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CHAPTER 1
GUIDE TO THIS MANUAL

This chapter describes the organization of this manual, the contents of each chapter, and
terminology used in the manual. It also outlines the chapters of the manual that are of most
interest to applications programmers, compiler designers, and designers of operating-system
kernels (or system executives).

MANUAL STRUCTURE

This manual is a reference manual for the Intel 80960MC processor. It gives programmers and
system designers detailed information about the processor’s programming environment and its
operating-system-support facilities.

The book is divided into three parts. Chapters 2 through 7 describe the processor’s program-
ming environment, which includes the instruction-execution environment, data types, address-
ing modes, floating-point operations, and instruction set. Chapters 8 through 16 describe the
facilities to support kernel functions, which include the memory management, processor
management, interrupt handling, fault handling, process management, and debug facilities.
Chapter 17 provides detailed descriptions of all the instructions in the instruction set, organized
in alphabetical order.

Table 1-1 shows those chapters that will be of most interest to applications programmers,
compiler designers, or kernel designers.

Table 1-1: Chapters of Interest to Specific Users

User Chapters
Applications Programmer | Chapters 2 through 7; Chapter 17.
Compiler Designer Chapters 2 through 7; Chapters 10, 12, and 17;
and Appendices A, B, C, and E.
Kernel Designer Chapters 2 through 17; and Appendibes D and E.

CHAPTER OVERVIEW
The following is a brief overview of the contents of each chapter:
Chapter 1 — Guide to This Manual. Overview of this manual.

Chapter 2 — Introduction to the 80960 Architecture. Overview of the Intel 80960 architec-
ture, the architecture on which the 80960MC processor is based.

Chapter 3 — Execution Environment. Description of the environment in which instructions
are executed. The topics discussed in this chapter include the address space, registers, instruc-
tion pointer, and arithmetic controls.
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Chapter 4 — Procedure Calls. Description of the various mechanisms available for making
procedure calls. The topics discussed here include the local call/return mechanism, procedure
stack, branch-and-link procedure calls, procedure table calls, and supervisor/user protection
model.

Chapter 5 — Data Types and Addressing Modes. Description of the non-floating-point data
types and how bit and byte strings are addressed. The addressing modes provided for address-
ing data in memory are also described in this chapter.

Chapter 6 — Instruction-Set Summary. Overview of all the non-floating point instructions
in the 80960MC instruction set, arranged by functional groups. Also included is a brief
description of the assembly-language instruction format.

Chapter 7 — Floating-Point Operation. Description of the processor’s floating-point
processing facilities. This chapter includes an overview of floating-point numbers and a
description of the 80960MC floating-point data types and their relationship to the IEEE
floating-point standard. Descriptions of the floating-point instructions, exceptions, and faults
are also included.

Chapter 8 — Memory Management. Description of the memory management facilities. The
topics discussed here include the physical-memory requirements, physical addressing, and the
virtual-memory management facilities.

Chapter 9 — Processor Management and Initialization. Description of the processor
management facilities. Included is a discussion of the processor control block (PRCB), proces-
sor states, priorities, processor timing, and the software requirements for processor manage-
ment. The requirements for processor initialization are described at the end of the chapter.

Chapter 10 — Interrupts. Description of the interrupt mechanism, interrupt priority, interrupt
table, interrupt-handling procedures, and the software requirements for handling interrupts.

Chapter 11 — Interagent Communication. Description of the interprocessor communication
(IAC) mechanism, which allows several processors to communicate with one another on the
bus. The topics covered in this chapter include the IAC mechanism and software requirements
for using internal IACs. A detailed description of each IAC is given in a reference section at
the end of the chapter.

Chapter 12 — Fault Handling. Description of the processor’s fault-handling mechanism.
Included here is a discussion of the fault-table structure, fault-handling procedures, and the
software requirements for handling faults. A detailed description of each fault is given in a
reference section at the end of the chapter.

Chapter 13 — Process Management. Description of the process management facilities. The
topics discussed here include the process control block (PCB) and the software requirements
for running a single process.

Chapter 14 — Multiple-Process Management. Overview of the facilities provided to manage
multiple processes. The topics discussed in this chapter include explicit process dispatching,
process timing, automatic process dispatching, process synchronization, and interprocess com-
munication.
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Chapter 15 — Multiple-Processor Operation. Overview of the facilities to support multiple
processor configurations. Included are descriptions of the external IAC handling mechanism,
process preemption, and the atomic instructions.

Chapter 16 — Debugging. Description of the debugging and monitoring support facilities,
including the trace control register.

Chapter 17 — Instruction Reference. Alphabetical listing of the complete 80960MC instruc-
tion set with detailed descriptions of each instruction, assembly-language syntax, examples,
and algorithms.

Appendix A — Instruction and Data Structure Quick Reference. Two lists of the
80960MC instructions: one sorted alphabetically by assembly-language mnemonic and one
sorted by machine language opcode. A collection of illustrations showing the system data
structures is also provided here.

Appendix B — Machine-Level Instruction Formats. Description of the machine-level in-
struction formats.

Appendix C — Instruction Timing. Description of the 80960MC processor’s instruction
pipeline and how it affects instruction timing. The numbers of clock cycles required for each
instruction are also given.

Appendix D — Initialization Code. Listing of sample code to initialize the 80960MC proces-
SOr.

Appendix E — Considerations for Writing Portable Software. Discussion of various aspects
of the 80960 architecture that should be considered if code written for the 80960MC processor
is intended to be ported at a later date to other processors in the Intel 80960 family.

NOTATION AND TERMINOLOGY

The following paragraphs describe the notation and terminology used in this manual that have
special meaning.

Reserved and Preserved

Certain fields in the processor’s system data structures are described as being either reserved
fields or preserved fields. A reserved field is one that is used by other implementations of the
processor architecture. To help insure that a current software design is compatible with future
processors based on the 80960 architecture, the bits in reserved fields should be set to 0 when
the data structure is initially created. Thereafter, software should not access these fields.

Some fields in system data structures are shown as being required to be set to either 1 or O.
These fields should be treated as if they were reserved fields. They should be set to the
specified value when the data structure is created and not accessed by software thereafter.



|nte| GUIDE TO THIS MANUAL

A preserved field is one that the processor does not use. Software may use preserved fields for
any function.

Set and Clear

The terms set and clear are used in this manual to refer to the value of a bit field in a system
data structure. If a bit is set, its value is 1; if the bit is clear, its value is 0. Likewise, setting a
bit means giving it a value of 1 and clearing a bit means giving it a value of 0.
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CHAPTER 2
INTRODUCTION TO THE 80960 ARCHITECTURE

This chapter provides an overview of the architecture on which the 80960MC processor is
based.

A NEW 32-BIT ARCHITECTURE FROM INTEL

The 80960MC processor is the military-grade member of a new family of processors from
Intel. This processor family is based on a new 32-bit architecture called the 80960 architec-
ture. The 80960 architecture has been designed specifically to meet the needs of embedded
applications such as avionics, aerospace, weapons systems, robotics, and instrumentation,
where high reliability is critical. It represents a renewed commitment from Intel to provide
reliable, high-performance processors and controllers for the embedded processor marketplace.

The 80960 architecture can best be characterized as a high-performance computing engine. It
features high-speed instruction execution and ease of programming. It is also easily extensible,
allowing processors and controllers based on this architecture to be conveniently customized to
meet the needs of specific processing and control applications.

Some of the important attributes of the 80960 architecture include:

o full 32-bit registers
o high-speed, pipelined instruction execution

e a convenient program execution environment with 32 general-purpose registers and a
versatile set of special-function registers

« a highly optimized procedure call mechanism that features on-chip caching of local vari-
ables and parameters

o extensive facilities for handling interrupts and faults
* extensive tracing facilities to support efficient program debugging and monitoring

» register scoreboarding and write buffering to permit efficient operation with lower perfor-
mance memory subsystems

The 80960MC processor implements the 80960 architecture, plus it offers several extensions to
the architecture. Some of these extensions, such as on-chip support for floating-point arith-
metic, virtual memory management, and multitasking, are designed to enhance overall system
performance. Several other extensions are designed to enhance system reliability and robust-
ness. These extensions include facilities for hardware enforced protection of software modules
and for creating fault tolerant systems through the use of redundant processors.

The following sections describe those features of the 80960 architecture that are provided to
streamline code execution and simplify programming. The extensions to this architecture
provided in the 80960MC processor are described at the end of the chapter.
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HIGH PERFORMANCE PROGRAM EXECUTION

Much of the design of the 80960 architecture has been aimed at maximizing the processor’s
computational and data processing speed through increased parallelism. The following
paragraphs describe several of the mechanisms and techniques used to accomplish this goal,
including:

o an efficient load and store memory-access model
e caching of code and procedural data
« overlapped execution of instructions

e many one or two clock-cycle instructions

Load and Store Model

One of the more important features of the 80960 architecture is that most of its operations are
performed on operands in registers, rather than in memory. For example, all the arithmetic,
logical, comparison, branching, and bit operations are performed with registers and literals.

This feature provides two benefits. First, it increases program execution speed by minimizing
the number of memory accesses required to execute a program. Second, it reduces memory
latency encountered when using slower, lower-cost memory parts.

To support this concept, the architecture provides a generous supply of general-purpose
registers. For each procedure, 32 registers are available (28 of which are available for general
use). These registers are divided into two types: global and local. Both these types of
registers can be used for general storage of operands. The only difference is that global
registers retain their contents across procedure boundaries, whereas the processor allocates a
new set of local registers each time a new procedure is called.

The architecture also provides a set of fast, versatile load and store instructions, These instruc-
tions allow burst transfers of 1, 2, 4, 8, 12, or 16 bytes of information between memory and the
registers.

On-Chip Caching of Code and Data

To further reduce memory accesses, the architecture offers two mechanisms for caching code
and data on chip: an instruction cache and multiple sets of local registers. The instruction
cache allows prefetching of blocks of instruction from memory, which helps insure that the
instruction execution pipeline is supplied with a steady stream of instructions. It also reduces
the number of memory accesses required when performing iterative operations such as loops.
(The size of the instruction cache can vary. With the 80960MC processor, it is 512 bytes.)

To optimize the architecture’s procedure call mechanism, the processor provides multiple sets

of local registers. This allows the processor to perform most procedure calls without having to
write the local registers out to the stack in memory.

2-2
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(The number of local-register sets provided depends on the processor implementation. The
80960MC processor provides four sets of local registers.)

Overlapped Instruction Execution

Another technique that the 80960 architecture employs to enhance program execution speed is
overlapping the execution of some instructions. This is accomplished through two
mechanisms: register scoreboarding and branch prediction.

Register scoreboarding permits instruction execution to continue while data is being fetched
from memory. When a load instruction is executed, the processor sets one or more scoreboard
bits to indicate the target registers to be loaded. After the target registers are loaded, the
scoreboard bits are cleared. While the target registers are being loaded, the processor is
allowed to execute other instructions that do not use these registers. The processor uses the
scoreboard bits to insure that target registers are not used until the loads are complete. (The
checking of scoreboard bits is transparent to software.) The net result of using this technique is
that code can often be optimized in such a way as to allow some instructions to be executed
parallel.

Single-Clock Instructions

It is the intent of the 80960 architecture that a processor be able to execute commonly used
instructions such as move, add, subtract, logical operations, compare and branch in a minimum
number of clock cycles (preferable one clock cycle). The architecture supports this concept in
several ways. For example, the load and store model described earlier in this chapter (with its
concentration on register-to-register operations) allows simple operations to be performed
without the overhead of memory-to-memory operations.

Also, all the instructions in the 80960 architecture are 32 bits or 64 bits long and aligned on
32-bit boundaries. This feature allows instructions to be decoded in one clock cycle. It also
eliminates the need for an instruction-alignment stage in the pipeline.

The design of the 80960MC processor takes full advantage of these features of the architecture,
resulting in more than 50 instructions that can be executed in a single clock-cycle.

Efficient Interrupt Model

The 80960 architecture provides an efficient mechanism for servicing interrupts from external
sources. To handle interrupts, the processor maintains an interrupt table of 248 interrupt
vectors (240 of which are available for general use). When an interrupt is signaled, the
processor uses a pointer from the interrupt table to perform an implicit call to an interrupt
handler procedure. In performing this call, the processor automatically saves the state of the
processor prior to receiving the interrupt; performs the interrupt routine; and then restores the
state of the processor. A separate interrupt stack is also provided to segregate interrupt
handling from application programs.



|ntel INTRODUCTION TO THE 80960 ARCHITECTURE

The interrupt handling facilities also feature a method of prioritizing interrupts. - Using this
technique, the processor is able to store interrupts that are lower in priority than the task the
processor is currently working on in a pending interrupt section of the interrupt table. At
certain defined times, the processor checks the pending interrupts and services them.

SIMPLIFIED PROGRAMMING ENVIRONMENT

Partly as a side benefit of its streamlined execution environment and partly by design, proces-
sors based on the 80960 architecture are particularly easy to program. For example, the large
number of general-purpose registers allows relatively complex algorithms to be executed with
a minimum number of memory accesses. The following paragraphs describe some of the other
features that simplify programming.

Highly Efficient Procedure Call Mechanism

The procedure call mechanism makes procedure calls and parameter passing between
procedures simple and compact. Each time a call instruction is issued, the processor automati-
cally saves the current set of local registers and allocates a new set of local registers for the
called procedure. Likewise, on a return from a procedure, the current set of local registers is
deallocated and the local registers for the procedure being returned to are restored. On a
procedure call, the program thus never has to explicitly save and restore those local variables
and parameters that are stored in local registers.

Versatile Instruction Set and Addressing

The selection of instructions and addressing modes also simplifies programming. The architec-
ture offers a full set of load, store, move, arithmetic, comparison, and branch instructions, with
operations on both integer and ordinal data types. It also provides a complete set of Boolean
and bit-field instructions, to simplify operations on bits and bit strings.

The addressing modes are efficient and straightforward, while at the same time providing the
necessary indexing and scaling modes required to address complex arrays and record struc-
tures.

The large 4-gigabyte address space provides ample room to store programs and data. The
availability of 32 addressing lines allows some address lines to be memory-mapped to control
hardware functions.

Extensive Fault Handling Capability

To aid in program development, the 80960 architecture defines a wide selection of faults that
the processor detects, including arithmetic faults, invalid operands, invalid operations, and
machine faults. When a fault is detected, the processor makes an implicit call to a fault handler
routine, using a mechanism similar to that described above for interrupts. The information
collected for each fault allows program developers to quickly correct faulting code. It also
allows automatic recovery from some faults.
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Debugging and Monitoring

To support debugging systems, the 80960 architecture provides a mechanism for monitoring
processor activity by means of trace events. The processor can be configured to detect as many
as seven different trace events, including branches, calls, supervisor calls, returns, prereturns,
breakpoints, and the execution of any instruction. When the processor detects a trace event, it
signals a trace fault and calls a fault handler. Intel provides several tools that use this feature,
including an in-circuit emulator (ICE) device.

SUPPORT FOR ARCHITECTURAL EXTENSIONS

The 80960 architecture described earlier in this chapter provides a high-performance comput-
ing engine for use as the computational and data-processing core of embedded processors or
controllers. The architecture also provides several features that enable processors based on this
architecture to be easily customized to meet the needs of specific embedded applications, such
as signal processing, array processing, or graphics processing.

The most important of these features is a set of 32 special-function registers. These registers
provide a convenient interface to circuitry in the processor or to pins that can be connected to
external hardware. They can be used to control timers, to perform operations on special data
types, or to perform I/O functions.

The special-function registers are similar to the global registers. They can be addressed by all
the register-access instructions.

EXTENSIONS INCLUDED IN THE 80960MC PROCESSOR

The extensions to the 80960 architecture included in the 80960MC processor are built on top of
the processor’s core computing engine. These extensions are aimed at improving the ef-
ficiency and reliability of embedded systems.

On-Chip Floating Point

The 80960MC processor provides a complete implementation of the IEEE standard for binary
floating-point arithmetic (IEEE 754-185). This implementation includes a full set of floating-
point operations, including add, subtract, multiply, divide, trigonometric functions, and
logarithmic functions. These operations are performed on single precision (32-bit), double
precision (64-bit), and extended precision (80-bit) real numbers.

One of the benefits of this implementation is that the floating-point handling facilities are
completely integrated into the normal instruction execution environment. Single- and double-
precision floating-point values are stored in the same registers as non-floating point values.
Also, four 80-bit floating-point registers are provided to hold extended-precision values.
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String and Decimal Operations

The 80960MC processor provides several instructions for moving, filling, and comparing byte
strings in memory. These instructions speed up string operations and reduce the amount of
code required to handle strings.

The decimal instructions perform move, add with carry, and subtract with carry operations on
binary-coded decimal (BCD) strings.

Virtual-Memory Support

Another of the 80960MC processor’s important features is support for virtual-memory
management. When using the processor in virtual-memory mode, the processor provides each
process (or task) with an address space of up to 232 bytes. This address space is paged into
physical memory in 4K-byte pages. On-chip memory-management facilities handle virtual-to-
physical address translation. A translation look-aside buffer (TLB) speeds address translation
by storing virtual-to-physical address translations for frequently accessed parts of memory,
such as the location of the page tables and the location of often used system data structures.

Protection

The 80960MC processor offers two mechanisms for protecting critical data structures or
software modules. The first is the ability to use page rights bits to restrict access to individual
pages. Page rights allow various levels of access to be assigned to a page, ranging from no
access to read only to read-write.

The second protection mechanism is a user/supervisor protection model. This two-level
protection model provides hardware enforced protection of kernel procedures and data struc-
tures. When using this protection mechanism, privileged procedures and data are placed in
protected pages of memory. These pages can then be accessed only through a procedure table,
which provides a tightly controlled interface to kernel functions.

Multitasking

The 80960MC processor offers a variety of process management facilities to support concur-
rent execution of multiple tasks. These facilities can be divided into two groups: process
scheduling and interprocess communications.

The process scheduling facilities consist of a set of general-purpose data structures and instruc-
tions, which are designed to support several different multitasking schemes. For example, the
processor provides a set of instructions that allow the kernel to explicitly dispatch a task (bind
it to the processor) and to suspend a task (save the current state of a task so that another task
can be bound to the processor). These instructions can be used within kernel procedures to
schedule, dispatch, and preempt multiple tasks.

The processor also provides a unique feature called self dispatching. Here, the kernel
schedules tasks by queuing them to a dispatch port. Thereafter, the processor handles the
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dispatching, preempting, and rescheduling of the tasks automatically, independent of the ker-
nel. When using this mechanism, tasks can be scheduled by priority, with up to 32 priority
levels to choose from.

The processor’s interprocess communication facilities include support for semaphores and
communication ports. These facilities allow synchronization of interdependent tasks and
asynchronous communication between tasks.

Multiprocessing

The 80960MC processor provides several mechanisms designed to simplify the design of
multiple-processor systems, allowing several processors to run in parallel, using shared
memory resources. One of these mechanisms is the self-dispatching capability described
above. Here, two or more processors can schedule and dispatch processes from a single
dispatch port, with each processor equally sharing the processing load.

The processor also provides an interagent communication (IAC) mechanism that allows
processors to exchange messages among themselves on the bus. This mechanism operates
similarly to the interrupt mechanism, except that IAC messages are passed through dedicated
sections of memory. The IAC mechanism can be used to preempt processes running on
another processor, to manage interrupt handling, or to initialize and synchronize several
processors.

A set of atomic instructions are also provided to synchronize memory accesses. Multiple
processors can then access shared memory without inserting inaccuracies and ambiguities into
shared data structures.

Fault Tolerance

The 80960 family of components supports fault-tolerant system design through the use of the
M82965 Bus Extension Unit component. The M82965 allows two processors to be operated in
tandem to form a self-checking module. The two M82965s check the outputs of two proces-
sors (a master and a checker) cycle-by-cycle. If the checking M82965 detects a difference
between outputs, it signals an error. A software recovery procedure can then be initiated.

This fault detection mechanism supports several fault detection and recovery techniques, in-
cluding self healing, and continuous-operation (non-stop) systems.

LOOK FOR MORE IN THE FUTURE

The 80960 architecture offers exceptional performance, plus a wealth of useful features to help
in the design of efficient and reliable embedded systems. But equally important, it offers lots
of room to grow. The 80960MC processor provides average instruction processing rates of 7.5
million instructions per second (7.5 MIPS) at 20 MHz clock rate and 10 MIPS at a 25 MHz
clock rate!. This performance places the 80960MC at the top of the performance range for
advanced, VLSI processor architectures.

'1 MIP is equivalent to the performance of a Digital Equipment Corp. VAX 11/780.
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However, the 80960MC is only the beginning. With improvements in VLSI technology, future
implementations of the 80960 architecture will offer even greater performance. They will also
offer a variety of useful extensions to solve specific control and monitoring needs in the field
of embedded applications.

2-8
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CHAPTER 3
EXECUTION ENVIRONMENT

This chapter describes how the 80960MC processor executes instructions and how it stores and
manipulates data. The parts of the execution environment that are discussed include the address
space, the register model, the instruction pointer, and the arithmetic controls.

The execution environment’s procedure stack and procedure-call mechanism are described in
Chapter 4.

OVERVIEW OF THE EXECUTION ENVIRONMENT

When a process (or a program running within the context of a process) is run on the 80960MC
processor, the processor first sets up an execution environment for that process. It then begins
executing instructions for that process, using this execution environment to store and manipu-
late data.

Figure 3-1 shows the part of the execution environment that the grocesSor sets up to run a
single procedure within a process. This environment consists of a 232-byte address space, a set
of global and floating-point registers, a set of local registers, a set of arithmetic-controls bits,
the instruction pointer, a set of process-controls bits, and a set of trace-controls bits. All of
these items reside on the 80960MC chip except the address space.

When the instruction stream for the process includes a procedure call, a procedure stack and
some additional elements are added to this execution environment. These procedure-call
related elements are shown and discussed in Chapter 4.

ADDRESS SPACE

Each process running on the processor is assigned a separate address space. From the point of
view of the processor, this address space is flat (unsegmented) and byte addressable, with
addresses running contiguously from 0 to 232 - 1. The process can allocate space for data,
instructions, and the stack anywhere within this space.

The address space being described here is a logical address space that the operating system can
map into physical memory either directly or indirectly (using the processor’s virtual-addressing
mechanism). The memory mapping method used is immaterial to this discussion. Once a
process has been bound to the processor, the processor sees only the logical address space for
that process.

NOTE

The memory-management method that the operating system uses can place some minor limita-
tions on how the address space may be allocated. These limitations are described later in this
chapter in the section titled "Partitioning the Address Space."
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Figure 3-1: Execution Environment

REGISTER MODEL

The processor provides three types of data registers: global, floating-point, and local. The 16
global registers constitute a set of general-purpose registers, the contents of which are
preserved across procedure boundaries. The 4 floating-point registers are provided to support
extended floating-point arithmetic. Their contents are also preserved across procedure boun-
daries. The 16 local registers are provided to hold parameters specific to a procedure (i.e.,
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local variables). For each procedure that is called, the processor allocates a separate set of 16
local registers.

For any one procedure within a process, 36 registers are thus available (as shown in Figure
3-2): the 16 global registers, the 4 floating-point registers, and the 16 local registers. All of
these registers are maintained on the processor chip.
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PROCEDURE AVAILABLE FOR GENERAL USE
r15

Figure 3-2: Registers Available to a Single Procedure
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Global Registers

The 16 global registers (g0 through gl15) are 32-bit registers. Each register can thus hold a
word (32 bits) of data. Registers g0 through gl14 are general-purpose registers; g15 is reserved
for the current frame pointer (FP). The FP contains the address of the first byte in the current
(topmost) stack frame. (The FP and the procedure stack are discussed in detail in Chapter 4.)

The general-purpose global registers (g0 through g14) can hold any of the data types that the
processor recognizes (i.e., ordinals, integers, reals, byte strings).

Floating-Point Registers

The four floating-point registers (fp0 through fp3) are 80-bit registers. These registers can be
accessed only as operands of floating-point instructions. All numbers stored in these registers
are stored in extended-real format. (This format is described in Chapter 7.) The processor
automatically converts floating-point values from real or long-real format into extended-real
format when a floating-point register is used as a destination for an instruction.

Storage of Global and Floating-Point Registers

The global and floating-point registers are associated with the current process. When execu-
tion of the current process is suspended, the values in these registers are stored in the process
control block (PCB) for the process. (The PCB is described in Chapter 13.)

Local Registers

The 16 local registers (rO through r15) are 32-bit registers, like the global registers. The
purpose of the local registers is to provide a separate set of registers, aside from the global and
floating-point registers, for each active procedure. Each time a procedure is called, the proces-
sor automatically sets up a new set of local registers for that procedure and saves the local
registers for the calling procedure. The program does not have to explicitly save and restore
these registers.

Local registers r3 through rl15 are general-purpose registers. Registers rO through r2 are
reserved for special functions, as follows: register r0 contains the previous frame pointer
(PFP); r1 contains the stack pointer (SP); and r2 contains the return instruction pointer (RIP).
(The PFP, SP, and RIP are discussed in detail in Chapter 4.) The processor accesses the local
registers at the same speed as it does the global registers.

Register Alignment

Several of the processor’s instructions operate on multiple-word operands. For example, the
load-long instruction (Idl) loads two words from memory into two consecutive registers. Here,
the register number for the least significant word is specified in the instruction and the most-
significant word is automatically loaded into the next higher-numbered register.
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In cases where an instruction specifies a register number and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., g0, g2) and an
integral multiple of four if three or four registers are accessed (e.g., g0, g4). If a register
reference for a source value is not properly aligned, the value is undefined. If a register
reference for a destination value is not properly aligned, the registers that the processor writes
to are undefined.

Register Scoreboarding

The 80960MC provides a mechanism called register scoreboarding that in certain situations
permits instructions to be executed concurrently. This mechanism works as follows. While an
instruction is being executed, the processor sets a scoreboard bit to indicate that a particular
register or group of registers is being used in an operation. If the instructions that follow do
not use registers in that group, the processor in some instances is able to execute those instruc-
tions before execution of the prior instruction is complete. In effect, the register scoreboarding
mechanism allows some instructions to be executed in parallel.

A common application of this feature is to execute one or more fast instructions (instructions
that take one to three clock cycles) concurrently with load instructions. A load instruction
typically takes 3 to 9 clock cycles (depending on the design of system memory and the
addressing mode used). Register scoreboarding allows other instructions to be executed con-
currently with the load instruction, providing that the other instructions do not affect the
registers being loaded. For example, the following group of instructions loads a group of local
registers while performing some other operations on data in global registers.

1d xyz, ré6

addi g4, g6, g7
addi g9, gl0, gll
1d abc, r8

and g0, Oxffff, gl
addi ro6, r8, r7

r6 ¢ data from address xyz
g7l « g4 + g6

gll « g9 + glo0

r6 ¢ data from address abc
gl « g0 AND Oxffff

r7 < r6 + r8

T

Here, the two addi instructions following the first load and the and instruction following the
second load are performed concurrently with the bus accesses of the two load instructions.

(Appendix C provides a detailed discussion of the processor’s instruction-execution pipeline
and register scoreboarding.)

INSTRUCTION POINTER

The instruction pointer (IP) is the address (in the address space of the current process) of the
instruction currently being executed. This address is 32 bits; however, since instructions are
required to be aligned on word boundaries in memory, the 2 least-significant bits of the IP are
always zero.

The IP is stored in the processor and cannot be read directly. However, the IP-with-
displacement addressing mode allows the IP to be used as an offset into the address space.
This addressing mode can also be used with the lda (load address) instruction to read the
current value of the IP.

3-5
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When a break occurs in the execution of a program or process (due to an interrupt, procedure
call, or process suspension action), the IP of the next instruction to be executed (i.e., the RIP) is
stored in local register r2, which is then stored on the stack. Refer to Chapter 4 for further
discussion of this operation.

ARITHMETIC CONTROLS

The processor’s arithmetic controls are made up of a set of 32 bits, which are cached on the
processor chip in the arithmetic-controls register. Figure 3-3 shows the arrangement of the
arithmetic controls bits. The arithmetic controls bits include condition code flags; floating-
point control and status flags and masks; integer control and status flags; and a flag that
controls faulting on imprecise faults.

RESERVED
(INITIALIZE TO 0)

r-——-——CQMDITI(’)N CODE

ARITHMETIC STATUS

INTEGER OVERFLOW FLAG

INTEGER OVERFLOW MASK

NO IMPRECISE FAULTS

FLOATING OVERFLOW FLAG
FLOATING UNDERFLOW FLAG
FLOATING INVALID-OP FLAG
FLOATING ZERO-DIVIDE FLAG
FLOATING INEXACT FLAG

FLOATING OVERFLOW MASK
FLOATING UNDERFLOW MASK
FLOATING INVALID-OP MASK
FLOATING ZERO-DIVIDE MASK
FLOATING INEXACT MASK
FLOATING-POINT NORMALIZING MODE
FLOATING-POINT ROUNDING CONTROL

Figure 3-3: Arithmetic Controls

The processor sets or clears these bits to show the results of certain operations. For example,
the processor modifies the condition code flags after each comparison operation to show the
result of the comparison. Other arithmetic control bits, such as the floating-point fault masks,
are set by the currently running program to tell the processor how to respond to certain fault
conditions.

Initializing and Modifying the Arithmetic Controls

The state of the processor’s arithmetic controls is undefined at processor initialization, on a
processor restart (initiated with a restart processor IAC), or on a warmstart processor (initiated
with a warmstart processor IAC). Part of the initialization code or restart code should thus be

to set the arithmetic controls to a specific state.

The arithmetic controls can be examined and modified using the modify arithmetic controls
(modac) instruction. This instruction uses a mask to allow specific bits to be changed.
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When the processor binds itself to a process, it loads the arithmetic controls word in the
process’s PCB into its arithmetic controls register. When the processor suspends a process, it
automatically stores the state of the arithmetic controls register in the PCB.

The processor also automatically saves and restores the arithmetic controls when it services an
interrupt or handles a fault. Here, the processor saves the current state of the arithmetic
controls in an interrupt record or fault record, then restores the arithmetic controls upon return-
ing from the interrupt or fault handler, respectively.

Functions of the Arithmetic-Controls Bits

The functions of the various arithmetic controls bits are as follows:

NOTE

In the following discussion, some of the arithmetic controls bits are referred to as "sticky flags."
A sticky flag is one that the processor never implicitly clears. Once the processor sets a sticky
flag to indicate that a particular condition has occurred, the flag remains set until the program
explicitly clears it.

Condition-Code Flags

The processor sets the condition-code flags (bits 0-2) to indicate the results of certain instruc-
tions (usually compare instructions). Other instructions, such as conditional-branch instruc-
tions, examine these flags and perform functions according to their state. Once the processor
has set these flags, it leaves them unchanged until it executes another instruction that uses these
flags to store results.

These flags are used to show either true or false conditions or inequalities (greater-than, equal,
or less-than conditions). Table 3-1 shows how the processor sets the flags to show true or false
conditions.

Table 3-1: Condition Codes for True or False Conditions

Condition | Condition
Code

010 true

000 false

Table 3-2 shows how the processor sets the condition-code flags to show inequalities. The
term unordered is used when comparing floating-point numbers. If, when comparing two
floating-point values, one of the values is a NaN (not a number), the relationship is said to be
"unordered." Refer to the section in Chapter 7 titled "Comparison and Classification" for
further information about the ordered and unordered conditions.

3-7



intal EXECUTION ENVIRONMENT

Table 3-2: Condition Codes for Inequality Conditions

Condition | Condition
Code

000 unordered
001 greater than
010 equal

100 less than

Certain instructions (such as the branch-if instructions) use a 3-bit mask to evaluate the
condition-code flags. For example the branch-if-greater-or-equal instruction (bge) uses a mask
of 011, to determine if the condition code is set to either greater-than or equal. These masks
cover the additional conditions of greater-or-equal, less-or-equal ( 110,), not-equal (101,), and
ordered (111,).

Arithmetic-Status Flags

The processor uses the arithmetic-status field (bits 3-6) in conjunction with the classify instruc-
tions (classr and classrl) to show the class of a floating-point number. When executing these
instructions, the processor sets the bits in the arithmetic-status field as shown in Table 3-3,
according to the class of the value being classified. The "s" bit in Table 3-3 is set to the sign of
the value being classified.

Table 3-3: Encoding of Arithmetic-Status Field

Arithmetic | Classification

Status

s000 Zero

s001 denormalized number
s010 normal finite number
s011 infinity

s100 quiet NaN

s101 signaling NaN

s110 reserved operand

The remainder real instructions (remr and remrl) also use the arithmetic-status field as
described in Chapter 17.

Integer-Overflow Flag and Mask

The integer-overflow flag (bit 8) and the integer-overflow mask (bit 12) are used in conjunc-
tion with the arithmetic integer-overflow fault. The mask bit masks the integer-overflow fault.
When the fault is masked, the processor sets the integer-overflow flag whenever integer over-
flow occurs, to indicate that the fault condition has occurred even though the fault has been
masked. If the fault is not masked, the fault is allowed to occur and the flag is not set. The
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integer-overflow flag is a sticky flag. (Refer to the discussion of the arithmetic integer-
overflow fault in Chapter 12 for more information about the integer-overflow mask and flag.)

No-Imprecise-Faults Flag

The no-imprecise-faults flag (bit 15) determines whether or not imprecise faults are allowed to
be raised. If set, faults are required to be precise; if clear, certain faults can be imprecise.
(Refer to the section in Chapter 12 titled "Precise and Imprecise Faults" for more information
about this flag.)

Floating-Point Flags and Masks

The floating-point flags (bits 16 through 20) and masks (bits 24 through 28) perform the same
functions as the integer-overflow flag and mask, except they are used for operations on real
(floating point) numbers. When a mask is set, its associated floating-point fault is masked.
When a mask is clear, the processor sets the flag for the associated fault whenever the fault
condition occurs, but does not generate a fault. All the floating-point flags are sticky bits.
Refer to the section in Chapter 7 titled "Exceptions and Fault Handling" for a detailed discus-
sion of the floating-point faults and their associated flags and masks in the arithmetic controls.

Floating-Point-Normalizing-Mode Flag

The floating-point-normalizing-mode flag (bit 29) determines whether or not floating-point
instructions are allowed to operate on denormalized numbers. If set, floating-point instructions
are allowed to operate on denormalized numbers; if clear, the processor generates a floating
reserved-operand fault when it detects denormalized numbers that are used as operands for
floating-point instructions. (Refer to the section in Chapter 7 titled "Normalizing Mode" for
more information on the use of this flag.)

Floating-Point-Rounding Control

The floating-point-rounding-control field (bits 30-31) indicates which rounding mode is in
effect for floating point computations. These bits are set as shown in Table 3-4, depending on
the rounding mode to be selected.

Table 3-4: Encoding of Floating-Point-Rounding-Control Field

Rounding | Rounding Mode

Control

00 round to nearest (even)

01 Round down (toward negative infinity)
10 Round up (toward positive infinity)

11 Truncate (round toward zero)

(Refer to the section in Chapter 7 titled "Rounding Control" for more information on the use of
the floating-point-rounding-control field.)
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All the unused bits in the arithmetic controls are reserved and must be set to 0.

PROCESS AND TRACE CONTROLS

The processor’s process controls and trace controls are also cached on the processor chip. The
process controls are a set of 32 bits that control or show the status of the currently running
process. The process controls are described in detail in Chapter 13.

The trace controls are a set of 32 bits that control the tracing facilities of the processor. The
trace controls are described in Chapter 16.

PARTITIONING THE ADDRESS SPACE

Instructions, data, or stacks can be located anywhere in the address space, with the following
exceptions. Instructions must be aligned on word boundaries. When handling a 32-bit instruc-
tion pointer, the processor generally assumes that the 2 least-significant bits of the address are
zero.

The processor’s virtual-memory management system requires. that the address space be divided
into four regions, as shown in Figure 3-4.

MAXIMUM ADDRESS
RANGE OF EACH
REGION

0000 0000 ]

REGION 0

3FFF FFFF

SPECIFIC

REGION 1

TFFF FFFF
8000 0000

REGION 2

BFFF FFFF
€000 0000

I

SHARED BY ALL
REGION 3 PROCESSES
FFFF FFFF

Figure 3-4: Address Space Regions
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Each of these regions is managed with a separate page table or set of page tables. This allows
the read and write rights of a region to be assigned on a page-by-page basis.

In addition, region 3 is defined to be processor specific, meaning that it is shared by all the
processes that are running on the processor.

NOTE

Dividing the address space into regions and pages is a memory management convention that
does not affect the processor’s view of the address space. The processor still views the address
space as being flat, with one exception. When an operand spans across one of the region
boundaries shown in Figure 3-4, the results are unpredictable. This exception should be of only
minor concern. However, if it does cause a problem, the section in Chapter 8 titled "Making
Region Boundaries Transparent” describes how to overcome this limitation by mapping regions
0, 1, and 2 into a single page-table directory.

