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About this Manual 1

The Intel® Itanium® architecture is a unique combination of innovative features such 
as explicit parallelism, predication, speculation and more. The architecture is designed 
to be highly scalable to fill the ever increasing performance requirements of various 
server and workstation market segments. The Itanium architecture features a 
revolutionary 64-bit instruction set architecture (ISA), which applies a new processor 
architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A key 
feature of the Itanium architecture is IA-32 instruction set compatibility.

The Intel® Itanium® Architecture Software Developer’s Manual provides a 
comprehensive description of the programming environment, resources, and instruction 
set visible to both the application and system programmer. In addition, it also describes 
how programmers can take advantage of the features of the Itanium architecture to 
help them optimize code.

1.1 Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level 
resources, programming environment, and the IA-32 application interface. This volume 
also describes optimization techniques used to generate high performance software.

1.1.1 Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.Intel® Itanium® Architecture 
Software Developer’s Manual

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of 
the architecture.

Chapter 3, “Execution Environment” describes the Itanium register set used by 
applications and the memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of 
Itanium application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point 
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System 
Environment” describes the operation of IA-32 instructions within the Itanium System 
Environment from the perspective of an application programmer.

1.1.2 Part 2: Optimization Guide for the Intel® Itanium® 
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.
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Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture” 
provides an overview of the application programming environment for the Itanium 
architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control 
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization 
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on 
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in 
floating-point applications and features that address these limitations.

1.2 Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources 
and programming state, interrupt model, and processor firmware interface. This 
volume also provides a useful system programmer's guide for writing high performance 
system software.

1.2.1 Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Intel® Itanium® System Environment” introduces the environment 
designed to support execution of Itanium architecture-based operating systems running 
IA-32 or Itanium architecture-based applications.

Chapter 3, “System State and Programming Model” describes the Itanium architectural 
state which is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating 
system for virtual to physical address translation, virtual aliasing, physical addressing, 
and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a 
processor based on the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which 
automatically saves and restores the stacked subset (GR32 – GR 127) of the general 
register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance 
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions” lists all interruption vectors.
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Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts 
and intercepts that can occur during IA-32 instruction set execution in the Itanium 
System Environment.

Chapter 10, “Itanium® Architecture-based Operating System Interaction Model with 
IA-32 Applications” defines the operation of IA-32 instructions within the Itanium 
System Environment from the perspective of an Itanium architecture-based operating 
system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts 
processor implementation-dependent features.

1.2.2 Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second 
section of the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multiprocessing 
synchronization primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes 
execution around interruptions and what state is preserved and made available to 
low-level system code when interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve 
Itanium register contents and state. This chapter also describes system architecture 
mechanisms that allow an operating system to reduce the number of registers that 
need to be spilled/filled on interruptions, system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating 
system support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of 
instruction emulation handlers that Itanium architecture-based operating systems are 
expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the 
Itanium architecture handle floating-point numeric exceptions and how the software 
stack provides complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium 
architecture-based operating system needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt 
architecture with a focus on how external asynchronous interrupt handling can be 
controlled by software. 

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform 
issues and support for the existing IA-32 I/O port space.
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Chapter 12, “Performance Monitoring Support” describes the performance monitor 
architecture with a focus on what kind of support is needed from Itanium 
architecture-based operating systems. 

Chapter 13, “Firmware Overview” introduces the firmware model, and how various 
firmware layers (PAL, SAL, UEFI, ACPI) work together to enable processor and system 
initialization, and operating system boot.

1.2.3 Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

1.3 Overview of Volume 3: Intel® Itanium® 
Instruction Set Reference

This volume is a comprehensive reference to the Itanium instruction set, including 
instruction format/encoding. 

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium 
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides a table of pseudo-code functions which 
are used to define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format 
instructions.

Chapter 5, “Resource and Dependency Semantics” summarizes the dependency rules 
that are applicable when generating code for processors based on the Itanium 
architecture.

1.4 Overview of Volume 4: IA-32 Instruction Set 
Reference

This volume is a comprehensive reference to the IA-32 instruction set, including 
instruction format/encoding. 

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® 
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Base IA-32 Instruction Reference” provides a detailed description of all 
base IA-32 instructions, organized in alphabetical order by assembly language 
mnemonic.
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Chapter 3, “IA-32 Intel® MMX™ Technology Instruction Reference” provides a detailed 
description of all IA-32 Intel® MMX™ technology instructions designed to increase 
performance of multimedia intensive applications. Organized in alphabetical order by 
assembly language mnemonic.

Chapter 4, “IA-32 SSE Instruction Reference” provides a detailed description of all 
IA-32 SSE instructions designed to increase performance of multimedia intensive 
applications, and is organized in alphabetical order by assembly language mnemonic.

1.5 Terminology

The following definitions are for terms related to the Itanium architecture and will be 
used throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level 
resources. These resources include instructions and registers.

Itanium Architecture – The new ISA with 64-bit instruction capabilities, new 
performance- enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel architecture as described in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium System Environment – The operating system environment that supports 
the execution of both IA-32 and Itanium architecture-based code.

Itanium Architecture-based Firmware – The Processor Abstraction Layer (PAL) and 
System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) – The firmware layer which abstracts processor 
features that are implementation dependent.

System Abstraction Layer (SAL) – The firmware layer which abstracts system 
features that are implementation dependent.

1.6 Related Documents

The following documents can be downloaded at the Intel’s Developer Site at 
http://developer.intel.com:

• Dual-Core Update to the Intel® Itanium® 2 Processor Reference Manual 
for Software Development and Optimization– Document number 308065 
provides model-specific information about the dual-core Itanium processors.

• Intel® Itanium® 2 Processor Reference Manual for Software Development 
and Optimization – This document (Document number 251110) describes 
model-specific architectural features incorporated into the Intel® Itanium® 2 
processor, the second processor based on the Itanium architecture.

• Intel® Itanium® Processor Reference Manual for Software Development – 
This document (Document number 245320) describes model-specific architectural 
features incorporated into the Intel® Itanium® processor, the first processor based 
on the Itanium architecture.
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• Intel® 64 and IA-32 Architectures Software Developer’s Manual – This set 
of manuals describes the Intel 32-bit architecture. They are available from the Intel 
Literature Department by calling 1-800-548-4725 and requesting Document 
Numbers 243190, 243191and 243192.

• Intel® Itanium® Software Conventions and Runtime Architecture Guide – 
This document (Document number 245358) defines general information necessary 
to compile, link, and execute a program on an Itanium architecture-based 
operating system.

• Intel® Itanium® Processor Family System Abstraction Layer Specification – 
This document (Document number 245359) specifies requirements to develop 
platform firmware for Itanium architecture-based systems.

The following document can be downloaded at the Unified EFI Forum website at 
http://www.uefi.org:

• Unified Extensible Firmware Interface Specification – This document defines 
a new model for the interface between operating systems and platform firmware.

1.7 Revision History

Date of 
Revision

Revision 
Number Description

March 2010 2.3 Added information about illegal virtualization optimization combinations and 
IIPA requirements.
Added Resource Utilization Counter and PAL_VP_INFO.
PAL_VP_INIT and VPD.vpr changes.
New PAL_VPS_RESUME_HANDLER parameter to indicate RSE Current 
Frame Load Enable setting at the target instruction.
PAL_VP_INIT_ENV implementation-specific configuration option.
Minimum Virtual address increased to 54 bits.
New PAL_MC_ERROR_INFO health indicator.
New PAL_MC_ERROR_INJECT implementation-specific bit fields.
MOV-to_SR.L reserved field checking.
Added virtual machine disable.
Added variable frequency mode additions to ACPI P-state description.
Removed pal_proc_vector argument from PAL_VP_SAVE and 
PAL_VP_RESTORE.
Added PAL_PROC_SET_FEATURES data speculation disable.
Added Interruption Instruction Bundle registers.
Min-state save area size change.
PAL_MC_DYNAMIC_STATE changes.
PAL_PROC_SET_FEATURES data poisoning promotion changes.
ACPI P-state clarifications.
Synchronization requirements for virtualization opcode optimization.
New priority hint and multi-threading hint recommendations.
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August 2005 2.2 Allow register fields in CR.LID register to be read-only and CR.LID checking 
on interruption messages by processors optional. See Vol 2, Part I, Ch 5 
“Interruptions” and Section 11.2.2 PALE_RESET Exit State for details.
Relaxed reserved and ignored fields checkings in IA-32 application registers 
in Vol 1 Ch 6 and Vol 2, Part I, Ch 10.
Introduced visibility constraints between stores and local purges to ensure 
TLB consistency for UP VHPT update and local purge scenarios. See Vol 2, 
Part I, Ch 4 and description of ptc.l instruction in Vol 3 for details.
Architecture extensions for processor Power/Performance states (P-states). 
See Vol 2 PAL Chapter for details.
Introduced Unimplemented Instruction Address fault.
Relaxed ordering constraints for VHPT walks. See Vol 2, Part I, Ch 4 and 5 for 
details.
Architecture extensions for processor virtualization.
All instructions which must be last in an instruction group results in undefined 
behavior when this rule is violated.
Added architectural sequence that guarantees increasing ITC and PMD 
values on successive reads.
Addition of PAL_BRAND_INFO, PAL_GET_HW_POLICY, 
PAL_MC_ERROR_INJECT, PAL_MEMORY_BUFFER, 
PAL_SET_HW_POLICY and PAL_SHUTDOWN procedures.
Allows IPI-redirection feature to be optional. 
Undefined behavior for 1-byte accesses to the non-architected regions in the 
IPI block.
Modified insertion behavior for TR overlaps. See Vol 2, Part I, Ch 4 for details.
“Bus parking” feature is now optional for PAL_BUS_GET_FEATURES.
Introduced low-power synchronization primitive using hint instruction.
FR32-127 is now preserved in PAL calling convention.
New return value from PAL_VM_SUMMARY procedure to indicate the 
number of multiple concurrent outstanding TLB purges.
Performance Monitor Data (PMD) registers are no longer sign-extended.
New memory attribute transition sequence for memory on-line delete. See Vol 
2, Part I, Ch 4 for details.
Added 'shared error' (se) bit to the Processor State Parameter (PSP) in 
PAL_MC_ERROR_INFO procedure.
Clarified PMU interrupts as edge-triggered.
Modified ‘proc_number’ parameter in PAL_LOGICAL_TO_PHYSICAL 
procedure.
Modified pal_copy_info alignment requirements.
New bit in PAL_PROC_GET_FEATURES for variable P-state performance.
Clarified descriptions for check_target_register and 
check_target_register_sof. 
Various fixes in dependency tables in Vol 3 Ch 5.
Clarified effect of sending IPIs to non-existent processor in Vol 2, Part I, Ch 5.
Clarified instruction serialization requirements for interruptions in Vol 2, Part II, 
Ch 3.
Updated performance monitor context switch routine in Vol 2, Part I, Ch 7.
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August 2002 2.1 Added Predicate Behavior of alloc Instruction Clarification (Section 4.1.2, 
Part I, Volume 1; Section 2.2, Part I, Volume 3).
Added New fc.i Instruction (Section 4.4.6.1, and 4.4.6.2, Part I, Volume 1; 
Section 4.3.3, 4.4.1, 4.4.5, 4.4.6, 4.4.7, 5.5.2, and 7.1.2, Part I, Volume 2; 
Section 2.5, 2.5.1, 2.5.2, 2.5.3, and 4.5.2.1, Part II, Volume 2; Section 2.2, 3, 
4.1, 4.4.6.5, and 4.4.10.10, Part I, Volume 3).
Added Interval Time Counter (ITC) Fault Clarification (Section 3.3.2, Part I, 
Volume 2).
Added Interruption Control Registers Clarification (Section 3.3.5, Part I, 
Volume 2).
Added Spontaneous NaT Generation on Speculative Load (ld.s) 
(Section 5.5.5 and 11.9, Part I, Volume 2; Section 2.2 and 3, Part I, Volume 3).
Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I, 
Volume 2).
Added Freeze Bit Functionality in Context Switching and Interrupt Generation 
Clarification (Sections 7.2.1, 7.2.2, 7.2.4.1, and 7.2.4.2, Part I, Volume 2)
Added IA_32_Exception (Debug) IIPA Description Change (Section 9.2, Part 
I, Volume 2).
Added capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in the 
Firmware Interface Table (Section 11.1.6, Part I, Volume 2).
Added BR1 to Min-state Save Area (Sections 11.3.2.3 and 11.3.3, Part I, 
Volume 2).
Added Fault Handling Semantics for lfetch.fault Instruction (Section 2.2, 
Part I, Volume 3).

December 2001 2.0 Volume 1:
Faults in ld.c that hits ALAT clarification (Section 4.4.5.3.1).
IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section 
6.2.5.3).
Load instructions change (Section 4.4.1).
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Revision

Revision 
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Volume 2:
Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).
VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).
ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).
PAL_CACHE_FLUSH return argument change – added new status return 
argument (Section 11.8.3).
PAL self-test Control and PAL_A procedure requirement change – added new 
arguments, figures, requirements (Section 11.2).
PAL_CACHE_FLUSH clarifications (Chapter 11).
Non-speculative reference clarification (Section 4.4.6).
RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).
IIP and WC flush clarification (Section 4.4.5).
Revised RSE and PMC typographical errors (Section 6.4).
Revised DV table (Section A.4).
Memory attribute transitions – added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).
Bus lock deprecation – changed behavior of DCR ‘lc’ bit (Section 3.3.4.1, 
Section 10.6.8, Section 11.8.3).
PAL_PROC_GET/SET_FEATURES changes – extend calls to allow 
implementation-specific feature control (Section 11.8.3).
Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).
Limited speculation clarification – added hardware-generated speculative 
references (Section 4.4.6).
PAL memory accesses and restrictions clarification (Section 11.9).
PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section 
11.8.3).
Speculation attributes clarification (Section 4.4.6).
PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications 
(Sections 11.8.3 and 11.3.2.1).
TLB searching clarifications (Section 4.1).
IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section 
10.3.3.1, Section 10.10.1).
IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2, 
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:
IA-32 CPUID clarification (p. 5-71).
Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).
tak, tpa change (Section 2.2).

July 2000 1.1 Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).
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Revision 
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Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3).
Instruction and Data translation must be enabled for executing IA-32 
instructions (Chapters 3,4 and 10).
FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI 
(Chapters 3 and 4).
Clarification regarding ordering data dependency.
Out-of-order IPI delivery is now allowed (Chapters 4 and 5).
Content of EFLAG field changed in IIM (p. 9-24).
PAL_CHECK and PAL_INIT calls – exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls – added two new bits (Chapter 11).
PAL_MC_ERROR_INFO call – Changes made to enhance and simplify the 
call to provide more information regarding machine check (Chapter 11).
PAL_ENTER_IA_32_Env call changes – entry parameter represents the entry 
order; SAL needs to initialize all the IA-32 registers properly before making 
this call (Chapter 11).
PAL_CACHE_FLUSH – added a new cache_type argument (Chapter 11).
PAL_SHUTDOWN – removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).
Clarification in dependence violation table (Appendix A).

Volume 3:
fmix instruction page figures corrected (Chapter 2).
Clarification of “reserved” fields in ITIR (Chapters 2 and 3).
Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/ 
instruction group (Chapters 2 and 4).
IA-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000 1.0 Initial release of document.
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Introduction to the Intel® Itanium® 
Architecture 2

The Itanium architecture was designed to overcome the performance limitations of 
traditional architectures and provide maximum headroom for the future. To achieve 
this, the Itanium architecture was designed with an array of innovative features to 
extract greater instruction level parallelism including speculation, predication, large 
register files, a register stack, advanced branch architecture, and many others. 64-bit 
memory addressability was added to meet the increasing large memory footprint 
requirements of data warehousing, e-business, and other high performance server 
applications. The Itanium architecture has an innovative floating-point architecture and 
other enhancements that support the high performance requirements of workstation 
applications such as digital content creation, design engineering, and scientific analysis.

The Itanium architecture also provides binary compatibility with the IA-32 instruction 
set. Processors based on the Itanium architecture can run IA-32 applications on an 
Itanium architecture-based operating system that supports execution of IA-32 
applications. Such processors can run IA-32 application binaries on IA-32 legacy 
operating systems assuming the platform and firmware support exists in the system. 
The Itanium architecture also provides the capability to support mixed IA-32 and 
Itanium architecture-based code execution.

2.1 Operating Environments

The architectural model supports a mixture of IA-32 and Itanium architecture-based 
applications within a single Itanium architecture-based operating system. Table 2-1 
defines the major supported operating environments.
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2.2 Instruction Set Transition Model Overview

Within the Itanium System Environment, the processor can execute either IA-32 or 
Itanium instructions at any time. Three special instructions and interruptions are 
defined to transition the processor between the IA-32 and the Itanium instruction set.

• jmpe (IA-32 instruction) Jump to an Itanium target instruction, and transition to the 
Itanium instruction set.

• br.ia (Itanium instruction) Branch to an IA-32 target instruction, and change the 
instruction set to IA-32.

• rfi (Itanium instruction) “Return from interruption” is defined to return to an IA-32 
or Itanium instruction.

• Interrupts transition the processor to the Itanium instruction set for all interrupt 
conditions.

Figure 2-1. System Environment

Table 2-1. Major Operating Environments

System 
Environment

Application 
Environment

Usage

Itanium System 
Environment

IA-32 Protected Mode IA-32 Protected Mode applications in the Intel® Itanium® System 
Environment.

IA-32 Real Mode IA-32 Real Mode applications in the Intel® Itanium® System 
Environment.

IA-32 Virtual Mode IA-32 Virtual 86 Mode applications in the Intel® Itanium® System 
Environment.

Intel® Itanium® 
Instruction Set

Itanium architecture-based applications on Intel® Itanium 
architecture-based operating systems.

 Itanium®IA-32 Instructions

 Segmentation

Intel® Itanium® System Environment

Paging

Instructions

& Interruption

Handling

in the Intel® Itanium®

Architecture
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The jmpe and br.ia instructions provide a low overhead mechanism to transfer control 
between the instruction sets. These instructions are typically incorporated into “thunks” 
or “stubs” that implement the required call linkage and calling conventions to call 
dynamic or statically linked libraries. See Section 6.2.1, “Instruction Set Modes” for 
additional details.

2.3 Intel® Itanium® Instruction Set Features

Itanium architecture incorporates features which enable high sustained performance 
and remove barriers to further performance increases. The Itanium architecture is 
based on the following principles: 

• Explicit parallelism

• Mechanisms for synergy between the compiler and the processor

• Massive resources to take advantage of instruction level parallelism

• 128 integer and floating-point registers, 64 1-bit predicate registers, 8 branch 
registers

• Support for many execution units and memory ports

• Features that enhance instruction level parallelism

• Speculation (which minimizes memory latency impact).

• Predication (which removes branches).

• Software pipelining of loops with low overhead

• Branch prediction to minimize the cost of branches

• Focused enhancements for improved software performance

• Special support for software modularity

• High performance floating-point architecture

• Specific multimedia instructions

The following sections highlight these important features of the Itanium architecture.

2.4 Instruction Level Parallelism

Instruction Level Parallelism (ILP) is the ability to execute multiple instructions at the 
same time. The Itanium architecture allows issuing of independent instructions in 
bundles (three instructions per bundle) for parallel execution and can issue multiple 
bundles per clock. Supported by a large number of parallel resources such as large 
register files and multiple execution units, the Itanium architecture enables the 
compiler to manage work in progress and schedule simultaneous threads of 
computation. 

The Itanium architecture incorporates mechanisms to take advantage of ILP. Compilers 
for traditional architectures are often limited in their ability to utilize speculative 
information because it cannot always be guaranteed to be correct. The Itanium 
architecture enables the compiler to exploit speculative information without sacrificing 
the correct execution of an application (see “Speculation” on page 1:16). In traditional 
architectures, procedure calls limit performance since registers need to be spilled and 
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filled. The Itanium architecture enables procedures to communicate register usage to 
the processor. This allows the processor to schedule procedure register operations even 
when there is a low degree of ILP. See “Register Stack” on page 1:18.

2.5 Compiler to Processor Communication

The Itanium architecture provides mechanisms, such as instruction templates, branch 
hints, and cache hints to enable the compiler to communicate compile-time information 
to the processor. In addition, it allows compiled code to manage the processor 
hardware using runtime information. These communication mechanisms are vital in 
minimizing the performance penalties associated with branches and cache misses.

The cost of branches is minimized by permitting code to communicate branch 
information to the hardware in advance of the actual branch.

Every memory load and store in the Itanium architecture has a 2-bit cache hint field in 
which the compiler encodes its prediction of the spatial and/or temporal locality of the 
memory area being accessed. A processor based on the Itanium architecture can use 
this information to determine the placement of cache lines in the cache hierarchy to 
improve utilization. This is particularly important as the cost of cache misses is 
expected to increase.

2.6 Speculation

There are two types of speculation: control and data. In both control and data 
speculation, the compiler exposes ILP by issuing an operation early and removing the 
latency of this operation from critical path. The compiler will issue an operation 
speculatively if it is reasonably sure that the speculation will be beneficial. To be 
beneficial two conditions should hold: (1) it must be statistically frequent enough that 
the probability it will require recovery is small, and (2) issuing the operation early 
should expose further ILP-enhancing optimization. Speculation is one of the primary 
mechanisms for the compiler to exploit statistical ILP by overlapping, and therefore 
tolerating, the latencies of operations.

2.6.1 Control Speculation

Control speculation is the execution of an operation before the branch which guards it. 
Consider the code sequence below:

if (a>b) load(ld_addr1,target1)
else load(ld_addr2, target2)

If the operation load(ld_addr1,target1)were to be performed prior to the 
determination of (a>b), then the operation would be control speculative with respect to 
the controlling condition (a>b). Under normal execution, the operation 
load(ld_addr1,target1) may or may not execute. If the new control speculative load 
causes an exception, then the exception should only be serviced if (a>b) is true. When 
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the compiler uses control speculation, it leaves a check operation at the original 
location. The check verifies whether an exception has occurred and if so it branches to 
recovery code. The code sequence above now translates into:

/* off critical path */
sload(ld_addr1,target1)
sload(ld_addr2,target2)

/* other operations including uses of target1/target2 */
if (a>b) scheck(target1,recovery_addr1)
else scheck(target2, recovery_addr2)

2.6.2 Data Speculation

Data speculation is the execution of a memory load prior to a store that preceded it and 
that may potentially alias with it. Data speculative loads are also referred to as 
“advanced loads.” Consider the code sequence below:

store(st_addr,data)
load(ld_addr,target)
use(target)

The process of determining at compile time the relationship between memory 
addresses is called disambiguation. In the example above, if ld_addr and st_addr 
cannot be disambiguated, and if the load were to be performed prior to the store, then 
the load would be data speculative with respect to the store. If memory addresses 
overlap during execution, a data-speculative load issued before the store might return a 
different value than a regular load issued after the store. Therefore analogous to 
control speculation, when the compiler data speculates a load, it leaves a check 
instruction at the original location of the load. The check verifies whether an overlap 
has occurred and if so it branches to recovery code. The code sequence above now 
translates into:

/* off critical path */
aload(ld_addr,target)

/* other operations including uses of target */
store(st_addr,data)
acheck(target,recovery_addr)
use(target)

2.6.3 Predication

Predication is the conditional execution of instructions. Conditional execution is 
implemented through branches in traditional architectures. The Itanium architecture 
implements this function through the use of predicated instructions. Predication 
removes branches used for conditional execution resulting in larger basic blocks and the 
elimination of associated mispredict penalties.

To illustrate, an unpredicated instruction

r1 = r2 + r3

when predicated, would be of the form
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if (p5) r1 = r2 + r3

In this example p5 is the controlling predicate that decides whether or not the 
instruction executes and updates state. If the predicate value is true, then the 
instruction updates state. Otherwise it generally behaves like a nop. Predicates are 
assigned values by compare instructions.

Predicated execution avoids branches, and simplifies compiler optimizations by 
converting a control dependency to a data dependency. Consider the original code:

if (a>b) c = c + 1
else d = d * e + f

The branch at (a>b) can be avoided by converting the code above to the predicated 
code:

pT, pF = compare(a>b)
if (pT) c = c + 1
if (pF) d = d * e + f

The predicate pT is set to 1 if the condition evaluates to true, and to 0 if the condition 
evaluates to false. The predicate pF is the complement of pT. The control dependency of 
the instructions c = c + 1 and d = d * e + f on the branch with the condition (a>b) 
is now converted into a data dependency on compare(a>b) through predicates pT and 
pF (the branch is eliminated). An added benefit is that the compiler can schedule the 
instructions under pT and pF to execute in parallel. It is also worth noting that there are 
several different types of compare instructions that write predicates in different 
manners including unconditional compares and parallel compares. 

2.7 Register Stack

The Itanium architecture avoids the unnecessary spilling and filling of registers at 
procedure call and return interfaces through compiler-controlled renaming. At a call 
site, a new frame of registers is available to the called procedure without the need for 
register spill and fill (either by the caller or by the callee). Register access occurs by 
renaming the virtual register identifiers in the instructions through a base register into 
the physical registers. The callee can freely use available registers without having to 
spill and eventually restore the caller’s registers. The callee executes an alloc 
instruction specifying the number of registers it expects to use in order to ensure that 
enough registers are available. If sufficient registers are not available (stack overflow), 
the alloc stalls the processor and spills the caller’s registers until the requested 
number of registers are available. 

At the return site, the base register is restored to the value that the caller was using to 
access registers prior to the call. Some of the caller’s registers may have been spilled 
by the hardware and not yet restored. In this case (stack underflow), the return stalls 
the processor until the processor has restored an appropriate number of the caller’s 
registers. The hardware can exploit the explicit register stack frame information to spill 
and fill registers from the register stack to memory at the best opportunity 
(independent of the calling and called procedures).
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2.8 Branching

In addition to removing branches through the use of predication, several mechanisms 
are provided to decrease the branch misprediction rate and the cost of the remaining 
mispredicted branches. These mechanisms provide ways for the compiler to 
communicate information about branch conditions to the processor. 

Branch predict instructions are provided which can be used to communicate an early 
indication of the target address and the location of the branch. The compiler will try to 
indicate whether a branch should be predicted dynamically or statically. The processor 
can use this information to initialize branch prediction structures, enabling good 
prediction even the first time a branch is encountered. This is beneficial for 
unconditional branches or in situations where the compiler has information about likely 
branch behavior.

For indirect branches, a branch register is used to hold the target address. Branch 
predict instructions provide an indication of which register will be used in situations 
when the target address can be computed early. A branch predict instruction can also 
signal that an indirect branch is a procedure return, enabling the efficient use of 
call/return stack prediction structures.

Special loop-closing branches are provided to accelerate counted loops and 
modulo-scheduled loops. These branches and their associated branch predict 
instructions provide information that allows for perfect prediction of loop termination, 
thereby eliminating costly mispredict penalties and a reduction of the loop overhead.

2.9 Register Rotation

Modulo scheduling of a loop is analogous to hardware pipelining of a functional unit 
since the next iteration of the loop starts before the previous iteration has finished. The 
iteration is split into stages similar to the stages of an execution pipeline. Modulo 
scheduling allows the compiler to execute loop iterations in parallel rather than 
sequentially. The concurrent execution of multiple iterations traditionally requires 
unrolling of the loop and software renaming of registers. The Itanium architecture 
allows the renaming of registers which provide every iteration with its own set of 
registers, avoiding the need for unrolling. This kind of register renaming is called 
register rotation. The result is that software pipelining can be applied to a much wider 
variety of loops – both small as well as large with significantly reduced overhead.

2.10 Floating-point Architecture

The Itanium architecture defines a floating-point architecture with full IEEE support for 
the single, double, and double-extended (80-bit) data types. Some extensions, such as 
a fused multiply and add operation, minimum and maximum functions, and a register 
file format with a larger range than the double-extended memory format, are also 
included. 128 floating-point registers are defined. Of these, 96 registers are rotating 
(not stacked) and can be used to modulo schedule loops compactly. Multiple 
floating-point status registers are provided for speculation.
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The Itanium architecture has parallel FP instructions which operate on two 32-bit single 
precision numbers, resident in a single floating-point register, in parallel and 
independently. These instructions significantly increase the single precision 
floating-point computation throughput and enhance the performance of 3D intensive 
applications and games.

2.11 Multimedia Support

The Itanium architecture has multimedia instructions which treat the general registers 
as concatenations of eight 8-bit, four 16-bit, or two 32-bit elements. These instructions 
operate on each element in parallel, independent of the others. They are useful for 
creating high performance compression/decompression algorithms that are used by 
applications which have sound and video. Itanium multimedia instructions are 
semantically compatible with HP’s MAX-2* multimedia technology and Intel’s MMX and 
SSE technology instructions.

2.12 Intel® Itanium® System Architecture Features

2.12.1 Support for Multiple Address Space Operating Systems

Most contemporary commercial operating systems utilize a Multiple Address Space 
(MAS) model with the following characteristics:

Protection is enforced among processes by placing each process within a unique 
address space. Translation Lookaside Buffers (TLBs), which hold virtual to physical 
mappings, often need to be flushed on a process context switch.

Some memory areas may be shared among processes, e.g. kernel areas and shared 
libraries. Most operating systems assume at least one local and one global space.

To promote sharing of data between processes, MAS operating systems aggressively 
use virtual aliases to map physical memory locations into the address spaces of 
multiple processes. Virtual aliases create multiple TLB entries for the same physical 
data leading to reduced TLB efficiency.

The MAS model is supported by dividing the virtual address space into several regions. 
Region identifiers associated with each region are used to tag translations to a given 
address space. On a process switch, region identifiers uniquely identify the set of 
translations belonging to a process, thereby avoiding TLB flushes. Region identifiers 
also provide a unique intermediate virtual address that help avoid thrashing problems 
in virtual-indexed caches and TLBs. Regions provide efficient global/shared areas 
between processes, while reducing the occurrences of virtual aliasing.

2.12.2 Support for Single Address Space Operating Systems

A single address space (SAS) operating system style architecture is the basis for much 
of the current design work on future 64-bit operating systems. As operating systems 
(and other large, complex programs like databases) migrate from monolithic programs 
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into cooperating subsystems, an SAS architecture becomes an important performance 
differentiation in future systems. The SAS or hybrid environments enable a more 
efficient use of hardware resources. 

Common mechanisms are used in both SAS and MAS models such as page level access 
rights to enforce protection, although the reliance on the feature set will differ under 
each model. While most of the architected features are utilized in each model, 
protection keys exist to enable a single global address space operating environment.

2.12.3 System Performance and Scalability

Performance and scalability are achieved through a variety of features. Memory 
attributes, locking primitives, cache coherency, and memory ordering model work 
together to allow the efficient sharing of data in a multiprocessor environment. In 
addition, the Itanium architecture enables low latency fault, trap, and interrupt 
handlers along with light-weight domain crossings. Performance analysis is aided by the 
inclusion of several performance monitors, and mechanisms to support software 
profiling.

2.12.4 System Security and Supportability

Security and supportability result from a number of primitives which provide a very 
powerful runtime and debug environment. The protection model includes four 
protection rings and enables increased system integrity by offering a more 
sophisticated protection scheme than has generally been available. The machine check 
model allows detailed information to be provided describing the type of error involved 
and supports recovery for many types of errors. Several mechanisms are provided for 
debugging both system and application software. 

2.13 Terminology

This following terms are used in the remainder of this document:

• Itanium Instruction Set – The Itanium architecture defines the 64-bit instruction 
set extensions to the IA-32 architecture.

• IA-32 Architecture – The 32-bit and 16-bit Intel architecture as described in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

• Itanium System Environment – System environment that supports the 
execution of both IA-32 and Itanium architecture-based code.

• Platform – Application and operating system resources external to the processor 
such as: memory maps, external devices (e.g. DMA), keyboard controllers, buses 
(e.g. PCI), option cards, interrupt controllers, bridges, etc.

• Itanium architecture-based Firmware – The Processor Abstraction Layer (PAL) 
and System Abstraction Layer (SAL).

• Processor Abstraction Layer (PAL) – The firmware layer which abstracts 
processor features that are implementation dependent.

• System Abstraction Layer (SAL) – The firmware layer which abstracts platform 
features that are implementation dependent.
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Execution Environment 3

The architectural state consists of registers and memory. The results of instruction 
execution become architecturally visible according to a set of execution sequencing 
rules. This chapter describes the application architectural state and the rules for 
execution sequencing. See Chapter 6 for details on IA-32 instruction set execution.

3.1 Application Register State

The following is a list of the registers available to application programs (see 
Figure 3-1): 

• General Registers (GRs) – General purpose 64-bit register file, GR0 - GR127. 
IA-32 integer and segment registers are contained in GR8 - GR31 when executing 
IA-32 instructions.

• Floating-point Registers (FRs) – Floating-point register file, FR0 - FR127. IA-32 
floating-point and multi-media registers are contained in FR8 - FR31 when 
executing IA-32 instructions.

• Predicate Registers (PRs) – Single-bit registers, used in predication and 
branching, PR0 - PR63.

• Branch Registers (BRs) – Registers used in branching, BR0 - BR7.

• Instruction Pointer (IP) – Register which holds the bundle address of the 
currently executing instruction, or byte address of the currently executing IA-32 
instruction.

• Current Frame Marker (CFM) – State that describes the current general register 
stack frame, and FR/PR rotation.

• Application Registers (ARs) – A collection of special-purpose registers.

• Performance Monitor Data Registers (PMD) – Data registers for performance 
monitor hardware.

• User Mask (UM) – A set of single-bit values used for alignment traps, 
performance monitors, and to monitor floating-point register usage.

• Processor Identifiers (CPUID) – Registers that describe processor 
implementation-dependent features.

IA-32 application register state is entirely contained within the larger Itanium 
application register set and is accessible by Itanium instructions. IA-32 instructions 
cannot access the Itanium register set. See Section 6.2.2, “IA-32 Application Register 
State Model” for details on IA-32 register assignments.

3.1.1 Reserved and Ignored Registers and Fields

Registers which are not defined are either reserved or ignored. An access to a 
reserved register raises an Illegal Operation fault. A read of an ignored register 
returns zero. Software may write any value to an ignored register and the hardware will 
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ignore the value written. In variable-sized register sets, registers which are 
unimplemented in a particular processor are also reserved registers. An access to one 
of these unimplemented registers causes a Reserved Register/Field fault.

Within defined registers, fields which are not defined are either reserved or ignored. For 
reserved fields, hardware will always return a zero on a read. Software must always 
write zeros to these fields. Any attempt to write a non-zero value into a reserved field 
will raise a Reserved Register/Field fault. Reserved fields may have a possible future 
use.

For ignored fields, hardware will return a 0 on a read, unless noted otherwise. 
Software may write any value to these fields since the hardware will ignore any value 
written. Except where noted otherwise some IA-32 ignored fields may have a possible 
future use.

Table 3-1 summarizes how the processor treats reserved and ignored registers and 
fields.

For defined fields in registers, values which are not defined are reserved. Software 
must always write defined values to these fields. Any attempt to write a reserved 
value will raise a Reserved Register/Field fault. Certain registers are read-only 
registers. A write to a read-only register raises an Illegal Operation fault.

When fields are marked as reserved, it is essential for compatibility with future 
processors that software treat these fields as having a future, though unknown effect. 
Software should follow these guidelines when dealing with reserved fields:

• Do not depend on the state of any reserved fields. Mask all reserved fields before 
testing.

• Do not depend on the state of any reserved fields when storing to memory or a 
register.

• Do not depend on the ability to retain information written into reserved or ignored 
fields.

• Where possible reload reserved or ignored fields with values previously returned 
from the same register, otherwise load zeros.

Table 3-1. Reserved and Ignored Registers and Fields

Type Read Write

Reserved register Illegal Operation fault Illegal Operation fault

Ignored register 0 Value written is discarded

Reserved field 0 Write of non-zero causes Reserved Reg/Field fault

Ignored field 0 (unless noted otherwise) Value written is discarded
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3.1.2 General Registers

A set of 128 (64-bit) general registers provide the central resource for all integer and 
integer multimedia computation. They are numbered GR0 through GR127, and are 
available to all programs at all privilege levels. Each general register has 64 bits of 
normal data storage plus an additional bit, the NaT bit (Not a Thing), which is used to 
track deferred speculative exceptions.

The general registers are partitioned into two subsets. General registers 0 through 31 
are termed the static general registers. Of these, GR0 is special in that it always 
reads as zero when sourced as an operand, and attempting to write to GR 0 causes an 
Illegal Operation fault. General registers 32 through 127 are termed the stacked 
general registers. The stacked registers are made available to a program by 
allocating a register stack frame consisting of a programmable number of local and 
output registers. See “Register Stack” on page 1:47 for a description. A portion of the 
stacked registers can be programmatically renamed to accelerate loops. See 
“Modulo-scheduled Loop Support” on page 1:75.

Figure 3-1. Application Register Model
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General registers 8 through 31 contain the IA-32 integer, segment selector and 
segment descriptor registers. See “IA-32 General Purpose Registers” on page 1:117 for 
details on IA-32 register assignments.

3.1.3 Floating-point Registers

A set of 128 (82-bit) floating-point registers are used for all floating-point 
computation. They are numbered FR0 through FR127, and are available to all programs 
at all privilege levels. The floating-point registers are partitioned into two subsets. 
Floating-point registers 0 through 31 are termed the static floating-point registers. 
Of these, FR0 and FR1 are special. FR0 always reads as +0.0 when sourced as an 
operand, and FR 1 always reads as +1.0. When either of these is used as a destination, 
a fault is raised. Deferred speculative exceptions are recorded with a special register 
value called NaTVal (Not a Thing Value).

Floating-point registers 32 through 127 are termed the rotating floating-point 
registers. These registers can be programmatically renamed to accelerate loops. See 
“Modulo-scheduled Loop Support” on page 1:75.

Floating-point registers 8 through 31 contain the IA-32 floating-point and multi-media 
registers when executing IA-32 instructions. For details, see “IA-32 Floating-point 
Registers” on page 1:124.

3.1.4 Predicate Registers

A set of 64 (1-bit) predicate registers are used to hold the results of compare 
instructions. These registers are numbered PR0 through PR63, and are available to all 
programs at all privilege levels. These registers are used for conditional execution of 
instructions. 

The predicate registers are partitioned into two subsets. Predicate registers 0 through 
15 are termed the static predicate registers. Of these, PR0 always reads as ‘1’ when 
sourced as an operand, and when used as a destination, the result is discarded. The 
static predicate registers are also used in conditional branching. See “Predication” on 
page 1:54.

Predicate registers 16 through 63 are termed the rotating predicate registers. These 
registers can be programmatically renamed to accelerate loops. See “Modulo-scheduled 
Loop Support” on page 1:75.

3.1.5 Branch Registers

A set of 8 (64-bit) branch registers are used to hold branching information. They are 
numbered BR 0 through BR 7, and are available to all programs at all privilege levels. 
The branch registers are used to specify the branch target addresses for indirect 
branches. For more information see “Branch Instructions” on page 1:74.
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3.1.6 Instruction Pointer

The Instruction Pointer (IP) holds the address of the bundle which contains the current 
executing instruction. The IP can be read directly with a mov ip instruction. The IP 
cannot be directly written, but is incremented as instructions are executed, and can be 
set to a new value with a branch. Because instruction bundles are 16 bytes, and are 
16-byte aligned, the least significant 4 bits of IP are always zero. See “Instruction 
Encoding Overview” on page 1:38. For IA-32 instruction set execution, IP holds the 
zero extended 32-bit virtual linear address of the currently executing IA-32 instruction. 
IA-32 instructions are byte-aligned, therefore the least significant 4 bits of IP are 
preserved for IA-32 instruction set execution. See “IA-32 Instruction Pointer” on 
page 1:117 for IA-32 instruction set execution details.

3.1.7 Current Frame Marker

Each general register stack frame is associated with a frame marker. The frame marker 
describes the state of the general register stack. The Current Frame Marker (CFM) 
holds the state of the current stack frame. The CFM cannot be directly read or written 
(see “Register Stack” on page 1:47). 

The frame markers contain the sizes of the various portions of the stack frame, plus 
three Register Rename Base values (used in register rotation). The layout of the frame 
markers is shown in Figure 3-2 and the fields are described in Table 3-2.

On a call, the CFM is copied to the Previous Frame Marker field in the Previous Function 
State register (see Section 3.1.8.12, “Previous Function State (PFS – AR 64)”). A new 
value is written to the CFM, creating a new stack frame with no locals or rotating 
registers, but with a set of output registers which are the caller’s output registers. 
Additionally, all Register Rename Base registers (RRBs) are set to 0. See 
“Modulo-scheduled Loop Support” on page 1:75.

Figure 3-2. Frame Marker Format

37 32 31 25 24 18 17 14 13 7 6 0

rrb.pr rrb.fr rrb.gr sor sol sof

6 7 7 4 7 7

Table 3-2. Frame Marker Field Description

Field Bits Description

sof 6:0 Size of stack frame

sol 13:7 Size of locals portion of stack frame

sor 17:14 Size of rotating portion of stack frame
(the number of rotating registers is 8 * sor)

rrb.gr 24:18 Register Rename Base for general registers

rrb.fr 31:25 Register Rename Base for floating-point registers

rrb.pr 37:32 Register Rename Base for predicate registers
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3.1.8 Application Registers

The application register file includes special-purpose data registers and control registers 
for application-visible processor functions for both the IA-32 and Itanium instruction set 
architectures. These registers can be accessed by Itanium architecture-based 
applications (except where noted). Table 3-3 contains a list of the application registers.

Table 3-3. Application Registers

Register Name Description
Execution Unit 

Type

AR 0-7 KR 0-7a

a. Writes to these registers when the privilege level is not zero result in a Privileged Register fault. Reads are 
always allowed.

Kernel Registers 0-7 M

AR 8-15 Reserved

AR 16 RSC Register Stack Configuration Register

AR 17 BSP Backing Store Pointer (read-only)

AR 18 BSPSTORE Backing Store Pointer for Memory Stores

AR 19 RNAT RSE NaT Collection Register

AR 20 Reserved

AR 21 FCR IA-32 Floating-point Control Register

AR 22 - AR 23 Reserved

AR 24 EFLAGb

b. Some IA-32 EFLAG field writes are silently ignored if the privilege level is not zero. See Section 10.3.2, “IA-32 
System EFLAG Register” on page 2:243 for details.

IA-32 EFLAG register

AR 25 CSD IA-32 Code Segment Descriptor / Compare and 
Store Data register

AR 26 SSD IA-32 Stack Segment Descriptor

AR 27 CFLGa IA-32 Combined CR0 and CR4 register

AR 28 FSR IA-32 Floating-point Status Register

AR 29 FIR IA-32 Floating-point Instruction Register

AR 30 FDR IA-32 Floating-point Data Register

AR 31 Reserved

AR 32 CCV Compare and Exchange Compare Value Register

AR 33 - AR 35 Reserved

AR 36 UNAT User NaT Collection Register

AR 37 - AR 39 Reserved

AR 40 FPSR Floating-point Status Register

AR 41 - AR 43 Reserved

AR 44 ITC Interval Time Counter

AR 45 RUC Resource Utilization Counter

AR 46 - AR 47 Reserved

AR 48 - AR 63 Ignored M or I

AR 64 PFS Previous Function State I

AR 65 LC Loop Count Register

AR 66 EC Epilog Count Register

AR 67 - AR 111 Reserved

AR 112 - AR 127 Ignored M or I
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Application registers can only be accessed by either a M or I execution unit. This is 
specified in the last column of the table. The ignored registers are for future 
backward-compatible extensions.

See Section 10.2, “System Register Model” on page 2:239 for the field definition of 
each IA-32 application register.

3.1.8.1 Kernel Registers (KR 0-7 – AR 0-7)

Eight user-visible 64-bit data kernel registers are provided to convey information from 
the operating system to the application. These registers can be read at any privilege 
level but are writable only at the most privileged level. KR0 - KR2 are also used to hold 
additional IA-32 register state when the IA-32 instruction set is executing. See 
Section 10.1, “Instruction Set Transitions” on page 2:239 for register details when 
calling IA-32 code.

3.1.8.2 Register Stack Configuration Register (RSC – AR 16)

The Register Stack Configuration (RSC) Register is a 64-bit register used to control the 
operation of the Register Stack Engine (RSE). Refer to Chapter 6, “Register Stack 
Engine” in Volume 2 for details. The RSC format is shown in Figure 3-3 and the field 
description is contained in Table 3-4. Instructions that modify the RSC can never set 
the privilege level field to a more privileged level than the currently executing process.

3.1.8.3 RSE Backing Store Pointer (BSP – AR 17)

The RSE Backing Store Pointer is a 64-bit read-only register (Figure 3-4). It holds the 
address of the location in memory which is the save location for GR 32 in the current 
stack frame. See Section 6.1, “RSE and Backing Store Overview” on page 2:133.

Figure 3-3. RSC Format

63 30 29 16 15 5 4 3 2 1 0

rv loadrs rv be pl mode

34 14 11 1 2 2

Table 3-4. RSC Field Description

Field Bits Description

mode 1:0 RSE mode – controls how aggressively the RSE saves and restores register 
frames. Eager and intensive settings are hints and can be implemented as lazy.

Bit Pattern RSE Mode Bit 1:
eager loads

Bit 0:
eager stores

00 enforced lazy disabled disabled

10 load intensive enabled disabled

01 store intensive disabled enabled

11 eager enabled enabled

pl 3:2 RSE privilege level – loads and stores issued by the RSE are at this privilege 
level

be 4 RSE endian mode – loads and stores issued by the RSE use this byte ordering
(0: little endian; 1: big endian)

loadrs 29:16 RSE load distance to tear point – value used in the loadrs instruction for 
synchronizing the RSE to a tear point

rv 15:5, 63:30 Reserved
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3.1.8.4 RSE Backing Store Pointer for Memory Stores (BSPSTORE – AR 18)

The RSE Backing Store Pointer for memory stores is a 64-bit register (Figure 3-5). It 
holds the address of the location in memory to which the RSE will spill the next value. 
See Section 6.1, “RSE and Backing Store Overview” on page 2:133.

3.1.8.5 RSE NaT Collection Register (RNAT – AR 19)

The RSE NaT Collection Register is a 64-bit register (Figure 3-6) used by the RSE to 
temporarily hold NaT bits when it is spilling general registers. Bit 63 always reads as 
zero and ignores all writes. See Section 6.1, “RSE and Backing Store Overview” on 
page 2:133.

3.1.8.6 Compare and Store Data register (CSD – AR 25)

The Compare and Store Data register is a 64-bit register that provides data to be 
stored by the Itanium st16 and cmp8xchg16 instructions, and receives data loaded by 
the Itanium ld16 instruction.

For implementations that do not support the ld16, st16 and cmp8xchg16 instructions, 
bits 61:60 may be optionally implemented. This means that on move application 
register instructions the implementation can either ignore writes and return zero on 
reads, or write the value and return the last value written on reads. For 
implementations that do support the ld16, st16 and cmp8xchg16 instructions, all bits of 
CSD are implemented.

For IA-32 execution, this register is the IA-32 Code Segment Descriptor. See 
Section 6.2.2.3, “IA-32 Segment Registers” on page 1:118.

3.1.8.7 Compare and Exchange Value Register (CCV – AR 32)

The Compare and Exchange Value Register is a 64-bit register that contains the 
compare value used as the third source operand in the Itanium cmpxchg instruction.

Figure 3-4. BSP Register Format

63 3 2 1 0

pointer 0

61 3

Figure 3-5. BSPSTORE Register Format

63 3 2 1 0

pointer ig

61 3

Figure 3-6. RNAT Register Format

63 0

ig RSE NaT Collection

1 63
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3.1.8.8 User NaT Collection Register (UNAT – AR 36)

The User NaT Collection Register is a 64-bit register used to temporarily hold NaT bits 
when saving and restoring general registers with the ld8.fill and st8.spill 
instructions.

3.1.8.9 Floating-point Status Register (FPSR – AR 40)

The floating-point status register (FPSR) controls traps, rounding mode, precision 
control, flags, and other control bits for Itanium floating-point instructions. FPSR does 
not control or reflect the status of IA-32 floating-point instructions. For more details on 
the FPSR, see “Floating-point Status Register” on page 1:88.

3.1.8.10 Interval Time Counter (ITC – AR 44)

The Interval Time Counter (ITC) is a 64-bit register which counts up at a fixed 
relationship to the input clock to the processor. The ITC may be clocked at a somewhat 
lower frequency than the instruction execution frequency. This clocking relationship is 
described in the PAL procedure PAL_FREQ_RATIOS on page 2:392. The ITC is 
guaranteed to be clocked at a constant rate, even if the instruction execution frequency 
may vary.

A sequence of reads of the ITC is guaranteed to return ever-increasing values (except 
for the case of the counter wrapping back to 0) corresponding to the program order of 
the reads. Applications can directly sample the ITC for time-based calculations.

System software can secure the interval time counter from non-privileged access. 
When secured, a read of the ITC at any privilege level other than the most privileged 
causes a Privileged Register fault. The ITC can be written only at the most privileged 
level. The IA-32 Time Stamp Counter (TSC) is similar to ITC counter. ITC can directly be 
read by the IA-32 rdtsc (read time stamp counter) instruction. System software can 
secure the ITC from non-privileged IA-32 access. When secured, an IA-32 read of the 
ITC at any privilege level other than the most privileged raises an 
IA_32_Exception(GPfault).

3.1.8.11 Resource Utilization Counter (RUC – AR 45)

The Resource Utilization Counter (RUC) is a 64-bit register which counts up at a fixed 
relationship to the input clock to the processor, when the processor is active. RUC 
provides an estimate of the portion of resources used by a logical processor with 
respect to all resources provided by the underlying physical processor.

The Resource Utilization Counter (RUC) is a 64-bit register which provides an estimate 
of the portion of resources used by a logical processor with respect to all resources 
provided by the underlying physical processor.

In a given time interval, the difference in the RUC values for all of the logical processors 
on a given physical processor add up to the difference seen in the ITC on that physical 
processor for that same interval.

A sequence of reads of the RUC is guaranteed to return ever-increasing values (except 
for the case of the counter wrapping back to 0) corresponding to the program order of 
the reads.
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System software can secure the resource utilization counter from non-privileged 
access. When secured, a read of the RUC at any privilege level other than the most 
privileged causes a Privileged Register fault.

The RUC for a logical processor does not count when that logical processor is in 
LIGHT_HALT, unless all logical processors on a given physical processor are in 
LIGHT_HALT, in which case the last logical on a given physical processor to enter 
LIGHT_HALT has its RUC continue to count.

With processor virtualization, the RUC can be used to communicate the portion of 
resources used by a virtual processor. See Section 3.4, “Processor Virtualization” on 
page 2:44 and Section 11.7, “PAL Virtualization Support” on page 2:324 for details on 
virtual processors.

The RUC register is not supported on all processor implementations. Software can 
check CPUID register 4 to determine the availability of this feature. The RUC register is 
reserved when this feature is not supported.

3.1.8.12 Previous Function State (PFS – AR 64)

The Previous Function State register (PFS) contains multiple fields: Previous Frame 
Marker (pfm), Previous Epilog Count (pec), and Previous Privilege Level (ppl). 
Figure 3-7 diagrams the PFS format and Table 3-5 describes the PFS fields. These 
values are copied automatically on a call from the CFM register, Epilog Count Register 
(EC) and PSR.cpl (Current Privilege Level in the Processor Status Register) to accelerate 
procedure calling.

When a br.call or brl.call is executed, the CFM, EC, and PSR.cpl are copied to the 
PFS and the old contents of the PFS are discarded. When a br.ret is executed, the PFS 
is copied to the CFM and EC. PFS.ppl is copied to PSR.cpl, unless this action would 
increase the privilege level. For more details on the PSR see Chapter 3, “System State 
and Programming Model” in Volume 2.

The PFS.pfm has the same layout as the CFM (see Section 3.1.7, “Current Frame 
Marker”), and the PFS.pec has the same layout as the EC (see Section 3.1.8.14, “Epilog 
Count Register (EC – AR 66)”). 

Figure 3-7. PFS Format

63 62 61 58 57 52 51 38 37 0

ppl rv pec rv pfm

2 4 6 14 38

Table 3-5. PFS Field Description

Field Bits Description

pfm 37:0 Previous Frame Marker

pec 57:52 Previous Epilog Count

ppl 63:62 Previous Privilege Level

rv 51:38, 61:58 Reserved
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3.1.8.13 Loop Count Register (LC – AR 65)

The Loop Count register (LC) is a 64-bit register used in counted loops. LC is 
decremented by counted-loop-type branches.

3.1.8.14 Epilog Count Register (EC – AR 66)

The Epilog Count register (EC) is a 6-bit register used for counting the final (epilog) 
stages in modulo-scheduled loops. See “Modulo-scheduled Loop Support” on 
page 1:75. A diagram of the EC register is shown in Figure 3-8.

3.1.9 Performance Monitor Data Registers (PMD)

A set of performance monitoring registers can be configured by privileged software to 
be accessible at all privilege levels. Performance monitor data can be directly sampled 
from within the application. The operating system is allowed to secure user-configured 
performance monitors. Secured performance counters return zeros when read, 
regardless of the current privilege level. The performance monitors can only be written 
at the most privileged level. Refer to Chapter 7, “Debugging and Performance 
Monitoring” in Volume 2 for details. Performance monitors can be used to gather 
performance information for the execution of both IA-32 and Itanium instruction sets.

3.1.10 User Mask (UM)

The user mask is a subset of the Processor Status Register and is accessible to 
application programs. The user mask controls memory access alignment, byte-ordering 
and user-configured performance monitors. It also records the modification state of 
floating-point registers. Figure 3-9 show the user mask format and Table 3-6 describes 
the user mask fields. For more details on the PSR refer to “Processor Status Register 
(PSR)” on page 2:23.

Figure 3-8. Epilog Count Register Format

63 6 5 0

ig epilog count

58 6

Figure 3-9. User Mask Format

5 4 3 2 1 0

mfh mfl ac up be rv

1 1 1 1 1 1

Table 3-6. User Mask Field Descriptions

Field Bit Description

rv 0 Reserved

be 1 Big-endian memory access enable
(controls loads and stores but not RSE memory accesses)
0: accesses are done little-endian 
1: accesses are done big-endian
This bit is ignored for IA-32 data memory accesses. IA-32 data references are always 
performed little-endian.
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3.1.11 Processor Identification Registers

Application level processor identification information is available in a register file 
termed: CPUID. This register file is divided into a fixed region, registers 0 to 4, and a 
variable region, register 5 and above. The CPUID[3].number field indicates the 
maximum number of 8-byte registers containing processor specific information.

The CPUID registers are unprivileged and accessed using the indirect mov (from) 
instruction. All registers beyond register CPUID[3].number are reserved and raise a 
Reserved Register/Field fault if they are accessed. Writes are not permitted and no 
instruction exists for such an operation.

Vendor information is located in CPUID registers 0 and 1 and specify a vendor name, in 
ASCII, for the processor implementation (Figure 3-10). All bytes after the end of the 
string up to the 16th byte are zero. Earlier ASCII characters are placed in lower number 
register and lower numbered byte positions.

CPUID register 2 is an ignored register (reads from this register return zero).

CPUID register 3 contains several fields indicating version information related to the 
processor implementation. Figure 3-11 and Table 3-7 specify the definitions of each 
field.

up 2 User performance monitor enable (including IA-32)
0: user performance monitors are disabled 
1: user performance monitors are enabled

ac 3 Alignment check for data memory references (including IA-32)
0: unaligned data memory references may cause an Unaligned Data Reference fault.
1: all unaligned data memory references cause an Unaligned Data Reference fault. 

mfl 4 Lower (f2.. f31) floating-point registers written – This bit is set to one when an Intel® 
Itanium® instruction that uses register f2..f31 as a target register, completes. This bit is 
sticky and is only cleared by an explicit write of the user mask. See Section 3.3.2, 
“Processor Status Register (PSR)” for conditions when IA-32 instructions set this bit.

mfh 5 Upper (f32.. f127) floating-point registers written – This bit is set to one when an Intel® 
Itanium® instruction that uses register f32..f127 as a target register, completes. This bit 
is sticky and only cleared by an explicit write of the user mask. See Section 3.3.2, 
“Processor Status Register (PSR)” for conditions when IA-32 instructions set this bit.

Figure 3-10. CPUID Registers 0 and 1 – Vendor Information

63     0

CPUID[0] byte 0

CPUID[1] byte 15

64

Figure 3-11. CPUID Register 3 – Version Information

63 40 39 32 31 24 23 16 15 8 7 0

rv archrev family model revision number

24 8 8 8 8 8

Table 3-6. User Mask Field Descriptions (Continued)

Field Bit Description
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CPUID register 4 provides general application-level information about processor 
features. As shown in Figure 3-12, it is a set of flag bits used to indicate if a given 
feature is supported in the processor model. When a bit is one the feature is supported; 
when 0 the feature is not supported. The defined feature bits in the current architecture 
are listed in Table 3-8. As new features are added (or removed) from future processor 
models the presence (or removal) of new features will be indicated by new feature bits.

CPUID register 4 is logically split into two halves, both of which contain general feature 
and capability information but which have different usage models and access 
capabilities; this information reflects the status of any enabled or disabled features. 
Both the upper and lower halves of CPUID register 4 are accessible through the move 
indirect register instruction; depending on the implementation, the latency for this 
access can be long and this access method is not appropriate for low-latency code 
versioning using self-selection. In addition, the upper half of CPUID register 4 is also 
accessible using the test feature instruction; the latency for this access is comparable 
to that of the test bit instruction and this access method enables low-latency code 
versioning using self selection.

This register does not contain IA-32 instruction set features. IA-32 instruction set 
features can be acquired by the IA-32 cpuid instruction.

