

Intel® Itanium® Architecture
Software Developer’s Manual
Volume 1: Application Architecture

Revision 2.3

May 2010

Document Number: 245317

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 ii

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale
and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Intel® processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Copyright © 1999-2010, Intel Corporation

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 iii

Contents

Part I: Application Architecture Guide

1 About this Manual . 1:3

1.1 Overview of Volume 1: Application Architecture . 1:3
1.1.1 Part 1: Application Architecture Guide . 1:3
1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture 1:3

1.2 Overview of Volume 2: System Architecture. 1:4
1.2.1 Part 1: System Architecture Guide . 1:4
1.2.2 Part 2: System Programmer’s Guide . 1:5
1.2.3 Appendices. 1:6

1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference 1:6
1.4 Overview of Volume 4: IA-32 Instruction Set Reference. 1:6
1.5 Terminology . 1:7
1.6 Related Documents . 1:7
1.7 Revision History . 1:8

2 Introduction to the Intel® Itanium® Architecture . 1:13

2.1 Operating Environments . 1:13
2.2 Instruction Set Transition Model Overview . 1:14
2.3 Intel® Itanium® Instruction Set Features. 1:15
2.4 Instruction Level Parallelism . 1:15
2.5 Compiler to Processor Communication . 1:16
2.6 Speculation . 1:16

2.6.1 Control Speculation . 1:16
2.6.2 Data Speculation . 1:17
2.6.3 Predication . 1:17

2.7 Register Stack . 1:18
2.8 Branching . 1:19
2.9 Register Rotation . 1:19
2.10 Floating-point Architecture . 1:19
2.11 Multimedia Support. 1:20
2.12 Intel® Itanium® System Architecture Features . 1:20

2.12.1 Support for Multiple Address Space Operating Systems 1:20
2.12.2 Support for Single Address Space Operating Systems 1:20
2.12.3 System Performance and Scalability . 1:21
2.12.4 System Security and Supportability . 1:21

2.13 Terminology . 1:21

3 Execution Environment. 1:23

3.1 Application Register State . 1:23
3.1.1 Reserved and Ignored Registers and Fields . 1:23
3.1.2 General Registers. 1:25
3.1.3 Floating-point Registers . 1:26
3.1.4 Predicate Registers . 1:26
3.1.5 Branch Registers . 1:26
3.1.6 Instruction Pointer. 1:27
3.1.7 Current Frame Marker . 1:27
3.1.8 Application Registers . 1:28
3.1.9 Performance Monitor Data Registers (PMD) . 1:33
3.1.10 User Mask (UM) . 1:33
3.1.11 Processor Identification Registers . 1:34

3.2 Memory. 1:36
3.2.1 Application Memory Addressing Model . 1:36
3.2.2 Addressable Units and Alignment . 1:36

iv Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

3.2.3 Byte Ordering . 1:36
3.3 Instruction Encoding Overview . 1:38
3.4 Instruction Sequencing Considerations . 1:39

3.4.1 RAW Dependency Special Cases. 1:42
3.4.2 WAW Dependency Special Cases . 1:43
3.4.3 WAR Dependency Special Cases. 1:44
3.4.4 Processor Behavior on Dependency Violations . 1:44

3.5 Undefined Behavior . 1:44

4 Application Programming Model . 1:47

4.1 Register Stack . 1:47
4.1.1 Register Stack Operation . 1:47
4.1.2 Register Stack Instructions . 1:49

4.2 Integer Computation Instructions. 1:50
4.2.1 Arithmetic Instructions . 1:51
4.2.2 Logical Instructions . 1:51
4.2.3 32-bit Addresses and Integers . 1:52
4.2.4 Bit Field and Shift Instructions. 1:52
4.2.5 Large Constants . 1:53

4.3 Compare Instructions and Predication . 1:54
4.3.1 Predication . 1:54
4.3.2 Compare Instructions . 1:54
4.3.3 Compare Types. 1:55
4.3.4 Predicate Register Transfers. 1:57

4.4 Memory Access Instructions . 1:57
4.4.1 Load Instructions . 1:58
4.4.2 Store Instructions . 1:59
4.4.3 Semaphore Instructions . 1:59
4.4.4 Control Speculation . 1:60
4.4.5 Data Speculation . 1:63
4.4.6 Memory Hierarchy Control and Consistency . 1:69
4.4.7 Memory Access Ordering . 1:73

4.5 Branch Instructions . 1:74
4.5.1 Modulo-scheduled Loop Support . 1:75
4.5.2 Branch Prediction Hints . 1:78
4.5.3 Branch Predict Instructions . 1:79

4.6 Multimedia Instructions . 1:79
4.6.1 Parallel Arithmetic . 1:79
4.6.2 Parallel Shifts . 1:81
4.6.3 Data Arrangement . 1:81

4.7 Register File Transfers . 1:82
4.8 Character and Bit Strings . 1:83

4.8.1 Character Strings . 1:83
4.8.2 Bit Strings . 1:84

4.9 Privilege Level Transfer . 1:84

5 Floating-point Programming Model . 1:85

5.1 Data Types and Formats . 1:85
5.1.1 Real Types . 1:85
5.1.2 Floating-point Register Format . 1:85
5.1.3 Representation of Values in Floating-point Registers 1:86

5.2 Floating-point Status Register . 1:88
5.3 Floating-point Instructions . 1:91

5.3.1 Memory Access Instructions . 1:91
5.3.2 Floating-point Register to/from General Register Transfer Instructions . . 1:97
5.3.3 Arithmetic Instructions . 1:98
5.3.4 Non-arithmetic Instructions . 1:99
5.3.5 Floating-point Status Register (FPSR) Status Field Instructions. 1:100
5.3.6 Integer Multiply and Add Instructions . 1:101

5.4 Additional IEEE Considerations. 1:101
5.4.1 Floating-point Interruptions . 1:101

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 v

5.4.2 Definition of Overflow . 1:105
5.4.3 Definition of Tininess, Inexact and Underflow . 1:106
5.4.4 Integer Invalid Operations . 1:107
5.4.5 Definition of Arithmetic Operations . 1:107
5.4.6 Definition and Propagation of NaNs . 1:107
5.4.7 IEEE Standard Mandated Operations Deferred to Software 1:107
5.4.8 Additions beyond the IEEE Standard . 1:107

6 IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:109

6.1 IA-32 Execution Layer . 1:109
6.2 Hardware-based IA-32 Application Execution . 1:109

6.2.1 Instruction Set Modes. 1:110
6.2.2 IA-32 Application Register State Model . 1:113
6.2.3 Memory Model Overview . 1:130
6.2.4 IA-32 Usage of Intel® Itanium® Registers. 1:133

Part II: Optimization Guide for the Intel® Itanium® Architecture

1 About the Optimization Guide . 1:137

1.1 Overview of the Optimization Guide . 1:137

2 Introduction to Programming for the Intel® Itanium® Architecture 1:139

2.1 Overview. 1:139
2.2 Registers. 1:139
2.3 Using Intel® Itanium® Instructions . 1:140

2.3.1 Format . 1:140
2.3.2 Expressing Parallelism . 1:140
2.3.3 Bundles and Templates . 1:141

2.4 Memory Access and Speculation . 1:142
2.4.1 Functionality . 1:142
2.4.2 Speculation. 1:142
2.4.3 Control Speculation . 1:142
2.4.4 Data Speculation . 1:143

2.5 Predication . 1:143
2.6 Architectural Support for Procedure Calls . 1:144

2.6.1 Stacked Registers . 1:144
2.6.2 Register Stack Engine . 1:144

2.7 Branches and Hints . 1:144
2.7.1 Branch Instructions. 1:145
2.7.2 Loops and Software Pipelining . 1:145
2.7.3 Rotating Registers . 1:145

2.8 Summary . 1:146

3 Memory Reference. 1:147

3.1 Overview. 1:147
3.2 Non-speculative Memory References. 1:147

3.2.1 Stores to Memory . 1:147
3.2.2 Loads from Memory . 1:147
3.2.3 Data Prefetch Hint . 1:148

3.3 Instruction Dependencies . 1:148
3.3.1 Control Dependencies . 1:148
3.3.2 Data Dependencies . 1:149

3.4 Using Speculation in the Intel® Itanium® Architecture to Overcome Dependencies 1:151
3.4.1 Speculation Model in the Intel® Itanium® Architecture 1:152
3.4.2 Using Data Speculation in the Intel® Itanium® Architecture 1:152
3.4.3 Using Control Speculation in the Intel® Itanium® Architecture 1:155
3.4.4 Combining Data and Control Speculation . 1:156

3.5 Optimization of Memory References . 1:157
3.5.1 Speculation Considerations . 1:157

vi Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

3.5.2 Data Interference. 1:158
3.5.3 Optimizing Code Size . 1:158
3.5.4 Using Post-increment Loads and Stores. 1:159
3.5.5 Loop Optimization . 1:160
3.5.6 Minimizing Check Code. 1:161

3.6 Summary . 1:162

4 Predication, Control Flow, and Instruction Stream. 1:163

4.1 Overview . 1:163
4.2 Predication. 1:163

4.2.1 Performance Costs of Branches . 1:163
4.2.2 Predication in the Intel® Itanium® Architecture . 1:164
4.2.3 Optimizing Program Performance Using Predication 1:165
4.2.4 Predication Considerations . 1:168
4.2.5 Guidelines for Removing Branches. 1:171

4.3 Control Flow Optimizations . 1:171
4.3.1 Reducing Critical Path with Parallel Compares . 1:172
4.3.2 Reducing Critical Path with Multiway Branches 1:173
4.3.3 Selecting Multiple Values for One Variable or Register with Predication 1:174
4.3.4 Improving Instruction Stream Fetching . 1:175

4.4 Branch and Prefetch Hints. 1:176
4.5 Hints for Controlling Multi-threading . 1:177

4.5.1 Wait Loops . 1:177
4.5.2 Idle Loops . 1:178
4.5.3 Critical Sections. 1:178

4.6 Summary . 1:179

5 Software Pipelining and Loop Support . 1:181

5.1 Overview . 1:181
5.2 Loop Terminology and Basic Loop Support . 1:181
5.3 Optimization of Loops . 1:181

5.3.1 Loop Unrolling . 1:182
5.3.2 Software Pipelining . 1:183

5.4 Loop Support Features in the Intel® Itanium® Architecture 1:184
5.4.1 Register Rotation. 1:185
5.4.2 Note on Initializing Rotating Predicates. 1:186
5.4.3 Software-pipelined Loop Branches . 1:186
5.4.4 Terminology Review . 1:189

5.5 Optimization of Loops in the Intel® Itanium® Architecture . 1:190
5.5.1 While Loops. 1:190
5.5.2 Loops with Predicated Instructions . 1:192
5.5.3 Multiple-exit Loops . 1:193
5.5.4 Software Pipelining Considerations. 1:195
5.5.5 Software Pipelining and Advanced Loads. 1:196
5.5.6 Loop Unrolling Prior to Software Pipelining . 1:198
5.5.7 Implementing Reductions . 1:200
5.5.8 Explicit Prolog and Epilog . 1:201
5.5.9 Redundant Load Elimination in Loops. 1:204

5.6 Summary . 1:204

6 Floating-point Applications . 1:205

6.1 Overview . 1:205
6.2 FP Application Performance Limiters . 1:205

6.2.1 Execution Latency . 1:205
6.2.2 Execution Bandwidth. 1:206
6.2.3 Memory Latency . 1:206
6.2.4 Memory Bandwidth . 1:207

6.3 Floating-point Features in the Intel® Itanium® Architecture. 1:207
6.3.1 Large and Wide Floating-point Register Set . 1:207
6.3.2 Multiply-Add Instruction . 1:210

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 vii

6.3.3 Software Divide/Square Root Sequence . 1:211
6.3.4 Computational Models . 1:212
6.3.5 Multiple Status Fields . 1:213
6.3.6 Other Features . 1:214
6.3.7 Memory Access Control . 1:216

6.4 Summary . 1:217

Index . 1:219

Figures

Part I: Application Architecture Guide

2-1 System Environment . 1:14
3-1 Application Register Model . 1:25
3-2 Frame Marker Format . 1:27
3-3 RSC Format. 1:29
3-4 BSP Register Format. 1:30
3-5 BSPSTORE Register Format . 1:30
3-6 RNAT Register Format . 1:30
3-7 PFS Format . 1:32
3-8 Epilog Count Register Format . 1:33
3-9 User Mask Format . 1:33
3-10 CPUID Registers 0 and 1 – Vendor Information . 1:34
3-11 CPUID Register 3 – Version Information . 1:34
3-12 CPUID Register 4 – General Features/Capability Bits . 1:35
3-13 Little-endian Loads . 1:37
3-14 Big-endian Loads. 1:37
3-15 Bundle Format . 1:38
4-1 Register Stack Behavior on Procedure Call and Return . 1:49
4-2 Data Speculation Recovery Using ld.c . 1:64
4-3 Data Speculation Recovery Using chk.a . 1:65
4-1 Memory Hierarchy . 1:70
4-2 Allocation Paths Supported in the Memory Hierarchy . 1:71
5-1 Floating-point Register Format . 1:86
5-2 Floating-point Status Register Format . 1:88
5-3 Floating-point Status Field Format. 1:89
5-4 Memory to Floating-point Register Data Translation – Single Precision 1:92
5-5 Memory to Floating-point Register Data Translation – Double Precision 1:93
5-6 Memory to Floating-point Register Data Translation – Double Extended, Integer, Parallel FP and

Fill1:94
5-7 Floating-point Register to Memory Data Translation – Single Precision 1:95
5-8 Floating-point Register to Memory Data Translation – Double Precision 1:95
5-9 Floating-point Register to Memory Data Translation – Double Extended, Integer, Parallel FP and

Spill1:96
5-10 Spill/Fill and Double-extended (80-bit) Floating-point Memory Formats 1:97
5-11 Floating-point Exception Fault Prioritization . 1:103
5-12 Floating-point Exception Trap Prioritization . 1:105
6-1 Instruction Set Transition Model . 1:110
6-1 Instruction Set Mode Transitions . 1:113
6-2 IA-32 Application Register Model . 1:114

viii Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

6-3 IA-32 General Registers (GR8 to GR15) . 1:117
6-4 IA-32 Segment Register Selector Format. 1:118
6-5 IA-32 Code/Data Segment Register Descriptor Format . 1:118
6-1 IA-32 EFLAG Register (AR24) . 1:123
6-1 IA-32 Floating-point Control Register (FCR) . 1:127
6-2 IA-32 Floating-point Status Register (FSR) . 1:127
6-1 Floating-point Data Register (FDR) . 1:129
6-2 Floating-point Instruction Register (FIR). 1:129
6-3 IA-32 Intel® MMX™ Technology Registers (MM0 to MM7). 1:129
6-4 SSE Registers (XMM0-XMM7). 1:130
6-5 Memory Addressing Model. 1:131

Part II: Optimization Guide for the Intel® Itanium® Architecture

3-1 Control Dependency Preventing Code Motion . 1:149
3-2 Speculation Model in the Intel® Itanium® Architecture . 1:152
3-3 Minimizing Code Size During Speculation . 1:159
3-4 Using a Single Check for Three Advanced Loads . 1:161
4-1 Flow Graph Illustrating Opportunities for Off-path Predication . 1:167
5-1 ctop and cexit Execution Flow . 1:187
5-2 wtop and wexit Execution Flow . 1:189

Tables

Part I: Application Architecture Guide
2-1 Major Operating Environments .1:14
3-1 Reserved and Ignored Registers and Fields .1:24
3-2 Frame Marker Field Description . .1:27
3-3 Application Registers .1:28
3-4 RSC Field Description . .1:29
3-5 PFS Field Description . .1:32
3-6 User Mask Field Descriptions . .1:33
3-7 CPUID Register 3 Fields .1:35
3-8 CPUID Register 4 Fields .1:35
3-9 Relationship between Instruction Type and Execution Unit Type1:38
3-10 Template Field Encoding and Instruction Slot Mapping1:38
4-1 Architectural Visible State Related to the Register Stack1:50
4-2 Register Stack Management Instructions . .1:50
4-3 Integer Arithmetic Instructions . .1:51
4-4 Integer Logical Instructions .1:52
4-5 32-bit Pointer and 32-bit Integer Instructions .1:52
4-6 Bit Field and Shift Instructions . .1:53
4-7 Instructions to Generate Large Constants. .1:53
4-8 Compare Instructions .1:54
4-9 Compare Type Function . .1:55
4-10 Compare Outcome with NaT Source Input .1:56
4-11 Instructions and Compare Types Provided .1:56
4-12 Memory Access Instructions. .1:58
4-13 State Relating to Memory Access . .1:58
4-14 State Related to Control Speculation .1:63

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 ix

4-15 Instructions Related to Control Speculation . 1:63
4-16 State Relating to Data Speculation . 1:69
4-17 Instructions Relating to Data Speculation . 1:69
4-18 Locality Hints Specified by Each Instruction Class . 1:70
4-19 Memory Hierarchy Control Instructions and Hint Mechanisms 1:72
4-20 Memory Ordering Rules . 1:73
4-21 Memory Ordering Instructions . 1:74
4-22 Branch Types . 1:74
4-23 State Relating to Branching . 1:75
4-24 Instructions Relating to Branching . 1:75
4-25 Instructions that Modify RRBs . 1:76
4-26 Whether Prediction Hint on Branches . 1:78
4-27 Sequential Prefetch Hint on Branches. 1:78
4-28 Predictor Deallocation Hint . 1:79
4-29 Parallel Arithmetic Instructions . 1:80
4-30 Parallel Shift Instructions . 1:81
4-31 Parallel Data Arrangement Instructions . 1:82
4-32 Register File Transfer Instructions. 1:82
4-33 String Support Instructions . 1:84
4-34 Bit Support Instructions . 1:84
5-1 IEEE Real-type Properties. 1:85
5-2 Floating-point Register Encodings. 1:86
5-3 Floating-point Status Register Field Description. 1:89
5-4 Floating-point Status Register’s Status Field Description 1:89
5-5 Floating-point Rounding Control Definitions . 1:90
5-6 Floating-point Computation Model Control Definitions 1:90
5-7 Floating-point Memory Access Instructions . 1:91
5-8 Floating-point Register Transfer Instructions . 1:97
5-9 General Register (Integer) to Floating-point Register Data Translation (setf) 1:98
5-10 Floating-point Register to General Register (Integer) Data Translation (getf) 1:98
5-11 Floating-point Instruction Status Field Specifier Definition 1:98
5-12 Arithmetic Floating-point Instructions . 1:98
5-13 Arithmetic Floating-point Pseudo-operations . 1:99
5-14 Non-arithmetic Floating-point Instructions . 1:100
5-15 Non-arithmetic Floating-point Pseudo-operations . 1:100
5-16 FPSR Status Field Instructions . 1:101
5-17 Integer Multiply and Add Instructions . 1:101
6-1 IA-32 Application Register Mapping . 1:115
6-2 IA-32 Segment Register Fields . 1:118
6-3 IA-32 Environment Initial Register State. . 1:120
6-4 IA-32 Environment Runtime Integrity Checks . 1:122
6-5 IA-32 EFLAGS Register Fields . 1:124
6-6 IA-32 Floating-point Register Mappings . 1:125
6-7 IA-32 Floating-point Status Register Mapping (FSR) . 1:127

Part II: Optimization Guide for the Intel® Itanium® Architecture
5-1 ctop Loop Trace . 1:188
5-2 wtop Loop Trace . 1:191

§

x Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

1:1 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Part I: Application Architecture
Guide

1:2 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Volume 1, Part 1:About this Manual 1:3

About this Manual 1

The Intel® Itanium® architecture is a unique combination of innovative features such
as explicit parallelism, predication, speculation and more. The architecture is designed
to be highly scalable to fill the ever increasing performance requirements of various
server and workstation market segments. The Itanium architecture features a
revolutionary 64-bit instruction set architecture (ISA), which applies a new processor
architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A key
feature of the Itanium architecture is IA-32 instruction set compatibility.

The Intel® Itanium® Architecture Software Developer’s Manual provides a
comprehensive description of the programming environment, resources, and instruction
set visible to both the application and system programmer. In addition, it also describes
how programmers can take advantage of the features of the Itanium architecture to
help them optimize code.

1.1 Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level
resources, programming environment, and the IA-32 application interface. This volume
also describes optimization techniques used to generate high performance software.

1.1.1 Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.Intel® Itanium® Architecture
Software Developer’s Manual

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of
the architecture.

Chapter 3, “Execution Environment” describes the Itanium register set used by
applications and the memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of
Itanium application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System
Environment” describes the operation of IA-32 instructions within the Itanium System
Environment from the perspective of an application programmer.

1.1.2 Part 2: Optimization Guide for the Intel® Itanium®
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.

1:4 Volume 1, Part 1: About this Manual

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture”
provides an overview of the application programming environment for the Itanium
architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in
floating-point applications and features that address these limitations.

1.2 Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources
and programming state, interrupt model, and processor firmware interface. This
volume also provides a useful system programmer's guide for writing high performance
system software.

1.2.1 Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Intel® Itanium® System Environment” introduces the environment
designed to support execution of Itanium architecture-based operating systems running
IA-32 or Itanium architecture-based applications.

Chapter 3, “System State and Programming Model” describes the Itanium architectural
state which is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating
system for virtual to physical address translation, virtual aliasing, physical addressing,
and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a
processor based on the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which
automatically saves and restores the stacked subset (GR32 – GR 127) of the general
register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions” lists all interruption vectors.

Volume 1, Part 1: About this Manual 1:5

Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts
and intercepts that can occur during IA-32 instruction set execution in the Itanium
System Environment.

Chapter 10, “Itanium® Architecture-based Operating System Interaction Model with
IA-32 Applications” defines the operation of IA-32 instructions within the Itanium
System Environment from the perspective of an Itanium architecture-based operating
system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts
processor implementation-dependent features.

1.2.2 Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second
section of the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multiprocessing
synchronization primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes
execution around interruptions and what state is preserved and made available to
low-level system code when interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve
Itanium register contents and state. This chapter also describes system architecture
mechanisms that allow an operating system to reduce the number of registers that
need to be spilled/filled on interruptions, system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating
system support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of
instruction emulation handlers that Itanium architecture-based operating systems are
expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the
Itanium architecture handle floating-point numeric exceptions and how the software
stack provides complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium
architecture-based operating system needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt
architecture with a focus on how external asynchronous interrupt handling can be
controlled by software.

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform
issues and support for the existing IA-32 I/O port space.

1:6 Volume 1, Part 1: About this Manual

Chapter 12, “Performance Monitoring Support” describes the performance monitor
architecture with a focus on what kind of support is needed from Itanium
architecture-based operating systems.

Chapter 13, “Firmware Overview” introduces the firmware model, and how various
firmware layers (PAL, SAL, UEFI, ACPI) work together to enable processor and system
initialization, and operating system boot.

1.2.3 Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

1.3 Overview of Volume 3: Intel® Itanium®
Instruction Set Reference

This volume is a comprehensive reference to the Itanium instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides a table of pseudo-code functions which
are used to define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format
instructions.

Chapter 5, “Resource and Dependency Semantics” summarizes the dependency rules
that are applicable when generating code for processors based on the Itanium
architecture.

1.4 Overview of Volume 4: IA-32 Instruction Set
Reference

This volume is a comprehensive reference to the IA-32 instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Base IA-32 Instruction Reference” provides a detailed description of all
base IA-32 instructions, organized in alphabetical order by assembly language
mnemonic.

Volume 1, Part 1: About this Manual 1:7

Chapter 3, “IA-32 Intel® MMX™ Technology Instruction Reference” provides a detailed
description of all IA-32 Intel® MMX™ technology instructions designed to increase
performance of multimedia intensive applications. Organized in alphabetical order by
assembly language mnemonic.

Chapter 4, “IA-32 SSE Instruction Reference” provides a detailed description of all
IA-32 SSE instructions designed to increase performance of multimedia intensive
applications, and is organized in alphabetical order by assembly language mnemonic.

1.5 Terminology

The following definitions are for terms related to the Itanium architecture and will be
used throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level
resources. These resources include instructions and registers.

Itanium Architecture – The new ISA with 64-bit instruction capabilities, new
performance- enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel architecture as described in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium System Environment – The operating system environment that supports
the execution of both IA-32 and Itanium architecture-based code.

Itanium Architecture-based Firmware – The Processor Abstraction Layer (PAL) and
System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) – The firmware layer which abstracts processor
features that are implementation dependent.

System Abstraction Layer (SAL) – The firmware layer which abstracts system
features that are implementation dependent.

1.6 Related Documents

The following documents can be downloaded at the Intel’s Developer Site at
http://developer.intel.com:

• Dual-Core Update to the Intel® Itanium® 2 Processor Reference Manual
for Software Development and Optimization– Document number 308065
provides model-specific information about the dual-core Itanium processors.

• Intel® Itanium® 2 Processor Reference Manual for Software Development
and Optimization – This document (Document number 251110) describes
model-specific architectural features incorporated into the Intel® Itanium® 2
processor, the second processor based on the Itanium architecture.

• Intel® Itanium® Processor Reference Manual for Software Development –
This document (Document number 245320) describes model-specific architectural
features incorporated into the Intel® Itanium® processor, the first processor based
on the Itanium architecture.

1:8 Volume 1, Part 1: About this Manual

• Intel® 64 and IA-32 Architectures Software Developer’s Manual – This set
of manuals describes the Intel 32-bit architecture. They are available from the Intel
Literature Department by calling 1-800-548-4725 and requesting Document
Numbers 243190, 243191and 243192.

• Intel® Itanium® Software Conventions and Runtime Architecture Guide –
This document (Document number 245358) defines general information necessary
to compile, link, and execute a program on an Itanium architecture-based
operating system.

• Intel® Itanium® Processor Family System Abstraction Layer Specification –
This document (Document number 245359) specifies requirements to develop
platform firmware for Itanium architecture-based systems.

The following document can be downloaded at the Unified EFI Forum website at
http://www.uefi.org:

• Unified Extensible Firmware Interface Specification – This document defines
a new model for the interface between operating systems and platform firmware.

1.7 Revision History

Date of
Revision

Revision
Number Description

March 2010 2.3 Added information about illegal virtualization optimization combinations and
IIPA requirements.
Added Resource Utilization Counter and PAL_VP_INFO.
PAL_VP_INIT and VPD.vpr changes.
New PAL_VPS_RESUME_HANDLER parameter to indicate RSE Current
Frame Load Enable setting at the target instruction.
PAL_VP_INIT_ENV implementation-specific configuration option.
Minimum Virtual address increased to 54 bits.
New PAL_MC_ERROR_INFO health indicator.
New PAL_MC_ERROR_INJECT implementation-specific bit fields.
MOV-to_SR.L reserved field checking.
Added virtual machine disable.
Added variable frequency mode additions to ACPI P-state description.
Removed pal_proc_vector argument from PAL_VP_SAVE and
PAL_VP_RESTORE.
Added PAL_PROC_SET_FEATURES data speculation disable.
Added Interruption Instruction Bundle registers.
Min-state save area size change.
PAL_MC_DYNAMIC_STATE changes.
PAL_PROC_SET_FEATURES data poisoning promotion changes.
ACPI P-state clarifications.
Synchronization requirements for virtualization opcode optimization.
New priority hint and multi-threading hint recommendations.

Volume 1, Part 1: About this Manual 1:9

August 2005 2.2 Allow register fields in CR.LID register to be read-only and CR.LID checking
on interruption messages by processors optional. See Vol 2, Part I, Ch 5
“Interruptions” and Section 11.2.2 PALE_RESET Exit State for details.
Relaxed reserved and ignored fields checkings in IA-32 application registers
in Vol 1 Ch 6 and Vol 2, Part I, Ch 10.
Introduced visibility constraints between stores and local purges to ensure
TLB consistency for UP VHPT update and local purge scenarios. See Vol 2,
Part I, Ch 4 and description of ptc.l instruction in Vol 3 for details.
Architecture extensions for processor Power/Performance states (P-states).
See Vol 2 PAL Chapter for details.
Introduced Unimplemented Instruction Address fault.
Relaxed ordering constraints for VHPT walks. See Vol 2, Part I, Ch 4 and 5 for
details.
Architecture extensions for processor virtualization.
All instructions which must be last in an instruction group results in undefined
behavior when this rule is violated.
Added architectural sequence that guarantees increasing ITC and PMD
values on successive reads.
Addition of PAL_BRAND_INFO, PAL_GET_HW_POLICY,
PAL_MC_ERROR_INJECT, PAL_MEMORY_BUFFER,
PAL_SET_HW_POLICY and PAL_SHUTDOWN procedures.
Allows IPI-redirection feature to be optional.
Undefined behavior for 1-byte accesses to the non-architected regions in the
IPI block.
Modified insertion behavior for TR overlaps. See Vol 2, Part I, Ch 4 for details.
“Bus parking” feature is now optional for PAL_BUS_GET_FEATURES.
Introduced low-power synchronization primitive using hint instruction.
FR32-127 is now preserved in PAL calling convention.
New return value from PAL_VM_SUMMARY procedure to indicate the
number of multiple concurrent outstanding TLB purges.
Performance Monitor Data (PMD) registers are no longer sign-extended.
New memory attribute transition sequence for memory on-line delete. See Vol
2, Part I, Ch 4 for details.
Added 'shared error' (se) bit to the Processor State Parameter (PSP) in
PAL_MC_ERROR_INFO procedure.
Clarified PMU interrupts as edge-triggered.
Modified ‘proc_number’ parameter in PAL_LOGICAL_TO_PHYSICAL
procedure.
Modified pal_copy_info alignment requirements.
New bit in PAL_PROC_GET_FEATURES for variable P-state performance.
Clarified descriptions for check_target_register and
check_target_register_sof.
Various fixes in dependency tables in Vol 3 Ch 5.
Clarified effect of sending IPIs to non-existent processor in Vol 2, Part I, Ch 5.
Clarified instruction serialization requirements for interruptions in Vol 2, Part II,
Ch 3.
Updated performance monitor context switch routine in Vol 2, Part I, Ch 7.

Date of
Revision

Revision
Number Description

1:10 Volume 1, Part 1: About this Manual

August 2002 2.1 Added Predicate Behavior of alloc Instruction Clarification (Section 4.1.2,
Part I, Volume 1; Section 2.2, Part I, Volume 3).
Added New fc.i Instruction (Section 4.4.6.1, and 4.4.6.2, Part I, Volume 1;
Section 4.3.3, 4.4.1, 4.4.5, 4.4.6, 4.4.7, 5.5.2, and 7.1.2, Part I, Volume 2;
Section 2.5, 2.5.1, 2.5.2, 2.5.3, and 4.5.2.1, Part II, Volume 2; Section 2.2, 3,
4.1, 4.4.6.5, and 4.4.10.10, Part I, Volume 3).
Added Interval Time Counter (ITC) Fault Clarification (Section 3.3.2, Part I,
Volume 2).
Added Interruption Control Registers Clarification (Section 3.3.5, Part I,
Volume 2).
Added Spontaneous NaT Generation on Speculative Load (ld.s)
(Section 5.5.5 and 11.9, Part I, Volume 2; Section 2.2 and 3, Part I, Volume 3).
Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I,
Volume 2).
Added Freeze Bit Functionality in Context Switching and Interrupt Generation
Clarification (Sections 7.2.1, 7.2.2, 7.2.4.1, and 7.2.4.2, Part I, Volume 2)
Added IA_32_Exception (Debug) IIPA Description Change (Section 9.2, Part
I, Volume 2).
Added capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in the
Firmware Interface Table (Section 11.1.6, Part I, Volume 2).
Added BR1 to Min-state Save Area (Sections 11.3.2.3 and 11.3.3, Part I,
Volume 2).
Added Fault Handling Semantics for lfetch.fault Instruction (Section 2.2,
Part I, Volume 3).

December 2001 2.0 Volume 1:
Faults in ld.c that hits ALAT clarification (Section 4.4.5.3.1).
IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section
6.2.5.3).
Load instructions change (Section 4.4.1).

Date of
Revision

Revision
Number Description

Volume 1, Part 1: About this Manual 1:11

Volume 2:
Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).
VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).
ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).
PAL_CACHE_FLUSH return argument change – added new status return
argument (Section 11.8.3).
PAL self-test Control and PAL_A procedure requirement change – added new
arguments, figures, requirements (Section 11.2).
PAL_CACHE_FLUSH clarifications (Chapter 11).
Non-speculative reference clarification (Section 4.4.6).
RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).
IIP and WC flush clarification (Section 4.4.5).
Revised RSE and PMC typographical errors (Section 6.4).
Revised DV table (Section A.4).
Memory attribute transitions – added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).
Bus lock deprecation – changed behavior of DCR ‘lc’ bit (Section 3.3.4.1,
Section 10.6.8, Section 11.8.3).
PAL_PROC_GET/SET_FEATURES changes – extend calls to allow
implementation-specific feature control (Section 11.8.3).
Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).
Limited speculation clarification – added hardware-generated speculative
references (Section 4.4.6).
PAL memory accesses and restrictions clarification (Section 11.9).
PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section
11.8.3).
Speculation attributes clarification (Section 4.4.6).
PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications
(Sections 11.8.3 and 11.3.2.1).
TLB searching clarifications (Section 4.1).
IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section
10.3.3.1, Section 10.10.1).
IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2,
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:
IA-32 CPUID clarification (p. 5-71).
Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).
tak, tpa change (Section 2.2).

July 2000 1.1 Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).

Date of
Revision

Revision
Number Description

1:12 Volume 1, Part 1: About this Manual

§

Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3).
Instruction and Data translation must be enabled for executing IA-32
instructions (Chapters 3,4 and 10).
FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4).
Clarification regarding ordering data dependency.
Out-of-order IPI delivery is now allowed (Chapters 4 and 5).
Content of EFLAG field changed in IIM (p. 9-24).
PAL_CHECK and PAL_INIT calls – exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls – added two new bits (Chapter 11).
PAL_MC_ERROR_INFO call – Changes made to enhance and simplify the
call to provide more information regarding machine check (Chapter 11).
PAL_ENTER_IA_32_Env call changes – entry parameter represents the entry
order; SAL needs to initialize all the IA-32 registers properly before making
this call (Chapter 11).
PAL_CACHE_FLUSH – added a new cache_type argument (Chapter 11).
PAL_SHUTDOWN – removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).
Clarification in dependence violation table (Appendix A).

Volume 3:
fmix instruction page figures corrected (Chapter 2).
Clarification of “reserved” fields in ITIR (Chapters 2 and 3).
Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4).
IA-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000 1.0 Initial release of document.

Date of
Revision

Revision
Number Description

Volume 1, Part 1:Introduction to the Intel® Itanium® Architecture 1:13

Introduction to the Intel® Itanium®
Architecture 2

The Itanium architecture was designed to overcome the performance limitations of
traditional architectures and provide maximum headroom for the future. To achieve
this, the Itanium architecture was designed with an array of innovative features to
extract greater instruction level parallelism including speculation, predication, large
register files, a register stack, advanced branch architecture, and many others. 64-bit
memory addressability was added to meet the increasing large memory footprint
requirements of data warehousing, e-business, and other high performance server
applications. The Itanium architecture has an innovative floating-point architecture and
other enhancements that support the high performance requirements of workstation
applications such as digital content creation, design engineering, and scientific analysis.

The Itanium architecture also provides binary compatibility with the IA-32 instruction
set. Processors based on the Itanium architecture can run IA-32 applications on an
Itanium architecture-based operating system that supports execution of IA-32
applications. Such processors can run IA-32 application binaries on IA-32 legacy
operating systems assuming the platform and firmware support exists in the system.
The Itanium architecture also provides the capability to support mixed IA-32 and
Itanium architecture-based code execution.

2.1 Operating Environments

The architectural model supports a mixture of IA-32 and Itanium architecture-based
applications within a single Itanium architecture-based operating system. Table 2-1
defines the major supported operating environments.

1:14 Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture

2.2 Instruction Set Transition Model Overview

Within the Itanium System Environment, the processor can execute either IA-32 or
Itanium instructions at any time. Three special instructions and interruptions are
defined to transition the processor between the IA-32 and the Itanium instruction set.

• jmpe (IA-32 instruction) Jump to an Itanium target instruction, and transition to the
Itanium instruction set.

• br.ia (Itanium instruction) Branch to an IA-32 target instruction, and change the
instruction set to IA-32.

• rfi (Itanium instruction) “Return from interruption” is defined to return to an IA-32
or Itanium instruction.

• Interrupts transition the processor to the Itanium instruction set for all interrupt
conditions.

Figure 2-1. System Environment

Table 2-1. Major Operating Environments

System
Environment

Application
Environment

Usage

Itanium System
Environment

IA-32 Protected Mode IA-32 Protected Mode applications in the Intel® Itanium® System
Environment.

IA-32 Real Mode IA-32 Real Mode applications in the Intel® Itanium® System
Environment.

IA-32 Virtual Mode IA-32 Virtual 86 Mode applications in the Intel® Itanium® System
Environment.

Intel® Itanium®
Instruction Set

Itanium architecture-based applications on Intel® Itanium
architecture-based operating systems.

 Itanium®IA-32 Instructions

 Segmentation

Intel® Itanium® System Environment

Paging

Instructions

& Interruption

Handling

in the Intel® Itanium®

Architecture

Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture 1:15

The jmpe and br.ia instructions provide a low overhead mechanism to transfer control
between the instruction sets. These instructions are typically incorporated into “thunks”
or “stubs” that implement the required call linkage and calling conventions to call
dynamic or statically linked libraries. See Section 6.2.1, “Instruction Set Modes” for
additional details.

2.3 Intel® Itanium® Instruction Set Features

Itanium architecture incorporates features which enable high sustained performance
and remove barriers to further performance increases. The Itanium architecture is
based on the following principles:

• Explicit parallelism

• Mechanisms for synergy between the compiler and the processor

• Massive resources to take advantage of instruction level parallelism

• 128 integer and floating-point registers, 64 1-bit predicate registers, 8 branch
registers

• Support for many execution units and memory ports

• Features that enhance instruction level parallelism

• Speculation (which minimizes memory latency impact).

• Predication (which removes branches).

• Software pipelining of loops with low overhead

• Branch prediction to minimize the cost of branches

• Focused enhancements for improved software performance

• Special support for software modularity

• High performance floating-point architecture

• Specific multimedia instructions

The following sections highlight these important features of the Itanium architecture.

2.4 Instruction Level Parallelism

Instruction Level Parallelism (ILP) is the ability to execute multiple instructions at the
same time. The Itanium architecture allows issuing of independent instructions in
bundles (three instructions per bundle) for parallel execution and can issue multiple
bundles per clock. Supported by a large number of parallel resources such as large
register files and multiple execution units, the Itanium architecture enables the
compiler to manage work in progress and schedule simultaneous threads of
computation.

The Itanium architecture incorporates mechanisms to take advantage of ILP. Compilers
for traditional architectures are often limited in their ability to utilize speculative
information because it cannot always be guaranteed to be correct. The Itanium
architecture enables the compiler to exploit speculative information without sacrificing
the correct execution of an application (see “Speculation” on page 1:16). In traditional
architectures, procedure calls limit performance since registers need to be spilled and

1:16 Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture

filled. The Itanium architecture enables procedures to communicate register usage to
the processor. This allows the processor to schedule procedure register operations even
when there is a low degree of ILP. See “Register Stack” on page 1:18.

2.5 Compiler to Processor Communication

The Itanium architecture provides mechanisms, such as instruction templates, branch
hints, and cache hints to enable the compiler to communicate compile-time information
to the processor. In addition, it allows compiled code to manage the processor
hardware using runtime information. These communication mechanisms are vital in
minimizing the performance penalties associated with branches and cache misses.

The cost of branches is minimized by permitting code to communicate branch
information to the hardware in advance of the actual branch.

Every memory load and store in the Itanium architecture has a 2-bit cache hint field in
which the compiler encodes its prediction of the spatial and/or temporal locality of the
memory area being accessed. A processor based on the Itanium architecture can use
this information to determine the placement of cache lines in the cache hierarchy to
improve utilization. This is particularly important as the cost of cache misses is
expected to increase.

2.6 Speculation

There are two types of speculation: control and data. In both control and data
speculation, the compiler exposes ILP by issuing an operation early and removing the
latency of this operation from critical path. The compiler will issue an operation
speculatively if it is reasonably sure that the speculation will be beneficial. To be
beneficial two conditions should hold: (1) it must be statistically frequent enough that
the probability it will require recovery is small, and (2) issuing the operation early
should expose further ILP-enhancing optimization. Speculation is one of the primary
mechanisms for the compiler to exploit statistical ILP by overlapping, and therefore
tolerating, the latencies of operations.

2.6.1 Control Speculation

Control speculation is the execution of an operation before the branch which guards it.
Consider the code sequence below:

if (a>b) load(ld_addr1,target1)
else load(ld_addr2, target2)

If the operation load(ld_addr1,target1)were to be performed prior to the
determination of (a>b), then the operation would be control speculative with respect to
the controlling condition (a>b). Under normal execution, the operation
load(ld_addr1,target1) may or may not execute. If the new control speculative load
causes an exception, then the exception should only be serviced if (a>b) is true. When

Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture 1:17

the compiler uses control speculation, it leaves a check operation at the original
location. The check verifies whether an exception has occurred and if so it branches to
recovery code. The code sequence above now translates into:

/* off critical path */
sload(ld_addr1,target1)
sload(ld_addr2,target2)

/* other operations including uses of target1/target2 */
if (a>b) scheck(target1,recovery_addr1)
else scheck(target2, recovery_addr2)

2.6.2 Data Speculation

Data speculation is the execution of a memory load prior to a store that preceded it and
that may potentially alias with it. Data speculative loads are also referred to as
“advanced loads.” Consider the code sequence below:

store(st_addr,data)
load(ld_addr,target)
use(target)

The process of determining at compile time the relationship between memory
addresses is called disambiguation. In the example above, if ld_addr and st_addr
cannot be disambiguated, and if the load were to be performed prior to the store, then
the load would be data speculative with respect to the store. If memory addresses
overlap during execution, a data-speculative load issued before the store might return a
different value than a regular load issued after the store. Therefore analogous to
control speculation, when the compiler data speculates a load, it leaves a check
instruction at the original location of the load. The check verifies whether an overlap
has occurred and if so it branches to recovery code. The code sequence above now
translates into:

/* off critical path */
aload(ld_addr,target)

/* other operations including uses of target */
store(st_addr,data)
acheck(target,recovery_addr)
use(target)

2.6.3 Predication

Predication is the conditional execution of instructions. Conditional execution is
implemented through branches in traditional architectures. The Itanium architecture
implements this function through the use of predicated instructions. Predication
removes branches used for conditional execution resulting in larger basic blocks and the
elimination of associated mispredict penalties.

To illustrate, an unpredicated instruction

r1 = r2 + r3

when predicated, would be of the form

1:18 Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture

if (p5) r1 = r2 + r3

In this example p5 is the controlling predicate that decides whether or not the
instruction executes and updates state. If the predicate value is true, then the
instruction updates state. Otherwise it generally behaves like a nop. Predicates are
assigned values by compare instructions.

Predicated execution avoids branches, and simplifies compiler optimizations by
converting a control dependency to a data dependency. Consider the original code:

if (a>b) c = c + 1
else d = d * e + f

The branch at (a>b) can be avoided by converting the code above to the predicated
code:

pT, pF = compare(a>b)
if (pT) c = c + 1
if (pF) d = d * e + f

The predicate pT is set to 1 if the condition evaluates to true, and to 0 if the condition
evaluates to false. The predicate pF is the complement of pT. The control dependency of
the instructions c = c + 1 and d = d * e + f on the branch with the condition (a>b)
is now converted into a data dependency on compare(a>b) through predicates pT and
pF (the branch is eliminated). An added benefit is that the compiler can schedule the
instructions under pT and pF to execute in parallel. It is also worth noting that there are
several different types of compare instructions that write predicates in different
manners including unconditional compares and parallel compares.

2.7 Register Stack

The Itanium architecture avoids the unnecessary spilling and filling of registers at
procedure call and return interfaces through compiler-controlled renaming. At a call
site, a new frame of registers is available to the called procedure without the need for
register spill and fill (either by the caller or by the callee). Register access occurs by
renaming the virtual register identifiers in the instructions through a base register into
the physical registers. The callee can freely use available registers without having to
spill and eventually restore the caller’s registers. The callee executes an alloc
instruction specifying the number of registers it expects to use in order to ensure that
enough registers are available. If sufficient registers are not available (stack overflow),
the alloc stalls the processor and spills the caller’s registers until the requested
number of registers are available.

At the return site, the base register is restored to the value that the caller was using to
access registers prior to the call. Some of the caller’s registers may have been spilled
by the hardware and not yet restored. In this case (stack underflow), the return stalls
the processor until the processor has restored an appropriate number of the caller’s
registers. The hardware can exploit the explicit register stack frame information to spill
and fill registers from the register stack to memory at the best opportunity
(independent of the calling and called procedures).

Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture 1:19

2.8 Branching

In addition to removing branches through the use of predication, several mechanisms
are provided to decrease the branch misprediction rate and the cost of the remaining
mispredicted branches. These mechanisms provide ways for the compiler to
communicate information about branch conditions to the processor.

Branch predict instructions are provided which can be used to communicate an early
indication of the target address and the location of the branch. The compiler will try to
indicate whether a branch should be predicted dynamically or statically. The processor
can use this information to initialize branch prediction structures, enabling good
prediction even the first time a branch is encountered. This is beneficial for
unconditional branches or in situations where the compiler has information about likely
branch behavior.

For indirect branches, a branch register is used to hold the target address. Branch
predict instructions provide an indication of which register will be used in situations
when the target address can be computed early. A branch predict instruction can also
signal that an indirect branch is a procedure return, enabling the efficient use of
call/return stack prediction structures.

Special loop-closing branches are provided to accelerate counted loops and
modulo-scheduled loops. These branches and their associated branch predict
instructions provide information that allows for perfect prediction of loop termination,
thereby eliminating costly mispredict penalties and a reduction of the loop overhead.

2.9 Register Rotation

Modulo scheduling of a loop is analogous to hardware pipelining of a functional unit
since the next iteration of the loop starts before the previous iteration has finished. The
iteration is split into stages similar to the stages of an execution pipeline. Modulo
scheduling allows the compiler to execute loop iterations in parallel rather than
sequentially. The concurrent execution of multiple iterations traditionally requires
unrolling of the loop and software renaming of registers. The Itanium architecture
allows the renaming of registers which provide every iteration with its own set of
registers, avoiding the need for unrolling. This kind of register renaming is called
register rotation. The result is that software pipelining can be applied to a much wider
variety of loops – both small as well as large with significantly reduced overhead.

2.10 Floating-point Architecture

The Itanium architecture defines a floating-point architecture with full IEEE support for
the single, double, and double-extended (80-bit) data types. Some extensions, such as
a fused multiply and add operation, minimum and maximum functions, and a register
file format with a larger range than the double-extended memory format, are also
included. 128 floating-point registers are defined. Of these, 96 registers are rotating
(not stacked) and can be used to modulo schedule loops compactly. Multiple
floating-point status registers are provided for speculation.

1:20 Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture

The Itanium architecture has parallel FP instructions which operate on two 32-bit single
precision numbers, resident in a single floating-point register, in parallel and
independently. These instructions significantly increase the single precision
floating-point computation throughput and enhance the performance of 3D intensive
applications and games.

2.11 Multimedia Support

The Itanium architecture has multimedia instructions which treat the general registers
as concatenations of eight 8-bit, four 16-bit, or two 32-bit elements. These instructions
operate on each element in parallel, independent of the others. They are useful for
creating high performance compression/decompression algorithms that are used by
applications which have sound and video. Itanium multimedia instructions are
semantically compatible with HP’s MAX-2* multimedia technology and Intel’s MMX and
SSE technology instructions.

2.12 Intel® Itanium® System Architecture Features

2.12.1 Support for Multiple Address Space Operating Systems

Most contemporary commercial operating systems utilize a Multiple Address Space
(MAS) model with the following characteristics:

Protection is enforced among processes by placing each process within a unique
address space. Translation Lookaside Buffers (TLBs), which hold virtual to physical
mappings, often need to be flushed on a process context switch.

Some memory areas may be shared among processes, e.g. kernel areas and shared
libraries. Most operating systems assume at least one local and one global space.

To promote sharing of data between processes, MAS operating systems aggressively
use virtual aliases to map physical memory locations into the address spaces of
multiple processes. Virtual aliases create multiple TLB entries for the same physical
data leading to reduced TLB efficiency.

The MAS model is supported by dividing the virtual address space into several regions.
Region identifiers associated with each region are used to tag translations to a given
address space. On a process switch, region identifiers uniquely identify the set of
translations belonging to a process, thereby avoiding TLB flushes. Region identifiers
also provide a unique intermediate virtual address that help avoid thrashing problems
in virtual-indexed caches and TLBs. Regions provide efficient global/shared areas
between processes, while reducing the occurrences of virtual aliasing.

2.12.2 Support for Single Address Space Operating Systems

A single address space (SAS) operating system style architecture is the basis for much
of the current design work on future 64-bit operating systems. As operating systems
(and other large, complex programs like databases) migrate from monolithic programs

Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture 1:21

into cooperating subsystems, an SAS architecture becomes an important performance
differentiation in future systems. The SAS or hybrid environments enable a more
efficient use of hardware resources.

Common mechanisms are used in both SAS and MAS models such as page level access
rights to enforce protection, although the reliance on the feature set will differ under
each model. While most of the architected features are utilized in each model,
protection keys exist to enable a single global address space operating environment.

2.12.3 System Performance and Scalability

Performance and scalability are achieved through a variety of features. Memory
attributes, locking primitives, cache coherency, and memory ordering model work
together to allow the efficient sharing of data in a multiprocessor environment. In
addition, the Itanium architecture enables low latency fault, trap, and interrupt
handlers along with light-weight domain crossings. Performance analysis is aided by the
inclusion of several performance monitors, and mechanisms to support software
profiling.

2.12.4 System Security and Supportability

Security and supportability result from a number of primitives which provide a very
powerful runtime and debug environment. The protection model includes four
protection rings and enables increased system integrity by offering a more
sophisticated protection scheme than has generally been available. The machine check
model allows detailed information to be provided describing the type of error involved
and supports recovery for many types of errors. Several mechanisms are provided for
debugging both system and application software.

2.13 Terminology

This following terms are used in the remainder of this document:

• Itanium Instruction Set – The Itanium architecture defines the 64-bit instruction
set extensions to the IA-32 architecture.

• IA-32 Architecture – The 32-bit and 16-bit Intel architecture as described in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

• Itanium System Environment – System environment that supports the
execution of both IA-32 and Itanium architecture-based code.

• Platform – Application and operating system resources external to the processor
such as: memory maps, external devices (e.g. DMA), keyboard controllers, buses
(e.g. PCI), option cards, interrupt controllers, bridges, etc.

• Itanium architecture-based Firmware – The Processor Abstraction Layer (PAL)
and System Abstraction Layer (SAL).

• Processor Abstraction Layer (PAL) – The firmware layer which abstracts
processor features that are implementation dependent.

• System Abstraction Layer (SAL) – The firmware layer which abstracts platform
features that are implementation dependent.

1:22 Volume 1, Part 1: Introduction to the Intel® Itanium® Architecture

§

Volume 1, Part 1: Execution Environment 1:23

Execution Environment 3

The architectural state consists of registers and memory. The results of instruction
execution become architecturally visible according to a set of execution sequencing
rules. This chapter describes the application architectural state and the rules for
execution sequencing. See Chapter 6 for details on IA-32 instruction set execution.

3.1 Application Register State

The following is a list of the registers available to application programs (see
Figure 3-1):

• General Registers (GRs) – General purpose 64-bit register file, GR0 - GR127.
IA-32 integer and segment registers are contained in GR8 - GR31 when executing
IA-32 instructions.

• Floating-point Registers (FRs) – Floating-point register file, FR0 - FR127. IA-32
floating-point and multi-media registers are contained in FR8 - FR31 when
executing IA-32 instructions.

• Predicate Registers (PRs) – Single-bit registers, used in predication and
branching, PR0 - PR63.

• Branch Registers (BRs) – Registers used in branching, BR0 - BR7.

• Instruction Pointer (IP) – Register which holds the bundle address of the
currently executing instruction, or byte address of the currently executing IA-32
instruction.

• Current Frame Marker (CFM) – State that describes the current general register
stack frame, and FR/PR rotation.

• Application Registers (ARs) – A collection of special-purpose registers.

• Performance Monitor Data Registers (PMD) – Data registers for performance
monitor hardware.

• User Mask (UM) – A set of single-bit values used for alignment traps,
performance monitors, and to monitor floating-point register usage.

• Processor Identifiers (CPUID) – Registers that describe processor
implementation-dependent features.

IA-32 application register state is entirely contained within the larger Itanium
application register set and is accessible by Itanium instructions. IA-32 instructions
cannot access the Itanium register set. See Section 6.2.2, “IA-32 Application Register
State Model” for details on IA-32 register assignments.

3.1.1 Reserved and Ignored Registers and Fields

Registers which are not defined are either reserved or ignored. An access to a
reserved register raises an Illegal Operation fault. A read of an ignored register
returns zero. Software may write any value to an ignored register and the hardware will

1:24 Volume 1, Part 1: Execution Environment

ignore the value written. In variable-sized register sets, registers which are
unimplemented in a particular processor are also reserved registers. An access to one
of these unimplemented registers causes a Reserved Register/Field fault.

Within defined registers, fields which are not defined are either reserved or ignored. For
reserved fields, hardware will always return a zero on a read. Software must always
write zeros to these fields. Any attempt to write a non-zero value into a reserved field
will raise a Reserved Register/Field fault. Reserved fields may have a possible future
use.

For ignored fields, hardware will return a 0 on a read, unless noted otherwise.
Software may write any value to these fields since the hardware will ignore any value
written. Except where noted otherwise some IA-32 ignored fields may have a possible
future use.

Table 3-1 summarizes how the processor treats reserved and ignored registers and
fields.

For defined fields in registers, values which are not defined are reserved. Software
must always write defined values to these fields. Any attempt to write a reserved
value will raise a Reserved Register/Field fault. Certain registers are read-only
registers. A write to a read-only register raises an Illegal Operation fault.

When fields are marked as reserved, it is essential for compatibility with future
processors that software treat these fields as having a future, though unknown effect.
Software should follow these guidelines when dealing with reserved fields:

• Do not depend on the state of any reserved fields. Mask all reserved fields before
testing.

• Do not depend on the state of any reserved fields when storing to memory or a
register.

• Do not depend on the ability to retain information written into reserved or ignored
fields.

• Where possible reload reserved or ignored fields with values previously returned
from the same register, otherwise load zeros.

Table 3-1. Reserved and Ignored Registers and Fields

Type Read Write

Reserved register Illegal Operation fault Illegal Operation fault

Ignored register 0 Value written is discarded

Reserved field 0 Write of non-zero causes Reserved Reg/Field fault

Ignored field 0 (unless noted otherwise) Value written is discarded

Volume 1, Part 1: Execution Environment 1:25

3.1.2 General Registers

A set of 128 (64-bit) general registers provide the central resource for all integer and
integer multimedia computation. They are numbered GR0 through GR127, and are
available to all programs at all privilege levels. Each general register has 64 bits of
normal data storage plus an additional bit, the NaT bit (Not a Thing), which is used to
track deferred speculative exceptions.

The general registers are partitioned into two subsets. General registers 0 through 31
are termed the static general registers. Of these, GR0 is special in that it always
reads as zero when sourced as an operand, and attempting to write to GR 0 causes an
Illegal Operation fault. General registers 32 through 127 are termed the stacked
general registers. The stacked registers are made available to a program by
allocating a register stack frame consisting of a programmable number of local and
output registers. See “Register Stack” on page 1:47 for a description. A portion of the
stacked registers can be programmatically renamed to accelerate loops. See
“Modulo-scheduled Loop Support” on page 1:75.

Figure 3-1. Application Register Model

APPLICATION REGISTER SET

pr0

 IP

PredicatesFloating-point Registers

Instruction Pointer

fr0
pr1
pr2

fr1
fr2

1
81 0

63 0

Branch Registers

 br0
 br1
 br2

63 0

 br7

gr0
gr1
gr2

63 0

gr127
fr127

gr16

gr31

gr32
fr32

fr31

0 +0.0
+1.0

General Registers

0

 NaTs

CFM

Current Frame Marker

Performance Monitor

63 0

pr63

pr15
pr16

37 0

pmd0
pmd1

pmdm

Processor Identifiers
63 0

cpuid0
cpuid1

cpuidn

Data Registers

User Mask
5 0

ar64

Application Registers

KR0

KR7

RSC
BSPar17

ar16

BSPSTORE
RNAT

ar18
ar19

CCV

UNATar36

ar32

FPSR

ITC

ar40

ar44

EC
LCar65

ar66

PFS

ar127

ar0

ar7

EFLAG
CSDar25

ar24

SSD
CFLG

ar26
ar27

FSR
FIRar29

ar28

FDRar30

FCRar21

63 0

Advanced Load
Address Table

RUCar45

1:26 Volume 1, Part 1: Execution Environment

General registers 8 through 31 contain the IA-32 integer, segment selector and
segment descriptor registers. See “IA-32 General Purpose Registers” on page 1:117 for
details on IA-32 register assignments.

3.1.3 Floating-point Registers

A set of 128 (82-bit) floating-point registers are used for all floating-point
computation. They are numbered FR0 through FR127, and are available to all programs
at all privilege levels. The floating-point registers are partitioned into two subsets.
Floating-point registers 0 through 31 are termed the static floating-point registers.
Of these, FR0 and FR1 are special. FR0 always reads as +0.0 when sourced as an
operand, and FR 1 always reads as +1.0. When either of these is used as a destination,
a fault is raised. Deferred speculative exceptions are recorded with a special register
value called NaTVal (Not a Thing Value).

Floating-point registers 32 through 127 are termed the rotating floating-point
registers. These registers can be programmatically renamed to accelerate loops. See
“Modulo-scheduled Loop Support” on page 1:75.

Floating-point registers 8 through 31 contain the IA-32 floating-point and multi-media
registers when executing IA-32 instructions. For details, see “IA-32 Floating-point
Registers” on page 1:124.

3.1.4 Predicate Registers

A set of 64 (1-bit) predicate registers are used to hold the results of compare
instructions. These registers are numbered PR0 through PR63, and are available to all
programs at all privilege levels. These registers are used for conditional execution of
instructions.

The predicate registers are partitioned into two subsets. Predicate registers 0 through
15 are termed the static predicate registers. Of these, PR0 always reads as ‘1’ when
sourced as an operand, and when used as a destination, the result is discarded. The
static predicate registers are also used in conditional branching. See “Predication” on
page 1:54.

Predicate registers 16 through 63 are termed the rotating predicate registers. These
registers can be programmatically renamed to accelerate loops. See “Modulo-scheduled
Loop Support” on page 1:75.

3.1.5 Branch Registers

A set of 8 (64-bit) branch registers are used to hold branching information. They are
numbered BR 0 through BR 7, and are available to all programs at all privilege levels.
The branch registers are used to specify the branch target addresses for indirect
branches. For more information see “Branch Instructions” on page 1:74.

Volume 1, Part 1: Execution Environment 1:27

3.1.6 Instruction Pointer

The Instruction Pointer (IP) holds the address of the bundle which contains the current
executing instruction. The IP can be read directly with a mov ip instruction. The IP
cannot be directly written, but is incremented as instructions are executed, and can be
set to a new value with a branch. Because instruction bundles are 16 bytes, and are
16-byte aligned, the least significant 4 bits of IP are always zero. See “Instruction
Encoding Overview” on page 1:38. For IA-32 instruction set execution, IP holds the
zero extended 32-bit virtual linear address of the currently executing IA-32 instruction.
IA-32 instructions are byte-aligned, therefore the least significant 4 bits of IP are
preserved for IA-32 instruction set execution. See “IA-32 Instruction Pointer” on
page 1:117 for IA-32 instruction set execution details.

3.1.7 Current Frame Marker

Each general register stack frame is associated with a frame marker. The frame marker
describes the state of the general register stack. The Current Frame Marker (CFM)
holds the state of the current stack frame. The CFM cannot be directly read or written
(see “Register Stack” on page 1:47).

The frame markers contain the sizes of the various portions of the stack frame, plus
three Register Rename Base values (used in register rotation). The layout of the frame
markers is shown in Figure 3-2 and the fields are described in Table 3-2.

On a call, the CFM is copied to the Previous Frame Marker field in the Previous Function
State register (see Section 3.1.8.12, “Previous Function State (PFS – AR 64)”). A new
value is written to the CFM, creating a new stack frame with no locals or rotating
registers, but with a set of output registers which are the caller’s output registers.
Additionally, all Register Rename Base registers (RRBs) are set to 0. See
“Modulo-scheduled Loop Support” on page 1:75.

Figure 3-2. Frame Marker Format

37 32 31 25 24 18 17 14 13 7 6 0

rrb.pr rrb.fr rrb.gr sor sol sof

6 7 7 4 7 7

Table 3-2. Frame Marker Field Description

Field Bits Description

sof 6:0 Size of stack frame

sol 13:7 Size of locals portion of stack frame

sor 17:14 Size of rotating portion of stack frame
(the number of rotating registers is 8 * sor)

rrb.gr 24:18 Register Rename Base for general registers

rrb.fr 31:25 Register Rename Base for floating-point registers

rrb.pr 37:32 Register Rename Base for predicate registers

1:28 Volume 1, Part 1: Execution Environment

3.1.8 Application Registers

The application register file includes special-purpose data registers and control registers
for application-visible processor functions for both the IA-32 and Itanium instruction set
architectures. These registers can be accessed by Itanium architecture-based
applications (except where noted). Table 3-3 contains a list of the application registers.

Table 3-3. Application Registers

Register Name Description
Execution Unit

Type

AR 0-7 KR 0-7a

a. Writes to these registers when the privilege level is not zero result in a Privileged Register fault. Reads are
always allowed.

Kernel Registers 0-7 M

AR 8-15 Reserved

AR 16 RSC Register Stack Configuration Register

AR 17 BSP Backing Store Pointer (read-only)

AR 18 BSPSTORE Backing Store Pointer for Memory Stores

AR 19 RNAT RSE NaT Collection Register

AR 20 Reserved

AR 21 FCR IA-32 Floating-point Control Register

AR 22 - AR 23 Reserved

AR 24 EFLAGb

b. Some IA-32 EFLAG field writes are silently ignored if the privilege level is not zero. See Section 10.3.2, “IA-32
System EFLAG Register” on page 2:243 for details.

IA-32 EFLAG register

AR 25 CSD IA-32 Code Segment Descriptor / Compare and
Store Data register

AR 26 SSD IA-32 Stack Segment Descriptor

AR 27 CFLGa IA-32 Combined CR0 and CR4 register

AR 28 FSR IA-32 Floating-point Status Register

AR 29 FIR IA-32 Floating-point Instruction Register

AR 30 FDR IA-32 Floating-point Data Register

AR 31 Reserved

AR 32 CCV Compare and Exchange Compare Value Register

AR 33 - AR 35 Reserved

AR 36 UNAT User NaT Collection Register

AR 37 - AR 39 Reserved

AR 40 FPSR Floating-point Status Register

AR 41 - AR 43 Reserved

AR 44 ITC Interval Time Counter

AR 45 RUC Resource Utilization Counter

AR 46 - AR 47 Reserved

AR 48 - AR 63 Ignored M or I

AR 64 PFS Previous Function State I

AR 65 LC Loop Count Register

AR 66 EC Epilog Count Register

AR 67 - AR 111 Reserved

AR 112 - AR 127 Ignored M or I

Volume 1, Part 1: Execution Environment 1:29

Application registers can only be accessed by either a M or I execution unit. This is
specified in the last column of the table. The ignored registers are for future
backward-compatible extensions.