In the physical-addressing mode, there is no paging of the address space; so, the restriction on
operands crossing region boundaries does not apply.

Figure 3-5 shows one way that the regions of the address space can be used. Here the process
specific regions, regions 0, 1, and 2, are used to store the data, instructions, and procedure
stack, respectively. Region 3, which all the processes share, contains system code and data,
and the interrupt stack.

READ/WRITE B REGION 0
READ ONLY B REGION 1
READ/WRITE B l ' REGION 2
sapwmne |
ONLY

Figure 3-5: Typical Use of Address-Space Regions

This partitioning of the address space provides two benefits. First, the region containing code
can be write protected. Second, the system area will not have to be swapped in and out each
time there is a process switch, which reduces process switching time.
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INSTRUCTION CACHING

The processor provides a 512-byte cache for instructions. When the processor fetches an
instruction or group of instructions from memory, they are stored in this cache before being fed
into the instruction-execution pipeline. The processor manages this cache transparently from
the program being run.

This instruction cache is a read-only cache, meaning that once bytes from the instruction
stream are written into the instruction cache, they cannot be changed. Because of this, the
processor does not support self-modified programs in a transparent fashion. The only way to
change the instruction stream once it has been written into the instruction cache is to purge the
instruction cache. The IAC message "purge instruction cache" is provided for this purpose, as
described in Chapter 11.
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CHAPTER 4
PROCEDURE CALLS

This chapter describes the 80960MC processor’s procedure call and stack mechanism. It also
describes the user-supervisor protection model, which provides protection for privileged
procedures such as operating-system procedures.

TYPES OF PROCEDURE CALLS

The processor supports three types of procedure calls:

e Local call
e System call
e  Branch and link

A local call uses the processor’s call/return mechanism, in which a new set of local registers
and a new frame on the stack are allocated for the called procedure. A system call is similar to
a local call, except that it provides access to procedures through a procedure table. The most
important use of a system call is to call privileged procedures, called supervisor procedures. A
system call to a supervisor procedure is called a supervisor call. A branch and link is merely a
branch to a new instruction with the return IP stored in a global register.

In this chapter, the call/return mechanism is introduced first and is followed by a discussion of
how this mechanism is used to make local calls and system calls.

NOTE

The processor’s interrupt- and fault-handling mechanisms use implicit procedure calls. Implicit
calls to interrupt-handler and fault-handler procedures are described in detail in Chapters 10 and
12, respectively.

CALL/RETURN MECHANISM

The processor’s call/return mechanism has been designed to simplify procedure calls and to
provide a flexible method for storing and handling variables that are local to a procedure.

Two structures support this mechanism: the local registers (on the processor chip) and the
procedure stack (in memory). Figure 4-1 shows the relationship of the local registers to the
procedure stack. 'For each procedure, the processor automatically allocates a set of local
registers and a frame on the procedure stack. Since the local registers are on-chip, they provide
fast-access storage for local variables. If additional space for local variables is required, it can
be allocated in the stack frame.

When a procedure call is made, the processor automatically saves the contents of the local
registers and the stack frame for the calling procedure and sets up a new set of local registers
and a new stack frame for the called procedure.
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Note:
*

Stack grows from low addresses to high addresses.

Figure 4-1: Local Registers and Procedure Stack

This procedure-call mechanism provides two benefits. First, it provides a structure for storing
a virtually unlimited number of local variables for each procedure: the on-chip local registers
provide quick access to often-used variables and the stack provides space for additional vari-
ables.

Second, a program does not have to explicitly save and restore the variables stored in the local
registers and stack frames. The processor does this implicitly on procedure calls and on
returns.

A detailed description of the call/return mechanism is given in the following paragraphs.
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Local Registers and the Procedure Stack

For each procedure, the processor allocates a set of 16 local registers. Three of these registers
(10, r1, and r2) are reserved for linkage information to tie procedures together. The remaining
13 local registers are available for general storage of variables.

For each process, the processor maintains a procedure stack in memory. This stack can be
located anywhere in the address space and grows from low addresses to high addresses.

The stack consists of contiguous frames, one frame for each active procedure. As shown in
Figure 4-2, each stack frame provides a save area for the local registers and an optional area for
additional variables.

To increase the speed of procedure calls, the 80960MC processor provides four sets of local
registers. Thus, when a procedure call is made, the contents of the current set of local registers
often do not have to be stored in the procedure stack. Instead, a new set of local registers is
assigned to the called procedure. When the number of nested procedure calls exceeds the
number of register sets, the processor automatically stores the contents of the oldest set of local
registers on the stack to free up a set of local registers for the most recently called procedure.

Refer to the section later in this chapter titled "Mapping the Local Registers to the Procedure
Stack" for further discussion of the relationship between the local-register sets and the proce-
dure stack.

Procedure-Linking Information

Global register g15 (FP) and local registers 10 (PFP), r1 (SP), and r2 (RIP) contain information
to link procedures together and to link the local registers to the procedure stack. The following
paragraphs describe this linkage information. '

Frame Pointer

The FP is the address of the first byte of the current (topmost) stack frame. It is stored in
global register g15. The 80960MC processor aligns each new stack frame on a 64-byte
boundary. Since the resulting FP always points to a 64-byte boundary, the processor ignores
the 6 low-order bits of the FP and interprets them to be zero.

Stack Pointer

The SP is the address of the next available byte of the stack frame, which can also be thought
of as the last byte of the stack frame plus one. It is stored in local register rl1. The procedure
stack grows upward (i.e., toward higher addresses). To determine the initial SP value, the
processor adds 64 to the FP.
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Figure 4-2: Procedure Stack Structure
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If additional space is needed on the stack for local variables, the SP may be incremented in
one-byte increments. For example, the following instruction adds six words of additional
space to the stack:

addo sp, 24, sp # sSp ¢« sp + 24

With the Intel 80960MC Assembler, the keyword "sp" stands for register r1.
NOTE

The SP should be incremented before additional variables are added to the stack. This practice
prevents errors that might occur if data is added to the stack and a process switch occurs before
the SP has been incremented.

Padding Area

When the processor creates a new frame on a procedure call, it will, if necessary, add a
padding area to the stack so that the new frame starts on a 64 byte boundary. To create the
padding area, the processor rounds off the SP for the current stack frame (the value in r1) to the
next highest 64 byte boundary. This value becomes the FP for the new stack frame.

Previous-Frame Pointer

The PFP is the address of the first byte of the previous stack frame. It is stored in local register
r0. Since the 80960MC ignores the 6 low-order bits of the FP, only the 26 most-significant bits
of the PFP are stored here. The 4 least-significant bits of r0 are then used to store return status
information.

Return Status and Prereturn-Trace Information

Bits O through 2 of local register 10 contain return status information for the calling procedure
and bit 3 contains the prereturn-trace flag. When a procedure call is made (either explicit or
implicit), the processor records the call type in the return status field. The processor then uses
this information to select the proper return mechanism when returning to the calling procedure.

Table 4-1 shows the encoding of the return status field according to the different types of calls
that the processor supports. Of the five types of calls allowed, the fault call (described in
Chapter 12) and the interrupt and idle-interrupt calls (described in Chapter 10) are implicit
calls that the processor initiates. The local call (described in this section) is an explicit call that
a program initiates using the call or callx instruction. The supervisor call (described at the end
of this chapter in the section titled "System Call/Return Mechanism") is an explicit call that a
program makes using the calls instruction.

The third column of Table 4-1 shows the type of a return action that the processor takes
depending on the state of the return status field.

The processor records two versions of the supervisor call: one for when the trace-enable flag

in the process controls is set prior to a supervisor call and one for when the flag is clear prior to
the call. The trace controls are described in detail in Chapter 16.
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Table 4-1: Encoding of Return-Status Field

Encoding Call Type Return Action
000 Local call or supervisor call made | Local return
from the supervisor mode
001 Fault call Fault return
010 Supervisor call from user mode, Supervisor return, with the trace
trace was disabled before call enable flag in the process controls
set to 0 and the execution mode
flag set to 0
011 Supervisor call from user mode, Supervisor return, with the trace
trace was enabled before call enable flag in the process controls
set to 1 and the execution mode
flag set to 0
100 reserved
101 reserved
110 Idle-interrupt call Idle-interrupt return
111 Interrupt call Interrupt return

The prereturn-trace flag is used in conjunction with the call-trace and prereturn-trace modes. If
the call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag;
otherwise it clears the flag. Then, if this flag is set and the prereturn-trace mode is enabled, a
prereturn trace event is generated on a return before any actions associated with the return
operation are performed. Refer to Chapter 16 for a detailed discussion of the interaction of the
call-trace and prereturn-trace modes and the prereturn-trace flag.

Return-Instruction Pointer

The RIP is the address of the instruction that the processor is to execute after returning from a
procedure call. It is stored in local register r2. When the processor executes a procedure call it
sets the RIP to the address of the instruction immediately following the procedure call instruc-
tion. (Refer to the section later in this chapter titled "Local-Call Operation" for further infor-
mation the RIP.)

Since the processor uses the same procedure call mechanism to make implicit procedure calls
to service faults and interrupts, programs should not use register 12 for purposes other than to
hold the RIP.

When a process is suspended, the IP of the next instruction is stored in r2 of the current set of
local registers. When the process resumes, the processor sets the IP to the value in this
register.

4-6
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Mapping the Local Registers to the Procedure Stack

The availability of multiple register sets cached on the processor chip and the saving and
restoring of these register sets in stack frames should be transparent to most programs.
However, the following additional information about how the local registers and procedure
stack are mapped to one another can help avoid problems.

Since the local-register sets reside on the processor chip, the processor will often not have to
access the stack frame in the procedure stack, even though space has been allocated on the
stack for the current frame. The processor only accesses the current frame in the procedure
stack in the following instances:

to read or write variables other than those held in the local registers,

2. to read local registers that were stored in the procedure stack when the number of nested
procedures calls exceeded the number of local registers, or

3. to read local registers that were stored in the procedure stack due to the suspension of the
process.

This method of mapping the local registers to the register-save areas in the procedure stack has
several implications. First, storing information in a local register does not guarantee that it will
be stored in its associated word in the current stack frame. Likewise, storing information in the
first 16 words of a stack frame does not guarantee that the local registers associated with the
stack frame are modified.

Second, if you try to read the contents of the current set of local registers through a memory
access to the first 16 words of the current stack frame, you may not get the expected result.
This is also true if you try to read the contents of a previously stored set of local registers
through a memory address to its associated stack frame.

The processor automatically stores the contents of a local register set into the register-save area
of its associated stack frame only in the following two circumstances:

1. if procedure calls (local or supervisor) are nested deeper than the number of local-register
sets, or

2. if the process is suspended.

Occasionally, it is necessary to have the contents of all local-register sets match the contents of
the register-save areas in their associated stack frames. For example, when debugging software
it may be necessary to trace the call history back through the nested procedures. This can not
be done unless the cached local-register frames are flushed (i.e., written out to the procedure
stack).

The processor provides two methods of voluntarily flushing the local registers: the flushreg
(flush local registers) instruction and the flush-local-registers IAC. Both the flushreg instruc-
tion and the flush-local-registers IAC cause the contents of all the local-register sets, except the
current set, to be written to their associated stack frames in memory.

Third, if you need to modify the PFP in register 10, you should precede this operation with the
flushreg instruction, or else the behavior of the ret (return) instruction is not predictable.
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Fourth, local registers should not be used for passing parameters between procedures.
(Parameter passing is discussed in the following section.)

Fifth, when a set of local registers is assigned to a new procedure, the processor may not clear
or initialize these registers. The initial contents of these registers are therefore unpredictable.
Also, the processor does not initialize the local register-save area in the newly created stack
frame for the procedure, so its contents are equally unpredictable.

LOCAL CALL

A local call is made using either of two local call instructions: call and callx. These instruc-
tions initiate a procedure call using the call/return mechanism described earlier in this chapter.

The call instruction specifies the address of the called procedures as the IP plus a signed, 24-bit
displacement (i.e., -2 310223 - 4).

The callx instruction allows any of the addressing modes to be used to specify the procedure
address. The IP with displacement addressing mode allows full 32-bit IP relative addressing.

The ret instruction initiates a procedure switch back to the last procedure that issued a call.

Local-Call Operation
During a local call, the processor performs the following operations:

Stores the RIP in current local-register r2.

Allocates a new set of local registers for the called procedure.

Allocates a new frame on the procedure stack.

Changes the instruction pointer to point to the first instruction in the called procedure.
Stores the FP for the calling procedure in new local-register rO (PFP).

Stores the FP for the new frame in global register g15.

Allocates a save area for the new local registers in the new stack frame.

e A A ol o

Stores the SP in new local-register r1.

Local-Return Operation
On a return, the processor performs these operations:

1. Sets the FP in global register g15 to the value of the PFP in current local-register r0.

2. Deallocates the current local registers for the prdcedure that initiated the return and
switches to the local registers assigned to the procedure being returned to.

3. Deallocates the stack frame for the procedure that initiated the return.
Sets the IP to the value of the RIP in new local-register r2.

4-8
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The algorithms that the call, callx, and ret instructions use are described in greater detail in
Chapter 17.

PARAMETER PASSING

The processor supports two mechanisms for passing parameters between procedures: global
registers and argument list.

Passing Parameters in Global Registers

The global registers provide the fastest method of passing parameters. Here, the calling
procedure copies the parameters to be passed into global registers. The called procedure then
copies the parameters (if necessary) out of the global registers after the call.

On a return, the called procedure can copy result parameters into global registers prior to the
return, with the calling procedure copying them out of the global registers after the return.

Passing Parameters in an Argument List

When more parameters need to be passed than will fit in the global registers, they can be
placed in an argument list. This argument list can be stored anywhere in memory providing
that the procedure being called has a pointer to the list. Commonly, a pointer to the argument
list is placed in a global register.

Parameters can also be returned to the calling procedure through an argument list. Here again,
a pointer to the argument is generally returned to the calling procedure through a global
register.

The argument list method of passing parameters should be thought of as an escape mechanism
and used only when there are not enough global registers available for passing parameters.

Passing Parameters Through the Stack

A convenient place to store an argument list is in the stack frame for the calling procedure.
Storing the argument list in the stack provides the benefit of having the list automatically
deallocated upon returning from the procedure that set up the list. Space for the argument list
is created by incrementing the SP, as described earlier in this chapter in the section titled
"Stack Pointer."

Parameters can also be returned to the calling procedure through an argument list in the stack.
However, care should be taken when doing this. The return argument list must not be placed in
the frame for the called procedure, since this frame is deallocated on the return. Also, if the
return list is to be placed in the frame of the calling procedure, the calling procedure must
allocate space for this list prior to making the call.
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SYSTEM CALL

A system call is made using the call system instruction calls. This call is similar to a local call
except that the processor gets the IP for the called procedure from a data structure called the
procedure table. (System calls are sometimes referred to in this manual as "system-procedure-
table calls.")

Figure 4-3 illustrates the use of the procedure table in a system call. The calls instruction
requires a procedure-number operand. This procedure number provides an index into the
procedure table, which contains IPs for specific procedures.

ADDRESS
SPACE
ENTRY IN THE PROCEDURE
TABLE CONTAINS AN
INSTRUCTION POINTER TO
THE CALLED PROCEDURE.
PROCEDURE
TABLE
HEADER
P ENTRY 1
P ENTRY 2
CALLING PROCEDURE P ENTRY 3
ISSUES A calls
4 INSTRUCTION, WHICH IP ENTRY 4
CONTAINS AN INDEX FOR
AN ENTRY IN THE
PROCEDURE TABLE. P ENTRY 5
IP ENTRY 6

Figure 4-3: System-Call Mechanism

The system-call mechanism supports two types of procedure calls: local calls and supervisor
calls. A local call is the same as that made with the call and callx instructions, except that the
processor gets the IP of the called procedure from a procedure table. The supervisor call
differs from the local call in two ways: (1) it causes the processor to switch to another stack
(called the supervisor stack), and (2) it causes the processor to switch to a different execution
mode.

4-10
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The system-call mechanism offers two benefits. First, it supports portability for application
software. System calls are commonly used to call kernel services. By calling these services
with a procedure number rather than a specific IP, applications software does not have to be
changed each time the implementation of the kernel services is modified.

Second, the ability to switch to a different execution mode and stack allows kernel procedures
and data to be insulated from applications code. This benefit is described in more detail later
in this chapter in the section titled "User-Supervisor Protection Model".

PROCEDURE TABLE

The procedure table is a general structure, which the processor uses in two ways. The first way
is as a place for storing IPs for kernel procedures, which can then be accessed through the
system-call mechanism described above. Here, the procedure table is called the
system-procedure table. The processor gets a pointer to the system-procedure table from the
processor control block (PRCB) as described in Chapter 9 in the section titled "System Data-
Structure Pointers."

The second way a procedure table is used is as a place for storing IPs for fault-handler
procedures. Here, the processor gets a pointer to the procedure table from entries in the fault
table, as described in Chapter 12 in the section titled "Fault-Table Entries."

The structure of the procedure table is shown in Figure 4-4. It is 1088 bytes in length and can
have up to 260 procedure entries. The following sections describe the fields in a procedure
table.

Procedure Entries

The procedure entries specify the target IPs for the procedures that can be accessed through the
procedure table. Each entry is one word in length and is made up of an address (or IP) field
and a type field. The address field gives the address of the first instruction of the target
procedure. Since all instructions are word aligned, only the 30 most-significant bits of the
address are given. The processor automatically provides zeros for the least-significant bits.
Entry O begins at byte 48 of the procedure table; the table can contain up to 260 entries.

The procedure entry type field indicates the type of call to execute: local or supervisor. The
encodings of this field are shown in Table 4-2.

Table 4-2: Encodings of Entry Type Field in Procedure Table Entry

Entry Type | Procedure Type
Field

00 local procedure

01 reserved

10 supervisor procedure
11 reserved
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Figure 4-4: Procedure-Table Structure

Supervisor-Stack Pointer

When a supervisor call is made, the processor switches to a new stack called the supervisor
stack. The processor gets a pointer to this stack from the supervisor-stack-pointer entry (bytes
12-15, bits 2-31) in the procedure table. Only the 30 most-significant bits of the supervisor-
stack pointer are given. The processor aligns this value to the next 64-byte boundary to
determine the first byte of the new stack frame.
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Trace-Control Flag

The trace-control flag (byte 12, bit 0) specifies the new value of the trace-enable flag of the
process when a supervisor call causes a switch from user mode to supervisor mode. Setting
this flag to 1 enables tracing; setting it to O disables tracing. The use of this flag is described in
the section in Chapter 16 titled "Trace Control on Supervisor Calls."

System Call to a Local Procedure

When a calls instruction references a procedure entry designated as a local type (00,), the
processor executes a local call to the procedure selected from the system procedure table.
Neither a mode switch nor a stack switch occurs.

The ret instruction permits returns from either a local procedure or a supervisor procedure.
The return status field in local register r0 determines the type of return action that the processor
is to take. If the return status field is set to 0002, a local return is executed. In a local return,
no stack or mode switching is carried out.

USER-SUPERVISOR PROTECTION MODEL

The processor provides a two-state protection model called the user-supervisor protection
model. With this model, access to selected procedures and data structures can be restricted by
means of page protection and mode switching between two execution modes: user and super-
visor.

This protection model allows a system to be designed in which kernel code and data reside in
the same address space as user code and data, but access to the kernel procedures (called
supervisor procedures) is only allowed through a procedure table, which forms a tightly con-
trolled and protected interface. This interface is provided by the system procedure table.

The user-supervisor protection model also allows kernel procedures to be executed using a
different stack (the supervisor stack) than is used to execute applications program procedures.
The ability to switch stacks helps maintain the integrity of the kernel. For example, it would
allow system debugging software or a system monitor to be accessed, even if an applications
program crashes.

User and Supervisor Modes

When using the user-supervisor protection model, a process can be in either of two execution
modes: user or supervisor. The difference between the two modes is that when the process is
in the supervisor mode, it has the following additional privileges:

o It may access pages that have supervisor-only rights. (A program cannot access these
pages in the address space when the process is in the user mode.)

o It may use additional instructions. These instructions typically control process manage-
ment and kernel functions.
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Supervisor Calls

Mode switching between the user and supervisor execution modes is accomplished through a
supervisor call. A supervisor call is a call executed with the calls instruction that references a
supervisor procedure in the system procedure table (i.e., a procedure with an entry type 10,).

When the processor is in the user mode and it executes a calls instruction, the processor
performs the following actions:

o It switches to supervisor mode
o It switches to the supervisor stack

o It sets the return status field in register RO of the calling procedure to 01X, indicating that
a mode and stack switch has occurred.

The processor remains in the supervisor mode until a return is performed from the procedure
that caused the original mode switch. While in the supervisor mode, either the local call
instructions (call and callx) or the calls instruction can be used to call supervisor procedures.

(The call and callx instructions call local (or user) procedures in user mode and supervisor
procedures in supervisor mode. There is no stack or processor state switching associated with
these instructions.)

When a ret instruction is executed and the return status field is set to 01X,, the processor
performs a supervisor return. Here, the processor switches from the supervisor stack to the
local stack, and the execution mode is switched from supervisor to user.

Supervisor Stack

When using the user-supervisor mechanism, the processor maintains separate stacks in the
address space, one for procedures executed in the user mode (local procedures) and another for
procedures executed in the supervisor mode (supervisor procedures). When in the user mode,
the local procedure stack (described at the beginning of this chapter) is used. . When a super-
visor. call is made, the processor switches to the supervisor stack. It continues to use the
supervisor stack until a return is made to the user mode.

The structure of the supervisor stack is identical to that of the local procedure stack (shown in
Figure 4-2). The processor obtains the SP for the supervisor stack from the procedure table.
When a supervisor call is executed while in the user mode (causing a switch to the supervisor
stack), the processor aligns this SP to the next 64-byte boundary to form the new FP for the
supervisor stack. When a local call or supervisor call is made while in the supervisor mode,
the processor aligns the SP in the current frame of the supervisor stack to the next 64-byte
boundary to form the FP pointer. This operation allows supervisor procedures to be called
from supervisor procedures.
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BRANCH AND LINK

The bal (branch and link) and balx (branch and link extended) instructions provide an alternate
method of making procedure calls. These instructions save the address of the next instruction
(RIP) in a specified location, then branch to a target instruction or set of instructions. The state
of the local registers and stack remains unchanged. (For the bal instruction, the RIP is
automatically stored in global register g14; for the balx instruction, the location of the RIP is
specified with one of the instruction operands.)

A return is accomplished with a bx (branch extended) instruction, where the address of the
target instruction is the one saved with the branch and link instruction.

Branch and link procedure calls are recommended for calls to procedures that (1) do not call
other procedures (i.e., for procedure calls that do not result in nesting of procedures) and (2) do
not need many local variables (i.e., allocation of a new set of local registers does not provide
any benefit). Here, local registers as well as global registers can be used for parameter passing.
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CHAPTER 5
DATA TYPES AND ADDRESSING MODES

This chapter describes the data types that the 80960MC processor recognizes and the address-
ing modes that are available for accessing memory locations.

DATA TYPES

The processor defines and operates on the following data types:

o Integer (8, 16, 32, and 64 bits)
e Ordinal (8, 16, 32, and 64 bits)
e Real (32, 64, and 80 bits)

e Decimal (ASCII digits)

o BitField

o  Byte String

e Triple-Word (96 bit)

e Quad-Word (128 bit)

The integer, ordinal, real, and decimal data types can be thought of as numeric data types
because some operations on these data types produce numeric results (e.g., add, subtract).

The remaining data types (bit field, byte string, triple word, and quad word) represent group-
ings of bits or bytes that the processor can operate on as a whole, regardless of the nature of the
data contained in the group. These data types facilitate moving and operating on blocks of bits
or bytes.

Integers

Integers are signed whole numbers, which are stored and operated on in two’s complement
format. The processor recognizes four sizes of integers: 8 bit (byte integers), 16 bit (short
integers), 32 bit (integers), and 64 bit (long integers). Figure 5-1 shows the formats for the
four integer sizes and the ranges of values allowed for each size. '

Ordinals
Ordinals are a general-purpose data type. The processor recognizes four sizes of ordinals: 8
bit (byte ordinals), 16 bit (short ordinals), 32 bit (ordinals), and 64 bit (long ordinals). Figure

5-2 shows the formats for the four ordinal sizes and the ranges of numeric values allowed for
each size.
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SIGN
8
BITS
SIGN
16
BITS
SIGN
32
BITS
SIGN
64
BITS
63 0
DATATYPE RANGE DECIMAL EQUIVALENT
Byte Integer -27to0 27-1 -128 to 127
ShortInteger  -2"to 2-1 -32,768 to 32,767
Integer -23't0 2% -1 -2.14x 10°to 2.14 x 10°

Long Integer -2%t0 2% -1 922x10%t09.22x 10"

Figure 5-1: Integer Format and Range

The processor uses ordinals for both numeric and non-numeric operations. For numeric opera-
tions, ordinals are treated as unsigned whole numbers. The processor provides several arith-
metic instructions that operate on ordinals. For non-numeric operations, ordinals contain bit
fields, byte strings, and Boolean values.

When ordinals are used to represent Boolean values, a 1, represents a TRUE and a 0,
represents a FALSE.

Reals

Reals are floating-point numbers. The processor recognizes three sizes of reals: 32 bit (reals),
64 bit (long reals), and 80 bit (extended reals). The real-number format conforms to
ANSI/IEEE Std. 754-1985, the IEEE Standard For Binary Floating-Point Arithmetic. Real
numbers are discussed in greater detail in Chapter 7.
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8
BITS

16
BITS

32
BITS

64
BITS
DATA TYPE RANGE DECIMAL EQUIVALENT
Byte Ordinal 0 to 28-1 0to 255
Short Ordinal  0to 2'-1 0 to 65,535
Ordinal 0to2*-1 0to4.29x10°
Long Ordinal 0to2%-1 0to 1.84x 10"
Figure 5-2: Ordinal Format and Range
Decimals

The processor provides three instructions that perform operations on decimal values when the
values are presented in ASCII format. Figure 5-3 shows the ASCII format for decimal digits.
Each decimal digit is contained in the least-significant byte of an ordinal (32 bits). The
decimal digit must be of the form 0011dddd,, where dddd, is a binary-coded decimal value
from 0 to 9. For decimal operations, bits 8 through 31 of the ordinal containing the decimal
digit are ignored.
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ASCIl FORMAT

31

Figure 5-3: Decimal Format

Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or fields
of bits within an ordinal (32 bit) operand. Figure 5-4 shows these data types.

31 | | 0
LENGTH BIT NUMBER OF
L LOWE

Figure 5-4: Bits and Bit Fields

An individual bit is specified for a bit operation by giving its bit number in the ordinal in which
it resides. The least-significant bit of a 32-bit ordinal is bit 0; the most-significant bit is bit 31.

A bit field is a contiguous sequence of bits of from 0 to 32 bits in length within a 32-bit
ordinal. A bit field is defined by giving its length in bits and the bit number of its lowest-
numbered bit.

A bit field cannot span a register boundary.

Byte String

A byté string is a contiguous sequence of byte ordinals. The length of a byte string is the
number of bytes in the string; a length of zero specifies an empty string. The maximum length
of a byte string is 232 - 1 bytes.

Byte-string operations are performed on byte strings in memory. The address of a byte string

is the address of the first byte in the string. Consecutive bytes of the string are stored in
increasing byte addresses.

5-4
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Triple and Quad Words

Triple and quad words refer to consecutive bytes in memory or in registers: a triple word is 12
bytes and a quad word is 16 bytes. These data types facilitate the moving of blocks of bytes.
The triple-word data type is useful for moving extended-real numbers (80 bits).

The quad-word instructions (Idq, stq, and movq) offer the most efficient way to move large
blocks of data.

BYTE, WORD, AND BIT ADDRESSING

The processor provides instructions for moving blocks of data values of various lengths from
memory to registers (load) and from registers to memory (store). The allowable sizes for
blocks are bytes, half-words (2 bytes), words (4 bytes), double words, triple words, and quad
words. For example, the stl (store long) instruction stores an 8-byte (double word) block of
data in memory.

When a block of data is stored in memory, the least-significant byte of the block is stored at a
base memory address and the more significant bytes are stored at successively higher ad-
dresses.

When loading a byte, half-word, or word from memory to a register, the least-significant bit of
the block is always loaded in bit O of the register. When loading double words, triple words,
and quad words, the least-significant word is stored in the base register. The more significant
words are then stored at successively higher numbered registers. Double words, triple words,
and quad words must also be aligned in registers to natural boundaries as described in Chapter
3 in the section titled "Register Alignment."

Bits can only be addressed in data that resides in a register. Bit O in a register is the least-
significant bit and bit 31 is the most-significant bit.

LITERALS

The processor recognizes two types of literals (ordinal literals and floating-point literals),
which can be used as operands in some instructions. An ordinal literal can range from O to 31
(5 bits). When an ordinal literal is used as an operand, the processor expands it to 32 bits by
adding leading zeros. If the instruction defines an operand larger than 32 bits, the processor
zero-extends the value to the operand size. If an ordinal literal is used in an instruction that
requires integer operands, the processor treats the literal as a positive integer value.

The processor also recognizes two floating-point literals (+0.0 and +1.0). These floating-point
literals can only be used with floating-point instructions. As with the ordinal literals, the
processor converts the floating-point literals to the operand size specified by the instruction.

NOTE

A few of the floating-point instructions use both floating-point and non-floating-point operands
(e.g., the convert integer-to-real instructions). Ordinal literals can be used in these instructions
for non-floating-point operands.
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REGISTER ADDRESSING

A register may be used as an operand in an instruction by giving the register’s number (e.g.,
g0, 15, fp3). Both floating-point and non-floating-point instructions can reference global and
local registers in this way. However, floating-point registers can only be referenced in conjunc-
tion with a floating-point instruction.

MEMORY-ADDRESSING MODES

The processor offers 9 modes for addressing operands in memory. These modes are grouped
as follows:

e  Absolute

o Register Indirect

« Register Indirect with Index

o Index with Displacement

¢ IP with Displacement

Each addressing mode is used to reference a byte address in the processor’s address space.
Table 5-1 shows all the memory-addressing modes, a brief description of the elements of the
address in each mode, and the assembly-code syntax for each mode.

Table 5-1: Addressing Modes

Mode Description Assembler Syntax
Absolute offset | offset exp

Register Indirect | abase (reg)

Register Indirect | abase + offset exp (reg)

with offset

Register Indirect | abase + (index*scale) | (reg) [reg*scale]
with index

Register Indirect | abase + (index*scale) | exp (reg) [reg*scale]
with index and | + displacement

displacement

Index with (index*scale) exp [reg*scale]
displacement + displacement

IP with IP + displacement + 8 | exp (IP)
displacement

Where: reg is register and exp is expression
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Absolute

Absolute addressing is used to reference a memory location directly as an offset from address 0
of the address space, ranging from -23! to 23! - 1. Typically, an assembler will allow absolute
addresses to be specified through arithmetic expressions (e.g., x + 44), symbolic labels, and
absolute values.

At the machine-level, two absolute-addressing modes are provided, depending on the instruc-
tion format (i.e., MEMA or MEMB). For the MEMA format, the offset is an ordinal number
ranging from 0 to 2047; for the MEMB format, the offset is an integer (called a displacement)
ranging from -23! to 231 -1. After evaluating an absolute address, the assembler will convert
the address into an offset and select the appropriate machine-level instruction type and address-
ing mode. (The machine-level addressing modes and instruction formats are described in
Appendix B.)

Register Indirect

The register indirect addressing modes allow an address to be specified with an ordinal value
(32 bits) in a register or with an offset or a displacement added to a value in a register. Here,
the value in the register is referred to as the address base (abase).

Again, an assembler will allow the offset and displacement to be specified with an expression
or symbolic label, then evaluate the address to determine whether an offset or a displacement is
appropriate.

Register Indirect with Index

The register indirect with index addressing modes allow a scaled index to be added to the value

in a register. The index is specified by means of a value placed in a register. This index value is
then multiplied by the scale factor. The allowable scale factors are 1, 2, 4, 8, and 16.

A displacement may also be added to the abase value and scaled index.

Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a
register and is multiplied by a scaling constant before the displacement is added to it.

IP with Displacement

The IP with displacement addressing mode is often used with load and store instructions to
make them IP relative.

Note that with this mode the displacement plus a constant of 8 is added to the IP of the
instruction.
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CHAPTER 6
INSTRUCTION-SET SUMMARY

This chapter provides an overview of the instruction set for the 80960MC processor. Included
is a discussion of the instruction format and a summary of the instruction groups and the
instructions in each group.

Chapter 17 gives detailed descriptions of each of the instructions. The instructions are listed in
this chapter in alphabetical order. Included for each instruction are the assembly-language
format, the action taken when the instruction is executed, and examples of how the instruction
might be used.

Appendix C provides a detailed description of the factors that affect instruction timing. It also
gives the number of clock cycles required for each instruction.

INSTRUCTION FORMATS

Instructions are described in this reference manual in two formats: assembly language and
machine level.

Assembly-Language Format

Throughout most of this manual, the instructions are referred to by their assembly-language
mnemonics. For example, the add ordinal instruction is referred to as the addo instruction.

An assembly-language statement consists of an instruction mnemonic, followed by from O to 3
operands, separated by commas. The following example shows the assembly-language state-
ment for the addo instruction:

addo g5, g9, g7

Here, the ordinal operands in global registers g5 and g9 are added together and the result is
stored in g7.

A detailed description of the nomenclature used to describe assembly-language instructions is
given in Chapter 17.

Machine Formats

At the machine level of the processor, all instructions are word aligned. Most of the instruc-
tions are one word long, although some memory-addressing modes make use of a two-word
format.

There are four instruction formats: register (REG), compare and branch (COBR), control
(CTRL), and memory (MEM). Each instruction uses one of these formats, which is deter-
mined by the opcode field of the instruction.
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The machine-level formats for the instructions are described in detail in Appendix B.

INSTRUCTION GROUPS

The 80960MC processor implements all the instructions in the 80960 instruction set, which
includes all of the data-movement, arithmetic, logical, and program-control instructions com-
monly found in computer architectures. The processor also includes a set of floating-point
instructions and several instructions to handle architectural extensions found in the processor.

The 80960 instruction set is made up of the following groups of instructions:

o Data Movement

e  Arithmetic (Ordinal and Integer)
o Logical

« Bit, Bit Field, and Byte

e  Comparison

e Branch

e Call/Return
e Fault

e Debug

e Atomic

e Processor Management

The instruction-set extensions found in the 80960MC processor include the following groups
of instructions:

o Integer-to-Real Conversion

o Floating Point

e  Process Management

e String

e Decimal

Tables 6-1 and 6-2 give a summary of the 80960 instructions and the 80960MC instruction-set
extensions, respectively. The actual number of instructions is greater than those shown in this

list, because for some operations, several different instructions are provided to handle different
operand sizes, data types, or branch conditions.

6-2



intel

INSTRUCTION-SET SUMMARY

Table 6-1: Summary of the 80960 Instruction Set

Data Movement Arithmetic Logical Bit, Bit Field,
and Byte
Load Add And Set Bit
Store Subtract Not And Clear Bit
Move Multiply And Not Not Bit
Load Address Divide Or Check Bit
Extended Exclusive Or Alter Bit
Multiply Not Or Scan For Bit
Extended Or Not Scan Over Bit
Divide Nor Extract
Remainder Exclusive Nor Modity
Modulo Not Scan Byte For
Shift Nand Equal
Rotate
Comparison Branch Call/Return Fault
Compare Unconditional Call Conditional Fault
Conditional Branch Call Extended Synchronize Faults
Compare Conditional Branch | Call System
Compare and Compare and Return
Increment Branch Branch and Link
Compare and Test Condition
Decrement Code
Debug Atomic Processor
Modify Trace Atomic Add Flush Local
Controls Atomic Modify Registers
Mark Modify Arithmetic
Force Mark Controls
Modify Process
Controls

6-3
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Table 6-2: Summary of the 80960MC Instruction-Set Extensions

Conversion Floating Point Process Control
Convert Real-to-Integer Move Real Schedule Process
Convert Integer-to-Real Add Save Process

Subtract Resume Process

Multiply Load Process Time

Divide Signal

Remainder Wait

Scale Conditional Wait

Round Send

Square Root Receive

Sine Conditional Receive

Cosine Send Service

Tangent

Arctangent

Log

Log Binary

Log Natural

Exponent

Classify

Copy Real Extended

Compare
String Decimal Miscellaneous
Move String Move Inspect Access
Move Quick String Add With Carry Load Physical Address
Fill String Subtract With Carry Synchronous Move
Compare String Synchronous Load

The following sections give a brief overview of the instructions in each of these groups. The
floating-point instructions are described in Chapter 7.

