e Developer's Manual
Revision 2.3
jon Set

Intel® Itanium® Instru

Intel® Itanium® Architecture
Software Developer’s Manual

Volume 3: Intel® Itanium® Instruction Set Reference

Revision 2.3
May 2010

Document Number: 323207

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale
and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Intel® processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Copyright © 1999-2010, Intel Corporation
*QOther names and brands may be claimed as the property of others.

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 644

Contents

1 Aboutthis Manual ettt e s e 3:1
1.1 Overview of Volume 1: Application Architecture. 3:1
111 Part 1: Application Architecture Guide, .. 3:1

1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture 3:1

1.2 Overview of Volume 2: System Architecture. L. 3:2
1.2.1 Part 1: System Architecture Guide oL 3:2

1.2.2 Part 2: System Programmer's Guide 3:3

1.2.3 APPENdICES. . . .o 34

1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference 34
1.4 Overview of Volume 4: IA-32 Instruction Set Reference. 3:4
1.5 TerminolOgYo 3:5
1.6 Related Documents 3:5
1.7 Revision History e 3.6
2 Instruction Reference i e s 3:11
2.1 Instruction Page Conventions. i 3:11
2.2 Instruction Descriptions 3:13
3 Pseudo-Code FUNCHiONS it ittt a e eae e nanns 3:281
4 Instruction Formats. e 3:293
4.1 Format Summary e 3:294
4.2 A-Unit Instruction Encodings 3:300
4.2.1 Integer ALU 3:300

422 Integer Compare. 3:302

4.2.3 Multimedia 3:306

4.3 [-Unit Instruction Encodings 3:310
4.3.1 Multimedia and Variable Shifts. 3:310

43.2 Integer Shifts 3:315

43.3 TestBit. 3:316

43.4 Miscellaneous I-Unit Instructions 3:318

4.3.5 GR/BR MOVES. . . . oo e e e e e 3:320

4.3.6 GR/Predicate/IP Moves 3:321

4.3.7 GR/AR Moves (I-Unit). 3:321

4.3.8 Sign/Zero Extend/Compute ZeroIndex 3:322

439 TestFeature. e 3:323

44 M-Unit Instruction Encodings 3:323
441 Loadsand Stores i 3:323

442 Line Prefetch 3:337

443 Semaphores. 3:338

444 Set/Get FR 3:339

445 Speculation and Advanced Load Checks. 3:340

446 Cache/Synchronization/RSE/ALAT 3:341

447 GR/AR Moves (M-Unit). e 3:342

448 GR/ICRMOVES . ..ot e e e 3:343

449 Miscellaneous M-Unit Instructions 3:344

4410 System/Memory Management, 3:345

4.4.11 Nop/Hint (M-Unit) 3:349

4.5 B-Unit Instruction Encodings 3:349
451 Branches 3:350

452 Branch Predict/Nop/Hint. 3:353

45.3 Miscellaneous B-Unit Instructions 3:355

4.6 F-Unit Instruction Encodings. 3:356
461 Arithmetic 3:358

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 645

46.2 Parallel Floating-point Select. 3:359

46.3 Compareand Classify 3:359

4.6.4 Approximation 3:361

4.6.5 Minimum/Maximum and Parallel Compare 3:362

4.6.6 Merge and Logical. 3:363

4.6.7 CONVEISION . . .ttt 3:363

4.6.8 Status Field Manipulation 3:364

4.6.9 Miscellaneous F-Unit Instructions 3:365

4.7 X-Unit Instruction Encodings 3:365

4.71 Miscellaneous X-Unit Instructions 3:365

4.7.2 Move Long Immediategs, 3:366

4.7.3 LongBranches 3:367

474 Nop/Hint (X-Unit). 3:368

4.8 Immediate Formation. 3:368

5 Resource and Dependency Semantics it 3:371

5.1 Reading and Writing Resources i 3:371

5.2 Dependencies and Serialization 3:371

5.3 Resource and Dependency Table FormatNotes 3:372

5.3.1 Special Case InstructionRules 3:374

5.3.2 RAW Dependency Table. i, 3:374

5.3.3 WAW Dependency Table i 3:383

534 WAR Dependency Table. 3:387

5.3.5 Listing of Rules Referenced in Dependency Tables 3:387

54 Support Tables 3:389

3T 1= R 3:397
Figures

2-1 Add Pointer. . .. 3:15

2-2 Stack Frame 3:16

2-3 Operation of br.ctopand br.cexit 3:23

2-4 Operation of brwtop and brawexit. 3:24

2-5 Deposit Example (merge_form) 3:51

2-6 Deposit Example (zero_form). 3:51

2-7 Extract Example 3:54

2-8 Floating-point Merge Negative Sign Operation i, 3:80

2-9 Floating-point Merge Sign Operation i i 3:80

2-10 Floating-point Merge Sign and Exponent Operation 3:80

2-11 Floating-point Mix Left 3:83

2-12 Floating-point Mix Right 3:83

2-13 Floating-point Mix Left-Right. 3:83

2-14 Floating-point Pack. 3:96

2-15 Floating-point Parallel Merge Negative Sign Operation 3:111

2-16 Floating-point Parallel Merge Sign Operation. 3:111

2-17 Floating-point Parallel Merge Sign and Exponent Operation. 3:112

2-18 Floating-point Swap 3:137

2-19 Floating-point Swap Negate Left 3:137

2-20 Floating-point Swap Negate Right 3:138

2-21 Floating-point Sign Extend Left 3:139

2-22 Floating-point Sign Extend Right 3:139

2-23 Function of getf.expo 3:143

2-24 Functionof getf.sig. 3:143

646 Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

2-25 Mix EXamples 3:170
2-26 Mux1 Operation (8-bitelements). 3:190
2-27 Mux2 Examples (16-bitelements). 3:191
2-28 Pack Operation e 3:195
2-29 Parallel Add Examples. 3:197
2-30 Parallel Average Example e 3:201
2-31 Parallel Average with Round Away from Zero Example 3:202
2-32 Parallel Average Subtract Example. e 3:204
2-33 Parallel Compare Examples 3:206
2-34 Parallel Maximum Examples 3:209
2-35 Parallel Minimum Examples 3:211
2-36 Parallel Multiply Operation. 3:213
2-37 Parallel Multiply and Shift Right Operation, 3:214
2-38 Parallel Sum of Absolute Difference Example. 3:220
2-39 Parallel Shift Left Examples. 3:222
2-40 Parallel Subtract Examples 3:227
2-41 Function of setf.expo 3:242
2-42 Function of setf.sig. 3:242
2-43 Shift Leftand Add Pointer e 3:246
2-44 Shift Right Pair. e 3:248
2-45 Unpack Operation e 3:271
4-1 Bundle Format. e 3:293
Tables

2-1 Instruction Page Description. L 3:11
2-2 Instruction Page Font Conventions, 3:11
2-3 Register File Notation 3:12
2-4 C Syntax Differences e e 3:12
2-5 Pervasive Conditions Not Included in Instruction Description Code. 3:13
2-6 Branch Types e e e 3:20
2-7 Branch Whether Hint 3:25
2-8 Sequential PrefetchHint. 3:25
2-9 Branch Cache Deallocation Hint. 3:25
2-10 LongBranch Types e e e 3:30
2-11 IP-relative Branch Predict Whether Hint. 3:32
2-12 Indirect Branch Predict WhetherHint00 o000 3:32
2-13 Importance Hint e 3:32
2-14 ALAT Clear Completer. e 3:35
2-15 Comparison TYPEeS. v o i e e e e e 3:39
2-16 64-bit Comparison Relations for Normal and unc Compares 3:40
2-17 64-bit Comparison Relations for Parallel Compares. 3:40
2-18 Immediate Range for 32-bitCompares 3:43
2-19 Memory Compare and Exchange Size 3:46
2-20 Compare and Exchange Semaphore Types. 3:46
2-21 Result Rangesforczx 3:49
2-22 Specified pc MnemonicValues e 3:56
2-23 sfMnemonicValues. e e 3:56
2-24 Floating-point Class Relations. 3:64

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 647

2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45
2-46
2-47
2-48
2-49
2-50
2-51
2-52
2-53
2-54
2-55
2-56
2-57
2-58
2-59
2-60

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14

648

Floating-point Classes. 3:64
Floating-point Comparison Types 3:67
Floating-point Comparison Relations 3:67
Fetch and Add Semaphore Types. 3.74
Floating-point Parallel ComparisonResults 3:101
Floating-point Parallel Comparison Relations 3:101
HintImmediates 3:145
szCompleters L L 3:151
Load Types o e e e 3:151
Load Hints e 3:152
fszCompleters. 3:157
FPLoad Types o e e 3:157
Iftype Mnemonic Values L 3:164
Ifhint Mnemonic Values e 3:165
Move to BR WhetherHints 3:174
Indirect Register File Mnemonics Lo 3:180
Mux Permutations for 8-bitElements L. 3:190
Pack Saturation Limits. 3:195
Parallel Add Saturation Completerso 3:197
Parallel Add Saturation Limits 3:197
PcmpRelations 3:206
Parallel Multiply and Shift Right Shift Options. 3:214
Faults for regular_form and fault_form Probe Instructions 3:218
Parallel Subtract Saturation Completers 3:227
Parallel Subtract Saturation Limits oo Lo 3:227
Store Types e e e 3:251
Store Hints. e 3:252
xszMnemonicValues L e 3:258
Test Bit Relations for Normalandunctbits 3:261
Test Bit Relations for Parallel tbits. 3:261
Test Feature Relations for Normalandunctf. 3:263
Test Feature Relations for Parallel tf 3:263
Test Feature Features Assignment 3:263
Test NaT Relations for Normalandunctnats 3:266
Test NaT Relations for Paralleltnats 3:266
Memory Exchange Size e 3:274
Pseudo-code Functions L 3:281
Relationship between Instruction Type and Execution Unit Type 3:293
Template Field Encoding and Instruction Slot Mapping. 3:294
Major Opcode Assignments e 3:295
Instruction Format Summary e 3:296
Instruction Field ColorKey 3:298
Instruction Field Names 3:298
Special Instruction Notations 3:299
Integer ALU 2-bit+1-bit Opcode Extensions. 3:300
Integer ALU 4-bit+2-bit Opcode Extensions. 3:301
Integer Compare Opcode Extensions 3:303
Integer Compare Immediate Opcode Extensions 3:303
Multimedia ALU 2-bit+1-bit Opcode Extensions. 3:306
Multimedia ALU Size 1 4-bit+2-bit Opcode Extensions 3:307
Multimedia ALU Size 2 4-bit+2-bit Opcode Extensions 3:307

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

4-15
4-16
417
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46
4-47
4-48
4-49
4-50
4-51
4-52
4-53
4-54
4-55
4-56
4-57
4-58
4-59
4-60
4-61
4-62
4-63
4-64
4-65

Multimedia ALU Size 4 4-bit+2-bit Opcode Extensions 3:308
Multimedia and Variable Shift 1-bit Opcode Extensions. 3:310
Multimedia Opcode 7 Size 1 2-bit Opcode Extensions 3:310
Multimedia Opcode 7 Size 2 2-bit Opcode Extensions 3:311
Multimedia Opcode 7 Size 4 2-bit Opcode Extensions 3:311
Variable Shift Opcode 7 2-bit Opcode Extensions. 3:312
Integer Shift/Test Bit/Test NaT 2-bit Opcode Extensions 3:315
Deposit Opcode Extensionso 3:315
Test Bit Opcode Extensions 3:317
Misc I-Unit 3-bit Opcode Extensions. 3:318
Misc I-Unit 6-bit Opcode Extensions. 3:319
Misc I-Unit 1-bit Opcode Extensions. 3:319
Move to BR Whether Hint Completer 3:320
Integer Load/Store/Semaphore/Get FR 1-bit Opcode Extensions. 3:323
Floating-point Load/Store/Load Pair/Set FR 1-bit Opcode Extensions 3:323
Integer Load/Store Opcode Extensions Lo 3:324
Integer Load +Reg Opcode Extensions L. 3:324
Integer Load/Store +Imm Opcode Extensions. 3:325
Semaphore/Get FR/16-Byte Opcode Extensions 3:325
Floating-point Load/Store/Lfetch Opcode Extensions 3:326
Floating-point Load/Lfetch +Reg Opcode Extensions. 3:326
Floating-point Load/Store/Lfetch +Imm Opcode Extensions 3:327
Floating-point Load Pair/Set FR Opcode Extensions 3:327
Floating-point Load Pair +Imm Opcode Extensions 3:328
Load HintCompleter. 3:328
Store Hint Completer e 3:328
Line Prefetch Hint Completer 3:337
Opcode 0 System/Memory Management 3-bit Opcode Extensions. 3:345
Opcode 0 System/Memory Management 4-bit+2-bit Opcode Extensions. 3:345
Opcode 1 System/Memory Management 3-bit Opcode Extensions. 3:346
Opcode 1 System/Memory Management 6-bit Opcode Extensions. 3:346
Misc M-Unit 1-bit Opcode Extensions 3:349
IP-Relative Branch Types e 3:350
Indirect/Miscellaneous Branch Opcode Extensions 3:350
Indirect Branch Types e e e 3:351
Indirect Return Branch Typeso 3:351
Sequential Prefetch Hint Completer. 3:351
Branch Whether Hint Completer., 3:352
Indirect Call Whether Hint Completer 3:352
Branch Cache Deallocation Hint Completer. 3:352
Indirect Predict/Nop/Hint Opcode Extensions 3:354
Branch Importance Hint Completer, 3:354
IP-Relative Predict Whether Hint Completer 3:354
Indirect Predict Whether Hint Completer 3:355
Miscellaneous Floating-point 1-bit Opcode Extensions 3:356
Opcode 0 Miscellaneous Floating-point 6-bit Opcode Extensions 3:357
Opcode 1 Miscellaneous Floating-point 6-bit Opcode Extensions 3:357
Reciprocal Approximation 1-bit Opcode Extensions. 3:358
Floating-point Status Field Completer. 3:358
Floating-point Arithmetic 1-bit Opcode Extensions 3:358
Fixed-point Multiply Add and Select Opcode Extensions 3:358

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3 649

4-66
4-67
4-68
4-69
4-70
4-71
4-72
4-73
4-74
5-1

5-2

5-4
5-5

650

Floating-point Compare Opcode Extensions 3:360
Floating-point Class 1-bit Opcode Extensions. 3:360
Misc F-Unit 1-bit Opcode Extensions 3:365
Misc X-Unit 3-bit Opcode Extensions 3:366
Misc X-Unit 6-bit Opcode Extensions 3:366
Move Long 1-bit Opcode Extensions 3:367
LongBranch Types o 3:367
Misc X-Unit 1-bit Opcode Extensions 3:368
Immediate Formation 3:368
Semantics of Dependency Codeso 3:373
RAW Dependencies Organized by Resource 3:375
WAW Dependencies Organized by Resource. 3:383
WAR Dependencies Organized by Resource 3:387
Instruction Classes e 3:389
§

Intel® Itanium® Architecture Software Developer’s Manual, Rev. 2.3

About this Manual 1

1.1

1.1.1

1.1.2

The Intel® Itanium® architecture is a unique combination of innovative features such
as explicit parallelism, predication, speculation and more. The architecture is designed
to be highly scalable to fill the ever increasing performance requirements of various
server and workstation market segments. The Itanium architecture features a
revolutionary 64-bit instruction set architecture (ISA) which applies a new processor
architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A key
feature of the Itanium architecture is IA-32 instruction set compatibility.

The Intel® Itanium® Architecture Software Developer’s Manual provides a
comprehensive description of the programming environment, resources, and instruction
set visible to both the application and system programmer. In addition, it also describes
how programmers can take advantage of the features of the Itanium architecture to
help them optimize code.

Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level
resources, programming environment, and the IA-32 application interface. This volume
also describes optimization techniques used to generate high performance software.

Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Inte/®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of
the architecture.

Chapter 3, “"Execution Environment” describes the Itanium register set used by
applications and the memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of
Itanium application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System
Environment” describes the operation of IA-32 instructions within the Itanium System
Environment from the perspective of an application programmer.

Part 2: Optimization Guide for the Intel® Itanium®
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.

Volume 3: About this Manual 3:1

1.2

1.2.1

3:2

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture”
provides an overview of the application programming environment for the Itanium
architecture.

Chapter 3, "Memory Reference” discusses features and optimizations related to control
and data speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization
features related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on
optimizing loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in
floating-point applications and features that address these limitations.

Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources
and programming state, interrupt model, and processor firmware interface. This
volume also provides a useful system programmer's guide for writing high performance
system software.

Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Inte/®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Intel® Itanium® System Environment” introduces the environment
designed to support execution of Itanium architecture-based operating systems running
IA-32 or Itanium architecture-based applications.

Chapter 3, “"System State and Programming Model” describes the Itanium architectural
state which is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating
system for virtual to physical address translation, virtual aliasing, physical addressing,
and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a
processor based on the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which
automatically saves and restores the stacked subset (GR32 = GR 127) of the general
register file.

Chapter 7, “"Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions” lists all interruption vectors.

Volume 3: About this Manual

Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts
and intercepts that can occur during IA-32 instruction set execution in the Itanium
System Environment.

Chapter 10, “Itanium® Architecture-based Operating System Interaction Model with
IA-32 Applications” defines the operation of IA-32 instructions within the Itanium
System Environment from the perspective of an Itanium architecture-based operating
system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts
processor implementation-dependent features.

1.2.2 Part 2: System Programmer’s Guide

Chapter 1, “"About the System Programmer’s Guide” gives an introduction to the second
section of the system architecture guide.

Chapter 2, "MP Coherence and Synchronization” describes multiprocessing
synchronization primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes
execution around interruptions and what state is preserved and made available to
low-level system code when interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve
Itanium register contents and state. This chapter also describes system architecture
mechanisms that allow an operating system to reduce the number of registers that
need to be spilled/filled on interruptions, system calls, and context switches.

Chapter 5, "Memory Management” introduces various memory management strategies.

Chapter 6, "Runtime Support for Control and Data Speculation” describes the operating
system support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of
instruction emulation handlers that Itanium architecture-based operating systems are
expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the
Itanium architecture handle floating-point numeric exceptions and how the software
stack provides complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium
architecture-based operating system needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt
architecture with a focus on how external asynchronous interrupt handling can be
controlled by software.

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform
issues and support for the existing IA-32 I/O port space.

Volume 3: About this Manual 3:3

1.2.3

1.3

1.4

3:4

Chapter 12, “Performance Monitoring Support” describes the performance monitor
architecture with a focus on what kind of support is needed from Itanium
architecture-based operating systems.

Chapter 13, “Firmware Overview” introduces the firmware model, and how various
firmware layers (PAL, SAL, UEFI, ACPI) work together to enable processor and system
initialization, and operating system boot.

Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

Overview of Volume 3: Intel® Itanium®
Instruction Set Reference

This volume is a comprehensive reference to the Itanium instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Inte/®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 3, “"Pseudo-Code Functions” provides a table of pseudo-code functions which
are used to define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format
instructions.

Chapter 5, "Resource and Dependency Semantics” summarizes the dependency rules
that are applicable when generating code for processors based on the Itanium
architecture.

Overview of Volume 4: IA-32 Instruction Set
Reference

This volume is a comprehensive reference to the IA-32 instruction set, including
instruction format/encoding.

Chapter 1, “About this Manual” provides an overview of all volumes in the Inte/®
Itanium® Architecture Software Developer’s Manual.

Chapter 2, “"Base IA-32 Instruction Reference” provides a detailed description of all
base IA-32 instructions, organized in alphabetical order by assembly language
mnemonic.

Volume 3: About this Manual

1.5

1.6

Chapter 3, “IA-32 Intel® MMX™ Technology Instruction Reference” provides a detailed
description of all IA-32 Intel® MMX™ technology instructions designed to increase
performance of multimedia intensive applications. Organized in alphabetical order by
assembly language mnemonic.

Chapter 4, "IA-32 SSE Instruction Reference” provides a detailed description of all
IA-32 SSE instructions designed to increase performance of multimedia intensive
applications, and is organized in alphabetical order by assembly language mnemonic.

Terminology

The following definitions are for terms related to the Itanium architecture and will be
used throughout this document:

Instruction Set Architecture (ISA) - Defines application and system level
resources. These resources include instructions and registers.

Itanium Architecture - The new ISA with 64-bit instruction capabilities, new
performance- enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture — The 32-bit and 16-bit Intel architecture as described in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Itanium System Environment — The operating system environment that supports
the execution of both IA-32 and Itanium architecture-based code.

Itanium® Architecture-based Firmware - The Processor Abstraction Layer (PAL)
and System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) - The firmware layer which abstracts processor
features that are implementation dependent.

System Abstraction Layer (SAL) - The firmware layer which abstracts system
features that are implementation dependent.

Related Documents

The following documents can be downloaded at the Intel’s Developer Site at
http://developer.intel.com:

e Dual-Core Update to the Intel® Itanium® 2 Processor Reference Manual
for Software Development and Optimization- Document number 308065
provides model-specific information about the dual-core Itanium processors.

o Intel® Itanium® 2 Processor Reference Manual for Software Development
and Optimization - This document (Document number 251110) describes
model-specific architectural features incorporated into the Intel® Itanium® 2
processor, the second processor based on the Itanium architecture.

o Intel® Itanium® Processor Reference Manual for Software Development -
This document (Document number 245320) describes model-specific architectural
features incorporated into the Intel® Itanium® processor, the first processor based
on the Itanium architecture.

Volume 3: About this Manual 3:5

o Intel® 64 and IA-32 Architectures Software Developer’s Manual - This set
of manuals describes the Intel 32-bit architecture. They are available from the Intel
Literature Department by calling 1-800-548-4725 and requesting Document
Numbers 243190, 243191and 243192.

o Intel® Itanium® Software Conventions and Runtime Architecture Guide -
This document (Document number 245358) defines general information necessary
to compile, link, and execute a program on an Itanium architecture-based
operating system.

o Intel® Itanium® Processor Family System Abstraction Layer Specification -
This document (Document number 245359) specifies requirements to develop
platform firmware for Itanium architecture-based systems.

The following document can be downloaded at the Unified EFI Forum website at
http://www.uefi.org:
¢ Unified Extensible Firmware Interface Specification - This document defines
a new model for the interface between operating systems and platform firmware.

1.7 Revision History
Date of Revision o
Revision Number Description
March 2010 23 Added information about illegal virtualization optimization combinations and

1IPA requirements.
Added Resource Utilization Counter and PAL_VP_INFO.
PAL_VP_INIT and VPD.vpr changes.

New PAL_VPS_RESUME_HANDLER parameter to indicate RSE Current
Frame Load Enable setting at the target instruction.

PAL_VP_INIT_ENYV implementation-specific configuration option.
Minimum Virtual address increased to 54 bits.

New PAL_MC_ERROR_INFO health indicator.

New PAL_MC_ERROR_INJECT implementation-specific bit fields.
MOV-to_SR.L reserved field checking.

Added virtual machine disable.

Added variable frequency mode additions to ACPI P-state description.

Removed pal_proc_vector argument from PAL_VP_SAVE and
PAL_VP_RESTORE.

Added PAL_PROC_SET_FEATURES data speculation disable.
Added Interruption Instruction Bundle registers.

Min-state save area size change.

PAL_MC_DYNAMIC_STATE changes.
PAL_PROC_SET_FEATURES data poisoning promotion changes.
ACPI P-state clarifications.

Synchronization requirements for virtualization opcode optimization.
New priority hint and multi-threading hint recommendations.

3:6 Volume 3: About this Manual

Date of Revision _—
Revision Number Description
August 2005 2.2 Allow register fields in CR.LID register to be read-only and CR.LID checking

on interruption messages by processors optional. See Vol 2, Part |, Ch 5
“Interruptions” and Section 11.2.2 PALE_RESET Exit State for details.

Relaxed reserved and ignored fields checkings in IA-32 application registers
in Vol 1 Ch 6 and Vol 2, Part |, Ch 10.

Introduced visibility constraints between stores and local purges to ensure
TLB consistency for UP VHPT update and local purge scenarios. See Vol 2,
Part I, Ch 4 and description of ptc. 1 instruction in Vol 3 for details.

Architecture extensions for processor Power/Performance states (P-states).
See Vol 2 PAL Chapter for details.

Introduced Unimplemented Instruction Address fault.

Relaxed ordering constraints for VHPT walks. See Vol 2, Part I, Ch 4 and 5 for
details.

Architecture extensions for processor virtualization.

All instructions which must be last in an instruction group results in undefined
behavior when this rule is violated.

Added architectural sequence that guarantees increasing ITC and PMD
values on successive reads.

Addition of PAL_BRAND_INFO, PAL_GET_HW_POLICY,
PAL_MC_ERROR_INJECT, PAL_MEMORY_BUFFER,
PAL_SET_HW_POLICY and PAL_SHUTDOWN procedures.

Allows IPI-redirection feature to be optional.

Undefined behavior for 1-byte accesses to the non-architected regions in the
IPI block.

Modified insertion behavior for TR overlaps. See Vol 2, Part |, Ch 4 for details.
“Bus parking” feature is now optional for PAL_BUS_GET_FEATURES.
Introduced low-power synchronization primitive using hint instruction.
FR32-127 is now preserved in PAL calling convention.

New return value from PAL_VM_SUMMARY procedure to indicate the
number of multiple concurrent outstanding TLB purges.

Performance Monitor Data (PMD) registers are no longer sign-extended.

New memory attribute transition sequence for memory on-line delete. See Vol
2, Part I, Ch 4 for details.

Added 'shared error' (se) bit to the Processor State Parameter (PSP) in
PAL_MC_ERROR_INFO procedure.

Clarified PMU interrupts as edge-triggered.

Modified ‘proc_number’ parameter in PAL_LOGICAL_TO_PHYSICAL
procedure.

Modified pal_copy_info alignment requirements.
New bit in PAL_PROC_GET_FEATURES for variable P-state performance.

Clarified descriptions for check_target_register and
check_target_register_sof.

Various fixes in dependency tables in Vol 3 Ch 5.
Clarified effect of sending IPIs to non-existent processor in Vol 2, Part |, Ch 5.

Clarified instruction serialization requirements for interruptions in Vol 2, Part Il,
Ch 3.

Updated performance monitor context switch routine in Vol 2, Part I, Ch 7.

Volume 3: About this Manual

3:7

3:8

Date of Revision A
Revision Number Description
August 2002 2.1 Added Predicate Behavior of alloc Instruction Clarification (Section 4.1.2,
Part I, Volume 1; Section 2.2, Part |, Volume 3).
Added New fc. i Instruction (Section 4.4.6.1, and 4.4.6.2, Part |, Volume 1;
Section 4.3.3,4.4.1,4.4.5,4.4.6,4.4.7,5.5.2, and 7.1.2, Part |, Volume 2;
Section 2.5,2.5.1,2.5.2, 2.5.3, and 4.5.2.1, Part ll, Volume 2; Section 2.2, 3,
4.1,4.4.6.5, and 4.4.10.10, Part |, Volume 3).
Added Interval Time Counter (ITC) Fault Clarification (Section 3.3.2, Part I,
Volume 2).
Added Interruption Control Registers Clarification (Section 3.3.5, Part |,
Volume 2).
Added Spontaneous NaT Generation on Speculative Load (1d. s)
(Section 5.5.5 and 11.9, Part |, Volume 2; Section 2.2 and 3, Part |, Volume 3).
Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part |,
Volume 2).
Added Freeze Bit Functionality in Context Switching and Interrupt Generation
Clarification (Sections 7.2.1,7.2.2,7.2.4.1, and 7.2.4.2, Part |, Volume 2)
Added IA_32_Exception (Debug) IIPA Description Change (Section 9.2, Part
I, Volume 2).
Added capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in the
Firmware Interface Table (Section 11.1.6, Part |, Volume 2).
Added BR1 to Min-state Save Area (Sections 11.3.2.3 and 11.3.3, Part |,
Volume 2).
Added Fault Handling Semantics for 1fetch. fault Instruction (Section 2.2,
Part I, Volume 3).
December 2001 2.0 Volume 1:

Faults in Id.c that hits ALAT clarification (Section 4.4.5.3.1).

IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section
6.2.5.3).

Load instructions change (Section 4.4.1).

Volume 3: About this Manual

Date of
Revision

Revision
Number

Description

Volume 2:

Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).

VHPT walk and forward progress change (Section 4.1.1.2).
IA-32 IBR/DBR match clarification (Section 7.1.1).

ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).

PAL_CACHE_FLUSH return argument change — added new status return
argument (Section 11.8.3).

PAL self-test Control and PAL_A procedure requirement change — added new
arguments, figures, requirements (Section 11.2).

PAL_CACHE_FLUSH clarifications (Chapter 11).

Non-speculative reference clarification (Section 4.4.6).

RID and Preferred Page Size usage clarification (Section 4.1).

VHPT read atomicity clarification (Section 4.1).

IIP and WC flush clarification (Section 4.4.5).

Revised RSE and PMC typographical errors (Section 6.4).

Revised DV table (Section A.4).

Memory attribute transitions — added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).

Bus lock deprecation — changed behavior of DCR ‘Ic’ bit (Section 3.3.4.1,
Section 10.6.8, Section 11.8.3).

PAL_PROC_GET/SET_FEATURES changes — extend calls to allow
implementation-specific feature control (Section 11.8.3).

Split PAL_A architecture changes (Section 11.1.6).

Simple barrier synchronization clarification (Section 13.4.2).

Limited speculation clarification — added hardware-generated speculative
references (Section 4.4.6).

PAL memory accesses and restrictions clarification (Section 11.9).

|1D1SEF3) :\Bl?lidity on INITs from PAL_MC_ERROR_INFO clarification (Section
Speculation attributes clarification (Section 4.4.6).

PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications
(Sections 11.8.3 and 11.3.2.1).

TLB searching clarifications (Section 4.1).

IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section
10.3.3.1, Section 10.10.1).

IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2,
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:

IA-32 CPUID clarification (p. 5-71).

Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).

tak, tpa change (Section 2.2).

July 2000

1.1

Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).

Volume 3: About this Manual

3:9

Date of
Revision

Revision
Number

Description

Volume 2:

Clarifications regarding “reserved” fields in ITIR (Chapter 3).

Instruction and Data translation must be enabled for executing I1A-32
instructions (Chapters 3,4 and 10).

FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4).

Clarification regarding ordering data dependency.

Out-of-order IPI delivery is now allowed (Chapters 4 and 5).

Content of EFLAG field changed in [IM (p. 9-24).

PAL_CHECK and PAL_INIT calls — exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls — added two new bits (Chapter 11).
PAL_MC_ERROR_INFO call — Changes made to enhance and simplify the
call to provide more information regarding machine check (Chapter 11).
PAL_ENTER_IA_32_Env call changes — entry parameter represents the entry
order; SAL needs to initialize all the 1A-32 registers properly before making
this call (Chapter 11).

PAL_CACHE_FLUSH — added a new cache_type argument (Chapter 11).
PAL_SHUTDOWN - removed from list of PAL calls (Chapter 11).

Clarified memory ordering changes (Chapter 13).

Clarification in dependence violation table (Appendix A).

Volume 3:

fmix instruction page figures corrected (Chapter 2).

Clarification of “reserved” fields in ITIR (Chapters 2 and 3).

Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4).

IA-32 JMPE instruction page typo fix (p. 5-238).

Processor Serial Number feature removed (Chapter 5).

January 2000

1.0

Initial release of document.

§

Volume 3: About this Manual

Instruction Reference 2

This chapter describes the function of each Itanium instruction. The pages of this
chapter are sorted alphabetically by assembly language mnemonic.

2.1 Instruction Page Conventions

The instruction pages are divided into multiple sections as listed in Table 2-1. The first
three sections are present on all instruction pages. The last three sections are present
only when necessary. Table 2-2 lists the font conventions which are used by the
instruction pages.

Table 2-1. Instruction Page Description
Section Name Contents
Format Assembly language syntax, instruction type and encoding format
Description Instruction function in English
Operation Instruction function in C code
FP Exceptions IEEE floating-point traps
Interruptions Prioritized list of interruptions that may be caused by the instruction
Serialization Serializing behavior or serialization requirements
Table 2-2. Instruction Page Font Conventions
Font Interpretation
regular (Format section) Required characters in an assembly language mnemonic
italic (Format section) Assembly language field name that must be filled with one of a range
of legal values listed in the Description section
code (Operation section) C code specifying instruction behavior
code italic (Operation section) Assembly language field name corresponding to a italic field listed
in the Format section

In the Format section, register addresses are specified using the assembly mnemonic
field names given in the third column of Table 2-3. For instructions that are predicated,
the Description section assumes that the qualifying predicate is true (except for
instructions that modify architectural state when their qualifying predicate is false). The
test of the qualifying predicate is included in the Operation section (when applicable).

In the Operation section, registers are addressed using the notation regladdr] .field.
The register file being accessed is specified by reg, and has a value chosen from the
second column of Table 2-3. The addr field specifies a register address as an assembly
language field name or a register mnemonic. For the general, floating-point, and
predicate register files which undergo register renaming, addr is the register address
prior to renaming and the renaming is not shown. The field option specifies a named
bit field within the register. If field is absent, then all fields of the register are
accessed. The only exception is when referencing the data field of the general registers

Volume 3: Instruction Reference 3:11

(64-bits not including the NaT bit) where the notation GrR[addr] is used. The syntactical
differences between the code found in the Operation section and ANSI C is listed in
Table 2-4.

Table 2-3. Register File Notation

Register File C Notation 'Gz::;zz 1::;?::
Application registers AR ar
Branch registers BR b
Control registers CR cr
CPU identification registers CPUID cpuid Y
Data breakpoint registers DBR dbr Y
Instruction breakpoint registers IBR ibr Y
Data TLB translation cache DTC N/A
Data TLB translation registers DTR dtr Y
Floating-point registers FR f
General registers GR r
Instruction TLB translation cache ITC N/A
Instruction TLB translation registers ITR itr Y
Protection key registers PKR pkr Y
Performance monitor configuration registers PMC pmc Y
Performance monitor data registers PMD pmd Y
Predicate registers PR p
Region registers RR rr Y
Table 2-4. C Syntax Differences
Syntax Function
{msb:lsb}, {bit} Bit field specifier. When appended to a variable, denotes a bit field extending from the
most significant bit specified by “msb” to the least significant bit specified by “Isb”
including bits “msb” and “Isb.” If “msb” and “Isb” are equal then a single bit is
accessed. The second form denotes a single bit.
u>, u>=, u<, u<= Unsigned inequality relations. Variables on either side of the operator are treated as
unsigned.
u>>, u>>= Unsigned right shift. Zeroes are shifted into the most significant bit position.
u+ Unsigned addition. Operands are treated as unsigned, and zero-extended.
u* Unsigned multiplication. Operands are treated as unsigned.

The Operation section contains code that specifies only the execution semantics of each
instruction and does not include any behavior relating to instruction fetch (e.g.,
interrupts and faults caused during fetch). The Interruptions section does not list any
faults that may be caused by instruction fetch or by mandatory RSE loads. The code to
raise certain pervasive faults and actions is not included in the code in the Operation
section. These faults and actions are listed in Table 2-5. The Single step trap applies to
all instructions and is not listed in the Interruptions section.

3:12 Volume 3: Instruction Reference

Pervasive Conditions Not Included in Instruction Description

Table 2-5.
Code

Condition Action

Read of a register outside the current frame. An undefined value is returned (no fault).

Access to a banked general register (GR 16 through GR 31). | The GR bank specified by PSR.bn is accessed.

PSR.ss is set. A Single Step trap is raised.

2.2 Instruction Descriptions

The remainder of this chapter provides a description of each of the Itanium instructions

Volume 3: Instruction Reference

add

add — Add

Format: (gp) add ry=ry 13 register_form A1
(gp) add ry=ry, r3 1 plus1_form, register_form A1
(gp) add ry;=imm, r3 pseudo-op
(gp) adds ry;=immyqy4, r3 imm14_form A4
(gp) addl ry =immyy, rs imm22_form A5

Description: The two source operands (and an optional constant 1) are added and the result placed

Operation:

Interruptions:

3:14

in GR r;. In the register form the first operand is GR r,; in the imm_14 form the first
operand is taken from the sign-extended imm,, encoding field; in the imm22_form the
first operand is taken from the sign-extended imm,, encoding field. In the imm22_form,
GR r; can specify only GRs 0, 1, 2 and 3.

The plusl_form is available only in the register_form (although the equivalent effect in
the immediate forms can be achieved by adjusting the immediate).

The immediate-form pseudo-op chooses the imm14_form or imm22_form based on the
size of the immediate operand and the value of rs.

if (PRlgpl) {
check target register(r;);

if (register form) // register form
tmp src = GR[r,];

else if (imml4 form) // 1l4-bit immediate form
tmp src = sign ext (immg,, 14);

else // 22-bit immediate form

tmp src = sign ext (imm,,, 22);
tmp nat = (register form ? GR[r,].nat : 0);

if (plusl form)

GR[r;] = tmp src + GR[r3] + 1;
else

GR[r;] = tmp src + GR[r3];
GR[r;].nat = tmp nat || GR[r3].nat;

}

Illegal Operation fault

Volume 3: Instruction Reference

addp4

addp4 — Add Pointer

Format:

Description:

Operation:

Interruptions:

(gp) addp4 ry=ry r3 register_form A1
(gp) addp4 ry;=immyy, rs imm14_form A4

The two source operands are added. The upper 32 bits of the result are forced to zero,
and then bits {31:30} of GR r; are copied to bits {62:61} of the result. This result is
placed in GR r;. In the register_form the first operand is GR r,; in the imm14_form the
first operand is taken from the sign-extended imm,, encoding field.

