Flush TLB page table entry lAC 11-10

Flush TLB physical page lAC 11-11

Flush TLB segment entry lAC 11-12

flush reg 4-7,6-16,17-72

fmark 6-16, 12-l3, 16-1, 16-5, 16-6, 16-7,
17-73

Force mark instruction 6-16,12-13

FP, frame pointer 3-4,4-14
description of 4-3
location at initialization 9-15

FPU C-8

Fraction, in floating-point format 7-2

INDEX

1·7

Frame pointer
SeeFP

Frame return status field 10-9

Freeze lAC 11-l3

freg, notation 17-2

G
Global registers

description of 3-4
field in PCB 13-6
FP 3-4
process state 13-1
register alignment 3-4
register model 3-2
storage of 3-4
storing of RIP on a branch and link in­

struction 4-15

lAC fault 12-2, 12-36

lAC pin 10-7,15-2

lACs
check process notice lAC 11-5, 12-l3,

12-28
continue initialization lAC 11-6
description of 9-4
external lAC message format 15-1
external lACs 11-1,15-1
faults 11-3
flush local registers lAC 11-7
flush process lAC 11-8
flush TLB lAC 11-9
flush TLB page table entry lAC 11-10
flush TLB physical page lAC 11-11
flush TLB segment entry lAC 11-12
freeze lAC 11-l3
lAC fault 12-2, 12-36
lAC pin 15-2
internal lACs 11-1
interrupt lAC 11-14
introduction to 11-1
mechanisms for exchanging 11-1
message, description of 11-1

message, format of 11-2
modify processor controls lAC 11-15
preempt process lAC 11-16
priorities 9-10
purge instruction cache lAC 11-17
receiving and handling external lACs

15-2
receiving and handling internal lACs

11-3
reference information 11-4
reinitialize processor lAC 11-18
restart processorIAC 11-19, 12-22
sending external lACs 15-1
sending internal lACs 11-3
set breakpoint register lAC 11-20
software requirements for handling inter-

nalIACs 11-1
stop processor lAC 11-21
store processor lAC 11-22
store system base lAC 11-23
summary of lACs 11-2
test pending interrupts lAC 11-24
warmstart processor lAC 11-25

ID C-4

Idle time
idle time field 9-9, 9-13
idle timing 9-13

lEU C-6

IFU C-3

Index with displacement addressing mode,
description of 5-7

Index, description of 5-7

Indivisible, description of 8-2

Inexact result, definition of 7-12

Initial memory image, description of 9-17

Initialization code example D-l

Initialization of the processor
Building a memory image 9-19
check-sum words 9-17
continue initialization lAC 11-6
description of 9-15
first stage of initialization 9-21
initial memory image 9-14,9-17

INDEX

1·8

initialization code 9-19
initialization code example D-l
initialization fault table 9-21
initialization heap 9-21
initialization interrupt table 9-21
initialization page tables 9-20
initialization PCB 9-20
initialization PRCB 9-19,9-20
initialization segment table 9-17, 9-19
initialization stack 9-21
internal PCB fields 13-8
reading the PRCB 9-9
reinitialize processor lAC 11-18
required PRCB for single-task system

9-15
restart processor lAC 11-19
second stage of initialization 9-23
segment table pointer 9-3
self test 9-21
typical initialization scenario 9-21
warmstart processor lAC 11-25

Initialization segment table
description of 9-17

inspacc 6-20,17-74

Inspect access instruction 6-20

Instruction cache
description of 2-2, 3-12, C-3
purge instruction cache lAC 11-17

Instruction decoder
See ID

Instruction execution unit
See lEU

Instruction fetch unit
See IFU

Instruction list 9-2

Instruction pointer
See IP

Instruction reference
introduction to 17-1
Notation 17-1

Instruction suspension
description of 9-13
resumption record field in PRCB 9-9

Instruction timing
bit instructions C-lO
branch instructions C-12
call and return instructions C-13
decimal instructions C-17
description of C-8
floating point instructions C-17
integer and ordinal arithmetic instruc-

tions C-ll
load instructions C-14
logical instructions C-9
miscellaneous complex instructions

C-14
multiply and divide instructions C-12
register move instructions C-lO
store instructions C-16

Instruction trace
event flag 16-2
fault 12-2, 12-37
mode 16-4
mode flag 16-2

Instructions
arithmetic 6-6
assembly-language format 6-1
bit and bit field 6-10
branch 6-12
call and return 6-15
comparison 6-11
data length conversion 6-11
data movement 6-4
debug 6-16
decimal 6-19
detailed reference information 17-1
extended arithmetic 6-8
fault instructions 6-15
instruction groups 6-2
logical 6-10
machine-level instruction formats B-1
process management 6-17
processor management 6-16
quick reference A-I
string 6-19
summary of 80960MC instruction-set ex­

tensions 6-3

INDEX

I·g

summary of 80960 instructions 6-2
See also Machine-level formats

INTO, INTI, INT2, INT3 pins 10-6, 10-7

INTA pin 10-7

Integer overflow
description of 3-8
fault 12-2, 12-9, 12-25, 17-7, 17-56,

17-59, 17-100, 17-111, 17-131,
17-139,17-142

flag 3-8,7-11, 12-12, 12-25
mask 3-8,7-11,12-12,12-25

Integer, description of 5-1

Interagent communication messages
See lACs

Interim priority field 9-8, 15-5

Internal state field, of process controls
12-11

Interprocess communication
instructions 6-18
support for 2-7

See Messages passing

Interrupt control register
addresses mapped to in physical memory

10-7
description of 10-6
uses of 10-6

Interrupt handler
used for initialization 9-22

Interrupt handling
interrupt control register 10-6
interrupt handler procedures 10-4
interrupt stack 10-5
interrupt table 10-2
interrupt table sharing 10-4
location of interrupt handler procedures

10-4
restrictions on interrupt handler 10-5
software requirements for interrupt han­

dling 10-1
support for 2-3

Interrupt lAC 10-13,11-14
description of 10-7

inter

Interrupt pins
description of 10-6
uses of 10-6

Interrupt record
description of 10-10

Interrupt stack
description of 9-3, 10-5
interrupt stack pointer in PRCB 9-8
required at initialization 9-14

Interrupt stack pointer 9-8

Interrupt table
description of 9-3, 10-2
interrupt table pointer in PRCB 9-8
interrupt table sharing 10-4
required at initialization 9-14

Interrupt table pointer 9-8

Interrupt vectors, description of 10-2

Interrupts
description of 9-4
idle state interrupt 10-10
idle-interrupted state interrupt 10-12
in a multiprocessor system 15-7
interrupt control register 15-2
interrupt handling actions 10-8
interrupt lAC 10-7,11-14
interrupt pins 10-6
interrupt record 10-10
overview of interrupt facilities 10-1
pending interrupts 10-12
priorities 9-10, 10-2
process executing state interrupt 10-9
process interrupt state interrupt 10-10
servicing an interrupt 10-8
signaling interrupts 10-6
system-error interrupt 9-9, 10-8, 12-3,

12-4, 12-5, 12-16, 12-21, 12-22
system-error interrupt vector 12-4
test pending interrupts lAC 11-24,15-7
vectors 10-2

See also Interrupt handling

INTR pin 10-7

Invalid descriptor fault 8-22, 12-2, 12-27,
17-74

INDEX

1·10

Invalid opcode fault 12-2, 12-32

Invalid operand fault 12-2, 12-32

Invalid PTDE fault 8-10,8-24,12-2, 12-40

Invalid PTE fault 8-10, 8-22, 8-24, 12-2,
12-40

Invalid segment descriptor 8-16

Invalid segment descriptor fault 8-21,8-22

Invalid segment table entry fault 8-10,
12-2, 12-40

Invalid SS fault 12-2, 12-26

IP
description of 3-5
procedure table entry 4-11
storage of 3-5

IP with displacement addressing mode 5-7

J
J-bit 7-2

K
Kernel 1-1

L

altering process controls 13-8
process scheduling in multiprocessor

system 15-4
supervisor procedure 4-13,4-14

Large segment table segment descriptor
8-14

Id, Idib, Idis, Idl, Idob, Idos, Idq, Idt 5-5,
6-5,7-9,17-75

Ida 3-5, 6-6, 17-77

Idphy 6-20,8-25,17-78

Idtime 6-17,10-5,14-6,17-79

lit, notation 17-2

Literal
description of 5-5
floating-point 7 -14
ordinal 5-5

Load address instruction 6-6

Load instructions 6-5

Load physical address instruction 6-20

Local call
call operation 4-8
description of 4-8
return operation 4-8

Local registers
call/return mechanism 4-1
description of 2-2, 3-4
PFP 3-4
process state 13-1
purpose of 3-4
register alignment 3-4
register model 3-2
relationship to procedure stack 4-3
RIP 3-4
SP 3-4
stack-frame cache 4-3

LOCK line 8-2

logbnr,logbnrl 7-19,17-80

logepr,logeprl 7-19,17-82

Logical instructions 6-10

logr,logrl 7-19,17-85

M
Machine faults 12-31

Machine-level formats 6-1, B-1

Manual
guide to 1-1
structure of 1-1

mark 6-16, 12-13, 16-1, 16-5, 16-6, 16-7,
17-88

Mark instruction 6-16, 12-13

mem, notation 17-2

Memory management facilities, introduction
to 8-1

Memory management unit
SeeMMU

Messages and message passing
applications of messages 14-19
communication port 14-15
current port or semaphore SS 14-9
high-level process management facilities

14-1

INDEX

1-11

interprocessor communication 14-15
kernel support for message passing

14-18
link SS 14-9
mechanism for interprocess communica-

tion 14-16
message field in PCB 13-6
message, description of 14-7, 14-9
receive message mechanism 14-17
send message mechanism 14-16
send service mechanism 14-18

Micro-instruction sequencer
See MIS

MIS C-6

MMU C-l

Mnemonic 17-2

modac 3-6, 6-17, 17-89

modi 6-8, 17-90

modify 6-11,17-91

Modify process controls instruction 6-16,
6-18

Modify processor controls lAC 9-10, 9-12,
11-15

Modify trace controls instruction 6-16

modpc 6-16, 10-13, 13-8, 14-5, 15-5,
17-92

modtc 6-16,16-2,17-94

Modulo instructions 6-8

mov, movl, movq, movt 5-5, 6-6, 7-10,
7-15,17-95

Move instructions 6-6

movqstr 6-19,17-96

movr, movre, movrl 7-9,7-10,7-15,7-20,
17-97

movstr 6-19,17-99

muli, mulo 6-8, 17-100

muIr, mulrl 7-14,7-17,17-101

Multiple processor operation
See Multiprocessing

Multiply instructions 6-8

Multiprocessing
atomic instructions 15-6
description of 9-1
dispatch port 15-4
external lACs 15-1
high-level process management facilities