Table 3-7. CPUID Register 3 Fields

Field Bits Description

number 7:0 The index of the largest implemented CPUID register (one less than the number of 
implemented CPUID registers). This value will be at least 4.

revision 15:8 Processor revision number. An 8-bit value that represents the revision or stepping 
of this processor implementation within the processor model.

model 23:16 Processor model number. A unique 8-bit value representing the processor model 
within the processor family.

family 31:24 Processor family number. A unique 8-bit value representing the processor family.

archrev 39:32 Architecture revision. An 8-bit value that represents the architecture revision 
number that the processor implements.

rv 63:40 Reserved.

Figure 3-12. CPUID Register 4 – General Features/Capability Bits

63    34 33 32 31 4 3 2 1 0

rv x2 cz rv ru ao sd lb

30 1 1 28 1 1 1 1

Table 3-8. CPUID Register 4 Fields

Field Bits Description

lb 0 Processor implements the long branch (brl) instructions.

sd 1 Processor implements spontaneous deferral (see Section 5.5.5, “Deferral of 
Speculative Load Faults” on page 2:105).

ao 2 Processor implements 16-byte atomic operations (see “ld — Load”, “st — Store” and 
“cmpxchg — Compare and Exchange” instructions in Volume 3).

ru 3 Processor implements the Resource Utilization Counter (AR 45).

rv 31:4 Reserved.

cz 32 Processor implements the clz instruction (see “tf — Test Feature” instruction in 
Volume 3).
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3.2 Memory

This section describes an Itanium architecture-based application program’s view of 
memory. This includes a description of how memory is accessed, for both 32-bit and 
64-bit applications. The size and alignment of addressable units in memory is also 
given, along with a description of how byte ordering is handled. 

The system view of memory and of virtual memory management is given in Chapter 4, 
“Addressing and Protection” in Volume 2 . The IA-32 instruction set view of memory 
and virtual memory management is defined in Section 10.6, “System Memory Model” 
on page 2:259.

3.2.1 Application Memory Addressing Model

Memory is byte addressable and is accessed with 64-bit pointers. A 32-bit pointer 
model without a hardware mode is supported architecturally. Pointers which are 32 bits 
in memory are loaded and manipulated in 64-bit registers. Software must explicitly 
convert 32-bit pointers into 64-bit pointers before use. For details on 32-bit addressing, 
refer to “32-bit Virtual Addressing” on page 2:71.

3.2.2 Addressable Units and Alignment

Memory can be addressed in units of 1, 2, 4, 8, 10 and 16 bytes.

It is recommended that all addressable units be stored on their naturally aligned 
boundaries. Hardware and/or operating system software may have support for 
unaligned accesses, possibly with some performance cost. 10-byte floating-point values 
should be stored on 16-byte aligned boundaries.

Bits within larger units are always numbered from 0 starting with the least-significant 
bit. Quantities loaded from memory to general registers are always placed in the 
least-significant portion of the register (loaded values are placed right justified in the 
target general register).

Instruction bundles (three instructions per bundle) are 16-byte units that are always 
aligned on 16-byte boundaries.

3.2.3 Byte Ordering

The UM.be bit in the User Mask controls whether loads and stores use little-endian or 
big-endian byte ordering for Itanium architecture-based code. When the UM.be bit is 0, 
larger-than-byte loads and stores are little endian (lower-addressed bytes in memory 
correspond to the lower-order bytes in the register). When the UM.be bit is 1, 

x2 33 Processor implements mpy4 and mpyshl4 instructions (see “tf — Test Feature” 
instruction in Volume 3).

rv 63:34 Reserved.

Table 3-8. CPUID Register 4 Fields (Continued)

Field Bits Description
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larger-than-byte loads and stores are big endian (lower-addressed bytes in memory 
correspond to the higher-order bytes in the register). Load byte and store byte are not 
affected by the UM.be bit. The UM.be bit does not affect instruction fetch, IA-32 
references, or the RSE. Instructions are always accessed by the processor as 
little-endian units. When instructions are referenced as big-endian data, the instruction 
will appear reversed in a register.

Figure 3-13 shows various loads in little-endian format. Figure 3-14 shows various 
loads in big endian format. Stores are not shown but behave similarly.

Figure 3-13. Little-endian Loads

Figure 3-14. Big-endian Loads
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3.3 Instruction Encoding Overview

Each instruction is categorized into one of six types; each instruction type may be 
executed on one or more execution unit types. Table 3-9 lists the instruction types and 
the execution unit type on which they are executed.

Three instructions are grouped together into 128-bit sized and aligned containers called 
bundles. Each bundle contains three 41-bit instruction slots and a 5-bit template 
field. The format of a bundle is depicted in Figure 3-15.

During execution, architectural stops in the program indicate to the hardware that one 
or more instructions before the stop may have certain kinds of resource dependencies 
with one or more instructions after the stop. A stop is present after each slot having a 
double line to the right of it in Table 3-10. For example, template 00 has no stops, while 
template 03 has a stop after slot 1 and another after slot 2.

In addition to the location of stops, the template field specifies the mapping of 
instruction slots to execution unit types. Not all possible mappings of instructions to 
units are available. Table 3-10 indicates the defined combinations. The three rightmost 
columns correspond to the three instruction slots in a bundle. Listed within each column 
is the execution unit type controlled by that instruction slot.

Table 3-9. Relationship between Instruction Type and Execution Unit Type

Instruction Type Description Execution Unit Type

A Integer ALU I-unit or M-unit

I Non-ALU integer I-unit

M Memory M-unit

F Floating-point F-unit

B Branch B-unit

L+X Extended I-unit/B-unit

Figure 3-15. Bundle Format

12
7 87 86 46 45 5 4 0

instruction slot 2 instruction slot 1 instruction slot 0 template

41 41 41 5

Table 3-10. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2

00 M-unit I-unit I-unit

01 M-unit I-unit I-unit

02 M-unit I-unit I-unit

03 M-unit I-unit I-unit

04 M-unit L-unit X-unita

05 M-unit L-unit X-unita

06

07

08 M-unit M-unit I-unit

09 M-unit M-unit I-unit

0A M-unit M-unit I-unit
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Extended instructions, used for long immediate integer and long branch instructions, 
occupy two instruction slots. Depending on the major opcode, extended instructions 
execute on a B-unit (long branch/call) or an I-unit (all other L+X instructions).

3.4 Instruction Sequencing Considerations

Itanium architecture-based code consists of a sequence of instructions and stops 
packed in bundles. Instruction execution is ordered as follows:

• Bundles are ordered from lowest to highest memory address. Instructions in 
bundles with lower memory addresses are considered to precede instructions in 
bundles with higher memory addresses. The byte order of each bundle in memory 
is little-endian (the template field is contained in byte 0 of a bundle).

• Within a bundle, instructions are ordered from instruction slot 0 to instruction slot 2 
as specified in Figure 3-15 on page 1:38.

Instruction execution consists of four phases:

1. Read the instruction from memory (fetch)

2. Read architectural state, if necessary (read)

3. Perform the specified operation (execute)

0B M-unit M-unit I-unit

0C M-unit F-unit I-unit

0D M-unit F-unit I-unit

0E M-unit M-unit F-unit

0F M-unit M-unit F-unit

10 M-unit I-unit B-unit

11 M-unit I-unit B-unit

12 M-unit B-unit B-unit

13 M-unit B-unit B-unit

14

15

16 B-unit B-unit B-unit

17 B-unit B-unit B-unit

18 M-unit M-unit B-unit

19 M-unit M-unit B-unit

1A

1B

1C M-unit F-unit B-unit

1D M-unit F-unit B-unit

1E

1F

a. The MLX template was formerly called MLI, and for 
compatibility, the X slot may encode break.i and nop.i 
in addition to any X-unit instruction.

Table 3-10. Template Field Encoding and Instruction Slot Mapping 

Template Slot 0 Slot 1 Slot 2
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4. Update architectural state, if necessary (update).

An instruction group is a sequence of instructions starting at a given bundle address 
and slot number and including all instructions at sequentially increasing slot numbers 
and bundle addresses up to the first stop, taken branch, Break Instruction fault due to 
a break.b, or Illegal Operation fault due to a Reserved or Reserved if PR[qp] is one 
encoding in the B-type opcode space. For the instructions in an instruction group to 
have well-defined behavior, they must meet the ordering and dependency requirements 
described below.

For the purpose of clarification, the following do not end instruction groups:

• Break instructions other than break.b (break.f, break.i, break.m, break.x)

• Check instructions (chk.s, chk.a, fchkf)

• rfi instructions not followed by a stop

• brl instructions not followed by a stop

• Interruptions other than a Break Instruction fault due to a break.b or an Illegal 
Operation fault due to a Reserved or Reserved if PR[qp] is 1 encoding in the B-type 
opcode space

Thus, even if one of the above causes a change in control flow, the instructions at 
sequentially increasing addresses beyond the location of the change in control flow up 
to the next true end of the instruction group had the change of control flow not 
occurred, can still cause undefined values to be seen at the target of the change of 
control flow, if they cause a dependency violation. There are never, however, any 
dependencies between the instructions at the target of the change in control flow and 
those preceding the change in control flow, even for the above cases. 

If the instructions in instruction groups meet the resource-dependency requirements, 
then the behavior of a program will be as though each individual instruction is 
sequenced through these phases in the order listed above. The order of a phase of a 
given instruction relative to any phase of a previous instruction is prescribed by the 
instruction sequencing rules below. 

• There is no a priori relationship between the fetch of an instruction and the read, 
execute, or update of any dynamically previous instruction. The sync.i and srlz.i 
instructions can be used to enforce a sequential relationship between the fetch of 
all dynamically succeeding instructions and the update of all dynamically previous 
instructions.

• Between instruction groups, every instruction in a given instruction group will 
behave as though its read occurred after the update of all the instructions from the 
previous instruction group. All instructions are assumed to have unit latency. 
Instructions on opposing sides of a stop are architecturally considered to be 
separated by at least one unit of latency.

Some system state updates require more stringent requirements than those 
described here. See Section 3.2, “Serialization” on page 2:17 for details.

• Within an instruction group, every instruction will behave as though its read of the 
memory and ALAT state occurred after the update of the memory and ALAT state of 
all prior instructions in that instruction group.

• Within an instruction group, every instruction will behave as though its read of the 
register state occurred before the update of the register state by any instruction 
(prior or later) in that instruction group, except as noted in the Register 
dependencies and Memory dependencies described below. 
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The ordering rules above form the context for register dependency restrictions, 
memory dependency restrictions and the order of exception reporting. These 
dependency restrictions apply only between instructions whose resource reads and 
writes are not dynamically disabled by predication.

• Register dependencies: Within an instruction group, read-after-write (RAW) and 
write-after-write (WAW) register dependencies are not allowed (except as noted in 
“RAW Dependency Special Cases” on page 1:42 and “WAW Dependency Special 
Cases” on page 1:43). Write-after-read (WAR) register dependencies are allowed 
(except as noted in “WAR Dependency Special Cases” on page 1:44). 

These dependency restrictions apply to both explicit register accesses (from the 
instruction’s operands) and implicit register accesses (such as application and 
control registers implicitly accessed by certain instructions). Predicate register PR0 
is excluded from these register dependency restrictions, since writes to PR0 are 
ignored and reads always return 1 (one). 

Some system state updates require more stringent requirements than those 
described here. See Section 3.2, “Serialization” on page 2:17 for details.

• Memory dependencies: Within an instruction group, RAW, WAW, and WAR memory 
dependencies and ALAT dependencies are allowed. A load will observe the results of 
the most recent store to the same memory address. In the event that multiple 
stores to the same address are present in the same instruction group, memory will 
contain the result of the latest store after execution of the instruction group. A 
store following a load to the same address will not affect the data loaded by the 
load. Advanced loads, check loads, advanced load checks, stores, and memory 
semaphore instructions implicitly access the ALAT. RAW, WAW, and WAR ALAT 
dependencies are allowed within an instruction group and behave as described for 
memory dependencies. 

The net effect of the dependency restrictions stated above is that a processor may 
execute all (or any subset) of the instructions within a legal instruction group 
concurrently or serially with the end result being identical. If these dependency 
restrictions are not met, the behavior of the program is undefined (see “Undefined 
Behavior” on page 1:44).

Exceptions are reported in instruction order. The dependency restrictions apply 
independent of the presence or absence of exceptions — that is, restrictions must be 
satisfied whether or not an exception occurs within an instruction group. At the point of 
exception delivery for a correctly formed instruction group, all prior instructions will 
have completed their update of architectural state. All subsequent instructions will not 
have updated architectural state. If an instruction group violates a dependency 
requirement, then the update of architectural state before and after an exception is not 
guaranteed (the fault handler sees an undefined value on the registers involved in a 
dependency violation even if the exception occurs between the first and second 
instructions in the violation). In the event multiple exceptions occur while executing 
instructions from the same instruction group, the exception occurring on the earliest 
instruction will be reported. 

The instruction sequencing resulting from the rules stated above is termed sequential 
execution.
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The ordering rules and the dependency restrictions allow the processor to dynamically 
re-order instructions, execute instructions with non-unit latency, or even concurrently 
execute instructions on opposing sides of a stop or taken branch, provided that correct 
sequencing is enforced and the appearance of sequential execution is presented to the 
programmer. 

IP is a special resource in that reads and writes of IP behave as though the instruction 
stream was being executed serially, rather than in parallel. RAW dependencies on IP are 
allowed, and the reader gets the IP of the bundle in which it is contained. So, each 
bundle being executed in parallel logically reads IP, increments it and writes it back. 
WAW is also allowed.

Ignored ARs are not exceptional for dependency checking purposes. RAW and WAW 
dependencies to ignored ARs are not allowed. 

For more details on resource dependencies, see Chapter 5, “Resource and Dependency 
Semantics” in Volume 3.

3.4.1 RAW Dependency Special Cases

There are four special cases in which RAW register dependencies within an instruction 
group are permitted. These special cases are the alloc instruction, check load 
instructions, instructions that affect branching, and the ld8.fill and st8.spill 
instructions.

The alloc instruction implicitly writes the Current Frame Marker (CFM) which is 
implicitly read by all instructions accessing the stacked subset of the general register 
file. Instructions that access the stacked subset of the general register file may appear 
in the same instruction group as alloc and will see the stack frame specified by the 
alloc.

Note: Some instructions have RAW or WAW dependencies on resources other than 
CFM affected by alloc and are thus not allowed in the same instruction group 
after an alloc: flushrs, loadrs, move from AR[BSPSTORE], move from 
AR[RNAT], br.cexit, br.ctop, br.wexit, br.wtop, br.call, brl.call, 
br.ia, br.ret, clrrrb, cover, and rfi. See Chapter 5, “Resource and Depen-
dency Semantics” in Volume 3 for details. Also note that alloc is required to be 
the first instruction in an instruction group.

A check load instruction may or may not perform a load since it is dependent upon its 
corresponding advanced load. If the check load misses the ALAT it will execute a load 
from memory. A check load and a subsequent instruction that reads the target of the 
check load may exist in the same instruction group. The dependent instruction will get 
the new value loaded by the check load.

A branch may read branch registers and may implicitly read predicate registers, the LC, 
EC, and PFS application registers, as well as CFM. Except for LC, EC and predicate 
registers, writes to any of these registers by a non-branch instruction will be visible to a 
subsequent branch in the same instruction group. Writes to predicate registers by any 
non-floating-point instruction will be visible to a subsequent branch in the same 
instruction group. RAW register dependencies within the same instruction group are not 
allowed for LC and EC. Dynamic RAW dependencies where the predicate writer is a 
floating-point instruction and the reader is a branch are also not allowed within the 
same instruction group. Branches br.cond, br.call, brl.cond, brl.call, br.ret and 
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br.ia work like other instructions for the purposes of register dependency; i.e., if their 
qualifying predicate is 0, they are not considered readers or writers of other resources. 
Branches br.cloop, br.cexit, br.ctop, br.wexit, and br.wtop are exceptional in 
that they are always readers or writers of their resources, regardless of the value of 
their qualifying predicate. An indirect brp is considered a reader of the specified BR.

The ld8.fill and st8.spill instructions implicitly access the User NaT Collection 
application register (UNAT). For these instructions the restriction on dynamic RAW 
register dependencies with respect to UNAT applies at the bit level. These instructions 
may appear in the same instruction group provided they do not access the same bit of 
UNAT. RAW UNAT dependencies between ld8.fill or st8.spill instructions and mov 
ar= or mov =ar instructions accessing UNAT must not occur within the same instruction 
group.

For the purposes of resource dependencies, CFM is treated as a single resource. 

3.4.2 WAW Dependency Special Cases

There are three special cases in which WAW register dependencies within an instruction 
group are permitted. The special cases are compare-type instructions, floating-point 
instructions, and the st8.spill instruction.

The set of compare-type instructions includes: cmp, cmp4, tbit, tnat, tf, fcmp, 
frsqrta, frcpa, and fclass. Compare-type instructions in the same instruction group 
may target the same predicate register provided:

• The compare-type instructions are either all AND-type compares or all OR-type 
compares (AND-type compares correspond to “.and” and “.andcm” completers; 
OR-type compares correspond to “.or” and “.orcm” completers), or

• The compare-type instructions all target PR0. All WAW dependencies for PR0 are 
allowed; the compares can be of any types and can be of differing types.

All other WAW dependencies within an instruction group are disallowed, including WAW 
register dependencies with move to PR instructions that access the same predicate 
registers as another writer.

Note: The move to PR instructions only writes those PRs indicated by its mask, but 
the move from PR instructions always reads all the predicate registers. 

Floating-point instructions implicitly write the Floating-point Status Register (FPSR) and 
the Processor Status Register (PSR). Multiple floating-point instructions may appear in 
the same instruction group since the restriction on WAW register dependencies with 
respect to the FPSR and PSR do not apply. The state of FPSR and PSR after executing 
the instruction group will be the logical OR of all writes.

The st8.spill instruction implicitly writes the UNAT register. For this instruction the 
restriction on WAW register dependencies with respect to UNAT applies at the bit level. 
Multiple st8.spill instructions may appear in the same instruction group provided 
they do not write the same bit of UNAT. WAW register dependencies between 
st8.spill instructions and mov ar= instructions targeting UNAT must not occur within 
the same instruction group.
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3.4.3 WAR Dependency Special Cases

The WAR dependency between the reading of predicate register 63 by any B-type 
instruction and the subsequent writing of predicate register 63 by a modulo-scheduled 
loop type branch (br.ctop, br.cexit, br.wtop, or br.wexit) without an intervening 
stop is not allowed. Otherwise, WAR dependencies within an instruction group are 
allowed.

3.4.4 Processor Behavior on Dependency Violations

If a program violates read-after-write, write-after-write or write-after-read resource 
dependency rules within an instruction group, then processor behavior is undefined. 
Constraints on undefined behavior are described in “Undefined Behavior” on page 1:44.

To help debug code that violates the architectural resource dependency rules, some 
processor implementations may provide dependency violation detection hardware that 
may cause an instruction group that contains an illegal dependency to take an Illegal 
Dependency fault (defined in Chapter 5, “Interruptions” in Volume 2 ). However, even 
in implementations that provide such checking, software can not assume the processor 
will catch all dependency violations or even catch the same violation every time it 
occurs.

However, all processor models that provide dependency violation detection hardware 
are required to satisfy the following dependency violation reporting constraints:

• All detected dependency violations must be reported as Illegal Dependency Faults 
(defined in Chapter 5, “Interruptions” in Volume 2 ). When an Illegal Dependency 
fault is taken, the value of the resource subject to the dependency violation is 
undefined. Undetected dependency violations cause undefined program behavior as 
described in “Undefined Behavior” on page 1:44.

• All detected read-after-write and write-after-write dependency violations must be 
delivered as Illegal Dependency Faults on the second operation, i.e. on the reader 
in the RAW case, and on second resource writer in the WAW case.

• All detected write-after-read dependency violations (on predicate register 63) must 
be delivered as Illegal Dependency faults on the second operation, the predicate 
writer.

• Illegal Dependency faults are delivered strictly in program order. If an interruption, 
branch or speculation check are taken between the first and the second operation 
of a dependency violation, then the Illegal Dependency fault is not taken. 

Note: Since an instruction group starts at a given entry point (stop or target of a con-
trol flow transfer), instructions that precede the entry point are not considered 
part of the instruction group and must not take part in any dependency viola-
tion checking. For example, if an rfi is done to slot 1 of a bundle, the instruc-
tion in slot 0 and instructions in bundles with lower memory addresses are not 
part of the new instruction group, and must not take part in any dependency 
violation checking.

3.5 Undefined Behavior

Architecturally undefined behavior that applies to one or more instructions is listed 
below:
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• RAW and WAW register dependencies within the same instruction group are 
disallowed except as noted in Section 3.4, “Instruction Sequencing Considerations” 
on page 1:39. Their behavior within an instruction group is undefined. Undefined 
behavior includes the possibility of an Illegal Operation fault. 

• Reading a register outside of the defined general register stack frame boundaries 
(as determined by the most recent alloc, return, or call) will return an undefined 
result. All processors will not raise an interruption in this situation.

An undefined scenario is an event or sequence of events whose outcome is not defined 
in the architecture. For the behavior of Itanium instructions, refer to Chapter 2, 
“Instruction Reference” in Volume 3. For the behavior of IA32 instructions, refer to 
Volume 4: IA-32 Instruction Set Reference. Therefore, the result of an undefined 
scenario is strictly implementation dependent. User should not rely on these undefined 
behaviors for correct program behavior and compatibility across future 
implementations.

An undefined response (undefined behavior, undefined result) is subject to the following 
restrictions:

• It must not impede forward progress of the processor (i.e., the processor may not 
crash).

• It must not impede forward progress of other processors.

• It must not allow software to gain privileges not available at the current privilege 
level.

• It must not allow software to circumvent memory access rights.

• It must not modify state that cannot be modified by a defined response (e.g., a 
post-increment load instruction that generates an undefined response cannot 
modify any registers other than its target and address registers).

• It is subject to the same NaT/NaTVal propagation rules as a defined response.

• The processor may raise an Illegal Operation fault

§
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Application Programming Model 4

This section describes the architectural functionality from the perspective of the 
application programmer. Itanium instructions are grouped into related functions and an 
overview of their behavior is given. Unless otherwise noted, all immediates are sign 
extended to 64 bits before use. The floating-point programming model is described 
separately in Chapter 5, “Floating-point Programming Model” in Volume 1. Refer to 
Volume 3: Intel® Itanium® Instruction Set Reference for detailed information on 
Itanium instructions. 

The main features of the programming model covered here are:

• General Register Stack

• Integer Computation Instructions

• Compare Instructions and Predication

• Memory Access Instructions and Speculation

• Branch Instructions and Branch Prediction

• Multimedia Instructions

• Register File Transfer Instructions

• Character Strings and Population Count

• Privilege Level Transfer

4.1 Register Stack

As described in “General Registers” on page 1:25, the general register file is divided 
into static and stacked subsets. The static subset is visible to all procedures and 
consists of the 32 registers from GR 0 through GR 31. The stacked subset is local to 
each procedure and may vary in size from zero to 96 registers beginning at GR 32. The 
register stack mechanism is implemented by renaming register addresses as a 
side-effect of procedure calls and returns. The implementation of this rename 
mechanism is not otherwise visible to application programs. The register stack is 
disabled during IA-32 instruction set execution.

The static subset must be saved and restored at procedure boundaries according to 
software convention. The stacked subset is automatically saved and restored by the 
Register Stack Engine (RSE) without explicit software intervention (for details on the 
RSE see Chapter 6, “Register Stack Engine” in Volume 2). All other register files are 
visible to all procedures and must be saved/restored by software according to software 
convention.

4.1.1 Register Stack Operation

The registers in the stacked subset visible to a given procedure are called a register 
stack frame. The frame is further partitioned into two variable-size areas: the local area 
and the output area. Immediately after a call, the size of the local area of the newly 
activated frame is zero and the size of the output area is equal to the size of the caller’s 
output area and overlays the caller’s output area.
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The local and output areas of a frame can be re-sized using the alloc instruction which 
specifies immediates that determine the size of frame (sof) and size of locals (sol).

Note: In the assembly language, alloc uses three immediate operands to determine 
the values of sol and sof: the size of inputs; the size of locals; and the size of 
outputs. The value of sol is determined by adding the size of inputs immediate 
and the size of locals immediate; the value of sof is determined by adding all 
three immediates.

The value of sof specifies the size of the entire stacked subset visible to the current 
procedure; the value of sol specifies the size of the local area. The size of the output 
area is determined by the difference between sof and sol. The values of these 
parameters for the currently active procedure are maintained in the Current Frame 
Marker (CFM).

Reading a stacked register outside the current frame will return an undefined result. 
Writing a stacked register outside the current frame will cause an Illegal Operation 
fault. 

When a br.call or brl.call is executed, the CFM is copied to the Previous Frame 
Marker (PFM) field in the Previous Function State application register (PFS), and the 
callee’s frame is created as follows:

• The stacked registers are renamed such that the first register in the caller’s output 
area becomes GR 32 for the callee

• The size of the local area is set to zero

• The size of the callee’s frame (sofb1) is set to the size of the caller’s output area 
(sofa - sola)

Values in the output area of the caller’s register stack frame are visible to the callee. 
This overlap permits parameter and return value passing between procedures to take 
place entirely in registers.

Procedure frames may be dynamically re-sized by issuing an alloc instruction. An 
alloc instruction causes no renaming, but only changes the size of the register stack 
frame and the partitioning between local and output areas. Typically, when a procedure 
is called, it will allocate some number of local registers for its use (which will include the 
parameters passed to it in the caller’s output registers), plus an output area (for 
passing parameters to procedures it will call). Newly allocated registers (including their 
NaT bits) have undefined values.

When a br.ret is executed, CFM is restored from PFM and the register renaming is 
restored to the caller’s configuration. The PFM is procedure local state and must be 
saved and restored by non-leaf procedures. The CFM is not directly accessible in 
application programs and is updated only through the execution of calls, returns, 
alloc, cover, and clrrrb.

Figure 4-1 depicts the behavior of the register stack on a procedure call from procA 
(caller) to procB (callee). The state of the register stack is shown at four points: prior to 
the call, immediately following the call, after procB has executed an alloc, and after 
procB returns to procA.
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The majority of application programs need only issue alloc instructions and 
save/restore PFM in order to effectively utilize the register stack. A detailed knowledge 
of the RSE (Register Stack Engine) is required only by certain specialized application 
software such as user-level thread packages, debuggers, etc. See Chapter 6, “Register 
Stack Engine” in Volume 2.

4.1.2 Register Stack Instructions

The alloc instruction is used to change the size of the current register stack frame. An 
alloc instruction must be the first instruction in an instruction group otherwise the 
results are undefined. An alloc instruction affects the register stack frame seen by all 
instructions in an instruction group, including the alloc itself. If the qualifying 
predicate for alloc is not PR0, an Illegal Operation fault is raised. An alloc does not 
affect the values or NaT bits of the allocated registers. When a register stack frame is 
expanded, newly allocated registers may have their NaT bit set.

In addition, there are three instructions which provide explicit control over the state of 
the register stack. These instructions are used in thread and context switching which 
necessitate a corresponding switch of the backing store for the register stack. See 
Chapter 6, “Register Stack Engine” in Volume 2 for details on explicit management of 
the RSE.

Figure 4-1. Register Stack Behavior on Procedure Call and Return
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The flushrs instruction is used to force all previous stack frames out to backing store 
memory. It stalls instruction execution until all active frames in the physical register 
stack up to, but not including the current frame are spilled to the backing store by the 
RSE. A flushrs instruction must be the first instruction in an instruction group; 
otherwise, the results are undefined. A flushrs cannot be predicated.

The cover instruction creates a new frame of zero size (sof = sol = 0). The new frame 
is created above (not overlapping) the present frame. Both the local and output areas 
of the previous stack frame are automatically saved. A cover instruction must be the 
last instruction in an instruction group; otherwise, operation is undefined. A cover 
cannot be predicated.

The loadrs instruction ensures that the specified portion of the register stack is present 
in the physical registers. It stalls instruction execution until the number of bytes 
specified in the loadrs field of the RSC application register have been filled from the 
backing store by the RSE (starting from the current BSP). By specifying a zero value for 
RSC.loadrs, loadrs can be used to indicate that all stacked registers outside the 
current frame must be loaded from the backing store before being used. In addition, 
stacked registers outside the current frame (that have not been spilled by the RSE) will 
not be stored to the backing store. A loadrs instruction must be the first instruction in 
an instruction group otherwise the results are undefined. A loadrs cannot be 
predicated.

Table 4-1 lists the architectural visible state relating to the register stack. Table 4-2 
summarizes the register stack management instructions. Call- and return-type 
branches, which affect the stack, are described in “Branch Instructions” on page 1:74. 

4.2 Integer Computation Instructions

The integer execution units provide a set of arithmetic, logical, shift and 
bit-field-manipulation instructions. Additionally, they provide a set of instructions to 
accelerate operations on 32-bit data and pointers.

Arithmetic, logical and 32-bit acceleration instructions can be executed on both I- and 
M-units

Table 4-1. Architectural Visible State Related to the Register Stack

Register Description

AR[PFS].pfm Previous Frame Marker field

AR[RSC] Register Stack Configuration application register

AR[BSP] Backing store pointer application register

AR[BSPSTORE] Backing store pointer application register for memory stores

AR[RNAT] RSE NaT collection application register

Table 4-2. Register Stack Management Instructions

Mnemonic Operation

alloc Allocate register stack frame

flushrs Flush register stack to backing store

loadrs Load register stack from backing store

cover Cover current stack frame
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4.2.1 Arithmetic Instructions

Addition and subtraction (add, sub) are supported with regular two input forms and 
special three input forms. The three input addition form adds one to the sum of two 
input registers. The three input subtraction form subtracts one from the difference of 
two input registers. The three input forms share the same mnemonics as the two input 
forms and are specified by appending a “1” as a third source operand.

The immediate form of addition uses a register and a 14-bit immediate; the immediate 
form of subtraction uses a register and an 8-bit immediate. In both cases, the 
immediate is sign-extended before being added or subtracted. The immediate form is 
obtained simply by specifying an immediate rather than a register as the first operand. 
Also, addition can be performed between a register and a 22-bit immediate; however, 
the source register must be GR 0, 1, 2 or 3.

A shift left and add instruction (shladd) shifts one register operand to the left by 1 to 4 
bits and adds the result to a second register operand.

32-bit multiplication is supported with the unsigned integer multiply (mpy4) instruction, 
which takes two 32-bit (unsigned) register operands and produces a 64-bit result. The 
unsigned integer shift left and multiply (mpyshl4) instruction provides a building block 
for doing 64-bit multiplication. It takes a 32-bit operand in the upper half of a first 
register, a 32-bit operand in the lower half of a second register, multiplies them, and 
places the least significant 32-bits of the product in the upper half of the result register, 
with zeros in the lower half.

Table 4-3 summarizes the integer arithmetic instructions.

Note that an integer multiply instruction is defined which uses the floating-point 
registers. See “Integer Multiply and Add Instructions” on page 1:101 for details. 
Integer divide is performed in software similarly to floating-point divide.

4.2.2 Logical Instructions

Instructions to perform logical AND (and), OR (or), and exclusive OR (xor) between 
two registers or between a register and an immediate are defined. The andcm 
instruction performs a logical AND of a register or an immediate with the complement 
of another register. Table 4-4 summarizes the integer logical instructions.

Table 4-3. Integer Arithmetic Instructions

Mnemonic Operation

add Addition

add...,1 Three input addition

mpy4 Unsigned integer multiply

mpyshl4 Unsigned integer shift left and multiply

sub Subtraction

sub...,1 Three input subtraction

shladd Shift left and add
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4.2.3 32-bit Addresses and Integers

Support for 32-bit addresses is provided in the form of add instructions that perform 
region bit copying. This supports the virtual address translation model (see “32-bit 
Virtual Addressing” on page 2:71 for details). The add 32-bit pointer instruction (addp) 
adds two registers or a register and an immediate, zeroes the most significant 32-bits 
of the result, and copies bits 31:30 of the second source to bits 62:61 of the result. The 
shladdp instruction operates similarly but shifts the first source to the left by 1 to 4 bits 
before performing the add, and is provided only in the two-register form. 

In addition, support for 32-bit integers is provided through 32-bit compare instructions 
and instructions to perform sign and zero extension. Compare instructions are 
described in “Compare Instructions and Predication” on page 1:54. The sign and zero 
extend (sxt, zxt) instructions take an 8-bit, 16-bit, or 32-bit value in a register, and 
produce a properly extended 64-bit result.

Table 4-5 summarizes 32-bit pointer and 32-bit integer instructions.

4.2.4 Bit Field and Shift Instructions

Four classes of instructions are defined for shifting and operating on bit fields within a 
general register: variable shifts, fixed shift-and-mask instructions, a 128-bit-input 
funnel shift, and special compare operations to test an individual bit within a general 
register. The compare instructions for testing a single bit (tbit), or for testing the NaT 
bit (tnat) are described in “Compare Instructions and Predication” on page 1:54.

The variable shift instructions shift the contents of a general register by an amount 
specified by another general register. The shift right signed (shr) and shift right 
unsigned (shr.u) instructions shift the contents of a register to the right with the 
vacated bit positions filled with the sign bit or zeroes respectively. The shift left (shl) 
instruction shifts the contents of a register to the left.

The fixed shift-and-mask instructions (extr, dep) are generalized forms of fixed shifts. 
The extract instruction (extr) copies an arbitrary bit field from a general register to the 
least-significant bits of the target register. The remaining bits of the target are written 
with either the sign of the bit field (extr) or with zero (extr.u). The length and starting 

Table 4-4. Integer Logical Instructions

Mnemonic Operation

and Logical and

or Logical or

andcm Logical and complement

xor Logical exclusive or

Table 4-5. 32-bit Pointer and 32-bit Integer Instructions

Mnemonic Operation

addp 32-bit pointer addition

shladdp Shift left and add 32-bit pointer

sxt Sign extend

zxt Zero extend
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position of the field are specified by two immediates. This is essentially a 
shift-right-and-mask operation. A simple right shift by a fixed amount can be specified 
by using shr with an immediate value for the shift amount. This is just an assembly 
pseudo-op for an extract instruction where the field to be extracted extends all the way 
to the left-most register bit.

The deposit instruction (dep) takes a field from either the least-significant bits of a 
general register, or from an immediate value of all zeroes or all ones, places it at an 
arbitrary position, and fills the result to the left and right of the field with either bits 
from a second general register (dep) or with zeroes (dep.z). The length and starting 
position of the field are specified by two immediates. This is essentially a 
shift-left-mask-merge operation. A simple left shift by a fixed amount can be specified 
by using shl with an immediate value for the shift amount. This is just an assembly 
pseudo-op for dep.z where the deposited field extends all the way to the left-most 
register bit.

The shift right pair (shrp) instruction performs a 128-bit-input funnel shift.  It extracts 
an arbitrary 64-bit field from a 128-bit field formed by concatenating two source 
general registers.  The starting position is specified by an immediate.  This instruction 
can be used to accelerate the adjustment of unaligned data.  A bit rotate operation can 
be performed by using shrp and specifying the same register for both operands.

Table 4-6 summarizes the bit field and shift instructions.

4.2.5 Large Constants

A special instruction is defined for generating large constants (see Table 4-7). For 
constants up to 22 bits in size, the add instruction can be used, or the mov pseudo-op 
(pseudo-op of add with GR0, which always reads 0). For larger constants, the move 
long immediate instruction (movl) is defined to write a 64-bit immediate into a general 
register. This instruction occupies two instruction slots within the same bundle, and is 
the only such instruction.

Table 4-6. Bit Field and Shift Instructions

Mnemonic Operation

shr Shift right signed

shr.u Shift right unsigned

shl Shift left

extr Extract signed (shift right and mask)

extr.u Extract unsigned (shift right and mask)

dep Deposit (shift left, mask and merge)

dep.z Deposit in zeroes (shift left and mask)

shrp Shift right pair

Table 4-7. Instructions to Generate Large Constants

Mnemonic Operation

mov Move 22-bit immediate

movl Move 64-bit immediate
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4.3 Compare Instructions and Predication

A set of compare instructions provides the ability to test for various conditions and 
affect the dynamic execution of instructions. A compare instruction tests for a single 
specified condition and generates a boolean result. These results are written to 
predicate registers. The predicate registers can then be used to affect dynamic 
execution in two ways: as conditions for conditional branches, or as qualifying 
predicates for predication.

4.3.1 Predication

Predication is the conditional execution of instructions. The execution of most 
instructions is gated by a qualifying predicate. If the predicate is true, the instruction 
executes normally; if the predicate is false, the instruction does not modify 
architectural state (except for the unconditional type of compare instructions, 
floating-point approximation instructions and while-loop branches). Predicates are 
one-bit values and are stored in the predicate register file. A zero predicate is 
interpreted as false and a one predicate is interpreted as true (predicate register PR0 is 
hardwired to one).

A few instructions cannot be predicated. These instructions are: allocate stack frame 
(alloc), branch predict (brp), bank switch (bsw), clear rrb (clrrrb), cover stack frame 
(cover), enter privileged code (epc), flush register stack (flushrs), load register stack 
(loadrs), counted branches (br.cloop, br.ctop, br.cexit), and return from 
interruption (rfi).

4.3.2 Compare Instructions

Predicate registers are written by the following instructions: general register compare 
(cmp, cmp4), floating-point register compare (fcmp), test bit and test NaT (tbit, tnat), 
test feature (tf), floating-point class (fclass), and floating-point reciprocal 
approximation and reciprocal square root approximation (frcpa, fprcpa, frsqrta, 
fprsqrta). Most of these compare instructions (all but frcpa, fprcpa, frsqrta and 
fprsqrta) set two predicate registers based on the outcome of the comparison. The 
setting of the two target registers is described below in “Compare Types” on page 1:55. 
Compare instructions are summarized in Table 4-8.

Table 4-8. Compare Instructions

Mnemonic Operation

cmp, cmp4 GR compare

tbit Test bit in a GR

tnat Test GR NaT bit

tf Test feature

fcmp FR compare

fclass FR class

frcpa, fprcpa Floating-point reciprocal approximation

frsqrta, fprsqrta Floating-point reciprocal square root approximation
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The 64-bit (cmp) and 32-bit (cmp4) compare instructions compare two registers, or a 
register and an immediate, for one of ten relations (e.g., >, <=). The compare 
instructions set two predicate targets according to the result. The cmp4 instruction 
compares the least-significant 32-bits of both sources (the most significant 32-bits are 
ignored).

The test bit (tbit) instruction sets two predicate registers according to the state of a 
single bit in a general register (the position of the bit is specified by an immediate). The 
test NaT (tnat) instruction sets two predicate registers according to the state of the 
NaT bit corresponding to a general register.

The test feature (tf) instruction sets two predicate registers according to whether or 
not the selected feature is implemented in the processor.

The fcmp instruction compares two floating-point registers and sets two predicate 
targets according to one of eight relations. The fclass instruction sets two predicate 
targets according to the classification of the number contained in the floating-point 
register source.

The frcpa, fprcpa, frsqrta and fprsqrta instructions set a single predicate target if 
their floating-point register sources are such that a valid approximation can be 
produced, otherwise the predicate target is cleared.

4.3.3 Compare Types

Compare instructions can have as many as five compare types: Normal, Unconditional, 
AND, OR, or DeMorgan. The type defines how the instruction writes its target predicate 
registers based on the outcome of the comparison and on the qualifying predicate. The 
description of these types is contained in Table 4-9. In the table, “qp” refers to the 
value of the qualifying predicate of the compare and “result” refers to the outcome of 
the compare relation (one if the compare relation is true and zero if the compare 
relation is false).

The Normal compare type simply writes the compare result to the first predicate target 
and the complement of the result to the second predicate target.

Table 4-9. Compare Type Function

Compare Type Completer
Operation

First Predicate Target Second Predicate Target

Normal none if (qp) {target = result} if (qp) {target =!result}

Unconditional unc
if (qp) {target = result}
else {target = 0}

if (qp) {target =!result}
else {target = 0}

AND
and if (qp &&!result) {target = 0} if (qp &&!result) {target = 0}

andcm if (qp && result) {target = 0} if (qp && result) {target = 0}

OR
or if (qp && result) {target = 1} if (qp && result) {target = 1}

orcm if (qp &&!result) {target = 1} if (qp &&!result) {target = 1}

DeMorgan
or.andcm if (qp && result) {target = 1} if (qp && result) {target = 0}

and.orcm if (qp &&!result) {target = 0} if (qp &&!result) {target = 1}
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The Unconditional compare type behaves the same as the Normal type, except that if 
the qualifying predicate is 0, both predicate targets are written with 0. This can be 
thought of as an initialization of the predicate targets, combined with a Normal 
compare. Note that compare instructions with the Unconditional type modify 
architectural state when their qualifying predicate is false.

The AND, OR and DeMorgan types are termed “parallel” compare types because they 
allow multiple simultaneous compares (of the same type) to target a single predicate 
register. This provides the ability to compute a logical equation such as 
p5 = (r4 == 0) || (r5 == r6) in a single cycle (assuming p5 was initialized to 0 in 
an earlier cycle). The DeMorgan compare type is just a combination of an OR type to 
one predicate target and an AND type to the other predicate target. Multiple OR-type 
compares (including the OR part of the DeMorgan type) may specify the same predicate 
target in the same instruction group. Multiple AND-type compares (including the AND 
part of the DeMorgan type) may also specify the same predicate target in the same 
instruction group.

For all compare instructions (except for tnat and fclass), if one or both of the source 
registers contains a deferred exception token (NaT or NaTVal – see “Control 
Speculation” on page 1:60), the result of the compare is different. Both predicate 
targets are treated the same, and are either written to 0 or left unchanged. In 
combination with speculation, this allows predicated code to be turned off in the 
presence of a deferred exception. fclass behaves this way as well if NaTVal is not one 
of the classes being tested for. Table 4-10 describes the behavior.

Only a subset of the compare types are provided for some of the compare instructions. 
Table 4-11 lists the compare types which are available for each of the instructions.

Table 4-10. Compare Outcome with NaT Source Input

Compare Type Operation

Normal if (qp) {target = 0}

Unconditional target = 0

AND if (qp) {target = 0}

OR (not written)

DeMorgan (not written)

Table 4-11. Instructions and Compare Types Provided

Instruction Relation Types Provided

cmp, cmp4 a == b, a!= b,
a > 0, a >= 0, a < 0, a <= 0,
0 > a, 0 >= a, 0 < a, 0 <= a

Normal, Unconditional,
AND, OR, DeMorgan

All other relations Normal, Unconditional

tbit, tnat, tf All Normal, Unconditional,
AND, OR, DeMorgan

fcmp, fclass All Normal, Unconditional

frcpa, frsqrta,
fprcpa, fprsqrta

Not Applicable Unconditional
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4.3.4 Predicate Register Transfers

Instructions are provided to transfer between the predicate register file and a general 
register. These instructions operate in a “broadside” manner whereby multiple predicate 
registers are transferred in parallel, such that predicate register N is transferred 
to/from bit N of a general register.

The move to predicates instruction (mov pr=) loads multiple predicate registers from a 
general register according to a mask specified by an immediate. The mask contains one 
bit for each of PR 1 through PR 15 (PR 0 is hardwired to 1) and one bit for all of PR 16 
through PR63 (the rotating predicates). A predicate register is written from the 
corresponding bit in a general register if the corresponding mask bit is 1; if the mask bit 
is 0 the predicate register is not modified.

The move to rotating predicates instruction (mov pr.rot=) copies 48 bits from an 
immediate value into the 48 rotating predicates (PR 16 through PR 63). The immediate 
value includes 28 bits, and is sign-extended. Thus PR 16 through PR 42 can be 
independently set to new values, and PR 43 through PR 63 are all set to either 0 or 1.

The move from predicates instruction (mov =pr) transfers the entire predicate register 
file into a general register target.

For all of these predicate register transfers, the predicate registers are accessed as 
though the register rename base (CFM.rrb.pr) were 0. Typically, therefore, software 
should clear CFM.rrb.pr before initializing rotating predicates.

4.4 Memory Access Instructions

Memory is accessed by simple load, store and semaphore instructions, which transfer 
data to and from general registers or floating-point registers. The memory address is 
specified by the contents of a general register.

Most load and store instructions can also specify base-address-register update. Base 
update adds either an immediate value or the contents of a general register to the 
address register, and places the result back in the address register. The update is done 
after the load or store operation, i.e., it is performed as an address post-increment.

For highest performance, data should be aligned on natural boundaries. Within a 
4K-byte boundary, accesses misaligned with respect to their natural boundaries will 
always fault if UM.ac (alignment check bit in the User Mask register) is 1. If UM.ac is 0, 
then an unaligned access will succeed if it is supported by the implementation; 
otherwise it will cause an Unaligned Data Reference fault. Please see the 
processor-specific documentation for further information. All memory accesses that 
cross a 4K-byte boundary will cause an Unaligned Data Reference fault independent of 
UM.ac. Additionally, all semaphore instructions will cause an Unaligned Data Reference 
fault if the access is not aligned to its natural boundary, independent of UM.ac.

Accesses to memory quantities larger than a byte may be done in a big-endian or 
little-endian fashion. The byte ordering for all memory access instructions is 
determined by UM.be in the User Mask register. All IA-32 memory references are 
performed little-endian.
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Load, store and semaphore instructions are summarized in Table 4-12 and the state 
related to memory reference instructions is summarized in Table 4-13.

4.4.1 Load Instructions

Load instructions transfer data from memory to a general register, a general register 
and the Compare and Store Data register (CSD), a floating-point register or a pair of 
floating-point registers.

For general register loads, access sizes of 1, 2, 4, 8, and 16 bytes are defined. For sizes 
less than eight bytes, the loaded value is zero extended to 64-bits. The 16-byte 
general-register load instructions load two adjacent 8-byte quantities into a general 
register and the CSD register. The 16-byte general-register load instructions cannot 
specify base register update.

For floating-point loads, the following access sizes are defined: single precision (4 
bytes), double precision (8 bytes), double-extended precision (10 bytes), and 
integer/parallel FP (8 bytes). The value(s) loaded from memory are converted into 
floating-point register format (see “Memory Access Instructions” on page 1:91 for 
details).

Table 4-12. Memory Access Instructions

Mnemonic

Operation
General

Floating-point

Normal Load Pair

ld ldf ldfp Load

ld.s ldf.s ldfp.s Speculative load

ld.a ldf.a ldfp.a Advanced load

ld.sa ldf.sa ldfp.sa Speculative advanced load

ld.c.nc, ld.c.clr ldf.c.nc,
ldf.c.clr

ldfp.c.nc,
ldfp.c.clr

Check load

ld.c.clr.acq Ordered check load

ld.acq Ordered load

ld.bias Biased load

ld.fill ldf.fill Register Fill

st stf Store

st.rel Ordered store

st.spill stf.spill Register Spill

cmpxchg Compare and exchange

xchg Exchange memory and GR

fetchadd Fetch and add

Table 4-13. State Relating to Memory Access

Register Function

UM.be User mask byte ordering

UM.ac User mask Unaligned Data Reference fault enable

UNAT GR NaT collection

CCV Compare and Exchange Compare Value application register

CSD Compare and Store Data application register
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The floating-point load pair instructions load two adjacent single precision (4 bytes 
each), double precision (8 bytes each), or integer/parallel FP (8 bytes each) numbers 
into two independent floating-point registers (see the ldfp instruction description for 
restrictions on target register specifiers). Floating-point load pair instructions can 
specify base register update, but only by an immediate value equal to double the data 
size.

Variants of both general and floating-point register loads are defined for supporting 
compiler-directed control and data speculation. These use the general register NaT bits 
and the ALAT. See “Control Speculation” on page 1:60 and “Data Speculation” on 
page 1:63.

Variants are also provided for controlling the memory/cache subsystem. An ordered 
load can be used to force ordering in memory accesses. See “Memory Access Ordering” 
on page 1:73. A biased load provides a hint to acquire exclusive ownership of the 
accessed line. See “Memory Hierarchy Control and Consistency” on page 1:69.

Special-purpose loads are defined for restoring register values that were spilled to 
memory. The ld8.fill instruction loads a general register and the corresponding NaT 
bit (defined for an 8-byte access only). The ldf.fill instruction loads a value in 
floating-point register format from memory without conversion (defined for 16-byte 
access only). See “Register Spill and Fill” on page 1:62.

4.4.2 Store Instructions

Store instructions transfer data from a general register, a general register and the CSD 
register, or floating-point register to memory. Store instructions are always 
non-speculative. Store instructions can specify base-address-register update, but only 
by an immediate value. A variant is also provided for controlling the memory/cache 
subsystem. An ordered store can be used to force ordering in memory accesses.

Both general and floating-point register stores are defined with the same access sizes 
as their load counterparts. The only exception is that there are no floating-point store 
pair instructions. The 16-byte general-register store instructions store two adjacent 
8-byte quantities from a general register and the CSD register.

Special purpose stores are defined for spilling register values to memory. The 
st8.spill instruction stores a general register and the corresponding NaT bit (defined 
for 8-byte access only). This allows the result of a speculative calculation to be spilled 
to memory and restored. The stf.spill instruction stores a floating-point register in 
memory in the floating-point register format without conversion. This allows register 
spill and restore code to be written to be compatible with possible future extensions to 
the floating-point register format. The stf.spill instruction also does not fault if the 
register contains a NaTVal, and is defined for 16-byte access only. See “Register Spill 
and Fill” on page 1:62.

4.4.3 Semaphore Instructions

Semaphore instructions atomically load a general register from memory, perform an 
operation and then store a result to the same memory location. Semaphore instructions 
are always non-speculative. No base register update is provided.
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Three types of atomic semaphore operations are defined: exchange (xchg); compare 
and exchange (cmpxchg); and fetch and add (fetchadd).

The xchg target is loaded with the zero-extended contents of the memory location 
addressed by the first source and then the second source is stored into the same 
memory location.

The cmpxchg target is loaded with the zero-extended contents of the memory location 
addressed by the first source; if the zero-extended value is equal to the contents of the 
Compare and Exchange Compare Value application register (CCV), then the second 
source is stored into the same memory location. The cmp8xchg16 instruction loads the 
target with 8 bytes from the memory location addressed by the first source; if this 
value is equal to the contents of the CCV register, then the second source and the CSD 
register are both stored into memory at the 16-byte-aligned address which contains the 
memory location loaded.

The fetchadd instruction specifies one general register source, one general register 
target, and an immediate. The fetchadd target is loaded with the zero-extended 
contents of the memory location addressed by the source and then the immediate is 
added to the loaded value and the result is stored into the same memory location.

4.4.4 Control Speculation

Special mechanisms are provided to allow for compiler-directed speculation. This 
speculation takes two forms, control speculation and data speculation, with a separate 
mechanism to support each. See also “Data Speculation” on page 1:63.

4.4.4.1 Control Speculation Concepts

Control speculation describes the compiler optimization where an instruction or a 
sequence of instructions is executed before it is known that the dynamic control flow of 
the program will actually reach the point in the program where the sequence of 
instructions is needed. This is done with instruction sequences that have long execution 
latencies. Starting the execution early allows the compiler to overlap the execution with 
other work, increasing the parallelism and decreasing overall execution time. The 
compiler performs this optimization when it determines that it is very likely that the 
dynamic control flow of the program will eventually require this calculation. In cases 
where the control flow is such that the calculation turns out not to be needed, its results 
are simply discarded (the results in processor registers are simply not used).

Since the speculative instruction sequence may not be required by the program, no 
exceptions encountered that would be visible to the program can be signalled until it is 
determined that the program’s control flow does require the execution of this 
instruction sequence. For this reason, a mechanism is provided for recording the 
occurrence of an exception so that it can be signalled later if and when it is necessary. 
In such a situation, the exception is said to be deferred. When an exception is deferred 
by an instruction, a special token is written into the target register to indicate the 
existence of a deferred exception in the program.

Deferred exception tokens are represented differently in the general and floating-point 
register files. In general registers, an additional bit is defined for each register called 
the NaT bit (Not a Thing). Thus general registers are 65 bits wide. A NaT bit equal to 1 
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indicates that the register contains a deferred exception token, and that its 64-bit data 
portion contains an implementation-specific value that software cannot rely upon. In 
floating-point registers, a deferred exception is indicated by a specific pseudo-zero 
encoding called the NaTVal (see “Representation of Values in Floating-point Registers” 
on page 1:86 for details).

4.4.4.2 Control Speculation and Instructions

Instructions are divided into two categories: speculative (instructions which can be 
used speculatively) and non-speculative (instructions which cannot). Non-speculative 
instructions will raise exceptions if they occur and are therefore unsafe to schedule 
before they are known to be executed. Speculative instructions defer exceptions (they 
do not raise them) and are therefore safe to schedule before they are know to be 
executed.

Loads to general and floating-point registers have both non-speculative (ld, ldf, ldfp) 
and speculative (ld.s, ldf.s, ldfp.s) variants. Generally, all computation instructions 
which write their results to general or floating-point registers are speculative. Any 
instruction that modifies state other than a general or floating-point register is 
non-speculative, since there would be no way to represent the deferred exception 
(there are a few exceptions).

Deferred exception tokens propagate through the program in a dataflow manner. A 
speculative instruction that reads a register containing a deferred exception token will 
propagate a deferred exception token into its target. Thus a chain of instructions can be 
executed speculatively, and only the result register need be checked for a deferred 
exception token to determine whether any exceptions occurred.

At the point in the program when it is known that the result of a speculative calculation 
is needed, a speculation check (chk.s) instruction is used. This instruction tests for a 
deferred exception token. If none is found, then the speculative calculation was 
successful, and execution continues normally. If a deferred exception token is found, 
then the speculative calculation was unsuccessful and must be re-done. In this case, 
the chk.s instruction branches to a new address (specified by an immediate offset in 
the chk.s instruction). Software can use this mechanism to invoke code that contains a 
copy of the speculative calculation (but with non-speculative loads). Since it is now 
known that the calculation is required, any exceptions which now occur can be signalled 
and handled normally.

Since computational instructions do not generally cause exceptions, the only 
instructions which generate deferred exception tokens are speculative loads. (IEEE 
floating-point exceptions are handled specially through a set of alternate status fields. 
See “Floating-point Status Register” on page 1:88.) Other speculative instructions 
propagate deferred exception tokens, but do not generate them.

4.4.4.3 Control Speculation and Compares

As stated earlier, most instructions that write a register file other than the general 
registers or the floating-point registers are non-speculative. The compare (cmp, cmp4, 
fcmp), test bit (tbit), floating-point class (fclass), and floating-point approximation 
(frcpa, frsqrta) instructions are special cases. These instructions read general or 
floating-point registers and write one or two predicate registers.
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For these instructions, if any source contains a deferred exception token, all predicate 
targets are either cleared or left unchanged, depending on the compare type (see 
Table 4-10 on page 1:56). Software can use this behavior to ensure that any dependent 
conditional branches are not taken and any dependent predicated instructions are 
nullified. See “Predication” on page 1:54.

Deferred exception tokens can also be tested for with certain compare instructions. The 
test NaT (tnat) instruction tests the NaT bit corresponding to the specified general 
register and writes two predicate results. The floating-point class (fclass) instruction 
can be used to test for a NaTVal in a floating-point register and write the result to two 
predicate registers. fclass does not clear both predicate targets in the presence of a 
NaTVal input if NaTVal is one of the classes being tested for.

4.4.4.4 Control Speculation without Recovery

A non-speculative instruction that reads a register containing a deferred exception 
token will raise a Register NaT Consumption fault. Such instructions can be thought of 
as performing a non-recoverable speculation check operation. In some compilation 
environments, it may be true that the only exceptions that are deferred are fatal errors. 
In such a program, if the result of a speculative calculation is checked and a deferred 
exception token is found, execution of the program is terminated. For such a program, 
the results of speculative calculations can be checked simply by using non-speculative 
instructions.

4.4.4.5 Operating System Control over Exception Deferral

An additional mechanism is defined that allows the operating system to control the 
exception behavior of speculative loads. The operating system has the option to select 
which exceptions are deferred automatically in hardware and which exceptions will be 
handled (and possibly deferred) by software. See Section 5.5.5, “Deferral of 
Speculative Load Faults” on page 2:105.

4.4.4.6 Register Spill and Fill

Special store and load instructions are provided for spilling a register to memory and 
preserving any deferred exception token, and for restoring a spilled register.

The spill and fill general register instructions (st8.spill, ld8.fill) are defined to 
save/restore a general register along with the corresponding NaT bit.

The st8.spill instruction writes a general register’s NaT bit into the User NaT 
Collection application register (UNAT), and, if the NaT bit was 0, writes the register’s 
64-bit data portion to memory. If the register’s NaT bit was 1, the UNAT is updated, but 
the memory update is implementation specific. As stated in Section 4.4.4.1, “Control 
Speculation Concepts”, software cannot rely on the 64-bit data portion spilled to 
memory for a NaT'ed GR.  Although guidance is given here for processor 
implementations, other allowed implementation strategies may be added in the future, 
and software should not rely on the implementation guidance.

Processor implementations (hardware and firmware) must consistently follow one of 
two spill behaviors (but software should not count on implementations being limited to 
these behaviors):
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• The st8.spill may write a zero to the specified memory location, or

• The st8.spill may write the register’s 64-bit data portion to memory, only if that 
implementation returns a zero into the target register of all NaTed speculative 
loads, and that implementation also guarantees that all NaT propagating 
instructions perform all computations as specified by the instruction pages.

Bits 8:3 of the memory address determine which bit in the UNAT register is written.

The ld8.fill instruction loads a general register from memory taking the 
corresponding NaT bit from the bit in the UNAT register addressed by bits 8:3 of the 
memory address. The UNAT register must be saved and restored by software. It is the 
responsibility of software to ensure that the contents of the UNAT register are correct 
while executing st8.spill and ld8.fill instructions.

The floating-point spill and fill instructions (stf.spill, ldf.fill) are defined to 
save/restore a floating-point register (saved as 16 bytes) without surfacing an 
exception if the FR contains a NaTVal (these instructions do not affect the UNAT 
register).