See Section 10.2, “System Register Model” on page 2:239 for the field definition of
each IA-32 application register.

3.1.8.1 Kernel Registers (KR 0-7 – AR 0-7)

Eight user-visible 64-bit data kernel registers are provided to convey information from
the operating system to the application. These registers can be read at any privilege
level but are writable only at the most privileged level. KR0 - KR2 are also used to hold
additional IA-32 register state when the IA-32 instruction set is executing. See
Section 10.1, “Instruction Set Transitions” on page 2:239 for register details when
calling IA-32 code.

3.1.8.2 Register Stack Configuration Register (RSC – AR 16)

The Register Stack Configuration (RSC) Register is a 64-bit register used to control the
operation of the Register Stack Engine (RSE). Refer to Chapter 6, “Register Stack
Engine” in Volume 2 for details. The RSC format is shown in Figure 3-3 and the field
description is contained in Table 3-4. Instructions that modify the RSC can never set
the privilege level field to a more privileged level than the currently executing process.

3.1.8.3 RSE Backing Store Pointer (BSP – AR 17)

The RSE Backing Store Pointer is a 64-bit read-only register (Figure 3-4). It holds the
address of the location in memory which is the save location for GR 32 in the current
stack frame. See Section 6.1, “RSE and Backing Store Overview” on page 2:133.

Figure 3-3. RSC Format

63 30 29 16 15 5 4 3 2 1 0

rv loadrs rv be pl mode

34 14 11 1 2 2

Table 3-4. RSC Field Description

Field Bits Description

mode 1:0 RSE mode – controls how aggressively the RSE saves and restores register
frames. Eager and intensive settings are hints and can be implemented as lazy.

Bit Pattern RSE Mode Bit 1:
eager loads

Bit 0:
eager stores

00 enforced lazy disabled disabled

10 load intensive enabled disabled

01 store intensive disabled enabled

11 eager enabled enabled

pl 3:2 RSE privilege level – loads and stores issued by the RSE are at this privilege
level

be 4 RSE endian mode – loads and stores issued by the RSE use this byte ordering
(0: little endian; 1: big endian)

loadrs 29:16 RSE load distance to tear point – value used in the loadrs instruction for
synchronizing the RSE to a tear point

rv 15:5, 63:30 Reserved

1:30 Volume 1, Part 1: Execution Environment

3.1.8.4 RSE Backing Store Pointer for Memory Stores (BSPSTORE – AR 18)

The RSE Backing Store Pointer for memory stores is a 64-bit register (Figure 3-5). It
holds the address of the location in memory to which the RSE will spill the next value.
See Section 6.1, “RSE and Backing Store Overview” on page 2:133.

3.1.8.5 RSE NaT Collection Register (RNAT – AR 19)

The RSE NaT Collection Register is a 64-bit register (Figure 3-6) used by the RSE to
temporarily hold NaT bits when it is spilling general registers. Bit 63 always reads as
zero and ignores all writes. See Section 6.1, “RSE and Backing Store Overview” on
page 2:133.

3.1.8.6 Compare and Store Data register (CSD – AR 25)

The Compare and Store Data register is a 64-bit register that provides data to be
stored by the Itanium st16 and cmp8xchg16 instructions, and receives data loaded by
the Itanium ld16 instruction.

For implementations that do not support the ld16, st16 and cmp8xchg16 instructions,
bits 61:60 may be optionally implemented. This means that on move application
register instructions the implementation can either ignore writes and return zero on
reads, or write the value and return the last value written on reads. For
implementations that do support the ld16, st16 and cmp8xchg16 instructions, all bits of
CSD are implemented.

For IA-32 execution, this register is the IA-32 Code Segment Descriptor. See
Section 6.2.2.3, “IA-32 Segment Registers” on page 1:118.

3.1.8.7 Compare and Exchange Value Register (CCV – AR 32)

The Compare and Exchange Value Register is a 64-bit register that contains the
compare value used as the third source operand in the Itanium cmpxchg instruction.

Figure 3-4. BSP Register Format

63 3 2 1 0

pointer 0

61 3

Figure 3-5. BSPSTORE Register Format

63 3 2 1 0

pointer ig

61 3

Figure 3-6. RNAT Register Format

63 0

ig RSE NaT Collection

1 63

Volume 1, Part 1: Execution Environment 1:31

3.1.8.8 User NaT Collection Register (UNAT – AR 36)

The User NaT Collection Register is a 64-bit register used to temporarily hold NaT bits
when saving and restoring general registers with the ld8.fill and st8.spill
instructions.

3.1.8.9 Floating-point Status Register (FPSR – AR 40)

The floating-point status register (FPSR) controls traps, rounding mode, precision
control, flags, and other control bits for Itanium floating-point instructions. FPSR does
not control or reflect the status of IA-32 floating-point instructions. For more details on
the FPSR, see “Floating-point Status Register” on page 1:88.

3.1.8.10 Interval Time Counter (ITC – AR 44)

The Interval Time Counter (ITC) is a 64-bit register which counts up at a fixed
relationship to the input clock to the processor. The ITC may be clocked at a somewhat
lower frequency than the instruction execution frequency. This clocking relationship is
described in the PAL procedure PAL_FREQ_RATIOS on page 2:392. The ITC is
guaranteed to be clocked at a constant rate, even if the instruction execution frequency
may vary.

A sequence of reads of the ITC is guaranteed to return ever-increasing values (except
for the case of the counter wrapping back to 0) corresponding to the program order of
the reads. Applications can directly sample the ITC for time-based calculations.

System software can secure the interval time counter from non-privileged access.
When secured, a read of the ITC at any privilege level other than the most privileged
causes a Privileged Register fault. The ITC can be written only at the most privileged
level. The IA-32 Time Stamp Counter (TSC) is similar to ITC counter. ITC can directly be
read by the IA-32 rdtsc (read time stamp counter) instruction. System software can
secure the ITC from non-privileged IA-32 access. When secured, an IA-32 read of the
ITC at any privilege level other than the most privileged raises an
IA_32_Exception(GPfault).

3.1.8.11 Resource Utilization Counter (RUC – AR 45)

The Resource Utilization Counter (RUC) is a 64-bit register which counts up at a fixed
relationship to the input clock to the processor, when the processor is active. RUC
provides an estimate of the portion of resources used by a logical processor with
respect to all resources provided by the underlying physical processor.

The Resource Utilization Counter (RUC) is a 64-bit register which provides an estimate
of the portion of resources used by a logical processor with respect to all resources
provided by the underlying physical processor.

In a given time interval, the difference in the RUC values for all of the logical processors
on a given physical processor add up to the difference seen in the ITC on that physical
processor for that same interval.

A sequence of reads of the RUC is guaranteed to return ever-increasing values (except
for the case of the counter wrapping back to 0) corresponding to the program order of
the reads.

1:32 Volume 1, Part 1: Execution Environment

System software can secure the resource utilization counter from non-privileged
access. When secured, a read of the RUC at any privilege level other than the most
privileged causes a Privileged Register fault.

The RUC for a logical processor does not count when that logical processor is in
LIGHT_HALT, unless all logical processors on a given physical processor are in
LIGHT_HALT, in which case the last logical on a given physical processor to enter
LIGHT_HALT has its RUC continue to count.

With processor virtualization, the RUC can be used to communicate the portion of
resources used by a virtual processor. See Section 3.4, “Processor Virtualization” on
page 2:44 and Section 11.7, “PAL Virtualization Support” on page 2:324 for details on
virtual processors.

The RUC register is not supported on all processor implementations. Software can
check CPUID register 4 to determine the availability of this feature. The RUC register is
reserved when this feature is not supported.

3.1.8.12 Previous Function State (PFS – AR 64)

The Previous Function State register (PFS) contains multiple fields: Previous Frame
Marker (pfm), Previous Epilog Count (pec), and Previous Privilege Level (ppl).
Figure 3-7 diagrams the PFS format and Table 3-5 describes the PFS fields. These
values are copied automatically on a call from the CFM register, Epilog Count Register
(EC) and PSR.cpl (Current Privilege Level in the Processor Status Register) to accelerate
procedure calling.

When a br.call or brl.call is executed, the CFM, EC, and PSR.cpl are copied to the
PFS and the old contents of the PFS are discarded. When a br.ret is executed, the PFS
is copied to the CFM and EC. PFS.ppl is copied to PSR.cpl, unless this action would
increase the privilege level. For more details on the PSR see Chapter 3, “System State
and Programming Model” in Volume 2.

The PFS.pfm has the same layout as the CFM (see Section 3.1.7, “Current Frame
Marker”), and the PFS.pec has the same layout as the EC (see Section 3.1.8.14, “Epilog
Count Register (EC – AR 66)”).

Figure 3-7. PFS Format

63 62 61 58 57 52 51 38 37 0

ppl rv pec rv pfm

2 4 6 14 38

Table 3-5. PFS Field Description

Field Bits Description

pfm 37:0 Previous Frame Marker

pec 57:52 Previous Epilog Count

ppl 63:62 Previous Privilege Level

rv 51:38, 61:58 Reserved

Volume 1, Part 1: Execution Environment 1:33

3.1.8.13 Loop Count Register (LC – AR 65)

The Loop Count register (LC) is a 64-bit register used in counted loops. LC is
decremented by counted-loop-type branches.

3.1.8.14 Epilog Count Register (EC – AR 66)

The Epilog Count register (EC) is a 6-bit register used for counting the final (epilog)
stages in modulo-scheduled loops. See “Modulo-scheduled Loop Support” on
page 1:75. A diagram of the EC register is shown in Figure 3-8.

3.1.9 Performance Monitor Data Registers (PMD)

A set of performance monitoring registers can be configured by privileged software to
be accessible at all privilege levels. Performance monitor data can be directly sampled
from within the application. The operating system is allowed to secure user-configured
performance monitors. Secured performance counters return zeros when read,
regardless of the current privilege level. The performance monitors can only be written
at the most privileged level. Refer to Chapter 7, “Debugging and Performance
Monitoring” in Volume 2 for details. Performance monitors can be used to gather
performance information for the execution of both IA-32 and Itanium instruction sets.

3.1.10 User Mask (UM)

The user mask is a subset of the Processor Status Register and is accessible to
application programs. The user mask controls memory access alignment, byte-ordering
and user-configured performance monitors. It also records the modification state of
floating-point registers. Figure 3-9 show the user mask format and Table 3-6 describes
the user mask fields. For more details on the PSR refer to “Processor Status Register
(PSR)” on page 2:23.

Figure 3-8. Epilog Count Register Format

63 6 5 0

ig epilog count

58 6

Figure 3-9. User Mask Format

5 4 3 2 1 0

mfh mfl ac up be rv

1 1 1 1 1 1

Table 3-6. User Mask Field Descriptions

Field Bit Description

rv 0 Reserved

be 1 Big-endian memory access enable
(controls loads and stores but not RSE memory accesses)
0: accesses are done little-endian
1: accesses are done big-endian
This bit is ignored for IA-32 data memory accesses. IA-32 data references are always
performed little-endian.

1:34 Volume 1, Part 1: Execution Environment

3.1.11 Processor Identification Registers

Application level processor identification information is available in a register file
termed: CPUID. This register file is divided into a fixed region, registers 0 to 4, and a
variable region, register 5 and above. The CPUID[3].number field indicates the
maximum number of 8-byte registers containing processor specific information.

The CPUID registers are unprivileged and accessed using the indirect mov (from)
instruction. All registers beyond register CPUID[3].number are reserved and raise a
Reserved Register/Field fault if they are accessed. Writes are not permitted and no
instruction exists for such an operation.

Vendor information is located in CPUID registers 0 and 1 and specify a vendor name, in
ASCII, for the processor implementation (Figure 3-10). All bytes after the end of the
string up to the 16th byte are zero. Earlier ASCII characters are placed in lower number
register and lower numbered byte positions.

CPUID register 2 is an ignored register (reads from this register return zero).

CPUID register 3 contains several fields indicating version information related to the
processor implementation. Figure 3-11 and Table 3-7 specify the definitions of each
field.

up 2 User performance monitor enable (including IA-32)
0: user performance monitors are disabled
1: user performance monitors are enabled

ac 3 Alignment check for data memory references (including IA-32)
0: unaligned data memory references may cause an Unaligned Data Reference fault.
1: all unaligned data memory references cause an Unaligned Data Reference fault.

mfl 4 Lower (f2.. f31) floating-point registers written – This bit is set to one when an Intel®
Itanium® instruction that uses register f2..f31 as a target register, completes. This bit is
sticky and is only cleared by an explicit write of the user mask. See Section 3.3.2,
“Processor Status Register (PSR)” for conditions when IA-32 instructions set this bit.

mfh 5 Upper (f32.. f127) floating-point registers written – This bit is set to one when an Intel®
Itanium® instruction that uses register f32..f127 as a target register, completes. This bit
is sticky and only cleared by an explicit write of the user mask. See Section 3.3.2,
“Processor Status Register (PSR)” for conditions when IA-32 instructions set this bit.

Figure 3-10. CPUID Registers 0 and 1 – Vendor Information

63 0

CPUID[0] byte 0

CPUID[1] byte 15

64

Figure 3-11. CPUID Register 3 – Version Information

63 40 39 32 31 24 23 16 15 8 7 0

rv archrev family model revision number

24 8 8 8 8 8

Table 3-6. User Mask Field Descriptions (Continued)

Field Bit Description

Volume 1, Part 1: Execution Environment 1:35

CPUID register 4 provides general application-level information about processor
features. As shown in Figure 3-12, it is a set of flag bits used to indicate if a given
feature is supported in the processor model. When a bit is one the feature is supported;
when 0 the feature is not supported. The defined feature bits in the current architecture
are listed in Table 3-8. As new features are added (or removed) from future processor
models the presence (or removal) of new features will be indicated by new feature bits.

CPUID register 4 is logically split into two halves, both of which contain general feature
and capability information but which have different usage models and access
capabilities; this information reflects the status of any enabled or disabled features.
Both the upper and lower halves of CPUID register 4 are accessible through the move
indirect register instruction; depending on the implementation, the latency for this
access can be long and this access method is not appropriate for low-latency code
versioning using self-selection. In addition, the upper half of CPUID register 4 is also
accessible using the test feature instruction; the latency for this access is comparable
to that of the test bit instruction and this access method enables low-latency code
versioning using self selection.

This register does not contain IA-32 instruction set features. IA-32 instruction set
features can be acquired by the IA-32 cpuid instruction.

Table 3-7. CPUID Register 3 Fields

Field Bits Description

number 7:0 The index of the largest implemented CPUID register (one less than the number of
implemented CPUID registers). This value will be at least 4.

revision 15:8 Processor revision number. An 8-bit value that represents the revision or stepping
of this processor implementation within the processor model.

model 23:16 Processor model number. A unique 8-bit value representing the processor model
within the processor family.

family 31:24 Processor family number. A unique 8-bit value representing the processor family.

archrev 39:32 Architecture revision. An 8-bit value that represents the architecture revision
number that the processor implements.

rv 63:40 Reserved.

Figure 3-12. CPUID Register 4 – General Features/Capability Bits

63 34 33 32 31 4 3 2 1 0

rv x2 cz rv ru ao sd lb

30 1 1 28 1 1 1 1

Table 3-8. CPUID Register 4 Fields

Field Bits Description

lb 0 Processor implements the long branch (brl) instructions.

sd 1 Processor implements spontaneous deferral (see Section 5.5.5, “Deferral of
Speculative Load Faults” on page 2:105).

ao 2 Processor implements 16-byte atomic operations (see “ld — Load”, “st — Store” and
“cmpxchg — Compare and Exchange” instructions in Volume 3).

ru 3 Processor implements the Resource Utilization Counter (AR 45).

rv 31:4 Reserved.

cz 32 Processor implements the clz instruction (see “tf — Test Feature” instruction in
Volume 3).

1:36 Volume 1, Part 1: Execution Environment

3.2 Memory

This section describes an Itanium architecture-based application program’s view of
memory. This includes a description of how memory is accessed, for both 32-bit and
64-bit applications. The size and alignment of addressable units in memory is also
given, along with a description of how byte ordering is handled.

The system view of memory and of virtual memory management is given in Chapter 4,
“Addressing and Protection” in Volume 2 . The IA-32 instruction set view of memory
and virtual memory management is defined in Section 10.6, “System Memory Model”
on page 2:259.

3.2.1 Application Memory Addressing Model

Memory is byte addressable and is accessed with 64-bit pointers. A 32-bit pointer
model without a hardware mode is supported architecturally. Pointers which are 32 bits
in memory are loaded and manipulated in 64-bit registers. Software must explicitly
convert 32-bit pointers into 64-bit pointers before use. For details on 32-bit addressing,
refer to “32-bit Virtual Addressing” on page 2:71.

3.2.2 Addressable Units and Alignment

Memory can be addressed in units of 1, 2, 4, 8, 10 and 16 bytes.

It is recommended that all addressable units be stored on their naturally aligned
boundaries. Hardware and/or operating system software may have support for
unaligned accesses, possibly with some performance cost. 10-byte floating-point values
should be stored on 16-byte aligned boundaries.

Bits within larger units are always numbered from 0 starting with the least-significant
bit. Quantities loaded from memory to general registers are always placed in the
least-significant portion of the register (loaded values are placed right justified in the
target general register).

Instruction bundles (three instructions per bundle) are 16-byte units that are always
aligned on 16-byte boundaries.

3.2.3 Byte Ordering

The UM.be bit in the User Mask controls whether loads and stores use little-endian or
big-endian byte ordering for Itanium architecture-based code. When the UM.be bit is 0,
larger-than-byte loads and stores are little endian (lower-addressed bytes in memory
correspond to the lower-order bytes in the register). When the UM.be bit is 1,

x2 33 Processor implements mpy4 and mpyshl4 instructions (see “tf — Test Feature”
instruction in Volume 3).

rv 63:34 Reserved.

Table 3-8. CPUID Register 4 Fields (Continued)

Field Bits Description

Volume 1, Part 1: Execution Environment 1:37

larger-than-byte loads and stores are big endian (lower-addressed bytes in memory
correspond to the higher-order bytes in the register). Load byte and store byte are not
affected by the UM.be bit. The UM.be bit does not affect instruction fetch, IA-32
references, or the RSE. Instructions are always accessed by the processor as
little-endian units. When instructions are referenced as big-endian data, the instruction
will appear reversed in a register.

Figure 3-13 shows various loads in little-endian format. Figure 3-14 shows various
loads in big endian format. Stores are not shown but behave similarly.

Figure 3-13. Little-endian Loads

Figure 3-14. Big-endian Loads

a

b

c

d

e

f

g

h
d ac bh eg f

63 0

0

1

2

3

4

5

6

7
LD8 [0] =>

7 0

Memory Registers

0 b0 00 00 0

63 0

LD1 [1] =>

0 c0 d0 00 0

63 0

LD2 [2] =>

h eg f0 00 0

63 0

LD4 [4] =>

Address

a

b

c

d

e

f

g

h 63 0

0

1

2

3

4

5

6

7

LD8 [0] =>

7 0

Memory Registers

Address

e hf ga db c

63 0

LD4 [4] => e hf g0 00 0

63 0

LD2 [2] => 0 d0 c0 00 0

63 0

LD1 [1] => 0 b0 00 00 0

1:38 Volume 1, Part 1: Execution Environment

3.3 Instruction Encoding Overview

Each instruction is categorized into one of six types; each instruction type may be
executed on one or more execution unit types. Table 3-9 lists the instruction types and
the execution unit type on which they are executed.

Three instructions are grouped together into 128-bit sized and aligned containers called
bundles. Each bundle contains three 41-bit instruction slots and a 5-bit template
field. The format of a bundle is depicted in Figure 3-15.

During execution, architectural stops in the program indicate to the hardware that one
or more instructions before the stop may have certain kinds of resource dependencies
with one or more instructions after the stop. A stop is present after each slot having a
double line to the right of it in Table 3-10. For example, template 00 has no stops, while
template 03 has a stop after slot 1 and another after slot 2.

In addition to the location of stops, the template field specifies the mapping of
instruction slots to execution unit types. Not all possible mappings of instructions to
units are available. Table 3-10 indicates the defined combinations. The three rightmost
columns correspond to the three instruction slots in a bundle. Listed within each column
is the execution unit type controlled by that instruction slot.

Table 3-9. Relationship between Instruction Type and Execution Unit Type

Instruction Type Description Execution Unit Type

A Integer ALU I-unit or M-unit

I Non-ALU integer I-unit

M Memory M-unit

F Floating-point F-unit

B Branch B-unit

L+X Extended I-unit/B-unit

Figure 3-15. Bundle Format

12
7 87 86 46 45 5 4 0

instruction slot 2 instruction slot 1 instruction slot 0 template

41 41 41 5

Table 3-10. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2

00 M-unit I-unit I-unit

01 M-unit I-unit I-unit

02 M-unit I-unit I-unit

03 M-unit I-unit I-unit

04 M-unit L-unit X-unita

05 M-unit L-unit X-unita

06

07

08 M-unit M-unit I-unit

09 M-unit M-unit I-unit

0A M-unit M-unit I-unit

Volume 1, Part 1: Execution Environment 1:39

Extended instructions, used for long immediate integer and long branch instructions,
occupy two instruction slots. Depending on the major opcode, extended instructions
execute on a B-unit (long branch/call) or an I-unit (all other L+X instructions).

3.4 Instruction Sequencing Considerations

Itanium architecture-based code consists of a sequence of instructions and stops
packed in bundles. Instruction execution is ordered as follows:

• Bundles are ordered from lowest to highest memory address. Instructions in
bundles with lower memory addresses are considered to precede instructions in
bundles with higher memory addresses. The byte order of each bundle in memory
is little-endian (the template field is contained in byte 0 of a bundle).

• Within a bundle, instructions are ordered from instruction slot 0 to instruction slot 2
as specified in Figure 3-15 on page 1:38.

Instruction execution consists of four phases:

1. Read the instruction from memory (fetch)

2. Read architectural state, if necessary (read)

3. Perform the specified operation (execute)

0B M-unit M-unit I-unit

0C M-unit F-unit I-unit

0D M-unit F-unit I-unit

0E M-unit M-unit F-unit

0F M-unit M-unit F-unit

10 M-unit I-unit B-unit

11 M-unit I-unit B-unit

12 M-unit B-unit B-unit

13 M-unit B-unit B-unit

14

15

16 B-unit B-unit B-unit

17 B-unit B-unit B-unit

18 M-unit M-unit B-unit

19 M-unit M-unit B-unit

1A

1B

1C M-unit F-unit B-unit

1D M-unit F-unit B-unit

1E

1F

a. The MLX template was formerly called MLI, and for
compatibility, the X slot may encode break.i and nop.i
in addition to any X-unit instruction.

Table 3-10. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2

1:40 Volume 1, Part 1: Execution Environment

4. Update architectural state, if necessary (update).

An instruction group is a sequence of instructions starting at a given bundle address
and slot number and including all instructions at sequentially increasing slot numbers
and bundle addresses up to the first stop, taken branch, Break Instruction fault due to
a break.b, or Illegal Operation fault due to a Reserved or Reserved if PR[qp] is one
encoding in the B-type opcode space. For the instructions in an instruction group to
have well-defined behavior, they must meet the ordering and dependency requirements
described below.

For the purpose of clarification, the following do not end instruction groups:

• Break instructions other than break.b (break.f, break.i, break.m, break.x)

• Check instructions (chk.s, chk.a, fchkf)

• rfi instructions not followed by a stop

• brl instructions not followed by a stop

• Interruptions other than a Break Instruction fault due to a break.b or an Illegal
Operation fault due to a Reserved or Reserved if PR[qp] is 1 encoding in the B-type
opcode space

Thus, even if one of the above causes a change in control flow, the instructions at
sequentially increasing addresses beyond the location of the change in control flow up
to the next true end of the instruction group had the change of control flow not
occurred, can still cause undefined values to be seen at the target of the change of
control flow, if they cause a dependency violation. There are never, however, any
dependencies between the instructions at the target of the change in control flow and
those preceding the change in control flow, even for the above cases.

If the instructions in instruction groups meet the resource-dependency requirements,
then the behavior of a program will be as though each individual instruction is
sequenced through these phases in the order listed above. The order of a phase of a
given instruction relative to any phase of a previous instruction is prescribed by the
instruction sequencing rules below.

• There is no a priori relationship between the fetch of an instruction and the read,
execute, or update of any dynamically previous instruction. The sync.i and srlz.i
instructions can be used to enforce a sequential relationship between the fetch of
all dynamically succeeding instructions and the update of all dynamically previous
instructions.

• Between instruction groups, every instruction in a given instruction group will
behave as though its read occurred after the update of all the instructions from the
previous instruction group. All instructions are assumed to have unit latency.
Instructions on opposing sides of a stop are architecturally considered to be
separated by at least one unit of latency.

Some system state updates require more stringent requirements than those
described here. See Section 3.2, “Serialization” on page 2:17 for details.

• Within an instruction group, every instruction will behave as though its read of the
memory and ALAT state occurred after the update of the memory and ALAT state of
all prior instructions in that instruction group.

• Within an instruction group, every instruction will behave as though its read of the
register state occurred before the update of the register state by any instruction
(prior or later) in that instruction group, except as noted in the Register
dependencies and Memory dependencies described below.

Volume 1, Part 1: Execution Environment 1:41

The ordering rules above form the context for register dependency restrictions,
memory dependency restrictions and the order of exception reporting. These
dependency restrictions apply only between instructions whose resource reads and
writes are not dynamically disabled by predication.

• Register dependencies: Within an instruction group, read-after-write (RAW) and
write-after-write (WAW) register dependencies are not allowed (except as noted in
“RAW Dependency Special Cases” on page 1:42 and “WAW Dependency Special
Cases” on page 1:43). Write-after-read (WAR) register dependencies are allowed
(except as noted in “WAR Dependency Special Cases” on page 1:44).

These dependency restrictions apply to both explicit register accesses (from the
instruction’s operands) and implicit register accesses (such as application and
control registers implicitly accessed by certain instructions). Predicate register PR0
is excluded from these register dependency restrictions, since writes to PR0 are
ignored and reads always return 1 (one).

Some system state updates require more stringent requirements than those
described here. See Section 3.2, “Serialization” on page 2:17 for details.

• Memory dependencies: Within an instruction group, RAW, WAW, and WAR memory
dependencies and ALAT dependencies are allowed. A load will observe the results of
the most recent store to the same memory address. In the event that multiple
stores to the same address are present in the same instruction group, memory will
contain the result of the latest store after execution of the instruction group. A
store following a load to the same address will not affect the data loaded by the
load. Advanced loads, check loads, advanced load checks, stores, and memory
semaphore instructions implicitly access the ALAT. RAW, WAW, and WAR ALAT
dependencies are allowed within an instruction group and behave as described for
memory dependencies.

The net effect of the dependency restrictions stated above is that a processor may
execute all (or any subset) of the instructions within a legal instruction group
concurrently or serially with the end result being identical. If these dependency
restrictions are not met, the behavior of the program is undefined (see “Undefined
Behavior” on page 1:44).

Exceptions are reported in instruction order. The dependency restrictions apply
independent of the presence or absence of exceptions — that is, restrictions must be
satisfied whether or not an exception occurs within an instruction group. At the point of
exception delivery for a correctly formed instruction group, all prior instructions will
have completed their update of architectural state. All subsequent instructions will not
have updated architectural state. If an instruction group violates a dependency
requirement, then the update of architectural state before and after an exception is not
guaranteed (the fault handler sees an undefined value on the registers involved in a
dependency violation even if the exception occurs between the first and second
instructions in the violation). In the event multiple exceptions occur while executing
instructions from the same instruction group, the exception occurring on the earliest
instruction will be reported.

The instruction sequencing resulting from the rules stated above is termed sequential
execution.

1:42 Volume 1, Part 1: Execution Environment

The ordering rules and the dependency restrictions allow the processor to dynamically
re-order instructions, execute instructions with non-unit latency, or even concurrently
execute instructions on opposing sides of a stop or taken branch, provided that correct
sequencing is enforced and the appearance of sequential execution is presented to the
programmer.

IP is a special resource in that reads and writes of IP behave as though the instruction
stream was being executed serially, rather than in parallel. RAW dependencies on IP are
allowed, and the reader gets the IP of the bundle in which it is contained. So, each
bundle being executed in parallel logically reads IP, increments it and writes it back.
WAW is also allowed.

Ignored ARs are not exceptional for dependency checking purposes. RAW and WAW
dependencies to ignored ARs are not allowed.

For more details on resource dependencies, see Chapter 5, “Resource and Dependency
Semantics” in Volume 3.

3.4.1 RAW Dependency Special Cases

There are four special cases in which RAW register dependencies within an instruction
group are permitted. These special cases are the alloc instruction, check load
instructions, instructions that affect branching, and the ld8.fill and st8.spill
instructions.

The alloc instruction implicitly writes the Current Frame Marker (CFM) which is
implicitly read by all instructions accessing the stacked subset of the general register
file. Instructions that access the stacked subset of the general register file may appear
in the same instruction group as alloc and will see the stack frame specified by the
alloc.

Note: Some instructions have RAW or WAW dependencies on resources other than
CFM affected by alloc and are thus not allowed in the same instruction group
after an alloc: flushrs, loadrs, move from AR[BSPSTORE], move from
AR[RNAT], br.cexit, br.ctop, br.wexit, br.wtop, br.call, brl.call,
br.ia, br.ret, clrrrb, cover, and rfi. See Chapter 5, “Resource and Depen-
dency Semantics” in Volume 3 for details. Also note that alloc is required to be
the first instruction in an instruction group.

A check load instruction may or may not perform a load since it is dependent upon its
corresponding advanced load. If the check load misses the ALAT it will execute a load
from memory. A check load and a subsequent instruction that reads the target of the
check load may exist in the same instruction group. The dependent instruction will get
the new value loaded by the check load.

A branch may read branch registers and may implicitly read predicate registers, the LC,
EC, and PFS application registers, as well as CFM. Except for LC, EC and predicate
registers, writes to any of these registers by a non-branch instruction will be visible to a
subsequent branch in the same instruction group. Writes to predicate registers by any
non-floating-point instruction will be visible to a subsequent branch in the same
instruction group. RAW register dependencies within the same instruction group are not
allowed for LC and EC. Dynamic RAW dependencies where the predicate writer is a
floating-point instruction and the reader is a branch are also not allowed within the
same instruction group. Branches br.cond, br.call, brl.cond, brl.call, br.ret and

Volume 1, Part 1: Execution Environment 1:43

br.ia work like other instructions for the purposes of register dependency; i.e., if their
qualifying predicate is 0, they are not considered readers or writers of other resources.
Branches br.cloop, br.cexit, br.ctop, br.wexit, and br.wtop are exceptional in
that they are always readers or writers of their resources, regardless of the value of
their qualifying predicate. An indirect brp is considered a reader of the specified BR.

The ld8.fill and st8.spill instructions implicitly access the User NaT Collection
application register (UNAT). For these instructions the restriction on dynamic RAW
register dependencies with respect to UNAT applies at the bit level. These instructions
may appear in the same instruction group provided they do not access the same bit of
UNAT. RAW UNAT dependencies between ld8.fill or st8.spill instructions and mov
ar= or mov =ar instructions accessing UNAT must not occur within the same instruction
group.

For the purposes of resource dependencies, CFM is treated as a single resource.

3.4.2 WAW Dependency Special Cases

There are three special cases in which WAW register dependencies within an instruction
group are permitted. The special cases are compare-type instructions, floating-point
instructions, and the st8.spill instruction.

The set of compare-type instructions includes: cmp, cmp4, tbit, tnat, tf, fcmp,
frsqrta, frcpa, and fclass. Compare-type instructions in the same instruction group
may target the same predicate register provided:

• The compare-type instructions are either all AND-type compares or all OR-type
compares (AND-type compares correspond to “.and” and “.andcm” completers;
OR-type compares correspond to “.or” and “.orcm” completers), or

• The compare-type instructions all target PR0. All WAW dependencies for PR0 are
allowed; the compares can be of any types and can be of differing types.

All other WAW dependencies within an instruction group are disallowed, including WAW
register dependencies with move to PR instructions that access the same predicate
registers as another writer.

Note: The move to PR instructions only writes those PRs indicated by its mask, but
the move from PR instructions always reads all the predicate registers.

Floating-point instructions implicitly write the Floating-point Status Register (FPSR) and
the Processor Status Register (PSR). Multiple floating-point instructions may appear in
the same instruction group since the restriction on WAW register dependencies with
respect to the FPSR and PSR do not apply. The state of FPSR and PSR after executing
the instruction group will be the logical OR of all writes.

The st8.spill instruction implicitly writes the UNAT register. For this instruction the
restriction on WAW register dependencies with respect to UNAT applies at the bit level.
Multiple st8.spill instructions may appear in the same instruction group provided
they do not write the same bit of UNAT. WAW register dependencies between
st8.spill instructions and mov ar= instructions targeting UNAT must not occur within
the same instruction group.

1:44 Volume 1, Part 1: Execution Environment

3.4.3 WAR Dependency Special Cases

The WAR dependency between the reading of predicate register 63 by any B-type
instruction and the subsequent writing of predicate register 63 by a modulo-scheduled
loop type branch (br.ctop, br.cexit, br.wtop, or br.wexit) without an intervening
stop is not allowed. Otherwise, WAR dependencies within an instruction group are
allowed.

3.4.4 Processor Behavior on Dependency Violations

If a program violates read-after-write, write-after-write or write-after-read resource
dependency rules within an instruction group, then processor behavior is undefined.
Constraints on undefined behavior are described in “Undefined Behavior” on page 1:44.

To help debug code that violates the architectural resource dependency rules, some
processor implementations may provide dependency violation detection hardware that
may cause an instruction group that contains an illegal dependency to take an Illegal
Dependency fault (defined in Chapter 5, “Interruptions” in Volume 2). However, even
in implementations that provide such checking, software can not assume the processor
will catch all dependency violations or even catch the same violation every time it
occurs.

However, all processor models that provide dependency violation detection hardware
are required to satisfy the following dependency violation reporting constraints:

• All detected dependency violations must be reported as Illegal Dependency Faults
(defined in Chapter 5, “Interruptions” in Volume 2). When an Illegal Dependency
fault is taken, the value of the resource subject to the dependency violation is
undefined. Undetected dependency violations cause undefined program behavior as
described in “Undefined Behavior” on page 1:44.

• All detected read-after-write and write-after-write dependency violations must be
delivered as Illegal Dependency Faults on the second operation, i.e. on the reader
in the RAW case, and on second resource writer in the WAW case.

• All detected write-after-read dependency violations (on predicate register 63) must
be delivered as Illegal Dependency faults on the second operation, the predicate
writer.

• Illegal Dependency faults are delivered strictly in program order. If an interruption,
branch or speculation check are taken between the first and the second operation
of a dependency violation, then the Illegal Dependency fault is not taken.

Note: Since an instruction group starts at a given entry point (stop or target of a con-
trol flow transfer), instructions that precede the entry point are not considered
part of the instruction group and must not take part in any dependency viola-
tion checking. For example, if an rfi is done to slot 1 of a bundle, the instruc-
tion in slot 0 and instructions in bundles with lower memory addresses are not
part of the new instruction group, and must not take part in any dependency
violation checking.

3.5 Undefined Behavior

Architecturally undefined behavior that applies to one or more instructions is listed
below:

Volume 1, Part 1: Execution Environment 1:45

• RAW and WAW register dependencies within the same instruction group are
disallowed except as noted in Section 3.4, “Instruction Sequencing Considerations”
on page 1:39. Their behavior within an instruction group is undefined. Undefined
behavior includes the possibility of an Illegal Operation fault.

• Reading a register outside of the defined general register stack frame boundaries
(as determined by the most recent alloc, return, or call) will return an undefined
result. All processors will not raise an interruption in this situation.

An undefined scenario is an event or sequence of events whose outcome is not defined
in the architecture. For the behavior of Itanium instructions, refer to Chapter 2,
“Instruction Reference” in Volume 3. For the behavior of IA32 instructions, refer to
Volume 4: IA-32 Instruction Set Reference. Therefore, the result of an undefined
scenario is strictly implementation dependent. User should not rely on these undefined
behaviors for correct program behavior and compatibility across future
implementations.

An undefined response (undefined behavior, undefined result) is subject to the following
restrictions:

• It must not impede forward progress of the processor (i.e., the processor may not
crash).

• It must not impede forward progress of other processors.

• It must not allow software to gain privileges not available at the current privilege
level.

• It must not allow software to circumvent memory access rights.

• It must not modify state that cannot be modified by a defined response (e.g., a
post-increment load instruction that generates an undefined response cannot
modify any registers other than its target and address registers).

• It is subject to the same NaT/NaTVal propagation rules as a defined response.

• The processor may raise an Illegal Operation fault

§

1:46 Volume 1, Part 1: Execution Environment

Volume 1, Part 1: Application Programming Model 1:47

Application Programming Model 4

This section describes the architectural functionality from the perspective of the
application programmer. Itanium instructions are grouped into related functions and an
overview of their behavior is given. Unless otherwise noted, all immediates are sign
extended to 64 bits before use. The floating-point programming model is described
separately in Chapter 5, “Floating-point Programming Model” in Volume 1. Refer to
Volume 3: Intel® Itanium® Instruction Set Reference for detailed information on
Itanium instructions.

The main features of the programming model covered here are:

• General Register Stack

• Integer Computation Instructions

• Compare Instructions and Predication

• Memory Access Instructions and Speculation

• Branch Instructions and Branch Prediction

• Multimedia Instructions

• Register File Transfer Instructions

• Character Strings and Population Count

• Privilege Level Transfer

4.1 Register Stack

As described in “General Registers” on page 1:25, the general register file is divided
into static and stacked subsets. The static subset is visible to all procedures and
consists of the 32 registers from GR 0 through GR 31. The stacked subset is local to
each procedure and may vary in size from zero to 96 registers beginning at GR 32. The
register stack mechanism is implemented by renaming register addresses as a
side-effect of procedure calls and returns. The implementation of this rename
mechanism is not otherwise visible to application programs. The register stack is
disabled during IA-32 instruction set execution.

The static subset must be saved and restored at procedure boundaries according to
software convention. The stacked subset is automatically saved and restored by the
Register Stack Engine (RSE) without explicit software intervention (for details on the
RSE see Chapter 6, “Register Stack Engine” in Volume 2). All other register files are
visible to all procedures and must be saved/restored by software according to software
convention.

4.1.1 Register Stack Operation

The registers in the stacked subset visible to a given procedure are called a register
stack frame. The frame is further partitioned into two variable-size areas: the local area
and the output area. Immediately after a call, the size of the local area of the newly
activated frame is zero and the size of the output area is equal to the size of the caller’s
output area and overlays the caller’s output area.

1:48 Volume 1, Part 1: Application Programming Model

The local and output areas of a frame can be re-sized using the alloc instruction which
specifies immediates that determine the size of frame (sof) and size of locals (sol).

Note: In the assembly language, alloc uses three immediate operands to determine
the values of sol and sof: the size of inputs; the size of locals; and the size of
outputs. The value of sol is determined by adding the size of inputs immediate
and the size of locals immediate; the value of sof is determined by adding all
three immediates.

The value of sof specifies the size of the entire stacked subset visible to the current
procedure; the value of sol specifies the size of the local area. The size of the output
area is determined by the difference between sof and sol. The values of these
parameters for the currently active procedure are maintained in the Current Frame
Marker (CFM).

Reading a stacked register outside the current frame will return an undefined result.
Writing a stacked register outside the current frame will cause an Illegal Operation
fault.

When a br.call or brl.call is executed, the CFM is copied to the Previous Frame
Marker (PFM) field in the Previous Function State application register (PFS), and the
callee’s frame is created as follows:

• The stacked registers are renamed such that the first register in the caller’s output
area becomes GR 32 for the callee

• The size of the local area is set to zero

• The size of the callee’s frame (sofb1) is set to the size of the caller’s output area
(sofa - sola)

Values in the output area of the caller’s register stack frame are visible to the callee.
This overlap permits parameter and return value passing between procedures to take
place entirely in registers.

Procedure frames may be dynamically re-sized by issuing an alloc instruction. An
alloc instruction causes no renaming, but only changes the size of the register stack
frame and the partitioning between local and output areas. Typically, when a procedure
is called, it will allocate some number of local registers for its use (which will include the
parameters passed to it in the caller’s output registers), plus an output area (for
passing parameters to procedures it will call). Newly allocated registers (including their
NaT bits) have undefined values.

When a br.ret is executed, CFM is restored from PFM and the register renaming is
restored to the caller’s configuration. The PFM is procedure local state and must be
saved and restored by non-leaf procedures. The CFM is not directly accessible in
application programs and is updated only through the execution of calls, returns,
alloc, cover, and clrrrb.

Figure 4-1 depicts the behavior of the register stack on a procedure call from procA
(caller) to procB (callee). The state of the register stack is shown at four points: prior to
the call, immediately following the call, after procB has executed an alloc, and after
procB returns to procA.

Volume 1, Part 1: Application Programming Model 1:49

The majority of application programs need only issue alloc instructions and
save/restore PFM in order to effectively utilize the register stack. A detailed knowledge
of the RSE (Register Stack Engine) is required only by certain specialized application
software such as user-level thread packages, debuggers, etc. See Chapter 6, “Register
Stack Engine” in Volume 2.

4.1.2 Register Stack Instructions

The alloc instruction is used to change the size of the current register stack frame. An
alloc instruction must be the first instruction in an instruction group otherwise the
results are undefined. An alloc instruction affects the register stack frame seen by all
instructions in an instruction group, including the alloc itself. If the qualifying
predicate for alloc is not PR0, an Illegal Operation fault is raised. An alloc does not
affect the values or NaT bits of the allocated registers. When a register stack frame is
expanded, newly allocated registers may have their NaT bit set.

In addition, there are three instructions which provide explicit control over the state of
the register stack. These instructions are used in thread and context switching which
necessitate a corresponding switch of the backing store for the register stack. See
Chapter 6, “Register Stack Engine” in Volume 2 for details on explicit management of
the RSE.

Figure 4-1. Register Stack Behavior on Procedure Call and Return

Caller’s Frame (procA)

Callee’s Frame (procB)

Local A

Output B2

32 46

32 48

52

Callee’s Frame (procB) Output B1

32 38

50

CFM PFM

14 21

14 2116 19

14 210 7

x x

Frame MarkersStacked GRs

Caller’s Frame (procA) 14 21 14 21Local A Output A

32 46 52

After return

sofa=21
sola=14

sofb1=7

sofb2=19
solb2=16

call

alloc

return

sol sof sofsol

After Call

After alloc

Output A

Local B

Instruction Execution

1:50 Volume 1, Part 1: Application Programming Model

The flushrs instruction is used to force all previous stack frames out to backing store
memory. It stalls instruction execution until all active frames in the physical register
stack up to, but not including the current frame are spilled to the backing store by the
RSE. A flushrs instruction must be the first instruction in an instruction group;
otherwise, the results are undefined. A flushrs cannot be predicated.

The cover instruction creates a new frame of zero size (sof = sol = 0). The new frame
is created above (not overlapping) the present frame. Both the local and output areas
of the previous stack frame are automatically saved. A cover instruction must be the
last instruction in an instruction group; otherwise, operation is undefined. A cover
cannot be predicated.

The loadrs instruction ensures that the specified portion of the register stack is present
in the physical registers. It stalls instruction execution until the number of bytes
specified in the loadrs field of the RSC application register have been filled from the
backing store by the RSE (starting from the current BSP). By specifying a zero value for
RSC.loadrs, loadrs can be used to indicate that all stacked registers outside the
current frame must be loaded from the backing store before being used. In addition,
stacked registers outside the current frame (that have not been spilled by the RSE) will
not be stored to the backing store. A loadrs instruction must be the first instruction in
an instruction group otherwise the results are undefined. A loadrs cannot be
predicated.

Table 4-1 lists the architectural visible state relating to the register stack. Table 4-2
summarizes the register stack management instructions. Call- and return-type
branches, which affect the stack, are described in “Branch Instructions” on page 1:74.

4.2 Integer Computation Instructions

The integer execution units provide a set of arithmetic, logical, shift and
bit-field-manipulation instructions. Additionally, they provide a set of instructions to
accelerate operations on 32-bit data and pointers.

Arithmetic, logical and 32-bit acceleration instructions can be executed on both I- and
M-units

Table 4-1. Architectural Visible State Related to the Register Stack

Register Description

AR[PFS].pfm Previous Frame Marker field

AR[RSC] Register Stack Configuration application register

AR[BSP] Backing store pointer application register

AR[BSPSTORE] Backing store pointer application register for memory stores

AR[RNAT] RSE NaT collection application register

Table 4-2. Register Stack Management Instructions

Mnemonic Operation

alloc Allocate register stack frame

flushrs Flush register stack to backing store

loadrs Load register stack from backing store

cover Cover current stack frame

Volume 1, Part 1: Application Programming Model 1:51

4.2.1 Arithmetic Instructions

Addition and subtraction (add, sub) are supported with regular two input forms and
special three input forms. The three input addition form adds one to the sum of two
input registers. The three input subtraction form subtracts one from the difference of
two input registers. The three input forms share the same mnemonics as the two input
forms and are specified by appending a “1” as a third source operand.

The immediate form of addition uses a register and a 14-bit immediate; the immediate
form of subtraction uses a register and an 8-bit immediate. In both cases, the
immediate is sign-extended before being added or subtracted. The immediate form is
obtained simply by specifying an immediate rather than a register as the first operand.
Also, addition can be performed between a register and a 22-bit immediate; however,
the source register must be GR 0, 1, 2 or 3.

A shift left and add instruction (shladd) shifts one register operand to the left by 1 to 4
bits and adds the result to a second register operand.

32-bit multiplication is supported with the unsigned integer multiply (mpy4) instruction,
which takes two 32-bit (unsigned) register operands and produces a 64-bit result. The
unsigned integer shift left and multiply (mpyshl4) instruction provides a building block
for doing 64-bit multiplication. It takes a 32-bit operand in the upper half of a first
register, a 32-bit operand in the lower half of a second register, multiplies them, and
places the least significant 32-bits of the product in the upper half of the result register,
with zeros in the lower half.

Table 4-3 summarizes the integer arithmetic instructions.

Note that an integer multiply instruction is defined which uses the floating-point
registers. See “Integer Multiply and Add Instructions” on page 1:101 for details.
Integer divide is performed in software similarly to floating-point divide.

4.2.2 Logical Instructions

Instructions to perform logical AND (and), OR (or), and exclusive OR (xor) between
two registers or between a register and an immediate are defined. The andcm
instruction performs a logical AND of a register or an immediate with the complement
of another register. Table 4-4 summarizes the integer logical instructions.

Table 4-3. Integer Arithmetic Instructions

Mnemonic Operation

add Addition

add...,1 Three input addition

mpy4 Unsigned integer multiply

mpyshl4 Unsigned integer shift left and multiply

sub Subtraction

sub...,1 Three input subtraction

shladd Shift left and add

1:52 Volume 1, Part 1: Application Programming Model

4.2.3 32-bit Addresses and Integers

Support for 32-bit addresses is provided in the form of add instructions that perform
region bit copying. This supports the virtual address translation model (see “32-bit
Virtual Addressing” on page 2:71 for details). The add 32-bit pointer instruction (addp)
adds two registers or a register and an immediate, zeroes the most significant 32-bits
of the result, and copies bits 31:30 of the second source to bits 62:61 of the result. The
shladdp instruction operates similarly but shifts the first source to the left by 1 to 4 bits
before performing the add, and is provided only in the two-register form.

In addition, support for 32-bit integers is provided through 32-bit compare instructions
and instructions to perform sign and zero extension. Compare instructions are
described in “Compare Instructions and Predication” on page 1:54. The sign and zero
extend (sxt, zxt) instructions take an 8-bit, 16-bit, or 32-bit value in a register, and
produce a properly extended 64-bit result.

Table 4-5 summarizes 32-bit pointer and 32-bit integer instructions.

4.2.4 Bit Field and Shift Instructions

Four classes of instructions are defined for shifting and operating on bit fields within a
general register: variable shifts, fixed shift-and-mask instructions, a 128-bit-input
funnel shift, and special compare operations to test an individual bit within a general
register. The compare instructions for testing a single bit (tbit), or for testing the NaT
bit (tnat) are described in “Compare Instructions and Predication” on page 1:54.

The variable shift instructions shift the contents of a general register by an amount
specified by another general register. The shift right signed (shr) and shift right
unsigned (shr.u) instructions shift the contents of a register to the right with the
vacated bit positions filled with the sign bit or zeroes respectively. The shift left (shl)
instruction shifts the contents of a register to the left.

The fixed shift-and-mask instructions (extr, dep) are generalized forms of fixed shifts.
The extract instruction (extr) copies an arbitrary bit field from a general register to the
least-significant bits of the target register. The remaining bits of the target are written
with either the sign of the bit field (extr) or with zero (extr.u). The length and starting

Table 4-4. Integer Logical Instructions

Mnemonic Operation

and Logical and

or Logical or

andcm Logical and complement

xor Logical exclusive or

Table 4-5. 32-bit Pointer and 32-bit Integer Instructions

Mnemonic Operation

addp 32-bit pointer addition

shladdp Shift left and add 32-bit pointer

sxt Sign extend

zxt Zero extend

Volume 1, Part 1: Application Programming Model 1:53

position of the field are specified by two immediates. This is essentially a
shift-right-and-mask operation. A simple right shift by a fixed amount can be specified
by using shr with an immediate value for the shift amount. This is just an assembly
pseudo-op for an extract instruction where the field to be extracted extends all the way
to the left-most register bit.

The deposit instruction (dep) takes a field from either the least-significant bits of a
general register, or from an immediate value of all zeroes or all ones, places it at an
arbitrary position, and fills the result to the left and right of the field with either bits
from a second general register (dep) or with zeroes (dep.z). The length and starting
position of the field are specified by two immediates. This is essentially a
shift-left-mask-merge operation. A simple left shift by a fixed amount can be specified
by using shl with an immediate value for the shift amount. This is just an assembly
pseudo-op for dep.z where the deposited field extends all the way to the left-most
register bit.

The shift right pair (shrp) instruction performs a 128-bit-input funnel shift. It extracts
an arbitrary 64-bit field from a 128-bit field formed by concatenating two source
general registers. The starting position is specified by an immediate. This instruction
can be used to accelerate the adjustment of unaligned data. A bit rotate operation can
be performed by using shrp and specifying the same register for both operands.

Table 4-6 summarizes the bit field and shift instructions.

4.2.5 Large Constants

A special instruction is defined for generating large constants (see Table 4-7). For
constants up to 22 bits in size, the add instruction can be used, or the mov pseudo-op
(pseudo-op of add with GR0, which always reads 0). For larger constants, the move
long immediate instruction (movl) is defined to write a 64-bit immediate into a general
register. This instruction occupies two instruction slots within the same bundle, and is
the only such instruction.

Table 4-6. Bit Field and Shift Instructions

Mnemonic Operation

shr Shift right signed

shr.u Shift right unsigned

shl Shift left

extr Extract signed (shift right and mask)

extr.u Extract unsigned (shift right and mask)

dep Deposit (shift left, mask and merge)

dep.z Deposit in zeroes (shift left and mask)

shrp Shift right pair

Table 4-7. Instructions to Generate Large Constants

Mnemonic Operation

mov Move 22-bit immediate

movl Move 64-bit immediate

1:54 Volume 1, Part 1: Application Programming Model

4.3 Compare Instructions and Predication

A set of compare instructions provides the ability to test for various conditions and
affect the dynamic execution of instructions. A compare instruction tests for a single
specified condition and generates a boolean result. These results are written to
predicate registers. The predicate registers can then be used to affect dynamic
execution in two ways: as conditions for conditional branches, or as qualifying
predicates for predication.

4.3.1 Predication

Predication is the conditional execution of instructions. The execution of most
instructions is gated by a qualifying predicate. If the predicate is true, the instruction
executes normally; if the predicate is false, the instruction does not modify
architectural state (except for the unconditional type of compare instructions,
floating-point approximation instructions and while-loop branches). Predicates are
one-bit values and are stored in the predicate register file. A zero predicate is
interpreted as false and a one predicate is interpreted as true (predicate register PR0 is
hardwired to one).

A few instructions cannot be predicated. These instructions are: allocate stack frame
(alloc), branch predict (brp), bank switch (bsw), clear rrb (clrrrb), cover stack frame
(cover), enter privileged code (epc), flush register stack (flushrs), load register stack
(loadrs), counted branches (br.cloop, br.ctop, br.cexit), and return from
interruption (rfi).

4.3.2 Compare Instructions

Predicate registers are written by the following instructions: general register compare
(cmp, cmp4), floating-point register compare (fcmp), test bit and test NaT (tbit, tnat),
test feature (tf), floating-point class (fclass), and floating-point reciprocal
approximation and reciprocal square root approximation (frcpa, fprcpa, frsqrta,
fprsqrta). Most of these compare instructions (all but frcpa, fprcpa, frsqrta and
fprsqrta) set two predicate registers based on the outcome of the comparison. The
setting of the two target registers is described below in “Compare Types” on page 1:55.
Compare instructions are summarized in Table 4-8.

Table 4-8. Compare Instructions

Mnemonic Operation

cmp, cmp4 GR compare

tbit Test bit in a GR

tnat Test GR NaT bit

tf Test feature

fcmp FR compare

fclass FR class

frcpa, fprcpa Floating-point reciprocal approximation

frsqrta, fprsqrta Floating-point reciprocal square root approximation

Volume 1, Part 1: Application Programming Model 1:55

The 64-bit (cmp) and 32-bit (cmp4) compare instructions compare two registers, or a
register and an immediate, for one of ten relations (e.g., >, <=). The compare
instructions set two predicate targets according to the result. The cmp4 instruction
compares the least-significant 32-bits of both sources (the most significant 32-bits are
ignored).

The test bit (tbit) instruction sets two predicate registers according to the state of a
single bit in a general register (the position of the bit is specified by an immediate). The
test NaT (tnat) instruction sets two predicate registers according to the state of the
NaT bit corresponding to a general register.

The test feature (tf) instruction sets two predicate registers according to whether or
not the selected feature is implemented in the processor.

The fcmp instruction compares two floating-point registers and sets two predicate
targets according to one of eight relations. The fclass instruction sets two predicate
targets according to the classification of the number contained in the floating-point
register source.

The frcpa, fprcpa, frsqrta and fprsqrta instructions set a single predicate target if
their floating-point register sources are such that a valid approximation can be
produced, otherwise the predicate target is cleared.

4.3.3 Compare Types

Compare instructions can have as many as five compare types: Normal, Unconditional,
AND, OR, or DeMorgan. The type defines how the instruction writes its target predicate
registers based on the outcome of the comparison and on the qualifying predicate. The
description of these types is contained in Table 4-9. In the table, “qp” refers to the
value of the qualifying predicate of the compare and “result” refers to the outcome of
the compare relation (one if the compare relation is true and zero if the compare
relation is false).

The Normal compare type simply writes the compare result to the first predicate target
and the complement of the result to the second predicate target.

Table 4-9. Compare Type Function

Compare Type Completer
Operation

First Predicate Target Second Predicate Target

Normal none if (qp) {target = result} if (qp) {target =!result}

Unconditional unc
if (qp) {target = result}
else {target = 0}

if (qp) {target =!result}
else {target = 0}

AND
and if (qp &&!result) {target = 0} if (qp &&!result) {target = 0}

andcm if (qp && result) {target = 0} if (qp && result) {target = 0}

OR
or if (qp && result) {target = 1} if (qp && result) {target = 1}

orcm if (qp &&!result) {target = 1} if (qp &&!result) {target = 1}

DeMorgan
or.andcm if (qp && result) {target = 1} if (qp && result) {target = 0}

and.orcm if (qp &&!result) {target = 0} if (qp &&!result) {target = 1}

1:56 Volume 1, Part 1: Application Programming Model

The Unconditional compare type behaves the same as the Normal type, except that if
the qualifying predicate is 0, both predicate targets are written with 0. This can be
thought of as an initialization of the predicate targets, combined with a Normal
compare. Note that compare instructions with the Unconditional type modify
architectural state when their qualifying predicate is false.

The AND, OR and DeMorgan types are termed “parallel” compare types because they
allow multiple simultaneous compares (of the same type) to target a single predicate
register. This provides the ability to compute a logical equation such as
p5 = (r4 == 0) || (r5 == r6) in a single cycle (assuming p5 was initialized to 0 in
an earlier cycle). The DeMorgan compare type is just a combination of an OR type to
one predicate target and an AND type to the other predicate target. Multiple OR-type
compares (including the OR part of the DeMorgan type) may specify the same predicate
target in the same instruction group. Multiple AND-type compares (including the AND
part of the DeMorgan type) may also specify the same predicate target in the same
instruction group.

For all compare instructions (except for tnat and fclass), if one or both of the source
registers contains a deferred exception token (NaT or NaTVal – see “Control
Speculation” on page 1:60), the result of the compare is different. Both predicate
targets are treated the same, and are either written to 0 or left unchanged. In
combination with speculation, this allows predicated code to be turned off in the
presence of a deferred exception. fclass behaves this way as well if NaTVal is not one
of the classes being tested for. Table 4-10 describes the behavior.

Only a subset of the compare types are provided for some of the compare instructions.
Table 4-11 lists the compare types which are available for each of the instructions.

Table 4-10. Compare Outcome with NaT Source Input

Compare Type Operation

Normal if (qp) {target = 0}

Unconditional target = 0

AND if (qp) {target = 0}

OR (not written)

DeMorgan (not written)

Table 4-11. Instructions and Compare Types Provided

Instruction Relation Types Provided

cmp, cmp4 a == b, a!= b,
a > 0, a >= 0, a < 0, a <= 0,
0 > a, 0 >= a, 0 < a, 0 <= a

Normal, Unconditional,
AND, OR, DeMorgan

All other relations Normal, Unconditional

tbit, tnat, tf All Normal, Unconditional,
AND, OR, DeMorgan

fcmp, fclass All Normal, Unconditional

frcpa, frsqrta,
fprcpa, fprsqrta

Not Applicable Unconditional

Volume 1, Part 1: Application Programming Model 1:57

4.3.4 Predicate Register Transfers

Instructions are provided to transfer between the predicate register file and a general
register. These instructions operate in a “broadside” manner whereby multiple predicate
registers are transferred in parallel, such that predicate register N is transferred
to/from bit N of a general register.

The move to predicates instruction (mov pr=) loads multiple predicate registers from a
general register according to a mask specified by an immediate. The mask contains one
bit for each of PR 1 through PR 15 (PR 0 is hardwired to 1) and one bit for all of PR 16
through PR63 (the rotating predicates). A predicate register is written from the
corresponding bit in a general register if the corresponding mask bit is 1; if the mask bit
is 0 the predicate register is not modified.

The move to rotating predicates instruction (mov pr.rot=) copies 48 bits from an
immediate value into the 48 rotating predicates (PR 16 through PR 63). The immediate
value includes 28 bits, and is sign-extended. Thus PR 16 through PR 42 can be
independently set to new values, and PR 43 through PR 63 are all set to either 0 or 1.

The move from predicates instruction (mov =pr) transfers the entire predicate register
file into a general register target.

For all of these predicate register transfers, the predicate registers are accessed as
though the register rename base (CFM.rrb.pr) were 0. Typically, therefore, software
should clear CFM.rrb.pr before initializing rotating predicates.

4.4 Memory Access Instructions

Memory is accessed by simple load, store and semaphore instructions, which transfer
data to and from general registers or floating-point registers. The memory address is
specified by the contents of a general register.

Most load and store instructions can also specify base-address-register update. Base
update adds either an immediate value or the contents of a general register to the
address register, and places the result back in the address register. The update is done
after the load or store operation, i.e., it is performed as an address post-increment.

For highest performance, data should be aligned on natural boundaries. Within a
4K-byte boundary, accesses misaligned with respect to their natural boundaries will
always fault if UM.ac (alignment check bit in the User Mask register) is 1. If UM.ac is 0,
then an unaligned access will succeed if it is supported by the implementation;
otherwise it will cause an Unaligned Data Reference fault. Please see the
processor-specific documentation for further information. All memory accesses that
cross a 4K-byte boundary will cause an Unaligned Data Reference fault independent of
UM.ac. Additionally, all semaphore instructions will cause an Unaligned Data Reference
fault if the access is not aligned to its natural boundary, independent of UM.ac.

Accesses to memory quantities larger than a byte may be done in a big-endian or
little-endian fashion. The byte ordering for all memory access instructions is
determined by UM.be in the User Mask register. All IA-32 memory references are
performed little-endian.

1:58 Volume 1, Part 1: Application Programming Model

Load, store and semaphore instructions are summarized in Table 4-12 and the state
related to memory reference instructions is summarized in Table 4-13.

4.4.1 Load Instructions

Load instructions transfer data from memory to a general register, a general register
and the Compare and Store Data register (CSD), a floating-point register or a pair of
floating-point registers.

For general register loads, access sizes of 1, 2, 4, 8, and 16 bytes are defined. For sizes
less than eight bytes, the loaded value is zero extended to 64-bits. The 16-byte
general-register load instructions load two adjacent 8-byte quantities into a general
register and the CSD register. The 16-byte general-register load instructions cannot
specify base register update.

For floating-point loads, the following access sizes are defined: single precision (4
bytes), double precision (8 bytes), double-extended precision (10 bytes), and
integer/parallel FP (8 bytes). The value(s) loaded from memory are converted into
floating-point register format (see “Memory Access Instructions” on page 1:91 for
details).

Table 4-12. Memory Access Instructions

Mnemonic

Operation
General

Floating-point

Normal Load Pair

ld ldf ldfp Load

ld.s ldf.s ldfp.s Speculative load

ld.a ldf.a ldfp.a Advanced load

ld.sa ldf.sa ldfp.sa Speculative advanced load

ld.c.nc, ld.c.clr ldf.c.nc,
ldf.c.clr

ldfp.c.nc,
ldfp.c.clr

Check load

ld.c.clr.acq Ordered check load

ld.acq Ordered load

ld.bias Biased load

ld.fill ldf.fill Register Fill

st stf Store

st.rel Ordered store

st.spill stf.spill Register Spill

cmpxchg Compare and exchange

xchg Exchange memory and GR

fetchadd Fetch and add

Table 4-13. State Relating to Memory Access

Register Function

UM.be User mask byte ordering

UM.ac User mask Unaligned Data Reference fault enable

UNAT GR NaT collection

CCV Compare and Exchange Compare Value application register

CSD Compare and Store Data application register

Volume 1, Part 1: Application Programming Model 1:59

The floating-point load pair instructions load two adjacent single precision (4 bytes
each), double precision (8 bytes each), or integer/parallel FP (8 bytes each) numbers
into two independent floating-point registers (see the ldfp instruction description for
restrictions on target register specifiers). Floating-point load pair instructions can
specify base register update, but only by an immediate value equal to double the data
size.