15-3
interrupt handling 15 -7
memory management facilities 8-1
overview of multiple processor support

facilities 15-1
preemption 15-4
preemption action 15-6
preemption control 15-4
process scheduling and dispatching

15-4
receiving and handling external lACs

15-2
sending external lACs 15-1
support for 2-7
use of processes 13 -2

Multiprocessor preempt flag 9-5, 10-10,
15-5

Multiprocessor preemption field in PRCB
9-9

Multitasking
description of 9-1

N

memory management facilities 8-1
priorities 9-10
processes vs. tasks 9-1
support for 2-6
use of processes 13-2

nand 6-10,17-103

NaNs
arithmetic vs. non-arithmetic instructions

7-20
classify instructions 7-17
comparison 7 -17
defined 7-6
encodings 7-4,7-7
extended-real format 7-7

INDEX

1-12

invalid-operation exception 7-23
operations on 7-20
QNaN 7-6,7-17,7-23
QNaN, definition of 7-20
rounding 7 -13

SNaN 7-6,7-17,7-23
SNaN, definition of 7-20
unordered 7 -17
unordered classification 3-8

Next time slice field 13-7, 14-5

No imprecise faults flag 3-9,12-12, 12-22

Nonpreempt limit field 9-7, 15-5

nor 6-10,17-104

Normalized number 7-3

Normalizing mode, floating-point normaliz-
ing mode flag 3-9

not, notand 6-10,17-105

Notation 1-3

notbit 6-10, 17-106

notor 6-10,17-107

o
Operating-system kernel

See Kernel

Operation faults 12-32

or,ornot 6-10, 17-108

Ordinal, description of 5-1

Override faults
See Faults

p
Padding area, description of 4-5

Page rights
description of 8-20
fault 8-24, 12-2, 12-34

Page Table and Page Table Directory
invalid page table (directory) entry

8-20
page rights 8-20
page table directory entry 8-20
page table entry 8-19
structure of 8-18

Paged region segment descriptor 8-12

Paging
bipaged segment 8-16
overview of 8-16
page length 8-3
page table and page table directory struc-

tures 8-18
paged segment 8-16
paging method field 8-11
protection of pages 2-6
spanning page boundaries 8-25
unpaged segment 8-16

Parameter passing
description of 4-9
in an argument list 4-9
through global registers 4-9
through the procedure stack 4-9

PCB
arithmetic controls field 13-5
binding process to processor 14-2
current process SS 9-8
description of 9-3, 13-1, 13-2
dispatch port SS field 13-6,14-10
event-fault request flags 12-13
execution time field 13-7
global registers field 13-6
lock field 13-6
low-level process management facilities

14-1
next time slice field 13-7
preempt flag 15-4
process controls 13-4
process notice field 11-5, 12-13, 13-6
process resumption following a fault

12-10
process state 13-1
queue record 13-6
received message field 13-6
region 0, 1, and 2 SS fields 13-6
relationship to process 9-1
required at initialization 9-14,9-20
residual time slice field 13-7
resumption record field 9-9, 13-6
segment descriptor 8-13

INDEX

1-13

storing of PCB fields in processor 13-7
trace controls field 13-5

See also Process, Process management

Pending interrupts
checking for 10-13
handling of 10-13
posting of 10-12
servicing of 10-12

PFP 3-4, 10-9
description of 4-5

Physical address space
description of 8-2
physical address 8-2

Physical addressing mode 8-1

Physical memory
caching of memory accesses 8-3
description of 8-2
restrictions 8-2

Pi 7-18

Port segment descriptor 8-13

Ports
description of 14-7
FIFO port 14-7
priority port 14-7, 14-8
segment descriptor 8-13
uses of 14-9
See also Communications port, Dis­

patch port

PRCB
caching the PRCB in the processor 9-9
changing the PRCB 9-9
current process SS 9-8
description of 9-2, 9-5
dispatch port assigned to 14-10
dispatch port SS field 9-8,14-10
fault resumption record 12-15
fault table pointer 9-9, 12~7
idle time field 9-9
initialization PRCB 9-14, 9-19
interrupt stack pointer 9-8
interrupt table pointer 9-8
modify processor controls lAC 11-15
multiprocessor preemption field 9-9

inter

pointers to system data structures 9-8
procedure table pointer 4-11
processor controls word 9-5
region 3 SS 9-8
resumption record field 9-9
store system base lAC 11-23
system procedure-table SS 9-9
system-error fault field 9-9, 12-16,

12-21
system-error fault record field 9-9,

12-16,12-21
See also Processor controls

Preempt flag 13-5, 14-14, 15-4

Preempt process lAC 11-16,15-4,15-5

Preemption
description of 14-14
in a multiprocessor system 15-4
interim priority field in processor con-

trols 15-5
multiprocessor preempt flag 9-5, 15-5
multiprocessor preemption action 15-6
nonpreempt limit field of processor con-

trols 9-7,15-5
preempt flag 15-4
preemption control in a multiprocessing

system 15-4
write external priority flag 15-5

Preemption lAC 14-14

Prereturn trace
event flag 16-2
fault 12-2, 12-37
mode 16-5
mode flag 16-2
pre return trace flag 4-5

Preserved 1-3

Previous frame pointer
See PFP

Priorities 9-10

Priority port 14-7
conditional receive message mechanism

14-17
description of 14-8
lock field 14-8

INDEX

1-14

priority 14-8
queue head SS 14-9
queue state flag 14-8
queue status field 14-8
queue tail SS 14-9
receive message mechanism 14-17
send message mechanism 14-16
send service mechanism 14-18

Procedure calls
branch and link 4-15
call/return mechanism 4-1
FP 4-3
local call 4-8
local registers 4-3
overview of 4-1
padding area 4-5
parameter passing 4-9
PFP 4-5
prereturn trace flag 4-5
procedure linking information 4-3
procedure stack 4-3
procedure table 4-11
return status field 4-5
RIP 4-6
saving of local registers 4-1
SP 4-3
supervisor call 4-14
supervisor stack 4-14
system call 4-10
user-supervisor protection model 4-13

Procedure Stack
call/return mechanism 4-1
description of 4-3,9-4
mapping of local registers to 4-7
process state 13-1
register save area 4-3, 4-7
stack frames 4-3

Procedure table
procedure entry structure 4-11
segment descriptor 8-13
structure of 4-11
supervisor-stack-pointer entry 4-12

inter

Procedure table call 4-10
See also System call

Procedure table segment descriptor 8-13

Process
address space 13-1
binding to processor 14-2
current process SS in PRCB 9-8
description of 9-1, 13-1
execution mode 4-13
flush process lAC 11-8
preempt process lAC 11-16
priority 13-4, 14-8
procedure stack 4-3
process controls 13-4
state 13-1, 13-4
timing 13-7
use of 13-2
See also PCB, Process management

Process control block
See PCB

Process control instructions 6-17

Process controls
changing of 13-8
description of 13-4
execution mode flag 13-4
Internal state field 12-11
next time slice field 14-5
preempt flag 13-5
priority field 13-4
process state 13-1
refault flag 13-5
residual time slice field 14-5
resume flag 13-5
state field 13-4
time-slice flag 13-5, 14-5
time-slice-reschedule flag 13-5, 14-5
timing flag 13-5, 14-5
trace enable flag 13-5
trace fault pending flag 13-5

Process controls word
See Process controls

Process management
binding process to processor

14·2
13-11,

INDEX

\·15

changing arithmetic controls 13-9
changing of process controls 13-8
changing the process notice field 13-9
concepts 14-2
dispatching 9-5, 14-2
execution time counting 14-6
explicit process dispatching 14-4
high-level process management facilities

14-1, 14-6, 15-3
instructions 6-17
kernel support for message passing

14-18
low-level process management facilities

14-1
messages 14-9
mUltiple-process management facilities,

overview of 14-1
multiprocessor preemption 15-4, 15-6
overview of 13-1
PCB 13-2
physical addressing vs. virtual address-

ing 13-9
ports 14-7,14-9
preemption 14-14
preemption control in a multiprocessing

system 15-4
priority field 13-4
process controls 13-4
process faults 12-33
process handling in a single-process sys-

tem 13-11
process states 14-2
process suspension 14-11
required software support for a single-

process system 13-9
scheduling 9-5, 14-2
state transition actions 14-3
time-slice scheduling 14-5
timing 14-5
See also Automatic process dispatch­

ing, Messages and message pass­
ing; Process, Process synchroniza­
tion

Process notice
changing process notice field 13-9
check process notice lAC 12-13, 12-28
field in PCB 11-5,13-6

Process scheduling and dispatching
binding process to processor 14-2
description of 14-2
explicit process dispatching 14-4

See also Automatic process dispatching

Process segment descriptor 8-13

Process synchronization
description of 14-12
semaphores 14-12

Process timing 14-5,14-6
end-of-time-slice event 14-11
time slice fault 12-2, 12-33, 14-5, 14-6
time-slice scheduling 14-5
while handling a fault 12-13
while handling an interrupt 10-6

Processor
freeze lAC 11-13
internal structure of C-l
modify processor controls lAC 11-15
multiprocessing system 9-1
multitasking system 9-1
overview of processor configurations

9-1
priorities 9-10
purge instruction cache lAC 11-17
reinitialize processor lAC 11-18
restart processor lAC 11-19
self test 9-21
single-task system 9-1
stop processor lAC 11-21

11-22 store processor lAC
store system base lAC
warmstart processor lAC

Processor and process states
description of 9-10

11-23
11-25

idle state 9-11
idle-interrupted state 9-11
process-executing state 9-11
process-interrupted state 9-11

INDEX

1·16

state field 9-7
stopped state 9-11

Processor Control Block
SeePRCB

Processor controls
addressing mode flag 9-7
check dispatch port flag 9-7
description of 9-5
interim priority field 9-8, 15-5
modify processor controls lAC 9-10,