The general and floating-point spill/fill instructions allow spilling/filling of registers that 
are targets of a speculative instruction and may therefore contain a deferred exception 
token. Note also that transfers between the general and floating-point register files 
cause a conversion between the two deferred exception token formats.

Table 4-14 lists the state relating to control speculation. Table 4-15 summarizes the 
instructions related to control speculation.

4.4.5 Data Speculation

Just as control speculative loads and checks allow the compiler to schedule instructions 
across control dependencies, data speculative loads and checks allow the compiler to 
schedule instructions across some types of ambiguous data dependencies. This section 
details the usage model and semantics of data speculation and related instructions.

Table 4-14. State Related to Control Speculation

Register Description

NaT bits 65th bit associated with each GR indicating a deferred exception

NaTVal Pseudo-Zero encoding for FR indicating a deferred exception

UNAT User NaT collection application register

Table 4-15. Instructions Related to Control Speculation

Mnemonic Operation

ld.s, ldf.s, ldfp.s GR and FR speculative loads

ld8.fill, ldf.fill Fill GR with NaT collection, fill FR

st8.spill, stf.spill Spill GR with NaT collection, spill FR

chk.s Test GR or FR for deferred exception token

tnat Test GR NaT bit and set predicate



1:64 Volume 1, Part 1: Application Programming Model

4.4.5.1 Data Speculation Concepts

An ambiguous memory dependency is said to exist between a store (or any operation 
that may update memory state) and a load when it cannot be statically determined 
whether the load and store might access overlapping regions of memory. For 
convenience, a store that cannot be statically disambiguated relative to a particular 
load is said to be ambiguous relative to that load. In such cases, the compiler cannot 
change the order in which the load and store instructions were originally specified in the 
program. To overcome this scheduling limitation, a special kind of load instruction 
called an advanced load can be scheduled to execute earlier than one or more stores 
that are ambiguous relative to that load.

As with control speculation, the compiler can also speculate operations that are 
dependent upon the advanced load and later insert a check instruction that will 
determine whether the speculation was successful or not. For data speculation, the 
check can be placed anywhere the original non-data speculative load could have been 
scheduled.

Thus, a data-speculative sequence of instructions consists of an advanced load, zero or 
more instructions dependent on the value of that load, and a check instruction. This 
means that any sequence of stores followed by a load can be transformed into an 
advanced load followed by a sequence of stores followed by a check. The decision to 
perform such a transformation is highly dependent upon the likelihood and cost of 
recovering from an unsuccessful data speculation.

4.4.5.2 Data Speculation and Instructions

Advanced loads are available in integer (ld.a), floating-point (ldf.a), and 
floating-point pair (ldfp.a) forms. When an advanced load is executed, it allocates an 
entry in a structure called the Advanced Load Address Table (ALAT). Later, when a 
corresponding check instruction is executed, the presence of an entry indicates that the 
data speculation succeeded; otherwise, the speculation failed and one of two kinds of 
compiler-generated recovery is performed:

1. The check load instruction (ld.c, ldf.c, or ldfp.c) is used for recovery when 
the only instruction scheduled before a store that is ambiguous relative to the 
advanced load is the advanced load itself. The check load searches the ALAT for a 
matching entry. If found, the speculation was successful; if a matching entry was 
not found, the speculation was unsuccessful and the check load reloads the 
correct value from memory. Figure 4-2 shows this transformation.

2. The advanced load check (chk.a) is used when an advanced load and several 
instructions that depend on the loaded value are scheduled before a store that is 
ambiguous relative to the advanced load. The advanced load check works like the 

Figure 4-2. Data Speculation Recovery Using ld.c

Before Data Speculation After Data Speculation

// Other instructions
st8 [r4] = r12
ld8 r6 = [r8];;
add r5 = r6, r7;;
st8 [r18] = r5

ld8.a r6 = [r8];; // Advanced load
// Other instructions
st8 [r4] = r12
ld8.c.clr r6 = [r8] // Check load
add r5 = r6, r7;;
st8 [r18] = r5
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speculation check (chk.s) in that, if the speculation was successful, execution 
continues inline and no recovery is necessary; if speculation was unsuccessful, 
the chk.a branches to compiler-generated recovery code. The recovery code 
contains instructions that will re-execute all the work that was dependent on the 
failed data speculative load up to the point of the check instruction. As with the 
check load, the success of a data speculation using an advanced load check is 
determined by searching the ALAT for a matching entry. This transformation is 
shown in Figure 4-3.

Recovery code may use either a normal or advanced load to obtain the correct value for 
the failed advanced load. An advanced load is used only when it is advantageous to 
have an ALAT entry reallocated after a failed speculation. The last instruction in the 
recovery code should branch to the instruction following the chk.a.

4.4.5.3 Detailed Functionality of the ALAT and Related Instructions

The ALAT is the structure that holds the state necessary for advanced loads and checks 
to operate correctly. The ALAT is searched in two different ways: by physical addresses 
and by ALAT register tags. An ALAT register tag is a unique number derived from the 
physical target register number and type in conjunction with other 
implementation-specific state. Implementation-specific state might include register 
stack wraparound information to distinguish one instance of a physical register that 
may have been spilled by the RSE from the current instance of that register, thus 
avoiding the need to purge the ALAT on all register stack wraparounds.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software can 
not rely on ALAT values being preserved across an instruction set transition. On entry to 
IA-32 instruction set, existing entries in the ALAT are ignored. 

4.4.5.3.1 Allocating and Checking ALAT Entries

Advanced loads perform the following actions:

1. The ALAT register tag for the advanced load is computed. (For ldfp.a, a tag is 
computed only for the first target register.)

2. If an entry with a matching ALAT register tag exists, it is removed.

Figure 4-3. Data Speculation Recovery Using chk.a

Before Data Speculation After Data Speculation

// Other instructions
st8 [r4] = r12
ld8 r6 = [r8];;
add r5 = r6, r7;;
st8 [r18] = r5

ld8.a r6 = [r8];;
// Other instructions
add r5 = r6, r7;;
// Other instructions
st8 [r4] = r12
chk.a.clr r6, recover

back:
st8 [r18] = r5

// Somewhere else in program
recover:
ld8 r6 = [r8];;
add r5 = r6, r7
br back
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3. A new entry is allocated in the ALAT which contains the new ALAT register tag, 
the load access size, and a tag derived from the physical memory address. The 
insertion of the new ALAT entry must occur no later in visibility order than the 
load of the data.

4. The value at the address specified in the advanced load is loaded into the target 
register and, if specified, the base register is updated and an implicit prefetch is 
performed.

Since the success of a check is determined by finding a matching register tag in the 
ALAT, both the chk.a and the target register of a ld.c must specify the same register 
as their corresponding advanced load. Additionally, the check load must use the same 
address and operand size as the corresponding advanced load; otherwise, the value 
written into the target register by the check load is undefined. 

An advanced load check performs the following actions:

1. It looks for a matching ALAT entry and if found, falls through to the next 
instruction.

2. If no matching entry is found, the chk.a branches to the specified address.

An implementation may choose to implement a failing advanced load check directly as a 
branch or as a fault where the fault-handler emulates the branch. Although the 
expected mode of operation is for an implementation to detect matching entries in the 
ALAT during checks, an implementation may fail a check instruction even when an entry 
with a matching ALAT register tag exists. This will be a rare occurrence but software 
must not assume that the ALAT does not contain the entry.

A check load checks for a matching entry in the ALAT. If no matching entry is found, it 
reloads the value from memory and any faults that occur during the memory reference 
are raised. When a matching entry is found, there is flexibility in the actions that a 
processor can perform:

1. The implementation may choose to either leave the target register unchanged or 
to reload the value from memory.

2. If the implementation chooses to leave the target register unchanged and one or 
more exception conditions related to the data access or translation of the check 
load occurs, the implementation may choose to either raise the highest-priority of 
these faults or ignore them all and continue execution. The faults that can be 
ignored are those related to data access and translation (Data Nested TLB fault, 
Alternate Data TLB fault, VHPT Data fault, Data TLB fault, Data Page Not Present 
fault, Data NaT Page Consumption fault, Data Key Miss fault, Data Key Permission 
fault, Data Access Rights fault, Data Dirty Bit fault, Data Access Bit fault, Data 
Debug fault, Unaligned Data Reference fault, Unsupported Data Reference fault). 
See Table 5-6, “Interruption Priorities” on page 2:109.

3. If the implementation chooses to perform a reload, then any faults that occur 
because of the reload can not be ignored.

4. If the size, type, or address fields in the matching ALAT entry do not match that 
provided by a check load, the value returned by the check load is undefined. In 
such cases the implementation may choose to raise a fault or when the “no clear” 
variant of the check load is issued, an implementation may choose to update the 
address, size, or type fields of the matching ALAT entry or to leave the entry 
unchanged. The update of the ALAT entry must occur no later in visibility order 
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than the load of the data.

If the check load was an ordered check load (ld.c.clr.acq), then it is performed with 
the semantics of an ordered load (ld.acq). ALAT register tag lookups by advanced load 
checks and check loads are subject to memory ordering constraints as outlined in 
“Memory Access Ordering” on page 1:73.

In addition to the flexibility described above, the size, organization, matching 
algorithm, and replacement algorithm of the ALAT are implementation dependent. 
Thus, the success or failure of specific advanced loads and checks in a program may 
change: when the program is run on different processor implementations, within the 
execution of a single program on the same implementation, or between different runs 
on the same implementation.

4.4.5.3.2 Invalidating ALAT Entries

In addition to entries removed by advanced loads, ALAT entry invalidations can occur 
implicitly by events that alter memory state or explicitly by any of the following 
instructions: ld.c.clr, ld.c.clr.acq, chk.a.clr, invala, invala.e. Events that may 
implicitly invalidate ALAT entries include those that change memory state or memory 
translation state such as:

1. The execution of stores, semaphores, or ptc.ga on other processors in the 
coherence domain.

2. The execution of store or semaphore instructions issued on the local processor.

3. Platform-visible removal of a cache line from the processor’s caches.

When one of these events occurs, hardware checks each memory region represented 
by an entry in the ALAT to see if it overlaps with the locations affected by the 
invalidation event. ALAT entries whose memory regions overlap with the invalidation 
event locations are removed. The invalidation of ALAT entries due to the execution of 
stores, semaphores or ptc.ga instructions must occur no later in visibility order than the 
store of the data or the TLB purge. Note that some invalidation events may require that 
multiple entries be removed from the ALAT. For example, the ptc.ga instruction is page 
aligned, thus a ptc.ga from another processor would require that hardware invalidate 
all ALAT entries related to that page. Stores due to RSE spills are not checked for ALAT 
invalidation and do not cause ALAT entries to be removed. See Section 6.9, “RSE and 
ALAT Interaction” on page 2:146. When an external agent can observe that the 
processor has removed a physical address range from its caches, then that address 
range is guaranteed to be invalidated from that processor’s ALAT as well. 

An implementation may invalidate entries over areas larger than explicitly required by a 
specific invalidation event, and more generally, to invalidate any ALAT entry at any 
time. For example, a st1 only accesses one byte, but an implementation could choose 
to invalidate all ALAT entries whose memory region is in the same cache line. An 
implementation may also provide an ALAT with zero entries (i.e., all ld.c/chk.a 
instructions would act as if an ALAT miss had occurred).

Software is responsible for explicitly invalidating all affected ALAT entries whenever:

1. Software explicitly changes the virtual to physical register mapping on rotating 
registers that have been the target of advanced loads (clrrrb).

2. Software changes the virtual to physical memory mapping.
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3. Software accesses the RSE backing store with advanced loads. See Section 6.9, 
“RSE and ALAT Interaction” on page 2:146 (since RSE stores do not invalidate 
ALAT entries).

4. Software explicitly changes the virtual to physical register mapping on stacked 
registers by switching the RSE backing stores. See Section 6.11.3, “Synchronous 
Backing Store Switch” on page 2:148.

4.4.5.4 Combining Control and Data Speculation

Control speculation and data speculation are not mutually exclusive; a given load may 
be both control and data speculative. Both control speculative (ld.sa, ldf.sa, 
ldfp.sa) and non-control speculative (ld.a, ldf.a, ldfp.a) variants of advanced 
loads are defined for general and floating-point registers. If a speculative advanced 
load generates a deferred exception token then:

1. Any existing ALAT entry with the same ALAT register tag is invalidated.

2. No new ALAT entry is allocated.

3. If the target of the load was a general-purpose register, its NaT bit is set.

4. If the target of the load was a floating-point register, then NaTVal is written to the 
target register.

If a speculative advanced load does not generate a deferred exception, then its 
behavior is the same as the corresponding non-control speculative advanced load. 

Since there can be no matching entry in the ALAT after a deferred fault, a single 
advanced load check or check load is sufficient to check both for data speculation 
failures and to detect deferred exceptions.

4.4.5.5 Instruction Completers for ALAT Management

To help the compiler manage the allocation and deallocation of ALAT entries, two 
variants of advanced load checks and check loads are provided: variants with clear 
(chk.a.clr, ld.c.clr, ld.c.clr.acq, ldf.c.clr, ldfp.c.clr) and variants with no 
clear (chk.a.nc, ld.c.nc, ldf.c.nc, ldfp.c.nc). 

The clear variants are used when the compiler knows that the ALAT entry will not be 
used again and wants the entry explicitly removed. This allows software to indicate 
when entries are unneeded, making it less likely that a useful entry will be 
unnecessarily forced out because all entries are currently allocated.

For the clear variants of check load, any ALAT entry with the same ALAT register tag is 
invalidated independently of whether the address or size fields of the check load and 
the corresponding advanced load match. For chk.a.clr, the entry is guaranteed to be 
invalidated only when the instruction falls through (the recovery code is not executed). 
Thus, a failing chk.a.clr may or may not clear any matching ALAT entries. In such 
cases, the recovery code must explicitly invalidate the entry in question if program 
correctness depends on the entry being absent after a failed chk.a.clr.

Non-clear variants of both kinds of data speculation checks act as a hint to the 
processor that an existing entry should be maintained in the ALAT or that a new entry 
should be allocated when a matching ALAT entry doesn’t exist. Such variants can be 
used within loops to check advanced loads which were presumed loop-invariant and 
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moved out of the loop by the compiler. This behavior ensures that if the check load fails 
on one iteration, then the check load will not necessarily fail on all subsequent 
iterations. Whenever a new entry is inserted into the ALAT or when the contents of an 
entry are updated, the information written into the ALAT only uses information from the 
check load and does not use any residual information from a prior entry. The non-clear 
variant of chk.a, chk.a.nc, does not allocate entries and the ‘nc’ completer acts as a 
hint to the processor that the entry should not be cleared.

Table 4-16 and Table 4-17 summarize state and instructions relating to data 
speculation.

4.4.6 Memory Hierarchy Control and Consistency

4.4.6.1 Hierarchy Control and Hints

Memory access instructions are defined to specify whether the data being accessed 
possesses temporal locality. In addition, memory access instructions can specify which 
levels of the memory hierarchy are affected by the access. This leads to an architectural 
view of the memory hierarchy depicted in Figure 4-1 composed of zero or more levels 
of cache between the register files and memory where each level may consist of two 
parallel structures: a temporal structure and a non-temporal structure. Note that this 
view applies to data accesses and not instruction accesses.

Table 4-16. State Relating to Data Speculation

Structure Function

ALAT Advanced load address table

Table 4-17. Instructions Relating to Data Speculation

Mnemonic Operation

ld.a, ldf.a, ldfp.a GR and FR advanced load

st, st.rel, st.spill, stf, stf.spill GR and FR store

cmpxchg, fetchadd, xchg GR semaphore

ld.c.clr, ld.c.clr.acq, ldf.c.clr, 
ldfp.c.clr

GR and FR check load, clear on ALAT hit

ld.c.nc, ldf.c.nc, ldfp.c.nc GR and FR check load, re-allocate on ALAT miss

ld.sa, ldf.sa, ldfp.sa GR and FR speculative advanced load

chk.a.clr, chk.a.nc GR and FR advanced load check

invala Invalidate all ALAT entries

invala.e Invalidate individual ALAT entry for GR or FR
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The temporal structures cache memory accessed with temporal locality; the 
non-temporal structures cache memory accessed without temporal locality. Both 
structures assume that memory accesses possess spatial locality. The existence of 
separate temporal and non-temporal structures, as well as the number of levels of 
cache, is implementation dependent. Please see the processor-specific documentation 
for further information.

Three mechanisms are defined for allocation control: locality hints; explicit prefetch; 
and implicit prefetch. Locality hints are specified by load, store, and explicit prefetch 
(lfetch) instructions. A locality hint specifies a hierarchy level (e.g., 1, 2, all). An 
access that is temporal with respect to a given hierarchy level is treated as temporal 
with respect to all lower (higher numbered) levels. An access that is non-temporal with 
respect to a given hierarchy level is treated as temporal with respect to all lower levels. 
Finding a cache line closer in the hierarchy than specified in the hint does not demote 
the line. This enables the precise management of lines using lfetch and then 
subsequent uses by.nta loads and stores to retain that level in the hierarchy. For 
example, specifying the.nt2 hint by a prefetch indicates that the data should be cached 
at level 3. Subsequent loads and stores can specify.nta and have the data remain at 
level 3.

Locality hints do not affect the functional behavior of the program and may be ignored 
by the implementation. The locality hints available to loads, stores, and explicit prefetch 
instructions are given in Table 4-18. Instruction accesses are considered to possess 
both temporal and spatial locality with respect to level 1.

Figure 4-1. Memory Hierarchy

Table 4-18. Locality Hints Specified by Each Instruction Class

Mnemonic Locality Hint

Instruction Type

Load Store
lfetch, 

lfetch.fault

none Temporal, level 1 x x x

nt1 Non-temporal, level 1 x x

nt2 Non-temporal, level 2 x

nta Non-temporal, all levels x x x
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Temporal
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temporal
Structure

Memory
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Files

Structure
Temporal
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Structure

Structure
Temporal

Non-
temporal
Structure

Level 1 Level 2 Level N

Cache
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Each locality hint implies a particular allocation path in the memory hierarchy. The 
allocation paths corresponding to the locality hints are depicted in Figure 4-2. The 
allocation path specifies the structures in which the line containing the data being 
referenced would best be allocated. If the line is already at the same or higher level in 
the hierarchy no movement occurs. Hinting that a datum should be cached in a 
temporal structure indicates that it is likely to be read in the near future. Hinting that a 
datum should not be cached in a temporal structure indicates that it is not likely to be 
read in the near future.  For stores, the .nta completer also hints that the store may be 
part of a set of streaming stores that would likely overwrite the entire cache line 
without any data in that line first being read, enabling the processor to avoid fetching 
the data.

Explicit prefetch is defined in the form of the line prefetch instruction (lfetch, 
lfetch.fault). The lfetch instructions moves the line containing the addressed byte to 
a location in the memory hierarchy specified by the locality hint. If the line is already at 
the same or higher level in the hierarchy, no movement occurs. Both immediate and 
register post-increment are defined for lfetch and lfetch.fault. The lfetch 
instruction does not cause any exceptions, does not affect program behavior, and may 
be ignored by the implementation. The lfetch.fault instruction affects the memory 
hierarchy in exactly the same way as lfetch but takes exceptions as if it were a 1-byte 
load instruction.

Implicit prefetch is based on the address post-increment of loads, stores, lfetch and 
lfetch.fault. The line containing the post-incremented address is moved in the 
memory hierarchy based on the locality hint of the originating load, store, lfetch or 
lfetch.fault. If the line is already at the same or higher level in the hierarchy then no 
movement occurs. Implicit prefetch does not cause any exceptions, does not affect 
program behavior, and may be ignored by the implementation.

Another form of hint that can be provided on loads is the ld.bias load type. This is a 
hint to the implementation to acquire exclusive ownership of the line containing the 
addressed data. The bias hint does not affect program functionality and may be ignored 
by the implementation.

Figure 4-2. Allocation Paths Supported in the Memory Hierarchy
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The following instructions are defined for flush control: flush cache (fc, fc.i) and flush 
write buffers (fwb). The fc instruction invalidates the cache line in all levels of the 
memory hierarchy above memory. If the cache line is not consistent with memory, then 
it is copied into memory before invalidation. The fc.i instruction ensures the data 
cache line associated with an address is coherent with the instruction caches.  The fc.i 
instruction is not required to invalidate the targeted cache line nor write the targeted 
cache line back to memory if it is inconsistent with memory, but may do so if this is 
required to make the targeted cache line coherent with the instruction caches. The fwb 
instruction provides a hint to flush all pending buffered writes to memory (no indication 
of completion occurs).

Table 4-19 summarizes the memory hierarchy control instructions and hint 
mechanisms.

4.4.6.2 Memory Consistency

In the Itanium architecture, instruction accesses made by a processor are not coherent 
with respect to instruction and/or data accesses made by any other processor, nor are 
instruction accesses made by a processor coherent with respect to data accesses made 
by that same processor. Therefore, hardware is not required to keep a processor’s 
instruction caches consistent with respect to any processor’s data caches, including that 
processor’s own data caches; nor is hardware required to keep a processor’s instruction 
caches consistent with respect to any other processor’s instruction caches. Data 
accesses from different processors in the same coherence domain are coherent with 
respect to each other; this consistency is provided by the hardware. Data accesses 
from the same processor are subject to data dependency rules; see “Memory Access 
Ordering” below. 

The mechanism(s) by which coherence is maintained is implementation dependent. 
Separate or unified structures for caching data and instructions are not architecturally 
visible. Within this context there are two categories of data memory hierarchy control: 
allocation and flush. Allocation refers to movement towards the processor in the 
hierarchy (lower numbered levels) and flush refers to movement away from the 
processor in the hierarchy (higher numbered levels). Allocation and flush occur in 
line-sized units; the minimum architecturally visible line size is 32 bytes (aligned on a 
32-byte boundary). The line size in an implementation may be smaller in which case 
the implementation will need to move multiple lines for each allocation and flush event. 
An implementation may allocate and flush in units larger than 32 bytes.

In order to guarantee that a write from a given processor becomes visible to the 
instruction stream of that same, and other, processors, the affected line(s) must be 
made coherent with instruction caches. Software may use the fc.i instruction for this 

Table 4-19. Memory Hierarchy Control Instructions and Hint Mechanisms

Mnemonic Operation

.nt1 and.nta completer on loads Load usage hints

.nta completer on stores Store usage hints

Prefetch line at post-increment address on loads and stores Prefetch hint

lfetch, lfetch.fault with.nt1,.nt2, and.nta hints Prefetch line

fc, fc.i Flush cache

fwb Flush write buffers
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purpose. Memory updates by DMA devices are coherent with respect to instruction and 
data accesses of processors. The consistency between instruction and data caches of 
processors with respect to memory updates by DMA devices is provided by the 
hardware. In case a program modifies its own instructions, the sync.i and srlz.i 
instructions are used to ensure that prior coherency actions are observed by a given 
point in the program. Refer to the description sync.i on page 3:259 in Volume 3: 
Intel® Itanium® Instruction Set Reference for an example of self-modifying code.

4.4.7 Memory Access Ordering

Memory data access ordering must satisfy read-after-write (RAW), write-after-write 
(WAW), and write-after-read (WAR) data dependencies to the same memory location. 
In addition, memory writes and flushes must observe control dependencies. Except for 
these restrictions, reads, writes, and flushes may occur in an order different from the 
specified program order. Note that no ordering exists between instruction accesses and 
data accesses or between any two instruction accesses. The mechanisms described 
below are defined to enforce a particular memory access order. In the following 
discussion, the terms “previous” and “subsequent” are used to refer to the program 
specified order. The term “visible” is used to refer to all architecturally visible effects of 
performing a memory access (at a minimum this involves reading or writing memory).

Memory accesses follow one of four memory ordering semantics: unordered, release, 
acquire or fence. Unordered data accesses may become visible in any order. Release 
data accesses guarantee that all previous data accesses are made visible prior to being 
made visible themselves. Acquire data accesses guarantee that they are made visible 
prior to all subsequent data accesses. Fence operations combine the release and 
acquire semantics into a bi-directional fence, i.e., they guarantee that all previous data 
accesses are made visible prior to any subsequent data accesses being made visible. 

Explicit memory ordering takes the form of a set of instructions: ordered load and 
ordered check load (ld.acq, ld.c.clr.acq), ordered store (st.rel), semaphores 
(cmpxchg, xchg, fetchadd), and memory fence (mf). The ld.acq and ld.c.clr.acq 
instructions follow acquire semantics. The st.rel follows release semantics. The mf 
instruction is a fence operation. The xchg, fetchadd.acq, and cmpxchg.acq 
instructions have acquire semantics. The cmpxchg.rel, and fetchadd.rel instructions 
have release semantics. The semaphore instructions also have implicit ordering. If 
there is a write, it will always follow the read. In addition, the read and write will be 
performed atomically with no intervening accesses to the same memory region.

Table 4-20 illustrates the ordering interactions between memory accesses with different 
ordering semantics. “O” indicates that the first and second reference are performed in 
order with respect to each other. A “-” indicates that no ordering is implied other than 
data dependencies (and control dependencies for writes and flushes).

Table 4-20. Memory Ordering Rules

First Reference
Second Reference

Fence Acquire Release Unordered

 fence O O O O

acquire O O O O

release O – O –

unordered O – O –
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Table 4-21 summarizes memory ordering instructions related to cacheable memory. For 
definitions of the ordering rules related to non-cacheable memory, cache 
synchronization, and privileged instructions, refer to Section 4.4.7, “Sequentiality 
Attribute and Ordering” on page 2:82.

4.5 Branch Instructions

Branch instructions effect a transfer of control flow to a new address. Branch targets 
are bundle-aligned, which means control is always passed to the first instruction slot of 
the target bundle (slot 0). Branch instructions are not required to be the last instruction 
in an instruction group. In fact, an instruction group can contain arbitrarily many 
branches (provided that the normal RAW and WAW dependency requirements are met). 
If a branch is taken, only instructions up to the taken branch will be executed. After a 
taken branch, the next instruction executed will be at the target of the branch. 

There are three categories of branches: IP-relative branches, long branches, and 
indirect branches. IP-relative branches specify their target with a signed 21-bit 
displacement, which is added to the IP of the bundle containing the branch to give the 
address of the target bundle. The displacement allows a branch reach of 16MBytes. 
Long branches are IP-relative with a 60-bit displacement, allowing the target to be 
anywhere in the 64-bit address space. Because of the long immediate, long branches 
occupy two instruction slots. Indirect branches use the branch registers to specify the 
target address. 

There are several branch types, as shown in Table 4-22. The conditional branch 
br.cond or br is a branch which is taken if the specified predicate is 1, and not-taken 
otherwise. The conditional call branch br.call does the same thing, and in addition, 
writes a link address to a specified branch register and adjusts the general register 
stack (see “Register Stack” on page 1:47). The conditional return br.ret does the 
same thing as an indirect conditional branch, plus it adjusts the general register stack. 
Unconditional branches, calls and returns are executed by specifying PR 0 (which is 
always 1) as the predicate for the branch instruction. The long branches, brl.cond or 
brl, and brl.call are identical to br.cond or br, and br.call, respectively, except for 
their longer displacement. 

Table 4-21. Memory Ordering Instructions

Mnemonic Operation

ld.acq, ld.c.clr.acq Ordered load and ordered check load

st.rel Ordered store

xchg Exchange memory and general register

cmpxchg.acq, cmpxchg.rel Conditional exchange of memory and general register

fetchadd.acq,fetchadd.rel Add immediate to memory

mf Memory ordering fence

Table 4-22. Branch Types

Mnemonic Function Branch Condition Target Address

br.cond or br Conditional branch Qualifying predicate IP-rel or Indirect

br.call Conditional procedure call Qualifying predicate IP-rel or Indirect

br.ret Conditional procedure return Qualifying predicate Indirect
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The counted loop type (br.cloop) uses the Loop Count (LC) application register. If LC is 
non-zero then it is decremented and the branch is taken. If LC is zero, the branch falls 
through. The modulo-scheduled loop type branches (br.ctop, br.cexit, br.wtop, 
br.wexit) are described in “Modulo-scheduled Loop Support” on page 1:75. The loop 
type branches (br.cloop, br.ctop, br.cexit, br.wtop, br.wexit) are allowed only in 
slot 2 of a bundle. A loop type branch executed in slot 0 or 1 will cause an Illegal 
Operation fault.

Instructions are provided to move data between branch registers and general registers 
(mov =br, mov br=). Table 4-23 and Table 4-24 summarize state and instructions 
relating to branching.

4.5.1 Modulo-scheduled Loop Support

Support for software-pipelined loops is provided through rotating registers and loop 
branch types. Software pipelining of a loop is analogous to hardware pipelining of a 
functional unit. The loop body is partitioned into multiple “stages” with zero or more 
instructions in each stage. Modulo-scheduled loops have three phases: prolog, kernel, 
and epilog. During the prolog phase, new loop iterations are started each time around 
(filling the software pipeline). During the kernel phase, the pipeline is full. A new loop 

br.ia Invoke the IA-32 instruction set Unconditional Indirect

br.cloop Counted loop branch Loop count IP-rel

br.ctop, br.cexit Modulo-scheduled counted loop Loop count and Epilog 
count

IP-rel

br.wtop, br.wexit Modulo-scheduled while loop Qualifying predicate 
and Epilog count

IP-rel

brl.cond or brl Long conditional branch Qualifying predicate IP-rel

brl.call Long conditional procedure call Qualifying predicate IP-rel

Table 4-23. State Relating to Branching

Register Function

BRs Branch registers

PRs Predicate registers

CFM Current Frame Marker

PFS Previous Function State application register

LC Loop Count application register

EC Epilog Count application register

Table 4-24. Instructions Relating to Branching

Mnemonic Operation

br Branch

brl Long branch

brp Provide early hint information about a future branch

mov =br Move from BR to GR

mov br= Move from GR to BR

Table 4-22. Branch Types (Continued)

Mnemonic Function Branch Condition Target Address
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iteration is started, and another is finished each time around. During the epilog phase, 
no new iterations are started, but previous iterations are completed (draining the 
software pipeline).

A predicate is assigned to each stage to control the activation of the instructions in that 
stage (this predicate is called the “stage predicate”). To support the pipelining effect of 
stage predicates and registers in a software-pipelined loop, a fixed sized area of the 
predicate and floating-point register files (PR16-PR63 and FR32-FR127), and a 
programmable sized area of the general register file, are defined to “rotate.” The size of 
the rotating area in the general register file is determined by an immediate in the alloc 
instruction. This immediate must be either zero or a multiple of 8. The general register 
rotating area is defined to start at GR32 and overlay the local and output areas, 
depending on their relative sizes. The stage predicates are allocated in the rotating area 
of the predicate register file. For counted loops, PR16 is architecturally defined to be the 
first stage predicate with subsequent stage predicates extending to higher predicate 
register numbers. For while loops, the first stage predicate may be any rotating 
predicate with subsequent stage predicates extending to higher predicate register 
numbers. Software is required to initialize the stage (rotating) predicates prior to 
entering the loop. An alloc instruction may not change the size of the rotating portion of 
the register stack frame unless all rotating register bases (rrb’s) in the CFM are zero. All 
rrb’s can be set to zero with the clrrrb instruction. The clrrrb.pr form can be used to 
clear just the rrb for the predicate registers. The clrrrb instruction must be the last 
instruction in an instruction group.

Rotation by one register position occurs when a software-pipelined loop type branch is 
executed. Registers are rotated towards larger register numbers in a wraparound 
fashion. For example, the value in register X will be located in register X+1 after one 
rotation. If X is the highest addressed rotating register its value will wrap to the lowest 
addressed rotating register. Rotation is implemented by renaming register numbers 
based on the value of a rotating register base (rrb) contained in CFM. An independent 
rrb is defined for each of the three rotating register files: CFM.rrb.gr for the general 
registers, CFM.rrb.fr for the floating-point registers, and CFM.rrb.pr for the predicate 
registers. General registers only rotate when the size of the rotating region is not equal 
to zero. Floating-point and predicate registers always rotate. When rotation occurs, two 
or all three rrb’s are decremented in unison. Each rrb is decremented modulo the size of 
their respective rotating regions (e.g., 96 for rrb.fr). The operation of the rotating 
register rename mechanism is not otherwise visible to software. The instructions that 
modify the rrb’s are listed in Table 4-25.

Table 4-25. Instructions that Modify RRBs

Mnemonic Operation

clrrrb Clears all rrb’s

clrrrb.pr Clears rrb.pr

br.call, brl.call Clears all rrb’s

cover Clears all rrb’s

br.ret Restores CFM.rrb’s from PFM.rrb’s

rfi Restores CFM.rrb’s from IFM.rrb’s if IFM.v==1

br.ctop, br.cexit,
br.wtop, and br.wexit

Decrements all rrb’s
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There are two categories of software-pipelined loop branch types: counted and while. 
Both categories have two forms: top and exit. The “top” variant is used when the loop 
decision is located at the bottom of the loop body. A taken branch will continue the loop 
while a not-taken branch will exit the loop. The “exit” variant is used when the loop 
decision is located somewhere other than the bottom of the loop. A not-taken branch 
will continue the loop and a taken branch will exit the loop. The “exit” variant is also 
used at intermediate points in an unrolled pipelined loop.

The branch condition of a counted loop branch is determined by the specific counted 
loop type (ctop or cexit), the value of the loop count application register (LC), and the 
value of the epilog count application register (EC). Note that the counted loop branches 
do not use a qualifying predicate. LC is initialized to one less than the number of 
iterations for the counted loop and EC is initialized to the number of stages into which 
the loop body has been partitioned. While LC is greater than zero, the branch direction 
will continue the loop, LC will be decremented, registers will be rotated (rrb’s are 
decremented), and PR 16 will be set to 1 after rotation. (For each of the loop-type 
branches, PR 63 is written by the branch, and after rotation this value will be in PR 16.)

Execution of a counted loop branch with LC equal to zero signals the start of the epilog. 
While in the epilog and while EC is greater than one, the branch direction will continue 
the loop, EC will be decremented, registers will be rotated, and PR 16 will be set to 0 
after rotation. Execution of a counted loop branch with LC equal to zero and EC equal to 
one signals the end of the loop; the branch direction will exit the loop, EC will be 
decremented, registers will be rotated, and PR 16 will be set to 0 after rotation. A 
counted loop type branch executed with both LC and EC equal to zero will have a 
branch direction to exit the loop. LC, EC, and the rrb’s will not be modified (no rotation) 
and PR 63 will be set to 0. LC and EC equal to zero can occur in some types of 
optimized, unrolled software-pipelined loops if the target of a cexit branch is set to the 
next sequential bundle and the loop trip count is not evenly divisible by the unroll 
amount.

The direction of a while loop branch is determined by the specific while loop type (wtop 
or wexit), the value of the qualifying predicate, and the value of EC. The while loop 
branches do not use LC. While the qualifying predicate is one, the branch direction will 
continue the loop, registers will be rotated, and PR 16 will be set to 0 after rotation. 
While the qualifying predicate is zero and EC is greater than one, the branch direction 
will continue the loop, EC will be decremented, registers will be rotated, and PR 16 will 
be set to 0 after rotation. The qualifying predicate is one during the kernel and zero 
during the epilog. During the prolog, the qualifying predicate may be zero or one 
depending upon the scheme used to program the pipelined while loop. Execution of a 
while loop branch with qualifying predicate equal to zero and EC equal to one signals 
the end of the loop; the branch direction will exit the loop, EC will be decremented, 
registers will be rotated, and PR 16 will be set to 0 after rotation. A while loop branch 
executed with a zero qualifying predicate and with EC equal to zero has a branch 
direction to exit the loop. EC and the rrb’s will not be modified (no rotation) and PR 63 
will be set to 0.

For while loops, the initialization of EC depends upon the scheme used to program the 
pipelined while loop. Often, the first valid condition for the while loop branch is not 
computed until several stages into the prolog. Therefore, software pipelines for while 
loops often have several speculative prolog stages. During these stages, the qualifying 
predicate can be set to zero or one depending upon the scheme used to program the 
loop. If the qualifying predicate is one throughout the prolog, EC will be decremented 
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only during the epilog phase and is initialized to one more than the number of epilog 
stages. If the qualifying predicate is zero during the speculative stages of the prolog, 
EC will be decremented during this part of the prolog, and the initialization value for EC 
is increased accordingly.

4.5.2 Branch Prediction Hints

Information about branch behavior can be provided to the processor to improve branch 
prediction. This information can be encoded in two ways: with branch hints as part of a 
branch instruction (referred to as hints), and with separate Branch Predict instructions 
(brp) where the entire instruction is hint information. Hints and brp instructions do not 
affect the functional behavior of the program and may be ignored by the processor.

Branch instructions can provide three types of hints:

• Whether prediction strategy: This describes (for COND, CALL and RET type 
branches) how the processor should predict the branch condition. (For the loop type 
branches, prediction is based on LC and EC.) The suggested strategies that can be 
hinted are shown in Table 4-26. 

• Sequential prefetch: This indicates how much code the processor should prefetch 
at the branch target (shown in Table 4-27). Please see the processor-specific 
documentation for further information.

• Predictor deallocation: This provides re-use information to allow the hardware to 
better manage branch prediction resources. Normally, prediction resources keep 
track of the most-recently executed branches. However, sometimes the 
most-recently executed branch is not useful to remember, either because it will not 
be re-visited any time soon or because a hint instruction will re-supply the 
information prior to re-visiting the branch. In such cases, this hint can be used to 
free up the prediction resources.

Table 4-26. Whether Prediction Hint on Branches

Completer Strategy Operation

spnt Static Not-Taken Ignore this branch, do not allocate prediction resources for this 
branch.

sptk Static Taken Always predict taken, do not allocate prediction resources for 
this branch.

dpnt Dynamic Not-Taken Use dynamic prediction hardware. If no dynamic history 
information exists for this branch, predict not-taken.

dptk Dynamic Taken Use dynamic prediction hardware. If no dynamic history 
information exists for this branch, predict taken.

Table 4-27. Sequential Prefetch Hint on Branches

Completer
Sequential Prefetch 

Hint
Operation

few Prefetch few lines When prefetching code at the branch target, stop prefetching 
after a few (implementation-dependent number of) lines.

many Prefetch many lines When prefetching code at the branch target, prefetch more 
lines (also an implementation-dependent number).
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4.5.3 Branch Predict Instructions

Branch predict instructions are entire instructions whose only purpose is to provide 
early information about future branches. Branch predict instructions provide the 
following pieces of information:

• Location of the branch: A displacement in the brp instruction added to the IP of 
the bundle containing the brp instruction gives the IP of the bundle containing the 
future branch.

• Target of the branch: IP-relative brp instructions specify the target of the future 
branch with a 21-bit displacement (just like in branches). The displacement plus 
the IP of the bundle containing the brp instruction gives the target address. 
Indirect brp instructions specify the branch register which will be used by the future 
branch.

• Branch importance: This hint indicates to hardware that it should employ a very 
fast (but small) prediction structure for this branch (useful on tight loops).

• Whether prediction strategy: Same as the strategy hint on branches, except 
that the available hints are slightly different. Static not-taken is not provided (it’s 
not useful to provide early indication of such branches), and only one form of 
Dynamic prediction is provided. Instead, two strategies are included to indicate that 
the branch will be a “positive” (CLOOP, CTOP, WTOP) or “negative” (CEXIT, WEXIT) 
loop-type.

The move to branch register instruction can also provide this same hint information, 
simplifying the setup for a hinted indirect branch.

4.6 Multimedia Instructions

Multimedia instructions (see Table 4-29) treat the general registers as concatenations 
of eight 8-bit, four 16-bit, or two 32-bit elements. They operate on each element 
independently and in parallel. The elements are always aligned on their natural 
boundaries within a general register. Most multimedia instructions are defined to 
operate on multiple element sizes. Three classes of multimedia instructions are defined: 
arithmetic, shift and data arrangement.

4.6.1 Parallel Arithmetic

There are three forms of parallel addition and subtraction: modulo (padd, psub), signed 
saturation (padd.sss, psub.sss), and unsigned saturation (padd.uuu, padd.uus, 
psub.uuu, psub.uus). The modulo forms have the result wraparound the largest or 
smallest representable value in the range of the result element. In the saturating 
forms, results larger than the largest representable value of the range of the result 
element, or smaller than the smallest representable value of the range, are clamped to 
the largest or smallest value in the range of the result element respectively. The signed 

Table 4-28. Predictor Deallocation Hint

Completer Operation

none Don’t deallocate

clr Deallocate branch information
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saturation form treats both sources as signed and clamps the result to the limits of a 
signed range. The unsigned saturation form treats one source as unsigned and clamps 
the result to the limits of an unsigned range. Two variants are defined that treat the 
second source as either signed (.uus) or unsigned (.uuu).

The parallel average instruction (pavg, pavg.raz) adds corresponding elements from 
each source and right shifts each result by one bit. In the simple form of the 
instruction, the carry out of the most-significant bit of each sum is written into the most 
significant bit of the result element. In the round-away-from-zero form, a 1 is added to 
each sum before shifting. The parallel average subtract instruction (pavgsub) performs 
a similar operation on the difference of the sources.

The parallel shift left and add instruction (pshladd) performs a left shift on the 
elements of the first source and then adds them to the corresponding elements from 
the second source. Signed saturation is performed on both the shift and the add 
operations. The parallel shift right and add instruction (pshradd) is similar to pshladd. 
Both of these instructions are defined for 2-byte elements only.

The parallel compare instruction (pcmp) compares the corresponding elements of both 
sources and writes all ones (if true) or all zeroes (if false) into the corresponding 
elements of the target according to one of two relations (== or >).

The parallel multiply right instruction (pmpy.r) multiplies the corresponding two 
even-numbered signed 2-byte elements of both sources and writes the results into two 
4-byte elements in the target. The pmpy.l instruction performs a similar operation on 
odd-numbered 2-byte elements. The parallel multiply and shift right instruction 
(pmpyshr, pmpyshr.u) multiplies the corresponding 2-byte elements of both sources 
producing four 4-byte results. The 4-byte results are shifted right by 0, 7, 15, or 16 bits 
as specified by the instruction. The least-significant 2 bytes of the 4-byte shifted results 
are then stored in the target register.

The parallel sum of absolute difference instruction (psad) accumulates the absolute 
difference of corresponding 1-byte elements and writes the result in the target.

The parallel minimum (pmin.u, pmin) and the parallel maximum (pmax.u, pmax) 
instructions deliver the minimum or maximum, respectively, of the corresponding 
1-byte or 2-byte elements in the target. The 1-byte elements are treated as unsigned 
values and the 2-byte elements are treated as signed values.

Table 4-29. Parallel Arithmetic Instructions

Mnemonic Operation 1-byte 2-byte 4-byte

padd Parallel modulo addition x x x

padd.sss Parallel addition with signed saturation x x

padd.uuu,
padd.uus

Parallel addition with unsigned saturation x x

psub Parallel modulo subtraction x x x

psub.sss Parallel subtraction with signed saturation x x

psub.uuu,
psub.uus

Parallel subtraction with unsigned saturation x x

pavg Parallel arithmetic average x x

pavg.raz Parallel arithmetic average with round away from zero x x

pavgsub Parallel average of a difference x x
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4.6.2 Parallel Shifts

The parallel shift left instruction (pshl) individually shifts each element of the first 
source by a count contained in either a general register or an immediate. The parallel 
shift right instruction (pshr) performs an individual arithmetic right shift of each 
element of one source by a count contained in either a general register or an 
immediate. The pshr.u instruction performs an unsigned right shift. Table 4-30 
summarizes the types of parallel shift instructions.

4.6.3 Data Arrangement

The mix right instruction (mix.r) interleaves the even-numbered elements from both 
sources into the target. The mix left instruction (mix.l) interleaves the odd-numbered 
elements. The unpack low instruction (unpack.l) interleaves the elements in the 
least-significant 4 bytes of each source into the target register. The unpack high 
instruction (unpack.h) interleaves elements from the most significant 4 bytes. The pack 
instructions (pack.sss, pack.uss) convert from 32-bit or 16-bit elements to 16-bit or 
8-bit elements respectively. The least-significant half of larger elements in both sources 
are extracted and written into smaller elements in the target register. The pack.sss 
instruction treats the extracted elements as signed values and performs signed 
saturation on them. The pack.uss instruction performs unsigned saturation. The mux 
instruction (mux) copies individual 2-byte or 1-byte elements in the source to arbitrary 
positions in the target according to a specified function. For 2-byte elements, an 8-bit 
immediate allows all possible permutations to be specified. For 1-byte elements the 
copy function is selected from one of five possibilities (reverse, mix, shuffle, alternate, 
broadcast). Table 4-31 describes the various types of parallel data arrangement 
instructions.

pshladd Parallel shift left and add with signed saturation x

pshradd Parallel shift right and add with signed saturation x

pcmp Parallel compare x x x

pmpy.l Parallel signed multiply of odd elements x

pmpy.r Parallel signed multiply of even elements x

pmpyshr Parallel signed multiply and shift right x

pmpyshr.u Parallel unsigned multiply and shift right x

psad Parallel sum of absolute difference x

pmin Parallel minimum x x

pmax Parallel maximum x x

Table 4-30. Parallel Shift Instructions

Mnemonic Operation 1-byte 2-byte 4-byte

pshl Parallel shift left x x

pshr Parallel signed shift right x x

pshr.u Parallel unsigned shift right x x

Table 4-29. Parallel Arithmetic Instructions (Continued)

Mnemonic Operation 1-byte 2-byte 4-byte
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4.7 Register File Transfers

Table 4-32 shows the instructions defined to move values between the general register 
file and the floating-point, branch, predicate, performance monitor, processor 
identification, and application register files. Several of the transfer instructions share 
the same mnemonic (mov). The value of the operand identifies which register file is 
accessed.

Memory access instructions only target or source the general and floating-point register 
files. It is necessary to use the general register file as an intermediary for transfers 
between memory and all other register files except the floating-point register file.

Two classes of move are defined between the general registers and the floating-point 
registers. The first type moves the significand or the sign/exponent (getf.sig, 
setf.sig, getf.exp, setf.exp). The second type moves entire single or double 
precision numbers (getf.s, setf.s, getf.d, setf.d). These instructions also perform 
a conversion between the deferred exception token formats.

Table 4-31. Parallel Data Arrangement Instructions

Mnemonic Operation 1-byte 2-byte 4-byte

mix.l Interleave odd elements from both sources x x x

mix.r Interleave even elements from both sources x x x

mux Arbitrary copy of individual source elements x x

pack.sss Convert from larger to smaller elements with signed saturation x x

pack.uss Convert from larger to smaller elements with unsigned 
saturation

x

unpack.l Interleave least-significant elements from both sources x x x

unpack.h Interleave most significant elements from both sources x x x

Table 4-32. Register File Transfer Instructions

Mnemonic Operation

getf.exp, getf.sig Move FR exponent or significand to GR

getf.s, getf.d Move single/double precision memory format from FR to GR

setf.s, setf.d Move single/double precision memory format from GR to FR

setf.exp, setf.sig Move from GR to FR exponent or significand

mov =br Move from BR to GR

mov br= Move from GR to BR

mov =pr Move from predicates to GR

mov pr=, mov pr.rot= Move from GR to predicates

mov ar= Move from GR to AR

mov =ar Move from AR to GR

mov =psr.um Move from user mask to GR

mov psr.um= Move from GR to user mask

sum, rum Set and reset user mask

mov =pmd[...] Move from performance monitor data register to GR

mov =cpuid[...] Move from processor identification register to GR

mov =ip Move from Instruction Pointer
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Instructions are provided to transfer between the branch registers and the general 
registers. The move to branch register instruction can also optionally include branch 
hints. See “Branch Prediction Hints” on page 1:78.

Instructions are defined to transfer between the predicate register file and a general 
register. These instructions operate in a “broadside” manner whereby multiple predicate 
registers are transferred in parallel (predicate register N is transferred to and from bit N 
of a general register). The move to predicate instruction (mov pr=) transfers a general 
register to multiple predicate registers according to a mask specified by an immediate. 
The mask contains one bit for each of the static predicate registers (PR 1 through PR 15 
– PR 0 is hardwired to 1) and one bit for all of the rotating predicates (PR 16 through 
PR63). A predicate register is written from the corresponding bit in a general register if 
the corresponding mask bit is set. If the mask bit is clear then the predicate register is 
not modified. The rotating predicates are transferred as if CFM.rrb.pr were zero. The 
actual value in CFM.rrb.pr is ignored and remains unchanged. The move from predicate 
instruction (mov =pr) transfers the entire predicate register file into a general register 
target.

In addition, instructions are defined to move values between the general register file 
and the user mask (mov psr.um= and mov =psr.um). The sum and rum instructions set 
and reset the user mask. The user mask is the non-privileged subset of the Process 
Status Register (PSR). 

The mov =pmd[] instruction is defined to move from a performance monitor data (PMD) 
register to a general register. If the operating system has not enabled reading of 
performance monitor data registers in user level then all zeroes are returned. The mov 
=cpuid[] instruction is defined to move from a processor identification register to a 
general register.

The mov =ip instruction is provided for copying the current value of the instruction 
pointer (IP) into a general register.

4.8 Character and Bit Strings

A small set of special instructions accelerate operations on character and bit-field data.

4.8.1 Character Strings

The compute zero index instructions (czx.l, czx.r) treat the general register source as 
either eight 1-byte or four 2-byte elements and write the general register target with 
the index of the first zero element found. If there are no zero elements in the source, 
the target is written with a constant one higher than the largest possible index (8 for 
the 1-byte form, 4 for the 2-byte form). The czx.l instruction scans the source from 
left to right with the left-most element having an index of zero. The czx.r instruction 
scans from right to left with the right-most element having an index of zero. Table 4-33 
summarizes the compute zero index instructions.
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4.8.2 Bit Strings

The population count instruction (popcnt) writes the number of bits that have a value 
of 1 in the source register into the target register.  The count leading zeros instruction 
(clz) writes the number of leading zero bits in the source register into the target 
register; coupled with complement, clz can also perform count leading ones 
functionality as well.

4.9 Privilege Level Transfer

Three instructions may cause a privilege level change: break (break), enter privileged 
code (epc) and branch return (br.ret). The break instruction is defined to cause a 
Break Instruction fault which can be used to transfer privilege levels. The break 
instruction contains an immediate which is made available to a dedicated fault handler. 
The epc instruction increases the privilege level without causing an interruption or a 
control flow transfer. The new privilege level is specified by the TLB entry for the page 
containing the epc, if virtual address translation for instruction fetches is enabled. If the 
privilege level specified by PFS.ppl (in the Previous Function State application register) 
is lower than the current privilege level (as specified by PSR.cpl in the Processor Status 
Register) epc raises an Illegal Operation fault. The br.ret instruction is defined to 
demote the privilege level if PFS.ppl is lower than PSR.cpl. A br.ret will never increase 
privilege level.

§

Table 4-33. String Support Instructions

Mnemonic Operation 1-byte 2-byte

czx.l Locate first zero element, left to right x x

czx.r Locate first zero element, right to left x x

Table 4-34. Bit Support Instructions

Mnemonic Operation

popcnt Count number of ones in source register

clz Count number of leading zeros in source register
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Floating-point Programming Model 5

The floating-point architecture is fully compliant with the ANSI/IEEE Standard for 
Binary Floating-Point Arithmetic (Std. 754-1985). There is full IEEE support for single, 
double, and double-extended real formats. The two IEEE methods for controlling 
rounding precision are supported. The first method converts results to the 
double-extended exponent range. The second method converts results to the 
destination precision. Some IEEE extensions such as fused multiply and add, minimum 
and maximum operations, and a register format with a larger range than the minimum 
double-extended format are also included.

5.1 Data Types and Formats

Six data types are supported directly: single, double, double-extended real (IEEE real 
types); 64-bit signed integer, 64-bit unsigned integer, and the 82-bit floating-point 
register format. A “Parallel FP” format where a pair of IEEE single precision values 
occupy a floating-point register’s significand is also supported. A seventh data type, 
IEEE-style quad-precision, is supported by software routines. A future architecture 
extension may include additional support for the quad-precision real type.

5.1.1 Real Types

The parameters for the supported IEEE real types are summarized in Table 5-1.

5.1.2 Floating-point Register Format

Data contained in the floating-point registers can be either integer or real type. The 
format of data in the floating-point registers is designed to accommodate both of these 
types with no loss of information.

Table 5-1. IEEE Real-type Properties

Single Double Double-Extended Quad-Precision

IEEE Real-Type Parameters

Sign + or  + or  + or  + or 

Emax +127 +1023 +16383 +16383

Emin 126 1022 16382 16382

Exponent bias +127 +1023 +16383 +16383

Precision (bits) 24 53 64 113

IEEE Memory Formats

Total memory format width (bits) 32 64 80 128

Sign field width (bits) 1 1 1 1

Exponent field width (bits) 8 11 15 15

Significand field width (bits) 23 52 64 112
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Real numbers reside in 82-bit floating-point registers in a three-field binary format (see 
Figure 5-1). The three fields are:

• The 64-bit significand field, b63. b62b61 .. b1b0, contains the number's significant 
digits. This field is composed of an explicit integer bit (significand{63}), and 63 bits 
of fraction (significand{62:0}).

• The 17-bit exponent field locates the binary point within or beyond the significant 
digits (i.e., it determines the number's magnitude). The exponent field is biased by 
65535 (0xFFFF). An exponent field of all ones is used to encode the special values 
for IEEE signed infinity and NaNs. An exponent field of all zeros and a significand 
field of all zeros is used to encode the special values for IEEE signed zeros. An 
exponent field of all zeros and a non-zero significand field encodes the 
double-extended real denormals and double-extended real pseudo-denormals.

• The 1-bit sign field indicates whether the number is positive (sign=0) or negative 
(sign=1).

The value of a finite floating-point number, encoded with non-zero exponent field, can 
be calculated using the expression:

The value of a finite floating-point number, encoded with zero exponent field, can be 
calculated using the expression:

Integers (64-bit signed/unsigned) and Parallel FP numbers reside in the 64-bit 
significand field. In their canonical form, the exponent field is set to 0x1003E (biased 
63) and the sign field is set to 0.

5.1.3 Representation of Values in Floating-point Registers

The floating-point register encodings are grouped into classes and subclasses and listed 
below in Table 5-2 (shaded encodings are unsupported). The last two table entries 
contain the values of the constant floating-point registers, FR 0 and FR 1. The constant 
value in FR 1 does not change for the parallel single precision instructions or for the 
integer multiply accumulate instruction.

Figure 5-1. Floating-point Register Format

81 80 64 63 0

sign exponent significand (with explicit integer bit)

1 17 64

(-1)(sign) * 2(exponent - 65535) * (significand{63}.significand{62:0}2)

(-1)(sign) * 2(-16382) * (significand{63}.significand{62:0}2)

Table 5-2. Floating-point Register Encodings

Class or Subclass
Sign

(1 bit)

Biased
Exponent
(17-bits)

Significand
i.bb...bb

(Explicit Integer Bit is Shown) (64-bits)

 NaNs 0/1 0x1FFFF 1.000...01 through 1.111...11

Quiet NaNs 0/1 0x1FFFF 1.100...00 through 1.111...11

Quiet NaN Indefinitea 1 0x1FFFF 1.100...00

Signaling NaNs 0/1 0x1FFFF 1.000...01 through 1.011...11

Infinity 0/1 0x1FFFF 1.000...00
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Pseudo-NaNs 0/1 0x1FFFF 0.000...01 through 0.111...11 

Pseudo-Infinity 0/1 0x1FFFF 0.000...00

Normalized Numbers
(Floating-point Register Format Normals)

0/1 0x00001
through
0x1FFFE

1.000...00 through 1.111...11

Integers or Parallel FP
(large unsigned or negative signed integers)

0 0x1003E 1.000...00 through 1.111...11

Integer Indefiniteb 0 0x1003E 1.000...00

IEEE Single Real Normals 0/1 0x0FF81
through
0x1007E

1.000...00...(40)0s
through 
1.111...11...(40)0s

IEEE Double Real Normals 0/1 0x0FC01
through
0x103FE

1.000...00...(11)0s
through
1.111...11...(11)0s

IEEE Double-Extended Real Normals 0/1 0x0C001
through
0x13FFE

1.000...00 through 1.111...11

Normal numbers with the same value as 
Double-Extended Real 
Pseudo-Denormals

0/1 0x0C001 1.000...00 through 1.111...11

IA-32 Stack Single Real Normals 
(produced when the computation model 
is IA-32 Stack Single)

0/1 0x0C001
through
0x13FFE

1.000...00...(40)0s
through
1.111...11...(40)0s

IA-32 Stack Double Real Normals 
(produced when the computation model 
is IA-32 Stack Double)

0/1 0x0C001
through
0x13FFE

1.000...00...(11)0s
through
1.111...11...(11)0s

Unnormalized Numbers
(Floating-point Register Format unnormalized 
numbers)

0/1 0x00000 0.000...01 through 1.111...11

0x00001
through
0x1FFFE

0.000...01 through 0.111...11

0x00001
through
0x1FFFD

0.000...00

1 0x1FFFE 0.000...00

Integers or Parallel FP
(positive signed/unsigned integers)

0 0x1003E 0.000...00 through 0.111...11

IEEE Single Real Denormals 0/1 0x0FF81 0.000...01...(40)0s
through 
0.111...11...(40)0s

IEEE Double Real Denormals 0/1 0x0FC01 0.000...01...(11)0s
through 
0.111...11...(11)0s

Register Format Denormals 0/1 0x00001 0.000...01 through 0.111...11

Unnormal numbers with the same value as 
IEEE Double-Extended Real Denormals

0/1 0x0C001 0.000...01 through 0.111...11

IEEE Double-Extended Real Denormals 0/1 0x00000 0.000...01 through 0.111...11

IA-32 Stack Single Real Denormals
(produced when computation model is 
IA-32 Stack Single)

0/1 0x00000 0.000...01...(40)0s
through
0.111...11...(40)0s

Table 5-2. Floating-point Register Encodings (Continued)

Class or Subclass
Sign

(1 bit)

Biased
Exponent
(17-bits)

Significand
i.bb...bb

(Explicit Integer Bit is Shown) (64-bits)
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All register encodings are allowed as inputs to arithmetic operations. The result of an 
arithmetic operation is always the most normalized register format representation of 
the computed value, with the exponent range limited from Emin to Emax of the 
destination type, and the significand precision limited to the number of precision bits of 
the destination type. Computed values, such as zeros, infinities, and NaNs that are 
outside these bounds are represented by the corresponding unique register format 
encoding. Double-extended real denormal results are mapped to the register format 
exponent of 0x00000 (instead of 0x0C001). Unsupported encodings (Pseudo-NaNs and 
Pseudo-Infinities), Pseudo-zeros and Double-extended Real Pseudo-denormals are 
never produced as a result of an arithmetic operation. 