Figure 2-1. Add Pointer

32 0 32 30 0

GR rq: 0 0
63 61 32 0

if (PR[gpl) {
check_target_register (rq7);

tmp src = (register form ? GR[r,] : sign ext (imm;,, 14));
(register form ? GR[r,].nat : 0);

tmp_ nat

tmp res = tmp src + GR[r3];
tmp res = zero ext(tmp res{31:0}, 32);
tmp res{62:61} = GR[r3]{31:30};
GR[r;] = tmp res;
GR[r;].nat = tmp nat || GR[r3].nat;
}

Illegal Operation fault

Volume 3: Instruction Reference 3:15

alloc

alloc — Allocate Stack Frame

Format:

Description:

(gp) alloc ry=ar.pfs, i, I, 0, r M34

A new stack frame is allocated on the general register stack, and the Previous Function
State register (PFS) is copied to GR r,. The change of frame size is immediate. The write
of GR r; and subsequent instructions in the same instruction group use the new frame.

The four parameters, i (size of inputs), / (size of locals), o (size of outputs), and r (size
of rotating) specify the sizes of the regions of the stack frame.

Figure 2-2. Stack Frame

GR32
Local Output
<| . sof >
sol
-
sor

The size of the frame (sof) is determined by i + / + o. Note that this instruction may
grow or shrink the size of the current register stack frame. The size of the local region
(sol) is given by i + 1. There is no real distinction between inputs and locals. They are
given as separate operands in the instruction only as a hint to the assembler about how
the local registers are to be used.

The rotating registers must fit within the stack frame and be a multiple of 8 in number.
If this instruction attempts to change the size of CFM.sor, and the register rename base
registers (CFM.rrb.gr, CFM.rrb.fr, CFM.rrb.pr) are not all zero, then the instruction will
cause a Reserved Register/Field fault.

Although the assembler does not allow illegal combinations of operands for alloc, illegal
combinations can be encoded in the instruction. Attempting to allocate a stack frame
larger than 96 registers, or with the rotating region larger than the stack frame, or with
the size of locals larger than the stack frame, or specifying a qualifying predicate other
than PR 0, will cause an Illegal Operation fault.

This instruction must be the first instruction in an instruction group and must either be
in instruction slot 0 or in instruction slot 1 of a template having a stop after slot 0;
otherwise, the results are undefined.

If insufficient registers are available to allocate the desired frame alloc will stall the
processor until enough dirty registers are written to the backing store. Such mandatory
RSE stores may cause the data related faults listed below.

Volume 3: Instruction Reference

Operation:

Interruptions:

alloc

// tmp sof, tmp sol, tmp sor are the fields encoded in the instruction
tmp sof = i + 1 + o;

tmp sol = 1 + 1I;

tmp sor = r u>> 3;

check target register sof (r;, tmp sof);

if (tmp sof u> 96 || r u> tmp sof || tmp sol u> tmp sof || gp != 0)
illegal operation fault();
if (tmp sor != CFM.sor &&
(CFM.rrb.gr !'= 0 || CFM.rrb.fr !'= 0 || CFM.rrb.pr != 0))

reserved register field fault();

alat frame update (0, tmp sof - CEM.sof);

rse new_ frame (CFM.sof, tmp sof);// Make room for new registers; Mandatory
// RSE stores can raise faults listed below.

CFM.sof = tmp sof;

CFM.sol = tmp sol;

CFM.sor = tmp sor;

GR[r;] = AR[PFS];
GR[r;].nat = 0;

Illegal Operation fault Data NaT Page Consumption fault
Reserved Register/Field fault Data Key Miss fault
Unimplemented Data Address fault Data Key Permission fault

VHPT Data fault Data Access Rights fault

Data Nested TLB fault Data Dirty Bit fault

Data TLB fault Data Access Bit fault

Alternate Data TLB fault Data Debug fault

Data Page Not Present fault

Volume 3: Instruction Reference 3:17

and

and — Logical And

Format:

Description:

Operation:

Interruptions:

(ap) and ry=ry, 13 register_form A1
(gp) and ry =immg, rs imm8_form A3

The two source operands are logically ANDed and the result placed in GR r,. In the
register_form the first operand is GR ry; in the imm8_form the first operand is taken
from the immg encoding field.

if (PRlgp])
check target register(r;);

tmp src = (register form ? GR[r,] : sign ext (immg, 8));
tmp nat = (register form ? GR[r,].nat : 0);

GR[r;] = tmp src & GR[r3];

GR[r;].nat = tmp nat || GR[r3].nat;

}
Illegal Operation fault

Volume 3: Instruction Reference

andcm

andcm — And Complement

Format: (gp) andcm r;=ry, r3 register_form A1
(gp) andcm ry = immg, r3 imm8_form A3

Description: The first source operand is logically ANDed with the 1's complement of the second
source operand and the result placed in GR r,. In the register_form the first operand is
GR ry; in the imm8_form the first operand is taken from the immg encoding field.

Operation: if (PR[gpl) {
check target register(r;);

tmp src = (register form ? GR[r,] : sign_ext (immg, 8));
tmp nat = (register form ? GR[r,].nat : 0);

GR[r;] = tmp src & ~GR[r3];

GR[r;].nat = tmp nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:19

br

br — Branch

Format:

Description:

3:20

(gp) br.btype.bwh.ph.dh targetss
(gp) br.btype.bwh.ph.dh b, = target,s
br.btype.bwh.ph.dh target,s

br.ph.dh target,s
(gp) br.btype.bwh.ph.dh b,
(gp) br.btype.bwh.ph.dh by = b,
br.ph.dh b,

A branch condition is evaluated, and either a branch is taken, or execution continues

ip_relative_form
call_form, ip_relative_form
counted_form, ip_relative_form

pseudo-op

indirect_form

call_form, indirect_form

pseudo-op

with the next sequential instruction. The execution of a branch logically follows the

execution of all previous non-branch instructions in the same instruction group. On a

taken branch, execution begins at slot 0.

Branches can be either IP-relative, or indirect. For IP-relative branches, the target,s
operand, in assembly, specifies a label to branch to. This is encoded in the branch
instruction as a signed immediate displacement (imm,;) between the target bundle and
the bundle containing this instruction (imm,; = target,5 - IP >> 4). For indirect branches,

the target address is taken from BR b,.

Table 2-6. Branch Types

B1
B3
B2

B4
B5

btype Function

Branch Condition

Target Address

cond or none Conditional branch

Qualifying predicate

IP-rel or Indirect

epilog count

call Conditional procedure call Qualifying predicate IP-rel or Indirect
ret Conditional procedure return Qualifying predicate Indirect
ia Invoke 1A-32 instruction set Unconditional Indirect
cloop Counted loop branch Loop count IP-rel
ctop, cexit Mod-scheduled counted loop Loop count and epilog IP-rel
count
wtop, wexit Mod-scheduled while loop Qualifying predicate and | IP-rel

There are two pseudo-ops for unconditional branches. These are encoded like a
conditional branch (btype = cond), with the qgp field specifying PR 0, and with the bwh

hint of sptk.

The branch type determines how the branch condition is calculated and whether the
branch has other effects (such as writing a link register). For the basic branch types,

Volume 3: Instruction Reference

br

the branch condition is simply the value of the specified predicate register. These basic
branch types are:

e cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.

e call: If the qualifying predicate is 1, the branch is taken and several other actions
occur:

e The current values of the Current Frame Marker (CFM), the EC application
register and the current privilege level are saved in the Previous Function State
application register.

¢ The caller’s stack frame is effectively saved and the callee is provided with a
frame containing only the caller’s output region.

e The rotation rename base registers in the CFM are reset to 0.
e A return link value is placed in BR b;.
e return: If the qualifying predicate is 1, the branch is taken and the following
oCCurs:
e CFM, EC, and the current privilege level are restored from PFS. (The privilege
level is restored only if this does not increase privilege.)

e The caller’s stack frame is restored.

o If the return lowers the privilege, and PSR.Ip is 1, then a Lower-Privilege
Transfer trap is taken.

¢ ia: The branch is taken unconditionally, if it is not intercepted by the OS. The effect
of the branch is to invoke the IA-32 instruction set (by setting PSR.is to 1) and
begin processing IA-32 instructions at the virtual linear target address contained in
BR b,{31:0}. If the qualifying predicate is not PR 0, an Illegal Operation fault is
raised. If instruction set transitions are disabled (PSR.di is 1), then a Disabled
Instruction Set Transition fault is raised.

The IA-32 target effective address is calculated relative to the current code
segment, i.e. EIP{31:0} = BR b,{31:0} - CSD.base. The IA-32 instruction set can
be entered at any privilege level, provided PSR.di is 0. If PSR.dfh is 1, a Disabled FP
Register fault is raised on the target IA-32 instruction. No register bank switch nor
change in privilege level occurs during the instruction set transition.

Software must ensure the code segment descriptor (CSD) and selector (CS) are
loaded before issuing the branch. If the target EIP value exceeds the code segment
limit or has a code segment privilege violation, an IA_32_Exception(GPFault) is
raised on the target IA-32 instruction. For entry into 16-bit IA-32 code, if BR b, is
not within 64K-bytes of CSD.base a GPFault is raised on the target instruction.
EFLAG.rf is unmodified until the successful completion of the first IA-32 instruction.
PSR.da, PSR.id, PSR.ia, PSR.dd, and PSR.ed are cleared to zero after br.ia
completes execution and before the first IA-32 instruction begins execution.
EFLAG.rf is not cleared until the target IA-32 instruction successfully completes.

Software must set PSR properly before branching to the IA-32 instruction set;
otherwise processor operation is undefined. See Table 3-2, “Processor Status
Register Fields” on page 2:24 for details.

Software must issue a mf instruction before the branch if memory ordering is
required between IA-32 processor consistent and Itanium unordered memory
references. The processor does not ensure Itanium-instruction-set-generated
writes into the instruction stream are seen by subsequent IA-32 instruction fetches.
br.ia does not perform an instruction serialization operation. The processor does
ensure that prior writes (even in the same instruction group) to GRs and FRs are
observed by the first IA-32 instruction. Writes to ARs within the same instruction

Volume 3: Instruction Reference 3:21

br

group as br.ia are not allowed, since br.ia may implicitly reads all ARs. If an
illegal RAW dependency is present between an AR write and br.ia, the first IA-32
instruction fetch and execution may or may not see the updated AR value.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software
can not rely on ALAT values being preserved across an instruction set transition. All
registers left in the current register stack frame are undefined across an instruction
set transition. On entry to IA-32 code, existing entries in the ALAT are ignored. If
the register stack contains any dirty registers, an Illegal Operation fault is raised on
the br.ia instruction. The current register stack frame is forced to zero. To flush
the register file of dirty registers, the flushrs instruction must be issued in an
instruction group preceding the br.ia instruction. To enhance the performance of
the instruction set transition, software can start the register stack flush in parallel
with starting the IA-32 instruction set by 1) ensuring flushrs is exactly one
instruction group before the br.ia, and 2) br.ia is in the first B-slot. br.ia should
always be executed in the first B-slot with a hint of “static-taken” (default),
otherwise processor performance will be degraded.

If a br.ia causes any Itanium traps (e.g., Single Step trap, Taken Branch trap, or
Unimplemented Instruction Address trap), IIP will contain the original 64-bit target
IP. (The value will not have been zero extended from 32 bits.)

Another branch type is provided for simple counted loops. This branch type uses the
Loop Count application register (LC) to determine the branch condition, and does not
use a qualifying predicate:

e cloop: If the LC register is not equal to zero, it is decremented and the branch is
taken.

In addition to these simple branch types, there are four types which are used for
accelerating modulo-scheduled loops (see also Section 4.5.1, "Modulo-scheduled Loop
Support” on page 1:75). Two of these are for counted loops (which use the LC register),
and two for while loops (which use the qualifying predicate). These loop types use
register rotation to provide register renaming, and they use predication to turn off
instructions that correspond to empty pipeline stages.

The Epilog Count application register (EC) is used to count epilog stages and, for some
while loops, a portion of the prolog stages. In the epilog phase, EC is decremented each
time around and, for most loops, when EC is one, the pipeline has been drained, and
the loop is exited. For certain types of optimized, unrolled software-pipelined loops, the
target of a br.cexit or br.wexit is set to the next sequential bundle. In this case, the
pipeline may not be fully drained when EC is one, and continues to drain while EC is
zero.

For these modulo-scheduled loop types, the calculation of whether the branch is taken
or not depends on the kernel branch condition (LC for counted types, and the qualifying
predicate for while types) and on the epilog condition (whether EC is greater than one
or not).

These branch types are of two categories: top and exit. The top types (ctop and wtop)
are used when the loop decision is located at the bottom of the loop body and therefore
a taken branch will continue the loop while a fall through branch will exit the loop. The
exit types (cexit and wexit) are used when the loop decision is located somewhere
other than the bottom of the loop and therefore a fall though branch will continue the
loop and a taken branch will exit the loop. The exit types are also used at intermediate
points in an unrolled pipelined loop. (For more details, see Section 4.5.1,
“Modulo-scheduled Loop Support” on page 1:75).

3:22 Volume 3: Instruction Reference

br

The modulo-scheduled loop types are:

e ctop and cexit: These branch types behave identically, except in the determination
of whether to branch or not. For br.ctop, the branch is taken if either LC is
non-zero or EC is greater than one. For br.cexit, the opposite is true. It is not
taken if either LC is non-zero or EC is greater than one and is taken otherwise.

These branch types also use LC and EC to control register rotation and predicate
initialization. During the prolog and kernel phase, when LC is non-zero, LC counts
down. When br.ctop or br.cexit is executed with LC equal to zero, the epilog
phase is entered, and EC counts down. When br.ctop or br.cexit is executed with
LC equal to zero and EC equal to one, a final decrement of EC and a final register
rotation are done. If LC and EC are equal to zero, register rotation stops. These
other effects are the same for the two branch types, and are described in

Figure 2-3.

Figure 2-3. Operation of br.ctop and br.cexit

ctop, cexit
== 0 (Epilog) (Special
Unrolled
>1 == Loops)
(Prolog/ | =0
Kernel)
Y Y
[lc-] | e=c | [c=c | [Lc=Lc |
L] L] L] 1]
[Ec=ec | | Ec~-]| [__EC- | [EC=EC]
L] L] L] L]
[PRB3]=1 | | PR63]=0 | [PRI63]=0 | [PR[63]=0 |
L] L]
[RRB~ | | RRB- | [RRB- | [RRB=RRB|
ctop: Branch Y ctop: Fall-thru y
cexit: Fall-thru cexit: Branch

wtop and wexit: These branch types behave identically, except in the
determination of whether to branch or not. For br.wtop, the branch is taken if
either the qualifying predicate is one or EC is greater than one. For br.wexit, the
opposite is true. It is not taken if either the qualifying predicate is one or EC is
greater than one, and is taken otherwise.

These branch types also use the qualifying predicate and EC to control register
rotation and predicate initialization. During the prolog phase, the qualifying
predicate is either zero or one, depending upon the scheme used to program the
loop. During the kernel phase, the qualifying predicate is one. During the epilog
phase, the qualifying predicate is zero, and EC counts down. When br.wtop or
br.wexit is executed with the qualifying predicate equal to zero and EC equal to
one, a final decrement of EC and a final register rotation are done. If the qualifying
predicate and EC are zero, register rotation stops. These other effects are the same
for the two branch types, and are described in Figure 2-4.

Volume 3: Instruction Reference 3:23

br

Figure 2-4. Operation of br.wtop and br.wexit

wtop, wexit
==0 (Prolog / Epilog)
— (Special
{gpI? Unrolled
—— Loops)
(Prolog / =1 >1 0
Kernel) (Prolog /
Epilog) (Epilog) =1
\ \
EC=EC | EC- || EC-- | [Eec=ec |
(] L] L] (]
PRI63] = 0 | PRI[63] = 0 | | PRI[63] = 0 | | PR[63] = 0 |
L] (] (] v
RRB-- | RRB-- | | RRB-- | | RRB = RRB |
wtop: Branch V= wtop: Fall-thru >
wexit: Fall-thru wexit: Branch

The loop-type branches (br.cloop, br.ctop, br.cexit, br.wtop, and br.wexit) are
only allowed in instruction slot 2 within a bundle. Executing such an instruction in either
slot 0 or 1 will cause an Illegal Operation fault, whether the branch would have been
taken or not.

Read after Write (RAW) and Write after Read (WAR) dependency requirements are
slightly different for branch instructions. Changes to BRs, PRs, and PFS by non-branch
instructions are visible to a subsequent branch instruction in the same instruction group
(i.e., a limited RAW is allowed for these resources). This allows for a low-latency
compare-branch sequence, for example. The normal RAW requirements apply to the LC
and EC application registers, and the RRBs.

Within an instruction group, a WAR dependency on PR 63 is not allowed if both the
reading and writing instructions are branches. For example, a br.wtop Or br.wexit
may not use PR[63] as its qualifying predicate and PR[63] cannot be the qualifying
predicate for any branch preceding a br.wtop or br.wexit in the same instruction

group.

For dependency purposes, the loop-type branches effectively always write their
associated resources, whether they are taken or not. The cloop type effectively always
writes LC. When LC is 0, a cloop branch leaves it unchanged, but hardware may
implement this as a re-write of LC with the same value. Similarly, br.ctop and
br.cexit effectively always write LC, EC, the RRBs, and PR[63]. br.wtop and
br.wexit effectively always write EC, the RRBs, and PR[63].

Values for various branch hint completers are shown in the following tables. Whether
Prediction Strategy hints are shown in Table 2-7. Sequential Prefetch hints are shown in
Table 2-8. Branch Cache Deallocation hints are shown in Table 2-9. See Section 4.5.2,
“Branch Prediction Hints” on page 1:78.

3:24 Volume 3: Instruction Reference

br

Table 2-7. Branch Whether Hint
bwh Completer Branch Whether Hint
spnt Static Not-Taken
sptk Static Taken
dpnt Dynamic Not-Taken
dptk Dynamic Taken
Table 2-8. Sequential Prefetch Hint
ph Completer Sequential Prefetch Hint
few or none Few lines
many Many lines
Table 2-9. Branch Cache Deallocation Hint
dh Completer Branch Cache Deallocation Hint
none Don’t deallocate
clr Deallocate branch information
Operation: if (ip relative form) // determine branch target
tmp IP = IP + sign ext((immy; << 4), 25);
else // indirect form
tmp IP = BR[b,];
if (btype != ‘ia’) // for Itanium branches,
tmp IP = tmp IP & ~Oxf; // ignore bottom 4 bits of target
lower priv transition = 0;

switch (btype) {

case ‘cond’: // simple conditional branch
tmp taken = PR[gp];
break;

case ‘call’: // call saves a return link

tmp_taken = PR[gp];

if

}

(tmp taken) {
BR[b;] = IP + 16;

AR[PFS] .pfm = CFM; // ... and saves the stack frame

AR[PFS] .pec = AR[EC];
AR[PFS] .ppl PSR.cpl;

alat frame update (CFM.sol, 0);
rse preserve frame (CFM.sol);

CFM.sof -= CFM.sol; // new frame size 1is size of outs

CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr =
CFEM.rrb.fr = 0;
CFEM.rrb.pr = 0;

break;

case ‘ret’: // return restores stack frame

Volume 3: Instruction Reference

3:25

br

3:26

tmp taken

if (tmp taken) {
// tmp growth indicates the amount to move logical TOP *up*:
// tmp growth = sizeof (previous out) - sizeo
// a negative amount indicates a shrinking stack
tmp growth = (AR[PFS].pfm.sof - AR[PFS].pfm.
alat frame update (-AR[PFS].pfm.sol, 0);
rse fatal = rse restore frame (AR[PFS].pfm.so

if

// See Section 6.4,
CEM.
CFM.
CFM.
CFM.
CFM.
CEFM.

= PR[gp];

tmp growth, CFM

(rse_fatal) {

sof = 0;
sol = 0;
sor = 0;
rrb.gr = 0;
rrb.fr = 0;
rrb.pr = 0;

} else // normal branch return

CEM

= AR[PFS] .pfm;

rse enable current frame load();

f (current frame)

sol) - CFM.sof;

1,
.sof);

“RSE Operation” on page 2:137

AR[EC] = AR[PFS].pec;
if (PSR.cpl u< AR[PFS].ppl) { // ... and restores privilege
PSR.cpl = AR[PFS].ppl;
lower priv transition = 1;
}
}
break;
case ‘ia’: // switch to IA mode
tmp taken = 1;
if (PSR.ic == || PSR.dt == 0 || PSR.mc == || PSR.it == 0)

undefined behavior();

if (gp !'= 0)
illegal operation fault();
if (AR[BSPSTORE] != AR[BSP])
illegal operation fault();
if (PSR.di)
disabled instruction set transition fault();
PSR.is = 1; // set IA-32
CFM.sof = 0;
CFM.sol = 0; //to zero
CFM.sor = 0;
CFM.rrb.gr = 0;
CEM.rrb.fr = 0;
CEM.rrb.pr = 0;

rse invalidate non current regs();
//compute effective instruction pointer
0} = tmp IP{31:0} - AR[CSD].Base;

EIP{31:

// Note the register stack is disabled during IA-32
// set execution

break;

case ‘cloop’:
t !=2)

if (slo

Instruction Set Mode

//force current stack frame

instruction

// simple counted loop

Volume 3: Instruction Reference

illegal operation fault();

tmp taken = (AR[LC] != 0);
if (AR[LC] != 0)

AR[LC]--;
break;

case ‘ctop’:
case ‘cexit’:
if (slot != 2)
illegal operation fault();

if (btype == ‘ctop’) tmp taken =
if (btype == ‘cexit’)tmp taken =
if (AR[LC] != 0) {

AR[LC]--;

AR[EC] = AR[EC];

PR[63] = 1;

rotate regs();
} else if (AR[EC] != 0) {

AR[LC] = AR[LC];

AR[EC]--;

PR[63] = 0;

rotate regs();
} else {

AR[LC] = ARI[LC];

AR[EC] = ARI[EC];

PR[63] = 0;

CFM.rrb.gr = CFM.rrb.gr;

CFM.rrb.fr = CEM.rrb.fr;
CFM.rrb.pr = CFM.rrb.pr;
}
break;

case ‘wtop’:
case ‘wexit’:
if (slot != 2)
illegal operation fault();

if (btype == ‘wtop’) tmp taken =

if (btype == ‘wexit’)tmp taken
if (PR[gpl) {
AR[EC] = AR[EC];

PR[63] = 0;
rotate regs();
} else if (AR[EC] != 0) {
AR[EC]--;
PR[63] = 0;
rotate regs();
} else {
AR[EC] = AR[EC];
PR[63] = 0;
CFM.rrb.gr = CFM.rrb.gr;

CEM.rrb.fr = CFM.rrb.fr;
CEM.rrb.pr CFM.rrb.pr;

}

break;

}
if (tmp taken) {

Volume 3: Instruction Reference

(PR[gp] || (AR[EC] u> 1));
' (PR[gp] || (AR[EC] u> 1))

br

// SW pipelined counted loop

((AR[LC] != 0) |l (AR[EC] u> 1));
' ((AR[LC] != 0) || (AR[EC] u> 1));

// SW pipelined while loop

’

3:27

br

taken branch = 1;
IP = tmp IP; // set the new value for IP
if (!impl uia fault supported() &&
((PSR.it && unimplemented virtual address(tmp IP, PSR.vm))
[l (!PSR.it && unimplemented physical address (tmp IP))))
unimplemented instruction address trap(lower priv transition,

tmp IP);
if (lower priv transition && PSR.1p)
lower privilege transfer trap();
if (PSR.tb)
taken branch trap();
}
Interruptions: Illegal Operation fault Lower-Privilege Transfer trap
Disabled Instruction Set Transition fault Taken Branch trap

Unimplemented Instruction Address trap
Additional Faults on IA-32 target instructions:

IA_32_Exception(GPFault)
Disabled FP Reg Fault if PSR.dfh is 1

3:28 Volume 3: Instruction Reference

break

break — Break

Format: (gp) break immy, pseudo-op
(gp) break.i imm,, i_unit_form 119
(gp) break.b immy, b_unit_form B9
(gp) break.m immy, m_unit_form M37
(gp) break.f immy, f_unit_form F15
(gp) break.x immg, x_unit_form X1

Description: A Break Instruction fault is taken. For the i_unit_form, f_unit_form and m_unit_form,
the value specified by imm,, is zero-extended and placed in the Interruption Immediate
control register (I1IM).

For the b_unit_form, imm,, is ignored and the value zero is placed in the Interruption
Immediate control register (IIM).

For the x_unit_form, the lower 21 bits of the value specified by immg, is zero-extended
and placed in the Interruption Immediate control register (IIM). The L slot of the bundle
contains the upper 41 bits of immg,.

A break.i instruction may be encoded in an MLI-template bundle, in which case the L
slot of the bundle is ignored.

This instruction has five forms, each of which can be executed only on a particular
execution unit type. The pseudo-op can be used if the unit type to execute on is
unimportant.

Operation: if (PRIgp]l) {
if (b_unit form)
immediate = 0;
else if (x unit form)
immediate = zero ext (immg,, 21);
else // i unit form || m unit form || f unit form
immediate = zero ext (immy;, 21);

break instruction fault (immediate);

}

Interruptions: Break Instruction fault

Volume 3: Instruction Reference 3:29

bri

brl — Branch Long

Format:

Description:

3:30

(gp) brl.btype.bwh.ph.dh targetsy X3
(gp) brl.btype.bwh.ph.dh b, = targets, call_form X4
brl.ph.dh targetsy pseudo-op

A branch condition is evaluated, and either a branch is taken, or execution continues
with the next sequential instruction. The execution of a branch logically follows the
execution of all previous non-branch instructions in the same instruction group. On a
taken branch, execution begins at slot 0.

Long branches are always IP-relative. The targets, operand, in assembly, specifies a label
to branch to. This is encoded in the long branch instruction as an immediate
displacement (immg,) between the target bundle and the bundle containing this
instruction (immg, = targetsy - IP >> 4). The L slot of the bundle contains 39 bits of immgy,.

Table 2-10. Long Branch Types

btype Function Branch Condition Target Address
cond or none Conditional branch Qualifying predicate IP-relative
call Conditional procedure call Qualifying predicate IP-relative

There is a pseudo-op for long unconditional branches, encoded like a conditional branch
(btype = cond), with the qgp field specifying PR 0, and with the bwh hint of sptk.

The branch type determines how the branch condition is calculated and whether the
branch has other effects (such as writing a link register). For all long branch types, the
branch condition is simply the value of the specified predicate register:

¢ cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.

o call: If the qualifying predicate is 1, the branch is taken and several other actions
occur:

e The current values of the Current Frame Marker (CFM), the EC application
register and the current privilege level are saved in the Previous Function State
application register.

e The caller’s stack frame is effectively saved and the callee is provided with a
frame containing only the caller’s output region.

e The rotation rename base registers in the CFM are reset to 0.
e A return link value is placed in BR b;.

Read after Write (RAW) and Write after Read (WAR) dependency requirements for long
branch instructions are slightly different than for other instructions but are the same as
for branch instructions. See page 3:24 for details.

This instruction must be immediately followed by a stop; otherwise its behavior is
undefined.

Values for various branch hint completers are the same as for branch instructions.
Whether Prediction Strategy hints are shown in Table 2-7 on page 3:25, Sequential
Prefetch hints are shown in Table 2-8 on page 3:25, and Branch Cache Deallocation
hints are shown in Table 2-9 on page 3:25. See Section 4.5.2, "Branch Prediction Hints”
on page 1:78.

This instruction is not implemented on the Itanium processor, which takes an Illegal
Operation fault whenever a long branch instruction is encountered, regardless of
whether the branch is taken or not. To support the Itanium processor, the operating

Volume 3: Instruction Reference

bri

system is required to provide an Illegal Operation fault handler which emulates taken
and not-taken long branches. Presence of this instruction is indicated by a 1 in the Ib bit
of CPUID register 4. See Section 3.1.11, “Processor Identification Registers” on

page 1:34.

Operation: tmp IP = IP + (immgy << 4); // determine branch target
if (!followed by stop())
undefined behavior();
if (!instruction implemented (BRL))
illegal operation fault();

switch (btype) {

case ‘cond’: // simple conditional branch
tmp_taken = PR[gp];
break;

case ‘call’: // call saves a return link

tmp taken = PR[qgp];
if (tmp taken) {
BR[b;] = IP + 16;

AR[PFS].pfm = CFM; // ... and saves the stack frame
AR[PFS] .pec AR[EC];
AR[PFS].ppl = PSR.cpl;

alat frame update (CFM.sol, 0);
rse preserve frame (CFM.sol);
CFM.sof -= CFM.sol; // new frame size is size of outs
CFM.sol = 0;
CFM.sor = 0;
CEFM.rrb.gr =
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;
}
break;
}
if (tmp taken) {
taken branch = 1;
IP = tmp IP; // set the new value for IP
if (!impl uia fault supported() &&
((PSR.it && unimplemented virtual address(tmp IP, PSR.vm))
[l (!PSR.it && unimplemented physical address (tmp IP))))
unimplemented instruction address trap(0,tmp IP);
if (PSR.tb)
taken branch trap();
}

Interruptions: Illegal Operation fault Taken Branch trap
Unimplemented Instruction Address trap

Volume 3: Instruction Reference 3:31

brp

brp — Branch Predict

Format:

Description:

3:32

brp.ipwh.ih target,s, tagss ip_relative_form B6
brp.indwh.ih by, tagss indirect_form B7
brp.ret.indwh.ih b, tagsz return_form, indirect_form B7

This instruction can be used to provide to hardware early information about a future
branch. It has no effect on architectural machine state, and operates as a nop
instruction except for its performance effects.

The tag,3 operand, in assembly, specifies the address of the branch instruction to which
this prediction information applies. This is encoded in the branch predict instruction as a
signed immediate displacement (timmg) between the bundle containing the presaged
branch and the bundle containing this instruction (timmg = tag,3 - IP >> 4).

The target,s operand, in assembly, specifies the label that the presaged branch will have
as its target. This is encoded in the branch predict instruction exactly as in branch
instructions, with a signed immediate displacement (imm,,) between the target bundle
and the bundle containing this instruction (immy; = target,s - IP >> 4). The indirect_form
can be used to presage an indirect branch. In the indirect_form, the target of the
presaged branch is given by BR b,.

The return_form is used to indicate that the presaged branch will be a return.

Other hints can be given about the presaged branch. Values for various hint completers
are shown in the following tables. For more details, refer to Section 4.5.2, “Branch
Prediction Hints” on page 1:78.

The ipwh and indwh completers provide information about how best the branch condition
should be predicted, when the branch is reached.

Table 2-11. IP-relative Branch Predict Whether Hint

ipwh Completer IP-relative Branch Predict Whether Hint
sptk Presaged branch should be predicted Static Taken
loop Presaged branch will be br.cloop, br.ctop, or br.wtop
exit Presaged branch will be br.cexit orbr.wexit
dptk Presaged branch should be predicted Dynamically

Table 2-12. Indirect Branch Predict Whether Hint

indwh Completer Indirect Branch Predict Whether Hint
sptk Presaged branch should be predicted Static Taken
dptk Presaged branch should be predicted Dynamically

The ih completer can be used to mark a small number of very important branches (e.g.,
an inner loop branch). This can signal to hardware to use faster, smaller prediction
structures for this information.

Table 2-13. Importance Hint

ih Completer Branch Predict Importance Hint

none Less important

imp More important

Volume 3: Instruction Reference

brp

Operation: tmp tag = IP + sign ext((timmg << 4), 13);
if (ip relative form) {
tmp target = IP + sign ext((immy; << 4), 25);
tmp wh = ipwh;
} else { // indirect form
tmp target = BR[Db,];
tmp wh = indwh;
}
branch predict (tmp wh, ih, return form, tmp target, tmp tag);

Interruptions: None

Volume 3: Instruction Reference 3:33

bsw

bsw — Bank Switch

Format:

Description:

Operation:

Interruptions:

Serialization:

3:34

bsw.0 zero_form B8
bsw.1 one_form B8

This instruction switches to the specified register bank. The zero_form specifies Bank 0
for GR16 to GR31. The one_form specifies Bank 1 for GR16 to GR31. After the bank
switch the previous register bank is no longer accessible but does retain its current
state. If the new and old register banks are the same, bsw is effectively a nop, although
there may be a performance degradation.

A bsw instruction must be the last instruction in an instruction group; otherwise,
operation is undefined. Instructions in the same instruction group that access GR16 to
GR31 reference the previous register bank. Subsequent instruction groups reference
the new register bank.

This instruction can only be executed at the most privileged level, and when PSR.vm is
0.

This instruction cannot be predicated.

if (!followed by stop())
undefined behavior();

if (PSR.cpl != 0)
privileged operation fault (0);

if (PSR.vm == 1)
virtualization fault();

if (zero form)
PSR.bn = 0;

else // one_form
PSR.bn = 1;

Privileged Operation fault Virtualization fault

This instruction does not require any additional instruction or data serialization
operation. The bank switch occurs synchronously with its execution.

Volume 3: Instruction Reference

chk

chk — Speculation Check

Format:

Description:

(gp) chk.s rs, target,s pseudo-op

(gp) chk.s.i ry, targetys control_form, i_unit_form, gr_form 120
(gp) chk.s.m ry, targetos control_form, m_unit_form, gr_form M20
(gp) chk.s fy, targetss control_form, fr_form M21
(gp) chk.a.aclr rq, target,s data_form, gr_form M22
(gp) chk.a.aclr fy, target,s data_form, fr_form M23

The result of a control- or data-speculative calculation is checked for success or failure.
If the check fails, a branch to target,s is taken.

In the control_form, success is determined by a NaT indication for the source register.
If the NaT bit corresponding to GR r, is 1 (in the gr_form), or FR f, contains a NaTVal (in
the fr_form), the check fails.

In the data_form, success is determined by the ALAT. The ALAT is queried using the
general register specifier r; (in the gr_form), or the floating-point register specifier f;
(in the fr_form). If no ALAT entry matches, the check fails. An implementation may
optionally cause the check to fail independent of whether an ALAT entry matches. A
chk.a with general register specifier rO or floating-point register specifiers fO or f1
always fails.

The target,s operand, in assembly, specifies a label to branch to. This is encoded in the
instruction as a signed immediate displacement (imm,;) between the target bundle and
the bundle containing this instruction (imm,; = target,s - IP >> 4).

The branching behavior of this instruction can be optionally unimplemented. If the
instruction would have branched, and the branching behavior is not implemented, then
a Speculative Operation fault is taken and the value specified by imm,, is zero-extended
and placed in the Interruption Immediate control register (IIM). The fault handler
emulates the branch by sign-extending the IIM value, adding it to IIP and returning.

The control_form of this instruction for checking general registers can be encoded on
either an I-unit or an M-unit. The pseudo-op can be used if the unit type to execute on
is unimportant.

For the data_form, if an ALAT entry matches, the matching ALAT entry can be optionally
invalidated, based on the value of the aclr completer (See Table 2-14).

Table 2-14. ALAT Clear Completer

aclr Completer Effect on ALAT
clr Invalidate matching ALAT entry
nc Don't invalidate

Note that if the clr value of the aclr completer is used and the check succeeds, the
matching ALAT entry is invalidated. However, if the check fails (which may happen even
if there is a matching ALAT entry), any matching ALAT entry may optionally be
invalidated, but this is not required. Recovery code for data speculation, therefore,
cannot rely on the absence of a matching ALAT entry.

Volume 3: Instruction Reference 3:35

chk

Operation: if (PRIgpl) {
if (control form) {
if (fr form && (tmp isrcode = fp reqg disabled(f,, 0, 0, 0)))
disabled fp register fault (tmp isrcode, O0);
check type = gr form ? CHKS GENERAL CHKS FLOAT;
fail = (gr_form && GR[r,].nat) || (fr form && FR[f,] == NATVAL);
} else { // data form
if (gr form) {
reg type = GENERAL;
check type = CHKA GENERAL;
alat index = ry;

always fail

= 0);

= (alat index

Interruptions:

3:36

Disabled Floating-point Register fault
Speculative Operation fault

} else { // fr form
reg type = FLOAT;
check type = CHKA FLOAT;
alat index = fy;
always fail = ((alat index == 0) || (alat index == 1));

}

fail = (always fail || (l!alat cmp(reg type, alat index)));

}
if (fail) {
if (check branch implemented(check type)) {

taken branch = 1;

IP = IP + sign _ext((immy; << 4), 25);

if (!impl uia fault supported() &&
((PSR.it && unimplemented virtual address(IP, PSR.vm))
[l (!PSR.it && unimplemented physical address(IP))))
unimplemented instruction address trap(0, IP);
(PSR.tb)
taken branch trap();

} else

speculation fault (check type, zero ext (imm,;, 21));

} else if (data form && (aclr == ‘clr’))

alat inval single entry(reg type, alat index);

if

}

Unimplemented Instruction Address trap
Taken Branch trap

Volume 3: Instruction Reference

clrrrb

clrrrb — Clear RRB

Format: clrrrb all_form B8
clrrrb.pr pred_form B8

Description: In the all_form, the register rename base registers (CFM.rrb.gr, CFM.rrb.fr, and
CFM.rrb.pr) are cleared. In the pred_form, the single register rename base register for
the predicates (CFM.rrb.pr) is cleared.