Variants of both general and floating-point register loads are defined for supporting
compiler-directed control and data speculation. These use the general register NaT bits
and the ALAT. See “Control Speculation” on page 1:60 and “Data Speculation” on
page 1:63.

Variants are also provided for controlling the memory/cache subsystem. An ordered
load can be used to force ordering in memory accesses. See “Memory Access Ordering”
on page 1:73. A biased load provides a hint to acquire exclusive ownership of the
accessed line. See “Memory Hierarchy Control and Consistency” on page 1:69.

Special-purpose loads are defined for restoring register values that were spilled to
memory. The ld8.fill instruction loads a general register and the corresponding NaT
bit (defined for an 8-byte access only). The ldf.fill instruction loads a value in
floating-point register format from memory without conversion (defined for 16-byte
access only). See “Register Spill and Fill” on page 1:62.

4.4.2 Store Instructions

Store instructions transfer data from a general register, a general register and the CSD
register, or floating-point register to memory. Store instructions are always
non-speculative. Store instructions can specify base-address-register update, but only
by an immediate value. A variant is also provided for controlling the memory/cache
subsystem. An ordered store can be used to force ordering in memory accesses.

Both general and floating-point register stores are defined with the same access sizes
as their load counterparts. The only exception is that there are no floating-point store
pair instructions. The 16-byte general-register store instructions store two adjacent
8-byte quantities from a general register and the CSD register.

Special purpose stores are defined for spilling register values to memory. The
st8.spill instruction stores a general register and the corresponding NaT bit (defined
for 8-byte access only). This allows the result of a speculative calculation to be spilled
to memory and restored. The stf.spill instruction stores a floating-point register in
memory in the floating-point register format without conversion. This allows register
spill and restore code to be written to be compatible with possible future extensions to
the floating-point register format. The stf.spill instruction also does not fault if the
register contains a NaTVal, and is defined for 16-byte access only. See “Register Spill
and Fill” on page 1:62.

4.4.3 Semaphore Instructions

Semaphore instructions atomically load a general register from memory, perform an
operation and then store a result to the same memory location. Semaphore instructions
are always non-speculative. No base register update is provided.

1:60 Volume 1, Part 1: Application Programming Model

Three types of atomic semaphore operations are defined: exchange (xchg); compare
and exchange (cmpxchg); and fetch and add (fetchadd).

The xchg target is loaded with the zero-extended contents of the memory location
addressed by the first source and then the second source is stored into the same
memory location.

The cmpxchg target is loaded with the zero-extended contents of the memory location
addressed by the first source; if the zero-extended value is equal to the contents of the
Compare and Exchange Compare Value application register (CCV), then the second
source is stored into the same memory location. The cmp8xchg16 instruction loads the
target with 8 bytes from the memory location addressed by the first source; if this
value is equal to the contents of the CCV register, then the second source and the CSD
register are both stored into memory at the 16-byte-aligned address which contains the
memory location loaded.

The fetchadd instruction specifies one general register source, one general register
target, and an immediate. The fetchadd target is loaded with the zero-extended
contents of the memory location addressed by the source and then the immediate is
added to the loaded value and the result is stored into the same memory location.

4.4.4 Control Speculation

Special mechanisms are provided to allow for compiler-directed speculation. This
speculation takes two forms, control speculation and data speculation, with a separate
mechanism to support each. See also “Data Speculation” on page 1:63.

4.4.4.1 Control Speculation Concepts

Control speculation describes the compiler optimization where an instruction or a
sequence of instructions is executed before it is known that the dynamic control flow of
the program will actually reach the point in the program where the sequence of
instructions is needed. This is done with instruction sequences that have long execution
latencies. Starting the execution early allows the compiler to overlap the execution with
other work, increasing the parallelism and decreasing overall execution time. The
compiler performs this optimization when it determines that it is very likely that the
dynamic control flow of the program will eventually require this calculation. In cases
where the control flow is such that the calculation turns out not to be needed, its results
are simply discarded (the results in processor registers are simply not used).

Since the speculative instruction sequence may not be required by the program, no
exceptions encountered that would be visible to the program can be signalled until it is
determined that the program’s control flow does require the execution of this
instruction sequence. For this reason, a mechanism is provided for recording the
occurrence of an exception so that it can be signalled later if and when it is necessary.
In such a situation, the exception is said to be deferred. When an exception is deferred
by an instruction, a special token is written into the target register to indicate the
existence of a deferred exception in the program.

Deferred exception tokens are represented differently in the general and floating-point
register files. In general registers, an additional bit is defined for each register called
the NaT bit (Not a Thing). Thus general registers are 65 bits wide. A NaT bit equal to 1

Volume 1, Part 1: Application Programming Model 1:61

indicates that the register contains a deferred exception token, and that its 64-bit data
portion contains an implementation-specific value that software cannot rely upon. In
floating-point registers, a deferred exception is indicated by a specific pseudo-zero
encoding called the NaTVal (see “Representation of Values in Floating-point Registers”
on page 1:86 for details).

4.4.4.2 Control Speculation and Instructions

Instructions are divided into two categories: speculative (instructions which can be
used speculatively) and non-speculative (instructions which cannot). Non-speculative
instructions will raise exceptions if they occur and are therefore unsafe to schedule
before they are known to be executed. Speculative instructions defer exceptions (they
do not raise them) and are therefore safe to schedule before they are know to be
executed.

Loads to general and floating-point registers have both non-speculative (ld, ldf, ldfp)
and speculative (ld.s, ldf.s, ldfp.s) variants. Generally, all computation instructions
which write their results to general or floating-point registers are speculative. Any
instruction that modifies state other than a general or floating-point register is
non-speculative, since there would be no way to represent the deferred exception
(there are a few exceptions).

Deferred exception tokens propagate through the program in a dataflow manner. A
speculative instruction that reads a register containing a deferred exception token will
propagate a deferred exception token into its target. Thus a chain of instructions can be
executed speculatively, and only the result register need be checked for a deferred
exception token to determine whether any exceptions occurred.

At the point in the program when it is known that the result of a speculative calculation
is needed, a speculation check (chk.s) instruction is used. This instruction tests for a
deferred exception token. If none is found, then the speculative calculation was
successful, and execution continues normally. If a deferred exception token is found,
then the speculative calculation was unsuccessful and must be re-done. In this case,
the chk.s instruction branches to a new address (specified by an immediate offset in
the chk.s instruction). Software can use this mechanism to invoke code that contains a
copy of the speculative calculation (but with non-speculative loads). Since it is now
known that the calculation is required, any exceptions which now occur can be signalled
and handled normally.

Since computational instructions do not generally cause exceptions, the only
instructions which generate deferred exception tokens are speculative loads. (IEEE
floating-point exceptions are handled specially through a set of alternate status fields.
See “Floating-point Status Register” on page 1:88.) Other speculative instructions
propagate deferred exception tokens, but do not generate them.

4.4.4.3 Control Speculation and Compares

As stated earlier, most instructions that write a register file other than the general
registers or the floating-point registers are non-speculative. The compare (cmp, cmp4,
fcmp), test bit (tbit), floating-point class (fclass), and floating-point approximation
(frcpa, frsqrta) instructions are special cases. These instructions read general or
floating-point registers and write one or two predicate registers.

1:62 Volume 1, Part 1: Application Programming Model

For these instructions, if any source contains a deferred exception token, all predicate
targets are either cleared or left unchanged, depending on the compare type (see
Table 4-10 on page 1:56). Software can use this behavior to ensure that any dependent
conditional branches are not taken and any dependent predicated instructions are
nullified. See “Predication” on page 1:54.

Deferred exception tokens can also be tested for with certain compare instructions. The
test NaT (tnat) instruction tests the NaT bit corresponding to the specified general
register and writes two predicate results. The floating-point class (fclass) instruction
can be used to test for a NaTVal in a floating-point register and write the result to two
predicate registers. fclass does not clear both predicate targets in the presence of a
NaTVal input if NaTVal is one of the classes being tested for.

4.4.4.4 Control Speculation without Recovery

A non-speculative instruction that reads a register containing a deferred exception
token will raise a Register NaT Consumption fault. Such instructions can be thought of
as performing a non-recoverable speculation check operation. In some compilation
environments, it may be true that the only exceptions that are deferred are fatal errors.
In such a program, if the result of a speculative calculation is checked and a deferred
exception token is found, execution of the program is terminated. For such a program,
the results of speculative calculations can be checked simply by using non-speculative
instructions.

4.4.4.5 Operating System Control over Exception Deferral

An additional mechanism is defined that allows the operating system to control the
exception behavior of speculative loads. The operating system has the option to select
which exceptions are deferred automatically in hardware and which exceptions will be
handled (and possibly deferred) by software. See Section 5.5.5, “Deferral of
Speculative Load Faults” on page 2:105.

4.4.4.6 Register Spill and Fill

Special store and load instructions are provided for spilling a register to memory and
preserving any deferred exception token, and for restoring a spilled register.

The spill and fill general register instructions (st8.spill, ld8.fill) are defined to
save/restore a general register along with the corresponding NaT bit.

The st8.spill instruction writes a general register’s NaT bit into the User NaT
Collection application register (UNAT), and, if the NaT bit was 0, writes the register’s
64-bit data portion to memory. If the register’s NaT bit was 1, the UNAT is updated, but
the memory update is implementation specific. As stated in Section 4.4.4.1, “Control
Speculation Concepts”, software cannot rely on the 64-bit data portion spilled to
memory for a NaT'ed GR. Although guidance is given here for processor
implementations, other allowed implementation strategies may be added in the future,
and software should not rely on the implementation guidance.

Processor implementations (hardware and firmware) must consistently follow one of
two spill behaviors (but software should not count on implementations being limited to
these behaviors):

Volume 1, Part 1: Application Programming Model 1:63

• The st8.spill may write a zero to the specified memory location, or

• The st8.spill may write the register’s 64-bit data portion to memory, only if that
implementation returns a zero into the target register of all NaTed speculative
loads, and that implementation also guarantees that all NaT propagating
instructions perform all computations as specified by the instruction pages.

Bits 8:3 of the memory address determine which bit in the UNAT register is written.

The ld8.fill instruction loads a general register from memory taking the
corresponding NaT bit from the bit in the UNAT register addressed by bits 8:3 of the
memory address. The UNAT register must be saved and restored by software. It is the
responsibility of software to ensure that the contents of the UNAT register are correct
while executing st8.spill and ld8.fill instructions.

The floating-point spill and fill instructions (stf.spill, ldf.fill) are defined to
save/restore a floating-point register (saved as 16 bytes) without surfacing an
exception if the FR contains a NaTVal (these instructions do not affect the UNAT
register).

The general and floating-point spill/fill instructions allow spilling/filling of registers that
are targets of a speculative instruction and may therefore contain a deferred exception
token. Note also that transfers between the general and floating-point register files
cause a conversion between the two deferred exception token formats.

Table 4-14 lists the state relating to control speculation. Table 4-15 summarizes the
instructions related to control speculation.

4.4.5 Data Speculation

Just as control speculative loads and checks allow the compiler to schedule instructions
across control dependencies, data speculative loads and checks allow the compiler to
schedule instructions across some types of ambiguous data dependencies. This section
details the usage model and semantics of data speculation and related instructions.

Table 4-14. State Related to Control Speculation

Register Description

NaT bits 65th bit associated with each GR indicating a deferred exception

NaTVal Pseudo-Zero encoding for FR indicating a deferred exception

UNAT User NaT collection application register

Table 4-15. Instructions Related to Control Speculation

Mnemonic Operation

ld.s, ldf.s, ldfp.s GR and FR speculative loads

ld8.fill, ldf.fill Fill GR with NaT collection, fill FR

st8.spill, stf.spill Spill GR with NaT collection, spill FR

chk.s Test GR or FR for deferred exception token

tnat Test GR NaT bit and set predicate

1:64 Volume 1, Part 1: Application Programming Model

4.4.5.1 Data Speculation Concepts

An ambiguous memory dependency is said to exist between a store (or any operation
that may update memory state) and a load when it cannot be statically determined
whether the load and store might access overlapping regions of memory. For
convenience, a store that cannot be statically disambiguated relative to a particular
load is said to be ambiguous relative to that load. In such cases, the compiler cannot
change the order in which the load and store instructions were originally specified in the
program. To overcome this scheduling limitation, a special kind of load instruction
called an advanced load can be scheduled to execute earlier than one or more stores
that are ambiguous relative to that load.

As with control speculation, the compiler can also speculate operations that are
dependent upon the advanced load and later insert a check instruction that will
determine whether the speculation was successful or not. For data speculation, the
check can be placed anywhere the original non-data speculative load could have been
scheduled.

Thus, a data-speculative sequence of instructions consists of an advanced load, zero or
more instructions dependent on the value of that load, and a check instruction. This
means that any sequence of stores followed by a load can be transformed into an
advanced load followed by a sequence of stores followed by a check. The decision to
perform such a transformation is highly dependent upon the likelihood and cost of
recovering from an unsuccessful data speculation.

4.4.5.2 Data Speculation and Instructions

Advanced loads are available in integer (ld.a), floating-point (ldf.a), and
floating-point pair (ldfp.a) forms. When an advanced load is executed, it allocates an
entry in a structure called the Advanced Load Address Table (ALAT). Later, when a
corresponding check instruction is executed, the presence of an entry indicates that the
data speculation succeeded; otherwise, the speculation failed and one of two kinds of
compiler-generated recovery is performed:

1. The check load instruction (ld.c, ldf.c, or ldfp.c) is used for recovery when
the only instruction scheduled before a store that is ambiguous relative to the
advanced load is the advanced load itself. The check load searches the ALAT for a
matching entry. If found, the speculation was successful; if a matching entry was
not found, the speculation was unsuccessful and the check load reloads the
correct value from memory. Figure 4-2 shows this transformation.

2. The advanced load check (chk.a) is used when an advanced load and several
instructions that depend on the loaded value are scheduled before a store that is
ambiguous relative to the advanced load. The advanced load check works like the

Figure 4-2. Data Speculation Recovery Using ld.c

Before Data Speculation After Data Speculation

// Other instructions
st8 [r4] = r12
ld8 r6 = [r8];;
add r5 = r6, r7;;
st8 [r18] = r5

ld8.a r6 = [r8];; // Advanced load
// Other instructions
st8 [r4] = r12
ld8.c.clr r6 = [r8] // Check load
add r5 = r6, r7;;
st8 [r18] = r5

Volume 1, Part 1: Application Programming Model 1:65

speculation check (chk.s) in that, if the speculation was successful, execution
continues inline and no recovery is necessary; if speculation was unsuccessful,
the chk.a branches to compiler-generated recovery code. The recovery code
contains instructions that will re-execute all the work that was dependent on the
failed data speculative load up to the point of the check instruction. As with the
check load, the success of a data speculation using an advanced load check is
determined by searching the ALAT for a matching entry. This transformation is
shown in Figure 4-3.

Recovery code may use either a normal or advanced load to obtain the correct value for
the failed advanced load. An advanced load is used only when it is advantageous to
have an ALAT entry reallocated after a failed speculation. The last instruction in the
recovery code should branch to the instruction following the chk.a.

4.4.5.3 Detailed Functionality of the ALAT and Related Instructions

The ALAT is the structure that holds the state necessary for advanced loads and checks
to operate correctly. The ALAT is searched in two different ways: by physical addresses
and by ALAT register tags. An ALAT register tag is a unique number derived from the
physical target register number and type in conjunction with other
implementation-specific state. Implementation-specific state might include register
stack wraparound information to distinguish one instance of a physical register that
may have been spilled by the RSE from the current instance of that register, thus
avoiding the need to purge the ALAT on all register stack wraparounds.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software can
not rely on ALAT values being preserved across an instruction set transition. On entry to
IA-32 instruction set, existing entries in the ALAT are ignored.

4.4.5.3.1 Allocating and Checking ALAT Entries

Advanced loads perform the following actions:

1. The ALAT register tag for the advanced load is computed. (For ldfp.a, a tag is
computed only for the first target register.)

2. If an entry with a matching ALAT register tag exists, it is removed.

Figure 4-3. Data Speculation Recovery Using chk.a

Before Data Speculation After Data Speculation

// Other instructions
st8 [r4] = r12
ld8 r6 = [r8];;
add r5 = r6, r7;;
st8 [r18] = r5

ld8.a r6 = [r8];;
// Other instructions
add r5 = r6, r7;;
// Other instructions
st8 [r4] = r12
chk.a.clr r6, recover

back:
st8 [r18] = r5

// Somewhere else in program
recover:
ld8 r6 = [r8];;
add r5 = r6, r7
br back

1:66 Volume 1, Part 1: Application Programming Model

3. A new entry is allocated in the ALAT which contains the new ALAT register tag,
the load access size, and a tag derived from the physical memory address. The
insertion of the new ALAT entry must occur no later in visibility order than the
load of the data.

4. The value at the address specified in the advanced load is loaded into the target
register and, if specified, the base register is updated and an implicit prefetch is
performed.

Since the success of a check is determined by finding a matching register tag in the
ALAT, both the chk.a and the target register of a ld.c must specify the same register
as their corresponding advanced load. Additionally, the check load must use the same
address and operand size as the corresponding advanced load; otherwise, the value
written into the target register by the check load is undefined.

An advanced load check performs the following actions:

1. It looks for a matching ALAT entry and if found, falls through to the next
instruction.

2. If no matching entry is found, the chk.a branches to the specified address.

An implementation may choose to implement a failing advanced load check directly as a
branch or as a fault where the fault-handler emulates the branch. Although the
expected mode of operation is for an implementation to detect matching entries in the
ALAT during checks, an implementation may fail a check instruction even when an entry
with a matching ALAT register tag exists. This will be a rare occurrence but software
must not assume that the ALAT does not contain the entry.

A check load checks for a matching entry in the ALAT. If no matching entry is found, it
reloads the value from memory and any faults that occur during the memory reference
are raised. When a matching entry is found, there is flexibility in the actions that a
processor can perform:

1. The implementation may choose to either leave the target register unchanged or
to reload the value from memory.

2. If the implementation chooses to leave the target register unchanged and one or
more exception conditions related to the data access or translation of the check
load occurs, the implementation may choose to either raise the highest-priority of
these faults or ignore them all and continue execution. The faults that can be
ignored are those related to data access and translation (Data Nested TLB fault,
Alternate Data TLB fault, VHPT Data fault, Data TLB fault, Data Page Not Present
fault, Data NaT Page Consumption fault, Data Key Miss fault, Data Key Permission
fault, Data Access Rights fault, Data Dirty Bit fault, Data Access Bit fault, Data
Debug fault, Unaligned Data Reference fault, Unsupported Data Reference fault).
See Table 5-6, “Interruption Priorities” on page 2:109.

3. If the implementation chooses to perform a reload, then any faults that occur
because of the reload can not be ignored.

4. If the size, type, or address fields in the matching ALAT entry do not match that
provided by a check load, the value returned by the check load is undefined. In
such cases the implementation may choose to raise a fault or when the “no clear”
variant of the check load is issued, an implementation may choose to update the
address, size, or type fields of the matching ALAT entry or to leave the entry
unchanged. The update of the ALAT entry must occur no later in visibility order

Volume 1, Part 1: Application Programming Model 1:67

than the load of the data.

If the check load was an ordered check load (ld.c.clr.acq), then it is performed with
the semantics of an ordered load (ld.acq). ALAT register tag lookups by advanced load
checks and check loads are subject to memory ordering constraints as outlined in
“Memory Access Ordering” on page 1:73.

In addition to the flexibility described above, the size, organization, matching
algorithm, and replacement algorithm of the ALAT are implementation dependent.
Thus, the success or failure of specific advanced loads and checks in a program may
change: when the program is run on different processor implementations, within the
execution of a single program on the same implementation, or between different runs
on the same implementation.

4.4.5.3.2 Invalidating ALAT Entries

In addition to entries removed by advanced loads, ALAT entry invalidations can occur
implicitly by events that alter memory state or explicitly by any of the following
instructions: ld.c.clr, ld.c.clr.acq, chk.a.clr, invala, invala.e. Events that may
implicitly invalidate ALAT entries include those that change memory state or memory
translation state such as:

1. The execution of stores, semaphores, or ptc.ga on other processors in the
coherence domain.

2. The execution of store or semaphore instructions issued on the local processor.

3. Platform-visible removal of a cache line from the processor’s caches.

When one of these events occurs, hardware checks each memory region represented
by an entry in the ALAT to see if it overlaps with the locations affected by the
invalidation event. ALAT entries whose memory regions overlap with the invalidation
event locations are removed. The invalidation of ALAT entries due to the execution of
stores, semaphores or ptc.ga instructions must occur no later in visibility order than the
store of the data or the TLB purge. Note that some invalidation events may require that
multiple entries be removed from the ALAT. For example, the ptc.ga instruction is page
aligned, thus a ptc.ga from another processor would require that hardware invalidate
all ALAT entries related to that page. Stores due to RSE spills are not checked for ALAT
invalidation and do not cause ALAT entries to be removed. See Section 6.9, “RSE and
ALAT Interaction” on page 2:146. When an external agent can observe that the
processor has removed a physical address range from its caches, then that address
range is guaranteed to be invalidated from that processor’s ALAT as well.

An implementation may invalidate entries over areas larger than explicitly required by a
specific invalidation event, and more generally, to invalidate any ALAT entry at any
time. For example, a st1 only accesses one byte, but an implementation could choose
to invalidate all ALAT entries whose memory region is in the same cache line. An
implementation may also provide an ALAT with zero entries (i.e., all ld.c/chk.a
instructions would act as if an ALAT miss had occurred).

Software is responsible for explicitly invalidating all affected ALAT entries whenever:

1. Software explicitly changes the virtual to physical register mapping on rotating
registers that have been the target of advanced loads (clrrrb).

2. Software changes the virtual to physical memory mapping.

1:68 Volume 1, Part 1: Application Programming Model

3. Software accesses the RSE backing store with advanced loads. See Section 6.9,
“RSE and ALAT Interaction” on page 2:146 (since RSE stores do not invalidate
ALAT entries).

4. Software explicitly changes the virtual to physical register mapping on stacked
registers by switching the RSE backing stores. See Section 6.11.3, “Synchronous
Backing Store Switch” on page 2:148.

4.4.5.4 Combining Control and Data Speculation

Control speculation and data speculation are not mutually exclusive; a given load may
be both control and data speculative. Both control speculative (ld.sa, ldf.sa,
ldfp.sa) and non-control speculative (ld.a, ldf.a, ldfp.a) variants of advanced
loads are defined for general and floating-point registers. If a speculative advanced
load generates a deferred exception token then:

1. Any existing ALAT entry with the same ALAT register tag is invalidated.

2. No new ALAT entry is allocated.

3. If the target of the load was a general-purpose register, its NaT bit is set.

4. If the target of the load was a floating-point register, then NaTVal is written to the
target register.

If a speculative advanced load does not generate a deferred exception, then its
behavior is the same as the corresponding non-control speculative advanced load.

Since there can be no matching entry in the ALAT after a deferred fault, a single
advanced load check or check load is sufficient to check both for data speculation
failures and to detect deferred exceptions.

4.4.5.5 Instruction Completers for ALAT Management

To help the compiler manage the allocation and deallocation of ALAT entries, two
variants of advanced load checks and check loads are provided: variants with clear
(chk.a.clr, ld.c.clr, ld.c.clr.acq, ldf.c.clr, ldfp.c.clr) and variants with no
clear (chk.a.nc, ld.c.nc, ldf.c.nc, ldfp.c.nc).

The clear variants are used when the compiler knows that the ALAT entry will not be
used again and wants the entry explicitly removed. This allows software to indicate
when entries are unneeded, making it less likely that a useful entry will be
unnecessarily forced out because all entries are currently allocated.

For the clear variants of check load, any ALAT entry with the same ALAT register tag is
invalidated independently of whether the address or size fields of the check load and
the corresponding advanced load match. For chk.a.clr, the entry is guaranteed to be
invalidated only when the instruction falls through (the recovery code is not executed).
Thus, a failing chk.a.clr may or may not clear any matching ALAT entries. In such
cases, the recovery code must explicitly invalidate the entry in question if program
correctness depends on the entry being absent after a failed chk.a.clr.

Non-clear variants of both kinds of data speculation checks act as a hint to the
processor that an existing entry should be maintained in the ALAT or that a new entry
should be allocated when a matching ALAT entry doesn’t exist. Such variants can be
used within loops to check advanced loads which were presumed loop-invariant and

Volume 1, Part 1: Application Programming Model 1:69

moved out of the loop by the compiler. This behavior ensures that if the check load fails
on one iteration, then the check load will not necessarily fail on all subsequent
iterations. Whenever a new entry is inserted into the ALAT or when the contents of an
entry are updated, the information written into the ALAT only uses information from the
check load and does not use any residual information from a prior entry. The non-clear
variant of chk.a, chk.a.nc, does not allocate entries and the ‘nc’ completer acts as a
hint to the processor that the entry should not be cleared.

Table 4-16 and Table 4-17 summarize state and instructions relating to data
speculation.

4.4.6 Memory Hierarchy Control and Consistency

4.4.6.1 Hierarchy Control and Hints

Memory access instructions are defined to specify whether the data being accessed
possesses temporal locality. In addition, memory access instructions can specify which
levels of the memory hierarchy are affected by the access. This leads to an architectural
view of the memory hierarchy depicted in Figure 4-1 composed of zero or more levels
of cache between the register files and memory where each level may consist of two
parallel structures: a temporal structure and a non-temporal structure. Note that this
view applies to data accesses and not instruction accesses.

Table 4-16. State Relating to Data Speculation

Structure Function

ALAT Advanced load address table

Table 4-17. Instructions Relating to Data Speculation

Mnemonic Operation

ld.a, ldf.a, ldfp.a GR and FR advanced load

st, st.rel, st.spill, stf, stf.spill GR and FR store

cmpxchg, fetchadd, xchg GR semaphore

ld.c.clr, ld.c.clr.acq, ldf.c.clr,
ldfp.c.clr

GR and FR check load, clear on ALAT hit

ld.c.nc, ldf.c.nc, ldfp.c.nc GR and FR check load, re-allocate on ALAT miss

ld.sa, ldf.sa, ldfp.sa GR and FR speculative advanced load

chk.a.clr, chk.a.nc GR and FR advanced load check

invala Invalidate all ALAT entries

invala.e Invalidate individual ALAT entry for GR or FR

1:70 Volume 1, Part 1: Application Programming Model

The temporal structures cache memory accessed with temporal locality; the
non-temporal structures cache memory accessed without temporal locality. Both
structures assume that memory accesses possess spatial locality. The existence of
separate temporal and non-temporal structures, as well as the number of levels of
cache, is implementation dependent. Please see the processor-specific documentation
for further information.

Three mechanisms are defined for allocation control: locality hints; explicit prefetch;
and implicit prefetch. Locality hints are specified by load, store, and explicit prefetch
(lfetch) instructions. A locality hint specifies a hierarchy level (e.g., 1, 2, all). An
access that is temporal with respect to a given hierarchy level is treated as temporal
with respect to all lower (higher numbered) levels. An access that is non-temporal with
respect to a given hierarchy level is treated as temporal with respect to all lower levels.
Finding a cache line closer in the hierarchy than specified in the hint does not demote
the line. This enables the precise management of lines using lfetch and then
subsequent uses by.nta loads and stores to retain that level in the hierarchy. For
example, specifying the.nt2 hint by a prefetch indicates that the data should be cached
at level 3. Subsequent loads and stores can specify.nta and have the data remain at
level 3.

Locality hints do not affect the functional behavior of the program and may be ignored
by the implementation. The locality hints available to loads, stores, and explicit prefetch
instructions are given in Table 4-18. Instruction accesses are considered to possess
both temporal and spatial locality with respect to level 1.

Figure 4-1. Memory Hierarchy

Table 4-18. Locality Hints Specified by Each Instruction Class

Mnemonic Locality Hint

Instruction Type

Load Store
lfetch,

lfetch.fault

none Temporal, level 1 x x x

nt1 Non-temporal, level 1 x x

nt2 Non-temporal, level 2 x

nta Non-temporal, all levels x x x

Structure
Temporal

Non-
temporal
Structure

Memory
Register

Files

Structure
Temporal

Non-
temporal
Structure

Structure
Temporal

Non-
temporal
Structure

Level 1 Level 2 Level N

Cache

Volume 1, Part 1: Application Programming Model 1:71

Each locality hint implies a particular allocation path in the memory hierarchy. The
allocation paths corresponding to the locality hints are depicted in Figure 4-2. The
allocation path specifies the structures in which the line containing the data being
referenced would best be allocated. If the line is already at the same or higher level in
the hierarchy no movement occurs. Hinting that a datum should be cached in a
temporal structure indicates that it is likely to be read in the near future. Hinting that a
datum should not be cached in a temporal structure indicates that it is not likely to be
read in the near future. For stores, the .nta completer also hints that the store may be
part of a set of streaming stores that would likely overwrite the entire cache line
without any data in that line first being read, enabling the processor to avoid fetching
the data.

Explicit prefetch is defined in the form of the line prefetch instruction (lfetch,
lfetch.fault). The lfetch instructions moves the line containing the addressed byte to
a location in the memory hierarchy specified by the locality hint. If the line is already at
the same or higher level in the hierarchy, no movement occurs. Both immediate and
register post-increment are defined for lfetch and lfetch.fault. The lfetch
instruction does not cause any exceptions, does not affect program behavior, and may
be ignored by the implementation. The lfetch.fault instruction affects the memory
hierarchy in exactly the same way as lfetch but takes exceptions as if it were a 1-byte
load instruction.

Implicit prefetch is based on the address post-increment of loads, stores, lfetch and
lfetch.fault. The line containing the post-incremented address is moved in the
memory hierarchy based on the locality hint of the originating load, store, lfetch or
lfetch.fault. If the line is already at the same or higher level in the hierarchy then no
movement occurs. Implicit prefetch does not cause any exceptions, does not affect
program behavior, and may be ignored by the implementation.

Another form of hint that can be provided on loads is the ld.bias load type. This is a
hint to the implementation to acquire exclusive ownership of the line containing the
addressed data. The bias hint does not affect program functionality and may be ignored
by the implementation.

Figure 4-2. Allocation Paths Supported in the Memory Hierarchy

Level 1 Level 2

Temporal

Non-temporal

Temporal

Structure Structure

Non-temporal

Memory

Temporal, level 1

Non-temporal, level 1

Non-temporal, all levels

Level 3

Non-temporal

Temporal

Structure

Non-temporal, level 2

Cache

Structure Structure Structure

1:72 Volume 1, Part 1: Application Programming Model

The following instructions are defined for flush control: flush cache (fc, fc.i) and flush
write buffers (fwb). The fc instruction invalidates the cache line in all levels of the
memory hierarchy above memory. If the cache line is not consistent with memory, then
it is copied into memory before invalidation. The fc.i instruction ensures the data
cache line associated with an address is coherent with the instruction caches. The fc.i
instruction is not required to invalidate the targeted cache line nor write the targeted
cache line back to memory if it is inconsistent with memory, but may do so if this is
required to make the targeted cache line coherent with the instruction caches. The fwb
instruction provides a hint to flush all pending buffered writes to memory (no indication
of completion occurs).

Table 4-19 summarizes the memory hierarchy control instructions and hint
mechanisms.

4.4.6.2 Memory Consistency

In the Itanium architecture, instruction accesses made by a processor are not coherent
with respect to instruction and/or data accesses made by any other processor, nor are
instruction accesses made by a processor coherent with respect to data accesses made
by that same processor. Therefore, hardware is not required to keep a processor’s
instruction caches consistent with respect to any processor’s data caches, including that
processor’s own data caches; nor is hardware required to keep a processor’s instruction
caches consistent with respect to any other processor’s instruction caches. Data
accesses from different processors in the same coherence domain are coherent with
respect to each other; this consistency is provided by the hardware. Data accesses
from the same processor are subject to data dependency rules; see “Memory Access
Ordering” below.

The mechanism(s) by which coherence is maintained is implementation dependent.
Separate or unified structures for caching data and instructions are not architecturally
visible. Within this context there are two categories of data memory hierarchy control:
allocation and flush. Allocation refers to movement towards the processor in the
hierarchy (lower numbered levels) and flush refers to movement away from the
processor in the hierarchy (higher numbered levels). Allocation and flush occur in
line-sized units; the minimum architecturally visible line size is 32 bytes (aligned on a
32-byte boundary). The line size in an implementation may be smaller in which case
the implementation will need to move multiple lines for each allocation and flush event.
An implementation may allocate and flush in units larger than 32 bytes.

In order to guarantee that a write from a given processor becomes visible to the
instruction stream of that same, and other, processors, the affected line(s) must be
made coherent with instruction caches. Software may use the fc.i instruction for this

Table 4-19. Memory Hierarchy Control Instructions and Hint Mechanisms

Mnemonic Operation

.nt1 and.nta completer on loads Load usage hints

.nta completer on stores Store usage hints

Prefetch line at post-increment address on loads and stores Prefetch hint

lfetch, lfetch.fault with.nt1,.nt2, and.nta hints Prefetch line

fc, fc.i Flush cache

fwb Flush write buffers

Volume 1, Part 1: Application Programming Model 1:73

purpose. Memory updates by DMA devices are coherent with respect to instruction and
data accesses of processors. The consistency between instruction and data caches of
processors with respect to memory updates by DMA devices is provided by the
hardware. In case a program modifies its own instructions, the sync.i and srlz.i
instructions are used to ensure that prior coherency actions are observed by a given
point in the program. Refer to the description sync.i on page 3:259 in Volume 3:
Intel® Itanium® Instruction Set Reference for an example of self-modifying code.

4.4.7 Memory Access Ordering

Memory data access ordering must satisfy read-after-write (RAW), write-after-write
(WAW), and write-after-read (WAR) data dependencies to the same memory location.
In addition, memory writes and flushes must observe control dependencies. Except for
these restrictions, reads, writes, and flushes may occur in an order different from the
specified program order. Note that no ordering exists between instruction accesses and
data accesses or between any two instruction accesses. The mechanisms described
below are defined to enforce a particular memory access order. In the following
discussion, the terms “previous” and “subsequent” are used to refer to the program
specified order. The term “visible” is used to refer to all architecturally visible effects of
performing a memory access (at a minimum this involves reading or writing memory).

Memory accesses follow one of four memory ordering semantics: unordered, release,
acquire or fence. Unordered data accesses may become visible in any order. Release
data accesses guarantee that all previous data accesses are made visible prior to being
made visible themselves. Acquire data accesses guarantee that they are made visible
prior to all subsequent data accesses. Fence operations combine the release and
acquire semantics into a bi-directional fence, i.e., they guarantee that all previous data
accesses are made visible prior to any subsequent data accesses being made visible.

Explicit memory ordering takes the form of a set of instructions: ordered load and
ordered check load (ld.acq, ld.c.clr.acq), ordered store (st.rel), semaphores
(cmpxchg, xchg, fetchadd), and memory fence (mf). The ld.acq and ld.c.clr.acq
instructions follow acquire semantics. The st.rel follows release semantics. The mf
instruction is a fence operation. The xchg, fetchadd.acq, and cmpxchg.acq
instructions have acquire semantics. The cmpxchg.rel, and fetchadd.rel instructions
have release semantics. The semaphore instructions also have implicit ordering. If
there is a write, it will always follow the read. In addition, the read and write will be
performed atomically with no intervening accesses to the same memory region.

Table 4-20 illustrates the ordering interactions between memory accesses with different
ordering semantics. “O” indicates that the first and second reference are performed in
order with respect to each other. A “-” indicates that no ordering is implied other than
data dependencies (and control dependencies for writes and flushes).

Table 4-20. Memory Ordering Rules

First Reference
Second Reference

Fence Acquire Release Unordered

 fence O O O O

acquire O O O O

release O – O –

unordered O – O –

1:74 Volume 1, Part 1: Application Programming Model

Table 4-21 summarizes memory ordering instructions related to cacheable memory. For
definitions of the ordering rules related to non-cacheable memory, cache
synchronization, and privileged instructions, refer to Section 4.4.7, “Sequentiality
Attribute and Ordering” on page 2:82.

4.5 Branch Instructions

Branch instructions effect a transfer of control flow to a new address. Branch targets
are bundle-aligned, which means control is always passed to the first instruction slot of
the target bundle (slot 0). Branch instructions are not required to be the last instruction
in an instruction group. In fact, an instruction group can contain arbitrarily many
branches (provided that the normal RAW and WAW dependency requirements are met).
If a branch is taken, only instructions up to the taken branch will be executed. After a
taken branch, the next instruction executed will be at the target of the branch.

There are three categories of branches: IP-relative branches, long branches, and
indirect branches. IP-relative branches specify their target with a signed 21-bit
displacement, which is added to the IP of the bundle containing the branch to give the
address of the target bundle. The displacement allows a branch reach of 16MBytes.
Long branches are IP-relative with a 60-bit displacement, allowing the target to be
anywhere in the 64-bit address space. Because of the long immediate, long branches
occupy two instruction slots. Indirect branches use the branch registers to specify the
target address.

There are several branch types, as shown in Table 4-22. The conditional branch
br.cond or br is a branch which is taken if the specified predicate is 1, and not-taken
otherwise. The conditional call branch br.call does the same thing, and in addition,
writes a link address to a specified branch register and adjusts the general register
stack (see “Register Stack” on page 1:47). The conditional return br.ret does the
same thing as an indirect conditional branch, plus it adjusts the general register stack.
Unconditional branches, calls and returns are executed by specifying PR 0 (which is
always 1) as the predicate for the branch instruction. The long branches, brl.cond or
brl, and brl.call are identical to br.cond or br, and br.call, respectively, except for
their longer displacement.

Table 4-21. Memory Ordering Instructions

Mnemonic Operation

ld.acq, ld.c.clr.acq Ordered load and ordered check load

st.rel Ordered store

xchg Exchange memory and general register

cmpxchg.acq, cmpxchg.rel Conditional exchange of memory and general register

fetchadd.acq,fetchadd.rel Add immediate to memory

mf Memory ordering fence

Table 4-22. Branch Types

Mnemonic Function Branch Condition Target Address

br.cond or br Conditional branch Qualifying predicate IP-rel or Indirect

br.call Conditional procedure call Qualifying predicate IP-rel or Indirect

br.ret Conditional procedure return Qualifying predicate Indirect

Volume 1, Part 1: Application Programming Model 1:75

The counted loop type (br.cloop) uses the Loop Count (LC) application register. If LC is
non-zero then it is decremented and the branch is taken. If LC is zero, the branch falls
through. The modulo-scheduled loop type branches (br.ctop, br.cexit, br.wtop,
br.wexit) are described in “Modulo-scheduled Loop Support” on page 1:75. The loop
type branches (br.cloop, br.ctop, br.cexit, br.wtop, br.wexit) are allowed only in
slot 2 of a bundle. A loop type branch executed in slot 0 or 1 will cause an Illegal
Operation fault.

Instructions are provided to move data between branch registers and general registers
(mov =br, mov br=). Table 4-23 and Table 4-24 summarize state and instructions
relating to branching.

4.5.1 Modulo-scheduled Loop Support

Support for software-pipelined loops is provided through rotating registers and loop
branch types. Software pipelining of a loop is analogous to hardware pipelining of a
functional unit. The loop body is partitioned into multiple “stages” with zero or more
instructions in each stage. Modulo-scheduled loops have three phases: prolog, kernel,
and epilog. During the prolog phase, new loop iterations are started each time around
(filling the software pipeline). During the kernel phase, the pipeline is full. A new loop

br.ia Invoke the IA-32 instruction set Unconditional Indirect

br.cloop Counted loop branch Loop count IP-rel

br.ctop, br.cexit Modulo-scheduled counted loop Loop count and Epilog
count

IP-rel

br.wtop, br.wexit Modulo-scheduled while loop Qualifying predicate
and Epilog count

IP-rel

brl.cond or brl Long conditional branch Qualifying predicate IP-rel

brl.call Long conditional procedure call Qualifying predicate IP-rel

Table 4-23. State Relating to Branching

Register Function

BRs Branch registers

PRs Predicate registers

CFM Current Frame Marker

PFS Previous Function State application register

LC Loop Count application register

EC Epilog Count application register

Table 4-24. Instructions Relating to Branching

Mnemonic Operation

br Branch

brl Long branch

brp Provide early hint information about a future branch

mov =br Move from BR to GR

mov br= Move from GR to BR

Table 4-22. Branch Types (Continued)

Mnemonic Function Branch Condition Target Address

1:76 Volume 1, Part 1: Application Programming Model

iteration is started, and another is finished each time around. During the epilog phase,
no new iterations are started, but previous iterations are completed (draining the
software pipeline).

A predicate is assigned to each stage to control the activation of the instructions in that
stage (this predicate is called the “stage predicate”). To support the pipelining effect of
stage predicates and registers in a software-pipelined loop, a fixed sized area of the
predicate and floating-point register files (PR16-PR63 and FR32-FR127), and a
programmable sized area of the general register file, are defined to “rotate.” The size of
the rotating area in the general register file is determined by an immediate in the alloc
instruction. This immediate must be either zero or a multiple of 8. The general register
rotating area is defined to start at GR32 and overlay the local and output areas,
depending on their relative sizes. The stage predicates are allocated in the rotating area
of the predicate register file. For counted loops, PR16 is architecturally defined to be the
first stage predicate with subsequent stage predicates extending to higher predicate
register numbers. For while loops, the first stage predicate may be any rotating
predicate with subsequent stage predicates extending to higher predicate register
numbers. Software is required to initialize the stage (rotating) predicates prior to
entering the loop. An alloc instruction may not change the size of the rotating portion of
the register stack frame unless all rotating register bases (rrb’s) in the CFM are zero. All
rrb’s can be set to zero with the clrrrb instruction. The clrrrb.pr form can be used to
clear just the rrb for the predicate registers. The clrrrb instruction must be the last
instruction in an instruction group.

Rotation by one register position occurs when a software-pipelined loop type branch is
executed. Registers are rotated towards larger register numbers in a wraparound
fashion. For example, the value in register X will be located in register X+1 after one
rotation. If X is the highest addressed rotating register its value will wrap to the lowest
addressed rotating register. Rotation is implemented by renaming register numbers
based on the value of a rotating register base (rrb) contained in CFM. An independent
rrb is defined for each of the three rotating register files: CFM.rrb.gr for the general
registers, CFM.rrb.fr for the floating-point registers, and CFM.rrb.pr for the predicate
registers. General registers only rotate when the size of the rotating region is not equal
to zero. Floating-point and predicate registers always rotate. When rotation occurs, two
or all three rrb’s are decremented in unison. Each rrb is decremented modulo the size of
their respective rotating regions (e.g., 96 for rrb.fr). The operation of the rotating
register rename mechanism is not otherwise visible to software. The instructions that
modify the rrb’s are listed in Table 4-25.

Table 4-25. Instructions that Modify RRBs

Mnemonic Operation

clrrrb Clears all rrb’s

clrrrb.pr Clears rrb.pr

br.call, brl.call Clears all rrb’s

cover Clears all rrb’s

br.ret Restores CFM.rrb’s from PFM.rrb’s

rfi Restores CFM.rrb’s from IFM.rrb’s if IFM.v==1

br.ctop, br.cexit,
br.wtop, and br.wexit

Decrements all rrb’s

Volume 1, Part 1: Application Programming Model 1:77

There are two categories of software-pipelined loop branch types: counted and while.
Both categories have two forms: top and exit. The “top” variant is used when the loop
decision is located at the bottom of the loop body. A taken branch will continue the loop
while a not-taken branch will exit the loop. The “exit” variant is used when the loop
decision is located somewhere other than the bottom of the loop. A not-taken branch
will continue the loop and a taken branch will exit the loop. The “exit” variant is also
used at intermediate points in an unrolled pipelined loop.

The branch condition of a counted loop branch is determined by the specific counted
loop type (ctop or cexit), the value of the loop count application register (LC), and the
value of the epilog count application register (EC). Note that the counted loop branches
do not use a qualifying predicate. LC is initialized to one less than the number of
iterations for the counted loop and EC is initialized to the number of stages into which
the loop body has been partitioned. While LC is greater than zero, the branch direction
will continue the loop, LC will be decremented, registers will be rotated (rrb’s are
decremented), and PR 16 will be set to 1 after rotation. (For each of the loop-type
branches, PR 63 is written by the branch, and after rotation this value will be in PR 16.)

Execution of a counted loop branch with LC equal to zero signals the start of the epilog.
While in the epilog and while EC is greater than one, the branch direction will continue
the loop, EC will be decremented, registers will be rotated, and PR 16 will be set to 0
after rotation. Execution of a counted loop branch with LC equal to zero and EC equal to
one signals the end of the loop; the branch direction will exit the loop, EC will be
decremented, registers will be rotated, and PR 16 will be set to 0 after rotation. A
counted loop type branch executed with both LC and EC equal to zero will have a
branch direction to exit the loop. LC, EC, and the rrb’s will not be modified (no rotation)
and PR 63 will be set to 0. LC and EC equal to zero can occur in some types of
optimized, unrolled software-pipelined loops if the target of a cexit branch is set to the
next sequential bundle and the loop trip count is not evenly divisible by the unroll
amount.

The direction of a while loop branch is determined by the specific while loop type (wtop
or wexit), the value of the qualifying predicate, and the value of EC. The while loop
branches do not use LC. While the qualifying predicate is one, the branch direction will
continue the loop, registers will be rotated, and PR 16 will be set to 0 after rotation.
While the qualifying predicate is zero and EC is greater than one, the branch direction
will continue the loop, EC will be decremented, registers will be rotated, and PR 16 will
be set to 0 after rotation. The qualifying predicate is one during the kernel and zero
during the epilog. During the prolog, the qualifying predicate may be zero or one
depending upon the scheme used to program the pipelined while loop. Execution of a
while loop branch with qualifying predicate equal to zero and EC equal to one signals
the end of the loop; the branch direction will exit the loop, EC will be decremented,
registers will be rotated, and PR 16 will be set to 0 after rotation. A while loop branch
executed with a zero qualifying predicate and with EC equal to zero has a branch
direction to exit the loop. EC and the rrb’s will not be modified (no rotation) and PR 63
will be set to 0.

For while loops, the initialization of EC depends upon the scheme used to program the
pipelined while loop. Often, the first valid condition for the while loop branch is not
computed until several stages into the prolog. Therefore, software pipelines for while
loops often have several speculative prolog stages. During these stages, the qualifying
predicate can be set to zero or one depending upon the scheme used to program the
loop. If the qualifying predicate is one throughout the prolog, EC will be decremented

1:78 Volume 1, Part 1: Application Programming Model

only during the epilog phase and is initialized to one more than the number of epilog
stages. If the qualifying predicate is zero during the speculative stages of the prolog,
EC will be decremented during this part of the prolog, and the initialization value for EC
is increased accordingly.

4.5.2 Branch Prediction Hints

Information about branch behavior can be provided to the processor to improve branch
prediction. This information can be encoded in two ways: with branch hints as part of a
branch instruction (referred to as hints), and with separate Branch Predict instructions
(brp) where the entire instruction is hint information. Hints and brp instructions do not
affect the functional behavior of the program and may be ignored by the processor.

Branch instructions can provide three types of hints:

• Whether prediction strategy: This describes (for COND, CALL and RET type
branches) how the processor should predict the branch condition. (For the loop type
branches, prediction is based on LC and EC.) The suggested strategies that can be
hinted are shown in Table 4-26.

• Sequential prefetch: This indicates how much code the processor should prefetch
at the branch target (shown in Table 4-27). Please see the processor-specific
documentation for further information.

• Predictor deallocation: This provides re-use information to allow the hardware to
better manage branch prediction resources. Normally, prediction resources keep
track of the most-recently executed branches. However, sometimes the
most-recently executed branch is not useful to remember, either because it will not
be re-visited any time soon or because a hint instruction will re-supply the
information prior to re-visiting the branch. In such cases, this hint can be used to
free up the prediction resources.

Table 4-26. Whether Prediction Hint on Branches

Completer Strategy Operation

spnt Static Not-Taken Ignore this branch, do not allocate prediction resources for this
branch.

sptk Static Taken Always predict taken, do not allocate prediction resources for
this branch.

dpnt Dynamic Not-Taken Use dynamic prediction hardware. If no dynamic history
information exists for this branch, predict not-taken.

dptk Dynamic Taken Use dynamic prediction hardware. If no dynamic history
information exists for this branch, predict taken.

Table 4-27. Sequential Prefetch Hint on Branches

Completer
Sequential Prefetch

Hint
Operation

few Prefetch few lines When prefetching code at the branch target, stop prefetching
after a few (implementation-dependent number of) lines.

many Prefetch many lines When prefetching code at the branch target, prefetch more
lines (also an implementation-dependent number).

Volume 1, Part 1: Application Programming Model 1:79

4.5.3 Branch Predict Instructions

Branch predict instructions are entire instructions whose only purpose is to provide
early information about future branches. Branch predict instructions provide the
following pieces of information:

• Location of the branch: A displacement in the brp instruction added to the IP of
the bundle containing the brp instruction gives the IP of the bundle containing the
future branch.

• Target of the branch: IP-relative brp instructions specify the target of the future
branch with a 21-bit displacement (just like in branches). The displacement plus
the IP of the bundle containing the brp instruction gives the target address.
Indirect brp instructions specify the branch register which will be used by the future
branch.

• Branch importance: This hint indicates to hardware that it should employ a very
fast (but small) prediction structure for this branch (useful on tight loops).

• Whether prediction strategy: Same as the strategy hint on branches, except
that the available hints are slightly different. Static not-taken is not provided (it’s
not useful to provide early indication of such branches), and only one form of
Dynamic prediction is provided. Instead, two strategies are included to indicate that
the branch will be a “positive” (CLOOP, CTOP, WTOP) or “negative” (CEXIT, WEXIT)
loop-type.

The move to branch register instruction can also provide this same hint information,
simplifying the setup for a hinted indirect branch.

4.6 Multimedia Instructions

Multimedia instructions (see Table 4-29) treat the general registers as concatenations
of eight 8-bit, four 16-bit, or two 32-bit elements. They operate on each element
independently and in parallel. The elements are always aligned on their natural
boundaries within a general register. Most multimedia instructions are defined to
operate on multiple element sizes. Three classes of multimedia instructions are defined:
arithmetic, shift and data arrangement.

4.6.1 Parallel Arithmetic

There are three forms of parallel addition and subtraction: modulo (padd, psub), signed
saturation (padd.sss, psub.sss), and unsigned saturation (padd.uuu, padd.uus,
psub.uuu, psub.uus). The modulo forms have the result wraparound the largest or
smallest representable value in the range of the result element. In the saturating
forms, results larger than the largest representable value of the range of the result
element, or smaller than the smallest representable value of the range, are clamped to
the largest or smallest value in the range of the result element respectively. The signed

Table 4-28. Predictor Deallocation Hint

Completer Operation

none Don’t deallocate

clr Deallocate branch information

1:80 Volume 1, Part 1: Application Programming Model

saturation form treats both sources as signed and clamps the result to the limits of a
signed range. The unsigned saturation form treats one source as unsigned and clamps
the result to the limits of an unsigned range. Two variants are defined that treat the
second source as either signed (.uus) or unsigned (.uuu).

The parallel average instruction (pavg, pavg.raz) adds corresponding elements from
each source and right shifts each result by one bit. In the simple form of the
instruction, the carry out of the most-significant bit of each sum is written into the most
significant bit of the result element. In the round-away-from-zero form, a 1 is added to
each sum before shifting. The parallel average subtract instruction (pavgsub) performs
a similar operation on the difference of the sources.

The parallel shift left and add instruction (pshladd) performs a left shift on the
elements of the first source and then adds them to the corresponding elements from
the second source. Signed saturation is performed on both the shift and the add
operations. The parallel shift right and add instruction (pshradd) is similar to pshladd.
Both of these instructions are defined for 2-byte elements only.

The parallel compare instruction (pcmp) compares the corresponding elements of both
sources and writes all ones (if true) or all zeroes (if false) into the corresponding
elements of the target according to one of two relations (== or >).

The parallel multiply right instruction (pmpy.r) multiplies the corresponding two
even-numbered signed 2-byte elements of both sources and writes the results into two
4-byte elements in the target. The pmpy.l instruction performs a similar operation on
odd-numbered 2-byte elements. The parallel multiply and shift right instruction
(pmpyshr, pmpyshr.u) multiplies the corresponding 2-byte elements of both sources
producing four 4-byte results. The 4-byte results are shifted right by 0, 7, 15, or 16 bits
as specified by the instruction. The least-significant 2 bytes of the 4-byte shifted results
are then stored in the target register.

The parallel sum of absolute difference instruction (psad) accumulates the absolute
difference of corresponding 1-byte elements and writes the result in the target.

The parallel minimum (pmin.u, pmin) and the parallel maximum (pmax.u, pmax)
instructions deliver the minimum or maximum, respectively, of the corresponding
1-byte or 2-byte elements in the target. The 1-byte elements are treated as unsigned
values and the 2-byte elements are treated as signed values.

Table 4-29. Parallel Arithmetic Instructions

Mnemonic Operation 1-byte 2-byte 4-byte

padd Parallel modulo addition x x x

padd.sss Parallel addition with signed saturation x x

padd.uuu,
padd.uus

Parallel addition with unsigned saturation x x

psub Parallel modulo subtraction x x x

psub.sss Parallel subtraction with signed saturation x x

psub.uuu,
psub.uus

Parallel subtraction with unsigned saturation x x

pavg Parallel arithmetic average x x

pavg.raz Parallel arithmetic average with round away from zero x x

pavgsub Parallel average of a difference x x

Volume 1, Part 1: Application Programming Model 1:81

4.6.2 Parallel Shifts

The parallel shift left instruction (pshl) individually shifts each element of the first
source by a count contained in either a general register or an immediate. The parallel
shift right instruction (pshr) performs an individual arithmetic right shift of each
element of one source by a count contained in either a general register or an
immediate. The pshr.u instruction performs an unsigned right shift. Table 4-30
summarizes the types of parallel shift instructions.

4.6.3 Data Arrangement

The mix right instruction (mix.r) interleaves the even-numbered elements from both
sources into the target. The mix left instruction (mix.l) interleaves the odd-numbered
elements. The unpack low instruction (unpack.l) interleaves the elements in the
least-significant 4 bytes of each source into the target register. The unpack high
instruction (unpack.h) interleaves elements from the most significant 4 bytes. The pack
instructions (pack.sss, pack.uss) convert from 32-bit or 16-bit elements to 16-bit or
8-bit elements respectively. The least-significant half of larger elements in both sources
are extracted and written into smaller elements in the target register. The pack.sss
instruction treats the extracted elements as signed values and performs signed
saturation on them. The pack.uss instruction performs unsigned saturation. The mux
instruction (mux) copies individual 2-byte or 1-byte elements in the source to arbitrary
positions in the target according to a specified function. For 2-byte elements, an 8-bit
immediate allows all possible permutations to be specified. For 1-byte elements the
copy function is selected from one of five possibilities (reverse, mix, shuffle, alternate,
broadcast). Table 4-31 describes the various types of parallel data arrangement
instructions.

pshladd Parallel shift left and add with signed saturation x

pshradd Parallel shift right and add with signed saturation x

pcmp Parallel compare x x x

pmpy.l Parallel signed multiply of odd elements x

pmpy.r Parallel signed multiply of even elements x

pmpyshr Parallel signed multiply and shift right x

pmpyshr.u Parallel unsigned multiply and shift right x

psad Parallel sum of absolute difference x

pmin Parallel minimum x x

pmax Parallel maximum x x

Table 4-30. Parallel Shift Instructions

Mnemonic Operation 1-byte 2-byte 4-byte

pshl Parallel shift left x x

pshr Parallel signed shift right x x

pshr.u Parallel unsigned shift right x x

Table 4-29. Parallel Arithmetic Instructions (Continued)

Mnemonic Operation 1-byte 2-byte 4-byte

1:82 Volume 1, Part 1: Application Programming Model

4.7 Register File Transfers

Table 4-32 shows the instructions defined to move values between the general register
file and the floating-point, branch, predicate, performance monitor, processor
identification, and application register files. Several of the transfer instructions share
the same mnemonic (mov). The value of the operand identifies which register file is
accessed.

Memory access instructions only target or source the general and floating-point register
files. It is necessary to use the general register file as an intermediary for transfers
between memory and all other register files except the floating-point register file.

Two classes of move are defined between the general registers and the floating-point
registers. The first type moves the significand or the sign/exponent (getf.sig,
setf.sig, getf.exp, setf.exp). The second type moves entire single or double
precision numbers (getf.s, setf.s, getf.d, setf.d). These instructions also perform
a conversion between the deferred exception token formats.

Table 4-31. Parallel Data Arrangement Instructions

Mnemonic Operation 1-byte 2-byte 4-byte

mix.l Interleave odd elements from both sources x x x

mix.r Interleave even elements from both sources x x x

mux Arbitrary copy of individual source elements x x

pack.sss Convert from larger to smaller elements with signed saturation x x

pack.uss Convert from larger to smaller elements with unsigned
saturation

x

unpack.l Interleave least-significant elements from both sources x x x

unpack.h Interleave most significant elements from both sources x x x

Table 4-32. Register File Transfer Instructions

Mnemonic Operation

getf.exp, getf.sig Move FR exponent or significand to GR

getf.s, getf.d Move single/double precision memory format from FR to GR

setf.s, setf.d Move single/double precision memory format from GR to FR

setf.exp, setf.sig Move from GR to FR exponent or significand

mov =br Move from BR to GR

mov br= Move from GR to BR

mov =pr Move from predicates to GR

mov pr=, mov pr.rot= Move from GR to predicates

mov ar= Move from GR to AR

mov =ar Move from AR to GR

mov =psr.um Move from user mask to GR

mov psr.um= Move from GR to user mask

sum, rum Set and reset user mask

mov =pmd[...] Move from performance monitor data register to GR

mov =cpuid[...] Move from processor identification register to GR

mov =ip Move from Instruction Pointer

Volume 1, Part 1: Application Programming Model 1:83

Instructions are provided to transfer between the branch registers and the general
registers. The move to branch register instruction can also optionally include branch
hints. See “Branch Prediction Hints” on page 1:78.

Instructions are defined to transfer between the predicate register file and a general
register. These instructions operate in a “broadside” manner whereby multiple predicate
registers are transferred in parallel (predicate register N is transferred to and from bit N
of a general register). The move to predicate instruction (mov pr=) transfers a general
register to multiple predicate registers according to a mask specified by an immediate.
The mask contains one bit for each of the static predicate registers (PR 1 through PR 15
– PR 0 is hardwired to 1) and one bit for all of the rotating predicates (PR 16 through
PR63). A predicate register is written from the corresponding bit in a general register if
the corresponding mask bit is set. If the mask bit is clear then the predicate register is
not modified. The rotating predicates are transferred as if CFM.rrb.pr were zero. The
actual value in CFM.rrb.pr is ignored and remains unchanged. The move from predicate
instruction (mov =pr) transfers the entire predicate register file into a general register
target.

In addition, instructions are defined to move values between the general register file
and the user mask (mov psr.um= and mov =psr.um). The sum and rum instructions set
and reset the user mask. The user mask is the non-privileged subset of the Process
Status Register (PSR).

The mov =pmd[] instruction is defined to move from a performance monitor data (PMD)
register to a general register. If the operating system has not enabled reading of
performance monitor data registers in user level then all zeroes are returned. The mov
=cpuid[] instruction is defined to move from a processor identification register to a
general register.

The mov =ip instruction is provided for copying the current value of the instruction
pointer (IP) into a general register.

4.8 Character and Bit Strings

A small set of special instructions accelerate operations on character and bit-field data.

4.8.1 Character Strings

The compute zero index instructions (czx.l, czx.r) treat the general register source as
either eight 1-byte or four 2-byte elements and write the general register target with
the index of the first zero element found. If there are no zero elements in the source,
the target is written with a constant one higher than the largest possible index (8 for
the 1-byte form, 4 for the 2-byte form). The czx.l instruction scans the source from
left to right with the left-most element having an index of zero. The czx.r instruction
scans from right to left with the right-most element having an index of zero. Table 4-33
summarizes the compute zero index instructions.

1:84 Volume 1, Part 1: Application Programming Model

4.8.2 Bit Strings

The population count instruction (popcnt) writes the number of bits that have a value
of 1 in the source register into the target register. The count leading zeros instruction
(clz) writes the number of leading zero bits in the source register into the target
register; coupled with complement, clz can also perform count leading ones
functionality as well.

4.9 Privilege Level Transfer

Three instructions may cause a privilege level change: break (break), enter privileged
code (epc) and branch return (br.ret). The break instruction is defined to cause a
Break Instruction fault which can be used to transfer privilege levels. The break
instruction contains an immediate which is made available to a dedicated fault handler.
The epc instruction increases the privilege level without causing an interruption or a
control flow transfer. The new privilege level is specified by the TLB entry for the page
containing the epc, if virtual address translation for instruction fetches is enabled. If the
privilege level specified by PFS.ppl (in the Previous Function State application register)
is lower than the current privilege level (as specified by PSR.cpl in the Processor Status
Register) epc raises an Illegal Operation fault. The br.ret instruction is defined to
demote the privilege level if PFS.ppl is lower than PSR.cpl. A br.ret will never increase
privilege level.

§

Table 4-33. String Support Instructions

Mnemonic Operation 1-byte 2-byte

czx.l Locate first zero element, left to right x x

czx.r Locate first zero element, right to left x x

Table 4-34. Bit Support Instructions

Mnemonic Operation

popcnt Count number of ones in source register

clz Count number of leading zeros in source register

Volume 1, Part 1: Floating-point Programming Model 1:85

Floating-point Programming Model 5

The floating-point architecture is fully compliant with the ANSI/IEEE Standard for
Binary Floating-Point Arithmetic (Std. 754-1985). There is full IEEE support for single,
double, and double-extended real formats. The two IEEE methods for controlling
rounding precision are supported. The first method converts results to the
double-extended exponent range. The second method converts results to the
destination precision. Some IEEE extensions such as fused multiply and add, minimum
and maximum operations, and a register format with a larger range than the minimum
double-extended format are also included.

5.1 Data Types and Formats

Six data types are supported directly: single, double, double-extended real (IEEE real
types); 64-bit signed integer, 64-bit unsigned integer, and the 82-bit floating-point
register format. A “Parallel FP” format where a pair of IEEE single precision values
occupy a floating-point register’s significand is also supported. A seventh data type,
IEEE-style quad-precision, is supported by software routines. A future architecture
extension may include additional support for the quad-precision real type.

5.1.1 Real Types

The parameters for the supported IEEE real types are summarized in Table 5-1.

5.1.2 Floating-point Register Format

Data contained in the floating-point registers can be either integer or real type. The
format of data in the floating-point registers is designed to accommodate both of these
types with no loss of information.

Table 5-1. IEEE Real-type Properties

Single Double Double-Extended Quad-Precision

IEEE Real-Type Parameters

Sign + or  + or  + or  + or 

Emax +127 +1023 +16383 +16383

Emin 126 1022 16382 16382

Exponent bias +127 +1023 +16383 +16383

Precision (bits) 24 53 64 113

IEEE Memory Formats

Total memory format width (bits) 32 64 80 128

Sign field width (bits) 1 1 1 1

Exponent field width (bits) 8 11 15 15

Significand field width (bits) 23 52 64 112

1:86 Volume 1, Part 1: Floating-point Programming Model

Real numbers reside in 82-bit floating-point registers in a three-field binary format (see
Figure 5-1). The three fields are:

• The 64-bit significand field, b63. b62b61 .. b1b0, contains the number's significant
digits. This field is composed of an explicit integer bit (significand{63}), and 63 bits
of fraction (significand{62:0}).