Arithmetic on pseudo-zeros operates exactly as an equivalently signed zero, with one 
exception. Pseudo-zero multiplied by infinity returns the correctly signed infinity instead 
of an Invalid Operation Floating-Point Exception fault (and QNaN). Also, pseudo-zeros 
are classified as unnormalized numbers, not zeros.

5.2 Floating-point Status Register

The Floating-Point Status Register (FPSR) contains the dynamic control and status 
information for floating-point operations. There is one main set of control and status 
information (FPSR.sf0), and three alternate sets (FPSR.sf1, FPSR.sf2, FPSR.sf3). The 
FPSR layout is shown in Figure 5-2 and its fields are defined in Table 5-3. Table 5-4 
gives the FPSR’s status field description and Figure 5-3 shows their layout.

IA-32 Stack Double Real Denormals
(produced when computation model is 
IA-32 Stack Double)

0/1 0x00000 0.000...01...(11)0s
through
0.111...11...(11)0s

Double-Extended Real Pseudo-Denormals
(IA-32 stack and memory format)

0/1 0x00000 1.000...00 through 1.111...11

Pseudo-Zeros 0/1 0x00001
through
0x1FFFD

0.000...00

1 0x1FFFE 0.000...00

NaTValc 0 0x1FFFE 0.000...00

Zero 0/1 0x00000 0.000...00

FR 0 (positive zero) 0 0x00000 0.000...00

FR 1 (positive one) 0 0x0FFFF 1.000...00

a. Created by a masked real invalid operation.
b. Created by a masked integer invalid operation.
c. Created by an unsuccessful speculative memory operation.

Figure 5-2. Floating-point Status Register Format

63 58 57 45 44 32 31 19 18 6 5 0

rv sf3 sf2 sf1 sf0 traps

6 13 13 13 13 6

Table 5-2. Floating-point Register Encodings (Continued)

Class or Subclass
Sign

(1 bit)

Biased
Exponent
(17-bits)

Significand
i.bb...bb

(Explicit Integer Bit is Shown) (64-bits)
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The Denormal/Unnormal Operand status flag is an IEEE-style sticky flag that is set if 
the value is used in an arithmetic instruction and in an arithmetic calculation; e.g. 
unorm*NaN doesn’t set this flag. As depicted in Table 5-2 on page 1:86, canonical 
single/double/double-extended denormal, double-extended pseudo-denormal and 
register format denormal encodings are a subset of the floating-point register format 
unnormalized numbers.

Note: The Floating-Point Exception fault/trap occurs only if an enabled floating-point 
exception occurs during the processing of the instruction. Hence, setting a flag 
bit of a status field to 1 in software will not cause an interruption. The status 

Table 5-3. Floating-point Status Register Field Description

Field Bits Description

traps.vd 0 Invalid Operation Floating-Point Exception fault (IEEE Trap) disabled when this 
bit is set

traps.dd 1 Denormal/Unnormal Operand Floating-Point Exception fault disabled when this 
bit is set

traps.zd 2 Zero Divide Floating-Point Exception fault (IEEE Trap) disabled when this bit is 
set

traps.od 3 Overflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

traps.ud 4 Underflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

traps.id 5 Inexact Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

sf0 18:6 Main status field

sf1 31:19 Alternate status field 1

sf2 44:32 Alternate status field 2

sf3 57:45 Alternate status field 3

rv 63:58 Reserved

Figure 5-3. Floating-point Status Field Format

12 11 10 9 8 7 6 5 4 3 2 1 0

FPSR.sfx

flags controls

i u o z d v td rc pc wre ftz

6 7

Table 5-4. Floating-point Status Register’s Status Field Description

Field Bits Description

ftz 0 Flush-to-Zero mode

wre 1 Widest range exponent (see Table 5-6)

pc 3:2 Precision control (see Table 5-6)

rc 5:4 Rounding control (see Table 5-5)

td 6 Traps disableda

a. td is a reserved bit in the main status field, FPSR.sf0

v 7 Invalid Operation (IEEE Flag)

d 8 Denormal/Unnormal Operand

z 9 Zero Divide (IEEE Flag)

o 10 Overflow (IEEE Flag)

u 11 Underflow (IEEE Flag)

i 12 Inexact (IEEE Flag)
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fields flags are merely indications of the occurrence of floating-point excep-
tions.

Flush-to-Zero (FTZ) mode causes results which encounter “tininess” (see “Definition of 
Tininess, Inexact and Underflow” on page 1:106) to be truncated to the correctly 
signed zero. Flush-to-Zero mode can be enabled only if Underflow is disabled. If 
Underflow is enabled then it takes priority and Flush-to-Zero mode is ignored. Note that 
the software exception handler could examine the Flush-to-Zero mode bit and choose 
to emulate the Flush-to-Zero operation when an enabled Underflow exception arises. 
The FPSR.sfx.u and FPSR.sfx.i bits will be set to 1 when a result is flushed to the 
correctly signed zero because of Flush-to-Zero mode. If enabled, an inexact result 
exception is signaled.

A floating-point result is rounded based on the instruction’s.pc completer and the status 
field’s wre, pc, and rc control fields. The result’s significand precision and exponent 
range are determined as described in Table 5-6, “Floating-point Computation Model 
Control Definitions” on page 1:90. If the result isn’t exact, FPSR.sfx.rc specifies the 
rounding direction (see Table 5-5).

Table 5-5. Floating-point Rounding Control Definitions

Nearest
(or even)

- Infinity
(down)

+ Infinity
(up)

Zero
(truncate/chop)

FPSR.sfx.rc 00 01 10 11

Table 5-6. Floating-point Computation Model Control Definitions

Computation Model Control Fields Computation Model Selected

Instruction’s.pc 
Completer

FPSR.sfx’s 
Dynamic pc 

Field

FPSR.sfx’s 
Dynamic wre 

Field

Significand
Precision

Exponent
Range Computational Style

.s ignored 0 24 bits 8 bits IEEE real single

.d ignored 0 53 bits 11 bits IEEE real double

.s ignored 1 24 bits 17 bits Register format range, 
single precision

.d ignored 1 53 bits 17 bits Register format range, 
double precision

none 00 0 24 bits 15 bits IA-32 stack single

none 01 0 N.A. N.A. Reserved

none 10 0 53 bits 15 bits IA-32 stack double

none 11 0 64 bits 15 bits IA-32 double-extended

none 00 1 24 bits 17 bits Register format range, 
single precision

none 01 1 N.A. N.A. Reserved

none 10 1 53 bits 17 bits Register format range, 
double precision

none 11 1 64 bits 17 bits Register format range, 
double-extended precision

not applicablea

a. For parallel FP instructions which have no.pc completer (e.g., fpma).

ignored ignored 24 bits 8 bits A pair of IEEE real singles

not applicableb

b. For non-parallel FP instructions which have no.pc completer (e.g., frcpa).

ignored ignored 64 bits 17 bits Register format range, 
double-extended precision
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The trap disable (sfx.td) control bit allows one to easily set up a local IEEE exception 
trap default environment. If FPSR.sfx.td is clear (enabled), the FPSR.traps bits are 
used. If FPSR.sfx.td is set, the FPSR.traps bits are treated as if they are all set 
(disabled). Note that FPSR.sf0.td is a reserved field which returns 0 when read.

5.3 Floating-point Instructions

This section describes the floating-point instructions. Refer to Volume 3: Intel® 
Itanium® Instruction Set Reference for a detailed description.

5.3.1 Memory Access Instructions

There are floating-point load and store instructions for the single, double, 
double-extended floating-point real data types, and the Parallel FP or signed/unsigned 
integer data type. The addressing modes for floating-point load and store instructions 
are the same as for integer load and store instructions, except for floating-point load 
pair instructions which can have an implicit base-register post increment. The memory 
hint options for floating-point load and store instructions are the same as those for 
integer load and store instructions. (See Section 4.4.6, “Memory Hierarchy Control and 
Consistency” on page 1:69.) Table 5-7 lists the types of floating-point load and store 
instructions. The floating-point load pair instructions require the two target registers to 
be odd/even or even/odd. See “ldfp — Floating-point Load Pair” on page 3:161. The 
floating-point store instructions (stfs, stfd, stfe) require the value in the 
floating-point register to have the same type as the store for the format conversion to 
be correct.

Unsuccessful speculative loads write a NaTVal into the destination register or registers 
(see Section 4.4.4, “Control Speculation”). Storing a NaTVal to memory will cause a 
Register NaT Consumption fault, except for the spill instruction (stf.spill).

Saving and restoring floating-point registers is accomplished by the spill and fill 
instructions (stf.spill, ldf.fill) using a 16-byte memory container. These are the 
only instructions that can be used for saving and restoring the actual register contents 
since they do not fault on NaTVal. They save and restore all types (single, double, 
double-extended, register format and integer or Parallel FP) and will ensure 
compatibility with possible future architecture extensions.

Figure 5-4, Figure 5-5, Figure 5-6, Figure 5-7, Figure 5-8 and Figure 5-9 describe how 
single precision, double precision, double-extended precision, integer/parallel FP, and 
spill/fill data is translated during transfers between floating-point registers and 
memory.

Table 5-7. Floating-point Memory Access Instructions

Operations Load to FR Load Pair to FR Store from FR

Single ldfs ldfps stfs

Integer/Parallel FP ldf8 ldfp8 stf8

Double ldfd ldfpd stfd

Double-extended ldfe stfe

Spill/fill ldf.fill stf.spill
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Figure 5-4. Memory to Floating-point Register Data Translation – Single Precision
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Figure 5-5. Memory to Floating-point Register Data Translation – Double Precision
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Figure 5-6. Memory to Floating-point Register Data Translation – Double Extended, 
Integer, Parallel FP and Fill
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Figure 5-7. Floating-point Register to Memory Data Translation – Single Precision

Figure 5-8. Floating-point Register to Memory Data Translation – Double Precision
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Both little-endian and big-endian byte ordering is supported on floating-point loads and 
stores. For both single and double memory formats, the byte ordering is identical to the 
32-bit and 64-bit integer data types (see Section 3.2.3, “Byte Ordering”). The 
byte-ordering for the spill/fill memory and double-extended formats is shown in 
Figure 5-10.

Figure 5-9. Floating-point Register to Memory Data Translation – Double Extended, 
Integer, Parallel FP and Spill
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5.3.2 Floating-point Register to/from General Register Transfer 
Instructions

The setf and getf instructions (see Table 5-8) transfer data between floating-point 
registers (FR) and general registers (GR). These instructions will translate a general 
register NaT to/from a floating-point register NaTVal. For all other operands, the .s and 
.d variants of the setf and getf instructions translate to/from FR as per Figure 5-4, 
Figure 5-5, Figure 5-7 and Figure 5-8. The memory representation is read from or 
written to the GR. The .exp and .sig variants of the setf and getf instructions 
operate on the sign/exponent and significand portions of a floating-point register, 
respectively, and their translation formats are described in Table 5-9 and Table 5-10.

Figure 5-10.Spill/Fill and Double-extended (80-bit) Floating-point Memory Formats

Table 5-8. Floating-point Register Transfer Instructions

Operations GR to FR FR to GR

Single setf.s getf.s

Double setf.d getf.d

Sign and Exponent setf.exp getf.exp

Significand/Integer setf.sig getf.sig
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5.3.3 Arithmetic Instructions

All arithmetic floating-point instructions, except fcvt.xf (which is always exact), have 
a.sf specifier. This indicates which of the four FPSR’s status fields will both control and 
record the status of the execution of the instruction (see Table 5-11). The status field 
specifies: enabled exceptions, rounding mode, exponent width, precision control, and 
which status field’s flags to update. See “Floating-point Status Register” on page 1:88.

Most arithmetic floating-point instructions can specify the precision and range of the 
result. The precision is determined either statically using a.pc completer or dynamically 
using the.pc field of the FPSR status field. The range is determined similarly except 
the.wre field of the FPSR status field is also used. Normal (non Parallel FP) arithmetic 
instructions that do not have a.pc completer use the floating-point register format 
precision and range. See Table 5-6 for details. 

Table 5-12 lists the arithmetic floating-point instructions and Table 5-13 lists the 
arithmetic pseudo-operation definitions.

Table 5-9. General Register (Integer) to Floating-point Register Data Translation (setf)

General
Register

Floating-Point Register (.sig) Floating-Point Register (.exp)

Class NaT Integer Sign Exponent Significand Sign Exponent Significand

NaT 1 ignore NaTVal NaTVal

integers 0 000...00
through
111...11

0 0x1003E integer integer{17} integer{16:0} 0x8000000000000000

Table 5-10. Floating-point Register to General Register (Integer) Data Translation (getf)

Floating-Point Register General Register (.sig) General Register (.exp)

Class Sign Exponent Significand NaT Integer NaT Integer

NaTVal 0 0x1FFFE 0.000...00 1 0x0000000000000000 1 0x1FFFE

integers or
parallel FP

0 0x1003E 0.000...00
through

1.111...11

0 significand 0 0x1003E

other any any any 0 significand 0 ((sign<<17) | exponent)

Table 5-11. Floating-point Instruction Status Field Specifier Definition

.sf Specifier .s0 .s1 .s2 .s3

Status field FPSR.sf0 FPSR.sf1 FPSR.sf2 FPSR.sf3

Table 5-12. Arithmetic Floating-point Instructions

Operation Normal FP Mnemonic(s)
Parallel FP

Mnemonic(s)

Floating-point multiply and add fma.pc.sf fpma.sf

Floating-point multiply and subtract fms.pc.sf fpms.sf

Floating-point negate multiply and add fnma.pc.sf fpnma.sf

Floating-point reciprocal approximation frcpa.sf fprcpa.sf

Floating-point reciprocal square root approximation frsqrta.sf fprsqrta.sf

Floating-point compare fcmp.frel.fctype.sf fpcmp.frel.sf
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There are no pseudo-operations for Parallel FP addition, subtraction, negation or 
normalization since FR 1 does not contain a packed pair of single precision 1.0 values. A 
parallel FP addition can be performed by first forming a pair of 1.0 values in a register 
(using the fpack instruction) and then using the fpma instruction. Similarly, an integer 
add operation can be generated by first forming an integer 1 in a floating-point register 
(using the fcvt.fx instruction) and then using the xma instruction.

The fmpy pseudo-operation delivers the IEEE compliant result by rounding the product 
and without performing the addition inherent in the fma. An fma with the addend 
specified as a register other than FR 0, and containing the value +0.0, will not deliver 
the IEEE compliant multiply result in some cases.

5.3.4 Non-arithmetic Instructions

The non-arithmetic floating-point instructions always use the floating-point register 
(82-bit) precision since they do not have a.pc completer nor a.sf specifier.

The fclass instruction is used to classify the contents of a floating-point register. The 
fmerge instruction is used to merge data from two floating-point registers into one 
floating-point register. The fmix, fsxt, fpack, and fswap instructions are used to 
manipulate the Parallel FP data in the floating-point significand. The fand, fandcm, for, 
and fxor instructions are used to perform logical operations on the floating-point 
significand. The fselect instruction is used for conditional selects.

Floating-point minimum fmin.sf fpmin.sf

Floating-point maximum fmax.sf fpmax.sf

Floating-point absolute minimum famin.sf fpamin.sf

Floating-point absolute maximum famax.sf fpamax.sf

Convert floating-point to signed integer fcvt.fx.sf 
fcvt.fx.trunc.sf

fpcvt.fx.sf 
fpcvt.fx.trunc.sf

Convert floating-point to unsigned integer fcvt.fxu.sf 
fcvt.fxu.trunc.sf

fpcvt.fxu.sf 
fpcvt.fxu.trunc.sf

Convert signed integer to floating-point fcvt.xf N.A.

Table 5-13. Arithmetic Floating-point Pseudo-operations

Operation Mnemonic Operation Used

Floating-point multiplication (IEEE)
Parallel FP multiplication

fmpy.pc.sf
fpmpy.sf

fma, using FR 0 for addend
fpma, using FR 0 for addend

Floating-point negate multiplication (IEEE)
Parallel FP negate multiplication

fnmpy.pc.sf
fpnmpy.sf

fnma, using FR 0 for addend
fpnma, using FR 0 for addend

Floating-point addition (IEEE) fadd.pc.sf fma, using FR 1 for multiplicand

Floating-point subtraction (IEEE) fsub.pc.sf fms, using FR 1 for multiplicand

Floating-point normalization fnorm.pc.sf fma, using FR 1 for multiplicand and FR 0 for 
addend

Convert unsigned integer to floating-point fcvt.xuf.pc.sf fma, using FR 1 for multiplicand and FR 0 for 
addend

Table 5-12. Arithmetic Floating-point Instructions (Continued)
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The fneg pseudo-operation (see Table 5-15) simply reverses the sign bit of the operand 
and is therefore not equivalent to the IEEE negation operation. For the IEEE negation 
operation, an fnma using FR 1 as the multiplicand and FR 0 as the addend must be 
used. 

Table 5-14 lists the non-arithmetic floating-point instructions and Table 5-15 lists the 
non-arithmetic pseudo-operation definitions.

5.3.5 Floating-point Status Register (FPSR) Status Field 
Instructions

Speculation of floating-point operations requires that the status flags be stored 
temporarily in one of the alternate status fields (not FPSR.sf0). After a speculative 
execution chain has been committed, a fchkf instruction can be used to update the 
main status field flags (FPSR.sf0.flags). This operation will preserve the correctness of 
the IEEE flags. The fchkf instruction does this by comparing the flags of the status field 

Table 5-14. Non-arithmetic Floating-point Instructions

Operation Mnemonic(s)

Floating-point classify fclass.fcrel.fctype

Floating-point merge sign
Parallel FP merge sign

fmerge.s
fpmerge.s

Floating-point merge negative sign
Parallel FP merge negative sign

fmerge.ns
fpmerge.ns

Floating-point merge sign and exponent
Parallel FP merge sign and exponent

fmerge.se
fpmerge.se

Floating-point mix left fmix.l

Floating-point mix right fmix.r

Floating-point mix left-right fmix.lr

Floating-point sign-extend left fsxt.l

Floating-point sign-extend right fsxt.r

Floating-point pack fpack

Floating-point swap fswap

Floating-point swap and negate left fswap.nl

Floating-point swap and negate right fswap.nr

Floating-point And fand

Floating-point And Complement fandcm

Floating-point Or for

Floating-point Xor fxor

Floating-point Select fselect

Table 5-15. Non-arithmetic Floating-point Pseudo-operations

Operation Mnemonic Operation Used

Floating-point absolute value
Parallel FP absolute value

fabs
fpabs

fmerge.s, with sign from FR 0
fpmerge.s, with sign from FR 0

Floating-point negate
Parallel FP negate

fneg
fpneg

fmerge.ns
fpmerge.ns

Floating-point negate absolute value
Parallel FP negate absolute value

fnegabs
fpnegabs

fmerge.ns, with sign from FR 0
fpmerge.ns, with sign from FR 0



Volume 1, Part 1: Floating-point Programming Model 1:101

with the FPSR.sf0.flags and FPSR.traps. If the flags of the alternate status field indicate 
the occurrence of an event that corresponds to an enabled floating-point exception in 
FPSR.traps, or an event that is not already registered in the FPSR.sf0.flags (i.e., the 
flag for that event in FPSR.sf0.flags is clear), then the fchkf instruction branches to 
recovery code. If neither of these cases arise then the fchkf instruction does nothing.

The fsetc instruction allows bit-wise modification of a status field’s control bits. The 
FPSR.sf0.controls are ANDed with a 7-bit immediate and-mask and ORed with a 7-bit 
immediate or-mask to produce the control bits for the status field. The fclrf 
instruction clears all of the status field’s flags to zero.

5.3.6 Integer Multiply and Add Instructions

Integer (fixed-point) multiply is executed in the floating-point unit using the 
three-operand xma instructions. The operands and result of these instructions are 
floating-point registers. The xma instructions ignore the sign and exponent fields of the 
floating-point register, except for a NaTVal check. The product of two 64-bit source 
significands is added to the third 64-bit significand (zero extended) to produce a 
128-bit result. The low and high versions of the instruction select the appropriate 
low/high 64-bits of the 128-bit result, respectively, and write it into the destination 
register as a canonical integer. The signed and unsigned versions of the instructions 
treat the input multiplicands as signed and unsigned 64-bit integers respectively.

5.4 Additional IEEE Considerations

This section describes the support of the IEEE standard in the areas where specific 
details are left open to implementation.

5.4.1 Floating-point Interruptions

Floating-point interruptions are precise. The exception reporting and handling occurs on 
the instruction which causes the interruption. There are three floating-point 
interruptions: Disabled Floating-Point Register fault, Floating-Point Exception fault, and 
Floating-Point Exception trap (see Chapter 5, “Interruptions” in Volume 2 for more 
details).

Table 5-16. FPSR Status Field Instructions

Operation Mnemonic(s)

Floating-point check flags fchkf.sf

Floating-point clear flags fclrf.sf

Floating-point set controls fsetc.sf

Table 5-17. Integer Multiply and Add Instructions

Integer Multiply and Add Low High

Signed xma.l xma.h

Unsigned xma.lu (pseudo-op) xma.hu
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Exceptions are processed according to a predetermined precedence. Precedence in 
exception handling means that higher-priority exceptions are flagged first and results 
are delivered according to the requirements of that exception. Lower-priority 
exceptions are not flagged even if they occur. For example, dividing an SNaN by zero 
causes an invalid operation exception (due to the SNaN) and not a zero-divide 
exception; the exception disabled result is the quieted version of the SNaN, not infinity. 
However, an IEEE Inexact Floating-Point Exception trap can accompany an IEEE 
Underflow or Overflow Floating-Point Exception trap.

For instructions that access the floating-point register file, the Disabled Floating-point 
Register fault has the highest priority.

5.4.1.1 Disabled Floating-point Register Fault

Two bits in the PSR, PSR.dfl and PSR.dfh, (see Section 3.3.2, “Processor Status Register 
(PSR)” on page 2:23) can be used by an operating system to enable or disable access 
to two subsets of floating-point registers: FR 2 to FR 31, and FR 32 to FR 127, 
respectively. The Disabled Floating-Point Register fault occurs when an access (read or 
write) is made to a FR which has been disabled. Operating systems can use this fault to 
identify a task as integer or floating-point and optimize the default set of registers 
which get saved on a task switch. If a mainly integer task is able to use only FR 2 to FR 
32 for executing integer multiply and divide operations, then context switch time may 
be reduced by disabling access to the high floating-point registers.

5.4.1.2 Floating-point Exception Fault

A Floating-Point Exception fault occurs if one of the following four circumstances arises:

1. The processor requests system software assistance to complete the operation, via 
the Software Assist fault

2. The IEEE Invalid Operation trap is enabled and this condition occurs

3. The IEEE Zero Divide trap is enabled and this condition occurs

4. The Denormal/Unnormal Operand trap is enabled and an unnormalized operand 
(denormals are represented as unnormalized numbers in the register file) is 
encountered by a floating-point arithmetic instruction

If a Floating-Point Exception fault occurs, the only indication of which fault occurred is 
in the ISR.code. The appropriate status flags are not updated in the FPSR.

There is no requirement that the Software Assist Floating-Point Exception fault ever be 
signaled (except for certain operands in the frcpa and the frsqrta instructions), nor is 
there a mode to force its use. If there is no input NaTVal operand, a processor 
implementation may signal a Software Assist Floating-Point Exception fault at any time 
during the operation. In order to ensure maximum floating-point performance, most 
implementations will not use this exception except in difficult situations such as 
operations consuming denormal numbers.

The precedence among Floating-point Exception faults for arithmetic operations is 
depicted in Figure 5-11.
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Figure 5-11.Floating-point Exception Fault Prioritization
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5.4.1.3 Floating-point Exception Trap

A Floating-point Exception trap occurs if one of the following four circumstances arises:

1. The processor requests system software assistance to complete the operation, via 
the Software Assist trap

2. The IEEE Overflow trap is enabled and an overflow occurs

3. The IEEE Underflow trap is enabled and an underflow occurs

4. The IEEE Inexact trap is enabled and an inexact result occurs

When an overflow, underflow, or inexact result occurs, the appropriate status flags are 
updated in the FPSR. If enabled, a Floating-Point Exception trap occurs, and an 
indication of which enabled trap occurred is stored in ISR.code and the fpa bit in 
ISR.code (ISR{14}) is set as described in the next paragraph.

ISR.fpa is set to 1 when the magnitude of the delivered result is greater than the 
magnitude of the infinitely precise result. It is set to 0 otherwise. The magnitude of the 
delivered result may be greater if:

• The significand is incremented during rounding, or

• A larger pre-determined value (e.g., infinity) is substituted for the computed result 
(e.g., when overflow is disabled).

There is no requirement that the Software Assist Floating-Point Exception trap ever be 
signaled, nor is there a mode to force its use. In order to ensure maximum 
floating-point performance, most implementations will not use this exception except in 
difficult situations, such as operations creating denormal numbers. The occurrence of a 
Software Assist trap is indicated when a trap bit is set in ISR.code, but that trap is 
disabled. The destination register contains the trap enabled response for that trap.

The precedence among Floating-point Exception traps for arithmetic operations is 
depicted in Figure 5-12.
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5.4.2 Definition of Overflow

The overflow exception can occur whenever the rounded true result would exceed, in 
magnitude, the largest finite number in the destination format. 

The IEEE Overflow Floating-Point Exception trap disabled response for all normal and 
Parallel-FP arithmetic instructions is to either return an infinity or the correctly signed 
maximum finite value for the destination precision. This depends on the rounding 
mode, the sign of the result, and the operation. An inexact result exception is signaled.

The IEEE Overflow Floating-Point Exception trap enabled response for all normal 
arithmetic instructions is to return the true biased exponent value MOD 217 and for all 
Parallel-FP arithmetic instructions is to return the true biased exponent value MOD 28. 
The value’s significand is rounded to the specified precision and written to the 
destination register. If the rounded value is different from the infinitely-precise value, 

Figure 5-12.Floating-point Exception Trap Prioritization

>Emax <EminOverflow
Enabled?

Underflow
Enabled?

FLAGS.o=1
FLAGS.i|=tmp_i
Exp=tmp_exp%217

Sig=tmp_sig
ISR.o=1
ISR.i=tmp_i
ISR.fpa=tmp_fpa

FP TRAP

Infinity
Result

Inexact
Enabled?

FP TRAP
ISR.i=1
ISR.fpa=tmp_fpa

DONE

>=Emin
<=Emax

FLAGS.i=1 tmp_i?

tmp_i

Inf.Precision Operation
Unbounded Range Rounding
tmp_exp, tmp_sig
tmp_i, tmp_fpa FLAGS.u=1

FLAGS.i|=tmp_i
Exp=tmp_exp%217

Sig=tmp_sig
ISR.u=1
ISR.i=tmp_i
ISR.fpa=tmp_fpa

FP TRAP

N N

Zero Res.
tmp_i=1
tmp_fpa=0

MaxReal/
Inf. Res
tmp_fpa
FLAGS.o=1

FTZ?

Y

NY

Y

N

Y

Y

N

FLAGS.u=1

N

Y
tmp_exp?

START

Zero
Result

ZeroInf

Inf.Precision Operation
Bound Range Rounding
tmp_i, tmp_fpa
Zero/Den/MinReal Res

Pre-
Computed

Res?

Terminal
State

Decision
Point

tmp_exp=result exponent
tmp_sig=result significand
tmp_i=inexactness indicator
tmp_fpa=significand roundup

?



1:106 Volume 1, Part 1: Floating-point Programming Model

then inexactness is signaled. If the significand was rounded by adding a one to its least 
significant bit, then bit fpa in ISR.code is set to 1. Finally, an interruption due to a 
Floating-Point Exception trap will occur.

Note that when rounding to single, double, or double-extended real, the overflow trap 
enabled response for normal (non Parallel FP) arithmetic instructions is not guaranteed 
to be in the range of a valid single, double, or double-extended real quantity, because it 
is in 17-bit exponent format.

5.4.3 Definition of Tininess, Inexact and Underflow

Tininess is detected after rounding, and is said to occur when a non-zero result 
(computed as though the exponent range were unbounded) would lie strictly between 
+2Emin and -2Emin. See Table 5-1 for the values of Emin for each real type. Creation of 
a tiny result may cause an exception later (such as overflow upon division because it is 
so small). 

Inexactness is said to occur when the result differs from what would have been 
computed if both the exponent range and precision were unbounded.

How tininess and inexactness trigger the underflow exception depends on whether the 
Underflow Floating-Point Exception trap is disabled or enabled. If the trap is disabled 
then the underflow exception is signaled when the result is both tiny and inexact. If the 
trap is enabled then the underflow exception is signaled when the result is tiny, 
regardless of inexactness. Note that in the event that the Underflow Floating-Point 
Exception trap is disabled and tininess but not inexactness occurs, then neither 
underflow nor inexactness is signaled, and the result is a denormal.

The IEEE Underflow Floating-Point Exception trap disabled response for all normal and 
Parallel-FP arithmetic instructions is to denormalize the infinitely precise result and then 
round it to the destination precision. The result may be a denormal, zero, or a normal. 
The inexact exception is signaled when appropriate.

The IEEE Underflow Floating-Point Exception trap enabled response for all normal 
arithmetic instructions is to return the true biased exponent value MOD 217and for all 
Parallel-FP arithmetic instructions is to return the true biased exponent value MOD 28. 
The significand is rounded to the specified precision and written to the destination 
register independent of the possibility of the exponent calculation requiring a borrow. If 
the rounded value is different from the infinitely-precise value, then inexactness is 
signaled. If the significand was rounded by adding a one to its least significant bit, then 
bit fpa in ISR.code is set to 1. Finally, an interruption due to a Floating-Point Exception 
trap will occur.

Note: When rounding to single, double, or double-extended real, the underflow trap 
enabled response for normal (non Parallel FP) arithmetic instructions is not 
guaranteed to be in the range of a valid single, double, or double-extended real 
quantity, because it is in 17-bit exponent format.

When Flush-to-Zero mode is enabled, the behavior for tiny results is different. If an 
instruction would deliver a tiny result, a correctly signed zero is delivered instead and 
the appropriate FPSR.sfx.u and FPSR.sfx.i bits are set. This mode may improve the 
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performance on implementations that do not implement denormal handling in 
hardware. When the Flush-to-Zero mode is enabled, floating-point exception software 
assist traps will not occur when producing tiny results.

5.4.4 Integer Invalid Operations

Floating-point to integer conversions which are invalid (in the IEEE sense) signal an 
Invalid Operation Floating-Point Exception fault. If the IEEE Invalid Operation trap is 
disabled, then the largest magnitude negative integer is the result, even for unsigned 
integer operations.

5.4.5 Definition of Arithmetic Operations

Arithmetic operations are those that compute on the operands by treating each 
operand’s encoding as a value, whereas non-arithmetic operations perform bit 
manipulations on the input operands without regard to the value represented by the 
encoding (except for NaTVal detection). Non-arithmetic instructions do not cause 
Floating-point Exception faults or traps, but can cause the Disabled Floating-point 
Register fault. 

5.4.6 Definition and Propagation of NaNs

Signaling NaNs have a zero in the most significant fractional bit of the significand. Quiet 
NaNs have a one in the most significant fractional bit of the significand. This definition 
of signaling and quiet NaNs easily preserves “NaNness” when converting between 
different precisions. When propagating NaNs in operations that have more than one 
NaN operand, the result NaN is chosen from one of the operand NaNs in the following 
priority based on register encoding fields: first f4, then f2, and lastly f3.

5.4.7 IEEE Standard Mandated Operations Deferred to Software

The following IEEE mandated operations will be implemented in software:

• String to floating-point conversion

• Floating-point to string conversion

• Divide (with help from frcpa or fprcpa instruction)

• Square root (with help from frsqrta or fprsqrta instruction)

• Remainder (with help from frcpa or fprcpa instruction)

• Floating-point to integer valued floating-point conversion

• Correctly wrapping the exponent for single, double, and double-extended overflow 
and underflow values, as recommended by the IEEE standard

5.4.8 Additions beyond the IEEE Standard

• The fused multiply and add (fma, fms, fnma, fpma, fpms, fpnma) operations enable 
efficient software divide, square root, and remainder algorithms.

• The extended range of the 17-bit exponent in the register format allows simplified 
implementation of many basic numeric algorithms by the careful numeric 
programmer.
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• The NaTVal is a natural extension of the IEEE concept of NaNs. It is used to support 
speculative execution.

• Flush-to-Zero mode is an industry standard addition.

• The minimum and maximum instructions allow the efficient execution of the 
common Fortran Intrinsic Functions: MIN(), MAX(), AMIN(), AMAX(); and C 
language idioms such as a<b?a:b.

• All mixed precision operations are allowed. The IEEE standard suggests that 
implementations allow lower precision operands to produce higher precision 
results; this is supported. The IEEE standard also suggests that implementations 
not allow higher precision operands to produce lower precision results; this 
suggestion is not followed. When computations with higher precision operands 
produce values beyond the destination precision range, the information provided in 
the ISR.code allows the true result to be unambiguously determined by software. 
The correct wrapping count and the appropriate bias amount can also be computed.

• An IEEE style quad-precision real type that is supported in software.

§
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IA-32 Application Execution Model in an 
Intel® Itanium® System Environment 6

IA-32 application execution on Itanium-based systems may be supported with IA-32 
Execution Layer, an OS-based optimizing binary translator, or processor 
hardware-based execution. The implementation of IA-32 application execution on a 
platform is transparent to IA-32 applications and does not require any application 
modification.

6.1 IA-32 Execution Layer

IA-32 Execution Layer provides operating systems with optimizing dynamic binary 
translation to accelerate legacy IA-32 application performance relative to 
hardware-based execution. When installed, IA-32 Execution Layer supersedes 
hardware-based execution of IA-32 applications.

The operating system loads IA-32 Execution Layer into user space, where it executes 
using application virtual space and privilege level. IA-32 Execution Layer uses the 
native OS for acquiring system resources (memory, synchronization objects, etc.), 
executing 32-bit system calls issued by the IA-32 application, signal handling, 
exceptions, and other system notifications.

IA-32 Execution Layer supports user-mode, 32-bit-flat-protected applications. 
Consistent with Itanium-based operating systems that support legacy IA-32 
applications, 16-bit applications and applications containing 32-bit device drivers are 
not supported.

6.2 Hardware-based IA-32 Application Execution

This section describes the IA-32 execution model from the perspective of an application 
programmer using the Itanium architecture, interfacing with IA-32 code, while 
operating in the Itanium System Environment. The main features covered are:

• IA-32 integer, segment, floating-point, MMX technology, and SSE register state 
mappings

• Instruction set transitions

• IA-32 memory and addressing model overview

This section does not cover the details of IA-32 application programming model, IA-32 
instructions and registers. Refer to the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual for details regarding IA-32 application programming model.
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The Itanium architecture can support 16-bit Real Mode, 16-bit VM86, and 16-bit/32-bit 
Protected Mode IA-32 applications in the context of an Itanium architecture-based 
operating system. Whether an IA-32 application is actually supported on specific 
operating systems is determined by the infrastructure provided by that specific 
operating system.

6.2.1 Instruction Set Modes

The processor can be executing either IA-32 or Itanium instructions at any point in 
time. PSR.is (defined in Section 3.3.2, “Processor Status Register (PSR)” on page 2:23) 
specifies the currently executing instruction set, where 1 indicates IA-32 instructions 
are executing, and 0 indicates Itanium instructions are executing. Three special 
instructions and interruptions are defined to transition the processor between the IA-32 
and the Itanium instruction sets as shown in Figure 6-1.

• jmpe (IA-32 instruction) Jump to an Itanium target instruction, and transition to the 
Itanium instruction set.

• br.ia (Itanium instruction) Branch to an IA-32 target instruction, and change the 
instruction set to IA-32.

• rfi (Itanium instruction) “Return from interruption” is defined to return to either an 
IA-32 or Itanium instruction when resuming from an interruption.

• Interruptions transition the processor to the Itanium instruction set for all 
interruption conditions.

The jmpe and br.ia instructions provide a low overhead mechanism to transfer control 
between the instruction sets. These primitives typically are incorporated into “thunks” 
or “stubs” that implement the required call linkage and calling conventions to call 
dynamic or statically linked libraries.

6.2.1.1 Instruction Set Execution in the Intel® Itanium® Architecture

While the processor executes from the Itanium instruction set (PSR.is is 0):

• Itanium instructions are fetched, decoded and executed by the processor.

• Itanium instructions can access the entire Itanium and IA-32 application register 
state. This includes IA-32 segment descriptors, selectors, general registers, 
physical floating-point registers, MMX technology registers, and SSE registers. See 

Figure 6-1. Instruction Set Transition Model

IA-32 Instruction
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Section 6.2.2, “IA-32 Application Register State Model” for a description of the 
register state mapping.

• Segmentation is disabled. No segmentation protection checks are applied nor are 
segment bases added to compute virtual addresses. All computed addresses are 
virtual addresses.

• 264 virtual addresses can be generated and memory management is used for all 
memory and I/O references.

6.2.1.2 IA-32 Instruction Set Execution

While the processor is executing the IA-32 instruction set (PSR.is is 1) within the 
Itanium System Environment, the IA-32 application architecture as defined by the 
Pentium III processor is used, namely:

• IA-32 16/32-bit application level, MMX technology, and SSE instructions are 
fetched, decoded, and executed by the processor. Instructions are confined to 
32/16-bit operations. 

• Only IA-32 application level register state is visible (i.e. IA-32 general registers, 
MMX technology, and SSE registers, selectors, EFLAGS, FP registers and FP control 
registers). Itanium application and control register state is not visible, e.g. branch, 
predicate, application, control, debug, test, and performance monitor registers.

• IA-32, Real Mode, VM86 and Protected Mode segmentation is in effect. Segment 
protection checks are applied and virtual addresses generated according to IA-32 
segmentation rules. GDT and LDT segments are defined to support IA-32 
segmented applications. Segmented 16- and 32-bit code is fully supported.

• Virtual addresses are confined to the lower 4G bytes of virtual region 0. Itanium 
architecture memory management is used to translate virtual to physical addresses 
for all IA-32 instruction set memory and I/O Port references.

• Instruction and Data memory references are forced to be little-endian. Memory 
ordering uses the Pentium III processor memory ordering model.

• IA-32 operating system resources; IA-32 paging, MTRRs, IDT, control registers, 
debug registers and privileged instructions are superseded by resources defined in 
the Itanium architecture. All accesses to these resources result in an interception 
fault.

6.2.1.3 Instruction Set Transitions

The following section summarizes behavior for each instruction set transition. Detailed 
instruction description on jmpe (IA-32 instruction) and br.ia (Itanium instruction) 
should be consulted for details.

Operating systems can disable instruction set transitions (jmpe and br.ia) by setting 
PSR.di to one. If PSR.di is one, execution of jmpe or br.ia results in a Disabled 
Instruction Set Transition Fault. System level instruction set transitions due to either 
rfi or an interruption ignore the state of PSR.di (defined in Section 3.3.2, “Processor 
Status Register (PSR)” on page 2:23).

6.2.1.3.1 JMPE Instruction

jmpe reg16/32; jmpe disp16/32 is used to jump and transfer control to the Itanium 
instruction set. There are two forms; register indirect and absolute. The absolute form 
computes the Itanium target virtual address as follows:
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IP{31:0} =disp16/32 + CSD.base
IP{63:32} = 0

The indirect form reads a 16/32-bit register location and then computes the Itanium 
target address as follows:

IP{31:0} = [reg16/32] + CSD.base
IP{63:32} = 0

jmpe targets are forced to be 16-byte aligned, and are constrained to the lower 
4G-bytes of the 64-bit virtual address space due to limited IA-32 addressability. If there 
are any pending IA-32 numeric exceptions, jmpe is nullified, and an IA-32 floating-point 
exception fault is generated.

Transitions into the Itanium instruction set do not change the privilege level of the 
processor. 

6.2.1.3.2 Branch to IA Instruction

The br.ia instruction is used to unconditionally branch to the IA-32 instruction set. 
IA-32 targets are specified by a 32-bit virtual address target (not an effective address). 
The IA-32 virtual address is truncated to 32-bits. The br.ia branch hints should always 
be set to predicted static taken. The processor transitions to the IA-32 instruction set as 
follows:

IP{31:0} = BR[b]{31:0}
IP{63:32} = 0
EIP{31:0} = IP{31:0} - CSD.base

Transitions into the IA-32 instruction set do not change the privilege level of the 
processor. 

Software should ensure the code segment descriptor and selector are properly loaded 
before issuing the branch. If the target EIP value exceeds the code segment limit or has 
a code segment privilege violation, an IA-32 GPFault(0) exception is reported on the 
target IA-32 instruction. 

The processor does not ensure Itanium instruction set generated writes into the IA-32 
instruction stream are observed by the processor. For details, see “Self Modifying Code” 
on page 1:132. Before entering the IA-32 instruction set, Itanium architecture-based 
software must ensure all prior register stack frames have been flushed to memory. All 
registers left in the current and prior register stack frames are left in an undefined state 
after IA-32 instruction set execution. Software can not rely on the value of these 
registers across an instruction set transition. For details, see “Register Stack Engine” on 
page 1:133.

6.2.1.4 IA-32 Operating Mode Transitions

As described in “IA-32 Instruction Set Execution” on page 1:111, jmpe, br.ia, and rfi 
instructions and interruptions can transition the processor between the two instruction 
set modes. Transitions are allowed between the Itanium architecture and all major 
IA-32 modes. As shown in Figure 6-1, br.ia and rfi will transition the processor from 
the Itanium instruction set into IA-32 VM86, Real Mode or Protected Mode. While jmpe 
and interruptions will transition the processor from either IA-32 VM86, Real Mode or 
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Protected Mode into the Itanium instruction set. Mode transitions between IA-32 Real 
Mode, Protected Mode and VM86 definitions are the same as those defined in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium architecture-based interface code is responsible for setting up and loading a 
consistent Protected Mode, Real Mode, or VM86 environment (e.g. loading segment 
selectors and descriptors, etc.) as defined in “Segment Descriptor and Environment 
Integrity” on page 1:119. The processor applies additional segment descriptor checks 
to ensure operations are performed in a consistent manner.

6.2.2 IA-32 Application Register State Model

As shown in Figure 6-2 and Table 6-1, IA-32 general purpose registers, segment 
selectors, and segment descriptors, are mapped into the lower 32-bits of Itanium 
general purpose registers GR8 to GR31. The floating-point register stack, MMX 
technology, and SSE registers are mapped on Itanium floating-point registers FR8 to 
FR31. 

To promote straight-forward parameter passing, integer and IEEE floating-point register 
and memory data types are binary compatible between both IA-32 and Itanium 
instruction sets.

Figure 6-1. Instruction Set Mode Transitions
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Some Itanium registers are modified to an undefined state by hardware as a side-effect 
during IA-32 instruction set execution as noted in Table 6-1 and Figure 6-2. Generally, 
Itanium system state is not affected by IA-32 instruction set execution. Itanium 
architecture-based code can reference all registers (including IA-32), while IA-32 
instruction set references are confined to the IA-32 visible application register state. 

Registers are assigned the following conventions during transitions between IA-32 and 
Itanium instruction sets. 

• IA-32 state: The register contains an IA-32 register during IA-32 instruction set 
execution. Expected IA-32 values should be loaded before switching to the IA-32 
instruction set. After completion of IA-32 instructions, these registers contain the 
results of the execution of IA-32 instructions. These registers may contain any 
value during Itanium instruction execution according to Itanium software 
conventions. Software should follow IA-32 and Itanium calling conventions for 
these registers.

• Undefined: Registers marked as undefined may be used as scratch areas for 
execution of IA-32 instructions by the processor and are not ensured to be 
preserved across instruction set transitions.

Figure 6-2. IA-32 Application Register Model
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• Shared: Shared registers contain values that have similar functionality in either 
instruction set. For example, the stack pointer (ESP) and instruction pointer (IP) 
are shared. 

• Unmodified: These registers are not altered by IA-32 execution. Itanium 
architecture-based code can rely on these values not being modified during IA-32 
instruction set execution. The register will have the same contents when entering 
the IA-32 instruction set and when exiting the IA-32 instruction set.

Table 6-1. IA-32 Application Register Mapping

Intel® Itanium® Reg IA-32 Reg Convention Size Description

General Purpose Integer Registers

GR0 constant 0

GR1-3 undefinedf scratch for IA-32 execution

GR4-7 unmodified Intel® Itanium® preserved registers

GR8 EAX

IA-32 state

32a IA-32 general purpose registers

GR9 ECX

GR10 EDX

GR11 EBX

GR12 ESP

GR13 EBP

GR14 ESI

GR15 EDI

GR16{15:0} DS

64 IA-32 selectors

GR16{31:16} ES

GR16{47:32} FS

GR16{63:48} GS

GR17{15:0} CS

GR17{31:16} SS

GR17{47:32} LDT

GR17{63:48} TSS

GR18-23 undefinedf scratch for IA-32 execution

GR24 ESD IA-32 state 64 IA-32 segment descriptors (register 
format)b

GR25-26 undefinedf scratch for IA-32 execution

GR27 DSD

IA-32 state 64
IA-32 segment descriptors (register 
format)b

GR28 FSD

GR29 GSD

GR30 LDTDc

GR31 GDTD

GR32-127 undefinedd IA-32 code execution space

Process Environment

IP IP shared 64 shared IA-32 and Intel® Itanium® virtual 
Instruction Pointer 

Floating-point Registers

FR0 constant +0.0

FR1 constant +1.0

FR2-5 unmodified Intel® Itanium® preserved registers

FR6-7 undefined IA-32 code execution space
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FR8 MM0/FP0

IA-32 state 64/80

IA-32 Intel MMX technology registers 
(aliased on 64-bit FP mantissa)
IA-32 FP registers (physical registers 
mapping)e

FR9 MM1/ FP1

FR10 MM2/FP2

FR11 MM3/FP3

FR12 MM4/FP4

FR13 MM5/FP5

FR14 MM6/FP6

FR15 MM7/FP7

FR16-17 XMM0

IA-32 state 64

IA-32 SSE registers
low order 64-bits of XMM0 are mapped to 
FR16{63:0}
high order 64-bits of XMM0 are mapped to 
FR17{63:0}

FR18-19 XMM1

FR20-21 XMM2

FR22-23 XMM3

FR24-25 XMM4

FR26-27 XMM5

FR28-29 XMM6

FR30-31 XMM7

FR32-127 undefinedf IA-32 code execution space

Predicate Registers

PR0 constant 1

PR1-63 undefinedf IA-32 code execution space

Branch Registers

BR0-5 unmodified Intel® Itanium® preserved registers

BR6-7 undefined IA-32 code execution space

Application Registers

RSC

unmodified
not used for IA-32 execution
Intel® Itanium® preserved registers

BSP

BSPSTORE

RNAT

CCV undefinedf 64 IA-32 code execution space

UNAT unmodified not used for IA-32 execution, Intel® 
Itanium® preserved register

FPSR.sf0 unmodified Intel® Itanium® numeric status and 
controls register

FPSR.sf1,2,3 undefinedf IA-32 code execution space.

FSR FSW,FTW,
MXCSR

IA-32 state

64 IA-32 numeric status and tag word and 
SSE status

FCR FCW, MXCSR 64 IA-32 numeric and SSE control

FIR FOP, FIP, FCS 64 IA-32 x87 numeric environment opcode, 
code selector and IP

FDR FEA, FDS 64 IA-32 x87 numeric environment data 
selector and offset

ITC TSC shared 64 shared IA-32 time stamp counter (TSC) 
and Intel® Itanium® Interval Timer

RUC unmodified 64 RUC continues to count while in IA-32 
execution mode

Table 6-1. IA-32 Application Register Mapping (Continued)

Intel® Itanium® Reg IA-32 Reg Convention Size Description
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6.2.2.1 IA-32 General Purpose Registers

Integer registers are mapped into the lower 32-bits of Itanium general registers GR8 to 
GR15. Values in the upper 32-bits of GR8 to GR15 are ignored on entry to IA-32 
execution. After the IA-32 instruction set completes execution, the upper 32-bits of 
GR8 - GR15 are sign-extended from bit 31.

Based on IA-32 and Itanium calling conventions, the required IA-32 state must be 
loaded in memory or registers by Itanium architecture-based code before entering the 
IA-32 instruction set.

6.2.2.2 IA-32 Instruction Pointer

The processor maintains two instruction pointers for IA-32 instruction set references, 
EIP (32-bit effective address) and IP (a 64-bit virtual address equivalent to the Itanium 
instruction set IP). IP is generated by adding the code segment base to EIP and zero 
extending to 64-bits. IP should not be confused with the 16-bit effective address 
instruction pointer of the 8086. EIP is an offset within the current code segment, while 
IP is a 64-bit virtual pointer shared with the Itanium instruction set. The following 
relationship is defined between EIP and IP while executing IA-32 instructions.

IP{63:32} = 0;
IP{31:0} = EIP{31:0} + CSD.Base;

PFS

unmodified

not used for IA-32 code execution, Prior 
EC is preserved in PFM
Intel® Itanium® preserved registers

LC

EC

EFLAG EFLAG

IA-32 state

32 IA-32 System/Arithmetic flags, 
writes of some bits condition by CPL and 
EFLAG.iopl.

CSD CSD 64 IA-32 code segment (register format)b

SSD SSD IA-32 stack segment (register format)b

CFLG CR0/CR4 64 IA-32 control flags 
CR0=CFLG{31:0}, CR4=CFLG{63:32}, 
writable at CPL=0 only.

a.  On transitions into the IA-32 instruction set the upper 32-bits are ignored. On exit the upper 32-bits are sign 
extended from bit 31.

b. Segment descriptor formats differ from the iA-32 memory format, see “IA-32 Segment Registers” on 
page 1:118 for details. Modification of a selector or descriptor does not set the access/busy bit in memory.

c. The GDT/LDT descriptors are NOT protected from modification by Itanium architecture-based user level code
d. All registers in the current and prior registers frames are left in an undefined state after IA-32 execution. 

Software must preserve these values before entering the IA-32 instruction set.
e. IA-32 floating-point register mappings are physical and do not reflect the IA-32 top of stack value.
f. These registers are used by the processor and may be left an undefined state following IA-32 instruction set 

execution. Software should preserve required values before entering IA-32 code.

Figure 6-3. IA-32 General Registers (GR8 to GR15)

63 32 31 0

sign extended EAX.. EDI{31:0}

Table 6-1. IA-32 Application Register Mapping (Continued)

Intel® Itanium® Reg IA-32 Reg Convention Size Description
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EIP is added to the code segment base and zero extended into a 64-bit virtual address 
on every IA-32 instruction fetch. If during an IA-32 instruction fetch, EIP exceeds the 
code segment limit, a GPFault is generated on the referencing instruction. Effective 
instruction addresses (sequential values or jump targets) above 4G-bytes are truncated 
to 32 bits, resulting in a 4-G byte wraparound condition.

6.2.2.3 IA-32 Segment Registers

IA-32 segment selectors and descriptors are mapped to GR16 - GR29 and AR25 - AR26. 
Descriptors are maintained in an unscrambled format shown in Figure 6-5. This format 
differs from the IA-32 scrambled memory descriptor format. The unscrambled register 
format is designed to support fast conversion of IA-32 segmented 16/32-bit pointers 
into virtual addresses by Itanium architecture-based code. IA-32 segment register load 
instructions unscramble the GDT/LDT memory format into the descriptor register 
format on a segment register load. Itanium architecture-based software can also 
directly load descriptor registers provided they are properly unscrambled by software. 
When Itanium architecture-based software loads these registers, no data integrity 
checks are performed at that time if illegal values are loaded in any fields. For a 
complete definition of all bit fields and field semantics refer to the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual.

Figure 6-4. IA-32 Segment Register Selector Format

63 48 47 32 31 16 15 0

GS FS ES DS GR16

TSS LDT SS CS GR17

Figure 6-5. IA-32 Code/Data Segment Register Descriptor Format

63 62 61 60 59 58 57 56 55 52 51 32 31 0

g d/b ig av p dpl s type lim{19:0} base{31:0}

Table 6-2. IA-32 Segment Register Fields

Field Bits Description

selector 15:0 Segment Selector value, see the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual for bit definition.

base 31:0 Segment Base value. This value when zero extended to 64-bits, points to the start of the 
segment in the 64-bit virtual address space for IA-32 instruction set memory references.

lim 51:32 Segment Limit. Contains the maximum effective address value within the segment for 
expand up segments for IA-32 instruction set memory references. For expand down 
segments, limit defines the minimum effective address within the segment. See the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual for details and 
segment limit fault conditions. The segment limit is scaled by (lim << 12) | 0xFFF if the 
segment’s g-bit is 1.

type 55:52 Type identifier for data/code segments, including the Access bit (bit 52). See the Intel® 
64 and IA-32 Architectures Software Developer’s Manual for encodings and 
definition.

s 56 Non System Segment. If 1, a data segment, if 0 a system segment.

dpl 58:57 Descriptor Privilege Level. The DPL is checked for memory access permission for IA-32 
instruction set memory references.

p 59 Segment Present bit. If 0, and a IA-32 memory reference uses this segment an 
IA_32_Exception(GPFault) is generated for data segments (CS, DS, ES, FS, GS) and 
an IA_32_Exception(StackFault) for SS.
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6.2.2.3.1 Data and Code Segments

On the transition into IA-32 code, the IA-32 segment descriptor and selector registers 
(GDT, LDT, DS, ES, CS, SS, FS and GS) must be initialized by Itanium 
architecture-based code to the required values based on IA-32 and Itanium calling 
conventions and the segmentation model used.

Itanium architecture-based code may manually load a descriptor with an 8-byte fetch 
from the LDT/GDT, unscramble the descriptor and write the segment base, limit and 
attribute. Alternately, Itanium architecture-based software can switch to the IA-32 
instruction set and perform the required segment load with an IA-32 Mov Sreg 
instruction. If Itanium architecture-based code explicitly loads the segment descriptors, 
it is responsible for the integrity of the segment descriptor.

The processor does not ensure coherency between descriptors in memory and the 
descriptor registers, nor does the processor set segment access bits in the LDT/GDT if 
segment registers are loaded by Itanium instructions.

6.2.2.3.2 Segment Descriptor and Environment Integrity

For IA-32 instruction set execution, most segment protection checks are applied by the 
processor when the segment descriptor is loaded by IA-32 instructions into a segment 
register. However, segment descriptor loads from the Itanium instruction set into the 
general purpose register file perform no such protection checks, nor are segment 
Access-bits updated by the processor. 

If Itanium architecture-based software directly loads a descriptor, it is responsible for 
the validity of the descriptor, and ensuring integrity of the IA-32 Protected Mode, Real 
Mode or VM86 environments. Table 6-3 defines software guidelines for establishing the 
initial IA-32 environment. The processor checks the integrity of the IA-32 environment 
as defined in “IA-32 Environment Runtime Integrity Checks” on page 1:122. On the 

av 60 Ignored – This field is ignored by the processor during IA-32 instruction set execution.  
This field is available for IA-32 software use and there will be no future use for this field.  
For Itanium instructions, implementations which do not support the ld16, st16 and 
cmp8xchg16 instructions can either ignore writes and return zero on reads, or write the 
value and return the last value written on reads. Implementations which do support these 
instructions write the value and return the last value written on reads.

ig 61 Ignored – This field is ignored by the processor during IA-32 instruction set execution.  
This field may have a future use and should be set to zero by IA-32 software. For Itanium 
instructions, implementations which do not support the ld16, st16 and cmp8xchg16 
instructions can either ignore writes and return zero on reads, or write the value and  
return the last value written on reads. Implementations which do support these 
instructions write the value and return the last value written on reads.

d/b 62 Segment Size. If 0, IA-32 instruction set effective addresses within the segment are 
truncated to 16-bits. Otherwise, effective addresses are 32-bits. The code segment’s 
d/b-bit also controls the default operand size for IA-32 instructions. If 1, the default 
operand size is 32-bits, otherwise 16-bits.

g 63 Segment Limit Granularity. If 1, scales the segment limit by lim=(lim<<12) | 0xFFF for 
IA-32 instruction set memory references. This field is ignored for Intel® Itanium® 
instruction set memory references.

Table 6-2. IA-32 Segment Register Fields (Continued)

Field Bits Description
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transitions between IA-32 and Itanium architecture-based code, the processor does 
NOT alter the base, limit or attribute values of any segment descriptor, nor is there a 
change in privilege level.

 Table 6-3. IA-32 Environment Initial Register State

Register Field Real Mode Protected Mode VM86 Mode

PSR cpl 0 Privilege Level 3

EFLAG vm 0 0 1

CR0 pe 0 1 1

CS

selector base >> 4a

a. Selectors should be set to 16*base for normal RM 64KB operation.

selector base >> 4

base selector << 4b

b. Segment base should be set to selector/16 for normal RM 64KB operation.

base selector << 4

dpl PSR.cpl (0) PSR.cplc

c. Unless a conforming code segment is specified

PSR.cpl (3)

d-bit 16-bitd

d. Segment size should be set to 16-bits for normal RM 64KB operation.