11-15
multiprocessor preempt flag 9-5, 15-5
nonpreempt limit field 9-7
nonpreempt limit field of processor con­

trols 15-5
state field 9-7
write external priority flag 9-8, 15-5

Processor controls word
See Processor controls

Processor management
instructions 6-16

Processor management facilities
faults 9-5
lACs 9-4
instruction list 9-2
interrupts 9-4
overview of 9-2
process scheduling and dispatching 9-5
system data structures 9-2

Processor management, software require­
ments for 9-14

Processor timing
duration of a timing 9-13
idle timing 9-13

Programming environment
See Execution environment

Protection faults 12-34

Protection, support for 2-6

Purge instruction cache lAC 11-17

Q

QNaN
See NaNs

Quad word, description of 5-5

Queue linkage infonnation in ports
queue head SS 14-7
queue state flag 14-7,14-8
queue status field 14-8
queue tail SS 14-7

Queue record, in PCB 13-6

R
Real number

encodings 7 -4

system 7-1

receive 6-18,10-5,14-17,17-109

Refault flag 12-11, 12-12, 12-20, 12-21,
13-5

reg, notation 17-2

Regions 3-10
gaps and boundaries 8-28
making region boundaries transparent

8-28
pointers for regions 0, 1, and 2 in PCB

13-6, 13-9
region 3 SS in PRCB 9-8
required at initialization 9-14
spanning region boundaries 8-25
typical address space structure 8-26

Register indirect addressing modes
description of 5-7

Register indirect addressing modes, descrip­
tion of 5-7

Register save area
See Procedure stack

Register scoreboarding 2-3,3-5, C-7

Registers
addressing of 5-6
floating-point registers 2-5, 3-2
flush local registers lAC 11-7
flush local registers instruction 6-16
global registers 3-2
local registers 3-2
register model 3-2

INDEX

1-17

See also Floating-point registers,
Global registers, Local registers

Reinitialize processor lAC 11-18

Remainder instructions 6-8

remi, remo 6-8, 17-111

remr, remrl 7-11,7-17,17-112

Reserved 1-3

RESET pin 9-21

Residual time slice field 13-7, 14-5

Restart processor lAC 3-6, 9-9, 9-23,
11-19,12-22

Resume flag 10-9, 12-11, 12-18, 12-19,
12-20,12-21,13-5,13-8

resumprcs 6-17, 10-5, 13-11, 14-2, 14-3,
14-4,14-6,17-115

Resumption record field 9-9

ret 4-8, 6-15, 12-9, 12-18, 12-20, 16-5,
16-8,17-116

Return
from local call 4-8
from local system call 4-13
from supervisor call 4-14

Return instruction 6-15

Return instruction pointer
See RIP

Return status field 12-18
description of 4-5
encoding of 4-5
return from local system call 4-13
return from supervisor call 4-14

Return trace
event flag 16-2
fault 12-2, 12-37
mode 16-5
mode flag 16-2

RIP 3-4,3-6
description of 4-6
on a branch and link 4-15

rotate 6-9, 17 -118

Rotate instructions 6-9

Rounding control
See Floating-point rounding control

field

roundr, roundrl 7-17,17-119

s
Saved IP, for fault 12-15

saveprcs 6-17, 13-11, 14-2, 14-4, 14-6,
17-120

Scale factor in addressing, description of
5-7

scaler, scaler! 7-19,7-24, 17-121

scanbit 6-10,17-123

scanbyte 6-11, 17-124

schedprcs 6-17,14-10,15-5,17-125

Scorcboarding
See Register scoreboarding

Segment
bipaged region 8-12
description of 8-4
large segment table 8-14
paged region 8-12
port 8-13
procedure table 8-13
process 8-13
semaphore 8-15
simple region 8-11
small segment table 8-14
types 8-11

Segment descriptor
access status field 8-10
accessed flag 8-10
altered flag 8-10
base address field 8-9
bipaged region descriptor 8-12
cacheable flag 8-10
description of 8-9
invalid descriptor 8-16
large segment table descriptor 8-14
paged region descriptor 8-12
paging method field 8-11
port descriptor 8-13
procedure table descriptor 8-13
process descriptor 8-13
region descriptors 8-11
segment table descriptors 8-14

INDEX

1-18

segment types 8-11
semaphore descriptor 8-15
simple region descriptor 8-11
size field 8-10
small segment table descriptor 8-14
valid flag 8-10

Segment length fault 8-21, 8-22, 8-24,
12-2,12-34,17-74

Segment selector
See SS

Segment table
description of 8-8, 9-2
required at initialization 9-14

Self dispatching
See Automatic process dispatching

Self test, of processor 9-21

Semaphore
access action 14-13
count field 14-12
description of 14-12
high-level process management facilities

14-1
instructions for handling semaphores

6-18, 14-13
lock field 14-12
semaphore queue tail SS 14-13
structure of 14-12

Semaphore segment descriptor 8-15

send 6-18,14-16,14-18,15-5,17-126

sendserv 6-18, 10-5, 14-1,0, 14-11, 14-18,
14-19,15-5,17-128

Set breakpoint register lAC 11-20

Set, definition of 1-4

setbit 6-10,17-130

Shift instructions 6-9

shli, shlo, shrdi, shri, shro 6-9,17-131

signal 6-18,14-13,15-5,17-133

Significand, in floating-point format 7-2

Simple region segment descriptor 8-11

sinr, sinrl 7-18,17-134

Size field 8-10

SIZE lines 8-2

Small segment table segment descriptor
8-14

SNaN
See NaNs

SP 3-4,4-14
description of 4-3

span bit 6-10,17-136

sqrtr, sqrtrl 7-17,17-137

SS
description of 8-5, 8-7
treatment of, depending on address trans­

latiON mode 9-12

st, stib, stis, stl, stob, stos, stq, stt 5-5,
6-5,7-9,17-139

Stack
See Procedure stack

Stack frame cache 4-3
flush local registers lAC 11-7
mapping to procedure stack 4-7

Stack frame, definition of 4-3

Stack pointer
See SP

Standard faults 17-3

STARTUP pin 9-21

State field 9-7

Sticky flags, definition of 3-7

Stop processorIAC 11-21

Store instructions 6-5

Store processor lAC 9-10,9-12,11-22

Store system base lAC 11-23

String instructions 6-19

Structural faults 12-36

subc 6-8,17-141

subi, subo 6-8,17-142

subr, subrl 7-17,17-143

Subtract instructions 6-8

Subtract with Carry Instruction 6-8

Supervisor call 4-14
system call instruction 6-15

INDEX

1·19

Supervisor mode
See User-supervisor protection model

Supervisor stack
description of 9-4
structure of 4-14
supervisor-stack pointer 4-12

Supervisor trace
event flag 16-2
fault 12-2, 12-37
mode 16-5
mode flag 16-2

Supervisor-stack pointer 4-12

syncf 12-22,17-145

synld 6~20, 17-146

synmov, synmovl, synmovq 6-20, 11-1,
11-3,15-2,15-3,17-148

System call

description of 4-1 °
mechanism of 4-1 °

System data structures
description of 9-2

System error fault
See System error interrupt

System error interrupt
description of 10-8, 12-4
fault handling method 12-3
halt action 12-22
handling of 12-21
interrupt vector 248 12-4
relationship to halt 12-5
system-error fault field in PRCB 9-9,

12-16
system-error fault record field in PRCB

9-9, 12-16
system-error interrupt action 12-21

System executive
Kernel 1-\

System procedure table
description of 9-4
structure of 4-11
system call instruction 6-15
system procedure-table SS In PRCB

9-9

trace control flag 4-12

System procedure table SS 9-9

System-error fault field 9-9

T
tanr, tanrl 7-18, 17-151

Task, des~ription of 9-1

Terminology 1-3

Test instructions 6-14

Test pending interrupts lAC 11-24,15-7

teste, testne, testl, testle, testg, testge,
testo, testno 6-14, 17-153

Tick 9-13

Time slice
See Process timing

time slice flag 10-9, 14-5

Time-slice-reschedule flag 14-5

Timing
See Process timing, Processor timing

Timing flag 10-5, 10-9, 14-5

TLB
description of 8-25
flush process lAC 11-8
flush TLB lAC 11-9
flush TLB page table entry lAC 11-10
flush TLB physical page lAC 11-11
flush TLB segment entry lAC 11-12

Trace control flag (in a procedure table)
12-] 9

Trace control flag (in system or procedure
table) 16-1, 16-3, 16-6

Trace control flag (in system procedure
table) 4-12

Trace controls
See Tracing

Trace controls field, in PCB 13-5

Trace enable flag 10-9, 12-12, 12-19, 13-5,
16-1, 16-3, 16-6, 16-7, 16-8

Trace fault handler procedure table 12-7,
12-8

INDEX

1-20

Trace fault pending flag 10-9, 12-11, 13-5,
16-1,16-3,16-6,16-7,16-8

Trace flag (in return-status field of rO)

16-1,16-3

Tracing
branch trace mode 16-4
breakpoint registers 16-5
breakpoint trace mode 16-5
call trace mode 16-4
fault handlers, tracing with 16-8
handling multiple trace events 16-6
instruction trace mode 16-4
interrupt handlers, tracing with 16-7
modifying trace controls 16-2
overvIew of trace-control facilities

16-1
pre return trace handling 16-7
preretum trace mode 16-5
process state 13-1
return trace mode 16-5
signaling a trace event 16-6
software support required for tracing

16-1
supervisor trace mode 16-5
trace control flag (in system or procedure

table) 16-3
trace control on supervisor calls 16-3
trace controls 16-1
trace controls word 16-2
trace enable and mode flags 12-12
trace enable flag 16-3
trace event flags 16-2
trace fault handler 16-6
trace fault pending flag 16-3
trace faults 12-37, 16-1, 16-3, 16-5,

16-6
trace flag (in return-status field of rO)

16-3
trace handling action 16-7
trace mode flags 16-2
trace modes 16-4
tracing instructions 6-16

inter

Translation look-aside buffer
See TLB

Triple word, description of 5-5

Type faults 12-39

Type mismatch fault 8-11, 12-2, 12-39,
17-92,17-115

u
Unconditional branch instructions 6-13

Unordered
definition of 3-8
numbers 7-17

User-supervisor protection model
description of 4-13

v

mode switching 4-14
supervisor call 4-14
supervisor mode 4-13,4-14
supervisor procedure 4-13,4-14
user mode 4-13,4-14