This instruction must be the last instruction in an instruction group; otherwise,
operation is undefined.

This instruction cannot be predicated.

Operation: if (!followed by stop())
undefined behavior();

if (all form) {
CFM.rrb.gr = 0;
CEM.rrb.fr 0;
CEM.rrb.pr = 0;

} else { // pred form
CFM.rrb.pr = 0;

}

Interruptions: None

Volume 3: Instruction Reference 3:37

clz

clz — Count Leading Zeros

Format:

Description:

Operation:

Interruptions:

3:38

(gp) clz ry=rs 19

The number of leading zeros in GR r; is placed in GR r;.

An Illegal Operation fault is raised on processor models that do not support the
instruction. CPUID register 4 indicates the presence of the feature on the processor
model. See Section 3.1.11, “Processor Identification Registers” on page 1:34 for
details. This capability may also be determined using the test feature (tf) instruction
using the @clz operand.

if

}

(PR[gp])

if (!instruction implemented(CLZ))
illegal operation fault();

check target register(r;);

tmp_val = 0;
do {
if (GR[r3]1{63 - tmp val} != 0) break;

} while (tmp val++ < 63);

GR[r;] = tmp val;
GR[r;].nat = GR[r3].nat;

Illegal Operation fault

Volume 3: Instruction Reference

cmp

cmp — Compare

Format:

Description:

(gp) cmp.crel.ctype py4, ps=ry, I3 register_form A6
(gp) cmp.crel.ctype py, po = immg, r3 imm8_form A8
(gp) cmp.crel.ctype py4, po =10, r3 parallel_inequality_form A7
(gp) cmp.crel.ctype py, po = r3, rO pseudo-op

The two source operands are compared for one of ten relations specified by crel. This
produces a boolean result which is 1 if the comparison condition is true, and 0
otherwise. This result is written to the two predicate register destinations, p; and p,.
The way the result is written to the destinations is determined by the compare type
specified by ctype.

The compare types describe how the predicate targets are updated based on the result
of the comparison. The normal type simply writes the compare result to one target, and
the complement to the other. The parallel types update the targets only for a particular
comparison result. This allows multiple simultaneous OR-type or multiple simultaneous
AND-type compares to target the same predicate register.

The unc type is special in that it first initializes both predicate targets to 0, independent
of the qualifying predicate. It then operates the same as the normal type. The behavior
of the compare types is described in Table 2-15. A blank entry indicates the predicate
target is left unchanged.

Table 2-15. Comparison Types

PR[gp]==
ctype Pseudo-op PR[gp]== Result==0, Result==1, One or More
of No Source NaTs | No Source NaTs Source NaTs
PR[p;] | PR[p;] | PRIps] | PRIp;] | PRps] | PRIp;] | PRIpsl | PRIp;]

none 0 1 1 0 0 0
unc 0 0 0 1 1 0 0 0
or 1
and 0 0 0 0
or.andcm 1 0
orcm or 1 1
andcm and 0 0 0 0
and.orcm or.andcm 0 1

In the register_form the first operand is GR r,; in the imm8_form the first operand is
taken from the sign-extended immg encoding field; and in the parallel_inequality_form
the first operand must be GR 0. The parallel_inequality_form is only used when the
compare type is one of the parallel types, and the relation is an inequality (>, >=, <,
<=). See below.

If the two predicate register destinations are the same (p; and p, specify the same
predicate register), the instruction will take an Illegal Operation fault, if the qualifying
predicate is 1, or if the compare type is unc.

Of the ten relations, not all are directly implemented in hardware. Some are actually
pseudo-ops. For these, the assembler simply switches the source operand specifiers
and/or switches the predicate target specifiers and uses an implemented relation. For
some of the pseudo-op compares in the imm8_form, the assembler subtracts 1 from
the immediate value, making the allowed immediate range slightly different. Of the six
parallel compare types, three of the types are actually pseudo-ops. The assembler

Volume 3: Instruction Reference 3:39

cmp

3:40

simply uses the negative relation with an implemented type. The implemented relations
and how the pseudo-ops map onto them are shown in Table 2-16 (for normal and unc
type compares), and Table 2-17 (for parallel type compares).

Table 2-16. 64-bit Comparison Relations for Normal and unc Compares

Compare Relation Register Form is a Immediate Form is a .
crel Immediate Range
(arel b) pseudo-op of pseudo-op of

eq a== -128 .. 127

ne al=»b eq p1> P2 eq p1> P2 -128 .. 127

It a<b signed -128 .. 127

le a<=b It aeob Py P2 It a-1 -127 .. 128

gt a>b It aob It a-1 pyopo -127 .. 128

ge a>=b It Py Po It Py po -128 .. 127

Itu a<b unsigned 0..127,
264128 .. 2641

leu a<=b tu aob Py Po tu a1 1..128,
264127 . 284

gtu a>b tu aob tu a1 props 1..128,
284127 . 284

geu a>=bhb Itu pg o P2 Itu Py > P2 0..127,
254128 .. 2641

The parallel compare types can be used only with a restricted set of relations and
operands. They can be used with equal and not-equal comparisons between two
registers or between a register and an immediate, or they can be used with inequality
comparisons between a register and GR 0. Unsigned relations are not provided, since
they are not of much use when one of the operands is zero. For the parallel inequality
comparisons, hardware only directly implements the ones where the first operand (GR
rp) is GR 0. Comparisons where the second operand is GR 0 are pseudo-ops for which
the assembler switches the register specifiers and uses the opposite relation.

Table 2-17. 64-bit Comparison Relations for Parallel Compares

crel Compare Relation Register Form is a Immediate Range
(arel b) pseudo-op of
eq a== -128 .. 127
ne al=b -128 .. 127
It 0<bh signed no immediate forms
It a<o0 gt aob
le 0<=b
le a<=0 ge aob
gt 0>b
gt a>0 It aob
ge 0>=b
ge a>=0 le aob

Volume 3: Instruction Reference

cmp

Operation: if (PR[gpl) {

if (p; == po)
illegal operation fault();

tmp nat = (register form ? GR[r,].nat : 0) || GR[r3].nat;
if (register form)
tmp src = GR[r,];
else if (imm8 form)
tmp src = sign ext (immg, 8);
else // parallel inequality form
tmp src = 0;

if (crel == ‘eq’) tmp rel = tmp src == GR[rj3];

else if (crel == ‘ne’) tmp rel = tmp src != GR[r3];

else if (crel == ‘1t’) tmp rel = lesser signed(tmp src, GR[r3]);

else if (crel == ‘le’) tmp rel = lesser equal signed(tmp src, GR[r3]);
else if (crel == ‘gt’) tmp rel = greater signed(tmp src, GR[r3]);

else if (crel == ‘ge’) tmp rel = greater equal signed(tmp src, GR[r3]);
else if (crel == ‘ltu’) tmp rel = lesser(tmp src, GR[r3]);

else if (crel == ‘leu’) tmp rel = lesser equal (tmp src, GR[r3]);

else if (crel == ‘gtu’) tmp rel = greater (tmp src, GR[r3]);

else tmp rel = greater equal (tmp src, GR[r3]);//‘geu’

switch (ctype) {

case ‘and’: // and-type compare
if (tmp nat || !tmp rel) {
PR([p;] 0;
PR[p,] = 0;
}
break;
case ‘or’: // or-type compare
if (!tmp nat && tmp rel) {
PR[p;] 1;
PR[p,] = 1;
}
break;
case ‘or.andcm’: // or.andcm-type compare
if (!tmp nat && tmp rel) {
PR[p;] 1;
PR[p,] = 0;
}
break;
case ‘unc’: // unc-type compare
default: // normal compare
if (tmp nat) {
PR[p;] = 0;
PR[p,] = 0;
} else {
PR[p;] = tmp rel;
PR[p,] = !tmp rel;
}
break;
}
} else {
if (ctype == ‘unc’) {

if (p; == p2)

Volume 3: Instruction Reference 3:41

cmp

illegal operation fault();
PR[p;] = 0;
PR[p,] = 0;

}

Interruptions: Illegal Operation fault

3:42 Volume 3: Instruction Reference

cmp4

cmp4 — Compare 4 Bytes

Format:

Description:

Volume 3: Instruction Reference

(gp) cmp4.crel.ctype pq, ps=ry, I3 register_form A6
(gp) cmp4.crel.ctype pq, po = immg, r3 imm8_form A8
(gp) cmp4.crel.ctype pq, po =10, r3 parallel_inequality_form A7
(gp) cmpd4.crel.ctype pq, po =r3, 10 pseudo-op

The least significant 32 bits from each of two source operands are compared for one of
ten relations specified by crel. This produces a boolean result which is 1 if the
comparison condition is true, and 0 otherwise. This result is written to the two predicate
register destinations, p; and p,. The way the result is written to the destinations is
determined by the compare type specified by ctype. See the Compare instruction and
Table 2-15 on page 3:39.

In the register_form the first operand is GR ry; in the imm8_form the first operand is
taken from the sign-extended immg encoding field; and in the parallel_inequality_form
the first operand must be GR 0. The parallel_inequality_form is only used when the
compare type is one of the parallel types, and the relation is an inequality (>, >=, <,
<=). See the Compare instruction and Table 2-17 on page 3:40.

If the two predicate register destinations are the same (p,; and p, specify the same
predicate register), the instruction will take an Illegal Operation fault, if the qualifying
predicate is 1, or if the compare type is unc.

Of the ten relations, not all are directly implemented in hardware. Some are actually
pseudo-ops. See the Compare instruction and Table 2-16 and Table 2-17 on page 3:40.
The range for immediates is given below.

Table 2-18. Immediate Range for 32-bit Compares

crel Comrz:rferg;ation Immediate Range
eq a== -128 .. 127
ne al=b -128 .. 127
It a<bhb signed -128 .. 127
le a<=b 127 . 128
gt a>b 127 . 128
ge a>=b -128 .. 127
Itu a<b unsigned 0..127, 252128 .. 2521
leu a<=b 1..128, 282,127 . 2%2
gtu a>b 1..128, 232,127 .. 2%2
geu a>=b 0..127, 232128 .. 2321

3:43

cmp4

Operation: if (PR[gpl) {

if (p; == po)
illegal operation fault();

tmp nat = (register form ? GR[r,].nat

if (register form)
tmp src = GR[r,];
else if (imm8 form)
tmp src = sign ext (immg, 8);
else // parallel inequality form
tmp src = 0;

if (crel == ‘eq’) tmp rel
else if (crel == ‘ne’) tmp rel
else if (crel == ‘1t')

tmp rel = lesser signed(sign

tmp src{31:0}

|| GR[r3].nat;

= tmp src{31:0} == GR[r3]{31:0};
!'= GR[r3] {31:0};

ext (tmp_src, 32),

sign ext (GR[r3], 32));

else if (crel == ‘le’)

tmp rel = lesser equal signed(sign ext (tmp src, 32),
sign ext (GR[r3], 32));

else if (crel == ‘gt’)

tmp rel = greater signed(sign_ext (tmp src, 32),
sign ext (GR[r3], 32));

else if (crel == ‘ge’)

tmp rel = greater equal signed(sign ext (tmp src, 32),
sign ext (GR[r3], 32));

else if (crel == ‘ltu’)

tmp rel = lesser (zero_ ext (tmp src,
zero_ext (GR[rs3],

else if (crel == ‘leu’)

tmp rel = lesser equal (zero ext (tmp src, 32)
zero_ext(GR[r3], 32)

else if (crel == ‘gtu’)

tmp rel = greater(zero ext (tmp src,
zero_ext (GR[rs3],

else // “geu’

32));
)

32));

tmp rel = greater equal (zero ext (tmp src, 32),
zero ext (GR[r3], 32));

switch (ctype) {
case ‘and’:

if (tmp nat || !tmp rel)
PR[p;] = 0;
PR[p,] = 0;

}

break;

case ‘or’:
if (!tmp nat && tmp rel)
PR[p;] = 1;
PR[p,] = 1;
}
break;
case ‘or.andcm’ :
if (!tmp nat && tmp rel)
PR[p;] = 1;

3:44

// and-type compare

// or-type compare

// or.andcm-type compare

Volume 3: Instruction Reference

cmp4

PR[p,] = 0;
}
break;
case ‘unc’: // unc-type compare
default: // normal compare
if (tmp nat) {
PR[p;] = 0
PR[p,] =0
} else {
PR[p;] = tmp rel;
PR[p,] = !tmp rel;

’

’

}
break;
}
} else {
if (ctype == ‘unc’) {
if (p; == po)
illegal operation fault();
PR[p;] = 0;
PR[p>] 0;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:45

cmpxchg

cmpxchg — Compare and Exchange

Format:

Description:

3:46

(gp) cmpxchgsz.sem.ldhint ry = [r3], rp, ar.ccv M16
(gp) cmp8xchg16.sem.ldhint ry = [rs], r,, ar.csd, ar.ccv sixteen_byte_form M16

A value consisting of sz bytes (8 bytes for cmp8xchg16) is read from memory starting at
the address specified by the value in GR r;. The value is zero extended and compared
with the contents of the cmpxchg Compare Value application register (AR[CCV]). If the
two are equal, then the least significant sz bytes of the value in GR r, are written to
memory starting at the address specified by the value in GR r3. For cmp8xchgls, if the
two are equal, then 8-bytes from GR r, are stored at the specified address ignoring bit
3 (GR r; & ~0x8), and 8 bytes from the Compare and Store Data application register
(AR[CSD]) are stored at that address + 8 ((GR r; & ~0x8) + 8). The zero-extended
value read from memory is placed in GR r; and the NaT bit corresponding to GR ry is
cleared.

The values of the sz completer are given in Table 2-19. The sem completer specifies the
type of semaphore operation. These operations are described in Table 2-20. See
Section 4.4.7, “Sequentiality Attribute and Ordering” on page 2:82 for details on
memory ordering.

Table 2-19. Memory Compare and Exchange Size

sz Completer Bytes Accessed
1 1

2 2
4 4
8 8

Table 2-20. Compare and Exchange Semaphore Types

sem Ordering .
Completer Semantics Semaphore Operation
acq Acquire The memory read/write is made visible prior to all subsequent data memory
accesses.
rel Release The memory read/write is made visible after all previous data memory
accesses.

If the address specified by the value in GR r; is not naturally aligned to the size of the
value being accessed in memory, an Unaligned Data Reference fault is taken
independent of the state of the User Mask alignment checking bit, UM.ac (PSR.ac in the
Processor Status Register). For the cmp8xchgl6 instruction, the address specified must
be 8-byte aligned.

The memory read and write are guaranteed to be atomic. For the cmp8xchgl6
instruction, the 8-byte memory read and the 16-byte memory write are guaranteed to
be atomic.

Both read and write access privileges for the referenced page are required. The write
access privilege check is performed whether or not the memory write is performed.

This instruction is only supported to cacheable pages with write-back write policy.
Accesses to NaTPages cause a Data NaT Page Consumption fault. Accesses to pages
with other memory attributes cause an Unsupported Data Reference fault.

The value of the Idhint completer specifies the locality of the memory access. The values
of the Idhint completer are given in Table 2-34 on page 3:152. Locality hints do not

Volume 3: Instruction Reference

Operation:

Interruptions:

cmpxchg

affect program functionality and may be ignored by the implementation. See
Section 4.4.6, “"Memory Hierarchy Control and Consistency” on page 1:69 for details.

For cmp8xchgl6, Illegal Operation fault is raised on processor models that do not
support the instruction. CPUID register 4 indicates the presence of the feature on the
processor model. See Section 3.1.11, "Processor Identification Registers” on page 1:34
for details.

if

}

(PR[gp]) {
size = sixteen byte form ? 16 : sz;

if (sixteen byte form && !instruction implemented (CMP8XCHG16))
illegal operation fault();

check target register(r;);

if (GR[r3].nat || GR[r,].nat)
register nat consumption fault (SEMAPHORE) ;

paddr = tlb translate(GR[r3], size, SEMAPHORE, PSR.cpl, &mattr,
&tmp unused) ;

if (!ma supports semaphores (mattr))
unsupported data reference fault (SEMAPHORE, GR[r3]);

if (sixteen byte form) {
if (sem == ‘acq’)
val = mem xchgl6é cond(AR[CCV], GR[r,], AR[CSD], paddr, UM.be,
mattr, ACQUIRE, I1dhint);
else // ‘rel’
val = mem xchglé cond(AR[CCV], GR[r,], AR[CSD], paddr, UM.be,
mattr, RELEASE, 1dhint);
} else {
if (sem == ‘acq’)
val = mem xchg cond(AR[CCV], GR[r,], paddr, size, UM.be, mattr,
ACQUIRE, I1dhint);
else // ‘rel’
val = mem xchg cond(AR[CCV], GR[r,], paddr, size, UM.be, mattr,
RELEASE, Idhint);
val = zero ext(val, size * 8);

if (AR[CCV] == val)
alat inval multiple entries(paddr, size);

GR[r;] = val;
GR[r;].nat = 0;

Illegal Operation fault Data Key Miss fault

Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault

Data Nested TLB fault Data Dirty Bit fault

Alternate Data TLB fault Data Access Bit fault

VHPT Data fault Data Debug fault

Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault

Data NaT Page Consumption fault

Volume 3: Instruction Reference 3:47

cover

cover — Cover Stack Frame

Format:

Description:

Operation:

Interruptions:

3:48

cover B8

A new stack frame of zero size is allocated which does not include any registers from
the previous frame (as though all output registers in the previous frame had been
locals). The register rename base registers are reset. If interruption collection is
disabled (PSR.ic is zero), then the old value of the Current Frame Marker (CFM) is
copied to the Interruption Function State register (IFS), and IFS.v is set to one.

A cover instruction must be the last instruction in an instruction group; otherwise,
operation is undefined.

This instruction cannot be predicated.

if (!followed by stop())
undefined behavior();

if (PSR.cpl == 0 && PSR.vm == 1)
virtualization fault();

alat frame update (CFM.sof, 0);
rse preserve frame (CFM.sof);
if (PSR.ic == 0) {
CR[IFS].ifm = CFM;
CR[IFS].v = 1;

CFM.sof = 0;
CEFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CEM.rrb.fr = 0;
CEM.rrb.pr = 0;

Virtualization fault

Volume 3: Instruction Reference

czx — Compute Zero Index

Format:

Description:

Operation:

(gp) czx1.l ry=rg
(gp) czx1.r ry=r3
(gp) czx2.l ry=r3
(gp) czx2.r ry=r3

czx

one_byte_form, left_form 129
one_byte form, right_form 129
two_byte form, left_form 129
two_byte form, right_form 129

GR r; is scanned for a zero element. The element is either an 8-bit aligned byte
(one_byte_form) or a 16-bit aligned pair of bytes (two_byte_form). The index of the
first zero element is placed in GR ry. If there are no zero elements in GR r;, a default
value is placed in GR ry. Table 2-21 gives the possible result values. In the left_form,
the source is scanned from most significant element to least significant element, and in
the right_form it is scanned from least significant element to most significant element.

Table 2-21. Result Ranges for czx
Size Element Width Range of Result if Zero Element | Default Result if No Zero Element
Found Found
1 8 bit 0-7 8
2 16 bit 0-3 4
if (PR[gpl) {

check_target_register(rﬂ;

if (one byte form)

—_~

// scan from most significant down

== 0) GR[r;]

~e N

. N

N Ne .

|
~N oUW N O
~

~.

scan from least significant up

~.

== Q)
== Q)

GR[r;]

~.

. o~

Ne Ne e

I
~N o0 w N O
~

~.

// scan from most significant down

== 0) GR[r;]
== 0) GR[r;]
== 0) GR[r;] =
== 0) GR[r;]

’
’

’

w NN = O

’

scan from least significant up

if (left form) {
if ((GR[r3] & 0x££00000000000000)
else if ((GR[r3] & 0x00££000000000000)
else if ((GR[r3] & 0x0000££0000000000)
else if ((GR[r3] & 0x000000££00000000)
else if ((GR[r3] & 0x00000000££000000)
else if ((GR[r3] & 0x0000000000££0000)
else if ((GR[r3] & 0x000000000000££00)
else if ((GR[r3] & 0x00000000000000£ff)
else GR[r;] = 8;

} else { // right form
if ((GR[r3] & 0x00000000000000£f)
else if ((GR[r3] & 0x000000000000££00)
else if ((GR[r3] & 0x0000000000££0000)
else if ((GR[r3] & 0x00000000££000000)
else if ((GR[r3] & 0x000000££00000000)
else if ((GR[r3] & 0x0000££0000000000)
else if ((GR[r3] & 0x00££000000000000)
else if ((GR[r3] & 0xf£00000000000000)
else GR[r;] = 8;

}

} else { // two_byte form

if (left form) {
if ((GR[r3] & Oxff££000000000000)
else if ((GR[r3] & 0x0000££££00000000)
else if ((GR[r3] & 0x00000000££££0000)
else if ((GR[r3] & 0x000000000000ffff)
else GR[r;] = 4;

} else { // right form
if ((GR[r3] & 0x000000000000f£f£ff)

else if ((GR[rj3]

Volume 3: Instruction Reference

& 0x00000000££££0000)

= 0;
=1;

0) GR[ry]
== 0) GR[r;]

3:49

czx

else if ((GR[r3] & 0x0000££££00000000) == 0) GR[r;] = 2;
else if ((GR[r3] & Oxffff000000000000) == 0) GR[r;] = 3;
else GR[r;] = 4;

}
GR[r;].nat = GR[r3].nat;
}

Interruptions: Illegal Operation fault

3:50 Volume 3: Instruction Reference

dep

dep — Deposit

Format:

Description:

(gp) dep ry=ro, rs, posg, leny merge_form, register_form 115
(gp) dep ry =immy, rs, pose, leng merge_form, imm_form 114
(gp) dep.z ry =r,, posg, leng zero_form, register_form 112
(gp) dep.z ry = immyg, posg, leng zero_form, imm_form 113

In the merge_form, a right justified bit field taken from the first source operand is
deposited into the value in GR r3 at an arbitrary bit position and the result is placed in
GR ry. In the register_form the first source operand is GR r5; and in the imm_form it is
the sign-extended value specified by imm; (either all ones or all zeroes). The deposited
bit field begins at the bit position specified by the poss immediate and extends to the left
(towards the most significant bit) a number of bits specified by the /len immediate. Note
that /en has a range of 1-16 in the register_form and 1-64 in the imm_form. The posg
immediate has a range of 0 to 63.

In the zero_form, a right justified bit field taken from either the value in GR r, (in the
register_form) or the sign-extended value in immg (in the imm_form) is deposited into
GR r; and all other bits in GR r; are cleared to zero. The deposited bit field begins at the
bit position specified by the poss immediate and extends to the left (towards the most
significant bit) a number of bits specified by the /en immediate. The /en immediate has
a range of 1-64 and the poss immediate has a range of 0 to 63.

In the event that the deposited bit field extends beyond bit 63 of the target, i.e., len +
posg > 64, the most significant /en + posg - 64 bits of the deposited bit field are
truncated. The /len immediate is encoded as /en minus 1 in the instruction.

The operation of dep r; = r,, r3, 36, 16 isillustrated in Figure 2-5.

Figure 2-5. Deposit Example (merge_form)

52 36 0 16 15 0
GRrr3: GRry:

GRrq:

52 36 0

The operation of dep.z r1 = r2, 36, 16 isillustrated in Figure 2-6.

Figure 2-6. Deposit Example (zero_form)

16 15 0

GR o

GR rq: 0 0
52 36 0

Volume 3: Instruction Reference 3:51

dep

Operation: if (PRIgpl) {
check target register(r;);

if (imm form) {
tmp src = (merge form ? sign ext(imm;,1) : sign ext (immg, 8));
tmp nat = merge form ? GR[r3].nat : 0;
tmp len = Ieng ;

} else { // register form
tmp src = GR[r,];
tmp nat = (merge form ? GR[r3].nat : 0) || GR[r,].nat;

tmp len = merge form ? len, : leng ;
}
if (posg + tmp len u> 64)

tmp len = 64 - posg;

if (merge form)

GR[r;] = GR[r3];
else // zero form
GR[rlJ = O;

GR[r;]{(posg + tmp len - 1):posgl = tmp src{(tmp len - 1):0};
GR[r;].nat = tmp nat;
}

Interruptions: Illegal Operation fault

3:52 Volume 3: Instruction Reference

epc

epc — Enter Privileged Code

Format:

Description:

Operation:

Interruptions:

epc

B8

This instruction increases the privilege level. The new privilege level is given by the TLB
entry for the page containing this instruction. This instruction can be used to implement
calls to higher-privileged routines without the overhead of an interruption.

Before increasing the privilege level, a check is performed. The PFS.ppl (previous
privilege level) is checked to ensure that it is not more privileged than the current
privilege level. If this check fails, the instruction takes an Illegal Operation fault.

If the check succeeds, then the privilege is increased as follows:

o If instruction address translation is enabled and the page containing the epc

instruction has execute-only page access rights and the privilege level assigned to
the page is higher than (numerically less than) the current privilege level, then the
current privilege level is set to the privilege level field in the translation for the page
containing the epc instruction. This instruction can promote but cannot demote,
and the new privilege comes from the TLB entry.

If instruction address translation is disabled, then the current privilege level is set
to 0 (most privileged).

Instructions after the epc in the same instruction group may be executed at the old
privilege level or the new, higher privilege level. Instructions in subsequent
instruction groups will be executed at the new, higher privilege level.

If the page containing the epc instruction has any other access rights besides
execute-only, or if the privilege level assigned to the page is lower or equal to
(numerically greater than or equal to) the current privilege level, then no action is
taken (the current privilege level is unchanged).

Note that the ITLB is actually only read once, at instruction fetch. Information from the
access rights and privilege level fields from the translation is then used in executing this
instruction.

This instruction cannot be predicated.

if

if

(AR[PFS] .ppl u< PSR.cpl)
illegal operation fault();

(PSR.1t)
PSR.cpl = tlb enter privileged code();

else

PSR.cpl = 0;

Illegal Operation fault

Volume 3: Instruction Reference 3:53

extr

extr — Extract

Format:

Description:

Operation:

Interruptions:

3:54

(gp) extr ry=rs, posg, leng signed_form 111
(gp) extr.u ry = rs, posg, leng unsigned_form 111

A field is extracted from GR r;, either zero extended or sign extended, and placed
right-justified in GR r,. The field begins at the bit position given by the second operand
and extends leng bits to the left. The bit position where the field begins is specified by
the posg immediate. The extracted field is sign extended in the signed_form or zero
extended in the unsigned_form. The sign is taken from the most significant bit of the
extracted field. If the specified field extends beyond the most significant bit of GR r,
the sign is taken from the most significant bit of GR r;. The immediate value leng can be
any number in the range 1 to 64, and is encoded as leng-1 in the instruction. The
immediate value posg can be any value in the range 0 to 63.

The operation of extr rl1 = r3, 7, 50 isillustrated in Figure 2-7.

Figure 2-7. Extract Example

63 56 7 0

GR ra:

GRry: Sign
63 49 0

if (PRIgpl) |
check target register(r;);

tmp_len = leng;

if (posg + tmp len u> 64)
tmp len = 64 - posg;

if (unsigned form)

GR[r;] = zero ext(shift right unsigned(GR[r3], pos6), tmp len);
else // signed form

GR[r;] = sign ext(shift right unsigned(GR[r3], pos6), tmp len);

GR[r;].nat = GR[r3].nat;
}

Illegal Operation fault

Volume 3: Instruction Reference

fabs

fabs — Floating-point Absolute Value
Format: (gp) fabs f; =13 pseudo-op of: (gp) fmerge.s f; =10, f;

Description: The absolute value of the value in FR f; is computed and placed in FR ;.

If FR f3 is a NaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: See “fmerge — Floating-point Merge” on page 3:80.

Volume 3: Instruction Reference 3:55

fadd

fadd — Floating-point Add

Format:

Description:

Operation:

3:56

(gp) fadd.pc.sf f; =fs, £ pseudo-op of: (gp) fma.pc.sf f; =f3 1,1,

FR f; and FR f, are added (computed to infinite precision), rounded to the precision
indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode
specified by FPSR.sf.rc, and placed in FR f,. If either FR f; or FR f, is @ NaTVal, FR f; is set
to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22. The mnemonic values
for sf are given in Table 2-23. For the encodings and interpretation of the status field’s
pc, wre, and rc, refer to Table 5-5 and Table 5-6 on page 1:90.

Table 2-22. Specified pc Mnemonic Values

pc Mnemonic Precision Specified
.S single
.d double
none dynamic
(i.e. use pc value in status field)

Table 2-23. sf Mnemonic Values

sf Mnemonic Status Field Accessed
.s0 or none sf0
.s1 sf1
.82 sf2
.s3 sf3

See “fma — Floating-point Multiply Add” on page 3:77.

Volume 3: Instruction Reference

famax

famax — Floating-point Absolute Maximum

Format:

Description:

Operation:

(gp) famax.sf f; =f,, f3 F8
The operand with the larger absolute value is placed in FR 7. If the magnitude of FR 1,
equals the magnitude of FR 73, FR f; gets FR f3.

If either FR , or FR 3 is a NaN, FR f, gets FR f;.

If either FR f, or FR f; is a NaTVal, FR f, is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic
floating-point instructions. The Invalid Operation is signaled in the same manner as the
fcmp. 1t operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

if (PR[gp]) |
fp_check_target_register(fﬂ;
if (tmp isrcode = fp reqg disabled(f;, f,, f3, 0))
disabled fp register fault (tmp isrcode, O0);

if (fp is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {

fminmax exception fault check(f,, f3, sf, &tmp fp env);
if (fp_raise fault(tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

tmp right = fp reg read(FR[f,]);

tmp left = fp reg read(FR[f3]);

tmp right.sign = FP_SIGN POSITIVE;

tmp left.sign = FP_SIGN POSITIVE;

tmp bool res = fp less than(tmp left, tmp right);
FR[f;] = tmp bool res ? FR[f,] : FR[f3];

fp update fpsr(sf, tmp fp env);
}

fp update psr(f;);
}

FP Exceptions: Invalid Operation (V)

Interruptions:

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:57

famin

famin — Floating-point Absolute Minimum

F8

Format: (gp) famin.sf f; =15, f3

Description: The operand with the smaller absolute value is placed in FR f,. If the magnitude of FR f,
equals the magnitude of FR 73, FR f; gets FR f5.
If either FR 7, or FR 75 is a NaN, FR f; gets FR f;.
If either FR 7, or FR f; is @ NaTVal, FR f; is set to NaTVal instead of the computed result.
This operation does not propagate NaNs the same way as other arithmetic
floating-point instructions. The Invalid Operation is signaled in the same manner as the
fcmp. 1t operation.
The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[gp]) |

fp_check_target_register (£1)7

if (tmp isrcode = fp reg disabled(f;, f, f3, 0))
disabled fp register fault (tmp isrcode, O0);

if (fp_is natval (FR[f,])
FR[f;] = NATVAL;
} else {

fminmax exception fault check(f,,

if (fp_raise fault (tmp fp env))

|| fp is natval (FR[f3])) {

f3, sf, &tmp fp env);

fp exception fault (fp decode fault (tmp fp env));

tmp left = fp reg read(FR[f,]);

tmp right = fp reg read(FR[f3]);
tmp left.sign = FP_SIGN POSITIVE;

tmp right.sign = FP SIGN POSITIVE;
tmp bool res = fp less than(tmp left, tmp right);

FR[f;] = tmp bool res ? FR[f),]

fp update fpsr(sf, tmp fp env);
}

fp update psr(f;);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault

Disabled Floating-point Register fault

3:58

: FR[f5];

Floating-point Exception fault

Volume 3: Instruction Reference

fand

fand — Floating-point Logical And

Format: (gp) fand f;=f1,, f3 F9

Description: The bit-wise logical AND of the significand fields of FR f, and FR f; is computed. The
resulting value is stored in the significand field of FR f,. The exponent field of FR f; is set
to the biased exponent for 2.083 (0x1003E) and the sign field of FR f, is set to positive
(0).

If either FR 1, or FR f; is @ NaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: if (PR[gpl) {
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, 0))
disabled fp register fault (tmp isrcode, 0);

if (fp_is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {

FR[f;].significand = FR[f,].significand & FR[f3].significand;
FR[f;] .exponent = FP_INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;
}
fp_update psr(f;);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:59

fandcm

fandcm — Floating-point And Complement

Format:

Description:

Operation:

(gp) fandcm f;=1f, f3 F9

The bit-wise logical AND of the significand field of FR £, with the bit-wise complemented
significand field of FR f;is computed. The resulting value is stored in the significand field
of FR #,. The exponent field of FR , is set to the biased exponent for 2.0%3 (0x1003E)
and the sign field of FR f, is set to positive (0).

If either FR 7, or FR f, is @ NaTVal, FR f, is set to NaTVal instead of the computed result.

if

}

(PR[gp]) {

fp check target register(f;);

if (tmp isrcode = fp reg disabled(f;, f,, f3, 0))
disabled fp register fault (tmp isrcode, O0);

if (fp_is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;

} else {

}

FR[f;] .significand = FR[f,].significand & ~FR[f3].significand;
FR[f;] .exponent = FP_INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

fp_update psr(f;);

FP Exceptions: None

Interruptions:

3:60

Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference

fc

fc — Flush Cache

Format:

Description:

Operation:

(ap) fc rs invalidate_line_form M28
(gp) fc.i r3 instruction_cache_coherent_form M28

In the invalidate_line form, the cache line associated with the address specified by the
value of GR r3 is invalidated from all levels of the processor cache hierarchy. The
invalidation is broadcast throughout the coherence domain. If, at any level of the cache
hierarchy, the line is inconsistent with memory it is written to memory before
invalidation. The line size affected is at least 32-bytes (aligned on a 32-byte boundary).
An implementation may flush a larger region.

In the instruction_cache_coherent form, the cache line specified by GR r3 is flushed in
an implementation-specific manner that ensures that the instruction caches are
coherent with the data caches. The fc.1i instruction is not required to invalidate the
targeted cache line nor write the targeted cache line back to memory if it is inconsistent
with memory, but may do so if this is required to make the instruction caches coherent
with the data caches. The fc.i instruction is broadcast throughout the coherence
domain if necessary to make all instruction caches coherent. The line size affected is at
least 32-bytes (aligned on a 32-byte boundary). An implementation may flush a larger
region.

When executed at privilege level 0, fc and fc.i perform no access rights or protection
key checks. At other privilege levels, fc and fc.i perform access rights checks as if
they were 1-byte reads, but do not perform any protection key checks (regardless of
PSR.pk).

The memory attribute of the page containing the affected line has no effect on the
behavior of these instructions. The fc instruction can be used to remove a range of
addresses from the cache by first changing the memory attribute to non-cacheable and
then flushing the range.

These instructions follow data dependency ordering rules; they are ordered only with
respect to previous load, store or semaphore instructions to the same line. fc and fc.i
have data dependencies in the sense that any prior stores by this processor will be
included in the flush operation. Subsequent memory operations to the same line need
not wait for prior fc or fc.i completion before being globally visible. fc and fc.i are
unordered operations, and are not affected by a memory fence (mf) instruction. These
instructions are ordered with respect to the sync. i instruction.

if (PR[gp]) {
itype = NON_ACCESS |FC|READ;
if (GR[r3].nat)
register nat consumption fault (itype);
tmp paddr = tlb translate nonaccess(GR[r3], itype);

if (invalidate line form)
mem flush (tmp paddr) ;

else // instruction cache coherent form
make icache coherent (tmp paddr);

Volume 3: Instruction Reference 3:61

fc

Interruptions:

3:62

Register NaT Consumption fault
Unimplemented Data Address fault
Data Nested TLB fault

Alternate Data TLB fault

VHPT Data fault

Data TLB fault

Data Page Not Present fault

Data NaT Page Consumption fault
Data Access Rights fault

Volume 3: Instruction Reference

fchkf

fchkf — Floating-point Check Flags

Format: (gp) fchkf.sf targetys F14

Description: The flags in FPSR.sf.flags are compared with FPSR.s0.flags and FPSR.traps. If any flags
set in FPSR.sf.flags correspond to FPSR.traps which are enabled, or if any flags set in
FPSR.sf.flags are not set in FPSR.s0.flags, then a branch to target,s is taken.

The target,s operand, specifies a label to branch to. This is encoded in the instruction
as a signed immediate displacement (imm,,) between the target bundle and the bundle
containing this instruction (immy; = target,s - IP >> 4).