16/32-bit 16-bit

type data rd/wr, expand up execute data rd/wr, expand up

s-bit 1 1 1

p-bit 1 1 1

a-bit 1 1 1

g-bit/limit 0xFFFFe

e. Segment limit should be set to 0xFFFF for normal RM 64KB operation. 

limit 0xFFFF

SS

selector base >> 4a selector base >> 4

base selector << 4b base selector << 4

dpl PSR.cpl (0) PSR.cpl PSR.cpl (3)

d-bit 16-bitd 16/32-bit size 16-bit

type data rd/wr, expand up data types data rd/wr, expand up

s-bit 1 1 1

p-bit 1 1 1

a-bit 1 1 1

g-bit/limit 0xFFFFe limit 0xFFFF

DS, ES, 
FS, GS

selector base >> 4a selector base >> 4

base selector << 4b base selector << 4

dpl dpl >= PSR.cpl (0) dpl >= PSR.cpl dpl >= PSR.cpl (3)

d-bit 16-bitd 16/32-bit 0

type data rd/wr, expand up data types data rd/wr, expand up

s-bit 1 1 1

a-bit 1 1 1

p-bit 1 1/0f

f. For valid segments the p-bit should be set to 1, for null segments the p-bit should be set to 0.

1

g-bit/limit 0xFFFFe limit 0xFFFF

LDT,GDT,
TSS

selector

N/A

selector

base base

dpl dpl >= PSR.cpl

d-bit 0

type ldt/gdt/tss types

s-bit 0

p-bit 1

a-bit 1

g-bit/limit limit
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6.2.2.3.2.1 Protected Mode

Itanium architecture-based software should follow these rules for setting up the 
segment descriptors for Protected Mode environment before entering the IA-32 
instruction set:

• Itanium architecture-based software should ensure the stack segment descriptor 
register’s DPL==PSR.cpl. 

• For DSD, ESD, FSD and GSD segment descriptor registers, Itanium 
architecture-based software should ensure DPL>=PSR.cpl. 

• For CSD segment descriptor register, Itanium architecture-based software should 
ensure DPL==PSR.cpl (except for conforming code segments). 

• Software should ensure that all code, stack and data segment descriptor registers 
do not contain encodings for any system segments.

• Software should ensure the a-bit of all segment descriptor registers are set to 1.

• Software should ensure the p-bit is set to 1 for all valid data segments and to 0 for 
all NULL data segments.

6.2.2.3.2.2 VM86

Itanium architecture-based software should follow these rules when setting up segment 
descriptors for the VM86 environment before entering the IA-32 instruction set:

• PSR.cpl must be 3 (or IPSR.cpl must be 3 for rfi).

• Itanium architecture-based software should ensure the stack segment descriptor 
register’s DPL==PSR.cpl==3 and set to 16-bit, data read/write, expand up. 

• For CSD, DSD, ESD, FSD and GSD segment descriptor registers, Itanium 
architecture-based software should ensure DPL==3, the segment is set to 16-bit, 
data read/write, expand up. 

• Software should ensure that all code, stack and data segment descriptor registers 
do not contain encodings for any system segments.

• Software should ensure the P-bit and A-bit of all segment descriptor registers is 
one.

• Software should ensure that the relationship Base = Selector*16, is maintained for 
all DSD, CSD, ESD, SSD, FSD, and GSD segment descriptor registers, otherwise 
processor operation is unpredictable.

• Software should ensure that the DSD, CSD, ESD, SSD, FSD, and GSD segment 
descriptor register’s limit value is set to 0xFFFF, otherwise spurious segment limit 
faults (GPFault or Stack Faults) may be generated.

• Itanium architecture-based software should ensure all segment descriptor registers 
are data read/write, including the code segment. The processor will ignore execute 
permission faults.

6.2.2.3.2.3 Real Mode

Itanium architecture-based software should follow these rules when setting up segment 
descriptors for the Real Mode environments before entering the IA-32 instruction set, 
otherwise software operation is unpredictable. 

• Itanium architecture-based software should ensure PSR.cpl is 0

• Itanium architecture-based software should ensure the stack segment descriptor 
register’s DPL is 0. 
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• Software should ensure that all code, stack and data segment descriptor registers 
do not contain encodings for any system segments.

• Software should ensure the P-bit and A-bit of all segment descriptor registers is 
one.

• For normal real mode 64K operations, software should ensure that the relationship 
Base = Selector*16, is maintained for all DSD, CSD, ESD, SSD, FSD, and GSD 
segment descriptor registers.

• For normal real mode 64K operations, software should ensure that the DSD, CSD, 
ESD, SSD, FSD, and GSD segment descriptor register’s limit value is set to 0xFFFF 
and the segment size is set to 16-bit (64K)

• Itanium architecture-based software should ensure all segment descriptor registers 
indicate readable, writable, including the code segment for normal Real Mode 
operation.

6.2.2.3.3 IA-32 Environment Runtime Integrity Checks

Processors in the Itanium processor family perform additional runtime checks to verify 
the integrity of the IA-32 environments. These checks are in addition to the runtime 
checks defined on IA-32 processors and are high-lighted in Table 6-4. Existing IA-32 
runtime checks are listed but not highlighted. Descriptor fields not listed in the table are 
not checked. As defined in the table, runtime checks are performed either on IA-32 
instruction code fetches or on an IA-32 data memory reference to one of the specified 
segment registers. These runtime checks are not performed during transitions from the 
Itanium instruction set to the IA-32 instruction set.

 Table 6-4. IA-32 Environment Runtime Integrity Checks

Reference Resource Real Mode Protected Mode VM86Mode Fault

all code fetches

PSR.cpl is not 0 ignored is not 3

Code Fetch Fault 
(GPFault(0))a

EFLAG.vmC
FLG.pe

EFLAG.vm is 1 and CFLG.pe is 0

EFLAG.vif
EFLAG.vip

EFLAG.vip & EFLAG.vif & CFLG.pe & 
PSR.cpl==3 & 

(CFLG.pvi | (EFLAG.vm & CFLG.vme))

all code fetches 
CS

dpl ignored dpl is not 3

Code Fetch Fault 
(GPFault(0))

d-bit is not 16-bit

type ignored (can be exec or data)

 GPFault if data expand down

s, p, a-bits are not 1

g-bit/limit segment limit violation

data memory 
references to SS

dpl dpl!=PSR.cpl

Stack Fault

d-bit ignored is not 16-bit

type ignored data expand down

read and not readable, write and not writeable

s, p, a-bits are not 1

g-bit/limit segment limit violation
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6.2.2.4 IA-32 Application EFLAG Register

The EFLAG (AR24) register is made up of two major components, user arithmetic flags 
(CF, PF, AF, ZF, SF, OF, and ID) and system control flags (TF, IF, IOPL, NT, RF, VM, AC, 
VIF, VIP). None of the arithmetic or system flags affect Itanium instruction execution. 
See Table 6-5, “IA-32 EFLAGS Register Fields” on page 1:124 for the behavior on IA-32 
and Itanium instruction reads/writes to this application register. For details on system 
flags in the IA-32 EFLAGS register, see Section 10.3.2, “IA-32 System EFLAG Register” 
on page 2:243.

The arithmetic flags are used by the IA-32 instruction set to reflect the status of IA-32 
operations, control IA-32 string operations, and control branch conditions for IA-32 
instructions. These flags are ignored by Itanium instructions. Flags ID, OF, DF, SF, ZF, 
AF, PF and CF are defined in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual.

data memory 
references to 
DS, ES, FS and GS

dpl ignored

GPFault(0)

d-bit ignored is not 16-bit

type ignored data expand down

read and not readable, write and not writeable

s, p, a-bits are not 1

g-bit/limit segment limit violation

data memory 
references to
 CS

dpl ignored

GPFault(0)

d-bit ignored is not 16-bit

type ignored data expand down

rd/wr checks are 
ignored

rd and not readable, 
wr and not writeable

rd/wr checks are 
ignored

s, p, a-bits are not 1

g-bit/limit segment limit violation

memory 
references to 
LDT,GDT,
TSS

dpl ignored

GPFault
(Selector/0)b

type ignored

s-bit is not 0

a, d-bits ignored

p-bit is not 1

g-bit/limit segment limit violation

a. Code Fetch Faults are delivered as higher priority GPFault(0).
b. The GP Fault error code is the selector value if the reference is to GDT or LDT. Otherwise the error code is zero.

Figure 6-1. IA-32 EFLAG Register (AR24)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (set to 0) id vip vif ac vm rf 0 nt iopl of df if tf sf zf 0 af 0 pf 1 cf

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0)

Table 6-4. IA-32 Environment Runtime Integrity Checks (Continued)

Reference Resource Real Mode Protected Mode VM86Mode Fault
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.

6.2.2.5 IA-32 Floating-point Registers

IA-32 floating-point register stack, numeric controls and environment are mapped into 
the Itanium floating-point registers FR8 - FR15 and the application register name space 
as shown in Table 6-6.

Table 6-5. IA-32 EFLAGS Register Fields

EFLAGa

a. On entry into the IA-32 instruction set all bits may be read by subsequent IA-32 instructions, after exit from the 
IA-32 instruction set these bits represent the results of all prior IA-32 instructions. None of the EFLAG bits alter 
the behavior of Itanium instruction set execution.

Bits Description

cf 0 IA-32 Carry Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

1 Ignored – For IA-32 instructions, writes are ignored, reads return one. For Itanium 
instructions, the implementation can either ignore writes and return one on reads; or 
write the value, and return the last value written on reads.

3,5,
15

Ignored – For IA-32 instructions, writes are ignored, reads return zero. For Itanium 
instructions, the implementation can either ignore writes and return zero on reads, or 
write the value and return the last value written on reads.

pf 2 IA-32 Parity Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

af 4 IA-32 Aux Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

zf 6 IA-32 Zero Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

sf 7 IA-32 Sign Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

tf 8
See Section 10.3.2, “IA-32 System EFLAG Register” on page 2:243.

if 9

df 10 IA-32 Direction Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

of 11 IA-32 Overflow Flag. See the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual for details.

iopl 13:12

See Section 10.3.2, “IA-32 System EFLAG Register” on page 2:243.

nt 14

rf 16

vm 17

ac 18

vif 19

vip 20

id 21

63:22 This field is reserved for IA-32 instructions – reads return zeros and non-zero writes 
causes IA_32_Exception (General Protection) faults. For Itanium instructions, the 
implementation can either raise Reserved Register/Field fault on non-zero writes and 
return zero on reads, or write the value (no Reserved Register/Field fault), and return the 
last value written on reads.



Volume 1, Part 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:125

6.2.2.5.1 IA-32 Floating-point Stack

IA-32 floating-point registers are defined as follows:

• IA-32 numeric register stack is mapped to FR8 - FR15, using the Intel 8087 80-bit 
IEEE floating-point format. 

• For IA-32 instruction set references, floating-point registers are logically mapped 
into FR8 - FR15 based on the IA-32 top-of-stack (TOS) pointer held in FCR.top. FR8 
represents a physical register after the TOS adjustment and is not necessarily the 
top of the logical floating-point register stack.

• For Itanium instruction set references, the floating-point register numbers are 
physical and not a function of the numeric TOS pointer, e.g. references to FR8 
always return the value in physical register FR8 regardless of the TOS value. 
Itanium architecture-based software cannot necessarily assume that FR8 contains 
the IA-32 logical register ST(0). It is highly recommended that typically IA-32 
calling conventions be used which pass floating-point values through memory.

6.2.2.5.2 Special Cases

For IA-32 floating-point instructions, loading a single or double denormal results in a 
normalized double-extended value placed in the target floating-point register. For 
Itanium instructions, loading a single or double denormal results in an un-normalized 
denormal value placed in the target floating-point register. There are two canonical 
exponent values in the Itanium architecture which indicate single precision and double 
precision denormals.

When transferring floating-point values from Itanium to IA-32 instructions, it is highly 
recommended that typical IA-32 calling conventions be followed which pass 
floating-point values through the memory stack. If software does pass floating-point 
values from IA-32 to Itanium architecture-based code via the floating-point registers, 
software must ensure the following:

• Single or double precision Itanium denormals must be converted into a normalized 
double extended precision value expected by IA-32 instructions. Software can 
convert Itanium denormals by multiplying by 1.0 in double extended precision 
(fma.sfx fr = fr, f1, f0). If an illegal single or double precision denormal is 

Table 6-6. IA-32 Floating-point Register Mappings

Intel® Itanium® 
Reg

IA-32 Reg Size (bits) Description

FR8 ST[(TOS + N)==0]

80

IA-32 numeric register stack

Accesses to FR8 - FR15 by Intel® Itanium® 
instructions ignore the IA-32 TOS adjustment 

IA-32 accesses use the TOS adjustment for a 
given register N

FR9 ST[(TOS + N)==1]

FR10 ST[(TOS + N)==2]

FR11 ST[(TOS + N)==3]

FR12 ST[(TOS + N)==4]

FR13 ST[(TOS + N)==5]

FR14 ST[(TOS + N)==6]

FR15 ST[(TOS + N)==7]

FCR (AR21) FCW, MXCSR 64 IA-32 numeric and SSE control register

FSR (AR28) FSW,FTW, MXCSR 64 IA-32 numeric and SSE status and tag word

FIR (AR29) FOP, FCS, FIP 64 IA-32 numeric instruction pointer

FDR (AR30) FDS, FEA 48 IA-32 numeric data pointer
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encountered in IA-32 floating-point operations, an IA-32 Exception (FPError Invalid 
Operand) fault is generated.

• Floating-point values must be within the range of the IA-32 80-bit (15-bit 
exponent) double extended precision format. The Itanium architecture uses 82 bits 
(17-bit widest range exponent) for intermediate calculations. Software must ensure 
all floating-point register values passed to IA-32 instructions are representable in 
double extended precision 80-bit format, otherwise processor operation is model 
specific and undefined. Undefined behavior can include but is not limited to: the 
generation of an IA_32_Exception (FPError Invalid Operation) fault when used by 
an IA-32 floating-point instruction, rounding of out-of-range values to 
zero/denormal/infinity and possible IA_32_Exception (FPError Overflow/Underflow) 
faults, or float-point register(s) containing out of range values silently converted to 
QNAN or SNAN (conversion could occur during entry to the IA-32 instruction set or 
on use by an IA-32 floating-point instruction). Software can ensure all passed 
floating-point register values are within range by multiplying by 1.0 in double 
extended precision format (with widest range exponent disabled) by using fma.sfx 
fr = fr, f1, f0.

• Floating-point NaTVal values must not be propagated into IA-32 floating-point 
instructions, otherwise processor operation is model specific and undefined. 
Processors may silently convert floating-point register(s) containing NaTVal to a 
SNAN (during entry to the IA-32 instruction set or on a consuming IA-32 
floating-point instruction). Dependent IA-32 floating-point instructions that directly 
or indirectly consume a propagated NaTVal register will either propagate the NaTVal 
indication or generate an IA_32_Exception (FPError Invalid Operand) fault. 
Whether a processor generates the fault or propagates the NaTVal is model specific. 
In no case will the processor allow a NaTVal register to be used without either 
propagating the NaTVal or generating an IA_32_Exception (FPError Invalid 
Operand) fault.

Note: It is not possible for IA-32 code to read a NaTVal from a memory location with 
an IA-32 floating-point load instruction, since a NatVal cannot be expressed by 
a 80-bit double extended precision number. 

It is highly recommended that floating-point values be passed on the memory stack per 
typical IA-32 calling conventions to avoid numeric problems with NatVal and Itanium 
denormals.

6.2.2.5.3 IA-32 Floating-point Control Registers

FPSR controls Itanium floating-point instructions control and status bits. FPSR does not 
control IA-32 floating-point instructions or reflect the status of IA-32 floating-point 
instructions. IA-32 floating-point and SSE instructions have separate control and status 
registers, namely FCR (floating-point control register) and FSR (floating-point status 
register).

FCR contains the IA-32 FCW bits and all SSE control bits as shown in Figure 6-1.

FSR contains the IA-32 floating-point status flags FSW, FTW, and SSE status fields as 
shown in Figure 6-2. The Tag fields indicate whether the corresponding IA-32 logical 
floating-point register is empty. Tag encodings for zero and special conditions such as 
Nan, Infinity or Denormal of each IA-32 logical floating-point register are not 
supported. However, IA-32 instruction set reads of FTW compute the additional special 
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conditions of each IA-32 floating-point register. Itanium architecture-based code can 
issue a floating-point classify operation to determine the disposition of each IA-32 
floating-point register.

FCR and FSR collectively hold all IA-32 floating-point control, status and tag 
information. IA-32 instructions that are updated and controlled by MXSCR, FCW, FSW 
and FTAG effectively update FSR and are controlled by FSR. IA-32 reads/writes of 
MXCSR, FSW, FCW and FTW return the same information as reads/writes of FSR and 
FCR by Itanium instructions.

Software must ensure that FCR and FSR are properly loaded for IA-32 numeric 
execution before entering the IA-32 instruction set. For Itanium instructions accessing 
ignored fields, the implementation can either ignore writes and return the specified 
constant on reads, or write the value and return the last value written on reads. For 
Itanium instructions accessing reserved fields, the implementation can either raise 
Reserved Register/Field fault on non-zero writes and return zero on reads, or write the 
value (no Reserved Register/Field fault), and return the last value written on reads.

Figure 6-1. IA-32 Floating-point Control Register (FCR)

IA-32 FCW{12:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (set to 0) IC RC PC 0 1 PM UM OM ZM DM IM

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) FZ RC PM UM OM ZM DM IM rv ignored

IA-32 MXCSR (control)

Figure 6-2. IA-32 Floating-point Status Register (FSR)

IA-32 FTW{15:0} IA-32 FSW{15:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TG7 0 TG6 0 TG5 0 TG4 0 TG3 0 TG2 0 TG1 0 TG0 B C3 TOP C2 C1 C0 ES SF PE UE OE ZE DE IE

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 454443 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) ignored rv PE UE OE ZE DE IE

IA-32 MXCSR (status)

Table 6-7. IA-32 Floating-point Status Register Mapping (FSR)

IA-32 State Intel® Itanium® 
State Bits IA-32 Usage Usage in the Intel® 

Itanium® Architecture

FSW, FTW, MXCSR state in the FSR Register
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6.2.2.5.4 IA-32 Floating-point Environment

To support the Intel 8087 delayed numeric exception model, FSR, FDR and FIR contain 
pending information related to the numeric exception. FDR contains the operand’s 
effective address and segment selector. FIR contains the numeric instruction’s effective 
address, code segment selector, and opcode bits. FSR summaries the type of numeric 
exception in the IE, DE, ZE, OE, UE, PE, SF and ES-bits. The ES-bit summarizes the 
IA-32 floating-point exception status as follows:

• When FSR.es is read by Itanium architecture-based code, the value returned is 
either a summary of any unmasked pending exceptions contained in the FSR, IE, 
DE, ZE, OE, UE, and PE bits or it may be the value that was last written into the 
register depending on the implementation.

FSW.ie FSR.ie 0 Invalid operation Exception

None of these bits reflect 
the status of Intel® 
Itanium® floating-point 
execution.

See the Intel® 64 and 
IA-32 Architectures 
Software Developer’s 
Manual for IA-32 numeric 
flag details

FSW.de FSR.de 1 Denormalized operand 
Exception

FSW.ze FSR.ze 2 Zero divide Exception

FSW.oe FSR.oe 3 Overflow Exception

FSW.ue FSR.ue 4 Underflow Exception

FSW.pe FSR.pe 5 Precision Exception

FSW.sf FSR.sf 6 Stack Fault

FSW.es FSR.esa 7 Error Summary

FSW.c3:0 FSR.c3:0 8:10,14 Numeric Condition codes

FSW.top FSR.top 11:13 Top of IA-32 numeric stack

FSW.b FSR.b 15 IA-32 FPU Busy always 
equals state of FSW.ES

FTW FSR.tg
{7:0}b

16,18,20,22
,24,26,28,30

Numeric Tags 0-NotEmpty, 
1-Emptyc

zeros 17,19,21,23,25,
27,29,31, 39:47

Ignored – Writes are 
ignored, reads return zero

MXCSR.ie FSR.ie 32 SSE Invalid operation 
Exception

Does not reflect the status 
of Intel® Itanium® 
floating-point execution. 

See Intel® 64 and IA-32 
Architectures Software 
Developer’s Manual for 
details.

MXCSR.de FSR.de 33 SSE Denormalized operand 
Exception

MXCSR.ze FSR.ze 34 SSE Zero divide Exception

MXCSR.oe FSR.oe 35 SSE Overflow Exception

MXCSR.ue FSR.ue 36 SSE Underflow Exception

MXCSR.pe FSR.pe 37 SSE Precision Exception

reserved 38, 48:63 Reserved

ignored 39:47 Ignored – Writes are 
ignored, reads return zero

a. Exception Summary bit, see Section 6.2.2.5.4, “IA-32 Floating-point Environment” for details
b. Tag encodings indicate whether each IA-32 numeric register contains an zero, NaN, Infinity or Denormal are 

not supported by reads of FSR by Itanium instructions. IA-32 instruction set reads of the FTW field do return 
zero, Nan, Infinity and Denormal classifications.

c. All MMX technology instructions set all Numeric Tags to 0 = NotEmpty. However, MMX technology instruction 
EMMS sets all Numeric Tags to 1 = Empty.

Table 6-7. IA-32 Floating-point Status Register Mapping (FSR) 

IA-32 State Intel® Itanium® 
State Bits IA-32 Usage Usage in the Intel® 

Itanium® Architecture
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• When FSR.es is set to 1 by Itanium architecture-based code, delayed IA-32 
numeric exceptions are generated on the next IA-32 floating-point instruction, 
regardless of numeric exception information written into FSR bits; IE, DE, ZE, OE, 
UE, and PE.

• When FSR.es is written with inconsistent state with respect to the FSR bits (IE, DE, 
ZE, OE, and PE), subsequent numeric exceptions may report inconsistent 
floating-point status bits. 

For Itanium instructions, the implementation can either raise Reserved Register/Field 
faults on non-zero writes to the reserved fields, or write the value and return the last 
value written on reads. FSR, FDR, and FIR must be preserved across a context switch to 
generate and accurately report numeric exceptions.

6.2.2.6 IA-32 Intel® MMX™ Technology Registers

The eight IA-32 Intel MMX technology registers are mapped on the eight Itanium 
floating-point registers FR8 - FR15 where MM0 is mapped to FR8 and MM7 is mapped to 
FR15. The MMX technology register mapping for the IA-32 floating-point stack view is 
dependent on the floating-point IA-32 Top-of-Stack value. 

• When a value is written to an MMX technology register using an IA-32 MMX 
technology instruction: 

• The exponent field of the corresponding floating-point register (bits 80-64) and 
the sign bit (bit 81) are set to all ones.

• The mantissa (bits 63-0) is set to the MMX technology data value.

• When a value is read from an MMX technology register by an IA-32 MMX technology 
instruction: 

• The exponent field of the corresponding floating-point register (bits 80-64) and 
its sign bit (bit 81) are ignored, including any NaTVal encodings.

As a result of this mapping, the mantissa of a floating-point value written by either 
IA-32 or Itanium floating-point instructions will also appear in an IA-32 MMX technology 
register. An IA-32 MMX technology register will also appear in one of the eight mapped 
floating-point register’s mantissa field.

Figure 6-1. Floating-point Data Register (FDR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

operand offset (fea)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) operand selector (fds)

Figure 6-2. Floating-point Instruction Register (FIR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

code offset (fip)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved opcode {10:0} (fop) code selector (fcs)

Figure 6-3. IA-32 Intel® MMX™ Technology Registers (MM0 to MM7)

81 80 64 63 0

1 ones MM0..MM7{31:0} FR8-15
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To avoid performance degradation, software programmers are strongly recommended 
not to intermix IA-32 floating and IA-32 MMX technology instructions. See the Intel® 
64 and IA-32 Architectures Software Developer’s Manual for MMX technology 
coding guidelines for details.

6.2.2.7 IA-32 SSE Registers

The eight 128-bit IA-32 SSE registers (XMM0-7) are mapped on sixteen physical 
Itanium floating-point register pairs FR16 - FR31. The low order 64-bits of XMM0 are 
mapped to FR16{63:0}, and the high order 64-bits of XMM0 are mapped to 
FR17{63:0}. 

• When a value is written to an SSE register using IA-32 SSE instructions:

• The exponent field of the corresponding Itanium floating-point register (bits 
80-64) is set to 0x1003E and the sign bit (bit 81) is set to 0.

• The mantissa (bits 63-0) is set to the XMM data value bits{63:0} for even 
registers and bits{127:64} for odd registers.

• When a SSE register is read using IA-32 SSE instructions:

• The exponent field of the corresponding Itanium floating-point register (bits 
80-64) and the sign bit (bit 81) are ignored, including any NaTVal encodings.

6.2.3 Memory Model Overview

Virtual addresses within either the Itanium or IA-32 instruction set are defined to 
address the same physical memory location. Itanium instructions directly generate 
64-bit virtual addresses. IA-32 instructions generate 16- or 32-bit effective addresses 
that are then converted into 32-bit virtual addresses by IA-32 segmentation. 32-bit 
virtual addresses are then converted into 64-bit virtual addresses by zero extending to 
64-bits. Zero extension places all IA-32 memory references in the lower 4G-bytes of 
the 64-bit virtual address space within virtual region 0. Virtual addresses generated by 
either instruction set are then translated into physical addresses using memory 
management mechanisms defined in Chapter 4, “Addressing and Protection” in Volume 
2. 

Figure 6-4. SSE Registers (XMM0-XMM7)

81 80 64 63 0

0 0x1003E XMM0-7{127:64} FR17-31, odd

81 80 64 63 0

0 0x1003E XMM0-7{63:0} FR16-30, even
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6.2.3.1 Memory Endianess

Memory integer and floating-point (IEEE) data types are binary compatible between the 
IA-32 and Itanium instruction sets. Itanium architecture-based applications and 
operating systems that interact with IA-32 code should use “little-endian” accesses to 
ensure that memory formats are the same. All IA-32 instruction data and instruction 
memory references are forced to “little-endian.”

6.2.3.2 IA-32 Segmentation

Segmentation is not used for Itanium instruction set memory references. Segmentation 
is performed on IA-32 instruction set memory references based on the state of 
EFLAG.vm and CFLG.pe. Either Real Mode, VM86, or Protected Mode segmentation 
rules are followed as defined in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, specifically: 

• IA-32 Data 16/32-bit Effective Addresses: 16 or 32-bit effective addresses are 
generated, based on CSD.d, SSD.b and prefix overrides, by the addition of a base 
register, scaled index register and 16/32-bit displacement value. Starting effective 
addresses (first byte of multi-byte operands) larger than 16 or 32 bits are truncated 
to 16 or 32-bits. Ending (last byte of multi-byte operands) 16-bit effective 
addresses can extend above the 64K byte boundary, however, ending 32-bit 
effective addresses are truncated to 32-bits and do not extend above the 4G-byte 
effective address boundary. Refer to the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual for complete details on wrap conditions.

• IA-32 Code 16/32-bit Effective Addresses: 16 or 32-bit EIP, based on CSD.d, is 
used as the effective address. Starting EIP values (first byte of multi-byte 
instruction) larger than 16 or 32 bits are truncated to 16 or 32-bits. Ending (last 
byte of multi-byte instruction) 16-bit effective addresses can extend above the 64K 
byte boundary, however, ending 32-bit EIP values are truncated to 32-bits and do 
not extend above the 4G-byte effective address boundary.

• IA-32 32-bit Virtual Address Generation: The resultant 16 or 32-bit effective 
address is mapped into the 32-bit virtual address space by the addition of a 
segment base. Full segment protection and limit checks are verified as specified by 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual and 
additional checks as specified in this section. Starting 32-bit virtual addresses are 
truncated to 32-bits after the addition of the segment base. Ending virtual address 

Figure 6-5. Memory Addressing Model
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(last byte of a multiple byte operand or instruction) is truncated (wrapped) at the 
4G-byte virtual boundary

• IA-32 64-bit Address Generation: The resultant 32-bit virtual address is 
converted into a 64-bit virtual address by zero extending to 64-bits, this places all 
IA-32 instruction set memory references within the first 4G-bytes of the 64-bit 
virtual address space within virtual region 0.

If IA-32 code is utilizing a flat segmented model (segment bases are set to zero) then 
IA-32 and Itanium architecture-based code can freely exchange pointers after a pointer 
has been zero extended to 64-bits. For segmented IA-32 code, effective address 
pointers must be first transformed into a virtual address before they are shared with 
Itanium architecture-based code. 

6.2.3.3 Self Modifying Code

While operating in the IA-32 instruction set, self modifying code and instruction cache 
coherency (coherency with respect to the local processor’s data cache) is supported for 
all IA-32 programs. Self modifying code detection is directly supported at the same 
level of compatibility as the Pentium processor. Software must insert an IA-32 branch 
instruction between the store operation and the instruction modified for the updated 
instruction bytes to be recognized. 

It is undefined whether the processor will detect a IA-32 self modifying code event for 
the following conditions; 1) PSR.dt or PSR.it is 0, or 2) there are virtual aliases to 
different physical addresses between the instruction and data TLBs. To ensure self 
modifying code works correctly for IA-32 applications, the operating system must 
ensure that there are no virtual aliases to different physical addresses between the 
instruction and data TLBs.

When switching from the Itanium instruction set to the IA-32 instruction set, and while 
executing Itanium instructions, self modifying code and instruction cache coherency are 
not directly supported by the processor hardware. Specifically, if a modification is made 
to IA-32 instructions by Itanium instructions, Itanium architecture-based code must 
explicitly synchronize the instruction caches with the code sequence defined in 
“Memory Consistency” on page 1:72. Otherwise the modification may or may not be 
observed by subsequent IA-32 instructions.

When switching from the IA-32 to the Itanium instruction sets, modification of the local 
instruction cache contents by IA-32 instructions is detected by the processor hardware. 
The processor ensures that the instruction cache is made coherent with respect to the 
modification and all subsequent Itanium instruction fetches see the modification.

6.2.3.4 Memory Ordering Interactions

IA-32 instructions are mapped into the Itanium memory ordering model as follows:

• All IA-32 stores have release semantics

• All IA-32 loads have acquire semantics

• All IA-32 read-modify-write or lock instructions have release and acquire 
semantics (fully fenced).
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Instruction set transitions do not automatically fence memory data references. To 
ensure proper ordering software needs to take into account the following ordering 
rules.

Transitions from Itanium instruction set to IA-32 instruction set

• All data dependencies are honored, IA-32 loads see the results of all prior Itanium 
stores

• IA-32 stores (release) can not pass any prior Itanium load or store

• IA-32 loads (acquire) can pass prior Itanium unordered loads or any prior Itanium 
store to a different address. Itanium architecture-based software can prevent IA-32 
loads from passing prior Itanium loads and stores by issuing an acquire operation 
(or mf) before the instruction set transition.

Transitions from IA-32 instruction set to Itanium instruction set

• All data dependencies are honored, Itanium loads see the results of all prior IA-32 
stores

• Itanium stores or loads can not pass prior IA-32 loads (acquire)

• Itanium unordered stores or any Itanium load can pass prior IA-32 stores (release) 
to a different address. Itanium architecture-based software can prevent Itanium 
loads and stores from passing prior IA-32 stores by issuing a release operation (or 
mf) after the instruction set transition.

6.2.4 IA-32 Usage of Intel® Itanium® Registers

This section lists software considerations for the Itanium general and floating-point 
registers, and the ALAT when interacting with IA-32 code. 

6.2.4.1 Register Stack Engine

Software must ensure that all dirty registers in the register stack have been flushed to 
the backing store using a flushrs instruction before starting IA-32 execution via either 
the br.ia or rfi. Any dirty registers left in the current and prior register stack frames 
are left in an undefined state. Software can not rely on the value of these registers 
across an instruction set transition.

Once IA-32 instruction set execution is entered, the RSE is effectively disabled, 
regardless of any RSE control register enabling conditions.

After exiting the IA-32 instruction set due to a jmpe instruction or interruption, all 
stacked registers are marked as invalid and the number of clean registers is set to zero.

6.2.4.2 ALAT

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software 
cannot rely on ALAT state being preserved across an instruction set transition. On entry 
to IA-32 code, existing entries in the ALAT are ignored. For details on the ALAT, refer to 
Section 4.4.5.2, “Data Speculation and Instructions” on page 1:64.
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6.2.4.3 NaT/NaTVal Response for IA-32 Instructions

If Itanium architecture-based code sets a NaT condition in the integer registers or a 
NaTVal condition in a floating-point register, MMX technology, or SSE register before 
switching to the IA-32 instruction set the following conditions can arise:

• When the IA-32 instruction set is entered, NaT values must not be contained in any 
register defined to contain IA-32 state, otherwise processor operation is model 
specific and undefined. Processors may generate a NaT Register Consumption Abort 
on any IA-32 instruction at any time (including the first IA-32 instruction) for all 
IA-32 integer, MMX technology, SSE, or FP instructions regardless of whether not 
that instruction directly (or indirectly) references a register containing a NaT. NaT 
Register Consumption aborts encountered during IA-32 execution may terminate 
IA-32 instructions in the middle of execution with architectural state already 
modified.

• Floating-point NaTVal values must not be propagated into IA-32 floating-point 
instructions, otherwise processor operation is model specific and undefined. 
Processors may convert floating-point register(s) containing NaTVal to a SNAN 
(during entry to the IA-32 instruction set or on a consuming IA-32 floating-point 
instruction). Dependent IA-32 floating-point instructions that directly or indirectly 
consume a propagated NaTVal register will either propagate the NaTVal indication 
or generate an IA_32_Exception (FPError Invalid Operand) fault. Whether a 
processor generates the fault or propagates the NaTVal is model specific. In no case 
will the processor allow a NaTVal register to be used without either propagating the 
NaTVal or generating an IA_32_Exception (FPError Invalid Operand) fault.

Note: It is not possible for IA-32 code to read a NaTVal from a memory location with 
an IA-32 floating-point load instruction since a NaTVal cannot be expressed by 
a 80-bit double extended precision number. It is highly recommended that 
floating-point values be passed on the memory stack per typical IA-32 calling 
conventions to avoid problems with NatVal and Itanium denormals.

• IA-32 SSE instructions that directly or indirectly consume a register containing a 
NaTVal encoding, will ignore the NaTVal encoding and interpret the register’s 
mantissa field as a legal data value.

• IA-32 MMX technology instructions that directly or indirectly consume a register 
containing a NaTVal encoding, will ignore the NaTVal encoding and interpret the 
register’s mantissa field as a legal data value.

Software should not rely on the behavior of NaT or NaTVal during IA-32 instruction 
execution, or propagate NaT or NaTVal into IA-32 instructions.

§



1:135 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Part II: Optimization Guide for the 
Intel® Itanium® Architecture



1:136 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3



Volume 1, Part 2: About the Optimization Guide 1:137

About the Optimization Guide 1

The second portion of this document explains in detail optimization techniques 
associated with the Itanium instruction set. It is intended for those interested in 
furthering their understanding of application architecture features and optimization 
techniques that benefit application performance. Intel and the industry are developing 
compilers to take advantage of these techniques. Application developers are not 
advised to use this as a guide to assembly language programming for the Itanium 
architecture. 

Note: To demonstrate techniques, this guide contains code examples that are not tar-
geted towards a specific processor based on the Itanium architecture, but 
rather a hypothetical implementation. For these code examples, ALU operations 
are assumed to take one cycle and loads take two cycles to return from first 
level cache and that there are two load/store execution units and four ALUs. 
Other latencies and execution unit details are described as needed 

1.1 Overview of the Optimization Guide

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture” 
provides an overview of the application programming environment.

Chapter 3, “Memory Reference” discusses features and optimizations related to control 
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization 
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on 
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in 
floating- point applications and features that address these limitations.

§
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Introduction to Programming for the Intel® 
Itanium® Architecture 2

2.1 Overview

The Itanium instruction set is designed to allow the compiler to communicate 
information to the processor to manage resource characteristics such as instruction 
latency, issue width, and functional unit assignment. Although such resources can be 
statically scheduled, the Itanium architecture does not require that code be written for 
a specific microarchitecture implementation in order to be functional.

The Itanium architecture includes a complete instruction set with new features 
designed to: 

• Increase instruction-level parallelism (ILP).

• Better manage memory latencies.

• Improve branch handling and management of branch resources.

• Reduce procedure call overhead.

The architecture also enables high floating-point performance and provides direct 
support for multimedia applications.

Complete descriptions of the syntax and semantics of Itanium instructions can be found 
in Volume 3: Intel® Itanium® Instruction Set Reference. Though this chapter provides 
a high level introduction to application level programming, it assumes prior experience 
with assembly language programming as well as some familiarity with the Itanium 
application architecture. Optimization is explored in other chapters of this guide.

2.2 Registers

The architecture defines 128 general purpose registers, 128 floating-point registers, 64 
predicate registers, and up to 128 special purpose registers. The large number of 
architectural registers enable multiple computations to be performed without having to 
frequently spill and fill intermediate data to memory.

There are 128, 64-bit general purpose registers (r0-r127) that are used to hold 
values for integer and multimedia computations. Each of the 128 registers has one 
additional NaT (Not a Thing) bit which is used to indicate whether the value stored in 
the register is valid. Execution of Itanium speculative instructions can result in a 
register’s NaT bit being set. Register r0 is read-only and contains a value of zero (0). 
Attempting to write to r0 will cause a fault.

There are 128, 82-bit floating-point registers (f0-f127) that are used for 
floating-point computations. The first two registers, f0 and f1, are read-only and read 
as +0.0 and +1.0, respectively. Instructions that write to f0 or f1 will fault.
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There are 64, one-bit predicate registers (p0-p63) that control conditional execution 
of instructions and conditional branches. The first register, p0, is read-only and always 
reads true (1). The results of instructions that write to p0 are discarded.

There are 8, 64-bit branch registers (b0-b7) that are used to specify the target 
addresses of indirect branches. 

There is space for up to 128 application registers (ar0-ar127) that support various 
functions. Many of these register slots are reserved for future use. Some application 
registers have assembler aliases. For example, ar66 is the Epilogue Counter and is 
called ar.ec.

The instruction pointer is a 64-bit register that points to the currently executing 
instruction bundle.

2.3 Using Intel® Itanium® Instructions

Itanium instructions are grouped into 128-bit bundles of three instructions. Each 
instruction occupies the first, second, or third slot of a bundle.   Instruction format, 
expression of parallelism, and bundle specification are described below.

2.3.1 Format

A basic Itanium instruction has the following syntax:

[qp] mnemonic[.comp]   dest=srcs

Where:

qp Specifies a qualifying predicate register. The value of the qualifying 
predicate determines whether the results of the instruction are committed 
in hardware or discarded. When the value of the predicate register is true 
(1), the instruction executes, its results are committed, and any 
exceptions that occur are handled as usual. When the value is false (0), 
the results are not committed and no exceptions are raised. Most Itanium 
instructions can be accompanied by a qualifying predicate.

mnemonic Specifies a name that uniquely identifies an Itanium instruction.

comp Specifies one or more instruction completers. Completers indicate optional 
variations on a base instruction mnemonic. Completers follow the 
mnemonic and are separated by periods.

dest Represents the destination operand(s), which is typically the result 
value(s) produced by an instruction.

srcs Represents the source operands. Most Itanium instructions have at least 
two input source operands.

2.3.2 Expressing Parallelism

The Itanium architecture requires the compiler or assembly writer to explicitly indicate 
groups of instructions, called instruction groups, that have no register read after write 
(RAW) or write after write (WAW) register dependencies. Instruction groups are 
delimited by stops in the assembly source code. Since instruction groups have no RAW 
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or WAW register dependencies, they can be issued without hardware checks for register 
dependencies between instructions. Both of the examples below show two instruction 
groups separated by stops (indicated by double semicolons):
ld8 r1=[r5] ;; // First group
add r3=r1,r4 // Second group

A more complex example with multiple register flow dependencies is shown below:
ld8 r1=[r5] // First group
sub r6=r8,r9 ;;// First group
add r3=r1,r4 // Second group
st8 [r6]=r12 // Second group

All instructions in a single instruction group may not necessarily issue in parallel 
because specific implementations may not have sufficient resources to issue all 
instructions in an instruction group.

2.3.3 Bundles and Templates

In assembly code, each 128-bit bundle is enclosed in curly braces and contains a 
template specification and three instructions. Thus, a stop may be specified at the end 
of any bundle or in the middle of a bundle by using one of two special template types 
that implicitly include mid-bundle stops.

Each instruction in a bundle is 41-bits long. Five other bits are used by a template-type 
specification. Bundle templates enable processors based on the Itanium architecture to 
dispatch instructions with simple instruction decoding, and stops enable explicit 
specification of parallelism.

There are five slot types (M, I, F, B, and L), six instruction types (M, I, A, F, B, L), and 
12 basic template types (MII, MI_I, MLX, MMI, M_MI, MFI, MMF, MIB, MBB, BBB, MMB, 
MFB). Each basic template type has two versions: one with a stop after the third slot 
and one without. Instructions must be placed in slots corresponding to their instruction 
types based on the template specification, except for A-type instructions that can go in 
either I or M slots. For example, a template specification of.MII means that of the 
three instructions in a bundle, the first is a memory (M) or A-type instruction, and the 
next two are ALU integer (I) or A-type instructions:
{ .mii
ld4  r28=[r8] // Load a 4-byte value
add r9=2,r1 // 2+r1 and put in r9
add  r30=1,r1 // 1+r1 and put in r30
}

For readability, most code examples in this book do not specify templates or braces.

Note: Bundle boundaries have no direct correlation with instruction group boundaries 
as instruction groups can extend over an arbitrary number of bundles. Instruc-
tion groups begin and end where stops are set in assembly code, and dynami-
cally whenever a branch is taken or a stop is encountered.
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2.4 Memory Access and Speculation

The Itanium architecture provides memory access only through register load and store 
instructions and special semaphore instructions. The architecture also provides 
extensive support for hiding memory latency via programmer-controlled speculation.

2.4.1 Functionality

Data and instructions are referenced by 64-bit addresses. Instructions are stored in 
memory in little endian byte order, in which the least significant byte appears in the 
lowest addressed byte of a memory location. For data, modes for both big and little 
endian byte order are supported and can be controlled by a bit in the User Mask 
Register.

Integer loads of one, two, and four bytes are zero-extended, since all 64 bits of each 
register are always written. Integer stores write one, two, four, or eight bytes of 
registers to memory as specified.

2.4.2 Speculation

Speculation allows a programmer to break data or control dependencies that would 
normally limit code motion. The two kinds of speculation are called control speculation 
and data speculation. This section summarizes speculation in the Itanium architecture. 
See Chapter 3, “Memory Reference” for more detailed descriptions of speculative 
instruction behavior and application.

2.4.3 Control Speculation

Control speculation allows loads and their dependent uses to be safely moved above 
branches. Support for this is enabled by special NaT bits that are attached to integer 
registers and by special NatVal values for floating-point registers. When a speculative 
load causes an exception, it is not immediately raised. Instead, the NaT bit is set on the 
destination register (or NatVal is written into the floating-point register). Subsequent 
speculative instructions that use a register with a set NaT bit propagate the setting until 
a non-speculative instruction checks for or raises the deferred exception.

For example, in the absence of other information, the compiler for a typical RISC 
architecture cannot safely move the load above the branch in the sequence below:
(p1) br.cond.dptk L1 // Cycle 0
     ld8 r3=[r5];; // Cycle 1
     shr r7=r3,r87 // Cycle 3

Supposing that the latency of a load is 2 cycles, the shift right (shr) instruction will 
stall for 1. However, by using the speculative loads and checks provided in the Itanium 
architecture, two cycles can be saved by rewriting the above code as shown below:
 ld8.s r3=[r5] // Earlier cycle
 // Other instructions

(p1) br.cond.dptk L1;; // Cycle 0
     chk.s r3,recovery // Cycle 1
     shr r7=r3,r87  // Cycle 1
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This code assumes r5 is ready when accessed and that there are sufficient instructions 
to fill the latency between the ld8.s and the chk.s.

2.4.4 Data Speculation

Data speculation allows loads to be moved above possibly conflicting memory 
references. Advanced loads exclusively refer to data speculative loads. Review the 
order of loads and stores in this assembly sequence:
st8 [r55]=r45 // Cycle 0
ld8 r3=[r5] ;; // Cycle 0
shr r7=r3,r87 // Cycle 2

The Itanium architecture allows the programmer to move the load above the store even 
if it is not known whether the load and the store reference overlapping memory 
locations. This is accomplished using special advanced load and check instructions:
ld8.a r3=[r5] // Advanced load
// Other instructions

st8 [r55]=r45 // Cycle 0
ld8.c r3=[r5] // Cycle 0 - check
shr r7=r3,r87 // Cycle 0

Note: The shr instruction in this schedule could issue in cycle 0 if there were no con-
flicts between the advanced load and intervening stores. If there were a con-
flict, the check load instruction (ld8.c) would detect the conflict and reissue 
the load. 

2.5 Predication

Predication is the conditional execution of an instruction based on a qualifying 
predicate. A qualifying predicate is a predicate register whose value determines 
whether the processor commits the results computed by an instruction.

The values of predicate registers are set by the results of instructions such as compare 
(cmp) and test bit (tbit). When the value of a qualifying predicate associated with an 
instruction is true (1), the processor executes the instruction, and instruction results 
are committed. When the value is false (0), the processor discards any results and 
raises no exceptions. Consider the following C code:
if (a) {
    b = c + d;
}
if (e) {
    h = i + j;
}
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This code can be implemented in the Itanium architecture using qualifying predicates so 
that branches are removed. The pseudo-code shown below implements the C 
expressions without branches:
cmp.ne p1,p2=a,r0 // p1 <- a!= 0
cmp.ne  p3,p4=e,r0 ;; // p3 <- e != 0
(p1)add b=c,d // If a!= 0 then add
(p3)sub h=i,j // If e!= 0 then sub

See Chapter 4, “Predication, Control Flow, and Instruction Stream” for detailed 
discussion of predication. There are a few special cases where predicated instructions 
read or write architectural resources regardless of their qualifying predicate.

2.6 Architectural Support for Procedure Calls

Calling conventions normally require callee and caller saved registers which can incur 
significant overhead during procedure calls and returns. To address this problem, a 
subset of the Itanium general registers are organized as a logically infinite set of stack 
frames that are allocated from a finite pool of physical registers.

2.6.1 Stacked Registers

Registers r0 through r31 are called global or static registers and are not part of the 
stacked registers. The stacked registers are numbered r32 up to a user-configurable 
maximum of r127.

A called procedure specifies the size of its new stack frame using the alloc instruction. 
The procedure can use this instruction to allocate up to 96 registers per frame shared 
amongst input, output, and local values. When a call is made, the output registers of 
the calling procedure are overlapped with the input registers of the called procedure, 
thus allowing parameters to be passed with no register copying or spilling.

The hardware renames physical registers so that the stacked registers are always 
referenced in a procedure starting at r32.

2.6.2 Register Stack Engine

Management of the register stack is handled by a hardware mechanism called the 
Register Stack Engine (RSE). The RSE moves the contents of physical registers between 
the general register file and memory without explicit program intervention. This 
provides a programming model that looks like an unlimited physical register stack to 
compilers; however, saving and restoring of registers by the RSE may be costly, so 
compilers should still attempt to minimize register usage.

2.7 Branches and Hints

Since branches have a major impact on program performance, the Itanium architecture 
includes features to improve their performance by:
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• Using predication to reduce the number of branches in the code. This improves 
instruction fetching because there are fewer control flow changes, decreases the 
number of branch mispredicts since there are fewer branches, and it increases the 
branch prediction hit rates since there is less competition for prediction resources.

• Providing software hints for branches to improve hardware use of prediction and 
prefetching resources.

• Supplying explicit support for software pipelining of loops and exit prediction of 
counted loops.

2.7.1 Branch Instructions

Branching in the Itanium architecture is largely expressed the same way as on other 
microprocessors. The major difference is that branch triggers are controlled by 
predicates rather than conditions encoded in branch instructions. The architecture also 
provides a rich set of hints to control branch prediction strategy, prefetching, and 
specific branch types like loops, exits, and branches associated with software pipelining. 
Targets for indirect branches are placed in branch registers prior to branch instructions.

2.7.2 Loops and Software Pipelining

Compilers sometimes try to improve the performance of loops by using unrolling.   
However, unrolling is not effective on all loops for the following reasons:

• Unrolling may not fully exploit the parallelism available.

• Unrolling is tailored for a statically defined number of loop iterations.

• Unrolling can increase code size.

To maintain the advantages of loop unrolling while overcoming these limitations, the 
Itanium architecture provides architectural support for software pipelining. Software 
pipelining enables the compiler to interleave the execution of several loop iterations 
without having to unroll a loop. Software pipelining is performed using:

• Loop-branch instructions.

• LC and EC application registers.

• Rotating registers and loop stage predicates.

• Branch hints that can assign a special prediction mechanism to important branches.

In addition to software pipelined while and counted loops, the architecture provides 
particular support for simple counted loops using the br.cloop instruction. The cloop 
branch instruction uses the 64-bit Loop Count (LC) application register rather than a 
qualifying predicate to determine the branch exit condition. 

For a complete discussion of software pipelining support, see Chapter 5, “Software 
Pipelining and Loop Support.”

2.7.3 Rotating Registers

Rotating registers enable succinct implementation of software pipelining with 
predication.    Rotating registers are rotated by one register position each time one of 
the special loop branches is executed. Thus, after one rotation, the content of register X 
will be found in register X+1 and the value of the highest numbered rotating register 



1:146 Volume 1, Part 2: Introduction to Programming for the Intel® Itanium® Architecture

will be found in r32. The size of the rotating region of general registers can be any 
multiple of 8 and is selected by a field in the alloc instruction. The predicate and 
floating-point registers can also be rotated but the number of rotating registers is not 
programmable: predicate registers p16 through p63 are rotated, and floating-point 
registers f32 through f127 are rotated.

2.8 Summary

The Itanium architecture provides features that reduce the effects of traditional 
microarchitectural performance barriers by enabling:

• Improved ILP with a large number of registers and software scheduling of 
instruction groups and bundles.

• Better branch handling through predication.

• Reduced overhead for procedure calls through the register stack mechanism.

• Streamlined loop handling through hardware support of software pipelined loops.

• Support for hiding memory latency using speculation.

§
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Memory Reference 3

3.1 Overview

Memory latency is a major factor in determining the performance of integer 
applications. In order to help reduce the effects of memory latency, the Itanium 
architecture explicitly supports software pipelining, large register files, and 
compiler-controlled speculation. This chapter discusses features and optimizations 
related to compiler-controlled speculation. See Chapter 5, “Software Pipelining and 
Loop Support” for a complete description of how to use software pipelining.

The early sections of this chapter review non-speculative load and store in the Itanium 
architecture, and general concepts and terminology related to data dependencies. The 
concept of speculation is then introduced, followed by discussions and examples of how 
speculation is used. The remainder of this chapter describes several important 
optimizations related to memory access and instruction scheduling.

3.2 Non-speculative Memory References

The Itanium architecture supports non-speculative loads and stores, as well as explicit 
memory hint instructions.

3.2.1 Stores to Memory

Itanium integer store instructions can write either 1, 2, 4, or 8 bytes and 4, 8, or 10 
bytes for floating-point stores. For example, a st4 instruction will write the first four 
bytes of a register to memory.

Although the Itanium architecture uses a little endian memory byte order by default, 
software can change the byte order by setting the big endian (be) bit of the user mask 
(UM).

3.2.2 Loads from Memory

Itanium integer load instructions can read either 1, 2, 4, or 8 bytes from memory 
depending on the type of load issued. Loads of 1, 2, or 4 bytes of data are 
zero-extended to 64-bits prior to being written into their target registers.

Although loads are provided for various data types, the basic data type is the quadword 
(8 bytes). Apart from a few exceptions, all integer operations are on quadword data. 
This can be particularly important when dealing with signed integers and 32-bit 
addresses, or any addresses that are shorter than 64 bits.
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3.2.3 Data Prefetch Hint

The lfetch instruction requests that lines be moved between different levels of the 
memory hierarchy. Like all hint instructions defined in the Itanium architecture, lfetch 
has no effect on program correctness, and any microarchitecture implementation may 
choose to ignore it.

3.3 Instruction Dependencies

Data and control dependencies are fundamental factors in optimization and instruction 
scheduling. Such dependencies can prevent a compiler from scheduling instructions in 
an order that would yield shorter critical paths and better resource usage since they 
restrict the placement of instructions relative to other instructions on which they are 
dependent.

In general, memory references are the major source of control and data dependencies 
that cannot be broken due to getting a wrong answer (if a data dependency is broken) 
or raising a fault that should not be raised (if a control dependency is broken). This 
section describes:

• Background material on memory reference dependencies.

• Descriptions of how dependencies constrain code scheduling on traditional 
architectures.

Section 3.4 describes memory reference features defined in the Itanium architecture 
that increase the number of dependencies that can be removed by a compiler.

3.3.1 Control Dependencies

An instruction is control dependent on a branch if the direction taken by the branch 
affects whether the instruction is executed. In the code below, the load instruction is 
control dependent on the branch:
(p1)br.cond some_label
ld8 r4=[r5]

The following sections provide overviews of control dependencies and their effects on 
optimization.

3.3.1.1 Instruction Scheduling and Control Dependencies

The code below contains a control dependency at the branch instruction:

add r7=r6,1 // Cycle 0
add r13=r25,r27
cmp.eq p1,p2=r12,r23

(p1) br.cond some_label ;;

ld4 r2=[r3];; // Cycle 1
sub r4=r2,r11 // Cycle 3
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A compiler cannot safely move the load instruction before the branch unless it can 
guarantee that the moved load will not cause a fatal program fault or otherwise corrupt 
program state. Since the load cannot be moved upward, the schedule cannot be 
improved using normal code motion. 

Thus, the branch creates a barrier to instructions whose execution depends upon it. In 
Figure 3-1, the load in block B cannot be moved up because of a conditional branch at 
the end of block A.

3.3.2 Data Dependencies

A data dependency exists between an instruction that accesses a register or memory 
location and another instruction that alters the same register or location. 

3.3.2.1 Basics of Data Dependency

The following basic terms describe data dependencies between instructions:

• Write-after-write (WAW)

A dependency between two instructions that write to the same register or memory 
location.

• Write-after-read (WAR)

A dependency between two instructions in which an instruction reads a register or 
memory location that a subsequent instruction writes.

• Read-after-write (RAW)

A dependency between two instructions in which an instruction writes to a register 
or memory location that is read by a subsequent instruction.

• Ambiguous memory dependencies

Dependencies between a load and a store, or between two stores where it cannot 
be determined if the involved instructions access overlapping memory locations. 
Ambiguous memory references include possible WAW, WAR, or RAW dependencies.

• Independent memory references

References by two or more memory instructions that are known not to have 
conflicting memory accesses.

Figure 3-1. Control Dependency Preventing Code Motion
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3.3.2.2 Data Dependency in the Intel® Itanium® Architecture

The Itanium architecture requires the programmer to insert stops between RAW and 
WAW register dependencies to ensure correct code results. For example, in the code 
below, the add instruction computes a value in r4 needed by the sub instruction:

add r4=r5,r6 ;;// Instruction group 1
sub r7=r4,r9 // Instruction group 2

The stop after the add instruction terminates one instruction group so that the sub 
instruction can legally read r4.

On the other hand, implementations based on the Itanium architecture are required to 
observe memory-based dependencies within an instruction group. In a single 
instruction group, a program can contain memory-based data dependent instructions 
and hardware will produce the same results as if the instructions were executed 
sequentially and in program order. The pseudo-code below demonstrates a memory 
dependency that will be observed by hardware:

mov r16=1
mov r17=2 ;;
st8 [r15]=r16 
st8 [r14]=r17;;

If the address in r14 is equal to the address in r15, uni-processor hardware guarantees 
that the memory location will contain the value in r17 (2). The following RAW 
dependency is also legal in the same instruction group even if software is unable to 
determine if r1 and r2 overlap:

st8 [r1]=x
ld4 y=[r2]

3.3.2.3 Instruction Scheduling and Data Dependencies

The dependency rules are sufficient to generate correct code, but to generate efficient 
code, the compiler must take into account the latencies of instructions. For example, 
the generic implementation has a two cycle latency to the first level data cache. In the 
code below, the stop maintains correct ordering, but a use of r2 is scheduled only one 
cycle after its load:

add r7=r6,1 // Cycle 0
add r13=r25,r27
cmp.eq p1,p2=r12,r23;;

add r11=r13,r29 // Cycle 1
ld4 r2=[r3];;

sub r4=r2,r11 // Cycle 3
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Since the latency of a load is two cycles, the sub instruction will stall until cycle three.  
To avoid a stall, the compiler can move the load earlier in the schedule so that the 
machine can perform useful work each cycle:

ld4 r2=[r3] // Cycle 0
add r7=r6,1
add r13=r25,r27
cmp.eq p1,p2=r12,r23;;

add r11=r13,r29;; // Cycle 1

sub r4=r2,r11 // Cycle 2

In this code, there are enough independent instructions to move the load earlier in the 
schedule to make better use of the functional units and reduce execution time by one 
cycle.

Now suppose that the original code sequence contained an ambiguous memory 
dependency between a store instruction and the load instruction:

add r7=r6,1 // Cycle 0
add r13=r25,r27
cmp.ne p1,p2=r12,r23;;

st4 [r29]=r13 // Cycle 1
ld4 r2=[r3];;

sub r4=r2,r11 // Cycle 3

In this case, the load cannot be moved past the store due to the memory dependency. 
Stores will cause data dependencies if they cannot be disambiguated from loads or 
other stores.

In the absence of other architectural support, stores can prevent moving loads and 
their dependent instructions:  The following C language statements could not be 
reordered unless ptr1 and ptr2 were statically known to point to independent memory 
locations:

*ptr1 = 6;
x = *ptr2;

3.4 Using Speculation in the Intel® Itanium® 
Architecture to Overcome Dependencies

Both data and control dependencies constrain optimization of program code. The 
Itanium architecture provides support for two basic techniques used to overcome 
dependencies:

• Data speculation: Allow a load and possibly its uses to be moved across 
ambiguous memory writes.