DATA MOVEMENT

The data movement instructions include those instructions that move data from memory to the
global and local registers; that move data from the global and local registers to memory; and
that move data among these registers.

6-4



intel‘“ INSTRUCTION-SET SUMMARY

Load

The load instructions (listed below) copy bytes or words from memory to a selected register or
group of registers:

Id load

ldob load byte ordinal
ldos load short ordinal
1dib load byte integer
Idis load short integer
1dl load long

1dt load triple

ldq load quad

For the 1d, ldob, ldos, ldib, and ldis instructions, a memory address and a register are specified
in the instruction and the value at the memory address is copied into the register. Zero and sign
extending is performed automatically for byte and short (half-word) operands.

The 1d, 1dl, 1dt, and ldq instructions copy 4, 8, 12, and 16 bytes from memory into successive
registers.

NOTE

When using the load, store, and move instructions that move 8, 12, or 16 bytes at a time, the
rules for register alignment must be followed. Refer to the section in Chapter 3 titled "Register
Alignment" for a discussion of these rules.

Store

For each load instruction there is a corresponding store instruction (listed below), which copies
bytes or words from a selected register or group of registers to memory:

st store

stob store byte ordinal
stos store short ordinal
stib store byte integer
stis store short integer
stl store long

stt store triple

stq store quad

For the st, stob, stos, stib, and stis instructions, a register and memory address are specified in
the instruction and the value in the register is copied into memory. For the byte and short
instructions, the value in the register is automatically reformatted for the shorter memory
location. For the stib and stis instructions, this reformatting can lead to overflow if the register
value is too large to be represented in the shorter memory location.

The st, stl, stt, and stq instructions copy 4, 8, 12, and 16 bytes from successive registers into
memory.
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Move

The move instructions, listed below, copy data from a register or group of registers to another
register or group of registers.

mov move word
movl move long word
movt move triple word
movq move quad word

These move instructions can only be used to move data among the global and local registers.
A set of move-real instructions (movr, movrl, and movre) are provided for moving real
number values between the global and local registers and the floating-point registers. The
move-real instructions are described in Chapter 7.

Load Address

The lda instruction computes an effective address in the address space from an operand
presented in one of the addressing modes. A common use of this instruction is to load a
constant into a register.

ARITHMETIC

Table 6-3 lists all the arithmetic operations for which the 80960MC processor provides instruc-
tions and the data types that the instructions operate on. An "X" in this table indicates that the
80960 architecture provides an instruction for the specified operation and data type; an "E"
indicates that an 80960MC instruction-set extension provides an instruction for the specified
operation -and data type. An "E*" indicates that the specified operation can be performed on
the specified data type using 80960MC extended-instruction-set instructions, but that a unique
instruction for this operation is not provided. For example, a specific instruction is not
provided to add two extended-real values. However, this operation can be carried out with
either the add real (addr) or the add long real (addrl) instruction. '

With two exceptions, all the processor’s arithmetic operations are carried out on operands in
registers. The processor does not provide instructions that perform arithmetic operations on
operands in memory.

The two instructions that are exceptions are the atadd (atomic add) and atmod (atomic
modify) instructions, which are discussed later in this chapter.

A summary of the arithmetic instructions for real (floating-point) data types is provided in
Chapter 7. The following sections describe the arithmetic instructions for ordinal and integer
data types. o e
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Table 6-3: Arithmetic Operations

Arithmetic Integer Ordinal Real Long Extended
Operations Real Real
Add X X E E E*
Subtract X X E E E*
Multiply X X E E E*
Divide X X E E E*
Remainder X X E E E*
Modulo X

Shift Left X X

Shift Right X X

Shift Right X

Dividing

Scale E E E*
Round E E E*
Square Root E E E*
Sine E E E*
Cosine E E E*
Tangent E E E*
Arctangent E E E*
Exponent E E E*
Log E E E*
Log Binary E E E*
Log Epsilon E E E*
Classify E E E*
Copy Sign E
Copy Reversed E
Sign :
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Add, Subtract, Multiply, and Divide

The following instructions perform add, subtract, multiply, or divide operations on integers and
ordinals:

addi add integer
addo add ordinal
subi subtract integer
subo subtract ordinal
muli multiply integer
mulo multiply ordinal
divi divide integer
divo divide ordinal

These instructions perform operations on one-word operands in registers and store the results
in a register.

Extended Arithmetic

The following four instructions are provided to support extended arithmetic operations to be
performed (i.e., arithmetic operations on operands greater than one word in length):

addc add ordinal with carry
subc subtract ordinal with carry
emul extended multiply

ediv extended divide

The addc and subc instructions add or subtract two words (contained in registers) plus a
condition code bit (used as a carry bit). If the result has a carry, the carry bit in the condition
code is set. Also, a second condition code bit is set if the operation would have resulted in an
integer overflow condition. (The three-bit condition code is contained in the arithmetic con-
trols as described in Chapter 3.)

These instructions treat the operands as ordinals; however, the indication of overflow in the
condition code facilitates a software implementation of extended-integer arithmetic.

The emul instruction multiplies two ordinals (each contained in a register), producing long

ordinal result (stored in two registers). The ediv instruction divides a long ordinal by an
ordinal, producing an ordinal quotient and an ordinal remainder.

Remainder and Modulo

The following instructions divide one operand by another and retain the remainder of the
operation:

remi remainder integer
remo remainder ordinal
modi modulo integer

6-8
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The difference between the remainder and modulo instructions lies in the sign of the result.
For the remi and remo instructions, the result has the same sign as the dividend; for the modi
instruction, the result has the same sign as the divisor.

Shift and Rotate

The processor provides the following five shift instructions:

shlo shift left ordinal

shro shift right ordinal

shli shift left integer

shri shift right integer

shrdi shift right dividing integer

These instructions shift the operand a specified number of bits to the left or to the right. Bits
shifted beyond the register boundary are discarded.

The shlo instruction shift zeros in from the least-significant bit, and the shro instruction shifts
zeros in from the most-significant bit. These instructions are equivalent to mulo and divo by
the power of 2, respectively.

The shli instruction shifts zeros in from the least-significant bit; if the bits shifted out are not
the same as the sign bit, an overflow fault is generated.

The shri instruction performs a conventional arithmetic shift-right operation by shifting the
sign bit in from the most-significant bit. When this instruction is used to divide an negative
integer operand by the power of 2, however, it produces an incorrect quotient. (The discarding
of the bits shifted out has the effect of rounding the result toward negative.)

The shrdi instruction is provided for dividing integers by the power of 2. With this instruction,
1 is added to the result if the bits shifted out are non-zero and the operand is negative, which
produces the correct result for negative operands.

The shli and shrdi instructions are equivalent to muli and divi by the power of 2.

The rotate instruction rotates the bits of the operand to the left (toward higher significance) by

a specified number of bits. Bits shifted beyond the left boundary of the register (bit 31) appear
at the right boundary (bit 0).

6-9
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LOGICAL

The following instructions perform bitwise Boolean operations on the specified operands:
and Aand B
notand (not A) and B
andnot A and (not B)
xor not (A = B)
or AorB
nor not (A or B)
Xnor A=B
not not A
notor (not A) or B
ornot A or (not B)
nand not (A and B)

BIT AND BIT FIELD

The bit instructions perform operations on a specific bit in an ordinal operand or on a bit field.

Bit Operations

The following instructions operate on a specified bit:

setbit set bit

clrbit clear bit
notbit not bit
chkbit check bit
alterbit alter bit
scanbit scan for bit
spanbit span over bit

The setbit, clrbit, and notbit instructions set, clear, or complement (toggle) a specified bit in
an ordinal.

The chkbit instruction causes the condition-code bits to be set according to the state of a
specified bit in a register. The condition code is set to 010, if the bit is set and 000, otherwise.

The alterbit instruction alters the state of a specified bit in an ordinal according to the con-
dition code. If the condition code is 0102, the bit is set; if the condition code is 0002, the bit is
cleared.

The scanbit and spanbit instructions find the most significant set bit and clear bit, respec-
tively, in an ordinal.
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Bit-Field Operations

There are two bit field instructions extract and modify. The extract instruction converts a
specified bit field, taken from an ordinal value, into an ordinal value. In essence, this instruc-
tion shifts a bit field in a register to the right and fills in the bits to the left of the bit field with
ZEeros.

The modify instruction copies bits from one register, under control of a mask, into another
register. Only the unmasked bits in the destination register are modified.
BYTE OPERATIONS

The scanbyte instruction performs a byte-by-byte comparison of two ordinals to determine if
any two corresponding bytes are equal. The condition code is set according to the results of
the comparison.

CONVERSION

Data can be converted from one length to another by means of the load and store instructions.
For example, the ldis instruction loads a short integer from memory to a register and automati-
cally converts the integer from a half word to a full word.

The 80960MC extended instruction set provides instructions to perform conversions between
integer and real data types. These instructions are described in Chapter 7.
COMPARISON

The processor provides several types of instructions that are used to compare two operands.
The following sections describe the compare instructions for ordinal and integer data types.
The compare instructions for real data types are discussed in Chapter 7.

Compare and Conditional Compare

The compare instructions listed below compare two operands, then set the condition-code bits
in the arithmetic controls according to the results.

cmpi compare integer
cmpo compare ordinal
concmpi conditional compare integer
concmpo conditional compare ordinal

The condition-code bits are set to indicate whether one operand is less than, equal to, or greater
than the other operand. (Refer to the section in Chapter 3 titled "Functions of the Arithmetic
Controls Bits" for a discussion of meanings of the condition-code bits for conditional
operations.)
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The cmpi and cmpo instructions simply compare the two operands and set the condition-code
bits accordingly.

The concmpi and concmpo instructions first check the status of bit 2 of the condition code. If
it is not set, the operands are compared as with the cmpi and empo instructions. If bit 2 is set,
no comparison is performed and the condition-code bits are not changed.

The conditional compare instructions are provided specifically to optimize two-sided range
comparisons to check if A is between B and C (i.e., B < A < C). Here, a compare instruction
(cmpi or cmpo) is used to check one side of the range (e.g., A 2 B) and a conditional compare
instruction (concmpi or concmpo) is used to check the other side (e.g., A < C) according to the
result of the first comparison.

Compare and Increment or Decrement

The following instructions compare two operands, set the condition-code bits according to the
results, then increment or decrement one of the operands:

cmpinci compare and increment integer
cmpinco compare and increment ordinal
cmpdeci compare and decrement integer
cmpdeco compare and decrement ordinal

These instructions are intended for use at the end of iterative loops.

BRANCH

The branch instructions allow the direction of program flow to be changed by explicitly
modifying the IP. The processor provides three types of branch instructions:

o unconditional branch

¢ conditional branch

e compare and branch

The processor also provides a set of instructions for testing the condition code flags of the
arithmetic controls. These instructions can be used in conjunction with the compare instruc-
tions and the branch instructions as a alternate means of performing conditional branch, and
compare and branch operations.

Most of the branch instructions specify the target IP by specifying a signed displacement to be
added to the current IP. Other branch instructions specify the memory address of the target IP
using one of the processor’s addressing modes. This latter group of instructions are called
extended-addressing instructions (e.g., branch extended, branch and link extended).
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Unconditional Branch

The following four instructions are used for unconditional branching:

b Branch

bx Branch Extended

bal Branch and Link

balx Branch and Link Extended

The b and bx instructions cause program execution to jump to the specified target IP. As
described in Chapter 17, these two instructions perform the same function; however, they use
different machine-level instruction formats.

The bal and balx instructions store the address of the next instruction in a specified register,
then jump to the specified target IP. (For the bal instruction, the RIP is automatically stored in
register gl4; for the balx instruction the location of the RIP is specified with an instruction
operand.) As described in Chapter 4, the branch and link instructions provide a method of
performing procedure calls that does not use the processor’s call/return mechanism. Here, the
saved instruction address is used as a return IP.

The bx and balx instructions can be made IP-relative by using the IP with displacement
addressing mode.

Conditional Branch

With the conditional branch (branch if) instructions, the processor checks the condition-code
bits in the arithmetic controls. If these bits match the value specified with the instruction, the
processor jumps to the target IP. These instructions use the displacement plus IP method of
specifying the target IP:

be branch if equal

bne branch if not equal

bl branch if less

ble branch if less or equal
bg branch if greater

bge branch if greater or equal
bo branch if ordered

bno branch if unordered

(Refer to the section in Chapter 3 titled "Functions of the Arithmetic Controls Bits" for a
discussion of meanings of the condition-code bits for conditional operations.)

The bo and bno instructions refer to comparisons of real numbers. Ordered and unordered real
numbers are described in Chapter 7.
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Compare and Branch

The compare and branch instructions compare two operands, then branch according to the
results. There are three subtypes of instructions in this group: compare integer, compare
ordinal, and check bit:

cmpibe compare integer and branch if equal

cmpibne compare integer and branch if not equal
cmpibl compare integer and branch if less

cmpible compare integer and branch if less or equal
cmpibg compare integer and branch if greater
cmpibge compare integer and branch if greater or equal
cmpibo compare integer and branch if ordered
cmpibno compare integer and branch if unordered
cmpobe compare ordinal and branch if equal
cmpobne compare ordinal and branch if not equal
cmpobl compare ordinal and branch if less

cmpoble compare ordinal and branch if less or equal
cmpobg compare ordinal and branch if greater
cmpobge compare ordinal and branch if greater or equal
bbs check bit and branch if set

bbc check bit and branch if clear

With the compare-ordinal-and-branch and compare-integer-and-branch instructions, two
operands are compared and the condition-code bits are set, as with the compare instructions
described earlier in this chapter. A conditional branch is then executed as with the conditional
branch (branch if) instructions.

With the check-bit-and-branch instructions, one operand specifies a bit to be checked in the
other operand. The condition-code bits are set according to the state of the specified bit (i.e.,
010, if the bit is set and 000, if the bit is clear). A conditional branch is then executed
according to the setting of the condition-code bits.

Test Condition Codes

The following test instructions allow the state of the condition-code bits to be tested:

teste test if equal

testne test if not equal

testl test if less

testle test if less or equal
testg test if greater

testge -~ test if greater or equal
testo test if ordered

testno test if unordered

These instructions cause a TRUE (1,)to be stored in a destination register if the condition code
matches the condition specified with the instruction. Otherwise, a FALSE (0,) is stored in the
register.
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CALL AND RETURN

The processor offers an on-chip call/return mechanism for making procedure calls to local
procedures and kernel procedures. This call/return mechanism is described in detail in Chapter
4. The following four instructions are provided to support this mechanism.

call call

callx call extended

calls call system ‘
ret return

The call and callx instructions call local procedures. The call instruction specifies the target
procedure (the first instruction of the procedure) by adding a signed displacement to the IP.
The callx instruction uses extended addressing, as described for the bx and balx instructions,
to specify the target procedure. For both of these instructions, a new set of local registers and a
new stack frame are allocated for the called procedure.

The calls instruction operates similarly to the call and callx instructions, except that it gets its
target procedure address from the system procedure table. An index number included as an
operand in the instruction provides an entry point into the procedure table.

Depending on the type of entry being pointed to in the procedure table, the calls instruction can
cause a supervisor call to be executed. A supervisor call causes the processor to switch to the
supervisor stack and to switch to supervisor mode. The supervisor call is described in detail in
Chapter 4.

The ret instruction performs a return from a called procedure to the calling procedure (the
procedure that made the call). This instruction obtains its target IP (return IP) from linkage
information that was saved for the calling procedure. The ret instruction is used to return from
local and supervisor calls and from implicit calls to interrupt and fault handlers.

CONDITIONAL FAULTS

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling routines are then invoked to handle the various types of faults without explicit inter-
vention by the currently running process. (Faults are discussed in detail in Chapter 12.)

The following conditional fault instructions permit a fault to be generated explicitly according
to the state of the condition-code bits:

faulte fault if equal

faultne fault if not equal

faultl fault if less

faultle fault if less or equal
faultg fault if greater

faultge fault if greater or equal
faulto fault if ordered

faultno fault if unordered‘
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The synchronize faults (syncf) instruction is provided to force all faults to be precise in
situations when the processor is executing two instructions in parallel. The function and use of
this instruction is discussed in detail in the section in Chapter 12 titled "Precise and Imprecise
Faults."

DEBUG

The processor supports debugging and monitoring of program activity through the use of trace
events. The following instructions support these debugging and monitoring tools:

modtc modify trace controls
mark mark
fmark force mark

The trace functions are controlled through the processor’s trace controls bits. Some of these
bits allow various types of tracing to be enabled or disabled. Other bits act as flags to indicate
when an enabled trace event has been detected. (Trace controls are described in detail in
Chapter 16.)

The modtc instruction permits the trace controls bits to be modified.

The mark instruction causes a breakpoint trace event to be generated if the breakpoint trace
mode is enabled. The fmark instruction generates a breakpoint trace independent of the state
of the breakpoint trace mode flag. The latter two instructions allow a breakpoint to be placed
anywhere in a program.

ATOMIC INSTRUCTIONS

The atomic instructions perform read-modify-write operations on operands in memory. They
insure that when one atomic operation is performed on a specific block of memory it will be
completed before another atomic operation can be performed on the same block. These
instructions are particularly useful in systems that use multiple processors where all of the
processors have access to system memory.

There are two atomic instructions: atomic add (atadd) and atomic modify (atmod). The
atadd instruction causes an operand to be added to the value in the specified memory location.

The atmod causes bits in the specified memory location to be modified under control of a
mask.

PROCESSOR MANAGEMENT

The processor provides several instructions for use in controlling processor-related functions.

The modpc instruction provides a method of reading and modifying the contents of the process
controls.

In certain instances, it is necessary to insure that the contents of the local-register save area of
the stack frames are the same as the local registers. The flush local registers instruction
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(flushreg) automatically stores the contents of all the local register sets, except the current set,
in the register save area of their associated stack frames.

The arithmetic controls cannot be addressed with the load, move, and store instructions or the
bit instructions. Instead, special instructions are provided for this purpose.

The modify arithmetic controls instruction (modac) permits bits in the arithmetic controls
register to be modified under the control of a mask.

80960MC NON-FLOATING-POINT INSTRUCTION-SET EXTENSIONS

The following non-floating-point instructions are extensions to the 80960-architecture instruc-
tion set. These instructions are provided to support extended non-floating-point features such
as string operations, decimal arithmetic, multiprocessing, process management, and virtual
memory management.

Process Management

The processor provides several instructions for use in process management. These instructions
do not dictate a particular process management scheme. Instead they provide support for a
wide variety of process management mechanisms. These instructions can be divided into two
groups: process control and interprocess communication.

The processor must be in the supervisor mode to execute the process management instructions.
Process management is described in detail in Chapters 13 and 14.

Process Control

The following instructions provide process control services:

saveprcs save process
resumpres resume process
schedprcs schedule process
ldtime load process time

The processor defines two data structures for use in process control: a process control block
(PCB) and a dispatching port. The PCB is used to maintain information about the process such
as the status of the execution environment when the process was last suspended and system
resources allocated to the process. The dispatching port is used for queuing processes that are
waiting to be worked on by the processor.

The resumprcs instruction causes the processor to switch to the specified process. The
saveprcs instruction causes the current state of the currently running process to be saved in the
PCB.

These two instructions perform roughly the same functions as the RESUME and SAVE func-
tions of most UNIX™ kernels. A dispatching port is not needed with these instructions.
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The schedprcs instruction causes a process to be enqueued at a dispatching port.

The processor provides a mechanism for keeping track of process execution time. The ldtime
instruction supports this mechanism by providing a method of loading the elapsed execution
time of the currently running process into a specified register.

The modpc instruction, which is described earlier in this chapter, provides a method of reading
and modifying the contents of the process controls for the currently running process.

Interprocess Communication

The processor supports two techniques for communication among processes: semaphores and
communication ports.

Semaphores. A semaphore is essentially a queue for synchronizing the activities of inter-
dependent processes. The following instructions support communication through semaphores:

wait wait
condwait conditional wait
signal signal

The wait instruction causes the processor to check the specified semaphore for a signal, in the
form of a semaphore count. If the semaphore count is non-zero, the processor decrements the
count and continues execution of the current process. If the count is zero, the processor
suspends the current process and queues it to the semaphore. The process is then said to be
blocked.

The condwait instruction performs the same function as the wait instruction, except that if a
signal is not found, the process is not blocked. Instead, the condition-code bits are set to
indicate whether or not the signal was received.

The signal instruction causes the processor to send a signal to the specified semaphore. If
processes are queued at the semaphore, the first process in the queue is unblocked. Otherwise,
the semaphore count is incremented by one.

Communication Ports. A communication port is similar to a semaphore except that it also
provides a message-passing mechanism. A communication port can thus be used both for
synchronizing processes and as a means of passing messages among processes.

Messages are one word long. This message word can contain anything. Commonly, it con-
tains a one word message, a process number, or the address of a longer message.

The following instructions support communication ports:

receive receive

condrec conditional receive
~send send

sendserv send service

6-18



intal INSTRUCTION-SET SUMMARY

With the receive instruction, the processor checks the specified communication port for a
message. If a message is queued at the port, it loads the message into a specified register and
continues execution of the current process. If the message queue is empty, the processor
suspends the current process and queues it at the communication port (i.e., blocks the process).

The condrec instruction is similar to the receive instruction except that the process is not
blocked if the message queue is empty. Instead the processor sets the condition-code bits to
indicate whether or not the receive operation was carried out.

The send instruction causes the processor to send a message to a specified communication
port. If there are no processes at the port for messages, the processor enqueues the message at
the port and continues executing the current process. If there are queued processes at the port,
the first process in the queue is unblocked, given the message, and rescheduled at the dispatch-
ing port. The processor then resumes execution of the current process.

The sendserv instruction causes the processor to suspend the current process and send it as a
message to the specified communication port.
String

The 80960MC extended instruction set provides the following string instructions perform
operations on byte strings in memory:

movstr move string
movqstr move quick string
fill fill string

cmpstr compare string

The movstr and movgstr instructions move a byte string from one location in memory to
another. These instructions operate identically except that the movstr instruction guarantees
that if the strings overlap, no byte in the source string is overwritten until it is copied to the
destination string. If the strings being moved do not overlap, the movgstr instruction should
be used because it performs the move operation faster.

The fill instruction copies an ordinal operand repeatedly into a byte string in memory.

The cmpstr instruction compares two byte strings of equal length, then sets the condition-code
bits to show whether or not the strings are identical.

Decimal

The following three instructions are provided for use in decimal-arithmetic algorithms:

dmovt move and test decimal
daddc decimal add with carry
dsubc decimal subtract with carry

These instructions operate on 32-bit decimal operands that contain an 8-bit, ASCII-coded
decimal in the least-significant byte of the word (as shown in Figure 5-3).
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The dmovt instruction moves a decimal operand from one register to another and tests the least
significant byte of the operand to determine if it is a decimal digit (0 to 9). It sets the condition
code according to the results of the test: 010, if the operand contains a decimal digit and 000,
otherwise.

The daddc and dsubc instructions operate similarly to the addc and subc instructions. They
add or subtract two decimal digits plus bit 1 of the condition code (used as a carry-in bit). If
the operation produces a decimal carry, the condition code is set accordingly. The subtraction
operation is carried out in 10’s complement arithmetic.

These instructions can be used iteratively to add or subtract decimal values of any length.

With the 80960MC processor, the most efficient method of multiplying or dividing decimal
numbers is to convert them into extended-real numbers and use the mulr and divr instructions.
Decimal values of up to 18 decimal digits can be handled with this technique.

Miscellaneous Instructions

The following instructions perform two special synchronous operations on operands in
memory and two memory management functions.

Synchronous Load and Move

The processor’s store instructions are executed asynchronously with the memory controller.
Once the processor sends data out on its bus for storage in main memory, it continues with the
next instruction in the instruction stream, assuming that its bus control logic will carry out the
operation.

The 80960MC processor provides four special instructions for performing memory operations
that perform store and move operations synchronously with memory.

The synchronous load instruction (synld) loads a word from memory into a register. When
this instruction is performed, the processor waits until a condition code bit is set in the arith-
metic controls, indicating that the operation has been completed, before it begins executing the
next instruction. The synld instruction is used primarily to read the contents of the interrupt-
control register, as described in Chapter 10.

The synchronous move instructions (synmov, synmovl, and synmovq) perform synchronous

moves of data from one location in memory to another. These instructions are used primarily
for sending IAC messages, as described in Chapter 11.

Memory-Management Functions

The inspect access instruction (inspacc) returns the respective page rights of a specified page.
This instruction is used in memory management routines.
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The load physical address (Idphy) instruction translates an address in the address space into a
physical address. The primary function of this instruction is to translate virtual addresses into
physical addresses.
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CHAPTER 7
FLOATING-POINT OPERATION

This chapter describes the floating-point processing capabilities of the 80960MC processor.
The subjects discussed include the real number data types, the execution environment for
floating-point operations, the floating-point instructions, and fault and exception handling.

INTRODUCING THE 80960MC FLOATING-POINT ARCHITECTURE

The floating-point architecture used in the 80960MC processor is designed to allow a con-
venient implementation of the IEEE Standard 754-1985 for Binary Floating-Point Arithmetic.
This hardware architecture, along with a small amount of software support, conforms to the
IEEE standard and provides support for the following data structures and operations:

¢ Real (32-bit), long-real (64-bit), and extended-real (80-bit) floating-point number formats.
e Add, subtract, multiply, divide, square root, remainder, and compare operations

« Conversion between integer and floating-point formats

o  Conversion between different floating-point formats

« Handling of floating-point exceptions, including non-numbers (NaNs)

The software to support the 80960MC floating-point architecture is needed primarily to handle
conversions between real numbers and decimal strings.

In addition, the 80960MC floating-point architecture supports several functions that go beyond
the IEEE standard. These functions fall into two categories:

o functions recommended in the appendix to the IEEE standard, such as copy sign and
classify, and

o commonly used transcendental functions, including trigonometric, logarithmic, and ex-
ponential functions.
REAL NUMBERS AND FLOATING-POINT FORMAT

This section provides an introduction to real numbers and how they are represented in floaﬁng-
point format. Readers who are already familiar with numeric processing techniques and the
IEEE standard may wish to skip this section.

Real Number System

As shown at the top of Figure 7-1, the real-number system comprises the continuum of real
numbers from minus infinity (-eo) to plus infinity (4oco).
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BINARY REAL NUMBER SYSTEM

SUBSET OF BINARY REAL-NUMBERS THAT CAN BE REPRESENTED WITH
IEEE SINGLE-PRECISION (32-BIT) FLOATING-POINT FORMAT

-100 -10 -1 0 1 10

10.0000000000000000000000

AR ARRRRRRRARRARRRARARRAY]
PRECIS[ON:|<— 24 BINARY DIGITS ——>

NUMBERS WITHIN THIS RANGE
CANNOT BE REPRESENTED

Figure 7-1: Binary Number System

Because the size and number of registers that any computer can have is limited, only a subset
of the real-number continuum can be used in real-number calculations. As shown at the
bottom of Figure 7-1, the subset of real numbers that a particular processor supports represents
an approximation of the real number system. The range and precision of this real-number
subset is determined by the format that the processor uses to represent real numbers.

Floating-Point Format

To increase the speed and efficiency of real number computations, computers or numeric
processors typically represent real numbers in a binary floating-point format. In this format, a
real number has three parts: a sign, a significand, and an exponent. Figure 7-2 shows the
binary floating-point format that the processor uses. This format conforms to the IEEE stan-
dard.

The sign is a binary value that indicates whether the number is positive (0) or negative (1).
The significand has two parts: a one-bit binary integer (also referred to as the j-bit) and a
binary fraction. The j-bit is often not represented, but instead is an implied value. The
exponent is a binary integer that represents the base-2 power that the significand is raised to.
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SIGN

EXPONENT SIGNIFICAND

\ FRACTION

INTEGER OR J-BlT—/

Figure 7-2: Binary Floating-Point Format

Table 7-1 shows how the real number 201.187 (in ordinary decimal format) is stored in
floating-point format. The table lists a progression of real number notations that leads to the
format that the 80960MC processor uses. In this format, the binary real number is normalized
and the exponent is biased.

Table 7-1: Real-Number Notation

NOTATION VALUE

ORDINARY DECIMAL 201.187

SCIENTIFIC DECIMAL 2.01187E192

SCIENTIFIC BINARY 1.1001001001011111E3111

SCIENTIFIC BINARY 1.1001001001011111E,10000110

(BIASED EXPONENT)

32-BIT SIGN BIASED EXPONENT SIGNIFICAND
FLOATING-POINT

FORMAT 0 10000110 1001001001011111
(NORMALIZED) 1. (IMPLIED)

Normalized Numbers

In most cases, the processor represents real numbers in normalized form. This means that
except for zero, the significand is always made up of an integer of 1 and a fraction as follows:

Lff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the
exponent is decremented by one.)
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Representing numbers in normalized form maximizes the number of significant digits that can
be accommodated in a significand of a given width. To summarize, a normalized real number
consists of a normalized significand that represents a real number between 1 and 2 and an
exponent that gives the number’s binary point.

Biased Exponent

The processor represents exponents in a biased form. This means that a constant is added to
the actual exponent so that the biased exponent is always a positive number. The value of the
biasing constant depends on the number of bits available for representing exponents in the
floating-point format being used. ‘The biasing constant is chosen so that the smallest normal-
ized number can be reciprocated without overflow.

(The biasing constants for the various sizes of real data types that the processor supports are
given in the section later in this chapter titled "Real Data Types".)

Real Number and Non-Number Encodings

The real numbers that are encoded in the floating-point format described above are generally
divided into three classes: % 0, £ nonzero-finite numbers, and * e. Encodings for non-
numbers (NaNs) are also defined. The term NaN stands for "Not a Number."

Figure 7-3 shows how the encodings for these numbers and non-numbers fit into the real
number continuum. The encodings shown here are for the IEEE single-precision (32-bit)
format, where the term 's" indicates the sign bit, "e" the biased exponent, and "f" the fraction.
(The exponent values are given in decimal.)

Signed Zeros

Zero can be represented as a +0 or a -0 depending on the sign bit. Both encodings are equal in
value. The sign of a zero result depends on the operation being performed and the rounding
mode being used. Signed zeros have been provided to aid in implementing interval arithmetic.
The sign of a zero may indicate the direction from which underflow occurred, or it may
indicate the sign of an - that has been reciprocated.

Signed, Nonzero, Finite Values

The class of signed, nonzero, finite values is divided into two groups: normalized and denor-
malized. The normalized finite numbers comprise all the nonzero finite values that can be
encoded in a normalized real number format from zero to c. In the 32-bit form shown in
Figure 7-3, this group of numbers includes all the numbers with biased exponents ranging from
1 to 254, (unbiased, the exponent range is from -126,, to +127,).
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Denormalized Numbers

When real numbers become very close to zero, the normalized-number format can no longer be
used to represent the numbers. This is because the range of the exponent is not large enough to
compensate for shifting the binary point to the right to eliminate leading zeros.

INaNI INaNI

-DENORMALIZED FINITE + DENORMALIZED FINITE

/ +NORMALIZED FINITE ~ +
1 1 L 1

- -NORMALIZED FINITE \ -0 +0
L L il = :

REAL NUMBER AND NaN ENCODINGS FOR 32-BIT FLOATING-POINT FORMAT

s E F s E F
[T T o - Y I
[*] o [wonzero ] *GRf"* *OENgRMe 7 [0] o] wonzero |
[T 258 [anvvawe | NORERES° +NOENITE 70 [o T 25a [ anvvarue |
[I=1 7 1- S N O
[x] 255 | 1000 ] -snan esNaN [x'| 255 | x|
[x] 255 | 1axx | -onen +QNaN [x' ] 2ss [ o1axx |

Notes:
1. Sign bitignored
2. Fractions must be nonzero

Figure 7-3: Real Numbers and NaNs

When the biased exponent is zero, smaller numbers can only be represented by making the
integer bit (and perhaps other leading bits) of the significand zero. The numbers in this range
are called denormalized numbers. The use of leading zeros with denormalized numbers allows
smaller numbers to be represented. However, this denormalization causes a loss of precision
(the number of significant bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, a processor normally operates on
normalized numbers and produces normalized numbers as results. Denormalized numbers
represent an underflow condition.

A denormalized number is computed through a technique called gradual underflow. Table 7-2
gives an example of gradual underflow in the denormalization process. Here the 32-bit format
is being used, so the minimum exponent (unbiased) is -126,,. The true result in this example
requires an exponent of -129,, in order to have a normalized number. Since -129,, is beyond
the allowable exponent range, the result is denormalized by inserting leading zeros until the
minimum exponent of -126,, is reached.
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Table 7-2: Denormalization Process

Operation Sign | Exponent” | Significand

True Result 0 -129 1.01011100...00
Denormalize 0 -128 0.101011100...00
Denormalize 0 -127 0.0101011100...00
Denormalize 0 -126 0.00101011100...00
Denormal Result | 0 -126 0.00101011100...00

Note: “Expressed as unbiased, decimal number.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating
a zero result.

Signed Infinities

The two infinities, +eo and -oo, represent the maximum positive and negative real numbers,
respectively, that can be represented in the floating-point format. Infinity is always represented
by a zero fraction and the maximum biased exponent allowed in the specified format (e.g.,
255, for the 32-bit format).

Whereas denormalized numbers represent an underflow condition, the two infinity numbers
represent the result of an overflow condition. Here, the normalized result of a computation has
a biased exponent greater than the largest allowable exponent for the selected result format.

NaNs

Since NaNs are non-numbers, they are not part of the real number line. In Figure 7-3, the
encoding space for NaNs in the 80960MC floating-point formats is shown above the ends of
the real number line. This space includes any value with the maximum allowable biased
exponent and a non-zero fraction. (The sign bit is ignored for NaNs.)

The IEEE standard defines two specific NaN values: a quiet NaN (QNaN) and a signaling
NaN (SNaN). A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN
with the most significant fraction bit clear. QNaNs are allowed to propagate through most
arithmetic operations without signaling an exception. SNaNs signal an invalid-operation ex-
ception whenever they appear as operands in arithmetic operations. Exceptions are discussed
later in this chapter in the section titled "Exceptions and Fault Handling."

The section at the end of this chapter titled "Operations on NaNs" provides detailed infor-
mation on how the processor handles NaNs.
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REAL DATA TYPES

The processor supports three real-number data formats: real, long real, and extended real.
These formats correspond directly to the single-precision, double-precision, and double-
extended precision formats in the IEEE standard. Figure 7-4 shows these data formats and
gives the resolution that each provides.

SIGN REAL

32
BITS

3130 INTEGER
IMPLIED

SIGN LONG REAL
64
52 51 INTEGER IMPLIED 0
SIGN EXTENDED REAL

80
BITS

7978 64 63 62 INTEGER
DATA TYPE RANGE

Real 212640 2127 (-10%5 to -10%8)

Long Real 21022 45 21023 (210324 g -10%08)
Extended Real 2-16382 g 216383 (. 14950 tg -1( +4932)

Figure 7-4: Real-Number Formats

As described earlier in this chapter, the processor represents exponents in a biased format. For
real values, the biasing constant is 127; for long-real values, it is 1023; and for extended-real
values, it is 16383.

For the real and long-real formats, only the fraction is given for the significand. The integer is
assumed to be 1 for all numbers except 0 and denormalized finite numbers. For the extended-
real format, the integer is contained in bit 63, and the most-significant fraction bit is bit 62.
Here, the integer is explicitly set to 1 for normalized numbers, infinities, and NaNs, and to 0
for zero and denormalized numbers. A non-zero exponent with the integer bit set to zero is a
reserved encoding, which will result in a floating reserved-encoding exception being signaled.

Table 7-3 shows the encodings for all the classes of real numbers (i.e., zero, denormalized
finite, normalized finite, and e0) and NaNs, for each of the three real data-types.

EXECUTION ENVIRONMENT FOR FLOATING-POINT OPERATIONS

An important feature of the 80960MC processor is that the floating-point processing
capabilities have been integrated into the execution environment of the processor. Operations
on floating-point numbers are carried out using the same registers that are used for ordinals and
integers. In addition, four floating-point registers have been provided for extended-precision
floating-point arithmetic. The following sections describe how floating-point operations are
handled in the processor’s execution environment.
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Table 7-3: Real Numbers and NaN Encodings

CLASS SIGN | BIASED EXPONENT |INTEGER' |FRACTION
+o 11...11 1 00...00
11...10 1 1.1
+ NORMALS . . .
POSITIVE 0 00...01 1 00...00
0 00...00 0 11...11
+ DENORMALS . . . .
0 00...00 0 00..01
+ZERO 0 00...00 0 00..00
-ZERO 1 00...00 0 00..00
1 00...00 0 00...01
-DENORMALS . . . .
NEGATIVE 1 00...00 0 11...11
1 00...01 1 00...00
-NORMALS . . .
1 11...10 1 11...11
- 1 11...11 1 00...00
SNaN X 11...1 1 0X...XX2
NaN
QNaN X 11...11 1 1X...XX
REAL: ~———— 8BITS ——] |<€— 23 BITS —>
LONG REAL: e 11 B|T§ — - 52 BITS — ]
EXTENDED REAL: | 15BITS ——m—] €~ 63 BITS —>]
Notes:

1.Integer is implied for real and long real formats and is not stored.