The branching behavior of this instruction can be optionally unimplemented. If the
instruction would have branched, and the branching behavior is not implemented, then
a Speculative Operation fault is taken and the value specified by imm,, is zero-extended
and placed in the Interruption Immediate control register (IIM). The fault handler
emulates the branch by sign-extending the IIM value, adding it to IIP and returning.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PRIgpl) {

switch (sf) {

case ‘s0’:
tmp flags

break;

case ‘sl’:
tmp flags

break;

case ‘s2':
tmp flags

break;

case ‘s3':
tmp flags

break;

AR[FPSR] .sf0.flags;

AR[FPSR] .sfl.flags;

AR[FPSR] .sf2.flags;

AR[FPSR] .sf3.flags;

if ((tmp flags & ~AR[FPSR].traps) || (tmp flags & ~AR[FPSR].sf0.flags)) {
if (check branch implemented (FCHKF)) {
taken branch = 1;
IP = IP + sign ext((immy; << 4), 25);
if (!impl uia fault supported() &&
((PSR.it && unimplemented virtual address(IP, PSR.vm))
[l (!PSR.it && unimplemented physical address (IP)))
unimplemented instruction address trap(0, IP);
if (PSR.tb)
taken branch trap();
} else
speculation fault (FCHKF, zero ext (immy;, 21));

}
FP Exceptions: None

Interruptions: Speculative Operation fault Taken Branch trap
Unimplemented Instruction Address trap

Volume 3: Instruction Reference 3:63

fclass

fclass — Floating-point Class

Format:

Description:

3:64

(gp) fclass.ferel.fctype pq, po = fo, fclassg F5

The contents of FR f, are classified according to the fclassy completer as shown in

Table 2-25. This produces a boolean result based on whether the contents of FR 7,
agrees with the floating-point number format specified by fclassq, as specified by the fcrel
completer. This result is written to the two predicate register destinations, p; and p,.
The result written to the destinations is determined by the compare type specified by
fctype.

The allowed types are Normal (or none) and unc. See Table 2-26 on page 3:67. The
assembly syntax allows the specification of membership or non-membership and the
assembler swaps the target predicates to achieve the desired effect.

Table 2-24. Floating-point Class Relations

fcrel Test Relation
m FR f, agrees with the pattern specified by fclassg (is a member)
nm FR f, does not agree with the pattern specified by fclassg (is not a member)

A number agrees with the pattern specified by fclassy if:

e the number is NaTVal and fclassg {83} is 1, or
¢ the number is a quiet NaN and fclassg {7} is 1, or
e the number is a signaling NaN and fclassg {63} is 1, or

e the sign of the humber agrees with the sign specified by one of the two low-order
bits of fclassg, and the type of the number (disregarding the sign) agrees with the
number-type specified by the next four bits of fclassg, as shown in Table 2-25.

Note: An fclassy of OX1FF is equivalent to testing for any supported operand.
The class names used in Table 2-25 are defined in Table 5-2, “Floating-point Register
Encodings” on page 1:86.

Table 2-25. Floating-point Classes

fclassg Class Mnemonic
Either these cases can be tested for
0x0100 NaTVal @nat
0x080 Quiet NaN @gnan
0x040 Signaling NaN @snan
or the OR of the following two cases
0x001 Positive @pos
0x002 Negative @neg
AND’ed with OR of the following four cases
0x004 Zero @zero
0x008 Unnormalized @unorm
0x010 Normalized @norm
0x020 Infinity @inf

Volume 3: Instruction Reference

fclass

Operation: if (PR[gpl) {
if (p; == po)
illegal operation fault();

if (tmp isrcode = fp reg disabled(f,, 0, 0, 0))
disabled fp register fault (tmp isrcode, O0);

tmp rel = ((fclassy{0} && !FR[f,].sign || fclassg{l} && FR[f,].sign)
&& ((fclassg{2} && fp is zero (FR[f,])) |
(fclassg{3} && fp is unorm(FR[f,])) ||
(fclassg{4} && fp is normal (FR[f,])) ||
(fclassg{5} && fp is inf (FR[f,]))
)
)
'l (fclassg{6} && fp is snan(FR[f,]))
|| (fclassg{7} && fp is gnan(FR[f,]))
|| (fclassq{8} && fp is natval (FR[f,]));

tmp nat = fp is natval (FR[f,]) && (!fclassg{8});

if (tmp nat) {

PR[p;] = 0;
PR[p,] = 0;

} else {
PR[p;] = tmp rel;
PR[p,] = !tmp rel;

}

} else {
if (fctype == ‘unc’) {

if (p; == po)
illegal operation fault();

PR[p;] = 0;
PR[p,] = 0;
}
}
FP Exceptions: None
Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:65

fclrf

fclrf — Floating-point Clear Flags
Format: (gp) fclrf.sf F13

Description: The status field’s 6-bit flags field is reset to zero.
The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PRIgpl) {

fp set sf flags(sf, 0);
}

FP Exceptions: None

Interruptions: None

3:66 Volume 3: Instruction Reference

fcmp

fcmp — Floating-point Compare

Format:

Description:

(gp) fcmp.frel.fetype.sf py, po = fy, f3 F4

The two source operands are compared for one of twelve relations specified by frel. This
produces a boolean result which is 1 if the comparison condition is true, and 0
otherwise. This result is written to the two predicate register destinations, p; and p,.
The way the result is written to the destinations is determined by the compare type
specified by fctype. The allowed types are Normal (or none) and unc.

Table 2-26. Floating-point Comparison Types

PR[gp]==
fotvpe PR[gp]== Result==0, Result==1, One or More
yp No Source NaTVals No Source NaTVals Source NaTVals
PR[p/] PR[p,] PR[p/] PR[p,] PR[p/] PR[p,] PR[p/] PR[p>]
none 0 1 1 0 0 0
unc 0 0 0 1 1 0 0 0

The mnemonic values for sf are given in Table 2-23 on page 3:56.

The relations are defined for each of the comparison types in Table 2-27. Of the twelve
relations, not all are directly implemented in hardware. Some are actually pseudo-ops.
For these, the assembler simply switches the source operand specifiers and/or switches
the predicate target specifiers and uses an implemented relation.

Table 2-27. Floating-point Comparison Relations

frel Completer . Quiet NaN
frel Unabbreviated Relation Pseudo-op of .as Operand.
Signals Invalid

eq equal fo==13 No

It less than fo<fs Yes
le less than or equal fo<=f3 Yes
gt greater than fo>13 It fo > f3 Yes
ge greater than or equal fo>=13 le fo > f3 Yes
unord | unordered f,?f3 No

neq not equal I(fy ==13) eq p1> P2 No

nlt not less than I(f, < f3) It p1 P2 Yes
nle not less than or equal I(f, <=1f3) le P14 Po Yes
ngt not greater than I(f > f3) It fo > f3 P71 Ppo Yes
nge not greater than or equal I(fy >=13) le fo > f3 p1>po Yes
ord ordered I(fy ? f3) unord P11 P2 No

Volume 3: Instruction Reference 3:67

fcmp

Operation:

3:68

if (PR[gp]) {

(p; == p2)
illegal operation fault();

if

if (tmp isrcode = fp reg disabled(f,, f3 0, 0))
disabled fp register fault (tmp isrcode, O0);

if (fp_is natval (FR[f,])
= 0;

PR[p;]
PR[py] =

} else {
fcmp exception fault check(f,, f3, frel, sf, &tmp fp env);
if (fp_raise fault (tmp fp env))

fp exception fault (fp decode fault (tmp fp env));

}

tmp fr2 =

tmp fr3
if

else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else

PR[p;]
PR[p>]

fp update fpsr(sf,

} else {

(fctype == ‘unc’)

if (p; == p2)
illegal operation fault();

if

PR[p;]
PR[p>]

0;

fp reg read(FR[f,]);

= fp reg read(FR[f3]);

(frel ==

(frel ==

(frel ==

(frel ==

(frel ==

(frel ==

(frel ==

(frel ==

(frel ==

(frel ==

(frel ==

= tmp rel;

eq’)
‘1t7)
‘le’)
‘gt’)

‘ge’)

‘unord’) tmp rel

!tmp rel;

- 0;

0;

tmp rel
tmp rel
tmp rel
tmp rel

tmp rel

‘neq’) tmp rel
‘nlt”) tmp rel
‘nle’) tmp rel
‘ngt’) tmp rel
‘nge’) tmp rel
tmp_rel
tmp fp env);

{

|| fp is natval (FR[f3])) {

fp equal (tmp fr2,

tmp_fr3);

fp less than(tmp fr2,
tmp fr3);

fp lesser or equal (tmp fr2,
tmp fr3);

fp less than(tmp fr3,
tmp_frZ);

fp lesser or equal (tmp fr3,
tmp fr2);

fp unordered(tmp fr2,
tmp fr3);

!fp equal (tmp fr2,
tmp_fr3);

!fp less than(tmp fr2,
tmp fr3);

!fp lesser or equal (tmp fr2,
tmp fr3);

!fp less than(tmp fr3,
tmp_frZ);

!fp lesser or equal (tmp fr3,
tmp fr2);

!fp unordered(tmp fr2,
tmp fr3); //‘ord’

Volume 3: Instruction Reference

fcmp

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:69

fevt.fx

fcvt.fx — Convert Floating-point to Integer

Format: (gp) fevt.fx.sf f; =1, signed_form F10
(gp) fevt.fx.trunc.sf f, =1, signed_form, trunc_form F10
(gp) fevt.fxu.sf f, =1, unsigned_form F10
(gp) fevt.fxu.trunc.sf f; =1, unsigned_form, trunc_form F10

Description: FR f, is treated as a register format floating-point value and converted to a signed
(signed_form) or unsigned integer (unsigned_form) using either the rounding mode
specified in the FPSR.sf.rc, or using Round-to-Zero if the trunc_form of the instruction is
used. The result is placed in the 64-bit significand field of FR 7,. The exponent field of FR
f, is set to the biased exponent for 2.053 (0x1003E) and the sign field of FR , is set to
positive (0). If the result of the conversion cannot be represented as a 64-bit integer,
the 64-bit integer indefinite value 0x8000000000000000 is used as the result, if the
IEEE Invalid Operation Floating-point Exception fault is disabled.

If FR f, is a NaTVal, FR f; is set to NaTVal instead of the computed result.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PRIgpl) {
fp_check_target_register(fﬂ;
if (tmp isrcode = fp reg disabled(f;, f, 0, 0))
disabled fp register fault(tmp isrcode, 0);

if (fp_is natval (FR[f,])) |
FR[f;] = NATVAL;
fp update psr(f;);
} else {
tmp default result = fcvt exception fault check(f,, signed form,
trunc form, sf, &tmp fp env);
if (fp_raise fault (tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

if (fp_is nan(tmp default result)) {
FR[f;] .significand = INTEGER INDEFINITE;
FR[f;] .exponent = FP INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;
} else {
tmp res = fp ieee rnd to int (fp reg read(FR[f,]), &tmp fp env);
if (tmp res.exponent)
tmp res.significand = fp U64 rsh(
tmp res.significand, (FP_INTEGER EXP - tmp res.exponent));
if (signed form && tmp res.sign)
tmp res.significand = (~tmp res.significand) + 1;

FR[f;] .significand = tmp res.significand;
FR[f;] .exponent = FP INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

}

fp update fpsr(sf, tmp fp env);
fp update psr(f;);
if (fp _raise traps(tmp fp env))
fp exception trap (fp decode trap(tmp fp env));

3:70 Volume 3: Instruction Reference

fevt.fx

FP Exceptions: Invalid Operation (V) Inexact (I)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

Volume 3: Instruction Reference 3:71

fevt.xf

fcvt.xf — Convert Signed Integer to Floating-point

Format:

Description:

Operation:

FP Exceptions: None

Interruptions:

3:72

(gp) fevtxf f; =1, F11

The 64-bit significand of FR 1, is treated as a signed integer and its register file precision
floating-point representation is placed in FR ;.

If FR f, is @ NaTVal, FR f, is set to NaTVal instead of the computed result.

This operation is always exact and is unaffected by the rounding mode.

if

}

(PRIgpl) |

fp check target register(f;);

if

if

(tmp_isrcode = fp reg disabled(f;, f,, 0, 0))
disabled fp register fault (tmp isrcode, 0);

(fp_is natval (FR[f,])) {
FR[f;] = NATVAL;

} else {

}

tmp res = FR[f,];
if (tmp res.significand{63}) {

tmp res.significand = (~tmp res.significand) + 1;
tmp res.sign = 1;
} else

tmp res.sign = 0;

tmp res.exponent = FP_INTEGER EXP;
tmp res = fp_normalize(tmp_res);

FR[f;].significand = tmp res.significand;
FR[f;] .exponent = tmp res.exponent;
FR[f;] .sign = tmp res.sign;

fp update psr(f;);

Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference

fcevt.xuf

fcvt.xuf — Convert Unsigned Integer to Floating-point
Format: (gp) fevt.xuf.pc.sf f; =1, pseudo-op of: (gp) fma.pc.sf f; = f3, 1, O
Description: FR f; is multiplied with FR 1, rounded to the precision indicated by pc (and possibly

FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and
placed in FR f;.

Note: Multiplying FR f; with FR 1 (a 1.0) normalizes the canonical representation of an
integer in the floating-point register file producing a normal floating-point
value.

If FR 73 is @ NaTVal, FR 7, is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The

mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and

interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

Operation: See “fma — Floating-point Multiply Add” on page 3:77.

Volume 3: Instruction Reference 3:73

fetchadd

fetchadd — Fetch and Add Immediate

Format:

Description:

3:74

(gp) fetchadd4.sem.ldhint r; = [rs], incs four_byte form M17
(gp) fetchadd8.sem.ldhint r; = [rs], incs eight_byte form M17

A value consisting of four or eight bytes is read from memory starting at the address
specified by the value in GR r;. The value is zero extended and added to the
sign-extended immediate value specified by inc;. The values that may be specified by
incg are: -16, -8, -4, -1, 1, 4, 8, 16. The least significant four or eight bytes of the sum
are then written to memory starting at the address specified by the value in GR r;. The
zero-extended value read from memory is placed in GR r, and the NaT bit
corresponding to GR ry is cleared.

The sem completer specifies the type of semaphore operation. These operations are
described in Table 2-28. See Section 4.4.7, “Sequentiality Attribute and Ordering” on
page 2:82 for details on memory ordering.

Table 2-28. Fetch and Add Semaphore Types

sem Ordering

Completer Semantics Semaphore Operation

acq Acquire The memory read/write is made visible prior to all subsequent data memory
accesses.

rel Release The memory read/write is made visible after all previous data memory
accesses.

The memory read and write are guaranteed to be atomic for accesses to pages with
cacheable, writeback memory attribute. For accesses to other memory types, atomicity
is platform dependent. Details on memory attributes are described in Section 4.4,
“Memory Attributes” on page 2:75.

If the address specified by the value in GR r; is not naturally aligned to the size of the
value being accessed in memory, an Unaligned Data Reference fault is taken
independent of the state of the User Mask alignment checking bit, UM.ac (PSR.ac in the
Processor Status Register).

Both read and write access privileges for the referenced page are required. The write
access privilege check is performed whether or not the memory write is performed.

Only accesses to UCE pages or cacheable pages with write-back write policy are
permitted. Accesses to NaTPages result in a Data NaT Page Consumption fault.
Accesses to pages with other memory attributes cause an Unsupported Data Reference
fault.

On a processor model that supports exported fetchadd, a fetchadd to a UCE page
causes the fetch-and-add operation to be exported outside of the processor; if the
platform does not support exported fetchadd, the operation is undefined. On a
processor model that does not support exported fetchadd, a fetchadd to a UCE page
causes an Unsupported Data Reference fault. See Section 4.4.9, “Effects of Memory
Attributes on Memory Reference Instructions” on page 2:86.

The value of the Idhint completer specifies the locality of the memory access. The values
of the Idhint completer are given in Table 2-34 on page 3:152. Locality hints do not
affect program functionality and may be ignored by the implementation. See

Section 4.4.6, "Memory Hierarchy Control and Consistency” on page 1:69 for details.

Volume 3: Instruction Reference

Operation:

Interruptions:

if (PR[gp]) {
check target register(r;);

if (GR[rj3].nat)

fetchadd

register nat consumption fault (SEMAPHORE) ;

size = four byte form ? 4

paddr = tlb translate(GR[r3], size, SEMAPHORE, PSR.cpl, é&mattr,

&tmp unused) ;
if (!ma supports fetchadd(mattr))

unsupported data reference fault (SEMAPHORE, GR[r3]);

if (sem == ‘acq’)

val = mem xchg add(incz, paddr, size, UM.be, mattr, ACQUIRE, Idhint);

else // ‘rel’

val = mem xchg add(incz, paddr, size, UM.be, mattr, RELEASE, Idhint);

alat inval multiple entries(paddr, size);

GR[r;] = zero ext(val, size * 8);

GR[r;].nat = 0;
}

Illegal Operation fault

Register NaT Consumption fault
Unimplemented Data Address fault
Data Nested TLB fault

Alternate Data TLB fault

VHPT Data fault

Data TLB fault

Data Page Not Present fault

Data NaT Page Consumption fault

Volume 3: Instruction Reference

Data Key Miss fault

Data Key Permission fault

Data Access Rights fault

Data Dirty Bit fault

Data Access Bit fault

Data Debug fault

Unaligned Data Reference fault
Unsupported Data Reference fault

3:75

flushrs

flushrs — Flush Register Stack

Format:

Description:

Operation:

Interruptions:

3:76

flushrs M25

All stacked general registers in the dirty partition of the register stack are written to the
backing store before execution continues. The dirty partition contains registers from
previous procedure frames that have not yet been saved to the backing store. For a
description of the register stack partitions, refer to Chapter 6, “"Register Stack Engine”
in Volume 2. A pending external interrupt can interrupt the RSE store loop when
enabled.

After this instruction completes execution BSPSTORE is equal to BSP.

This instruction must be the first instruction in an instruction group and must either be
in instruction slot 0 or in instruction slot 1 of a template having a stop after slot 0;
otherwise, the results are undefined. This instruction cannot be predicated.

while (AR[BSPSTORE] != AR[BSP]) {
rse store (MANDATORY) ; // increments AR[BSPSTORE]
deliver unmasked pending external interrupt();

}

Unimplemented Data Address fault Data Key Miss fault

VHPT Data fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Data TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
Data Page Not Present fault Data Debug fault

Data NaT Page Consumption fault

Volume 3: Instruction Reference

fma

fma — Floating-point Multiply Add

Format: (gp) fma.pc.sf f; =fs, fy, fr F1

Description: The product of FR f; and FR 7, is computed to infinite precision and then FR 1, is added to
this product, again in infinite precision. The resulting value is then rounded to the
precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding
mode specified by FPSR.sf.rc. The rounded result is placed in FR f,.

If any of FR f;, FR f;, or FR 1, is @a NaTVal, FR f, is set to NaTVal instead of the computed
result.

If f, is fO, an IEEE multiply operation is performed instead of a multiply and add. See
“fmpy — Floating-point Multiply” on page 3:85.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The

mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and

interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

Operation: if (PRIgp]l) {
fp check target register(f;);
if (tmp isrcode = fp reqg disabled(f;, f,, f3, f,))
disabled fp register fault (tmp isrcode, O0);

if (fp is natval (FR[f,]) || fp is natval (FR[f3]) |
fp is natval (FR[f,])) {
FR[f;] = NATVAL;
fp update psr(f;);

} else {

tmp default result = fma exception fault check(f,, f3, f,
pc, sf, &tmp fp env);
if (fp raise fault(tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

if (fp_is nan or inf (tmp default result)) {

FR[f;] = tmp default result;
} else {
tmp res = fp mul (fp reg read(FR[f3]), fp reg read(FR[f,]));
if (£, = 0)
tmp res = fp add(tmp res, fp reg read(FR[f,]), tmp fp env);
FR[f;] = fp ieee round(tmp res, &tmp fp env);

}

fp update fpsr(sf, tmp fp env);
fp update psr(f;);
if (fp_raise traps(tmp fp env))
fp exception trap(fp decode trap(tmp fp env));

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap

Volume 3: Instruction Reference 3:77

fma

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

3:78 Volume 3: Instruction Reference

fmax

fmax — Floating-point Maximum
Format: (gp) fmax.sf f; =f,, f3 F8

Description: The operand with the larger value is placed in FR f;. If FR f, equals FR 3, FR f; gets FR f;.
If either FR f, or FR 3 is a NaN, FR f, gets FR f;.

If either FR f, or FR f; is a NaTVal, FR f, is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic
floating-point instructions. The Invalid Operation is signaled in the same manner as the
fcmp. 1t operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[gpl) {
fp_check_target_register (£1);
if (tmp isrcode = fp reqg disabled(f;, f,, f3, 0))
disabled fp register fault (tmp isrcode, O0);

if (fp is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {

fminmax exception fault check(f,, f3, sf, &tmp fp env);
if (fp_raise fault(tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

tmp bool res = fp less than(fp reg read(FR[f3]),
fp reg read(FR[f,]));
FR[f;] = (tmp bool res ? FR[f,] : FR[f3]);

fp update fpsr(sf, tmp fp env);
}
fp update psr(f;);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:79

fmerge

fmerge — Floating-point Merge

Format: (gp) fmerge.ns f; =1y, f5 neg_sign_form F9
(gp) fmerge.s f; =1y, f3 sign_form F9
(gp) fmerge.se f; =1y, f3 sign_exp_form F9

Description: Sign, exponent and significand fields are extracted from FR f, and FR f;, combined, and
the result is placed in FR ;.

For the neg_sign_form, the sign of FR 1, is negated and concatenated with the exponent
and the significand of FR f;. This form can be used to negate a floating-point number by
using the same register for FR f, and FR ;.

For the sign_form, the sign of FR f, is concatenated with the exponent and the
significand of FR f3.

For the sign_exp_form, the sign and exponent of FR f, is concatenated with the
significand of FR f3.

For all forms, if either FR f, or FR f; is a NaTVal, FR f; is set to NaTVal instead of the
computed result.

Figure 2-8. Floating-point Merge Negative Sign Operation

81 80 64 63 0 81 80 6463 0
FRf, FR T3

Negated 8180 6463 0

SignBit FRf,

Figure 2-9. Floating-point Merge Sign Operation

81 80 64 63 0 8180 6463 0
FR Y, FR £

\1 80 6463 0

FR,

Figure 2-10. Floating-point Merge Sign and Exponent Operation

81 80 6463 0 81 80 6463 0
FR f, FR f

\1 80 6463 0

FR f,

3:80 Volume 3: Instruction Reference

fmerge

Operation: if (PR[gpl) {
fp check target register(f;);
if (tmp isrcode = fp reqg disabled(f;, f,, f3, 0))
disabled fp register fault (tmp isrcode, O0);

if (fp_is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {

FR[f;] .significand =
if (neg sign form) {
FR[f;] .exponent = FR[f3].exponent;
FR[f;].sign = !FR[f,].sign;
} else if (sign form) ({
FR[f;] .exponent = FR[f3].exponent;
FR[f;].sign = FR[f,].sign;
} else { // sign exp form
FR[f;] .exponent = FR[f,].exponent;
FR[f;].sign = FR[f,].sign;

FR[f3] .significand;

fp update psr(f;);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:81

fmin

fmin — Floating-point Minimum
Format: (gp) fmin.sf f; =1, f3 F8

Description: The operand with the smaller value is placed in FR f;. If FR f, equals FR f;, FR f; gets FR
fs.

If either FR 7, or FR 75 is a NaN, FR f; gets FR f;.
If either FR 7, or FR f; is @ NaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic
floating-point instructions. The Invalid Operation is signaled in the same manner as the
fcmp. 1t operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[gpl) {
fp_check_target_register (£1)7
if (tmp isrcode = fp reg disabled(f;, f, f3, 0))
disabled fp register fault (tmp isrcode, O0);

if (fp is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {

fminmax exception fault check(f,, f3, sf, &tmp fp env);
if (fp_raise fault (tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

tmp bool res = fp less than(fp reg read(FR[f,]),
fp reg read(FR[f3]));
FR[f;] = tmp bool res ? FR[f,] : FR[f3];

fp update fpsr(sf, tmp fp env);
}
fp update psr(f;);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:82 Volume 3: Instruction Reference

fmix

fmix — Floating-point Mix

Format: (gp) fmix.l f; =1, f3 mix_|_form F9
(gp) fmix.r f; =1, f3 mix_r_form F9
(gp) fmix.Ir f; =1f,, f3 mix_Ir_form F9

Description: For the mix_|_form (mix_r_form), the left (right) single precision value in FR f, is
concatenated with the left (right) single precision value in FR f;. For the mix_Ir_form,
the left single precision value in FR £, is concatenated with the right single precision
value in FR f;.

For all forms, the exponent field of FR 7, is set to the biased exponent for 2.0%3
(0x1003E) and the sign field of FR f, is set to positive (0).

For all forms, if either FR f, or FR f; is @ NaTVal, FR f, is set to NaTVal instead of the
computed result.

Figure 2-11. Floating-point Mix Left

8180 6463 32 31 0 81 80 6463 32 31 0
FRf, FRf3
81%& 32 31 0
FR f; 19 1003E
Figure 2-12. Floating-point Mix Right
8180 6463 32 31 0 8180 6463 32 31 0
FR T, FRf;
81 80 s& 32 31 0
FR f; |9 1003E
Figure 2-13. Floating-point Mix Left-Right
8180 6463 32 31 0 81 .80 6463 32 31 0
FRf, FR 13
81 80 6463 32 31 0
FR f; |9 1003E

Volume 3: Instruction Reference 3:83

fmix

Operation: if

}

if (fp_is natval (FR[f,])

(PR[gp]) |
fp check target register(f;);
if (tmp isrcode =

disabled fp register fault (tmp isrcode,

FR[f;] = NATVAL;
} else {
if (mix 1 form) {
tmp res hi = FR[f,]
tmp res lo = FR[f3]
} else if (mix r form)
tmp res hi = FR[f)]

tmp res lo = FR[f3]
} else {

tmp res hi = FR[f,]

tmp res lo = FR[f3]

}

FR[f;] .significand = fp concatenate (tmp res hi,
FP_INTEGER EXP;
FP_SIGN POSITIVE;

FR[f;] .exponent =
FR[f;] .sign =

fp update psr(f;);

FP Exceptions: None

Interruptions:

3:84

Illegal Operation fault

fp reg disabled(f;, f,, f3,
0)7

fp is natval (FR[f3]))

.significand{63:32};
.significand{63:32};

{

.significand{31:0};
.significand{31:0};

.significand{63:32};
.significand{31:0};

{

// mix lr form

tmp res 1o);

Disabled Floating-point Register fault

Volume 3: Instruction Reference

fmpy

fmpy — Floating-point Multiply
Format: (gp) fmpy.pc.sf ;=13 fy pseudo-op of: (gp) fma.pc.sf f; = f, fy, fO

Description: The product FR f; and FR 7, is computed to infinite precision. The resulting value is then
rounded to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre)
using the rounding mode specified by FPSR.sf.rc. The rounded result is placed in FR ;.

If either FR f; or FR f, is @ NaTVal, FR f; is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The

mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and

interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

Operation: See “fma — Floating-point Multiply Add” on page 3:77.

Volume 3: Instruction Reference 3:85

fms

fms — Floating-point Multiply Subtract
Format: (gp) fms.pc.sf fy =13 fy, fo F1

Description: The product of FR f; and FR f, is computed to infinite precision and then FR 1, is
subtracted from this product, again in infinite precision. The resulting value is then
rounded to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre)
using the rounding mode specified by FPSR.sf.rc. The rounded result is placed in FR f,.

If any of FR 13, FR 74, or FR f, is @a NaTVal, a NaTVal is placed in FR 7; instead of the
computed result.

If f, is fO, an IEEE multiply operation is performed instead of a multiply and subtract.
See “fmpy — Floating-point Multiply” on page 3:85.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The

mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and

interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

Operation: if (PR[gpl) {
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, f,))
disabled fp register fault (tmp isrcode, O0);

if (fp is natval (FR[f,]) || fp is natval (FR[f3]) ||
fp is natval (FR[f,])) {
FR[f;] = NATVAL;
fp update psr(f;);

} else {

tmp default result = fms fnma exception fault check(f,, f3, fy,
pc, sf, &tmp fp env);
if (fp raise fault (tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

if (fp_is nan or inf (tmp default result)) {
FR[f;] = tmp default result;
} else {

tmp res = fp_mul (fp_req_read(FR[f3]), fp_reg_read(FR[f4]));
tmp fr2 = fp reg read(FR[f,]);
tmp fr2.sign = !tmp fr2.sign;

if (£, = 0)
tmp res = fp add(tmp res, tmp fr2, tmp fp env);
FR[f;] = fp ieee round(tmp res, &tmp fp env);

}

fp update fpsr(sf, tmp fp env);
fp update psr(f;);
if (fp _raise traps(tmp fp env))
fp exception trap (fp decode trap(tmp fp env));

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap

3:86 Volume 3: Instruction Reference

fms

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

Volume 3: Instruction Reference 3:87

fneg

fneg — Floating-point Negate
Format: (gp) fneg f; =13 pseudo-op of: (gp) fmerge.ns f; =fs, f3
Description: The value in FR f; is negated and placed in FR f,.

If FR f; is a NaTVal, FR 7, is set to NaTVal instead of the computed result.

Operation: See “fmerge — Floating-point Merge” on page 3:80.

3:88 Volume 3: Instruction Reference

fnegabs

fnegabs — Floating-point Negate Absolute Value

Format: (gp) fnegabs f; =f3 pseudo-op of: (gp) fmerge.ns f; =10, f;

Description: The absolute value of the value in FR f; is computed, negated, and placed in FR f;.

If FR f3 is a NaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: See “fmerge — Floating-point Merge” on page 3:80.

Volume 3: Instruction Reference 3:89

fnma

fnma — Floating-point Negative Multiply Add

Format:

Description:

Operation:

(gp) fnma.pc.sf f; =13, fy, f» F1

The product of FR f; and FR f, is computed to infinite precision, negated, and then FR f,
is added to this product, again in infinite precision. The resulting value is then rounded
to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the
rounding mode specified by FPSR.sf.rc. The rounded result is placed in FR f;.

If any of FR f;, FR f,, or FR 1, is a NaTVal, FR f, is set to NaTVal instead of the computed
result.

If f, is fO, an IEEE multiply operation is performed, followed by negation of the product.
See “fnmpy — Floating-point Negative Multiply” on page 3:92.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The

mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and

interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

if (PRIgp]) {
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, f,))
disabled fp register fault (tmp isrcode, O0);

if (fp is natval (FR[f,]) || fp is natval (FR[f3]) ||
fp is natval (FR[f,])) {
FR[f;] = NATVAL;
fp update psr(f;);
} else {
tmp default result = fms fnma exception fault check(f,, f3, fy,
pc, sf, &tmp fp env);
if (fp raise fault (tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

if (fp_is nan or inf (tmp default result)) {
FR[f;] = tmp default result;
} else {
tmp res = fp mul (fp reg read(FR[f3]), fp reg read(FR[f,]));
tmp res.sign = !tmp res.sign;
if (£, !'=0)
tmp res = fp add(tmp res, fp reg read(FR[f,]), tmp fp env);
FR[f;] = fp ieee round(tmp res, &tmp fp env);
}

fp update fpsr(sf, tmp fp env);
fp update psr(f;);
if (fp_raise traps(tmp fp env))
fp exception trap(fp decode trap(tmp fp env));

}

FP Exceptions: Invalid Operation (V) Underflow (U)

3:90

Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)
Software Assist (SWA) trap

Volume 3: Instruction Reference

fnma

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

Volume 3: Instruction Reference 3:91

fnmpy

fnmpy — Floating-point Negative Multiply

Format:

Description:

Operation:

3:92

(gp) fnmpy.pc.sf f; = fs, f4 pseudo-op of: (gp) fnma.pc.sf f; = f3, f,,fO

The product FR f; and FR f, is computed to infinite precision and then negated. The
resulting value is then rounded to the precision indicated by pc (and possibly FPSR.sf.pc
and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc. The rounded result
is placed in FR f;.

If either FR 73 or FR 7, is @ NaTVal, FR 7, is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The

mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and

interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

See “fnma — Floating-point Negative Multiply Add” on page 3:90.

Volume 3: Instruction Reference

fnorm

fnorm — Floating-point Normalize

Format: (gp) fnorm.pc.sf f; = f5 pseudo-op of: (gp) fma.pc.sf f; = f3, 1, O

Description: FR f; is normalized and rounded to the precision indicated by pc (and possibly
FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and
placed in FR f;.

If FR f; is a NaTVal, FR f; is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The

mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and

interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

Operation: See “fma — Floating-point Multiply Add” on page 3:77.

Volume 3: Instruction Reference 3:93

for

for — Floating-point Logical Or

Format:

Description:

Operation:

(qp) for fy =1, f3 F9

The bit-wise logical OR of the significand fields of FR f, and FR f; is computed. The
resulting value is stored in the significand field of FR f,. The exponent field of FR 7, is set
to the biased exponent for 2.0%3 (0x1003E) and the sign field of FR f, is set to positive
(0).

If either FR 7, or FR 73 is @ NaTVal, FR 7, is set to NaTVal instead of the computed result.
if (PR[gp]) {
fp check target register(f;);

if (tmp isrcode = fp reg disabled(f;, f,, f3, 0))
disabled fp register fault (tmp isrcode, 0);

if (fp_is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {

FR[f;] .significand = FR[f,].significand | FR[f3].significand;
FR[f;] .exponent = FP_INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

}

fp update psr(f;);
}

FP Exceptions: None

Interruptions:

3:94

Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference

fpabs

fpabs — Floating-point Parallel Absolute Value
Format: (gp) fpabs f; =13 pseudo-op of: (gp) fpmerge.s f; =0, f3

Description: The absolute values of the pair of single precision values in the significand field of FR f;
are computed and stored in the significand field of FR f,. The exponent field of FR f; is
set to the biased exponent for 2.093 (0x1003E) and the sign field of FR 7 is set to
positive (0).

If FR f3 is a NaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: See “fpmerge — Floating-point Parallel Merge” on page 3:111.

Volume 3: Instruction Reference 3:95

fpack

fpack — Floating-point Pack
Format: (gp) fpack f;=f,, f3 pack_form F9

Description: The register format numbers in FR 7, and FR f; are converted to single precision memory
format. These two single precision numbers are concatenated and stored in the
significand field of FR f, . The exponent field of FR f, is set to the biased exponent for
2.0%3 (0x1003E) and the sign field of FR f, is set to positive (0).

If either FR 7, or FR 73 is @ NaTVal, FR 7, is set to NaTVal instead of the computed result.

Figure 2-14. Floating-point Pack

81 80 64 63 0 81 80 64 63 0

FRf,

81 80 64 63
FR, [9 1003E

Operation: if (PRIgpl) {
fp check target register (f;);
if (tmp isrcode = fp reg disabled(f;, f, f3, 0))
disabled fp register fault(tmp isrcode, 0);

if (fp_is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {

tmp res hi = fp single(FR[f,]);
tmp res lo = fp single(FR[f3])

’

FR[f;] .significand = fp concatenate(tmp res hi, tmp res lo);
FR[f;] .exponent = FP_INTEGER EXP;
FR[f;] .sign = FP_SIGN POSITIVE;
}
fp update psr(f;);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

3:96 Volume 3: Instruction Reference

fpamax

fpamax — Floating-point Parallel Absolute Maximum

Format:

Description:

Operation:

(gp) fpamax.sf f; =f,, f3 F8

The paired single precision values in the significands of FR f, and FR f; are compared.
The operands with the larger absolute value are returned in the significand field of FR ;.

If the magnitude of high (low) FR f; is less than the magnitude of high (low) FR 7,, high
(low) FR f, gets high (low) FR f,. Otherwise high (low) FR f; gets high (low) FR f;.

If high (low) FR £, or high (low) FR f; is a NaN, and neither FR f, or FR f; is a NaTVal, high
(low) FR f; gets high (low) FR f;.

The exponent field of FR f, is set to the biased exponent for 2.083 (0x1003E) and the
sign field of FR f; is set to positive (0).

If either FR 7, or FR 3 is @ NaTVal, FR f; is set to NaTVal instead of the computed result.
This operation does not propagate NaNs the same way as other arithmetic

floating-point instructions. The Invalid Operation is signaled in the same manner as for
the fpcmp.1lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

if (PR[gp]) {
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, 0))
disabled fp register fault(tmp isrcode, 0);

if (fp_is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {

fpminmax exception fault check(f,, f3, sf, &tmp fp env);
if (fp raise fault(tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

tmp fr2 = tmp right = fp reg read hi(f,);

tmp fr3 = tmp left = fp reg read hi(f3);

tmp right.sign = FP SIGN POSITIVE;

tmp left.sign = FP_SIGN POSITIVE;

tmp bool res = fp less than(tmp left, tmp right);

tmp res hi = fp single(tmp bool res ? tmp fr2: tmp fr3);

tmp fr2 = tmp right = fp reg read lo(f,);

tmp fr3 = tmp left = fp reg read lo(f3);

tmp right.sign = FP SIGN POSITIVE;

tmp left.sign = FP_SIGN POSITIVE;

tmp bool res = fp less than(tmp left, tmp right);

tmp res lo = fp single(tmp bool res ? tmp fr2: tmp fr3);

FR[f;].significand = fp concatenate(tmp res hi, tmp res lo);
FR[f;] .exponent = FP INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

fp update fpsr(sf, tmp fp env);
}
fp_update psr(f;);

Volume 3: Instruction Reference 3:97

fpamax

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:98 Volume 3: Instruction Reference

fpamin

fpamin — Floating-point Parallel Absolute Minimum

Format:

Description:

Operation:

(gp) fpamin.sf f; =1, f3 F8

The paired single precision values in the significands of FR f,or FR f;are compared. The
operands with the smaller absolute value is returned in the significand of FR f,.