Valid flag, description of 8-10

Virtual addressing mode
description of 8-1
load physical address instruction 8-25
SS translation action 8-21
virtual addrj:ss translation action 8-22

Virtual memory faults 8-10, 12-40

Virtual memory management facilities
accessing system data structures 8-28
address translation action 8-21
inspect access instruction 6-20
load physical address instruction 6-20
operating system considerations 8-26
overview of 8-3
page table 8-5
page table and page table directory struc­

tures 8-18
page table directory 8-5
page tables and page table directories

8-16
segment 8-4
segment descriptor 8-4, 8-9

INDEX

1-21

segment selector 8-7
segment table 8-4, 8-8
segment table data structures 8-6
SS 8-5
TLB 8-25

typical address space structure 8-26
use of segments 8-5

See also Segment table

Virtual memory, support for 2-6

W
wait 6-18,10-5,14-13,17-155

Warmstart processor lAC 3-6,9-9, 11-25

Words
addressing of 5-5
size 3-4

Write external priority flag 9-8, 15-5

x
xnor, xor 6-10,17-157

ALABAMA

t~n1t~I~~dtord Dr. #2
Huntsville 35805
Tel: (205) 830-4010

ARIZONA

n~~~ ~~r~8th Or
Suite 0-214
Phoenix 85029
Tel: (602) 869-4980

tlntel Corp.
1161 N.EIOoradoPlace
Suite 301
Tucson 85715
Tel: (602) 299-6615

CALIFORNIA

tlntel Corp.
21515 Vanowen Street
Suite 116

~:I~~laBr~~~B~3~03
tlntel Corp.
2250 E. Imperial Highway
Suite 218

i~~(~1~)dg4~~~ri10
tlntel Corp.

~~~~a~~~t~ ~~~1 ~uite 101 
Tel: (916) 920-8096 

tlntel Corp. 
4350 Executive Drive 
Suite 105 

~:r (~~e~04~~~tJ80 
tlntel Corp" 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 

~PJ1b~53~i~61~24 

tl~~e+~~%.~ 
2700 San Tomas Expressway 
2nd floor 
Santa Clara 95051 

~i~~~b?:368~~28565 
FAX: 408-727-2620 

COLORADO 

tlntel Corp. 
4445 Northpark Drive 
Suite 100 

¥~I:(j~d9) ~C4~~~~0907 

t~i~Z~i~~ St., Suite 915 

Tel: (303) 321·8086 
TWX: 910-931-2289 

CONNECTICUT 

~~~:IF~I~n Road 
2nd Floor

~~~~lb!{t\~~09 
FLORIDA 

~~~~~~:~I~ ~:lO;uite 100 

~i~g~b?;5~~9~0007
FAX: 30S-772-8193

tlntel Corp.
5850 T.G. Lee Blvd.
Suite 340
Orlando 32822

;A~~33~~_~:g~:g~
tlntel Corp
11300 4th Street North
Suite 170
SI. Petersburg 33716

~~I~~8;1~.~~~~~~M

tSales and Service Office
'Field Application Location

DOMESTIC SALES OFFICES

GEORGIA

l~J61 ~6i~~e Parkway
Suite 200
Norcross 30092
Tel: (404) 449-0541

ILLINOIS

~~:~~~7;n~c~e1~oad, Suite 400

Tel: (312) 3rO-8031

INDIANA

~~~il ~u~d~e Road 
Suite 125 

~~:(3~~)~~~-~~~~ 
IOWA 

Intel Corp. 
1930 St. Andrews Drive N.E 
2nd Floor 
Cedar Rapids 52402 
Tel: (319) 393-5510 

KANSAS 

tlntel Corp. 

~~ft:51 ~gd~I~~. 0 
Overland Park 66210 
Tel: (913) 345-2727 

MARYLAND 

tlntel Corp" 
7321 Parkway Drive South 
SuiteC 
Hanover 21016 
Tel: (301) 796-7500 
TWX: 710-662-1944 

tlntel Corp 
7833 Walker Drive 
SuIte 550 
Greenbelt 20770 
Tel: (301)441-1020 

MASSACHUSETTS 

tlntel Corp." 

;Vg!~;I~ ~fd Center 
2nd Floor 
Westford 01886 

~i~i~b~i.t~~l:f3 
MICHIGAN 

tlntel Corp. 
7071 Orchard Lake Road 
Suite 100 
West Bloomlield 48322 
Tel: (313) 851·8096 

MINNESOTA 

!~nJ61~~~'&h St., Suite 360 
Bloominiton 55431 
Tel: (612 835-6722 
TWX: 91 -576·2867 

MISSOURI 

lk~gl.fa~~KCilY Expressway 
Suite 131 
Earth City 63045 
Tel: (314) 291-1990 

NEW JERSEY 

tin tel Corp.· 
Parkway 109 Office Center 
328 Newman Spnngs Road 
Red Bank 07701 
Tel: (201) 747-2233 

~~nJ~~r~~·ate Center 
75 liVingston Avenue 
First Floor 
Roseland 07068 
Tel: (201) 740-0111 
FAX: 201-740-0626 

NEW MEXICO 

!~nJgl~~~~~1 Boulevard N.E. 
SuIte B 295 

~~~:u(~~~'l1ge2~JJJl 
NEW YORK

Intel Corp.
127 Main Street
Binghamton 13905

~~~j66OJi_gtg~~~ 

!~J~~~~~eys Office Park 
Fairport 14450 
Tel: (716) 425-2750 
TWX: 510-253·7391 

tlntel Corp.· 
2950 Expressway Dr. South 
Suite 130 
Islandia 11722 

~~~~~b~~j-~6~~6 

t!.~~~~~~rgUsiness Center

~il~~kill ~~5~~ute 9

~~~~99,,~_~~~~~~g 
NORTH CAROLINA 

~~nJgl ~xo;g~tlve Drive 
Suite 213 
Charlone 26212 
Tel: (704) 568·8966 

iri~1 f;~fiff Road 

~:II;iB~9r768~~6022 
OHIO 

!~nJ~1 ;a~ff6enter Drive 
SuIte 220 

~:rg~ :)S:J6_5350 
TWX: 610-450-2528 

!~nig~ '§o~~~ce Park Dr., Suite 100 
Beachwood 44122 

~lJn~S:i$'2~~ 
OKLAHOMA 

~~nJfl rf°~~oadway 
Suite 115 
Oklahoma City 73162 
Tel: (405) 848-8086 

OREGON 

t~ni~~ ~ve: Greenbrier Parkway 
BuildingS 
Beaverton 97006 

~~~Zn~~i~f75~1 
PENNSYLVANIA

tlntel Corp.'
455 Pennsylvania Avenue
Suite 230

$~~J1b~~~;1~~~034
Intel Corp.'
400 Penn Center Blvd., Suite 610

~~~:S(~1~t6~~~1~70 
PUERTO RICO 

tlntal Microprocessor Corp 
South Industrial Park 
P.O. Box 910 
las Piedras 00671 
Tal: (809) 733-6616 

TEXAS 

l~nJ~.c~~~erson Lane 
SUite 314 
Austin 78752 
Tel: (512) 454-3628 

tlntal Corp.· 
12000 Ford Road 
Suite 400 
Dallas 75234 

~~~~22\t~~t~~~b 
tlntel Corp.·
7322 S.W. Freeway
SUite 1490
Houston 77074

~~~J~b~8888;~2048:0 
UTAH 

1~nJ~~~rC400 South 
Suite 104 

~~:(~b18)4igJ_8051 
VIRGINIA 

tlnte1 Corp. 
1504 Santa Rosa Road 
Suite 108 
Richmond 23288 
Tel: (804) 282-5666 

WASHINGTON 

tlntel Corp. 
1551081h Avenue N.E 
Suite 366 
Bellevue 96004 

~~~~n~433~3006062 
tlntel Corp.
408 N. Mullan Road
Suite 102
Spokane 99206
Tel: (509) 928·6086

WISCONSIN

~~JeJ.c~:~cutive Dr.
Suite 102
Brooklield 53005
Tel: (414) 764-8087
FAX: (414) 796-2115

CANADA
BRITISH COLUMBIA

Intel Semiconductor of Canada, Lid.

~~~~a~~n~£~ r(l Suite 202 
Tel: (60jj.) 298-0387 
FAX: (604) 298-8234 

ONTARIO 

!~nJgl~:i:~i~~c~~v~ Canada, ltd 

Suite 250 
Ottawa K2B 8He 
Tel: (613) 829-9714 
TLX: 053-4115 

tlntel Semicrmductor of Canada, ltd. 
190 Attv.'cli Drive 
Suite 500 
Rexdale M9W 6H8 
Tel: (416) 675-2105 
TLX: 06983574 
FAX: (416) 675-2438 

QUEBEC 

l~nJ~I~~~~~oBg~~~~r~f Canada, Ltd. 
Pointe Claire H9R 3K2 

~)~J~~~9~:;13f4 



DOMESTIC DISTRIBUTORS 

ALABAMA CALIFORNIA (Conl'd.) FLORIDA (Conl'd,) MARYLAND NEW HAMPSHIRE 

Arrow Electronics, Inc. tHamilton Electro Sales !Hamilton/Avnet Electronics Arrow Electronics, Inc. ~Arrow Electronics, Inc. 
1015 Henderson Road 3170 Pullman Street ~~ie~~~:k~~7~~ulevard 8300 Guilford Drive Perimeter Road 
Huntsville 35805 Costa Mesa 92626 Suite H, River Center Manchester 031 03 
Tel: (205) 837-6955 ~K~1b~d5~if8 Tel: (305) 628-3888 Columbia 21046 ~~~n~626280~9::4 TWX: 810-853·0322 ~2~~ b?i356~OOO35 tHamilton/Avnet Electronics 
4940 Research Drive l~g:~~~h~~r:kT~~~'ronics ~joneer/TeChnOIOgieS Group, Inc tHamlitonjAvnet Electronics 
Huntsville 35805 7 S. Lake Blvd. Hamilton/Avnet Electronics 444 E. Industrial Drive 

~)~~~b~?;6?2~~02 Sacramento 95834 ~~~ (~8~)t~:l~8~g 32701 
6822 Oak Hall Lane Manchester 031 03 

Tel: (916) 920·3150 Columbia 21045 Tel: (603) 624-9400 
TWX: 810-853-0284 ~i~~~b:i652~58~ 

~~~t~i:~;~~l~~~~roup, Inc. ~l.:e~~r~~~ti~rre~?UP NEW JERSEY 
Pioneer/TeChnOloQies Group, Inc.

f~~(~~~)dg2~~~f60 674 S: Military Trail ~n~s~~~~~~~~Jo~~'8r tArrow Electronics, Inc.