2.Fraction for SNaN must be non-zero.

Registers

All of the registers in the processor’s execution environment, (i.e., global, local, and floating
point) can be used for floating-point operations. When using global or local registers, real
values (i.e., 32 bits) are contained in one register; long-real values (i.e., 64 bits) are contained
in two successive registers; and extended-real values (i.e., 80 bits) are contained in three
successive registers.
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Figure 7-5 shows how the three forms of the real data type are encoded when stored in global
and local registers. Note that long-real values must be aligned on even-numbered register
boundaries (e.g., g0, g2, ...). Extended-real values must be aligned on register boundaries that
are an integral multiple of four (e.g., g0, g4, ...).

REGISTER
REAL DISPLACEMENT
31 23 22 0
J EXPONENT FRACTION ] n
SIGN
LONG REAL
31 2019 0
FRACTION (LEAST SIGNIFICANT BITS) . n'
EXPONENT FRACTION (MOST SIGNIFICANT BITS) n+1
SIGN
EXTENDED REAL
31 16_15 14 )]
FRACTION (LEAST SIGNIFICANT BITS) n?
FRACTION (MOST SIGNIFICANT BITS) n+1
EXPONENT n+2
INTEGER SIGN
Notes:
1. Register number must be even.
2. Register number must be an integral multiple of four.
RESERVED ( INITIALIZE TO 0)

Figure 7-5: Storage of Real Values in Global and Local Registers

Real values in the floating-point registers are always in the extended-real format. When a real
or long-real value is moved from global or local registers to a floating-point register, the
processor automatically reformats it for the extended-real format.

Loading and Storing Floating-Point Values

Floating-point values are loaded from memory into global or local registers using the load (ld),
load long (Idl), and load triple (Idt) instructions. Likewise, floating-point values in global or
local registers are stored in memory using the store (st), store long (stl), and store triple (stt)
instructions.

Loading a floating-point value into a floating-point register requires two steps (two
instructions). First, a floating-point value must be loaded from memory into one or more
global or local registers. Then, the value must be moved to the floating-point register using a
move real (movr), move long-real (movrl), or move extended-real (movre) instruction.
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A similar two-step procedure is required to store a value.from a floating-point register into
memory. The value must first be moved into one or more global or local registers (using a
movr, movrl, or movre instruction), then stored in memory.

This two-step method for moving values from memory into floating-point registers and vice
versa may seem a little cumbersome; however, in practice it generally is not. Floating-point
registers are most often used to store and accumulate intermediate results of computations.
The contents of these registers are not normally stored in memory.

For example, the following instruction

divr r3, r4, fp2

causes the real value in'local register r4 to be divided by the value in r3, with the extended-real
result stored in floating-point register fp2. Here, a move operation from the local registers to
the floating-point registers is not required, since it is implicit in the divide operation.

Moving Floating-Point Values

Either the move instructions (mov, movl, or movt) or the move-real instructions (movr,
movrl, or movre) can be used to move real values among global and local registers. The move
real instructions are generally used to convert a real value from one format to another or for
moving real values between the global or local registers and floating-point registers. The move
instructions are used to move real values while keeping them in the same format.

When using the movr and movrl instructions to move floating-point numbers between the
global or local registers and the floating-point registers, the processor automatically converts
values from real and long-real format, respectively, into the extended-real format and vice
versa.

For example, the following instruction
movr g3, fpl
causes a 32-bit, real value in global register g3 to be converted to 80-bit, extended-real format
and placed in floating-point register fp1.
Going the opposite direction, the instruction
movrl fpO, r4

causes an extended-real value in floating-point register fp0 to be converted to 64-bit, long-real
format and placed in local registers r4 and r5.

The movre instruction moves 80-bit, extended-real values between registers, without format
conversion. When this instruction is used to move a value from three global or local registers
to a floating-point register, the processor extracts the 80-bit value from the three word
extended-real format. When moving a value from a floating-point register to global or local
registers, the processor inserts the 80-bit value into the three registers in the three-word format.

J
J
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Arithmetic Controls

The arithmetic controls are used extensively to control the arithmetic and faulting properties of
floating-point operations. Table 7-4 shows the bits in the arithmetic controls that are used in
floating-point operations.

Table 7-4: Arithmetic Controls Used in Floating-Point Operations

Arithmetic | Function

Control

Bits

0-2 Condition code

3-6 Arithmetic status field

8 Integer overflow flag

12 Integer overflow mask

16 Floating overflow flag

17 Floating underflow flag

18 Floating invalid-operation flag
19 Floating zero-divide flag

20 Floating inexact flag

24 Floating overflow mask

25 Floating underflow mask

26 Floating invalid-operation mask
27 Floating zero-divide mask

28 Floating inexact mask

29 Normalizing mode flag
30-31 Rounding control

The condition code flags are used to indicate the results of comparisons of real numbers, just as
they are for integers and ordinals.

The arithmetic status field is used to record results from the classify real (classr and classrl)
and remainder real (remr and remrl) instructions. These instructions are discussed later in this
chapter.

The floating-point flags indicate exceptions to floating-point operations. Here, the term excep-
tion refers to a potentially undesirable operation (such as dividing a number by zero) or an
undesirable result (such as underflow). The flags provide a means of recording the occurrence
of specific exceptions.

The floating-point masks provide a method of inhibiting the processor from invoking a fault
handler when an exception is detected.
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Use of the floating-point flag and mask bits are discussed later in this chapter in the section
titled "Exceptions and Fault Handling."

Normalizing Mode

The normalizing-mode flag specifies whether the processor operates in normalizing mode (set)
or not (clear).

Normalizing mode is the most common mode of operation. Here, the processor operates on
valid floating-point operands, regardless of whether they are normalized or denormalized
values.

When the processor is not operating in normalizing mode, it signals a reserved-encoding
exception whenever it encounters a denormalized floating-point value as a source operand. In
either mode, denormalized numbers are produced if the underflow exception is masked.

There are no flag or mask bits in the arithmetic controls for this exception. When a reserved-
encoding exception is detected, the processor generates a floating reserved-encoding fault and
leaves the destination operand unchanged (i.e., no result is stored).

The unnormalized mode of operation is provided to allow unnormalized arithmetic to be
simulated with software. Here, a fault handler routine can be used to perform unnormalized
arithmetic whenever a reserved-encoding exception is signaled.

Rounding Control

Often the infinitely precise result of an arithmetic operation cannot be encoded exactly in the
format of the destination operand. For example, the following value has a 24-bit fraction. The
least-significant bit of this fraction (the underlined bit) cannot be encoded exactly in the real
(32-bit) format:

1.0001 0000 1000 0011 1001 O111E, 101

The processor must then round the result to one of the following two values:
1.0001 0000 1000 0011 1001 O11E, 101

1.0001 0000 1000 0011 1001 100E, 101

A rounded result is called an inexact result. When an inexact result is produced, the floating-
point inexact flag bit in the arithmetic controls is set.

The processor rounds results according to the destination format (real, long real, or extended

real) and the setting of the rounding-mode flags of the arithmetic controls. Four types of
rounding are allowed, as described in Table 7-5.
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Table 7-5: Rounding Methods

Rounding Mode Description

Round up (toward +eo) Rounded result is close to but no
less than the infinitely precise
result

Round down (toward -co) Rounded result is close to but no
greater than the infinitely precise
result

Round toward zero (Truncate) | Rounded result is close to but no
greater in absolute value than the
infinitely precise result

Round to nearest (even) Rounded result is close to the in-
finitely precise result. If two
values are equally close, the result
is the even value (i.e., the one with
the least-significant bit of zero).

When the infinitely precise result is between the largest positive finite value allowed in a
particular format and +o, the processor rounds the result as shown in Table 7-6.

Table 7-6: Rounding of Positive Numbers

Rounding Mode Description
Round up (toward +co) +o0
Round down (toward -eo) Maximum, positive finite value

Round toward zero (Truncate) | Maximum, positive finite value

Round to nearest (even) +o0

When the infinitely precise result is between the largest negative finite value allowed in a
particular format and -eo, the processor rounds the result as shown in Table 7-7.

Table 7-7: Rounding of Negative Numbers

Rounding Mode Description
Round up (toward +e0) Maximum, negative finite value
Round down (toward -eo) -c0

Round toward zero (Truncate) | Maximum, negative finite value

Round to nearest (even) -0

The rounding modes have no effect on comparison operations, operations that produce exact
results, or operations that produce NaN results.
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The floating-point instructions allow a result to be stored in a shorter destination than the
source operands. For example, the instruction

addr fpl, fp2, g5

produces a real (32-bit) result from two extended-real (80-bit) source operands. In all such
operations, only one rounding error occurs: the error that occurs when rounding the infinitely
precise result to the size of the destination format.

Technically, an operation which computes a narrow result from wide operands is in violation
of the IEEE standard. However, systems that are designed to conform to the IEEE standard do
not need to use this capability of the processor.

INSTRUCTION FORMAT

The instruction format for floating-point instructions is the same as for the other processor
instructions. When programming in assembly language, an assembly language statement
begins with an instruction mnemonic and is followed by from one to three operands. For
example, the multiply-real instruction mulr might be used as follows:

mulr r8, r9, fp3

Here, real operands in local registers r8 and r9 are multiplied together and the result is stored in
floating-point register fp3.

From the machine level point of view, all floating-point instructions use the REG format.
Refer to Appendix B for details on the REG format instructions.

INSTRUCTION OPERANDS

Operands for floating-point instructions can be either floating-point literals or registers. The
processor recognizes two encodings for floating-point literals: +0.0 and +1.0.

All of the registers in the processor’s execution environment (global registers g0 through g15,
local registers rQ through rl5, and floating-point registers fp0 through fp3) can be used as
operands in floating-point instructions. (Of course, registers gl5, 10, rl, and r2 would
generally not be used for storing floating-point numbers, since they are reserved for stack
management functions.)

When global or local registers are specified as operands, the instruction mnemonic (or opcode)
determines how the values in these registers are interpreted. For example, there are two
floating-point divide instructions: divide real (divr) and divide long real (divrl). When using
the divr instruction, the processor assumes that global- or local-register operands contain real
(32-bit) values. When using the divrl instruction, global- or local-register operands are as-
sumed to contain long-real (64-bit) values.

With either instruction, floating-point registers (containing extended-real values) can also be
used as operands.
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Using floating-point registers as operands allows mixed format or mixed precision arithmetic
to be performed with either real and extended-real values or long-real and extended-real
values. Mixed-format operations with real and long-real values are not supported.

SUMMARY OF FLOATING-POINT INSTRUCTIONS

The processor’s floating-point instructions consist of all instructions for which at least one
operand is a real data type.

These instructions can be divided into the following groups:

e Data Movement

o Data-Type Conversion

e  Basic Arithmetic

o Comparison and Classification
o  Trigonometric

e Logarithmic and Exponential

The following sections give a brief overview of the instructions in each group. Detailed
descriptions of the operations of these instructions are given in Chapter 17.

Data Movement

As has been described earlier in this chapter, the non-floating-point load and store instructions
are used to move real values between registers and memory. Once in registers, the non-
floating-point move instructions (mov, movl, and movt) are used to move real values between
global and local registers without format conversion; whereas, the floating-point move instruc-
tions (movr, movrl, and movre) are used to move real values between global and local
registers and floating-point registers.

The copy-sign-real-extended (cpysre) and copy-reverse-sign-real-extended (cpyrsre) instruc-
tions provide a means of copying the sign of one extended-real value to another, if one of the
values is in a floating-point register. This operation is best performed on real and long-real
values using the bit instructions chkbit and alterbit.

Data-Type Conversion

Two types of data-type conversions are provided: conversion from one floating-point format
to another (e.g., real to extended real) and conversion between integer and real.

Conversion between floating-point formats is handled in either of two ways: explicitly by
move instructions or implicitly by using the floating-point registers as operands in instructions.

As described earlier in this chapter, the movr instruction implicitly converts values from real to
extended real, and vice versa, when moving values between global or local registers and
floating-point registers. Likewise, the movrl instruction implicitly converts values from long
real to extended real, and vice versa.
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Conversion between real and long-real formats requires the use of both instructions. = For
example, the following two instructions convert a real value in global register g6 to a long-real
value contained in g6 and g7, using a floating-point register for intermediate storage of the
value:

movr g6, fpl
movrl fpl, g6

Implicit format conversion is also provided through the arithmetic, trigonometric, logarithmic,
and exponential instructions. For example, the instruction

addr r4, r5, fp2
adds two real values together and produces an extended-real result.

The following six instructions allow conversion between integers and reals:

cvtir convert integer to real

cvtilr convert long integer to long real
cvtri convert real to integer

cvtril convert real to long integer

cvtzri convert truncated real to integer
cvtzril convert truncated real to long integer

Both the cvtir and cvtilr instructions can be used to convert an integer to an extended-real
value by specifying that the result be placed in a floating-point register.

The convert real-to-integer instructions round off the real value to the nearest integer or
long-integer value. For the cvtri and cvtril instructions, the rounding mode determines the
direction the real number is rounded. For the convert truncated real-to-integer instructions
(cvtzri and cvtzril), rounding is always toward zero. The latter two instructions are provided
to allow efficient implementation of FORTRAN-like truncation semantics.

Extended-real values can be converted to integers by using a floating-point register as a source
operand in either of the convert real-to-integer instructions.

Converting long-real values to integers requires two instructions, as in the following example:

movrl g6, fp3
cvtzri £fp3, g6

The first instruction moves the long-real value to a floating-point register. The second instruc-
tion converts the extended-real value to an integer.
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Basic Arithmetic

The following instructions perform the basic arithmetic operations specified in the IEEE stan-
dard:

addr add real

addrl add long real

subr subtract real

subrl subtract long real
mulr multiply real

mulrl multiply long real
divr divide real

divrl divide long real
remr remainder real
remrl remainder long real
roundr round real

roundrl round long real
sqrtr square root real
sqrtrl square root long real

The round instructions round the floating-point operand to its nearest integral (i.e., integer)
value, based on the current rounding mode. These instructions perform a function similar to
the convert real-to-integer instructions except that the result is in floating-point format.

Comparison, Branching, and Classification

Comparison of floating-point values differs from comparison of integers or ordinals because
with floating-point values there are four, rather than the usual three, mutually exclusive
relationships: less than, equal to, greater than, and unordered.

The unordered relationship is true when at least one of the two values being compared is a
NaN. This additional relationship is required because, by definition, NaNs are not numbers, so
they cannot have greater than, equal, or less than relationships with other floating-point values.

The following instructions are provided for comparing floating-point values:

cmpr compare real

cmprl compare long real

cmpor compare ordered real
cmporl compare ordered long real

All of these instructions set the condition code flags in the arithmetic controls to indicate the
results of the comparison. With the compare instructions (cmpr and cmprl), the condition
code flags are set to 000, for the unordered condition. With the compare ordered instructions
(cmpor and cmporl), the condition code flags are set to 000, and an invalid-operation excep-
tion is signaled for the unordered condition.

Two branch instructions (bo and bno) allow conditional branching to be performed on an

ordered or unordered condition, respectively. With these instructions, the processor checks the
condition code flags for unordered (000,) or ordered (111,) and branches accordingly.
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The classify-real instructions (classr and classrl) provide a means of determining the class of a
floating-point value (i.e., zero, denormalized finite, normalized finite, -, SNaN, or QNaN).
The result of this operation is stored in the arithmetic status field of the arithmetic controls.

Trigonometric

The following instructions provide four common trigonometric functions:

sinr sine real

sinrl sine long real

cosr cosine real

cosrl cosine long real
tanr tangent real

tanrl tangent long real
atanr arctangent real
atanr] arctangent long real

The arctangent instructions facilitate conversion from rectangular to polar coordinates.

Pi

The processor uses the following value for T in its computations:
7 =0.f*2°

where:
f=C90FDAA2 2168C234 C,,
e = 2 if significand is 0.f

(The spaces in the fraction above indicate 32-bit boundaries.)

This value has a 66-bit mantissa, which is 2 bits more than is allowed in the significand of an
extended-real value. (Since 66 bits is not an even number of hex digits, two additional zeros
have been added to the value so that it can be represented in a hexadecimal format. The
least-significant hex digit (C,¢) is thus 1100,, where the two least significant bits represent bits
67 and 68 of the mantissa.)

If the results of computations that explicitly use 7 are to be used in the sine, cosine, or tangent
instructions, the full 66-bit fraction for m should be used. This insures that the results are
consistent with the argument-reduction algorithms that these instructions use. Using a rounded
version of ® can cause inaccuracies in result values, which if propagated through several
calculations, might result in meaningless results.

7-18



lntel FLOATING-POINT OPERATION

A common method of representing the full 66-bit fraction of 7 is to separate the value into two
numbers. For example, the following two long-real values added together give the value for &
shown above with the full 66-bit fraction:

7 = highn + lown
where:
highm = 400921FB 54400000, ¢
lown =3DD0B461 1A600000
Here highm gives the most significant 33 bits of w and lown gives the least significant 33 bits.
Similar versions of © can also be written in the extended-real format.
When using this two-part &t value in an algorithm, parallel computations should be performed

on each part, with the results kept separate. When all the computations are complete, the two
results can be added together to form the final result.

Logarithmic, Exponential, and Scale

The following instructions provide three different logarithmic functions, an exponential func-
tion, and a scale function:

logbnr log binary real
logbnrl log binary long real
logr log real

logrl log long real

logepr log epsilon real
logeprl log epsilon long real
expr exponent real

exprl exponent long real
scaler scale real

scalerl scale long real

These instructions are described in detail in Chapter 17. The following is a brief description of
their functions.

The log binary instructions compute the IEEE recommended function /logb (X). The result is an
integral value that is the binary log of X.

The log instructions compute the function Y * log (X), where the log of X is the base-2
logarithm.

The log epsilon instructions compute the function Y * log (X + 1), where the log of X + 1 is a
base-2 logarithm.
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The exponent instructions compute the value 2X - 1.

The scale instructions perform a multiplication of a floating-point value by a power of 2.

Arithmetic Versus Nonarithmetic Instructions

The floating-point instructions can be divided into two groups: arithmetic and nonarithmetic.
Arithmetic instructions are those that are sensitive to real values, meaning that they distinguish
among NaN, oo, normalized finite, denormalized finite, and zero values.

All but five of the floating-point instructions are arithmetic. The five nonarithmetic instruc-
tions are move-real extended (movre), copy-sign real extended (cpysre), copy-reversed-sign
real extended (cpyrsre), and classify real (classr and classrl). These nonarithmetic instruc-
tions are insensitive to real values and cannot generate floating-point exceptions or faults.

This distinction between arithmetic and nonarithmetic instructions is important because
floating-point exceptions and faults can be signaled only during the execution of arithmetic
instructions.

OPERATIONS ON NANS

As was described earlier in this chapter, the processor supports two types of NaNs: QNaN and
SNaN. An SNaN is any NaN value with its most-significant fraction bit set to 0 and at least
one other fraction bit set to 1. (If all the fraction bits are set to 0, the value is an «.) A QNaN
is any NaN value with the most-significant fraction bit set to 1. The sign bit of a NaN is not
interpreted.

In general, when a QNaN is used in one or more arithmetic floating-point instructions, it is
allowed to propagate through a computation. An SNaN on the other hand causes a floating
invalid-operation exception to be signaled.

The floating invalid-operation exception has a flag and a mask bit associated with it in the
arithmetic controls. The mask bit determines how the processor handles an SNaN value. If the
floating invalid-operation mask bit is set, the SNaN is converted to a QNaN by setting the most
significant fraction bit of the value to a 1. The result is then stored in the destination and the
floating invalid-operation flag is set. If the invalid operation mask is clear, a floating invalid-
operation fault is signaled and no result is stored in the destination.

When the result is a QNaN, the format of the result is as shown in Table 7-8, depending on the
form of the source operands.
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Table 7-8: Format of QNaN Results

Source Operands QNaN Result

Only one operand is NaN, destina- | QNaN version of NaN source
tion is same width

Only one operand is NaN, destina- | QNaN version of NaN source, with

tion is longer fraction extended with zeros

Only one operand is NaN, destina- | QNaN version of NaN source, with
tion is shorter fraction truncated

Both operands are NaNs QNaN version of source whose

fraction field has greatest mag-
nitude, with fraction extended or
truncated as described above

In some cases, a QNaN result is returned when none of the source operands are NaNs. Here, a
standard QNaN is returned. The significand for the standard QNaN is as follows:

1.1000...00
(For real and long-real destinations, the integer bit will be an implied 1.)

Other than the rules specified above, software is free to use the other bits of a NaN for any
purpose.

EXCEPTIONS AND FAULT HANDLING

Occasionally, a floating-point instruction can result in an exception being signaled. The
processor recognizes six floating-point exceptions:

o Floating Reserved Encoding

+ Floating Invalid Operation

o Floating Zero Divide

o Floating Overflow

o  Floating Underflow

o Floating Inexact

These exceptions can be divided into two categories:

1. Situations in which one or more source operands are inappropriate for an operation and
would cause an exception to be signaled.

2. Situations in which the result of an operation is exceptional.

The reserved encoding, invalid operation, and division-by-zero exceptions fall in the first
category; the overflow, underflow, and inexact exceptions fall in the second category.
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Except for the floating reserved-encoding exception, each of these exceptions has a flag and a
mask bit associated with it in the arithmetic controls. When an exceptlon condition occurs, the
processor performs one of the following operations:

o If the mask bit for the exception is set, the flag for the exception is set and instruction
execution continues, substituting a default value in place of the result.

o If the mask bit for the exception is clear, the flag for the exception is not set and a
floating-point arithmetic fault is raised. The processor then stores diagnostic information
in the fault information area and diverts instruction execution to a fault handler.

Since the floating. reserved-encoding exception does not have a flag or mask bit, it always
results in a fault. .

NOTE

The floating-point exception flags are "sticky," which means that the processor does not
implicitly clear them while carrying out floating-point operations. They may be cleared by
software. -

Fault Handler

As is described in Chapter 12, when a floating-point fault is signaled, the processor calls a
single fault handler. This fault handler determines how to handle the specific fault subtype by
interpreting the floating-point exception flags and the information in the fault record.

Floating-Reserved-Encoding Exception
A reserved-encoding exception occurs as a result of either of the following two conditions:

e When a reserved encoding is used as an operand in a floating-point instruction, or

e  When a denormalized value is used as an operand in a floating-point instruction and the
normalizing-mode bit in the arithmetic controls is clear.

The first condition is rare. It can only occur if a program presents an extended-real value to the
processor that has a zero j-bit (integer part) and a non-zero biased exponent.

The second condition was discussed earlier in this chapter in the section titled "Normalizing
Mode." This condition is also rare, since the vast majority of programs run with the normaliz-
ing mode enabled.

There is neither a flag nor a mask bit for this exception. When a reserved-encoding exception
occurs, the processor raises a floating-reserved-encoding fault and does not store a result.
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Floating-Invalid-Operation Exception

The invalid-operation exception indicates that one of the source operands is inappropriate for
the type of operation being performed. The following conditions cause this exception to be
signaled:

e Any arithmetic operation on an SNaN

o Addition of infinities of unlike sign

e Subtraction of infinities of like sign

e Multiplication of zero by o

e Division of zero by zero or oo by oo

e Remainder of x by y, if y is zero or x is e

e Square root of a negative, nonzero value

e Conversion of a NaN from floating-point format to integer format

o Sine, cosine, or tangent of oo

e y*log (x),if:

~ X is negative and nonzero,
— yiszeroand X is oo,

— yand X are zero, or

- yiseandxisl

e Logepsilon of (y, x),if y is ecand x is 0
o  Compare ordered, if a source operand is a NaN

When a floating-invalid-operation exception occurs and its mask is set, the following occurs:

e When the result is a floating-point value, the standard QNaN value is stored in the destina-
tion and the floating-invalid-operation flag is set. (A discussion of how the processor
handles NaNs was provided earlier in this chapter in the section titled "Operations on
NaNs.")

e  When the result is an integer, the maximum negative integer is stored in the destination
and the floating-invalid-operation flag is set.

When the mask is clear, no result is stored; the floating-invalid-operation flag is not set; and
the floating-invalid-operation fault is signaled.

Floating-Zero-Divide Exception

The floating-zero-divide exception is signaled when an exact non-finite result would be
produced from finite operands. (Note that a different exception, overflow, is signaled when an
infinite result is produced inexactly from finite operands.) The most common example of this
exception is a division operation, where the divisor is zero and the dividend is a nonzero, finite
value.
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When the floating-zero-divide mask is set: a correctly signed oo is stored in the destination and
the floating-zero-divide flag is set. When the mask is clear, no result is stored; the floating-
zero-divide flag is not set; and a floating-zero-divide fault is signaled.

Floating-Overflow Exception

The overflow exception occurs when the infinitely precise result of a floating-point instruction
exceeds the largest allowable finite value for the specified destination format. For example, if
the destination format is real (32 bits), overflow occurs when the infinitely precise result falls
outside the range -1.0 * 2128 10 1.0 * 2128 (exclusive), where 128 is the unbiased exponent of
the result. For long-real (64 bits) values, the overflow threshold range is -1.0 * 21024 45 1.0 *
21024, for extended-real (80 bits) values, it is -1.0 * 216384 ¢ 10 * 21 384,

When the floating-overflow mask is set, a rounded result is stored in the destination and the
floating-overflow flag is set. The current rounding mode determines the method used to round
the result.

When the mask is clear: no result is stored in the destination and the floating-overflow flag is
not set. Instead, the processor stores the result in extended-real format in the fault information
area. The fraction of the extended-real value is rounded to the instruction’s destination preci-
sion. For example, if the destination operand’s format is real (32 bits), the extended-real
fraction is rounded to 23 bits, with the 40 least-significant bits filled with zeros.

If the exponent exceeds the range of the extended-real format (16383 unbiased), then the
exponent is divided by 224576 and a flag (bit 1 of the fault flags byte or override flags byte) is
set in the fault information area to indicate that the exponent has been bias adjusted. After this
fault information is stored, a floating-overflow fault is signaled.

When using the scale instructions (scaler or scalerl), massive overflow can occur, where the
infinitely precise result is too large to be represented, even with a bias-adjusted exponent.
Here, a properly signed <o is stored in the fault record.

The floating-overflow exception cannot occur on a conversion from floating-point format to
integer format (although an integer overflow exception can occur).

Floating-Underflow Exception

An underflow condition occurs when the infinitely precise result of a floating-point instruction
is less than the smallest possible normalized, finite value for the specified destination format.
For example, for the real (32-bit) format, underflow occurs when an infinitely precise result
falls in the range -1.0 * 27126 1o 1.0 * 2-126 (exclusive), where -126 is the unbiased exgonent.
For long-real (64 bits) values, the underflow threshold range is -1.0 * 21022 45 1.0 * 21022, for
extended-real (80 bits) values, it is -1.0 * 216382 g 1.0 * 216382,

When a floating-underflow condition occurs, the setting of the floating-underflow mask deter-
mines how the processor handles the condition.
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If the mask is set when an underflow condition occurs, the processor goes ahead and denor-
malizes the result. Then if the result is exact, it is stored in the destination and the floating-
underflow exception is not signaled, nor is the floating-underflow flag set. If, on the other
hand, the denormalized result is inexact, the floating-underflow flag is set and the processor
goes on to handle the inexact condition as described in the next section.

If the floating-underflow mask is clear when an underflow-condition occurs, no result is stored
in the destination and the floating-underflow flag is not set. Instead, the processor stores the
result in extended-real format in the fault information area, with the fraction of the extended-
real value rounded to the instruction’s destination precision. For example, if the destination
precision is real (23-bit fraction), the 40 least-significant bits of the fraction are set to 0.

If the exponent of the value stored is less than the minimum allowable value in the extended-
real format (-16,382 unbiased), then the exponent is multiplied by 22437 and a flag (bit 1 of the
fault or override flags byte) is set in the fault information area to indicate that the exponent has
been bias adjusted. After this information is stored, a floating-underflow fault is signaled.

The scale instructions can cause massive underflow to occur, where the infinitely precise result
is too small to be represented, even with a bias-adjusted exponent. Here, a properly signed
zero is stored in the fault record.

Refer to the section later in this chapter titled "Floating-Point Underflow Condition" for more
information on the interaction of the floating underflow and inexact exceptions.

Floating-Inexact Exception

The floating-inexact exception occurs when an infinitely precise result cannot be encoded in
the format specified for the destination operand. Either of the following two conditions can
cause an inexact exception to be signaled:

o  When a result is rounded and the result is not exact

e When overflow occurs and the floating-overflow mask is set

If the floating-inexact mask is set when an inexact condition occurs and an unmasked overflow
or underflow condition does not occur, the rounded result is stored in the destination and the
floating-inexact flag is set. The current rounding mode determines the method used to round
the result.

If the floating-inexact mask is clear when an inexact condition occurs, the floating-inexact flag
is not set and one of the following operations is carried out:

o If only the inexact condition has occurred, the processor stores the rounded result in the
specified destination, then raises a floating-inexact fault.

o  If the inexact condition occurs along with overflow or underflow, no result is stored in the
destination. Instead, the processor stores the result in extended-real format in the fault
information area, as described for the floating overflow and underflow exceptions, then
raises a floating-inexact fault.
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Refer to the following section for more information on the interaction of the floating underflow
and inexact exceptions.

Floating-Point-Underflow Condition

Two aspects of underflow are important in numeric processing: the "tininess" of a number and
"loss of accuracy.” A result is tiny when it is nonzero and its exponent is between + 2Emin
where E_;  is the smallest unbiased exponent allowed in the destination format. For example,
if the destination format is long-real (64-bit format), a result is tiny if it is nonzero and in the
range of +1 * 271022 to _1 * 2-1022_ The ability to detect a tiny result is important because such
a result may cause an exception to be signaled in a later operation (e.g., overflow on a
division).

Loss of accuracy occurs when a tiny result is approximated as part of the denormalization
process so that it will fit into the destination format.

In the 80960MC processor, tininess is detected after rounding as an underflow condition. Loss
of accuracy is detected as an inexact condition.

The algorithm in Figure 7-6 shows how the processor responds to these two conditions, when a
floating-point operation produces a tiny result.

An important point to note in this algorithm is that if the underflow mask is set, an underflow

exception is signaled only if the denormalized result is inexact. If the denormalized number is
exact, no flags are set and no faults are signaled.
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generate infinitely precise result # exponent and significand,;
if exponent < underflow threshold
then
if underflow fault mask clear
then
goto underflow fault handler;
exit algorithm;
else generate denormalized number
if denormalized significand equals infinitely precise significand
then
store denormalized result in destination;
# no underflow is signaled;
else
set underflow flag in AC;
if inexact fault mask is clear
then
goto inexact fault handler;
exit algorithm;
else
set inexact flag in AC;
store denormalized result in destination;
end if;
end if;
end if;
else
if infinitely precise result is inexact
then
if inexact fault mask is clear
then
goto inexact fault handler;
exit algorithm;
else
set inexact flag in AC;
store normalized result in destination;
end if;
else
store normalized result in destination;
end if;
end if;
exit algorithm

Figure 7-6: Interaction of Floating Underflow and Inexact Exceptions
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CHAPTER 8
MEMORY MANAGEMENT

This chapter describes the 80960MC processor’s memory management facilities. Included is a
discussion of the physical memory requirements, physical addressing, and the virtual-memory-
management system. The information presented here should be of interest only to operating-
system designers, particularly those designing the virtual-memory-management mechanism for
the operating-system kernel. Application programmers and compiler writers may skip this
chapter.

INTRODUCTION

A major feature of the 80960MC processor is its virtual-memory-management facilities. These
facilities support a conventional demand-paged, virtual-memory system, in which 4K-byte
pages of virtual memory are mapped to physical memory. This general purpose system can be
used in any of the follow applications:

e In a single-process system to map a large virtual address space into a smaller physical
address space.

o In a multitasking system to provide each process with a separate address space.

e In a multiprocessing system to provide a means for multiple processors to share a common
memory.

The processor’s virtual-memory-management facilities consists of a set of memory-
management data structures and on-chip address translation capabilities. Once the operating
system has set up these data structures, the processor provides automatic translation of virtual
addresses into physical addresses.

The majority of this chapter is devoted to a discussion of the virtual-memory system. If the
processor is going to be used strictly in the physical-addressing mode, only the first sections of
this chapter, which describe the physical address space and physical memory requirements,
need to be read.

PHYSICAL-ADDRESSING MODE VERSUS VIRTUAL-ADDRESSING MODE

The 80960MC processor provides two address-interpretation modes: physical-addressing
mode and virtual-addressing mode. When operating in physical-addressing mode, the proces-
sor interprets each address operand in an instruction as a physical address and sends the
address out to the bus unchanged.

In virtual-addressing mode, the processor interprets each address operand as a virtual address.
An on-chip memory management unit (MMU) translates the virtual address into a physical
address, which the processor then sends out to the bus.

The addressing mode flag in the processor controls determines which addressing mode the
processor is operating in. When this flag is clear, the processor operates in physical-addressing
mode; when the flag is set, the processor operates in virtual-addressing mode.
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PHYSICAL MEMORY

The processor can address a physical address space of up to 232 bytes. This address space can
be mapped to read-write memory, read-only memory, and memory-mapped 1/O.

The physical address space is linear (or flat): there are no subdivisions of the address space
such as segments. For the purpose of memory management, the kernel may subdivide physical
memory into pages. But from the point of view of the processor, the physical address space is
linear. '

All of the physical address space is available for general use except the upper 16M bytes
(FF000000, 4 to FFFFFFFF, ¢), which are reserved for special functions. (These functions are
described in Chapter 11.)

A physical address is a 32-bit value in the range 0 to FFFFFFFF .. A physical address can be
used to reference a single byte, 2 bytes, 4 bytes, 8 bytes, 12 bytes or 16 bytes of memory
depending on the instruction being used. (Refer to the descriptions of the load and store
instructions in Chapter 17 for information on multiple-byte addressing.)

Physical-Memory Restrictions

The processor requires that the physical memory that it accesses has the following capabilities:

o It must be byte addressable.

o It must support burst transfers (i.e., transfers of blocks of contiguous bytes up to 16 bytes
in length).

o It must guarantee indivisible access (read or write) for memory addresses that fall within
16-byte boundaries.

o It must guarantee atomic access for memory addresses that fall within 16-byte boundaries.

The latter two capabilities are required to allow multiple processors to share a common physi-
cal address space conveniently.

An indivisible access guarantees that a processor reading or writing a set of memory locations
will complete the operation before another processor can read or write the same location. The
processor requires indivisible access within an aligned, 16-byte block of memory.

An atomic access is a read-modify-write operation. Here the memory controller guarantees
that once a processor begins a read-modify-write operation on a set of memory locations, it is
allowed to complete the operation before another processor is allowed to access the same
location.

As described above, the processor requires that when one processor is performing an atomic
operation within an aligned, 16-byte block, other processors are delayed from performing
another atomic operation within that block until the first operation has been completed.

The 80960MC processor provides two features to aid in implementing the requirements of
physical memory described above: SIZE lines and a LOCK line on the local bus.
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The SIZE lines indicate the length of a memory access in bytes. These lines can be used to
specify 1-, 2-, 4-, 8-, 12-, or 16-byte lengths. When making a multiple-byte access, the
processor thus sends the memory controller a base address, on the address lines, and a length,
on the SIZE lines.

The LOCK line is used to synchronize atomic operations. When a processor performs an
atomic operation, it first examines the LOCK line. If it is asserted, the processor waits until the
line is not asserted (i.e., spins on the LOCK line). If the line is not asserted, the processor
asserts the LOCK line when it is performing an atomic read and deasserts the line when it
performs the companion atomic write.

For systems that use only the processor’s local bus, the LOCK line mechanism allows only one
atomic operation to be carried out in memory at one time. For larger systems that use the Intel
advanced processor bus (AP Bus), the Bus Extension Unit (BXU) component allows multiple
processors on the bus to execute several atomic operations at once on different blocks of
memory. Refer to the 80960MC Hardware Designer’s Reference Manual for detailed infor-
mation on atomic operations.

Caching of Memory Accesses

The processor supports caching of memory accesses. Caching allows a memory access to be
delayed (e.g., write back) or grouped with contiguous memory accesses to form a single
memory transaction (e.g., cache fill).

The processor does not perform the caching function; however, it does provide a means of
informing a cache manager whether or not a memory access is "cacheable.”

When operating in the physical-address mode, all memory accesses are considered cacheable.