• The 17-bit exponent field locates the binary point within or beyond the significant
digits (i.e., it determines the number's magnitude). The exponent field is biased by
65535 (0xFFFF). An exponent field of all ones is used to encode the special values
for IEEE signed infinity and NaNs. An exponent field of all zeros and a significand
field of all zeros is used to encode the special values for IEEE signed zeros. An
exponent field of all zeros and a non-zero significand field encodes the
double-extended real denormals and double-extended real pseudo-denormals.

• The 1-bit sign field indicates whether the number is positive (sign=0) or negative
(sign=1).

The value of a finite floating-point number, encoded with non-zero exponent field, can
be calculated using the expression:

The value of a finite floating-point number, encoded with zero exponent field, can be
calculated using the expression:

Integers (64-bit signed/unsigned) and Parallel FP numbers reside in the 64-bit
significand field. In their canonical form, the exponent field is set to 0x1003E (biased
63) and the sign field is set to 0.

5.1.3 Representation of Values in Floating-point Registers

The floating-point register encodings are grouped into classes and subclasses and listed
below in Table 5-2 (shaded encodings are unsupported). The last two table entries
contain the values of the constant floating-point registers, FR 0 and FR 1. The constant
value in FR 1 does not change for the parallel single precision instructions or for the
integer multiply accumulate instruction.

Figure 5-1. Floating-point Register Format

81 80 64 63 0

sign exponent significand (with explicit integer bit)

1 17 64

(-1)(sign) * 2(exponent - 65535) * (significand{63}.significand{62:0}2)

(-1)(sign) * 2(-16382) * (significand{63}.significand{62:0}2)

Table 5-2. Floating-point Register Encodings

Class or Subclass
Sign

(1 bit)

Biased
Exponent
(17-bits)

Significand
i.bb...bb

(Explicit Integer Bit is Shown) (64-bits)

 NaNs 0/1 0x1FFFF 1.000...01 through 1.111...11

Quiet NaNs 0/1 0x1FFFF 1.100...00 through 1.111...11

Quiet NaN Indefinitea 1 0x1FFFF 1.100...00

Signaling NaNs 0/1 0x1FFFF 1.000...01 through 1.011...11

Infinity 0/1 0x1FFFF 1.000...00

Volume 1, Part 1: Floating-point Programming Model 1:87

Pseudo-NaNs 0/1 0x1FFFF 0.000...01 through 0.111...11

Pseudo-Infinity 0/1 0x1FFFF 0.000...00

Normalized Numbers
(Floating-point Register Format Normals)

0/1 0x00001
through
0x1FFFE

1.000...00 through 1.111...11

Integers or Parallel FP
(large unsigned or negative signed integers)

0 0x1003E 1.000...00 through 1.111...11

Integer Indefiniteb 0 0x1003E 1.000...00

IEEE Single Real Normals 0/1 0x0FF81
through
0x1007E

1.000...00...(40)0s
through
1.111...11...(40)0s

IEEE Double Real Normals 0/1 0x0FC01
through
0x103FE

1.000...00...(11)0s
through
1.111...11...(11)0s

IEEE Double-Extended Real Normals 0/1 0x0C001
through
0x13FFE

1.000...00 through 1.111...11

Normal numbers with the same value as
Double-Extended Real
Pseudo-Denormals

0/1 0x0C001 1.000...00 through 1.111...11

IA-32 Stack Single Real Normals
(produced when the computation model
is IA-32 Stack Single)

0/1 0x0C001
through
0x13FFE

1.000...00...(40)0s
through
1.111...11...(40)0s

IA-32 Stack Double Real Normals
(produced when the computation model
is IA-32 Stack Double)

0/1 0x0C001
through
0x13FFE

1.000...00...(11)0s
through
1.111...11...(11)0s

Unnormalized Numbers
(Floating-point Register Format unnormalized
numbers)

0/1 0x00000 0.000...01 through 1.111...11

0x00001
through
0x1FFFE

0.000...01 through 0.111...11

0x00001
through
0x1FFFD

0.000...00

1 0x1FFFE 0.000...00

Integers or Parallel FP
(positive signed/unsigned integers)

0 0x1003E 0.000...00 through 0.111...11

IEEE Single Real Denormals 0/1 0x0FF81 0.000...01...(40)0s
through
0.111...11...(40)0s

IEEE Double Real Denormals 0/1 0x0FC01 0.000...01...(11)0s
through
0.111...11...(11)0s

Register Format Denormals 0/1 0x00001 0.000...01 through 0.111...11

Unnormal numbers with the same value as
IEEE Double-Extended Real Denormals

0/1 0x0C001 0.000...01 through 0.111...11

IEEE Double-Extended Real Denormals 0/1 0x00000 0.000...01 through 0.111...11

IA-32 Stack Single Real Denormals
(produced when computation model is
IA-32 Stack Single)

0/1 0x00000 0.000...01...(40)0s
through
0.111...11...(40)0s

Table 5-2. Floating-point Register Encodings (Continued)

Class or Subclass
Sign

(1 bit)

Biased
Exponent
(17-bits)

Significand
i.bb...bb

(Explicit Integer Bit is Shown) (64-bits)

1:88 Volume 1, Part 1: Floating-point Programming Model

All register encodings are allowed as inputs to arithmetic operations. The result of an
arithmetic operation is always the most normalized register format representation of
the computed value, with the exponent range limited from Emin to Emax of the
destination type, and the significand precision limited to the number of precision bits of
the destination type. Computed values, such as zeros, infinities, and NaNs that are
outside these bounds are represented by the corresponding unique register format
encoding. Double-extended real denormal results are mapped to the register format
exponent of 0x00000 (instead of 0x0C001). Unsupported encodings (Pseudo-NaNs and
Pseudo-Infinities), Pseudo-zeros and Double-extended Real Pseudo-denormals are
never produced as a result of an arithmetic operation.

Arithmetic on pseudo-zeros operates exactly as an equivalently signed zero, with one
exception. Pseudo-zero multiplied by infinity returns the correctly signed infinity instead
of an Invalid Operation Floating-Point Exception fault (and QNaN). Also, pseudo-zeros
are classified as unnormalized numbers, not zeros.

5.2 Floating-point Status Register

The Floating-Point Status Register (FPSR) contains the dynamic control and status
information for floating-point operations. There is one main set of control and status
information (FPSR.sf0), and three alternate sets (FPSR.sf1, FPSR.sf2, FPSR.sf3). The
FPSR layout is shown in Figure 5-2 and its fields are defined in Table 5-3. Table 5-4
gives the FPSR’s status field description and Figure 5-3 shows their layout.

IA-32 Stack Double Real Denormals
(produced when computation model is
IA-32 Stack Double)

0/1 0x00000 0.000...01...(11)0s
through
0.111...11...(11)0s

Double-Extended Real Pseudo-Denormals
(IA-32 stack and memory format)

0/1 0x00000 1.000...00 through 1.111...11

Pseudo-Zeros 0/1 0x00001
through
0x1FFFD

0.000...00

1 0x1FFFE 0.000...00

NaTValc 0 0x1FFFE 0.000...00

Zero 0/1 0x00000 0.000...00

FR 0 (positive zero) 0 0x00000 0.000...00

FR 1 (positive one) 0 0x0FFFF 1.000...00

a. Created by a masked real invalid operation.
b. Created by a masked integer invalid operation.
c. Created by an unsuccessful speculative memory operation.

Figure 5-2. Floating-point Status Register Format

63 58 57 45 44 32 31 19 18 6 5 0

rv sf3 sf2 sf1 sf0 traps

6 13 13 13 13 6

Table 5-2. Floating-point Register Encodings (Continued)

Class or Subclass
Sign

(1 bit)

Biased
Exponent
(17-bits)

Significand
i.bb...bb

(Explicit Integer Bit is Shown) (64-bits)

Volume 1, Part 1: Floating-point Programming Model 1:89

The Denormal/Unnormal Operand status flag is an IEEE-style sticky flag that is set if
the value is used in an arithmetic instruction and in an arithmetic calculation; e.g.
unorm*NaN doesn’t set this flag. As depicted in Table 5-2 on page 1:86, canonical
single/double/double-extended denormal, double-extended pseudo-denormal and
register format denormal encodings are a subset of the floating-point register format
unnormalized numbers.

Note: The Floating-Point Exception fault/trap occurs only if an enabled floating-point
exception occurs during the processing of the instruction. Hence, setting a flag
bit of a status field to 1 in software will not cause an interruption. The status

Table 5-3. Floating-point Status Register Field Description

Field Bits Description

traps.vd 0 Invalid Operation Floating-Point Exception fault (IEEE Trap) disabled when this
bit is set

traps.dd 1 Denormal/Unnormal Operand Floating-Point Exception fault disabled when this
bit is set

traps.zd 2 Zero Divide Floating-Point Exception fault (IEEE Trap) disabled when this bit is
set

traps.od 3 Overflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

traps.ud 4 Underflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

traps.id 5 Inexact Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

sf0 18:6 Main status field

sf1 31:19 Alternate status field 1

sf2 44:32 Alternate status field 2

sf3 57:45 Alternate status field 3

rv 63:58 Reserved

Figure 5-3. Floating-point Status Field Format

12 11 10 9 8 7 6 5 4 3 2 1 0

FPSR.sfx

flags controls

i u o z d v td rc pc wre ftz

6 7

Table 5-4. Floating-point Status Register’s Status Field Description

Field Bits Description

ftz 0 Flush-to-Zero mode

wre 1 Widest range exponent (see Table 5-6)

pc 3:2 Precision control (see Table 5-6)

rc 5:4 Rounding control (see Table 5-5)

td 6 Traps disableda

a. td is a reserved bit in the main status field, FPSR.sf0

v 7 Invalid Operation (IEEE Flag)

d 8 Denormal/Unnormal Operand

z 9 Zero Divide (IEEE Flag)

o 10 Overflow (IEEE Flag)

u 11 Underflow (IEEE Flag)

i 12 Inexact (IEEE Flag)

1:90 Volume 1, Part 1: Floating-point Programming Model

fields flags are merely indications of the occurrence of floating-point excep-
tions.

Flush-to-Zero (FTZ) mode causes results which encounter “tininess” (see “Definition of
Tininess, Inexact and Underflow” on page 1:106) to be truncated to the correctly
signed zero. Flush-to-Zero mode can be enabled only if Underflow is disabled. If
Underflow is enabled then it takes priority and Flush-to-Zero mode is ignored. Note that
the software exception handler could examine the Flush-to-Zero mode bit and choose
to emulate the Flush-to-Zero operation when an enabled Underflow exception arises.
The FPSR.sfx.u and FPSR.sfx.i bits will be set to 1 when a result is flushed to the
correctly signed zero because of Flush-to-Zero mode. If enabled, an inexact result
exception is signaled.

A floating-point result is rounded based on the instruction’s.pc completer and the status
field’s wre, pc, and rc control fields. The result’s significand precision and exponent
range are determined as described in Table 5-6, “Floating-point Computation Model
Control Definitions” on page 1:90. If the result isn’t exact, FPSR.sfx.rc specifies the
rounding direction (see Table 5-5).

Table 5-5. Floating-point Rounding Control Definitions

Nearest
(or even)

- Infinity
(down)

+ Infinity
(up)

Zero
(truncate/chop)

FPSR.sfx.rc 00 01 10 11

Table 5-6. Floating-point Computation Model Control Definitions

Computation Model Control Fields Computation Model Selected

Instruction’s.pc
Completer

FPSR.sfx’s
Dynamic pc

Field

FPSR.sfx’s
Dynamic wre

Field

Significand
Precision

Exponent
Range Computational Style

.s ignored 0 24 bits 8 bits IEEE real single

.d ignored 0 53 bits 11 bits IEEE real double

.s ignored 1 24 bits 17 bits Register format range,
single precision

.d ignored 1 53 bits 17 bits Register format range,
double precision

none 00 0 24 bits 15 bits IA-32 stack single

none 01 0 N.A. N.A. Reserved

none 10 0 53 bits 15 bits IA-32 stack double

none 11 0 64 bits 15 bits IA-32 double-extended

none 00 1 24 bits 17 bits Register format range,
single precision

none 01 1 N.A. N.A. Reserved

none 10 1 53 bits 17 bits Register format range,
double precision

none 11 1 64 bits 17 bits Register format range,
double-extended precision

not applicablea

a. For parallel FP instructions which have no.pc completer (e.g., fpma).

ignored ignored 24 bits 8 bits A pair of IEEE real singles

not applicableb

b. For non-parallel FP instructions which have no.pc completer (e.g., frcpa).

ignored ignored 64 bits 17 bits Register format range,
double-extended precision

Volume 1, Part 1: Floating-point Programming Model 1:91

The trap disable (sfx.td) control bit allows one to easily set up a local IEEE exception
trap default environment. If FPSR.sfx.td is clear (enabled), the FPSR.traps bits are
used. If FPSR.sfx.td is set, the FPSR.traps bits are treated as if they are all set
(disabled). Note that FPSR.sf0.td is a reserved field which returns 0 when read.

5.3 Floating-point Instructions

This section describes the floating-point instructions. Refer to Volume 3: Intel®
Itanium® Instruction Set Reference for a detailed description.

5.3.1 Memory Access Instructions

There are floating-point load and store instructions for the single, double,
double-extended floating-point real data types, and the Parallel FP or signed/unsigned
integer data type. The addressing modes for floating-point load and store instructions
are the same as for integer load and store instructions, except for floating-point load
pair instructions which can have an implicit base-register post increment. The memory
hint options for floating-point load and store instructions are the same as those for
integer load and store instructions. (See Section 4.4.6, “Memory Hierarchy Control and
Consistency” on page 1:69.) Table 5-7 lists the types of floating-point load and store
instructions. The floating-point load pair instructions require the two target registers to
be odd/even or even/odd. See “ldfp — Floating-point Load Pair” on page 3:161. The
floating-point store instructions (stfs, stfd, stfe) require the value in the
floating-point register to have the same type as the store for the format conversion to
be correct.

Unsuccessful speculative loads write a NaTVal into the destination register or registers
(see Section 4.4.4, “Control Speculation”). Storing a NaTVal to memory will cause a
Register NaT Consumption fault, except for the spill instruction (stf.spill).

Saving and restoring floating-point registers is accomplished by the spill and fill
instructions (stf.spill, ldf.fill) using a 16-byte memory container. These are the
only instructions that can be used for saving and restoring the actual register contents
since they do not fault on NaTVal. They save and restore all types (single, double,
double-extended, register format and integer or Parallel FP) and will ensure
compatibility with possible future architecture extensions.

Figure 5-4, Figure 5-5, Figure 5-6, Figure 5-7, Figure 5-8 and Figure 5-9 describe how
single precision, double precision, double-extended precision, integer/parallel FP, and
spill/fill data is translated during transfers between floating-point registers and
memory.

Table 5-7. Floating-point Memory Access Instructions

Operations Load to FR Load Pair to FR Store from FR

Single ldfs ldfps stfs

Integer/Parallel FP ldf8 ldfp8 stf8

Double ldfd ldfpd stfd

Double-extended ldfe stfe

Spill/fill ldf.fill stf.spill

1:92 Volume 1, Part 1: Floating-point Programming Model

Figure 5-4. Memory to Floating-point Register Data Translation – Single Precision

sign exponent
integer

significand

FR:

Memory/GR:

Single-precision Load/setf.s – normal numbers

bit

01

sign exponent
integer

significand

FR:

Memory/GR:

Single-precision Load/setf.s – infinities and NaNs

bit

01

sign exponent
integer

significand

FR:

Memory/GR:

Single-precision Load/setf.s – zeros

bit

00

0x1FFFF

1111111 1

0

0000000 0 0

sign exponent
integer

significand

FR:

Memory/GR:

Single-precision Load/setf.s – denormal numbers

bit

00x0FF81

0000000 0

0

00

Volume 1, Part 1: Floating-point Programming Model 1:93

Figure 5-5. Memory to Floating-point Register Data Translation – Double Precision

sign exponent
integer

significand

FR:

Memory/GR:

Double-precision Load/setf.d – normal numbers

bit

01

sign exponent
integer

significand

FR:

Memory/GR:

Double-precision Load/setf.d – infinities and NaNs

bit

01

sign exponent
integer

significand

FR:

Memory/GR:

Double-precision Load/setf.d – zeros

bit

00

0x1FFFF

1111111 1

0

0000000 0 0

sign exponent
integer

significand

FR:

Memory/GR:

Double-precision Load/setf.d – denormal numbers

bit

00x0FC01

0000000 0

0

111

000

000

0 0 0 0 00

1:94 Volume 1, Part 1: Floating-point Programming Model

Figure 5-6. Memory to Floating-point Register Data Translation – Double Extended,
Integer, Parallel FP and Fill

sign exponent
integer

significand

FR:

Memory:

Double-extended-precision Load – normal/unnormal numbers

bit

sign exponent
integer

significand

FR:

Memory:

Double-extended-precision Load – infinities and NaNs

bit

sign exponent
integer

significand

FR:

Memory:

Double-extended-precision Load – denormal/pseudo-denormals and zeros

bit

0x1FFFF

0

1111111 11111111

0000000 00000000

sign exponent
integer

significand

FR:

Memory/GR:

Integer/Parallel FP Load/setf.sig

bit

0 0x1003E

sign exponent significand

FR:

Memory:

Register Fill

integer
bit

Volume 1, Part 1: Floating-point Programming Model 1:95

Figure 5-7. Floating-point Register to Memory Data Translation – Single Precision

Figure 5-8. Floating-point Register to Memory Data Translation – Double Precision

sign exponent
integer

significand

FR:

Memory/GR:

Single-precision Store/getf.s

bit

= AND

sign exponent significand

FR:

Memory/GR:

Double-precision Store/getf.d

integer
bit

= AND

1:96 Volume 1, Part 1: Floating-point Programming Model

Both little-endian and big-endian byte ordering is supported on floating-point loads and
stores. For both single and double memory formats, the byte ordering is identical to the
32-bit and 64-bit integer data types (see Section 3.2.3, “Byte Ordering”). The
byte-ordering for the spill/fill memory and double-extended formats is shown in
Figure 5-10.

Figure 5-9. Floating-point Register to Memory Data Translation – Double Extended,
Integer, Parallel FP and Spill

sign exponent significand

FR:

Memory:

integer
bit

sign exponent significand

FR:

Memory:

Register Spill

integer
bit

0 00 0 0 0

sign exponent
integer

significand

FR:

Memory/GR:

Integer/Parallel FP Store/getf.sig

bit

Double Extended-precision Store

Volume 1, Part 1: Floating-point Programming Model 1:97

5.3.2 Floating-point Register to/from General Register Transfer
Instructions

The setf and getf instructions (see Table 5-8) transfer data between floating-point
registers (FR) and general registers (GR). These instructions will translate a general
register NaT to/from a floating-point register NaTVal. For all other operands, the .s and
.d variants of the setf and getf instructions translate to/from FR as per Figure 5-4,
Figure 5-5, Figure 5-7 and Figure 5-8. The memory representation is read from or
written to the GR. The .exp and .sig variants of the setf and getf instructions
operate on the sign/exponent and significand portions of a floating-point register,
respectively, and their translation formats are described in Table 5-9 and Table 5-10.

Figure 5-10.Spill/Fill and Double-extended (80-bit) Floating-point Memory Formats

Table 5-8. Floating-point Register Transfer Instructions

Operations GR to FR FR to GR

Single setf.s getf.s

Double setf.d getf.d

Sign and Exponent setf.exp getf.exp

Significand/Integer setf.sig getf.sig

s0

s1

s2

s3

s4

s5

s6

s7

0

1

2

3

4

5

6

7

7 0

Memory Formats Floating-point Register Format (82-bit)

e0

e1

se2

0

0

0

0

0

8

9

10

11

12

13

14

15

0

0

0

0

0

se2

e1

e0

0

1

2

3

4

5

6

7

7 0

s7

s6

s5

s4

s3

s2

s1

s0

8

9

10

11

12

13

14

15

s0

s1

s2

s3

s4

s5

s6

s7

0

1

2

3

4

5

6

7

7 0

e0’

se1’

8

9

s3 s0s2 s1s7 s4s6 s5

63 0

se2 e1 e0

s3 s0s2 s1s7 s4s6 s5se1’ e0’

81
significandexp.s

Double-Extended (80-bit) Interpretation

se1’

e0’

s7

s6

s5

s4

s3

s2

0

1

2

3

4

5

6

7

7 0

s1

s0

8

9

Spill/Fill (128-bit) Double-Extended (80-bit)

LE BE LE BE

1:98 Volume 1, Part 1: Floating-point Programming Model

5.3.3 Arithmetic Instructions

All arithmetic floating-point instructions, except fcvt.xf (which is always exact), have
a.sf specifier. This indicates which of the four FPSR’s status fields will both control and
record the status of the execution of the instruction (see Table 5-11). The status field
specifies: enabled exceptions, rounding mode, exponent width, precision control, and
which status field’s flags to update. See “Floating-point Status Register” on page 1:88.

Most arithmetic floating-point instructions can specify the precision and range of the
result. The precision is determined either statically using a.pc completer or dynamically
using the.pc field of the FPSR status field. The range is determined similarly except
the.wre field of the FPSR status field is also used. Normal (non Parallel FP) arithmetic
instructions that do not have a.pc completer use the floating-point register format
precision and range. See Table 5-6 for details.

Table 5-12 lists the arithmetic floating-point instructions and Table 5-13 lists the
arithmetic pseudo-operation definitions.

Table 5-9. General Register (Integer) to Floating-point Register Data Translation (setf)

General
Register

Floating-Point Register (.sig) Floating-Point Register (.exp)

Class NaT Integer Sign Exponent Significand Sign Exponent Significand

NaT 1 ignore NaTVal NaTVal

integers 0 000...00
through
111...11

0 0x1003E integer integer{17} integer{16:0} 0x8000000000000000

Table 5-10. Floating-point Register to General Register (Integer) Data Translation (getf)

Floating-Point Register General Register (.sig) General Register (.exp)

Class Sign Exponent Significand NaT Integer NaT Integer

NaTVal 0 0x1FFFE 0.000...00 1 0x0000000000000000 1 0x1FFFE

integers or
parallel FP

0 0x1003E 0.000...00
through

1.111...11

0 significand 0 0x1003E

other any any any 0 significand 0 ((sign<<17) | exponent)

Table 5-11. Floating-point Instruction Status Field Specifier Definition

.sf Specifier .s0 .s1 .s2 .s3

Status field FPSR.sf0 FPSR.sf1 FPSR.sf2 FPSR.sf3

Table 5-12. Arithmetic Floating-point Instructions

Operation Normal FP Mnemonic(s)
Parallel FP

Mnemonic(s)

Floating-point multiply and add fma.pc.sf fpma.sf

Floating-point multiply and subtract fms.pc.sf fpms.sf

Floating-point negate multiply and add fnma.pc.sf fpnma.sf

Floating-point reciprocal approximation frcpa.sf fprcpa.sf

Floating-point reciprocal square root approximation frsqrta.sf fprsqrta.sf

Floating-point compare fcmp.frel.fctype.sf fpcmp.frel.sf

Volume 1, Part 1: Floating-point Programming Model 1:99

There are no pseudo-operations for Parallel FP addition, subtraction, negation or
normalization since FR 1 does not contain a packed pair of single precision 1.0 values. A
parallel FP addition can be performed by first forming a pair of 1.0 values in a register
(using the fpack instruction) and then using the fpma instruction. Similarly, an integer
add operation can be generated by first forming an integer 1 in a floating-point register
(using the fcvt.fx instruction) and then using the xma instruction.

The fmpy pseudo-operation delivers the IEEE compliant result by rounding the product
and without performing the addition inherent in the fma. An fma with the addend
specified as a register other than FR 0, and containing the value +0.0, will not deliver
the IEEE compliant multiply result in some cases.

5.3.4 Non-arithmetic Instructions

The non-arithmetic floating-point instructions always use the floating-point register
(82-bit) precision since they do not have a.pc completer nor a.sf specifier.

The fclass instruction is used to classify the contents of a floating-point register. The
fmerge instruction is used to merge data from two floating-point registers into one
floating-point register. The fmix, fsxt, fpack, and fswap instructions are used to
manipulate the Parallel FP data in the floating-point significand. The fand, fandcm, for,
and fxor instructions are used to perform logical operations on the floating-point
significand. The fselect instruction is used for conditional selects.

Floating-point minimum fmin.sf fpmin.sf

Floating-point maximum fmax.sf fpmax.sf

Floating-point absolute minimum famin.sf fpamin.sf

Floating-point absolute maximum famax.sf fpamax.sf

Convert floating-point to signed integer fcvt.fx.sf
fcvt.fx.trunc.sf

fpcvt.fx.sf
fpcvt.fx.trunc.sf

Convert floating-point to unsigned integer fcvt.fxu.sf
fcvt.fxu.trunc.sf

fpcvt.fxu.sf
fpcvt.fxu.trunc.sf

Convert signed integer to floating-point fcvt.xf N.A.

Table 5-13. Arithmetic Floating-point Pseudo-operations

Operation Mnemonic Operation Used

Floating-point multiplication (IEEE)
Parallel FP multiplication

fmpy.pc.sf
fpmpy.sf

fma, using FR 0 for addend
fpma, using FR 0 for addend

Floating-point negate multiplication (IEEE)
Parallel FP negate multiplication

fnmpy.pc.sf
fpnmpy.sf

fnma, using FR 0 for addend
fpnma, using FR 0 for addend

Floating-point addition (IEEE) fadd.pc.sf fma, using FR 1 for multiplicand

Floating-point subtraction (IEEE) fsub.pc.sf fms, using FR 1 for multiplicand

Floating-point normalization fnorm.pc.sf fma, using FR 1 for multiplicand and FR 0 for
addend

Convert unsigned integer to floating-point fcvt.xuf.pc.sf fma, using FR 1 for multiplicand and FR 0 for
addend

Table 5-12. Arithmetic Floating-point Instructions (Continued)

1:100 Volume 1, Part 1: Floating-point Programming Model

The fneg pseudo-operation (see Table 5-15) simply reverses the sign bit of the operand
and is therefore not equivalent to the IEEE negation operation. For the IEEE negation
operation, an fnma using FR 1 as the multiplicand and FR 0 as the addend must be
used.

Table 5-14 lists the non-arithmetic floating-point instructions and Table 5-15 lists the
non-arithmetic pseudo-operation definitions.

5.3.5 Floating-point Status Register (FPSR) Status Field
Instructions

Speculation of floating-point operations requires that the status flags be stored
temporarily in one of the alternate status fields (not FPSR.sf0). After a speculative
execution chain has been committed, a fchkf instruction can be used to update the
main status field flags (FPSR.sf0.flags). This operation will preserve the correctness of
the IEEE flags. The fchkf instruction does this by comparing the flags of the status field

Table 5-14. Non-arithmetic Floating-point Instructions

Operation Mnemonic(s)

Floating-point classify fclass.fcrel.fctype

Floating-point merge sign
Parallel FP merge sign

fmerge.s
fpmerge.s

Floating-point merge negative sign
Parallel FP merge negative sign

fmerge.ns
fpmerge.ns

Floating-point merge sign and exponent
Parallel FP merge sign and exponent

fmerge.se
fpmerge.se

Floating-point mix left fmix.l

Floating-point mix right fmix.r

Floating-point mix left-right fmix.lr

Floating-point sign-extend left fsxt.l

Floating-point sign-extend right fsxt.r

Floating-point pack fpack

Floating-point swap fswap

Floating-point swap and negate left fswap.nl

Floating-point swap and negate right fswap.nr

Floating-point And fand

Floating-point And Complement fandcm

Floating-point Or for

Floating-point Xor fxor

Floating-point Select fselect

Table 5-15. Non-arithmetic Floating-point Pseudo-operations

Operation Mnemonic Operation Used

Floating-point absolute value
Parallel FP absolute value

fabs
fpabs

fmerge.s, with sign from FR 0
fpmerge.s, with sign from FR 0

Floating-point negate
Parallel FP negate

fneg
fpneg

fmerge.ns
fpmerge.ns

Floating-point negate absolute value
Parallel FP negate absolute value

fnegabs
fpnegabs

fmerge.ns, with sign from FR 0
fpmerge.ns, with sign from FR 0

Volume 1, Part 1: Floating-point Programming Model 1:101

with the FPSR.sf0.flags and FPSR.traps. If the flags of the alternate status field indicate
the occurrence of an event that corresponds to an enabled floating-point exception in
FPSR.traps, or an event that is not already registered in the FPSR.sf0.flags (i.e., the
flag for that event in FPSR.sf0.flags is clear), then the fchkf instruction branches to
recovery code. If neither of these cases arise then the fchkf instruction does nothing.

The fsetc instruction allows bit-wise modification of a status field’s control bits. The
FPSR.sf0.controls are ANDed with a 7-bit immediate and-mask and ORed with a 7-bit
immediate or-mask to produce the control bits for the status field. The fclrf
instruction clears all of the status field’s flags to zero.

5.3.6 Integer Multiply and Add Instructions

Integer (fixed-point) multiply is executed in the floating-point unit using the
three-operand xma instructions. The operands and result of these instructions are
floating-point registers. The xma instructions ignore the sign and exponent fields of the
floating-point register, except for a NaTVal check. The product of two 64-bit source
significands is added to the third 64-bit significand (zero extended) to produce a
128-bit result. The low and high versions of the instruction select the appropriate
low/high 64-bits of the 128-bit result, respectively, and write it into the destination
register as a canonical integer. The signed and unsigned versions of the instructions
treat the input multiplicands as signed and unsigned 64-bit integers respectively.

5.4 Additional IEEE Considerations

This section describes the support of the IEEE standard in the areas where specific
details are left open to implementation.

5.4.1 Floating-point Interruptions

Floating-point interruptions are precise. The exception reporting and handling occurs on
the instruction which causes the interruption. There are three floating-point
interruptions: Disabled Floating-Point Register fault, Floating-Point Exception fault, and
Floating-Point Exception trap (see Chapter 5, “Interruptions” in Volume 2 for more
details).

Table 5-16. FPSR Status Field Instructions

Operation Mnemonic(s)

Floating-point check flags fchkf.sf

Floating-point clear flags fclrf.sf

Floating-point set controls fsetc.sf

Table 5-17. Integer Multiply and Add Instructions

Integer Multiply and Add Low High

Signed xma.l xma.h

Unsigned xma.lu (pseudo-op) xma.hu

1:102 Volume 1, Part 1: Floating-point Programming Model

Exceptions are processed according to a predetermined precedence. Precedence in
exception handling means that higher-priority exceptions are flagged first and results
are delivered according to the requirements of that exception. Lower-priority
exceptions are not flagged even if they occur. For example, dividing an SNaN by zero
causes an invalid operation exception (due to the SNaN) and not a zero-divide
exception; the exception disabled result is the quieted version of the SNaN, not infinity.
However, an IEEE Inexact Floating-Point Exception trap can accompany an IEEE
Underflow or Overflow Floating-Point Exception trap.

For instructions that access the floating-point register file, the Disabled Floating-point
Register fault has the highest priority.

5.4.1.1 Disabled Floating-point Register Fault

Two bits in the PSR, PSR.dfl and PSR.dfh, (see Section 3.3.2, “Processor Status Register
(PSR)” on page 2:23) can be used by an operating system to enable or disable access
to two subsets of floating-point registers: FR 2 to FR 31, and FR 32 to FR 127,
respectively. The Disabled Floating-Point Register fault occurs when an access (read or
write) is made to a FR which has been disabled. Operating systems can use this fault to
identify a task as integer or floating-point and optimize the default set of registers
which get saved on a task switch. If a mainly integer task is able to use only FR 2 to FR
32 for executing integer multiply and divide operations, then context switch time may
be reduced by disabling access to the high floating-point registers.

5.4.1.2 Floating-point Exception Fault

A Floating-Point Exception fault occurs if one of the following four circumstances arises:

1. The processor requests system software assistance to complete the operation, via
the Software Assist fault

2. The IEEE Invalid Operation trap is enabled and this condition occurs

3. The IEEE Zero Divide trap is enabled and this condition occurs

4. The Denormal/Unnormal Operand trap is enabled and an unnormalized operand
(denormals are represented as unnormalized numbers in the register file) is
encountered by a floating-point arithmetic instruction

If a Floating-Point Exception fault occurs, the only indication of which fault occurred is
in the ISR.code. The appropriate status flags are not updated in the FPSR.

There is no requirement that the Software Assist Floating-Point Exception fault ever be
signaled (except for certain operands in the frcpa and the frsqrta instructions), nor is
there a mode to force its use. If there is no input NaTVal operand, a processor
implementation may signal a Software Assist Floating-Point Exception fault at any time
during the operation. In order to ensure maximum floating-point performance, most
implementations will not use this exception except in difficult situations such as
operations consuming denormal numbers.

The precedence among Floating-point Exception faults for arithmetic operations is
depicted in Figure 5-11.

Volume 1, Part 1: Floating-point Programming Model 1:103

Figure 5-11.Floating-point Exception Fault Prioritization

Invalid
Enabled?

SNaN
Operand?

N

FP Fault
ISR.v=1

QNaN Ind
FLAGS.v=1

Zero
Divide?(1)

Y

N

ZeroDiv
Enabled?

FP Fault
ISR.z=1

IEEE Resp
FLAGS.z=1

NaTVal
Operand?

Y

N

NaTVal
Response

Denormal
Enabled?

FP Fault
ISR.d=1

FLAGS.d=1

Limits
Check?(2)

Terminal
State

Decision
Point

START

SWA Fault
ISR.swa=1

N

N

Y Y

Y

N

Y

N

Y

NN

Unsupported
Operand?

UnNormal
Operand?

Y

COMPUTE
OPERATION

(1)=For frcpa/fprcpa
(2)=For frcpa/frsqrta

QNaN
Operand?

N

Invalid
Enabled?

FP Fault
ISR.v=1

Reg prioritized
NaN resp (f4,f2,f3)

Y

N

Y

FLAGS.v=1

Y

Invalid
Enabled?

FP Fault
ISR.v=1

QNaN Ind
FLAGS.v=1

N

Y Y

N

Other Invalid
Operation?

1:104 Volume 1, Part 1: Floating-point Programming Model

5.4.1.3 Floating-point Exception Trap

A Floating-point Exception trap occurs if one of the following four circumstances arises:

1. The processor requests system software assistance to complete the operation, via
the Software Assist trap

2. The IEEE Overflow trap is enabled and an overflow occurs

3. The IEEE Underflow trap is enabled and an underflow occurs

4. The IEEE Inexact trap is enabled and an inexact result occurs

When an overflow, underflow, or inexact result occurs, the appropriate status flags are
updated in the FPSR. If enabled, a Floating-Point Exception trap occurs, and an
indication of which enabled trap occurred is stored in ISR.code and the fpa bit in
ISR.code (ISR{14}) is set as described in the next paragraph.

ISR.fpa is set to 1 when the magnitude of the delivered result is greater than the
magnitude of the infinitely precise result. It is set to 0 otherwise. The magnitude of the
delivered result may be greater if:

• The significand is incremented during rounding, or

• A larger pre-determined value (e.g., infinity) is substituted for the computed result
(e.g., when overflow is disabled).

There is no requirement that the Software Assist Floating-Point Exception trap ever be
signaled, nor is there a mode to force its use. In order to ensure maximum
floating-point performance, most implementations will not use this exception except in
difficult situations, such as operations creating denormal numbers. The occurrence of a
Software Assist trap is indicated when a trap bit is set in ISR.code, but that trap is
disabled. The destination register contains the trap enabled response for that trap.

The precedence among Floating-point Exception traps for arithmetic operations is
depicted in Figure 5-12.

Volume 1, Part 1: Floating-point Programming Model 1:105

5.4.2 Definition of Overflow

The overflow exception can occur whenever the rounded true result would exceed, in
magnitude, the largest finite number in the destination format.

The IEEE Overflow Floating-Point Exception trap disabled response for all normal and
Parallel-FP arithmetic instructions is to either return an infinity or the correctly signed
maximum finite value for the destination precision. This depends on the rounding
mode, the sign of the result, and the operation. An inexact result exception is signaled.

The IEEE Overflow Floating-Point Exception trap enabled response for all normal
arithmetic instructions is to return the true biased exponent value MOD 217 and for all
Parallel-FP arithmetic instructions is to return the true biased exponent value MOD 28.
The value’s significand is rounded to the specified precision and written to the
destination register. If the rounded value is different from the infinitely-precise value,

Figure 5-12.Floating-point Exception Trap Prioritization

>Emax <EminOverflow
Enabled?

Underflow
Enabled?

FLAGS.o=1
FLAGS.i|=tmp_i
Exp=tmp_exp%217

Sig=tmp_sig
ISR.o=1
ISR.i=tmp_i
ISR.fpa=tmp_fpa

FP TRAP

Infinity
Result

Inexact
Enabled?

FP TRAP
ISR.i=1
ISR.fpa=tmp_fpa

DONE

>=Emin
<=Emax

FLAGS.i=1 tmp_i?

tmp_i

Inf.Precision Operation
Unbounded Range Rounding
tmp_exp, tmp_sig
tmp_i, tmp_fpa FLAGS.u=1

FLAGS.i|=tmp_i
Exp=tmp_exp%217

Sig=tmp_sig
ISR.u=1
ISR.i=tmp_i
ISR.fpa=tmp_fpa

FP TRAP

N N

Zero Res.
tmp_i=1
tmp_fpa=0

MaxReal/
Inf. Res
tmp_fpa
FLAGS.o=1

FTZ?

Y

NY

Y

N

Y

Y

N

FLAGS.u=1

N

Y
tmp_exp?

START

Zero
Result

ZeroInf

Inf.Precision Operation
Bound Range Rounding
tmp_i, tmp_fpa
Zero/Den/MinReal Res

Pre-
Computed

Res?

Terminal
State

Decision
Point

tmp_exp=result exponent
tmp_sig=result significand
tmp_i=inexactness indicator
tmp_fpa=significand roundup

?

1:106 Volume 1, Part 1: Floating-point Programming Model

then inexactness is signaled. If the significand was rounded by adding a one to its least
significant bit, then bit fpa in ISR.code is set to 1. Finally, an interruption due to a
Floating-Point Exception trap will occur.

Note that when rounding to single, double, or double-extended real, the overflow trap
enabled response for normal (non Parallel FP) arithmetic instructions is not guaranteed
to be in the range of a valid single, double, or double-extended real quantity, because it
is in 17-bit exponent format.

5.4.3 Definition of Tininess, Inexact and Underflow

Tininess is detected after rounding, and is said to occur when a non-zero result
(computed as though the exponent range were unbounded) would lie strictly between
+2Emin and -2Emin. See Table 5-1 for the values of Emin for each real type. Creation of
a tiny result may cause an exception later (such as overflow upon division because it is
so small).

Inexactness is said to occur when the result differs from what would have been
computed if both the exponent range and precision were unbounded.

How tininess and inexactness trigger the underflow exception depends on whether the
Underflow Floating-Point Exception trap is disabled or enabled. If the trap is disabled
then the underflow exception is signaled when the result is both tiny and inexact. If the
trap is enabled then the underflow exception is signaled when the result is tiny,
regardless of inexactness. Note that in the event that the Underflow Floating-Point
Exception trap is disabled and tininess but not inexactness occurs, then neither
underflow nor inexactness is signaled, and the result is a denormal.

The IEEE Underflow Floating-Point Exception trap disabled response for all normal and
Parallel-FP arithmetic instructions is to denormalize the infinitely precise result and then
round it to the destination precision. The result may be a denormal, zero, or a normal.
The inexact exception is signaled when appropriate.

The IEEE Underflow Floating-Point Exception trap enabled response for all normal
arithmetic instructions is to return the true biased exponent value MOD 217and for all
Parallel-FP arithmetic instructions is to return the true biased exponent value MOD 28.
The significand is rounded to the specified precision and written to the destination
register independent of the possibility of the exponent calculation requiring a borrow. If
the rounded value is different from the infinitely-precise value, then inexactness is
signaled. If the significand was rounded by adding a one to its least significant bit, then
bit fpa in ISR.code is set to 1. Finally, an interruption due to a Floating-Point Exception
trap will occur.

Note: When rounding to single, double, or double-extended real, the underflow trap
enabled response for normal (non Parallel FP) arithmetic instructions is not
guaranteed to be in the range of a valid single, double, or double-extended real
quantity, because it is in 17-bit exponent format.

When Flush-to-Zero mode is enabled, the behavior for tiny results is different. If an
instruction would deliver a tiny result, a correctly signed zero is delivered instead and
the appropriate FPSR.sfx.u and FPSR.sfx.i bits are set. This mode may improve the

Volume 1, Part 1: Floating-point Programming Model 1:107

performance on implementations that do not implement denormal handling in
hardware. When the Flush-to-Zero mode is enabled, floating-point exception software
assist traps will not occur when producing tiny results.

5.4.4 Integer Invalid Operations

Floating-point to integer conversions which are invalid (in the IEEE sense) signal an
Invalid Operation Floating-Point Exception fault. If the IEEE Invalid Operation trap is
disabled, then the largest magnitude negative integer is the result, even for unsigned
integer operations.

5.4.5 Definition of Arithmetic Operations

Arithmetic operations are those that compute on the operands by treating each
operand’s encoding as a value, whereas non-arithmetic operations perform bit
manipulations on the input operands without regard to the value represented by the
encoding (except for NaTVal detection). Non-arithmetic instructions do not cause
Floating-point Exception faults or traps, but can cause the Disabled Floating-point
Register fault.

5.4.6 Definition and Propagation of NaNs

Signaling NaNs have a zero in the most significant fractional bit of the significand. Quiet
NaNs have a one in the most significant fractional bit of the significand. This definition
of signaling and quiet NaNs easily preserves “NaNness” when converting between
different precisions. When propagating NaNs in operations that have more than one
NaN operand, the result NaN is chosen from one of the operand NaNs in the following
priority based on register encoding fields: first f4, then f2, and lastly f3.

5.4.7 IEEE Standard Mandated Operations Deferred to Software

The following IEEE mandated operations will be implemented in software:

• String to floating-point conversion

• Floating-point to string conversion

• Divide (with help from frcpa or fprcpa instruction)

• Square root (with help from frsqrta or fprsqrta instruction)

• Remainder (with help from frcpa or fprcpa instruction)

• Floating-point to integer valued floating-point conversion

• Correctly wrapping the exponent for single, double, and double-extended overflow
and underflow values, as recommended by the IEEE standard

5.4.8 Additions beyond the IEEE Standard

• The fused multiply and add (fma, fms, fnma, fpma, fpms, fpnma) operations enable
efficient software divide, square root, and remainder algorithms.

• The extended range of the 17-bit exponent in the register format allows simplified
implementation of many basic numeric algorithms by the careful numeric
programmer.

1:108 Volume 1, Part 1: Floating-point Programming Model

• The NaTVal is a natural extension of the IEEE concept of NaNs. It is used to support
speculative execution.

• Flush-to-Zero mode is an industry standard addition.

• The minimum and maximum instructions allow the efficient execution of the
common Fortran Intrinsic Functions: MIN(), MAX(), AMIN(), AMAX(); and C
language idioms such as a<b?a:b.

• All mixed precision operations are allowed. The IEEE standard suggests that
implementations allow lower precision operands to produce higher precision
results; this is supported. The IEEE standard also suggests that implementations
not allow higher precision operands to produce lower precision results; this
suggestion is not followed. When computations with higher precision operands
produce values beyond the destination precision range, the information provided in
the ISR.code allows the true result to be unambiguously determined by software.
The correct wrapping count and the appropriate bias amount can also be computed.

• An IEEE style quad-precision real type that is supported in software.

§

Volume 1, Part 1:IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:109

IA-32 Application Execution Model in an
Intel® Itanium® System Environment 6

IA-32 application execution on Itanium-based systems may be supported with IA-32
Execution Layer, an OS-based optimizing binary translator, or processor
hardware-based execution. The implementation of IA-32 application execution on a
platform is transparent to IA-32 applications and does not require any application
modification.

6.1 IA-32 Execution Layer

IA-32 Execution Layer provides operating systems with optimizing dynamic binary
translation to accelerate legacy IA-32 application performance relative to
hardware-based execution. When installed, IA-32 Execution Layer supersedes
hardware-based execution of IA-32 applications.

The operating system loads IA-32 Execution Layer into user space, where it executes
using application virtual space and privilege level. IA-32 Execution Layer uses the
native OS for acquiring system resources (memory, synchronization objects, etc.),
executing 32-bit system calls issued by the IA-32 application, signal handling,
exceptions, and other system notifications.

IA-32 Execution Layer supports user-mode, 32-bit-flat-protected applications.
Consistent with Itanium-based operating systems that support legacy IA-32
applications, 16-bit applications and applications containing 32-bit device drivers are
not supported.

6.2 Hardware-based IA-32 Application Execution

This section describes the IA-32 execution model from the perspective of an application
programmer using the Itanium architecture, interfacing with IA-32 code, while
operating in the Itanium System Environment. The main features covered are:

• IA-32 integer, segment, floating-point, MMX technology, and SSE register state
mappings

• Instruction set transitions

• IA-32 memory and addressing model overview

This section does not cover the details of IA-32 application programming model, IA-32
instructions and registers. Refer to the Intel® 64 and IA-32 Architectures Software
Developer’s Manual for details regarding IA-32 application programming model.

1:110 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

The Itanium architecture can support 16-bit Real Mode, 16-bit VM86, and 16-bit/32-bit
Protected Mode IA-32 applications in the context of an Itanium architecture-based
operating system. Whether an IA-32 application is actually supported on specific
operating systems is determined by the infrastructure provided by that specific
operating system.

6.2.1 Instruction Set Modes

The processor can be executing either IA-32 or Itanium instructions at any point in
time. PSR.is (defined in Section 3.3.2, “Processor Status Register (PSR)” on page 2:23)
specifies the currently executing instruction set, where 1 indicates IA-32 instructions
are executing, and 0 indicates Itanium instructions are executing. Three special
instructions and interruptions are defined to transition the processor between the IA-32
and the Itanium instruction sets as shown in Figure 6-1.

• jmpe (IA-32 instruction) Jump to an Itanium target instruction, and transition to the
Itanium instruction set.

• br.ia (Itanium instruction) Branch to an IA-32 target instruction, and change the
instruction set to IA-32.

• rfi (Itanium instruction) “Return from interruption” is defined to return to either an
IA-32 or Itanium instruction when resuming from an interruption.

• Interruptions transition the processor to the Itanium instruction set for all
interruption conditions.

The jmpe and br.ia instructions provide a low overhead mechanism to transfer control
between the instruction sets. These primitives typically are incorporated into “thunks”
or “stubs” that implement the required call linkage and calling conventions to call
dynamic or statically linked libraries.

6.2.1.1 Instruction Set Execution in the Intel® Itanium® Architecture

While the processor executes from the Itanium instruction set (PSR.is is 0):

• Itanium instructions are fetched, decoded and executed by the processor.

• Itanium instructions can access the entire Itanium and IA-32 application register
state. This includes IA-32 segment descriptors, selectors, general registers,
physical floating-point registers, MMX technology registers, and SSE registers. See

Figure 6-1. Instruction Set Transition Model

IA-32 Instruction

jmpe

br.ia

 Intercepts,
Exceptions,
Software Interrupts

rfi

Interruptions

Set

Intel® Itanium®

 Instruction Set

Intel® Itanium® System Environment

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:111

Section 6.2.2, “IA-32 Application Register State Model” for a description of the
register state mapping.

• Segmentation is disabled. No segmentation protection checks are applied nor are
segment bases added to compute virtual addresses. All computed addresses are
virtual addresses.

• 264 virtual addresses can be generated and memory management is used for all
memory and I/O references.

6.2.1.2 IA-32 Instruction Set Execution

While the processor is executing the IA-32 instruction set (PSR.is is 1) within the
Itanium System Environment, the IA-32 application architecture as defined by the
Pentium III processor is used, namely:

• IA-32 16/32-bit application level, MMX technology, and SSE instructions are
fetched, decoded, and executed by the processor. Instructions are confined to
32/16-bit operations.

• Only IA-32 application level register state is visible (i.e. IA-32 general registers,
MMX technology, and SSE registers, selectors, EFLAGS, FP registers and FP control
registers). Itanium application and control register state is not visible, e.g. branch,
predicate, application, control, debug, test, and performance monitor registers.

• IA-32, Real Mode, VM86 and Protected Mode segmentation is in effect. Segment
protection checks are applied and virtual addresses generated according to IA-32
segmentation rules. GDT and LDT segments are defined to support IA-32
segmented applications. Segmented 16- and 32-bit code is fully supported.

• Virtual addresses are confined to the lower 4G bytes of virtual region 0. Itanium
architecture memory management is used to translate virtual to physical addresses
for all IA-32 instruction set memory and I/O Port references.

• Instruction and Data memory references are forced to be little-endian. Memory
ordering uses the Pentium III processor memory ordering model.

• IA-32 operating system resources; IA-32 paging, MTRRs, IDT, control registers,
debug registers and privileged instructions are superseded by resources defined in
the Itanium architecture. All accesses to these resources result in an interception
fault.

6.2.1.3 Instruction Set Transitions

The following section summarizes behavior for each instruction set transition. Detailed
instruction description on jmpe (IA-32 instruction) and br.ia (Itanium instruction)
should be consulted for details.

Operating systems can disable instruction set transitions (jmpe and br.ia) by setting
PSR.di to one. If PSR.di is one, execution of jmpe or br.ia results in a Disabled
Instruction Set Transition Fault. System level instruction set transitions due to either
rfi or an interruption ignore the state of PSR.di (defined in Section 3.3.2, “Processor
Status Register (PSR)” on page 2:23).

6.2.1.3.1 JMPE Instruction

jmpe reg16/32; jmpe disp16/32 is used to jump and transfer control to the Itanium
instruction set. There are two forms; register indirect and absolute. The absolute form
computes the Itanium target virtual address as follows:

1:112 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

IP{31:0} =disp16/32 + CSD.base
IP{63:32} = 0

The indirect form reads a 16/32-bit register location and then computes the Itanium
target address as follows:

IP{31:0} = [reg16/32] + CSD.base
IP{63:32} = 0

jmpe targets are forced to be 16-byte aligned, and are constrained to the lower
4G-bytes of the 64-bit virtual address space due to limited IA-32 addressability. If there
are any pending IA-32 numeric exceptions, jmpe is nullified, and an IA-32 floating-point
exception fault is generated.

Transitions into the Itanium instruction set do not change the privilege level of the
processor.

6.2.1.3.2 Branch to IA Instruction

The br.ia instruction is used to unconditionally branch to the IA-32 instruction set.
IA-32 targets are specified by a 32-bit virtual address target (not an effective address).
The IA-32 virtual address is truncated to 32-bits. The br.ia branch hints should always
be set to predicted static taken. The processor transitions to the IA-32 instruction set as
follows:

IP{31:0} = BR[b]{31:0}
IP{63:32} = 0
EIP{31:0} = IP{31:0} - CSD.base

Transitions into the IA-32 instruction set do not change the privilege level of the
processor.

Software should ensure the code segment descriptor and selector are properly loaded
before issuing the branch. If the target EIP value exceeds the code segment limit or has
a code segment privilege violation, an IA-32 GPFault(0) exception is reported on the
target IA-32 instruction.

The processor does not ensure Itanium instruction set generated writes into the IA-32
instruction stream are observed by the processor. For details, see “Self Modifying Code”
on page 1:132. Before entering the IA-32 instruction set, Itanium architecture-based
software must ensure all prior register stack frames have been flushed to memory. All
registers left in the current and prior register stack frames are left in an undefined state
after IA-32 instruction set execution. Software can not rely on the value of these
registers across an instruction set transition. For details, see “Register Stack Engine” on
page 1:133.

6.2.1.4 IA-32 Operating Mode Transitions

As described in “IA-32 Instruction Set Execution” on page 1:111, jmpe, br.ia, and rfi
instructions and interruptions can transition the processor between the two instruction
set modes. Transitions are allowed between the Itanium architecture and all major
IA-32 modes. As shown in Figure 6-1, br.ia and rfi will transition the processor from
the Itanium instruction set into IA-32 VM86, Real Mode or Protected Mode. While jmpe
and interruptions will transition the processor from either IA-32 VM86, Real Mode or

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:113

Protected Mode into the Itanium instruction set. Mode transitions between IA-32 Real
Mode, Protected Mode and VM86 definitions are the same as those defined in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium architecture-based interface code is responsible for setting up and loading a
consistent Protected Mode, Real Mode, or VM86 environment (e.g. loading segment
selectors and descriptors, etc.) as defined in “Segment Descriptor and Environment
Integrity” on page 1:119. The processor applies additional segment descriptor checks
to ensure operations are performed in a consistent manner.

6.2.2 IA-32 Application Register State Model

As shown in Figure 6-2 and Table 6-1, IA-32 general purpose registers, segment
selectors, and segment descriptors, are mapped into the lower 32-bits of Itanium
general purpose registers GR8 to GR31. The floating-point register stack, MMX
technology, and SSE registers are mapped on Itanium floating-point registers FR8 to
FR31.

To promote straight-forward parameter passing, integer and IEEE floating-point register
and memory data types are binary compatible between both IA-32 and Itanium
instruction sets.

Figure 6-1. Instruction Set Mode Transitions

Itanium
Instruction Set

IA-32
Real Mode

IA-32
VM86

IA-32
Protected Mode

!PSR.is

!PSR.is

!PSR.is
PSR.is & PSR.is &

PSR.is &
CR0.pe &
!EFLAG.vm

CR0.pe & EFLAG.vm!CR0.pe

PSR.is &
CR0.pe & EFLAG.vm

PSR.is &
CR0.pe &
!EFLAG.vm

PSR.is &
!CR0.pe

1:114 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

Some Itanium registers are modified to an undefined state by hardware as a side-effect
during IA-32 instruction set execution as noted in Table 6-1 and Figure 6-2. Generally,
Itanium system state is not affected by IA-32 instruction set execution. Itanium
architecture-based code can reference all registers (including IA-32), while IA-32
instruction set references are confined to the IA-32 visible application register state.

Registers are assigned the following conventions during transitions between IA-32 and
Itanium instruction sets.

• IA-32 state: The register contains an IA-32 register during IA-32 instruction set
execution. Expected IA-32 values should be loaded before switching to the IA-32
instruction set. After completion of IA-32 instructions, these registers contain the
results of the execution of IA-32 instructions. These registers may contain any
value during Itanium instruction execution according to Itanium software
conventions. Software should follow IA-32 and Itanium calling conventions for
these registers.

• Undefined: Registers marked as undefined may be used as scratch areas for
execution of IA-32 instructions by the processor and are not ensured to be
preserved across instruction set transitions.

Figure 6-2. IA-32 Application Register Model

APPLICATION REGISTER SET

pr0

 IP

PredicatesFloating-point Registers

Instruction Pointer

fr0 pr1
pr2

fr1
fr2-5

1
81 0

63 0

Branch Registers

 br0
 br1
 br2

63 0

 br7

gr0

gr4

63 0

gr127 fr127

gr8

gr31
gr32 fr32

fr31

0 0.0
1.0

General Registers

0

 nats

CFM

Current Frame Marker

Performance Monitor

63 0

pr63

pr15
pr16

37 0

pmd0
pmd1

pmdm

Processor Identifiers
63 0

cpuid0
cpuid1

cpuidn

Data Registers

User Mask
5 0

63 0

ar64

Application Registers

KR0

KR7

RSC
BSPar17

ar16

BSPSTORE
RNAT

ar18
ar19

CCV

UNATar36

ar32

FPSR

ITC

ar40

ar44

EC
LCar65

ar66

PFS

ar127

ar0

ar7

EFLAG
CSDar25

ar24

SSD
CFLG

ar26
ar27

FSR
FIRar29

ar28

FDR

FCR

ar30

ar21

gr7
fr8

fr6-7

Used by IA-32 execution

Not used by IA-32 execution

gr1-3

RUCar45

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:115

• Shared: Shared registers contain values that have similar functionality in either
instruction set. For example, the stack pointer (ESP) and instruction pointer (IP)
are shared.

• Unmodified: These registers are not altered by IA-32 execution. Itanium
architecture-based code can rely on these values not being modified during IA-32
instruction set execution. The register will have the same contents when entering
the IA-32 instruction set and when exiting the IA-32 instruction set.

Table 6-1. IA-32 Application Register Mapping

Intel® Itanium® Reg IA-32 Reg Convention Size Description

General Purpose Integer Registers

GR0 constant 0

GR1-3 undefinedf scratch for IA-32 execution

GR4-7 unmodified Intel® Itanium® preserved registers

GR8 EAX

IA-32 state

32a IA-32 general purpose registers

GR9 ECX

GR10 EDX

GR11 EBX

GR12 ESP

GR13 EBP

GR14 ESI

GR15 EDI

GR16{15:0} DS

64 IA-32 selectors

GR16{31:16} ES

GR16{47:32} FS

GR16{63:48} GS

GR17{15:0} CS

GR17{31:16} SS

GR17{47:32} LDT

GR17{63:48} TSS

GR18-23 undefinedf scratch for IA-32 execution

GR24 ESD IA-32 state 64 IA-32 segment descriptors (register
format)b

GR25-26 undefinedf scratch for IA-32 execution

GR27 DSD

IA-32 state 64
IA-32 segment descriptors (register
format)b

GR28 FSD

GR29 GSD

GR30 LDTDc

GR31 GDTD

GR32-127 undefinedd IA-32 code execution space

Process Environment

IP IP shared 64 shared IA-32 and Intel® Itanium® virtual
Instruction Pointer

Floating-point Registers

FR0 constant +0.0

FR1 constant +1.0

FR2-5 unmodified Intel® Itanium® preserved registers

FR6-7 undefined IA-32 code execution space

1:116 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

FR8 MM0/FP0

IA-32 state 64/80

IA-32 Intel MMX technology registers
(aliased on 64-bit FP mantissa)
IA-32 FP registers (physical registers
mapping)e

FR9 MM1/ FP1

FR10 MM2/FP2

FR11 MM3/FP3

FR12 MM4/FP4

FR13 MM5/FP5

FR14 MM6/FP6

FR15 MM7/FP7

FR16-17 XMM0

IA-32 state 64

IA-32 SSE registers
low order 64-bits of XMM0 are mapped to
FR16{63:0}
high order 64-bits of XMM0 are mapped to
FR17{63:0}

FR18-19 XMM1

FR20-21 XMM2

FR22-23 XMM3

FR24-25 XMM4

FR26-27 XMM5

FR28-29 XMM6

FR30-31 XMM7

FR32-127 undefinedf IA-32 code execution space

Predicate Registers

PR0 constant 1

PR1-63 undefinedf IA-32 code execution space

Branch Registers

BR0-5 unmodified Intel® Itanium® preserved registers

BR6-7 undefined IA-32 code execution space

Application Registers

RSC

unmodified
not used for IA-32 execution
Intel® Itanium® preserved registers

BSP

BSPSTORE

RNAT

CCV undefinedf 64 IA-32 code execution space

UNAT unmodified not used for IA-32 execution, Intel®
Itanium® preserved register

FPSR.sf0 unmodified Intel® Itanium® numeric status and
controls register

FPSR.sf1,2,3 undefinedf IA-32 code execution space.

FSR FSW,FTW,
MXCSR

IA-32 state

64 IA-32 numeric status and tag word and
SSE status

FCR FCW, MXCSR 64 IA-32 numeric and SSE control

FIR FOP, FIP, FCS 64 IA-32 x87 numeric environment opcode,
code selector and IP

FDR FEA, FDS 64 IA-32 x87 numeric environment data
selector and offset

ITC TSC shared 64 shared IA-32 time stamp counter (TSC)
and Intel® Itanium® Interval Timer

RUC unmodified 64 RUC continues to count while in IA-32
execution mode

Table 6-1. IA-32 Application Register Mapping (Continued)

Intel® Itanium® Reg IA-32 Reg Convention Size Description

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:117

6.2.2.1 IA-32 General Purpose Registers

Integer registers are mapped into the lower 32-bits of Itanium general registers GR8 to
GR15. Values in the upper 32-bits of GR8 to GR15 are ignored on entry to IA-32
execution. After the IA-32 instruction set completes execution, the upper 32-bits of
GR8 - GR15 are sign-extended from bit 31.

Based on IA-32 and Itanium calling conventions, the required IA-32 state must be
loaded in memory or registers by Itanium architecture-based code before entering the
IA-32 instruction set.

6.2.2.2 IA-32 Instruction Pointer

The processor maintains two instruction pointers for IA-32 instruction set references,
EIP (32-bit effective address) and IP (a 64-bit virtual address equivalent to the Itanium
instruction set IP). IP is generated by adding the code segment base to EIP and zero
extending to 64-bits. IP should not be confused with the 16-bit effective address
instruction pointer of the 8086. EIP is an offset within the current code segment, while
IP is a 64-bit virtual pointer shared with the Itanium instruction set. The following
relationship is defined between EIP and IP while executing IA-32 instructions.

IP{63:32} = 0;
IP{31:0} = EIP{31:0} + CSD.Base;

PFS

unmodified

not used for IA-32 code execution, Prior
EC is preserved in PFM
Intel® Itanium® preserved registers

LC

EC

EFLAG EFLAG

IA-32 state

32 IA-32 System/Arithmetic flags,
writes of some bits condition by CPL and
EFLAG.iopl.

CSD CSD 64 IA-32 code segment (register format)b

SSD SSD IA-32 stack segment (register format)b

CFLG CR0/CR4 64 IA-32 control flags
CR0=CFLG{31:0}, CR4=CFLG{63:32},
writable at CPL=0 only.

a. On transitions into the IA-32 instruction set the upper 32-bits are ignored. On exit the upper 32-bits are sign
extended from bit 31.

b. Segment descriptor formats differ from the iA-32 memory format, see “IA-32 Segment Registers” on
page 1:118 for details. Modification of a selector or descriptor does not set the access/busy bit in memory.

c. The GDT/LDT descriptors are NOT protected from modification by Itanium architecture-based user level code
d. All registers in the current and prior registers frames are left in an undefined state after IA-32 execution.

Software must preserve these values before entering the IA-32 instruction set.
e. IA-32 floating-point register mappings are physical and do not reflect the IA-32 top of stack value.
f. These registers are used by the processor and may be left an undefined state following IA-32 instruction set

execution. Software should preserve required values before entering IA-32 code.

Figure 6-3. IA-32 General Registers (GR8 to GR15)

63 32 31 0

sign extended EAX.. EDI{31:0}

Table 6-1. IA-32 Application Register Mapping (Continued)

Intel® Itanium® Reg IA-32 Reg Convention Size Description

1:118 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

EIP is added to the code segment base and zero extended into a 64-bit virtual address
on every IA-32 instruction fetch. If during an IA-32 instruction fetch, EIP exceeds the
code segment limit, a GPFault is generated on the referencing instruction. Effective
instruction addresses (sequential values or jump targets) above 4G-bytes are truncated
to 32 bits, resulting in a 4-G byte wraparound condition.