• Control speculation: Allows a load and possibly its uses to be moved across a 
branch on which the load is control dependent.

These techniques are used to hide load latencies and reduce execution time.  
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3.4.1 Speculation Model in the Intel® Itanium® Architecture

The limitations imposed by dependencies on instruction scheduling can be solved by 
separating the loading of data from the exception handling or the acknowledgment of 
data conflicts. The Itanium architecture supports special speculative versions of 
instructions to accomplish this:

• Control speculative load instructions defer exceptions.

• Data speculative load instructions save address information.

• Special check instructions check for exceptions or data conflicts.

An Itanium speculative load can be moved above a dependency barrier (shown as a 
dashed line) as shown in Figure 3-2.

The check detects a deferred exception or a conflict with an intervening store and 
provides a mechanism to recover from failed speculation. With this support, speculative 
loads and their uses can be scheduled earlier than non-speculative instructions. As a 
result, the memory latencies of these loads can be hidden more easily than for 
non-speculative loads.

3.4.2 Using Data Speculation in the Intel® Itanium® 
Architecture

Data speculation in the Itanium architecture uses a special load instruction (ld.a) 
called an advanced load instruction and an associated check instruction (chk.a or ld.c) 
to validate data-speculated results.

When the ld.a instruction is executed, an entry is allocated in a hardware structure 
called the Advanced Load Address Table (ALAT).  The ALAT is indexed by physical 
register number and records the load address, the type of the load, and the size of the 
load.

A check instruction must be executed before the result of an advanced load can be used 
by any non-speculative instruction.  The check instruction must specify the same 
register number as the corresponding advanced load.

When a check instruction is executed, the ALAT is searched for an entry with the same 
target physical register number and type.   If an entry is found, execution continues 
normally with the next instruction.

Figure 3-2. Speculation Model in the Intel® Itanium® Architecture
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If no matching entry is found, the speculative results need to be recomputed:

• Use a chk.a if a load and some of its uses are speculated.  The chk.a jumps to 
compiler-generated recovery code to re-execute the load and dependent 
instructions.

• Use a ld.c if no uses of the load are speculated.  The ld.c reissues the load.

Entries are removed from the ALAT due to:

• Stores that write to addresses overlapping with ALAT entries.

• Other advanced loads that target the same physical registers as ALAT entries.

• Implementation-defined hardware or operating system conditions needed to 
maintain correctness.

• Limitations of the capacity, associativity, and matching algorithm used for a given 
implementation of the ALAT.

3.4.2.1 Advanced Load Example

Advanced loads can reduce the critical path of a sequence of instructions.  In the code 
below, a load and store may access conflicting memory addresses:

st8 [r4]=r12 // Cycle 0: ambiguous store
ld8 r6=[r8];; // Cycle 0: load to advance
add r5=r6,r7;; // Cycle 2
st8 [r18]=r5 // Cycle 3

On the generic machine model, the code above would execute in four cycles, but it can 
be rewritten using an advanced load and check:

ld8.a r6=[r8] // Cycle -2 or earlier

// Other instructions

st8 [r4]=r12 // Cycle 0: ambiguous store
ld8.c r6=[r8] // Cycle 0: check load
add r5=r6,r7;; // Cycle 0 
st8 [r18]=r5 // Cycle 1

The original load has been turned into a check load, and an advanced load has been 
scheduled above the ambiguous store.  If the speculation succeeds, the execution time 
of the remaining non-speculative code is reduced because the latency of the advanced 
load is hidden.

3.4.2.2 Recovery Code Example

Consider again the non-speculative code from the last section:
st8 [r4]=r12 // Cycle 0: ambiguous store
ld8 r6=[r8];; // Cycle 0: load to advance
add r5=r6,r7;; // Cycle 2
st8 [r18]=r5 // Cycle 3
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The compiler could move up not only the load, but also one or more of its uses. This 
transformation uses a chk.a rather than a ld.c instruction to validate the advanced 
load. Using the same example code sequence but now advancing the add as well as the 
ld8 results in:

ld8.a r6=[r8];; // Cycle -3

// other instructions

add r5=r6,r7 // Cycle -1: add that uses r6

// Other instructions

st8 [r4]=r12 // Cycle 0
chk.a r6,recover // Cycle 0: check

back: // Return point from jump to recover
st8 [r18]=r5 // Cycle 0

Recovery code must also be generated:
recover:

ld8 r6=[r8] ;; // Reload r6 from [r8]
add r5=r6,r7 // Re-execute the add 
br back // Jump back to main code

If the speculation fails, the check instruction branches to the label recover where the 
speculated code is re-executed.  If the speculation succeeds, execution time of the 
transformed code is three cycles less than the original code. 

3.4.2.3 Terminology Review

Terms related to speculation, such as advanced loads and check loads, have 
well-defined meanings in the Itanium architecture. The terms below were introduced in 
the preceding sections:

• Data speculative load

A speculative load that is statically scheduled prior to one or more stores upon 
which it may be dependent. The data speculative load instruction is ld.a.

• Advanced load

A data speculative load.

• Check load

An instruction that checks whether a corresponding advanced load needs to be 
re-executed and does so if required. The check load instruction is ld.c.

• Advanced load check

An instruction that takes a register number and an offset to a set of 
compiler-generated instructions to re-execute speculated instructions when 
necessary. The advanced load check instruction is chk.a.

• Recovery code

Program code that is branched to by a speculation check. Recovery code repeats a 
load and chain of dependent instructions to recover from a speculation failure.
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3.4.3 Using Control Speculation in the Intel® Itanium® 
Architecture

The check to determine if control speculation was successful is similar to that for data 
speculation.

3.4.3.1 The NaT Bit

The Not A Thing (NaT) bit is an extra bit on each of the general registers.  A register 
NaT bit indicates whether the content of a register is valid.  If the NaT bit is set to one, 
the register contains a deferred exception token due to an earlier speculation fault.  In 
a floating-point register, the presence of a special value called the NaTVal signals a 
deferred exception.

During a control speculative load, the NaT bit on the destination register of the load 
may be set if an exception occurs and it is deferred. The exact set of events and 
exceptions that cause an exception to be deferred (thus causing the NaT bit to be set), 
depends in part upon operating system policy. When a speculative instruction reads a 
source register that has its NaT bit set, NaT bits of the target registers of that 
instruction are also set. That is, NaT bits are propagated through dependent 
computations. 

3.4.3.2 Control Speculation Example

When a control speculative load is scheduled, the compiler must insert a speculative 
check, chk.s, along all paths on which results of the speculative load are consumed.  If 
a non-speculative instruction (other than a chk.s) reads a register with its NaT bit set, 
a NaT consumption fault occurs, and the operating system will terminate the program.

The code sequence below illustrates a basic use of control speculation:
(p1) br.cond some_label // Cycle 0

ld8 r1=[r5];; // Cycle 1
add r2=r1,r3 // Cycle 3

This code can be rewritten using a control speculative load and check. The check can be 
placed in the same basic block as the original load:

ld8.s r1=[r5];; // Cycle -2

// Other instructions

(p1) br.cond some_label // Cycle 0
chk.s r1,recovery // Cycle 0
add r2=r1,r3 // Cycle 0

Until a speculation check is reached dynamically, the results of the control speculative 
chain of instructions cannot be stored to memory or otherwise accessed 
non-speculatively without the possibility of a fault.  If a speculation check is executed 
and the NaT bit on the checked register is set, the processor will branch to recovery 
code pointed to by the check instruction.

It is also possible to test for the presence of set NaT bits and NaTVals using the test NaT 
(tnat) and floating-point class (fclass) instructions.
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Although every speculative computation needs to be checked, this does not mean that 
every speculative load requires its own chk.s. Speculative checks can be optimized by 
taking advantage of the propagation of NaT bits through registers as described in 
Section 3.5.6.

3.4.3.3 Spills, Fills and the UNAT Register

Saving and restoring of registers that may have set NaT bits is enabled by st8.spill 
and ld8.fill instructions and the User NaT Collection application register (UNAT).

The “spill general register and NaT” instruction, st8.spill, saves eight bytes of a 
general register to memory and writes its NaT bit into the UNAT. Bits 8:3 of the memory 
address of the store determine which UNAT bit is written with the register NaT value. 
The “fill general register” instruction, ld8.fill, reads eight bytes from memory into a 
general register and sets the register NaT bit according to the value in the UNAT. 
Software is responsible for saving and restoring the UNAT contents to ensure correct 
spilling and filling of NaT bits.

The corresponding floating-point instructions, stf.spill and ldf.fill, save and 
restore floating-point registers in floating-point register format without surfacing 
exceptions due to NaTVals.

3.4.3.4 Terminology Review

The terms below are related to control speculation:

• Control speculative load

A speculative load that is scheduled prior to an earlier controlling branch. 
References to “speculative loads” without qualifiers generally refer to control 
speculative loads and not data speculative loads. Loads using the ld.s instruction 
are control speculative loads.

• Speculation check

An instruction that checks whether a speculative instruction has deferred an 
exception. Speculation check instructions include labels that point to 
compiler-generated recovery code. The speculation check instruction is chk.s.

• Recovery code

Code executed to recover from a speculation failure. Control speculative recovery 
code is analogous to data speculative recovery code.

3.4.4 Combining Data and Control Speculation

A load that is both data and control speculative is called a speculative advanced load. 
The ld.sa instruction performs all the operations of both a speculative load and an 
advanced load. An ALAT entry will not be allocated if this type of load generates a 
deferred exception token, so an advanced load check instruction (chk.a) is sufficient to 
check for both interference from subsequent stores and for deferred exceptions.
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3.5 Optimization of Memory References

Speculation can increase parallelism and help to hide latency by enabling more code 
motion than can be performed on traditional architectures. Speculation can increase the 
application of traditional loop optimizations such as invariant code motion and common 
subexpression elimination. The Itanium architecture also offers post-increment loads 
and stores that improve instruction throughput without increasing code size.

Memory reference optimization should take several factors into account including:

• Difference between the execution costs of speculative and non-speculative code.

• Code size.

• Interference probabilities and properties of the ALAT (for data speculation).

The remainder of this chapter discusses these factors and optimizations relating to 
memory accesses.

3.5.1 Speculation Considerations

The use of data speculation requires more attention than the use of control speculation.  
In part this is due to the fact that one control speculative load cannot inadvertently 
cause another control speculative load to fail.  Such an effect is possible with data 
speculative loads since the ALAT has limited capacity and the replacement policy of 
ALAT entries is implementation dependent.   For example, if an advanced load is issued 
and there are no unused ALAT entries, the hardware may choose to invalidate an 
existing entry to make room for a new one.

Moreover, exceptions associated with control speculative calculations are uncommon in 
correct code since they are related to events such as page faults and TLB misses. 
However, excessive control speculation can be expensive as associated instructions fill 
issue slots. 

Although the static critical path of a program may be reduced by the use of data 
speculation, the following factors contribute to the benefit/dynamic cost of data 
speculation:

• The probability that an intervening store will interfere with an advanced load.

• The cost of recovering from a failed advanced load.

• The specific microarchitectural implementation of the ALAT: its size, associativity, 
and matching algorithm.

Determining interference probabilities can be difficult, but dynamic memory profiling 
can help to predict how often ambiguous loads and stores will conflict.

When using advanced loads, there should be case-by-case consideration as to whether 
advancing only a load and using a ld.c might be preferable to advancing both a load 
and its uses, which would require the use of the potentially more expensive chk.a.

Even when recovery code is not executed, its presence extends the lifetimes of 
registers used in data and control speculation, thus increasing register pressure and 
possibly the cost of register movement by the Register Stack Engine (RSE). See 
Section 3.5.3 for information on considerations for recovery code placement.
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3.5.2 Data Interference

Data references with low interference probabilities and high path probabilities can make 
the best use of data speculation.  In the pseudo-code below, assume the probabilities 
that the stores to *p1 and *p2 conflict with var are independent.

*p1 = /* Prob interference = 0.30 */
. . .
*p2 = /* Prob interference = 0.40 */
. . .

    = var /* Load to be advanced */

If the compiler advances the load from var above the stores to pointers p1 and p2, 
then:

Prob that stores to p1 or p2 interfere with var
= 1.0 - (Prob p1 will not interfere with var * 

Prob p2 will not interfere with var)
= 1.0 - (0.70 * 0.60) 
= 0.58 

Given the interference probabilities above, there is a 58% probability at least one of p1 
and p2 will interfere with a load from var if it is advanced above both of them.  A 
compiler can use traditional heuristics concerning data interference and interprocedural 
memory access information to estimate these probabilities.

When advancing loads past function calls, the following should be considered:

• If a called function has many stores in it, it is more likely that actual or aliased ALAT 
conflicts will occur.

• If other advanced loads are executed during the function call, it is possible that 
their physical register numbers will either be identical or conflict with ALAT entries 
allocated from calls in parent functions.

• If it is unknown whether a large number of advanced loads will be executed by the 
called routines, then the possibility that the capacity of that ALAT may be exceeded 
must be considered.

3.5.3 Optimizing Code Size

Part of the decision of when to speculate should involve consideration of any possible 
increases in code size.  Such consideration is not particular to speculation, but to any 
transformations that cause code to be duplicated, such as loop unrolling, procedure 
inlining, or tail duplication. Techniques to minimize code growth are discussed later in 
this section.

In general, control speculation increases the dynamic code size of a program since 
some of the speculated instructions are executed and their results are never used.  
Recovery code associated with control speculation primarily contributes to the static 
size of the binary since it is likely to be placed out-of-line and not brought into cache 
until a speculative computation fails (uncommon for control speculation).

Data speculation has a similar effect on code size except that it is less likely to compute 
values that are never used since most non-control speculative data speculative loads 
will have their results checked. Also, since control speculative loads only fail in 
uncommon situations such as deferred data related faults (depending on operating 
system configuration), while data speculative loads can fail due to ALAT conflicts, actual 
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memory conflicts, or aliasing in the ALAT, the decision as to where to place recovery 
code for advanced loads is more difficult than for control speculation and should be 
based on the expected conflict rate for each load.

As a general rule, efficient compilers will attempt to minimize code growth related to 
speculation. As an example, moving a load above the join of two paths may require 
duplication of speculative code on every path. The flow graph depicted in Figure 3-3 
and the explanation shows how this could arise.

If the compiler or programmer advanced the load up to block B from its original 
non-speculative position, all speculative code would need to be duplicated in both 
blocks B and C. This duplicated code might be able to occupy NOP slots that already 
exist. But if space for the code is not already available, it might be preferable to 
advance the load to block A since only one copy would be required in this case.

3.5.4 Using Post-increment Loads and Stores

Post-increment loads and stores can improve performance by combining two operations 
in a single instruction.  Although the text in this section mentions only post-increment 
loads, most of the information applies to stores as well.

Post-increment loads are issued on M-units and can increment their address register by 
either an immediate value or by the contents of a general register. The following 
pseudo-code that performs two loads:

ld8 r2=[r1]
add r1=1,r1 ;;
ld8 r3=[r1]

can be rewritten using a post-increment load:
ld8 r2=[r1],1 ;;
ld8 r3=[r1]

Post-increment loads may not offer direct savings in dependency path height, but they 
are important when calculating addresses that feed subsequent loads: 

• A post-increment load avoids code size expansion by combining two instructions 
into one.

• Adds can be issued on either I-units or M-units.  When a program combines an add 
with a load, an I-unit or M-unit resource remains available that otherwise would 
have been consumed.  Thus, throughput of dependent adds and loads can be 
doubled by using post-increment loads.

Figure 3-3. Minimizing Code Size During Speculation
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A disadvantage of post-increment loads is that they create new dependencies between 
post-increment loads and the operations that use the post-increment values. In some 
cases, the compiler may wish to separate post-increment loads into their component 
instructions to improve the overall schedule. Alternatively, the compiler could wait until 
after instruction scheduling and then opportunistically find places where post-increment 
loads could be substituted for separate load and add instructions.

3.5.5 Loop Optimization

In cyclic code, speculation can extend the use of classical loop optimizations like 
invariant code motion.  Examine this pseudo-code:

while (cond) {
    c = a + b; // Probably loop invariant
    *ptr++ = c;// May point to a or b
}

The variables a and b are probably loop invariant; however, the compiler must assume 
the stores to *ptr will overwrite the values of a and b unless analysis can guarantee 
that this can never happen.  The use of advanced loads and checks allows code that is 
likely to be invariant to be removed from a loop, even when a pointer cannot be 
disambiguated:

ld4.a r1 = [&a]
ld4.a r2 = [&b]
add r3 = r1,r2 // Move computation out of loop
while (cond) {
   chk.a.nc r1, recover1

L1: chk.a.nc r2, recover2
L2: *p++ = r3

}

At the end of the module:
recover1: // Recover from failed load of a

ld4.a r1 = [&a]
add r3 = r1, r2
br.sptk L1 // Unconditional branch

recover2: // Recover from failed load of b
ld4.a r2 = [&b]
add r3 = r1, r2
br.sptk L2 // Unconditional branch

Using speculation in this loop hides the latency of the calculation of c whenever the 
speculated code is successful.

Since checks have both a clear (clr) and no clear (nc) form, the programmer must 
decide which to use.  This example shows that when checks are moved out of loops, the 
no clear version should be used.  This is because the clear (clr) version will cause the 
corresponding ALAT entry to be removed (which would cause the next check to that 
register to fail).
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3.5.6 Minimizing Check Code

Checks of speculative loads can sometimes be combined to reduce code size.  The 
propagation of NaT bits and NaTVals via speculative instructions can permit a single 
check of a speculative result to replace multiple intermediate checks.  The code below 
demonstrates this optimization potential:

ld4.s r1=[r10] // Speculatively load to r1
ld4.s r2=[r20] // Speculatively load to r2
add r3=r1,r2;; // Add two speculative values

// Other instructions

chk.s r3,imm21 // Check for NaT bit in r3
st4 [r30]=r1 // Store r1
st4 [r40]=r2 // Store r2
st4 [r50]=r3 // Store r3

Only the result register, r3, needs to be checked before stores of any of r1, r2, or r3.  
If a NaT bit were set at the time of the control speculative loads of r1 or r2, the NaT bit 
would have been propagated to r3 from r1 or r2 via the add instruction.

Another way to reduce the amount of check code is to use control flow analysis to avoid 
issuing extra ld.c or ld.a instructions. For example, the compiler can schedule a 
single check where it is known to be reached by all copies of the advanced load. The 
portion of a flow graph shown in Figure 3-4 demonstrates where this technique might 
be applied.

A single check in the lowermost block shown for all of the advanced loads is correct if 
both of these conditions are met:

• The lowermost block post-dominates all of the blocks with advanced loads from 
location addr.

• The lowermost block precedes any uses of the advanced loads from addr.

Figure 3-4. Using a Single Check for Three Advanced Loads
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3.6 Summary

The examples in this chapter show where the Itanium architecture can take advantage 
of existing techniques like dynamic profiling and disambiguation. Special architectural 
support allows implementation of speculation in common scenarios in which it would 
normally not be allowed. Speculation, in turn, increases ILP by making greater code 
motion possible, thus enhancing traditional optimizations such as those involving loops.

Even though the speculation model can be applied in many different situations, careful 
cost and benefit analysis is needed to insure best performance.

§
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Predication, Control Flow, and Instruction 
Stream 4

4.1 Overview

This chapter is divided into three sections that describe optimizations related to 
predication, control flow, and branch hints as follows:

• The predication section describes if-conversion, predicate usage, and code 
scheduling to reduce the affects of branching.

• The control flow optimization section describes optimizations that collapse and 
converge control flow by using parallel compares, multiway branches, and multiple 
register writers under predicate.

• The branch and prefetch hints section describes how hints are used to improve 
branch and prefetch performance.

4.2 Predication

Predication allows the compiler to convert control dependencies into data 
dependencies. This section describes several sources of branch-related performance 
considerations, followed by a summary of predication mechanism, followed by a series 
of descriptions of optimizations and techniques based on predication.

4.2.1 Performance Costs of Branches

Branches can decrease application performance by consuming hardware resources for 
prediction at execution time and by restricting instruction scheduling freedom during 
compilation.

4.2.1.1 Prediction Resources

Branch prediction resources include branch target buffers, branch prediction tables, and 
the logic used to control these resources.  The number of branches that can accurately 
be predicted is limited by the size of the buffers on the processor, and such buffers tend 
to be small relative to the total number of branches executed in a program.

This limitation means that branch intensive code may have a large portion of its 
execution time spent due to contention for prediction resources.  Furthermore, even 
though the size of the predictors is a primary factor in determining branch prediction 
performance, some branches are best predicted with different types of predictors.  For 
example, some branches are best predicted statically while others are more suitably 
predicted dynamically.  Of those predicted dynamically, some are of greater importance 
than others, such as loop branches.
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Since the cost of a misprediction is generally proportional to pipeline length, good 
branch prediction is essential for processors with long instruction pipelines.  Thus, 
optimizing the use of prediction resources can significantly improve the overall 
performance of an application.

Suppose, for instance, that the conditional in the code below is mispredicted 30% of the 
time and branch mispredictions incur a ten cycle penalty.  On average, the mispredicted 
branch will add three cycles to each execution of the code sequence (30% * 10 cycles):

if (r1) 
r2 = r3 + r4;

else
r7 = r6 - r5;

Equivalent Itanium architecture-based code that has not been optimized is shown 
below. It requires five instructions including two branches and executes in two cycles, 
not including potential misprediction or taken-branch penalty cycles:

cmp.eq p1,p2=r1,r0 // Cycle 0
(p1) br.cond else_clause // Cycle 0

add r2=r3,r4 // Cycle 1
br end_if // Cycle 1

else_clause:
sub r7=r6,r5 // Cycle 1

end_if:

Using the information above, this code will take five cycles to execute on average even 
thought the critical path is only two cycles long  (2 cycles + (30% * 10 cycles) = 5).  If  
the branch misprediction penalty could be eliminated (either by reducing contention for 
resources or by removing the branch itself), performance of the code sequence would 
improve by a factor of two.

4.2.1.2 Instruction Scheduling

Branches limit the ability of the compiler to move instructions that alter memory state 
or that can raise exceptions, because instructions in a program are control dependent 
on all lexically enclosing branches. In addition to the control dependencies, compound 
conditionals can take several cycles to compute and may themselves require 
intermediate branches in languages like C that require short-circuit evaluation.

Control speculation is the primary mechanism used to perform global code motion for 
Itanium architecture-based compilers. However, when an instruction does not have a 
speculative form or the instruction could potentially corrupt memory state, control 
speculation may be insufficient to allow code motion. Thus, techniques that allow 
greater freedom in code motion or eliminate branches can improve the compiler’s 
ability to schedule instructions.

4.2.2 Predication in the Intel® Itanium® Architecture

Now that the performance implications of branching have been described, this section 
overviews predication in the Itanium architecture – the primary mechanism used by 
optimizations described in this section.
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Almost all Itanium instructions can be tagged with a guarding predicate.   If the value 
of the guarding predicate is false at execution time, then the predicated instruction’s 
architectural updates are suppressed, and the instruction behaves like a nop. If the 
predicate is true, then the instruction behaves as if it were unpredicated. There are a 
small number of instructions such as unconditional compares and floating-point 
square-root and reciprocal approximate instructions whose qualifying predicate do not 
operate as described above. See Part I:, “Application Architecture Guide” for additional 
information.

The following sequence shows a set of predicated instructions:
(p1) add r1=r2,r3
(p2) ld8 r5=[r7]
(p3) chk.s r4,recovery

To set the value of a predict register, the architecture provides compare and test 
instructions such as those as shown below.

cmp.eq p1,p2=r5,r6
tbit p3,p4=r6,5

Additionally, a predicate almost always requires a stop to separate its producing 
instruction and its use:

cmp.eq p1,p2=r1,r2;;
(p1) add r1=r2,r3

The only exception to this rule involves an integer compare or test instruction that sets 
a predicate that is used as the condition for a subsequent branch instruction:

cmp.eq p1,p2=r1,r2   // No stop required
(p1) br.cond some_target

4.2.3 Optimizing Program Performance Using Predication

This section describes predication-related optimizations, their use, and basic 
performance analysis techniques.  Following are descriptions of optimizations including 
if-conversion, misprediction elimination, off-path predication, upward code motion,  and 
downward code motion.

4.2.3.1 Applying if-Conversion

One of the most important optimizations enabled by predication is the complete 
removal of branches from some program sequences.  Without predication, the 
pseudo-code below would require a branch instruction to conditionally jump around the 
if-block code:
if (r4) {

add  r1=r2,r3
ld8  r6=[r5]

}

Using predication, the sequence can be written without a branch:
cmp.ne p1,p0=r4,0 ;;// Set predicate reg

(p1) add r1=r2,r3
(p1) ld8 r6=[r5]
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The process of predicating instructions in conditional blocks and removing branches is 
referred to as if-conversion. Once if-conversion has been performed, instructions can 
be scheduled more freely because there are fewer branches to limit code motion, and 
there are fewer branches competing for issue slots.

In addition to removing branches, this transformation will make dynamic instruction 
fetching more efficient since there are fewer possibilities for control flow changes. 
Under more complex circumstances, several branches can be removed. The following C 
code sequence:

if (r1)
r2 = r3 + r4;

else
r7 = r6 - r5;

can be rewritten in Itanium architecture-based assembly code without branches as:
cmp.ne p1,p2 = r1,0;;

(p1) add r2 = r3,r4
(p2) sub r7 = r6,r5

Since instructions from opposite sides of the conditional are predicated with 
complementary predicates they are guaranteed not to conflict, hence the compiler has 
more freedom when scheduling to make the best use of hardware resources.  The 
compiler could also try to schedule these statements with earlier or later code since 
several branches and labels have been removed as part of if-conversion.

Since the branches have been removed, no branch misprediction is possible and there 
will be no pipeline bubbles due to taken branches.  Such effects are significant in many 
large applications, and these transformations can greatly reduce branch-induced stalls 
or flushes in the pipeline.

Thus, comparing the cost of the code above with the non-predicated version above 
shows that:

• Non-predicated code consumes: 2 cycles + (30% * 10 cycles) = 5 cycles.

• Predicated code consumes: 2 cycles.

In this case, predication saves an average of three cycles.

4.2.3.2 Off-path Predication

If a compiler has dynamic profile information, it is possible to form an instruction 
schedule based on the control flow path that is most likely to execute – this path is 
called the main trace. In some cases, execution paths not on the main trace are still 
executed frequently, and thus it may be beneficial to use predication to minimize their 
critical paths as well.

The main trace of a flow graph is highlighted in Figure 4-1. Although blocks A and B are 
not on the main trace, suppose they are executed a significant number of times.
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If some of the instructions in block A or block B can be included in the main trace 
without increasing its critical path, then techniques of upward code motion can be 
applied to reduce the critical path through blocks A and B when they are taken.  An 
example of how to use predication to implement upward code motion is given in the 
next section.

4.2.3.3 Upward Code Motion

When traditional control speculation is inadequate, it may still be possible to predicate 
an instruction and move it up or down in the schedule to reduce dependency height. 
This is possible because predicating an instruction replaces a control dependency with a 
data dependency. If the data dependency is less constraining than the control 
dependency, such a transformation may improve the instruction schedule.

Given the Itanium architecture-based assembly sequence below, the store instruction 
cannot be moved above the enclosing conditional instruction because it could cause an 
address fault or other exception, depending upon the branch direction:
(p1) br.cond some_label // Cycle 0

st4 [r34] = r23 // Cycle 1
ld4 r5 = [r56] // Cycle 1
ld4 r6 = [r57] // Cycle 2:no cycle 1 M’s

One reason why it might be desirable to move the store instruction up is to allow loads 
below it to move up.

Note: Ambiguous stores are barriers beyond which normal loads cannot move.  In this 
case, moving the store also frees up an M-unit slot.  To rewrite the code so that 
the store comes before the branch, p2 has been assigned the complement of 
p1:

(p2) st4 [r34] = r23 // Cycle 0
(p2) ld4 r5 = [r56] // Cycle 0
(p1) br.cond some_label // Cycle 0

ld4 r6 = [r57] // Cycle 1

Since the store is now predicated, no faults or exceptions are possible when the branch 
is taken, and memory state is only updated if and when the original home block of the 
store is entered.  Once the store is moved, it is also possible to move the load 
instruction without having to use advanced or speculative loads (as long as r5 is not 
live on the taken branch path). 

Figure 4-1. Flow Graph Illustrating Opportunities for Off-path Predication

Block A

Block B



1:168 Volume 1, Part 2: Predication, Control Flow, and Instruction Stream

4.2.3.4 Downward Code Motion

As with upward code motion, downward code motion is normally difficult in the 
presence of stores.  The next example shows how code can be moved downward past a 
label, a transformation that is often unsafe without predication:

ld8 r56 = [r45];; // Cycle 0: load
st4 [r23] = r56;; // Cycle 2: store

label_A:
add ... // Cycle 3
add ...
add ...
add ...;;

In the code above, suppose the latency between the load and the store is two clocks. 
Assuming the load instruction cannot be moved upward due to other dependencies, the 
only way to schedule the instructions so that the load latency is covered is to move the 
store downward past the label.

The following code demonstrates the overall idea of using predicates to enable 
downward code motion.  In actual compiler-generated code, the predicates that are 
explicitly computed in this example might already be available in predicate registers 
and not require extra instructions.

// Point which “dominates” label_A
cmp.ne p1,p0 = r0,r0 // Initialize p1 to false

// Other instructions

cmp.eq p1,p0 = r0,r0 // Initialize p1 to true
ld8 r56=[r45];; // Cycle 0 

label_A:
add ... // Cycle 1
add ...
add ...
add ...;; 

(p1) st4     [r23]=r56 // Cycle 2

Here, downward code motion saves one cycle. There are examples of more 
sophisticated situations involving cyclic scheduling, other store-constrained code 
motion, or pulling code from outside loops into them, but they are not described here.

4.2.3.5 Cache Pollution Reduction

Loads and stores with predicates that are false at runtime are generally likely not to 
cause any cache lines to be removed, replaced, or brought in. Also, no extra 
instructions or recovery code are required as would be necessary for control or data 
speculation. Therefore, when the use of predication yields the same critical path length 
as data or control speculation, it is almost always preferable to use predication.

4.2.4 Predication Considerations

Even though predication can have a variety of beneficial effects, there are several cases 
where the use of predication should be carefully considered.  Such cases are usually 
associated with execution paths that have unbalanced total latencies or over-usage of a 
particular resource such as those associated with memory operations.
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4.2.4.1 Unbalanced Execution Paths

The simple conditional below has an unbalanced flow-dependency height. Suppose that 
non-predicated assembly for this sequence takes two clocks for the if-block and 
approximately 18 clocks if we assume a setf takes 8 clocks, a getf takes 2 clocks, and 
an xma takes 6 clocks:

if (r4) // 2 clocks
r3 = r2 + r1;

else // 18 clocks
r3 = r2 * r1;

f (r3); // An integer use of r3

If-converted Itanium architecture-based code is shown below. The cycle numbers 
shown depend upon the values of p1 and p2 and assume the latencies shown:

// Issue cycle if p2 is:TrueFalse
cmp.ne p1,p2=r4,r0;; // 0 0

(p1) add r3=r2,r1 // 1 1
(p2) setf f1=r1 // 1 1
(p2) setf f2=r2;; // 1 1
(p2) xma.l f3=f1,f2,f0;; // 9 2
(p2) getf r3=f3;; // 15 3
(p2) use of r3 // 17 4

This code takes 18 cycles to complete if p2 is true and five cycles if p2 is false.  When 
analyzing such cases, consider execution weights, branch misprediction probabilities, 
and prediction costs along each path.

In the three scenarios presented below, assume a branch misprediction costs ten 
cycles.  No instruction cache or taken-branch penalties are considered.

4.2.4.2 Case 1

Suppose the if-clause is executed 50% of the time and the branch is never 
mispredicted.  The average number of clocks for:

• Unpredicated code is:  (2 cycles * 50%) + (18 cycles * 50%) = 10 clocks

• Predicated code is:  (5 cycles * 50%) + (18 cycles * 50%) = 11.5 clocks

In this case, if-conversion would increase the cost of executing the code. 

4.2.4.3 Case 2

Suppose the if-clause is executed 70% of the time and the branch mispredicts 10% if 
the time with mispredicts costing 10 clocks.  The average number of clocks for:

• Unpredicated code is: 

(2 cycles * 70%) + (18 cycles * 30%) + (10 cycles * 10%) = 7.8 clocks

• Predicated code is: 

 (5 cycles * 70%) + (18 cycles * 30%) = 8.9 clocks

In this case, if-conversion still would increase the cost of executing the code.
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4.2.4.4 Case 3

Suppose the if-clause is executed 30% of the time and the branch mispredicts 30% of 
the time.  The average number of clocks for: 

• Unpredicated code is:

 (2  cycles * 30%) + (18 cycles * 70%) + (10 cycles * 30%) = 16.2 clocks

• Predicated code is:

(5 cycles * 30%) + (18 cycles * 70%) = 14.1 clocks

In this case, if-conversion would decrease the execution cost by more than two clocks, 
on average.

4.2.4.5 Overlapping Resource Usage

Before performing if-conversion, the programmer must consider the execution 
resources consumed by predicated blocks in addition to considering flow-dependency 
height. The resource availability height of a set of instructions is the minimum number 
of cycles taken considering only the execution resources required to execute them.

The code below is derived from an if-then-else statement.  Given the generic machine 
model that has only two load/store (M) units.  If a compiler predicates and combines 
these two blocks, then the resource availability height through the block will be four 
clocks since that is the minimum amount of time necessary to issue eight memory 
operations:
then_clause:

ld r1=[r21] // Cycle 0
ld r2=[r22] // Cycle 0
st [r32]=r3 // Cycle 1
st [r33]=r4 ;;// Cycle 1
br end_if

else_clause:
ld r3=[r23] // Cycle 0
ld r4=[r24] // Cycle 0
st [r34]=r5 // Cycle 1
st [r35]=r6 ;;// Cycle 1

end_if:

As with the example in the previous section, assuming various misprediction rates and 
taken branch penalties changes the decision as to when to predicate and when not to 
predicate. One case is illustrated below.

4.2.4.6 Case 1

Suppose the branch condition mispredicts 10% of the time and that the predicated code 
takes four clocks to execute.  The average number of clocks for:

• Non-predicated code is:  (10 cycles * 10%) + 2 cycles = 3 cycles

• Predicated code is:  4 cycles

Predicating this code would increase execution time even though the flow dependency 
heights of the branch paths are equal.
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4.2.5 Guidelines for Removing Branches

The following if-conversion guidelines apply to cases where only local behavior of the 
code and its execution profile are known:

1. The flow dependency and resource availability heights of both paths must be 
considered when deciding whether to predicate or not.

2. If if-conversion increases the length of any control path through the original code 
sequence, careful analysis using profile or misprediction data must be performed 
to ensure that execution time of the converted code is equivalent to or better 
than unpredicated code.

3. If if-conversion removes a branch that is mispredicted a significant percentage of 
the time, the transformation frequently pays off even if the blocks are 
significantly unbalanced since mispredictions are very expensive.

4. If the flow-dependeny heights of the paths being if-converted are nearly equal 
and there are sufficient resources to execute both streams simultaneously, 
if-conversion is often advantageous.

Although these guidelines are useful for optimizing segments of code, the behavior of 
some programs is limited by non-local effects such as overall branch behavior, 
sensitivity to code size, percentage of time spent servicing branch mispredictions, etc. 
In these situations, the decision to use if-convert or perform other speculative 
transformation becomes more involved.

4.3 Control Flow Optimizations

A common occurrence in programs is for several control flows to converge at one point 
or for  multiple control flows to start from one point.  In the first case, multiple flows of 
control are often computing the value of the same variable or register and the join point 
represents the point at which the program needs to select the correct value before 
proceeding.  In the second case, multiple flows may begin at a point where several 
independent paths are taken based on a set of conditions.

In addition to these multiway joins and branches, the computation of complex 
compound conditions normally requires a tree-like computation to reduce several 
conditions into one. The Itanium architecture provides special instructions that allow 
such conditions to be computed in fewer tree levels.

A third control-flow related optimization uses predication to improve instruction 
fetching by if-conversion to generate straight-line sequences that can be efficiently 
fetched.  The use and optimization of these cases is described in the remainder of this 
section. 
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4.3.1 Reducing Critical Path with Parallel Compares

The computation of the compound branch condition shown below requires several 
instructions on processors without special instructions:

if ( rA || rB || rC || rD ) {
/* If-block instructions */

}
/* after if-block */

The pseudo-code below, shows one possible solution uses a sequence of branches:
cmp.ne p1,p0 = rA,0
cmp.ne p2,p0 = rB,0

(p1) br.cond if_block
(p2) br.cond if_block

cmp.ne p3,p0 = rC,0
cmp.ne p4,p0 = rD,0

(p3) br.cond if_block
(p4) br.cond if_block

// after if-block 

On many implementations based on the Itanium architecture, this sequence is likely to 
require at least two cycles to execute if all the conditions are false, plus the possibility 
of more cycles due to one or more branch mispredictions. Another possible sequence 
computes an or-tree reduction:

or r1 = rA,rB
or r2 = rC,rD;;
or r3 = r1,r2;;
cmp.ne p1,p2 = r3,0

(p1) br if_block

This solution requires three cycles to compute the branch condition which can then be 
used to branch to the if-block.

Note: It is also possible to predicate the if-block using p1 to avoid branch mispredic-
tions.

To reduce the cost of compound conditionals, the Itanium architecture has special 
parallel compare instructions to optimize expressions that have and and or operations. 
These compare instructions are special in that multiple and/or compare instructions are 
allowed to target the same predicate within a single instruction group.   This feature 
allows the possibility that a compound conditional can be resolved in a single cycle.

For this usage model to work properly, the architecture requires that the programmer 
ensure that during any given execution of the code, that all instructions that target a 
given predicate register must either:

• Write the same value (0 or 1) or 

• Do not write the target register at all. 

This usage model means that sometimes a parallel compare may not update the value 
of its target registers and thus, unlike normal compares, the predicates used in parallel 
compares must be initialized prior to the parallel compare. Please see Part 
I:, “Application Architecture Guide” for full information on the operation of parallel 
compares.
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Initialization code must be placed in an instruction group prior to the parallel compare. 
However, since the initialization code has no dependencies on prior values, it can 
generally be scheduled without contributing to the critical path of the code.

The instructions below shows how to generate code for the example above using 
parallel compares:

cmp.ne p1,p0 = r0,r0;; // initialize p1 to 0
cmp.ne.or p1,p0 = rA,r0
cmp.ne.or p1,p0 = rB,r0
cmp.ne.or p1,p0 = rC,r0
cmp.ne.or p1,p0 = rD,r0

(p1) br.cond if_block

It is also possible to use p1 to predicate the if-block in-line to avoid a possible 
misprediction.  More complex conditional expressions can also be generated with 
parallel compares:

if ((rA < 0) && (rB == -15) && (rC > 0))
/* If-block instructions */

The assembly pseudo-code below shows a possible sequence for the C code above:
cmp.eq  p1,p0=r0,r0;; // initialize p1 to 1
cmp.ne.and  p1,p0=rB,-15
cmp.ge.and  p1,p0=rA,r0
cmp.le.and  p1,p0=rC,r0

When used correctly, and or compares write both target predicates with the same value 
or do not write the target predicate at all. Another variation on parallel compare usage 
is where both the if and else part of a complex conditional are needed:

if ( rA == 0 || rB == 10 )
r1 = r2 + r3;

else 
r4 = r5 - r6;

Parallel compares have an andcm variant that computes both the predicate and its 
complement simultaneously.

cmp.ne p1,p2 = r0,r0;; // initialize p1,p2
cmp.eq.or.andcmp1,p2 = rA,r0
cmp.eq.or.andcmp1,p2 = rB,10;;

(p1) add r1=r2,r3
(p2) sub r4=r5,r6

Clearly, these instructions can be used in other combinations to create more complex 
conditions.

4.3.2 Reducing Critical Path with Multiway Branches

While there are no special instructions to support branches with multiple conditions and 
multiple targets, the Itanium architecture has implicit support by allowing multiple 
consecutive B-slot instructions within an instruction group.
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An example uses a basic block with four possible successors. The following Itanium 
architecture-based multi-target branch code uses a BBB bundle template and can 
branch to either block B, block C, block D, or fall through to block A:
label_AA:

... // Instructions in block AA
{ .bbb
(p1) br.cond label_B
(p2) br.cond label_C
(p3) br.cond label_D
}

// Fall through to A
label_A:

... // Instructions in block A

The ordering of branches is important for program correctness unless all branches are 
mutually exclusive, in which case the compiler can choose any ordering desired.

4.3.3 Selecting Multiple Values for One Variable or Register with 
Predication

A common occurrence in programs is for a set of paths that compute different values 
for the same variable to join and then continue. A variant of this is when separate paths 
need to compute separate results but could otherwise use the same registers since the 
paths are known to be complementary. The use of predication can optimize these 
cases.

4.3.3.1 Selecting One of Several Values

When several control paths that each compute a different value of a single variable 
meet, a sequence of conditionals is usually required to select which value will be used 
to update the variable. The use of predication can efficiently implement this code 
without branches: 

switch (rW) 
case 1:

rA = rB + rC;
break;

case 2:
rA = rE + rF;
break;

case 3:
rA = rH - rI;
break;

The entire switch-block above can be executed in a single cycle using predication if all 
of the predicates have been computed earlier. Assume that if rW equals 1, 2, or 3, then 
one of p1, p2, or p3 is true, respectively:
(p1) add rA=rB,rC
(p2) add rA=rE,rF
(p3) sub rA=rH,rI;;

Without this predication capability, numerous branches or conditional move operations 
would be needed to collapse these values.
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The Itanium architecture allows multiple instructions to target the same register in the 
same clock provided that only one of the instructions writing the target register is 
predicated true in that clock. Similar capabilities exist for writing predicate registers, as 
discussed in Section 4.3.1.

4.3.3.2 Reducing Register Usage

In some instances it is possible to use the same register for two separate computations 
in the presence of predication. This technique is similar to the technique for allowing 
multiple writers to store a value into the same register, although it is a register 
allocation optimization rather than a critical path issue.

After if-conversion, it is particularly common for sequences of instructions to be 
predicated with complementary predicates. The contrived sequence below shows 
instructions predicated by p1 and p2, which are known by the compiler to be 
complementary: 
(p1) add r1=r2,r3
(p2) sub r5=r4,r56
(p1) ld8 r7=[r2]
(p2) ld8 r9=[r6];;
(p1) a use of r1
(p2) a use of r5
(p1) a use of r7
(p2) a use of r9

Assuming registers r1, r5, r7, and r9 are used for compiler temporaries, each of which 
is live only until its next use, the preceding code segment can be rewritten as:
(p1) add  r1=r2,r3
(p2) sub  r1=r4,r56 // Reuse r1
(p1) ld8  r7=[r2]
(p2) ld8 r7=[r6];; // Reuse r7
(p1) a use of r1
(p2) a use of r1
(p1) a use of r7
(p2) a use of r7

The new sequence uses two fewer registers. With the 128 registers defined in the 
architecture, this may not seem essential, but reducing register use can still reduce 
program and register stack engine spills and fills that can be common in codes with 
high instruction-level parallelism.

4.3.4 Improving Instruction Stream Fetching

Instructions flow through the pipeline most efficiently when they are executed in large 
blocks with no taken branches. Whenever the instruction pointer needs to be changed, 
the hardware may have to insert bubbles into the pipeline either while the target 
prediction is taking place or because the target address is not computed until later in 
the pipeline.
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By using predication to reduce the number of control flow changes, the fetching 
efficiency will generally improve. The only case where predication is likely to reduce 
instruction cache efficiency is when there is a large increase in the number of 
instructions fetched which are subsequently predicated off. Such a situation uses 
instruction cache space for instructions that compute no useful results.

4.3.4.1 Instruction Stream Alignment

For many processors, when a program branches to a new location, instruction fetching 
is performed on instruction cache lines. If the target of the branch does not start on a 
cache line boundary, then fetching from that target will likely not retrieve an entire 
cache line. This problem can be avoided if a programmer aligns instruction groups that 
cross more than one bundle so that the instruction groups do not span cache line 
boundaries. However, padding all labels would cause an unacceptable increase in code 
size. A more practical approach aligns only tops of loops and commonly entered basic 
blocks when the first instruction group extends across more than one bundle. That is, if 
both of the following conditions are true at some label L, then padding previous 
instruction groups so that L is aligned on a cache line boundary is recommended:

• The label is commonly branched to from out-of-line. Examples include tops of loops 
and commonly executed else clauses.

• The instruction group starting at label L extends across more than one bundle.

To illustrate, assume code at label L in the segment below is not cache-aligned and that 
a cache boundary occurs between the two bundles. If a program were to branch to L, 
then execution may split issue after the third add instruction even though there are no 
resource oversubscriptions or stops:
L:
{ .mii

add r1=r2,r3
add r4=r5,r6
add r7=r8,r9

}
{ .mfb

ld8 r14=[r56] ;;
nop.f
nop.b

}

On the other hand, if L were aligned on an even-numbered bundle, then all four 
instructions at L could issue in one cycle.

4.4 Branch and Prefetch Hints

Branch and prefetch hints are architecturally defined to allow the compiler or hand 
coder to provide extra information to the hardware. Compared to hardware, the 
compiler has more time, looks at a wider instruction window (including the source), and 
performs more analysis. Transfer of this knowledge to the processor can help to reduce 
penalties associated with I-cache accesses and branch prediction.
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Two types of branch-related hints are defined by the Itanium architecture: branch 
prediction hints and instruction prefetch hints. Branch prediction hints let the compiler 
recommend the resources (if any) that should be used to dynamically predict specific 
branches. With prefetch hints, the compiler can indicate the areas of the code that 
should be prefetched to reduce demand I-cache misses.

Hints can be specified as completers on branch (br) and move to branch register 
(abbreviated mov2br in this text since the actual mnemonic is mov br=xx).  The hints 
on branch instructions are the easiest to use since the instruction already exists and the 
hint completer just has to be specified. mov2br instructions are used for indirect 
branches. The exact interpretation of these hints is implementation specific although 
the general behavior of hints is expected to be similar between processor generations.

It is also possible to re-write the hint fields on branches later using a binary rewriting 
tools. This can occur statically or at execution time based on profile data without 
changing the correctness of the program. This technique allows static hints to be 
tailored for usage patterns that may not be fully known at compilation time or when the 
binaries are first distributed.

4.5 Hints for Controlling Multi-threading

Some processors support multi-threading; that is, they support the simultaneous 
execution of multiple threads (multiple logical processors) through a common set of 
execution resources (data paths, functional units, TLBs, etc.). Functionally, each of 
these hardware threads fully implements the Itanium architecture; therefore, software 
need not be aware of multi-threading nor do anything special to support it. From 
performance standpoint, there are a few circumstances where it may be beneficial for 
software to provide information about its future resource requirements, which can be 
done with the hint instruction. Such a hint could allow the processor to optimize 
resource allocation among the hardware threads.

Note that, although not all implementations support all types of hint instruction, those 
that do not support them execute the hint instruction as a nop, and hence there is little 
penalty for software to provide these hints.

4.5.1 Wait Loops

Say a thread is waiting for another software thread to complete a task and, during that 
time, doesn't expect to need significant processor resources but would like to receive its 
fair share of resources once the task is complete. In such a situation, the waiting thread 
can communicate this information to the processor as a hint. This encourages the 
processor to allocate more processor resources to other threads of execution while this 
thread is waiting.

Typically, the completion signal in question is a store, by some other software thread, to 
a particular memory location. For example, a software thread may be waiting to acquire 
a spinlock and may have little work to do until such time as it is able to acquire the lock. 
A store to the spinlock in question may be an indication that the lock is now available 
for this software thread to acquire.
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This scenario can be hinted to the processor by executing an advanced load (ld.a or 
ld.sa) to the address that this software thread is waiting on, and then by executing a 
hint @pause instruction (in a subsequent instruction group). This encourages the 
processor to devote more resources to other threads, yet if an entry is invalidated from 
this thread's ALAT, normal processor resource allocation is resumed for this thread.

Resource allocation within the processor eventually reverts to a fair allocation, so 
there's no need for software to hint that it is no longer in a wait loop. Conversely, while 
software is in such a wait loop, it would be best to re-execute the hint @pause as part 
of that loop, to continue to assert the hint for as long as that thread is waiting.

Note that if there is some high likelihood that the ALAT may contain a large number of 
valid entries upon entering into a wait loop, there may be some advantage to removing 
these (e.g., with an invala instruction) prior to executing the advanced load to the 
address to be waited on. This may reduce the restoration of resource allocation to this 
thread in cases where ALAT entries get invalidated other than the one for the address 
being waited on, hence providing more processor resources to other threads.

4.5.2 Idle Loops

Another situation where a software thread expects not to need significant processor 
resources for the next little while is when the software thread is executing an OS-kernel 
idle loop. It can provide this information to the processor also by executing a hint 
@pause instruction. This encourages the processor to allocate more processor resources 
to other threads of execution for the next while.

Resource allocation within the processor eventually reverts to a fair allocation, so 
there's no need for software to hint that it is no longer in an idle loop. Conversely, while 
software is in such an idle loop, it would be best to re-execute the hint @pause as part 
of that loop, to continue to assert the hint for as long as that thread is idle.

Note that if there is some high likelihood that the ALAT may contain a large number of 
valid entries upon entering into an idle loop, there may be some advantage to removing 
these (e.g., with an invala instruction) prior to entering the idle loop. This may reduce 
the restoration of resource allocation to this thread in cases where these ALAT entries 
get invalidated, hence providing more processor resources to other threads.

4.5.3 Critical Sections

The opposite case exists if software expects that, given extra resources for the next 
period of time, overall system performance and throughput would be optimized. For 
example, this software thread may be about to acquire a highly contested spinlock and 
enter a critical section of code, and expeditious progress through that critical section 
and the resultant speedy release of the spinlock may disproportionately benefit overall 
system performance and throughput.

This scenario can be hinted to the processor by executing a hint @priority instruction. 
This encourages the processor to devote more processor resources to this thread (at 
the expense of other threads) for some period of time.
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Resource allocation within the processor eventually reverts to a fair allocation, so 
there's no need for software to hint that it is no longer in a critical section. Processors 
that support this hint also ensure that it cannot be abused to affect overall longer-term 
fairness of processor resource allocation.

4.6 Summary

This chapter has presented a wide variety of topics related to optimizing control flow 
including predication, branch architecture, multiway branches, parallel compares, 
instruction stream alignment, and branch hints. Although such topics could have been 
presented in separate chapters, the interplay between the features is best understood 
by their effects on each other. 

Predication and its interplay on scheduling region formation is central to the 
performance of the Itanium architecture. Unfortunately, discussion of compiler 
algorithms of this nature are far beyond the scope of this document.

§
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Software Pipelining and Loop Support 5

5.1 Overview

The Itanium architecture provides extensive support for software-pipelined loops, 
including register rotation, special loop branches, and application registers. When 
combined with predication and support for speculation, these features help to reduce 
code expansion, path length, and branch mispredictions for loops that can be software 
pipelined.

The beginning of this chapter reviews basic loop terminology and instructions, and 
describes the problems that arise when optimizing loops in the absence of architectural 
support. Specific loop support features of the Itanium architecture are then introduced. 
The remainder of this chapter describes the programming and optimization of various 
type of loops.

5.2 Loop Terminology and Basic Loop Support

Loops can be categorized into two types: counted and while. In counted loops, the loop 
condition is based on the value of a loop counter and the trip count can be computed 
prior to starting the loop. In while loops, the loop condition is a more general 
calculation (not a simple count) and the trip count is unknown. Both types are directly 
supported in the architecture.

The Itanium architecture improves the performance of conventional counted loops by 
providing a special counted loop branch (the br.cloop instruction) and the Loop Count 
application register (LC).   The br.cloop instruction does not have a branch predicate. 
Instead, the branching decision is based on the value of the LC register. If the LC 
register is greater than zero, it is decremented and the br.cloop branch is taken. 

5.3 Optimization of Loops

In many loops, there are not enough independent instructions within a single iteration 
to hide execution latency and make full use of the functional units. For example, in the 
loop body below, there is very little ILP:
L1:

ld4 r4 = [r5],4;; // Cycle 0 load postinc 4
add r7 = r4,r9;; // Cycle 2
st4 [r6] = r7,4 // Cycle 3 store postinc 4
br.cloopL1;; // Cycle 3

In this code, all the instructions from iteration X are executed before iteration X+1 is 
started. Assuming that the store from iteration X and the load from iteration X+1 are 
independent memory references, utilization of the functional units could be improved 
by moving independent instructions from iteration X+1 to iteration X, effectively 
overlapping iteration X with iteration X+1.
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This section describes two general methods for overlapping loop iterations, both of 
which result in code expansion on traditional architectures.   The code expansion 
problem is addressed by loop support features in the Itanium architecture that are 
explored later in this chapter. The loop above will be used as a running example in the 
next few sections.

5.3.1 Loop Unrolling

Loop unrolling is a technique that seeks to increase the available instruction level 
parallelism by making and scheduling multiple copies of the loop body together.   The 
registers in each copy of the loop body are given different names to avoid unnecessary 
WAW and WAR data dependencies. The code below shows the loop from our example 
on page 1:181 after unrolling twice (total of two copies of the original loop body) and 
instruction scheduling, assuming two memory ports and a two cycle latency for loads. 
For simplicity, assume that the loop trip count is a constant N that is a multiple of two, 
so that no exit branch is required after the first copy of the loop body:
L1:

ld4 r4 = [r5],4;; // Cycle 0
ld4 r14 = [r5],4;; // Cycle 1
add r7 = r4,r9;; // Cycle 2
add r17 = r14,r9 // Cycle 3
st4 [r6] = r7,4;; // Cycle 3
st4 [r6] = r17,4 // Cycle 4
br.cloopL1;; // Cycle 4

The above code does not expose as much ILP as possible. The two loads are serialized 
because they both use and update r5. Similarly the two stores both use and update r6. 
A variable which is incremented (or decremented) once each iteration by the same 
amount is called an induction variable. The single induction variable r5 (and similarly 
r6) can be expanded into two registers as shown in the code below:

add r15 = 4,r5
add r16 = 4,r6;;

L1: ld4 r4 = [r5],8 // Cycle 0
ld4 r14 = [r15],8;; // Cycle 0
add r7 = r4,r9 // Cycle 2
add r17 = r14,r9;; // Cycle 2
st4 [r6] r7,8 // Cycle 3
st4 [r16] = r17,8 // Cycle 3
br.cloopL1;; // Cycle 3

Compared to the original loop on page 1:181, twice as many functional units are 
utilized and the code size is twice as large. However, no instructions are issued in cycle 
1 and the functional units are still under utilized in the remaining cycles.   The 
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utilization can be increased by unrolling the loop more times, but at the cost of further 
code expansion. The loop below is unrolled four times (assuming the trip count is 
multiple of four):

add r15 = 4,r5
add r25 = 8,r5
add r35 = 12,r5
add r16 = 4,r6
add r26 = 8,r6
add r36 = 12,r6;;

L1: ld4 r4 = [r5],16 // Cycle 0
ld4 r14 = [r15],16;; // Cycle 0
ld4 r24 = [r25],16 // Cycle 1
ld4 r34 = [r35],16;; // Cycle 1
add r7 = r4,r9 // Cycle 2
add r17 = r14,r9;; // Cycle 2
st4 [r6] = r7,16 // Cycle 3
st4 [r16] = r17,16 // Cycle 3
add r27 = r24,r9 // Cycle 3
add r37 = r34,r9;; // Cycle 3
st4 [r26] = r27,16 // Cycle 4
st4 [r36] = r37,16 // Cycle 4
br.cloop L1;; // Cycle 4

The two memory ports are now utilized in every cycle except cycle 2. Four iterations are 
now executed in five cycles verses the two iterations in four cycles for the previous 
version of the loop.

5.3.2 Software Pipelining

Software pipelining is a technique that seeks to overlap loop iterations in a manner that 
is analogous to hardware pipelining of a functional unit. Each iteration is partitioned into 
stages with zero or more instructions in each stage. A conceptual view of a single 
pipelined iteration of the loop from page 1:181 in which each stage is one cycle long is 
shown below:

stage 1:ld4 r4 = [r5],4
stage 2:--- // empty stage
stage 3:add r7 = r4,r9
stage 4:st4 [r6] = r7,4

The following is a conceptual view of five pipelined iterations:
 1  2  3  4  5           Cycle
----------------------------------------------------
ld4 X
   ld4 X+1
add ld4 X+2
st4 add ld4 X+3

st4 add     ld4  X+4
st4 add X+5

st4 add  X+6
    st4  X+7

The number of cycles between the start of successive iterations is called the initiation 
interval (II). In the above example, the II is one. Each stage of a pipelined iteration is II 
cycles long.   Most of the examples in this chapter utilize modulo scheduling, which is a 
particular form of software pipelining in which the II is a constant and every iteration of 
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the loop has the same schedule. It is likely that software pipelining algorithms other 
than modulo scheduling could benefit from the loop support features. Therefore the 
examples in this chapter are discussed in terms of software pipelining rather than 
modulo scheduling.

Software pipelined loops have three phases: prolog, kernel, and epilog, as shown 
below:

 1  2  3  4  5            Phase
----------------------------------------------------
ld4
   ld4               Prolog
add  ld4
----------------------------------------------------
st4 add ld4               Kernel

st4 add ld4
------------------------------------------------------    

st4 add
st4 add          Epilog

    st4

During the prolog phase, a new loop iteration is started every II cycles (every cycle for 
the above example) to fill the pipeline. During the first cycle of the prolog, stage 1 of 
the first iteration executes. During the second cycle, stage 1 of the second iteration and 
stage 2 of the first iteration execute, etc. By the start of the kernel phase, the pipeline 
is full. Stage 1 of the fourth iteration, stage 2 of the third iteration, stage 3 of the 
second iteration, and stage 4 of the first iteration execute. During the kernel phase, a 
new loop iteration is started, and another is completed every II cycles. During the 
epilog phase, no new iterations are started, but the iterations already in progress are 
completed, draining the pipeline. In the above example, iterations 3-5 are completed 
during the epilog phase.