~2~~b~3J6:2~0907 Deerfield Beach 33442 Four East Stow Road

~2g~b~585~98lJ3 Columbia 21 046 Unit 11
Wyle Distribution Group Tel: (301) 290-8150 Marlton 08053

ARIZONA 7382 Lampson Ave TWX: 710-828-9702 Tel: (609) 596-8000
Garden Grove 92641 GEORGIA TWX: 710-897-0829

tHamilton!Avnet Electronics ~X~~b~i:B-V1VO or 7111
~Pioneer/TeChnologies Group, Inc

505 S. Madison Drive tArrow Electronics, Inc. 100 Gaither Road tArrow Electronics
Tempe 85261 3155 Northwoods Parkway ¥:r~tJ~~9~ ~0066lri 6 Century Drive
Tel: (602)231·5140 Wyle Distribution Group Suite A ~:r:sl~gr)nS3~g~rio TWX: 910-950-0077 11151 Sun Center Drive Norcross 30071 TWX: 710-826-0545

Rancho Cordova 95670 Tel: (404) 449-6252
Hamilton/Avnet Electronics Tel: (916) 63lJ-5262 TWX: 610-766-0439 MASSACHUSETTS tHamiitonjAvnet Electronics
30 South McKiemy 1 Keysto~e Ave., Blog. 36
Chandler 85226 ~;V1Je<?~~~~g~~~~ g;i~~P tHami!lonfAvnet Electronics Arrow Electronics, Inc. ~~I~(60~)II~g~~131 0 ~i~g~b:9S;O~0~~97 5825 0 Peachtree Corners 25 Upton Dr.

~)~~li~~v9~
Norcross 30092 Wilmington 01887 TWX: 71 0-94Q..0262
Tel: (404) 447·7500 Tel: (617) 935-5134

Arrow Electronics, Inc. TWX: 610-766-0432 tHamiJton/Avnet Electronics
4134 E. Wood Street tHamilton/Avnet E.lectronics 10 Industrial
Phoenix 85040 t~JJeB~~~~~u~~;n~~oup ~~'OO~r~~~~:9~e~,~;~uP' Inc.

100 Centennial DrIVe Fairfield 07006
Tel: (602) 437-0750 ~:~~g~l) ~1~~~430 Tel: (201) 575-5300
TWX: 91Q..951-1550 Santa Clara 95051 Norcross 30071 TWX: 710-734·4388

Tel: (408) 727-2500 ~i~~{b~~~!J5\~ TWX: 710-393-0382

~J~~~.ti~~6~c~~~~~ Hwy
TWX: 910-338-0296 tMTI Systems Sales

MTI Systems Sales 37 Kulick Rd.
Phoenix 85023 tWyle Distribution Group ILLINOIS ~~~~~~~d~e8~~· Fairfield 07006
Tel: (602) 249·2232 17872 Cowan Avenue Tel: (201)227-5552
TWX: 910-951-4282 Irvine 92714 Arrow Electronics, Inc.

Tel: (714) 863-9953 1140 W. Thorndale Pioneer Electronics tPioneer Electronics
CALIFORNtA TWX: 910-595-1572 Itasca 60143 44 Hartwell Avenue 45 Route 46

Tel: (312) 250-0500 i:~l(~t?) 8~~~~~00 Pinebrook 07058
Arrow Electronics, Inc. Wyle Distribution Group TWX: 312-250-0916 Tel: (201) 575-3510

b~8~:s~~es~geet ~~?:;a~asA~,o3J~ Rd.
TWX: 710-326-6617 TWX: 710-734-4382

tHamiltonjAvnet Electronics
TeP: (714) 220-6300 ~i~J~1~0~03~000 1130 Thorndale Avenue MICHIGAN NEW MEXICO

Bensenville 601 06
Arrow ElectroniCS, Inc. Tel: (312) 860-7780 Arrow Electronics, Inc. Alliance Electronics Inc.
19748 Dearborn Street COLORADO TWX: 910-227-0060 755 Phoenix Drive 11030 Cochiti S.E.
Chatsworth 91311 Ann Arbor 481 04

~~~grb~9~~~~ ~~~~n~~j?25008~ Arrow Electronics, Inc ~~'oSJ'lt~~gr~;~r: Tel: (313) 971-8220 
7060 South Tucson Way TWX: 810-223-6020 
Englewood 80112 Itasca 60143 

tArow Electronics, Inc Tel: (303) 790-4444 Tel: (312) 773-2300 ~~~iI~~~~A;t~:~f~.~t.ronics Hamilton/Avnet Electronics 
521 Weddell Drive 2524 Baylor Drive S.E. 

~J~~~b\\~:~~07~ 
tHamiitonjAvnet Electronics tPioneer ElectroniCS Space A5 

~~~grb?~i~1J6~~ 8765 E. Orchard Road 1551 Carmen Drive Grand Rapids 49508 
Suite 708

~lJr~b~JJ~i8Eo07
Tel: (616) 243-8805

Englewood 80111 TWX: 810-274·6921
Arrow Electronics, Inc. ~:2~n?9~51°7':7 NEW YORK
9511 RidgehavenCourt Pioneer Electronics

~:I~ (~~~o5~B~:~00 INDIANA 4504 Broadmoor S.E. ~750Br~lhf~~o~~~;i~~ Townline Rd. tWyle Distribution Group Grand Rapids 49508
TWX: 888-064 451 E. 124th Avenue tArrow ElectroniCS, Inc FAX: S16-698-1831 Rochester 14623

Thornton 80241 2495 Directors Row, Suite H ~rJn~J553~370Jl6 tArrow Electronics, Inc. Tel: (303) 457-9953 IndianapoliS 46241 tHamiitonjAvnet Electronics
2961 Dow Avenue TWX: 910-936-0770 Tel: (317) 243-9353 32487 Schoolcraft Road
Tustin 92680 TWX: 810-341-3119 Livonia 48150 Arrow Electronics, Inc.
Tel: (714) 838-5422 CONNECTICUT Tel: (313) 522-4700 20 Oser Avenue
TWX: 910-595-2860 ~:f~~~'Yt:'glf~~eElectronics TWX: 810-282-8775

~Jgf~b~);!;Jg3 tArrow Electronics, Inc.

t~onJ~g~r~~~i~~enue 12 Beaumont Road Carmel 46032 t:~5e~~~~~~~~an
~~J~~b!~i~i1

Tel: (317) 844-9333
Costa Mesa 92626 TWX: 810-260-3966 livonia 48150 Hamilton/Avnet
Tel: (714) 754·6071 ~PJn~l.r2182~01 933 Motor Parkway
TWX: 910-595-1928 t:b~n~~w~~~~g~~~ve ~JgJa~r~2~~~~06 Hamilton/Avnet EI~ctronics

tW5~~r~e~~nxeb~i~~tronics Commerce Industnal Park Indianapolis 46250 MtNNESOTA
Commerce Drive Tel: (317) 849-7300

~J~~fte?l~:t~~2 ~~~~1b?fsi6~98~7~
TWX: 810-260-1794 tArrow Electronics. Inc. IHamiiton/Avnet Electronics

5230 W. 73rd Street 33 Metro Park
IOWA Edina 55435 Rochester 14623

~~~~~b~537~1~~05 Tel: (716) 475-9130 
tHamilton/Avnet Electronics tPioneer Electronics HamiitonjAvnet Electronics TWX: 510"253-5470 
4545 Ridgeview Avenue 112 Main Street 91533rd Avenue, S.w. 

~~~rfb~;9~1~0308 
Norwalk 06651 Cedar Rapids 52404 t~:~'~hh::na~~~~~:~nics l~:~~i~"b~k~e~~~~ctronics
~i~~b~4563B~5;753 Tel: (319) 362-4757

Minnetonka 55434 Syracuse 13206
KANSAS Tel: {612) 932"{)600 ~:i~in~3l-~25~~ tHamilton/Avnet ElectroniCS FLORIDA

9650 Desoto Avenue Arrow Electronics tPioneer Electronics
Chatsworth 91311 tArrow Electronics, Inc. 8208 Melrose Dr., Suite 210 76?5 Golden Triange Dr. tMTf Systems Sales
Tel: (818) 70Q..1161 40~ Fairway Drive Lenexa 66214 SUlteG 38 Harbor Park Drive

SUite 102 Tel: (913) 541·9542 Eden Prairi 55343 ~~r(~~hJ~r.~~JJ050 tHammon Electro Sales Deerfielo Beach 33441 Tel: {612) 944-3355
10950 W. Washington Blvd. ~pgn~~5~9~0506 tHamiltonfAvnet Electronics

~~rv(21gl~ff~~~~8 9219 Qulvera Road MISSOURI tPioneer Electronics
Overland Park 66215 68 Corporate Drive

TWX: 910-340-6364 Arrow Etectronics, Inc Tel: (913) 888-8900 tArrow ElectroniCS, Inc Binghamton 13904

~~i~ek~~~~ Drive TWX: 910-743-0005 2380 Schuetz ~i~gn?2~~:0~~3 Hamilton Electro Safes SI. Louis 63141
1361B West 190th Street Lake Marv 32746 Pioneer/Tec Gr. Tel: (314) 567-S888
Gardena 90248 Tei: (407) 323-0252 10551 Lockman Rd. TWX: 910-764-0882 Pioneer ElectroniCS
Tel: (213) 217-6700 TWX: 51Q..959-6337 Lenexa 66215 40 Oser Avenue

IHamilton/Avnet Electronics
Tel: (913) 492-0500 tHamiitonjAvnet ElectroniCS ~:I~rgla6)Q:3~ ~J~60 tHamiltonjAvnet Electronics 13743 Shoreline Court