VIRTUAL-MEMORY-MANAGEMENT SYSTEM

The processor’s virtual-memory-management system is designed to perform the following
functions:

o Allow the mapping of a large, virtual address space into a smaller physical address space
using 1- or 2-level page tables.

e Provide a convenient means of managing multiple process address spaces in multitasking
operating systems.

o Provide a method of addressing architecture-defined data structures.

The first function is handled by means of a traditional paging mechanism that uses page tables
and optional page-table directories to map the virtual address space into physical address space
in 4K-byte pages.

The second and third functions are handled through a central table, called the segment table,

which the processor uses to locate a specific address space or system data-structure in physical
memory.
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The following discussion first presents the concept of the segment table and the mechanism
used to implement this concept. Then, the paging mechanism is described. Finally, the
method the operating system uses to set up and maintain these memory management structures
is given.

SEGMENT-TABLE OVERVIEW

The segment table is a data structure that resides in physical memory. This table provides the
processor with a system-wide addressing mechanism, which allows the processor to locate all
the process address spaces and system data structures that the kernel has created. It also allows
many process address spaces and data structures to be mapped into physical memory at one
time. Figure 8-1 shows a conceptual view of the segment table.

SEGMENT 1
SEGMENT >
SELECTORS (SS's)
s 1
| SEGMENT TABLE SEGMENT 2
52 SEGMENT DESCRIPTOR 1
_|—> SEGMENT DESCRIPTOR 2
ss3 SEGMENT 3
[ L— | seGMENTDESCRIPTOR 3 >
SEGMENT 4
sa |—>]| SEGMENTDESCRIPTOR4 >
SEGMENTS
_I—-> | SEGMENT DESCRIPTOR 5 >
ss5 SEGMENT 6
‘—I—> SEGMENT DESCRIPTOR 6 >
ss6 | < <
SEGMENT DESCRIPTOR N
UP TO 262,144 SEGMENT
DESCRIPTORS ARE ALLOWED.

Figure 8-1: Conceptual View of the Segment Table

The segment table is made up of a collection of segment descriptors. Each segment descriptor
points to an individual segment. A segment is defined as a contiguous address space of from
16 to 232 - 1 bytes. Figure 8-2 shows a segment and the mechanism used to address a byte in a
segment.
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SEGMENT PHYSICAL
TABLE ADDRESS SPACE
0
32-BIT SEGMENT SELECTOR L
BASE PHYSICAL
ADDRESS OF
SEGMENT
32-BIT SEGMENT OFFSET SEGMENT IN
SEGMENT OFFSET MAY PHYSICAL
BE TRANSLATED MEMORY
THROUGH ONE OR BASE PHYSICAL
TWO LEVELS OF PAGE ADDRESS + OFFSET
TABLES

232

Figure 8-2: Segment Addressing

A segment is addressed by means of a 32-bit data structure called a segment selector (SS). An
SS contains an index into the segment table to the location of the segment descriptor for the
segment. When the operating system creates a segment, it assigns a unique SS to the segment.

To locate a byte in a segment, the processor then needs two items: the SS for the segment and
a 32-bit offset into the segment. The processor uses the SS to locate the segment descriptor for
the segment in the segment table. From this segment descriptor, it gets the physical address of
the base (first byte) of the segment. It then uses the offset to locate the selected byte in the
segment.

When paging is used, the offset is translated through page tables and an optional page table
directory to get the physical address of the selected byte in the segment.

USES OF SEGMENTS

The processor uses segments in two ways, as shown in Figure 8-3. The first way is as a means
of addressing the four regions that make up the address space for a process.
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SEGMENT.
SELECTORS (S$'s)
SS . —
REGION 0
REGION
0
ss SEGMENT TABLE
REGION 1 >
SEGMENT DESCRIPTOR
REGION 0 recion
I3 _ | SEGMENT DESCRIPTOR 1
REGION 2 > REGION 1 ss
» PROCE
SEGMENT DESCRIPTOR - AD?,%ESS
"REGION 2 SPACE
SS SEGMENT DESCRIPTOR REGION
REGION 3 REGION 3 SYSTEM DATA 2
SEGMENT DESCRIPTOR  STRUCTURE
= |'—’ SYSTEM DATA STRUCTURE >
SYSTEM DATA SEGMENT DESCRIPTOR
STRUCTURE SYSTEM DATA STRUCTURE REGION
3
S e e SYSTEMDATA
SYSTEM DATA s STRUCTURE
TRUCTURE
STRUCTU SEGMENT DESCRIPTOR N
UP TO 262,144 SEGMENT
DESCRIPTORS ARE ALLOWED.

Figure 8-3: Uses of Segments

As was described in Chapter 3, part of the execution environment for the processor is the
address space, which can range from 1 to 232 bytes. When using the processor’s virtual-
memory system, the address space is divided into four regions. Each of these regions is
contained in a segment. To access the address space, the processor must have four SS’s, one
for each region.

In a multitasking system, each process is assigned its own address space. Each process address
space is made up of four regions, which the processor locates with four SS’s.

The second way that the processor uses segments is to address system data structures. The
processor defines several system data structures such as the PCB and the system procedure
table. Each of these data structures is contained in a segment. The processor is able to access
data in these data structures by means of the SS for the segment that contains the data structure.

SEGMENT-TABLE DATA STRUCTURES

The following sections describe the actual structure of an SS, a segment table, and a segment
descriptor.
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Segment Selector

Figure 8-4 shows the structure of an SS. The first six bits are always set to 1. Bits 6 through
31 give the entry number of the segment selector in the segment table. (Since segment
descriptors are aligned in the segment table on 16-byte boundaries, the segment index actually
gives the 26 most significant bits of the offset into the segment table of the first byte of the
segment selector. The processor assumes the six least-significant bits are zero.) This structure
allows the operating system to create up to 226 unique SS’s. However, the largest allowable
segment table can have only 262,144 (218) segment descriptors.

31 6 5 0
| SEGMENT INDEX Jal1][1]1]1]4]

Figure 8-4: Segment Selector

A segment selector can be stored anywhere in the address space for a process or in specific
places in system data structures. They are, however, useful for only two purposes:

o Certain instructions use an SS as an operand. These instructions can only be executed
while in the supervisor mode and are thus normally used only by the operating system.

o The processor fetches SS’s from various system data structures and uses them to access
system management information. For example, the processor gets the SS for region 3 of
the process address space from the processor control block.

Applications programs will generally not use SS’s.

NOTE

When the processor uses an SS for its intended purpose (as a pointer to a segment), it expects
the 6 least-significant bits of the SS to be set to 1. If they are not, the processor’s behavior is
unpredictable.

Once the processor uses an SS, however, it clears some of these bits; and, if a program
examines an SS that the processor has used, some of these bits may be zero.

To insure predictable behavior of the processor, it is good programming practice to reset the 6
least-significant bits of the SS to 1 any time a program moves an SS that the processor has
already used.

For example, if a program removes an SS for a PCB from a dispatch port, it should set these
bits to 1 as a matter of course, before it places the SS in a data structure or instruction where the
processor will use the SS for its intended purpose.
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Segment Table

The segment table is itself contained in a segment and has an SS. This allows the processor to
locate the segment table in physical memory.

Figure 8-5 shows the structure of a segment table. It is simply a collection of 16-byte segment
descriptors, with no header.

ENTRY O 0
16

32

48
64
80
96

SEGMENT
TABLE SS 112

23F15 |- |SEGMENT TABLE SEGMENT DESCRIPTOR |128
144

4; ;

4K bytes or
4M bytes

Figure 8-5: Segment Table

Except for index entry eight (with entry zero being the lowest numbered entry), the segment
descriptors can be assigned to any segment. Entry eight is reserved for the segment descriptor
for the segment table. The SS for the segment table is thus always 0000023F .

There are two sizes of segment tables: a small segment table and a large segment table. A
small segment table is 4096 bytes (1 page) in length and can contain up to 256 segment
descriptor entries. A large segment table can be up to 4M bytes in length and can contain up to
262,144 segment descriptors.
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Segment Descriptors

A 16-byte segment descriptor provides mapping information to allow the processor to locate a
specific segment in physical memory. It also provides type information and in some cases
access information to tell the processor how the segment may be used or how it has been used.

The segment descriptor fields contain the following pieces of information:

e The base physical address of the segment

e The size of the segment

e The access status

e Whether or not the segment is in physical memory
e  The paging method

e The segment type

Figure 8-6 shows a generic segment descriptor with the fields labeled. The function of each of
these fields is described in the following paragraphs. The entries required in each fields for
specific types of segment descriptors (such as, port segment descriptors, process segment
descriptors, etc.) are given later in this chapter in the section titled "Segment Types".

BYTE DISPLACEMENT

A B \\\\\ \\\‘\\‘\\\\\\‘\\\\\\\W\\\\\\\\\\\\\\\\\
MM Y 7 + 4
] 0|0

BASE ADDRESS 0/0]0 0] n+8
5BITS n+ 12

L VALID
PAGING METHOD
ACCESS STATUS

SIZE
SEGMENT TYPE

]| RESERVED (INITIALIZE TO 0)

NN PRESERVED

Figure 8-6: Generic Segment Descriptor

NOTE

The shaded areas in Figure 8-6 and in the following figures indicate reserved and preserved
areas of a segment descriptor. Refer to Chapter 1 for an explanation of these terms.

Base Address

The base address field gives the physical address of byte O of the segment being referenced. If
the segment is a paged segment, this field gives the base address of a page table or a page-table
directory.
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Size

The size field determines the length of the segment according to the following relationship:
segment length in bytes = 64 * (SIZE + 1)

For most segment types, the size field is either not used or the value to be placed in this field is
predefined. However, for a few segment types this field is used to determine the size of the
segment, as shown later in this chapter.

Access Status

The three flags in the access status field determine how a segment or page can be used or has
been used. The processor and kernel use these flags to facilitate page swapping. For paged
segments, some of these flags may not be used at the segment descriptor level. Instead, they
are set in the page table or page-table-directory entries.

The cacheable flag (bit 6) determines whether or not a segment or page of a segment can be
cached. When this flag is set the segment or page is cacheable. Caching of memory accesses
was described earlier in this chapter in the section titled "Caching of Memory Accesses."

The accessed flag (bit 3) shows whether a segment or page of a segment has been accessed
since it was loaded into physical memory; the altered flag (bit 4) shows whether the page has
been written to. The kernel clears these flags when it loads a segment or page into memory.
The processor then sets the flags when it accesses or writes to a byte in the page.

The kernel uses the accessed and altered flags in page swapping to determine the relative age
of a page and to determine whether a page can be discarded or must be written to secondary
storage when it is swapped out of memory.

The two other bits in the access status field (bits 5 and 7) are reserved. For some segment
types these bits are set to 1 and for others they are set to 0, as is shown in the following pages.

Valid Flag

The valid flag shows whether or not a segment or page of a segment is present in memory.
When this flag is set, the segment is present; when it is clear, the page is not present. When the
processor attempts to access a segment or page, it checks this flag to determine if the segment
or page is present. If the valid flag is clear, the processor raises a virtual-memory fault. The
fault handler routine then calls upon the kernel to load the segment or page into memory.

When the valid flag is set to O, the processor does not interpret the other bits in the segment
descriptor. Software is then free to use these bits for other purposes. For example, if a
segment is not in physical memory, the base address field might be used to store the location of
the segment in a mass storage device (such as a disk).
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Paging Method

The paging method field shows whether the segment is unpaged (01), paged (10), or bipaged
(11). The value in this field must be as is shown in the following sections for each segment
descriptor type.

Segment Types
The processor recognizes the following nine types of segments:

e Simple Region

e Paged Region

« Bipaged Region

e  Process Control Block
e Port

e Procedure Table

e  Semaphore

¢  Small Segment Table
e Large Segment Table

The segment descriptor is set up differently for each segment type, as is described in the
following paragraphs. For some of these segment types (but not all), the type is shown in the
type field. For those segments types where the type is specified, the processor checks this type
field before accessing the rest of the data in the segment descriptor to insure that the segment
being accessed is the correct type. In cases where the processor performs type checking on
segment descriptors, it signals a type fault if an inappropriate type is found.

The following paragraphs describe what must be placed in each of the segment-descriptor
fields, depending on the type of segment that the segment descriptor is pointing to.

Region Descriptors

Each region of an address space is contained in a segment. A region segment can be a simple
region, a paged region, or a bipaged region. For each of these three types of regions, the
segment descriptor is set up slightly different. Figure 8-7 shows the segment descriptors for
the three types of regions.

Simple Region. A simple region is a one-page segment (4096 bytes) that is mapped into
physical memory as a contiguous page.

The base address for a simple region must fall on a page boundary in physical memory, so the

12 least-significant bits of the base address field are set to zero. The size field is set to 63,
indicating 4K bytes length.
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Since the simple region descriptor points directly to the segment in memory, the three access
flags (accessed, altered, and cacheable) are set and examined by the processor and kernel.

SIMPLE-REGION SEGMENT DESCRIPTOR BYTE DISPLACEMENT
n
n+4
BASE ADDRESS ofojofofofofofofofofo]o] n+8
11l 1]1] 1lcl1]|cfalof1][v] n+12
31 23 18 M 76543210
LVALID
ACCESSED
ALTERED
CACHEABLE
PAGED-REGION SEGMENT DESCRIPTOR BYTE DISPLACEMENT

t VALID
BIPAGED-REGION SEGMENT DESCRIPTOR BYTE DISPLACEMENT
n
n+4
PAGE-TABLE-DIRECTORY ADDRESS olofofofofo] n+8
L SIZE 1]1]{v] n+12
31 23 18 5 210
t VALID

| RESERVED (INITIALIZE TO 0)

NN PRESERVED

.

Figure 8-7: Region Segment Descriptors

Paged Region. A paged region is a segment that is mapped into physical memory by means of
a page table. A paged region may be from 4096 bytes to 4096K bytes in length.

The base address field for a paged-region descriptor points to the base physical-address of a
page table. This address must fall on a 64-byte boundary, so the 6 least-significant bits of the
base address field are set to zero.

A page-table can be up to a page in length as determined by the size field. Each page-table
entry is 4 bytes, so the number of entries in the page table is as follows:

Number of Page-Table Entries = 16 * (SIZE + 1)

For a paged region, the access information is stored in the page-table entries. The access status
flags in the segment descriptor are thus set to O and the valid flag shows whether or not the
page table is present in memory.
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Bipaged Region. A bipaged region is a segment that is mapped into physical memory by
means of two levels of page tables. A page-table directory forms the first level. Entries in the
page-table directory then point to up to 1024 page tables. A bipaged region may be from 4096
bytes to 4096M bytes in length.

The segment descriptor for a bipaged region is similar to that of a paged region descriptor. The
base address field gives the base physical-address of a page-table directory, which must fall on
a 64-byte boundary.

A page-table directory can be up to a page in length as determined by the size field. The
number of 4-byte entries in the page-table-directory is determined by the same relationship, as
is shown above for a page table in a paged region.

As with paged regions, all of the access information except the valid flag is stored in the
page-table-directory and page-table entries.

Process, Port, and Procedure-Table Descriptors

A process-segment descriptor points to a segment that contains a process control block (PCB);
a port-segment descriptor points to a segment that contains a dispatch port or a communication
port; and a procedure-table segment descriptor points to a segment that contains a procedure
table. Figure 8-8 shows the format for each of these types of segment descriptors.

NOTE

A PCB and a port are architecture-defined data structures. The PCB is described in Chapter 13;
the port is described in Chapter 14.

The formats for these segment descriptors are identical, except that the value in the type field is
different for each type of descriptor.

The base address for each of these segments must fall on a 64-byte boundary in physical
memory and the segment as a whole must not span a 4096-byte boundary. Spanning a
4096-byte boundary will cause unpredictable results when the segment is accessed.

The sizes of the process and port segments are defined by the PCB and port data structures.
The size of the procedure table segment is 1088 bytes.

These segments must always be present in physical memory, so the valid, accessed, and altered
flags are always set to 1. The cacheable flag can be set to allow caching of the segment.
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PROCESS-CONTROL-BLOCK SEGMENT DESCRIPTOR BYTE DISPLACEMENT
n
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PROCESS-CONTROL-BLOCK ADDRESS ofofojojfo]|0O n+8
ofo[1[of = fo[1]ofo]o]o 1fclif1]1]o{1][1] n+12
31 28 23 18 76543210
T—CAQ’IMEABLE
PORT-SEGMENT DESCRIPTOR BYTE DISPLACEMENT

Y "
.1 Y 7 + 4

PORT AD! 0/0/0|0)0}j0] n+8

1{1]1[{0]1|{1] n+12
3 28 23 76543210
1——— CACHEABLE
PROCEDURE-TABLE-SEGMENT DESCRIPTOR BYTE DISPLACEMENT
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Figure 8-8: Process, Port, and Procedure-Table Segment Descriptors

Segment-Table Descriptors

Figure 8-9 shows the formats for the two types of segment-table descriptors: one for a small

segment table and another for a large segment table.

A

small segment table is mapped to a page of physical memory. The base address in the small
segment table descriptor must point to a 4096-byte (page) boundary in physical memory. The

12 least-significant bits of the base address are thus set to zero.

A

small segment table must always be in physical memory, so the accessed, altered, and valid

flags are set to 1. Whether or not a small segment table is cacheable is optional.

A

large segment table is mapped to physical memory by means of a page table. The base
address in the large segment table descriptor then points to the base address of a page table,

which must be located on a page boundary.
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SMALL SEGMENT-TABLE SEGMENT DESCRIPTOR BYTE DISPLACEMENT
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Figure 8-9: Segment-Table Segment Descriptors

The valid flag is set to 1, indicating that the page table associated with the large segment table
must always be present in memory. However, the individual pages that are associated with a
large segment table may be swapped in and out of physical memory as determined by the
access flags for their individual page-table entries.

Semaphore Descriptor

A semaphore is a system data structure that is small enough that it does not need to be mapped
into a segment. Instead it is encoded in the segment descriptor itself. Such a segment
descriptor is called an embedded descriptor. Figure 8-10 shows the format for a semaphore
descriptor.

NOTE

A semaphore is an architecture-defined data structure. It is described in Chapter 14.

BYTE DISPLACEMENT

n
SEMAPHORE DATA STRUCTURE n+4
n+8
n+12

31 28 210

RESERVED ( INITIALIZE TO 0)

Figure 8-10: Semaphore Segment Descriptor

Here the data structure for the semaphore is contained in the first three words of the descriptor.
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Invalid Descriptor

Since both the small and large segment tables have fixed sizes, a certain number of the segment
descriptors in these tables, at a particular time, will be unused. These unused segment descrip-
tors should be formatted as an invalid segment descriptor, as shown in Figure 8-11.

BYTE DISPLACEMENT

Y
1111 Y+ #
B HLHITINIIJNIIIITTHIMIT T I ITT]I]H i ITH sy  » + 8
MY 0 [ 0 [ 0] 1 412

3 210

NN  PRESERVED

3

Figure 8-11: Invalid Segment Descriptor

PAGE TABLES AND PAGE-TABLE DIRECTORIES

Any segment that is greater than 4096 bytes in length is mapped into physical memory in
pages. The segment types that fall into this category are the paged and bipaged regions and the
large segment table. All the other segment types described earlier in this section are mapped
directly into physical memory from the segment table.

The mapping of segments into pages of physical memory is handled by means of page tables
and page-table directories. Figure 8-12 shows a conceptual view of this paging mechanism.

The first segment is unpaged, so the segment descriptor points directly to the segment. This
method of paging is used for architecture-defined data structures that are less than a page long,
and for simple regions. ‘

The second segment is paged through a single page table. Here, the segment descriptor for the
segment points to the page table. Entries in the page table then point to the individual pages
that make up the segment. This method of paging is used for paged regions and for a large
segment table.

The third segment is paged in two levels. The first level of paging is through a page-table
directory, which points to one or more page tables. The second level of paging is through the
page tables, which point to the individual pages of the segment. This method of paging is only
used for regions.
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Figure 8-12: Conceptual View of Segment Paging
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Page Table and Page-Table-Directory Structure

As is shown in Figure 8-13, page tables and page-table directories are made up of 4-byte
entries. (There is no table header.) Both types of tables can be up to one page in length, which
allows up to 1024 entries per table.

PAGE TABLE (DIRECTORY) ENTRY 0

12
16
20

W
\AJ

Figure 8-13: Page Table or Page-Table-Directory Structure

One-level paging can be used to page segments of from 4096 bytes to 4096K bytes in length;
two-level paging can be used to page segments of from 4096 bytes to 4096M bytes in length.

When using one-level paging, the size field in the paged segment descriptor determines the
number of entries in a page table. Likewise, when using two-level paging, the size field in the
bipaged segment descriptor determines the number of entries in the page-table directory.
However, when setting up a bipaged segment, the page tables that the page-table directory
points to have a set length of one page.

Page Table and Page-Table-Directory Entries

Figure 8-14 shows the structure of the page table and page-table-directory entries.
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Figure 8-14: Page Table or Page-Table-Directory Entries

Page-Table Entry

In a page-table entry, the base address points to the base physical address of a page. The page
must be a full 4096 bytes in length and be aligned on a page boundary in physical memory.

Only the 20 most-significant bits of the base address are given.

For paged or bipaged segments, the accessed, altered, and cacheable information is shown at

the page level in the page-table entry.

Each page-table entry also has a valid flag. This flag can be either 1 or 0, depending on
whether or not the page is present in physical memory. However, as described in a following
section titled "Invalid Page Table Or Page-Table-Directory Entry," this flag will normally be

setto 1.

The page rights field shows what operations (i.e., read or write) can be performed on the

contents of the page. Page rights are discussed in a following section titled "Page Rights."
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Page-Table-Directory Entry

In a page-table-directory entry, the base address points to the base physical address of a page
table. Page tables are one page in length and must be aligned on page boundaries in physical
memory. Only the 20 most-significant bits of the base address are given in the page-table-
directory entry.

Each page-table-directory entry has a valid flag and page rights field as in a page-table entry.

Invalid Page Table or Page-Table-Directory Entry

When a page is not in physical memory, the valid flag for its associated page-table entry is set
to zero. The entry is then an invalid page-table entry. Any entry in a page table that does not
point to a valid page must have its valid flag set to zero.

Bits 1 through 31 of an invalid page-table entry are not looked at by the processor, so they are
available for software to use. A typical use of these bits is to store the location of the page in a
mass storage device.

An invalid page-table-directory entry is the same as an invalid page-table entry, except that it
indicates that its associated page table is not in memory. Again, bits 1 through 31 of an invalid
page-table-directory entry are available to software and are typically used to store the mass
storage address of the page table.

Page Rights

When operating in virtual-addressing mode, the processor allows access to information in
physical memory to be restricted on a page by page basis. The page rights field in the page
table and page-table-directory entries determines the access rights for a particular page or
group of pages, respectively.

The processor checks these page rights each time it accesses memory.

Three levels of access rights are allowed: no access, read-only, and read-write. The page
rights bits are interpreted differently depending on the execution mode (i.e, user or supervisor)
that the processor is operating in, as shown in Table 8-1.

Table 8-1: Page Access Rights Interpretation

Rights Execution Mode

User Supervisor
00 no access read only
01 no access read-write
10 read only read-write
11 read-write read-write
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When the processor accesses a page in a paged segment (e.g., a paged region), the page rights
from the page’s page-table entry determine the access rights for the page. When the processor
accesses a page in a bipaged segment, the minimum page rights from a page’s associated
page-table entry and page-table-directory entry determine the access rights for the page.

For example, in a bipaged segment, if the page rights in the page-table entry are read-write, but
the page rights in the page-table-directory entry are read-only, the processor will be allowed
only to read the page.

The inspect access instruction (inspacc) returns the effective page rights of the access path for
a specified address. This instruction is useful in fault handling routines.

When the processor is in physical-addressing mode, virtual address translation is turned off,
which disables page rights checking.

ADDRESS TRANSLATION IN VIRTUAL MODE

This section describes how the processor uses the memory management data structures
described in the previous sections to translate an SS into the location of a segment descriptor in
a segment table. It also describes how the processor translates a 32-bit virtual address into a
32-bit physical address.

SS Translation

The processor can get an SS either from a system data structure or from an instruction operand
issued by a kernel routine. Once it has received an SS, the processor translates it into an offset
into the segment table. This offset is to the physical address of the least significant byte of the
SS’s associated segment descriptor.

As is described in the following sections, the translation is slightly different depending on
whether the segment table is a small or a large table. In either case, the processor has already
translated the SS for the segment table to determine the base address of the segment table itself.

Small Segment Table SS Translation

The processor uses the following procedure to locate a segment descriptor in a small segment
table:
If the segment index in the SS is greater than 255, , signal a segment-length fault.

2. Locate the segment descriptor whose base address is the base address of the segment table
plus 16 times the segment index.

3. If the valid flag for the descriptor is set to 0, signal the invalid segment-descriptor fault. -
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Large Segment Table SS Translation

The processor uses the following procedure to locate a segment descriptor in a large segment
table:

1. If the segment index is greater than 262,143, signal the segment-length fault.

2. Get the address of the page table from the large-segment-table segment descriptor at
segment index 8.

3. Locate the page-table entry, whose word offset is given by bits 14 through 23 of the SS.
If the valid flag in the page-table entry is 0, signal the invalid page-table entry fault.

5. Locate the segment descriptor whose base address is the base address from the page-table
entry plus 16 times bits 6 through 13 of the SS.

6. If the valid flag for the descriptor is set to 0, signal the invalid segment-descriptor fault.

Virtual-Address Translation

The term virtual address refers to an address in the address space for the currently running
process (i.e., the process address space). That address is a virtual address if the address space
has been mapped into physical memory using the virtual memory mapping mechanism (i.e.,
region segments, page tables, and pages) described earlier in this chapter.

The processor receives addresses as operands in instructions. If the processor is operating in
virtual-addressing mode, it assumes that any address it receives is a virtual address. The
processor then translates the address automatically into a physical address.

Figure 8-15 shows how a virtual address is broken down into a physical address depending on
whether the region that contains the address is a simple region, a paged region, or a bipaged
region.

In the first step of the translation process, the processor uses bits 30-31 of the virtual address to
determine which region the address is in. The processor already has SS’s for the four regions
of the current address space, so it uses the SS for the selected region to locate the segment
descriptor for that region.

If the descriptor is an invalid segment-table entry, the invalid-descriptor fault is signaled. If the
descriptor is not one for a simple, paged, or bipaged region, the action is unpredictable. If the
valid flag in the descriptor is O, the invalid segment-table entry fault is signaled.

The following procedures describe the rest of the translation process, depending on the type of
region being accessed.
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Figure 8-15: Virtual-Address Translation
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Simple-Region Address Translation

If bits 12 through 29 of the virtual address are not zero, signal the segment length fault.

If the accessed flag in the segment descriptor is 0, set it. If the altered flag is 0 and the
operation is a write, set it. If one or both of these flags need to be set, write the entry into
memory as the completion of an atomic read-modify-write operation.

The physical address is the 20-bit base address from the segment descriptor, followed by
bits O through 11 of the virtual address.

Paged-Region Address Translation

1.

If bits 12 through 21 of the virtual address are not less than the value 64 * (SIZE + 1), size
being a field in the descriptor, signal the segment length fault.

Locate the page table using the base address from the segment descriptor.

Locate the page-table entry, whose word offset from the base of the page table is given by
bits 12 through 21 of the virtual address.

If the valid flag in the page-table entry is 0, signal the invalid page-table entry fault.

If the page rights in the entry are 00 or 01 and the execution mode is user, if the page
rights are 00 and the operation is a write while in supervisor mode, or if the page rights are
10 and the operation is a write while in user mode, signal the page-rights fault.

If the accessed flag in the page-table entry is O, set it. If the altered flag is O and the
operation is a write, set it. If one or both of these flags need to be set, write the entry into
memory as the completion of an atomic read-modify-write operation.

The physical address is the 20-bit base address from the page-table entry, followed by bits
0 through 11 of the virtual address.

Bipaged Region-Address Translation

1.

If bits 22 through 29 of the virtual address are not less than the value 64 * (SIZE + 1), size
being a field in the descriptor, signal the segment length fault.

Locate the page-table directory using the base address in the segment descriptor entry.

Locate the page-table-directory entry, whose word offset from the base is given by bits 22
through 29 of the virtual address. '

If the valid flag in the entry is 0, signal the invalid page-table-directory entry fault.

If the page rights in the entry are 00 or 01 and the execution mode is user, if the page
rights are 00 and the operation is a write while in supervisor mode, or if the page rights are
10 and the operation is a write while in user mode, signal the page-rights fault.

Locate the page table using the base address from the page-table-directory entry.
Locate the page-table entry, whose word offset from the base of the page table is given by

* bits 12 through 21 of the virtual address.

If the valid flag in the page-table entry is O, signal the invalid page-table entry fault.
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9. If the page rights in the entry are 00 or 01 and the execution mode is user, if the page
rights are 00 and the operation is a write while in supervisor mode, or if the page rights are
10 and the operation is a write while in user mode, signal the page-rights fault.

10. If the accessed flag in the page-table entry is O, set it. If the altered flag is O and the
operation is a write, set it. If one or both of these flags need to be set, write the entry into
memory as the completion of an atomic read-modify-write operation.

11. The physical address is the 20-bit base address from the page-table entry, followed by bits
0 through 11 of the virtual address.

Load Physical Address Instruction

The load physical address instruction (ldphy) returns a physical address for a given virtual
address. This instruction allows the kernel to determine the physical address of specific data
structures when only the virtual address is known.

Spanning Page, Region, and Address-Space Boundaries

Page boundaries are completely transparent, except in cases where a memory access spans a
page boundary and the pages have different rights. For example, if one page has read-write
access and the adjacent page has read-only access, a write operation that spans the page
boundaries will fault when it gets to the read-only page.

Region boundaries are not transparent, because each region is mapped with a different segment
descriptor and page table (or set of page tables). Multiple-byte accesses that cross region
boundaries can thus cause unpredictable results. This limitation can be circumvented by
mapping two or more regions with the same set of page tables. This technique is described in
detail later in this chapter in the section titled "Making Region Boundaries Transparent."

NOTE

When a multiple-byte access spans the 232-byte boundary of the address space, the address
wraps around to zero.

s

Translation Look-Aside Buffer

To make the virtual-to-physical address translation mechanism more efficient, the processor
provides a special buffer to hold address-translation information. This buffer is called the
translation look-aside buffer (TLB).

When the processor receives a virtual address to be translated, it first looks in the TLB to see if
it has already been translated. If it has, the processor skips the translation process and takes the
physical address from the TLB.

The information stored in the TLB includes the following:

«  Segment descriptors for the segment-table segment and the region-3 segment
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o Segment descriptors for the current PCB segment and the region-0, -1, and -2 segments
o The page-table entry for the page that contains the bottom of the interrupt stack

o Page-table entries for pages that have been addressed at some point in the control flow of
the processor

Page-table-directory entries are not stored in the TLB.

Several IACs are provided for flushing (i.e., invalidating) specified entries in the TLB to insure
that it is consistent with the current state of the segment table and page tables. These IAC
messages are described in Chapter 12.

OPERATING-SYSTEM CONSIDERATIONS

The preceding discussion of the processor’s virtual-memory mechanism describes the data
structures required to support virtual memory and how the processor uses these structures to
translate virtual addresses into physical addresses. For this mechanism to work, however, the
kernel must set up and maintain these memory-management data structures.

This section suggests some ways to configure the memory-management data structures and the
kernel to allow convenient management of the virtual memory system.

Address Space Structure

Of the four regions that make up the address space, the first three regions are specific to the
currently running process. The processor gets the SS’s for these regions from the PCB for the
current process. The fourth region is shared by all processes. The processor gets the SS for
this region from the processor control block (PRCB).

NOTE
The PRCB is an architecture-defined data structure. It is described in Chapter 9.

Figure 8-16 shows an example of how these regions might be used to best advantage.

The address space is divided into regions primarily to improve performance in multitasking
applications that require a lot of process switching. For example, if the kernel is placed in
region 3, it can be shared by all processes. It can then remain in memory on a process switch,
which saves page swapping time. The kernel can also be protected from the various applica-
tion programs running on the system by defining the access rights for the whole of region 3 as
supervisor only.

The availability of regions also facilitates the separation and protection of the major parts of an
application program running in the current process. Figure 8-16 shows an example of how the
code (or program text), the static data, the heap (dynamically allocated data), and the stacks
(user and supervisor) might be placed in regions 0, 1, and 2.
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Figure 8-16: Address Space Structure
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Placing code in its own region provides the same benefit as providing a separate region for the
kernel. It allows the code to be shared by several processes, without requiring that it be
swapped each time there is a process switch. This sharing is accomplished merely by giving
each process that needs to use the code the same region 0 SS. Also, access rights to the code,
which in this case would be read only, can be assigned on a region by region basis.

Placing the heap and the stacks in their own regions permits uninterrupted growth of these data
structures. Here, access to the supervisor-stack pages might be restricted to supervisor mode
only.

Region Gaps and Boundaries

Two aspects of this region mechanism should be noted in passing. First, by using separate
page tables or groups of page tables for each region, the size of each region can be changed
independently. If a region is less than 1G byte, which will commonly be the case, a gap is
formed at the end of the region. Second, if an operand spans a 1G-byte region boundary, the
result is unpredictable.

Making Region Boundaries Transparent

These factors should not ordinarily prove an obstacle in kernel design. However, if a design
does require transparent region boundaries, it can be accomplished in the following manner.

As shown in Figure 8-17, the boundaries between regions 0, 1, and 2 can be made transparent
by defining a single segment that is 3G bytes (3 * 230) in size. This segment is represented by
a single page-table directory with 768 entries. The segment descriptors for regions 0, 1, and 2
are then set to point to this page-table directory: the region-0 segment descriptor points to the
base address of the page-table directory, the region-1 segment descriptor points to the base
address plus 1024, and the region-2 segment descriptor points to the base address plus 2048.

Since region 3 is shared by all processes, this region would most likely be defined as a separate
segment.

Accessing System Data Structures

The kernel or an application program can only access that part of physical memory that has
been mapped into the four regions of the current, process address space. This is because the
processor does not provide any addressing modes that allow a program to access a memory
location by means of an SS. The processor can make these accesses, but a program cannot.

An important implication of this restriction is that the kernel cannot access directly those

segments that lie outside the current process address space (such as process segments, port
segments, or the segment table itself) except in physical-addressing mode.
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For the kernel to access the system defined data structures, their physical memory locations
must be mapped both into the current process address space and into their individual segments.

“This dual mapping can be done in a variety of ways. Figure 8-18 shows one of the simplest

methods. Here, all of physical memory is mapped into region 3 of the address space. For
example, if the physical memory size is 16M bytes, page tables for the first 16M bytes of
region 3 point to the physical address space. The kernel can then read or write to any location
_in physical memory merely by accessing the first 16M bytes of region 3.

The data structures in physical memory are also mapped to other segments through separate

SS’s and segment-table entries. The processor then uses these SS’s to access the segments
through its virtual-memory translation mechanism.
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CHAPTER 9
PROCESSOR MANAGEMENT AND INITIALIZATION

This chapter describes the facilities for initializing and managing the operation of the
80960MC processor. Included is an overview of the processor-management facilities and a
description of the processor-control block (PRCB). The steps required to initialize the proces-
sor are also given.

OVERVIEW OF PROCESSOR CONFIGURATIONS

The 80960MC processor has been designed for use in a variety of system configurations. For
the purpose of discussion in this manual, the possible configurations have been divided into the
following three groups:

e Single-Task System -- Single processor performs a single task, often running from a
ROM-based operating system kernel and application program.

o  Multitasking System -- Single processor is able to perform several tasks concurrently.

e Multiprocessing System -- Multiple processors are able to perform several tasks, with the
possibility of some tasks being processed simultaneously.

This chapter and the following chapters describe the processor and process management
facilities the 80960MC processor provides. These facilities allow one or more 80960MC
processors to be configured for any of the above applications. The facilities discussed are
primarily software related, although some hardware considerations are also discussed.

The processor-management facilities are described in this chapter and in Chapters 10, 11, and
12. The process management facilities that support multitasking systems are described in
Chapters 13 and 14. Chapter 15 describes the process and processor management facilities that
support multiple-processor configurations.

PROCESSES AND TASKS

In this manual, the terms process and task are used somewhat synonymously; however, a slight
distinction between the two words should be noted. The term process refers to a unit of work
that the processor is able to schedule and work on. A process is defined by information
contained in a process control block (PCB).

The term task is a more general term that refers to units of work that can be scheduled at either
the processor or the operating-system kernel level. For example, a multitasking system is one
that performs multiple tasks. Each task may be presented to the processor in the form of a
process with its own PCB. Or, each task may be scheduled and dispatched in software, with all
the tasks executed in the context of a single process.
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PROCESSOR-MANAGEMENT FACILITIES

The following procesSor-management facilities are used to initialize, communicate with, and
control the processor:

e Instruction List

o . System Data Structures

o Interrupts

o TAGCs

o Faults

e Process Scheduling and Dispatching

These facilities allow system hardware and the operating system or kernel to initialize the
processor and initiate instruction execution. They also provide software or external agents
with methods of interrupting the processor to change jobs or to service external I/O devices. In
more advanced systems, these facilities provide a means of synchronizing multiple tasks and
multiple processors.