6.2.2.3 IA-32 Segment Registers

IA-32 segment selectors and descriptors are mapped to GR16 - GR29 and AR25 - AR26.
Descriptors are maintained in an unscrambled format shown in Figure 6-5. This format
differs from the IA-32 scrambled memory descriptor format. The unscrambled register
format is designed to support fast conversion of IA-32 segmented 16/32-bit pointers
into virtual addresses by Itanium architecture-based code. IA-32 segment register load
instructions unscramble the GDT/LDT memory format into the descriptor register
format on a segment register load. Itanium architecture-based software can also
directly load descriptor registers provided they are properly unscrambled by software.
When Itanium architecture-based software loads these registers, no data integrity
checks are performed at that time if illegal values are loaded in any fields. For a
complete definition of all bit fields and field semantics refer to the Intel® 64 and
IA-32 Architectures Software Developer’s Manual.

Figure 6-4. IA-32 Segment Register Selector Format

63 48 47 32 31 16 15 0

GS FS ES DS GR16

TSS LDT SS CS GR17

Figure 6-5. IA-32 Code/Data Segment Register Descriptor Format

63 62 61 60 59 58 57 56 55 52 51 32 31 0

g d/b ig av p dpl s type lim{19:0} base{31:0}

Table 6-2. IA-32 Segment Register Fields

Field Bits Description

selector 15:0 Segment Selector value, see the Intel® 64 and IA-32 Architectures Software
Developer’s Manual for bit definition.

base 31:0 Segment Base value. This value when zero extended to 64-bits, points to the start of the
segment in the 64-bit virtual address space for IA-32 instruction set memory references.

lim 51:32 Segment Limit. Contains the maximum effective address value within the segment for
expand up segments for IA-32 instruction set memory references. For expand down
segments, limit defines the minimum effective address within the segment. See the
Intel® 64 and IA-32 Architectures Software Developer’s Manual for details and
segment limit fault conditions. The segment limit is scaled by (lim << 12) | 0xFFF if the
segment’s g-bit is 1.

type 55:52 Type identifier for data/code segments, including the Access bit (bit 52). See the Intel®
64 and IA-32 Architectures Software Developer’s Manual for encodings and
definition.

s 56 Non System Segment. If 1, a data segment, if 0 a system segment.

dpl 58:57 Descriptor Privilege Level. The DPL is checked for memory access permission for IA-32
instruction set memory references.

p 59 Segment Present bit. If 0, and a IA-32 memory reference uses this segment an
IA_32_Exception(GPFault) is generated for data segments (CS, DS, ES, FS, GS) and
an IA_32_Exception(StackFault) for SS.

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:119

6.2.2.3.1 Data and Code Segments

On the transition into IA-32 code, the IA-32 segment descriptor and selector registers
(GDT, LDT, DS, ES, CS, SS, FS and GS) must be initialized by Itanium
architecture-based code to the required values based on IA-32 and Itanium calling
conventions and the segmentation model used.

Itanium architecture-based code may manually load a descriptor with an 8-byte fetch
from the LDT/GDT, unscramble the descriptor and write the segment base, limit and
attribute. Alternately, Itanium architecture-based software can switch to the IA-32
instruction set and perform the required segment load with an IA-32 Mov Sreg
instruction. If Itanium architecture-based code explicitly loads the segment descriptors,
it is responsible for the integrity of the segment descriptor.

The processor does not ensure coherency between descriptors in memory and the
descriptor registers, nor does the processor set segment access bits in the LDT/GDT if
segment registers are loaded by Itanium instructions.

6.2.2.3.2 Segment Descriptor and Environment Integrity

For IA-32 instruction set execution, most segment protection checks are applied by the
processor when the segment descriptor is loaded by IA-32 instructions into a segment
register. However, segment descriptor loads from the Itanium instruction set into the
general purpose register file perform no such protection checks, nor are segment
Access-bits updated by the processor.

If Itanium architecture-based software directly loads a descriptor, it is responsible for
the validity of the descriptor, and ensuring integrity of the IA-32 Protected Mode, Real
Mode or VM86 environments. Table 6-3 defines software guidelines for establishing the
initial IA-32 environment. The processor checks the integrity of the IA-32 environment
as defined in “IA-32 Environment Runtime Integrity Checks” on page 1:122. On the

av 60 Ignored – This field is ignored by the processor during IA-32 instruction set execution.
This field is available for IA-32 software use and there will be no future use for this field.
For Itanium instructions, implementations which do not support the ld16, st16 and
cmp8xchg16 instructions can either ignore writes and return zero on reads, or write the
value and return the last value written on reads. Implementations which do support these
instructions write the value and return the last value written on reads.

ig 61 Ignored – This field is ignored by the processor during IA-32 instruction set execution.
This field may have a future use and should be set to zero by IA-32 software. For Itanium
instructions, implementations which do not support the ld16, st16 and cmp8xchg16
instructions can either ignore writes and return zero on reads, or write the value and
return the last value written on reads. Implementations which do support these
instructions write the value and return the last value written on reads.

d/b 62 Segment Size. If 0, IA-32 instruction set effective addresses within the segment are
truncated to 16-bits. Otherwise, effective addresses are 32-bits. The code segment’s
d/b-bit also controls the default operand size for IA-32 instructions. If 1, the default
operand size is 32-bits, otherwise 16-bits.

g 63 Segment Limit Granularity. If 1, scales the segment limit by lim=(lim<<12) | 0xFFF for
IA-32 instruction set memory references. This field is ignored for Intel® Itanium®
instruction set memory references.

Table 6-2. IA-32 Segment Register Fields (Continued)

Field Bits Description

1:120 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

transitions between IA-32 and Itanium architecture-based code, the processor does
NOT alter the base, limit or attribute values of any segment descriptor, nor is there a
change in privilege level.

 Table 6-3. IA-32 Environment Initial Register State

Register Field Real Mode Protected Mode VM86 Mode

PSR cpl 0 Privilege Level 3

EFLAG vm 0 0 1

CR0 pe 0 1 1

CS

selector base >> 4a

a. Selectors should be set to 16*base for normal RM 64KB operation.

selector base >> 4

base selector << 4b

b. Segment base should be set to selector/16 for normal RM 64KB operation.

base selector << 4

dpl PSR.cpl (0) PSR.cplc

c. Unless a conforming code segment is specified

PSR.cpl (3)

d-bit 16-bitd

d. Segment size should be set to 16-bits for normal RM 64KB operation.

16/32-bit 16-bit

type data rd/wr, expand up execute data rd/wr, expand up

s-bit 1 1 1

p-bit 1 1 1

a-bit 1 1 1

g-bit/limit 0xFFFFe

e. Segment limit should be set to 0xFFFF for normal RM 64KB operation.

limit 0xFFFF

SS

selector base >> 4a selector base >> 4

base selector << 4b base selector << 4

dpl PSR.cpl (0) PSR.cpl PSR.cpl (3)

d-bit 16-bitd 16/32-bit size 16-bit

type data rd/wr, expand up data types data rd/wr, expand up

s-bit 1 1 1

p-bit 1 1 1

a-bit 1 1 1

g-bit/limit 0xFFFFe limit 0xFFFF

DS, ES,
FS, GS

selector base >> 4a selector base >> 4

base selector << 4b base selector << 4

dpl dpl >= PSR.cpl (0) dpl >= PSR.cpl dpl >= PSR.cpl (3)

d-bit 16-bitd 16/32-bit 0

type data rd/wr, expand up data types data rd/wr, expand up

s-bit 1 1 1

a-bit 1 1 1

p-bit 1 1/0f

f. For valid segments the p-bit should be set to 1, for null segments the p-bit should be set to 0.

1

g-bit/limit 0xFFFFe limit 0xFFFF

LDT,GDT,
TSS

selector

N/A

selector

base base

dpl dpl >= PSR.cpl

d-bit 0

type ldt/gdt/tss types

s-bit 0

p-bit 1

a-bit 1

g-bit/limit limit

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:121

6.2.2.3.2.1 Protected Mode

Itanium architecture-based software should follow these rules for setting up the
segment descriptors for Protected Mode environment before entering the IA-32
instruction set:

• Itanium architecture-based software should ensure the stack segment descriptor
register’s DPL==PSR.cpl.

• For DSD, ESD, FSD and GSD segment descriptor registers, Itanium
architecture-based software should ensure DPL>=PSR.cpl.

• For CSD segment descriptor register, Itanium architecture-based software should
ensure DPL==PSR.cpl (except for conforming code segments).

• Software should ensure that all code, stack and data segment descriptor registers
do not contain encodings for any system segments.

• Software should ensure the a-bit of all segment descriptor registers are set to 1.

• Software should ensure the p-bit is set to 1 for all valid data segments and to 0 for
all NULL data segments.

6.2.2.3.2.2 VM86

Itanium architecture-based software should follow these rules when setting up segment
descriptors for the VM86 environment before entering the IA-32 instruction set:

• PSR.cpl must be 3 (or IPSR.cpl must be 3 for rfi).

• Itanium architecture-based software should ensure the stack segment descriptor
register’s DPL==PSR.cpl==3 and set to 16-bit, data read/write, expand up.

• For CSD, DSD, ESD, FSD and GSD segment descriptor registers, Itanium
architecture-based software should ensure DPL==3, the segment is set to 16-bit,
data read/write, expand up.

• Software should ensure that all code, stack and data segment descriptor registers
do not contain encodings for any system segments.

• Software should ensure the P-bit and A-bit of all segment descriptor registers is
one.

• Software should ensure that the relationship Base = Selector*16, is maintained for
all DSD, CSD, ESD, SSD, FSD, and GSD segment descriptor registers, otherwise
processor operation is unpredictable.

• Software should ensure that the DSD, CSD, ESD, SSD, FSD, and GSD segment
descriptor register’s limit value is set to 0xFFFF, otherwise spurious segment limit
faults (GPFault or Stack Faults) may be generated.

• Itanium architecture-based software should ensure all segment descriptor registers
are data read/write, including the code segment. The processor will ignore execute
permission faults.

6.2.2.3.2.3 Real Mode

Itanium architecture-based software should follow these rules when setting up segment
descriptors for the Real Mode environments before entering the IA-32 instruction set,
otherwise software operation is unpredictable.

• Itanium architecture-based software should ensure PSR.cpl is 0

• Itanium architecture-based software should ensure the stack segment descriptor
register’s DPL is 0.

1:122 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

• Software should ensure that all code, stack and data segment descriptor registers
do not contain encodings for any system segments.

• Software should ensure the P-bit and A-bit of all segment descriptor registers is
one.

• For normal real mode 64K operations, software should ensure that the relationship
Base = Selector*16, is maintained for all DSD, CSD, ESD, SSD, FSD, and GSD
segment descriptor registers.

• For normal real mode 64K operations, software should ensure that the DSD, CSD,
ESD, SSD, FSD, and GSD segment descriptor register’s limit value is set to 0xFFFF
and the segment size is set to 16-bit (64K)

• Itanium architecture-based software should ensure all segment descriptor registers
indicate readable, writable, including the code segment for normal Real Mode
operation.

6.2.2.3.3 IA-32 Environment Runtime Integrity Checks

Processors in the Itanium processor family perform additional runtime checks to verify
the integrity of the IA-32 environments. These checks are in addition to the runtime
checks defined on IA-32 processors and are high-lighted in Table 6-4. Existing IA-32
runtime checks are listed but not highlighted. Descriptor fields not listed in the table are
not checked. As defined in the table, runtime checks are performed either on IA-32
instruction code fetches or on an IA-32 data memory reference to one of the specified
segment registers. These runtime checks are not performed during transitions from the
Itanium instruction set to the IA-32 instruction set.

 Table 6-4. IA-32 Environment Runtime Integrity Checks

Reference Resource Real Mode Protected Mode VM86Mode Fault

all code fetches

PSR.cpl is not 0 ignored is not 3

Code Fetch Fault
(GPFault(0))a

EFLAG.vmC
FLG.pe

EFLAG.vm is 1 and CFLG.pe is 0

EFLAG.vif
EFLAG.vip

EFLAG.vip & EFLAG.vif & CFLG.pe &
PSR.cpl==3 &

(CFLG.pvi | (EFLAG.vm & CFLG.vme))

all code fetches
CS

dpl ignored dpl is not 3

Code Fetch Fault
(GPFault(0))

d-bit is not 16-bit

type ignored (can be exec or data)

 GPFault if data expand down

s, p, a-bits are not 1

g-bit/limit segment limit violation

data memory
references to SS

dpl dpl!=PSR.cpl

Stack Fault

d-bit ignored is not 16-bit

type ignored data expand down

read and not readable, write and not writeable

s, p, a-bits are not 1

g-bit/limit segment limit violation

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:123

6.2.2.4 IA-32 Application EFLAG Register

The EFLAG (AR24) register is made up of two major components, user arithmetic flags
(CF, PF, AF, ZF, SF, OF, and ID) and system control flags (TF, IF, IOPL, NT, RF, VM, AC,
VIF, VIP). None of the arithmetic or system flags affect Itanium instruction execution.
See Table 6-5, “IA-32 EFLAGS Register Fields” on page 1:124 for the behavior on IA-32
and Itanium instruction reads/writes to this application register. For details on system
flags in the IA-32 EFLAGS register, see Section 10.3.2, “IA-32 System EFLAG Register”
on page 2:243.

The arithmetic flags are used by the IA-32 instruction set to reflect the status of IA-32
operations, control IA-32 string operations, and control branch conditions for IA-32
instructions. These flags are ignored by Itanium instructions. Flags ID, OF, DF, SF, ZF,
AF, PF and CF are defined in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual.

data memory
references to
DS, ES, FS and GS

dpl ignored

GPFault(0)

d-bit ignored is not 16-bit

type ignored data expand down

read and not readable, write and not writeable

s, p, a-bits are not 1

g-bit/limit segment limit violation

data memory
references to
 CS

dpl ignored

GPFault(0)

d-bit ignored is not 16-bit

type ignored data expand down

rd/wr checks are
ignored

rd and not readable,
wr and not writeable

rd/wr checks are
ignored

s, p, a-bits are not 1

g-bit/limit segment limit violation

memory
references to
LDT,GDT,
TSS

dpl ignored

GPFault
(Selector/0)b

type ignored

s-bit is not 0

a, d-bits ignored

p-bit is not 1

g-bit/limit segment limit violation

a. Code Fetch Faults are delivered as higher priority GPFault(0).
b. The GP Fault error code is the selector value if the reference is to GDT or LDT. Otherwise the error code is zero.

Figure 6-1. IA-32 EFLAG Register (AR24)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (set to 0) id vip vif ac vm rf 0 nt iopl of df if tf sf zf 0 af 0 pf 1 cf

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0)

Table 6-4. IA-32 Environment Runtime Integrity Checks (Continued)

Reference Resource Real Mode Protected Mode VM86Mode Fault

1:124 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

.

6.2.2.5 IA-32 Floating-point Registers

IA-32 floating-point register stack, numeric controls and environment are mapped into
the Itanium floating-point registers FR8 - FR15 and the application register name space
as shown in Table 6-6.

Table 6-5. IA-32 EFLAGS Register Fields

EFLAGa

a. On entry into the IA-32 instruction set all bits may be read by subsequent IA-32 instructions, after exit from the
IA-32 instruction set these bits represent the results of all prior IA-32 instructions. None of the EFLAG bits alter
the behavior of Itanium instruction set execution.

Bits Description

cf 0 IA-32 Carry Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

1 Ignored – For IA-32 instructions, writes are ignored, reads return one. For Itanium
instructions, the implementation can either ignore writes and return one on reads; or
write the value, and return the last value written on reads.

3,5,
15

Ignored – For IA-32 instructions, writes are ignored, reads return zero. For Itanium
instructions, the implementation can either ignore writes and return zero on reads, or
write the value and return the last value written on reads.

pf 2 IA-32 Parity Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

af 4 IA-32 Aux Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

zf 6 IA-32 Zero Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

sf 7 IA-32 Sign Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

tf 8
See Section 10.3.2, “IA-32 System EFLAG Register” on page 2:243.

if 9

df 10 IA-32 Direction Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

of 11 IA-32 Overflow Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s
Manual for details.

iopl 13:12

See Section 10.3.2, “IA-32 System EFLAG Register” on page 2:243.

nt 14

rf 16

vm 17

ac 18

vif 19

vip 20

id 21

63:22 This field is reserved for IA-32 instructions – reads return zeros and non-zero writes
causes IA_32_Exception (General Protection) faults. For Itanium instructions, the
implementation can either raise Reserved Register/Field fault on non-zero writes and
return zero on reads, or write the value (no Reserved Register/Field fault), and return the
last value written on reads.

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:125

6.2.2.5.1 IA-32 Floating-point Stack

IA-32 floating-point registers are defined as follows:

• IA-32 numeric register stack is mapped to FR8 - FR15, using the Intel 8087 80-bit
IEEE floating-point format.

• For IA-32 instruction set references, floating-point registers are logically mapped
into FR8 - FR15 based on the IA-32 top-of-stack (TOS) pointer held in FCR.top. FR8
represents a physical register after the TOS adjustment and is not necessarily the
top of the logical floating-point register stack.

• For Itanium instruction set references, the floating-point register numbers are
physical and not a function of the numeric TOS pointer, e.g. references to FR8
always return the value in physical register FR8 regardless of the TOS value.
Itanium architecture-based software cannot necessarily assume that FR8 contains
the IA-32 logical register ST(0). It is highly recommended that typically IA-32
calling conventions be used which pass floating-point values through memory.

6.2.2.5.2 Special Cases

For IA-32 floating-point instructions, loading a single or double denormal results in a
normalized double-extended value placed in the target floating-point register. For
Itanium instructions, loading a single or double denormal results in an un-normalized
denormal value placed in the target floating-point register. There are two canonical
exponent values in the Itanium architecture which indicate single precision and double
precision denormals.

When transferring floating-point values from Itanium to IA-32 instructions, it is highly
recommended that typical IA-32 calling conventions be followed which pass
floating-point values through the memory stack. If software does pass floating-point
values from IA-32 to Itanium architecture-based code via the floating-point registers,
software must ensure the following:

• Single or double precision Itanium denormals must be converted into a normalized
double extended precision value expected by IA-32 instructions. Software can
convert Itanium denormals by multiplying by 1.0 in double extended precision
(fma.sfx fr = fr, f1, f0). If an illegal single or double precision denormal is

Table 6-6. IA-32 Floating-point Register Mappings

Intel® Itanium®
Reg

IA-32 Reg Size (bits) Description

FR8 ST[(TOS + N)==0]

80

IA-32 numeric register stack

Accesses to FR8 - FR15 by Intel® Itanium®
instructions ignore the IA-32 TOS adjustment

IA-32 accesses use the TOS adjustment for a
given register N

FR9 ST[(TOS + N)==1]

FR10 ST[(TOS + N)==2]

FR11 ST[(TOS + N)==3]

FR12 ST[(TOS + N)==4]

FR13 ST[(TOS + N)==5]

FR14 ST[(TOS + N)==6]

FR15 ST[(TOS + N)==7]

FCR (AR21) FCW, MXCSR 64 IA-32 numeric and SSE control register

FSR (AR28) FSW,FTW, MXCSR 64 IA-32 numeric and SSE status and tag word

FIR (AR29) FOP, FCS, FIP 64 IA-32 numeric instruction pointer

FDR (AR30) FDS, FEA 48 IA-32 numeric data pointer

1:126 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

encountered in IA-32 floating-point operations, an IA-32 Exception (FPError Invalid
Operand) fault is generated.

• Floating-point values must be within the range of the IA-32 80-bit (15-bit
exponent) double extended precision format. The Itanium architecture uses 82 bits
(17-bit widest range exponent) for intermediate calculations. Software must ensure
all floating-point register values passed to IA-32 instructions are representable in
double extended precision 80-bit format, otherwise processor operation is model
specific and undefined. Undefined behavior can include but is not limited to: the
generation of an IA_32_Exception (FPError Invalid Operation) fault when used by
an IA-32 floating-point instruction, rounding of out-of-range values to
zero/denormal/infinity and possible IA_32_Exception (FPError Overflow/Underflow)
faults, or float-point register(s) containing out of range values silently converted to
QNAN or SNAN (conversion could occur during entry to the IA-32 instruction set or
on use by an IA-32 floating-point instruction). Software can ensure all passed
floating-point register values are within range by multiplying by 1.0 in double
extended precision format (with widest range exponent disabled) by using fma.sfx
fr = fr, f1, f0.

• Floating-point NaTVal values must not be propagated into IA-32 floating-point
instructions, otherwise processor operation is model specific and undefined.
Processors may silently convert floating-point register(s) containing NaTVal to a
SNAN (during entry to the IA-32 instruction set or on a consuming IA-32
floating-point instruction). Dependent IA-32 floating-point instructions that directly
or indirectly consume a propagated NaTVal register will either propagate the NaTVal
indication or generate an IA_32_Exception (FPError Invalid Operand) fault.
Whether a processor generates the fault or propagates the NaTVal is model specific.
In no case will the processor allow a NaTVal register to be used without either
propagating the NaTVal or generating an IA_32_Exception (FPError Invalid
Operand) fault.

Note: It is not possible for IA-32 code to read a NaTVal from a memory location with
an IA-32 floating-point load instruction, since a NatVal cannot be expressed by
a 80-bit double extended precision number.

It is highly recommended that floating-point values be passed on the memory stack per
typical IA-32 calling conventions to avoid numeric problems with NatVal and Itanium
denormals.

6.2.2.5.3 IA-32 Floating-point Control Registers

FPSR controls Itanium floating-point instructions control and status bits. FPSR does not
control IA-32 floating-point instructions or reflect the status of IA-32 floating-point
instructions. IA-32 floating-point and SSE instructions have separate control and status
registers, namely FCR (floating-point control register) and FSR (floating-point status
register).

FCR contains the IA-32 FCW bits and all SSE control bits as shown in Figure 6-1.

FSR contains the IA-32 floating-point status flags FSW, FTW, and SSE status fields as
shown in Figure 6-2. The Tag fields indicate whether the corresponding IA-32 logical
floating-point register is empty. Tag encodings for zero and special conditions such as
Nan, Infinity or Denormal of each IA-32 logical floating-point register are not
supported. However, IA-32 instruction set reads of FTW compute the additional special

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:127

conditions of each IA-32 floating-point register. Itanium architecture-based code can
issue a floating-point classify operation to determine the disposition of each IA-32
floating-point register.

FCR and FSR collectively hold all IA-32 floating-point control, status and tag
information. IA-32 instructions that are updated and controlled by MXSCR, FCW, FSW
and FTAG effectively update FSR and are controlled by FSR. IA-32 reads/writes of
MXCSR, FSW, FCW and FTW return the same information as reads/writes of FSR and
FCR by Itanium instructions.

Software must ensure that FCR and FSR are properly loaded for IA-32 numeric
execution before entering the IA-32 instruction set. For Itanium instructions accessing
ignored fields, the implementation can either ignore writes and return the specified
constant on reads, or write the value and return the last value written on reads. For
Itanium instructions accessing reserved fields, the implementation can either raise
Reserved Register/Field fault on non-zero writes and return zero on reads, or write the
value (no Reserved Register/Field fault), and return the last value written on reads.

Figure 6-1. IA-32 Floating-point Control Register (FCR)

IA-32 FCW{12:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (set to 0) IC RC PC 0 1 PM UM OM ZM DM IM

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) FZ RC PM UM OM ZM DM IM rv ignored

IA-32 MXCSR (control)

Figure 6-2. IA-32 Floating-point Status Register (FSR)

IA-32 FTW{15:0} IA-32 FSW{15:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TG7 0 TG6 0 TG5 0 TG4 0 TG3 0 TG2 0 TG1 0 TG0 B C3 TOP C2 C1 C0 ES SF PE UE OE ZE DE IE

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 454443 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) ignored rv PE UE OE ZE DE IE

IA-32 MXCSR (status)

Table 6-7. IA-32 Floating-point Status Register Mapping (FSR)

IA-32 State Intel® Itanium®
State Bits IA-32 Usage Usage in the Intel®

Itanium® Architecture

FSW, FTW, MXCSR state in the FSR Register

1:128 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

6.2.2.5.4 IA-32 Floating-point Environment

To support the Intel 8087 delayed numeric exception model, FSR, FDR and FIR contain
pending information related to the numeric exception. FDR contains the operand’s
effective address and segment selector. FIR contains the numeric instruction’s effective
address, code segment selector, and opcode bits. FSR summaries the type of numeric
exception in the IE, DE, ZE, OE, UE, PE, SF and ES-bits. The ES-bit summarizes the
IA-32 floating-point exception status as follows:

• When FSR.es is read by Itanium architecture-based code, the value returned is
either a summary of any unmasked pending exceptions contained in the FSR, IE,
DE, ZE, OE, UE, and PE bits or it may be the value that was last written into the
register depending on the implementation.

FSW.ie FSR.ie 0 Invalid operation Exception

None of these bits reflect
the status of Intel®
Itanium® floating-point
execution.

See the Intel® 64 and
IA-32 Architectures
Software Developer’s
Manual for IA-32 numeric
flag details

FSW.de FSR.de 1 Denormalized operand
Exception

FSW.ze FSR.ze 2 Zero divide Exception

FSW.oe FSR.oe 3 Overflow Exception

FSW.ue FSR.ue 4 Underflow Exception

FSW.pe FSR.pe 5 Precision Exception

FSW.sf FSR.sf 6 Stack Fault

FSW.es FSR.esa 7 Error Summary

FSW.c3:0 FSR.c3:0 8:10,14 Numeric Condition codes

FSW.top FSR.top 11:13 Top of IA-32 numeric stack

FSW.b FSR.b 15 IA-32 FPU Busy always
equals state of FSW.ES

FTW FSR.tg
{7:0}b

16,18,20,22
,24,26,28,30

Numeric Tags 0-NotEmpty,
1-Emptyc

zeros 17,19,21,23,25,
27,29,31, 39:47

Ignored – Writes are
ignored, reads return zero

MXCSR.ie FSR.ie 32 SSE Invalid operation
Exception

Does not reflect the status
of Intel® Itanium®
floating-point execution.

See Intel® 64 and IA-32
Architectures Software
Developer’s Manual for
details.

MXCSR.de FSR.de 33 SSE Denormalized operand
Exception

MXCSR.ze FSR.ze 34 SSE Zero divide Exception

MXCSR.oe FSR.oe 35 SSE Overflow Exception

MXCSR.ue FSR.ue 36 SSE Underflow Exception

MXCSR.pe FSR.pe 37 SSE Precision Exception

reserved 38, 48:63 Reserved

ignored 39:47 Ignored – Writes are
ignored, reads return zero

a. Exception Summary bit, see Section 6.2.2.5.4, “IA-32 Floating-point Environment” for details
b. Tag encodings indicate whether each IA-32 numeric register contains an zero, NaN, Infinity or Denormal are

not supported by reads of FSR by Itanium instructions. IA-32 instruction set reads of the FTW field do return
zero, Nan, Infinity and Denormal classifications.

c. All MMX technology instructions set all Numeric Tags to 0 = NotEmpty. However, MMX technology instruction
EMMS sets all Numeric Tags to 1 = Empty.

Table 6-7. IA-32 Floating-point Status Register Mapping (FSR)

IA-32 State Intel® Itanium®
State Bits IA-32 Usage Usage in the Intel®

Itanium® Architecture

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:129

• When FSR.es is set to 1 by Itanium architecture-based code, delayed IA-32
numeric exceptions are generated on the next IA-32 floating-point instruction,
regardless of numeric exception information written into FSR bits; IE, DE, ZE, OE,
UE, and PE.

• When FSR.es is written with inconsistent state with respect to the FSR bits (IE, DE,
ZE, OE, and PE), subsequent numeric exceptions may report inconsistent
floating-point status bits.

For Itanium instructions, the implementation can either raise Reserved Register/Field
faults on non-zero writes to the reserved fields, or write the value and return the last
value written on reads. FSR, FDR, and FIR must be preserved across a context switch to
generate and accurately report numeric exceptions.

6.2.2.6 IA-32 Intel® MMX™ Technology Registers

The eight IA-32 Intel MMX technology registers are mapped on the eight Itanium
floating-point registers FR8 - FR15 where MM0 is mapped to FR8 and MM7 is mapped to
FR15. The MMX technology register mapping for the IA-32 floating-point stack view is
dependent on the floating-point IA-32 Top-of-Stack value.

• When a value is written to an MMX technology register using an IA-32 MMX
technology instruction:

• The exponent field of the corresponding floating-point register (bits 80-64) and
the sign bit (bit 81) are set to all ones.

• The mantissa (bits 63-0) is set to the MMX technology data value.

• When a value is read from an MMX technology register by an IA-32 MMX technology
instruction:

• The exponent field of the corresponding floating-point register (bits 80-64) and
its sign bit (bit 81) are ignored, including any NaTVal encodings.

As a result of this mapping, the mantissa of a floating-point value written by either
IA-32 or Itanium floating-point instructions will also appear in an IA-32 MMX technology
register. An IA-32 MMX technology register will also appear in one of the eight mapped
floating-point register’s mantissa field.

Figure 6-1. Floating-point Data Register (FDR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

operand offset (fea)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) operand selector (fds)

Figure 6-2. Floating-point Instruction Register (FIR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

code offset (fip)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved opcode {10:0} (fop) code selector (fcs)

Figure 6-3. IA-32 Intel® MMX™ Technology Registers (MM0 to MM7)

81 80 64 63 0

1 ones MM0..MM7{31:0} FR8-15

1:130 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

To avoid performance degradation, software programmers are strongly recommended
not to intermix IA-32 floating and IA-32 MMX technology instructions. See the Intel®
64 and IA-32 Architectures Software Developer’s Manual for MMX technology
coding guidelines for details.

6.2.2.7 IA-32 SSE Registers

The eight 128-bit IA-32 SSE registers (XMM0-7) are mapped on sixteen physical
Itanium floating-point register pairs FR16 - FR31. The low order 64-bits of XMM0 are
mapped to FR16{63:0}, and the high order 64-bits of XMM0 are mapped to
FR17{63:0}.

• When a value is written to an SSE register using IA-32 SSE instructions:

• The exponent field of the corresponding Itanium floating-point register (bits
80-64) is set to 0x1003E and the sign bit (bit 81) is set to 0.

• The mantissa (bits 63-0) is set to the XMM data value bits{63:0} for even
registers and bits{127:64} for odd registers.

• When a SSE register is read using IA-32 SSE instructions:

• The exponent field of the corresponding Itanium floating-point register (bits
80-64) and the sign bit (bit 81) are ignored, including any NaTVal encodings.

6.2.3 Memory Model Overview

Virtual addresses within either the Itanium or IA-32 instruction set are defined to
address the same physical memory location. Itanium instructions directly generate
64-bit virtual addresses. IA-32 instructions generate 16- or 32-bit effective addresses
that are then converted into 32-bit virtual addresses by IA-32 segmentation. 32-bit
virtual addresses are then converted into 64-bit virtual addresses by zero extending to
64-bits. Zero extension places all IA-32 memory references in the lower 4G-bytes of
the 64-bit virtual address space within virtual region 0. Virtual addresses generated by
either instruction set are then translated into physical addresses using memory
management mechanisms defined in Chapter 4, “Addressing and Protection” in Volume
2.

Figure 6-4. SSE Registers (XMM0-XMM7)

81 80 64 63 0

0 0x1003E XMM0-7{127:64} FR17-31, odd

81 80 64 63 0

0 0x1003E XMM0-7{63:0} FR16-30, even

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:131

6.2.3.1 Memory Endianess

Memory integer and floating-point (IEEE) data types are binary compatible between the
IA-32 and Itanium instruction sets. Itanium architecture-based applications and
operating systems that interact with IA-32 code should use “little-endian” accesses to
ensure that memory formats are the same. All IA-32 instruction data and instruction
memory references are forced to “little-endian.”

6.2.3.2 IA-32 Segmentation

Segmentation is not used for Itanium instruction set memory references. Segmentation
is performed on IA-32 instruction set memory references based on the state of
EFLAG.vm and CFLG.pe. Either Real Mode, VM86, or Protected Mode segmentation
rules are followed as defined in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, specifically:

• IA-32 Data 16/32-bit Effective Addresses: 16 or 32-bit effective addresses are
generated, based on CSD.d, SSD.b and prefix overrides, by the addition of a base
register, scaled index register and 16/32-bit displacement value. Starting effective
addresses (first byte of multi-byte operands) larger than 16 or 32 bits are truncated
to 16 or 32-bits. Ending (last byte of multi-byte operands) 16-bit effective
addresses can extend above the 64K byte boundary, however, ending 32-bit
effective addresses are truncated to 32-bits and do not extend above the 4G-byte
effective address boundary. Refer to the Intel® 64 and IA-32 Architectures
Software Developer’s Manual for complete details on wrap conditions.

• IA-32 Code 16/32-bit Effective Addresses: 16 or 32-bit EIP, based on CSD.d, is
used as the effective address. Starting EIP values (first byte of multi-byte
instruction) larger than 16 or 32 bits are truncated to 16 or 32-bits. Ending (last
byte of multi-byte instruction) 16-bit effective addresses can extend above the 64K
byte boundary, however, ending 32-bit EIP values are truncated to 32-bits and do
not extend above the 4G-byte effective address boundary.

• IA-32 32-bit Virtual Address Generation: The resultant 16 or 32-bit effective
address is mapped into the 32-bit virtual address space by the addition of a
segment base. Full segment protection and limit checks are verified as specified by
the Intel® 64 and IA-32 Architectures Software Developer’s Manual and
additional checks as specified in this section. Starting 32-bit virtual addresses are
truncated to 32-bits after the addition of the segment base. Ending virtual address

Figure 6-5. Memory Addressing Model

Base

Index

Displacement

Base

Segmentation+

16-/32-bit 32-bit Virtual

IA-32

Intel® Itanium®

Address

Zero

64-bit Virtual
AddressEffective Address

Extend

Architecture

1:132 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

(last byte of a multiple byte operand or instruction) is truncated (wrapped) at the
4G-byte virtual boundary

• IA-32 64-bit Address Generation: The resultant 32-bit virtual address is
converted into a 64-bit virtual address by zero extending to 64-bits, this places all
IA-32 instruction set memory references within the first 4G-bytes of the 64-bit
virtual address space within virtual region 0.

If IA-32 code is utilizing a flat segmented model (segment bases are set to zero) then
IA-32 and Itanium architecture-based code can freely exchange pointers after a pointer
has been zero extended to 64-bits. For segmented IA-32 code, effective address
pointers must be first transformed into a virtual address before they are shared with
Itanium architecture-based code.

6.2.3.3 Self Modifying Code

While operating in the IA-32 instruction set, self modifying code and instruction cache
coherency (coherency with respect to the local processor’s data cache) is supported for
all IA-32 programs. Self modifying code detection is directly supported at the same
level of compatibility as the Pentium processor. Software must insert an IA-32 branch
instruction between the store operation and the instruction modified for the updated
instruction bytes to be recognized.

It is undefined whether the processor will detect a IA-32 self modifying code event for
the following conditions; 1) PSR.dt or PSR.it is 0, or 2) there are virtual aliases to
different physical addresses between the instruction and data TLBs. To ensure self
modifying code works correctly for IA-32 applications, the operating system must
ensure that there are no virtual aliases to different physical addresses between the
instruction and data TLBs.

When switching from the Itanium instruction set to the IA-32 instruction set, and while
executing Itanium instructions, self modifying code and instruction cache coherency are
not directly supported by the processor hardware. Specifically, if a modification is made
to IA-32 instructions by Itanium instructions, Itanium architecture-based code must
explicitly synchronize the instruction caches with the code sequence defined in
“Memory Consistency” on page 1:72. Otherwise the modification may or may not be
observed by subsequent IA-32 instructions.

When switching from the IA-32 to the Itanium instruction sets, modification of the local
instruction cache contents by IA-32 instructions is detected by the processor hardware.
The processor ensures that the instruction cache is made coherent with respect to the
modification and all subsequent Itanium instruction fetches see the modification.

6.2.3.4 Memory Ordering Interactions

IA-32 instructions are mapped into the Itanium memory ordering model as follows:

• All IA-32 stores have release semantics

• All IA-32 loads have acquire semantics

• All IA-32 read-modify-write or lock instructions have release and acquire
semantics (fully fenced).

Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:133

Instruction set transitions do not automatically fence memory data references. To
ensure proper ordering software needs to take into account the following ordering
rules.

Transitions from Itanium instruction set to IA-32 instruction set

• All data dependencies are honored, IA-32 loads see the results of all prior Itanium
stores

• IA-32 stores (release) can not pass any prior Itanium load or store

• IA-32 loads (acquire) can pass prior Itanium unordered loads or any prior Itanium
store to a different address. Itanium architecture-based software can prevent IA-32
loads from passing prior Itanium loads and stores by issuing an acquire operation
(or mf) before the instruction set transition.

Transitions from IA-32 instruction set to Itanium instruction set

• All data dependencies are honored, Itanium loads see the results of all prior IA-32
stores

• Itanium stores or loads can not pass prior IA-32 loads (acquire)

• Itanium unordered stores or any Itanium load can pass prior IA-32 stores (release)
to a different address. Itanium architecture-based software can prevent Itanium
loads and stores from passing prior IA-32 stores by issuing a release operation (or
mf) after the instruction set transition.

6.2.4 IA-32 Usage of Intel® Itanium® Registers

This section lists software considerations for the Itanium general and floating-point
registers, and the ALAT when interacting with IA-32 code.

6.2.4.1 Register Stack Engine

Software must ensure that all dirty registers in the register stack have been flushed to
the backing store using a flushrs instruction before starting IA-32 execution via either
the br.ia or rfi. Any dirty registers left in the current and prior register stack frames
are left in an undefined state. Software can not rely on the value of these registers
across an instruction set transition.

Once IA-32 instruction set execution is entered, the RSE is effectively disabled,
regardless of any RSE control register enabling conditions.

After exiting the IA-32 instruction set due to a jmpe instruction or interruption, all
stacked registers are marked as invalid and the number of clean registers is set to zero.

6.2.4.2 ALAT

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software
cannot rely on ALAT state being preserved across an instruction set transition. On entry
to IA-32 code, existing entries in the ALAT are ignored. For details on the ALAT, refer to
Section 4.4.5.2, “Data Speculation and Instructions” on page 1:64.

1:134 Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment

6.2.4.3 NaT/NaTVal Response for IA-32 Instructions

If Itanium architecture-based code sets a NaT condition in the integer registers or a
NaTVal condition in a floating-point register, MMX technology, or SSE register before
switching to the IA-32 instruction set the following conditions can arise:

• When the IA-32 instruction set is entered, NaT values must not be contained in any
register defined to contain IA-32 state, otherwise processor operation is model
specific and undefined. Processors may generate a NaT Register Consumption Abort
on any IA-32 instruction at any time (including the first IA-32 instruction) for all
IA-32 integer, MMX technology, SSE, or FP instructions regardless of whether not
that instruction directly (or indirectly) references a register containing a NaT. NaT
Register Consumption aborts encountered during IA-32 execution may terminate
IA-32 instructions in the middle of execution with architectural state already
modified.

• Floating-point NaTVal values must not be propagated into IA-32 floating-point
instructions, otherwise processor operation is model specific and undefined.
Processors may convert floating-point register(s) containing NaTVal to a SNAN
(during entry to the IA-32 instruction set or on a consuming IA-32 floating-point
instruction). Dependent IA-32 floating-point instructions that directly or indirectly
consume a propagated NaTVal register will either propagate the NaTVal indication
or generate an IA_32_Exception (FPError Invalid Operand) fault. Whether a
processor generates the fault or propagates the NaTVal is model specific. In no case
will the processor allow a NaTVal register to be used without either propagating the
NaTVal or generating an IA_32_Exception (FPError Invalid Operand) fault.

Note: It is not possible for IA-32 code to read a NaTVal from a memory location with
an IA-32 floating-point load instruction since a NaTVal cannot be expressed by
a 80-bit double extended precision number. It is highly recommended that
floating-point values be passed on the memory stack per typical IA-32 calling
conventions to avoid problems with NatVal and Itanium denormals.

• IA-32 SSE instructions that directly or indirectly consume a register containing a
NaTVal encoding, will ignore the NaTVal encoding and interpret the register’s
mantissa field as a legal data value.

• IA-32 MMX technology instructions that directly or indirectly consume a register
containing a NaTVal encoding, will ignore the NaTVal encoding and interpret the
register’s mantissa field as a legal data value.

Software should not rely on the behavior of NaT or NaTVal during IA-32 instruction
execution, or propagate NaT or NaTVal into IA-32 instructions.

§

1:135 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Part II: Optimization Guide for the
Intel® Itanium® Architecture

1:136 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Volume 1, Part 2: About the Optimization Guide 1:137

About the Optimization Guide 1

The second portion of this document explains in detail optimization techniques
associated with the Itanium instruction set. It is intended for those interested in
furthering their understanding of application architecture features and optimization
techniques that benefit application performance. Intel and the industry are developing
compilers to take advantage of these techniques. Application developers are not
advised to use this as a guide to assembly language programming for the Itanium
architecture.

Note: To demonstrate techniques, this guide contains code examples that are not tar-
geted towards a specific processor based on the Itanium architecture, but
rather a hypothetical implementation. For these code examples, ALU operations
are assumed to take one cycle and loads take two cycles to return from first
level cache and that there are two load/store execution units and four ALUs.
Other latencies and execution unit details are described as needed

1.1 Overview of the Optimization Guide

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture”
provides an overview of the application programming environment.

Chapter 3, “Memory Reference” discusses features and optimizations related to control
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in
floating- point applications and features that address these limitations.

§

1:138 Volume 1, Part 2: About the Optimization Guide

Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture 1:139

Introduction to Programming for the Intel®
Itanium® Architecture 2

2.1 Overview

The Itanium instruction set is designed to allow the compiler to communicate
information to the processor to manage resource characteristics such as instruction
latency, issue width, and functional unit assignment. Although such resources can be
statically scheduled, the Itanium architecture does not require that code be written for
a specific microarchitecture implementation in order to be functional.

The Itanium architecture includes a complete instruction set with new features
designed to:

• Increase instruction-level parallelism (ILP).

• Better manage memory latencies.

• Improve branch handling and management of branch resources.

• Reduce procedure call overhead.

The architecture also enables high floating-point performance and provides direct
support for multimedia applications.

Complete descriptions of the syntax and semantics of Itanium instructions can be found
in Volume 3: Intel® Itanium® Instruction Set Reference. Though this chapter provides
a high level introduction to application level programming, it assumes prior experience
with assembly language programming as well as some familiarity with the Itanium
application architecture. Optimization is explored in other chapters of this guide.

2.2 Registers

The architecture defines 128 general purpose registers, 128 floating-point registers, 64
predicate registers, and up to 128 special purpose registers. The large number of
architectural registers enable multiple computations to be performed without having to
frequently spill and fill intermediate data to memory.

There are 128, 64-bit general purpose registers (r0-r127) that are used to hold
values for integer and multimedia computations. Each of the 128 registers has one
additional NaT (Not a Thing) bit which is used to indicate whether the value stored in
the register is valid. Execution of Itanium speculative instructions can result in a
register’s NaT bit being set. Register r0 is read-only and contains a value of zero (0).
Attempting to write to r0 will cause a fault.

There are 128, 82-bit floating-point registers (f0-f127) that are used for
floating-point computations. The first two registers, f0 and f1, are read-only and read
as +0.0 and +1.0, respectively. Instructions that write to f0 or f1 will fault.

1:140 Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture

There are 64, one-bit predicate registers (p0-p63) that control conditional execution
of instructions and conditional branches. The first register, p0, is read-only and always
reads true (1). The results of instructions that write to p0 are discarded.

There are 8, 64-bit branch registers (b0-b7) that are used to specify the target
addresses of indirect branches.

There is space for up to 128 application registers (ar0-ar127) that support various
functions. Many of these register slots are reserved for future use. Some application
registers have assembler aliases. For example, ar66 is the Epilogue Counter and is
called ar.ec.

The instruction pointer is a 64-bit register that points to the currently executing
instruction bundle.

2.3 Using Intel® Itanium® Instructions

Itanium instructions are grouped into 128-bit bundles of three instructions. Each
instruction occupies the first, second, or third slot of a bundle. Instruction format,
expression of parallelism, and bundle specification are described below.

2.3.1 Format

A basic Itanium instruction has the following syntax:

[qp] mnemonic[.comp] dest=srcs

Where:

qp Specifies a qualifying predicate register. The value of the qualifying
predicate determines whether the results of the instruction are committed
in hardware or discarded. When the value of the predicate register is true
(1), the instruction executes, its results are committed, and any
exceptions that occur are handled as usual. When the value is false (0),
the results are not committed and no exceptions are raised. Most Itanium
instructions can be accompanied by a qualifying predicate.

mnemonic Specifies a name that uniquely identifies an Itanium instruction.

comp Specifies one or more instruction completers. Completers indicate optional
variations on a base instruction mnemonic. Completers follow the
mnemonic and are separated by periods.

dest Represents the destination operand(s), which is typically the result
value(s) produced by an instruction.

srcs Represents the source operands. Most Itanium instructions have at least
two input source operands.

2.3.2 Expressing Parallelism

The Itanium architecture requires the compiler or assembly writer to explicitly indicate
groups of instructions, called instruction groups, that have no register read after write
(RAW) or write after write (WAW) register dependencies. Instruction groups are
delimited by stops in the assembly source code. Since instruction groups have no RAW

Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture 1:141

or WAW register dependencies, they can be issued without hardware checks for register
dependencies between instructions. Both of the examples below show two instruction
groups separated by stops (indicated by double semicolons):
ld8 r1=[r5] ;; // First group
add r3=r1,r4 // Second group

A more complex example with multiple register flow dependencies is shown below:
ld8 r1=[r5] // First group
sub r6=r8,r9 ;;// First group
add r3=r1,r4 // Second group
st8 [r6]=r12 // Second group

All instructions in a single instruction group may not necessarily issue in parallel
because specific implementations may not have sufficient resources to issue all
instructions in an instruction group.

2.3.3 Bundles and Templates

In assembly code, each 128-bit bundle is enclosed in curly braces and contains a
template specification and three instructions. Thus, a stop may be specified at the end
of any bundle or in the middle of a bundle by using one of two special template types
that implicitly include mid-bundle stops.

Each instruction in a bundle is 41-bits long. Five other bits are used by a template-type
specification. Bundle templates enable processors based on the Itanium architecture to
dispatch instructions with simple instruction decoding, and stops enable explicit
specification of parallelism.

There are five slot types (M, I, F, B, and L), six instruction types (M, I, A, F, B, L), and
12 basic template types (MII, MI_I, MLX, MMI, M_MI, MFI, MMF, MIB, MBB, BBB, MMB,
MFB). Each basic template type has two versions: one with a stop after the third slot
and one without. Instructions must be placed in slots corresponding to their instruction
types based on the template specification, except for A-type instructions that can go in
either I or M slots. For example, a template specification of.MII means that of the
three instructions in a bundle, the first is a memory (M) or A-type instruction, and the
next two are ALU integer (I) or A-type instructions:
{ .mii
ld4 r28=[r8] // Load a 4-byte value
add r9=2,r1 // 2+r1 and put in r9
add r30=1,r1 // 1+r1 and put in r30
}

For readability, most code examples in this book do not specify templates or braces.

Note: Bundle boundaries have no direct correlation with instruction group boundaries
as instruction groups can extend over an arbitrary number of bundles. Instruc-
tion groups begin and end where stops are set in assembly code, and dynami-
cally whenever a branch is taken or a stop is encountered.

1:142 Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture

2.4 Memory Access and Speculation

The Itanium architecture provides memory access only through register load and store
instructions and special semaphore instructions. The architecture also provides
extensive support for hiding memory latency via programmer-controlled speculation.

2.4.1 Functionality

Data and instructions are referenced by 64-bit addresses. Instructions are stored in
memory in little endian byte order, in which the least significant byte appears in the
lowest addressed byte of a memory location. For data, modes for both big and little
endian byte order are supported and can be controlled by a bit in the User Mask
Register.

Integer loads of one, two, and four bytes are zero-extended, since all 64 bits of each
register are always written. Integer stores write one, two, four, or eight bytes of
registers to memory as specified.

2.4.2 Speculation

Speculation allows a programmer to break data or control dependencies that would
normally limit code motion. The two kinds of speculation are called control speculation
and data speculation. This section summarizes speculation in the Itanium architecture.
See Chapter 3, “Memory Reference” for more detailed descriptions of speculative
instruction behavior and application.

2.4.3 Control Speculation

Control speculation allows loads and their dependent uses to be safely moved above
branches. Support for this is enabled by special NaT bits that are attached to integer
registers and by special NatVal values for floating-point registers. When a speculative
load causes an exception, it is not immediately raised. Instead, the NaT bit is set on the
destination register (or NatVal is written into the floating-point register). Subsequent
speculative instructions that use a register with a set NaT bit propagate the setting until
a non-speculative instruction checks for or raises the deferred exception.

For example, in the absence of other information, the compiler for a typical RISC
architecture cannot safely move the load above the branch in the sequence below:
(p1) br.cond.dptk L1 // Cycle 0
 ld8 r3=[r5];; // Cycle 1
 shr r7=r3,r87 // Cycle 3

Supposing that the latency of a load is 2 cycles, the shift right (shr) instruction will
stall for 1. However, by using the speculative loads and checks provided in the Itanium
architecture, two cycles can be saved by rewriting the above code as shown below:
 ld8.s r3=[r5] // Earlier cycle
 // Other instructions

(p1) br.cond.dptk L1;; // Cycle 0
 chk.s r3,recovery // Cycle 1
 shr r7=r3,r87 // Cycle 1

Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture 1:143

This code assumes r5 is ready when accessed and that there are sufficient instructions
to fill the latency between the ld8.s and the chk.s.

2.4.4 Data Speculation

Data speculation allows loads to be moved above possibly conflicting memory
references. Advanced loads exclusively refer to data speculative loads. Review the
order of loads and stores in this assembly sequence:
st8 [r55]=r45 // Cycle 0
ld8 r3=[r5] ;; // Cycle 0
shr r7=r3,r87 // Cycle 2

The Itanium architecture allows the programmer to move the load above the store even
if it is not known whether the load and the store reference overlapping memory
locations. This is accomplished using special advanced load and check instructions:
ld8.a r3=[r5] // Advanced load
// Other instructions

st8 [r55]=r45 // Cycle 0
ld8.c r3=[r5] // Cycle 0 - check
shr r7=r3,r87 // Cycle 0

Note: The shr instruction in this schedule could issue in cycle 0 if there were no con-
flicts between the advanced load and intervening stores. If there were a con-
flict, the check load instruction (ld8.c) would detect the conflict and reissue
the load.

2.5 Predication

Predication is the conditional execution of an instruction based on a qualifying
predicate. A qualifying predicate is a predicate register whose value determines
whether the processor commits the results computed by an instruction.

The values of predicate registers are set by the results of instructions such as compare
(cmp) and test bit (tbit). When the value of a qualifying predicate associated with an
instruction is true (1), the processor executes the instruction, and instruction results
are committed. When the value is false (0), the processor discards any results and
raises no exceptions. Consider the following C code:
if (a) {
 b = c + d;
}
if (e) {
 h = i + j;
}

1:144 Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture

This code can be implemented in the Itanium architecture using qualifying predicates so
that branches are removed. The pseudo-code shown below implements the C
expressions without branches:
cmp.ne p1,p2=a,r0 // p1 <- a!= 0
cmp.ne p3,p4=e,r0 ;; // p3 <- e != 0
(p1)add b=c,d // If a!= 0 then add
(p3)sub h=i,j // If e!= 0 then sub

See Chapter 4, “Predication, Control Flow, and Instruction Stream” for detailed
discussion of predication. There are a few special cases where predicated instructions
read or write architectural resources regardless of their qualifying predicate.

2.6 Architectural Support for Procedure Calls

Calling conventions normally require callee and caller saved registers which can incur
significant overhead during procedure calls and returns. To address this problem, a
subset of the Itanium general registers are organized as a logically infinite set of stack
frames that are allocated from a finite pool of physical registers.

2.6.1 Stacked Registers

Registers r0 through r31 are called global or static registers and are not part of the
stacked registers. The stacked registers are numbered r32 up to a user-configurable
maximum of r127.

A called procedure specifies the size of its new stack frame using the alloc instruction.
The procedure can use this instruction to allocate up to 96 registers per frame shared
amongst input, output, and local values. When a call is made, the output registers of
the calling procedure are overlapped with the input registers of the called procedure,
thus allowing parameters to be passed with no register copying or spilling.

The hardware renames physical registers so that the stacked registers are always
referenced in a procedure starting at r32.

2.6.2 Register Stack Engine

Management of the register stack is handled by a hardware mechanism called the
Register Stack Engine (RSE). The RSE moves the contents of physical registers between
the general register file and memory without explicit program intervention. This
provides a programming model that looks like an unlimited physical register stack to
compilers; however, saving and restoring of registers by the RSE may be costly, so
compilers should still attempt to minimize register usage.

2.7 Branches and Hints

Since branches have a major impact on program performance, the Itanium architecture
includes features to improve their performance by:

Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture 1:145

• Using predication to reduce the number of branches in the code. This improves
instruction fetching because there are fewer control flow changes, decreases the
number of branch mispredicts since there are fewer branches, and it increases the
branch prediction hit rates since there is less competition for prediction resources.

• Providing software hints for branches to improve hardware use of prediction and
prefetching resources.

• Supplying explicit support for software pipelining of loops and exit prediction of
counted loops.

2.7.1 Branch Instructions

Branching in the Itanium architecture is largely expressed the same way as on other
microprocessors. The major difference is that branch triggers are controlled by
predicates rather than conditions encoded in branch instructions. The architecture also
provides a rich set of hints to control branch prediction strategy, prefetching, and
specific branch types like loops, exits, and branches associated with software pipelining.
Targets for indirect branches are placed in branch registers prior to branch instructions.

2.7.2 Loops and Software Pipelining

Compilers sometimes try to improve the performance of loops by using unrolling.
However, unrolling is not effective on all loops for the following reasons:

• Unrolling may not fully exploit the parallelism available.

• Unrolling is tailored for a statically defined number of loop iterations.

• Unrolling can increase code size.

To maintain the advantages of loop unrolling while overcoming these limitations, the
Itanium architecture provides architectural support for software pipelining. Software
pipelining enables the compiler to interleave the execution of several loop iterations
without having to unroll a loop. Software pipelining is performed using:

• Loop-branch instructions.

• LC and EC application registers.

• Rotating registers and loop stage predicates.

• Branch hints that can assign a special prediction mechanism to important branches.

In addition to software pipelined while and counted loops, the architecture provides
particular support for simple counted loops using the br.cloop instruction. The cloop
branch instruction uses the 64-bit Loop Count (LC) application register rather than a
qualifying predicate to determine the branch exit condition.

For a complete discussion of software pipelining support, see Chapter 5, “Software
Pipelining and Loop Support.”

2.7.3 Rotating Registers

Rotating registers enable succinct implementation of software pipelining with
predication. Rotating registers are rotated by one register position each time one of
the special loop branches is executed. Thus, after one rotation, the content of register X
will be found in register X+1 and the value of the highest numbered rotating register

1:146 Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture

will be found in r32. The size of the rotating region of general registers can be any
multiple of 8 and is selected by a field in the alloc instruction. The predicate and
floating-point registers can also be rotated but the number of rotating registers is not
programmable: predicate registers p16 through p63 are rotated, and floating-point
registers f32 through f127 are rotated.

2.8 Summary

The Itanium architecture provides features that reduce the effects of traditional
microarchitectural performance barriers by enabling:

• Improved ILP with a large number of registers and software scheduling of
instruction groups and bundles.

• Better branch handling through predication.

• Reduced overhead for procedure calls through the register stack mechanism.

• Streamlined loop handling through hardware support of software pipelined loops.

• Support for hiding memory latency using speculation.

§

Volume 1, Part 2: Memory Reference 1:147

Memory Reference 3

3.1 Overview

Memory latency is a major factor in determining the performance of integer
applications. In order to help reduce the effects of memory latency, the Itanium
architecture explicitly supports software pipelining, large register files, and
compiler-controlled speculation. This chapter discusses features and optimizations
related to compiler-controlled speculation. See Chapter 5, “Software Pipelining and
Loop Support” for a complete description of how to use software pipelining.

The early sections of this chapter review non-speculative load and store in the Itanium
architecture, and general concepts and terminology related to data dependencies. The
concept of speculation is then introduced, followed by discussions and examples of how
speculation is used. The remainder of this chapter describes several important
optimizations related to memory access and instruction scheduling.

3.2 Non-speculative Memory References

The Itanium architecture supports non-speculative loads and stores, as well as explicit
memory hint instructions.

3.2.1 Stores to Memory

Itanium integer store instructions can write either 1, 2, 4, or 8 bytes and 4, 8, or 10
bytes for floating-point stores. For example, a st4 instruction will write the first four
bytes of a register to memory.

Although the Itanium architecture uses a little endian memory byte order by default,
software can change the byte order by setting the big endian (be) bit of the user mask
(UM).

3.2.2 Loads from Memory

Itanium integer load instructions can read either 1, 2, 4, or 8 bytes from memory
depending on the type of load issued. Loads of 1, 2, or 4 bytes of data are
zero-extended to 64-bits prior to being written into their target registers.

Although loads are provided for various data types, the basic data type is the quadword
(8 bytes). Apart from a few exceptions, all integer operations are on quadword data.
This can be particularly important when dealing with signed integers and 32-bit
addresses, or any addresses that are shorter than 64 bits.

1:148 Volume 1, Part 2: Memory Reference

3.2.3 Data Prefetch Hint

The lfetch instruction requests that lines be moved between different levels of the
memory hierarchy. Like all hint instructions defined in the Itanium architecture, lfetch
has no effect on program correctness, and any microarchitecture implementation may
choose to ignore it.

3.3 Instruction Dependencies

Data and control dependencies are fundamental factors in optimization and instruction
scheduling. Such dependencies can prevent a compiler from scheduling instructions in
an order that would yield shorter critical paths and better resource usage since they
restrict the placement of instructions relative to other instructions on which they are
dependent.

In general, memory references are the major source of control and data dependencies
that cannot be broken due to getting a wrong answer (if a data dependency is broken)
or raising a fault that should not be raised (if a control dependency is broken). This
section describes:

• Background material on memory reference dependencies.

• Descriptions of how dependencies constrain code scheduling on traditional
architectures.

Section 3.4 describes memory reference features defined in the Itanium architecture
that increase the number of dependencies that can be removed by a compiler.

3.3.1 Control Dependencies

An instruction is control dependent on a branch if the direction taken by the branch
affects whether the instruction is executed. In the code below, the load instruction is
control dependent on the branch:
(p1)br.cond some_label
ld8 r4=[r5]

The following sections provide overviews of control dependencies and their effects on
optimization.

3.3.1.1 Instruction Scheduling and Control Dependencies

The code below contains a control dependency at the branch instruction:

add r7=r6,1 // Cycle 0
add r13=r25,r27
cmp.eq p1,p2=r12,r23

(p1) br.cond some_label ;;

ld4 r2=[r3];; // Cycle 1
sub r4=r2,r11 // Cycle 3

Volume 1, Part 2: Memory Reference 1:149

A compiler cannot safely move the load instruction before the branch unless it can
guarantee that the moved load will not cause a fatal program fault or otherwise corrupt
program state. Since the load cannot be moved upward, the schedule cannot be
improved using normal code motion.

Thus, the branch creates a barrier to instructions whose execution depends upon it. In
Figure 3-1, the load in block B cannot be moved up because of a conditional branch at
the end of block A.

3.3.2 Data Dependencies

A data dependency exists between an instruction that accesses a register or memory
location and another instruction that alters the same register or location.

3.3.2.1 Basics of Data Dependency

The following basic terms describe data dependencies between instructions:

• Write-after-write (WAW)

A dependency between two instructions that write to the same register or memory
location.

• Write-after-read (WAR)

A dependency between two instructions in which an instruction reads a register or
memory location that a subsequent instruction writes.

• Read-after-write (RAW)

A dependency between two instructions in which an instruction writes to a register
or memory location that is read by a subsequent instruction.

• Ambiguous memory dependencies

Dependencies between a load and a store, or between two stores where it cannot
be determined if the involved instructions access overlapping memory locations.
Ambiguous memory references include possible WAW, WAR, or RAW dependencies.

• Independent memory references

References by two or more memory instructions that are known not to have
conflicting memory accesses.

Figure 3-1. Control Dependency Preventing Code Motion

Block A

Block B

br

ld

1:150 Volume 1, Part 2: Memory Reference

3.3.2.2 Data Dependency in the Intel® Itanium® Architecture

The Itanium architecture requires the programmer to insert stops between RAW and
WAW register dependencies to ensure correct code results. For example, in the code
below, the add instruction computes a value in r4 needed by the sub instruction:

add r4=r5,r6 ;;// Instruction group 1
sub r7=r4,r9 // Instruction group 2

The stop after the add instruction terminates one instruction group so that the sub
instruction can legally read r4.

On the other hand, implementations based on the Itanium architecture are required to
observe memory-based dependencies within an instruction group. In a single
instruction group, a program can contain memory-based data dependent instructions
and hardware will produce the same results as if the instructions were executed
sequentially and in program order. The pseudo-code below demonstrates a memory
dependency that will be observed by hardware:

mov r16=1
mov r17=2 ;;
st8 [r15]=r16
st8 [r14]=r17;;

If the address in r14 is equal to the address in r15, uni-processor hardware guarantees
that the memory location will contain the value in r17 (2). The following RAW
dependency is also legal in the same instruction group even if software is unable to
determine if r1 and r2 overlap:

st8 [r1]=x
ld4 y=[r2]

3.3.2.3 Instruction Scheduling and Data Dependencies

The dependency rules are sufficient to generate correct code, but to generate efficient
code, the compiler must take into account the latencies of instructions. For example,
the generic implementation has a two cycle latency to the first level data cache. In the
code below, the stop maintains correct ordering, but a use of r2 is scheduled only one
cycle after its load:

add r7=r6,1 // Cycle 0
add r13=r25,r27
cmp.eq p1,p2=r12,r23;;

add r11=r13,r29 // Cycle 1
ld4 r2=[r3];;

sub r4=r2,r11 // Cycle 3

Volume 1, Part 2: Memory Reference 1:151

Since the latency of a load is two cycles, the sub instruction will stall until cycle three.
To avoid a stall, the compiler can move the load earlier in the schedule so that the
machine can perform useful work each cycle:

ld4 r2=[r3] // Cycle 0
add r7=r6,1
add r13=r25,r27
cmp.eq p1,p2=r12,r23;;

add r11=r13,r29;; // Cycle 1

sub r4=r2,r11 // Cycle 2

In this code, there are enough independent instructions to move the load earlier in the
schedule to make better use of the functional units and reduce execution time by one
cycle.

Now suppose that the original code sequence contained an ambiguous memory
dependency between a store instruction and the load instruction:

add r7=r6,1 // Cycle 0
add r13=r25,r27
cmp.ne p1,p2=r12,r23;;

st4 [r29]=r13 // Cycle 1
ld4 r2=[r3];;

sub r4=r2,r11 // Cycle 3

In this case, the load cannot be moved past the store due to the memory dependency.
Stores will cause data dependencies if they cannot be disambiguated from loads or
other stores.

In the absence of other architectural support, stores can prevent moving loads and
their dependent instructions: The following C language statements could not be
reordered unless ptr1 and ptr2 were statically known to point to independent memory
locations:

*ptr1 = 6;
x = *ptr2;

3.4 Using Speculation in the Intel® Itanium®
Architecture to Overcome Dependencies

Both data and control dependencies constrain optimization of program code. The
Itanium architecture provides support for two basic techniques used to overcome
dependencies:

• Data speculation: Allow a load and possibly its uses to be moved across
ambiguous memory writes.