002 ·0' Street ~~O~a~d"Z;d~~!h 3~3a~9 KENTUCKY Earth Ci~ 63045
OntariO 91761 Tel:pl4 344-1200
Tel: (714) 989-9411 Tel: (305) 971-2900 HamHtonfAvnet ElectroniCS TW : 91 -762-0684

TWX: 510-956-3097 1051 D. Newton Park
tAvnet Electronics !r:~i(~J6)2~~:~175 20501 Plummer tHamilton/Avnet Electronics
Chatsworth 91351 3197 Tech Drive North

~~~Jn?4~~~l;d7 SI. Petersburg 33702 

~~Jn~l663~0~3704 

tMicrocomputer System Technical Distributor Center CGjSAL2f070788 



DOMESTIC DISTRIBUTORS (Cont'd.) 

NEW YORK (Cont'd.) OKLAHOMA TeXAS {Cont'd.} WISCONSIN ONTARIO (Cont'd.) 

tPioneerElectrOnics ArrowElectronlcs,lnc tHamiltonjAvnet ElectroniCS Arrow Electronics, Inc tHamlltonjAvnet ElectrOnics 
60 Crossway Park West 1211 E 51st5treel 2111W.WalnutHiitLane 200 N. Patrick Blvd., S18.100 190 Colonnade Road South 

~e~~~79il0.~~J~land 11797 
Suite 101 ~~:~r2;~r~~O.6' 11 Brookfield 53005 Napean K2E 7LS 
Tulsa74146 Tel' (414)767-6600 Tel (613) 226-1700 

TWX: 510-221-2164 Tel. (918)252-7537 TWX: 910-860-5929 TWX: 910·262·1193 TWX 05·34'3-71 

1:'ioneerElectronics t~f~"&~~f~n~: ,E~uj:~O~b~~ i~~:~}Yflf~J~ ~~i~!ri~~S 
HamiltonjAvnetElectronics tZantronlCs 

o Fairport Park 2975 Moorland Road 8 Tilbury Court 
Fairport 14450 Tulsa 74146 New Berlin 53151 ~~nf.tt~r 4~~~9~6~ Tel: (716) 381-7070 Tel: (918) 252-7297 Tel: (713) 240-7733 Tel: (414)784-4510 
TWX: 510-253-7001 TWX: 910-681-5523 TWX 910-262-1182 TWX. 06-976-78 

OREGON 
NORTH CAROLINA tPioneerElectronlCS 

CANADA 
tZentrontcs 

tAlmac Electronics Corp. 18260 Kramer 155 Colonnade Road 
tArrow ElectroniCS, Inc. 1885 N.w 169th Place Auslln78758 Unit 17 
5240 Greensdairy Road 8eaverton97005 Tel: (512)635-4000 ALBERTA Nepean K2E 7Kl 

~:i:eiB~9~~~~~3132 Tel: (503)629-8090 TWX: 910-874-1323 Tel: (613) 226-8840 
TWX: 910-467-8746 Hamllton/Avnet ElectroniCS 

TWX: 510-928-1656 tPioneer Electronics 261621st Street N.E. Zentronlcs 
!Hamilton/Avnet ElectrOniCS b;~!~ ~5~3~a Road ~:II?(~63n~0~~~86 

SO-1313 BorderS! 
lHamiiton/Avnet Electronics 024 S.W. Jean Road ~~(~041 ~~4~70~~7 R~~~ Stf2~20~ores' Drive Bldg. C, SUite 10 Tel: (214) 386-7300 TWX.03-827-S42 

~:~(5~~)~j~_j~2~4 TWX: 910-650-5563 
Tel: (B'9) 678-0619 Zentronics QUEBEC 
TWX: 510-928-1636 TWX: 910-455-6179 tPloneer ElectrOnics 

~;60N,04t~ Avenue N E. 5853PoinlWesiDrive tArrow Electronics Inc 

~8~e:~q~~~~~~o~:~~ ~r~~.p, Inc 
Wyle Dlstnbutlon Group Houston 77036 

~:II?(~63T~~2~~621 
4050 Jean Talon Quest 

5250 N.E. Elam Young Parkway Tel: (713)968-5555 Montreal H4P 1 W1 
Charlotte 28210 Suite 600 TWX: 910-881-1606 Tel' (514) 735-5511 
Tel: (919)527-8186 HIlisboro97124 BRITISH COLUMBIA TWX: 05-25590 
TWX: 610-621-0366 Tel: (503) 640-6000 Wyle Distribution Group 

TWX: 910-460-2203 1810 Greenville Avenue 

l~!~~,~~ne~~~~~ectronics 
Arrow Electronics. Inc 

OHIO Richardson 75081 909 Charest Blvd. 
PENNSYLVANIA Tel: (214)235-9953 QuebecJ1N 2C9 

ArrowEleclronlcs, Inc. Tel' (6041437-6667 Tel: (418) 687-4231 
7620 McEwen Road Arrow Electronics, Inc. UTAH TWX: 05-13388 
Centerville 45459 650Seco Road Zentronics 

~:i~Jn~3559~t56~~ Monroeville 15146 Arrow Electronics ~?~h~~g S6~~~ort Road 
Hamllton/Avnet Electronics 

Tel. (412) 856-7000 1946 Parkway Blvd. 2795 Halpern 

~:i~ (~~~i ~~~_g:~j 9 Tel: (604)273-5575 St.laurent H2E7K1 
~Arrow ElectrOniCS, Inc. Hamliton/AvnetElectronics TWX: 04-5077-89 Tel. (514) 335-1000 

238 Cochran Road ~?~2b~I~~'5~3~' TWX: 610-421-3731 
Solon 44139 tHamilton/Avnet Electronics MANITOBA 

~~~Jn~4~i~9949009 Tel:(41~)281-4150 1585 West 2100 South Zentronics 

~)~~~1~~~~J89 Zentronics ~~.\~~~~~~XT 1 M3 Pioneer Electronics 60-1313 Border Unit 60
~Hamilton/Avnet Electronics 259 Kappa Drive

~~i:(~041 ~~.t 1~~~
Tel: (514) 737-9700

54 Senate Drive

~~~~rfb\19~:~~0202 
TWX 05-827-535 

Dayton 45459 WyleDistfibutionGroup 
Tel: (513) 439-6733 1325 West 2200 South ONTARIO 
TWX: 810-450-2531 SUite E 

tPioneer{Technologies Group, Inc. ~~:sJ8~~I)1r7~~~:3 Arrow Electronics, Inc 
Hamilton/Avnet Electronics Delaware VaUey 36 Antares Dr 

~:re~~~~ '~~~~{~a~f~~ 261 GibralterRoad Nepean K2E 7W5 
Horsham 19044 WASHINGTON Tel: (613)226-6903 

Tel: (216) 349-5100 ~i~Jn~l6~~~0708 TWX: 810-427-9452 tAlmac Electronics Corp. Arrow Electronics, Inc 
14360 S.E. Eastgate Way lq93 Meyerside 

tHamiiton/Avnel Electronics TEXAS Bellevue 98007 
~~~(~f~)ue73':~i61 M4 ~:s~:~~s:~Bg,Blvd ~Arrow ElectronICs, Inc. ~)~gn~~~~29tl7 

Tel: (614)862-7004 220 Commander Dnve
TWX: 06-218213

Carrolllon7S006 Arrow Electronics, Inc tHamllton/Avnet Electronics
tPioneer Electronics ~~~Jn~88600~~6ij 19540 68th Ave. South 6845 Rexwood Road
4433 Interpoint Boulevard Kent 98032 Umts3-4-5
Dayton 45424 Tel: (206) 575-4420

mJ~!ib~:~!a~X2 Tel: (513) 236-9900 tArrow Electronics, Inc.
TWX: 810-459-1622 10699 Kinghurst t~~~il~~~~~~~ts~~::onics Suite 100
tPioneer Electronics Houston 77099 Bellevue 98005 Hamilton/Avnet Electronics
4800 E. 131 sl Street ~lJn~:to~403~ Tel: (206) 643-3950 6845 Rexwood Road
Cleveland 44t05 TWX: 910-443-2469 Unlt6
Tel: (216) 587-3600

~~~(~f~)u~77':6I8~R2 TWX: 810-422-2211 tArrowElectronlcs, Inc. f?~~?~.~i.b~~~nS?;~e~P 2227W. Braker lane 
Austin 76758 Redmond 98052 
Tel: (512) 835-4180 
TWX: 910-874-1348 

Tel: (206)881-1150 

tHamliton/Avnet Electronics 
1807 W. Braker Lane 
Austin 78758 
Tel: (512)837-8911 
TWX: 910-874-1319 

tMicrocomputer System Technical Distributor Center CG/SAL3j070788 



DENMARK 

Intel 
Glentevej 61, 3rc! Floor 

~lli~u~n:~n NV 

FIHLAND 

In"" RIJOsiiantle2 
00390 Helsinki 
Tel: +3580544 644 
TL.X: 123332 

FRANCE 

EUROPEAN SALES OFFICES 

WEST GERMANY 

Intel' 
DornacherStrassel 
8016 Feldkirchen bei Muenchen 

~~~~~m7~9 20 

'''''' Hohenzollern Strasse 5
3000 Hannover 1

~~~~g1~~081 
Intel 
Abraham Lincoln Stresse 16-18 
6200 Wlesbaden 

+~~::l8!a:a05-O 

ISRAEL 

Intel' 

ITALY 

Intel· 

Park·Neve Sharet 

Milanofiori Palazzo E 
20090 Assago 
Milano 

f~~~1~~4071 
NETHERLANDS 

Intel' 

=e~VM~a~ 
~~~~~~1 0-421.23.77 

NORWAY

'''''' Hvamvelen 4-PO Box 92

~~lf%i~~

SPAIN

Intel
Zurbaran, 28
28010 Madrid
Tel: 410 4004
rLX: 46880

SWEDEN

Intel'

~:~v~~o~~
Tel: +46873401 00
TLX: 12261

SWITZERLAND

Inte"
Talackerstrasse 17
B065Zuerich

~~~:OM~~~ 29 77 

UNITED KINGDOM 

Intel' 

~~~O~,aJ:,i"Shlre SN3 1 RJ 

+r~:('f..~~'860 00

EUROPEAN DISTRIBUTORS/ REPRESENTATIVES

AUSTRIA WEST GERMANY HETHERLANDS UNITED KINGDOM

Bacher Electronics G.m.b.H. =: ~:;~n~~~:~~~nts Ltd. Rotenmuehlgasse 26
1120Wien Letchworth, Herts SGS tTL