The following paragraphs give an overview of these processor-management facilities.

Instruction List

At the most rudimentary level, the processor is controlled through a stream of instructions that
the processor fetches from memory and executes one at a time. Once the processor is initial-
ized, it begins executing instructions and continues until it is stopped or goes into an idle state.

System Data Structures

The processor requires several system data structures that reside in memory. These data
structures offer a means of configuring the processor to operate in a specific way. They also
contain state information that the processor and kernel use to keep track of processor and
process management functions.

Figure 9-1 shows the system data structures required to run a single process, using the virtual-
addressing mode. In this illustration, the dashed lines indicate physical-address pointers and
the solid lines indicate SS pointers.

The processor contains pointers to two of these data structures: the processor-control block
(PRCB) and the segment table. The PRCB contains setup information for the processor itself
and pointers to the other system data structures that the processor must access. There is one
PRCB for each processor in a system.

The segment table provides address translation information for virtual-memory management,
as described in Chapter 8. It should be noted that even though a segment table is not generally
used when using strictly physical addressing, a rudimentary segment table is required to initial-
ize the processor. This initialization segment table is described later in this chapter in the
section titled "Processor Initialization."
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* When using the physical-addressing mode, the pointer to the
interrupt stack is a physical-address pointer.

Figure 9-1 shows the pointer from the processor to the segment table as an SS pointer. When
initializing a processor, the first segment-table pointer that the processor receives is a physical-
address pointer. (This pointer is supplied in the initial memory image.) It uses this physical
address to get the SS pointer that it uses from then on. Even when using strictly physical

Figure 9-1: System Data Structures

addressing, the pointer to the segment table is always an SS pointer.

The PCB contains state information and processing requirements for the currently running
process. In multiple-process systems, each process has its own PCB. A major function of the
PCB is to provide pointers to regions 0, 1, and 2 of the address space for the process. (The

pointer to Region 3 is given in the PRCB.) The PCB is described in detail in Chapter 13.
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The interrupt table provides pointers to interrupt-handling procedures. The interrupt vector
numbers act as indices into this table. For the purpose of handling interrupts, a separate
interrupt stack is maintained in region 3 of the address space. The interrupt mechanism is
described in Chapter 10. '

The fault table provides pointers to fault-handling procedures. When the processor detects a
fault, it generates a fault vector number internally that provides an index into the fault table.
The fault mechanism is described in Chapter 12.

The system procedure table contains pointers to the kernel procedures, which are accessed
using the system call (calls) mechanism. The system table structure is described in Chapter 4
in the section titled "Procedure Table."

The processor uses two stacks (not shown in Figure 9-1) for procedure calls: the local
procedure stack and the (optional) supervisor stack. These stacks are described in Chapter 4.

Interrupts

The processor supports two methods of asynchronously requesting services from the processor:
interrupts and IAC messages. Interrupts are the more common of the two.

An interrupt is a break in the control flow of a process so that the processor can handle a more
urgent chore. Interrupt requests are generally sent to the processor from an external source,
often to request I/O services. When the processor receives an interrupt request, it temporarily
stops work on the current process and begins work on an interrupt-handling procedure. Upon
completion of the interrupt-handling procedure, the processor generally returns to the process
that was interrupted and continues work where it left off.

Interrupts also have a priority, which the processor uses to determine whether to service the
interrupt immediately or to postpone service until work on the current process is complete.

IACs

The 80960MC processor provides an alternate method of communicating with other processors
in the system called IAC messages, or simply IACs. Using the IAC mechanism, other agents
on the system bus are able to communicate with the processor through messages that are
exchanged in a reserved section of memory.

Like interrupts, IACs are used to request that the processor stop work on the current process
and begin work on another chore. However, where an interrupt generally causes a temporary
break in the execution of a process, an IAC often causes a permanent change in the control
flow of the processor. An important application of IACs is to coordinate the activities of
multiple processors.

The TAC mechanism is described in Chapter 11.
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Faults

While executing instructions, the processor is able to recognize certain conditions that could
cause it to return an inappropriate result or that could cause it to go down a wrong and possibly
disastrous path. One example of such a condition is a divisor operand of zero in a divide
operation. Another example is an attempt to access a memory location in a page that is not in
physical memory. These conditions are called faults.

The processor handles faults almost the same way that it handles interrupts. When the proces-
sor detects a fault, it automatically stops its current processing activity and begins work on a
fault-handling procedure.

Process Scheduling and Dispatching

The processor also provides some advanced process-management facilities that are able to
signal the processor internally to suspend the process it is currently working on and begin work
on another process. These features, which are useful in the scheduling and dispatching of
processes, are described in Chapter 14.

PROCESSOR-CONTROL BLOCK

The processor is controlled through the PRCB, which contains information related to the
processor’s operation. The PRCB is 176 bytes in length and is contained in physical memory,
not in a segment. Each CPU processor in a 80960MC-based system has its own PRCB. The °
processor locates and reads its PRCB at initialization by means of a physical-address pointer to
the first byte of the block.

The processor caches parts of the PRCB on chip and updates these cached fields internally.
After the processor has initially cached these fields, it does not check or update the original
PRCB in memory. IACs are provided that allow those parts of the PRCB that the processor
has copied into internal storage to be changed. These IACs are discussed later in this chapter
in the section titled "Changing the PRCB." This section also lists the fields of the PRCB that
are cached on the chip.

Figure 9-2 shows the structure of the PRCB and Figure 9-3 shows the structure of the
processor-controls word in the PRCB. The following paragraphs describe the use of each of
the fields in the PRCB.

Processor-Controls Word

The processor-controls word contains several miscellaneous pieces of information to control
processor operation. The function of the various fields in this word are as follows.

The multiprocessor-preempt flag, when set, enables a high-level process preemption function
that allows multiple processors to handle preempting processes. This function is only useful in
multiple-processor systems and should be set to 0 for single-processor systems. Refer to the
section titled "Process Preemption" in Chapter 14 for more information on this function.
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PROCESSOR CONTROLS

CURRENT PROCESS SS
DISPATCH PORT SS 16
INTERRUPT TABLE PHYSICAL ADDRESS 20

INTERRUPT STACK POINTER 24

- : 28
REGION 3 SS 32
SYSTEM PROCEDURE TABLE SS 36

FAULT TABLE PHYSICAL ADDRESS 40

MULTIPROCESSOR PREEMPTION

IDLE TIME

SYSTEM ERROR FAULT 72
R

76
80
RESUMPTION RECORD
128
SYSTEM ERROR FAULT RECORD
172

RESERVED
(INITIALIZE TO 0)

Figure 9-2: Processor-Control Block (PRCB)
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l L MULTIPROCESSOR PREEMPT
STATE

NONPREEMPT LIMIT
ADDRESSING MODE
CHECK DISPATCH PORT
INTERIM PRIORITY

WRITE EXTERNAL PRIORITY

RESERVED (INITIALIZE TO 0)

Figure 9-3: Processor-Controls Word

The state field determines the state of the processor when it is initialized or restarted. The
encoding of this field is shown in Table 9-1.

Table 9-1: Encoding of the State Field

State State

Field

00 Stopped

01 Reserved

10 Idle

11 Process executing

The section later in this chapter titled "Processor and Process States" describes the activities of
the processor while it is in these different states.

The nonpreempt-limit field sets a threshold priority that the processor uses in determining
whether or not to allow one process to preempt another. If the priority of the preempting
process is at or below that of the current process or the nonpreempt limit, the processor will not
preempt the current process. This field is used during process preemption and on returns from
interrupts. Further discussion of this limit is given in Chapter 10 in the section titled "Process-
Executing-State Interrupts” and in Chapter 15 in the section titled "Multiprocessor
Preemption.”

The addressing-mode flag determines the address-translation mode of the processor: physical
addressing (0) or virtual addressing (1). The section later in this chapter titled "Address-
Translation Modes" discusses these modes.

The check-dispatch-port flag instructs the processor to check the dispatch port for processes of

higher priority than the current process, during returns from interrupts. Only the processor
uses this flag. Software should set it to 0 at processor initialization or restart. A discussion of
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how the processor uses this flag is given in Chapter 10 in the section titled "Process-Executing-
State Interrupt” and in Chapter 14 in the section titled "Process Preemption."

The interim-priority field sets a threshold priority that is used to block IAC messages from
being sent to the processor when it is executing the send, send service (sendserv), and signal
instructions. This field is used in conjunction with the write-external-priority flag as described
in Chapter 15 in the section titled "Multiprocessor Preemption."

The write-external-priority flag instructs the processor to write the priority of the current
process to the IAC-message-control field whenever a process switch, an interrupt (not caused
by an IAC message), or the execution of a modpc instruction (modify process controls) occurs.
The use of this flag is described in Chapter 15 in the sections titled "Receiving and Handling
External IACs" and "Multiprocessor Preemption."

The remaining bits in the processor-controls word (bit 0, bit 4, and bits 12 through 30) are
reserved. These bits should be set to O at processor initialization or restart and should not be
altered after that.

System-Data-Structure Pointers

As is shown in Figure 9-1, the PRCB contains pointers to several system data structures, which
are summarized in the following paragraphs.

The current-process-SS field points to the PCB for the process that is currently bound to the
processor. (The mechanism for binding a process to the processor is described in Chapters 13
and 14.)

If the processor is restarted in the process-executing state, the processor binds itself to the
process specified in the current-process-SS field. For single process systems this is the only
process bind action that is carried out.

For systems that execute multiple processes, the current-process-SS field is updated each time
a new process is dispatched and bound to the processor.

When the processor is not in the process-executing state, this field is not used. Also, this field
is not cached on the processor chip.

The dispatch port SS field points to the dispatch port that the processor goes to for new
processes during a dispatching operation. This field is only used for multiple process systems
that use the processor’s high-level process management functions.

The interrupt table physical address points to the first byte of the interrupt table.

The interrupt-stack pointer points to the top (first available byte) of the interrupt stack. In the
virtual-addressing mode, the processor interprets the interrupt-stack pointer as a virtual address
in the current-process address space. (When using the virtual-addressing mode, the interrupt
stack should be placed in region 3 of the process address space.) When using the physical-
addressing mode, the interrupt-stack pointer is interpreted as a physical address.
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The region 3 SS points to the region segment that contains region 3.
The system procedure-table SS points to the system procedure table.

The fault-table physical address points to the first byte of the fault table.

Miscellaneous PRCB Fields

The following fields in the PRCB provide miscellaneous processor-control functions.

The idle time field contains a long ordinal that gives the time that the processor has spent in the
idle or idle-interrupted state. Idle timing is discussed later in this chapter in the section titled
"Idle Timing."

When a system-error fault occurs, the type and subtype of the fault are stored in bits 16 through
23 and bits O through 7 of the system error fault field, respectively. The fault record is stored
in the system-error fault record field. System-error faults are described in Chapter 12.

The resumption record field contains the intermediate state of an instruction that has been
interrupted. This information is generally stored in the PCB for the interrupted process.
However, when the processor is interrupted while in the idle-interrupted state, the resumption
information is stored in the PRCB. This field should be set to all zeros at initialization or
restart of the processor and not accessed by software thereafter.

The processor uses multiprocessor preemption field while handling preempting processes in
multiprocessor applications. The use of this field is described in Chapter 15 in the section
titled "Preemption Control."

The remaining fields in the PRCB (bytes 8 through 11, bytes 28 through 31, bytes 44 through
47, bytes 60 through 63, and bytes 76 through 79) are reserved. They should be set to all zeros
at initialization or restart and not accessed by software thereafter.

Changing the PRCB

At initialization, on a restart processor IAC, or on a warmstart processor IAC, the processor
reads the following fields from the PRCB in memory and caches them:

e Processor controls

e Dispatch port SS

o Interrupt table physical address

o Interrupt stack pointer

e Region 3 SS

e  System procedure table SS

o  Fault table physical address

o Idle time ;
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In general, to change any of the PRCB fields that have been cached on the processor chip, the
kernel must first modify the PRCB in memory, then restart the processor using the restart
processor IAC. The processor then rereads the PRCB and reloads the cached fields in its
internal cache.

The store processor IAC may also be useful here. This IAC causes any of the cached parts of
the PRCB that have been changed since initialization or the last restart to be written to the
PRCB in memory. Software is thus able to examine the current state of the PRCB, modify it,
then restart the processor.

The modify-processor-controls IAC allows any of the fields in the processor-controls word,
except the state field, to be changed without restarting the processor. If this IAC is used to
change the state field, the processor must be restarted for the change in state to become
effective.

PRIORITIES

The processor provides a priority mechanism for determining the order in which processes and
interrupts are worked on. Priorities range from 0 to 31, with 31 being the highest priority.
Each process and interrupt vector is assigned a priority.

In multitasking systems, process priorities are used to determine which processes are worked
on first. Process priorities also allow a process of higher priority to preempt the current
process if the current process has a lower priority. The term preempt means that the current
process is suspended and the preempting process is bound to the processor.

Interrupt priorities serve two functions. First, they determine if the processor will service an
interrupt immediately or delay servicing it with respect to the priority of the current process.
Second, they determine which interrupt of several interrupts is serviced first.

The processor always handles an IAC as soon as it is received (i.e., IACs are assumed to have a
priority of 31). However, in certain system designs IACs can be prioritized. Here, external
hardware is required to compare the priority of the IAC with that of the current process, then
determine whether to send the IAC message to the processor immediately or reject it. The
M82965 is designed to perform this operation.

PROCESSOR AND PROCESS STATES

The processor has three different operating states: process executing, idle, and stopped. In
addition, a process can be in either of two states: excuting and interrupted. When the
processor and process states are combined, five states are possible for the the processor and its
current process: process executing, process interrupted, idle, idle interrupted, and stopped.
The processor is placed in one of three states (process executing, idle, or stopped) at initializa-
tion or restart. After that, the processor and software control the state of the processor and
process.

The processor can switch between the process-executing, process-interrupted, idle, and idle-
interrupted states. However, the processor never switches from the process-executing or idle
states to the stopped state, unless a system-error fault occurs.
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Software can change the state of the processor in either of two ways: (1) restart the processor
in the desired state, or (2) issue a stop processor IAC message.

The following paragraphs describe the five combined processor and process states.

Process-Executing and Process-Interrupted State

In the process-executing state, the processor is executing the process specified in the current
process SS field of the PRCB.

If the processor is interrupted while in the process-executing state, it saves the state of the
current process, switches to the process-interrupted state, and services the interrupt. Upon
returning from the interrupt handler, the processor resumes work on the current process.

Stopped State

In the stopped state the processor ceases all activity. The only task it can perform while in this
state is to service an JAC. If the IAC handling action does not result in a change in the
processor’s state, the processor switches back to the stopped state when it finishes the IAC
handling action.

The only way to get the processor out of the stopped state is to restart the processor in a
different state.

Idle and Idle-Interrupted States

The idle and idle-interrupted states are used primarily with the processor’s high-level process-
management functions. Here, the processor switches to the idle state when it examines the
dispatch port and finds no processes available for processing. The idle state eliminates the
need for the kernel to provide a special process for the processor to run when no other
processes are scheduled.

Note that even if a process is available at the dispatch port, the processor is considered to be in
the idle state while it is "between" processes (i.e., after suspending the current process and
before dispatching another process).

The processor may be interrupted while in the idle state. While servicing the interrupt, the
processor switches to the idle-interrupted state. Upon completion of the interrupt routine, the
processor returns to the idle state and begins polling the dispatch port again for a process to
run.

While in the idle state, the processor polls the dispatch port once every tick (i.e., once every
256 clock cycles). When running at a 16-MHz clock rate, this polling rate equates to once
every 8 microseconds. (Refer to the section later in this chapter titled "Processor Timing" for
more information on ticks.)
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The other use of the idle state is at initialization. During the first stage of initialization, the
processor is placed in the idle state. From there, the processor goes into the idle-interrupted
state to execute initialization code.

If a system does not have a dispatch port, the processor will never go into the idle state except
at initialization. If the processor is restarted in the idle state when there is no dispatch port, the
behavior of the processor is unpredictable.

ADDRESS-TRANSLATION MODES

As was discussed in Chapter 8, the processor can operate in either of two address-translation
modes: physical-addressing mode and virtual-addressing mode. The addressing-mode flag in
the processor controls determines which address-translation mode the processor is using.

These modes only apply to the translation of addresses in the address space for the current
process. In the physical-addressing mode, all addresses are assumed to be physical addresses
and are sent out on the bus unchanged. In the virtual-addressing mode, addresses are assumed
to be virtual addresses. The processor memory-management unit (MMU) then translates these
addresses into physical addresses before they are sent out on the bus.

Regardless of the mode, SS’s are treated the same. When the processor receives an SS, it
locates the selected segment in memory and uses an internally generated or explicit offset to
access the selected byte in the segment. Thus, even if the processor is operating in physical-
addressing mode, it still uses the SS’s in the PRCB to locate system data structures. Likewise,
privileged supervisor-mode instructions that use SS’s as operands are treated the same way in
both address-translation modes.

Changing the Address-Translation Mode

Generally, the kernel will run the processor in one address-translation mode or the other. If
strictly physical addressing of memory is used, the processor will be run in physical-addressing
mode, and if a virtual-memory system is supported, the processor will run in virtual-addressing
mode. ’

It is possible to design a system in which the address-translation mode is changed on occasion.
In such instances, the change of mode can be accomplished in either of two ways.

The safest way is to establish an up-to-date image of the PRCB in memory, perhaps by using
the store processor IAC. The addressing-mode flag is then changed and the processor is
restarted.

The other way is to use the modify-processor-controls IAC. When this IAC is used to change
the address-mode flag, the processor reads the new value and changes its mode accordingly.

Changing the address-translation mode in this manner can have serious consequences. For
example, clearing the flag causes the IP for the next instruction to be interpreted as a physical
address, which might take the processor down an unpredictable path. Also, the system may be
maintaining a memory cache for the processor. Changing the address-translation mode would
cause the cached addresses to be interpreted differently.
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If the address-translation mode is to be changed in this latter manner, the safest way to do so is
to map the addresses of at least the code and the stacks into the same locations in both the
virtual and physical address spaces. It will be necessary to purge the instruction cache of the
processor (using the purge instruction cache IAC).

PROCESSOR TIMING

The processor provides several counting functions such as process execution timing and idle
timing. Counting for these functions is in terms of ticks.

Duration of a Tick

For the 80960MC processor, a tick is defined as 256 external clock periods (128 internal clock
periods). For a 16-MHz processor clock rate (32-MHz external clock), a tick is then 8
microseconds. For a 20-MHz processor clock rate, a tick is 6.4 microseconds.

Idle Timing

The idle time field of the PRCB is used to count the amount of time that the processor is in the
idle state. When the processor goes into the idle state it begins incrementing the count in the
idle time field one count for each tick. When the processor switches to another processor state,
idle-time counting is stopped.

The idle time field, like others in the PRCB, may be cached in the processor. If this is the case,
the value must be periodically written out to the PRCB in memory so software can read it. The
interval that the processor uses to update the count is once every 32 ticks.

The processor writes the idle time field periodically, but it only reads this field at initialization.
As a result, if software changes the idle time field after initialization, the count will be incon-
sistent.

NOTE

If the interrupt handler sets the timing flag in the process controls word, the processor will
begin counting idle time for the interrupted state. This practice is not advisable because it can
cause unpredictable events, most notably an unwanted time-slice fault.

INSTRUCTION SUSPENSION

When a process is suspended or interrupted while the processor is in the midst of executing an
instruction, the processor does one of three things before it suspends the process or services the
interrupt:

1. It completes the instruction.

2. It terminates the instruction and sets the process state so that it is as if execution of that
instruction had not yet begun.
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3. It suspends the instruction and saves the necessary resumption information so that execu-
tion of the instruction can be continued when the processor begins work on the process
again. This course of action is generally reserved for instructions that have a long execu-
tion time and that alter the internal and external process state as they execute.

Which of these steps the processor takes depends on the instruction being executed. However,
whichever step it takes is transparent to the software. The processor automatically saves the
necessary state information so that work on the process can be resumed with no loss of
information.

Refer to the section in Chapter 13 titled "Resumption Record" for more information on how
resumption information for a suspended instruction is saved when a process is suspended.
Refer to the section in Chapter 10 titled "Interrupt-Handling Action" for more information on
how resumption information is saved when an interrupt is serviced.

SOFTWARE REQUIREMENTS FOR PROCESSOR MANAGEMENT

The processor-management facilities described earlier in this chapter allow the processor to be
configured and operated in a variety of ways. This section lists the data structures that the
kernel must supply to operate the processor in a single-task configuration. (Chapter 14 lists the
required data structures for a multitasking system that uses the processor’s high-level process
management facilities and Chapter 15 lists the requirements for a multiprocessing system.)

When using the processor in a single-task system, the kernel must provide the following items:

o Initial Memory Image

¢ Set of System Data Structures
e Address Space

e  Stacks

e Code

The initial memory image comprises the minimum data structures that the processor needs to
initialize the system. It is described later in this chapter in the section titled "Initial Memory
Image." ' :

As part of the initialization procedure, a more complete set of system data structures are
established in memory. If the virtual-addressing mode of the processor is to be used, all of the
data structures shown in Figure 9-1 must be set up. These data structures include a PRCB,
segment table, PCB, interrupt table, interrupt stack, fault table, and the four address-space
regions for the current process. If the user-supervisor protection mechanism is not going to be
used, a system procedure table is not required.

NOTE

When using the virtual-addressing mode, the kernel code and the interrupt stack would typically
be located in region 3 of the process address space. However, in a single-process system, these
items can be located anywhere since only one address space is used.
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If the processor is going to be used strictly in physical-addressing mode, all of the data
structures listed above must be set up except the four address space regions and the system
procedure table. The system procedure table is not required; however, it can be set up and used
in a physical-addressing environment.

Note that when operating in physical-addressing mode, a segment table is still required. This
segment table is part of the initial system image and is generally not used after the first stage of
initialization. The required entries for this initialization segment table are given in the section
later in this chapter titled "Initialization Segment Table."

Figure 9-4 shows the fields in the PRCB and the processor-controls word that are used in a
single-task configuration, using the virtual-addressing mode. When using strictly physical
addressing, the system procedure table SS is not required. (Chapter 10 describes the required
fields for the interrupt table and interrupt stack; Chapter 12 describes the fault table; and
Chapter 13 describes the PCB.)

Two stacks are required: an interrupt stack and a local (or user) procedure stack. The initial
stack pointer for the interrupt stack is given in the PRCB; the initial stack pointer for the
local-procedure stack is given in the local registers and is established by initialization code. If
the user-supervisor protection mechanism is to be used, a supervisor stack must also be
provided. The initial stack pointer for this stack is given in the system-procedure table. The
supervisor stack can be placed anywhere in the address space.

Finally, three levels of code are required: initialization code, kernel code, and user (or
applications) code. The initialization code is part of the initial memory image. The starting IP
for the initialization code is also provided in the initial memory image. This-IP will be
interpreted as a physical address or a virtual address depending on the setting of the
addressing-mode flag in the initial processor-controls word.

When using the virtual-addressing mode, the kernel code and user code are located in the
current process-address space; when using the physical-addressing mode, this code is located
in the physical address space.

The starting IP for the kernel code or the user code, whichever is run first, is provided in the
RIP word in the first frame of the kernel or user stack. One of the jobs of the initialization
code is thus to establish a stack in memory for the kernel or user code to use. The FP for this
stack is stored in global register field g15 of the PCB.

PROCESSOR INITIALIZATION

This section describes how to initialize the 80960MC processor. It defines the mechanism that
the processor uses to establish its initial state and begin instruction execution. It also describes
some general guidelines for writing code to complete the initialization of the processor for
specific applications. ‘

This initialization prbcedure can be used in both single-processor and multiprocessing systems.

In a multiprocessing system, one processor generally performs the first stage of initialization in
which an initial memory image is established and instruction execution begins.
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In the next stage of initialization, the initializing processor copies additional system data
structures into memory to build the memory image up to a more useful level. At this point the
processor is generally restarted with this expanded memory image.

Finally, if there are additional processors in the system, the initializing processor initializes
these processors by restarting them one at a time.

Initial Memory Image

Figure 9-5 shows the minimum requirements for the memory image at initialization. This
image will generally be held in ROM.

Check-Sum Words

The first eight words (called the check-sum words) must be in physical memory locations
00000000, to 0000001F, . The first of these words is a physical-address pointer to the base
of the initialization segment table. The second word is a physical-address pointer to the base of
the initialization PRCB.

The fourth word is the instruction pointer to the first instruction of the initialization code. This
address can be either a physical address or a virtual address, depending on the address-
translation mode specified in the processor-controls word of the initialization PRCB.

The remaining words (word 3 and words 5 through 8) are check words. During the first stage
of initialization of the processor, these words are added to the pointers for the initialization
segment table, PRCB, and initialization code to determine a check sum. The check words must
be chosen such that when the check sum is computed (as shown in initialization algorithm in
Figure 9-6), the result is equal to 0.

Initialization Segment Table

The initialization segment table has two required entries: one for the segment table itself
(which must be located at entry 8) and one for the region 3 segment. When using the
virtual-addressing mode, a segment descriptor must also be provided for at least one PCB. The
valid bit for each of these segment descriptors must be set to 1.

The segment descriptor for the segment table contains the base physical address of the table.
This address may be the same as the address given in word 1 of the check-sum words. If the
address is different, the processor essentially switches to a new segment table, which would
have to be part of the initial memory image.

When operating strictly in physical-addressing mode, the region 3 segment will generally not
be accessed. However, a segment descriptor is still required for it in the segment table. The
base-address pointer in this segment descriptor does not have to be valid.

Even though segment tables have a minimum size of 4096 bytes, only the three entries

described above must be mapped into the initial memory image. Additional segment descrip-
tors may be defined, depending on the needs of the initialization code.
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Initialization PRCB

The initialization PRCB must have at least three entries: the processor-controls word, the
interrupt-stack pointer, and the region-3 SS. The state field in the processor-controls word
should be set to 10, (idle or idle-interrupts state).

The interrupt-stack pointer can be a virtual address in region 3 or a physical address depending
on the initial address-translation mode.

Although the region-3 SS must be specified, its associated segment descriptor in the segment
table does not have to point to an actual region segment in memory, unless the initialization
code and interrupt stack are to be contained in this region. Note that as described in the
previous section, the valid bit for the region 3 segment descriptor does have to be set.

Additional fields may be included in the PRCB, again depending on the needs of the initializa-
tion code. For example, if faults can occur during the second stage of initialization, the
fault-table physical address should be valid. Likewise, if interrupts can occur, the interrupt-
table physical address should be valid.

Initialization Code
The initialization instruction list can be mapped directly to physical memory or through region
3, depending on the initial address-translation mode.

Building a Memory Image

The initial memory image shown in Figure 9-5 contains the minimum data structures required
for the processor to initialize itself and begin executing code. All of the required initialization
data structures are generally stored in ROM.

To build a useful system, additional data structures are required, such as an interrupt table, a
fault table, a system procedure table, a set of kernel procedures, a set of stacks, and a heap.
Some of these data structures can be located in ROM along with the initial memory image;
however, others must be in RAM because they must be writable.

Table 9-2 lists the various system data structures and shows which can be in ROM and which
must be in RAM.

The following paragraphs give the system limitations if a data structure is included in ROM.
The segment table may be contained in ROM, providing it is not going to be changed. Other-

wise, an expended segment table should be copied to RAM as part of the second stage of
initialization. Also, any referenced and modified bits should already be set.
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Table 9-2: ROM and RAM Resident Data Structures

Data Structure

May Be in ROM

May Be in ROM
with Limitations

Must Be in RAM

Initial memory
image

X

PRCB

PCB

Segment table

Page tables

PR R R

Stack and heap

Interrupt table

Fault table

X

Kernel Procedures

X

Part of the second stage of initialization should be to copy a new PRCB into RAM. This
PRCB along with the new segment table will then be used after the processor is restarted.

The PRCB may remain in ROM; however, if it does, the following restrictions will apply:

1.

Multiple processes cannot be executed. To execute multiple processes, the processor must
be able to write the SS for the current process in the PRCB.

System-error faults will not be recoverable. On a system-error fault, the processor writes
the fault record into the PRCB. If the PRCB is in ROM, this information is lost. One way
around this limitation is to position the PRCB over a ROM/RAM boundary such that the
fault record fields fall in RAM.

The processor will not be able to handle interrupts properly that occur during the execution
of an instruction with long execution times. This is because a resumption record cannot be
stored in the PRCB.

The PCB should be in RAM. However, if it is left in ROM, the following restrictions apply:

The processor will only be able to run a single process, and this process must not time out.

Interrupts that create a resumption record will not work properly because the record cannot
be stored in the PCB.

The initial state of the global registers is fixed, so the stack pointer cannot be changed
before the process is run.

The timer will not be usable since the processor periodically writes out the current value of
the timer to the PCB.

Page tables are generally used to support systems that allow dynamic memory allocation, so
they will generally need to be in RAM. If they are contained in ROM, paging of the address
space will not be allowed, since the processor will not be able to access the valid, altered, and
accessed bits.
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An alternative would be to have the page tables for fixed data structures in ROM and those for
address spaces or data structures that will change in RAM.

The stack, heap, and interrupt table must all be in RAM for the processor to operate properly.
The reason the interrupt table must be in RAM is that it contains the interrupt pending fields,
which the processor must be able to write to.

The fault table can be in ROM, providing it will never be necessary to relocate the fault
handler routines.

The kernel procedures can be in either ROM or RAM or both, depending on the design of the
kernel.

TYPICAL INITIALIZATION SCENARIO

Initialization of the 80960MC processor typically is handled in two stages. In the first stage of
initialization, the processor performs a self test and reads pointers from the initial memory
image. During the second stage, the processor executes initialization code designed to build
the remainder of the memory image so that execution of applications code can begin.

First Stage of Initialization

The following procedure shows the steps that system hardware and the processor go through in
the first stage of initialization. The algorithm in Figure 9-6 gives the details of this procedure.
1. Hardware asserts the RESET pin on the processor.

2. The processor samples LPN to get its local processor number (1 or 0). (LPN and STAR-
TUP are signals that come from multiplexed information received on several processor
pins.)

3. The processor asserts the FAILURE pin and performs a self test. If the processor passes
the self test, it deasserts the FAILURE pin.

4. The processor samples STARTUP to determine whether it is the initializing processor (1)
or not (0). If the processor is the initializing processor, it continues with the initialization
procedure; if it is not, it goes into the stopped state. (In multiprocessing systems, all
processors except the initializing processor are put in the stopped state.)

5. The processor reads the 8 check-sum words and checks that the check sum is 0.

Using the contents of the check-sum words, the processor determines the location of the
initialization segment table, PRCB, and first instruction to be executed.

7. The processor sets its process priority to 31 (highest possible) and its state to idle inter-
rupted.

8. The processor clears any latched external interrupt or IAC signals. This means that the
processor will not service any interrupts or IACs prior to beginning instruction execution.

9. The processor begins executing the initialization instruction list.

9-21



intel

PROCESSOR MANAGEMENT AND INITIALIZATION

assert FAILURE pin;
perform self test;
if self test fails
then enter stopped state;
else
deassert FAILURE pin;
enter predefined state;
if STARTUP pin =0
then enter stopped state;
else
x < memory(0); read 8 words from
physical address O
AC.cc « 0002; .
temp <« FFFFFFFF16 add_with_carry x(0);
temp « temp add_with_carry x(1);
temp « temp add_with_carry x(2);
temp <« temp add_with_carry x(3);
temp <« temp add_with_carry x(4);
temp <« temp add_with_carry x(5);
temp < temp add_with_carry x(6);
temp <« temp add_with_carry x(7);
if temp # 0
then
assert FAILURE pin;
enter stopped state;
else
segment_table_descriptor «
memory(x(0) + 128);
IP < memory (12)
fetch PRCB;
process.priority < 31;
process.state «— interrupted;
FP < PRCB.interrupt_stack_pointer;
clear any latched external interrupt/IAC
signals;
begin execution;
endif;
endif;
endif;

After self test, the processor establishes its initial state. For the initializing processor this state
is idle; for any other processors in the system this state is stopped. Also at initialization, the
trace controls are set to zero; the breakpoint registers are disabled; and the process controls are
set to zero (except for the execution mode, which is set to supervisor, and the priority, which is
setto 31).

Figure 9-6: Algorithm for First Stage of Initialization Procedure
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When the initializing processor begins instruction execution, it goes into idle-interrupted state.
The initialization code is thus treated as a special interrupt-handler procedure.

Second Stage of Initialization

The processor activity during the second stage of initialization, which occurs once the proces-
sor begins instruction execution, is up to software. In general, this stage of initialization is
used to copy or create additional data structures in memory, such as page tables, one or more
PRCBs, the interrupt table, the system-procedure table, and the fault table (if not in the initial
memory image).

To complete the initialization procedure, software will ordinarily bind a process to the proces-
sor to begin process execution. Refer to Chapter 13 for a full discussion of binding a process
to a processor.

Once these jobs are completed, the processor can begin executing applications code.

Appendix D gives an example of the 80960MC code that might be used to carry out this
second stage of initialization.

A common initialization technique is to create a new segment table and PRCB in memory
along with the other system data structures that are placed in memory in the second initializa-
tion stage. The processor is then restarted using the new segment table and PRCB. (The code
in Appendix D uses this technique.)

A processor is restarted using the restart IAC. The restart IAC message includes new physical-
address pointers to the segment table and PRCB. The processor reads the new PRCB, then
begins instruction execution according to the control information contained in the PRCB.

In a multiprocessing system, one of the processor’s tasks following restart would be to com-

plete the initialization of the other processors in the system. Further discussion of the in-
itialization of multiprocessing systems is given in Chapter 15.

9-23






Interrupts

10







CHAPTER 10
INTERRUPTS

This chapter describes the 80960MC processor’s interrupt handling facilities. It also describes
how interrupts are signaled.

OVERVIEW OF THE INTERRUPT FACILITIES

An interrupt is a temporary break in the control stream of a process so that the processor can
handle another chore. Interrupts are generally requested from an external source. The inter-
rupt request either contains a vector number or else points to a vector that tells the processor
what chore to do while in the interrupted state. When the processor has finished servicing the
interrupt, it generally returns to the process that it was last working on when the interrupt
occurred and resumes execution where it left off.

The processor provides a mechanism for servicing interrupts, which uses an implicit procedure
call to a selected interrupt-handling procedure, called an interrupt handler.

When an interrupt occurs, the current state of the process is saved. If the interrupt occurs
during an instruction that requires many machine cycles, the instruction state is also saved and
execution of the instruction is suspended.

The processor then creates a new frame on the interrupt stack and executes an implicit call to
the interrupt handler selected with the interrupt vector.

Upon returning from the interrupt handler, the processor switches back to the process that was
running when the interrupt occurred, restores this process to the state it was in when the
interrupt occurred, and resumes work on the process.

Another feature of this interrupt handling mechanism is that it allows interrupts to be
prioritized. If an interrupt is signaled that has the same or a lower priority than the process that
the processor is currently working on, the processor saves the interrupt and services it at a later
time. Interrupts that are waiting to be serviced are called pending interrupts.

SOFTWARE REQUIREMENTS FOR INTERRUPT HANDLING

To use the processor’s interrupt handling facilities, software must provide the following items
in memory:

o Interrupt Table

o Interrupt Handler Routines

¢ Interrupt Stack

These items are generally established in memory as part of the initialization procedure. Once
these items are present in memory and pointers to them have been entered in the appropriate
system data structures, the processor then handles interrupts automatically and independently
from software.
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The requirements for these items are given in following sections of this chapter.

VECTORS AND PRIORITY

Each interrupt vector is 8 bits in length, which allows up to 256 unique vectors to be defined.
In practice, vectors O through 7 cannot be used, and vectors 244 through 247 and 249 through
251 are reserved and should not be used by software. Vector 248 is reserved for a processor
generated interrupt called a system-error interrupt. This interrupt is described in Chapter 12 in
the section titled "System-Error Interrupt.”

Each vector has a predefined priority, which is defined by the following expression:

priority = vector/8

Thus, at each priority level, there are 8 possible vectors (e.g., vectors 8 through 15 have a
priority of 1, vectors 16 through 23 a priority of 2, and so on to vectors 246 through 255, which
have a priority of 31).

The processor uses the priority of an interrupt to determine whether or not to service the
interrupt immediately or to delay service. If the interrupt priority is greater than the priority of
the current process, the processor services the interrupt immediately; if the interrupt priority is
equal to or lower than the priority of the current process, the processor saves the interrupt
vector as a pending interrupt so that it can be serviced after work on the current process is
complete.