• Control speculation: Allows a load and possibly its uses to be moved across a
branch on which the load is control dependent.

These techniques are used to hide load latencies and reduce execution time.

1:152 Volume 1, Part 2: Memory Reference

3.4.1 Speculation Model in the Intel® Itanium® Architecture

The limitations imposed by dependencies on instruction scheduling can be solved by
separating the loading of data from the exception handling or the acknowledgment of
data conflicts. The Itanium architecture supports special speculative versions of
instructions to accomplish this:

• Control speculative load instructions defer exceptions.

• Data speculative load instructions save address information.

• Special check instructions check for exceptions or data conflicts.

An Itanium speculative load can be moved above a dependency barrier (shown as a
dashed line) as shown in Figure 3-2.

The check detects a deferred exception or a conflict with an intervening store and
provides a mechanism to recover from failed speculation. With this support, speculative
loads and their uses can be scheduled earlier than non-speculative instructions. As a
result, the memory latencies of these loads can be hidden more easily than for
non-speculative loads.

3.4.2 Using Data Speculation in the Intel® Itanium®
Architecture

Data speculation in the Itanium architecture uses a special load instruction (ld.a)
called an advanced load instruction and an associated check instruction (chk.a or ld.c)
to validate data-speculated results.

When the ld.a instruction is executed, an entry is allocated in a hardware structure
called the Advanced Load Address Table (ALAT). The ALAT is indexed by physical
register number and records the load address, the type of the load, and the size of the
load.

A check instruction must be executed before the result of an advanced load can be used
by any non-speculative instruction. The check instruction must specify the same
register number as the corresponding advanced load.

When a check instruction is executed, the ALAT is searched for an entry with the same
target physical register number and type. If an entry is found, execution continues
normally with the next instruction.

Figure 3-2. Speculation Model in the Intel® Itanium® Architecture

Control or
Data Dependency

Original Load

Uses of Load

Speculative Load
Control or
Data Dependency

Check for Exception or

Uses of Load

Memory Conflict

Before Speculation After Speculation

Volume 1, Part 2: Memory Reference 1:153

If no matching entry is found, the speculative results need to be recomputed:

• Use a chk.a if a load and some of its uses are speculated. The chk.a jumps to
compiler-generated recovery code to re-execute the load and dependent
instructions.

• Use a ld.c if no uses of the load are speculated. The ld.c reissues the load.

Entries are removed from the ALAT due to:

• Stores that write to addresses overlapping with ALAT entries.

• Other advanced loads that target the same physical registers as ALAT entries.

• Implementation-defined hardware or operating system conditions needed to
maintain correctness.

• Limitations of the capacity, associativity, and matching algorithm used for a given
implementation of the ALAT.

3.4.2.1 Advanced Load Example

Advanced loads can reduce the critical path of a sequence of instructions. In the code
below, a load and store may access conflicting memory addresses:

st8 [r4]=r12 // Cycle 0: ambiguous store
ld8 r6=[r8];; // Cycle 0: load to advance
add r5=r6,r7;; // Cycle 2
st8 [r18]=r5 // Cycle 3

On the generic machine model, the code above would execute in four cycles, but it can
be rewritten using an advanced load and check:

ld8.a r6=[r8] // Cycle -2 or earlier

// Other instructions

st8 [r4]=r12 // Cycle 0: ambiguous store
ld8.c r6=[r8] // Cycle 0: check load
add r5=r6,r7;; // Cycle 0
st8 [r18]=r5 // Cycle 1

The original load has been turned into a check load, and an advanced load has been
scheduled above the ambiguous store. If the speculation succeeds, the execution time
of the remaining non-speculative code is reduced because the latency of the advanced
load is hidden.

3.4.2.2 Recovery Code Example

Consider again the non-speculative code from the last section:
st8 [r4]=r12 // Cycle 0: ambiguous store
ld8 r6=[r8];; // Cycle 0: load to advance
add r5=r6,r7;; // Cycle 2
st8 [r18]=r5 // Cycle 3

1:154 Volume 1, Part 2: Memory Reference

The compiler could move up not only the load, but also one or more of its uses. This
transformation uses a chk.a rather than a ld.c instruction to validate the advanced
load. Using the same example code sequence but now advancing the add as well as the
ld8 results in:

ld8.a r6=[r8];; // Cycle -3

// other instructions

add r5=r6,r7 // Cycle -1: add that uses r6

// Other instructions

st8 [r4]=r12 // Cycle 0
chk.a r6,recover // Cycle 0: check

back: // Return point from jump to recover
st8 [r18]=r5 // Cycle 0

Recovery code must also be generated:
recover:

ld8 r6=[r8] ;; // Reload r6 from [r8]
add r5=r6,r7 // Re-execute the add
br back // Jump back to main code

If the speculation fails, the check instruction branches to the label recover where the
speculated code is re-executed. If the speculation succeeds, execution time of the
transformed code is three cycles less than the original code.

3.4.2.3 Terminology Review

Terms related to speculation, such as advanced loads and check loads, have
well-defined meanings in the Itanium architecture. The terms below were introduced in
the preceding sections:

• Data speculative load

A speculative load that is statically scheduled prior to one or more stores upon
which it may be dependent. The data speculative load instruction is ld.a.

• Advanced load

A data speculative load.

• Check load

An instruction that checks whether a corresponding advanced load needs to be
re-executed and does so if required. The check load instruction is ld.c.

• Advanced load check

An instruction that takes a register number and an offset to a set of
compiler-generated instructions to re-execute speculated instructions when
necessary. The advanced load check instruction is chk.a.

• Recovery code

Program code that is branched to by a speculation check. Recovery code repeats a
load and chain of dependent instructions to recover from a speculation failure.

Volume 1, Part 2: Memory Reference 1:155

3.4.3 Using Control Speculation in the Intel® Itanium®
Architecture

The check to determine if control speculation was successful is similar to that for data
speculation.

3.4.3.1 The NaT Bit

The Not A Thing (NaT) bit is an extra bit on each of the general registers. A register
NaT bit indicates whether the content of a register is valid. If the NaT bit is set to one,
the register contains a deferred exception token due to an earlier speculation fault. In
a floating-point register, the presence of a special value called the NaTVal signals a
deferred exception.

During a control speculative load, the NaT bit on the destination register of the load
may be set if an exception occurs and it is deferred. The exact set of events and
exceptions that cause an exception to be deferred (thus causing the NaT bit to be set),
depends in part upon operating system policy. When a speculative instruction reads a
source register that has its NaT bit set, NaT bits of the target registers of that
instruction are also set. That is, NaT bits are propagated through dependent
computations.

3.4.3.2 Control Speculation Example

When a control speculative load is scheduled, the compiler must insert a speculative
check, chk.s, along all paths on which results of the speculative load are consumed. If
a non-speculative instruction (other than a chk.s) reads a register with its NaT bit set,
a NaT consumption fault occurs, and the operating system will terminate the program.

The code sequence below illustrates a basic use of control speculation:
(p1) br.cond some_label // Cycle 0

ld8 r1=[r5];; // Cycle 1
add r2=r1,r3 // Cycle 3

This code can be rewritten using a control speculative load and check. The check can be
placed in the same basic block as the original load:

ld8.s r1=[r5];; // Cycle -2

// Other instructions

(p1) br.cond some_label // Cycle 0
chk.s r1,recovery // Cycle 0
add r2=r1,r3 // Cycle 0

Until a speculation check is reached dynamically, the results of the control speculative
chain of instructions cannot be stored to memory or otherwise accessed
non-speculatively without the possibility of a fault. If a speculation check is executed
and the NaT bit on the checked register is set, the processor will branch to recovery
code pointed to by the check instruction.

It is also possible to test for the presence of set NaT bits and NaTVals using the test NaT
(tnat) and floating-point class (fclass) instructions.

1:156 Volume 1, Part 2: Memory Reference

Although every speculative computation needs to be checked, this does not mean that
every speculative load requires its own chk.s. Speculative checks can be optimized by
taking advantage of the propagation of NaT bits through registers as described in
Section 3.5.6.

3.4.3.3 Spills, Fills and the UNAT Register

Saving and restoring of registers that may have set NaT bits is enabled by st8.spill
and ld8.fill instructions and the User NaT Collection application register (UNAT).

The “spill general register and NaT” instruction, st8.spill, saves eight bytes of a
general register to memory and writes its NaT bit into the UNAT. Bits 8:3 of the memory
address of the store determine which UNAT bit is written with the register NaT value.
The “fill general register” instruction, ld8.fill, reads eight bytes from memory into a
general register and sets the register NaT bit according to the value in the UNAT.
Software is responsible for saving and restoring the UNAT contents to ensure correct
spilling and filling of NaT bits.

The corresponding floating-point instructions, stf.spill and ldf.fill, save and
restore floating-point registers in floating-point register format without surfacing
exceptions due to NaTVals.

3.4.3.4 Terminology Review

The terms below are related to control speculation:

• Control speculative load

A speculative load that is scheduled prior to an earlier controlling branch.
References to “speculative loads” without qualifiers generally refer to control
speculative loads and not data speculative loads. Loads using the ld.s instruction
are control speculative loads.

• Speculation check

An instruction that checks whether a speculative instruction has deferred an
exception. Speculation check instructions include labels that point to
compiler-generated recovery code. The speculation check instruction is chk.s.

• Recovery code

Code executed to recover from a speculation failure. Control speculative recovery
code is analogous to data speculative recovery code.

3.4.4 Combining Data and Control Speculation

A load that is both data and control speculative is called a speculative advanced load.
The ld.sa instruction performs all the operations of both a speculative load and an
advanced load. An ALAT entry will not be allocated if this type of load generates a
deferred exception token, so an advanced load check instruction (chk.a) is sufficient to
check for both interference from subsequent stores and for deferred exceptions.

Volume 1, Part 2: Memory Reference 1:157

3.5 Optimization of Memory References

Speculation can increase parallelism and help to hide latency by enabling more code
motion than can be performed on traditional architectures. Speculation can increase the
application of traditional loop optimizations such as invariant code motion and common
subexpression elimination. The Itanium architecture also offers post-increment loads
and stores that improve instruction throughput without increasing code size.

Memory reference optimization should take several factors into account including:

• Difference between the execution costs of speculative and non-speculative code.

• Code size.

• Interference probabilities and properties of the ALAT (for data speculation).

The remainder of this chapter discusses these factors and optimizations relating to
memory accesses.

3.5.1 Speculation Considerations

The use of data speculation requires more attention than the use of control speculation.
In part this is due to the fact that one control speculative load cannot inadvertently
cause another control speculative load to fail. Such an effect is possible with data
speculative loads since the ALAT has limited capacity and the replacement policy of
ALAT entries is implementation dependent. For example, if an advanced load is issued
and there are no unused ALAT entries, the hardware may choose to invalidate an
existing entry to make room for a new one.

Moreover, exceptions associated with control speculative calculations are uncommon in
correct code since they are related to events such as page faults and TLB misses.
However, excessive control speculation can be expensive as associated instructions fill
issue slots.

Although the static critical path of a program may be reduced by the use of data
speculation, the following factors contribute to the benefit/dynamic cost of data
speculation:

• The probability that an intervening store will interfere with an advanced load.

• The cost of recovering from a failed advanced load.

• The specific microarchitectural implementation of the ALAT: its size, associativity,
and matching algorithm.

Determining interference probabilities can be difficult, but dynamic memory profiling
can help to predict how often ambiguous loads and stores will conflict.

When using advanced loads, there should be case-by-case consideration as to whether
advancing only a load and using a ld.c might be preferable to advancing both a load
and its uses, which would require the use of the potentially more expensive chk.a.

Even when recovery code is not executed, its presence extends the lifetimes of
registers used in data and control speculation, thus increasing register pressure and
possibly the cost of register movement by the Register Stack Engine (RSE). See
Section 3.5.3 for information on considerations for recovery code placement.

1:158 Volume 1, Part 2: Memory Reference

3.5.2 Data Interference

Data references with low interference probabilities and high path probabilities can make
the best use of data speculation. In the pseudo-code below, assume the probabilities
that the stores to *p1 and *p2 conflict with var are independent.

p1 = / Prob interference = 0.30 */
. . .
p2 = / Prob interference = 0.40 */
. . .

 = var /* Load to be advanced */

If the compiler advances the load from var above the stores to pointers p1 and p2,
then:

Prob that stores to p1 or p2 interfere with var
= 1.0 - (Prob p1 will not interfere with var *

Prob p2 will not interfere with var)
= 1.0 - (0.70 * 0.60)
= 0.58

Given the interference probabilities above, there is a 58% probability at least one of p1
and p2 will interfere with a load from var if it is advanced above both of them. A
compiler can use traditional heuristics concerning data interference and interprocedural
memory access information to estimate these probabilities.

When advancing loads past function calls, the following should be considered:

• If a called function has many stores in it, it is more likely that actual or aliased ALAT
conflicts will occur.

• If other advanced loads are executed during the function call, it is possible that
their physical register numbers will either be identical or conflict with ALAT entries
allocated from calls in parent functions.

• If it is unknown whether a large number of advanced loads will be executed by the
called routines, then the possibility that the capacity of that ALAT may be exceeded
must be considered.

3.5.3 Optimizing Code Size

Part of the decision of when to speculate should involve consideration of any possible
increases in code size. Such consideration is not particular to speculation, but to any
transformations that cause code to be duplicated, such as loop unrolling, procedure
inlining, or tail duplication. Techniques to minimize code growth are discussed later in
this section.

In general, control speculation increases the dynamic code size of a program since
some of the speculated instructions are executed and their results are never used.
Recovery code associated with control speculation primarily contributes to the static
size of the binary since it is likely to be placed out-of-line and not brought into cache
until a speculative computation fails (uncommon for control speculation).

Data speculation has a similar effect on code size except that it is less likely to compute
values that are never used since most non-control speculative data speculative loads
will have their results checked. Also, since control speculative loads only fail in
uncommon situations such as deferred data related faults (depending on operating
system configuration), while data speculative loads can fail due to ALAT conflicts, actual

Volume 1, Part 2: Memory Reference 1:159

memory conflicts, or aliasing in the ALAT, the decision as to where to place recovery
code for advanced loads is more difficult than for control speculation and should be
based on the expected conflict rate for each load.

As a general rule, efficient compilers will attempt to minimize code growth related to
speculation. As an example, moving a load above the join of two paths may require
duplication of speculative code on every path. The flow graph depicted in Figure 3-3
and the explanation shows how this could arise.

If the compiler or programmer advanced the load up to block B from its original
non-speculative position, all speculative code would need to be duplicated in both
blocks B and C. This duplicated code might be able to occupy NOP slots that already
exist. But if space for the code is not already available, it might be preferable to
advance the load to block A since only one copy would be required in this case.

3.5.4 Using Post-increment Loads and Stores

Post-increment loads and stores can improve performance by combining two operations
in a single instruction. Although the text in this section mentions only post-increment
loads, most of the information applies to stores as well.

Post-increment loads are issued on M-units and can increment their address register by
either an immediate value or by the contents of a general register. The following
pseudo-code that performs two loads:

ld8 r2=[r1]
add r1=1,r1 ;;
ld8 r3=[r1]

can be rewritten using a post-increment load:
ld8 r2=[r1],1 ;;
ld8 r3=[r1]

Post-increment loads may not offer direct savings in dependency path height, but they
are important when calculating addresses that feed subsequent loads:

• A post-increment load avoids code size expansion by combining two instructions
into one.

• Adds can be issued on either I-units or M-units. When a program combines an add
with a load, an I-unit or M-unit resource remains available that otherwise would
have been consumed. Thus, throughput of dependent adds and loads can be
doubled by using post-increment loads.

Figure 3-3. Minimizing Code Size During Speculation

Block A

Block B Block C

st
ld

1:160 Volume 1, Part 2: Memory Reference

A disadvantage of post-increment loads is that they create new dependencies between
post-increment loads and the operations that use the post-increment values. In some
cases, the compiler may wish to separate post-increment loads into their component
instructions to improve the overall schedule. Alternatively, the compiler could wait until
after instruction scheduling and then opportunistically find places where post-increment
loads could be substituted for separate load and add instructions.

3.5.5 Loop Optimization

In cyclic code, speculation can extend the use of classical loop optimizations like
invariant code motion. Examine this pseudo-code:

while (cond) {
 c = a + b; // Probably loop invariant
 *ptr++ = c;// May point to a or b
}

The variables a and b are probably loop invariant; however, the compiler must assume
the stores to *ptr will overwrite the values of a and b unless analysis can guarantee
that this can never happen. The use of advanced loads and checks allows code that is
likely to be invariant to be removed from a loop, even when a pointer cannot be
disambiguated:

ld4.a r1 = [&a]
ld4.a r2 = [&b]
add r3 = r1,r2 // Move computation out of loop
while (cond) {
 chk.a.nc r1, recover1

L1: chk.a.nc r2, recover2
L2: *p++ = r3

}

At the end of the module:
recover1: // Recover from failed load of a

ld4.a r1 = [&a]
add r3 = r1, r2
br.sptk L1 // Unconditional branch

recover2: // Recover from failed load of b
ld4.a r2 = [&b]
add r3 = r1, r2
br.sptk L2 // Unconditional branch

Using speculation in this loop hides the latency of the calculation of c whenever the
speculated code is successful.

Since checks have both a clear (clr) and no clear (nc) form, the programmer must
decide which to use. This example shows that when checks are moved out of loops, the
no clear version should be used. This is because the clear (clr) version will cause the
corresponding ALAT entry to be removed (which would cause the next check to that
register to fail).

Volume 1, Part 2: Memory Reference 1:161

3.5.6 Minimizing Check Code

Checks of speculative loads can sometimes be combined to reduce code size. The
propagation of NaT bits and NaTVals via speculative instructions can permit a single
check of a speculative result to replace multiple intermediate checks. The code below
demonstrates this optimization potential:

ld4.s r1=[r10] // Speculatively load to r1
ld4.s r2=[r20] // Speculatively load to r2
add r3=r1,r2;; // Add two speculative values

// Other instructions

chk.s r3,imm21 // Check for NaT bit in r3
st4 [r30]=r1 // Store r1
st4 [r40]=r2 // Store r2
st4 [r50]=r3 // Store r3

Only the result register, r3, needs to be checked before stores of any of r1, r2, or r3.
If a NaT bit were set at the time of the control speculative loads of r1 or r2, the NaT bit
would have been propagated to r3 from r1 or r2 via the add instruction.

Another way to reduce the amount of check code is to use control flow analysis to avoid
issuing extra ld.c or ld.a instructions. For example, the compiler can schedule a
single check where it is known to be reached by all copies of the advanced load. The
portion of a flow graph shown in Figure 3-4 demonstrates where this technique might
be applied.

A single check in the lowermost block shown for all of the advanced loads is correct if
both of these conditions are met:

• The lowermost block post-dominates all of the blocks with advanced loads from
location addr.

• The lowermost block precedes any uses of the advanced loads from addr.

Figure 3-4. Using a Single Check for Three Advanced Loads

ld.a ld.a

ld.a

*p1 = *p2 = *p3 =

ld.c

Advanced loads from addr
to the same register, R

Stores

Single load check of
register R

1:162 Volume 1, Part 2: Memory Reference

3.6 Summary

The examples in this chapter show where the Itanium architecture can take advantage
of existing techniques like dynamic profiling and disambiguation. Special architectural
support allows implementation of speculation in common scenarios in which it would
normally not be allowed. Speculation, in turn, increases ILP by making greater code
motion possible, thus enhancing traditional optimizations such as those involving loops.

Even though the speculation model can be applied in many different situations, careful
cost and benefit analysis is needed to insure best performance.

§

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:163

Predication, Control Flow, and Instruction
Stream 4

4.1 Overview

This chapter is divided into three sections that describe optimizations related to
predication, control flow, and branch hints as follows:

• The predication section describes if-conversion, predicate usage, and code
scheduling to reduce the affects of branching.

• The control flow optimization section describes optimizations that collapse and
converge control flow by using parallel compares, multiway branches, and multiple
register writers under predicate.

• The branch and prefetch hints section describes how hints are used to improve
branch and prefetch performance.

4.2 Predication

Predication allows the compiler to convert control dependencies into data
dependencies. This section describes several sources of branch-related performance
considerations, followed by a summary of predication mechanism, followed by a series
of descriptions of optimizations and techniques based on predication.

4.2.1 Performance Costs of Branches

Branches can decrease application performance by consuming hardware resources for
prediction at execution time and by restricting instruction scheduling freedom during
compilation.

4.2.1.1 Prediction Resources

Branch prediction resources include branch target buffers, branch prediction tables, and
the logic used to control these resources. The number of branches that can accurately
be predicted is limited by the size of the buffers on the processor, and such buffers tend
to be small relative to the total number of branches executed in a program.

This limitation means that branch intensive code may have a large portion of its
execution time spent due to contention for prediction resources. Furthermore, even
though the size of the predictors is a primary factor in determining branch prediction
performance, some branches are best predicted with different types of predictors. For
example, some branches are best predicted statically while others are more suitably
predicted dynamically. Of those predicted dynamically, some are of greater importance
than others, such as loop branches.

1:164 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

Since the cost of a misprediction is generally proportional to pipeline length, good
branch prediction is essential for processors with long instruction pipelines. Thus,
optimizing the use of prediction resources can significantly improve the overall
performance of an application.

Suppose, for instance, that the conditional in the code below is mispredicted 30% of the
time and branch mispredictions incur a ten cycle penalty. On average, the mispredicted
branch will add three cycles to each execution of the code sequence (30% * 10 cycles):

if (r1)
r2 = r3 + r4;

else
r7 = r6 - r5;

Equivalent Itanium architecture-based code that has not been optimized is shown
below. It requires five instructions including two branches and executes in two cycles,
not including potential misprediction or taken-branch penalty cycles:

cmp.eq p1,p2=r1,r0 // Cycle 0
(p1) br.cond else_clause // Cycle 0

add r2=r3,r4 // Cycle 1
br end_if // Cycle 1

else_clause:
sub r7=r6,r5 // Cycle 1

end_if:

Using the information above, this code will take five cycles to execute on average even
thought the critical path is only two cycles long (2 cycles + (30% * 10 cycles) = 5). If
the branch misprediction penalty could be eliminated (either by reducing contention for
resources or by removing the branch itself), performance of the code sequence would
improve by a factor of two.

4.2.1.2 Instruction Scheduling

Branches limit the ability of the compiler to move instructions that alter memory state
or that can raise exceptions, because instructions in a program are control dependent
on all lexically enclosing branches. In addition to the control dependencies, compound
conditionals can take several cycles to compute and may themselves require
intermediate branches in languages like C that require short-circuit evaluation.

Control speculation is the primary mechanism used to perform global code motion for
Itanium architecture-based compilers. However, when an instruction does not have a
speculative form or the instruction could potentially corrupt memory state, control
speculation may be insufficient to allow code motion. Thus, techniques that allow
greater freedom in code motion or eliminate branches can improve the compiler’s
ability to schedule instructions.

4.2.2 Predication in the Intel® Itanium® Architecture

Now that the performance implications of branching have been described, this section
overviews predication in the Itanium architecture – the primary mechanism used by
optimizations described in this section.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:165

Almost all Itanium instructions can be tagged with a guarding predicate. If the value
of the guarding predicate is false at execution time, then the predicated instruction’s
architectural updates are suppressed, and the instruction behaves like a nop. If the
predicate is true, then the instruction behaves as if it were unpredicated. There are a
small number of instructions such as unconditional compares and floating-point
square-root and reciprocal approximate instructions whose qualifying predicate do not
operate as described above. See Part I:, “Application Architecture Guide” for additional
information.

The following sequence shows a set of predicated instructions:
(p1) add r1=r2,r3
(p2) ld8 r5=[r7]
(p3) chk.s r4,recovery

To set the value of a predict register, the architecture provides compare and test
instructions such as those as shown below.

cmp.eq p1,p2=r5,r6
tbit p3,p4=r6,5

Additionally, a predicate almost always requires a stop to separate its producing
instruction and its use:

cmp.eq p1,p2=r1,r2;;
(p1) add r1=r2,r3

The only exception to this rule involves an integer compare or test instruction that sets
a predicate that is used as the condition for a subsequent branch instruction:

cmp.eq p1,p2=r1,r2 // No stop required
(p1) br.cond some_target

4.2.3 Optimizing Program Performance Using Predication

This section describes predication-related optimizations, their use, and basic
performance analysis techniques. Following are descriptions of optimizations including
if-conversion, misprediction elimination, off-path predication, upward code motion, and
downward code motion.

4.2.3.1 Applying if-Conversion

One of the most important optimizations enabled by predication is the complete
removal of branches from some program sequences. Without predication, the
pseudo-code below would require a branch instruction to conditionally jump around the
if-block code:
if (r4) {

add r1=r2,r3
ld8 r6=[r5]

}

Using predication, the sequence can be written without a branch:
cmp.ne p1,p0=r4,0 ;;// Set predicate reg

(p1) add r1=r2,r3
(p1) ld8 r6=[r5]

1:166 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

The process of predicating instructions in conditional blocks and removing branches is
referred to as if-conversion. Once if-conversion has been performed, instructions can
be scheduled more freely because there are fewer branches to limit code motion, and
there are fewer branches competing for issue slots.

In addition to removing branches, this transformation will make dynamic instruction
fetching more efficient since there are fewer possibilities for control flow changes.
Under more complex circumstances, several branches can be removed. The following C
code sequence:

if (r1)
r2 = r3 + r4;

else
r7 = r6 - r5;

can be rewritten in Itanium architecture-based assembly code without branches as:
cmp.ne p1,p2 = r1,0;;

(p1) add r2 = r3,r4
(p2) sub r7 = r6,r5

Since instructions from opposite sides of the conditional are predicated with
complementary predicates they are guaranteed not to conflict, hence the compiler has
more freedom when scheduling to make the best use of hardware resources. The
compiler could also try to schedule these statements with earlier or later code since
several branches and labels have been removed as part of if-conversion.

Since the branches have been removed, no branch misprediction is possible and there
will be no pipeline bubbles due to taken branches. Such effects are significant in many
large applications, and these transformations can greatly reduce branch-induced stalls
or flushes in the pipeline.

Thus, comparing the cost of the code above with the non-predicated version above
shows that:

• Non-predicated code consumes: 2 cycles + (30% * 10 cycles) = 5 cycles.

• Predicated code consumes: 2 cycles.

In this case, predication saves an average of three cycles.

4.2.3.2 Off-path Predication

If a compiler has dynamic profile information, it is possible to form an instruction
schedule based on the control flow path that is most likely to execute – this path is
called the main trace. In some cases, execution paths not on the main trace are still
executed frequently, and thus it may be beneficial to use predication to minimize their
critical paths as well.

The main trace of a flow graph is highlighted in Figure 4-1. Although blocks A and B are
not on the main trace, suppose they are executed a significant number of times.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:167

If some of the instructions in block A or block B can be included in the main trace
without increasing its critical path, then techniques of upward code motion can be
applied to reduce the critical path through blocks A and B when they are taken. An
example of how to use predication to implement upward code motion is given in the
next section.

4.2.3.3 Upward Code Motion

When traditional control speculation is inadequate, it may still be possible to predicate
an instruction and move it up or down in the schedule to reduce dependency height.
This is possible because predicating an instruction replaces a control dependency with a
data dependency. If the data dependency is less constraining than the control
dependency, such a transformation may improve the instruction schedule.

Given the Itanium architecture-based assembly sequence below, the store instruction
cannot be moved above the enclosing conditional instruction because it could cause an
address fault or other exception, depending upon the branch direction:
(p1) br.cond some_label // Cycle 0

st4 [r34] = r23 // Cycle 1
ld4 r5 = [r56] // Cycle 1
ld4 r6 = [r57] // Cycle 2:no cycle 1 M’s

One reason why it might be desirable to move the store instruction up is to allow loads
below it to move up.

Note: Ambiguous stores are barriers beyond which normal loads cannot move. In this
case, moving the store also frees up an M-unit slot. To rewrite the code so that
the store comes before the branch, p2 has been assigned the complement of
p1:

(p2) st4 [r34] = r23 // Cycle 0
(p2) ld4 r5 = [r56] // Cycle 0
(p1) br.cond some_label // Cycle 0

ld4 r6 = [r57] // Cycle 1

Since the store is now predicated, no faults or exceptions are possible when the branch
is taken, and memory state is only updated if and when the original home block of the
store is entered. Once the store is moved, it is also possible to move the load
instruction without having to use advanced or speculative loads (as long as r5 is not
live on the taken branch path).

Figure 4-1. Flow Graph Illustrating Opportunities for Off-path Predication

Block A

Block B

1:168 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

4.2.3.4 Downward Code Motion

As with upward code motion, downward code motion is normally difficult in the
presence of stores. The next example shows how code can be moved downward past a
label, a transformation that is often unsafe without predication:

ld8 r56 = [r45];; // Cycle 0: load
st4 [r23] = r56;; // Cycle 2: store

label_A:
add ... // Cycle 3
add ...
add ...
add ...;;

In the code above, suppose the latency between the load and the store is two clocks.
Assuming the load instruction cannot be moved upward due to other dependencies, the
only way to schedule the instructions so that the load latency is covered is to move the
store downward past the label.

The following code demonstrates the overall idea of using predicates to enable
downward code motion. In actual compiler-generated code, the predicates that are
explicitly computed in this example might already be available in predicate registers
and not require extra instructions.

// Point which “dominates” label_A
cmp.ne p1,p0 = r0,r0 // Initialize p1 to false

// Other instructions

cmp.eq p1,p0 = r0,r0 // Initialize p1 to true
ld8 r56=[r45];; // Cycle 0

label_A:
add ... // Cycle 1
add ...
add ...
add ...;;

(p1) st4 [r23]=r56 // Cycle 2

Here, downward code motion saves one cycle. There are examples of more
sophisticated situations involving cyclic scheduling, other store-constrained code
motion, or pulling code from outside loops into them, but they are not described here.

4.2.3.5 Cache Pollution Reduction

Loads and stores with predicates that are false at runtime are generally likely not to
cause any cache lines to be removed, replaced, or brought in. Also, no extra
instructions or recovery code are required as would be necessary for control or data
speculation. Therefore, when the use of predication yields the same critical path length
as data or control speculation, it is almost always preferable to use predication.

4.2.4 Predication Considerations

Even though predication can have a variety of beneficial effects, there are several cases
where the use of predication should be carefully considered. Such cases are usually
associated with execution paths that have unbalanced total latencies or over-usage of a
particular resource such as those associated with memory operations.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:169

4.2.4.1 Unbalanced Execution Paths

The simple conditional below has an unbalanced flow-dependency height. Suppose that
non-predicated assembly for this sequence takes two clocks for the if-block and
approximately 18 clocks if we assume a setf takes 8 clocks, a getf takes 2 clocks, and
an xma takes 6 clocks:

if (r4) // 2 clocks
r3 = r2 + r1;

else // 18 clocks
r3 = r2 * r1;

f (r3); // An integer use of r3

If-converted Itanium architecture-based code is shown below. The cycle numbers
shown depend upon the values of p1 and p2 and assume the latencies shown:

// Issue cycle if p2 is:TrueFalse
cmp.ne p1,p2=r4,r0;; // 0 0

(p1) add r3=r2,r1 // 1 1
(p2) setf f1=r1 // 1 1
(p2) setf f2=r2;; // 1 1
(p2) xma.l f3=f1,f2,f0;; // 9 2
(p2) getf r3=f3;; // 15 3
(p2) use of r3 // 17 4

This code takes 18 cycles to complete if p2 is true and five cycles if p2 is false. When
analyzing such cases, consider execution weights, branch misprediction probabilities,
and prediction costs along each path.

In the three scenarios presented below, assume a branch misprediction costs ten
cycles. No instruction cache or taken-branch penalties are considered.

4.2.4.2 Case 1

Suppose the if-clause is executed 50% of the time and the branch is never
mispredicted. The average number of clocks for:

• Unpredicated code is: (2 cycles * 50%) + (18 cycles * 50%) = 10 clocks

• Predicated code is: (5 cycles * 50%) + (18 cycles * 50%) = 11.5 clocks

In this case, if-conversion would increase the cost of executing the code.

4.2.4.3 Case 2

Suppose the if-clause is executed 70% of the time and the branch mispredicts 10% if
the time with mispredicts costing 10 clocks. The average number of clocks for:

• Unpredicated code is:

(2 cycles * 70%) + (18 cycles * 30%) + (10 cycles * 10%) = 7.8 clocks

• Predicated code is:

 (5 cycles * 70%) + (18 cycles * 30%) = 8.9 clocks

In this case, if-conversion still would increase the cost of executing the code.

1:170 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

4.2.4.4 Case 3

Suppose the if-clause is executed 30% of the time and the branch mispredicts 30% of
the time. The average number of clocks for:

• Unpredicated code is:

 (2 cycles * 30%) + (18 cycles * 70%) + (10 cycles * 30%) = 16.2 clocks

• Predicated code is:

(5 cycles * 30%) + (18 cycles * 70%) = 14.1 clocks

In this case, if-conversion would decrease the execution cost by more than two clocks,
on average.

4.2.4.5 Overlapping Resource Usage

Before performing if-conversion, the programmer must consider the execution
resources consumed by predicated blocks in addition to considering flow-dependency
height. The resource availability height of a set of instructions is the minimum number
of cycles taken considering only the execution resources required to execute them.

The code below is derived from an if-then-else statement. Given the generic machine
model that has only two load/store (M) units. If a compiler predicates and combines
these two blocks, then the resource availability height through the block will be four
clocks since that is the minimum amount of time necessary to issue eight memory
operations:
then_clause:

ld r1=[r21] // Cycle 0
ld r2=[r22] // Cycle 0
st [r32]=r3 // Cycle 1
st [r33]=r4 ;;// Cycle 1
br end_if

else_clause:
ld r3=[r23] // Cycle 0
ld r4=[r24] // Cycle 0
st [r34]=r5 // Cycle 1
st [r35]=r6 ;;// Cycle 1

end_if:

As with the example in the previous section, assuming various misprediction rates and
taken branch penalties changes the decision as to when to predicate and when not to
predicate. One case is illustrated below.

4.2.4.6 Case 1

Suppose the branch condition mispredicts 10% of the time and that the predicated code
takes four clocks to execute. The average number of clocks for:

• Non-predicated code is: (10 cycles * 10%) + 2 cycles = 3 cycles

• Predicated code is: 4 cycles

Predicating this code would increase execution time even though the flow dependency
heights of the branch paths are equal.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:171

4.2.5 Guidelines for Removing Branches

The following if-conversion guidelines apply to cases where only local behavior of the
code and its execution profile are known:

1. The flow dependency and resource availability heights of both paths must be
considered when deciding whether to predicate or not.

2. If if-conversion increases the length of any control path through the original code
sequence, careful analysis using profile or misprediction data must be performed
to ensure that execution time of the converted code is equivalent to or better
than unpredicated code.

3. If if-conversion removes a branch that is mispredicted a significant percentage of
the time, the transformation frequently pays off even if the blocks are
significantly unbalanced since mispredictions are very expensive.

4. If the flow-dependeny heights of the paths being if-converted are nearly equal
and there are sufficient resources to execute both streams simultaneously,
if-conversion is often advantageous.

Although these guidelines are useful for optimizing segments of code, the behavior of
some programs is limited by non-local effects such as overall branch behavior,
sensitivity to code size, percentage of time spent servicing branch mispredictions, etc.
In these situations, the decision to use if-convert or perform other speculative
transformation becomes more involved.

4.3 Control Flow Optimizations

A common occurrence in programs is for several control flows to converge at one point
or for multiple control flows to start from one point. In the first case, multiple flows of
control are often computing the value of the same variable or register and the join point
represents the point at which the program needs to select the correct value before
proceeding. In the second case, multiple flows may begin at a point where several
independent paths are taken based on a set of conditions.

In addition to these multiway joins and branches, the computation of complex
compound conditions normally requires a tree-like computation to reduce several
conditions into one. The Itanium architecture provides special instructions that allow
such conditions to be computed in fewer tree levels.

A third control-flow related optimization uses predication to improve instruction
fetching by if-conversion to generate straight-line sequences that can be efficiently
fetched. The use and optimization of these cases is described in the remainder of this
section.

1:172 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

4.3.1 Reducing Critical Path with Parallel Compares

The computation of the compound branch condition shown below requires several
instructions on processors without special instructions:

if (rA || rB || rC || rD) {
/* If-block instructions */

}
/* after if-block */

The pseudo-code below, shows one possible solution uses a sequence of branches:
cmp.ne p1,p0 = rA,0
cmp.ne p2,p0 = rB,0

(p1) br.cond if_block
(p2) br.cond if_block

cmp.ne p3,p0 = rC,0
cmp.ne p4,p0 = rD,0

(p3) br.cond if_block
(p4) br.cond if_block

// after if-block

On many implementations based on the Itanium architecture, this sequence is likely to
require at least two cycles to execute if all the conditions are false, plus the possibility
of more cycles due to one or more branch mispredictions. Another possible sequence
computes an or-tree reduction:

or r1 = rA,rB
or r2 = rC,rD;;
or r3 = r1,r2;;
cmp.ne p1,p2 = r3,0

(p1) br if_block

This solution requires three cycles to compute the branch condition which can then be
used to branch to the if-block.

Note: It is also possible to predicate the if-block using p1 to avoid branch mispredic-
tions.

To reduce the cost of compound conditionals, the Itanium architecture has special
parallel compare instructions to optimize expressions that have and and or operations.
These compare instructions are special in that multiple and/or compare instructions are
allowed to target the same predicate within a single instruction group. This feature
allows the possibility that a compound conditional can be resolved in a single cycle.

For this usage model to work properly, the architecture requires that the programmer
ensure that during any given execution of the code, that all instructions that target a
given predicate register must either:

• Write the same value (0 or 1) or

• Do not write the target register at all.

This usage model means that sometimes a parallel compare may not update the value
of its target registers and thus, unlike normal compares, the predicates used in parallel
compares must be initialized prior to the parallel compare. Please see Part
I:, “Application Architecture Guide” for full information on the operation of parallel
compares.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:173

Initialization code must be placed in an instruction group prior to the parallel compare.
However, since the initialization code has no dependencies on prior values, it can
generally be scheduled without contributing to the critical path of the code.

The instructions below shows how to generate code for the example above using
parallel compares:

cmp.ne p1,p0 = r0,r0;; // initialize p1 to 0
cmp.ne.or p1,p0 = rA,r0
cmp.ne.or p1,p0 = rB,r0
cmp.ne.or p1,p0 = rC,r0
cmp.ne.or p1,p0 = rD,r0

(p1) br.cond if_block

It is also possible to use p1 to predicate the if-block in-line to avoid a possible
misprediction. More complex conditional expressions can also be generated with
parallel compares:

if ((rA < 0) && (rB == -15) && (rC > 0))
/* If-block instructions */

The assembly pseudo-code below shows a possible sequence for the C code above:
cmp.eq p1,p0=r0,r0;; // initialize p1 to 1
cmp.ne.and p1,p0=rB,-15
cmp.ge.and p1,p0=rA,r0
cmp.le.and p1,p0=rC,r0

When used correctly, and or compares write both target predicates with the same value
or do not write the target predicate at all. Another variation on parallel compare usage
is where both the if and else part of a complex conditional are needed:

if (rA == 0 || rB == 10)
r1 = r2 + r3;

else
r4 = r5 - r6;

Parallel compares have an andcm variant that computes both the predicate and its
complement simultaneously.

cmp.ne p1,p2 = r0,r0;; // initialize p1,p2
cmp.eq.or.andcmp1,p2 = rA,r0
cmp.eq.or.andcmp1,p2 = rB,10;;

(p1) add r1=r2,r3
(p2) sub r4=r5,r6

Clearly, these instructions can be used in other combinations to create more complex
conditions.

4.3.2 Reducing Critical Path with Multiway Branches

While there are no special instructions to support branches with multiple conditions and
multiple targets, the Itanium architecture has implicit support by allowing multiple
consecutive B-slot instructions within an instruction group.

1:174 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

An example uses a basic block with four possible successors. The following Itanium
architecture-based multi-target branch code uses a BBB bundle template and can
branch to either block B, block C, block D, or fall through to block A:
label_AA:

... // Instructions in block AA
{ .bbb
(p1) br.cond label_B
(p2) br.cond label_C
(p3) br.cond label_D
}

// Fall through to A
label_A:

... // Instructions in block A

The ordering of branches is important for program correctness unless all branches are
mutually exclusive, in which case the compiler can choose any ordering desired.

4.3.3 Selecting Multiple Values for One Variable or Register with
Predication

A common occurrence in programs is for a set of paths that compute different values
for the same variable to join and then continue. A variant of this is when separate paths
need to compute separate results but could otherwise use the same registers since the
paths are known to be complementary. The use of predication can optimize these
cases.

4.3.3.1 Selecting One of Several Values

When several control paths that each compute a different value of a single variable
meet, a sequence of conditionals is usually required to select which value will be used
to update the variable. The use of predication can efficiently implement this code
without branches:

switch (rW)
case 1:

rA = rB + rC;
break;

case 2:
rA = rE + rF;
break;

case 3:
rA = rH - rI;
break;

The entire switch-block above can be executed in a single cycle using predication if all
of the predicates have been computed earlier. Assume that if rW equals 1, 2, or 3, then
one of p1, p2, or p3 is true, respectively:
(p1) add rA=rB,rC
(p2) add rA=rE,rF
(p3) sub rA=rH,rI;;

Without this predication capability, numerous branches or conditional move operations
would be needed to collapse these values.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:175

The Itanium architecture allows multiple instructions to target the same register in the
same clock provided that only one of the instructions writing the target register is
predicated true in that clock. Similar capabilities exist for writing predicate registers, as
discussed in Section 4.3.1.

4.3.3.2 Reducing Register Usage

In some instances it is possible to use the same register for two separate computations
in the presence of predication. This technique is similar to the technique for allowing
multiple writers to store a value into the same register, although it is a register
allocation optimization rather than a critical path issue.

After if-conversion, it is particularly common for sequences of instructions to be
predicated with complementary predicates. The contrived sequence below shows
instructions predicated by p1 and p2, which are known by the compiler to be
complementary:
(p1) add r1=r2,r3
(p2) sub r5=r4,r56
(p1) ld8 r7=[r2]
(p2) ld8 r9=[r6];;
(p1) a use of r1
(p2) a use of r5
(p1) a use of r7
(p2) a use of r9

Assuming registers r1, r5, r7, and r9 are used for compiler temporaries, each of which
is live only until its next use, the preceding code segment can be rewritten as:
(p1) add r1=r2,r3
(p2) sub r1=r4,r56 // Reuse r1
(p1) ld8 r7=[r2]
(p2) ld8 r7=[r6];; // Reuse r7
(p1) a use of r1
(p2) a use of r1
(p1) a use of r7
(p2) a use of r7

The new sequence uses two fewer registers. With the 128 registers defined in the
architecture, this may not seem essential, but reducing register use can still reduce
program and register stack engine spills and fills that can be common in codes with
high instruction-level parallelism.

4.3.4 Improving Instruction Stream Fetching

Instructions flow through the pipeline most efficiently when they are executed in large
blocks with no taken branches. Whenever the instruction pointer needs to be changed,
the hardware may have to insert bubbles into the pipeline either while the target
prediction is taking place or because the target address is not computed until later in
the pipeline.

1:176 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

By using predication to reduce the number of control flow changes, the fetching
efficiency will generally improve. The only case where predication is likely to reduce
instruction cache efficiency is when there is a large increase in the number of
instructions fetched which are subsequently predicated off. Such a situation uses
instruction cache space for instructions that compute no useful results.

4.3.4.1 Instruction Stream Alignment

For many processors, when a program branches to a new location, instruction fetching
is performed on instruction cache lines. If the target of the branch does not start on a
cache line boundary, then fetching from that target will likely not retrieve an entire
cache line. This problem can be avoided if a programmer aligns instruction groups that
cross more than one bundle so that the instruction groups do not span cache line
boundaries. However, padding all labels would cause an unacceptable increase in code
size. A more practical approach aligns only tops of loops and commonly entered basic
blocks when the first instruction group extends across more than one bundle. That is, if
both of the following conditions are true at some label L, then padding previous
instruction groups so that L is aligned on a cache line boundary is recommended:

• The label is commonly branched to from out-of-line. Examples include tops of loops
and commonly executed else clauses.

• The instruction group starting at label L extends across more than one bundle.

To illustrate, assume code at label L in the segment below is not cache-aligned and that
a cache boundary occurs between the two bundles. If a program were to branch to L,
then execution may split issue after the third add instruction even though there are no
resource oversubscriptions or stops:
L:
{ .mii

add r1=r2,r3
add r4=r5,r6
add r7=r8,r9

}
{ .mfb

ld8 r14=[r56] ;;
nop.f
nop.b

}

On the other hand, if L were aligned on an even-numbered bundle, then all four
instructions at L could issue in one cycle.

4.4 Branch and Prefetch Hints

Branch and prefetch hints are architecturally defined to allow the compiler or hand
coder to provide extra information to the hardware. Compared to hardware, the
compiler has more time, looks at a wider instruction window (including the source), and
performs more analysis. Transfer of this knowledge to the processor can help to reduce
penalties associated with I-cache accesses and branch prediction.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:177

Two types of branch-related hints are defined by the Itanium architecture: branch
prediction hints and instruction prefetch hints. Branch prediction hints let the compiler
recommend the resources (if any) that should be used to dynamically predict specific
branches. With prefetch hints, the compiler can indicate the areas of the code that
should be prefetched to reduce demand I-cache misses.

Hints can be specified as completers on branch (br) and move to branch register
(abbreviated mov2br in this text since the actual mnemonic is mov br=xx). The hints
on branch instructions are the easiest to use since the instruction already exists and the
hint completer just has to be specified. mov2br instructions are used for indirect
branches. The exact interpretation of these hints is implementation specific although
the general behavior of hints is expected to be similar between processor generations.

It is also possible to re-write the hint fields on branches later using a binary rewriting
tools. This can occur statically or at execution time based on profile data without
changing the correctness of the program. This technique allows static hints to be
tailored for usage patterns that may not be fully known at compilation time or when the
binaries are first distributed.

4.5 Hints for Controlling Multi-threading

Some processors support multi-threading; that is, they support the simultaneous
execution of multiple threads (multiple logical processors) through a common set of
execution resources (data paths, functional units, TLBs, etc.). Functionally, each of
these hardware threads fully implements the Itanium architecture; therefore, software
need not be aware of multi-threading nor do anything special to support it. From
performance standpoint, there are a few circumstances where it may be beneficial for
software to provide information about its future resource requirements, which can be
done with the hint instruction. Such a hint could allow the processor to optimize
resource allocation among the hardware threads.

Note that, although not all implementations support all types of hint instruction, those
that do not support them execute the hint instruction as a nop, and hence there is little
penalty for software to provide these hints.

4.5.1 Wait Loops

Say a thread is waiting for another software thread to complete a task and, during that
time, doesn't expect to need significant processor resources but would like to receive its
fair share of resources once the task is complete. In such a situation, the waiting thread
can communicate this information to the processor as a hint. This encourages the
processor to allocate more processor resources to other threads of execution while this
thread is waiting.

Typically, the completion signal in question is a store, by some other software thread, to
a particular memory location. For example, a software thread may be waiting to acquire
a spinlock and may have little work to do until such time as it is able to acquire the lock.
A store to the spinlock in question may be an indication that the lock is now available
for this software thread to acquire.

1:178 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

This scenario can be hinted to the processor by executing an advanced load (ld.a or
ld.sa) to the address that this software thread is waiting on, and then by executing a
hint @pause instruction (in a subsequent instruction group). This encourages the
processor to devote more resources to other threads, yet if an entry is invalidated from
this thread's ALAT, normal processor resource allocation is resumed for this thread.

Resource allocation within the processor eventually reverts to a fair allocation, so
there's no need for software to hint that it is no longer in a wait loop. Conversely, while
software is in such a wait loop, it would be best to re-execute the hint @pause as part
of that loop, to continue to assert the hint for as long as that thread is waiting.

Note that if there is some high likelihood that the ALAT may contain a large number of
valid entries upon entering into a wait loop, there may be some advantage to removing
these (e.g., with an invala instruction) prior to executing the advanced load to the
address to be waited on. This may reduce the restoration of resource allocation to this
thread in cases where ALAT entries get invalidated other than the one for the address
being waited on, hence providing more processor resources to other threads.

4.5.2 Idle Loops

Another situation where a software thread expects not to need significant processor
resources for the next little while is when the software thread is executing an OS-kernel
idle loop. It can provide this information to the processor also by executing a hint
@pause instruction. This encourages the processor to allocate more processor resources
to other threads of execution for the next while.

Resource allocation within the processor eventually reverts to a fair allocation, so
there's no need for software to hint that it is no longer in an idle loop. Conversely, while
software is in such an idle loop, it would be best to re-execute the hint @pause as part
of that loop, to continue to assert the hint for as long as that thread is idle.

Note that if there is some high likelihood that the ALAT may contain a large number of
valid entries upon entering into an idle loop, there may be some advantage to removing
these (e.g., with an invala instruction) prior to entering the idle loop. This may reduce
the restoration of resource allocation to this thread in cases where these ALAT entries
get invalidated, hence providing more processor resources to other threads.

4.5.3 Critical Sections

The opposite case exists if software expects that, given extra resources for the next
period of time, overall system performance and throughput would be optimized. For
example, this software thread may be about to acquire a highly contested spinlock and
enter a critical section of code, and expeditious progress through that critical section
and the resultant speedy release of the spinlock may disproportionately benefit overall
system performance and throughput.

This scenario can be hinted to the processor by executing a hint @priority instruction.
This encourages the processor to devote more processor resources to this thread (at
the expense of other threads) for some period of time.

Volume 1, Part 2: Predication, Control Flow, and Instruction Stream 1:179

Resource allocation within the processor eventually reverts to a fair allocation, so
there's no need for software to hint that it is no longer in a critical section. Processors
that support this hint also ensure that it cannot be abused to affect overall longer-term
fairness of processor resource allocation.

4.6 Summary

This chapter has presented a wide variety of topics related to optimizing control flow
including predication, branch architecture, multiway branches, parallel compares,
instruction stream alignment, and branch hints. Although such topics could have been
presented in separate chapters, the interplay between the features is best understood
by their effects on each other.

Predication and its interplay on scheduling region formation is central to the
performance of the Itanium architecture. Unfortunately, discussion of compiler
algorithms of this nature are far beyond the scope of this document.

§

1:180 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

Volume 1, Part 2: Software Pipelining and Loop Support 1:181

Software Pipelining and Loop Support 5

5.1 Overview

The Itanium architecture provides extensive support for software-pipelined loops,
including register rotation, special loop branches, and application registers. When
combined with predication and support for speculation, these features help to reduce
code expansion, path length, and branch mispredictions for loops that can be software
pipelined.

The beginning of this chapter reviews basic loop terminology and instructions, and
describes the problems that arise when optimizing loops in the absence of architectural
support. Specific loop support features of the Itanium architecture are then introduced.
The remainder of this chapter describes the programming and optimization of various
type of loops.

5.2 Loop Terminology and Basic Loop Support

Loops can be categorized into two types: counted and while. In counted loops, the loop
condition is based on the value of a loop counter and the trip count can be computed
prior to starting the loop. In while loops, the loop condition is a more general
calculation (not a simple count) and the trip count is unknown. Both types are directly
supported in the architecture.

The Itanium architecture improves the performance of conventional counted loops by
providing a special counted loop branch (the br.cloop instruction) and the Loop Count
application register (LC). The br.cloop instruction does not have a branch predicate.
Instead, the branching decision is based on the value of the LC register. If the LC
register is greater than zero, it is decremented and the br.cloop branch is taken.

5.3 Optimization of Loops

In many loops, there are not enough independent instructions within a single iteration
to hide execution latency and make full use of the functional units. For example, in the
loop body below, there is very little ILP:
L1:

ld4 r4 = [r5],4;; // Cycle 0 load postinc 4
add r7 = r4,r9;; // Cycle 2
st4 [r6] = r7,4 // Cycle 3 store postinc 4
br.cloopL1;; // Cycle 3

In this code, all the instructions from iteration X are executed before iteration X+1 is
started. Assuming that the store from iteration X and the load from iteration X+1 are
independent memory references, utilization of the functional units could be improved
by moving independent instructions from iteration X+1 to iteration X, effectively
overlapping iteration X with iteration X+1.

1:182 Volume 1, Part 2: Software Pipelining and Loop Support

This section describes two general methods for overlapping loop iterations, both of
which result in code expansion on traditional architectures. The code expansion
problem is addressed by loop support features in the Itanium architecture that are
explored later in this chapter. The loop above will be used as a running example in the
next few sections.

5.3.1 Loop Unrolling

Loop unrolling is a technique that seeks to increase the available instruction level
parallelism by making and scheduling multiple copies of the loop body together. The
registers in each copy of the loop body are given different names to avoid unnecessary
WAW and WAR data dependencies. The code below shows the loop from our example
on page 1:181 after unrolling twice (total of two copies of the original loop body) and
instruction scheduling, assuming two memory ports and a two cycle latency for loads.
For simplicity, assume that the loop trip count is a constant N that is a multiple of two,
so that no exit branch is required after the first copy of the loop body:
L1:

ld4 r4 = [r5],4;; // Cycle 0
ld4 r14 = [r5],4;; // Cycle 1
add r7 = r4,r9;; // Cycle 2
add r17 = r14,r9 // Cycle 3
st4 [r6] = r7,4;; // Cycle 3
st4 [r6] = r17,4 // Cycle 4
br.cloopL1;; // Cycle 4

The above code does not expose as much ILP as possible. The two loads are serialized
because they both use and update r5. Similarly the two stores both use and update r6.
A variable which is incremented (or decremented) once each iteration by the same
amount is called an induction variable. The single induction variable r5 (and similarly
r6) can be expanded into two registers as shown in the code below:

add r15 = 4,r5
add r16 = 4,r6;;

L1: ld4 r4 = [r5],8 // Cycle 0
ld4 r14 = [r15],8;; // Cycle 0
add r7 = r4,r9 // Cycle 2
add r17 = r14,r9;; // Cycle 2
st4 [r6] r7,8 // Cycle 3
st4 [r16] = r17,8 // Cycle 3
br.cloopL1;; // Cycle 3

Compared to the original loop on page 1:181, twice as many functional units are
utilized and the code size is twice as large. However, no instructions are issued in cycle
1 and the functional units are still under utilized in the remaining cycles. The

Volume 1, Part 2: Software Pipelining and Loop Support 1:183

utilization can be increased by unrolling the loop more times, but at the cost of further
code expansion. The loop below is unrolled four times (assuming the trip count is
multiple of four):

add r15 = 4,r5
add r25 = 8,r5
add r35 = 12,r5
add r16 = 4,r6
add r26 = 8,r6
add r36 = 12,r6;;

L1: ld4 r4 = [r5],16 // Cycle 0
ld4 r14 = [r15],16;; // Cycle 0
ld4 r24 = [r25],16 // Cycle 1
ld4 r34 = [r35],16;; // Cycle 1
add r7 = r4,r9 // Cycle 2
add r17 = r14,r9;; // Cycle 2
st4 [r6] = r7,16 // Cycle 3
st4 [r16] = r17,16 // Cycle 3
add r27 = r24,r9 // Cycle 3
add r37 = r34,r9;; // Cycle 3
st4 [r26] = r27,16 // Cycle 4
st4 [r36] = r37,16 // Cycle 4
br.cloop L1;; // Cycle 4

The two memory ports are now utilized in every cycle except cycle 2. Four iterations are
now executed in five cycles verses the two iterations in four cycles for the previous
version of the loop.

5.3.2 Software Pipelining

Software pipelining is a technique that seeks to overlap loop iterations in a manner that
is analogous to hardware pipelining of a functional unit. Each iteration is partitioned into
stages with zero or more instructions in each stage. A conceptual view of a single
pipelined iteration of the loop from page 1:181 in which each stage is one cycle long is
shown below:

stage 1:ld4 r4 = [r5],4
stage 2:--- // empty stage
stage 3:add r7 = r4,r9
stage 4:st4 [r6] = r7,4

The following is a conceptual view of five pipelined iterations:
 1 2 3 4 5 Cycle
--
ld4 X
 ld4 X+1
add ld4 X+2
st4 add ld4 X+3

st4 add ld4 X+4
st4 add X+5

st4 add X+6
 st4 X+7

The number of cycles between the start of successive iterations is called the initiation
interval (II). In the above example, the II is one. Each stage of a pipelined iteration is II
cycles long. Most of the examples in this chapter utilize modulo scheduling, which is a
particular form of software pipelining in which the II is a constant and every iteration of

1:184 Volume 1, Part 2: Software Pipelining and Loop Support

the loop has the same schedule. It is likely that software pipelining algorithms other
than modulo scheduling could benefit from the loop support features. Therefore the
examples in this chapter are discussed in terms of software pipelining rather than
modulo scheduling.

Software pipelined loops have three phases: prolog, kernel, and epilog, as shown
below:

 1 2 3 4 5 Phase
--
ld4
 ld4 Prolog
add ld4
--
st4 add ld4 Kernel

st4 add ld4
--

st4 add
st4 add Epilog

 st4

During the prolog phase, a new loop iteration is started every II cycles (every cycle for
the above example) to fill the pipeline. During the first cycle of the prolog, stage 1 of
the first iteration executes. During the second cycle, stage 1 of the second iteration and
stage 2 of the first iteration execute, etc. By the start of the kernel phase, the pipeline
is full. Stage 1 of the fourth iteration, stage 2 of the third iteration, stage 3 of the
second iteration, and stage 4 of the first iteration execute. During the kernel phase, a
new loop iteration is started, and another is completed every II cycles. During the
epilog phase, no new iterations are started, but the iterations already in progress are
completed, draining the pipeline. In the above example, iterations 3-5 are completed
during the epilog phase.

The software pipeline is coded as a loop that is very different from the original source
code loop. To avoid confusion when discussing loops and loop iterations, we use the
term source loop and source iteration to refer back to the original source code loop, and
the term kernel loop and kernel iteration to refer to the loop that implements the
software pipeline.

In the above example, the load from the second source iteration is issued before result
of the first load is consumed. Thus, in many cases, loads from successive iterations of
the loop must target different registers to avoid overwriting existing live values. In
traditional architectures, this requires unrolling of the kernel loop and software
renaming of the registers, resulting in code expansion. Furthermore, in traditional
architectures, separate blocks of code are generated for the prolog, kernel, and epilog
phases, resulting in additional code expansion.

5.4 Loop Support Features in the Intel® Itanium®
Architecture

The code expansion that results from loop optimizations (such as software pipelining
and loop unrolling) on traditional architectures can increase the number of instruction
cache misses, thus reducing overall performance. The loop support features in the

Volume 1, Part 2: Software Pipelining and Loop Support 1:185

Itanium architecture allow some loops to be software pipelined without code expansion.
Register rotation provides a renaming mechanism that reduces the need for loop
unrolling and software renaming of registers. Special software pipelined loop branches
support register rotation and, combined with predication, reduce the need to generate
separate blocks of code for the prolog and epilog phases.

5.4.1 Register Rotation

Register rotation renames registers by adding the register number to the value of a
register rename base (rrb) register contained in the CFM. The rrb register is
decremented when certain special software pipelined loop branches are executed at the
end of each kernel iteration. Decrementing the rrb register makes the value in register
X appear to move to register X+1. If X is the highest numbered rotating register, its
value wraps to the lowest numbered rotating register.

A fixed-sized area of the predicate and floating-point register files (p16-p63 and
f32-f127), and a programmable-sized area of the general register file are defined to
rotate. The size of the rotating area in the general register file is determined by an
immediate in the alloc instruction and must be either zero or a multiple of 8, up to a
maximum of 96 registers. The lowest numbered rotating register in the general register
file is r32. An rrb register is provided for each of the three rotating register files:
CFM.rrb.gr for the general registers; CFM.rrb.fr for the floating-point registers;
CFM.rrb.pr for the predicate registers. The software pipelined loop branches
decrement all the rrb registers simultaneously.

Below is an example of register rotation. The swp_branch pseudo-instruction
represents a software pipelined loop branch:
L1: ld4 r35 = [r4],4 // post increment by 4

st4 [r5] = r37,4 // post increment by 4
swp_branchL1 ;;

The value that the load writes to r35 is read by the store two kernel iterations (and two
rotations) later as r37. In the meantime, two more instances of the load are executed.
Because of register rotation, those instances write their result to different registers and
do not modify the value needed by the store.

The rotation of predicate registers serves two purposes. The first is to avoid
overwriting a predicate value that is still needed. The second purpose is to control the
filling and draining of the pipeline. To do this, a programmer assigns a predicate to each
stage of the software pipeline to control the execution of the instructions in that stage.
This predicate is called the stage predicate. For counted loops, p16 is architecturally
defined to be the predicate for the first stage, p17 is defined to be the predicate for the
second stage, etc. A conceptual view of a pipelined source iteration of the example
counted loop on page 1:181 is shown below. Each stage is one cycle long and the
stage predicates are shown:

stage 1:(p16) ld4 r4 = [r5],4
stage 2:(p17) --- // empty stage
stage 3:(p18) add r7 = r4,r9
stage 4:(p19) st4 [r6] = r7,4

A register rotation takes place at the end of each stage (when the software-pipelined
loop branch is executed in the kernel loop). Thus a 1 written to p16 enables the first
stage and then is rotated to p17 at the end of the first stage to enable the second stage

1:186 Volume 1, Part 2: Software Pipelining and Loop Support

for the same source iteration. Each one written to p16 sequentially enables all the
stages for a new source iteration. This behavior is used to enable or disable the
execution of the stages of the pipelined loop during the prolog, kernel, and epilog
phases as described in the next section.

5.4.2 Note on Initializing Rotating Predicates

In this chapter, the instruction mov pr.rot = immed is used to initialize rotating
predicates. This instruction ignores the value of CFM.rrb.pr. Thus, the examples in this
chapter are written assuming that CFM.rrb.pr is always zero prior to the initialization of
predicate registers using mov pr.rot = immed.

5.4.3 Software-pipelined Loop Branches

The special software-pipelined loop branches allow the compiler to generate very
compact code for software-pipelined loops by supporting register rotation and by
controlling the filling and draining of the software pipeline during the prolog and epilog
phases. Generally speaking, each time a software-pipelined loop branch is executed,
the following actions take place:

1. A decision is made on whether or not to continue kernel loop execution.

2. p16 is set to a value to control execution of the stages of the software pipeline
(p63 is written by the branch, and after rotation this value will be in p16).

3. The registers are rotated (rrb registers are decremented).

4. The Loop Count (LC) and/or the Epilog Count (EC) application registers are
selectively decremented.

There are two types of software-pipelined loop branches: counted and while.

5.4.3.1 Counted Loop Branches

Figure 5-1 shows a flowchart for modulo-scheduled counted loop branches.

During the prolog and kernel phase, a decision to continue kernel loop execution means
that a new source iteration is started. Register rotation must occur so that the new
source iteration does not overwrite registers that are in use by prior source iterations
that are still in the pipeline. p16 is set to 1 to enable the stages of the new source
iteration. LC is decremented to update the count of remaining source iterations. EC is
not modified.