+~~~~~Ja~3 56 46-0 ~~~=~86666

BELGIUM ~a~~k1orsrnentGmbH NORWAY ~~'W~=a~x::ms
Inelco Belgium SA Bahnhofstrssse44 Nordlsk Elektronlkk (Norge) AlS
Av. des Croix de Guerra 94 7141 Moe~"n~en Postboks 123 RW
1120 Bruxelles Tel: 07141 48 -347 Smedsvingen 4

?1~'~t~~I:nlaan, 94 TLX: 7264 99 1364 Hvalstad

~~~~~~~6 01 60 
~~~~5~6210 Jermyn 

PORTUGAL ~~~~=e
DENMARK Sevenoaks

Dittam KentTN145EU
ITT -Multikompooent
Naverland 29

Avenlda Marques de Tomar, 46-A
1000LIsboa ~~~Ws~~2450144

~~iJiti56645 ~~~V4~~f' 34 MMD
Unit 8 Southview Park

SPAIN Caversham
FINLAND Readinp

S.A. Berkshire RG4 OAF
OY Fintronlc AB Viana, 6 ~~~~~~816 66 Melkonkatu 24A
00210 Helsinki

m<f~2~~'f22 Rapid Silicon
Rapid House

IRELAND m-SESA Denmark Street
FRANCE ~:b~oM~:~:ngel, 21-3 High Wycombe

Tel: 419 09 67 ~~ri~:~r:6HP112ER
TLX: 27461

as
SWEDEN Rapid Systems

Rapid House
Nordlsk Elektronik AB Denmark$treet

ISRAEL Huvudstagatan 1 High Wycombe
Box 1409 ~lli~~~~74HP112ER 17127 Solnl
Tei: 08-734 97 70
TLX: 10547

YUGOSLAVIA
SWITZERLAND

Industrade A.G.
H.R. MicroelectronICs Corp.

~:~~~R:ieres 2005 de Ia Cruz Blvd., Ste. 223
ITALY Hertlstrasse31 Santa Clara, CA 95050

4, av. Laurent-Cely 6304 Wallisellen U.S.A.
92606 Asnieres Cedex Intesl lli<~\~V~3 05 04 0 ~~~f1'rl4~8-0286
~~f~1~~:g 82 40

DlvlSione ITT Industries GmbH
VlaleMllanoflori
Palazzo Et5 TURKEY
20090 Assago

EMPAElectronlc Milano

~~~~§~~01 Lindwurmstrasse 95A 
8000 Muenchen 2 

~: ~:rg~:tI~f2~' 
20092 Clnlsello Balsamo 

~~~~~r570 

Milano

~~~12 

"FI8Id Application location CG/SAL4/070788 



INTERNATIONAL SALES OFFICES 

AUSTRALIA 

Intel Australia Pty, Lid' 

~cgc~~~mcBH~~gLeve' 6 
Crows Nest, NSW, 2065 
Tel: (2)957-2744 
TLX: AA 20097 
FAX: (2) 923-2632 

BRAZIL 

Intel Semlcondutores do Brasil L TOA 
Av, Paulista, 1159-CJS 404/405 
01311 - Sao Paulo - S.P 
Tel: 55-11-287-5899 
TLX: 1153146 SAPI BR 
FAX: 55-11-212-7631 

CHINA/HONG KONG 

Intel PRC Corporation 

j~: G~~I~e~' ~i~iCS~:~~1 
~:1!1~1' :0'6~850 
Tl)(' 22947 INTEL eN 
FAX: (1) 500-2953 

Intel Semiconductor Ltd: 
10fF East Tower 
Bond Center 
Queensway, Central 

~~ri~'-~~IHK HX 
FAX: (5)8681-969 

JAPAN 

InlelJapan K.K. 
5-6 Tokodai, Tsukuba-shl 
Ibaraki,300-26 
Tel: 029747-8511 
TLX: 3656-160 
FAX: 029747-8450 

~!~I~~f~~rS~9~~ld9 
1-8889 Fuchu-cho 

~~~'04~~~6~?7kl711 83 
FAX: 0423-60-0315

Intel Japan K.K:
Flower-Hill Shin-machl Bldg.
1-23-9Shinmachi

f:~:a8ff_~2~~2i~kYO '54
FAX: 03-427-7620

Intel Japan K.K:

~~~8'HK~n~~~~ya 
~~,7'8235~tj8~fitama 360 
FAX: 0485-24-7518 

~:f~~~~:i~~i'~~sashi-koSU9i Bldg 
915 Shmmaruko, Nakahara-ku 
Kawasaki-shi,Kanagawa211 
Tel: 044-733-7011 
FAX: 044-733-7010 

JAPAN (Cont'd.) 

~~~~X~~;~:~~~9i Bldg. 

~~rW~~S!2~~~3~awa 243
FAX: 0462-29-3781

Intel Japan K.K."
Ryokuchi-Ekl Bldg
2-4-1 Terauchl

i~r:~~~~~3~~69~saka 560
FAX. 06-863-1084

Int~IJapan KK.
ShmrraruBldg.
1-5-1 Marunouchl
Chiyoda-ku, Tokyo 100
Tel: 03-201-3621
FAX. 03-201-6850

~i:~~agld~.K.K
1-16-20Nlshiki
~i~~~:~O Nagoya-shl
Tel: 052-204-1261
FAX. 052-204-1285

KOREA

~~;li~:;shc~l~t~~ ~~;~' F~~~r
61, YOldo-Dong, Young Deung Po-Ku
Seoul 150
Tel:(2)784-8186,8286,8386
TLX: K293121NTELKQ
FAX: (2)784-8096

SINGAPORE

TAIWAN

Intel Technology (Far East) Ltd
Taiwan Branch
10/F. No 205, Tun Hua N Aoad
Talpel,R.O C.
Tel: 886-2-716-9660
TLX: 13159 INTEL TWN
FAX: 886-2-717-2455

INTERNA TIONAL
DISTRIBUTORS/ REPRESENTATIVES

ARGENTINA

DAFSYS S.RL
Chacabuco, 90-4 PISO
1069-Buenos Aires
Tel: 54-1-334-1871

54-1-334-7726
TLX: 25472

Reycom Electronica S.R.l.
Arcos 3631
1429-BuenosAires
Tel: 54 (1) 701-4462/66

~~; ~,<~~ ~EVJ6M AR

AUSTRALIA

Total Electronics

~r~:::e~~tr~~
Burwood, Victoria 3125
Tel: 61-3-288-4044
TLX: AA 31261
FAX: 61-3-288-9696

BRAZIL

Elebra Mlcroelectronica
R. Geraldo Flausina Gomes, 78
9 Andar
04575 - Sao Paulo - S.P.
Tel: 011-55-11-534-9637
TLX: 3911125131 ELBR BR
FAX: 55-11-534-9424

CHILE

DIN Instruments
Suecia 2323
Casilla 6055, Correo 22

f:r~~~~-225-6139
TLX: 440422 RUDY CZ

CHINA/HONG KONG

~1~r~,p2gc~~~~~f~~r~~~~I~g~" Ltd.
Phase 1, 26 Kwai Hei Street
N.T., Kowloon

~~~~~O~223-222 
TWX: 39114 JINMI HX 
FAX: 852-0-261-602 

'Fleld Application Location 

INDIA 

Mlcromc Devices 
ArunComplex 
No. 65 D.v.G. Road 
Basavanagudi 

~:I~~~I~f2:gg0~ral 
011-91-812-621-455 

TLX: 0845-8332 MD BG IN 

Micronic Devices 
Flat 403, Gagan Deep 
12, RaJendraPlace 
New Delhi 110 008 
Tel: 91-58-97-71 

011-91-57-23509 
TLX: 03163235 MONO IN 

Micronic Devices 
No. 516 5th Floor 
Swastik Chambers 
Sion, Trombay Road 
Chembur 
Boml'ay 400 071 
Tel: 91-52-39-63 
TLX: 9531171447 MDEV IN 

S&S Corporation 
Camden Business Center 
Suite 6 
1610 Blossom Hill Rd. 
San Jose, CA 95124 
U.S.A. 
Tel: (408) 978-6216 
TLX: 820281 

JAPAN 

Asahi Electronics Co. Ltd. 
KMM Bldg. 2-14-1 Asano 
Kokurakita-ku 
KitakyuShu-shi802 
Tel: 093-511-6471 
FAX: 093-551-7861 

C. Itoh Techno-Science Co., Ltd. 

~f~i~~~d7~4ij~ ~~;ta-Aoyama 
FAX: 03-4974879 

JAPAN (Cont'd.) 

SJ:C~~~~4~nl~7~~~;~~~~jaya 
~:~:a8~!4a8~~d3~~kYO 15 
FAX: 03-487~8088 

Okaya Koki 
2-4-18 Sakae 

~:I~~-~2:2~4?~Jla6shl 460 
FAX: 052-204~2901 

Ryoyo Electro Corp 
KonwaBldg. 
1-12-22 Tsuklji 

~~I~g3~54~~~6fl1 04 
FAX: 03-546-5044 

KOREA 

J-TekCorporation 
6th Floor, Government Pension Bldg. 

~~;~n~d~d~~~~~~u 
Seoul 150 
Tel: 82-2-782-8039 
TLX: 25299 KODIGIT 
FAX' 82-2-784-8391 

Samsung Semiconductor & 
Telecommunications Co., Ltd. 
150, 2-KA, Tafpyung-ro, Chung-ku 
SeoullQO 
Tel: 82-2-751-3987 
TLX: 27970 KORSST 
FAX: 82-2-753-0967 

MEXICO 

DicopelS.A. 
Tochtli 368 Fracc. Ind. San Antonio 