If the magnitude of high (low) FR f,is less than the magnitude of high (low) FR f;, high
(low) FR f, gets high (low) FR f,. Otherwise high (low) FR f; gets high (low) FR f;.

If high (low) FR £, or high (low) FR f; is a NaN, and neither FR f, or FR f; is a NaTVal, high
(low) FR f; gets high (low) FR f;.

The exponent field of FR f, is set to the biased exponent for 2.083 (0x1003E) and the
sign field of FR f; is set to positive (0).

If either FR 7, or FR f3 is NaTVal, FR f; is set to NaTVal instead of the computed result.
This operation does not propagate NaNs the same way as other arithmetic

floating-point instructions. The Invalid Operation is signaled in the same manner as for
the fpcmp.1lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

if (PR[gp]) {
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, 0))
disabled fp register fault(tmp isrcode, 0);

if (fp_is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {

fpminmax exception fault check(f,, f3, sf, &tmp fp env);
if (fp raise fault(tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

tmp fr2 = tmp left = fp reg read hi(f,);

tmp fr3 = tmp right = fp reg read hi(f3);

tmp left.sign = FP_SIGN POSITIVE;

tmp right.sign = FP SIGN POSITIVE;

tmp bool res = fp less than(tmp left, tmp right);

tmp res hi = fp single(tmp bool res ? tmp fr2: tmp fr3);

tmp fr2 = tmp left = fp reg read lo(f,);

tmp fr3 = tmp right = fp reg read lo(f3);

tmp left.sign = FP_SIGN POSITIVE;

tmp right.sign = FP_SIGN POSITIVE;

tmp bool res = fp less than(tmp left, tmp right);

tmp res lo = fp single(tmp bool res ? tmp fr2: tmp fr3);

FR[f;].significand = fp concatenate(tmp res hi, tmp res lo);
FR[f;] .exponent = FP INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

fp update fpsr(sf, tmp fp env);
}
fp_update psr(f;);

Volume 3: Instruction Reference 3:99

fpamin

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:100 Volume 3: Instruction Reference

fpcmp

fpcmp — Floating-point Parallel Compare

Format:

Description:

(gp) fpcmp.frel.sf ;= fy, f5 F8

The two pairs of single precision source operands in the significand fields of FR f, and FR
f3 are compared for one of twelve relations specified by frel. This produces a boolean
result which is a mask of 32 1's if the comparison condition is true, and a mask of 32 0’s
otherwise. This result is written to a pair of 32-bit integers in the significand field of FR
f,. The exponent field of FR 7, is set to the biased exponent for 2.083 (0x1003E) and the
sign field of FR f, is set to positive (0).

Table 2-29. Floating-point Parallel Comparison Results

PR[gp]==
PR[gp]== Result==false, Result==true, One or More
No Source NaTVals No Source NaTVals Source NaTVals
unchanged 0...0 1.1 NaTVal

The mnemonic values for sf are given in Table 2-23 on page 3:56.

The relations are defined for each of the comparison types in Table 2-29. Of the twelve
relations, not all are directly implemented in hardware. Some are actually pseudo-ops.
For these, the assembler simply switches the source operand specifiers and/or switches
the predicate type specifiers and uses an implemented relation.

If either FR 1, or FR f; is @ NaTVal, FR f; is set to NaTVal instead of the computed result.

Table 2-30. Floating-point Parallel Comparison Relations

frel Completer . Quiet NaN
frel . Relation Pseudo-op of as Operand
Unabbreviated Signals Invalid
eq equal fo==1f3 No
It less than fo<fs Yes
le less than or equal fo<=f3 Yes
gt greater than fo>f3 It fo o f3 Yes
ge greater than or equal fo>=f3 le fo o f3 Yes
unord unordered fo?f3 No
neq not equal I(fo ==13) No
nlt not less than I(f, < f3) Yes
nle not less than or equal I(fy <=f3) Yes
ngt not greater than I(fy > f3) nlt fo o f3 Yes
nge not greater than or equal I(fo>=13) nle fo o> f3 Yes
ord ordered I(fo ? f3) No

Volume 3: Instruction Reference 3:101

fpcmp

Operation:

3:102

if

(PR[ap]) |
fp check target register(f;);

if (tmp isrcode = fp reg disabled(f;,
disabled fp register fault (tmp isrcode, O0);

for f3, 0))

if (fp_is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {

fpcmp exception fault check(f,, f3, frel, sf, &tmp fp env);

if (fp_raise fault (tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

tmp fr2 = fp reg read hi(f,);
tmp fr3 = fp reg read hi(f3);

if (frel == ‘eq’) tmp rel = fp equal (tmp fr2, tmp fr3);
else if (frel == ‘1t’) tmp rel = fp less than(tmp fr2, tmp fr3);
else if (frel == ‘le’) tmp rel = fp lesser or equal (tmp fr2,
tmp_fr3);
else if (frel == ‘gt’) tmp rel = fp less than(tmp fr3, tmp fr2);
else if (frel == ‘ge’) +tmp rel = fp lesser or equal (tmp fr3,
tmp fr2);
else if (frel == ‘unord’)tmp rel = fp unordered(tmp fr2, tmp fr3);
else if (frel == ‘neq’) tmp rel = !fp equal (tmp fr2, tmp fr3);
else if (frel == ‘nlt’) tmp rel = !fp less than(tmp fr2, tmp fr3);
else if (frel == ‘nle’) tmp rel = !fp lesser or equal (tmp fr2,
tmp fr3);
else if (frel == ‘ngt’) tmp rel = !fp less than(tmp fr3, tmp fr2);
else if (frel == ‘nge’) tmp rel = !fp lesser or equal (tmp fr3,
tmp fr2);
else tmp rel = !fp unordered(tmp fr2,
tmp fr3); //‘ord’
tmp res hi = (tmp rel ? OxFFFFFFFF 0x00000000) ;

tmp fr2 = fp reg read lo(fy);
tmp fr3 = fp reg read lo(fj3);

if (frel == ‘eq’) tmp rel = fp equal (tmp fr2, tmp fr3);
else if (frel == ‘1t’) tmp rel = fp less than(tmp fr2, tmp fr3);
else if (frel == ‘le’) tmp rel = fp lesser or equal (tmp fr2,
tmp fr3);
else if (frel == ‘gt’) tmp rel = fp less than(tmp fr3, tmp fr2);
else if (frel == ‘ge’) tmp rel = fp lesser or equal (tmp fr3,
tmp fr2);
else if (frel == ‘unord’)tmp rel = fp unordered(tmp fr2, tmp fr3);
else if (frel == ‘neq’) tmp rel = !fp equal (tmp fr2, tmp fr3);
else if (frel == '‘nlt’) tmp rel = !fp less than(tmp fr2, tmp fr3);
else if (frel == ‘nle’) tmp rel = !fp lesser or equal (tmp fr2,
tmp_fr3);
else if (frel == ‘ngt’) tmp rel = !fp less than(tmp fr3, tmp fr2);
else if (frel == ‘nge’) tmp rel = !fp lesser or equal (tmp fr3,
tmp fr2);
else tmp rel = !fp unordered(tmp fr2,

tmp fr3); //‘ord’

Volume 3: Instruction Reference

fpcmp

tmp res lo = (tmp rel ? OxFFFFFFFF : 0x00000000) ;

FR[f;] .significand = fp concatenate(tmp res hi, tmp res lo);
FR[f;] .exponent = FP INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

fp update fpsr(sf, tmp fp env);
}
fp update psr(f;);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:103

fpcvt.fx

fpcvt.fx — Convert Parallel Floating-point to Integer

Format:

Description:

3:104

(gp) fpevt.fx.sf f; =1,
(gp) fpevt.fx.trunc.sf f; =1,
(gp) fpevt.fxu.sf f; =1,
(gp) fpevt.fxu.trunc.sf f; =1,

signed_form F10

signed_form, trunc_form F10
unsigned_form F10
unsigned_form, trunc_form F10

The pair of single precision values in the significand field of FR £, is converted to a pair
of 32-bit signed integers (signed_form) or unsigned integers (unsigned_form) using
either the rounding mode specified in the FPSR.sf.rc, or using Round-to-Zero if the
trunc_form of the instruction is used. The result is written as a pair of 32-bit integers
into the significand field of FR f;. The exponent field of FR f, is set to the biased
exponent for 2.083 (0x1003E) and the sign field of FR f, is set to positive (0). If the
result of the conversion cannot be represented as a 32-bit integer, the 32-bit integer
indefinite value 0x80000000 is used as the result, if the IEEE Invalid Operation

Floating-point Exception fault is disabled.

If FR f, is a NaTVal, FR f; is set to NaTVal instead of the computed result.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Volume 3: Instruction Reference

fpcvt.fx

Operation: if (PRIgp]l) {
fp check target register(f;);
if (tmp isrcode = fp reqg disabled(f;, f,, 0, 0))
disabled fp register fault (tmp isrcode, O0);

if (fp_is natval (FR[f,])) |
FR[f;] = NATVAL;
fp update psr(f;);

} else {

tmp default result pair = fpcvt exception fault check(f,,

signed form, trunc form, sf, &tmp fp env);
if (fp_raise fault(tmp fp env))

fp exception fault (fp decode fault (tmp fp env));

if (fp is nan(tmp default result pair.hi)) {
tmp res hi = INTEGER INDEFINITE 32 BIT;
} else {
tmp res = fp ieee rnd to int sp(fp reg read hi(f,), HIGH,
&tmp fp env);
if (tmp res.exponent)
tmp res.significand = fp U64 rsh(
tmp res.significand, (FP_INTEGER EXP - tmp res.exponent));
if (signed form && tmp res.sign)
tmp res.significand = (~tmp res.significand) + 1;

tmp res hi = tmp res.significand{31:0};

if (fp_is nan(tmp default result pair.lo)) {
tmp res lo = INTEGER INDEFINITE 32 BIT;
} else {
tmp res = fp ieee rnd to int sp(fp reg read lo(f,), LOW,
&tmp fp env) ;
if (tmp res.exponent)
tmp res.significand = fp U64 rsh(
tmp res.significand, (FP_INTEGER EXP - tmp res.exponent));
if (signed form && tmp res.sign)
tmp res.significand = (~tmp res.significand) + 1;

tmp res lo = tmp res.significand{31:0};

FR[f;].significand = fp concatenate(tmp res hi, tmp res lo);
FR[f;] .exponent = FP INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

fp update fpsr(sf, tmp fp env);
fp update psr(f;);
if (fp raise traps(tmp fp env))
fp exception trap(fp decode trap(tmp fp env));

}

FP Exceptions: Invalid Operation (V) Inexact (I)
Denormal/Unnormal Operand (D)
Software Assist (SWA) Fault

Volume 3: Instruction Reference 3:105

fpcvt.fx

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

3:106 Volume 3: Instruction Reference

fpma

fpma — Floating-point Parallel Multiply Add

Format:

Description:

(qp) fpma.sf f1 = f3, f4, f2 F1

The pair of products of the pairs of single precision values in the significand fields of FR
f; and FR f, are computed to infinite precision and then the pair of single precision
values in the significand field of FR £, is added to these products, again in infinite
precision. The resulting values are then rounded to single precision using the rounding
mode specified by FPSR.sf.rc. The pair of rounded results are stored in the significand
field of FR f;. The exponent field of FR f, is set to the biased exponent for 2.0°3
(0x1003E) and the sign field of FR f, is set to positive (0).

If any of FR f;, FR f;, or FR 1, is @a NaTVal, FR f, is set to NaTVal instead of the computed
results.

Note: If f,is fO in the fpma instruction, just the IEEE multiply operation is performed.
(See “fpmpy — Floating-point Parallel Multiply” on page 3:115.) FR f1, as an
operand, is not a packed pair of 1.0 values, it is just the register file format’s
1.0 value.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on
page 1:90.

Volume 3: Instruction Reference 3:107

fpma

Operation: if (PRIgpl) {
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, f4))
disabled fp register fault (tmp isrcode, O0);

if (fp_is natval (FR[f,]) || fp_is natval (FR[f3]) |
fp is natval (FR[f,])) {
FR[f;] = NATVAL;
fp update psr(f;);
} else {
tmp default result pair = fpma exception fault check(f,,
f3, f4, sf, &tmp fp env);
if (fp_raise fault (tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

if (fp is nan or inf(tmp default result pair.hi)) {
tmp res hi = fp single(tmp default result pair.hi);

} else {
tmp res = fp mul (fp reg read hi(f3), fp reg read hi(fy,));
if (£, !'=0)

tmp res = fp add(tmp res, fp reg read hi(f,), tmp fp env);
tmp res hi = fp ieee round sp(tmp res, HIGH, &tmp fp env);

if (fp_is nan or inf (tmp default result pair.lo)) {
tmp res lo = fp single(tmp default result pair.lo);

} else {
tmp res = fp mul (fp reg read lo(f3), fp reg read lo(fy,));
if (£, = 0)

tmp res = fp add(tmp res, fp reg read lo(f,), tmp fp env);
tmp res lo = fp ieee round sp(tmp res, LOW, &tmp fp env);

FR[f;] .significand = fp concatenate(tmp res hi, tmp res lo);
FR[f;] .exponent = FP_INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

fp update fpsr(sf, tmp fp env);
fp update psr(f;);
if (fp_raise traps(tmp fp env))
fp exception trap(fp decode trap(tmp fp env));

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) Fault Inexact (I)
Software Assist (SWA) trap
Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

3:108 Volume 3: Instruction Reference

fpmax — Floating-point Parallel Maximum
Format: (gp) fpmax.sf f; =1y, f5

fpmax

F8

Description:

Operation:

The paired single precision values in the significands of FR f,or FR f;are compared. The
operands with the larger value is returned in the significand of FR f,.

If the value of high (low) FR f; is less than the value of high (low) FR f,, high (low) FR f;
gets high (low) FR f,. Otherwise high (low) FR f; gets high (low) FR f;.

If high (low) FR f, or high (low) FR f; is a NaN, high (low) FR f, gets high (low) FR f;.
The exponent field of FR f, is set to the biased exponent for 2.083 (0x1003E) and the
sign field of FR f; is set to positive (0).

If either FR 7, or FR f3 is NaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic
floating-point instructions. The Invalid Operation is signaled in the same manner as for
the fpcmp.1lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

if (PRIgp]) |
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, 0))
disabled fp register fault(tmp isrcode, 0);

if (fp_is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {

fpminmax exception fault check(f,, f3, sf, &tmp fp env);
if (fp raise fault(tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

tmp fr2 = tmp right = fp reg read hi(f,);

tmp fr3 = tmp left = fp reg read hi(f3);

tmp bool res = fp less than(tmp left, tmp right);

tmp res hi = fp single(tmp bool res ? tmp fr2 : tmp fr3);

tmp fr2 = tmp right = fp reg read lo(f,);

tmp fr3 = tmp left = fp reg read lo(f3);

tmp bool res = fp less than(tmp left, tmp right);

tmp res lo = fp single(tmp bool res ? tmp fr2 : tmp fr3);

FR[f;] .significand = fp concatenate (tmp res hi, tmp res lo);
FR[f;] .exponent = FP INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

fp update fpsr(sf, tmp fp env);
}
fp update psr(f;);
}

FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Volume 3: Instruction Reference 3:109

fpmax

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:110 Volume 3: Instruction Reference

fpmerge

fpmerge — Floating-point Parallel Merge

Format: (gp) fpmerge.ns f; =f,, f3 neg_sign_form F9
(gp) fpmerge.s f; =1, f3 sign_form F9
(gp) fpmerge.se f; =f,, f3 sign_exp_form F9

Description: For the neg_sign_form, the signs of the pair of single precision values in the significand
field of FR f, are negated and concatenated with the exponents and the significands of
the pair of single precision values in the significand field of FR f; and stored in the
significand field of FR f,. This form can be used to negate a pair of single precision
floating-point humbers by using the same register for f, and f;.

For the sign_form, the signs of the pair of single precision values in the significand field
of FR f, are concatenated with the exponents and the significands of the pair of single
precision values in the significand field of FR f; and stored in FR f,.

For the sign_exp_form, the signs and exponents of the pair of single precision values in
the significand field of FR 7, are concatenated with the pair of single precision
significands in the significand field of FR f; and stored in the significand field of FR f,.

For all forms, the exponent field of FR 7, is set to the biased exponent for 2.083
(0x1003E) and the sign field of FR f, is set to positive (0).

For all forms, if either FR f, or FR f; is a NaTVal, FR f; is set to NaTVal instead of the
computed result.

Figure 2-15. Floating-point Parallel Merge Negative Sign Operation

81 80 64 63 62 32 3130 0 81 80 64 63 62 32 3130 0
FRf, FR 13

Negated
Sign Bits

8180 64 63 62
FR, |4 1003E

Figure 2-16. Floating-point Parallel Merge Sign Operation

81 80 6463 62 32 31 30 0 81 80 64 63 62 32 3130 0
FR f;

FR Y,

81 80 64 63 62
FRf, |4 1003E

Volume 3: Instruction Reference 3:111

fpmerge

Figure 2-17. Floating-point Parallel Merge Sign and Exponent Operation

81 80 64 63 55 54 32312322 0 81 80 64 63 55 54 32312322 0
FR f, FRf,

81 80 64 63 55 54 32312322
FR f,|o 1003E

Operation: if (PRIgpl) {
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, 0))
disabled fp register fault (tmp isrcode, 0);

if (fp_is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {

if (neg sign form) {
tmp res hi = (!FR[f,].significand{63} << 31)
| (FR[f3].significand{62:32});
tmp res lo = (!FR[f,].significand{31} << 31)
| (FR[f3].significand{30:0});
} else if (sign form) {
tmp res hi = (FR[f,].significand{63} << 31)
| (FR[f3].significand{62:32});
= (FR[f,].significand{31} << 31)
| (FR[f3].significand{30:0});
} else { // sign exp form
tmp res hi = (FR[f,].significand{63:55} << 23)
| (FR[f3].significand{54:32});
\

tmp res lo

(FR[f,] .significand{31:23} << 23)
(FR[f3] .significand{22:0});

tmp res lo

FR[f;].significand = fp concatenate(tmp res hi, tmp res lo);
FR[f;] .exponent = FP INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

fp update psr(f;);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

3:112 Volume 3: Instruction Reference

fpmin

fpmin — Floating-point Parallel Minimum

Format:

Description:

Operation:

(qp) fpmlnsf f1 = f2, f3 F8
The paired single precision values in the significands of FR f,or FR f;are compared. The
operands with the smaller value is returned in significand of FR f,.

If the value of high (low) FR f,is less than the value of high (low) FR f;, high (low) FR 7,
gets high (low) FR 7,. Otherwise high (low) FR f; gets high (low) FR f;.

If high (low) FR f, or high (low) FR f; is a NaN, high (low) FR f, gets high (low) FR f;.
The exponent field of FR f, is set to the biased exponent for 2.083 (0x1003E) and the
sign field of FR f; is set to positive (0).

If either FR 7, or FR 3 is @ NaTVal, FR f; is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other arithmetic
floating-point instructions. The Invalid Operation is signaled in the same manner as for
the fpcmp.1lt operation.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

if (PRIgp]) |
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, 0))
disabled fp register fault(tmp isrcode, 0);

if (fp_is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {

fpminmax exception fault check(f,, f3, sf, &tmp fp env);
if (fp raise fault(tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

tmp fr2 = tmp left = fp reg read hi(f,);

tmp fr3 = tmp right = fp reg read hi(f3);

tmp bool res = fp less than(tmp left, tmp right);

tmp res hi = fp single(tmp bool res ? tmp fr2: tmp fr3);

tmp fr2 = tmp left = fp reg read lo(f,);

tmp fr3 = tmp right = fp reg read lo(f3);

tmp bool res = fp less than(tmp left, tmp right);

tmp res lo = fp single(tmp bool res ? tmp fr2: tmp fr3);

FR[f;] .significand = fp concatenate (tmp res hi, tmp res lo);
FR[f;] .exponent = FP INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

fp update fpsr(sf, tmp fp env);
}
fp update psr(f;);
}

FP Exceptions: Invalid Operation (V)

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Volume 3: Instruction Reference 3:113

fpmin

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

3:114 Volume 3: Instruction Reference

fpmpy

fpmpy — Floating-point Parallel Multiply
Format: (gp) fpmpy.sf f; =13, f, pseudo-op of: (gp) fpma.sf f; = f3, fy, O

Description: The pair of products of the pairs of single precision values in the significand fields of FR
f; and FR f, are computed to infinite precision. The resulting values are then rounded to
single precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded
results are stored in the significand field of FR f;. The exponent field of FR f, is set to the
biased exponent for 2.0%3 (0x1003E) and the sign field of FR f, is set to positive (0).

If either FR 13, or FR f, is a NaTVal, FR 7, is set to NaTVal instead of the computed
results.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on
page 1:90.

Operation: See “fpma — Floating-point Parallel Multiply Add” on page 3:107.

Volume 3: Instruction Reference 3:115

fpms

fpms — Floating-point Parallel Multiply Subtract
Format: (gp) fpms.sf f; =13, fy, f» F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR
f; and FR f, are computed to infinite precision and then the pair of single precision
values in the significand field of FR £, is subtracted from these products, again in infinite
precision. The resulting values are then rounded to single precision using the rounding
mode specified by FPSR.sf.rc. The pair of rounded results are stored in the significand
field of FR f;. The exponent field of FR f, is set to the biased exponent for 2.0°3
(0x1003E) and the sign field of FR f, is set to positive (0).

Note: If any of FR f;, FR 7, or FR f, is a NaTVal, FR f; is set to NaTVal instead of the
computed results.

Mapping: If f, is fO in the fpms instruction, just the IEEE multiply operation is performed.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on
page 1:90.

Operation: if (PRIgpl) {
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, f,))
disabled fp register fault (tmp isrcode, O0);

if (fp_is natval (FR[f,]) || fp_is natval (FR[f3]) |
fp is natval (FR[f,])) {
FR[fl] = NATVAL;
fp update psr(f;);

} else {

tmp default result pair = fpms fpnma exception fault check(f,, f3,
fy, sf, &tmp fp env);
if (fp _raise fault (tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

if (fp _is nan or inf(tmp default result pair.hi)) {
tmp res hi = fp single(tmp default result pair.hi);
} else {
tmp res = fp mul (fp reg read hi(f3), fp reg read hi(fy));
if (£, = 0) {
tmp sub = fp reg read hi(f,);
tmp sub.sign = !tmp sub.sign;
tmp res = fp add(tmp res, tmp sub, tmp fp env);
}
tmp res hi = fp ieee round sp(tmp res, HIGH, &tmp fp env);

if (fp _is nan or inf(tmp default result pair.lo)) {
tmp res lo = fp single(tmp default result pair.lo);
} else {
tmp res = fp mul (fp reg read lo(f3), fp reg read lo(fy));
if (£, 1= 0) {
tmp sub = fp reg read lo(fy);
tmp sub.sign = !tmp sub.sign;
tmp res = fp add(tmp res, tmp sub, tmp fp env);

3:116 Volume 3: Instruction Reference

tmp res lo = fp ieee round sp(tmp res, LOW, &tmp fp env);

FR[f;] .significand = fp concatenate(tmp res hi, tmp res lo);
FR[f;] .exponent = FP INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

fp update fpsr(sf, tmp fp env);
fp update psr(f;);
if (fp _raise traps(tmp fp env))
fp exception trap(fp decode trap(tmp fp env));

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference

Underflow (U)

Overflow (O)

Inexact (I)

Software Assist (SWA) trap

Floating-point Exception fault
Floating-point Exception trap

fpms

3:117

fpneg

fpneg — Floating-point Parallel Negate
Format: (gp) fpneg f; =13 pseudo-op of: (gp) fpmerge.ns f; =f3, f3

Description: The pair of single precision values in the significand field of FR f; are negated and stored
in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent
for 2.083 (0x1003E) and the sign field of FR 7, is set to positive (0).

If FR f; is @ NaTVal, FR 7, is set to NaTVal instead of the computed result.

Operation: See “fpmerge — Floating-point Parallel Merge” on page 3:111.

3:118 Volume 3: Instruction Reference

fpnegabs

fpnegabs — Floating-point Parallel Negate Absolute Value
Format: (gp) fpnegabs f, =f; pseudo-op of: (gp) fpmerge.ns f; =f0, f3

Description: The absolute values of the pair of single precision values in the significand field of FR f;
are computed, negated and stored in the significand field of FR ;. The exponent field of
FR f, is set to the biased exponent for 2.083 (0x1003E) and the sign field of FR f, is set
to positive (0).

If FR f3 is a NaTVal, FR f; is set to NaTVal instead of the computed result.

Operation: See “fpmerge — Floating-point Parallel Merge” on page 3:111.

Volume 3: Instruction Reference 3:119

fpnma

fpnma — Floating-point Parallel Negative Multiply Add
Format: (gp) fpnma.sf f; = fs, fy, f> F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR
f; and FR f, are computed to infinite precision, negated, and then the pair of single
precision values in the significand field of FR f, are added to these (negated) products,
again in infinite precision. The resulting values are then rounded to single precision
using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored
in the significand field of FR f;. The exponent field of FR f; is set to the biased exponent
for 2.083 (0x1003E) and the sign field of FR 7, is set to positive (0).

If any of FR f;, FR f,, or FR 1, is a NaTVal, FR f, is set to NaTVal instead of the computed
result.

Note: Iff,is fO in the fpnma instruction, just the IEEE multiply operation (with the
product being negated before rounding) is performed.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on
page 1:90.

3:120 Volume 3: Instruction Reference

Operation:

fpnma

(PR[gpP]) |
fp check target register(f;);

(tmp isrcode = fp reg disabled(f;, f,, f3, f,))
disabled fp register fault (tmp isrcode, O0);

(fp_is natval (FR[f,]) || fp_is natval (FR[f3]) |
fp is natval (FR[f,])) {

FR[fl] = NATVAL;

fp update psr(f;);

} else {

tmp default result pair = fpms fpnma exception fault check(f,, f3,

fy, sf, &tmp fp env);

if (fp_raise fault(tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

if (fp_is nan or inf (tmp default result pair.hi)) {
tmp res hi = fp single(tmp default result pair.hi);
} else {
tmp res = fp mul (fp reg read hi(f3), fp reg read hi(fy,));
tmp res.sign = !tmp res.sign;
if (£, = 0)
tmp res = fp add(tmp res, fp reg read hi(f,), tmp fp env);
tmp res hi = fp ieee round sp(tmp res, HIGH, &tmp fp env);

if (fp is nan or inf(tmp default result pair.lo)) {
tmp res lo = fp single(tmp default result pair.lo);
} else {
tmp res = fp mul (fp reg read lo(f3), fp reg read lo(fy));
tmp res.sign = !tmp res.sign;
if (£, = 0)
tmp res = fp add(tmp res, fp reg read lo(f,), tmp fp env);
tmp res lo = fp ieee round sp(tmp res, LOW, &tmp fp env);

FR[f;] .significand = fp concatenate(tmp res hi, tmp res lo);
FR[f;] .exponent = FP INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

fp update fpsr(sf, tmp fp env);
fp update psr(f;);
if (fp_raise traps(tmp fp env))
fp exception trap(fp decode trap(tmp fp env));

FP Exceptions: Invalid Operation (V) Underflow (U)

Interruptions:

Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap

Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault Floating-point Exception trap

Volume 3: Instruction Reference

3:121

fpnmpy

fpnmpy — Floating-point Parallel Negative Multiply

Format:

Description:

Operation:

3:122

(gp) fpnmpy.sf f; = f3, fy pseudo-op of: (gp) fpnma.sf f; = f3, f,,f0

The pair of products of the pairs of single precision values in the significand fields of FR
f; and FR f, are computed to infinite precision and then negated. The resulting values
are then rounded to single precision using the rounding mode specified by FPSR.sf.rc.
The pair of rounded results are stored in the significand field of FR f,. The exponent field
of FR f, is set to the biased exponent for 2.0%3 (0x1003E) and the sign field of FR f, is
set to positive (0).

If either FR f; or FR 7, is @ NaTVal, FR 7, is set to NaTVal instead of the computed results.

The mnemonic values for sf are given in Table 2-23 on page 3:56.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on
page 1:90.

See “fpnma — Floating-point Parallel Negative Multiply Add” on page 3:120.

Volume 3: Instruction Reference

fprcpa

fprcpa — Floating-point Parallel Reciprocal Approximation
Format: (gp) fprcpa.sf fy, py=f,, f3 F6

Description: If PR gp is 0, PR p, is cleared and FR f, remains unchanged.
If PR gp is 1, the following will occur:

e Each half of the significand of FR ; is either set to an approximation (with a relative
error < 278:886) of the reciprocal of the corresponding half of FR f;, or set to the
IEEE-754 mandated response for the quotient FR f,/FR f; of the corresponding half
— if that half of FR £, or of FR f; is in the set {-Infinity, -0, +0, +Infinity, NaN}.

o If either half of FR £, is set to the IEEE-754 mandated quotient, or is set to an
approximation of the reciprocal which may cause the Newton-Raphson iterations to
fail to produce the correct IEEE-754 divide result, then PR p, is set to 0, otherwise it
is set to 1.

For correct IEEE divide results, when PR p, is cleared, user software is expected to
compute the quotient (FR £,/FR f3) for each half (using the non-parallel frcpa
instruction), and merge the results into FR f;, keeping PR p, cleared.

e The exponent field of FR 7, is set to the biased exponent for 2.0%3 (0x1003E) and
the sign field of FR f, is set to positive (0).

e If either FR f, or FR f; is @ NaTVal, FR f, is set to NaTVal instead of the computed
result, and PR p, is cleared.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[gpl) {
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, 0))
disabled fp register fault (tmp isrcode, 0);

if (fp_is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
PR[p,] = 0;

} else {

tmp default result pair = fprcpa exception fault check(f,, f3, sf,
&tmp fp env, &limits check);
if (fp_raise fault(tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

if (fp is nan or inf(tmp default result pair.hi) |
limits check.hi fr3) {
tmp res hi = fp single(tmp default result pair.hi);
tmp pred hi = 0;
} else {
num = fp normalize (fp reg read hi(f,))
den = fp normalize (fp reg read hi(f3));
if (fp_is inf(num) && fp is finite(den)) {
tmp res = FP_INFINITY;
tmp res.sign = num.sign * den.sign;
tmp pred hi = 0;
} else if (fp _is finite(num) && fp is inf(den)) {
tmp res = FP_ZERO;
tmp res.sign = num.sign "~ den.sign;
tmp pred hi = 0;
} else if (fp _is zero(num) && fp is finite(den)) ({

’

Volume 3: Instruction Reference 3:123

fprcpa

tmp res = FP_ZERO;
tmp res.sign = num.sign *~ den.sign;
tmp pred hi = 0;
} else {
tmp res = fp ieee recip(den);
if (limits check.hi fr2 or quot)
tmp pred hi = 0;
else
tmp pred hi = 1;
}
tmp res hi = fp single(tmp res);
}
if (fp_is nan or inf (tmp default result pair.lo) ||
limits check.lo fr3) {
tmp res lo = fp single(tmp default result pair.lo);
tmp pred lo = 0;
} else {
num = fp normalize (fp reg read lo(f,));
den = fp normalize (fp reg read lo(f3));
if (fp is inf(num) && fp is finite(den)) {
tmp res = FP_INFINITY;
tmp res.sign = num.sign * den.sign;
tmp pred lo = 0;
} else if (fp_is finite(num) && fp is inf(den)) {
tmp res = FP_ZERO;
tmp res.sign = num.sign *~ den.sign;
tmp pred lo = 0;
} else if (fp _is zero(num) && fp is finite(den)) {
tmp res = FP_ZERO;
tmp res.sign = num.sign * den.sign;
tmp pred lo = 0;
} else {
tmp res = fp ieee recip(den);
if (limits check.lo fr2 or quot)
tmp pred lo = 0;
else
tmp pred lo = 1;
}

tmp res lo = fp single(tmp res);

FR[f;] .significand = fp concatenate(tmp res hi, tmp res lo);
FR[f;] .exponent = FP INTEGER EXP;

FR[f;].sign = FP_SIGN POSITIVE;

PR[p,] = tmp pred hi && tmp pred lo;

fp update fpsr(sf, tmp fp env);
}
fp update psr(f;);
} else {
PR[p,] = 0;
}

FP Exceptions: Invalid Operation (V)
Zero Divide (2)

3:124 Volume 3: Instruction Reference

fprcpa

Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:125

fprsqrta

fprsqrta — Floating-point Parallel Reciprocal Square Root
Approximation

Format: (gp) fprsarta.sf fy, po =13 F7

Description: If PR gp is O, PR p, is cleared and FR f; remains unchanged.
If PR gp is 1, the following will occur:

e Each half of the significand of FR f, is either set to an approximation (with a relative
error < 278:831) of the reciprocal square root of the corresponding half of FR f;, or
set to the IEEE-754 compliant response for the reciprocal square root of the
corresponding half of FR f; — if that half of FR f; is in the set {-Infinity, -Finite, -0,
+0, +Infinity, NaN?}.

o If either half of FR f; is set to the IEEE-754 mandated reciprocal square root, or is
set to an approximation of the reciprocal square root which may cause the
Newton-Raphson iterations to fail to produce the correct IEEE-754 square root
result, then PR p, is set to 0, otherwise it is set to 1.

For correct IEEE square root results, when PR p, is cleared, user software is
expected to compute the square root for each half (using the non-parallel frsqgrta
instruction), and merge the results in FR f;, keeping PR p, cleared.

 The exponent field of FR f, is set to the biased exponent for 2.083 (0x1003E) and
the sign field of FR f; is set to positive (0).

o If FR f; is @ NaTVal, FR f; is set to NaTVal instead of the computed result, and PR p,
is cleared.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PRIgpl) |
fp_check_target_register(fﬂ;
if (tmp isrcode = fp reg disabled(f;, f3 0, 0))
disabled fp register fault(tmp isrcode, 0);

if (fp_is natval (FR[f3])) |
FR[f;] = NATVAL;
PR[py] = 0;

} else {

tmp default result pair = fprsgrta exception fault check(f3, sf,
&tmp fp env, &limits check);
if (fp_raise fault (tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

if (fp_is nan(tmp default result pair.hi)) {
tmp res hi = fp single(tmp default result pair.hi);
tmp pred hi = 0;
} else {
tmp fr3 = fp normalize (fp reg read hi(f3));
if (fp_is zero(tmp fr3)) {
tmp res = FP_INFINITY;
tmp res.sign = tmp fr3.sign;
tmp pred hi = 0;
} else if (fp is pos inf (tmp fr3)) {
tmp res = FP_ZERO;
tmp pred hi = 0;
} else {
tmp res = fp ieee recip sqrt(tmp fr3);

3:126 Volume 3: Instruction Reference

fprsqrta

if (limits check.hi)
tmp pred hi = 0;
else
tmp pred hi = 1;
}

tmp res hi = fp single(tmp res);

if (fp is nan(tmp default result pair.lo)) {
tmp res lo = fp single(tmp default result pair.lo);
tmp pred lo = 0;
} else {
tmp fr3 = fp normalize (fp reg read lo(f3));
if (fp is zero(tmp fr3)) {
tmp res = FP_INFINITY;
tmp res.sign = tmp fr3.sign;
tmp pred lo = 0;
} else if (fp _is pos inf(tmp fr3)) {
tmp res = FP_ZERO;
tmp pred lo = 0;
} else {
tmp res = fp ieee recip sqgrt(tmp fr3);
if (limits check.lo)
tmp pred lo = 0;
else
tmp pred lo = 1;
1

tmp res lo = fp single(tmp res);

FR[f;] .significand = fp concatenate (tmp res hi, tmp res lo);
FR[f;] .exponent = FP INTEGER EXP;

FR[f;].sign = FP_SIGN POSITIVE;

PR[p,] = tmp pred hi && tmp pred lo;

fp update fpsr(sf, tmp fp env);
}
fp update psr(f;);
} else {
PR[p,] = 0;
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:127

frcpa

frcpa — Floating-point Reciprocal Approximation
Format: (gp) frcpa.sf fy, py =1y, f3 F6

Description: If PR gp is 0, PR p, is cleared and FR f, remains unchanged.
If PR gp is 1, the following will occur:

e FR f; is either set to an approximation (with a relative error < 278-886) of the
reciprocal of FR f;, or to the IEEE-754 mandated quotient of FR £,/FR f; — if either
FR f, or FR f5 is in the set {-Infinity, -0, Pseudo-zero, +0, +Infinity, NaN,
Unsupported?}.

o If FR f, is set to the approximation of the reciprocal of FR 73, then PR p, is set to 1;
otherwise, it is set to 0.

o If FR f, and FR f; are such that the approximation of FR f;’s reciprocal may cause the
Newton-Raphson iterations to fail to produce the correct IEEE-754 result of FR f,/FR
f;, then a Floating-point Exception fault for Software Assist occurs.