During the epilog phase, the decision to continue loop execution means that the
software pipeline has not yet been fully drained and execution of the source iterations
in progress must continue. Register rotation must continue because the remaining
source iterations are still writing results and the consumers of the results expect
rotation to occur. p16 is now set to 0 because there are no more new source iterations
and the instructions that correspond to non-existent source iterations must be disabled.
EC contains the count of the remaining execution stages for the last source iteration
and is decremented during the epilog. For most loops, when a software pipelined loop
branch is executed with EC equal to 1, it indicates that the pipeline has been drained

Volume 1, Part 2: Software Pipelining and Loop Support 1:187

and a decision is made to exit the loop. The special case in which a software-pipelined
loop branch is executed with EC equal to 0 can occur in unrolled software-pipelined
loops if the target of the cexit branch is set to the next sequential bundle.

There are two types of software-pipelined loop branches for counted loops. br.ctop is
taken when a decision to continue kernel loop execution is made, and is not taken
otherwise. It is used when the loop execution decision is located at the bottom of the
loop. br.cexit is not taken when a decision to continue kernel loop execution is made,
and is taken otherwise. It is used when the loop execution decision is located
somewhere other than the bottom of the loop.

5.4.3.2 Counted Loop Example

A conceptual view of a pipelined iteration of the example counted loop on page 1:181
with II equal to one is shown below:

stage 1:(p16) ld4 r4 = [r5],4
stage 2:(p17) --- // empty stage
stage 3:(p18) add r7 = r4,r9
stage 4:(p19) st4 [r6] = r7,4

To generate an efficient pipeline, the compiler must take into account the latencies of
instructions and the available functional units. For this example, the load latency is two
and the load and add are scheduled two cycles apart. The pipeline below is coded
assuming there are two memory ports and the loop count is 200.

Figure 5-1. ctop and cexit Execution Flow

000915

EC?

LC?

LC - - LC = LCLC = LC LC = LC

EC = EC EC - - EC - - EC = EC

PR[63] = 0PR[63] = 0PR[63] = 0PR[63] = 1

RRB - - RRB - - RRB - - RRB = RRB

ctop, cexit

 == 0 (epilog)

! = 0

> 1 == 0

==1

(prolog / kernel)
(special unrolled loops)

ctop: branch
cexit: fall-thru

ctop: fall-thru
cexit: branch

1:188 Volume 1, Part 2: Software Pipelining and Loop Support

Note: Rotating GRs have now been included in the code (the code directly preceding
did not). Also, induction variables that are post incremented must be allocated
to the static portion of the register file:

mov lc = 199 // LC =loop count - 1
mov ec = 4 // EC =epilog stages + 1
mov pr.rot = 1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ld4 r32 = [r5],4 // Cycle 0
(p18) add r35 = r34,r9 // Cycle 0
(p19) st4 [r6] = r36,4 // Cycle 0

br.ctop L1;; // Cycle 0

The memory ports are fully utilized. Table 5-1 shows a trace of the execution of this
loop.

In cycle 3, the kernel phase is entered and the fourth iteration of the kernel loop
executes the ld4, add, and st4 from the fourth, second, and first source iterations
respectively. By cycle 200, all 200 loads have been executed, and the epilog phase is
entered. When the br.ctop is executed in cycle 202, EC is equal to 1. EC is
decremented, the registers are rotated one last time, and execution falls out of the
kernel loop.

Note: After this final rotation, EC and the stage predicates (p16 - p19) are 0.

It is desirable to allocate variables that are loop variant to the rotating portion of the
register file whenever possible to preserve space in the static portion for loop invariant
variables. Induction variables that are post incremented must be allocated to the static
portion of the register file.

5.4.3.3 While Loop Branches

Figure 5-2 shows the flowchart for while loop branches.

Table 5-1. ctop Loop Trace

Cycle
Port/Instructions State before br.ctop

M I M B p16 p17 p18 p19 LC EC

0 ld4 br.ctop 1 0 0 0 199 4

1 ld4 br.ctop 1 1 0 0 198 4

2 ld4 add br.ctop 1 1 1 0 197 4

3 ld4 add st4 br.ctop 1 1 1 1 196 4

… … … … … … … … … … …

100 ld4 add st4 br.ctop 1 1 1 1 99 4

… … … … … … … … … … …

199 ld4 add st4 br.ctop 1 1 1 1 0 4

200 add st4 br.ctop 0 1 1 1 0 3

201 add st4 br.ctop 0 0 1 1 0 2

202 st4 br.ctop 0 0 0 1 0 1

... 0 0 0 0 0 0

Volume 1, Part 2: Software Pipelining and Loop Support 1:189

There are a few differences in the operation of the while loop branch compared to the
counted loop branch. The while loop branch does not access LC — a branch predicate
determines the behavior of this branch instead. During the kernel and epilog phases,
the branch predicate is one and zero respectively. During the prolog phase, the branch
predicate may be either zero or one depending on the scheme used to program the
while loop. Also, p16 is always set to zero after rotation. The reasons for these
differences are related to the nature of while loops and will be explained in more depth
with an example in a later section.

5.4.4 Terminology Review

The terms below were introduced in the preceding sections:

Initiation Interval (II)
The number of cycles between the start of successive source iterations in
a software pipelined loop. Each stage of the pipeline is II cycles long.

Prolog The first phase of a software-pipelined loop, in which the pipeline is filled.

Kernel The second phase of a software-pipelined loop, in which the pipeline is full.

Epilog The third phase of a software-pipelined loop, in which the pipeline is
drained.

Source Iteration
An iteration of the original source code loop.

Kernel Iteration
An iteration of the loop that implements the software pipeline.

Register Rotation
A form of register renaming that is visible to software. Registers are
renamed with respect to a register rename base that is decremented.

Figure 5-2. wtop and wexit Execution Flow

000916

EC?

PR[qp]?

EC = EC EC - -EC - - EC = EC

PR[63] = 0 PR[63] = 0 PR[63] = 0 PR[63] = 0

RRB - - RRB - - RRB - - RRB = RRB

wtop, wexit

 == 0 (prolog / epilog)

== 1

> 1 == 0

==1

(prolog /
kernel) (special unrolled loops)

wtop: branch
wexit: fall-thru

wtop: fall-thru
wexit: branch

(prolog /
epilog) (epilog)

1:190 Volume 1, Part 2: Software Pipelining and Loop Support

Induction Variable
Value that is incremented (or decremented) once per source iteration by
the same amount.

5.5 Optimization of Loops in the Intel® Itanium®
Architecture

Register rotation, predication, and the software pipelined loop branches allow the
generation of compact, yet highly parallel code. Speculation can further increase loop
performance by removing dependency barriers that limit the throughput of software
pipelined loops. Register rotation removes the requirement that kernel loops be
unrolled to allow software renaming of the registers. However in some cases
performance can be increased by unrolling the source loop prior to software pipelining,
or by generating explicit prolog and/or epilog blocks. The remainder of this chapter
discusses loop optimizations.

5.5.1 While Loops

The programming scheme for while loops depends upon the structure of the loop. This
section discusses do-while loops, in which the loop condition is computed at the bottom
of the loop. Optimizing compilers often transform while loops (where the condition is
computed at the top of the loop) into do-while loops by moving the condition
computation to the bottom of the loop and placing a copy of the condition computation
prior to the loop to reduce the number of branches in the loop. The remainder of this
section refers to such loops simply as while loops. Below is a simple while loop:
L1: ld4 r4 = [r5],4;; // Cycle 0

st4 [r6] = r4,4 // Cycle 2
cmp.ne p1,p0 = r4,r0 // Cycle 2

(p1) br L1;; // Cycle 2

A conceptual view of a pipelined iteration of this loop with II equal to one is shown
below:
stage 1:ld4 r4 = [r5],4
stage 2:--- // empty stage
stage 3:st4 [r6]= r4,4

cmp.ne.unc p1,p0 = r4,r0
(p1) br L1

The following is a conceptual view of four overlapped source iterations assuming the
load and store are independent memory references. The store, compare, and branch
instructions in stage two are represented by the pseudo-instruction scb:
 1 2 3 4 Cycle
--
ld4 X
 ld4.s X+1
scb ld4.s X+2

scb ld4.s X+3
scb X+4

scb X+5

Volume 1, Part 2: Software Pipelining and Loop Support 1:191

Notice that the load for the second source iteration is executed before the compare and
branch of the first source iteration. That is, the load (and the update of r5) is
speculative. The loop condition is not computed until cycle X+2, but in order to
maximize the use of resources, it is desirable to start the second source iteration at
cycle X+1. Without the support for control speculation in the Itanium architecture, the
second source iteration could not be started until cycle X+3.

The computation of the loop condition for while loops is very different from that of
counted loops. In counted loops, it is possible to compute the loop condition in one
cycle using a counted loop branch. This is what a br.ctop instruction does when it sets
p16. In while loops, a compare must compute the loop condition and set the stage
predicates. The stages prior to the one containing the compare are called the
speculative stages of the pipeline, because it is not possible for the compare to
completely control the execution of these stages. Therefore, the stage predicate set by
the compare is used (after rotation) to control the first non-speculative stage of the
pipeline.

The pipelined version of the while loop on page 1:190 is shown below. A check for the
speculative load is included:

mov ec = 2
mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0

L1:
ld4.s r32 = [r5],4 // Cycle 0

(p18) chk.s r34, recovery // Cycle 0
(p18) cmp.ne p17,p0 = r34,r0 // Cycle 0
(p18) st4 [r6] = r34,4 // Cycle 0
(p17) br.wtop.sptkL1;; // Cycle 0
L2:

To explain why the kernel loop is programmed the way it is, it is helpful to examine a
trace of the execution of the loop (assume there are 200 source iterations) shown in
Table 5-2.

There is no stage predicate assigned to the load because it is speculative. The compare
sets p17. This is the branch predicate for the current iteration and, after rotation, the
stage predicate for the first non-speculative stage (stage three) of the next source
iteration. During the prolog, the compare cannot produce its first valid result until cycle
two. The initialization of the predicates provides a pipeline that disables the compare
until the first source iteration reaches stage two in cycle two. At that point the
compare starts generating stage predicates to control the non-speculative stages of the
pipeline. Notice that the compare is conditional. If it were unconditional, it would
always write a zero to p17 and the pipeline would not get started correctly.

Table 5-2. wtop Loop Trace

Cycle
Port/Instructions State before br.wtop

M I I M B p16 p17 p18 EC

0 ld4.s br.wtop 1 0 0 2

1 ld4.s br.wtop 0 1 0 1

2 ld4.s cmp chk st4 br.wtop 0 1 1 1

1:192 Volume 1, Part 2: Software Pipelining and Loop Support

The executions of br.wtop in the first two cycles of the prolog do not correspond to any
of the source iterations. Their purpose is simply to continue the kernel loop until the
first valid loop condition can be produced. In cycle one, the branch predicate p17 is
one. For this programming scheme, the branch predicate of the br.wtop is always a
one during the last speculative stage of the first source iteration. During all the prior
stages, the branch predicate is zero. If the branch predicate is zero, the br.wtop
continues the kernel loop only if EC is greater than one. It also decrements EC. Thus EC
must be initialized to (# epilog stages + # speculative pipeline stages). In the above
example, this is 0 + 2 = 2.

In cycle 201, the compare for the 200th source iteration is executed. Since this is the
final source iteration, the result of the compare is a zero and p17 is unmodified. The
zero that was rotated into p17 from p16 causes the br.wtop to fall through to the loop
exit. EC is decremented and the registers are rotated one last time.

In the above example, there are no epilog stages. As soon as the branch predicate
becomes zero, the kernel loop is exited.

5.5.2 Loops with Predicated Instructions

Instructions that already have predicates in the source loop are not assigned stage
predicates. They continue to be controlled by compare instructions in the loop body. For
example, the following loop contains predicated instructions:
L1: ldfs f4 = [r5],4

ldfs f9 = [r8],4;;
fcmp.ge.unc p1,p2 = f4,f9;;

(p1) stfs [r9] = f4, 4
(p2) stfs [r9] = f9, 4

br.cloopL1 ;;

3 ld4.s cmp chk st4 br.wtop 0 1 1 1

… … … … … … … … …

100 ld4.s cmp chk st4 br.wtop 0 1 1 1

… … … … … … … … …

199 ld4.s cmp chk st4 br.wtop 0 1 1 1

200 ld4.s cmp chk st4 br.wtop 0 1 1 1

201 ld4.s cmp chk st4 br.wtop 0 0 1 1

0 0 0 0

Table 5-2. wtop Loop Trace

Cycle
Port/Instructions State before br.wtop

M I I M B p16 p17 p18 EC

Volume 1, Part 2: Software Pipelining and Loop Support 1:193

Below is a possible pipeline with an II of 2, assuming a floating-point load latency of 9
cycles:
stage 1:
(p16) ldfs f4 = [r5],4
(p16) ldfs f9 = [r8],4;;

--- // empty cycle
stage 2-4: --- // empty stages
stage 5: --- // empty cycle
(p20) fcmp.ge.unc p1,p2 = f4,f9;;
stage 6: --- // empty cycle
(p1) stfs [r9] = f4, 4
(p2) stfs [r9] = f9, 4

The following is the code to implement the pipeline:
mov lc = 199 // LC = loop count - 1
mov ec = 6 // EC = epilog stages + 1
mov pr.rot=1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ldfs f32 = [r5],4
(p16) ldfs f38 = [r8],4;;
(p32) stfs [r9] = f37, 4
(p20) fcmp.ge.uncp31,p32 = f36,f42
(p33) stfs [r9] = f43, 4
L2: br.ctop.sptkL1;;

5.5.3 Multiple-exit Loops

All of the example loops discussed so far have a single exit at the bottom of the loop.
The loop below contains multiple exits — an exit at the bottom associated with the loop
closing branch, and an early exit in the middle:
L1: ld4 r4 = [r5],4;;

ld4 r9 = [r4];;
cmp.eq.unc p1,p0 = r9,r7

(p1) br.cond exit // early exit
add r8 = -1,r8;;
cmp.ge.unc p3,p0 = r8,r0

(p3) br.cond L1;;

Loops with multiple exits require special care to ensure that the pipeline is correctly
drained when the early exit is taken.There are two ways to generate a pipelined version
of the above loop: (1) convert it to a single exit loop, or (2) pipeline it with the multiple
exits explicitly present.

1:194 Volume 1, Part 2: Software Pipelining and Loop Support

5.5.3.1 Converting Multiple Exit Loops to Single Exit Loops

The first is to transform the multiple exit loop into a single exit loop. In the source loop,
execution of the add, the second compare and the second branch is guarded by the first
branch. The loop can be transformed into a single exit loop by using predicates to guard
the execution of these instructions and moving the early exit branch out of the loop as
shown below:
L1: ld4 r4 = [r5],4;;

ld4 r9 = [r4];;
cmp.eq.uncp1,p2 = r9,r7
add r8 = -1,r8;;

(p2) cmp.ge.unc p3,p0 = r8,r0
(p3) br.cond L1;;
(p1) br.cond exit // early exit if p1 is 1

The computation of p3 determines if either exit of the source loop would have been
taken. If p3 is zero, the loop is exited and p1 is used to determine which exit was
actually taken. The add is executed speculatively (it is not guarded by p2) to keep the
dependency from the cmp.eq to the add from limiting the II. It is assumed that either
r8 is not live out at the early exit or that compensation code is added at the target of
the early exit. The pipeline for this loop is shown below with the stage predicate
assignments but no other rotating register allocation. The compare and the branch at
the end of stage 4 are not assigned stage predicates because they already have
qualifying predicates in the source loop:
stage 1:ld4.s r4 = [r5],4;; // II = 2

--- // empty cycle
stage 2:--- // empty cycle

ld4.s r9 = [r4];;
stage 3:--- // empty stage
stage 4:
(p19) add r8 = -1,r8
(p19) cmp.eq.uncp1,p2 = r9,r7;;
(p2) cmp.ge.uncp3,p0 = r8,r0
(p3) br.cond L1;;

The code to implement this pipeline is shown below complete with the chk instruction:
mov ec = 3
mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0

L1: ld4.s r32 = [r5],4 // Cycle 0
(p19) chk.s r36, recovery // Cycle 0
(p19) add r8 = -1,r8 // Cycle 0
(p19) cmp.eq.unc p31,p32 = r36,r7;; // Cycle 0

ld4.s r34 = [r33] // Cycle 1
(p32) cmp.ge p18,p0 = r8,r0 // Cycle 1
L2:
(p18) br.wtop.sptk L1;; // Cycle 1
(p32) br.cond exit // early exit if p32 is 1

Note: When the loop is exited, one final rotation occurs, rotating the value in p31 to
p32. Thus, p32 is used as the branch predicate for the early exit branch.

Volume 1, Part 2: Software Pipelining and Loop Support 1:195

5.5.3.2 Pipelining with Explicit Multiple Exits

The second approach is to combine the last three instructions in the loop into a
br.cloop instruction and then pipeline the loop. The pipeline using this approach is
shown below:
stage 1: ld4.s r4 = [r5],4;; // II = 1
stage 4: ld4.s r9 = [r4];;
stage 6: cmp.eq.unc p1,p0 = r9,r7
(p1) br.cond exit

br.cloop L1;;

There are five speculative stages in this pipeline because a non-speculative decision to
initiate another loop iteration cannot be made until the br.cond and br.cloop are
executed in stage 6. The code to implement this pipeline is shown below assuming a
trip count of 200:

mov lc = 204
mov ec = 1
mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0

L1:
ld4.s r32 = [r5],4 // Cycle 0

(p21) chk.s r38, recovery // Cycle 0
(p21) cmp.eq.uncp1,p0 = r38,r7 // Cycle 0

ld4.s r36 = [r35] // Cycle 0
(p1) br.cond exit // Cycle 0
L2: br.ctop.sptkL1; // Cycle 0

When the kernel loop is exited at either the br.cond or the br.ctop, the last source
iteration is complete. Thus, EC is initialized to 1 and there is no explicit epilog block
generated for the early exit. The LC register is initialized to five more than 199
because there are five speculative stages. The purpose of the first five executions of
br.ctop is simply to keep the loop going until the first valid branch predicate is
generated for the br.cond. During each of these executions, LC is decremented, so five
must be added to the LC initialization amount to compensate.

A smaller II is achieved with the second approach. This pipelined code will also work if
LC is initialized to 199 and EC is initialized to 6. However, if the early exit is taken, LC
will have been decremented too many times and will need to be adjusted if it is used at
the target of the early exit. If there is any epilog when the early exit is taken, that
epilog must be explicit.

5.5.4 Software Pipelining Considerations

There may be instances where it may not be desirable to pipeline a loop. Software
pipelining increases the throughput of iterations, but may increase the time required to
complete a single iteration. As a result, loops with very small trip counts may
experience decreased performance when pipelined. For example, consider the following
loop:
L1: ld4 r4 = [r5],4 // Cycle 0

ld4 r7 = [r8],4;; // Cycle 0
st4 [r6] = r4,4 // Cycle 2
st4 [r9] = r7,4 // Cycle 2
br.cloop L1;; // Cycle 2

1:196 Volume 1, Part 2: Software Pipelining and Loop Support

The following is a possible pipeline with an II of 2:
stage 1: ld4 r4 = [r5],4 // Cycle 0

ld4 r7 = [r8],4;; // Cycle 0
--- // empty cycle

stage 2: --- // empty cycle
st4 [r6] = r4,4 // Cycle 3
st4 [r9] = r7,4;; // Cycle 3

In the source loop, one iteration is completed every three cycles. In the software
pipelined loop, it takes four cycles to complete the first iteration. Thereafter, iterations
are completed every two cycles. If the trip count is two, the execution time of both
versions of the loop is the same, six cycles. If the average trip count of the loop is less
than two, the software pipelined version of the loop is slower than the source loop.

In addition, it may not be desirable to pipeline a floating-point loop that contains a
function call. The number of floating-point registers used by the loop is not known until
after the loop is pipelined. After pipelining, it may be difficult to find empty slots for the
instructions needed to save and restore the caller-saved floating-point registers across
the function call.

5.5.5 Software Pipelining and Advanced Loads

Advanced loads allow some code that is likely to be invariant to be removed from loops,
thus reducing the resource requirements of the loop. Use of advanced loads also can
reduce the critical path through the iterations, allowing a smaller II to be achieved. See
Chapter 3, “Memory Reference” for more information on advanced loads. However,
caution must be exercised when using advanced loads with register rotation. For this
discussion, we assume an ALAT with 32 entries.

5.5.5.1 Capacity Limitations

An advanced load with a destination that is a rotating register targets a different
physical register and allocates a new ALAT entry for each kernel iteration. For
example, the simple loop below replaces 32 ALAT entries in 32 iterations:
L1:
(p16) ld4.a r32 = [r8]
(p47) ld4.c r63 = [r8]

br.ctop L1;;

To avoid unnecessary ALAT misses, the check load or advanced load check must be
executed before a later advanced load causes a replacement of the entry being
checked. In the simple loop above, the unnecessary ALAT misses do not occur because
the check load is done within 31 iterations of the advanced load. In the example below,
an ALAT miss is encountered for every check load because the advanced load replaces
an entry just before the corresponding check load is executed:
L1:
(p16) ld4.a r32 = [r8]
(p48) ld4.c r64 = [r8]

br.ctop L1;;

Volume 1, Part 2: Software Pipelining and Loop Support 1:197

5.5.5.2 Conflicts in the ALAT

Using an advanced load to remove a likely invariant load from a loop while advancing
another load inside the loop results in poor performance if the latter load targets a
rotating register. The advanced load that targets the rotating register will eventually
invalidate the ALAT entry for the loop invariant load. Thereafter, every execution of the
check load for the loop invariant load will cause an ALAT miss.

When more than one advanced load in the loop targets a rotating register, the registers
must be assigned and the register lifetimes controlled so that the check load for a
particular advanced load X is executed before any of the other advanced loads can
invalidate the entry allocated by load X. For example, the following loop successfully
targets rotating registers with two advanced loads without any ALAT misses because
the two advanced load – check load pairs never create more than 32 simultaneously
live ALAT entries:
L1:
(p16) ld4.a r32 = [r8]
(p31) ld4.c r47 = [r8]
(p16) ld4.a r48 = [r9]
(p31) ld4.c r63 = [r9]

 br.ctop L1;;

When the code cannot be arranged to avoid ALAT misses, it may be best to assign static
registers to the destinations of the advanced loads and unroll the loop to explicitly
rename the destinations of the advanced loads where necessary. The following
example shows how to unroll the loop to avoid the use of rotating registers. The loop
has an II equal to 1 and the check load is executed one cycle (and one rotation) after
the advanced load:
L1:
(p16) ld4.a r33 = [r8]
(p17) ld4.c r34 = [r8]

br.ctop L1;;

Static registers can be assigned to the destinations of the loads if the loop is unrolled
twice:
L1:
(p16) ld4.a r3 = [r8]
(p17) ld4.c r4 = [r8]

br.cexit L2;;
(p16) ld4.a r4 = [r8]
(p17) ld4.c r3 = [r8]

br.ctop L1;;
L2: //

Rotating registers could still be used for the values that are not generated by advanced
loads. The effect of this unrolling on instruction cache performance must be considered
as part of the cost of advancing a load.

1:198 Volume 1, Part 2: Software Pipelining and Loop Support

5.5.6 Loop Unrolling Prior to Software Pipelining

In some cases, higher performance can be achieved by unrolling the loop prior to
software pipelining. Loops that are resource constrained can be improved by unrolling
such that the limiting resource is more fully utilized. In the following example if we
assume the target processor has only two memory units, the loop performance is
bound by the number of memory units:
L1: ld4 r4 = [r5],4 // Cycle 0

ld4 r9 = [r8],4;; // Cycle 0
add r7 = r4,r9;; // Cycle 2
st4 [r6] = r7,4 // Cycle 3
br.cloop L1;; // Cycle 3

A pipelined version of this loop must have an II of at least two because there are three
memory instructions, but only two memory units. If the loop is unrolled twice prior to
software pipelining and assuming the store is independent of the loads, an II of 3 can
be achieved for the new loop. This is an effective II of 1.5 for the original source loop.
Below is a possible pipeline for the unrolled loop:
stage 1:
(p16) ld4 r4 = [r5],8 // odd iteration
(p16) ld4 r9 = [r8],8;; // odd iteration
stage 2:
(p16) ld4 r14 = [r15],8 // even iteration
(p16) ld4 r19 = [r18],8;; // even iteration

// --- empty cycle
stage 3:(p18) add r7 = r4,r9 // odd iteration
(p17) add r17 = r14,r19;; // even iteration
stage 4: // --- empty cycle
(p19) st4 [r6] = r7,8 // odd iteration
(p18) st4 [r16] = r17,8;; // even iteration

The unrolled loop contains two copies of the source loop body, one that corresponds to
the odd source iterations and one that corresponds to the even source iterations. The
assignment of stage predicates must take this into account. Recall that each one
written to p16 sequentially enables all the stages for a new source iteration. During
stage one of the above pipeline, the stage predicate for the odd iteration is in p16. The
stage predicate for the even iteration does not exist yet. During stage two of the above
pipeline, the stage predicate for the odd iteration is in p17 and the new stage predicate
for the even iteration is in p16. Thus within the same pipeline stage, if the stage

Volume 1, Part 2: Software Pipelining and Loop Support 1:199

predicate for the odd iteration is in predicate register X, the stage predicate for the
even iteration is in predicate register X-1. The pseudo-code to implement this pipeline
assuming an unknown trip count is shown below:

add r15 = r5,4
add r18 = r8,4
mov lc = r2 // LC = loop count - 1
mov ec = 4 // EC = epilog stages + 1
mov pr.rot=1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ld4 r33 = [r5],8 // Cycle 0 odd iteration
(p18) add r39 = r35,r38 // Cycle 0 odd iteration
(p17) add r38 = r34,r37 // Cycle 0 even iteration
(p16) ld4 r36 = [r8],8 // Cycle 0 odd iteration

br.cexit.spnt L3;; // Cycle 0
(p16) ld4 r33 = [r15],8 // Cycle 1 even iteration
(p16) ld4 r36 = [r18],8;; // Cycle 1 even iteration
(p19) st4 [r6] = r40,8 // Cycle 2 odd iteration
(p18) st4 [r16] = r39,8 // Cycle 2 even iteration
L2: br.ctop.sptk L1;; // Cycle 2
L3:

Notice that the stages are not equal in length. Stages 1 and 3 are one cycle each, and
stages 2 and 4 are two cycles each. Also, the length of the epilog phase varies with the
trip count. If the trip count is odd, the number of epilog stages is three, starting after
the br.cexit and ending at the br.ctop. If the trip count is even, the number of epilog
stages is two, starting after the br.ctop and ending at the br.ctop. The EC must be set
to account for the maximum number of epilog stages. Thus for this example, EC is
initialized to four. When the trip count is even, one extra epilog stage is executed and
br.exit L3 is taken. All of the stage predicates used during the extra epilog stages are
equal to 0, so nothing is executed.

The extra epilog stage for even trip counts can be eliminated by setting the target of
the br.cexit branch to the next sequential bundle and initializing EC to three as shown
below:

add r15 = r5,4
add r18 = r8,4
mov lc = r2 // LC = loop count - 1
mov ec = 3 // EC = epilog stages + 1
mov pr.rot=1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ld4 r33 = [r5],8 // Cycle 0 odd iteration
(p18) add r39 = r35,r38 // Cycle 0 odd iteration
(p17) add r38 = r34,r37 // Cycle 0 even iteration
(p16) ld4 r36 = [r8],8 // Cycle 0 odd iteration

br.cexit.spnt L4;; // Cycle 0
L4:
(p16) ld4 r33 = [r15],8 // Cycle 1 even iteration
(p16) ld4 r36 = [r18],8;; // Cycle 1 even iteration
(p19) st4 [r6] = r40,8 // Cycle 2 odd iteration
(p18) st4 [r16] = r39,8 // Cycle 2 even iteration
L2: br.ctop.sptk L1;; // Cycle 2
L3:

1:200 Volume 1, Part 2: Software Pipelining and Loop Support

If the loop trip count is even, two epilog stages are executed and the kernel loop is
exited at the br.ctop. If the trip count is odd, the first two epilog stages are executed
and then the br.cexit branch is taken. Because the target of the br.cexit branch is
the next sequential bundle (L4), a third epilog stage is executed before the kernel loop
is exited at the br.ctop. This optimization saves one stage at the end of the loop when
the trip count is even, and is beneficial for short trip count loops.

Although unrolling can be beneficial, there are a few considerations before trying to
unroll and software pipeline. Unrolling reduces the trip count of the loop that is given to
the pipeliner, and thus may make pipelining of the loop undesirable since low trip count
loops sometimes run faster unpipelined. Unrolling also increases the code size, which
may adversely affect instruction cache performance. Unrolling is most beneficial for
small loops because the potential performance degradation due to under utilized
resources is greater and the effect of unrolling on the instruction cache performance is
smaller compared to large loops.

5.5.7 Implementing Reductions

In the following example, a sum of products is accumulated in register f7:
mov f7 = 0;; // initialize sum

L1: ldfs f4 = [r5],4
ldfs f9 = [r8],4;;
fma f7 = f4,f9,f7;; // accumulate
br.cloop L1 ;;

The performance is bound by the latency of the fma instruction which we assume is 5
cycles for these examples. A pipelined version of this loop must have an II of at least
five because the fma latency is five. By making use of register rotation, the loop can
be transformed into the one below.

Note that the loop has not yet been pipelined. The register rotation and special loop
branches are being used to enable an optimization prior to software pipelining.

mov lc = 199 // LC = loop count - 1
mov ec = 1 // Not pipelined, so no epilog
mov f33 = 0 // initialize 5 sums
mov f34 = 0
mov f35 = 0
mov f36 = 0
mov f37 = 0;;

L1: ldfs f4 = [r5],4
ldfs f9 = [r8],4;;
fma f32 = f4,f9,f37;; // accumulate
br.ctop L1 ;;

fadd f10 = f33,f34 // add sums
fadd f11 = f35,f36;;
fadd f12 = f10,f11;;
fadd f7 = f12,f37

Volume 1, Part 2: Software Pipelining and Loop Support 1:201

This loop maintains five independent sums in registers f33-f37. The fma instruction in
iteration X produces a result that is used by the fma instruction in iteration X+5.
Iterations X through X+4 are independent, allowing an II of one to be achieved. The
code for a pipelined version of the loop assuming two memory ports and a nine cycle
latency for a floating-point load is shown below:

mov lc = 199 // LC = loop count - 1
mov ec = 10 // EC = epilog stages + 1
mov pr.rot=1<<16 // PR16 = 1, rest = 0
mov f33 = 0 // initialize sums
mov f34 = 0
mov f35 = 0
mov f36 = 0
mov f37 = 0

L1:
(p16) ldfs f50 = [r5],4 // Cycle 0
(p16) ldfs f60 = [r8],4 // Cycle 0
(p25) fma f41 = f59,f69,f46 // Cycle 0

br.ctop.sptk L1;; // Cycle 0
fadd f10 = f42,f43 // add sums
fadd f11 = f44,f45 ;;
fadd f12 = f10,f11 ;;
fadd f7 = f12,f46

5.5.8 Explicit Prolog and Epilog

In some cases, an explicit prolog is necessary for code correctness. This can occur in
cases where a speculative instruction generates a value that is live across source
iterations. Consider the following loop:

ld4 r3 = [r5] ;;
L1:

ld4 r6 = [r8],4 // Cycle 0
ld4 r5 = [r9],4 ;; // Cycle 0
add r7 = r3,r6 ;; // Cycle 2
ld4 r3 = [r5] // Cycle 3
and r10 = 3,r7;; // Cycle 3
cmp.ne p1,p0=r10,r11 // Cycle 4

(p1) br.cond L1 ;; // Cycle 4

The following is a possible pipeline for the loop:
stage 1: ld4.s r6 = [r8],4 // II = 2

ld4.s r5 = [r9],4 ;;
--- // empty cycle

stage 2: --- // empty cycle
ld4.s r36 = [r5]
add r7 = r37,r6 ;;

stage 3: (p18) and r10 = 3,r7 ;;
(p18) cmp.ne p1,p0 = r10,r11
(p1) br.wtop L1 ;;

1:202 Volume 1, Part 2: Software Pipelining and Loop Support

Note that, in the code above, the ld4 and the add instructions in stage 2 have been
reordered. Register rotation has been used to eliminate the WAR register dependency
from the add to the ld4. The first two stages are speculative. The code to implement
the pipeline is shown below:

ld4 r36 = [r5]
mov ec = 2
mov pr.rot = 1 << 16 ;; // PR16 = 1, rest = 0

L1: ld4.s r32 = [r8],4 // Cycle 0
ld4.s r34 = [r9],4 // Cycle 0

(p18) and r40 = 3,r39 ;; // Cycle 0
ld4.s r36 = [r35] // Cycle 1
add r38 = r37,r33 // Cycle 1

(p18) chk.s r40, recovery // Cycle 1
(p18) cmp.ne p17,p0 = r40,r11 // Cycle 1
(p17) br.wtop L1 ;; // Cycle 1

The problem with this pipelined loop is that the value written to r36 prior to the loop is
overwritten before it is used by the add. The value is overwritten by the load into r36
in the first kernel iteration. This load is in the second stage of the pipeline, but cannot
be controlled during the first kernel iteration because it is speculative and does not
have a stage predicate. This problem can be solved by peeling off one iteration of the
kernel and excluding from that copy any instructions that are not in the first stage of
the pipeline as shown below.

Note that the destination register numbers for the instructions in the explicit prolog
have been increased by one. This is to account for the fact that there is no rotation at
the end of the peeled kernel iteration.

ld4 r37 = [r5]
mov ec = 1
mov pr.rot = 1<<17;; // PR17 = 1, rest = 0
ld4 r33 = [r8],4
ld4 r35 = [r9],4

L1: ld4.s r32 = [r8],4 // Cycle 0
ld4.s r34 = [r9],4 // Cycle 0

(p18) and r40 = 3,r39;; // Cycle 0
ld4.s r36 = [r35] // Cycle 1
add r38 = r37,r33 // Cycle 1

(p18) chk.s r40, recovery // Cycle 1
(p18) cmp.ne p17,p0 = r40,r11 // Cycle 1
(p17) br.wtop L1 ;; // Cycle 1

In some cases, higher performance can be achieved by generating separate blocks of
code for all or part of the prolog and/or epilog phase. It is clear from the execution
trace of the pipelined counted loop from page 1:188 that the functional units are

Volume 1, Part 2: Software Pipelining and Loop Support 1:203

under-utilized during the prolog and epilog phases. Part of the prolog and epilog could
be peeled off and merged with the code preceding and following the loop. The
following is a pipelined version of that counted loop with an explicit prolog and epilog:

mov lc = 196
mov ec = 1

prolog:
ld4 r35 = [r5],4;; // Cycle 0
ld4 r34 = [r5],4 ;; // Cycle 1
ld4 r33 = [r5],4 // Cycle 2
add r36 = r35,r9 ;; // Cycle 2

L1:
ld4 r32 = [r5],4
add r35 = r34,r9
st4 [r6] = r36,4

L2: br.ctop L1 ;;
epilog:

add r35 = r34,r9 // Cycle 0
st4 [r6] = r36,4 ;; // Cycle 0
add r34 = r33,r9 // Cycle 1
st4 [r6] = r35,4 ;; // Cycle 1
st4 [r6] = r34,4 // Cycle 2

The entire prolog (first three iterations of the kernel loop) and epilog (last three
iterations) have been peeled off. No attempt has been made to reschedule the peeled
instructions. The stage predicates have been removed from the instructions since they
are not required for controlling the prolog and epilog phases. Removing them from the
prolog makes the prolog instructions independent of the rotating predicates and
eliminates the need for software-pipelined loop branches between prolog stages. Thus
the entire prolog is independent of the initialization of LC and EC that precede it. The
register numbers in the prolog and epilog have been adjusted to account for the lack of
rotation between stages during those phases.

Note: This code assumes that the trip count of the source loop is at least four. If the
minimum trip count is unknown at compile time, then a runtime check of the
trip count must be added before the prolog. If the trip count is less than four,
then control branches to a copy of the original loop.

If this pipelined loop is nested inside an outer loop, there exists a further optimization
opportunity. The outer loop could be rotated such that the kernel loop is at the top
followed by the epilog for the current outer loop iteration and the prolog for the next
outer loop iteration. A copy of the prolog would also be added prior to the outer loop.

Note: From the earlier trace of the counted loop execution, the functional unit usage
of the prolog and epilog are complimentary such that they could be very nicely
overlapped.

The drawback of creating an explicit prolog or epilog is code expansion.

1:204 Volume 1, Part 2: Software Pipelining and Loop Support

5.5.9 Redundant Load Elimination in Loops

Unrolling of a loop is sometimes necessary to remove copy operations created by loop
optimizations. The following is an example of redundant load elimination. In the code
below, each iteration loads two values, one of which has already been loaded by the
previous source iteration:

add r8 = r5,4;;
L1: ld4 r4 = [r5],4 // a[i]

ld4 r9 = [r8],4 ;; // a[i+1]
add r7 = r4,r9 ;;
st4 [r6] = r7,4
br.cloop L1 ;;

The redundant load can be eliminated by adding a copy of the first load prior to the loop
and changing the load to a copy (mov):

add r8 = r5,4
ld4 r9 = [r5],4;; // a[i]

L1: mov r4 = r9 // a[i] = previous a[i+1]
ld4 r9 = [r8],4 ;; // a[i+1]
add r7 = r4,r9 ;;
st4 [r6] = r7,4
br.cloop L1 ;;

In traditional architectures, the mov instruction can only be removed by unrolling the
loop twice. One instruction is removed from the loop at the cost of two times code
expansion. The register rotation feature in the Itanium architecture can be used to
eliminate the mov instruction without unrolling the loop:

add r8 = r5,4
ld4 r33 = [r5],4;; // a[i]

L1: ld4 r32 = [r8],4 ;; // a[i+1]
add r7 = r33,r32 ;;
st4 [r6] = r7,4
br.ctop L1 ;;

5.6 Summary

The examples in this chapter show how features in the Itanium architecture can be
used to optimize loops without the code expansion required with traditional
architectures. Register rotation, predication, and the software-pipelined loop branches
all contribute to this capability. Control speculation increases the overlap of the
iterations of while loops. Data speculation increases the overlap of iterations of loops
that have loads and stores that cannot be disambiguated.

§

Volume 1, Part 2: Floating-point Applications 1:205

Floating-point Applications 6

6.1 Overview

The Itanium floating-point architecture is fully ANSI/IEEE-754 standard compliant and
provides performance enhancing features such as the fused multiply accumulate
instruction, the large floating-point register file (with static and rotating sections), the
extended range register file data representation, the multiple independent
floating-point status fields, and the high bandwidth memory access instructions that
enable the creation of compact, high performance, floating-point application code.

The beginning of this chapter reviews some specific performance limitations that are
common in floating-point intensive application codes. Later, architectural features that
address these limitations are presented with illustrative code examples. The remainder
of this chapter highlights the optimization of some commonly used kernels using these
features.

6.2 FP Application Performance Limiters

Floating-point applications are characterized by a predominance of loops. Some loops
compute complex calculations on regularly structured data, others simply copy data
from one place to another, while others perform gather/scatter-type operations that
simultaneously compute and rearrange data. The following sections describe code
characteristics that limit performance and how they affect these different kinds of
loops.

6.2.1 Execution Latency

Loops often contain recurrence relationships. Consider the tri-diagonal elimination
kernel from the Livermore Fortran Kernel suite.
DO 5 i = 2, N
 5X[i] = Z[i] * (Y[i] - X[i-1])

The dependency between X[i] and X[i-1] limits the iteration time of the loop to be
the sum of the latency of the subtract and the multiply. The available parallelism can be
increased by unrolling the loop and can be exploited by replicating computation,
however the fundamental limitation of the data dependency remains.

Sometimes, even if the loop is vectorizable and can be software pipelined, the iteration
time of the loop is limited by the execution latency of the hardware that executes the
code. A simple vector divide (shown below) is a typical example:
DO 1 I = 1, N
 1X[i] = Y[i] / Z[i]

Since typical modern microprocessors contain a non-pipelined floating-point unit, the
iteration time of the loop is the latency of the divide which can be tens of clocks.

1:206 Volume 1, Part 2: Floating-point Applications

6.2.2 Execution Bandwidth

When sufficient ILP exists and can be exploited, the performance limitation is the
availability of the execution resources – or the execution bandwidth of the machine.
Consider the dense matrix multiply kernel from the BLAS3 library.

DO 1 i = 1, N
DO 1 j = 1, P

DO 1 k = 1, M
1 C[i,j] = C[i,j] + A[i,k]*B[k,j]

Common techniques of loop interchange, loop unrolling, and unroll-and-jam, can be
used to increase the available ILP in the inner loop. When this is done, the inner loop
contains an abundance of independent floating-point computations with a relatively
small number of memory operations. The performance constraint is then largely the
floating-point execution bandwidth of the machine (assuming sufficient registers are
available to hold the accumulators – C[i,j] and the intermediate computations).

6.2.3 Memory Latency

While cycle time disparity between the processor and memory creates a general
memory latency problem for most codes, there are a few special conditions in
floating-point codes that exacerbate its impact.

One such condition is the use of indirect addressing. Gather/scatter codes in general
and sparse matrix vector multiply code (below) in particular are good examples.
DO 1 ROW = 1, N

R[ROW] = 0.0d0
DO 1 I = ROWEND(ROW-1)+1, ROWEND(ROW)

1 R[ROW] = R[ROW] + A[I] * X[COL[I]]

The memory latency of the access of COL[I] is exposed, since it is used to index into
the vector X. The access of the element of X, the computation of the product, and the
summation of the product on R[ROW] are all dependent on the memory latency of the
access of COL[I].

Another common condition in floating-point codes where memory latency impact is
exacerbated is the presence of ambiguous memory dependencies. Consider the
incomplete Cholesky conjugate gradient excerpt kernel, again from the Livermore
Fortran Kernel suite.

II = n
IPNTP = 0

222 IPNT = IPNTP
IPNTP = IPNTP + II
II = II/2
I = IPNTP + 1

cdir$ ivdep
DO 2 K = IPNT+2, IPNTP, 2

I = I+1
2 X[I] = X[K] - V[K] * X[K-1] - V[K-1] * X[K+1]

IF (II .GT. 1) GO TO 222

Volume 1, Part 2: Floating-point Applications 1:207

The DO-loop involves an update of X at the index I using X at the indices K, K+1, K-1.
Since it is difficult for the compiler to establish whether these indices overlap, the loads
of X[K], X[K+1] or X[K-1] for the next iteration cannot be scheduled until the store of
X[I] of the current iteration. This exposes the memory latency of access of these
operands.

6.2.4 Memory Bandwidth

Floating-point loops are often limited by the rate at which the machine can deliver the
operands of the computation. The DAXPY kernel from the BLAS1 library is a typical
example:

DO 1 I = 1, N
1 Y[I] = Y[I] + A * X[I]

The computation requires loading two operands (X[I] and Y[I]) and storing one result
(Y[I]) for each floating-point multiply and add operation. If the data arrays (X and Y)
are not in cache, then the performance of this loop on most modern microprocessors
would be limited by the available memory bandwidth on the machine.

6.3 Floating-point Features in the Intel® Itanium®
Architecture

This section highlights architectural features that reduce the impact of the performance
limiters described in Section 6.2 using illustrative examples.

6.3.1 Large and Wide Floating-point Register Set

As machine cycle times are reduced, the latency in cycles of the execution units
generally increases. As latency increases, register pressure due to multiple operations
in-flight also increases. Furthermore as multiple execution units are added, the register
pressure increases similarly since even more instructions can be in-flight at any one
time.

The Itanium architecture provides 128 directly addressable floating-point registers to
enable data reuse and to reduce the number of load/store operations required due to
an insufficient number of registers. This reduction in the number of loads and stores
can increase performance by changing a computation from being memory operation
(MOP) limited to being floating-point operation (FLOP) limited. Consider the dense
matrix multiply code below:

DO 1 i = 1, N
DO 1 j = 1, P

DO 1 k = 1, M
1 C[i,j] = C[i,j] + A[i,k]*B[k,j]

In the inner loop (k), two loads are required for every multiply and add operation. The
MOP:FLOP ratio is therefore 1:1.
L1: ldfd f5 = [r5], 8 // Load A[i,k]

ldfd f6 = [r6], 8 // Load B[k,j]
fma.d.s0 f7 = f5, f6, f7 // *,+ to C[i,j]
br.cloop L1

1:208 Volume 1, Part 2: Floating-point Applications

Here, three registers are required to hold the operands (f5, f6) and the accumulator
(f7). By recognizing the reuse of A[i,k] for different B[k,j] as j is varied, and the
reuse of B[k,j] for different A[i,k] as i is varied, the computation can be restructured
as:

DO 1 i = 1, N, 2
DO 1 j = 1, P, 2

DO 1 k = 1, M
C[i ,j] = C[i ,j]

+ A[i ,k]*B[k,j]
C[i+1,j] = C[i+1,j]

+ A[i+1,k]*B[k,j]
C[i ,j+1] = C[i ,j+1]

+ A[i ,k]*B[k,j+1]
1 C[i+1,j+1] = C[i+1,j+1]

+ A[i+1,k]*B[k,j+1]

Now, for every 4 loads, 4 multiplies and adds can be performed, thus changing the
MOP:FLOP ratio to 1:2. However, 8 registers are now required: 4 for the accumulators
and 4 for the operands.

add r6 = r5, 8
add r8 = r7, 8

L1: ldfd f5 = [r5], 16 // Load A[i,k]
ldfd f6 = [r6], 16 // Load A[i+1,k]
ldfd f7 = [r7], 16 // Load B[k,j]
ldfd f8 = [r8], 16 // Load B[k,j+1]
fma.s0 f9 = f5, f7, f9 // *,+ on C[i,j]
fma.s0 f10 = f6, f7, f10 // *,+ on C[i+1,j]
fma.s0 f11 = f5, f8, f11 // *,+ on C[i,j+1]
fma.s0 f12 = f6, f8, f12 // *,+ on C[i+1,j+1]
br.cloop L1

With 128 available registers, the outer loops of i and j could be unrolled by 8 each so
that 64 multiplies and adds can be performed by loading just 16 operands.

The floating-point register file is divided into two regions: a static region (f0-f31) and a
rotating region (f32-f127). The register rotation provides the automatic register
renaming required to create compact kernel-only software-pipelined code. Register
rotation also enables scheduling software pipelined code with an initiation interval that
is less than the longest latency operation. For e.g. consider the simple vector add loop
shown below:

DO 1 i = 1, N
1 A[i] = B[i] + C[i]

The basic inner loop is:
L1: ldf f5 = [r5], 8 // Load B[i]

ldf f6 = [r6], 8 // Load C[i]
fadd f7 = f5, f6 // Add operands
stf [r7] = f7, 8 // Store A[i]
br.cloop L1

Volume 1, Part 2: Floating-point Applications 1:209

If we suppose the minimum floating-point load latency is 9 clocks, and 2 memory
operations can be issued per clock, the above loop has to be unrolled by at least six if
there is no register rotation.

add r8 = r7, 8
L1:
(p18) stf [r7] = f25, 16 // Cycle 17,26...
(p18) stf [r8] = f26, 16 // Cycle 17,26...
(p17) fadd f25 = f5, f15 // Cycle 8,17,26...
(p16) ldf f5 = [r5], 8 // Cycle 0,9,18...
(p16) ldf f15 = [r6], 8 // Cycle 0,9,18...
(p17) fadd f26 = f6, f16;; // Cycle 9,18,27 ...
(p16) ldf f6 = [r5], 8 // Cycle 1,10,19 ...
(p16) ldf f16 = [r6], 8 // Cycle 1,10,19 ...
(p18) stf [r7] = f27, 16 // Cycle 20,29 ...
(p18) stf [r8] = f28, 16 // Cycle 20,29 ...
(p17) fadd f27 = f7, f17 ;; // Cycle 11,20 ...
(p16) ldf f7 = [r5], 8 // Cycle 3,12,21 ...
(p16) ldf f17 = [r6], 8 // Cycle 3,12,21 ...
(p17) fadd f28 = f8, f18 ;; // Cycle 12,21 ...
(p16) ldf f8 = [r5], 8 // Cycle 4,13,22 ...
(p16) ldf f18 = [r6], 8 // Cycle 4,13,22 ...
(p18) stf [r7] = f29, 16 // Cycle 23,32 ...
(p18) stf [r8] = f30, 16 // Cycle 23,32 ...
(p16) fadd f29 = f9, f19 ;; // Cycle 14,23 ...
(p16) ldf f9 = [r5], 8 // Cycle 6,15,24 ...
(p16) ldf f19 = [r6], 8 // Cycle 6,15,24 ...
(p16) fadd f30 = f10, f20 ;; // Cycle 15,24 ...
(p16) ldf f10 = [r5], 8 // Cycle 7,16,25 ...
(p16) ldf f20 = [r6], 8 // Cycle 7,16,25 ...

br.ctop L1 ;;

However, with register rotation, the same loop can be scheduled with an initiation
interval of just 2 clocks without unrolling (and 1.5 clocks if unrolled by 2):
L1:
(p24) stf [r7] = f57, 8 // Cycle 15,17...
(p21) fadd f57 = f37, f47 // Cycle 9,11,13...
(p16) ldf f32 = [r5], 8 // Cycle 0,2,4,6...
(p16) ldf f42 = [r6], 8 // Cycle 0,2,4,6...

 br.ctop L1;;

It is thus often advantageous to modulo schedule and then unroll (if required). Please
see Chapter 5, “Software Pipelining and Loop Support” for details on how to rewrite
loops using this transformation.

6.3.1.1 Notes on FP Precision

The floating-point registers are 82 bits wide with 17 bits for exponent range, 64 bits for
significand precision and 1 sign bit. During computation, the result range and precision
is determined by the computational model chosen by the user. The computational
model is indicated either statically in the instruction encoding, or dynamically via the
precision control (PC) and widest-range-exponent (WRE) bits in the floating-point
status register. Using an appropriate computational model, the user can minimize the
error accumulation in the computation. In the above matrix multiply example, if the
multiply and add computations are performed in full register file range and precision,
the results (in accumulators) can hold 64 bits of precision and up to 17 bits of range for

1:210 Volume 1, Part 2: Floating-point Applications

inputs that might be single precision numbers. With the rounding performed at the 64th
precision bit (instead of the 24th for single precision) a smaller error is accumulated
with each multiply and add. Furthermore, with 17 bits of range (instead of 8 bits for
single precision) large positive and negative products can be added to the accumulator
without overflow or underflow. In addition to providing more accurate results the extra
range and precision can often enhance the performance of iterative computations that
are required to be performed until convergence (as indicated by an error bound) is
reached.

6.3.2 Multiply-Add Instruction

The Itanium architecture defines the fused multiply-add (fma) as the basic
floating-point computation, since it forms the core of many computations (linear
algebra, series expansion, etc.) and its latency in hardware is typically less than the
sum of the latencies of an individual multiply operation (with rounding) implementation
and an individual add operation (with rounding) implementation.

In computational loops that have a loop carried dependency and whose speed is often
determined by the latency of the floating-point computation rather than the peak
computational rate, the multiply-add operation can often be used advantageously.
Consider the Livermore FORTRAN Kernel 9 – General Linear Recurrence Equations:
DO 191 k= 1,n

B5(k+KB5I)= SA(k) + STB5 * SB(k)
STB5= B5(k+KB5I) - STB5

191CONTINUE

Since there is a true data dependency between the two statements on variable
B5(k+KB5I)) and a loop-carried dependency on variable STB5, the loop number of
clocks per iteration is entirely determined by the latency of the floating-point
operations. In the absence of an fma type operation, and assuming that the individual
multiply and add latencies are 5 clocks each and the loads are 8 cycles, the loop would
be:
L1:
(p16) ldf f32 = [r5], 8 // Load SA(k)
(p16) ldf f42 = [r6], 8 // Load SB(k)
(p17) fmul f5 = f7, f43;; // tmp,Clk 0,15 ...
(p17) fadd f6 = f33, f5 ;; // B5,Clk 5,20 ...
(p17) stf [r7] = f6, 8 // Store B5
(p17) fsub f7 = f6, f7 // STB5,Clk 10,25 ..

br.ctop L1 ;;

With an fma, the overall latency of the chain of operations decreases and assuming a 5
cycle fma, the loop iteration speed is now 10 clocks (as opposed to 15 clocks above).
L1:
(p16) ldf f32 = [r5], 8 // Load SA(k)
(p16) ldf f42 = [r6], 8 // Load SB(k)
(p17) fma f6 = f7, f43, f33;; // B5,Clk 0,10 ...
(p17) stf [r7] = f6, 8 // Store B5
(p17) fsub f7 = f6, f7 // STB5,Clk 5,15 ..

br.ctop L1 ;;

The fused multiply-add operation also offers the advantage of a single rounding error
for the pair of computations which is valuable when trying to compute small differences
of large numbers.

Volume 1, Part 2: Floating-point Applications 1:211

6.3.3 Software Divide/Square Root Sequence

To perform division or square root operations on the Itanium architecture, a
software-based sequence of operations is used. The sequence consists of obtaining an
initial guess (using frcpa/frsqrta instruction) and then refining the guess by
performing Newton-Raphson iterations until the error is sufficiently small so that it may
not affect the rounding of the result. Examples of double precision divide and square
root sequences, optimized for latency and throughput, are provided below.

Note: For reduced precision, square and divide sequences can be completed with
even fewer instructions.

6.3.3.1 Double Precision – Divide

6.3.3.2 Double Precision – Square Root

Divide (Max Throughput)
(10 Instructions, 8 Groups)

Divide (Min Latency)
(13 Instructions, 7 Groups)

frcpa.s0 f8,p6 = f6,f7 ;;
(p6) fnma.s1 f9 = f7,f8,f1 ;;
(p6) fma.s1 f8 = f9,f8,f8
(p6) fma.s1 f9 = f9,f9,f0 ;;
(p6) fma.s1 f8 = f9 ,f8,f8
(p6) fma.s1 f9 = f9,f9,f0 ;;
(p6) fma.s1 f8 = f9,f8,f8 ;;
(p6) fma.d.s1 f9 = f6,f8,f0 ;;
(p6) fnma.d.s1 f6 = f7,f9,f6 ;;
(p6) fma.d.s0 f8 = f6,f8,f9

frcpa.s0 f8,p6 = f6,f7 ;;
(p6) fma.s1 f9 = f6,f8,f0
(p6) fnma.s1 f10 = f7,f8,f1 ;;
(p6) fma.s1 f9 = f10,f9,f9
(p6) fma.s1 f11 = f10,f10,f0
(p6) fma.s1 f8 = f10,f8,f8 ;;
(p6) fma.s1 f9 = f11,f9,f9
(p6) fma.s1 f10 = f11,f11,f0
(p6) fma.s1 f8 = f11,f8,f8 ;;
(p6) fma.d.s1 f9 = f10,f9,f9
(p6) fma.s1 f8 = f10,f8,f8 ;;
(p6) fnma.d.s1 f6 = f7,f9,f6 ;;
(p6) fma.d.s0 f8 = f6,f8,f9

Square Root (Max Throughput)a

(14 Instructions, 10 Groups)

a. The following value is assumed preset: f10=1/2.

Square Root (Min Latency)b

(17 Instructions, 9 Groups)

b. The following values are assumed preset: f9=1/2, f10=3/2, f11=5/2, f12=63/8, f13=231/16, f14=35/8.

frsqrta.s0 f7,p6=f6 ;;
 (p6) fma.s1 f8=f10,f7,f0
 (p6) fma.s1 f7=f6,f7,f0 ;;
 (p6) fnma.s1 f9=f7,f8,f10 ;;
 (p6) fma.s1 f8=f9,f8,f8
 (p6) fma.s1 f7=f9,f7,f7 ;;
 (p6) fnma.s1 f9=f7,f8,f10 ;;
 (p6) fma.s1 f8=f9,f8,f8
 (p6) fma.s1 f7=f9,f7,f7 ;;
 (p6) fnma.s1 f9=f7,f8,f10 ;;
 (p6) fma.s1 f8=f9,f8,f8
 (p6) fma.d.s1 f7=f9,f7,f7 ;;
 (p6) fnma.s1 f9=f7,f7,f6 ;;
 (p6) fma.d.s0 f7=f9,f8,f7 ;;

frsqrta.s0 f7,p6=f6 ;;
 (p6) fma.s1 f8=f9,f7,f0
 (p6) fma.s1 f7=f6,f7,f0 ;;
 (p6) fnma.s1 f9=f7,f8,f9 ;;
 (p6) fma.s1 f10=f11,f9,f10
 (p6) fma.s1 f11=f9,f9,f0
 (p6) fma.s1 f12=f13,f9,f12 ;;
 (p6) fma.s1 f10=f11,f10,f9
 (p6) fma.s1 f11=f11,f11,f0
 (p6) fma.s1 f9=f9,f12,f14 ;;
 (p6) fma.s1 f12=f10,f7,f7
 (p6) fma.s1 f7=f7,f11,f0
 (p6) fma.s1 f10=f11,f9,f10 ;;
 (p6) fma.d.s1 f7=f9,f7,f12
 (p6) fma.s1 f8=f10,f8,f8 ;;
 (p6) fnma.s1 f9=f7,f7,f6 ;;
 (p6) fma.d.s0 f7=f9,f8,f7 ;;

1:212 Volume 1, Part 2: Floating-point Applications

For divide, the first instruction (frcpa) provides an approximation (good to 8 bits) of
the reciprocal of f7 and sets the predicate (p6) to 1, if the ratio f6/f7 can be obtained
using the prescribed Newton-Raphson iterations. If, however, the ratio f6/f7 is special
(finite/0, finite/infinite, etc) the final result of f6/f7 is provided in f8 and the predicate
(p6) is cleared. For certain boundary conditions (when the operand values (f6 and f7)
are well outside the single precision, double precision and even double-extended
precision ranges) frcpa will cause a software assist fault and the software handler will
produce the ratio f6/f7 and return it in f8 and clear the predicate (p6).

The multiple status fields provided in the FPSR are used in these sequences. S0 is the
main (architectural) status field and it is written to by the first operation (frcpa) to
signal any faults (V, Z, D), and by the last operation to signal any traps. The conditions
of all intermediate operations are ignored by writing them to S1. Thus these sequences
not only obtain the correct IEEE 754 specified result (in f8) but the flags are also set (in
S0) as per the standard’s requirements. If the divide is part of a speculative chain of
operations that is using S2 as its status field, then S0 should be replaced with S2 in
these sequences. S1 can still be used by the intermediate operations of all the divide
sequences (i.e. those that target S0, S2, or S3) since its flags are all discarded.

When divide and square-root operations appear in vectorizable loops, it is often very
advantageous to have these operations be performed in software rather than hardware.
In software, these operations can be pipelined and the overall throughput be improved,
whereas in hardware these operations are typically not pipelineable.

Another significant advantage of the software-based divide/square-root computations is
that the accuracy of the result can be controlled by the user and can be traded off for
speed. This trade-off is often used in graphics codes where the divide accuracy of about
14-bits suffices and the sequence can be shorter than that used for single or double
precision.

6.3.4 Computational Models

The Itanium architecture offers complete user control of the computational model. The
user can select the result’s precision and range, the rounding mode, and the IEEE trap
response. Appropriately selecting the computational model can result in code that has
greater accuracy, higher performance, or both.

The register file format is uniform for the three memory data types – single, double and
double-extended. Since all the computations are performed on registers (regardless of
the data type of its content) operands of different types can be easily combined. Also
since the conversion from the memory type to the register file format is done on loads
automatically no extra operations are required to perform the format conversion.

The C syntax semantics is also easily emulated. Loads convert all input operands into
the register file format automatically. Data operands of different types, now residing in
register file format can be operated upon and all intermediate results coerced to double
precision by statically indicating the result precision in the instruction encoding. The
computation leading to the final result can specify the result precision and range
(statically in the instruction encoding for single and double precision, and dynamically
in the status field bits for double-extended precision). Compliance to the IA-32 FP
computational style (range=extended, precision=single/double/extended) can also
achieved using the status field bits.

Volume 1, Part 2: Floating-point Applications 1:213

6.3.5 Multiple Status Fields

The FPSR is divided into one main (architectural) status field and three additional
identical status fields. These additional status fields could be used to performance
advantage.

First, divide and square-root sequences (described in Section 6.3.3) contain operations
that might cause intermediate results to overflow/underflow or be inexact even if the
final result may not. In order to maintain correct IEEE flag status the status flags of
these computations need to be discarded. One of these additional status fields
(typically status field 1) can be used to discard these flags.

Second, speculating floating-point operations requires maintaining the status flags of
the speculated operations distinct from the architectural status flags until the
speculated operations are committed to architectural state (if they ever are). One of
these additional status fields (typically status fields 2 or 3) can be used for this
purpose.

Consider the Livermore FORTRAN kernel 16 – Monte Carlo Search
DO 470 k= 1,n

k2= k2+1
j4= j2+k+k
j5= ZONE(j4)
IF(j5-n) 420,475,450

415 IF(j5-n+II) 430,425,425
420 IF(j5-n+LB) 435,415,415
425 IF(PLAN(j5)-R) 445,480,440
430 IF(PLAN(j5)-S) 445,480,440
435 IF(PLAN(j5)-T) 445,480,440
440 IF(ZONE(j4-1)) 455,485,470
445 IF(ZONE(j4-1)) 470,485,455
450 k3= k3+1

IF(D(j5)-(D(j5-1)*(T-D(j5-2))**2
 , +(S-D(j5-3))**2

, +(R-D(j5-4))**2)) 445,480,440
455 m= m+1

IF(m-ZONE(1)) 465,465,460
460 m= 1
465 IF(i1-m) 410,480,410
470 CONTINUE
475 CONTINUE
480 CONTINUE
485 CONTINUE

Profiling indicates that the conditional after statement 450 is most frequently executed.
It is therefore advantageous to speculatively execute the computation in the conditional
while the conditionals in 415...445 are being evaluated. In the event that any of the
conditionals in 415...445 cause the control to be moved on beyond 450 the results (and
flags) of the speculatively computed operations (of the conditional after statement 450)
can be discarded.

1:214 Volume 1, Part 2: Floating-point Applications

The availability of multiple additional status fields can allow a user to maintain multiple
computational environments and to dynamically select among them on an operation by
operation basis. One such use is in the implementation of interval arithmetic code
where each primitive operation is required to be computed in two different rounding
modes to determine the interval of the result.

6.3.6 Other Features

The Itanium architecture offers a number of other architectural constructs to enhance
the performance of different computational situations.

6.3.6.1 Operand Screening Support

Operand screening is often a required or useful step prior to a computation. The
operand may be screened to ensure that it is in a valid range (e.g. finite positive or zero
input to square-root; non-zero divisor for divide) or it may be screened to take an early
out – the result of the computation is predetermined or could be computed more
efficiently in another way. The fclass instruction can be used to classify the input
operand to either be or not be a part of a set of classes. Consider the following code
used for screening invalid operands for square-root computation:
IF (A.EQ. NATVAL OR

A.EQ. SNAN OR A.EQ. QNAN OR
A.EQ. NEG_INF OR A.EQ. POS_INF OR
A.LT. 0.0D0) THEN
WRITE (*, “INVALID INPUT OPERAND”)

ELSE
WRITE (*, “SQUARE-ROOT = “, SQRT(A))

ENDIF

The above conditional can be determined by two fclass instructions as indicated below:
fclass.m p1, p2 = f2, 0x1E3;; // Detect NaTVal, NaN, +Inf or -Inf

(p2) fclass.m p1, p2 = f2, 0x01A // Detect -Norm or -Unorm

The resultant complimentary predicates (p1 and p2) can be used to control the ELSE
and THEN statements respectively.