The software pipeline is coded as a loop that is very different from the original source 
code loop. To avoid confusion when discussing loops and loop iterations, we use the 
term source loop and source iteration to refer back to the original source code loop, and 
the term kernel loop and kernel iteration to refer to the loop that implements the 
software pipeline.

In the above example, the load from the second source iteration is issued before result 
of the first load is consumed.   Thus, in many cases, loads from successive iterations of 
the loop must target different registers to avoid overwriting existing live values.   In 
traditional architectures, this requires unrolling of the kernel loop and software 
renaming of the registers, resulting in code expansion.    Furthermore, in traditional 
architectures, separate blocks of code are generated for the prolog, kernel, and epilog 
phases, resulting in additional code expansion.

5.4 Loop Support Features in the Intel® Itanium® 
Architecture

The code expansion that results from loop optimizations (such as software pipelining 
and loop unrolling) on traditional architectures can increase the number of instruction 
cache misses, thus reducing overall performance. The loop support features in the 
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Itanium architecture allow some loops to be software pipelined without code expansion. 
Register rotation provides a renaming mechanism that reduces the need for loop 
unrolling and software renaming of registers.   Special software pipelined loop branches 
support register rotation and, combined with predication, reduce the need to generate 
separate blocks of code for the prolog and epilog phases.

5.4.1 Register Rotation

Register rotation renames registers by adding the register number to the value of a 
register rename base (rrb) register contained in the CFM. The rrb register is 
decremented when certain special software pipelined loop branches are executed at the 
end of each kernel iteration. Decrementing the rrb register makes the value in register 
X appear to move to register X+1. If X is the highest numbered rotating register, its 
value wraps to the lowest numbered rotating register. 

A fixed-sized area of the predicate and floating-point register files (p16-p63 and 
f32-f127), and a programmable-sized area of the general register file are defined to 
rotate. The size of the rotating area in the general register file is determined by an 
immediate in the alloc instruction and must be either zero or a multiple of 8, up to a 
maximum of 96 registers. The lowest numbered rotating register in the general register 
file is r32. An rrb register is provided for each of the three rotating register files: 
CFM.rrb.gr for the general registers; CFM.rrb.fr for the floating-point registers; 
CFM.rrb.pr for the predicate registers. The software pipelined loop branches 
decrement all the rrb registers simultaneously.

Below is an example of register rotation. The swp_branch pseudo-instruction 
represents a software pipelined loop branch:
L1: ld4 r35 = [r4],4 // post increment by 4

st4 [r5] = r37,4 // post increment by 4
swp_branchL1 ;;

The value that the load writes to r35 is read by the store two kernel iterations (and two 
rotations) later as r37.   In the meantime, two more instances of the load are executed. 
Because of register rotation, those instances write their result to different registers and 
do not modify the value needed by the store. 

The rotation of predicate registers serves two purposes.   The first is to avoid 
overwriting a predicate value that is still needed. The second purpose is to control the 
filling and draining of the pipeline. To do this, a programmer assigns a predicate to each 
stage of the software pipeline to control the execution of the instructions in that stage. 
This predicate is called the stage predicate.   For counted loops, p16 is architecturally 
defined to be the predicate for the first stage, p17 is defined to be the predicate for the 
second stage, etc. A conceptual view of a pipelined source iteration of the example 
counted loop on page 1:181 is shown below.   Each stage is one cycle long and the 
stage predicates are shown:

stage 1:(p16) ld4 r4 = [r5],4
stage 2:(p17) --- // empty stage
stage 3:(p18) add r7 = r4,r9
stage 4:(p19) st4 [r6] = r7,4

A register rotation takes place at the end of each stage (when the software-pipelined 
loop branch is executed in the kernel loop).   Thus a 1 written to p16 enables the first 
stage and then is rotated to p17 at the end of the first stage to enable the second stage 
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for the same source iteration.   Each one written to p16 sequentially enables all the 
stages for a new source iteration. This behavior is used to enable or disable the 
execution of the stages of the pipelined loop during the prolog, kernel, and epilog 
phases as described in the next section.

5.4.2 Note on Initializing Rotating Predicates

In this chapter, the instruction mov pr.rot = immed is used to initialize rotating 
predicates. This instruction ignores the value of CFM.rrb.pr. Thus, the examples in this 
chapter are written assuming that CFM.rrb.pr is always zero prior to the initialization of 
predicate registers using mov pr.rot = immed.

5.4.3 Software-pipelined Loop Branches

The special software-pipelined loop branches allow the compiler to generate very 
compact code for software-pipelined loops by supporting register rotation and by 
controlling the filling and draining of the software pipeline during the prolog and epilog 
phases.   Generally speaking, each time a software-pipelined loop branch is executed, 
the following actions take place:

1. A decision is made on whether or not to continue kernel loop execution.

2. p16 is set to a value to control execution of the stages of the software pipeline 
(p63 is written by the branch, and after rotation this value will be in p16).

3. The registers are rotated (rrb registers are decremented).

4. The Loop Count (LC) and/or the Epilog Count (EC) application registers are 
selectively decremented.

There are two types of software-pipelined loop branches: counted and while. 

5.4.3.1 Counted Loop Branches

Figure 5-1 shows a flowchart for modulo-scheduled counted loop branches.

During the prolog and kernel phase, a decision to continue kernel loop execution means 
that a new source iteration is started. Register rotation must occur so that the new 
source iteration does not overwrite registers that are in use by prior source iterations 
that are still in the pipeline.   p16 is set to 1 to enable the stages of the new source 
iteration. LC is decremented to update the count of remaining source iterations. EC is 
not modified.

During the epilog phase, the decision to continue loop execution means that the 
software pipeline has not yet been fully drained and execution of the source iterations 
in progress must continue. Register rotation must continue because the remaining 
source iterations are still writing results and the consumers of the results expect 
rotation to occur. p16 is now set to 0 because there are no more new source iterations 
and the instructions that correspond to non-existent source iterations must be disabled. 
EC contains the count of the remaining execution stages for the last source iteration 
and is decremented during the epilog. For most loops, when a software pipelined loop 
branch is executed with EC equal to 1, it indicates that the pipeline has been drained 
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and a decision is made to exit the loop. The special case in which a software-pipelined 
loop branch is executed with EC equal to 0 can occur in unrolled software-pipelined 
loops if the target of the cexit branch is set to the next sequential bundle.

There are two types of software-pipelined loop branches for counted loops. br.ctop is 
taken when a decision to continue kernel loop execution is made, and is not taken 
otherwise. It is used when the loop execution decision is located at the bottom of the 
loop. br.cexit is not taken when a decision to continue kernel loop execution is made, 
and is taken otherwise. It is used when the loop execution decision is located 
somewhere other than the bottom of the loop.

5.4.3.2 Counted Loop Example

A conceptual view of a pipelined iteration of the example counted loop on page 1:181 
with II equal to one is shown below:

stage 1:(p16) ld4 r4 = [r5],4
stage 2:(p17) --- // empty stage
stage 3:(p18) add r7 = r4,r9
stage 4:(p19) st4 [r6] = r7,4

To generate an efficient pipeline, the compiler must take into account the latencies of 
instructions and the available functional units. For this example, the load latency is two 
and the load and add are scheduled two cycles apart. The pipeline below is coded 
assuming there are two memory ports and the loop count is 200.

Figure 5-1. ctop and cexit Execution Flow
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Note: Rotating GRs have now been included in the code (the code directly preceding 
did not). Also, induction variables that are post incremented must be allocated 
to the static portion of the register file:

mov  lc = 199 // LC =loop count - 1
mov  ec = 4 // EC =epilog stages + 1
mov pr.rot = 1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ld4 r32 = [r5],4 // Cycle 0
(p18) add r35 = r34,r9 // Cycle 0
(p19) st4 [r6] = r36,4 // Cycle 0

br.ctop L1;; // Cycle 0

The memory ports are fully utilized. Table 5-1 shows a trace of the execution of this 
loop.

In cycle 3, the kernel phase is entered and the fourth iteration of the kernel loop 
executes the ld4, add, and st4 from the fourth, second, and first source iterations 
respectively. By cycle 200, all 200 loads have been executed, and the epilog phase is 
entered. When the br.ctop is executed in cycle 202, EC is equal to 1. EC is 
decremented, the registers are rotated one last time, and execution falls out of the 
kernel loop.

Note: After this final rotation, EC and the stage predicates (p16 - p19) are 0.

It is desirable to allocate variables that are loop variant to the rotating portion of the 
register file whenever possible to preserve space in the static portion for loop invariant 
variables. Induction variables that are post incremented must be allocated to the static 
portion of the register file.

5.4.3.3 While Loop Branches

Figure 5-2 shows the flowchart for while loop branches.

Table 5-1. ctop Loop Trace

Cycle
Port/Instructions State before br.ctop

M I M B p16 p17 p18 p19 LC EC

0 ld4 br.ctop 1 0 0 0 199 4

1 ld4 br.ctop 1 1 0 0 198 4

2 ld4 add br.ctop 1 1 1 0 197 4

3 ld4 add st4 br.ctop 1 1 1 1 196 4

… … … … … … … … … … …

100 ld4 add st4 br.ctop 1 1 1 1 99 4

… … … … … … … … … … …

199 ld4 add st4 br.ctop 1 1 1 1 0 4

200 add st4 br.ctop 0 1 1 1 0 3

201 add st4 br.ctop 0 0 1 1 0 2

202 st4 br.ctop 0 0 0 1 0 1

... 0 0 0 0 0 0
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There are a few differences in the operation of the while loop branch compared to the 
counted loop branch. The while loop branch does not access LC — a branch predicate 
determines the behavior of this branch instead. During the kernel and epilog phases, 
the branch predicate is one and zero respectively. During the prolog phase, the branch 
predicate may be either zero or one depending on the scheme used to program the 
while loop.   Also, p16 is always set to zero after rotation. The reasons for these 
differences are related to the nature of while loops and will be explained in more depth 
with an example in a later section.

5.4.4 Terminology Review

The terms below were introduced in the preceding sections:

Initiation Interval (II)
The number of cycles between the start of successive source iterations in 
a software pipelined loop. Each stage of the pipeline is II cycles long.

Prolog The first phase of a software-pipelined loop, in which the pipeline is filled.

Kernel The second phase of a software-pipelined loop, in which the pipeline is full. 

Epilog The third phase of a software-pipelined loop, in which the pipeline is 
drained. 

Source Iteration
An iteration of the original source code loop. 

Kernel Iteration
An iteration of the loop that implements the software pipeline.

Register Rotation
A form of register renaming that is visible to software. Registers are 
renamed with respect to a register rename base that is decremented. 

Figure 5-2. wtop and wexit Execution Flow
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Induction Variable
Value that is incremented (or decremented) once per source iteration by 
the same amount.

5.5 Optimization of Loops in the Intel® Itanium® 
Architecture

Register rotation, predication, and the software pipelined loop branches allow the 
generation of compact, yet highly parallel code. Speculation can further increase loop 
performance by removing dependency barriers that limit the throughput of software 
pipelined loops. Register rotation removes the requirement that kernel loops be 
unrolled to allow software renaming of the registers. However in some cases 
performance can be increased by unrolling the source loop prior to software pipelining, 
or by generating explicit prolog and/or epilog blocks. The remainder of this chapter 
discusses loop optimizations.

5.5.1 While Loops

The programming scheme for while loops depends upon the structure of the loop. This 
section discusses do-while loops, in which the loop condition is computed at the bottom 
of the loop. Optimizing compilers often transform while loops (where the condition is 
computed at the top of the loop) into do-while loops by moving the condition 
computation to the bottom of the loop and placing a copy of the condition computation 
prior to the loop to reduce the number of branches in the loop. The remainder of this 
section refers to such loops simply as while loops. Below is a simple while loop:
L1: ld4 r4 = [r5],4;; // Cycle 0

st4 [r6] = r4,4 // Cycle 2
cmp.ne p1,p0 = r4,r0 // Cycle 2

(p1) br L1;; // Cycle 2

A conceptual view of a pipelined iteration of this loop with II equal to one is shown 
below:
stage 1:ld4 r4 = [r5],4
stage 2:--- // empty stage
stage 3:st4 [r6]= r4,4

cmp.ne.unc p1,p0 = r4,r0
(p1) br L1

The following is a conceptual view of four overlapped source iterations assuming the 
load and store are independent memory references.   The store, compare, and branch 
instructions in stage two are represented by the pseudo-instruction scb:
 1  2  3  4   Cycle
----------------------------------------------------
ld4 X
   ld4.s X+1
scb ld4.s X+2

scb ld4.s X+3
scb X+4

scb X+5
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Notice that the load for the second source iteration is executed before the compare and 
branch of the first source iteration. That is, the load (and the update of r5) is 
speculative. The loop condition is not computed until cycle X+2, but in order to 
maximize the use of resources, it is desirable to start the second source iteration at 
cycle X+1.   Without the support for control speculation in the Itanium architecture, the 
second source iteration could not be started until cycle X+3. 

The computation of the loop condition for while loops is very different from that of 
counted loops. In counted loops, it is possible to compute the loop condition in one 
cycle using a counted loop branch. This is what a br.ctop instruction does when it sets 
p16. In while loops, a compare must compute the loop condition and set the stage 
predicates. The stages prior to the one containing the compare are called the 
speculative stages of the pipeline, because it is not possible for the compare to 
completely control the execution of these stages. Therefore, the stage predicate set by 
the compare is used (after rotation) to control the first non-speculative stage of the 
pipeline.

The pipelined version of the while loop on page 1:190 is shown below.   A check for the 
speculative load is included:

mov ec = 2
mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0

L1:
ld4.s r32 = [r5],4 // Cycle 0

(p18) chk.s r34, recovery // Cycle 0
(p18) cmp.ne p17,p0 = r34,r0 // Cycle 0
(p18) st4 [r6] = r34,4 // Cycle 0
(p17) br.wtop.sptkL1;; // Cycle 0
L2:

To explain why the kernel loop is programmed the way it is, it is helpful to examine a 
trace of the execution of the loop (assume there are 200 source iterations) shown in 
Table 5-2.

There is no stage predicate assigned to the load because it is speculative. The compare 
sets p17. This is the branch predicate for the current iteration and, after rotation, the 
stage predicate for the first non-speculative stage (stage three) of the next source 
iteration. During the prolog, the compare cannot produce its first valid result until cycle 
two. The initialization of the predicates provides a pipeline that disables the compare 
until the first source iteration reaches stage two in cycle two.   At that point the 
compare starts generating stage predicates to control the non-speculative stages of the 
pipeline. Notice that the compare is conditional. If it were unconditional, it would 
always write a zero to p17 and the pipeline would not get started correctly.

Table 5-2. wtop Loop Trace

Cycle
Port/Instructions State before br.wtop

M I I M B p16 p17 p18 EC

0 ld4.s br.wtop 1 0 0 2

1 ld4.s br.wtop 0 1 0 1

2 ld4.s cmp chk st4 br.wtop 0 1 1 1
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The executions of br.wtop in the first two cycles of the prolog do not correspond to any 
of the source iterations. Their purpose is simply to continue the kernel loop until the 
first valid loop condition can be produced.   In cycle one, the branch predicate p17 is 
one. For this programming scheme, the branch predicate of the br.wtop is always a 
one during the last speculative stage of the first source iteration. During all the prior 
stages, the branch predicate is zero. If the branch predicate is zero, the br.wtop 
continues the kernel loop only if EC is greater than one. It also decrements EC. Thus EC 
must be initialized to (# epilog stages + # speculative pipeline stages).   In the above 
example, this is 0 + 2 = 2.

In cycle 201, the compare for the 200th source iteration is executed.   Since this is the 
final source iteration, the result of the compare is a zero and p17 is unmodified. The 
zero that was rotated into p17 from p16 causes the br.wtop to fall through to the loop 
exit. EC is decremented and the registers are rotated one last time.

In the above example, there are no epilog stages. As soon as the branch predicate 
becomes zero, the kernel loop is exited.

5.5.2 Loops with Predicated Instructions

Instructions that already have predicates in the source loop are not assigned stage 
predicates. They continue to be controlled by compare instructions in the loop body. For 
example, the following loop contains predicated instructions:
L1: ldfs f4 = [r5],4

ldfs f9 = [r8],4;;
fcmp.ge.unc p1,p2 = f4,f9;;

(p1) stfs [r9] = f4, 4
(p2) stfs [r9] = f9, 4

br.cloopL1 ;;

3 ld4.s cmp chk st4 br.wtop 0 1 1 1

… … … … … … … … …

100 ld4.s cmp chk st4 br.wtop 0 1 1 1

… … … … … … … … …

199 ld4.s cmp chk st4 br.wtop 0 1 1 1

200 ld4.s cmp chk st4 br.wtop 0 1 1 1

201 ld4.s cmp chk st4 br.wtop 0 0 1 1

0 0 0 0

Table 5-2. wtop Loop Trace

Cycle
Port/Instructions State before br.wtop

M I I M B p16 p17 p18 EC



Volume 1, Part 2: Software Pipelining and Loop Support 1:193

Below is a possible pipeline with an II of 2, assuming a floating-point load latency of 9 
cycles:
stage 1:
(p16) ldfs f4 = [r5],4
(p16) ldfs f9 = [r8],4;;

--- // empty cycle
stage 2-4: --- // empty stages
stage 5: --- // empty cycle
(p20) fcmp.ge.unc p1,p2 = f4,f9;;
stage 6: --- // empty cycle
(p1) stfs [r9] = f4, 4
(p2) stfs [r9] = f9, 4

The following is the code to implement the pipeline:
mov lc = 199 // LC = loop count - 1
mov ec = 6 // EC = epilog stages + 1
mov pr.rot=1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ldfs f32 = [r5],4
(p16) ldfs f38 = [r8],4;;
(p32) stfs [r9] = f37, 4
(p20) fcmp.ge.uncp31,p32 = f36,f42
(p33) stfs [r9] = f43, 4
L2: br.ctop.sptkL1;;

5.5.3 Multiple-exit Loops

All of the example loops discussed so far have a single exit at the bottom of the loop. 
The loop below contains multiple exits — an exit at the bottom associated with the loop 
closing branch, and an early exit in the middle:
L1: ld4 r4 = [r5],4;;

ld4 r9 = [r4];;
cmp.eq.unc p1,p0 = r9,r7

(p1) br.cond  exit // early exit
add r8 = -1,r8;;
cmp.ge.unc p3,p0 = r8,r0

(p3) br.cond L1;;

Loops with multiple exits require special care to ensure that the pipeline is correctly 
drained when the early exit is taken.There are two ways to generate a pipelined version 
of the above loop: (1) convert it to a single exit loop, or (2) pipeline it with the multiple 
exits explicitly present. 
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5.5.3.1 Converting Multiple Exit Loops to Single Exit Loops

The first is to transform the multiple exit loop into a single exit loop. In the source loop, 
execution of the add, the second compare and the second branch is guarded by the first 
branch. The loop can be transformed into a single exit loop by using predicates to guard 
the execution of these instructions and moving the early exit branch out of the loop as 
shown below:
L1: ld4 r4 = [r5],4;;

ld4 r9 = [r4];;
cmp.eq.uncp1,p2 = r9,r7
add r8 = -1,r8;;

(p2) cmp.ge.unc p3,p0 = r8,r0
(p3) br.cond L1;;
(p1) br.cond exit // early exit if p1 is 1

The computation of p3 determines if either exit of the source loop would have been 
taken. If p3 is zero, the loop is exited and p1 is used to determine which exit was 
actually taken. The add is executed speculatively (it is not guarded by p2) to keep the 
dependency from the cmp.eq to the add from limiting the II. It is assumed that either 
r8 is not live out at the early exit or that compensation code is added at the target of 
the early exit. The pipeline for this loop is shown below with the stage predicate 
assignments but no other rotating register allocation. The compare and the branch at 
the end of stage 4 are not assigned stage predicates because they already have 
qualifying predicates in the source loop:
stage 1:ld4.s r4 = [r5],4;; // II = 2

--- // empty cycle
stage 2:--- // empty cycle

ld4.s r9 = [r4];;
stage 3:--- // empty stage
stage 4:
(p19) add r8 = -1,r8
(p19) cmp.eq.uncp1,p2 = r9,r7;;
(p2) cmp.ge.uncp3,p0 = r8,r0
(p3) br.cond L1;;

The code to implement this pipeline is shown below complete with the chk instruction:
mov ec = 3
mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0

L1: ld4.s r32 = [r5],4 // Cycle 0
(p19) chk.s r36, recovery // Cycle 0
(p19) add r8 = -1,r8 // Cycle 0
(p19) cmp.eq.unc p31,p32 = r36,r7;; // Cycle 0

ld4.s r34 = [r33] // Cycle 1
(p32) cmp.ge p18,p0 = r8,r0 // Cycle 1
L2:
(p18) br.wtop.sptk L1;; // Cycle 1
(p32) br.cond exit // early exit if p32 is 1

Note: When the loop is exited, one final rotation occurs, rotating the value in p31 to 
p32. Thus, p32 is used as the branch predicate for the early exit branch.



Volume 1, Part 2: Software Pipelining and Loop Support 1:195

5.5.3.2 Pipelining with Explicit Multiple Exits

The second approach is to combine the last three instructions in the loop into a 
br.cloop instruction and then pipeline the loop.   The pipeline using this approach is 
shown below:
stage 1: ld4.s r4 = [r5],4;; // II = 1
stage 4: ld4.s r9 = [r4];;
stage 6: cmp.eq.unc p1,p0 = r9,r7
(p1) br.cond  exit

br.cloop L1;;

There are five speculative stages in this pipeline because a non-speculative decision to 
initiate another loop iteration cannot be made until the br.cond and br.cloop are 
executed in stage 6. The code to implement this pipeline is shown below assuming a 
trip count of 200:

mov lc = 204
mov ec = 1
mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0

L1:
ld4.s r32 = [r5],4 // Cycle 0

(p21) chk.s r38, recovery // Cycle 0
(p21) cmp.eq.uncp1,p0 = r38,r7 // Cycle 0

ld4.s r36 = [r35] // Cycle 0
(p1) br.cond exit // Cycle 0
L2: br.ctop.sptkL1; // Cycle 0

When the kernel loop is exited at either the br.cond or the br.ctop, the last source 
iteration is complete. Thus, EC is initialized to 1 and there is no explicit epilog block 
generated for the early exit.   The LC register is initialized to five more than 199 
because there are five speculative stages. The purpose of the first five executions of 
br.ctop is simply to keep the loop going until the first valid branch predicate is 
generated for the br.cond. During each of these executions, LC is decremented, so five 
must be added to the LC initialization amount to compensate.

A smaller II is achieved with the second approach. This pipelined code will also work if 
LC is initialized to 199 and EC is initialized to 6. However, if the early exit is taken, LC 
will have been decremented too many times and will need to be adjusted if it is used at 
the target of the early exit. If there is any epilog when the early exit is taken, that 
epilog must be explicit.

5.5.4 Software Pipelining Considerations

There may be instances where it may not be desirable to pipeline a loop. Software 
pipelining increases the throughput of iterations, but may increase the time required to 
complete a single iteration. As a result, loops with very small trip counts may 
experience decreased performance when pipelined. For example, consider the following 
loop:
L1: ld4 r4 = [r5],4 // Cycle 0

ld4 r7 = [r8],4;; // Cycle 0
st4 [r6] = r4,4 // Cycle 2
st4 [r9] = r7,4 // Cycle 2
br.cloop L1;; // Cycle 2
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The following is a possible pipeline with an II of 2:
stage 1: ld4 r4 = [r5],4 // Cycle 0

ld4  r7 = [r8],4;; // Cycle 0
--- // empty cycle

stage 2: --- // empty cycle
st4 [r6] = r4,4 // Cycle 3
st4 [r9] = r7,4;; // Cycle 3

In the source loop, one iteration is completed every three cycles. In the software 
pipelined loop, it takes four cycles to complete the first iteration. Thereafter, iterations 
are completed every two cycles. If the trip count is two, the execution time of both 
versions of the loop is the same, six cycles. If the average trip count of the loop is less 
than two, the software pipelined version of the loop is slower than the source loop.

In addition, it may not be desirable to pipeline a floating-point loop that contains a 
function call. The number of floating-point registers used by the loop is not known until 
after the loop is pipelined. After pipelining, it may be difficult to find empty slots for the 
instructions needed to save and restore the caller-saved floating-point registers across 
the function call.

5.5.5 Software Pipelining and Advanced Loads

Advanced loads allow some code that is likely to be invariant to be removed from loops, 
thus reducing the resource requirements of the loop. Use of advanced loads also can 
reduce the critical path through the iterations, allowing a smaller II to be achieved. See 
Chapter 3, “Memory Reference” for more information on advanced loads. However, 
caution must be exercised when using advanced loads with register rotation. For this 
discussion, we assume an ALAT with 32 entries.

5.5.5.1 Capacity Limitations

An advanced load with a destination that is a rotating register targets a different 
physical register and allocates a new ALAT entry for each kernel iteration.   For 
example, the simple loop below replaces 32 ALAT entries in 32 iterations:
L1:
(p16) ld4.a r32 = [r8]
(p47) ld4.c r63 = [r8]

br.ctop L1;;

To avoid unnecessary ALAT misses, the check load or advanced load check must be 
executed before a later advanced load causes a replacement of the entry being 
checked. In the simple loop above, the unnecessary ALAT misses do not occur because 
the check load is done within 31 iterations of the advanced load. In the example below, 
an ALAT miss is encountered for every check load because the advanced load replaces 
an entry just before the corresponding check load is executed:
L1:
(p16) ld4.a r32 = [r8]
(p48) ld4.c r64 = [r8]

br.ctop L1;;
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5.5.5.2 Conflicts in the ALAT

Using an advanced load to remove a likely invariant load from a loop while advancing 
another load inside the loop results in poor performance if the latter load targets a 
rotating register. The advanced load that targets the rotating register will eventually 
invalidate the ALAT entry for the loop invariant load. Thereafter, every execution of the 
check load for the loop invariant load will cause an ALAT miss.

When more than one advanced load in the loop targets a rotating register, the registers 
must be assigned and the register lifetimes controlled so that the check load for a 
particular advanced load X is executed before any of the other advanced loads can 
invalidate the entry allocated by load X. For example, the following loop successfully 
targets rotating registers with two advanced loads without any ALAT misses because 
the two advanced load – check load pairs never create more than 32 simultaneously 
live ALAT entries:
L1:
(p16) ld4.a r32 = [r8]
(p31) ld4.c r47 = [r8]
(p16) ld4.a r48 = [r9]
(p31) ld4.c r63 = [r9]

 br.ctop L1;;

When the code cannot be arranged to avoid ALAT misses, it may be best to assign static 
registers to the destinations of the advanced loads and unroll the loop to explicitly 
rename the destinations of the advanced loads where necessary.   The following 
example shows how to unroll the loop to avoid the use of rotating registers. The loop 
has an II equal to 1 and the check load is executed one cycle (and one rotation) after 
the advanced load:
L1:
(p16) ld4.a r33 = [r8]
(p17) ld4.c r34 = [r8]

br.ctop L1;;

Static registers can be assigned to the destinations of the loads if the loop is unrolled 
twice:
L1:
(p16) ld4.a r3 = [r8]
(p17) ld4.c r4 = [r8]

br.cexit L2;;
(p16) ld4.a r4 = [r8]
(p17) ld4.c r3 = [r8]

br.ctop L1;;
L2: //

Rotating registers could still be used for the values that are not generated by advanced 
loads. The effect of this unrolling on instruction cache performance must be considered 
as part of the cost of advancing a load.
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5.5.6 Loop Unrolling Prior to Software Pipelining

In some cases, higher performance can be achieved by unrolling the loop prior to 
software pipelining. Loops that are resource constrained can be improved by unrolling 
such that the limiting resource is more fully utilized. In the following example if we 
assume the target processor has only two memory units, the loop performance is 
bound by the number of memory units:
L1: ld4 r4 = [r5],4 // Cycle 0

ld4  r9 = [r8],4;; // Cycle 0
add  r7 = r4,r9;; // Cycle 2
st4  [r6] = r7,4 // Cycle 3
br.cloop L1;; // Cycle 3

A pipelined version of this loop must have an II of at least two because there are three 
memory instructions, but only two memory units.   If the loop is unrolled twice prior to 
software pipelining and assuming the store is independent of the loads, an II of 3 can 
be achieved for the new loop. This is an effective II of 1.5 for the original source loop. 
Below is a possible pipeline for the unrolled loop:
stage 1:
(p16) ld4 r4 = [r5],8 // odd iteration
(p16) ld4  r9 = [r8],8;; // odd iteration
stage 2:
(p16) ld4 r14 = [r15],8 // even iteration
(p16) ld4 r19 = [r18],8;; // even iteration

// --- empty cycle
stage 3:(p18) add r7 = r4,r9 // odd iteration
(p17) add  r17 = r14,r19;; // even iteration
stage 4: // --- empty cycle
(p19) st4  [r6] = r7,8 // odd iteration
(p18) st4  [r16] = r17,8;; // even iteration

The unrolled loop contains two copies of the source loop body, one that corresponds to 
the odd source iterations and one that corresponds to the even source iterations.   The 
assignment of stage predicates must take this into account. Recall that each one 
written to p16 sequentially enables all the stages for a new source iteration.   During 
stage one of the above pipeline, the stage predicate for the odd iteration is in p16.   The 
stage predicate for the even iteration does not exist yet. During stage two of the above 
pipeline, the stage predicate for the odd iteration is in p17 and the new stage predicate 
for the even iteration is in p16.   Thus within the same pipeline stage, if the stage 
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predicate for the odd iteration is in predicate register X, the stage predicate for the 
even iteration is in predicate register X-1. The pseudo-code to implement this pipeline 
assuming an unknown trip count is shown below:

add r15 = r5,4
add r18 = r8,4
mov lc = r2 // LC = loop count - 1
mov ec = 4 // EC = epilog stages + 1
mov pr.rot=1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ld4 r33 = [r5],8 // Cycle 0 odd iteration
(p18) add r39 = r35,r38 // Cycle 0 odd iteration
(p17) add r38 = r34,r37 // Cycle 0 even iteration
(p16) ld4 r36 = [r8],8 // Cycle 0 odd iteration

br.cexit.spnt L3;; // Cycle 0
(p16) ld4 r33 = [r15],8 // Cycle 1 even iteration
(p16) ld4 r36 = [r18],8;; // Cycle 1 even iteration
(p19) st4 [r6] = r40,8 // Cycle 2 odd iteration
(p18) st4 [r16] = r39,8 // Cycle 2 even iteration
L2: br.ctop.sptk L1;; // Cycle 2
L3:

Notice that the stages are not equal in length. Stages 1 and 3 are one cycle each, and 
stages 2 and 4 are two cycles each. Also, the length of the epilog phase varies with the 
trip count.   If the trip count is odd, the number of epilog stages is three, starting after 
the br.cexit and ending at the br.ctop. If the trip count is even, the number of epilog 
stages is two, starting after the br.ctop and ending at the br.ctop. The EC must be set 
to account for the maximum number of epilog stages. Thus for this example, EC is 
initialized to four. When the trip count is even, one extra epilog stage is executed and 
br.exit L3 is taken. All of the stage predicates used during the extra epilog stages are 
equal to 0, so nothing is executed.

The extra epilog stage for even trip counts can be eliminated by setting the target of 
the br.cexit branch to the next sequential bundle and initializing EC to three as shown 
below:

add r15 = r5,4
add r18 = r8,4
mov lc = r2 // LC = loop count - 1
mov ec = 3 // EC = epilog stages + 1
mov pr.rot=1<<16;; // PR16 = 1, rest = 0

L1:
(p16) ld4 r33 = [r5],8 // Cycle 0 odd iteration
(p18) add r39 = r35,r38 // Cycle 0 odd iteration
(p17) add r38 = r34,r37 // Cycle 0 even iteration
(p16) ld4 r36 = [r8],8 // Cycle 0 odd iteration

br.cexit.spnt L4;; // Cycle 0
L4:
(p16) ld4 r33 = [r15],8 // Cycle 1 even iteration
(p16) ld4 r36 = [r18],8;; // Cycle 1 even iteration
(p19) st4 [r6] = r40,8 // Cycle 2 odd iteration
(p18) st4 [r16] = r39,8 // Cycle 2 even iteration
L2: br.ctop.sptk L1;; // Cycle 2
L3:
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If the loop trip count is even, two epilog stages are executed and the kernel loop is 
exited at the br.ctop. If the trip count is odd, the first two epilog stages are executed 
and then the br.cexit branch is taken. Because the target of the br.cexit branch is 
the next sequential bundle (L4), a third epilog stage is executed before the kernel loop 
is exited at the br.ctop. This optimization saves one stage at the end of the loop when 
the trip count is even, and is beneficial for short trip count loops.

Although unrolling can be beneficial, there are a few considerations before trying to 
unroll and software pipeline. Unrolling reduces the trip count of the loop that is given to 
the pipeliner, and thus may make pipelining of the loop undesirable since low trip count 
loops sometimes run faster unpipelined. Unrolling also increases the code size, which 
may adversely affect instruction cache performance. Unrolling is most beneficial for 
small loops because the potential performance degradation due to under utilized 
resources is greater and the effect of unrolling on the instruction cache performance is 
smaller compared to large loops.

5.5.7 Implementing Reductions

In the following example, a sum of products is accumulated in register f7:
mov f7 = 0;; // initialize sum

L1: ldfs f4 = [r5],4
ldfs f9 = [r8],4;;
fma f7 = f4,f9,f7;; // accumulate
br.cloop L1 ;;

The performance is bound by the latency of the fma instruction which we assume is 5 
cycles for these examples. A pipelined version of this loop must have an II of at least 
five because the fma latency is five.   By making use of register rotation, the loop can 
be transformed into the one below. 

Note that the loop has not yet been pipelined. The register rotation and special loop 
branches are being used to enable an optimization prior to software pipelining.

mov lc = 199 // LC = loop count - 1
mov ec = 1 // Not pipelined, so no epilog
mov f33 = 0 // initialize 5 sums
mov f34 = 0
mov f35 = 0
mov f36 = 0
mov f37 = 0;;

L1: ldfs f4 = [r5],4
ldfs f9 = [r8],4;;
fma f32 = f4,f9,f37;; // accumulate
br.ctop L1 ;;

fadd f10 = f33,f34 // add sums
fadd f11 = f35,f36;;
fadd f12 = f10,f11;;
fadd f7 = f12,f37
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This loop maintains five independent sums in registers f33-f37.   The fma instruction in 
iteration X produces a result that is used by the fma instruction in iteration X+5. 
Iterations X through X+4 are independent, allowing an II of one to be achieved.   The 
code for a pipelined version of the loop assuming two memory ports and a nine cycle 
latency for a floating-point load is shown below:

mov lc = 199 // LC = loop count - 1
mov ec = 10 // EC = epilog stages + 1
mov pr.rot=1<<16 // PR16 = 1, rest = 0
mov f33 = 0 // initialize sums
mov f34 = 0
mov f35 = 0
mov f36 = 0
mov f37 = 0

L1:
(p16) ldfs f50 = [r5],4 // Cycle 0
(p16) ldfs f60 = [r8],4 // Cycle 0
(p25) fma f41 = f59,f69,f46 // Cycle 0

br.ctop.sptk L1;; // Cycle 0
fadd  f10 = f42,f43 // add sums
fadd f11 = f44,f45 ;;
fadd f12 = f10,f11 ;;
fadd f7 = f12,f46

5.5.8 Explicit Prolog and Epilog

In some cases, an explicit prolog is necessary for code correctness. This can occur in 
cases where a speculative instruction generates a value that is live across source 
iterations. Consider the following loop:

ld4 r3 = [r5] ;;
L1:

ld4 r6 = [r8],4 // Cycle 0
ld4 r5 = [r9],4 ;; // Cycle 0
add r7 = r3,r6 ;; // Cycle 2
ld4 r3 = [r5] // Cycle 3
and r10 = 3,r7;; // Cycle 3
cmp.ne p1,p0=r10,r11 // Cycle 4

(p1) br.cond L1 ;; // Cycle 4

The following is a possible pipeline for the loop:
stage 1: ld4.s r6 = [r8],4 // II = 2

ld4.s r5 = [r9],4 ;;
--- // empty cycle

stage 2: --- // empty cycle
ld4.s r36 = [r5]
add r7 = r37,r6 ;;

stage 3: (p18) and   r10 = 3,r7 ;;
(p18) cmp.ne p1,p0 = r10,r11
(p1) br.wtop L1 ;;
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Note that, in the code above, the ld4 and the add instructions in stage 2 have been 
reordered. Register rotation has been used to eliminate the WAR register dependency 
from the add to the ld4. The first two stages are speculative. The code to implement 
the pipeline is shown below:

ld4 r36 = [r5]
mov ec = 2
mov pr.rot = 1 << 16 ;; // PR16 = 1, rest = 0

L1: ld4.s r32 = [r8],4 // Cycle 0
ld4.s r34 = [r9],4 // Cycle 0

(p18) and r40 = 3,r39 ;; // Cycle 0
ld4.s r36 = [r35] // Cycle 1
add r38 = r37,r33 // Cycle 1

(p18) chk.s r40, recovery // Cycle 1
(p18) cmp.ne p17,p0 = r40,r11 // Cycle 1
(p17) br.wtop L1 ;; // Cycle 1

The problem with this pipelined loop is that the value written to r36 prior to the loop is 
overwritten before it is used by the add.   The value is overwritten by the load into r36 
in the first kernel iteration. This load is in the second stage of the pipeline, but cannot 
be controlled during the first kernel iteration because it is speculative and does not 
have a stage predicate. This problem can be solved by peeling off one iteration of the 
kernel and excluding from that copy any instructions that are not in the first stage of 
the pipeline as shown below.

Note that the destination register numbers for the instructions in the explicit prolog 
have been increased by one. This is to account for the fact that there is no rotation at 
the end of the peeled kernel iteration.

ld4 r37 = [r5]
mov ec = 1
mov pr.rot = 1<<17;; // PR17 = 1, rest = 0
ld4 r33 = [r8],4
ld4 r35 = [r9],4

L1: ld4.s r32 = [r8],4 // Cycle 0
ld4.s r34 = [r9],4 // Cycle 0

(p18) and r40 = 3,r39;; // Cycle 0
ld4.s r36 = [r35] // Cycle 1
add r38 = r37,r33 // Cycle 1

(p18) chk.s r40, recovery // Cycle 1
(p18) cmp.ne p17,p0 = r40,r11 // Cycle 1
(p17) br.wtop L1 ;; // Cycle 1

In some cases, higher performance can be achieved by generating separate blocks of 
code for all or part of the prolog and/or epilog phase.   It is clear from the execution 
trace of the pipelined counted loop from page 1:188 that the functional units are 
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under-utilized during the prolog and epilog phases.   Part of the prolog and epilog could 
be peeled off and merged with the code preceding and following the loop.   The 
following is a pipelined version of that counted loop with an explicit prolog and epilog:

mov lc = 196
mov ec = 1

prolog:
ld4 r35 = [r5],4;; // Cycle 0
ld4 r34 = [r5],4 ;; // Cycle 1
ld4 r33 = [r5],4 // Cycle 2
add r36 = r35,r9 ;; // Cycle 2

L1:
ld4 r32 = [r5],4
add r35 = r34,r9
st4 [r6] = r36,4

L2: br.ctop L1 ;;
epilog:

add r35 = r34,r9 // Cycle 0
st4 [r6] = r36,4 ;; // Cycle 0
add r34 = r33,r9 // Cycle 1
st4 [r6] = r35,4 ;; // Cycle 1
st4 [r6] = r34,4 // Cycle 2

The entire prolog (first three iterations of the kernel loop) and epilog (last three 
iterations) have been peeled off. No attempt has been made to reschedule the peeled 
instructions. The stage predicates have been removed from the instructions since they 
are not required for controlling the prolog and epilog phases. Removing them from the 
prolog makes the prolog instructions independent of the rotating predicates and 
eliminates the need for software-pipelined loop branches between prolog stages. Thus 
the entire prolog is independent of the initialization of LC and EC that precede it. The 
register numbers in the prolog and epilog have been adjusted to account for the lack of 
rotation between stages during those phases.

Note: This code assumes that the trip count of the source loop is at least four. If the 
minimum trip count is unknown at compile time, then a runtime check of the 
trip count must be added before the prolog. If the trip count is less than four, 
then control branches to a copy of the original loop.

If this pipelined loop is nested inside an outer loop, there exists a further optimization 
opportunity.   The outer  loop could be rotated such that the kernel loop is at the top 
followed by the epilog for the current outer loop iteration and the prolog for the next 
outer loop iteration. A copy of the prolog would also be added prior to the outer loop.

Note: From the earlier trace of the counted loop execution, the functional unit usage 
of the prolog and epilog are complimentary such that they could be very nicely 
overlapped.

The drawback of creating an explicit prolog or epilog is code expansion.
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5.5.9 Redundant Load Elimination in Loops

Unrolling of a loop is sometimes necessary to remove copy operations created by loop 
optimizations. The following is an example of redundant load elimination. In the code 
below, each iteration loads two values, one of which has already been loaded by the 
previous source iteration:

add r8 = r5,4;;
L1: ld4 r4 = [r5],4 // a[i]

ld4 r9 = [r8],4 ;; // a[i+1]
add r7 = r4,r9 ;;
st4 [r6] = r7,4
br.cloop L1 ;;

The redundant load can be eliminated by adding a copy of the first load prior to the loop 
and changing the load to a copy (mov):

add r8 = r5,4 
ld4 r9 = [r5],4;; // a[i]

L1: mov r4 = r9 // a[i] = previous a[i+1]
ld4 r9 = [r8],4 ;; // a[i+1]
add r7 = r4,r9 ;;
st4 [r6] = r7,4
br.cloop L1 ;;

In traditional architectures, the mov instruction can only be removed by unrolling the 
loop twice.   One instruction is removed from the loop at the cost of two times code 
expansion. The register rotation feature in the Itanium architecture can be used to 
eliminate the mov instruction without unrolling the loop:

add r8 = r5,4 
ld4 r33 = [r5],4;; // a[i]

L1: ld4 r32 = [r8],4 ;; // a[i+1]
add r7 = r33,r32 ;;
st4 [r6] = r7,4
br.ctop L1 ;;

5.6 Summary

The examples in this chapter show how features in the Itanium architecture can be 
used to optimize loops without the code expansion required with traditional 
architectures. Register rotation, predication, and the software-pipelined loop branches 
all contribute to this capability.   Control speculation increases the overlap of the 
iterations of while loops. Data speculation increases the overlap of iterations of loops 
that have loads and stores that cannot be disambiguated.

§
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Floating-point Applications 6

6.1 Overview

The Itanium floating-point architecture is fully ANSI/IEEE-754 standard compliant and 
provides performance enhancing features such as the fused multiply accumulate 
instruction, the large floating-point register file (with static and rotating sections), the 
extended range register file data representation, the multiple independent 
floating-point status fields, and the high bandwidth memory access instructions that 
enable the creation of compact, high performance, floating-point application code.

The beginning of this chapter reviews some specific performance limitations that are 
common in floating-point intensive application codes. Later, architectural features that 
address these limitations are presented with illustrative code examples. The remainder 
of this chapter highlights the optimization of some commonly used kernels using these 
features.

6.2 FP Application Performance Limiters

Floating-point applications are characterized by a predominance of loops. Some loops 
compute complex calculations on regularly structured data, others simply copy data 
from one place to another, while others perform gather/scatter-type operations that 
simultaneously compute and rearrange data. The following sections describe code 
characteristics that limit performance and how they affect these different kinds of 
loops.

6.2.1 Execution Latency

Loops often contain recurrence relationships. Consider the tri-diagonal elimination 
kernel from the Livermore Fortran Kernel suite.
DO 5 i = 2, N
   5X[i] = Z[i] * (Y[i] - X[i-1])

The dependency between X[i] and X[i-1] limits the iteration time of the loop to be 
the sum of the latency of the subtract and the multiply. The available parallelism can be 
increased by unrolling the loop and can be exploited by replicating computation, 
however the fundamental limitation of the data dependency remains.

Sometimes, even if the loop is vectorizable and can be software pipelined, the iteration 
time of the loop is limited by the execution latency of the hardware that executes the 
code. A simple vector divide (shown below) is a typical example:
DO 1 I = 1, N
   1X[i] = Y[i] / Z[i]

Since typical modern microprocessors contain a non-pipelined floating-point unit, the 
iteration time of the loop is the latency of the divide which can be tens of clocks.
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6.2.2 Execution Bandwidth

When sufficient ILP exists and can be exploited, the performance limitation is the 
availability of the execution resources – or the execution bandwidth of the machine. 
Consider the dense matrix multiply kernel from the BLAS3 library.

DO 1 i = 1, N
DO 1 j = 1, P

DO 1 k = 1, M
1 C[i,j] = C[i,j] + A[i,k]*B[k,j]

Common techniques of loop interchange, loop unrolling, and unroll-and-jam, can be 
used to increase the available ILP in the inner loop. When this is done, the inner loop 
contains an abundance of independent floating-point computations with a relatively 
small number of memory operations. The performance constraint is then largely the 
floating-point execution bandwidth of the machine (assuming sufficient registers are 
available to hold the accumulators – C[i,j] and the intermediate computations).

6.2.3 Memory Latency

While cycle time disparity between the processor and memory creates a general 
memory latency problem for most codes, there are a few special conditions in 
floating-point codes that exacerbate its impact. 

One such condition is the use of indirect addressing. Gather/scatter codes in general 
and sparse matrix vector multiply code (below) in particular are good examples.
DO 1 ROW = 1, N

R[ROW] = 0.0d0
DO 1 I = ROWEND(ROW-1)+1, ROWEND(ROW)

1 R[ROW] = R[ROW] + A[I] * X[COL[I]]

The memory latency of the access of COL[I] is exposed, since it is used to index into 
the vector X. The access of the element of X, the computation of the product, and the 
summation of the product on R[ROW] are all dependent on the memory latency of the 
access of COL[I].

Another common condition in floating-point codes where memory latency impact is 
exacerbated is the presence of ambiguous memory dependencies. Consider the 
incomplete Cholesky conjugate gradient excerpt kernel, again from the Livermore 
Fortran Kernel suite.

II = n
IPNTP = 0

222 IPNT = IPNTP
IPNTP = IPNTP + II
II = II/2
I = IPNTP + 1

cdir$ ivdep
DO 2 K = IPNT+2, IPNTP, 2

I = I+1
2    X[I] = X[K] - V[K] * X[K-1] - V[K-1] * X[K+1]

IF (II .GT. 1) GO TO 222
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The DO-loop involves an update of X at the index I using X at the indices K, K+1, K-1. 
Since it is difficult for the compiler to establish whether these indices overlap, the loads 
of X[K], X[K+1] or X[K-1] for the next iteration cannot be scheduled until the store of 
X[I] of the current iteration. This exposes the memory latency of access of these 
operands.

6.2.4 Memory Bandwidth

Floating-point loops are often limited by the rate at which the machine can deliver the 
operands of the computation. The DAXPY kernel from the BLAS1 library is a typical 
example:

DO 1 I = 1, N
1    Y[I] = Y[I] + A * X[I]

The computation requires loading two operands (X[I] and Y[I]) and storing one result 
(Y[I]) for each floating-point multiply and add operation. If the data arrays (X and Y) 
are not in cache, then the performance of this loop on most modern microprocessors 
would be limited by the available memory bandwidth on the machine.

6.3 Floating-point Features in the Intel® Itanium® 
Architecture

This section highlights architectural features that reduce the impact of the performance 
limiters described in Section 6.2 using illustrative examples.

6.3.1 Large and Wide Floating-point Register Set

As machine cycle times are reduced, the latency in cycles of the execution units 
generally increases. As latency increases, register pressure due to multiple operations 
in-flight also increases. Furthermore as multiple execution units are added, the register 
pressure increases similarly since even more instructions can be in-flight at any one 
time.

The Itanium architecture provides 128 directly addressable floating-point registers to 
enable data reuse and to reduce the number of load/store operations required due to 
an insufficient number of registers. This reduction in the number of loads and stores 
can increase performance by changing a computation from being memory operation 
(MOP) limited to being floating-point operation (FLOP) limited. Consider the dense 
matrix multiply code below:

DO 1 i = 1, N
DO 1 j = 1, P

DO 1 k = 1, M
1 C[i,j] = C[i,j] + A[i,k]*B[k,j]

In the inner loop (k), two loads are required for every multiply and add operation. The 
MOP:FLOP ratio is therefore 1:1. 
L1: ldfd f5 = [r5], 8 // Load A[i,k]

ldfd f6 = [r6], 8 // Load B[k,j]
fma.d.s0 f7 = f5, f6, f7 // *,+ to C[i,j]
br.cloop L1
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Here, three registers are required to hold the operands (f5, f6) and the accumulator 
(f7). By recognizing the reuse of A[i,k] for different B[k,j] as j is varied, and the 
reuse of B[k,j] for different A[i,k] as i is varied, the computation can be restructured 
as:

DO 1 i = 1, N, 2
DO 1 j = 1, P, 2

DO 1 k = 1, M
C[i  ,j  ] = C[i  ,j  ] 

+ A[i  ,k]*B[k,j  ]
C[i+1,j  ] = C[i+1,j  ] 

+ A[i+1,k]*B[k,j  ]
C[i  ,j+1] = C[i  ,j+1] 

+ A[i  ,k]*B[k,j+1]
1 C[i+1,j+1] = C[i+1,j+1] 

+ A[i+1,k]*B[k,j+1]

Now, for every 4 loads, 4 multiplies and adds can be performed, thus changing the 
MOP:FLOP ratio to 1:2. However, 8 registers are now required: 4 for the accumulators 
and 4 for the operands. 

add r6 = r5, 8
add r8 = r7, 8

L1: ldfd f5 = [r5], 16 // Load A[i,k]
ldfd f6 = [r6], 16 // Load A[i+1,k]
ldfd f7 = [r7], 16 // Load B[k,j]
ldfd f8 = [r8], 16 // Load B[k,j+1]
fma.s0 f9 = f5, f7, f9 // *,+ on C[i,j]
fma.s0 f10 = f6, f7, f10 // *,+ on C[i+1,j]
fma.s0 f11 = f5, f8, f11 // *,+ on C[i,j+1]
fma.s0 f12 = f6, f8, f12 // *,+ on C[i+1,j+1]
br.cloop L1

With 128 available registers, the outer loops of i and j could be unrolled by 8 each so 
that 64 multiplies and adds can be performed by loading just 16 operands. 

The floating-point register file is divided into two regions: a static region (f0-f31) and a 
rotating region (f32-f127). The register rotation provides the automatic register 
renaming required to create compact kernel-only software-pipelined code. Register 
rotation also enables scheduling software pipelined code with an initiation interval that 
is less than the longest latency operation. For e.g. consider the simple vector add loop 
shown below:

DO 1 i = 1, N
1 A[i] = B[i] + C[i]

The basic inner loop is:
L1: ldf f5 = [r5], 8 // Load B[i]

ldf f6 = [r6], 8 // Load C[i]
fadd f7 = f5, f6 // Add operands
stf [r7] = f7, 8 // Store A[i]
br.cloop L1
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If we suppose the minimum floating-point load latency is 9 clocks, and 2 memory 
operations can be issued per clock, the above loop has to be unrolled by at least six if 
there is no register rotation.

add r8 = r7, 8
L1:
(p18) stf [r7] = f25, 16 // Cycle 17,26...
(p18) stf  [r8] = f26, 16 // Cycle 17,26...
(p17) fadd f25 = f5, f15 // Cycle 8,17,26...
(p16) ldf  f5 = [r5], 8 // Cycle 0,9,18...
(p16) ldf  f15 = [r6], 8 // Cycle 0,9,18...
(p17) fadd f26 = f6, f16;; // Cycle 9,18,27 ...
(p16) ldf  f6 = [r5], 8 // Cycle 1,10,19 ...
(p16) ldf  f16 = [r6], 8 // Cycle 1,10,19 ...
(p18) stf  [r7] = f27, 16 // Cycle 20,29 ...
(p18) stf  [r8] = f28, 16 // Cycle 20,29 ...
(p17) fadd f27 = f7, f17 ;; // Cycle 11,20 ...
(p16) ldf  f7 = [r5], 8 // Cycle 3,12,21 ...
(p16) ldf  f17 = [r6], 8 // Cycle 3,12,21 ...
(p17) fadd f28 = f8, f18 ;; // Cycle 12,21 ...
(p16) ldf  f8 = [r5], 8 // Cycle 4,13,22 ...
(p16) ldf  f18 = [r6], 8 // Cycle 4,13,22 ...
(p18) stf  [r7] = f29, 16 // Cycle 23,32 ...
(p18) stf  [r8] = f30, 16 // Cycle 23,32 ...
(p16) fadd f29 = f9, f19 ;; // Cycle 14,23 ...
(p16) ldf  f9 = [r5], 8 // Cycle 6,15,24 ...
(p16) ldf  f19 = [r6], 8 // Cycle 6,15,24 ...
(p16) fadd f30 = f10, f20 ;; // Cycle 15,24 ...
(p16) ldf  f10 = [r5], 8 // Cycle 7,16,25 ...
(p16) ldf  f20 = [r6], 8 // Cycle 7,16,25 ...

br.ctop L1 ;;

However, with register rotation, the same loop can be scheduled with an initiation 
interval of just 2 clocks without unrolling (and 1.5 clocks if unrolled by 2):
L1:
(p24) stf [r7] = f57, 8 // Cycle 15,17...
(p21) fadd f57  = f37, f47 // Cycle 9,11,13...
(p16) ldf f32  = [r5], 8 // Cycle 0,2,4,6...
(p16) ldf f42  = [r6], 8 // Cycle 0,2,4,6...

 br.ctop L1;;

It is thus often advantageous to modulo schedule and then unroll (if required). Please 
see Chapter 5, “Software Pipelining and Loop Support” for details on how to rewrite 
loops using this transformation.

6.3.1.1 Notes on FP Precision

The floating-point registers are 82 bits wide with 17 bits for exponent range, 64 bits for 
significand precision and 1 sign bit. During computation, the result range and precision 
is determined by the computational model chosen by the user. The computational 
model is indicated either statically in the instruction encoding, or dynamically via the 
precision control (PC) and widest-range-exponent (WRE) bits in the floating-point 
status register. Using an appropriate computational model, the user can minimize the 
error accumulation in the computation. In the above matrix multiply example, if the 
multiply and add computations are performed in full register file range and precision, 
the results (in accumulators) can hold 64 bits of precision and up to 17 bits of range for 
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inputs that might be single precision numbers. With the rounding performed at the 64th 
precision bit (instead of the 24th for single precision) a smaller error is accumulated 
with each multiply and add. Furthermore, with 17 bits of range (instead of 8 bits for 
single precision) large positive and negative products can be added to the accumulator 
without overflow or underflow. In addition to providing more accurate results the extra 
range and precision can often enhance the performance of iterative computations that 
are required to be performed until convergence (as indicated by an error bound) is 
reached.

6.3.2 Multiply-Add Instruction

The Itanium architecture defines the fused multiply-add (fma) as the basic 
floating-point computation, since it forms the core of many computations (linear 
algebra, series expansion, etc.) and its latency in hardware is typically less than the 
sum of the latencies of an individual multiply operation (with rounding) implementation 
and an individual add operation (with rounding) implementation. 

In computational loops that have a loop carried dependency and whose speed is often 
determined by the latency of the floating-point computation rather than the peak 
computational rate, the multiply-add operation can often be used advantageously. 
Consider the Livermore FORTRAN Kernel 9 – General Linear Recurrence Equations:
DO 191 k= 1,n

B5(k+KB5I)= SA(k) + STB5 * SB(k)
STB5= B5(k+KB5I) - STB5

191CONTINUE

Since there is a true data dependency between the two statements on variable 
B5(k+KB5I)) and a loop-carried dependency on variable STB5, the loop number of 
clocks per iteration is entirely determined by the latency of the floating-point 
operations. In the absence of an fma type operation, and assuming that the individual 
multiply and add latencies are 5 clocks each and the loads are 8 cycles, the loop would 
be:
L1:
(p16) ldf f32 = [r5], 8 // Load SA(k)
(p16) ldf f42  = [r6], 8 // Load SB(k)
(p17) fmul f5 = f7, f43;; // tmp,Clk 0,15 ...
(p17) fadd f6 = f33, f5 ;; // B5,Clk 5,20 ...
(p17) stf [r7] = f6, 8 // Store B5
(p17) fsub f7 = f6, f7 // STB5,Clk 10,25 ..

br.ctop L1 ;;

With an fma, the overall latency of the chain of operations decreases and assuming a 5 
cycle fma, the loop iteration speed is now 10 clocks (as opposed to 15 clocks above).
L1:
(p16) ldf f32  = [r5], 8 // Load SA(k)
(p16) ldf f42 = [r6], 8 // Load SB(k)
(p17) fma f6 = f7, f43, f33;; // B5,Clk 0,10 ...
(p17) stf [r7] = f6, 8 // Store B5
(p17) fsub f7 = f6, f7 // STB5,Clk 5,15 ..

br.ctop L1 ;;

The fused multiply-add operation also offers the advantage of a single rounding error 
for the pair of computations which is valuable when trying to compute small differences 
of large numbers.
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6.3.3 Software Divide/Square Root Sequence

To perform division or square root operations on the Itanium architecture, a 
software-based sequence of operations is used. The sequence consists of obtaining an 
initial guess (using frcpa/frsqrta instruction) and then refining the guess by 
performing Newton-Raphson iterations until the error is sufficiently small so that it may 
not affect the rounding of the result. Examples of double precision divide and square 
root sequences, optimized for latency and throughput, are provided below.