System software is expected to compute the IEEE-754 quotient (FR £/FR f3), return
the result in FR f;, and set PR p, to 0.

o If either FR f, or FR f; is a NaTVal, FR f; is set to NaTVal instead of the computed

result, and PR p, is cleared.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PRlagpl) {
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, 0))
disabled fp register fault (tmp isrcode, 0);

if (fp_is natval (FR[f,]) || fp_is natval (FR[f3])) {
FR[f;] = NATVAL;
PR[p,] = 0;

} else {

tmp default result = frcpa exception fault check(f,, f3, sf,
&tmp fp env) ;
if (fp_raise fault (tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

if (fp is nan or inf(tmp default result)) {
FR[f;] = tmp default result;
PR[p,] = 0;

} else {

num = fp normalize (fp reg read(FR[f,]));

den = fp normalize(fp reg read(FR[f3]));

if (fp is inf(num) && fp is finite(den)) {
FR[f;] = FP_INFINITY;

FR[f;].sign = num.sign "~ den.sign;

PR[p,

] =0;
} else if (fp_is finite(num) && fp is inf(den)) {
FR[f;] = FP_ZERO;
FR[f;] .sign = num.sign *~ den.sign;
PR[p,] = 0;

} else if (fp_is zero(num) && fp is finite(den)) {
FR[f;] = FP_ZERO;
FR[f;].sign = num.sign "~ den.sign;
PR[p,] = 0;

3:128 Volume 3: Instruction Reference

} else {
FR[f;] = fp ieee recip(den);
PR[p,] = 1;

}

fp update fpsr(sf, tmp fp env);

}

fp update psr(f;);

} else {

PR[pz] = 0;

// fp ieee recip()

fp ieee recip (den)

{

RECIP TABLE[256] = {

0x3fc,
0x3be,
0x384,
0x34d,
0x319,
0x2e8,
Ox2ba,
0x28e,
0x264,
0x23c,
0x216,
0x1f2,
Oxlcft,
Oxlae,
0x18f,
0x171,
0x154,
0x138,
0x11d,
0x103,
0x0eb,
0x0d3,
0x0bc,
0x0a6,
0x091,
0x07c,
0x069,
0x056,
0x043,
0x031,
0x020,
0x00f,
}i

tmp index

tmp res.significand = (1 << 63)

0x3f4, Ox3ec,
0x3b7, O0x3af,
0x37d, 0x376,
0x346, 0x340,
0x313, 0x30d,
0x2e2, 0x2dc,
0x2b4, Ox2af,
0x288, 0x283,
0x25f, 0x25a,
0x237, 0x232,
0x211, 0x20d,
Oxled, Oxle9,
Oxlcb, Oxlc7,
Oxlaa, Oxlao,
0x18b, 0x187,
Oxled, 0x169,
0x150, Ox1l4d,
0x134, 0x131,
0x1la, 0x117,
0x100, 0Ox0fd,
0x0e8, 0x0e5,
0x0d0, 0x0cd,
0x0b9, 0x0b7,
0x0a4, 0x0al,
0x08e, 0x08c,
0x07a, 0x077,
0x066, 0x064,
0x053, 0x051,
0x041, O0x03f,
0x02f, 0x02d,
0x01le, 0x0lc,
0x00d, 0x00b,

Ox3e4,
0x3a8,
0x36f,
0x339,
0x307,
0x2d7,
0x2a9,
0x27e,
0x255,
0x22e,
0x208,
Oxle5,
Ox1c3,
0xlaz,
0x183,
0x166,
0x149,
0x12e,
0x113,
0x0fa,
0x0e2,
0x0ca,
0x0b4,
0x09e,
0x089,
0x075,
0x061,
0x04f,
0x03c,
0x02b,
0x01a,
0x009,

0x3dd,
0x3al,
0x368,
0x333,
0x300,
0x2d1,
0x2a3,
0x279,
0x250,
0x229,
0x204,
0x1e0,
0x1bf,
0x19e,
0x17f,
0x162,
0Ox146,
0x12a,
0x110,
0x0£f7,
0x0df,
0x0c8,
0x0bl,
0x09c,
0x087,
0x073,
0x05f,
0x04c,
0x03a,
0x029,
0x018,
0x007,

= den.significand{62:55};

| (RECIP TABLE[tmp index] << 53);

0x3d5,
0x399,
0x361,
0x32c,
0x2fa,
0x2cb,
0x29e,
0x273,
0x24b,
0x224,
Ox1ff,
Ox1dc,
Ox1bb,
0x19a,
Ox17c,
0x15e,
0x142,
0x127,
0x10d,
0x0f4,
0x0dc,
0x0c5,
0x0ae,
0x099,
0x084,
0x070,
0x05d,
0x04a,
0x038,
0x026,
0x015,
0x005,

0Ox3cd,
0x392,
0x35b,
0x326,
0x2f4,
0x2c5,
0x299,
0x26e,
0x246,
0x21f,
0x1fb,
0x1ds8,
Ox1b6,
0x197,
0x178,
0x15b,
0x13f,
0x124,
0x10a,
0x0f1,
0x0d9,
0x0c2,
0x0ac,
0x096,
0x082,
0x06e,
0x05a,
0x048,
0x036,
0x024,
0x013,
0x003,

0x3co,
0x38Db,
0x354,
0x320,
Ox2ee,
0x2bf,
0x293,
0x269,
0x241,
0x21b,
0x1f6,
0x1d4,
0x1b2,
0x193,
0x174,
0x157,
0x13Db,
0x120,
0x107,
0x0ee,
0x0d6,
0x0bf,
0x0a9,
0x094,
0x07f,
0x06b,
0x058,
0x045,
0x033,
0x022,
0x011,
0x001,

tmp res.exponent = FP REG EXP ONES - 2 - den.exponent;
tmp res.sign = den.sign;

Volume 3: Instruction Reference

frcpa

3:129

frcpa

return (tmp_ res);

}

FP Exceptions: Invalid Operation (V)

Interruptions:

3:130

Zero Divide (2)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

Illegal Operation fault
Disabled Floating-point Register fault

Floating-point Exception fault

Volume 3: Instruction Reference

frsqrta

frsqrta — Floating-point Reciprocal Square Root Approximation
Format: (gp) frsqrta.sf f;, po =13 F7

Description: If PR gp is 0, PR p, is cleared and FR f, remains unchanged.
If PR gp is 1, the following will occur:

e FR f; is either set to an approximation (with a relative error < 278:831y of the
reciprocal square root of FR f;, or set to the IEEE-754 mandated square root of FR f;
— if FR f; is in the set {-Infinity, -Finite, -0, Pseudo-zero, +0, +Infinity, NaN,
Unsupported?}.

e If FR f, is set to an approximation of the reciprocal square root of FR 73, then PR p, is
set to 1; otherwise, it is set to 0.

e If FR f; is such the approximation of its reciprocal square root may cause the
Newton-Raphson iterations to fail to produce the correct IEEE-754 square root
result, then a Floating-point Exception fault for Software Assist occurs.

System software is expected to compute the IEEE-754 square root, return the
result in FR f;, and set PR p, to 0.

e If FR f; is @ NaTVal, FR f; is set to NaTVal instead of the computed result, and PR p,
is cleared.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[gpl) {
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f3, 0, 0))
disabled fp register fault (tmp isrcode, O0);

if (fp_is natval (FR[f3])) |
FR[f;] = NATVAL;
PR[p,] = 0;

} else {

tmp default result = frsqgrta exception fault check(f3, sf,
&tmp fp env);
if (fp_raise fault(tmp fp env))
fp exception fault (fp decode fault (tmp fp env));

if (fp is nan(tmp default result)) {

FR[f;] = tmp default result;
PR[p,] = 0;
} else {

tmp fr3 = fp normalize (fp reg read(FR[f3]));
if (fp is zero(tmp fr3)) {

FR[f;] = tmp fr3;

PR[p,] = 0;
} else if (fp is pos inf (tmp fr3)) {

FR[f;] = tmp fr3;

PR[pz] = 0;
} else {
FR[f;] = fp ieee recip sqrt(tmp fr3);

PR[p,] = 1;
}
}
fp update fpsr(sf, tmp fp env);

Volume 3: Instruction Reference 3:131

frsqrta

fp update psr(f;);

} else {

PR[p,] = 0;

// fp ieee recip sqrt()

fp ieee recip sqrt(root)

{

RECIP SQRT TABLE[256] =

Oxlab,
Ox17a,
0x153,
0x12f,
0x10d,
0x0ee,
0x0d1,
0x0bo6,
0x09d,
0x085,
0x06f,
0x05a,
0x045,
0x033,
0x020,
0x00f,
0x3fc,
0x3bf,
0x388,
0x354,
0x325,
0x2f9,
0x2d0,
Ox2aa,
0x286,
0x264,
0x245,
0x227,
0x20a,
0x1f0,
0x1d6,
Ox1lbe,
}i

tmp index =
tmp res.significand = (1 << 63)

0x1a0,
0x175,
Ox1l4e,
0x12a,
0x109,
0x0ea,
0x0ce,
0x0b3,
0x09a,
0x082,
0x06¢c,
0x057,
0x043,
0x030,
0x01le,
0x00d,
0x3f4,
0x3b8,
0x381,
0x34e,
0x31f,
Ox2f4,
0x2cb,
0x2a5,
0x282,
0x260,
0x241,
0x223,
0x207,
Oxlec,
0x1d3,
0x1bb,

tmp res.exponent

return (tmp_res);

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault

3:132

0x19a,
0x170,
Ox1l4a,
0x126,
0x105,
0x0e7,
0x0ca,
0x0b0,
0x097,
0x07f,
0x069,
0x054,
0x041,
0x02e,
0x01lc,
0x00b,
Ox3ec,
0x3bl,
0x37a,
0x348,
0x31a,
Ox2ee,
0x2c6,
Ox2al,
0x27d,
0x25¢c,
0x23d,
0x220,
0x204,
Ox1le9,
0x1d0,
0x1b8,

{

0x195,
Ox16b,
0x145,
0x122,
0x101,
0x0e3,
0x0c7,
0x0ad,
0x094,
0x07d,
0x067,
0x052,
0x03e,
0x02c,
0x01a,
0x009,
0x3e5,
Ox3aa,
0x374,
0x342,
0x314,
0x2e9,
0x2cl,
0x29c,
0x279,
0x258,
0x239,
0x21c,
0x200,
Oxle6,
0Ox1lcd,
0x1b5,

0x18f,
0x166,
0x140,
Ox11le,
0x0fd,
0x0df,
0x0c3,
0x0a9,
0x091,
0x07a,
0x064,
0x04f,
0x03c,
0x029,
0x018,
0x007,
0x3dd,
0x3a3,
0x36d,
0x33c,
0x30f,
Ox2e4,
0x2bd,
0x298,
0x275,
0x254,
0x235,
0x218,
0x1fd,
Ox1le3,
Ox1lca,
0x1b2,

(root.exponent{0} << 7) |

0x18a,
Ox1le61,
0x13c,
0Ox11la,
0x0fa,
0x0dc,
0x0cO,
0x0ab,
0x08e,
0x077,
0x061,
0x04d,
0x03a,
0x027,
0x01o6,
0x005,
0x3d5,
0x39c,
0x367,
0x336,
0x309,
0x2df,
0x2b8,
0x293,
0x271,
0x250,
0x232,
0x215,
0x1f9,
0x1df,
0x1c7,
Oxlaf,

0x185,
0x15d,
0x138,
0x115,
0x0f6,
0x0d8,
0x0bd,
0x0a3,
0x08b,
0x074,
0x05f,
0x04a,
0x037,
0x025,
0x014,
0x003,
Ox3ce,
0x395,
0x361,
0x330,
0x304,
Ox2da,
0x2b3,
0x28f,
0x26d,
0x24c,
0x22e,
0x211,
0Ox1fe,
Ox1dc,
0x1c4,
Oxlac,

0x180,
0x158,
0x133,
Ox111,
0x0f2,
0x0d5,
0x0b9,
0x0a0,
0x088,
0x071,
0x05c,
0x048,
0x035,
0x023,
0x011,
0x001,
0x3c7,
0x38e,
0x35a,
0x32b,
Ox2fe,
0x2d5,
Ox2ae,
0x28a,
0x268,
0x249,
0x22a,
0x20e,
0x1f£3,
0x1d9,
Ox1lcl,
Oxlaa,

root.significand{62:56};

| (RECIP SQRT TABLE[tmp index] << 53);

FP_REG EXP HALF -

((root.exponent - FP_REG BIAS) >> 1);
tmp res.sign = FP_SIGN POSITIVE;

Volume 3: Instruction Reference

frsqrta

Interruptions: Illegal Operation fault Floating-point Exception fault
Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:133

fselect

fselect — Floating-point Select

Format:

Description:

Operation:

(qp) fselect f1 = f3, f4, f2 F3

The significand field of FR f; is logically AND-ed with the significand field of FR £, and the
significand field of FR 7, is logically AND-ed with the one’s complement of the significand
field of FR f,. The two results are logically OR-ed together. The result is placed in the
significand field of FR f,.

The exponent field of FR 7, is set to the biased exponent for 2.0%3 (0x1003E). The sign
bit field of FR f, is set to positive (0).

If any of FR 3, FR f,, or FR f, is @ NaTVal, FR f, is set to NaTVal instead of the computed
result.

if (PR[gp]) {
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, f,))
disabled fp register fault (tmp isrcode, 0);

if (fp_is natval (FR[f,]) || fp_is natval (FR[f3]) ||
fp is natval (FR[f,])) {
FR[f;] = NATVAL;

} else {

FR[f;] .significand = (FR[f3].significand & FR[f,].significand)

| (FR[f4].significand & ~FR[f,].significand);
FR[f;] .exponent = FP INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

}

fp update psr(f;);
}

FP Exceptions: None

Interruptions:

3:134

Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference

fsetc

fsetc — Floating-point Set Controls

Format: (gp) fsetc.sf amaskz, omasky F12

Description: The status field’s control bits are initialized to the value obtained by logically AND-ing
the sf0.controls and amask; immediate field and logically OR-ing the omask; immediate
field.

The mnemonic values for sf are given in Table 2-23 on page 3:56.

Operation: if (PR[gpl) {
tmp controls = (AR[FPSR].sfO.controls & amask;) | omasky;
if (is reserved field(FSETC, sf, tmp controls))
reserved register field fault();
fp set sf controls(sf, tmp controls);

}

FP Exceptions: None

Interruptions: Reserved Register/Field fault

Volume 3: Instruction Reference 3:135

fsub

fsub — Floating-point Subtract

Format:

Description:

Operation:

3:136

(gp) fsub.pc.sf fy =13 f, pseudo-op of: (gp) fms.pc.sf f; =13 f1, 5

FR £, is subtracted from FR f; (computed to infinite precision), rounded to the precision
indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode
specified by FPSR.sf.rc, and placed in FR ;.

If either FR 73 or FR 1, is @ NaTVal, FR 7, is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 2-22 on page 3:56. The

mnemonic values for sf are given in Table 2-23 on page 3:56. For the encodings and

interpretation of the status field’s pc, wre, and rc, refer to Table 5-5 and Table 5-6 on
page 1:90.

See “fms — Floating-point Multiply Subtract” on page 3:86.

Volume 3: Instruction Reference

fswap

fswap — Floating-point Swap

Format: (gp) fswap f; =", f3 swap_form F9
(gp) fswap.nl f; =1, f3 swap_nl_form F9
(gp) fswap.nr f; =f,, f3 swap_nr_form F9

Description: For the swap_form, the left single precision value in FR f,is concatenated with the right
single precision value in FR f;. The concatenated pair is then swapped.

For the swap_nl_form, the left single precision value in FR f,is concatenated with the
right single precision value in FR f;. The concatenated pair is then swapped, and the left
single precision value is negated.

For the swap_nr_form, the left single precision value in FR f,is concatenated with the
right single precision value in FR f;. The concatenated pair is then swapped, and the
right single precision value is negated.

For all forms, the exponent field of FR 7, is set to the biased exponent for 2.063
(0x1003E) and the sign field of FR f, is set to positive (0).

For all forms, if either FR f, or FR f; is a NaTVal, FR f; is set to NaTVal instead of the
computed result.

Figure 2-18. Floating-point Swap

81 80 64 63 32 3 0 81 80 64 63 32 31 0
FR f,

FR 1,

81 80 64 63
FR, |4 1003E

Figure 2-19. Floating-point Swap Negate Left

81 80 64 63 32 3 0 81 80 64 63 32 31 30 0
FR f, FR f;

Negated Sign Bit

81 80 64 63 62 2 31 0
FR, |4 1003E

Volume 3: Instruction Reference 3:137

fswap

Operation:

Figure 2-20. Floating-point Swap Negate Right

81 80 64 63 62 32 3 0 81 80 64 63 32 3 0
FRY, FRf,

Negated Sign Bit

81 80 64 63 32 3130 0
FRf, [of 1003E

if (PR[gp]l) {

fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, 0))
disabled fp register fault (tmp isrcode, O0);

if (fp_is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {

if (swap form) {
tmp res hi = FR[f3].significand{31:0};
tmp res lo = FR[f,].significand{63:32};
} else if (swap nl form) ({
tmp res hi = (!FR[f3].significand{31} << 31)
| (FR[f3].significand{30:0});
tmp res lo = FR[f,].significand{63:32};
} else { // swap nr form
tmp res hi = FR[f3].significand{31:0};
tmp res lo = (!FR[f,].significand{63} << 31)
| (FR[f,].significand{62:32});

FR[f;] .significand = fp concatenate(tmp res hi, tmp res lo);
FR[f;] .exponent = FP_INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

fp update psr(f;);
}

FP Exceptions: None

Interruptions:

3:138

Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference

fsxt

fsxt — Floating-point Sign Extend

Format: (gp) fsxtl f, =1, f3 sxt_|_form F9
(gp) fsxt.r f; =1, f3 sxt_r_form F9

Description: For the sxt_|_form (sxt_r_form), the sign of the left (right) single precision value in FR
f, is extended to 32-bits and is concatenated with the left (right) single precision value
in FR fs.

For all forms, the exponent field of FR 7, is set to the biased exponent for 2.0%3
(0x1003E) and the sign field of FR f, is set to positive (0).

For all forms, if either FR f, or FR f; is @ NaTVal, FR f, is set to NaTVal instead of the
computed result.

Figure 2-21. Floating-point Sign Extend Left

8180 646362 32 31 0 81 80 6463 32 31 0
FRf, FRf;
Extended
81 80 6463 32 31 0
FR 7, |9 1003E
Figure 2-22. Floating-point Sign Extend Right
81 80 6463 323130 0 81 80 6463 32 31 0
FR 1, FRf3
Extended
81 80 6463 32 31 0
FR f, |9 1003E

Volume 3: Instruction Reference 3:139

fsxt

Operation: if (PRIgpl) {
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, 0))
disabled fp register fault (tmp isrcode, O0);

if (fp_is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {
if (sxt 1 form) {
tmp res hi = (FR[f,].significand{63} ? OxFFFFFFFEF : 0x00000000);
tmp res lo = FR[f3].significand{63:32};
} else { // sxt_r form

tmp res hi = (FR[f,].significand{31} ? OxXFFFFFFFF : 0x00000000);
tmp res lo = FR[f3].significand{31:0};

FR[f;] .significand = fp concatenate (tmp res hi, tmp res lo);
FR[f;] .exponent = FP_INTEGER EXP;
FR[f;] .sign = FP_SIGN POSITIVE;

fp update psr(f;);
}

FP Exceptions: None

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

3:140 Volume 3: Instruction Reference

fwb

fwb — Flush Write Buffers
Format: (gp) fwb M24

Description: The processor is instructed to expedite flushing of any pending stores held in write or
coalescing buffers. Since this operation is a hint, the processor may or may not take
any action and actually flush any outstanding stores. The processor gives no indication
when flushing of any prior stores is completed. An fwb instruction does not ensure
ordering of stores, since later stores may be flushed before prior stores.

To ensure prior coalesced stores are made visible before later stores, software must
issue a release operation between stores (see Table 4-15 on page 2:83 for a list of
release operations).

This instruction can be used to help ensure stores held in write or coalescing buffers are
not delayed for long periods or to expedite high priority stores out of the processors.

Operation: if (PRIgp]l) {

mem flush pending stores();

}

Interruptions: None

Volume 3: Instruction Reference 3:141

fxor

fxor — Floating-point Exclusive Or

Format:

Description:

Operation:

(qp) fxor f1 = f2, f3 F9

The bit-wise logical exclusive-OR of the significand fields of FR f, and FR f; is computed.
The resulting value is stored in the significand field of FR f,. The exponent field of FR f;

is set to the biased exponent for 2.083 (0x1003E) and the sign field of FR 7, is set to
positive (0).

If either of FR f, or FR f; is a NaTVal, FR f; is set to NaTVal instead of the computed
result.

if (PRIgpl) A
fp check target register(f;);
if (tmp isrcode = fp reg disabled(f;, f,, f3, 0))
disabled fp register fault (tmp isrcode, O0);

if (fp_is natval (FR[f,]) || fp is natval (FR[f3])) {
FR[f;] = NATVAL;
} else {

FR[f;] .significand = FR[f,].significand "~ FR[f3].significand;
FR[f;] .exponent = FP_INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;

}

fp update psr(f;);
}

FP Exceptions: None

Interruptions:

3:142

Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference

getf

getf — Get Floating-point Value or Exponent or Significand

Format:

Description:

(gp) getf.s r; =1, single_form M19
(gp) getf.d r; =1, double_form M19
(gp) getf.exp ry =", exponent_form M19
(gp) getf.sig ry=1f, significand_form M19

In the single and double forms, the value in FR f, is converted into a single precision
(single_form) or double precision (double_form) memory representation and placed in
GR r4, as shown in Figure 5-7 and Figure 5-8 on page 1:95, respectively. In the
single_form, the most-significant 32 bits of GR r, are set to 0.

In the exponent_form, the exponent field of FR f, is copied to bits 16:0 of GR r; and the
sign bit of the value in FR f, is copied to bit 17 of GR r;. The most-significant 46-bits of
GR r; are set to zero.

Figure 2-23. Function of getf.exp

FRf, |s| exponent significand
|
63 18 +16 i 0
GR rq 0
46 1 17

In the significand_form, the significand field of the value in FR f, is copied to GR r,

Figure 2-24. Function of getf.sig

FRf, |s|exponent significand

63 ‘ 0

GRr1

64

For all forms, if FR f, contains a NaTVal, then the NaT bit corresponding to GR r, is set to
1.

Volume 3: Instruction Reference 3:143

getf

Operation:

Interruptions:

3:144

if

}

Illegal Operation fault

(PR[gp]) A

check target register(r;);

if (tmp isrcode = fp reg disabled(f,, 0, 0, 0))
disabled fp register fault (tmp isrcode, O0);

if (single form) {

GR[r;]1{31:0} = fp fr to mem format (FR[f,], 4,

GR[r;]1{63:32} = 0;
} else if (double form) {
GR[r;] = fp fr to mem format (FR[f,], 8, 0);
} else if (exponent form) {
GR[r;1{63:18} = 0;
GR[r;1{16:0} = FR[f,].exponent;
GR[r;]1{17} = FR[f,].sign;
} else // significand form
GR[r;] = FR[f,].significand;
if (fp_is natval (FR[f,]))
GR[r;].nat = 1;
else
GR[r;].nat = 0;

Disabled Floating-point Register fault

Volume 3: Instruction Reference

hint

hint — Performance Hint

Format:

Description:

Operation:

Interruptions:

(gp) hint immy, pseudo-op

(gp) hint.i immy, i_unit_form 118
(gp) hint.b immy, b_unit_form B9
(gp) hint.m immy, m_unit_form M48
(gp) hint.f immyy, f_unit_form F16
(gp) hint.x immg, X_unit_form X5

Provides a performance hint to the processor about the program being executed. It has
no effect on architectural machine state, and operates as a nop instruction except for its
performance effects.

The immediate, imm,,; or immg,, specifies the hint. For the x_unit_form, the L slot of the
bundle contains the upper 41 bits of immg,.

This instruction has five forms, each of which can be executed only on a particular
execution unit type. The pseudo-op can be used if the unit type to execute on is
unimportant.

Table 2-31. Hint Immediates

immy4 or immg, | Mnemonic Hint

0x0 @pause | Indicates to the processor that the currently executing stream is waiting,
spinning, or performing low priority tasks. This hint can be used by the
processor to allocate more resources or time to another executing stream
on the same processor. For the case where the currently executing stream
is spinning or otherwise waiting for a particular address in memory to
change, an advanced load to that address should be done before
executing a hint @pause; this hint can be used by the processor to
resume normal allocation of resources or time to the currently executing
stream at the point when some other stream stores to that address.

0x1 @priority | Indicates to the processor that the currently executing stream is performing
a high priority task. This hint can be used by the processor to allocate more
resources or time to this stream. Implementations will ensure that such
increased allocation is only temporary, and that repeated use of this hint
will not impair longer-term fairness of allocation.

0x02-0x3f These values are available for future architected extensions and will
execute as a nop on all current processors. Use of these values may
cause unexpected performance issues on future processors and should
not be used.

other Implementation specific. Performs an implementation-specific hint action.

Consult processor model-specific documentation for details.

if (PR[gpl) {
if (x_unit form)

hint = immg,;
else // i unit form || b unit form || b unit form || f unit form
hint = imm,;;

if (is_supported hint (hint))
execute hint (hint);

}

None

Volume 3: Instruction Reference 3:145

invala

invala — Invalidate ALAT

Format: (gp) invala complete_form M24
(gp) invala.e ry gr_form, entry_form M26
(gp) invala.e f; fr_form, entry_form M27

Description: The selected entry or entries in the ALAT are invalidated.

In the complete_form, all ALAT entries are invalidated. In the entry_form, the ALAT is
queried using the general register specifier r; (gr_form), or the floating-point register
specifier f; (fr_form), and if any ALAT entry matches, it is invalidated.

Operation: if (PR[gpl) {
if (complete form)
alat _inval();
else { // entry form
if (gr_ form)
alat inval single entry(GENERAL, r;);
else // fr form
alat inval single entry(FLOAT, f;);

}

Interruptions: None

3:146 Volume 3: Instruction Reference

itc

itc — Insert Translation Cache

Format:

Description:

(gp) itc.i ry instruction_form M41
(gp) itcd r, data_form M41

An entry is inserted into the instruction or data translation cache. GR r, specifies the
physical address portion of the translation. ITIR specifies the protection key, page size
and additional information. The virtual address is specified by the IFA register and the
region register is selected by IFA{63:61}. The processor determines which entry to
replace based on an implementation-specific replacement algorithm.

The visibility of the itc instruction to externally generated purges (ptc.g, ptc.ga)
must occur before subsequent memory operations. From a software perspective, this is
similar to acquire semantics. Serialization is still required to observe the side-effects of
a translation being present.

itc must be the last instruction in an instruction group; otherwise, its behavior
(including its ordering semantics) is undefined.

The TLB is first purged of any overlapping entries as specified by Table 4-1 on

page 2:52.

This instruction can only be executed at the most privileged level, and when PSR.ic and
PSR.vm are both 0.

To ensure forward progress, software must ensure that PSR.ic remains O until rfi-ing
to the instruction that requires the translation.

Volume 3: Instruction Reference 3:147

itc

Operation: if (PRIgpl) {
if (!followed by stop())
undefined behavior();
if (PSR.ic)
illegal operation fault();
if (PSR.cpl != 0)
privileged operation fault (0);
if (GR[r,].nat)
register nat consumption fault (0);

tmp size = CR[ITIR].ps;

tmp va = CR[IFA]{60:0};

tmp rid = RR[CR[IFA]{63:61}].rid;

tmp va = align to size boundary(tmp va, tmp size);

if (is_reserved field(TLB TYPE, GR[r,], CR[ITIR]))
reserved register field fault();
if (!impl check mov ifa() &&
unimplemented virtual address (CR[IFA], PSR.vm))
unimplemented data address fault(0);
if (PSR.vm == 1)
virtualization fault();

if (instruction form) {

tlb must purge itc entries(tmp rid, tmp va, tmp size);

tlb may purge dtc entries(tmp rid, tmp va, tmp size);

slot = tlb replacement algorithm(ITC TYPE);

tlb _insert inst(slot, GR[r,], CR[ITIR], CR[IFA], tmp rid, TC);
} else { // data_form

tlb must purge dtc entries(tmp rid, tmp va, tmp size);

tlb may purge itc entries(tmp rid, tmp va, tmp size);

slot = tlb replacement algorithm(DTC TYPE) ;

tlb insert data(slot, GR[r,], CR[ITIR], CR[IFA], tmp rid, TC);

}

Interruptions: Machine Check abort Reserved Register/Field fault
Illegal Operation fault Unimplemented Data Address fault
Privileged Operation fault Virtualization fault

Register NaT Consumption fault

Serialization: For the instruction_form, software must issue an instruction serialization operation
before a dependent instruction fetch access. For the data_form, software must issue a
data serialization operation before issuing a data access or non-access reference
dependent on the new translation.

3:148 Volume 3: Instruction Reference

itr

itr — Insert Translation Register

Format:

Description:

Operation:

(gp) itr.i itr[rg] =ry instruction_form M42
(gp) itr.d dtr[rs] =r, data_form M42

A translation is inserted into the instruction or data translation register specified by the
contents of GR r;. GR r, specifies the physical address portion of the translation. ITIR
specifies the protection key, page size and additional information. The virtual address is
specified by the IFA register and the region register is selected by IFA{63:61}.

As described in Table 4-1, “Purge Behavior of TLB Inserts and Purges” on page 2:52,
the TLB is first purged of any entries that overlap with the newly inserted translation.
The translation previously contained in the TR slot specified by GR r; is not necessarily
purged from the processor's TLBs and may remain as a TC entry. To ensure that the
previous TR translation is purged, software must use explicit ptr instructions before
inserting the new TR entry.

This instruction can only be executed at the most privileged level, and when PSR.ic and
PSR.vm are both 0.

if (PRIgpl) {
if (PSR.ic)
illegal operation fault();

if (PSR.cpl != 0)
privileged operation fault(0);
if (GR[r3].nat || GR[r,].nat)

register nat consumption fault (0);

slot = GR[r3]{7:0};

tmp size = CR[ITIR].ps;

tmp va = CR[IFA]{60:0};

tmp rid = RR[CR[IFA]{63:61}].rid;

tmp va = align to size boundary(tmp va, tmp size);

tmp tr type = instruction form ? ITR TYPE : DTR TYPE;

if (is_reserved reg(tmp tr type, slot))
reserved register field fault();

if (is_reserved field(TLB TYPE, GR[r,], CR[ITIR]))
reserved register field fault();

if (!impl check mov ifa() &&

unimplemented virtual address(CR[IFA], PSR.vm))

unimplemented data address fault (0);

if (PSR.vm == 1)
virtualization fault();

if (instruction form) {

tlb must purge itc entries(tmp rid, tmp va, tmp size);

tlb may purge dtc entries(tmp rid, tmp va, tmp size);

tlb insert inst(slot, GR[r,], CR[ITIR], CR[IFA], tmp rid, TR);
} else { // data form

tlb must purge dtc entries(tmp rid, tmp va, tmp size);

tlb may purge itc entries(tmp rid, tmp va, tmp size);

tlb insert data(slot, GR[r,], CR[ITIR], CR[IFA], tmp rid, TR);

Volume 3: Instruction Reference 3:149

itr

Interruptions: Machine Check abort Reserved Register/Field fault
Illegal Operation fault Unimplemented Data Address fault
Privileged Operation fault Virtualization fault

Register NaT Consumption fault

Serialization: For the instruction_form, software must issue an instruction serialization operation
before a dependent instruction fetch access. For the data_form, software must issue a
data serialization operation before issuing a data access or non-access reference
dependent on the new translation.

Notes: The processor may use invalid translation registers for translation cache entries.
Performance can be improved on some processor models by ensuring translation
registers are allocated beginning at translation register zero and continuing
contiguously upwards.

3:150 Volume 3: Instruction Reference

Id

Id — Load
Format: (gp) Idsz.ldtype.ldhint ry = [rs] no_base_update_form M2
(gp) Idsz.ldtype.ldhint ry = [r3], ro reg_base_update_form M2
(gp) ldsz.ldtype.ldhint ry = [rs], immg imm_base_update_form M3
(gp) 1d16.1dhint ry, ar.csd = [r3] sixteen_byte _form, no_base_update_form M2
(gp) Id16.acq.ldhint ry, ar.csd = [r4] sixteen_byte form, acquire_form,
no_base update form M2
(gp) 1d8.fill.idhint ry; = [r3] fill_form, no_base update_form M2
(gp) 1d8.fill.ldhint ry = [r3], ro fill_form, reg_base_update_form M2
(gp) 1d8.fill.ldhint ry = [r3], immg fill_form, imm_base_update_form M3
Description: A value consisting of sz bytes is read from memory starting at the address specified by

the value in GR r;. The value is then zero extended and placed in GR r;. The values of
the sz completer are given in Table 2-32. The NaT bit corresponding to GR r; is cleared,
except as described below for speculative loads. The ldtype completer specifies special
load operations, which are described in Table 2-33.

For the sixteen_byte_form, two 8-byte values are loaded as a single, 16-byte memory
read. The value at the lowest address is placed in GR r;, and the value at the highest
address is placed in the Compare and Store Data application register (AR[CSD]). The
only load types supported for this sixteen_byte_form are none and acq.

For the fill_form, an 8-byte value is loaded, and a bit in the UNAT application register is
copied into the target register NaT bit. This instruction is used for reloading a spilled
register/NaT pair. See Section 4.4.4, “Control Speculation” on page 1:60 for details.

In the base update forms, the value in GR r; is added to either a signed immediate
value (immg) or a value from GR r,, and the result is placed back in GR r3. This base
register update is done after the load, and does not affect the load address. In the
reg_base_update_form, if the NaT bit corresponding to GR r, is set, then the NaT bit
corresponding to GR r; is set and no fault is raised. Base register update is not
supported for the 1d16 instruction.

Table 2-32. sz Completers

sz Completer Bytes Accessed
1 1 byte
2 2 bytes
4 4 bytes
8 8 bytes

Table 2-33. Load Types

Idtype . . .
Completer Interpretation Special Load Operation
none Normal load

s Speculative load | Certain exceptions may be deferred rather than generating a fault.
Deferral causes the target register’'s NaT bit to be set. The NaT bit is
later used to detect deferral.

a Advanced load An entry is added to the ALAT. This allows later instructions to check for
colliding stores. If the referenced data page has a non-speculative
attribute, the target register and NaT bit is cleared, and the processor
ensures that no ALAT entry exists for the target register. The absence of
an ALAT entry is later used to detect deferral or collision.

Volume 3: Instruction Reference 3:151

Id

Table 2-33. Load Types (Continued)

Idtype . . .
Completer Interpretation Special Load Operation
sa Speculative An entry is added to the ALAT, and certain exceptions may be deferred.
Advanced load Deferral causes the target register’s NaT bit to be set, and the
processor ensures that no ALAT entry exists for the target register. The
absence of an ALAT entry is later used to detect deferral or collision.
c.nc Check load The ALAT is searched for a matching entry. If found, no load is done
—no clear and the target register is unchanged. Regardless of ALAT hit or miss,
base register updates are performed, if specified. An implementation
may optionally cause the ALAT lookup to fail independent of whether an
ALAT entry matches. If not found, a load is performed, and an entry is
added to the ALAT (unless the referenced data page has a
non-speculative attribute, in which case no ALAT entry is allocated).
c.clr Check load The ALAT is searched for a matching entry. If found, the entry is
— clear removed, no load is done and the target register is unchanged.
Regardless of ALAT hit or miss, base register updates are performed, if
specified. An implementation may optionally cause the ALAT lookup to
fail independent of whether an ALAT entry matches. If not found, a clear
check load behaves like a normal load.
c.clracq Ordered check load | This type behaves the same as the unordered clear form, except that
— clear the ALAT lookup (and resulting load, if no ALAT entry is found) is
performed with acquire semantics.
acq Ordered load An ordered load is performed with acquire semantics.
bias Biased load A hint is provided to the implementation to acquire exclusive ownership
of the accessed cache line.

For more details on ordered, biased, speculative, advanced and check loads see
Section 4.4.4, “Control Speculation” on page 1:60 and Section 4.4.5, “"Data
Speculation” on page 1:63. For more details on ordered loads see Section 4.4.7,
“Memory Access Ordering” on page 1:73. See Section 4.4.6, “Memory Hierarchy
Control and Consistency” on page 1:69 for details on biased loads. Details on memory
attributes are described in Section 4.4, "Memory Attributes” on page 2:75.

For the non-speculative load types, if NaT bit associated with GR r; is 1, a Register NaT
Consumption fault is taken. For speculative and speculative advanced loads, no fault is
raised, and the exception is deferred. For the base-update calculation, if the NaT bit
associated with GR r, is 1, the NaT bit associated with GR r; is set to 1 and no fault is
raised.