A priority-31 interrupt is always serviced immediately.

Note that the lowest process priority allowed is 0. If the current process has a O priority, a
priority-0 interrupt will never be accepted. This is why vectors O through 7 cannot be used. In
fact, there are no entries provided for these vectors in the interrupt table.

INTERRUPT TABLE

The interrupt table contains instruction pointers (addresses in the address space) to interrupt
handlers. This table is located in physical memory and must be aligned on a word boundary.
The processor determines the location of the interrupt table by means of a physical address
pointer in the PRCB.

As shown in Figure 10-1, the interrupt table contains one entry (i.e., one pointer) for each
allowable vector. The structure of an interrupt-table entry is given at the bottom of Figure
10-1. Each interrupt procedure must begin on a word boundary, so the two least-significant
bits of the entry are set to 0. :
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31 0
PENDING PRIORITIES 0
4
>
4 PENDING INTERRUPTS <2
32
ENTRY 8 36 (VECTOR 8)
ENTRY 9 40 (VECTOR 9)
ENTRY 10 a4 (VECTOR 10)
ENTRY 243 976 (VECTOR 243)
980  (VECTOR 244)
992  (VECTOR 247)
996  (VECTOR 248)
1000 (VECTOR 249)
1008 (VECTOR 251)
ENTRY 252 1012 (VECTOR252)
ENTRY 255 1024 (VECTOR 255)
31 210
L INSTRUCTION POINTER To[o]
RESERVED ( INITIALIZE TO 0)
Figure 10-1: Interrupt Table
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The instruction pointers can be either physical or virtual addresses. Which kind of address is
used depends on the address-translation mode that the processor is set for: physical addressing
or virtual addressing.

The first 36 bytes of the interrupt table are used to record pending interrupts. This section of
the table is divided into two fields: pending priorities (byte-offset O through 3) and pending
interrupts (byte-offset 4 through 35).

The pending priorities field contains a 32-bit string in which each bit represents an interrupt
priority. The bit number in the string represents the priority number. When the processor
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt’s priority
is set. For example, if an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is
set.

The pending interrupts field contains a 256-bit string in which each bit represents an interrupt
vector. For example, byte-offset 4 is reserved, byte-offset 5 is for vectors 8 through 15,
byte-offset 6 is for vectors 16 through 23, and so on. When a pending interrupt is logged, its
corresponding bit in the pending interrupt field is set.

This encoding of the pending priority and pending interrupt fields permits the processor to first
check if there are any pending interrupts with a priority greater than the current process and
then to determine the vector number of the interrupt with the highest priority. Software should
set these fields to O at initialization and not access these fields after that.

INTERRUPT-TABLE SHARING

One of the reasons that the interrupt table is located in physical memory is to enable systems
that use multiple processors to share the interrupt table. Then when one processor receives an
interrupt and posts it as a pending interrupt in the interrupt table, another processor can service
the interrupt. Refer to the section in Chapter 15 titled "Interrupt Handling in a Multiprocessor
System" for further information on interrupt table sharing.

INTERRUPT-HANDLER PROCEDURES

An interrupt handler is a procedure that is designed to perform a specific action that has been
associated with a particular interrupt vector. For example, a typical job for an interrupt handler
is to read a character from a keyboard.

Location of Interrupt Handler

The interrupt handler procedures can be located in physical memory or virtual memory,
depending on the address-translation mode to be used. If the procedures are located in virtual
memory, they are generally mapped in region 3 of the address space so that they are available
to all processes. As stated in the previous section, each procedure must begin on a word
boundary.
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Interrupt-Handler Restrictions

The processor execution mode is always switched to supervisor while an interrupt is being
handled. The pages that contain interrupt handler routines may thus have their page rights set
for supervisor only access.

When an interrupt-handler procedure is called, the states of the process controls and arithmetic
controls for the interrupted process are saved. However, the interrupt handler shares the other
resources of the interrupted process, in particular the global registers and the address space.
This sharing of resources imposes two important restrictions on the interrupt handler
procedures.

First, the interrupt handler procedures must preserve and restore the state of any of the
resources that it uses. For example, the processor allocates a set of local registers to the
interrupt handler, just as it does on a local procedure call. If the interrupt handler needs to use
the global or floating-point registers, however, it should save their contents before using them
and restore them before returning from the interrupt.

Second, the interrupt handler should not do anything that would cause the interrupted process
to be unbound from the processor and rescheduled, because doing so would leave the processor
in an indeterminate state. To avoid rescheduling the process, an interrupt handler should not
use the sendserv (send service), receive, and wait instructions. Also, the interrupt handler
should not enable timing (set the timing flag in the process controls register), since this can
result in an end-of-time-slice event that can also cause the interrupted process to be res-
cheduled.

The resumpres instruction (resume process) can be used; however, the state of the interrupted
process will be lost.

An interrupt-handler procedure can also be called when the processor is not currently executing
a process. One example of this situation is when the processor receives an interrupt while it is
servicing another interrupt. Here, execution of the ldtime instruction (load process time) or the
condrec instruction (conditional receive) returns an undefined result.

INTERRUPT STACK

The interrupt stack is usually located in region 3 of the address space. The processor deter-
mines the location of the interrupt stack by means of a pointer in the PRCB. To avoid raising a
fault while processing an interrupt, the interrupt stack must be frozen in physical memory,
meaning that the pages that contain the stack must always be valid.

The interrupt stack has the same structure as the local procedure stack described in Chapter 4
in the section titled "Procedure Stack."
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PROCESS TIMING WHILE HANDLING AN INTERRUPT

When an interrupt occurs while the processor is executing a process, the processor stops
counting process time (i.e., stops counting down the residual-time-slice value) while it is
executing the interrupt-handler procedure. Thus, the time required to handle an interrupt is not
counted as part of the process’s time slice.

SIGNALING INTERRUPTS

The processor can be interrupted in any of the following six ways:

o Signal on its interrupt pins

o Signal on its interrupt pins from an external interrupt controller
e AnJAC message from external source

e AnIAC message from a program in the processor

o A system-error fault interrupt

e A pending interrupt (described at the end of the chapter)

Interrupts From Interrupt Pins

The processor has four interrupt pins, called INTO, INT1, INT2, and INT3. These pins can be
configured in either of the following three ways:
o as four interrupt-signal inputs;

e as two interrupt inputs and two pins for handshaking with an interrupt controller such as
the Intel M8259A Programmable Interrupt Controller; or

o asone IAC input and three interrupt inputs.

A 32-bit, interrupt-control register in the processor determines how these pins are used. Each
interrupt pin is associated with one 8-bit field in the register, as shown in Figure 10-2.

31 2423 1615 8 7 0
I INT3 VECTOR I INT2 VECTOR INT1 VECTOR INTO VECTOR I

Figure 10-2: Interrupt-Control Register

If the interrupt pins are to be used as four inputs, a different interrupt vector is stored in each of
the four fields in the interrupt-control register. Then when an interrupt is signaled on one of
the pins, the processor reads the vector from the pin’s associated field in the register. For
example, if an interrupt is signaled on pin INTO, the processor reads the vector from bits 0
through 7.
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The processor assumes that the interrupt vectors in the interrupt register are arranged in des-
cending order from the INTO field to the INT3 field (e.g., the priority of INTO = INT1 = INT2
2 INT3). To insure that interrupts are handled in the proper order, software should follow this
convention.

If the INTO vector field is set to O, the function of the INTO pin is changed to IAC, and it is
used to signal the processor that an external IAC message has been sent to it. In fact, the INTO
pin must be configured in this manner for the processor to service external IAC messages.

If the INT2 vector field is set to 0, the functions of the INT2 and INT3 pins are changed to
INTR and INTA, respectively. Here, the INTR pin is used to receive signals from an interrupt
controller and the INTA pin is used to send acknowledge signals back to the controller. When
the processor receives a signal on the INTR pin, it reads an interrupt vector from the least-
significant 8 bits of the local bus, then sends an acknowledge signal to the controller through
INTA. When the INT2 and INT3 pins are configured in this manner, the processor ignores the
INT3 vector field.

The interrupt-control register is memory mapped to physical addresses FF000004,¢ through
FF000007,¢. Only the processor can read or write this register using the synchronous load
(synld) and synchronous move (synmov) instructions. External agents on the bus cannot
access this register.

NOTE

If the virtual-addressing mode is going to be used, a page in region 3 will need to be mapped to
the page in the physical address space that contains the addresses ranging from FF000004,
through FF000007 4. Software can then read from or write to the interrupt control register by
referencing the addresses in region 3 that are mapped to the physical addresses of the register.

The value in the interrupt-control register after the processor is initialized is FF000000,,. With
this setting, interrupt pin INTO is used to signal an IAC; INT1 is inactive; and INT2 and INT3
are configured to perform handshaking with an interrupt controller.

IAC Interrupts

The processor can also receive an interrupt request by means of the IAC mechanism. (The
IAC mechanism is described in detail in Chapters 11 and 15.) The interrupt IAC message can
be sent to the processor either from an external bus agent, such as an I/O processor or another
CPU, or internally as part of the currently running process. The interrupt vector is contained in
the interrupt IAC message.

As with any other IAC message, the processor receives notice of an external interrupt-IAC
message through the INTO pin, which has been configured as an IAC pin, as described in the
previous section. The processor then reads the IAC message to get the interrupt vector.

A program running on the processor can signal an interrupt through an internal interrupt-IAC
message. An internal IAC is sent to the processor by means of a synchronous move instruc-
tion. When the processor executes a synchronous move to its IAC message space, it signals an
IAC message internally. The processor then reads the IAC message as it would for an external
IAC.
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System-Error Interrupt

Under certain conditions, a system-error interrupt is signaled internally in the processor. This
interrupt causes an explicit call to interrupt vector 248. The system-error interrupt mechanism,
action, and possible handling methods are described in Chapter 12 in the section titled
"System-Error Interrupt Action."

INTERRUPT-HANDLING ACTIONS

As was described earlier in this chapter, when the processor receives an interrupt, it handles it
automatically. The processor takes care of saving the process state, calling the interrupt-
handler routine, and restoring the process state once the interrupt has been serviced. Software
support is not required.

The following section describes the actions the processor takes while handling interrupts. It is
not necessary to read this section to use the interrupt mechanism or write an interrupt handler
routine. This discussion is provided for those readers who wish to know the details of the
interrupt handling mechanism.

Receiving an Interrupt
Whenever the processor receives an interrupt signal, it performs the following action:

1. It temporarily stops work on its current job, whether it is working on a process or another
interrupt handler procedure.

It reads the interrupt vector from the interrupt register, the bus, or the IAC message space.

3. It compares the priority of the vector with the priority of the current process or the
interrupt it is currently handling.

4. If the priority of the new interrupt is higher than that of the current process or interrupt, the
processor services the new interrupt immediately as described in the next sections.

5. If the interrupt priority is equal to or less than that of the current process or interrupt, the
processor records new interrupt in the pending interrupt record and continues work on the
current process or interrupt.

Servicing an Interrupt

The method that the processor uses to service an interrupt depends on the state the processor is
in when it receives the interrupt. The following sections describe the interrupt handling actions
for various states of the processor. In all of these cases, it is assumed that the interrupt is a
higher priority than the current process and will thus be serviced immediately after the proces-
sor receives it. The handling of lower priority interrupts is described later in this chapter in the
section titled "Servicing a Pending Interrupt.”
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Process-Executing-State Interrupt

When the processor receives an interrupt while it is in the process-executing state, it performs
the following actions to service the interrupt; this procedure is the same regardless of whether
the processor is in the user or the supervisor mode when the interrupt occurs:

1.

The processor switches to the interrupt stack (as shown in Figure 10-3). The interrupt
stack pointer becomes the new stack pointer (NSP) for the processor.

The processor saves the current state of process controls and arithmetic controls in an
interrupt record on the interrupt stack. (The interrupt record is described later in this
chapter in the section titled "Interrupt Record".)

If the execution of an instruction was suspended, the processor includes a resumption
record for the instruction in the interrupt record and sets the resume flag in the saved
process controls. (Refer to the section in Chapter 9 titled "Instruction Suspension" for a
discussion of the criteria for suspending instructions.)

The processor allocates a new frame on the interrupt stack and loads the new frame pointer
(NFP) in global register g15.

The processor switches to the process-interrupted state.

The processor sets the process state flag in its internal process controls to interrupted, its
execution mode to supervisor, and its priority to the priority of the interrupt. Setting the
processor’s priority to that of the interrupt insures that lower priority interrupts can not
interrupt the servicing of the current interrupt.

Also in the current process controls, the processor clears the trace-fault-pending, timing,
trace-enable, and time-slice flags. Clearing these flags allows the interrupt to be handled
without trace faults being raised and without the process timing out.

The processor sets the frame return status field (associated with the PFP in 10) to 111,.

The processor performs an implicit call-extended operation (similar to that performed for
the callx instruction). The address for the procedure that is called is that which is
specified in the interrupt table for the specified interrupt vector.

Once the processor has completed the interrupt procedure, it performs the following action on

the return:

1. The processor copies the arithmetic controls field from the interrupt record into its arith-
metic controls register.

2. The processor copies the process controls field from the interrupt record into its internal
process controls.

3. If the resume flag of the process controls is set, the processor copies the resumption record
from the interrupt record to the resumption record field of the PCB for the process being
resumed.

4. The processor deallocates the current stack frame and interrupt record from the interrupt
stack and switches to the local stack or the supervisor stack (whichever one it was using
when it was interrupted).

5. The processor checks the interrupt table for pending interrupts that are higher than the

priority of the process being returned to. If a higher-priority pending interrupt is found, it
is handled as if the interrupt occurred at this point.
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6. Assuming that there are no pending interrupts to be serviced, the processor switches to the
process-executing state and resumes work on the current process.

If the processor is configured to use the high-level process management facilities or multiple
processors or both, the processor performs the following addltlonal operations prior to resum-
ing work on the interrupted process:

1. If either the multiprocessor-preempt flag or the check-dispatch-port flag in the processor
controls is set, the processor checks the dispatch port and clears the check-dispatch-port
flag. Otherwise, it goes to step 4.

2. If the dispatch port contains a process whose priority is higher than that of both the current
process and the value in the nonpreempt-limit field in the processor controls, the processor
suspends the current process and enqueues it at the front of the queue for its associated
dispatch port. The processor then dispatches the higher priority process, which becomes
the current process.

3. If a higher priority process was not found on the dispatch port, the process that was
interrupted remains the current process.

4. The processor then begins work on the current process.

Process-interrupted-State Interrupt

If the processor receives an interrupt while it is servicing another interrupt, and the new
interrupt has a higher priority than the interrupt currently being serviced, the current interrupt-
handler routine is interrupted. Here, the processor performs the same action to save the state of
the current interrupt-handler routine as is described at the beginning of this section. The
interrupt record is saved on the top of the interrupt stack, prior to the new frame that is created
for use in servicing the new interrupt.

On the return from the current interrupt handler to the previous interrupt handler, the processor
deallocates the current stack frame and interrupt record, and stays on the interrupt stack.

Interrupt Record

The processor saves the state of the interrupted process in an interrupt record. Figure 10-3
shows the structure of this interrupt record. The resumption record within the interrupt record
is used to save the state of a suspended instruction. If no instruction is suspended, the
resumption record is not created.

Idle-State Interrupt

The processor can also be interrupted while in the idle state. The processor handles such
interrupts in essentially the same way that it handles interrupts that occur while the processor is
in the process-executing state, with the following exception. When the processor allocates the
new frame on the interrupt stack, it sets the frame return field to 110,. This causes the
processor to revert to the idle state when the processor returns from the interrupt-handler
procedure.
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LOCAL, SUPERVISOR, OR INTERRUPT STACK

31 0
STACK P
GROWTH REGISTER SAVE AREA
FOR CURRENT FRAME
ADDITIONAL VARIABLES
AND PADDING AREA <
(OPTIONAL)
P
Y
INTERRUPT STACK
31 7 0
NSP*
PADDING AREA
STACK
GROWTH
L RESUMPTION RECORD
FOR SUSPENDED INSTRUCTION INTERRUPT
(OPTIONAL) RECORD
SAVED PROCESS CONTROLS NFP-16
SAVED ARITHMETIC CONTROLS NFP-12
NFP-8 |

NFP

NEW FRAME

' '

* If the interrupt is serviced while the processor is working on another
interrupt procedure, the new stack pointer (NSP) will be the same as
the SP.

RESERVED

Figure 10-3: Storage of an Interrupt Record on the Stack
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Idle-Interrupted State Interrupt

If the processor receives an interrupt while it is in the idle-interrupted state, it handles the
interrupt just as it would if it occurred in the process-interrupted state.

Pending Interrupts

As is described earlier in this chapter, the processor provides a mechanism for evaluating
interrupts according to their priority. If the interrupt priority is equal to or lower than the
priority of the current process, the processor does not service the interrupt immediately. In-
stead, it posts the interrupt in the pending interrupt section of the interrupt table. The processor
checks the interrupt table at specific times and services those interrupts that have a higher
priority than its current priority. This pending interrupt mechanism provides two benefits:

1. The ability to delay the servicing of low priority interrupts (by posting them in the pending
interrupt section of the interrupt table) allows the processor to concentrate its processing
activity on higher priority tasks.

2. In a system that uses two or more 80960MC processors, both processors can share the
same interrupt table. This interrupt-table sharing allows the processors to share the inter-
rupt handling load.

The following paragraphs describe how the processor handles pending interrupts.

NOTE

The 80960 architecture defines the section of the interrupt table for storing pending interrupts
and a mechanism for checking the interrupt table for pending interrupts. The method used for
posting interrupts to the interrupt table and circumstances under which the processor check the
interrupt table for pending interrupts is not defined.

In the following description of the pending interrupt mechanism, the information given in the
sections titled "Posting Pending Interrupts" and "Checking for Pending Interrupts"” is specific to
the 80960MC processor. The information given in the section titled "Handling Pending
Interrupts” is defined in the 80960 architecture and should be common in all processors that
implement this part of the architecture.

Posting Pending Interrupts

An interrupt can be posted in the pending-interrupt record of the interrupt table in either of the
following two ways:

1. The processor receives an interrupt with a priority equal to or lower than that of the
process the processor is currently working on. The processor then automatically posts the
interrupt in the pending-interrupt record.

2. The kernel can set the desired pending-interrupt and pending-priority bits in the interrupt
table. ‘ : e

Using the first method, the processor performs an atomic read/write operation that locks the
interrupt table until the posting operation has been completed. Locking the interrupt table
prevents other agents on the bus from accessing the interrupt table during this time.

i
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The second method of posting an interrupt is risky, because it does not use this locking
technique. (The processor’s atomic instructions are not able to perform a locking operation
that spans several instructions.) This method will work only if the kernel can insure the
following:

o that no external I/O agent will attempt to post a pending interrupt simultaneously with the
processor, and

« that an interrupt cannot occur after one bit (e.g., the pending priority bit) of the pending-
interrupt record is set but before the other bit (the pending interrupt vector) is set.

Checking for Pending Interrupts

The processor automatically checks the interrupt table for pending interrupts at the following
times:
o After returning from an interrupt-handler procedure

«  While executing a modify-process-controls instruction (medpc), if the instruction causes
the process’s priority to be lowered.

o After receiving a test pending interrupts IAC message.

Handling Pending Interrupts

The processor uses the same type of atomic read/write operation to check the interrupt table for
pending interrupts as it does for posting pending interrupts. Again, this technique prevents
other agents on the bus from accessing the interrupt table until the pending-interrupt check has
been completed.

When the processor finds a pending interrupt, it handles it as if it had just received the
interrupt. The handling mechanism is the same as is described earlier in this chapter for
interrupts that are serviced as soon as they are received.

If the processor finds two pending interrupts at the same priority, it services the interrupt with
the highest vector number first.
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CHAPTER 11
INTERAGENT COMMUNICATION

This chapter describes the interagent communication (IAC) mechanism for the 80960MC
processor. Included is a description of the IAC-message structure, the internal-IAC-message
sending and receiving mechanism, and reference information on the available IAC messages.

The mechanism for sending and receiving external-IAC messages is described in Chapter 15.

INTRODUCTION TO IAC MESSAGES

The IAC facilities provide a mechanism for agents on the local bus or AP bus to communicate
with one another by means of messages. The agents that use these facilities are primarily CPU
processors such as the 80960MC and I/O processors. However, special processors that have a
need to communicate with the other processors in the system may also use the IAC facilities.

The primary function of these facilities is to give multiple processors within a system a simple
means of coordinating their activities. This capability is particularly important when the
processors share a common memory space.

The IAC facilities are also used in single-processor systems for functions such as changing the
processor’s state or updating address-translation information.

IAC messages (referred to here as IACs) are four words in length and are exchanged by means
of message buffers that are mapped to physical memory. All the usable IACs are predefined.
The processor handles an IAC in much the same way as it handles an instruction.

The processor provides two mechanisms for exchanging IACs: external and internal. The
external IAC mechanism is used to pass IACs between two agents, either on the local bus or on
the AP bus. A processor uses the internal IAC mechanism to pass an IAC to itself.

This chapter describes the internal IAC mechanism, which is the only mechanism used in

single-processor systems. The external IAC mechanism is described in Chapter 15 in the
section titled "External IAC Message Passing."

SOFTWARE REQUIREMENT FOR HANDLING INTERNAL IACS

No special software, such as dedicated data structures or stacks, are required to handle internal
IACs. An internal JAC is sent with a quad synchronous move instruction (synmovq). The
processor receives and handles the IAC internally.
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SUMMARY OF IAC MESSAGES

Table 11-1 gives a list of the IAC messages that the processor can send either internally or
externally. The messages marked with an asterisk are generally not used with single-processor
systems. Detailed reference information on these messages is given at the end of this chapter.

Table 11-1: IAC Messages

Interrupt Handling
Interrupt
Test Pending Interrupt

Processor Management
Store System Base

Store Processor

Modify Processor Controls
Stop Processor*

Freeze*

Restart Processor
Warmstart Processor

Process Management
Flush Local Registers
Flush Process

Preempt Process™
Purge Instruction Cache
Set Breakpoint Register
Check Process Notice*

Memory Management
Flush TLB Physical Page
Flush TLB

Flush TLB Segment Entry

Continue Initialization
Reinitialize Processor

Flush TLB Page Table Entry

IAC-MESSAGE FORMAT

Figure 11-1 shows the format for an IAC message. Each message is four words in length and
consists of a message-type field and up to five parameter fields.

31 2423 16 15 0
MESSAGE TYPE FIELD 1 FIELD 2 0
FIELD 3 4
FIELD 4
FIELD5 12

Figure 11-1: 1AC-Message Format

The message type is an 8-bit binary code. Each IAC has a unique message type. The
parameters can be 8, 16, or 32-bits in length, depending on the specified field. Many of the
IACs do not require parameters. When a message type does require one or more parameters,
the processor only looks at the required parameter fields. Those fields not used are ignored.
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SENDING AND RECEIVING AN INTERNAL IAC

To send an internal IAC, software must perform the following steps:

1. Load the message into four consecutive words in memory, with the first word aligned on a
word boundary.

2. Execute a synmovq instruction to move the message from its source address to the des-
tination address FF000010, ¢, where FF000010, ¢ is a physical address.

When the destination operand of a synmovq instruction is FF000010, 4, the processor inter-
prets the instruction as a send internal-IAC instruction. The processor then receives the IAC
by moving the message from memory into an internal message buffer.

The action of the synmovq move instruction insures that the loading of the message into the
processor is completed before the processor is allowed to perform any other chores.

NOTE

If the virtual-addressing mode is going to be used, a page in region 3 will need to be mapped to
the page in the physical address space that contains address FF000010,,. Software can then
send an internal IAC by writing to the address in region 3 that is mapped to physical address
FF000010 .

INTERNAL-IAC-HANDLING ACTION

All internal IACs are assumed to have a priority of 31, so the processor executes the action
requested in the IAC message immediately, even if the processor is currently working on a
process or interrupt with a priority of 31.

The processor handles IACs internally. It does not use any of the resources of the execution
environment such as the registers (global or local), the stack, or memory. Thus, the state of the
process or processor when the IAC is received does not need to be saved.

Some IACs, such as the flush TLB IACs, do not affect the process or processor state. The
processor treats these IACs as if they were an instruction inserted in the control flow of the
process. When the IAC action is complete, the processor resumes work on the current process.

Other IACs, such as the restart processor and preemption IACs, cause the state of the processor
or the control of the current process to be permanently changed. In these instances, the
processor resumes activity in its new processor state or process state or both, following the
execution of the IAC.

While the processor is handling an IAC, it will not respond to interrupts signaled on the
interrupt pins.

IAC FAULTS

If a fault condition occurs during the handling of an IAC message, a structural IAC fault is
signaled. If when a structural IAC fault occurs, the processor is in the process-executing state,
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the fault is handled within the environment of the current process. If the processor is not in the
process-executing state, the fault is handled by means of a system-error interrupt.

IAC-MESSAGE REFERENCE

The following section provides detailed descriptions of the operations carried out for each of
the IACs. This section is organized alphabetically by IAC title for easy reference.
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Check Process Notice

Message Type: 90,6
Parameters: Fields 1 - 2 Not Used
Field 3 SS of PCB
Fields 4 - 5 Not Used
Function: Examines the process-notice field of the PCB for the current

process. If the event-fault-request flags in this field are set, the flags
are cleared and an event-notice fault is signaled. Otherwise, no
action is taken.

The field 3 parameter contains the SS of the PCB. When the
processor receive this IAC, it checks this parameter for either of the
following conditions: (1) the field is zero or (2) the field contains
the SS for the current process PCB. If either of these conditions is
true and the process is not in an interrupted state, the processor
checks the uncached process-notice field from the PCB in memory,
as described above. If neither condition is true, no action is taken.
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Continue Initialization

Message Type:
Function:

926

Carries out the initialization procedure that follows the processor
self test. If the processor is the initializing processor, it puts itself in
the idle state and executes the initialization procedure beginning
with reading the initial memory image from ROM. The self test is
not performed.

If the processor is not the initializing processor, it puts itself in the
stopped state and no further action is performed.

Refer to the section in Chapter 12 titled "Processor Initialization"
for further details on the initialization process.
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Flush Local Registers
Message Type: 84,6
Parameters: Fields 1 - 2 Not Used
Field 3 Physical Address of Stack Page
Fields 4 - 5 Not Used
Function: Writes the contents of the all local-register sets (located in the on-

chip local-register cache) to their associated stack frames in
memory. The field 3 parameter contains the base physical-address
of a page that contains all or part of the stack to be written to. If any
of the local register sets are associated with a stack frame in the
specified page, all of the local register sets are flushed to memory.
Then, all the register sets except the current set (the set for the
active frame) are marked as purged. This means that on a return to
a register set that has been purged, the processor will load these
registers from the stack.

No action is taken if (1) none of the register sets are associated with
a stack frame in the specified page or (2) the processor is in the
stopped or idle state.
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Flush Process

Message Type:

Function:

8716

Suspends the current process, then rebinds the processor to that
process. This action is carried out only if the processor is in the
process-executing state. Since the process is literally suspended and
rebound, process timing is turned off then back on again as a result
of this action.

This IAC also causes the following items to be invalidated in the
TLB: the segment descriptor for the current PCB, the segment
descriptors for regions 0, 1, and 2 for the current process; and the
page-table entries for pages addressed by addresses in regions O, 1,
and 2.

If the processor is not in the process-executing state, no action is
taken.
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Flush TLB

Message Type:

Function:

8A 6

Invalidates all TLB entries except the following: (1) the segment
descriptors for the segment-table and region 3, (2) the segment
descriptor for the current process, (3) the segment descriptors for
regions 0, 1, and 2 of the current process, and (4) the page-table
entry for the page in which the interrupt stack begins.
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Flush TLB Page Table Entry

Message Type:

Parameters:

Function:

8Ce

Fields 1 - 2 Not Used

Field 3 ‘ Offset From Segment Base

Field 4 SS of Segment That Contains Page
Field 5 Not Used

Invalidates the page-table entry for the page specified with the field
3 and field 4 parameters. The processor determines the page that
contains the address specified by the SS and offset in fields 4 and 3,
respectively. If a TLB entry exists for this page, the processor
flushes the entry.

This IAC can generate a protection-length fault if the specified ad-
dress is beyond the specified length of the segment.

Note that field 3 is not interpreted as an address within the address
space, but as an offset within a segment. Thus, to flush an entry for
a page in an address space that contains a particular address, the
following steps must be taken. (1) The SS for the region that
contains the address is supplied in field 4. (2) The two most-
significant bits of the address are cleared to form the offset into the
region. This offset is then supplied in field 3.

This IAC should not be used to flush page-table-directory entries,
because they are never saved in the TLB.
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Flush TLB Physical Page

Message Type:

Parameters:

Function:

88,6

Fields 1 -2 Not Used

Field 3 Base Physical Address of Page
Fields 4 - 5 Not Used

Invalidates all the entries in the TLB that point directly to the page
specified with the field 3 parameter. The entries that may be
flushed with this IAC include (1) segment descriptors and page-
table entries that point to the page, (2) the segment descriptors for
paged segments that point to a page table in that page, and (3) the
segment descriptors for bipaged segments that point to a page-table
directory in that page.

Also, the function of the flush-local-registers IAC message is per-
formed. And, if the segment descriptor for the PCB of the current
process or the segment descriptors for regions 0, 1, or 2 of the
current process are invalidated, the function of the flush-process
IAC message is performed.

Note that this function is slower than the flush functions of the other
IAC messages. However, the function that this IAC performs is
needed for situations where processes share pages.
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Flush TLB Segment Entry
Message Type: 8B ¢
Parameters: Fields 1 - 2 Not Used
Field 3 SS for Segment
Fields 4 - 5 Not Used
Function: Invalidates all entries in .the TLB that pertain to the segment

specified in the field 3 parameter. The entries that may be flushed
include (1) any segment-descriptor entry for the segment and (2)
any associated page-table entries.
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Freeze
Message Type: 916
Function: Stops the processor without suspending the current process. The

processor puts itself in the stopped state. If the processor is in the
process-executing state when this IAC is received, the current
process is not suspended.
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Interrupt

Message Type:

Parameters:

Function:

40,4
Field 1 Interrupt vector
Fields 2 - 5 Not Used

Generates an interrupt request. The interrupt vector is given in field
1 of the IAC message. The processor handles the interrupt request
just as it does interrupts received from other sources. If the inter-
rupt priority is higher than the priority of the current process, the
processor services the interrupt request immediately. Otherwise, it
posts the interrupt in the pending interrupts section of the interrupt
table.

Refer to Chapter 10 for further information on the servicing of
interrupt IACs.
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Modify Processor Controls

Message Type:
Parameters:

Function:

8D

Fields 1 -2 Not Used

Field 3 New Processor Controls Word
Field 4 Mask

Field 5 Not Used

Modifies the processor controls word in the PRCB according to the
new value given in field 3 and under control of the mask given in
field 4. The mask determines which bits of the processor controls
word may be changed according to the following relationship:

processor_controls_word <« (new value and mask)
or (processor_controls_word
and not (mask))

If any parts of the processor-controls word have been cached on the
chip, they are updated as a result of this operation, with the excep-
tion of the processor-state bits. To explicitly change the state of the
processor, the processor must be restarted (using the restart IAC) in
the new state.

Refer to the section in Chapter 9 titled "Changing the Address-
Translation Mode" for information on the effects of using the
modify processor controls IAC to change the address-translation-
mode flag.
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Preempt Process

Message Type:

Function:

Suspends the current process and binds the processor to a higher
priority process from the dispatch port. If the processor is in the
idle or process-executing state, it checks the queue status field of the
dispatch port. If the processor finds a process with a higher priority
than that of both the current process and the nonpreempt-limit in the
process controls, the processor performs the preemption action.

~ No action is taken if (1) the processor is in the stopped or an inter-

rupted state, or (2) the priority of the highest priority process on the
dispatch port is less than that of the current process or the
nonpreempt-limit. More information on process preemption is
given in Chapter 14 in the section titled "Process Preemption" and
in Chapter 15 in the section "Multiprocessor Process Preemption."
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Purge Instruction Cache

Message Type: 8916

Function: Invalidates all entries in the processor’s internal instruction cache.
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Reinitialize Processor

Message Type: 936
Parameters: Fields 1 - 2 Not Used
Field-3 Address of System Address Table
Field-4 Address of Processor Control Block
Field 5 Start Instruction IP
Function: Reestablishes the processor state. In reinitializing itself, the proces-

sor first locates the system address table and the processor control
block in the IMI from the addresses given in fields 3 and 4.

The processor then begins executing the instruction list beginning
with the IP given in field 5.
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Restart Processor

Message Type:
Parameters:

Function:

816

Fields 1 -2 Not Used

Field-3 Physical Address of Segment Table
Field-4 Physical Address of PRCB

Field 5 Not Used

Reestablishes the processor state. In restarting itself, the processor
first locates the segment table and PRCB from the base physical
addresses given in fields 3 and 4. (Field 3 is only used to locate the
eighth segment-table entry, which is used thereafter to locate the
segment table.)

Next, the processor checks the state field in the processor-controls
word in the PRCB and enters that state. If the PRCB state is
process-executing, the processor performs a bind action on the
process whose SS is in the current-process-SS field in the PRCB.
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Set Breakpoint Register

Message Type:

Parameters:

Function:

8F ¢

Fields 1 -2 Not Used
Field 3 _Breakpoint IP
Field 4 Breakpoint IP
Field 5 Not Used

Enables or disables two breakpoints. When the processor receives
this IAC, it conditionally loads the parameters from fields 3 and 4
into breakpoint registers 0 and 1, respectively. Field 3 provides a
breakpoint IP for breakpoint register 0, and field 4 provides a break-
point IP for breakpoint register 1. Bit 1 in each of these fields is a
breakpoint-disable flag.

If the disable flag in one of these fields is set, the breakpoint for the
corresponding breakpoint register is disabled. Otherwise, the IP
value in the field is loaded into the corresponding breakpoint
register and the breakpoint is enabled.

Breakpoints are described in the section in Chapter 16 titled
"Breakpoint-Trace Mode."
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Stop Processor

Message Type: 8316

Function: Stops processor. The processor puts itself into the stopped state. If
the processor is in the process-executing state when this IAC is
received, the current process is suspended (but not rescheduled).
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Store Processor

Message Type: 86,6

Function: Writes any cached parts of the PRCB (including the processor con-

trols word) back to the PRCB in memory. This IAC allows the
PRCB in memory to be updated with any changes that have been
made to the fields of the PRCB that are cached in the processor.
Refer to the section in Chapter 9 titled "Caching PRCB Fields" for
information on the fields in the PRCB that are cached.
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Store System Base
Message Type: 80,6
Parameters: Fields 1 - 2 Not Used
Field 3 Destination Physical Address
Fields 4 - 5 Not Used
Function: Stores the current locations of the segment table and the PRCB in a

specified location in memory. The base physical address of the
segment table is stored in the word starting at the byte specified in
field 3, and the base physical address of the PRCB is stored in the
next word in memory (field 3 address plus 4).
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Test Pending Interrupts

Message Type:

Function:

416

Tests for pending interrupts. The processor checks the pending
interrupt section of the interrupt table for a pending interrupt with a
priority higher than the priority of the current process. If a higher
priority interrupt is found, it is serviced immediately. Otherwise, no
action is taken.
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Warmstart Processor

Message Type:
Parameters:

Function:

8E 4

Fields 1 -2 Not Used

Field 3 Physical Address of Segment Table
Field 4 Physical Address of PRCB

Fields 4 -5 Not Used

Writes any part of the PRCB that has been cached on the chip to the
current PRCB in memory, then reestablishes the processor state.
This IAC performs a similar function to the restart processor IAC,
except that it writes the cached parts of the PRCB to memory before
restarting the processor.

In restarting itself, the processor first locates the segment table and
PRCB from the base physical addresses given in fields 3 and 4.
Field 4 may point to the current PRCB or a new PRCB. (Field 3 is
only used to locate the eighth segment-table entry, which is used
thereafter to locate the segment table.)

Next, the processor checks the state field in the processor-controls
word in the PRCB and enters that state. If the PRCB state is
process-executing, the processor performs a bind action on the
process whose SS is in the current-process-SS field in the PRCB.

Refer to the section in Chapter 9 titled "Caching PRCB Fields" for
information on the fields in the PRCB that are cached.
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CHAPTER 12
FAULT HANDLING

This chapter describes the fault handling facilities of the 80960MC processor. The subjects
covered include the fault-handling data structures, the required software support required for
fault handling, and the fault handling mechanism. A reference section that contains detailed
information on each fault type is provided at the end of the chapter.