6.3.6.2 Min/Max/AMin/AMax

The Itanium architecture provides direct instruction level support for the FORTRAN
intrinsic MIN(a,b) or the equivalent C idiom: a<b? a: b and the FORTRAN intrinsic
MAX(b, a) or the equivalent C idiom: a<b? b: a. These instructions can enhance
performance by avoiding the function call overhead in FORTRAN, and by reducing the
critical path in C. The instructions are designed to mimic the C statement behavior so
that they can be generated by the compiler. They are also not commutative. By
appropriately selecting the input operand order, the user can either ignore or catch
NaNs.

Consider the problem of finding the minimum value in an array (similar to the
Livermore FORTRAN kernel 24):

XMIN = X(1)
DO 24 k= 2,n
24 IF(X(k) .LT. XMIN) XMIN = X(k)

Volume 1, Part 2: Floating-point Applications 1:215

Since NaNs are unordered, comparison with NaNs (including LT) will return false. Hence
if the above code is implemented as:

ldf f5 = [r5], 8;;
L1: ldf f6 = [r5], 8

fmin f5 = f6, f5
br.cloop L1 ;;

NaNs in the array (X) will be ignored.

If the value in the array X (loaded in f6) is a NaN, the new minimum value (in f5) will
remain unchanged, since the NaN will fail the.LT. comparison and fmin will return the
second argument – in this case the old minimum value in f5.

However, if the code is implemented as:
ldf f5 = [r5], 8;;

L1: ldf f6 = [r5], 8
fmin f5 = f5, f6
br.cloop L1 ;;

NaNs in the array (X) will reset the minimum value.

Now, if the value in the array X (loaded in f6) is a NaN, the new minimum value (in f5)
will be set to the NaN, since the NaN will fail the.LT. comparison and fmin will return
the second argument – in this case the NaN in f6. In the next iteration, the new array
value (loaded in f6) will become the new minimum.

famin/famax perform the comparison on the absolute value of the input operands (i.e.
they ignore the sign bit) but otherwise operate in the same (non-commutative) way as
the fmin/fmax instructions.

6.3.6.3 Integer/Floating-point Conversion

Unsigned integers are converted to their equivalently valued floating-point
representations by simply moving the integer to the significand field of the
floating-point register using the setf.sig instruction. The resulting floating-point value
would be in its unnormal representation (unless the unsigned integer was greater than
263).

Conversions from signed integers to floating-point and from floating-point to signed or
unsigned integers are accomplished by fcvt.xf and fcvt.fx/fcvt.fxu instructions
respectively. However, since signed integers are converted directly to their canonical
floating-point representations, they do not need to be normalized after conversion.

6.3.6.4 FP Subfield Handling

It is sometimes useful to assemble a floating-point value from its constituent fields.
Multiplication and division of floating-point values by powers of two, for example, can
be easily accomplished by appropriately adjusting the exponent. The Itanium

1:216 Volume 1, Part 2: Floating-point Applications

architecture provides instructions that allow moving floating-point fields between the
integer and floating-point register files. Division of a floating-point number by 2.0 is
accomplished as follows:
getf.exp r5 = f5 // Move S+Exp to int
add r5 = r5, -1 // Sub 1 from Exp
setf.exp f6 = r5 // Move S+Exp to FP
fmerge.se f5 = f6, f5 // Merge S+E w/ Mant

Floating-point values can also be constructed from fields from different floating-point
registers.

6.3.7 Memory Access Control

Recognizing the trend of growing memory access latency, and the implementation costs
of high bandwidth, the Itanium architecture incorporates many architectural features to
help manage the memory hierarchy and increase performance. As described in
Section 6.2, memory latency and bandwidth are significant performance limiters in
floating-point applications. The architecture offers features to address both these
limitations.

In order to enhance the core bandwidth to the floating-point register file, the
architecture defines load-pair instructions. In order to mitigate the memory latency,
explicit and implicit data prefetch instructions are defined. In order to maximize the
utilization of caches, the architecture defines locality attributes as part of memory
access instructions to help control the allocation (and de-allocation) of data in the
caches. For instances where the instruction bandwidth may become a performance
limiter, the architecture defines machine hints to trigger relevant instruction prefetches.

6.3.7.1 Load-pair Instructions

The floating-point load pair instructions enable loading two contiguous values in
memory to two independent floating-point registers. The target registers are required
to be odd and even physical registers so that the machine can utilize just one access
port to accomplish the register update.

Note: The odd/even pair restriction is on physical register numbers, not logical regis-
ter numbers. A programming violation of this rule will cause an illegal operation
fault.

For example, suppose a machine that can issue 2 FP instructions per cycle, provides
sufficient bandwidth from the second level cache (L2) to sustain 2 load-pairs every
cycle. Then loops that require up to 2 data elements (of 8 bytes each) per floating-point
instruction can run at peak speeds when the data is resident in L2. A common example
of such a case is a simple double precision dot product – DDOT:

DO 1 I = 1, N
1 C = C + A(I) * B(I)

Volume 1, Part 2: Floating-point Applications 1:217

The inner loop consists of two loads (for A and B) and a multiply-add (to accumulate the
product on C). The loop would run at the latency of the fma due to the recurrence on C.
In order to break the recurrence on C, the loop is typically unrolled and multiple partial
accumulators are used.

DO 1 I = 1, N, 8
C1 = C1 + A[I] * B[I]
C2 = C2 + A[I+1] * B[I+1]
C3 = C3 + A[I+2] * B[I+2]
C4 = C4 + A[I+3] * B[I+3]
C5 = C5 + A[I+4] * B[I+4]
C6 = C6 + A[I+5] * B[I+5]
C7 = C7 + A[I+6] * B[I+6]

1 C8 = C8 + A[I+7] * B[I+7]
C = C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8

If normal (non-double pair) loads are used, the inner loop would consist of 16 loads and
8 fmas. If we assume the machine has two memory ports, this loop would be limited by
the availability of M slots and run at a peak rate of 1 clock per iteration. However, if this
loop is rewritten using 8 load-pairs (for A[I], A[I+1] and B[I], B[I+1] and A[I+2],
A[I+3] and B[I+2], B[I+3] and so on) and 8 fmas this loop could run at a peak rate of
2 iterations per clock (or just 0.5 clocks per iteration) with just two M-units.

6.3.7.2 Data Prefetch

lfetch allows the advance prefetching of a line (defined as 32 bytes or more) of data
into the cache from memory. Allocation hints can be used to indicate the nature of the
locality of the subsequent accesses on that data and to indicate which level of cache
that data needs to be promoted to.

While regular loads can also be used to achieve the effect of data prefetching, (if the
load target is never used) lfetches can more effectively reduce the memory latency
without using floating-point registers as targets of the data being prefetched.
Furthermore lfetch allows prefetching the data to different levels of caches.

6.3.7.3 Allocation Control

Since data accesses have different locality attributes (temporal/non-temporal,
spatial/non-spatial), The Itanium architecture allows annotating the data accesses
(loads/stores) to reflect these attributes. Based on these annotations, the
implementation can better manage the storage of the data in the caches.

Temporal and Non-temporal hints are defined. These attributes are applicable to the
various cache levels. (Only two cache levels are architecturally identified). The
non-temporal hint is best used for data that typically has no reuse with respect to that
level of cache. The temporal hint is used for all other data (that has reuse).

6.4 Summary

This chapter describes the limiting factors for many scientific and floating-point
applications: memory latency and bandwidth, functional unit latency, and number of
available functional units. It also describes the important features of floating-point

1:218 Volume 1, Part 2: Floating-point Applications

support in the Itanium architecture beyond the software-pipelining support described in
Chapter 5, “Software Pipelining and Loop Support” that help to overcome some of these
performance limiters. Architectural support for speculation, rounding, and precision
control are also described.

Examples in the chapter include how to implement floating-point division and square
root, common scientific computations such as reductions, use of features such as the
fma instruction, and various Livermore kernels.

§

1:219 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Index

1:220 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Index for Volumes 1, 2, 3 and 4 Index:1

INDEX FOR VOLUMES 1, 2, 3 AND 4

A
AAA Instruction 4:21
AAD Instruction 4:22
AAM Instruction 4:23
AAS Instruction 4:24
Aborts 2:95, 2:538
ACPI 2:631

P-states 2:315, 2:637
Acquire Semantics 2:507
ADC Instruction 4:25, 4:26
ADD Instruction 4:27, 4:28
add Instruction 3:14
addp4 Instruction 3:15
ADDPS Instruction 4:486
Address Space Model 2:561
ADDSS Instruction 4:487
Advanced Load 1:153, 1:154
Advanced Load Address Table (ALAT) 1:64
Advanced Load Check 1:154
ALAT (Advanced Load Address Table) 1:64

Coherency 2:554
Data Speculation 1:17

alloc Instruction 3:16
AND Instruction 4:29, 4:30
and Instruction 3:18
andcm Instruction 3:19
ANDNPS Instruction 4:488
ANDPS Instruction 4:489
Application Architecture Guide 1:1
Application Memory Addressing Model 1:36
Application Register (AR) 1:23, 1:28, 1:140
AR (Application Register) 1:28, 1:140
Arithmetic Instructions 1:51
ARPL Instruction 4:31, 4:32

B
Backing Store 2:133
Banked General Registers 2:42
Bit Field and Shift Instructions 1:52
Bit Strings 1:84
Boot Sequence 2:13
BOUND Instruction 4:33
BR (Branch Register) 1:26, 1:140
br Instruction 3:20

br.ia 1:112, 2:596
Branch Hints 1:78, 1:176
Branch Instructions 1:74, 1:145
Branch Register (BR) 1:19, 1:26, 1:140
break Instruction 2:556, 3:29
Break Instruction Fault 2:151
brl Instruction 3:30
brp Instruction 3:32
BSF Instruction 4:35
BSP (RSE Backing Store Pointer Register) 1:29
BSPSTORE (RSE Backing Store Pointer for Memory

Stores Register) 1:30
BSR Instruction 4:37
bsw Instruction 3:34
BSWAP Instruction 4:39
BT Instruction 4:40
BTC Instruction 4:42
BTR Instruction 4:44
BTS Instruction 4:46
Bundle Format 1:38
Bundles 1:38, 1:141
Byte Ordering 1:36

C
CALL Instruction 4:48
CBW Instruction 4:57
CCV (Compare and Exchange Value Register) 1:30
CDQ Instruction 4:85
CFM (Current Frame Marker) 1:27
Character Strings 1:83
Check Code 1:161
Check Load 1:154
chk Instruction 3:35
CLC Instruction 4:59
CLD Instruction 4:60
CLI Instruction 4:61
clrrrb Instruction 3:37
CLTS Instruction 4:63
clz Instruction 3:38
CMC (Corrected Machine Check) 2:350
CMC Instruction 4:64
CMCV (Corrected Machine Check Vector) 2:126
CMP Instruction 4:69
cmp Instruction 3:39
cmp4 Instruction 3:43
CMPPS Instruction 4:490
CMPS Instruction 4:71
CMPSB Instruction 4:71
CMPSD Instruction 4:71
CMPSS Instruction 4:493
CMPSW Instruction 4:71
CMPXCHG Instruction 4:74
cmpxchg Instruction 2:508, 3:46
CMPXCHG8B Instruction 4:76
Coalescing Attribute 2:78
COMISS Instruction 4:496
Compare and Exchange Value Register (CCV) 1:30
Compare and Store Data Register (CSD) 1:30
Compare Types 1:55
Context Management 2:549
Context Switching 2:557

Operating System Kernel 2:558
User-Level 2:557

Control Dependencies 1:148
Control Registers 2:29
Control Speculation 1:16, 1:60, 1:142, 1:151,

INDEX

Index:2 Index for Volumes 1, 2, 3 and 4

1:155, 2:579
Control Speculative Load 1:156
Corrected Error 2:350
Corrected Machine Check Vector (CMCV) 2:126
cover Instruction 3:48
CPUID (Processor Identification Register) 1:34
CPUID Instruction 4:78
Cross-modifying Code 2:533
CSD (Compare and Store Data Register) 1:30
Current Frame Marker (CFM) 1:27
CVTPI2PS Instruction 4:498
CVTPS2PI Instruction 4:500
CVTSI2SS Instruction 4:502
CVTSS2SI Instruction 4:503
CVTTPS2PI Instruction 4:504
CVTTSS2SI Instruction 4:506
CWD Instruction 4:85
CWDE Instruction 4:57, 4:86
czx Instruction 3:49

D
DAA Instruction 4:87
DAS Instruction 4:88
Data Arrangement 1:81
Data Breakpoint Register (DBR) 2:151, 2:152
Data Debug Faults 2:152
Data Dependencies 1:149, 1:150, 3:371
Data Poisoning 2:302
Data Prefetch Hint 1:148
Data Serialization 2:18
Data Speculation 1:17, 1:63, 1:143, 1:151, 2:579
Data Speculative Load 1:154
DBR (Data Breakpoint Register) 2:151, 2:152
DCR (Default Control Register) 2:31
Debugging 2:151
DEC Instruction 4:89
Default Control Register (DCR) 2:31
Dekker’s Algorithm 2:529
dep Instruction 3:51
DIV Instruction 4:91
DIVPS Instruction 4:507
DIVSS Instruction 4:508

E
EC (Epilog Count Register) 1:33
EFLAG (IA-32 EFLAG Register) 1:123
EMMS Instruction 4:400
End of External Interrupt Register (EOI) 2:124
Endian 1:36
ENTER Instruction 4:94
EOI (End of External Interrupt Register) 2:124
epc Instruction 2:555, 3:53
Epilog Count Register (EC) 1:33
Explicit Prefetch 1:70
External Controller Interrupts 2:96

External Interrupt 2:96, 2:538
External Interrupt Control Registers (CR64-81)

2:42
External Interrupt Request Registers (IRR0-3)

2:125
External Interrupt Vector Register (IVR) 2:123
External Task Priority Cycle (XTP) 2:130
External Task Priority Register (XTPR) 2:605
ExtINT (External Controller Interrupt) 2:96
extr Instruction 3:54

F
F2XM1 Instruction 4:97
FABS Instruction 4:99
fabs Instruction 3:55
FADD Instruction 4:100
fadd Instruction 3:56
FADDP Instruction 4:100
famax Instruction 3:57
famin Instruction 3:58
fand Instruction 3:59
fandcm Instruction 3:60
Fatal Error 2:350
Fault Handlers 2:583
Faults 2:96, 2:537
FBLD Instruction 4:103
FBSTP Instruction 4:105
fc Instruction 3:61
fchkf Instruction 3:63
FCHS Instruction 4:108
fclass Instruction 3:64
FCLEX Instruction 4:109
fclrf Instruction 3:66
FCMOI Instruction 4:115
FCMOVcc Instruction 4:110
fcmp Instruction 3:67
FCOM Instruction 4:112
FCOMIP Instruction 4:115
FCOMP Instruction 4:112
FCOMPP Instruction 4:112
FCOS Instruction 4:118
FCR (IA-32 Floating-point Control Register) 1:126
fcvt Instruction

fcvt.fx 3:70
fcvt.xf 3:72
fcvt.xuf 3:73

FDECSTP Instruction 4:120
FDIV Instruction 4:121
FDIVP Instruction 4:121
FDIVR Instruction 4:124
FDIVRP Instruction 4:124
Fence Semantics 2:508
fetchadd Instruction 2:508, 3:74
FFREE Instruction 4:127
FIADD Instruction 4:100

Index for Volumes 1, 2, 3 and 4 Index:3

INDEX

FICOM Instruction 4:128
FICOMP Instruction 4:128
FIDIV Instruction 4:121
FIDIVR Instruction 4:124
FILD Instruction 4:130
FIMUL Instruction 4:145
FINCSTP Instruction 4:132
Firmware 1:7, 2:623
Firmware Address Space 2:283
Firmware Entrypoint 2:281, 2:350
Firmware Interface Table (FIT) 2:287
FIST Instruction 4:134
FISTP Instruction 4:134
FISUB Instruction 4:182, 4:183
FISUBR Instruction 4:185
FIT (Firmware Interface Table) 2:287
FLD Instruction 4:137
FLD1 Instruction 4:139
FLDCW Instruction 4:141
FLDENV Instruction 4:143
FLDL2E Instruction 4:139
FLDL2T Instruction 4:139
FLDLG2 Instruction 4:139
FLDLN2 Instruction 4:139
FLDPI Instruction 4:139
FLDZ Instruction 4:139
Floating-point Architecture 1:19, 1:85, 1:205
Floating-point Exception Fault 1:102
Floating-point Instructions 1:91
Floating-point Register (FR) 1:139
Floating-point Software Assistance Exception

Handler (FPSWA) 2:587
Floating-point Status Register (FPSR) 1:31, 1:88
flushrs Instruction 3:76
fma Instruction 1:210, 3:77
fmax Instruction 3:79
fmerge Instruction 3:80
fmin Instruction 3:82
fmix Instruction 3:83
fmpy Instruction 3:85
fms Instruction 3:86
FMUL Instruction 4:145
FMULP Instruction 4:145
FNCLEX Instruction 4:109
fneg Instruction 3:88
fnegabs Instruction 3:89
FNINIT Instruction 4:133
fnma Instruction 3:90
fnmpy Instruction 3:92
FNOP Instruction 4:148
fnorm Instruction 3:93
FNSAVE Instruction 4:162
FNSTCW Instruction 4:176
FNSTENV Instruction 4:178
FNSTSW Instruction 4:180
for Instruction 3:94

fpabs Instruction 3:95
fpack Instruction 3:96
fpamax Instruction 3:97
fpamin Instruction 3:99
FPATAN Instruction 4:149
fpcmp Instruction 3:101
fpcvt Instruction 3:104
fpma Instruction 3:107
fpmax Instruction 3:109
fpmerge Instruction 3:111
fpmin Instruction 3:113
fpmpy Instruction 3:115
fpms Instruction 3:116
fpneg Instruction 3:118
fpnegabs Instruction 3:119
fpnma Instruction 3:120
fpnmpy Instruction 3:122
fprcpa Instruction 3:123
FPREM Instruction 4:151
FPREM1 Instruction 4:154
fprsqrta Instruction 3:126
FPSR (Floating-point Status Register) 1:31, 1:88
FPSWA (Floating-point Software Assistance

Handler) 2:587
FPTAN Instruction 4:157
FR (Floating-point Register) 1:139
frcpa Instruction 3:128
FRNDINT Instruction 4:159
frsqrta Instruction 3:131
FRSTOR Instruction 4:160
FSAVE Instruction 4:162
FSCALE Instruction 4:165
fselect Instruction 3:134
fsetc Instruction 3:135
FSIN Instruction 4:167
FSINCOS Instruction 4:169
FSQRT Instruction 4:171
FSR (IA-32 Floating-point Status Register) 1:126
FST Instruction 4:173
FSTCW Instruction 4:176
FSTENV Instruction 4:178
FSTP Instruction 4:173
FSTSW Instruction 4:180
FSUB Instruction 4:182, 4:183
fsub Instruction 3:136
FSUBP Instruction 4:182, 4:183
FSUBR Instruction 4:185
FSUBRP Instruction 4:185
fswap Instruction 3:137
fsxt Instruction 3:139
FTST Instruction 4:188
FUCOM Instruction 4:190
FUCOMI Instruction 4:115
FUCOMIP Instruction 4:115
FUCOMP Instruction 4:190
FUCOMPP Instruction 4:190

INDEX

Index:4 Index for Volumes 1, 2, 3 and 4

FWAIT Instruction 4:386
fwb Instruction 3:141
FXAM Instruction 4:193
FXCH Instruction 4:195
fxor Instruction 3:142
FXRSTOR Instruction 4:509
FXSAVE Instruction 4:512, 4:515
FXTRACT Instruction 4:197
FYL2X Instruction 4:199
FYL2XP1 Instruction 4:201

G
General Register (GR) 1:25, 1:139
getf Instruction 3:143
GR (General Register) 1:139

H
hint Instruction 3:145
HLT Instruction 4:203

I
I/O Architecture 2:615
IA-32

IA-32 Application Execution 1:109
IA-32 Applications 2:239, 2:595
IA-32 Architecture 1:7, 1:21
IA-32 Current Privilege Level (PSR.cpl) 2:243
IA-32 EFLAG Register 1:123, 2:243
IA-32 Exception

Alignment Check Fault 2:229
Code Breakpoint Fault 2:215
Data Breakpoint, Single Step, Taken

Branch Trap 2:216
Device Not Available Fault 2:221
Divide Fault 2:214
Double Fault 2:222
General Protection Fault 2:226
INT 3 Trap 2:217
Invalid Opcode Fault 2:220
Invalid TSS Fault 2:223
Machine Check 2:230
Overflow Trap 2:218
Page Fault 2:227
Pending Floating-point Error 2:228
Segment Not Present Fault 2:224
SSE Numeric Error Fault 2:231
Stack Fault 2:225

IA-32 Execution Layer 1:109
IA-32 Floating-point Control Registers 1:126
IA-32 Instruction Reference 4:11
IA-32 Instruction Set 2:253
IA-32 Intel® MMX™ Technology 1:129
IA-32 Intercept

Gate Intercept Trap 2:235
Instruction Intercept Fault 2:233

Locked Data Reference Fault 2:237
System Flag Trap 2:236

IA-32 Interrupt
Software Trap 2:232

IA-32 Interruption 2:111
IA-32 Interruption Vector Definitions 2:213
IA-32 Interruption Vector Descriptions 2:213
IA-32 Memory Ordering 2:265
IA-32 Physical Memory References 2:262
IA-32 SSE Extensions 1:20, 1:130
IA-32 System Registers 2:246
IA-32 System Segment Registers 2:241
IA-32 Trap Code 2:213
IA-32 Virtual Memory References 2:261

IBR (Index Breakpoint Register) 2:151, 2:152
IDIV Instruction 4:204
IFA (interuption Faulting Address) 2:541
IFS (Interruption Function State) 2:541
IHA (Interruption Hash Address) 2:41, 2:541
IIB0 (Interruption Instruction Bundle 0) 2:541
IIB1 (Interruption Instruction Bundle 1) 2:541
IIM (Interruption Immediate) 2:541
IIP (Interruption Instruction Pointer) 2:541
IIPA (Interruption Instruction Previous Address)

2:541
Implicit Prefetch 1:70
IMUL Instruction 4:207
IN Instruction 4:210
INC Instruction 4:212
In-flight Resources 2:19
INIT (Initialization Event) 2:96, 2:306, 2:635
Initialization Event (INIT) 2:96
INS Instruction 4:214
INSB Instruction 4:214
INSD Instruction 4:214
Instruction Breakpoint Register (IBR) 2:151,

2:152
Instruction Debug Faults 2:151
Instruction Dependencies 1:148
Instruction Encoding 1:38
Instruction Formats 3:293

SSE 4:483
Instruction Group 1:40
Instruction Level Parallelism 1:15
Instruction Pointer (IP) 1:27, 1:140
Instruction Scheduling 1:148, 1:150, 1:164
Instruction Serialization 2:18
Instruction Set Architecture (ISA) 1:7
Instruction Set Modes 1:110
Instruction Set Transition 1:14
Instruction Set Transitions 2:239, 2:596
Instruction Slot Mapping 1:38
Instruction Slots 1:38
INSW Instruction 4:214
INT (External Interrupt) 2:96
INT3 Instruction 4:217

Index for Volumes 1, 2, 3 and 4 Index:5

INDEX

INTA (Interrupt Acknowledge) 2:130
Inter-processor Interrupt (IPI) 2:127
Interrupt Acknowledge Cycle 2:130
Interruption Control Registers (CR16-27) 2:36
Interruption Handler 2:537
Interruption Handling 2:543
Interruption Hash Address 2:41
Interruption Instruction Bundle Registers (IIB0-1)

2:42
Interruption Processor Status Register (IPSR) 2:36
Interruption Register State 2:540
Interruption Registers 2:538
Interruption Status Register (ISR) 2:36
Interruption Vector 2:165

Alternate Data TLB 2:178
Alternate Instruction TLB 2:177
Break Instruction 2:185
Data Access Rights 2:191
Data Access-Bit 2:184
Data Key Miss 2:181
Data Nested TLB 2:179
Data TLB 2:176
Debug 2:200
Dirty-Bit 2:182
Disabled FP-Register 2:195
External Interrupt 2:186
Floating-point Fault 2:203
Floating-point Trap 2:204
General Exception 2:192
IA-32 Exception 2:210
IA-32 Intercept 2:211
IA-32 Interrupt 2:212
Instruction Access Rights 2:190
Instruction Access-Bit 2:183
Instruction Key Miss 2:180
Instruction TLB 2:175
Key Permission 2:189
Lower-Privilege Transfer Trap 2:205
NaT Consumption 2:196
Page Not Present 2:188
Single Step Trap 2:208
Speculation 2:198
Taken Branch Trap 2:207
Unaligned Reference 2:201
Unsupported Data Reference 2:202
Virtual External Interrupt 2:187
Virtualization 2:209

Interruption Vector Address 2:35, 2:538
Interruption Vector Table 2:538
Interruptions 2:95, 2:537
Interrupts 2:96, 2:114

External Interrupt Architecture 2:603
Interval Time Counter (ITC) 1:31
Interval Timer Match Register (ITM) 2:32
Interval Timer Offset (ITO) 2:34
Interval Timer Vector (ITV) 2:125

INTn Instruction 4:217
INTO Instruction 4:217
invala Instruction 3:146
INVD instructions 4:228
INVLPG Instruction 4:230
IP (Instruction Pointer) 1:27, 1:140
IPI (Inter-processor Interrupt) 2:127
IPSR (Interruption Processor Status Register)

2:36, 2:541
IRET Instruction 4:231
IRETD Instruction 4:231
IRR (External Interrupt Request Registers) 2:125
ISR (Interruption Status Register) 2:36, 2:165,

2:541
Itanium Architecture 1:7
Itanium Instruction Set 1:21
Itanium System Architecture 1:20
Itanium System Environment 1:7, 1:21
ITC (Interval Time Counter) 1:31, 2:32
itc Instruction 3:147
ITIR (Interruption TLB Insertion Register) 2:541
ITM (Interval Time Match Register) 2:32
ITO (Interval Timer Offset) 2:34
itr Instruction 3:149
ITV (Interval Timer Vector) 2:125
IVA (Interruption Vector Address) 2:35, 2:538
IVA-based interruptions 2:95, 2:537
IVR (External Interrupt Vector Register) 2:123

J
Jcc Instruction 4:239
JMP Instruction 4:243
JMPE Instruction 1:111, 2:597, 4:249

K
Kernel Register (KR) 1:29
KR (Kernel Register) 1:29

L
LAHF Instruction 4:251
Lamport’s Algorithm 2:530
LAR Instruction 4:252
Large Constants 1:53
LC (Loop Count Register) 1:33
ld Instruction 3:151
ldf Instruction 3:157
ldfp Instruction 3:161
LDMXCSR Instruction 4:516
LDS Instruction 4:255
LEA Instruction 4:258
LEAVE Instruction 4:260
LES Instruction 4:255
lfetch Instruction 3:164
LFS Instruction 4:255
LGDT Instruction 4:264

INDEX

Index:6 Index for Volumes 1, 2, 3 and 4

LGS Instruction 4:255
LIDT Instruction 4:264
LLDT Instruction 4:267
LMSW Instruction 4:270
Load Instructions 1:58
loadrs Instruction 3:167
Loads from Memory 1:147
Local Redirection Registers (LRR0-1) 2:126
Locality Hints 1:70
LOCK Instruction 4:272
LODS Instruction 4:274
LODSB Instruction 4:274
LODSD Instruction 4:274
LODSW Instruction 4:274
Logical Instructions 1:51
Loop Count Register (LC) 1:33
LOOP Instruction 4:276
Loop Optimization 1:160, 1:181
LOOPcc Instruction 4:276
Lower Privilege Transfer Trap 2:151
LRR (Local Redirection Registers) 2:126
LSL Instruction 4:278
LSS Instruction 4:255
LTR Instruction 4:282

M
Machine Check (MC) 2:95, 2:296, 2:351
Machine Check Abort (MCA) 2:632
MASKMOVQ Instruction 4:576
MAXPS Instruction 4:519
MAXSS Instruction 4:521
MC (Machine Check) 2:351
MCA (Machine Check Abort) 2:95, 2:296, 2:632
Memory 1:36

Cacheable Page 2:77
Memory Access 1:142
Memory Access Ordering 1:73
Memory Attribute Transition 2:88
Memory Attributes 2:75, 2:524
Memory Consistency 1:72
Memory Fences 2:510
Memory Instructions 1:57
Memory Management 2:561
Memory Ordering 2:507, 2:510

IA-32 2:525
Memory Reference 1:147
Memory Regions 2:561
Memory Synchronization 2:526

mf Instruction 2:510, 2:526, 3:168
mf.a 2:615

MINPS Instruction 4:523
MINSS Instruction 4:525
mix Instruction 3:169
MMX technology 1:20
MOV Instruction 4:284
mov Instruction 3:172

MOVAPS Instruction 4:527
MOVD Instruction 4:401
MOVHLPS Instruction 4:529
MOVHPS Instruction 4:530
movl Instruction 3:187
MOVLHPS Instruction 4:532
MOVLPS Instruction 4:533
MOVMSKPS Instruction 4:535
MOVNTPS Instruction 4:578
MOVNTQ Instruction 4:579
MOVQ Instruction 4:403
MOVS Instruction 4:292
MOVSB Instruction 4:292
MOVSD Instruction 4:292
MOVSS Instruction 4:536
MOVSW Instruction 4:292
MOVSX Instruction 4:294
MOVUPS Instruction 4:538
MOVZX Instruction 4:295
MP Coherence 2:507
mpy4 Instruction 3:188
mpyshl4 Instruction 3:189
MUL Instruction 4:297
MULPS Instruction 4:540
MULSS Instruction 4:541
Multimedia Instructions 1:79
Multimedia Support 1:20
Multi-threading 1:177
Multiway Branches 1:173
mux Instruction 3:190

N
NaT (Not a Thing) 1:155
NaTPage (Not a Thing Attribute) 2:86
NaTVal (Not a Thing Value) 1:26
NEG Instruction 4:299
NMI (Non-Maskable Interrupt) 2:96
Non-Maskable Interrupt (NMI) 2:96
NOP Instruction 4:301
nop Instruction 3:193
Not A Thing (NaT) 1:155
Not a Thing Attribute (NaTPage) 2:86
Not a Thing Value (NatVal) 1:26
NOT Instruction 4:302

O
OLR (On Line Replacement) 2:351
Operating Environments 1:14
Operating System - See OS (Operating System)
OR Instruction 4:304
or Instruction 3:194
ORPS Instruction 4:542
OS (Operating System)

Boot Flow Sample Code 2:639
Boot Sequence 2:625
FPSWA handler 2:587

Index for Volumes 1, 2, 3 and 4 Index:7

INDEX

Illegal Dependency Fault 2:584
Long Branch Emulation 2:585
Multiple Address Spaces 1:20, 2:562
OS_BOOT Entrypoint 2:283
OS_INIT Entrypoint 2:283
OS_MCA Entrypoint 2:283
OS_RENDEZ Entrypoint 2:283
Performance Monitoring Support 2:620
Single Address Space 1:20, 2:565
Unaligned Reference Handler 2:583
Unsupported Data Reference Handler 2:584

OUT Instruction 4:306
OUTS Instruction 4:308
OUTSB Instruction 4:308
OUTSD Instruction 4:308
OUTSW Instruction 4:308

P
pack Instruction 3:195
PACKSSDW Instruction 4:405
PACKSSWB Instruction 4:405
PACKUSWB Instruction 4:408
padd Instruction 3:197
PADDB Instruction 4:410
PADDD Instruction 4:410
PADDSB Instruction 4:413
PADDSW Instruction 4:413
PADDUSB Instruction 4:416
PADDUSW Instruction 4:416
PADDW Instruction 4:410
Page Access Rights 2:56
Page Sizes 2:57
Page Table Address 2:35
PAL (Processor Abstraction Layer) 1:7, 1:21,

2:279, 2:351
PAL Entrypoints 2:282
PAL Initialization 2:306
PAL Intercepts 2:351
PAL Intercepts in Virtual Environment 2:332
PAL Procedure Calls 2:628
PAL Procedures 2:353
PAL Self-test Control Word 2:295
PAL Virtualization 2:324
PAL Virtualization Optimizations 2:335
PAL Virtualization Services 2:486
PAL Virtuallization Disables 2:346
PAL_A 2:283
PAL_B 2:283
PAL_BRAND_INFO 2:366
PAL_BUS_GET_FEATURES 2:367
PAL_BUS_SET_FEATURES 2:369
PAL_CACHE_FLUSH 2:370
PAL_CACHE_INFO 2:374
PAL_CACHE_INIT 2:376
PAL_CACHE_LINE_INIT 2:377
PAL_CACHE_PROT_INFO 2:378

PAL_CACHE_READ 2:380
PAL_CACHE_SHARED_INFO 2:382
PAL_CACHE_SUMMARY 2:384
PAL_CACHE_WRITE 2:385
PAL_COPY_INFO 2:388
PAL_COPY_PAL 2:389
PAL_DEBUG_INFO 2:390
PAL_FIXED_ADDR 2:391
PAL_FREQ_BASE 2:392
PAL_FREQ_RATIOS 2:393
PAL_GET_HW_POLICY 2:394
PAL_GET_PSTATE 2:320, 2:396, 2:637
PAL_HALT 2:314
PAL_HALT_INFO 2:401
PAL_HALT_LIGHT 2:314, 2:403
PAL_LOGICAL_TO_PHYSICAL 2:404
PAL_MC_CLEAR_LOG 2:407
PAL_MC_DRAIN 2:408
PAL_MC_DYNAMIC_STATE 2:409
PAL_MC_ERROR_INFO 2:410
PAL_MC_ERROR_INJECT 2:421
PAL_MC_EXPECTED 2:434
PAL_MC_HW_TRACKING 2:432
PAL_MC_RESUME 2:436
PAL_MEM_ATTRIB 2:437
PAL_MEMORY_BUFFER 2:438
PAL_PERF_MON_INFO 2:440
PAL_PLATFORM_ADDR 2:442
PAL_PMI_ENTRYPOINT 2:443
PAL_PREFETCH_VISIBILITY 2:444
PAL_PROC_GET_FEATURES 2:446
PAL_PROC_SET_FEATURES 2:450
PAL_PSTATE_INFO 2:319, 2:451
PAL_PTCE_INFO 2:453
PAL_REGISTER_INFO 2:454
PAL_RSE_INFO 2:455
PAL_SET_HW_POLICY 2:456
PAL_SET_PSTATE 2:319, 2:458, 2:637
PAL_SHUTDOWN 2:460
PAL_TEST_INFO 2:461
PAL_TEST_PROC 2:462
PAL_VERSION 2:465
PAL_VM_INFO 2:466
PAL_VM_PAGE_SIZE 2:467
PAL_VM_SUMMARY 2:468
PAL_VM_TR_READ 2:470
PAL_VP_CREATE 2:471
PAL_VP_ENV_INFO 2:473
PAL_VP_EXIT_ENV 2:475
PAL_VP_INFO 2:476
PAL_VP_INIT_ENV 2:478
PAL_VP_REGISTER 2:481
PAL_VP_RESTORE 2:483
PAL_VP_SAVE 2:484
PAL_VP_TERMINATE 2:485
PAL_VPS_RESTORE 2:499

INDEX

Index:8 Index for Volumes 1, 2, 3 and 4

PAL_VPS_RESUME_HANDLER 2:492
PAL_VPS_RESUME_NORMAL 2:489
PAL_VPS_SAVE 2:500
PAL_VPS_SET_PENDING_INTERRUPT 2:495
PAL_VPS_SYNC_READ 2:493
PAL_VPS_SYNC_WRITE 2:494
PAL_VPS_THASH 2:497
PAL_VPS_TTAG 2:498
PAL-based Interruptions 2:95, 2:537
PALE_CHECK 2:282, 2:296
PALE_INIT 2:282, 2:306
PALE_PMI 2:282, 2:310
PALE_RESET 2:282, 2:289

PAND Instruction 4:419
PANDN Instruction 4:421
Parallel Arithmetic 1:79
Parallel Compares 1:172
Parallel Shifts 1:81
pavg Instruction 3:201
PAVGB Instruction 4:563
pavgsub Instruction 3:204
PAVGW Instruction 4:563
pcmp Instruction 3:206
PCMPEQB Instruction 4:423
PCMPEQD Instruction 4:423
PCMPEQW Instruction 4:423
PCMPGTB Instruction 4:426
PCMPGTD Instruction 4:426
PCMPGTW Instruction 4:426
Performance Monitor Data Register (PMD) 1:33
Performance Monitor Events 2:162
Performance Monitoring 2:155, 2:619
Performance Monitoring Vector 2:126
PEXTRW Instruction 4:565
PFS (Previous Function State Register) 1:32
Physical Addressing 2:73
PIB (Processor Interrupt Block) 2:127
PINSRW Instruction 4:566
PKR (Protection Key Register) 2:564
Platform Management Interrupt (PMI) 2:96,

2:310, 2:538, 2:637
PMADDWD Instruction 4:429
pmax Instruction 3:209
PMAXSW Instruction 4:567
PMAXUB Instruction 4:568
PMC (Performance Monitor Configuration) 2:155
PMD (Performance Monitor Data Register) 1:33
PMD (Performance Monitor Data) 2:155
PMI (Platform Management Interrupt) 2:96,

2:310, 2:538, 2:637
pmin Instruction 3:211
PMINSW Instruction 4:569
PMINUB Instruction 4:570
PMOVMSKB Instruction 4:571
pmpy Instruction 3:213
pmpyshr Instruction 3:214

PMULHUW Instruction 4:572
PMULHW Instruction 4:431
PMULLW Instruction 4:433
PMV (Performance Monitoring Vector) 2:126
POP Instruction 4:311
POPA Instruction 4:315
POPAD Instruction 4:315
popcnt Instruction 3:216
POPF Instruction 4:317
POPFD Instruction 4:317
POR Instruction 4:435
Power Management 2:313
Power-on Event 2:351
PR (Predicate Register) 1:26, 1:140
Predicate Register (PR) 1:26, 1:140
Predication 1:17, 1:54, 1:143, 1:163, 1:164
Prefetch Hints 1:176
PREFETCH Instruction 4:580
Preserved Values 2:351
Previous Function State (PFS) 1:32
Privilege Level Transfer 1:84
Privilege Levels 2:17
probe Instruction 3:217
Procedure Calls 2:549
Processor Abstraction Layer - See PAL (Processor

Abstraction Layer)
Processor Abstraction Layer (PAL) 2:279
Processor Boot Flow 2:623
Processor Identification Registers (CPUID) 1:34
Processor Interrupt Block (PIB) 2:127
Processor Min-state Save Area 2:302
Processor Reset 2:95
Processor State Parameter (PSP) 2:299, 2:308
Processor Status Register (PSR) 2:23
Programmed I/O 2:534
Protection Keys 2:59, 2:564
psad Instruction 3:220
PSADBW Instruction 4:573
Pseudo-Code Functions 3:281
pshl Instruction 3:222
pshladd Instruction 3:223
pshr Instruction 3:224
pshradd Instruction 3:226
PSHUFW Instruction 4:575
PSLLD Instruction 4:437
PSLLQ Instruction 4:437
PSLLW Instruction 4:437
PSP (Processor State Parameter) 2:308
PSR (Processor Status Register) 2:23
PSRAD Instruction 4:440
PSRAW Instruction 4:440
PSRLD Instruction 4:443
PSRLQ Instruction 4:443
PSRLW Instruction 4:443
psub Instruction 3:227
PSUBB Instruction 4:446

Index for Volumes 1, 2, 3 and 4 Index:9

INDEX

PSUBD Instruction 4:446
PSUBSB Instruction 4:449
PSUBSW Instruction 4:449
PSUBUSB Instruction 4:452
PSUBUSW Instruction 4:452
PSUBW Instruction 4:446
PTA (Page Table Address Register) 2:35
ptc Instruction

ptc.e 2:569, 3:230
ptc.g 2:570, 3:231
ptc.ga 2:570, 3:231
ptc.l 2:568, 3:233

ptr Instruction 3:234
PUNPCKHBW Instruction 4:455
PUNPCKHDQ Instruction 4:455
PUNPCKHWD Instruction 4:455
PUNPCKLBW Instruction 4:458
PUNPCKLDQ Instruction 4:458
PUNPCKLWD Instruction 4:458
PUSH Instruction 4:320
PUSHA Instruction 4:323
PUSHAD Instruction 4:323
PUSHF Instruction 4:325
PUSHFD Instruction 4:325
PXOR Instruction 4:461

R
RAW Dependency 1:149
RCL Instruction 4:327
RCPPS Instruction 4:543
RCPSS Instruction 4:545
RCR Instruction 4:327
RDMSR Instruction 4:331
RDPMC Instruction 4:333
RDTSC Instruction 4:335
Read-after-write Dependency 1:149
Recoverable Error 2:351
Recovery Code 1:153, 1:154, 1:156
Region Identifier (RID) 2:561
Region Register (RR) 2:58, 2:561
Register File Transfers 1:82
Register Rotation 1:19, 1:185
Register Spill and Fill 1:62
Register Stack 1:18, 1:47
Register Stack Configuration Register (RSC) 1:29
Register Stack Engine (RSE) 1:144, 2:133
Register State 2:549
Release Semantics 2:507
Rendezvous 2:301
REP Instruction 4:337
REPE Instruction 4:337
REPNE Instruction 4:337
REPNZ Instruction 4:337
REPZ Instruction 4:337
Reserved Variables 2:351
Reset Event 2:95, 2:351

Resource Utilization Counter (RUC) 1:31, 2:33
RET Instruction 4:340
rfi Instruction 2:543, 3:236
RID (Region Identifier) 2:561
RNAT(RSE NaT Collection Register) 1:30
ROL Instruction 4:327
ROR Instruction 4:327
Rotating Registers 1:145
RR (Region Register) 2:58, 2:561
RSC (Register Stack Configuration Register) 1:29
RSE (Register Stack Engine) 2:133
RSE Backing Store Pointer (BSP) 1:29
RSE Backing Store Pointer for Memory Stores

(BSPSTORE) 1:30
RSE NaT Collection Register (RNAT) 1:30
RSM Instruction 4:346
rsm Instruction 3:239
RSQRTPS Instruction 4:547
RSQRTSS Instruction 4:548
RUC (Resource Utilization Counter) 1:31, 2:33
rum Instruction 3:241

S
SAHF Instruction 4:347
SAL (System Abstraction Layer) 1:7, 1:21, 2:352,

2:630
SAL_B 2:283
SALE_ENTRY 2:282, 2:291, 2:305
SALE_PMI 2:282, 2:310

SAL Instruction 4:348
SAR Instruction 4:348
SBB Instruction 4:352
SCAS Instruction 4:354
SCASB Instruction 4:354
SCASD Instruction 4:354
SCASW Instruction 4:354
Scratch Register 2:352
Self Test State Parameter 2:293
Self-modifying Code 2:532
Semaphore Instructions 1:59
Semaphores 2:508
Serialization 2:17, 2:537
SETcc Instruction 4:356
setf Instruction 3:242
SFENCE Instruction 4:581
SGDT Instruction 4:359
SHL Instruction 4:348
shl Instruction 3:244
shladd Instruction 3:245
shladdp4 Instruction 3:246
SHLD Instruction 4:362
SHR Instruction 4:348
shr Instruction 3:247
SHRD Instruction 4:364
shrp Instruction 3:248
SHUFPS Instruction 4:549

INDEX

Index:10 Index for Volumes 1, 2, 3 and 4

SIDT Instruction 4:359
Single Step Trap 2:151
SLDT Instruction 4:367
SMSW Instruction 4:369
Software Pipelining 1:19, 1:75, 1:145, 1:181
Speculation 1:16, 1:142, 1:151

Control Speculation 1:16
Data Speculation 1:17
Recovery Code 1:17, 2:580
Speculation Check 1:156

SQRTPS Instruction 4:551
SQRTSS Instruction 4:552
srlz Instruction 3:249
SSE Instructions 4:463
ssm Instruction 3:250
st Instruction 3:251
Stacked Calling Convention 2:352
Stacked General Registers 2:550
Stacked Registers 1:144
Static Calling Convention 2:352
Static General Registers 2:550
STC Instruction 4:371
STD Instruction 4:372
stf Instruction 3:254
STI Instruction 4:373
STMXCSR Instruction 4:553
Stops 1:38
Store Instructions 1:59
Stores to Memory 1:147
STOS Instruction 4:376
STOSB Instruction 4:376
STOSD Instruction 4:376
STOSW Instruction 4:376
STR Instruction 4:378
SUB Instruction 4:379
sub Instruction 3:256
SUBPS Instruction 4:554
SUBSS Instruction 4:555
sum Instruction 3:257
sxt Instruction 3:258
sync Instruction 3:259

sync.i 2:526
System Abstraction Layer - See SAL (System

Abstraction Layer)
System Architecture 1:20
System Environment 2:13
System Programmer’s Guide 2:501
System State 2:20

T
tak Instruction 3:260
Taken Branch trap 2:151
Task Priority Register (TPR) 2:123, 2:605
tbit Instruction 3:261
TC (Translation Cache) 2:49, 2:567

Template Field Encoding 1:38
Templates 1:141
TEST Instruction 4:381
tf Instruction 3:263
thash Instruction 3:265
TLB (Translation Lookaside Buffer) 2:47, 2:565
tnat Instruction 3:266
tpa Instruction 3:268
TPR (Task Priority Register) 2:123, 2:605
TR (Translation Register) 2:48, 2:566
Translation Cache (TC) 2:49, 2:567

purge 2:568
Translation Instructions 2:60
Translation Lookaside Buffer (TLB) 2:47, 2:565
Translation Register (TR) 2:48, 2:566
Traps 2:96, 2:537
ttag Instruction 3:269

U
UCOMISS Instruction 4:556
UD2 Instruction 4:383
UEFI (Unified Extensible Firmware Interface)

2:630
UM (User Mask Register) 1:33
UNAT (User NaT Collection Register) 1:31, 1:156
Uncacheable Page 2:77
Unchanged Register 2:352
Unordered Semantics 2:507
unpack Instruction 3:270
UNPCKHPS Instruction 4:558
UNPCKLPS Instruction 4:560
User Mask (UM) 1:33
User NaT Collection Register (UNAT) 1:31, 1:156

V
VERR Instruction 4:384
VERW Instruction 4:384
VHPT (Virtual Hash Page Table) 2:61, 2:571
VHPT Translation Vector 2:173
Virtual Addressing 2:45
Virtual Hash Page Table (VHPT) 2:61, 2:571
Virtual Machine Monitor (VMM) 2:352
Virtual Processor Descriptor (VPD) 2:325, 2:352
Virtual Processor State 2:352
Virtual Processor Status Register (VPSR) 2:327
Virtual Region Number (VRN) 2:561
Virtualization 2:44, 2:324
Virtualization Acceleration Control (vac) 2:329
Virtualization Disable Control (vdc) 2:329
VMM (Virtual Machine Monitor) 2:352
vmsw Instruction 3:273
VPD (Virtual Processor Descriptor) 2:325, 2:352
VPSR (Virtual Processor Status Register) 2:327
VRN (Virtual Region Number) 2:561

Index for Volumes 1, 2, 3 and 4 Index:11

INDEX

W
WAIT Instruction 4:386
WAR Dependency 1:149
WAW Dependency 1:149
WBINVD Instruction 4:387
Write-after-read Dependency 1:149
Write-after-write Dependency 1:149
WRMSR Instruction 4:389

X
XADD Instruction 4:391
XCHG Instruction 4:393
xchg Instruction 2:508, 3:274
XLAT Instruction 4:395
XLATB Instruction 4:395
xma Instruction 3:276
xmpy Instruction 3:278
XOR Instruction 4:397
xor Instruction 3:279
XORPS Instruction 4:562
XTP (External Task Priority Cycle) 2:130
XTPR (External Task Priority Register) 2:605

Z
zxt Instruction 3:280

INDEX

Index:12 Index for Volumes 1, 2, 3 and 4

	Intel® Itanium® Architecture Software Developer’s Manual, Volume 1: Application Architecture
	Part I: Application Architecture Guide
	1 About this Manual
	1.1 Overview of Volume 1: Application Architecture
	1.1.1 Part 1: Application Architecture Guide
	1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture

	1.2 Overview of Volume 2: System Architecture
	1.2.1 Part 1: System Architecture Guide
	1.2.2 Part 2: System Programmer’s Guide
	1.2.3 Appendices

	1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference
	1.4 Overview of Volume 4: IA-32 Instruction Set Reference
	1.5 Terminology
	1.6 Related Documents
	1.7 Revision History

	2 Introduction to the Intel® Itanium® Architecture
	2.1 Operating Environments
	2.2 Instruction Set Transition Model Overview
	2.3 Intel® Itanium® Instruction Set Features
	2.4 Instruction Level Parallelism
	2.5 Compiler to Processor Communication
	2.6 Speculation
	2.6.1 Control Speculation
	2.6.2 Data Speculation
	2.6.3 Predication

	2.7 Register Stack
	2.8 Branching
	2.9 Register Rotation
	2.10 Floating-point Architecture
	2.11 Multimedia Support
	2.12 Intel® Itanium® System Architecture Features
	2.12.1 Support for Multiple Address Space Operating Systems
	2.12.2 Support for Single Address Space Operating Systems
	2.12.3 System Performance and Scalability
	2.12.4 System Security and Supportability

	2.13 Terminology

	3 Execution Environment
	3.1 Application Register State
	3.1.1 Reserved and Ignored Registers and Fields
	3.1.2 General Registers
	3.1.3 Floating-point Registers
	3.1.4 Predicate Registers
	3.1.5 Branch Registers
	3.1.6 Instruction Pointer
	3.1.7 Current Frame Marker
	3.1.8 Application Registers
	3.1.8.1 Kernel Registers (KR 0-7 - AR 0-7)
	3.1.8.2 Register Stack Configuration Register (RSC - AR 16)
	3.1.8.3 RSE Backing Store Pointer (BSP - AR 17)
	3.1.8.4 RSE Backing Store Pointer for Memory Stores (BSPSTORE - AR 18)
	3.1.8.5 RSE NaT Collection Register (RNAT - AR 19)
	3.1.8.6 Compare and Store Data register (CSD - AR 25)
	3.1.8.7 Compare and Exchange Value Register (CCV - AR 32)
	3.1.8.8 User NaT Collection Register (UNAT - AR 36)
	3.1.8.9 Floating-point Status Register (FPSR - AR 40)
	3.1.8.10 Interval Time Counter (ITC - AR 44)
	3.1.8.11 Resource Utilization Counter (RUC - AR 45)
	3.1.8.12 Previous Function State (PFS - AR 64)
	3.1.8.13 Loop Count Register (LC - AR 65)
	3.1.8.14 Epilog Count Register (EC - AR 66)

	3.1.9 Performance Monitor Data Registers (PMD)
	3.1.10 User Mask (UM)
	3.1.11 Processor Identification Registers

	3.2 Memory
	3.2.1 Application Memory Addressing Model
	3.2.2 Addressable Units and Alignment
	3.2.3 Byte Ordering

	3.3 Instruction Encoding Overview
	3.4 Instruction Sequencing Considerations
	3.4.1 RAW Dependency Special Cases
	3.4.2 WAW Dependency Special Cases
	3.4.3 WAR Dependency Special Cases
	3.4.4 Processor Behavior on Dependency Violations

	3.5 Undefined Behavior

	4 Application Programming Model
	4.1 Register Stack
	4.1.1 Register Stack Operation
	4.1.2 Register Stack Instructions

	4.2 Integer Computation Instructions
	4.2.1 Arithmetic Instructions
	4.2.2 Logical Instructions
	4.2.3 32-bit Addresses and Integers
	4.2.4 Bit Field and Shift Instructions
	4.2.5 Large Constants

	4.3 Compare Instructions and Predication
	4.3.1 Predication
	4.3.2 Compare Instructions
	4.3.3 Compare Types
	4.3.4 Predicate Register Transfers

	4.4 Memory Access Instructions
	4.4.1 Load Instructions
	4.4.2 Store Instructions
	4.4.3 Semaphore Instructions
	4.4.4 Control Speculation
	4.4.4.1 Control Speculation Concepts
	4.4.4.2 Control Speculation and Instructions
	4.4.4.3 Control Speculation and Compares
	4.4.4.4 Control Speculation without Recovery
	4.4.4.5 Operating System Control over Exception Deferral
	4.4.4.6 Register Spill and Fill

	4.4.5 Data Speculation
	4.4.5.1 Data Speculation Concepts
	4.4.5.2 Data Speculation and Instructions
	4.4.5.3 Detailed Functionality of the ALAT and Related Instructions
	4.4.5.3.1 Allocating and Checking ALAT Entries
	4.4.5.3.2 Invalidating ALAT Entries

	4.4.5.4 Combining Control and Data Speculation
	4.4.5.5 Instruction Completers for ALAT Management

	4.4.6 Memory Hierarchy Control and Consistency
	4.4.6.1 Hierarchy Control and Hints
	4.4.6.2 Memory Consistency

	4.4.7 Memory Access Ordering

	4.5 Branch Instructions
	4.5.1 Modulo-scheduled Loop Support
	4.5.2 Branch Prediction Hints
	4.5.3 Branch Predict Instructions

	4.6 Multimedia Instructions
	4.6.1 Parallel Arithmetic
	4.6.2 Parallel Shifts
	4.6.3 Data Arrangement

	4.7 Register File Transfers
	4.8 Character and Bit Strings
	4.8.1 Character Strings
	4.8.2 Bit Strings

	4.9 Privilege Level Transfer

	5 Floating-point Programming Model
	5.1 Data Types and Formats
	5.1.1 Real Types
	5.1.2 Floating-point Register Format
	5.1.3 Representation of Values in Floating-point Registers

	5.2 Floating-point Status Register
	5.3 Floating-point Instructions
	5.3.1 Memory Access Instructions
	5.3.2 Floating-point Register to/from General Register Transfer Instructions
	5.3.3 Arithmetic Instructions
	5.3.4 Non-arithmetic Instructions
	5.3.5 Floating-point Status Register (FPSR) Status Field Instructions
	5.3.6 Integer Multiply and Add Instructions

	5.4 Additional IEEE Considerations
	5.4.1 Floating-point Interruptions
	5.4.1.1 Disabled Floating-point Register Fault
	5.4.1.2 Floating-point Exception Fault
	5.4.1.3 Floating-point Exception Trap

	5.4.2 Definition of Overflow
	5.4.3 Definition of Tininess, Inexact and Underflow
	5.4.4 Integer Invalid Operations
	5.4.5 Definition of Arithmetic Operations
	5.4.6 Definition and Propagation of NaNs
	5.4.7 IEEE Standard Mandated Operations Deferred to Software
	5.4.8 Additions beyond the IEEE Standard

	6 IA-32 Application Execution Model in an Intel® Itanium® System Environment
	6.1 IA-32 Execution Layer
	6.2 Hardware-based IA-32 Application Execution
	6.2.1 Instruction Set Modes
	6.2.1.1 Instruction Set Execution in the Intel® Itanium® Architecture
	6.2.1.2 IA-32 Instruction Set Execution
	6.2.1.3 Instruction Set Transitions
	6.2.1.3.1 JMPE Instruction
	6.2.1.3.2 Branch to IA Instruction

	6.2.1.4 IA-32 Operating Mode Transitions

	6.2.2 IA-32 Application Register State Model
	6.2.2.1 IA-32 General Purpose Registers
	6.2.2.2 IA-32 Instruction Pointer
	6.2.2.3 IA-32 Segment Registers
	6.2.2.3.1 Data and Code Segments
	6.2.2.3.2 Segment Descriptor and Environment Integrity
	6.2.2.3.3 IA-32 Environment Runtime Integrity Checks

	6.2.2.4 IA-32 Application EFLAG Register
	6.2.2.5 IA-32 Floating-point Registers
	6.2.2.5.1 IA-32 Floating-point Stack
	6.2.2.5.2 Special Cases
	6.2.2.5.3 IA-32 Floating-point Control Registers
	6.2.2.5.4 IA-32 Floating-point Environment

	6.2.2.6 IA-32 Intel® MMX™ Technology Registers
	6.2.2.7 IA-32 SSE Registers

	6.2.3 Memory Model Overview
	6.2.3.1 Memory Endianess
	6.2.3.2 IA-32 Segmentation
	6.2.3.3 Self Modifying Code
	6.2.3.4 Memory Ordering Interactions

	6.2.4 IA-32 Usage of Intel® Itanium® Registers
	6.2.4.1 Register Stack Engine
	6.2.4.2 ALAT
	6.2.4.3 NaT/NaTVal Response for IA-32 Instructions

	Part II: Optimization Guide for the Intel® Itanium® Architecture
	1 About the Optimization Guide
	1.1 Overview of the Optimization Guide

	2 Introduction to Programming for the Intel® Itanium® Architecture
	2.1 Overview
	2.2 Registers
	2.3 Using Intel® Itanium® Instructions
	2.3.1 Format
	2.3.2 Expressing Parallelism
	2.3.3 Bundles and Templates

	2.4 Memory Access and Speculation
	2.4.1 Functionality
	2.4.2 Speculation
	2.4.3 Control Speculation
	2.4.4 Data Speculation

	2.5 Predication
	2.6 Architectural Support for Procedure Calls
	2.6.1 Stacked Registers
	2.6.2 Register Stack Engine

	2.7 Branches and Hints
	2.7.1 Branch Instructions
	2.7.2 Loops and Software Pipelining
	2.7.3 Rotating Registers

	2.8 Summary

	3 Memory Reference
	3.1 Overview
	3.2 Non-speculative Memory References
	3.2.1 Stores to Memory
	3.2.2 Loads from Memory
	3.2.3 Data Prefetch Hint

	3.3 Instruction Dependencies
	3.3.1 Control Dependencies
	3.3.1.1 Instruction Scheduling and Control Dependencies

	3.3.2 Data Dependencies
	3.3.2.1 Basics of Data Dependency
	3.3.2.2 Data Dependency in the Intel® Itanium® Architecture
	3.3.2.3 Instruction Scheduling and Data Dependencies

	3.4 Using Speculation in the Intel® Itanium® Architecture to Overcome Dependencies
	3.4.1 Speculation Model in the Intel® Itanium® Architecture
	3.4.2 Using Data Speculation in the Intel® Itanium® Architecture
	3.4.2.1 Advanced Load Example
	3.4.2.2 Recovery Code Example
	3.4.2.3 Terminology Review

	3.4.3 Using Control Speculation in the Intel® Itanium® Architecture
	3.4.3.1 The NaT Bit
	3.4.3.2 Control Speculation Example
	3.4.3.3 Spills, Fills and the UNAT Register
	3.4.3.4 Terminology Review

	3.4.4 Combining Data and Control Speculation

	3.5 Optimization of Memory References
	3.5.1 Speculation Considerations
	3.5.2 Data Interference
	3.5.3 Optimizing Code Size
	3.5.4 Using Post-increment Loads and Stores
	3.5.5 Loop Optimization
	3.5.6 Minimizing Check Code

	3.6 Summary

	4 Predication, Control Flow, and Instruction Stream
	4.1 Overview
	4.2 Predication
	4.2.1 Performance Costs of Branches
	4.2.1.1 Prediction Resources
	4.2.1.2 Instruction Scheduling

	4.2.2 Predication in the Intel® Itanium® Architecture
	4.2.3 Optimizing Program Performance Using Predication
	4.2.3.1 Applying if-Conversion
	4.2.3.2 Off-path Predication
	4.2.3.3 Upward Code Motion
	4.2.3.4 Downward Code Motion
	4.2.3.5 Cache Pollution Reduction

	4.2.4 Predication Considerations
	4.2.4.1 Unbalanced Execution Paths
	1 4.2.4.2 Case
	2 4.2.4.3 Case
	3 4.2.4.4 Case
	4.2.4.5 Overlapping Resource Usage
	1 4.2.4.6 Case

	4.2.5 Guidelines for Removing Branches

	4.3 Control Flow Optimizations
	4.3.1 Reducing Critical Path with Parallel Compares
	4.3.2 Reducing Critical Path with Multiway Branches
	4.3.3 Selecting Multiple Values for One Variable or Register with Predication
	4.3.3.1 Selecting One of Several Values
	4.3.3.2 Reducing Register Usage

	4.3.4 Improving Instruction Stream Fetching
	4.3.4.1 Instruction Stream Alignment

	4.4 Branch and Prefetch Hints
	4.5 Hints for Controlling Multi-threading
	4.5.1 Wait Loops
	4.5.2 Idle Loops
	4.5.3 Critical Sections

	4.6 Summary

	5 Software Pipelining and Loop Support
	5.1 Overview
	5.2 Loop Terminology and Basic Loop Support
	5.3 Optimization of Loops
	5.3.1 Loop Unrolling
	5.3.2 Software Pipelining

	5.4 Loop Support Features in the Intel® Itanium® Architecture
	5.4.1 Register Rotation
	5.4.2 Note on Initializing Rotating Predicates
	5.4.3 Software-pipelined Loop Branches
	5.4.3.1 Counted Loop Branches
	5.4.3.2 Counted Loop Example
	5.4.3.3 While Loop Branches

	5.4.4 Terminology Review

	5.5 Optimization of Loops in the Intel® Itanium® Architecture
	5.5.1 While Loops
	5.5.2 Loops with Predicated Instructions
	5.5.3 Multiple-exit Loops
	5.5.3.1 Converting Multiple Exit Loops to Single Exit Loops
	5.5.3.2 Pipelining with Explicit Multiple Exits

	5.5.4 Software Pipelining Considerations
	5.5.5 Software Pipelining and Advanced Loads
	5.5.5.1 Capacity Limitations
	5.5.5.2 Conflicts in the ALAT

	5.5.6 Loop Unrolling Prior to Software Pipelining
	5.5.7 Implementing Reductions
	5.5.8 Explicit Prolog and Epilog
	5.5.9 Redundant Load Elimination in Loops

	5.6 Summary

	6 Floating-point Applications
	6.1 Overview
	6.2 FP Application Performance Limiters
	6.2.1 Execution Latency
	6.2.2 Execution Bandwidth
	6.2.3 Memory Latency
	6.2.4 Memory Bandwidth

	6.3 Floating-point Features in the Intel® Itanium® Architecture
	6.3.1 Large and Wide Floating-point Register Set
	6.3.1.1 Notes on FP Precision

	6.3.2 Multiply-Add Instruction
	6.3.3 Software Divide/Square Root Sequence
	6.3.3.1 Double Precision - Divide
	6.3.3.2 Double Precision - Square Root

	6.3.4 Computational Models
	6.3.5 Multiple Status Fields
	6.3.6 Other Features
	6.3.6.1 Operand Screening Support
	6.3.6.2 Min/Max/AMin/AMax
	6.3.6.3 Integer/Floating-point Conversion
	6.3.6.4 FP Subfield Handling

	6.3.7 Memory Access Control
	6.3.7.1 Load-pair Instructions
	6.3.7.2 Data Prefetch
	6.3.7.3 Allocation Control

	6.4 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