The value of the Idhint completer specifies the locality of the memory access. The values
of the Idhint completer are given in Table 2-34. A prefetch hint is implied in the base
update forms. The address specified by the value in GR r; after the base update acts as
a hint to prefetch the indicated cache line. This prefetch uses the locality hints specified
by I/dhint. Prefetch and locality hints do not affect program functionality and may be
ignored by the implementation. See Section 4.4.6, *“Memory Hierarchy Control and
Consistency” on page 1:69 for details.

Table 2-34. Load Hints

Idhint Completer Interpretation

none Temporal locality, level 1

3:152 Volume 3: Instruction Reference

Id

Table 2-34. Load Hints (Continued)

Idhint Completer Interpretation
nt1 No temporal locality, level 1
nta No temporal locality, all levels

In the no_base_update form, the value in GR r3 is not modified and no prefetch hint is
implied.

For the base update forms, specifying the same register address in r; and r3 will cause
an Illegal Operation fault.

Hardware support for 1d16 instructions that reference a page that is neither a
cacheable page with write-back policy nor a NaTPage is optional. On processor models
that do not support such 1d16 accesses, an Unsupported Data Reference fault is raised
when an unsupported reference is attempted.

For the sixteen_byte_form, Illegal Operation fault is raised on processor models that do
not support the instruction. CPUID register 4 indicates the presence of the feature on
the processor model. See Section 3.1.11, “Processor Identification Registers” on

page 1:34 for details.

Volume 3: Instruction Reference 3:153

Id

Operation:

3:154

if

(PR[gp]) A

size = fill form 2 8 : (sixteen byte form ? 16 : sz);

speculative = (ldtype == ‘s’ || ldtype == ‘sa’);

advanced = (ldtype == ‘a’ || Ildtype == ‘sa’);

check clear = (ldtype == ‘c.clr’ || Idtype == ‘c.clr.acq’);
check no clear = (Idtype == ‘c.nc’);

check = check clear || check no clear;

acquire = (acquire form || Idtype == ‘acq’ || ldtype == ‘c.clr.acq’);
otype = acquire ? ACQUIRE : UNORDERED;

bias = (ldtype == ‘bias’) ? BIAS : 0 ;

translate address = 1;
read memory = 1;

itype = READ;

if (speculative) itype |= SPEC ;
if (advanced) itype |= ADVANCE ;
if (size == 16) itype |= UNCACHE OPT ;

if (sixteen byte form && !instruction implemented (LD16))
illegal operation fault();

if ((reg base update form || imm base update form) && (r; == r3))
illegal operation fault();

check_target_register(rl);

if (reg base update form || imm base update form)
check target register(rj);

if (reg base update form) {
tmp r2 = GR[r,];
tmp r2nat = GR[r,].nat;

if (!speculative && GR[r3].nat) // fault on NaT address
register nat consumption fault (itype);
defer = speculative && (GR[r3].nat || PSR.ed);// defer exception if spec

if (check && alat cmp (GENERAL, r;)) {
translate address = alat translate address on hit(ldtype, GENERAL,

ry);

read memory = alat read memory on hit (Idtype, GENERAL, rj);
}
if (!translate address) {
if (check clear || advanced) // remove any old alat entry
alat inval single entry(GENERAL, r;);
} else {
if (!defer) {
paddr = tlb translate(GR[r3], size, itype, PSR.cpl, &mattr,
&defer) ;
spontaneous deferral (paddr, size, UM.be, mattr, otype,
bias | 1dhint, &defer);
if (!defer && read memory) {
if (size == 16) {
mem read pair(&val, &val ar, paddr, size, UM.be, mattr,
otype, l1dhint);
}

else {

Volume 3: Instruction Reference

Id

val = mem read(paddr, size, UM.be, mattr, otype,
bias | 1dhint);

}

if (check clear || advanced) // remove any old ALAT entry
alat inval single entry(GENERAL, r;);
if (defer) {
if (speculative) {
GR[r;] = natd gr read(paddr, size, UM.be, mattr, otype,
bias | 1dhint);
GR[r;].nat = 1;

} else {
GR[r;] = 0; // 1ld.a to sequential memory
GR[r;].nat = 0;
}
} else { // execute load normally
if (fill form) { // £ill NaT on 1d8.fill
bit pos = GR[r3]{8:3};
GR[r;] = val;
GR[r;].nat = AR[UNAT]{bit pos};
} else { // clear NaT on other types
if (size == 16) {
GR[r;] = val;

AR[CSD] = val ar;
}
else {
GR[r;] = zero ext(val, size * 8);
}
GR[r;].nat = 0;
}
if ((check no clear || advanced) && ma is speculative (mattr))
// add entry to ALAT
alat write(ldtype, GENERAL, r;, paddr, size);

if (imm base update form) { // update base register
GR[r3] = GR[r3] + sign ext(immg, 9);
GR[r3] .nat = GR[r3].nat;
} else if (reg base update form) {
GR[r3] = GR[r3] + tmp r2;
GR[r3].nat = GR[r3].nat || tmp rZnat;

if ((reg base update form || imm base update form) && !GR[r3].nat)
mem implicit prefetch(GR[r3], 1dhint | bias, itype);

Volume 3: Instruction Reference 3:155

Id

Interruptions:

3:156

Illegal Operation fault

Register NaT Consumption fault
Unimplemented Data Address fault
Data Nested TLB fault

Alternate Data TLB fault

VHPT Data fault

Data TLB fault

Data Page Not Present fault

Data NaT Page Consumption fault
Data Key Miss fault

Data Key Permission fault

Data Access Rights fault

Data Access Bit fault

Data Debug fault

Unaligned Data Reference fault
Unsupported Data Reference fault

Volume 3: Instruction Reference

Idf

Idf — Floating-point Load

Format:

Description:

(gp) Idffsz.fldtype.ldhint f; = [rs] no_base_update_form M9
(gp) Idffsz.fldtype.ldhint f; = [r3], ro reg_base_update_form M7
(gp) Idffsz.fidtype.ldhint f; = [rs], immg imm_base_update_form M8
(gp) |df8.fldtype.ldhint f; = [rg] integer_form, no_base_update_form M9
(gp) |df8.fldtype.ldhint f; = [rs], ro integer_form, reg_base_update_form M7
(gp) 1df8.fldtype.ldhint f; = [rs], immg integer_form, imm_base_update_form M8
(gp) Idffill.idhint f; = [rs] fill_form, no_base update_form M9
(gp) Idffill.idhint f; =[rs], ry fill_form, reg_base_update_form M7
(gp) Idffill.idhint f; = [rs], immyg fill_form, imm_base_update_form M8

A value consisting of fsz bytes is read from memory starting at the address specified by
the value in GR r;. The value is then converted into the floating-point register format
and placed in FR f,. See Section 5.1, "Data Types and Formats” on page 1:85 for details
on conversion to floating-point register format. The values of the fsz completer are
given in Table 2-35. The fldtype completer specifies special load operations, which are
described in Table 2-36.

For the integer_form, an 8-byte value is loaded and placed in the significand field of FR
f, without conversion. The exponent field of FR f, is set to the biased exponent for 2.0%3
(0x1003E) and the sign field of FR f, is set to positive (0).

For the fill_form, a 16-byte value is loaded, and the appropriate fields are placed in FR
f; without conversion. This instruction is used for reloading a spilled register. See
Section 4.4.4, “Control Speculation” on page 1:60 for details.

In the base update forms, the value in GR r; is added to either a signed immediate
value (immg) or a value from GR r,, and the result is placed back in GR r3. This base
register update is done after the load, and does not affect the load address. In the
reg_base_update_form, if the NaT bit corresponding to GR r, is set, then the NaT bit
corresponding to GR r; is set and no fault is raised.

Table 2-35. fsz Completers

fsz Completer Bytes Accessed Memory Format
s 4 bytes Single precision
d 8 bytes Double precision
e 10 bytes Extended precision

Table 2-36. FP Load Types

fldtype . . .
Completer Interpretation Special Load Operation
none Normal load
s Speculative load | Certain exceptions may be deferred rather than generating a fault.
Deferral causes NaTVal to be placed in the target register. The NaTVal
value is later used to detect deferral.
a Advanced load An entry is added to the ALAT. This allows later instructions to check for

colliding stores. If the referenced data page has a non-speculative
attribute, no ALAT entry is added to the ALAT and the target register is
set as follows: for the integer_form, the exponent is set to 0x1003E and
the sign and significand are set to zero; for all other forms, the sign,
exponent and significand are set to zero. The absence of an ALAT entry
is later used to detect deferral or collision.

Volume 3: Instruction Reference 3:157

Idf

3:158

Table 2-36. FP Load Types (Continued)

fldtype

Completer Interpretation Special Load Operation
sa Speculative An entry is added to the ALAT, and certain exceptions may be deferred.
Advanced load Deferral causes NaTVal to be placed in the target register, and the
processor ensures that no ALAT entry exists for the target register. The
absence of an ALAT entry is later used to detect deferral or collision.
c.nc Check load — The ALAT is searched for a matching entry. If found, no load is done

no clear and the target register is unchanged. Regardless of ALAT hit or miss,
base register updates are performed, if specified. An implementation
may optionally cause the ALAT lookup to fail independent of whether an
ALAT entry matches. If not found, a load is performed, and an entry is
added to the ALAT (unless the referenced data page has a
non-speculative attribute, in which case no ALAT entry is allocated).

c.clr Check load — clear | The ALAT is searched for a matching entry. If found, the entry is
removed, no load is done and the target register is unchanged.
Regardless of ALAT hit or miss, base register updates are performed, if
specified. An implementation may optionally cause the ALAT lookup to
fail independent of whether an ALAT entry matches. If not found, a clear
check load behaves like a normal load.

For more details on speculative, advanced and check loads see Section 4.4.4, “Control
Speculation” on page 1:60 and Section 4.4.5, “"Data Speculation” on page 1:63. Details
on memory attributes are described in Section 4.4, *“Memory Attributes” on page 2:75.

For the non-speculative load types, if NaT bit associated with GR r; is 1, a Register NaT
Consumption fault is taken. For speculative and speculative advanced loads, no fault is
raised, and the exception is deferred. For the base-update calculation, if the NaT bit
associated with GR r, is 1, the NaT bit associated with GR r; is set to 1 and no fault is
raised.

The value of the Idhint modifier specifies the locality of the memory access. The
mnemonic values of Idhint are given in Table 2-34 on page 3:152. A prefetch hint is
implied in the base update forms. The address specified by the value in GR r; after the
base update acts as a hint to prefetch the indicated cache line. This prefetch uses the
locality hints specified by /dhint. Prefetch and locality hints do not affect program
functionality and may be ignored by the implementation. See Section 4.4.6, “Memory
Hierarchy Control and Consistency” on page 1:69 for details.

In the no_base_update form, the value in GR r3 is not modified and no prefetch hint is
implied.

The PSR.mfl and PSR.mfh bits are updated to reflect the modification of FR f;.

Hardware support for 1dfe (10-byte) instructions that reference a page that is neither a
cacheable page with write-back policy nor a NaTPage is optional. On processor models
that do not support such 1dfe accesses, an Unsupported Data Reference fault is raised
when an unsupported reference is attempted. The fault is delivered only on the normal,
advanced, and check load flavors. Control-speculative flavors of 1dfe always defer the
Unsupported Data Reference fault.

Volume 3: Instruction Reference

Operation:

Idf

if (PR[gp]) {

size = (fill form ? 16 : (integer form 2 8 : fsz));
speculative = (fldtype == ‘s’ || fldtype == ‘sa’);
advanced = (fldtype == ‘a’ || fldtype == ‘sa’);
check clear = (fldtype == ‘c.clr’);

check no clear = (fldtype == ‘c.nc’);

check = check clear || check no clear;

translate address = 1;

read memory = 1;

itype = READ;

if (speculative) itype |= SPEC;

if (advanced) itype |= ADVANCE;

if (size == 10) itype |= UNCACHE OPT;

if (reg base update form || imm base update form)

check target register(rj);

fp check target register(f;);

if (tmp isrcode = fp reg disabled(f;, 0, 0, 0))
disabled fp register fault(tmp isrcode, itype);

if (!speculative && GR[r3].nat) // fault on NaT address
register nat consumption fault (itype);

defer = speculative && (GR[r3].nat || PSR.ed);// defer exception if spec
if (check && alat cmp (FLOAT, f£f;)) {

translate address = alat translate address on hit (fldtype, FLOAT, f;);
read memory = alat read memory on hit (fldtype, FLOAT, f;);

if (!translate address) {

if (check clear || advanced) // remove any old ALAT entry
alat_inval single entry(FLOAT, f;);
} else {
if (!defer) {
paddr = tlb translate(GR[r3], size, itype, PSR.cpl, &mattr,
&defer) ;

spontaneous deferral (paddr, size, UM.be, mattr, UNORDERED,
1dhint, &defer);
if (!defer && read memory)
val = mem read(paddr, size, UM.be, mattr, UNORDERED, ldhint);
}
if (check clear || advanced) // remove any old ALAT entry
alat inval single entry(FLOAT, f;);
if (speculative && defer) {
FR[f;] = NATVAL;
} else if (advanced && !speculative && defer) {

FR[f;] = (integer form ? FP_INT ZERO : FP ZERO);
} else { // execute load normally
FR[f;] = fp mem to fr format (val, size, integer form);

if ((check no clear || advanced) && ma is speculative (mattr))
// add entry to ALAT
alat write(fldtype, FLOAT, f;, paddr, size);

Volume 3: Instruction Reference 3:159

Idf

}

if (imm base update form) { // update base register
GR[r3] = GR[r3] + sign ext (immg, 9);
GR[r3] .nat = GR[r3].nat;

} else if (reg base update form) {

GR[r3] = GR[r3] + GRI[r,];
GR[r3].nat = GR[r3].nat || GR[r,].nat;
}
if ((reg base update form || imm base update form) && !GR[rj3].nat)

mem implicit prefetch(GR[r3], I1dhint, itype);

fp update psr(f;);
}

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Disabled Floating-point Register fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Access Bit fault
Alternate Data TLB fault Data Debug fault
VHPT Data fault Unaligned Data Reference fault
Data TLB fault Unsupported Data Reference fault

Data Page Not Present fault

3:160 Volume 3: Instruction Reference

Idfp

Idfp — Floating-point Load Pair

Format:

Description:

(gp) |dfps.fldtype.ldhint fy, f5 = [rs] single_form, no_base_update_form M11
(gp) |dfps.fldtype.ldhint fy, fy = [r5], 8 single_form, base_update_form M12
(gp) Idfpd.fidtype.ldhint f;, f, = [r3] double_form, no_base_update_form M11
(gp) |dfpd.fidtype.ldhint f;, f, = [r3], 16 double_form, base_update_form M12
(gp) |dfp8.fldtype.idhint fy, f, = [r3] integer_form, no_base_update_form M11
(gp) 1dfp8.fldtype.ldhint f;, f» = [rs], 16 integer_form, base_update_form M12

Eight (single_form) or sixteen (double_form/integer_form) bytes are read from
memory starting at the address specified by the value in GR r;. The value read is
treated as a contiguous pair of floating-point numbers for the single_form/double_form
and as integer/Parallel FP data for the integer_form. Each number is converted into the
floating-point register format. The value at the lowest address is placed in FR f;, and the
value at the highest address is placed in FR f,. See Section 5.1, “Data Types and
Formats” on page 1:85 for details on conversion to floating-point register format. The
fldtype completer specifies special load operations, which are described in Table 2-36 on
page 3:157.

For more details on speculative, advanced and check loads see Section 4.4.4, “Control
Speculation” on page 1:60 and Section 4.4.5, “"Data Speculation” on page 1:63.

For the non-speculative load types, if NaT bit associated with GR r; is 1, a Register NaT
Consumption fault is taken. For speculative and speculative advanced loads, no fault is
raised, and the exception is deferred.

In the base_update_form, the value in GR r; is added to an implied immediate value
(equal to double the data size) and the result is placed back in GR r;. This base register
update is done after the load, and does not affect the load address.

The value of the Idhint modifier specifies the locality of the memory access. The
mnemonic values of Idhint are given in Table 2-34 on page 3:152. A prefetch hint is
implied in the base update form. The address specified by the value in GR r; after the
base update acts as a hint to prefetch the indicated cache line. This prefetch uses the
locality hints specified by /dhint. Prefetch and locality hints do not affect program
functionality and may be ignored by the implementation. See Section 4.4.6, "Memory
Hierarchy Control and Consistency” on page 1:69 for details.

In the no_base_update form, the value in GR r3 is not modified and no prefetch hint is
implied.

The PSR.mfl and PSR.mfh bits are updated to reflect the modification of FR f; and FR f>.

There is a restriction on the choice of target registers. Register specifiers f; and f, must
specify one odd-numbered physical FR and one even-numbered physical FR. Specifying
two odd or two even registers will cause an Illegal Operation fault to be raised. The
restriction is on physical register numbers after register rotation. This means that if f;
and f, both specify static registers or both specify rotating registers, then f; and f,
must be odd/even or even/odd. If f; and f, specify one static and one rotating register,
the restriction depends on CFM.rrb.fr. If CFM.rrb.fr is even, the restriction is the same;
f; and f, must be odd/even or even/odd. If CFM.rrb.fr is odd, then f; and f, must be
even/even or odd/odd. Specifying one static and one rotating register should only be
done when CFM.rrb.fr will have a predictable value (such as 0).

Volume 3: Instruction Reference 3:161

Idfp

Operation: if (PRIgpl) {
size = single form ? 8 : 16;

speculative = (fldtype == ‘s’ || fldtype == ‘sa’);
advanced = (fldtype == ‘a’ || fldtype == ‘sa’);
check clear = (fldtype == ‘c.clr’);
check no clear = (fldtype == ‘c.nc’);

check = check clear || check no clear;

translate address = 1;

read memory = 1;

itype = READ;
if (speculative) itype |= SPEC;
if (advanced) itype |= ADVANCE;

if (fp_reg bank conflict (fl, £2))
illegal operation fault();

if (base update form)
check target register(rj);

fp check target register (f;);

fp_check_target_register(f2);

if (tmp isrcode = fp reg disabled(f;, f,, 0, 0))
disabled fp register fault (tmp isrcode, itype);

if (!speculative && GR[rj3].nat) // fault on NaT address
register nat consumption fault (itype);

defer = speculative && (GR[r3].nat || PSR.ed);// defer exception if spec

if (check && alat cmp (FLOAT, f£f;)) {
translate address = alat translate address on hit (fldtype, FLOAT, f;);
read memory = alat read memory on hit (fldtype, FLOAT, f;);

if (!translate address) {
if (check clear || advanced) // remove any old ALAT entry
alat inval single entry(FLOAT, f;);
} else {
if (!defer) {
paddr = tlb translate(GR[r3], size, itype, PSR.cpl, &mattr,
s&defer) ;
spontaneous deferral (paddr, size, UM.be, mattr, UNORDERED,
1dhint, &defer);
if (!defer && read memory)
mem read pair(&fl val, &f2 val, paddr, size, UM.be,
mattr, UNORDERED, Idhint);

if (check clear || advanced) // remove any old ALAT entry
alat inval single entry(FLOAT, f;);
if (speculative && defer) {

FR[f;] = NATVAL;
FR[f,] = NATVAL;

} else 1if (advanced && !speculative && defer) {
FR[f;] = (integer form ? FP INT ZERO : FP ZERO);

3:162 Volume 3: Instruction Reference

Interruptions:

}

if

}

Idfp

FR[f,] = (integer form ? FP_INT ZERO : FP ZERO);

} else { // execute load normally
FR[f;] = fp mem to fr format(fl val, size/2, integer form);
FR[f,] = fp mem to fr format (f2 val, size/2, integer form);
if ((check no clear || advanced) && ma is speculative (mattr))

// add entry to ALAT
alat write(fldtype, FLOAT, f;, paddr, size);

(base update form) { // update base register
GR[r3] = GR[r3] + size;
GR[r3] .nat = GR[r3].nat;
if (!GR[r3].nat)
mem implicit prefetch(GR[r3], 1dhint, itype);

fp update psr(f;);
fp update psr(f),);

Illegal Operation fault Data Page Not Present fault
Disabled Floating-point Register fault Data NaT Page Consumption fault
Register NaT Consumption fault Data Key Miss fault
Unimplemented Data Address fault Data Key Permission fault

Data Nested TLB fault Data Access Rights fault
Alternate Data TLB fault Data Access Bit fault

VHPT Data fault Data Debug fault

Data TLB fault Unaligned Data Reference fault

Volume 3: Instruction Reference 3:163

Ifetch

Ifetch — Line Prefetch

Format:

Description:

3:164

(gp) Ifetch.lftype.lfhint [r3] no_base_update_form M18
(gp) Ifetch.iftype.ifhint [r3], ro reg_base_update_form M20
(gp) Ifetch.iftype.ifhint [rs], immg imm_base_update_form M22
(gp) Ifetch.iftype.excl.ifhint [rs] no_base_update_form, exclusive_form M18
(gp) Ifetch.iftype.excl.ifhint [r3], ro reg_base_update_form, exclusive_form M20
(gp) Ifetch.iftype.excl.ifhint [rs], immg imm_base_update_form, exclusive_form M22

The line containing the address specified by the value in GR r; is moved to the highest
level of the data memory hierarchy. The value of the /fhint modifier specifies the locality
of the memory access; see Section 4.4, "Memory Access Instructions” on page 1:57 for
details. The mnemonic values of /fhint are given in Table 2-38.

The behavior of the memory read is also determined by the memory attribute
associated with the accessed page. See Chapter 4, “"Addressing and Protection” in
Volume 2. Line size is implementation dependent but must be a power of two greater
than or equal to 32 bytes. In the exclusive form, the cache line is allowed to be marked
in an exclusive state. This qualifier is used when the program expects soon to modify a
location in that line. If the memory attribute for the page containing the line is not
cacheable, then no reference is made.

The completer, Iftype, specifies whether or not the instruction raises faults normally
associated with a regular load. Table 2-37 defines these two options.

Table 2-37. Iftype Mhemonic Values

Iftype Mnemonic Interpretation
none No faults are raised
fault Raise faults

In the base update forms, after being used to address memory, the value in GR r; is
incremented by either the sign-extended value in immgy (in the imm_base_update_form)
or the value in GR r, (in the reg_base_update_form). In the reg_base_update_form, if
the NaT bit corresponding to GR r, is set, then the NaT bit corresponding to GR r; is set
- no fault is raised.

In the reg_base_update_form and the imm_base_update_form, if the NaT bit
corresponding to GR r3 is clear, then the address specified by the value in GR r; after
the post-increment acts as a hint to implicitly prefetch the indicated cache line. This
implicit prefetch uses the locality hints specified by /fhint. The implicit prefetch does not
affect program functionality, does not raise any faults, and may be ignored by the
implementation.

In the no_base_update_form, the value in GR r3 is not modified and no implicit prefetch
hint is implied.

If the NaT bit corresponding to GR r; is set then the state of memory is not affected. In
the reg_base_update_form and imm_base_update_form, the post increment of GR r3 is
performed and prefetch is hinted as described above.

1fetch instructions, like hardware prefetches, are not orderable operations, i.e., they
have no order with respect to prior or subsequent memory operations.

Volume 3: Instruction Reference

Ifetch

Table 2-38. [fhint Mnemonic Values

Ifhint Mnemonic Interpretation
none Temporal locality, level 1
nt1 No temporal locality, level 1
nt2 No temporal locality, level 2
nta No temporal locality, all levels

A faulting 1fetch to an unimplemented address results in an Unimplemented Data
Address fault. A non-faulting 1fetch to an unimplemented address does not take the
fault and will not issue a prefetch request, but, if specified, will perform a register
post-increment.

Both the non-faulting and the faulting forms of 1fetch can be used speculatively. The

purpose of raising faults on the faulting form is to allow the operating system to resolve
problems with the address to the extent that it can do so relatively quickly. If problems
with the address cannot be resolved quickly, the OS simply returns to the program, and
forces the data prefetch to be skipped over.

Specifically, if a faulting 1fetch takes any of the listed faults (other than Illegal
Operation fault), the operating system must handle this fault to the extent that it can
do so relatively quickly and invisibly to the interrupted program. If the fault cannot be
handled quickly or cannot be handled invisibly (e.g., if handling the fault would involve
terminating the program), the OS must return to the interrupted program, skipping
over the data prefetch. This can easily be done by setting the IPSR.ed bit to 1 before
executing an rfi to go back to the process, which will allow the 1fetch.fault to
perform its base register post-increment (if specified), but will suppress any prefetch
request and hence any prefetch-related fault. Note that the OS can easily identify that a
faulting 1fetch was the cause of the fault by observing that ISR.na is 1, and
ISR.code{3:0} is 4. The one exception to this is the Illegal Operation fault, which can
be caused by an 1fetch. fault if base register post-increment is specified, and the
base register is outside of the current stack frame, or is GRO. Since this one fault is not
related to the prefetch aspect of 1fetch.fault, but rather to the base update portion,
Illegal Operation faults on 1fetch.fault should be handled the same as for any other
instruction.

Volume 3: Instruction Reference 3:165

Ifetch

Operation: if (PRIgpl) {
itype = READ|NON ACCESS;
itype |= (lftype == ‘fault’) ? LFETCH FAULT : LFETCH;
if (reg base update form || imm base update form)

check_target_register(r3);

if (1ftype == ‘fault’) { // faulting form
if (GR[r3].nat && !PSR.ed) // fault on NaT address
register nat consumption fault (itype);

excl hint = (exclusive form) ? EXCLUSIVE : O;

if (!GR[r3].nat && !PSR.ed) {// faulting form already faulted if r3 is nat
paddr = tlb translate(GR[r3], 1, itype, PSR.cpl, &mattr, &defer);
if (!defer)
mem promote (paddr, mattr, Ifhint | excl hint);

if (imm base update form) {
GR[r3] = GR[r3] + sign ext (immg, 9);
GR[r3].nat = GR[r3].nat;

} else if (reg base update form) {

GR[r3] = GR[r3] + GRI[r,];
GR[r3].nat = GR[r,].nat || GR[r3].nat;
}
if ((reg base update form || imm base update form) && !GR[rj3].nat)

mem implicit prefetch(GR[r3], 1fhint | excl hint, itype);
}

Interruptions: Illegal Operation fault Data Page Not Present fault
Register NaT Consumption fault Data NaT Page Consumption fault
Unimplemented Data Address fault Data Key Miss fault
Data Nested TLB fault Data Key Permission fault
Alternate Data TLB fault Data Access Rights fault
VHPT Data fault Data Access Bit fault
Data TLB fault Data Debug fault

3:166 Volume 3: Instruction Reference

loadrs

loadrs — Load Register Stack

Format:

Description:

Operation:

Interruptions:

loadrs M25

This instruction ensures that a specified humber of bytes (registers values and/or NaT
collections) below the current BSP have been loaded from the backing store into the
stacked general registers. The loaded registers are placed into the dirty partition of the
register stack. All other stacked general registers are marked as invalid, without being
saved to the backing store.

The number of bytes to be loaded is specified in a sub-field of the RSC application
register (RSC.loadrs). Backing store addresses are always 8-byte aligned, and
therefore the low order 3 bits of the 1oadrs field (RSC.loadrs{2:0}) are ignored. This
instruction can be used to invalidate all stacked registers outside the current frame, by
setting RSC.loadrs to zero.

This instruction will fault with an Illegal Operation fault under any of the following
conditions:
e the RSE is not in enforced lazy mode (RSC.mode is non-zero).
e CFM.sof and RSC.loadrs are both non-zero.
e an attempt is made to load up more registers than are available in the physical
stacked register file.

This instruction must be the first instruction in an instruction group and must either be
in instruction slot 0 or in instruction slot 1 of a template having a stop after slot 0;
otherwise, the results are undefined. This instruction cannot be predicated.

if (AR[RSC].mode != 0)
illegal operation fault();

if ((CFM.sof != 0) && (AR[RSC].loadrs != 0))
illegal operation fault();

rse_ensure regs_loaded(AR[RSC].loadrs); // can raise faults listed below
AR[RNAT] = undefined();

Illegal Operation fault Data NaT Page Consumption fault
Unimplemented Data Address fault Data Key Miss fault

Data Nested TLB fault Data Key Permission fault

Alternate Data TLB fault Data Access Rights fault

VHPT Data fault Data Access Bit fault

Data TLB fault Data Debug fault

Data Page Not Present fault

Volume 3: Instruction Reference 3:167

mf

mf — Memory Fence

Format:

Description:

Operation:

Interruptions:

3:168

(gp) mf ordering_form M24
(gp) mf.a acceptance_form M24

This instruction forces ordering between prior and subsequent memory accesses. The
ordering_form ensures all prior data memory accesses are made visible prior to any
subsequent data memory accesses being made visible. It does not ensure prior data
memory references have been accepted by the external platform, nor that prior data
memory references are visible.

The acceptance_form prevents any subsequent data memory accesses by the processor
from initiating transactions to the external platform until:

e all prior loads to sequential pages have returned data, and
o all prior stores to sequential pages have been accepted by the external platform.

The definition of “acceptance” is platform dependent. The acceptance_form is typically
used to ensure the processor has “waited” until a memory-mapped I/0 transaction has
been “accepted” before initiating additional external transactions. The acceptance_form
does not ensure ordering, or acceptance to memory areas other than sequential pages.

if (PR[gpl) {
if (acceptance form)
acceptance fence();
else // ordering form
ordering fence();

}

None

Volume 3: Instruction Reference

mix — Mix

Format: (gp) mix1.l ry=ry r3
(gp) Mix2.1 ry=ry r3
(gp) mixd.l ry=ryr3
(gp) mix1.r ry=ry r3
(gp) MIX2.r ry=ry r3
(gp) mixd.r ry=ry r3

one_byte_form, left_form
two_byte form, left_form
four_byte_form, left_form
one_byte_form, right_form
two_byte form, right_form
four_byte form, right_form

mix

12
12
12
12
12
12

Description: The data elements of GR r, and r; are mixed as shown in Figure 2-25, and the result
placed in GR r;. The data elements in the source registers are grouped in pairs, and one
element from each pair is selected for the result. In the left_form, the result is formed

from the leftmost elements from each of the pairs. In the right_form, the result is

formed from the rightmost elements. Elements are selected alternately from the two

source registers.

Volume 3: Instruction Reference

3:169

mix

3:170

Figure 2-25.

Mix Examples

GRry:

GRry:

GR o

GR o

GR o

GR !

mix4.r

Volume 3: Instruction Reference

mix

Operation: if (PRIgp]) {
check target register(r;);

if (one byte form) { // one-byte elements

x[0] = GR[r,]{7:0}; y[0] = GR[r3]{7:0};

x[1] = GR[r,]1{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r,]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r,]1{31:24}; y[3] = GR[r3]1{31:24};
x[4] = GR[r,]1{39:32}; y[4] = GR[r3]1{39:32};
x[5] = GR[r,]1{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r,]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r,]1{63:56}; y[7] = GR[r3]{63:56};

if (left form)
GR[r;] = concatenate8 (x[71, y[7], x[5]1, yI[5],
x[31, y[31, x[11, y[1]);
else // right form
GR[r;] = concatenate8(x[6], y[6], x[4], y[4],
x[2], yl[2], x[0], y[O]);

} else if (two byte form) { // two-byte elements
x[0] = GR[r,]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r,]1{31:16}; y[1l] = GR[r3]{31:16};
x[2] = GR[r,]1{47:32}; y[2] = GR[r3]1{47:32};
x[3] = GR[r,]1{63:48}; y[3] = GR[r3]{63:48};

if (left form)

GR[r;] = concatenate4(x[3], y[3], x[1], y[1]);
else // right form

GR[r;] = concatenate4 (x[2], y[2], x[0], y[0]);

} else { // four-byte elements
x[0] = GR[r,]1{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r,]{63:32}; y[1l] = GR[r3]{63:32};

if (left form)

GR[r;] = concatenate2(x[1], y[1]);
else // right form
GR[r;] = concatenate2(x[0], y[0]);
}
GR[r;].nat = GR[r,].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:171

moyv ar

mov — Move Application Register

Format:

Description:

3:172

(gp) mov ry=ars pseudo-op
(gp) mov arz=r, pseudo-op
(gp) mov arz = immg pseudo-op
(gp) mov.i ry=ars i_form, from_form 128
(gp) mov.i ars=r, i_form, register_form, to_form 126
(gp) mov.i arz =immg i_form, immediate_form, to_form 127
(gp) mov.m r; = ars m_form, from_form M31
(gp) mov.m arz=r, m_form, register_form, to_form M29
(gp) mov.m ars = immg m_form, immediate_form, to_form M30

The source operand is copied to the destination register.

In the from_form, the application register specified by ar3 is copied into GR r; and the
corresponding NaT bit is cleared.

In the to_form, the value in GR r, (in the register_form), or the sign-extended value in
immg (in the immediate_form), is placed in AR ars. In the register_form if the NaT bit
corresponding to GR r» is set, then a Register NaT Consumption fault is raised.

Only a subset of the application registers can be accessed by each execution unit (M or
I). Table 3-3 on page 1:28 indicates which application registers may be accessed from
which execution unit type. An access to an application register from the wrong unit type
causes an Illegal Operation fault.

This instruction has multiple forms with the pseudo operation eliminating the need for
specifying the execution unit. Accesses of the ARs are always implicitly serialized. While
implicitly serialized, read-after-write and write-after-write dependency violations must
be avoided (e.g., setting CCV, followed by cmpxchg in the same instruction group, or
simultaneous writes to the UNAT register by 1d.£i11 and mov to UNAT).

Volume 3: Instruction Reference

moyv ar

Operation: if (PR[gpl) |
tmp _type = (i form ? AR I TYPE : AR M TYPE);
if (is_reserved reg(tmp type, arjy))
illegal operation fault();

if (from form) {
check target register(r;);
if (((arz == BSPSTORE) || (ar; == RNAT)) && (AR[RSC].mode != 0))
illegal operation fault();

if ((arz3 == ITC || arz == RUC) && PSR.si && PSR.cpl != 0)
privileged register fault();

if ((arz == ITC || arz == RUC) && PSR.si && PSR.vm == 1)
virtualization fault();

GR[r;] = (is_ignored reg(ars)) ? 0 : AR[ar3];
GR[r;].nat = 0;

} else { // to_form
tmp val = (register form) ? GR[r,] : sign ext(immg, 8);

if (is_read only reg(AR TYPE, arj) ||
(((arz == BSPSTORE) || (arz == RNAT)) && (AR[RSC].mode != 0)))
illegal operation fault();

if (register form && GR[r,].nat)
register nat consumption fault (0);

if (is_reserved field (AR TYPE, arjz, tmp val))
reserved register field fault();

if ((is_kernel reg(arz) || arz == ITC || ar3 == RUC) && (PSR.cpl != 0))
privileged register fault();

if ((arz3 == ITC || arz == RUC) && PSR.vm == 1)
virtualization fault();

if (!is ignored reg(arjz)) {
tmp val = ignored field mask (AR TYPE, ars, tmp val);
// check for illegal promotion
if (arz == RSC && tmp val{3:2} u< PSR.cpl)
tmp val{3:2} = PSR.cpl;
AR[arj3] = tmp val;

if (arz == BSPSTORE) {

AR[BSP] = rse update internal stack pointers (tmp val);
AR[RNAT] = undefined();

}

Interruptions: Illegal Operation fault Privileged Register fault
Register NaT Consumption fault Virtualization fault
Reserved Register/Field fault

Volume 3: Instruction Reference 3:173

mov br

mov — Move Branch Register

Format:

Description:

Operation:

Interruptions:

3:174

(gp) mov ry = by from_form 122
(gp) mov by =ry pseudo-op

(gp) mov.mwh.ih by =r,, tagss to_form 121
(gp) mov.ret.mwh.ih by = ry, tagqs return_form, to_form 121

The source operand is copied to the destination register.

In the from_form, the branch register specified by b, is copied into GR r;. The NaT bit
corresponding to GR ry is cleared.

In the to_form, the value in GR r; is copied into BR b,. If the NaT bit corresponding to
GR r, is 1, then a Register NaT Consumption fault is taken.

A set of hints can also be provided when moving to a branch register. These hints are
very similar to those provided on the brp instruction, and provide prediction
information about a future branch which may use the value being moved into BR b,. The
return_form is used to provide the hint that this value will be used in a return-type
branch.

The values for the mwh whether hint completer are given in Table 2-39. For a
description of the ih hint completer see the Branch Prediction instruction and Table 2-13
on page 3:32.

Table 2-39. Move to BR Whether Hints

mwh Completer Move to BR Whether Hint
none Ignore all hints
sptk Static Taken
dptk Dynamic

A pseudo-op is provided for copying a general register into a branch register when
there is no hint information to be specified. This is encoded with a value of O for tag,;
and values corresponding to none for the hint completers.

if (PRIgpl) {

if (from form) {
check target register(r;);
GR[r;] = BR[b,];
GR[r;].nat = 0;

} else { // to_form
tmp tag = IP + sign ext((timmg << 4), 13);
if (GR[r,].nat)

register nat consumption fault (0);

BR[b;] = GR[r,];
branch predict (mwh, ih, return form, GR[r,], tmp tag);

}

Illegal Operation fault Register NaT Consumption fault

Volume 3: Instruction Reference

moyv cr

mov — Move Control Register

Format:

Description:

Operation:

(gp) mov ry=crsg from_form M33
(gp) mov crz=r, to_form M32

The source operand is copied to the destination register.