OVERVIEW OF THE FAULT-HANDLING FACILITIES

The processor is able to detect various conditions in code or in its internal state (called "fault
conditions") that could cause the processor to deliver incorrect or inappropriate results or that
could cause it to head down an undesirable control path. For example, the processor recog-
nizes divide-by-zero and overflow conditions on both integer and real-number calculations. It
also detects inappropriate operand values, references to incomplete or non-existent
architecture-defined data structures, or references to virtual-memory pages that are not cur-
rently in physical memory.

The processor can detect a fault while it is working on a process, an interrupt handler, or a fault
handler, or while it is in the idle state. (In this chapter, when a process is referred to, it
generally also means any interrupt handler or fault handler that may have been invoked while
the processor was working on the process.)

When the processor detects a fault, it handles the fault immediately and independently of the
process or handler it is currently working on, using a mechanism similar to that used to service
interrupts.

A fault is generally handled with a fault-handling procedure (called a fault handler), which the
processor invokes through an implicit procedure call. Prior to making the call, the processor
saves the state of the current process and in some cases the state of an incomplete instruction.
It also saves information about the fault, which the fault handler can use to correct or recover
from the condition that caused the fault.

If the fault handler is able to recover from the fault, the processor can then restore the process
to its state prior to the fault and resume work on the process. If, on the other hand, the fault has
catastrophic effects on the system, facilities are provided that allow the processor to shut itself
or the whole system down gracefully.

FAULT TYPES

All of the faults that the processor detects are predefined. These faults are divided into types
and subtypes, each of which is given a number. Table 12-1 lists the faults, arranged by type
and subtype.
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Table 12-1: Fault Types and Subtypes

Fault Type Fault Subtype Fault Record
No./Bit

No. |Name Position | Name

1 Trace Bit1 Instruction Trace 0xXX01 XX02
Bit2 Branch Trace 0xXX01 XX04
Bit 3 Call Trace 0xXX01 XX08
Bit4 Return Trace 0xXX01 XX10
Bit5 Prereturn Trace 0xXX01 XX20
Bit 6 Supervisor Trace 0xXX01 XX40
Bit7 Breakpoint Trace 0xXX01 XX80

2 Operation - |1 Invalid Opcode 0xXX02 XX01
4 Invalid Operand 0xXX02 XX04

3 Arithmetic 1 Integer Overflow 0xXX03 XX01
2 Arithmetic Zero-Divide 0xXX03 XX02

4 llilqating Bit0 Floating Overflow 0xXX04 XX01

oint

Bit 1 Floating Underflow 0xXX04 XX02
Bit 2 Floating Invalid-Operation 0xXX04 XX04
Bit3 Floating Zero-Divide 0xXX04 XX08
Bit4 Floating Inexact 0xXX04 XX10
Bit5 Floating Reserved-Encoding 0xXX04 XX20

5 Constraint 1 Constraint Range 0xXX05 XX01
2 Invalid SS 0xXX05 XX02

6 Virtual 1 Invalid Segment-Table Entry [ 0xXX06 XX01

Memory ‘
2 Invalid Page-Table-Directory- | 0xXX06 XX02
Entry (PTDE)
3 Invalid Page-Table-Entry 0xXX06 XX03
(PTE)

7 Protection Bit 1 Segment Length 0xXX07 XX01
Bit2 Page Rights 0xXX07 XX02

8 Machine 1 Bad Access 0xXX08 XX01

9 Structural 1 Control 0xXX09 XXO01
2 Dispatch 0xXX09 XX02
3 IAC 0xXX09 XX03

A Type 1 Type Mismatch 0xXX0A XX01
2 Contents 0xXX0A XX02

C Process 1 Time Slice 0xXX0C XX01

D Descriptor 1 Invalid Descriptor 0xXX0D XX01

E Event I Event Notice 0xXXO0E XXO01
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When the processor detects a fault, it records the fault type and subtype in a fault record. It
then uses the type number to select a fault handler. The fault handler has the option of using
the subtype number to select a specific fault-handling procedure. The fifth column of Table
12-1 shows each fault as it appears in the fault record (the word at offset 40 of the fault record
is shown later in this chapter).

For convenience, individual faults are referred to in this manual by their fault-subtype name.
Thus a machine bad-access fault is referred to as simply a bad-access fault, or a
virtual-memory, invalid page-table-directory-entry fault is referred to as an invalid PTDE fault.

For some fault types, multiple subtypes can occur at the same time. Here, each subtype is
assigned a separate bit position in the subtype field in the fault record. The fault handler can
then use this information to select a specific fault handling scheme to take care of the whole
group of fault subtypes.

FAULT-HANDLING METHODS

The processor handles faults using one or more of the following methods:

o Implicit procedure call to a fault handler
« Implicit procedure call to an override fault handler

e System-error interrupt that invokes a special interrupt handler through the interrupt
mechanism

«  Change of the processor state to stopped

These four fault-handling methods provide the processor with an efficient mechanism for
recovering from faults or for gradually degrading its processing activity when serious or
catastrophic fault conditions are encountered. The scenario for handling faults with this
mechanism is as follows.

Normal Fault-Handling Method

When a fault occurs while the processor is executing a process, the processor determines the
fault type, then selects a fault handler for that type from an architecture-defined data structure
called the fault table. 1t then invokes the fault handler (by means of an implicit call). As
described later in this chapter, the fault-handler call can be a local call (call-extended
operation), a local procedure-table call (local system-call operation), a supervisor call, or a
trace-fault-handler-procedure-table call.

Before the processor begins executing the fault-handler procedure, it creates a fault record on
its current stack (i.e., the stack being used by the fault handler). This record includes infor-
mation on the state of the process and data on the fault. If the fault occurred while the
processor was in the midst of executing an instruction, a resumption record for the instruction
may also be saved on the stack.

Following the creation of the fault and resumption records, the processor begins executing the
selected fault-handler procedure.
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This same procedure call method is used to handle faults that occur while the processor is
servicing an interrupt or that occur while the processor is working on another fault handler.

Overrides

If a fault should occur while the processor is selecting a fault handler (i.e., between the time the
processor begins storing the fault and resumption records for a fault and the time it begins
work on the fault handler for that fault), an override is said to occur. When an override occurs,
the processor stores a fault record for both faults (i.e., the primary fault and the secondary
fault). The processor then invokes an override fault handler to perform the recovery action.

The action of the override-fault handler is software dependent. Commonly, the override-fault
handler handles the secondary fault, then returns. On the return, the processor refaults on the
primary fault (that is, recreates the primary fault). That fault is then handled as described in the
previous section.

A common cause of an override condition is a virtual-memory fault that occurs while the
processor is trying to store the fault record or create a stack frame for the fault handler. For
example, assume that the execution of a divide instruction results in an arithmetic-zero-divide
fault being generated, and that, while storing the fault record for this fault, a virtual-memory
fault is generated. Here, the processor saves the fault data on both faults (the primary
arithmetic-zero-divide fault and the secondary virtual-memory fault). The override-fault hand-
ler then handles the virtual-memory fault, by copying the required page into memory. On the
return from the override-fault handler, the processor refaults on the arithmetic-zero-divide
fault, which is handled by the arithmetic-fault handler.

System-Error Interrupt

If a second override should occur (i.e., if a fault occurs between the time the processor begins
storing the fault record for an override fault and the time it begins work on the fault handler for
the override fault), the processor handles the second override by means of a system-error
interrupt.

Here, the processor saves the process state and fault information for all three faults in the
PRCB, then performs a recovery action, using a interrupt handler that it accesses through the
interrupt table. (Interrupt vector 248 in the interrupt table is reserved for system-error
mterrupts.) The processor does not provide a mechanism for returning from a system-error
interrupt handler. A system-error interrupt thus represents a fatal condition, which results at
the very least in the current process being aborted.

This system-error interrupt mechanism is also used when a fault occurs while the processor is
in the idle or stopped state. For example, assume that the processor has suspended one process
and is attempting to dispatch another process. While the processor is in between processes, it
is in the idle state. If a structural fault occurs while the processor is attempting to dispatch a
process, this fault results in a system-error interrupt.
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Halit

Finally, if a fault occurs while the processor is generating a system-error interrupt, the proces-
sor halts. As part of the halt action, the processor collects as much information as possible
about the last fault, then puts itself into the stopped state.

Multiple Fault Conditions

It is possible for multiple fault conditions to occur simultaneously. For certain fault types, such
as trace faults or protection faults, bit positions in the fault-subtype field are used to indicate
the occurrence of multiple faults of the same type. As a general rule, however, the processor
does not indicate situations where multiple faults occur. Instead, it generates one of the faults
and does not report on the faults that were not generated.

SOFTWARE REQUIREMENTS FOR HANDLING FAULTS

To use the processor’s fault-handling facilities, the following data structures and procedures
must be present in memory:

o Fault table

o Trace-Fault-Handler Procedure Table

o  Fault-Handler Procedure Table (Optional)

o  Fault-Handler Procedures

e Interrupt Table

o Interrupt Stack

Software should generally load these items in memory as part of the initialization procedure.
Once they are present in memory and pointers to them have been entered in the appropriate
data structures, the processor then handles faults automatically and independently from
software.

NOTE

If the virtual-memory-management features of the processor are being used, the fault-handling
data structures should be frozen in memory (i.e., they should never be swapped out of memory).

Requirements for the fault table, trace-fault-handler-procedure tablé: and fault-handler
procedures are given in the following sections. Requirements for the interrupt table and
interrupt stack are given in Chapter 10.

FAULT TABLE

The fault table provides the processor with a pathway to the fault-handler procedures. As
shown in Figure 12-1, there is one entry in the fault table for each fault type plus an entry for
overrides. When a fault occurs, the processor uses the fault type to select an entry in the fault
table. From this entry, the processor then obtains a pointer to the fault-handler procedure for
the type of fault that occurred.
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Figure 12-1: Fault Table and Fault-Table Entries
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Once a fault-handler procedure has been called, it has the option of reading the fault subtype or
subtypes from the fault record to determine the appropriate fault recovery action.

Location of the Fault Table in Memory

The fault table is located in physical memory. The processor obtains a physical-address
pointer to the fault table from the PRCB.

The fault table is placed in physical memory for two reasons: to avoid a virtual memory fault
while handling a fault and to provide access to the fault-handling procedures during initializa-
tion.

Fault-Table Entries

As shown at the bottom of Figure 12-1, three types of fault-table entries are allowed: a
local-procedure entry, a procedure-table entry, and a trace-fault-handler-procedure-table entry.
Each entry type is two words long. The entry-type field (bits O and 1 of the first word of the
entry) and the SS in the second word of the entry determines the entry type.

A local-procedure entry (entry type 00,) provides an instruction pointer (address in the address
space) for the fault-handler procedure. Using this entry, the processor invokes the specified
fault handler by means of an implicit call-extended operation (similar to that performed for the
callx instruction). The second word of a local-procedure entry is reserved. It should be set to
zero when the fault table is created and not accessed after that.

A procedure-table entry provides a procedure number in a procedure table. This entry must
have and entry type of 10, and an SS for the procedure table in the second word. Using this
entry, the processor invokes the specified fault handler by means of an implicit call-system
operation (similar to that performed for the calls instruction). Fault-handling procedures in the
procedure table can be local procedures or supervisor procedures.

The procedure table can be the system procedure table that the kernel provides as an entry
point for supervisor calls or a special procedure table, which is reserved for fault-handling
procedures alone. If a special, fault-handler procedure table is created, it must have the same
format as the procedure table shown in Figure 4-4. The supervisor stack pointer in this table
should point to the same stack that is pointed to in the system procedure table.

The trace-fault-handler-procedure-table entry provides a procedure number in a special proce-
dure table called the trace-fault-handler procedure table. This entry must have and entry type
of 10, and an SS for the trace-fault-handler procedure table in the second word. The function
of this entry is described in the following section titled "Handling Trace Faults."

To summarize, a fault handler can be invoked through the fault table in any of four ways: a

local procedure call; a local procedure-table call; a supervisor call; or a trace-fault-handler
procedure-table call.
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TRACE-FAULT HANDLING

When handling trace faults, the 80960 architecture requires that tracing be disabled (i.e., the
trace-enable flag of the process controls must be set to 0). To support this requirement, the
architecture defines a special trace-fault-handler procedure table. This procedure table has the
same structure as the procedure table shown in Figure 4-4, but with the following two restric-
tions:

o  All entries must be supervisor entries (10, in bits 0 and 1).
e The trace control flag (byte 12, bit 0) must be set to 0.

The supervisor stack pointer in the trace fault-handler procedure table should be the same as
the stack pointer given in the system procedure table.

The effect of these restrictions is that on a call to a trace-fault handler routine, the processor
saves the current state of the trace-enable flag and then clears the flag to disable tracing. On
the return from the trace fault handler, the processor automatically restores the trace-enable
flag to the state it was in prior to the trace fault.

The trace-fault-handler procedure table will generally have only one procedure entry, which
points to the trace-fault handler procedure. However, this procedure table can be used as a
pathway to other fault-handler routines.

This method of ‘handling trace faults must always be used except for the following cir-
cumstances:

o If tracing is never going to be used (i.e., the trace-enable flag of the process controls is
always set to 0), the trace fault-handler procedure table is not required.

o If tracing is never going to be used on supervisor calls, the system-procedure table can be
used in place of the trace-fault-handler procedure table, since the trace-control ﬂag of the
system-procedure table will then be set to 0. '

In the latter case, the trace-fault handler must still be called with a supervisor call.

FAULT-HANDLER PROCEDURES

The fault-handler procedures are generally located in region 3 of virtual memory, although
they can be located in any region. By locating the procedures in region 3, the processor always
has access to them whether it is bound to a process or not. (The fault-handler procedures can
also be located in physical memory if the physical-addressing translation mode is bemg used.)
Each procedure must begin on a word boundary.

The processor can execute the procedure in the user mode or the supervisor mode, depending
on the type of fault table entry. If a fault handler is intended to be executed from the
supervisor mode, the page rights for the page or pages that contain the handler may be set for
supervisor-only access. '

12-8



|ntel FAULT HANDLING

NOTE

To resume work on a process at the point where a fault occurred (following the recovery action
of the fault handler), the fault handler must be executed in the supervisor mode. The reason for
this requirement is described in a following section titled "Returning with Resumption."

Possible Fault-Handler Actions

Many of the faults that occur can be recovered from easily. For example, recovery from an
invalid PTE fault merely involves copying the page from the disk into memory and marking
the page-table entry as valid.

When recovery from the fault is possible, the processor’s fault-handling mechanism allows the
processor to automatically resume work on the process or interrupt it was working on when the
fault occurred. The resumption action is initiated with a ret instruction in the fault-handler
procedure.

If recovery from the fault is not possible or not desirable, the fault handler can take one of the
following actions, depending on the nature and severity of the fault condition (or conditions, in
the case of multiple faults):

o Return to a point in the process or interrupt code other than the point of the fault
o  Suspend the current process and rebind it to the processor

o  Suspend the current process and bind a new process to the processor

o Suspend the current process and place the processor in the idle or stopped state

o  Explicitly write the fault record and instruction resumption record into the fields provided
for them in PRCB, suspend the current process, and place the processor in the idle or
stopped state.

o  Explicitly write the fault record and instruction resumption record into the fields provided
for them in PRCB and place the processor in the idle or stopped state, without suspending
the current process.

o Place the processor in the idle or stopped state without explicitly saving the process state
or the fault information.

When working with the processor at the development level, a common action of the fault
handler is to save the fault and processor state information and make a call to a debugging
device such as a debugging monitor. This device can then be used to analyze the fault.

Process and Instruction Resumption Following a Fault

Faults can occur prior to the execution of the faulting instruction (i.e., the instruction that
causes the fault), during the instruction, or after the instruction. When the fault occurs before
the faulting instruction is executed, the instruction can theoretically be executed on the return
from the fault handler. So, the fault can be handled in such as way as to not interrupt in the
control flow of the process. ‘
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When a fault occurs during or after the instruction that caused a fault, the fault may be
accompanied by a change in the process state such that the execution of the process can not be
resumed after the fault has been handled. For example, when an integer-overflow fault occurs,
the overflow value is stored in the destination. If the destination register was the same as one
of the source registers, the source value is lost, making recovery from the fault impossible.

In general, resumption of process execution with no changes in the process’s control flow is
always possible with the following fault types or subtypes:
o  All Operation Subtypes

e Arithmetic Zero-Divide

o  All Floating-Point Subtypes Except Floating Inexact
o  All Constraint Subtypes

e All Trace Subtypes

o Invalid Descriptor

e All Virtual Memory Subtypes

o Time Slice

« Event Notice

Resumption of the process may or may not be possible with the following fault types and
subtypes:

o Integer Overflow

o  Floating Inexact

e All Structural Subtypes

o Bad Access

e All Protection Subtypes

e All Type Subtypes

The effect that specific fault types have on a process is given in the fault reference section at
the end of this chapter under the heading "Process State Changes."

Returning With Resumption

As described above, certain faults do not change the state of the process when they occur, even
if the execution of the instruction was suspended as part of the fault-generation mechanism.
Here, the processor allows work on a process to be resumed at the point where the fault
occurred (including resumption of a suspended instruction), following a return from a fault
handler. The resumption mechanism is similar to that provided for returning from an interrupt
handler.

To use this mechanism, the fault handler must be invoked using a supervisor call. This method

is required because to resume work on the process and a suspended instruction at the point
where the fault occurred, the saved process controls in the fault record must be copied back
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into the process’s PCB on the return from the fault handler. The processor only performs this
action if the processor is in the supervisor mode on the return.

If the fault handler is invoked with a local-procedure call or a local-procedure-table call, the
return IP determines where in the process the processor resumes work, following a return from
a fault handler. Here, the return is handled in a similar manner to a return from an explicit call
with a call or callx instruction.

The return IP (referred to later in this chapter as the saved IP) is saved in the RIP register (r2)
of the stack frame that was in use when the fault occurred. This IP may be the instruction the
processor faulted on or the next instruction that the processor would have executed if the fault
had not occurred. In either case, the resumption record is not used, so the processor might
continue work on the process without completing the instruction that the fault occurred on.

A fault handler should thus be invoked with a local-procedure or local-procedure-table call
only if it is not required or desirable to resume the process at the point where the fault
occurred. The section later in this chapter titled "Returning Without Resumption" discusses
returning to a point in the process code other than the point of the fault.

Return Without Resumption

There may be situations where the fault handler needs to return to a point in the process other
than where the fault occurred. This can be done by altering the return IP in the previous frame.
However, if resumption information was collected with the fault (resulting in the resume flag
being set in the saved process controls), such a return can cause unpredictable results.

To predictably perform a return from a fault handler to an alternate point in the process, the
fault handler should perform the following two steps:
1. Flush the local register sets to the stack with a flushreg instruction.
2. Clear the following information in the process-controls field of the fault record before the
return: the resume and trace-fault-pending flags; the internal state field.
NOTE

This technique should be used carefully and only in situations where the fault handler is closely
coupled with the application program. Also, a return of this type can only be performed if the
processor is in supervisor mode prior to the return.

Aborting a Process

Where it is not possible to return to the process in which a fault occurred, the fault handler can
be designed to abort the process. Several possible actions that a fault handler can take when
aborting a process are given in the section earlier in this chapter titled "Possible Fault-Handler
Actions."
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Certain fault types and subtypes have masks or flags associated with them that determine
whether or not a fault is generated when a fault condition occurs. Table 12-2 lists these flags
and masks, the data structures in which they are located, and the fault subtype they affect.

Table 12-2: Fault Flags or Masks
Flag or Mask Name Location Fault Affected
Integer Overflow Mask Arithmetic Controls | Integer Overflow
Floating Overflow Mask Arithmetic Controls | Floating Overflow
Floating Underflow Mask Arithmetic Controls | Floating Underflow
Floating Invalid Operation Mask | Arithmetic Controls | Floating

Invalid Operation

Floating Zero-Divide Mask

Arithmetic Controls

Floating Zero-Divide

Floating-point Inexact Mask

Arithmetic Controls

Floating Inexact

No Imprecise Faults Flag

Arithmetic Controls

All Imprecise Faults

Refault Flag

Process Controls

All Faults

Trace-Enable Flag

Process Controls

All Trace Faults

Trace-Mode Flags

Trace Controls

All Trace Faults

Event-Fault Request Flags

PCB

Event Notice Fault

The integer and floating-point mask bits inhibit faults from being raised for specific fault
conditions (i.e., integer overflow and floating-point overflow, underflow, zero divide, invalid
operation, and inexact). The use of these masks is discussed in the fault-reference section at
the end of this chapter. Also, the floating-point fault masks are described in Chapter 7 in the
section titled "Exceptions and Fault Handling."

The no-imprecise-faults (NIF) flag controls the synchronizing of faults for a category of faults
called imprecise faults. This flag should be set to 1. The function of this flag is described later
in this chapter in the section titled "Precise and Imprecise Faults."

The refault flag causes a fault to be generated on a return from a fault handler. This flag is
used in the handling of override conditions and can also be used by the kernel. Refer to the
sections in this chapter titled "Generating Faults" and "Override Fault-Handling Action" for
further information on the refault flag.

The trace-mode flags (in the trace controls) and trace-enable flag (in the process controls)
support trace faults. The trace-mode flags enable trace modes; the trace-enable flag enables the
generation of trace faults. The use of these flags is described in the fault reference section on
trace faults at the end of this chapter. Further discussion of these flags is provided in Chapter
16 in the section titled "Trace-Enable and Trace-Fault-Pending Flags."

The event-fault request flags cause an event-notice fault to be generated under specific cir-

cumstances. These flags are discussed in the fault reference section on event faults at the end
of this chapter.
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FAULTS AND INTERRUPTS

If an interrupt occurs during an instruction that will fault, that has just faulted, or that has
faulted while the processor is in the midst of selecting the fault handler, the processor will
handle the fault in the following way. It completes the selection of the fault handler, then
services the interrupt just prior to executing the first instruction of the fault handler. On
returning from the interrupt, the fault is handled.

PROCESSING TIMING WHILE HANDLING A FAULT

When a fault occurs while the processor is executing a process, the processor continues to
count process time (i.e., count down the residual-time-slice value) while it is executing the
fault-handler procedure. If an end-of-time-slice event occurs while the fault handler is being
executed, the processor handles the event just as it would if the event occurred while the
process was being executed. For example, if the process-timing controls are configured to
suspend a process at the end of a time slice, the processor suspends the process in the midst of
the fault-handler routine. The next time the process is dispatched, the processor begins work-
ing on the fault handler where it left off.

GENERATING A FAULT

The processor generates faults implicitly when fault conditions occur and explicitly at the
request of software. Most faults are generated implicitly. The fault control bits described in
the previous section allow the implicit generation of some faults to be either enabled (as with
the trace faults) or masked (as with the floating-point faults).

The following paragraphs describe faults that software can cause to be generated explicitly.

Fault-If and Mark Instructions

Two sets of instructions allows faults to be generated explicitly anywhere within an application
program, kernel procedure, interrupt handler, or fault handler. The fault-if instructions (faulte,
faultne, faultl, faultle, faultg, faultge, faulto, and faultno) allow a conditional fault to be
generated. When one of these instructions is executed, the processor checks the condition code
bits in the arithmetic controls, then generates a constraint-range fault if the condition specified
with the instruction is met.

The mark and force mark (fmark) instructions allows a breakpoint trace fault to be generated
anywhere in the instruction stream.

Event-Notice Fault

The process-notice field in the PCB (shown in Figure 13-3) has two event-fault request flags.

When these flags are set, an event notice fault is generated in either of the following two
instances:
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o While the process associated with the PCB is being bound to the processor.

o If the process is already bound to the processor and the process notice IAC is sent to the
processor.

In the latter case, software would set the event-fault request flags after the process had been
bound to the processor, then send the IAC.

This faulting technique is used primarily by kernel procedures within multiprocessor systems.
It can only be used within a procedure that is being executed in supervisor mode.

Further information on the event-notice fault is given in the fault reference section at the end of
this chapter.

FAULT RECORD

When a fault occurs, the processor records information about the fault in a fault record. (The
location of the fault record is described later in this chapter in the section titled "Location of
the Fault and Resumption Records.") The fault handler and processor use the information in
the fault record to recover from or correct the fault condition and resume execution of the
process. Figure 12-2 shows the structure of the fault record. The use of the fields in this
record are described in the following paragraphs.

OVERRIDE FAULT DATA
12
16

FAULT DATA

24
OVERRIDE FLAGS I OVERRIDE TYPE 1 OVERRIDE SUBTYPE 28
PROCESS CONTROLS E3
ARITHMETIC CONTROLS 36
FAULT FLAGS I FAULT TYPE FAULT SUBTYPE 40
ADDRESS OF FAULTING INSTRUCTION 44

RESERVED

Figure 12-2: Fault Record

The fault record provides space for fault information on two faults: a normal fault and (if one
occurs) an override fault.
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The type number (byte ordinal) of a fault is stored in the fault type (normal fault) and override
type (override fault) fields; the subtype number or bit positions (byte ordinal) is stored in the
fault subtype (normal fault) and override subtype (override fault) fields.

Two sets of eight flags, fault flags field (normal fault) and override flags field (override fault)
are also provided. Of these flags, only FO and F1 (bits 24 and 25) are used. Most of the faults
do not use these flags, in which case the flags have no defined values.

The address-of-the-faulting-instruction field contains the IP of the instruction that caused the
fault or that was being executed when the fault occurred.

The states of the process controls and arithmetic controls at the time that a normal fault is
generated are stored in their respective fields in the fault record. This information is used to
resume work on the process after the fault has been handled.

Finally, a three-word fault data field is provided for both a normal fault and an override fault.
The information that is stored in these fields depends on the type of fault that occurs. Any part
of a fault-data field that is not used for a particular fault has no defined value. The information
that is stored in these fields for each fault type is given in the fault reference section at the end
of this chapter. ‘

Saved Instruction Pointer

The saved IP (the RIP that is saved in r2 of the stack frame in use when the fault occurred) is
also part of the fault information that the processor saves when a fault occurs. This IP
generally points to the next instruction that the processor would have executed if the fault had
not occurred, although it may point to the faulting instruction. It is this instruction that the
processor begins working on when the return from the fault handler is initiated.

Resumption Record

If the processor suspends an instruction as the result of a fault, it creates a 48-byte resumption
record. The criteria that the processor uses to determine whether or not to suspend an instruc-
tion and the structure of the resumption record are the same as are used when an interrupt
occurs.

Location of the Fault and Resumption Records

The fault and instruction-resumption records are stored in the fault handler’s stack, the PRCB,
or both places, depending on the circumstances under which the fault occurred. If the fault
occurs while the processor is doing any of the following things, the fault and resumption
records is stored in the stack that the processor will use to execute the fault-handler procedure:
« Executing a process

¢  Servicing an interrupt

¢ Handling another fault
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o Selecting a fault handler (first override fault)

As shown in Figure 12-3, this stack can be the local stack, the supervisor stack, or the interrupt
stack. The fault record begins at the byte address of the new frame pointer (NFP) minus 48,
and the instruction resumption record begins at NFP minus 96.

If the fault occurs while the processor is doing any of the following things, the fault record:is
stored in the PRCB:

o Selecting the override-fault handler (second override fault)
¢ In the idle processor-state

Both of the above situations cause a system-error interrupt. When the system-error interrupt is
the result of a second override fault, the fault-record is stored in two fields in the PRCB: the
system-error-fault field (bytes 72 through 75) and the system-error-fault-record field (bytes 128
through 175).

The fault record for the first two faults (the normal fault and the first override fault) is stored in
the system-error-fault record in the format shown in Figure 12-2. The fault type and subtype of
the second override fault is stored in the system-error-fault field, but no fault data is stored for
this fault.

The system-error interrupt handler thus has the following information available to it for the
purposes of handling a system-error interrupt: (1) the process state when the first fault oc-
curred, (2) complete fault data on the first two faults, and (3) the fault type and subtype of the
third fault.

When the system-error interrupt occurs while the processor is in the idle state, a record for this
fault is stored in the system-error-fault-record field. Here, the system-error-fault field is not
used, because the fault type and subtype are contained in the system-error-fault-record field.

Finally, if a fault occurs while the processor is selecting the system-error fault handler (which
causes a halt), the fault information collected in the PRCB for all the faults that occurred up
through the first system-error interrupt is maintained. However, no fault information on the
fault that occurred while the system-error interrupt handler was being selected is recorded
before the processor places itself in the stopped state.

FAULT-HANDLING ACTION

Once a fault has occurred, the processor saves the process state, calls the fault handler, and
restores the process state (if this is possible) once the fault recovery action has been completed.
No software other than the fault-handler procedures is required to support this activity.

The following sections describe the action that the processor takes while handling a fault.
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CURRENT STACK (LOCAL, SUPERVISOR, OR INTERRUPT STACK)

3 0
STACK P
GROWTH REGISTER SAVE AREA
FOR CURRENT FRAME
ADDITIONAL VARIABLES
AND PADDING AREA
(OPTIONAL)
CURRENT STACK OR SUPERVISOR STACK**
31 0
NSP*
PADDING AREA
STACK
T
GROWTH NFP-96
RESUMPTION RECORD
FOR SUSPENDED INSTRUCTION FAULT
(OPTIONAL) RECORD
L NFP-48
FAULT RECORD
NEW FRAME NFP
<

* If the call to the fault-handler procedure does not require a stack switch, the new stack
pointer (NSP) will be the same as the SP.

** If the processor is in user mode and the fault-handler procedure is called with an implicit
supervisor call, the processor switches to the supervisor stack.

RESERVED

Figure 12-3: Storage of the Fault and Resumption Records on the Stack
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Selecting the Fault-Handling-Action Method

The criteria that the processor uses to determine the fault-handling method are described in the
section earlier in this chapter titled "Fault Handling Methods." Once the processor settles on
the handling method, it performs the respective action described in the following paragraphs.

Normal Fault-Handling Action

Four different types of procedure calls can be used to handle the first (or primary) fault that
occurs: a local call, a local call through a procedure table, a supervisor call (also through
procedure table), and a supervisor call through the trace-fault-handler procedure table. The
processor determines the type of call to make from the information in the selected fault-table
entry. As was mentioned earlier in this chapter, the procedure table may be the system table
that the processor uses to access kernel services, a special fault-handler procedure table, or the
trace fault-handler procedure table.

Local Call/Return

When the selected fault-handler entry in the fault table is an entry type 00, (local procedure),
the processor performs the following action:

1. The processor creates a new frame on the stack that the processor is currently using, with
the frame-return status field set to 001,. The stack can be the local stack, the supervisor
stack, or the interrupt stack. As shown in Figure 12-3, the new frame pointer (NFP)
resides on a 64-byte boundary and provides enough room between the current stack
pointer and the NFP for a 48-byte fault record and an optional 48-byte instruction resump-
tion record. (For local calls to fault handling procedures, the current stack pointer (SP)
shown in Figure 12-3 is the same as the new stack pointer (NSP).)

2. The processor stores a fault record as shown in Figure 12-2 on the stack, beginning at NFP
minus 48.

3. If the fault caused an instruction to be suspended, the processor includes an instruction-
resumption record on current stack (beginning at NFP minus 96) and sets the resume flag
in the saved process controls.

4. Using the procedure address from the selected fault-table entry, the processor performs an
implicit call-extended operation to the fault handler.

If the fault handler is not able to perform a recovery action, it performs one of the actions
described in the section earlier in this chapter titled "Fault-Handler Procedures."

If the handler action results in a recovery’ from the fault, a ret instruction in the fault handler
allows processor control to return to the process that was being worked on when the fault
occurred. On the return, the processor performs the following action:

1. The processor copies the arithmetic controls field from the fault record into the arithmetic
controls register in the processor.

2. If the resume flag of the process controls is set, the processor reads the resumption record
from the stack.
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The processor deallocates the stack frame created for the fault handler.

The processor then resumes work on the process it was working on when the fault oc-
curred at the instruction in the return IP register.

NOTE

The saved process controls are not copied back into the PCB, unless the execution mode is
supervisor at the time of the return, which would not ordinarily be the case with a local call to
the fault handler. Thus any changes in the process controls that the fault handler makes become
part of the process state when the processor resumes work on the process.

Local Procedure-Table Call/Return

When the fault-handler entry selects an entry in a special fault-handler procedure table (or the
system procedure table) and the procedure-table entry is for a local procedure, the processor
performs the same action as is described in the previous section for a local-procedure call and
return. The only difference is that the processor gets the address of the fault handler from the
procedure table rather than from the fault table.

Supervisor Call/Return

When the fault-handler entry selects an entry in a fault-handler procedure table (or the system
procedure table) and the procedure-table entry is for a supervisor procedure, the processor
performs the following actions:

1.

If the processor is in user mode when the fault occurs, the processor then reads the
supervisor-stack pointer from the procedure table and switches to the supervisor stack.
The supervisor-stack pointer then becomes the NSP shown in Figure 12-3. Also, the
execution mode is set to supervisor.

If the processor is already in supervisor mode when the fault occurs, the processor stays on
the current stack. Here, the SP and the NSP in Figure 12-3 are the same. (If the processor
was executing a supervisor procedure when the fault occurred, the current stack will be the
supervisor stack; if it was executing an interrupt-handler procedure, the current stack will
be the interrupt stack. The processor switches to supervisor mode when handling
interrupts.)

The processor copies the state of the trace-control flag (byte 12, bit 1) of the procedure
table into the trace-enable flag field of the process controls.

The processor creates a new frame on the current stack (as described above for the local
call); stores the fault record and optional instruction resumption record in the areas al-
located for them on the stack; and begins work on the fault-handler procedure selected
from the procedure table.

On a return from the fault handler, the processor performs the following actions:

1.

The processor copies the arithmetic-controls field from the fault record into the arithmetic-
controls register in the processor.

If the processor is in supervisor mode prior to the return from the fault handler (which it
should be), it copies the saved process controls into its internal process controls.
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3. If the resume flag of the process controls is set, the processor reads the resumption record
from the stack.

4. The processor deallocates the stack frame created for the fault handler and returns to the
stack is was using prior to the call to the fault handler routine.

5. If the processor was in user mode prior to the supervisor call, the mode is set back to user
mode; otherwise, the processor remains in supervisor mode.

6. The processor resumes work on the process it was working on when the fault occurred, at
the instruction in the return IP register.

The restoration of the process controls causes any changes in the process controls through the
action of the fault handler to be lost. In particular, if the ret instruction from the fault handler
caused the trace-fault-pending flag in the process controls to be set, this setting would be lost
on the return.

Trace-Fault-Handler Call/Return

When the fault table entry is for a trace fault, the processor performs the same action as is
described in the previous section for a supervisor call and return. The only difference is that
the processor uses the trace-fault-handler procedure table instead of the normal-fault-handler
procedure table (or system procedure table).

Override Fault-Handling Action

When an override fault occurs, the processor can call the override-fault handler using any of
the techniques described above (local call, local call through a procedure table, supervisor call,
or trace-fault-handler procedure table call). The processor performs the same actions on the
call and return as described above except for the follow things.

When calling the override-fault handler, the processor performs the following additional ac-
tions:

1. The processor saves an override fault record (that contains the primary and the secondary
fault data) on the stack.

2. The processor sets the refault and resume flags in the saved process controls. (The resume
flag is set even if a resumption record is not saved.)

3. The processor begins work on the selected override-fault handler.

The override-fault handler can be designed to attempt to correct both faults or correct the
override fault and then refault on the original fault, allowing the fault handler for that fault to
be called. The latter technique is allowed only if the override-fault handler is called with a
supervisor procedure call.

On the return from the override-fault handler, the processor performs the following additional
actions:

1. If the processor is in user mode on the return from the fault handler, the saved arithmetic
controls are copied into the arithmetic controls register and the processor begins work at
the point in the process or interrupt designated with the saved IP.

12-20



mtel FAULT HANDLING

2. If the processor is in supervisor mode on the return from the fault handler, the saved
arithmetic controls are copied into the arithmetic controls register and the saved process
controls are copied into the PCB for the process being resumed. The refault and resume
flags are then cleared, and the processor refaults on the original (first) fault.

NOTE

If the fault handler is not called with a supervisor call, the override-fault handler must handle
both the original fault and the override fault. If this is not done, the process might be put into
an unpredictable state on the return from the fault handler.

System-Error-Interrupt Action

When a system-error interrupt occurs, the processor collects data on the faults that caused the
condition and calls the system-error interrupt fault handler. The processor does not, however,
provide a mechanism for resuming the process, once the handling of the interrupt is complete.

When a system-error interrupt occurs as the result of a second override fault, the processor
takes the following action:

1. The processor stores the fault record for the original fault and the first override fault in the
system-error-fault-record field of the PRCB.

2. The processor stores the type and subtype of the second override fault in the system-error
fault field of the PRCB.

3. The processor switches to the interrupt stack.

4. The processor performs an implicit call operation to vector 248 (the predefined system-
error interrupt vector) in the interrupt table.

When a system-error interrupt occurs as the result of a fault occurring while the processor is in
the idle state, the processor takes the following action:

1. The processor stores th