Note: For reduced precision, square and divide sequences can be completed with 
even fewer instructions.

6.3.3.1 Double Precision – Divide

6.3.3.2 Double Precision – Square Root

Divide (Max Throughput)
(10 Instructions, 8 Groups)

Divide (Min Latency)
(13 Instructions, 7 Groups)

frcpa.s0 f8,p6 = f6,f7 ;;
(p6) fnma.s1 f9 = f7,f8,f1 ;;
(p6) fma.s1 f8 = f9,f8,f8
(p6) fma.s1 f9 = f9,f9,f0 ;;
(p6) fma.s1  f8 = f9 ,f8,f8
(p6) fma.s1 f9 = f9,f9,f0 ;;
(p6) fma.s1 f8 = f9,f8,f8 ;;
(p6) fma.d.s1 f9 = f6,f8,f0 ;;
(p6) fnma.d.s1 f6 = f7,f9,f6 ;;
(p6) fma.d.s0 f8 = f6,f8,f9

frcpa.s0 f8,p6 = f6,f7 ;;
(p6) fma.s1 f9 = f6,f8,f0
(p6) fnma.s1 f10 = f7,f8,f1 ;;
(p6) fma.s1 f9 = f10,f9,f9
(p6) fma.s1 f11 = f10,f10,f0
(p6) fma.s1 f8 = f10,f8,f8 ;;
(p6) fma.s1 f9 = f11,f9,f9
(p6) fma.s1 f10 = f11,f11,f0
(p6) fma.s1 f8 = f11,f8,f8 ;;
(p6) fma.d.s1 f9 = f10,f9,f9
(p6) fma.s1 f8 = f10,f8,f8 ;;
(p6) fnma.d.s1 f6 = f7,f9,f6 ;;
(p6) fma.d.s0 f8 = f6,f8,f9

Square Root (Max Throughput)a

(14 Instructions, 10 Groups)

a. The following value is assumed preset: f10=1/2.

Square Root (Min Latency)b

(17 Instructions, 9 Groups)

b. The following values are assumed preset: f9=1/2, f10=3/2, f11=5/2, f12=63/8, f13=231/16, f14=35/8.

frsqrta.s0 f7,p6=f6 ;;
  (p6) fma.s1 f8=f10,f7,f0
  (p6) fma.s1 f7=f6,f7,f0 ;;
  (p6) fnma.s1 f9=f7,f8,f10 ;;
  (p6) fma.s1 f8=f9,f8,f8
  (p6) fma.s1 f7=f9,f7,f7 ;;
  (p6) fnma.s1 f9=f7,f8,f10 ;;
  (p6) fma.s1 f8=f9,f8,f8
  (p6) fma.s1 f7=f9,f7,f7 ;;
  (p6) fnma.s1 f9=f7,f8,f10 ;;
  (p6) fma.s1 f8=f9,f8,f8
  (p6) fma.d.s1 f7=f9,f7,f7 ;;
  (p6) fnma.s1 f9=f7,f7,f6 ;;
  (p6) fma.d.s0 f7=f9,f8,f7 ;;

frsqrta.s0 f7,p6=f6 ;;
  (p6) fma.s1 f8=f9,f7,f0
  (p6) fma.s1 f7=f6,f7,f0 ;;
  (p6) fnma.s1 f9=f7,f8,f9 ;;
  (p6) fma.s1 f10=f11,f9,f10
  (p6) fma.s1 f11=f9,f9,f0
  (p6) fma.s1 f12=f13,f9,f12 ;;
  (p6) fma.s1 f10=f11,f10,f9
  (p6) fma.s1 f11=f11,f11,f0
  (p6) fma.s1 f9=f9,f12,f14 ;;
  (p6) fma.s1 f12=f10,f7,f7
  (p6) fma.s1 f7=f7,f11,f0
  (p6) fma.s1 f10=f11,f9,f10 ;;
  (p6) fma.d.s1 f7=f9,f7,f12
  (p6) fma.s1 f8=f10,f8,f8 ;;
  (p6) fnma.s1 f9=f7,f7,f6 ;;
  (p6) fma.d.s0 f7=f9,f8,f7 ;;
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For divide, the first instruction (frcpa) provides an approximation (good to 8 bits) of 
the reciprocal of f7 and sets the predicate (p6) to 1, if the ratio f6/f7 can be obtained 
using the prescribed Newton-Raphson iterations. If, however, the ratio f6/f7 is special 
(finite/0, finite/infinite, etc) the final result of f6/f7 is provided in f8 and the predicate 
(p6) is cleared. For certain boundary conditions (when the operand values (f6 and f7) 
are well outside the single precision, double precision and even double-extended 
precision ranges) frcpa will cause a software assist fault and the software handler will 
produce the ratio f6/f7 and return it in f8 and clear the predicate (p6).

The multiple status fields provided in the FPSR are used in these sequences. S0 is the 
main (architectural) status field and it is written to by the first operation (frcpa) to 
signal any faults (V, Z, D), and by the last operation to signal any traps. The conditions 
of all intermediate operations are ignored by writing them to S1. Thus these sequences 
not only obtain the correct IEEE 754 specified result (in f8) but the flags are also set (in 
S0) as per the standard’s requirements. If the divide is part of a speculative chain of 
operations that is using S2 as its status field, then S0 should be replaced with S2 in 
these sequences. S1 can still be used by the intermediate operations of all the divide 
sequences (i.e. those that target S0, S2, or S3) since its flags are all discarded.

When divide and square-root operations appear in vectorizable loops, it is often very 
advantageous to have these operations be performed in software rather than hardware. 
In software, these operations can be pipelined and the overall throughput be improved, 
whereas in hardware these operations are typically not pipelineable.

Another significant advantage of the software-based divide/square-root computations is 
that the accuracy of the result can be controlled by the user and can be traded off for 
speed. This trade-off is often used in graphics codes where the divide accuracy of about 
14-bits suffices and the sequence can be shorter than that used for single or double 
precision.

6.3.4 Computational Models

The Itanium architecture offers complete user control of the computational model. The 
user can select the result’s precision and range, the rounding mode, and the IEEE trap 
response. Appropriately selecting the computational model can result in code that has 
greater accuracy, higher performance, or both.

The register file format is uniform for the three memory data types – single, double and 
double-extended. Since all the computations are performed on registers (regardless of 
the data type of its content) operands of different types can be easily combined. Also 
since the conversion from the memory type to the register file format is done on loads 
automatically no extra operations are required to perform the format conversion.

The C syntax semantics is also easily emulated. Loads convert all input operands into 
the register file format automatically. Data operands of different types, now residing in 
register file format can be operated upon and all intermediate results coerced to double 
precision by statically indicating the result precision in the instruction encoding. The 
computation leading to the final result can specify the result precision and range 
(statically in the instruction encoding for single and double precision, and dynamically 
in the status field bits for double-extended precision). Compliance to the IA-32 FP 
computational style (range=extended, precision=single/double/extended) can also 
achieved using the status field bits. 
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6.3.5 Multiple Status Fields

The FPSR is divided into one main (architectural) status field and three additional 
identical status fields. These additional status fields could be used to performance 
advantage.

First, divide and square-root sequences (described in Section 6.3.3) contain operations 
that might cause intermediate results to overflow/underflow or be inexact even if the 
final result may not. In order to maintain correct IEEE flag status the status flags of 
these computations need to be discarded. One of these additional status fields 
(typically status field 1) can be used to discard these flags.

Second, speculating floating-point operations requires maintaining the status flags of 
the speculated operations distinct from the architectural status flags until the 
speculated operations are committed to architectural state (if they ever are). One of 
these additional status fields (typically status fields 2 or 3) can be used for this 
purpose. 

Consider the Livermore FORTRAN kernel 16 – Monte Carlo Search
DO 470 k= 1,n

k2= k2+1
j4= j2+k+k
j5= ZONE(j4)
IF( j5-n      ) 420,475,450

415 IF( j5-n+II   ) 430,425,425
420 IF( j5-n+LB   ) 435,415,415
425 IF( PLAN(j5)-R) 445,480,440
430 IF( PLAN(j5)-S) 445,480,440
435 IF( PLAN(j5)-T) 445,480,440
440 IF( ZONE(j4-1)) 455,485,470
445 IF( ZONE(j4-1)) 470,485,455
450 k3= k3+1

IF( D(j5)-(D(j5-1)*(T-D(j5-2))**2
     , +(S-D(j5-3))**2

, +(R-D(j5-4))**2)) 445,480,440
455 m= m+1

IF( m-ZONE(1) ) 465,465,460
460 m= 1
465 IF( i1-m) 410,480,410
470 CONTINUE
475 CONTINUE
480 CONTINUE
485 CONTINUE

Profiling indicates that the conditional after statement 450 is most frequently executed. 
It is therefore advantageous to speculatively execute the computation in the conditional 
while the conditionals in 415...445 are being evaluated. In the event that any of the 
conditionals in 415...445 cause the control to be moved on beyond 450 the results (and 
flags) of the speculatively computed operations (of the conditional after statement 450) 
can be discarded.
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The availability of multiple additional status fields can allow a user to maintain multiple 
computational environments and to dynamically select among them on an operation by 
operation basis. One such use is in the implementation of interval arithmetic code 
where each primitive operation is required to be computed in two different rounding 
modes to determine the interval of the result.

6.3.6 Other Features

The Itanium architecture offers a number of other architectural constructs to enhance 
the performance of different computational situations.

6.3.6.1 Operand Screening Support

Operand screening is often a required or useful step prior to a computation. The 
operand may be screened to ensure that it is in a valid range (e.g. finite positive or zero 
input to square-root; non-zero divisor for divide) or it may be screened to take an early 
out – the result of the computation is predetermined or could be computed more 
efficiently in another way. The fclass instruction can be used to classify the input 
operand to either be or not be a part of a set of classes. Consider the following code 
used for screening invalid operands for square-root computation:
IF (A.EQ. NATVAL OR 

A.EQ. SNAN OR A.EQ. QNAN OR 
A.EQ. NEG_INF OR A.EQ. POS_INF OR
A.LT. 0.0D0) THEN
WRITE (*, “INVALID INPUT OPERAND”)

ELSE
WRITE (*, “SQUARE-ROOT = “, SQRT(A))

ENDIF

The above conditional can be determined by two fclass instructions as indicated below:
fclass.m p1, p2 = f2, 0x1E3;; // Detect NaTVal, NaN, +Inf or -Inf

(p2) fclass.m p1, p2 = f2, 0x01A // Detect -Norm or -Unorm

The resultant complimentary predicates (p1 and p2) can be used to control the ELSE 
and THEN statements respectively.

6.3.6.2 Min/Max/AMin/AMax

The Itanium architecture provides direct instruction level support for the FORTRAN 
intrinsic MIN(a,b) or the equivalent C idiom: a<b? a: b and the FORTRAN intrinsic 
MAX(b, a) or the equivalent C idiom: a<b? b: a. These instructions can enhance 
performance by avoiding the function call overhead in FORTRAN, and by reducing the 
critical path in C. The instructions are designed to mimic the C statement behavior so 
that they can be generated by the compiler. They are also not commutative. By 
appropriately selecting the input operand order, the user can either ignore or catch 
NaNs.

Consider the problem of finding the minimum value in an array (similar to the 
Livermore FORTRAN kernel 24):

XMIN = X(1)
DO 24  k= 2,n
24 IF(X(k) .LT. XMIN)  XMIN = X(k)
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Since NaNs are unordered, comparison with NaNs (including LT) will return false. Hence 
if the above code is implemented as:

ldf f5 = [r5], 8;;
L1: ldf f6 = [r5], 8

fmin f5 = f6, f5
br.cloop L1 ;;

NaNs in the array (X) will be ignored.

If the value in the array X (loaded in f6) is a NaN, the new minimum value (in f5) will 
remain unchanged, since the NaN will fail the.LT. comparison and fmin will return the 
second argument – in this case the old minimum value in f5.

However, if the code is implemented as:
ldf f5 = [r5], 8;;

L1: ldf f6 = [r5], 8
fmin f5 = f5, f6
br.cloop L1 ;;

NaNs in the array (X) will reset the minimum value.

Now, if the value in the array X (loaded in f6) is a NaN, the new minimum value (in f5) 
will be set to the NaN, since the NaN will fail the.LT. comparison and fmin will return 
the second argument – in this case the NaN in f6. In the next iteration, the new array 
value (loaded in f6) will become the new minimum.

famin/famax perform the comparison on the absolute value of the input operands (i.e. 
they ignore the sign bit) but otherwise operate in the same (non-commutative) way as 
the fmin/fmax instructions.

6.3.6.3 Integer/Floating-point Conversion

Unsigned integers are converted to their equivalently valued floating-point 
representations by simply moving the integer to the significand field of the 
floating-point register using the setf.sig instruction. The resulting floating-point value 
would be in its unnormal representation (unless the unsigned integer was greater than 
263). 

Conversions from signed integers to floating-point and from floating-point to signed or 
unsigned integers are accomplished by fcvt.xf and fcvt.fx/fcvt.fxu instructions 
respectively. However, since signed integers are converted directly to their canonical 
floating-point representations, they do not need to be normalized after conversion.

6.3.6.4 FP Subfield Handling

It is sometimes useful to assemble a floating-point value from its constituent fields. 
Multiplication and division of floating-point values by powers of two, for example, can 
be easily accomplished by appropriately adjusting the exponent. The Itanium 
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architecture provides instructions that allow moving floating-point fields between the 
integer and floating-point register files. Division of a floating-point number by 2.0 is 
accomplished as follows:
getf.exp r5 = f5 // Move S+Exp to int
add r5 = r5, -1 // Sub 1 from Exp
setf.exp f6 = r5 // Move S+Exp to FP
fmerge.se f5 = f6, f5 // Merge S+E w/ Mant

Floating-point values can also be constructed from fields from different floating-point 
registers. 

6.3.7 Memory Access Control

Recognizing the trend of growing memory access latency, and the implementation costs 
of high bandwidth, the Itanium architecture incorporates many architectural features to 
help manage the memory hierarchy and increase performance. As described in 
Section 6.2, memory latency and bandwidth are significant performance limiters in 
floating-point applications. The architecture offers features to address both these 
limitations.

In order to enhance the core bandwidth to the floating-point register file, the 
architecture defines load-pair instructions. In order to mitigate the memory latency, 
explicit and implicit data prefetch instructions are defined. In order to maximize the 
utilization of caches, the architecture defines locality attributes as part of memory 
access instructions to help control the allocation (and de-allocation) of data in the 
caches. For instances where the instruction bandwidth may become a performance 
limiter, the architecture defines machine hints to trigger relevant instruction prefetches.

6.3.7.1 Load-pair Instructions

The floating-point load pair instructions enable loading two contiguous values in 
memory to two independent floating-point registers. The target registers are required 
to be odd and even physical registers so that the machine can utilize just one access 
port to accomplish the register update. 

Note: The odd/even pair restriction is on physical register numbers, not logical regis-
ter numbers. A programming violation of this rule will cause an illegal operation 
fault.

For example, suppose a machine that can issue 2 FP instructions per cycle, provides 
sufficient bandwidth from the second level cache (L2) to sustain 2 load-pairs every 
cycle. Then loops that require up to 2 data elements (of 8 bytes each) per floating-point 
instruction can run at peak speeds when the data is resident in L2. A common example 
of such a case is a simple double precision dot product – DDOT:

DO 1 I = 1, N
1 C = C + A(I) * B(I)
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The inner loop consists of two loads (for A and B) and a multiply-add (to accumulate the 
product on C). The loop would run at the latency of the fma due to the recurrence on C. 
In order to break the recurrence on C, the loop is typically unrolled and multiple partial 
accumulators are used.

DO 1 I = 1, N, 8
C1 = C1 + A[I] * B[I]
C2 = C2 + A[I+1] * B[I+1]
C3 = C3 + A[I+2] * B[I+2]
C4 = C4 + A[I+3] * B[I+3]
C5 = C5 + A[I+4] * B[I+4]
C6 = C6 + A[I+5] * B[I+5]
C7 = C7 + A[I+6] * B[I+6]

1 C8 = C8 + A[I+7] * B[I+7]
C = C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8

If normal (non-double pair) loads are used, the inner loop would consist of 16 loads and 
8 fmas. If we assume the machine has two memory ports, this loop would be limited by 
the availability of M slots and run at a peak rate of 1 clock per iteration. However, if this 
loop is rewritten using 8 load-pairs (for A[I], A[I+1] and B[I], B[I+1] and A[I+2], 
A[I+3] and B[I+2], B[I+3] and so on) and 8 fmas this loop could run at a peak rate of 
2 iterations per clock (or just 0.5 clocks per iteration) with just two M-units.

6.3.7.2 Data Prefetch

lfetch allows the advance prefetching of a line (defined as 32 bytes or more) of data 
into the cache from memory. Allocation hints can be used to indicate the nature of the 
locality of the subsequent accesses on that data and to indicate which level of cache 
that data needs to be promoted to.

While regular loads can also be used to achieve the effect of data prefetching, (if the 
load target is never used) lfetches can more effectively reduce the memory latency 
without using floating-point registers as targets of the data being prefetched. 
Furthermore lfetch allows prefetching the data to different levels of caches.

6.3.7.3 Allocation Control

Since data accesses have different locality attributes (temporal/non-temporal, 
spatial/non-spatial), The Itanium architecture allows annotating the data accesses 
(loads/stores) to reflect these attributes. Based on these annotations, the 
implementation can better manage the storage of the data in the caches.

Temporal and Non-temporal hints are defined. These attributes are applicable to the 
various cache levels. (Only two cache levels are architecturally identified). The 
non-temporal hint is best used for data that typically has no reuse with respect to that 
level of cache. The temporal hint is used for all other data (that has reuse).

6.4 Summary

This chapter describes the limiting factors for many scientific and floating-point 
applications: memory latency and bandwidth, functional unit latency, and number of 
available functional units. It also describes the important features of floating-point 
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support in the Itanium architecture beyond the software-pipelining support described in 
Chapter 5, “Software Pipelining and Loop Support” that help to overcome some of these 
performance limiters. Architectural support for speculation, rounding, and precision 
control are also described.

Examples in the chapter include how to implement floating-point division and square 
root, common scientific computations such as reductions, use of features such as the 
fma instruction, and various Livermore kernels.

§



1:219 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

Index



1:220 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3



Index for Volumes 1, 2, 3 and 4 Index:1

INDEX FOR VOLUMES 1, 2, 3 AND 4

A
AAA Instruction 4:21
AAD Instruction 4:22
AAM Instruction 4:23
AAS Instruction 4:24
Aborts 2:95, 2:538
ACPI 2:631

P-states 2:315, 2:637
Acquire Semantics 2:507
ADC Instruction 4:25, 4:26
ADD Instruction 4:27, 4:28
add Instruction 3:14
addp4 Instruction 3:15
ADDPS Instruction 4:486
Address Space Model 2:561
ADDSS Instruction 4:487
Advanced Load 1:153, 1:154
Advanced Load Address Table (ALAT) 1:64
Advanced Load Check 1:154
ALAT (Advanced Load Address Table) 1:64

Coherency 2:554
Data Speculation 1:17

alloc Instruction 3:16
AND Instruction 4:29, 4:30
and Instruction 3:18
andcm Instruction 3:19
ANDNPS Instruction 4:488
ANDPS Instruction 4:489
Application Architecture Guide 1:1
Application Memory Addressing Model 1:36
Application Register (AR) 1:23, 1:28, 1:140
AR (Application Register) 1:28, 1:140
Arithmetic Instructions 1:51
ARPL Instruction 4:31, 4:32

B
Backing Store 2:133
Banked General Registers 2:42
Bit Field and Shift Instructions 1:52
Bit Strings 1:84
Boot Sequence 2:13
BOUND Instruction 4:33
BR (Branch Register) 1:26, 1:140
br Instruction 3:20

br.ia 1:112, 2:596
Branch Hints 1:78, 1:176
Branch Instructions 1:74, 1:145
Branch Register (BR) 1:19, 1:26, 1:140
break Instruction 2:556, 3:29
Break Instruction Fault 2:151
brl Instruction 3:30
brp Instruction 3:32
BSF Instruction 4:35
BSP (RSE Backing Store Pointer Register) 1:29
BSPSTORE (RSE Backing Store Pointer for Memory 

Stores Register) 1:30
BSR Instruction 4:37
bsw Instruction 3:34
BSWAP Instruction 4:39
BT Instruction 4:40
BTC Instruction 4:42
BTR Instruction 4:44
BTS Instruction 4:46
Bundle Format 1:38
Bundles 1:38, 1:141
Byte Ordering 1:36

C
CALL Instruction 4:48
CBW Instruction 4:57
CCV (Compare and Exchange Value Register) 1:30
CDQ Instruction 4:85
CFM (Current Frame Marker) 1:27
Character Strings 1:83
Check Code 1:161
Check Load 1:154
chk Instruction 3:35
CLC Instruction 4:59
CLD Instruction 4:60
CLI Instruction 4:61
clrrrb Instruction 3:37
CLTS Instruction 4:63
clz Instruction 3:38
CMC (Corrected Machine Check) 2:350
CMC Instruction 4:64
CMCV (Corrected Machine Check Vector) 2:126
CMP Instruction 4:69
cmp Instruction 3:39
cmp4 Instruction 3:43
CMPPS Instruction 4:490
CMPS Instruction 4:71
CMPSB Instruction 4:71
CMPSD Instruction 4:71
CMPSS Instruction 4:493
CMPSW Instruction 4:71
CMPXCHG Instruction 4:74
cmpxchg Instruction 2:508, 3:46
CMPXCHG8B Instruction 4:76
Coalescing Attribute 2:78
COMISS Instruction 4:496
Compare and Exchange Value Register (CCV) 1:30
Compare and Store Data Register (CSD) 1:30
Compare Types 1:55
Context Management 2:549
Context Switching 2:557

Operating System Kernel 2:558
User-Level 2:557

Control Dependencies 1:148
Control Registers 2:29
Control Speculation 1:16, 1:60, 1:142, 1:151, 



INDEX

Index:2 Index for Volumes 1, 2, 3 and 4

1:155, 2:579
Control Speculative Load 1:156
Corrected Error 2:350
Corrected Machine Check Vector (CMCV) 2:126
cover Instruction 3:48
CPUID (Processor Identification Register) 1:34
CPUID Instruction 4:78
Cross-modifying Code 2:533
CSD (Compare and Store Data Register) 1:30
Current Frame Marker (CFM) 1:27
CVTPI2PS Instruction 4:498
CVTPS2PI Instruction 4:500
CVTSI2SS Instruction 4:502
CVTSS2SI Instruction 4:503
CVTTPS2PI Instruction 4:504
CVTTSS2SI Instruction 4:506
CWD Instruction 4:85
CWDE Instruction 4:57, 4:86
czx Instruction 3:49

D
DAA Instruction 4:87
DAS Instruction 4:88
Data Arrangement 1:81
Data Breakpoint Register (DBR) 2:151, 2:152
Data Debug Faults 2:152
Data Dependencies 1:149, 1:150, 3:371
Data Poisoning 2:302
Data Prefetch Hint 1:148
Data Serialization 2:18
Data Speculation 1:17, 1:63, 1:143, 1:151, 2:579
Data Speculative Load 1:154
DBR (Data Breakpoint Register) 2:151, 2:152
DCR (Default Control Register) 2:31
Debugging 2:151
DEC Instruction 4:89
Default Control Register (DCR) 2:31
Dekker’s Algorithm 2:529
dep Instruction 3:51
DIV Instruction 4:91
DIVPS Instruction 4:507
DIVSS Instruction 4:508

E
EC (Epilog Count Register) 1:33
EFLAG (IA-32 EFLAG Register) 1:123
EMMS Instruction 4:400
End of External Interrupt Register (EOI) 2:124
Endian 1:36
ENTER Instruction 4:94
EOI (End of External Interrupt Register) 2:124
epc Instruction 2:555, 3:53
Epilog Count Register (EC) 1:33
Explicit Prefetch 1:70
External Controller Interrupts 2:96

External Interrupt 2:96, 2:538
External Interrupt Control Registers (CR64-81) 

2:42
External Interrupt Request Registers (IRR0-3) 

2:125
External Interrupt Vector Register (IVR) 2:123
External Task Priority Cycle (XTP) 2:130
External Task Priority Register (XTPR) 2:605
ExtINT (External Controller Interrupt) 2:96
extr Instruction 3:54

F
F2XM1 Instruction 4:97
FABS Instruction 4:99
fabs Instruction 3:55
FADD Instruction 4:100
fadd Instruction 3:56
FADDP Instruction 4:100
famax Instruction 3:57
famin Instruction 3:58
fand Instruction 3:59
fandcm Instruction 3:60
Fatal Error 2:350
Fault Handlers 2:583
Faults 2:96, 2:537
FBLD Instruction 4:103
FBSTP Instruction 4:105
fc Instruction 3:61
fchkf Instruction 3:63
FCHS Instruction 4:108
fclass Instruction 3:64
FCLEX Instruction 4:109
fclrf Instruction 3:66
FCMOI Instruction 4:115
FCMOVcc Instruction 4:110
fcmp Instruction 3:67
FCOM Instruction 4:112
FCOMIP Instruction 4:115
FCOMP Instruction 4:112
FCOMPP Instruction 4:112
FCOS Instruction 4:118
FCR (IA-32 Floating-point Control Register) 1:126
fcvt Instruction

fcvt.fx 3:70
fcvt.xf 3:72
fcvt.xuf 3:73

FDECSTP Instruction 4:120
FDIV Instruction 4:121
FDIVP Instruction 4:121
FDIVR Instruction 4:124
FDIVRP Instruction 4:124
Fence Semantics 2:508
fetchadd Instruction 2:508, 3:74
FFREE Instruction 4:127
FIADD Instruction 4:100



Index for Volumes 1, 2, 3 and 4 Index:3

INDEX

FICOM Instruction 4:128
FICOMP Instruction 4:128
FIDIV Instruction 4:121
FIDIVR Instruction 4:124
FILD Instruction 4:130
FIMUL Instruction 4:145
FINCSTP Instruction 4:132
Firmware 1:7, 2:623
Firmware Address Space 2:283
Firmware Entrypoint 2:281, 2:350
Firmware Interface Table (FIT) 2:287
FIST Instruction 4:134
FISTP Instruction 4:134
FISUB Instruction 4:182, 4:183
FISUBR Instruction 4:185
FIT (Firmware Interface Table) 2:287
FLD Instruction 4:137
FLD1 Instruction 4:139
FLDCW Instruction 4:141
FLDENV Instruction 4:143
FLDL2E Instruction 4:139
FLDL2T Instruction 4:139
FLDLG2 Instruction 4:139
FLDLN2 Instruction 4:139
FLDPI Instruction 4:139
FLDZ Instruction 4:139
Floating-point Architecture 1:19, 1:85, 1:205
Floating-point Exception Fault 1:102
Floating-point Instructions 1:91
Floating-point Register (FR) 1:139
Floating-point Software Assistance Exception 

Handler (FPSWA) 2:587
Floating-point Status Register (FPSR) 1:31, 1:88
flushrs Instruction 3:76
fma Instruction 1:210, 3:77
fmax Instruction 3:79
fmerge Instruction 3:80
fmin Instruction 3:82
fmix Instruction 3:83
fmpy Instruction 3:85
fms Instruction 3:86
FMUL Instruction 4:145
FMULP Instruction 4:145
FNCLEX Instruction 4:109
fneg Instruction 3:88
fnegabs Instruction 3:89
FNINIT Instruction 4:133
fnma Instruction 3:90
fnmpy Instruction 3:92
FNOP Instruction 4:148
fnorm Instruction 3:93
FNSAVE Instruction 4:162
FNSTCW Instruction 4:176
FNSTENV Instruction 4:178
FNSTSW Instruction 4:180
for Instruction 3:94

fpabs Instruction 3:95
fpack Instruction 3:96
fpamax Instruction 3:97
fpamin Instruction 3:99
FPATAN Instruction 4:149
fpcmp Instruction 3:101
fpcvt Instruction 3:104
fpma Instruction 3:107
fpmax Instruction 3:109
fpmerge Instruction 3:111
fpmin Instruction 3:113
fpmpy Instruction 3:115
fpms Instruction 3:116
fpneg Instruction 3:118
fpnegabs Instruction 3:119
fpnma Instruction 3:120
fpnmpy Instruction 3:122
fprcpa Instruction 3:123
FPREM Instruction 4:151
FPREM1 Instruction 4:154
fprsqrta Instruction 3:126
FPSR (Floating-point Status Register) 1:31, 1:88
FPSWA (Floating-point Software Assistance 

Handler) 2:587
FPTAN Instruction 4:157
FR (Floating-point Register) 1:139
frcpa Instruction 3:128
FRNDINT Instruction 4:159
frsqrta Instruction 3:131
FRSTOR Instruction 4:160
FSAVE Instruction 4:162
FSCALE Instruction 4:165
fselect Instruction 3:134
fsetc Instruction 3:135
FSIN Instruction 4:167
FSINCOS Instruction 4:169
FSQRT Instruction 4:171
FSR (IA-32 Floating-point Status Register) 1:126
FST Instruction 4:173
FSTCW Instruction 4:176
FSTENV Instruction 4:178
FSTP Instruction 4:173
FSTSW Instruction 4:180
FSUB Instruction 4:182, 4:183
fsub Instruction 3:136
FSUBP Instruction 4:182, 4:183
FSUBR Instruction 4:185
FSUBRP Instruction 4:185
fswap Instruction 3:137
fsxt Instruction 3:139
FTST Instruction 4:188
FUCOM Instruction 4:190
FUCOMI Instruction 4:115
FUCOMIP Instruction 4:115
FUCOMP Instruction 4:190
FUCOMPP Instruction 4:190



INDEX

Index:4 Index for Volumes 1, 2, 3 and 4

FWAIT Instruction 4:386
fwb Instruction 3:141
FXAM Instruction 4:193
FXCH Instruction 4:195
fxor Instruction 3:142
FXRSTOR Instruction 4:509
FXSAVE Instruction 4:512, 4:515
FXTRACT Instruction 4:197
FYL2X Instruction 4:199
FYL2XP1 Instruction 4:201

G
General Register (GR) 1:25, 1:139
getf Instruction 3:143
GR (General Register) 1:139

H
hint Instruction 3:145
HLT Instruction 4:203

I
I/O Architecture 2:615
IA-32

IA-32 Application Execution 1:109
IA-32 Applications 2:239, 2:595
IA-32 Architecture 1:7, 1:21
IA-32 Current Privilege Level (PSR.cpl) 2:243
IA-32 EFLAG Register 1:123, 2:243
IA-32 Exception

Alignment Check Fault 2:229
Code Breakpoint Fault 2:215
Data Breakpoint, Single Step, Taken

Branch Trap 2:216
Device Not Available Fault 2:221
Divide Fault 2:214
Double Fault 2:222
General Protection Fault 2:226
INT 3 Trap 2:217
Invalid Opcode Fault 2:220
Invalid TSS Fault 2:223
Machine Check 2:230
Overflow Trap 2:218
Page Fault 2:227
Pending Floating-point Error 2:228
Segment Not Present Fault 2:224
SSE Numeric Error Fault 2:231
Stack Fault 2:225

IA-32 Execution Layer 1:109
IA-32 Floating-point Control Registers 1:126
IA-32 Instruction Reference 4:11
IA-32 Instruction Set 2:253
IA-32 Intel® MMX™ Technology 1:129
IA-32 Intercept

Gate Intercept Trap 2:235
Instruction Intercept Fault 2:233

Locked Data Reference Fault 2:237
System Flag Trap 2:236

IA-32 Interrupt
Software Trap 2:232

IA-32 Interruption 2:111
IA-32 Interruption Vector Definitions 2:213
IA-32 Interruption Vector Descriptions 2:213
IA-32 Memory Ordering 2:265
IA-32 Physical Memory References 2:262
IA-32 SSE Extensions 1:20, 1:130
IA-32 System Registers 2:246
IA-32 System Segment Registers 2:241
IA-32 Trap Code 2:213
IA-32 Virtual Memory References 2:261

IBR (Index Breakpoint Register) 2:151, 2:152
IDIV Instruction 4:204
IFA (interuption Faulting Address) 2:541
IFS (Interruption Function State) 2:541
IHA (Interruption Hash Address) 2:41, 2:541
IIB0 (Interruption Instruction Bundle 0) 2:541
IIB1 (Interruption Instruction Bundle 1) 2:541
IIM (Interruption Immediate) 2:541
IIP (Interruption Instruction Pointer) 2:541
IIPA (Interruption Instruction Previous Address) 

2:541
Implicit Prefetch 1:70
IMUL Instruction 4:207
IN Instruction 4:210
INC Instruction 4:212
In-flight Resources 2:19
INIT (Initialization Event) 2:96, 2:306, 2:635
Initialization Event (INIT) 2:96
INS Instruction 4:214
INSB Instruction 4:214
INSD Instruction 4:214
Instruction Breakpoint Register (IBR) 2:151, 

2:152
Instruction Debug Faults 2:151
Instruction Dependencies 1:148
Instruction Encoding 1:38
Instruction Formats 3:293

SSE 4:483
Instruction Group 1:40
Instruction Level Parallelism 1:15
Instruction Pointer (IP) 1:27, 1:140
Instruction Scheduling 1:148, 1:150, 1:164
Instruction Serialization 2:18
Instruction Set Architecture (ISA) 1:7
Instruction Set Modes 1:110
Instruction Set Transition 1:14
Instruction Set Transitions 2:239, 2:596
Instruction Slot Mapping 1:38
Instruction Slots 1:38
INSW Instruction 4:214
INT (External Interrupt) 2:96
INT3 Instruction 4:217
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INTA (Interrupt Acknowledge) 2:130
Inter-processor Interrupt (IPI) 2:127
Interrupt Acknowledge Cycle 2:130
Interruption Control Registers (CR16-27) 2:36
Interruption Handler 2:537
Interruption Handling 2:543
Interruption Hash Address 2:41
Interruption Instruction Bundle Registers (IIB0-1) 

2:42
Interruption Processor Status Register (IPSR) 2:36
Interruption Register State 2:540
Interruption Registers 2:538
Interruption Status Register (ISR) 2:36
Interruption Vector 2:165

Alternate Data TLB 2:178
Alternate Instruction TLB 2:177
Break Instruction 2:185
Data Access Rights 2:191
Data Access-Bit 2:184
Data Key Miss 2:181
Data Nested TLB 2:179
Data TLB 2:176
Debug 2:200
Dirty-Bit 2:182
Disabled FP-Register 2:195
External Interrupt 2:186
Floating-point Fault 2:203
Floating-point Trap 2:204
General Exception 2:192
IA-32 Exception 2:210
IA-32 Intercept 2:211
IA-32 Interrupt 2:212
Instruction Access Rights 2:190
Instruction Access-Bit 2:183
Instruction Key Miss 2:180
Instruction TLB 2:175
Key Permission 2:189
Lower-Privilege Transfer Trap 2:205
NaT Consumption 2:196
Page Not Present 2:188
Single Step Trap 2:208
Speculation 2:198
Taken Branch Trap 2:207
Unaligned Reference 2:201
Unsupported Data Reference 2:202
Virtual External Interrupt 2:187
Virtualization 2:209

Interruption Vector Address 2:35, 2:538
Interruption Vector Table 2:538
Interruptions 2:95, 2:537
Interrupts 2:96, 2:114

External Interrupt Architecture 2:603
Interval Time Counter (ITC) 1:31
Interval Timer Match Register (ITM) 2:32
Interval Timer Offset (ITO) 2:34
Interval Timer Vector (ITV) 2:125

INTn Instruction 4:217
INTO Instruction 4:217
invala Instruction 3:146
INVD instructions 4:228
INVLPG Instruction 4:230
IP (Instruction Pointer) 1:27, 1:140
IPI (Inter-processor Interrupt) 2:127
IPSR (Interruption Processor Status Register) 

2:36, 2:541
IRET Instruction 4:231
IRETD Instruction 4:231
IRR (External Interrupt Request Registers) 2:125
ISR (Interruption Status Register) 2:36, 2:165, 

2:541
Itanium Architecture 1:7
Itanium Instruction Set 1:21
Itanium System Architecture 1:20
Itanium System Environment 1:7, 1:21
ITC (Interval Time Counter) 1:31, 2:32
itc Instruction 3:147
ITIR (Interruption TLB Insertion Register) 2:541
ITM (Interval Time Match Register) 2:32
ITO (Interval Timer Offset) 2:34
itr Instruction 3:149
ITV (Interval Timer Vector) 2:125
IVA (Interruption Vector Address) 2:35, 2:538
IVA-based interruptions 2:95, 2:537
IVR (External Interrupt Vector Register) 2:123

J
Jcc Instruction 4:239
JMP Instruction 4:243
JMPE Instruction 1:111, 2:597, 4:249

K
Kernel Register (KR) 1:29
KR (Kernel Register) 1:29

L
LAHF Instruction 4:251
Lamport’s Algorithm 2:530
LAR Instruction 4:252
Large Constants 1:53
LC (Loop Count Register) 1:33
ld Instruction 3:151
ldf Instruction 3:157
ldfp Instruction 3:161
LDMXCSR Instruction 4:516
LDS Instruction 4:255
LEA Instruction 4:258
LEAVE Instruction 4:260
LES Instruction 4:255
lfetch Instruction 3:164
LFS Instruction 4:255
LGDT Instruction 4:264
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LGS Instruction 4:255
LIDT Instruction 4:264
LLDT Instruction 4:267
LMSW Instruction 4:270
Load Instructions 1:58
loadrs Instruction 3:167
Loads from Memory 1:147
Local Redirection Registers (LRR0-1) 2:126
Locality Hints 1:70
LOCK Instruction 4:272
LODS Instruction 4:274
LODSB Instruction 4:274
LODSD Instruction 4:274
LODSW Instruction 4:274
Logical Instructions 1:51
Loop Count Register (LC) 1:33
LOOP Instruction 4:276
Loop Optimization 1:160, 1:181
LOOPcc Instruction 4:276
Lower Privilege Transfer Trap 2:151
LRR (Local Redirection Registers) 2:126
LSL Instruction 4:278
LSS Instruction 4:255
LTR Instruction 4:282

M
Machine Check (MC) 2:95, 2:296, 2:351
Machine Check Abort (MCA) 2:632
MASKMOVQ Instruction 4:576
MAXPS Instruction 4:519
MAXSS Instruction 4:521
MC (Machine Check) 2:351
MCA (Machine Check Abort) 2:95, 2:296, 2:632
Memory 1:36

Cacheable Page 2:77
Memory Access 1:142
Memory Access Ordering 1:73
Memory Attribute Transition 2:88
Memory Attributes 2:75, 2:524
Memory Consistency 1:72
Memory Fences 2:510
Memory Instructions 1:57
Memory Management 2:561
Memory Ordering 2:507, 2:510

IA-32 2:525
Memory Reference 1:147
Memory Regions 2:561
Memory Synchronization 2:526

mf Instruction 2:510, 2:526, 3:168
mf.a 2:615

MINPS Instruction 4:523
MINSS Instruction 4:525
mix Instruction 3:169
MMX technology 1:20
MOV Instruction 4:284
mov Instruction 3:172

MOVAPS Instruction 4:527
MOVD Instruction 4:401
MOVHLPS Instruction 4:529
MOVHPS Instruction 4:530
movl Instruction 3:187
MOVLHPS Instruction 4:532
MOVLPS Instruction 4:533
MOVMSKPS Instruction 4:535
MOVNTPS Instruction 4:578
MOVNTQ Instruction 4:579
MOVQ Instruction 4:403
MOVS Instruction 4:292
MOVSB Instruction 4:292
MOVSD Instruction 4:292
MOVSS Instruction 4:536
MOVSW Instruction 4:292
MOVSX Instruction 4:294
MOVUPS Instruction 4:538
MOVZX Instruction 4:295
MP Coherence 2:507
mpy4 Instruction 3:188
mpyshl4 Instruction 3:189
MUL Instruction 4:297
MULPS Instruction 4:540
MULSS Instruction 4:541
Multimedia Instructions 1:79
Multimedia Support 1:20
Multi-threading 1:177
Multiway Branches 1:173
mux Instruction 3:190

N
NaT (Not a Thing) 1:155
NaTPage (Not a Thing Attribute) 2:86
NaTVal (Not a Thing Value) 1:26
NEG Instruction 4:299
NMI (Non-Maskable Interrupt) 2:96
Non-Maskable Interrupt (NMI) 2:96
NOP Instruction 4:301
nop Instruction 3:193
Not A Thing (NaT) 1:155
Not a Thing Attribute (NaTPage) 2:86
Not a Thing Value (NatVal) 1:26
NOT Instruction 4:302

O
OLR (On Line Replacement) 2:351
Operating Environments 1:14
Operating System - See OS (Operating System)
OR Instruction 4:304
or Instruction 3:194
ORPS Instruction 4:542
OS (Operating System)

Boot Flow Sample Code 2:639
Boot Sequence 2:625
FPSWA handler 2:587
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Illegal Dependency Fault 2:584
Long Branch Emulation 2:585
Multiple Address Spaces 1:20, 2:562
OS_BOOT Entrypoint 2:283
OS_INIT Entrypoint 2:283
OS_MCA Entrypoint 2:283
OS_RENDEZ Entrypoint 2:283
Performance Monitoring Support 2:620
Single Address Space 1:20, 2:565
Unaligned Reference Handler 2:583
Unsupported Data Reference Handler 2:584

OUT Instruction 4:306
OUTS Instruction 4:308
OUTSB Instruction 4:308
OUTSD Instruction 4:308
OUTSW Instruction 4:308

P
pack Instruction 3:195
PACKSSDW Instruction 4:405
PACKSSWB Instruction 4:405
PACKUSWB Instruction 4:408
padd Instruction 3:197
PADDB Instruction 4:410
PADDD Instruction 4:410
PADDSB Instruction 4:413
PADDSW Instruction 4:413
PADDUSB Instruction 4:416
PADDUSW Instruction 4:416
PADDW Instruction 4:410
Page Access Rights 2:56
Page Sizes 2:57
Page Table Address 2:35
PAL (Processor Abstraction Layer) 1:7, 1:21, 

2:279, 2:351
PAL Entrypoints 2:282
PAL Initialization 2:306
PAL Intercepts 2:351
PAL Intercepts in Virtual Environment 2:332
PAL Procedure Calls 2:628
PAL Procedures 2:353
PAL Self-test Control Word 2:295
PAL Virtualization 2:324
PAL Virtualization Optimizations 2:335
PAL Virtualization Services 2:486
PAL Virtuallization Disables 2:346
PAL_A 2:283
PAL_B 2:283
PAL_BRAND_INFO 2:366
PAL_BUS_GET_FEATURES 2:367
PAL_BUS_SET_FEATURES 2:369
PAL_CACHE_FLUSH 2:370
PAL_CACHE_INFO 2:374
PAL_CACHE_INIT 2:376
PAL_CACHE_LINE_INIT 2:377
PAL_CACHE_PROT_INFO 2:378

PAL_CACHE_READ 2:380
PAL_CACHE_SHARED_INFO 2:382
PAL_CACHE_SUMMARY 2:384
PAL_CACHE_WRITE 2:385
PAL_COPY_INFO 2:388
PAL_COPY_PAL 2:389
PAL_DEBUG_INFO 2:390
PAL_FIXED_ADDR 2:391
PAL_FREQ_BASE 2:392
PAL_FREQ_RATIOS 2:393
PAL_GET_HW_POLICY 2:394
PAL_GET_PSTATE 2:320, 2:396, 2:637
PAL_HALT 2:314
PAL_HALT_INFO 2:401
PAL_HALT_LIGHT 2:314, 2:403
PAL_LOGICAL_TO_PHYSICAL 2:404
PAL_MC_CLEAR_LOG 2:407
PAL_MC_DRAIN 2:408
PAL_MC_DYNAMIC_STATE 2:409
PAL_MC_ERROR_INFO 2:410
PAL_MC_ERROR_INJECT 2:421
PAL_MC_EXPECTED 2:434
PAL_MC_HW_TRACKING 2:432
PAL_MC_RESUME 2:436
PAL_MEM_ATTRIB 2:437
PAL_MEMORY_BUFFER 2:438
PAL_PERF_MON_INFO 2:440
PAL_PLATFORM_ADDR 2:442
PAL_PMI_ENTRYPOINT 2:443
PAL_PREFETCH_VISIBILITY 2:444
PAL_PROC_GET_FEATURES 2:446
PAL_PROC_SET_FEATURES 2:450
PAL_PSTATE_INFO 2:319, 2:451
PAL_PTCE_INFO 2:453
PAL_REGISTER_INFO 2:454
PAL_RSE_INFO 2:455
PAL_SET_HW_POLICY 2:456
PAL_SET_PSTATE 2:319, 2:458, 2:637
PAL_SHUTDOWN 2:460
PAL_TEST_INFO 2:461
PAL_TEST_PROC 2:462
PAL_VERSION 2:465
PAL_VM_INFO 2:466
PAL_VM_PAGE_SIZE 2:467
PAL_VM_SUMMARY 2:468
PAL_VM_TR_READ 2:470
PAL_VP_CREATE 2:471
PAL_VP_ENV_INFO 2:473
PAL_VP_EXIT_ENV 2:475
PAL_VP_INFO 2:476
PAL_VP_INIT_ENV 2:478
PAL_VP_REGISTER 2:481
PAL_VP_RESTORE 2:483
PAL_VP_SAVE 2:484
PAL_VP_TERMINATE 2:485
PAL_VPS_RESTORE 2:499
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PAL_VPS_RESUME_HANDLER 2:492
PAL_VPS_RESUME_NORMAL 2:489
PAL_VPS_SAVE 2:500
PAL_VPS_SET_PENDING_INTERRUPT 2:495
PAL_VPS_SYNC_READ 2:493
PAL_VPS_SYNC_WRITE 2:494
PAL_VPS_THASH 2:497
PAL_VPS_TTAG 2:498
PAL-based Interruptions 2:95, 2:537
PALE_CHECK 2:282, 2:296
PALE_INIT 2:282, 2:306
PALE_PMI 2:282, 2:310
PALE_RESET 2:282, 2:289

PAND Instruction 4:419
PANDN Instruction 4:421
Parallel Arithmetic 1:79
Parallel Compares 1:172
Parallel Shifts 1:81
pavg Instruction 3:201
PAVGB Instruction 4:563
pavgsub Instruction 3:204
PAVGW Instruction 4:563
pcmp Instruction 3:206
PCMPEQB Instruction 4:423
PCMPEQD Instruction 4:423
PCMPEQW Instruction 4:423
PCMPGTB Instruction 4:426
PCMPGTD Instruction 4:426
PCMPGTW Instruction 4:426
Performance Monitor Data Register (PMD) 1:33
Performance Monitor Events 2:162
Performance Monitoring 2:155, 2:619
Performance Monitoring Vector 2:126
PEXTRW Instruction 4:565
PFS (Previous Function State Register) 1:32
Physical Addressing 2:73
PIB (Processor Interrupt Block) 2:127
PINSRW Instruction 4:566
PKR (Protection Key Register) 2:564
Platform Management Interrupt (PMI) 2:96, 

2:310, 2:538, 2:637
PMADDWD Instruction 4:429
pmax Instruction 3:209
PMAXSW Instruction 4:567
PMAXUB Instruction 4:568
PMC (Performance Monitor Configuration) 2:155
PMD (Performance Monitor Data Register) 1:33
PMD (Performance Monitor Data) 2:155
PMI (Platform Management Interrupt) 2:96, 

2:310, 2:538, 2:637
pmin Instruction 3:211
PMINSW Instruction 4:569
PMINUB Instruction 4:570
PMOVMSKB Instruction 4:571
pmpy Instruction 3:213
pmpyshr Instruction 3:214

PMULHUW Instruction 4:572
PMULHW Instruction 4:431
PMULLW Instruction 4:433
PMV (Performance Monitoring Vector) 2:126
POP Instruction 4:311
POPA Instruction 4:315
POPAD Instruction 4:315
popcnt Instruction 3:216
POPF Instruction 4:317
POPFD Instruction 4:317
POR Instruction 4:435
Power Management 2:313
Power-on Event 2:351
PR (Predicate Register) 1:26, 1:140
Predicate Register (PR) 1:26, 1:140
Predication 1:17, 1:54, 1:143, 1:163, 1:164
Prefetch Hints 1:176
PREFETCH Instruction 4:580
Preserved Values 2:351
Previous Function State (PFS) 1:32
Privilege Level Transfer 1:84
Privilege Levels 2:17
probe Instruction 3:217
Procedure Calls 2:549
Processor Abstraction Layer - See PAL (Processor 

Abstraction Layer)
Processor Abstraction Layer (PAL) 2:279
Processor Boot Flow 2:623
Processor Identification Registers (CPUID) 1:34
Processor Interrupt Block (PIB) 2:127
Processor Min-state Save Area 2:302
Processor Reset 2:95
Processor State Parameter (PSP) 2:299, 2:308
Processor Status Register (PSR) 2:23
Programmed I/O 2:534
Protection Keys 2:59, 2:564
psad Instruction 3:220
PSADBW Instruction 4:573
Pseudo-Code Functions 3:281
pshl Instruction 3:222
pshladd Instruction 3:223
pshr Instruction 3:224
pshradd Instruction 3:226
PSHUFW Instruction 4:575
PSLLD Instruction 4:437
PSLLQ Instruction 4:437
PSLLW Instruction 4:437
PSP (Processor State Parameter) 2:308
PSR (Processor Status Register) 2:23
PSRAD Instruction 4:440
PSRAW Instruction 4:440
PSRLD Instruction 4:443
PSRLQ Instruction 4:443
PSRLW Instruction 4:443
psub Instruction 3:227
PSUBB Instruction 4:446
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PSUBD Instruction 4:446
PSUBSB Instruction 4:449
PSUBSW Instruction 4:449
PSUBUSB Instruction 4:452
PSUBUSW Instruction 4:452
PSUBW Instruction 4:446
PTA (Page Table Address Register) 2:35
ptc Instruction

ptc.e 2:569, 3:230
ptc.g 2:570, 3:231
ptc.ga 2:570, 3:231
ptc.l 2:568, 3:233

ptr Instruction 3:234
PUNPCKHBW Instruction 4:455
PUNPCKHDQ Instruction 4:455
PUNPCKHWD Instruction 4:455
PUNPCKLBW Instruction 4:458
PUNPCKLDQ Instruction 4:458
PUNPCKLWD Instruction 4:458
PUSH Instruction 4:320
PUSHA Instruction 4:323
PUSHAD Instruction 4:323
PUSHF Instruction 4:325
PUSHFD Instruction 4:325
PXOR Instruction 4:461

R
RAW Dependency 1:149
RCL Instruction 4:327
RCPPS Instruction 4:543
RCPSS Instruction 4:545
RCR Instruction 4:327
RDMSR Instruction 4:331
RDPMC Instruction 4:333
RDTSC Instruction 4:335
Read-after-write Dependency 1:149
Recoverable Error 2:351
Recovery Code 1:153, 1:154, 1:156
Region Identifier (RID) 2:561
Region Register (RR) 2:58, 2:561
Register File Transfers 1:82
Register Rotation 1:19, 1:185
Register Spill and Fill 1:62
Register Stack 1:18, 1:47
Register Stack Configuration Register (RSC) 1:29
Register Stack Engine (RSE) 1:144, 2:133
Register State 2:549
Release Semantics 2:507
Rendezvous 2:301
REP Instruction 4:337
REPE Instruction 4:337
REPNE Instruction 4:337
REPNZ Instruction 4:337
REPZ Instruction 4:337
Reserved Variables 2:351
Reset Event 2:95, 2:351

Resource Utilization Counter (RUC) 1:31, 2:33
RET Instruction 4:340
rfi Instruction 2:543, 3:236
RID (Region Identifier) 2:561
RNAT(RSE NaT Collection Register) 1:30
ROL Instruction 4:327
ROR Instruction 4:327
Rotating Registers 1:145
RR (Region Register) 2:58, 2:561
RSC (Register Stack Configuration Register) 1:29
RSE (Register Stack Engine) 2:133
RSE Backing Store Pointer (BSP) 1:29
RSE Backing Store Pointer for Memory Stores 

(BSPSTORE) 1:30
RSE NaT Collection Register (RNAT) 1:30
RSM Instruction 4:346
rsm Instruction 3:239
RSQRTPS Instruction 4:547
RSQRTSS Instruction 4:548
RUC (Resource Utilization Counter) 1:31, 2:33
rum Instruction 3:241

S
SAHF Instruction 4:347
SAL (System Abstraction Layer) 1:7, 1:21, 2:352, 

2:630
SAL_B 2:283
SALE_ENTRY 2:282, 2:291, 2:305
SALE_PMI 2:282, 2:310

SAL Instruction 4:348
SAR Instruction 4:348
SBB Instruction 4:352
SCAS Instruction 4:354
SCASB Instruction 4:354
SCASD Instruction 4:354
SCASW Instruction 4:354
Scratch Register 2:352
Self Test State Parameter 2:293
Self-modifying Code 2:532
Semaphore Instructions 1:59
Semaphores 2:508
Serialization 2:17, 2:537
SETcc Instruction 4:356
setf Instruction 3:242
SFENCE Instruction 4:581
SGDT Instruction 4:359
SHL Instruction 4:348
shl Instruction 3:244
shladd Instruction 3:245
shladdp4 Instruction 3:246
SHLD Instruction 4:362
SHR Instruction 4:348
shr Instruction 3:247
SHRD Instruction 4:364
shrp Instruction 3:248
SHUFPS Instruction 4:549
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SIDT Instruction 4:359
Single Step Trap 2:151
SLDT Instruction 4:367
SMSW Instruction 4:369
Software Pipelining 1:19, 1:75, 1:145, 1:181
Speculation 1:16, 1:142, 1:151

Control Speculation 1:16
Data Speculation 1:17
Recovery Code 1:17, 2:580
Speculation Check 1:156

SQRTPS Instruction 4:551
SQRTSS Instruction 4:552
srlz Instruction 3:249
SSE Instructions 4:463
ssm Instruction 3:250
st Instruction 3:251
Stacked Calling Convention 2:352
Stacked General Registers 2:550
Stacked Registers 1:144
Static Calling Convention 2:352
Static General Registers 2:550
STC Instruction 4:371
STD Instruction 4:372
stf Instruction 3:254
STI Instruction 4:373
STMXCSR Instruction 4:553
Stops 1:38
Store Instructions 1:59
Stores to Memory 1:147
STOS Instruction 4:376
STOSB Instruction 4:376
STOSD Instruction 4:376
STOSW Instruction 4:376
STR Instruction 4:378
SUB Instruction 4:379
sub Instruction 3:256
SUBPS Instruction 4:554
SUBSS Instruction 4:555
sum Instruction 3:257
sxt Instruction 3:258
sync Instruction 3:259

sync.i 2:526
System Abstraction Layer - See SAL (System 

Abstraction Layer)
System Architecture 1:20
System Environment 2:13
System Programmer’s Guide 2:501
System State 2:20

T
tak Instruction 3:260
Taken Branch trap 2:151
Task Priority Register (TPR) 2:123, 2:605
tbit Instruction 3:261
TC (Translation Cache) 2:49, 2:567

Template Field Encoding 1:38
Templates 1:141
TEST Instruction 4:381
tf Instruction 3:263
thash Instruction 3:265
TLB (Translation Lookaside Buffer) 2:47, 2:565
tnat Instruction 3:266
tpa Instruction 3:268
TPR (Task Priority Register) 2:123, 2:605
TR (Translation Register) 2:48, 2:566
Translation Cache (TC) 2:49, 2:567

purge 2:568
Translation Instructions 2:60
Translation Lookaside Buffer (TLB) 2:47, 2:565
Translation Register (TR) 2:48, 2:566
Traps 2:96, 2:537
ttag Instruction 3:269

U
UCOMISS Instruction 4:556
UD2 Instruction 4:383
UEFI (Unified Extensible Firmware Interface) 

2:630
UM (User Mask Register) 1:33
UNAT (User NaT Collection Register) 1:31, 1:156
Uncacheable Page 2:77
Unchanged Register 2:352
Unordered Semantics 2:507
unpack Instruction 3:270
UNPCKHPS Instruction 4:558
UNPCKLPS Instruction 4:560
User Mask (UM) 1:33
User NaT Collection Register (UNAT) 1:31, 1:156

V
VERR Instruction 4:384
VERW Instruction 4:384
VHPT (Virtual Hash Page Table) 2:61, 2:571
VHPT Translation Vector 2:173
Virtual Addressing 2:45
Virtual Hash Page Table (VHPT) 2:61, 2:571
Virtual Machine Monitor (VMM) 2:352
Virtual Processor Descriptor (VPD) 2:325, 2:352
Virtual Processor State 2:352
Virtual Processor Status Register (VPSR) 2:327
Virtual Region Number (VRN) 2:561
Virtualization 2:44, 2:324
Virtualization Acceleration Control (vac) 2:329
Virtualization Disable Control (vdc) 2:329
VMM (Virtual Machine Monitor) 2:352
vmsw Instruction 3:273
VPD (Virtual Processor Descriptor) 2:325, 2:352
VPSR (Virtual Processor Status Register) 2:327
VRN (Virtual Region Number) 2:561
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W
WAIT Instruction 4:386
WAR Dependency 1:149
WAW Dependency 1:149
WBINVD Instruction 4:387
Write-after-read Dependency 1:149
Write-after-write Dependency 1:149
WRMSR Instruction 4:389

X
XADD Instruction 4:391
XCHG Instruction 4:393
xchg Instruction 2:508, 3:274
XLAT Instruction 4:395
XLATB Instruction 4:395
xma Instruction 3:276
xmpy Instruction 3:278
XOR Instruction 4:397
xor Instruction 3:279
XORPS Instruction 4:562
XTP (External Task Priority Cycle) 2:130
XTPR (External Task Priority Register) 2:605

Z
zxt Instruction 3:280
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