~~~~g2i6~~~eXico, 0 F. 
Tel: 52-5-561-3211
TLX: 1773790 DICOME

Northrup Instruments & Systems Ltd

~~6.KJ~:9~~~ NAe~~arket
Auckland 1
Tel: 64~9-501-219, 501-801
TLK 21570 THERMAL

Northrup Instruments & Systems Ltd.
P.O. Box 2406

'fei:ll~l~~B~:_~~~8
TLX: NZ3380 NORTHAC
FAX: 64-4-857276

StNGAPORE

Electronic Aesources Pte, Ltd.
17 Harvey Road #04-01

~~IP~K3!081~~~89-1618
TWX: 56541 FRELS
FAX' 2895327

SOUTH AFRICA

Electronic BUilding Elements, Ply. Ltd.
P.O 80x4609
Pine Square, 18th Street
Hazelwood, Pretoria 0001
T81:27-12-469921
TLX. 3-227786 SA
FAX: 0927-012-46-9221

TAIWAN

MitacCorporatlon
No. 585, Mlng Shen East Rd
Taipei, A O.C
Tel: 886-2-501-8231
FAX: 886-2-501-4265

Sertek
5FL, 135 Sec. 2
Chlen-Kuo N. Ad.
~~8~.10479
Tel: (02) 5010055
FAX: (02) 5012521

(02)5058414

VENEZUELA

P. BenavidesS.A
Avilanesa RIO
ResldenclaKamarata
Locales 4 A17
La Candelaria, Caracas
Tel: 58-2-571-0396
TLX: 28450 PBVEN VC
FAX: 58-2-572-3321

CG/SAL5/070788

ALABAMA

Intel Corp.
5015 Bradford Dr., #2
Huntsville 35805
Tel: (205) 830-4010

ARIZONA

Intel Corp.
11225 N. 26th Dr.
Suite 0-214
Phoenix 85029
Tel: (602) 869-4980

Intel Corp,
500 E. Fry Blvd., Suite M-15
Sierra Vista 85635
Tel: (602) 459-5010

~~t~\ ~~r~i Dorado Place
Suite 301
Tucson 85715
Tel: (602) 299-6815

CAL.IFORNIA

Intel Corp.
21515 Vanowen Street
Suite 116

¥:,~(31a8r~O~~8~30003

k~gb ~~rFniperial Highway
SUIte 218

f~~(9~3)d64~~grilO
Intel Corp.

~~rsOo~~~i33~~tr5~~'
Tel: (916) 351-6143

~~!~~:~~ta;~uite 101

Tel: (916) 920-8096

Intel Corp.
4350 Executive Drive
Suite 105

~:I~ (~~e~04~~~lJ80
IntelCorp.'
400 N. Tustin Avenue
Suite 450
Santa Ana 92705

~XJ~b~~Ji5~1614l4
Intel Corp,'
San Tomas 4
2700 San Tomas Expressway
2nd Floor
Santa Clara 95051

~tgn~:;8~g:~5
COLORADO

Intel Corp.
4445 Northpark Drive
Suite 100

¥~II:O[3~~ ~~:~~~~0907

St.. Suite 915

6086
-2289

CONNECTICUT

k~e~~o~Fain Road
2nd Floor

~:t~~~)076:J.1130
TWX: 710-456-1199

CALIFORNIA

2700 San Tomas Expressway
Sante Clara 95051
Tel: (406) 970-1700

CALIFORNIA

2700 San Tomas Expressway
Santa Clara 95051
Tel: (408) 986-8086

DOMESTIC SERVICE OFFICES
FLORIDA MICHIGAN NORTH CAROLINA

Intel Corp. Intel Corp. Intel Corp
6363 NW. 6th Way 7071 Orchard Lake Road 5700 Executive Drive
Suite 100 Suite 100 Suite 213
Ft. Lauderdale 33309 West Bloomfield 48033 Charlotte 28212

~~~~~b?;5~?:40007 Tel: (313) 851-8096 Tel: (704) 568-8966 

FAX: 305-772·8193 MINNESOTA Intel Corp 
2306 W. Meadowview Road 

Inlel Corp Intel Corp. Suite 206 
5850 T.G. Lee Blvd 3500 W. 80th St., Suite 360 Greensboro 27407 
Suite 340 

~)~i~t~i5:;J!sJ7 
Tel: (919) 294-1541 

Orlando 32822 

~~I~~3300~_~!g:~gg~ Intel Corp 

~~?t~ ~d2cliff Road 
MISSOURI 

Intel Corp ~:II:e(~~ 9r7~~~8022 11300 4th Street North Intel Corp. 
Suite 170 4203 Earth City Expressway 
SI. Petersburg 33716 Suite 131 OHtO 

~~x~8;?J_~~~~~:b~ ~:r~3~~r 26931~~~90 Intel Corp.' 
3401 Park Center Drive 

GEORGIA NEW JERSEV Suite 220 

Intel Corp ~!~It~~~aza III ~~U~~~5i~li208 3280 POinte Parkway 
Suite 200 Raritan Center 
Norcross 30092 Edison 08817 Intel Corp: 
Tel: (404) 449-0541 Tel: (201) 225-3000 25700 Science Park Dr 

Suite 100 
ILLINOIS Intel Corp. Beachwood 44122 

385 Sylvan Avenue ~~~Jn~62j~;i968 
knJgl~o~a~ingale Road 

Englewood Cliffs 07632 

Suite 400 ~~~~~ b~;,-~8529~ OKL.AHOMA 

~;r(3~2~~fo~gJIf Intel Corp: Intel Corp. 
Parkway 109 Offi?e Center 6801 N. Broadway 

INDIANA 328 Newman Springs Road Suite 115 
Red Bank 07701 Oklahoma City 73162 

Intel Corp. Tel: (201) 747-2233 Tel: (405) 848-8086 
6777 Purdue Road 
Suite 125 tlntel Corp OREGON 

~~:(3~?~~~~~~~83 280 Corporate Center 
7? Livingston Avenue Intel Corp. 
First Floor 15254 N.w, Greenbrier Parkway 

IOWA Roseland 07068 Building B 

~ ~lxi22001r j !g:gg~ Beaverton 97006 
Intel Corp, Tel: (503) 645-8051 
1930 St. Andrews Drive N.E. lWX: 910-467-8741 
2nd Floor NEW MEXICO 
Cedar Rapids 52402 
Tel: (319) 393-5510 Intel Corp 

8500 Menaul Boulevard N,E, 
~ni6ri W~\lam Young Parkway 
Hillsboro 97123 

KANSAS Suite B 295 Tel: (503) 681-8080 

Intel Corp, ~~~:u(~05)'ku92~~J~g PENNSYLVANIA 
8400W, 110thStreet 
Suite 170 NEW YORK Intel Corp.' 
Overland Park 66210 455 Pennsylvania Avenue 
Tel: (913) 345-2727 Intel Corp Suite 230 

127 Main Street ~~)~aibh~~1:10i~034 MARVL.AND Binghamton 13905 
Tel: (607) 773-0337 

Intel Corp: FAX: 607-723-2677 
7321 Parkway Drive South Intel Corp.' 
Suitee Intel Corp: 400 Penn Center Blvd, 
Hanover 21076 ~~~g~~sls4~~6s Office Park Suite 610 

~)~~~ b!89662?,5904~ ~~~:S(~~~h81~~t~70 Tel: (716) 425-2750 
TWX: 510-253-7391 

Intel Corp. PUERTO RICO 
7833 Walker Drive Intel Corp,' 
Suite 550 300 Motor Parkway Intel Microprocessor Corp. 
Greenbelt 20770 Hauppauge 11787 South Industrial Park 
Tel: (301) 441-1020 Tel: (516) 231-3300 P,O. Box 910 

lWX: 510-227-6236 Las Piedras 00671 
MASSACHUSETTS Tel: (809) 733-8616 

Intel Corp, 
Intel Corp.' ~~~~~~60~~~i~~s9 Center 

TEXAS 
Westford Corp. Center 
3 Carlisle Road Fishkill 12524 Intel Corp. 
2nd Floor ~ :IX~99"~_~~j =~~~g 313 E. Anderson Lane 
Westford 01886 Suite 314 

~~~j~b~:}3:l-l3~ Austin 78752 
Tel: (512) 454-3628

CUSTOMER TRAINING CENTERS
ILLINOIS

~~~~~~bau7in~8\ej3#300 
Tel: (312) 3PO-5700 

MASSACHUSETTS 

3 Carlisle Road 
Westford 01886 
Tel: (617) 692-1000 

MARYLAND 

7833 Walker Dr., 4th Floor 
Greenbelt 20770 
Tel: (301) 220-3380 

SYSTEMS ENGINEERING OFFICES 
ILLINOIS 

~~~!~b~7~n~g~ej3#300 
Tel: (312) 310-8031

NEW YORK

300 Motor Parkway
Hauppauge 11788
Tel: (516) 231-3300

TEXAS (Cont'd.)

Intel Corp."
12000 Ford Road
Suite 400
Dallas 75234

; AIX~2211~.~~t~~~~
Intel Corp.'
73?2 SW. Freeway
SUite 1490
Houston 77074

~PJn~8881-~2~8:0
UTAH

Intel Corp.
428 East 6400 South
Suite 104
Murray 84107
Tel: (801) 263-8051

VIRGINIA

Intel Corp.
1504 Santa Rosa Road
Suite 108
Richmond 23288
Tel: (804) 282-5668

WASHINGTON

;nJ~ll~~~~'Avenue N.E
Suite 386
Bellevue 98004
Tel: (206) 453-8086
TWX: 910-443-3002

Intel Corp.
408 N, Mullan Road
Suite 102
Spokane 99206
Tel: (509) 928-8086

WISCONSIN

Intel Corp.
330 S. Executive Dr.
Suite 102
Brookfield 53005
Tel: (414) 784-8087
FAX: (414) 796-2115

CANADA
BRITISH COL.UMBIA

Intel Semiconductor of Canada, Ltd

~~~~a~~ns~~ ~~l' Suite 202 

Tel: (604) 298-0387 
FAX: (604) 298-8234 

ONTARIO 

Intel Semiconductor of Canada, Ltd 
2650 Queensview Drive 
Suite 250 
Ottawa K2B 8H6 
Tel: (613) 829-9714 
TLX: 053-4115 

Intel Semiconductor of Canada, Ltd, 
190 Attwell Drive 
Suite 500 
Rexdale M9W 6H8 
Tel: (416) 675-2105 
TLX: 06983574 
FAX: (416) 675-2438 

QUEBEC 

Intel Semiconductor 01 Canada, L.td 
620 SI. John Boulevard 
Pointe Claire H9R 3K2 
Tel: (514) 694-9130 
TWX: 514-694-9134 

CGjSAL6/070788 