For the from_form, the control register specified by cr; is read and the value copied into

GR re.

For the to_form, GR r, is read and the value copied into CR crs.

Control registers can only be accessed at the most privileged level, and when PSR.vm is
0. Reading or writing an interruption control register (CR16-CR27), when the PSR.ic bit
is one, will result in an Illegal Operation fault.

if (PR[gp]) A
if (is_reserved reg(CR TYPE, crj)

_io_form && 1s read only reg(CR TYPE, crj)
PSR.ic && is_interruption cr(crjy))

illegal operation fault();

if (from form)
check target register(r;p);
if (PSR.cpl != 0)
privileged operation fault (0);

if (from form) {

if

if

(PSR.vm == 1)
virtualization fault();
(cr3 == IVR)

check interrupt request();

if (crz == ITIR)

GR[r;] = impl itir cwi mask(CR[ITIR]);
else

GR[r;] = CR[cr3];

GR[r;].nat = 0;
} else { // to_form

if

if

if

if

if

(GR[r,] .nat)
register nat consumption fault (0);

(is_reserved field(CR TYPE, crz, GRI[r,]))
reserved register field fault();

((cr3 == IFA) && impl check mov ifa() &&
unimplemented virtual address(GR[r,], PSR.vm))
unimplemented data address fault(0);

(PSR.vm == 1)

virtualization fault();

(crz == EOI)

end of interrupt();

tmp val = ignored field mask(CR TYPE, cr3, GRI[r,]);
CR[cr3] = tmp val;

if

(cry == IIPA)

Volume 3: Instruction Reference 3:175

moyv cr

last IP = tmp val;

}

Interruptions: Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Unimplemented Data Address fault
Register NaT Consumption fault Virtualization fault

Serialization: Reads of control registers reflect the results of all prior instruction groups and
interruptions.

In general, writes to control registers do not immediately affect subsequent
instructions. Software must issue a serialize operation before a dependent instruction
uses a modified resource.

Control register writes are not implicitly synchronized with a corresponding control
register read and requires data serialization.

3:176 Volume 3: Instruction Reference

mov fr

mov — Move Floating-point Register

Format: (gp) mov f; =13 pseudo-op of: (gp) fmerge.s f; =13, f3
Description: The value of FR f; is copied to FR f;.

Operation: See “fmerge — Floating-point Merge” on page 3:80.

Volume 3: Instruction Reference 3:177

mov gr

mov — Move General Register

Format: (gp) mov ry=rg pseudo-op of: (gp) adds r; =0, r3

Description: The value of GR r; is copied to GR r;.

Operation: See “add — Add” on page 3:14.

3:178 Volume 3: Instruction Reference

mov imm

mov — Move Immediate

Format: (gp) mov r; = immy, pseudo-op of: (gp) addl r; = immy,, 10

Description: The immediate value, imm,,, is sign extended to 64 bits and placed in GR r,.

Operation: See “add — Add” on page 3:14.

Volume 3: Instruction Reference 3:179

mov indirect

mov — Move Indirect Register

Format:

Description:

Operation:

3:180

(gp) mov ry = ireg[rs] from_form M43
(gp) mov ireg[rs] = r, to_form M42

The source operand is copied to the destination register.

For move from indirect register, GR r; is read and the value used as an index into the
register file specified by ireg (see Table 2-40 below). The indexed register is read and its
value is copied into GR r,.

For move to indirect register, GR r; is read and the value used as an index into the
register file specified by ireg. GR r, is read and its value copied into the indexed register.

Table 2-40. Indirect Register File Mnemonics

ireg Register File
cpuid Processor Identification Register
dbr Data Breakpoint Register
ibr Instruction Breakpoint Register
pkr Protection Key Register
pmc Performance Monitor Configuration Register
pmd Performance Monitor Data Register
rr Region Register

For all register files other than the region registers, bits {7:0} of GR r; are used as the
index. For region registers, bits {63:61} are used. The remainder of the bits are
ignored.

Instruction and data breakpoint, performance monitor configuration, protection key,
and region registers can only be accessed at the most privileged level. Performance
monitor data registers can only be written at the most privileged level.

The CPU identification registers can only be read. There is no to_form of this
instruction.

For move to protection key register, the processor ensures uniqueness of protection
keys by checking new valid protection keys against all protection key registers. If any
matching keys are found, duplicate protection keys are invalidated.

Apart from the PMC and PMD register files, access of a non-existent register results in a
Reserved Register/Field fault. All accesses to the implementation-dependent portion of
PMC and PMD register files result in implementation dependent behavior but do not
fault.

Modifying a region register or a protection key register which is being used to translate:

¢ the executing instruction stream when PSR.it == 1, or
e the data space for an eager RSE reference when PSR.rt == 1

is an undefined operation.

if (PRIgpl) |
if (ireg == RR_TYPE)
tmp index = GR[r3]{63:61};
else // all other register types
tmp index = GR[r3]{7:0};

Volume 3: Instruction Reference

mov indirect

if (from form) ({
check target register(r;);

if (PSR.cpl != 0 && !(ireg == PMD TYPE || ireg == CPUID TYPE))
privileged operation fault(0);

if (GR[r3].nat)
register nat consumption fault (0);

if (is_reserved reg(ireg, tmp index))
reserved register field fault();

if (PSR.vm == 1 && ireg != PMD TYPE)
virtualization fault();

if (ireg == PMD TYPE) ({
if ((PSR.cpl != 0) && ((PSR.sp == 1) ||
(tmp_index > 3 &&
tmp_index <= IMPL MAXGENERIC PMCPMD &&
PMC[tmp index].pm == 1)))

GR[r;] = 0;
else
GR[r;] = pmd read(tmp index);

} else
switch (ireg) {

case CPUID TYPE: GR[r;] = CPUID[tmp index]; break;

1
case DBR TYPE: GR[r;] = DBR[tmp index]; break;
case IBR TYPE: GR[r;] = IBR[tmp index]; break;
case PKR TYPE: GR[r;] = PKR[tmp_ index]; break;
case PMC TYPE: GR[r;] = pmc_read(tmp index); break;
case RR TYPE: GR[r;] = RR[tmp index]; break;

}
GR[r;].nat = 0;
} else { // to_form
if (PSR.cpl != 0)
privileged operation fault(0);

if (GR[r,].nat || GR[r3].nat)
register nat consumption fault (0);

if (is_reserved reg(ireg, tmp index)
|| ireg == CPUID TYPE
|| is_reserved field(ireg, tmp index, GR[r,]))
reserved register field fault();

if (PSR.vm == 1)
virtualization fault();

if (ireg == PKR _TYPE && GR[r,]{0} == 1) { // writing valid prot key
if ((tmp_slot = tlb search pkr(GR[r,]{31:8})) != NOT_ FOUND)

PKR[tmp slot].v = 0; // clear valid bit of matching key reg
}
tmp val = ignored field mask(ireg, tmp index, GR[r,]):;
switch (ireg) {

case DBR TYPE: DBR[tmpiindex] = tmp val; break;
case IBR TYPE: IBR[tmp index] = tmp val; break;
case PKR TYPE: PKR[tmp index] = tmp val; break;
case PMC TYPE: pmc_write (tmp index, tmp val); break;

Volume 3: Instruction Reference 3:181

mov indirect

Interruptions:

Serialization:

3:182

case PMD TYPE: pmd write(tmp index, tmp val); break;
case RR TYPE: RR[tmp_index]= tmp_val; break;
}
}
}
Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Virtualization fault

Register NaT Consumption fault

For move to data breakpoint registers, software must issue a data serialize operation
before issuing a memory reference dependent on the modified register.

For move to instruction breakpoint registers, software must issue an instruction
serialize operation before fetching an instruction dependent on the modified register.

For move to protection key, region, performance monitor configuration, and
performance monitor data registers, software must issue an instruction or data serialize
operation to ensure the changes are observed before issuing any dependent
instruction.

To obtain improved accuracy, software can issue an instruction or data serialize
operation before reading the performance monitors.

Volume 3: Instruction Reference

mov ip

mov — Move Instruction Pointer

Format: (gp) mov ry=ip 125

Description: The Instruction Pointer (IP) for the bundle containing this instruction is copied into GR
ry.

Operation: if (PR[gpl) {
check target register(r;);

GR[r;] = IP;
GR[r;].nat = 0;
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:183

mov pr

mov — Move Predicates

Format:

Description:

Operation:

Interruptions:

3:184

(gp) mov ry=pr from_form 125
(gp) mov pr = ry, mask¢z to_form 123
(gp) mov pr.rot = immy, to_rotate_form 124

The source operand is copied to the destination register.
For moving the predicates to a GR, PR i is copied to bit position i within GR r;.

For moving to the predicates, the source can either be a general register, or an
immediate value. In the to_form, the source operand is GR r, and only those predicates
specified by the immediate value mask;, are written. The value mask;; is encoded in the
instruction in an immyg field such that: imm;s = mask;, >> 1. Predicate register O is
always one. The mask;, value is sign extended. The most significant bit of mask;,
therefore, is the mask bit for all of the rotating predicates. If there is a deferred
exception for GR r, (the NaT bit is 1), a Register NaT Consumption fault is taken.

In the to_rotate_form, only the 48 rotating predicates can be written. The source
operand is taken from the imm,, operand (which is encoded in the instruction in an immyg
field, such that: imm,g = imm,, >> 16). The low 16-bits correspond to the static
predicates. The immediate is sign extended to set the top 21 predicates. Bit position i in
the source operand is copied to PR i.

This instruction operates as if the predicate rotation base in the Current Frame Marker
(CFM.rrb.pr) were zero.

if (PR[gp]) {
if (from form) {
check target register(r;);
GR[r;] = 1; // PR[0] is always 1
for (1 = 1; 1 <= 63; i++) {
GR[r;]{i} = PR[pr_phys to virt(i)];
}
GR[r;].nat = 0;
} else if (to_ form) {
if (GR[r,].nat)
register nat consumption fault(0);
tmp src = sign ext (mask;;, 17);
for (1 = 1; i <= 63; i++) {
if (tmp src{i})
PR[pr phys to virt(i)] = GR[r,]{i};
}
} else { // to_rotate form
tmp src = sign ext (immy,, 44);
for (1 = 16; 1 <= 63; i++) {
PR[pr phys to virt(i)] = tmp src{i};
}

}

Illegal Operation fault Register NaT Consumption fault

Volume 3: Instruction Reference

mov psr

mov — Move Processor Status Register

Format:

Description:

Operation:

Interruptions:

Serialization:

(gp) mov ry = psr from_form M36
(gp) mov psrl=r, to_form M35

The source operand is copied to the destination register. See Section 3.3.2, “Processor
Status Register (PSR)” on page 2:23.

For move from processor status register, PSR bits {36:35} and {31:0} are read, and
copied into GR ry. All other bits of the PSR read as zero.

For move to processor status register, GR r, is read, bits {31:0} copied into PSR{31:0}
and bits {63:32} are ignored. Bits {31:0} of GR r, corresponding to reserved fields of
the PSR must be 0 or a Reserved Register/Field fault will result. An implementation may
also raise Reserved Register/Field fault if bits {63:32} in GR r, corresponding to
reserved fields of the PSR are non-zero.

Moves to and from the PSR can only be performed at the most privileged level, and
when PSR.vm is 0.

The contents of the interruption resources (that are overwritten when the PSR.ic bit is
1) are undefined if an interruption occurs between the enabling of the PSR.ic bit and a
subsequent instruction serialize operation.

if (PR[gp]) {
if (from form)
check target register(r;);
if (PSR.cpl != 0)
privileged operation fault (0);

if (from form) {

if (PSR.vm == 1)
virtualization fault();
tmp val = zero ext(PSR{31:0}, 32); // read lower 32 bits
tmp val |= PSR{36:35} << 35; // read mc and it bits
GR[r;] = tmp val; // other bits read as zero
GR[r;].nat = 0;
} else { // to_form

if (GR[r,].nat)
register nat consumption fault (0);

if (is_reserved field (PSR TYPE, PSR MOVPART, GR[r,]))
reserved register field fault();

if (PSR.vm == 1)
virtualization fault();

PSR{31:0} = GR[r,]{31:0};

}

Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Software must issue an instruction or data serialize operation before issuing
instructions dependent upon the altered PSR bits. Unlike with the rsm instruction, the
PSR.i bit is not treated specially when cleared.

Volume 3: Instruction Reference 3:185

mov um

mov — Move User Mask

Format:

Description:

Operation:

Interruptions:

Serialization:

3:186

(gp) mov ry = psr.um from_form M36
(gp) mov psrum=r, to_form M35

The source operand is copied to the destination register.
For move from user mask, PSR{5:0} is read, zero-extend, and copied into GR r,.

For move to user mask, PSR{5:0} is written by bits {5:0} of GR r,. PSR.up can only be
modified if the secure performance monitor bit (PSR.sp) is zero. Otherwise PSR.up is
not modified.

Writing a non-zero value into any other parts of the PSR results in a Reserved
Register/Field fault.

if (PRIgpl) {
if (from form) {
check_target_register(rl);

GR[r;] = zero ext (PSR{5:0}, 6);
GR[r;].nat = 0;
} else { // to_form

if (GR[r,].nat)
register nat consumption fault(0);

if (is_reserved field (PSR TYPE, PSR UM, GRI[r,]))
reserved register field fault();

PSR{1:0} = GR[r,]{1:0};

if (PSR.sp == 0) // unsecured perf monitor
PSR{2} = GR[r,]{2};

PSR{5:3} = GRI[r,]{5:3};

}

Illegal Operation fault Reserved Register/Field fault
Register NaT Consumption fault

All user mask modifications are observed by the next instruction group.

Volume 3: Instruction Reference

movl

movl — Move Long Immediate

Format: (gp) movl ry =immg, X2

Description: The immediate value immg, is copied to GR r,. The L slot of the bundle contains 41 bits of
imm64.

Operation: if (PR[gpl) {
check target register(r;);

GR[r;] = immgy;

GR[r;].nat = 0;
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:187

mpy4

mpy4 — Unsigned Integer Multiply

Format: (gp) mpy4d ry=ryrs 12

Description: The lower 32 bits of each of the two source operands are treated as unsigned values
and are multiplied, and the result is placed in GR r;. The upper 32 bits of each of the
source operands are ignored.

Operation: if (PR[gpl) {
if (!instruction implemented (mpy4))
illegal operation fault();
check target register(r;);

GR[r;] = zero ext(GR[r,], 32) * zero ext(GR[r3], 32);

GR[r;].nat = GR[r,].nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

3:188 Volume 3: Instruction Reference

mpyshl4

mpyshl4 — Unsigned Integer Shift Left and Multiply

Format: (gp) mpyshld ry=r,, rg

12

Description: The upper 32 bits of GR r, and the lower 32 bits of GR r; are treated as unsigned values
and are multiplied. The result of the multiplication is shifted left 32 bits, with the
vacated bit positions filled with zeroes, and the result is placed in GR r;. The lower 32
bits of GR r, and the upper 32 bits of GR r; are ignored.

This instruction can be used to perform a 64-bit integer multiply operation producing a
64-bit result (ro = ry * ry):

mpy4 r; =
mpyshl4 Iy
mpyshl4 r3
add ry
add e
Operation: if (PRIgp]) {

r
r

ar
ar
Ipr
i,
s

Ipii
Ipii
I
o7
I3

//partial product low 32 bits * low 32 bits
//partial product high 32 bits * low 32 bits
//partial product low 32 bits * high 32 bits
//partial sum

//final sum

if (!instruction implemented (MPYSHL4))
illegal operation fault();
check_target_register (rq:);

GR[r;] = (zero ext ((GR[r,] >> 32), 32) * zero ext(GR[r3], 32)) << 32;
|l

GR[r;] .nat
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference

GR[r,] .nat

GR[r3] .nat;

3:189

mux

mux — Mux

Format:

Description:

3:190

(gp) mux1 ry = ry, mbtypey one_byte form 13
(gp) mux2 ry = ry, mhtypeg two_byte form 14

A permutation is performed on the packed elements in a single source register, GR r,
and the result is placed in GR r,. For 8-bit elements, only some of all possible
permutations can be specified. The five possible permutations are given in Table 2-41
and shown in Figure 2-26.

Table 2-41. Mux Permutations for 8-bit Elements

mbtypey Function
@rev Reverse the order of the bytes
@mix Perform a Mix operation on the two halves of GR r,
@shuf Perform a Shuffle operation on the two halves of GR r,
@alt Perform an Alternate operation on the two halves of GR r,
@brest Perform a Broadcast operation on the least significand byte of GR r,

Figure 2-26. Mux1 Operation (8-bit elements)

GRry: GRry:
GRryq: GRryq:
mux1 r1 =r2, @rev mux1 r1 =r2, @mix
GR r2: GR |'2:
GR r1: GR r1:
mux1 r1 =r2, @shuf mux1 r1 =r2, @alt
GRry:
GRrq:

mux1 r1 =r2, @brcst

Volume 3: Instruction Reference

mux

For 16-bit elements, all possible permutations, with and without repetitions can be
specified. They are expressed with an 8-bit mhtypeg field, which encodes the indices of
the four 16-bit data elements. The indexed 16-bit elements of GR r, are copied to
corresponding 16-bit positions in the target register GR r;. The indices are encoded in
little-endian order. (The 8 bits of mhtypeg[7:0] are grouped in pairs of bits and named
mhtypeg[3], mhtypeg[2], mhtypeg[1], mhtypeg[0] in the Operation section).

Figure 2-27. Mux2 Examples (16-bit elements)

GRry:
GRrq:

mux2 r1 =r2, 0x8d (shuffle 10 00 11 01) mux2 r1 =r2, 0x1b (reverse 00 01 10 11)

GR ! GR o
GR rq: GR rq

mux2 r1 =r2, 0xd8 (alternate 11 01 10 00) mux2 r1 = r2, Oxaa (broadcast 10 10 10 10)

GRry:

GRrq:

Volume 3: Instruction Reference 3:191

mux

Operation: if (PRIgpl) {
check target register(r;);

if (one byte form) {
x[0] = GR[r,]1{7:0};

x[1] = GR[r,]{15:8};

x[2] = GR[r,]{23:16};
x[3] = GR[r,]{31:24};
x[4] = GR[r,]{39:32};
x[5] = GR[r,]{47:40};
x[6] = GR[r,] {55:48};
x[7] = GR[r,]{63:56};

switch (mbtype) {
case ‘@rev’:
GR[r;] = concatenate8 (x[0], x[1], x[2], x[3],
x[41, xI[5], x[6], x[7]);
break;

case ‘@mix’:
GR[r;] = concatenate8(x[7], x[3], x[5], x[1],
x[6], x[2], x[4], x[0]);
break;

case ‘@shuf’:
GR[r;] = concatenate8 (x[7], x[3], x[6], x[2],
x[5], x[1], x[4]1, x[0]);
break;

case ‘@alt’:
GR[r;] = concatenate8(x[7], x[5], x[3], x[1],
x[6], x[4], x[2], x[0]);
break;

case ‘@brcst’:
GR[r;] = concatenate8(x[0], x[0], x[0], x[O],
x[0], x[0], x[0], x[0]);

break;
}
} else { // two byte form
x[0] = GR[r,]{15:0};
x[1] = GR[r,]{31:16};
x[2] = GR[r,]{47:32};
x[3] = GR[r,]{63:48};
res[0] = x[mhtype8{1:0}];
res[l] = x[mhtype8{3:2}1];
res[2] = x[mhtype8{5:4}];
res[3] = x[mhtype8{7:6}1;
GR[r;] = concatenate4(res[3], res[2], res[l], res[0]);

}
GR[r;].nat = GR[r,].nat;
}

Interruptions: Illegal Operation fault

3:192 Volume 3: Instruction Reference

nop

nop — No Operation

Format: (gp) nop immyy pseudo-op
(gp) nop.i immy, i_unit_form 118
(gp) nop.b immy, b_unit_form B9
(gp) nop.m immy, m_unit_form M48
(gp) nop.f immy, f_unit_form F16
(gp) nop.x immg, x_unit_form X5

Description: No operation is done.

The immediate, imm,,; or immg,, can be used by software as a marker in program code. It
is ignored by hardware.

For the x_unit_form, the L slot of the bundle contains the upper 41 bits of immg,.

A nop. i instruction may be encoded in an MLI-template bundle, in which case the L slot
of the bundle is ignored.

This instruction has five forms, each of which can be executed only on a particular
execution unit type. The pseudo-op can be used if the unit type to execute on is
unimportant.

Operation: if (PRIgp]l) {

; // no operation

}

Interruptions: None

Volume 3: Instruction Reference 3:193

or

or — Logical Or

Format:

Description:

Operation:

Interruptions:

3:194

(ap) or ry=ryr3 register_form A1
(gp) or ry=immg, rs imm8_form A3

The two source operands are logically ORed and the result placed in GR r,. In the
register form the first operand is GR r,; in the immediate form the first operand is taken
from the immg encoding field.

if (PRlgp])
check target register(r;);

tmp src = (register form ? GR[r,] : sign ext (immg, 8));
tmp nat = (register form ? GR[r,].nat : 0);

GR[r;] = tmp src | GR[r3];

GR[r;].nat = tmp nat || GR[r3].nat;

}
Illegal Operation fault

Volume 3: Instruction Reference

pack

pack — Pack

Format: (gp) pack2.sss ry=ry, rs two_byte_form, signed_saturation_form 12
(gp) pack2.uss r;=ry r3 two_byte_form, unsigned_saturation_form 12
(gp) packd.sss ry=ry, r3 four_byte form, signed_saturation_form 12

Description: 32-bit or 16-bit elements from GR r, and GR r; are converted into 16-bit or 8-bit

elements respectively, and the results are placed GR r;. The source elements are
treated as signed values. If a source element cannot be represented in the result
element, then saturation clipping is performed. The saturation can either be signed or
unsigned. If an element is larger than the upper limit value, the result is the upper limit
value. If it is smaller than the lower limit value, the result is the lower limit value. The
saturation limits are given in Table 2-42.

Table 2-42. Pack Saturation Limits

Size Sourc‘:’sigtlﬁment Resu‘xt"ﬁltt:‘ment Saturation li’_?rzietr Lower Limit
16 bit 8 bit signed 0Ox7f 0x80
2 16 bit 8 bit unsigned Oxff 0x00
32 bit 16 bit signed Ox7fff 0x8000

Figure 2-28. Pack Operation

GRr3:

pack4

GRr3:

pack2

Volume 3: Instruction Reference 3:195

pack

Operation: if (PRIgpl) {
check target register(r;);

if (two byte form) {
if (signed saturation form) {
max = sign_ext (0x7f, 8);
min = sign ext (0x80, 8);

} else { // unsigned saturation form
max = 0xff;
min = 0x00;
}
temp[0] = sign _ext(GR[r,]{15:0}, 16);
temp[l] = sign ext (GR[r,]{31:16}, 16);
temp[2] = sign_ext(GR[r2]{47:32}, 16);
temp[3] = sign ext (GR[r,]{63:48}, 16);
temp[4] = sign ext (GR[r3]{15:0}, 16);
temp[5] = sign ext (GR[r3]{31:16}, 16);
temp[6] = sign ext (GR[r3] {47:32}, 16);
temp[7] = sign ext (GR[r3]{63:48}, 16);

for (1 = 0; i < 8; i++) {
if (temp[i] > max)
temp[i] = max;

if (temp[i] < min)

temp[i] = min;
}
GR[r;] = concatenate8(temp[7], temp[6], temp[5], templ[4],
temp (3], temp[2], temp[l], temp[O0]);
} else { // four byte form
max = sign ext (0x7fff, 16); // signed saturation form
min = sign ext (0x8000, 16);
temp[0] = sign ext(GR[r,]{31:0}, 32);
temp[1l] = sign ext (GR[r,]{63:32}, 32);
temp[2] = sign ext (GR[r3]{31:0}, 32);
temp[3] = sign ext (GR[r3]{63:32}, 32);

for (1 = 0; 1 < 4; i++) {
if (temp[i] > max)
temp[i] = max;

if (temp[i] < min)

temp[i] = min;
}
GR[r;] = concatenate4 (temp([3], temp[2], temp[l], temp[O0]);
}
GR[r;].nat = GR[r,].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

3:196 Volume 3: Instruction Reference

padd

padd — Parallel Add

Format: (gp) paddl ry=ry, r3 one_byte form, modulo_form A9
(gp) paddil.sss ry=ry, r3 one_byte_form, sss_saturation_form A9
(gp) paddi.uus r;=ry, r3 one_byte_form, uus_saturation_form A9
(gp) paddl.uuu ry=ry, rs one_byte_form, uuu_saturation_form A9
(gp) padd2 ry=ry, r3 two_byte form, modulo_form A9
(gp) padd2.sss ry=ry, rs two_byte form, sss_saturation_form A9
(gp) padd2.uus r;=ry, r3 two_byte form, uus_saturation_form A9
(gp) padd2.uuu ry=ry, rs two_byte form, uuu_saturation_form A9
(gp) paddd r;=ry, r3 four_byte_form, modulo_form A9

Description: The sets of elements from the two source operands are added, and the results placed in
GR rq.

If a sum of two elements cannot be represented in the result element and a saturation
completer is specified, then saturation clipping is performed. The saturation can either
be signed or unsigned, as given in Table 2-43. If the sum of two elements is larger than
the upper limit value, the result is the upper limit value. If it is smaller than the lower
limit value, the result is the lower limit value. The saturation limits are given in

Table 2-44.

Table 2-43. Parallel Add Saturation Completers

Completer Result r; treated as Source r, treated as Source rj treated as
SSs signed signed signed
uus unsigned unsigned signed
uuu unsigned unsigned unsigned

Table 2-44. Parallel Add Saturation Limits

Result r; Signed Result r; Unsigned
Size Element Width
Upper Limit Lower Limit Upper Limit Lower Limit
8 bit Ox7f 0x80 Oxff 0x00
2 16 bit Ox7fff 0x8000 Oxffff 0x0000

Figure 2-29. Parallel Add Examples

L

padd2

Volume 3: Instruction Reference 3:197

padd

Operation: if (PRIgpl) {
check target register(r;);

if (one byte form) { // one-byte elements
x[0] = GR[r,]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r,]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r,]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r,]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r,]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r,]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r,] {55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r,]{63:56}; y[7] = GR[r3]{63:56};
if (sss_saturation form) {
max = sign ext (0x7f, 8);
min = sign ext (0x80, 8);
for (1 = 0; 1 < 8; i++) {
temp[i] = sign ext(x[i], 8) + sign ext(y[i], 8);
}
} else if (uus_saturation form) {
max = Oxff;
min = 0x00;
for (1 = 0; 1 < 8; i++) {
temp[i] = zero ext(x[i], 8) + sign ext(y[i], 8);
}
} else if (uuu_saturation form) {
max = 0Oxff;
min = 0x00;
for (1 = 0; 1 < 8; i++) {
temp[i] = zero ext(x[i], 8) + zero ext(yl[i], 8);
}
} else { // modulo form
for (1 = 0; 1 < 8; i++) {
temp[i] = zero ext(x[i], 8) + zero ext(yl[il], 8);
}
}
if (sss_saturation form || uus saturation form ||
uuu_saturation form) {
for (1 = 0; 1 < 8; i++) {
if (temp[i] > max)
temp[i] = max;
if (temp[i] < min)
temp[i] = min;
}
}
GR[r;] = concatenate8(temp[7], temp[6], temp[5], templ[4],

temp[3], temp[2], temp[l], temp[O]);

} else if (two_byte form) ({ // 2-byte elements
x[0] = GR[r,]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r,]{31:16}; yI[1l] GR[r3]{31:16};

3:198 Volume 3: Instruction Reference

= GR[r,]{47:32};
GR[r,]1{63:48};

yl2]
yI[3] =

X
w
Il

if (sss_saturation form) {
= sign ext (0x7fff, 16);
min = sign ext (0x8000, 16);

max

(1 = 0; 1 < 4; i++) {
temp[i] = sign ext (x[i],

for

}
} else if (uus_saturation form)
max = Oxffff;
min = 0x0000;
for (1 = 0; 1 < 4; i++) {
temp[i] = zero ext(x[i],
}
} else if (uuu_saturation form)
max = Oxffff;
min = 0x0000;

(i =0; 1 < 4;
temp[i] =

for i++) |

zero_ext (x[i],
}

} else {
for (1 = 0; 1 < 4; i++) {

temp[i] = zero ext(x[i],

16)

16)

16)

16)

padd

= GR[r3]{47:32};
GR[r3]{63:48};

sign ext(y[i], 16);

sign ext(y[i], 16);

zero_ext(y[i], 16);
// modulo_ form

zero_ext(y[i], 16);

if (sss_saturation form || uus_saturation form ||

uuu_saturation form) {
for (1 = 0; 1 < 4; i++) {
if (temp[i] > max)
temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}
GR[r;] = concatenate4 (temp[3],
} else {
x[0] = GR[r,]1{31:0}; y[0]
x[1] = GR[r,]{63:32};

<
[l
Il

for (1 = 0; 1 < 2;
temp[i] =

i++) {

temp[2],

temp[1l], temp[0]);

// four-byte elements

= GR[r3]{31:0};
GRIr;] {63:32};

// modulo form

zero ext(x[1i], 32) + zero ext(yl[il], 32);

GR[r;] = concatenate2 (temp[l], temp([0]);

GR[r;].nat = GR[r,].nat ||

Volume 3: Instruction Reference

GR[r3] .nat;

3:199

padd

Interruptions: Illegal Operation fault

3:200 Volume 3: Instruction Reference

pavg

pavg — Parallel Average

Format: (gp) pavgl ry=ry r3 normal_form, one_byte_form A9
(gp) pavgl.raz ry=ry rs raz_form, one_byte_form A9
(gp) pavg2 ry=ry, r3 normal_form, two_byte_form A9
(gp) pavg2.raz ry=ry, r3 raz_form, two_byte_form A9

Description: The unsigned data elements of GR r, are added to the unsigned data elements of GR rs.
The results of the add are then each independently shifted to the right by one bit
position. The high-order bits of each element are filled with the carry bits of the sums.
To prevent cumulative round-off errors, an averaging is performed. The unsigned
results are placed in GR r;.

The averaging operation works as follows. In the normal_form, the low-order bit of
each result is set to 1 if at least one of the two least significant bits of the
corresponding sum is 1. In the raz_form, the average rounds away from zero by adding
1 to each of the sums.

Figure 2-30. Parallel Average Example

GRr3:
GR !
Shift Right 1 Bit
with Average in
16-bit Sum Low-order Bit
Plus

Shift Right
1 Bit

GR rq:

Volume 3: Instruction Reference 3:201

pavg

3:202

Figure 2-31. Parallel Average with Round Away from Zero Example

GRrr3:

GR ro:

Shift Right 1 Bit

Shift Right
1 Bit

GR rqy:

pavg2.raz

Volume 3: Instruction Reference

Operation: if (PRIgp]) {

pavg

check target register(r;);

if (one byte form)
x[0] = GR[r,]{7:
x[1] = GR[r,]{15
x[2] = GR[r,]{23:
x[3] = GR[r,]1{31:
x[4] = GR[r,]1{39:
x[5] = GR[r,]{47:
x[6] = GR[r,]{55:
x[7] = GR[r,]{63:

{

if (raz_ form)

for
temp[i] =
res[i] =
}
} else {
for (1 =
temp[i] =
res[i] =
}
}
GR[r;] =
} else {
x[0] = GR[r,]{15
x[1] = GR[r,]{31
x[2] = GR[r,] {47
x[3] = GR[r,]{63

{

if (raz_form)

(1 =0; 1 < 8; i++)

0; 1 < 8; i++)

{

0}s y[0] = GR[r3]{7:0};

:8}; y[1] = GR[r3]{15:8};
16}; y[2] = GR[r3]{23:16};
24}; y[3] = GR[r;3]1{31:24};
32%}; y[4] = GR[r3]1{39:32};
40} ; y[5] = GR[r3]{47:40};
48}; y[6] = GR[r3] {55:48};
561}; y[7] = GR[r3]{63:56};

{
zero _ext (x[i], 8) + zero ext(yl[il],
shift right unsigned(temp([i], 1);

8) + 1;

// normal form
{
zero ext (x[i], 8) + zero ext(yl[il, 8);
shift right unsigned(temp([i], 1) | (temp[i]{0});

concatenate8 (res[7], res[6], res[5], res[4],

res[3], res[2], res[l], res[0]);

// two_byte form

:0}; y[0] = GR[r3]{15:0};
:16}; y[1] = GR[r3]1{31:16};
:32}; y[2] = GR[r3]{47:32};
:481%; y[3] = GR[r3]{63:48};

for (1 = 0; 1 < 4; i++) {
temp[i] = zero ext(x[i], 16) + zero ext(yl[i], 16) + 1;
res[i] = shift right unsigned(temp[i], 1);
}
} else { // normal form
for (1 = 0; i < 4; i++) {
temp[i] = zero ext(x[i], 16) + zero ext(y[i], 16);
res[i] = shift right unsigned(temp[i], 1) | (temp[i]{0});
}
}
GR[r;] = concatenate4 (res[3], res[2], res[l], res[0]);

}
GR[r;].nat = GR[r,].
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference

nat || GR[r3].nat;

3:203

pavgsub

pavgsub — Parallel Average Subtract

Format:

Description:

3:204

(gp) pavgsubl ry=ry r3 one_byte form A9
(gp) pavgsub2 ry =ry, r3 two_byte_form A9

The unsigned data elements of GR r; are subtracted from the unsigned data elements of
GR r,. The results of the subtraction are then each independently shifted to the right by
one bit position. The high-order bits of each element are filled with the borrow bits of
the subtraction (the complements of the ALU carries). To prevent cumulative round-off
errors, an averaging is performed. The low-order bit of each result is set to 1 if at least
one of the two least significant bits of the corresponding difference is 1. The signed
results are placed in GR r,.

Figure 2-32. Parallel Average Subtract Example

GRr3:
I B B
GRry:
Shift Right 1 Bit
with Average in
16-bit leference Low-order Bit
Plus
Carry I
Shift Right
1 Bit
GRrq:
pavgsub2

Volume 3: Instruction Reference

pavgsub

Operation: if (PRIgp]) {
check target register(r;);

if (one byte form) ({

x[0] = GR[r,]{7:0}; y[0] = GR[r3]{7:0};

x[1] = GR[r,]1{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r,]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r,]1{31:24}; y[3] = GR[r3]1{31:24};
x[4] = GR[r,]1{39:32}; y[4] = GR[r3]1{39:32};
x[5] = GR[r,]1{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r,]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r,]1{63:56}; y[7] = GR[r3]{63:56};

for (1 = 0; 1 < 8; i++) {

temp[i] = zero ext(x[i], 8) - zero ext(y[i]l, 8);
res[i] = (temp[i]{8:0} u>> 1) | (temp[i]{0});

}

GR[r;] = concatenate8(res([7], res[6], res[5], res[4],

res[3], res[2], res[l], res[0]);

} else { // two_byte form
x[0] = GR[r,]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r,]1{31:16}; y[1l] = GR[r3]{31:16};
x[2] = GR[r,]1{47:32}; y[2] = GR[r3]1{47:32};
x[3] = GR[r,]{63:48}; y[3] = GR[r3]{63:48};

for (1 = 0; 1 < 4; i++) {

temp[i] = zero ext(x[1i], 16) - zero ext(y[i], 16);
res[i] = (temp[i]{16:0} u>> 1) | (temp[i]{0});
}
GR[r;] = concatenate4d (res[3], res[2], res[l], res[0]);
}
GR[r;].nat = GR[r,].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:205

pcmp

pcmp — Parallel Compare

Format:

Description:

3:206

(gp) pcmp.prel ry=ry, r3 one_byte form A9
(gp) pcmp2.prel ry=ry, r3 two_byte form A9
(gp) pcmpd.prel ry=ry, r3 four_byte form A9

The two source operands are compared for one of the two relations shown in

Table 2-45. If the comparison condition is true for corresponding data elements of GR r,
and GR r;, then the corresponding data element in GR r, is set to all ones. If the
comparison condition is false, then the corresponding data element in GR r, is set to all
zeros. For the '>’ relation, both operands are interpreted as signed.

Table 2-45. Pcmp Relations

prel Compare Relation (r, prel r3)
eq ro==r3
gt ry > r3 (signed)

Figure 2-33. Parallel Compare Examples

pcmp1.gt pcmp2.eq

GRry: Ox(fffffff 0x00000000

pcmp4.eq

Volume 3: Instruction Reference

pcmp

Operation: if (PRIgp]) {
check target register(r;);

if (one byte form) { // one-byte elements
x[0] = GR[r,]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r,]1{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r,]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r,]1{31:24}; y[3] = GR[r3]1{31:24};
x[4] = GR[r,]1{39:32}; y[4] = GR[r3]1{39:32};
x[5] = GR[r,]1{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r,]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r,]1{63:56}; y[7] = GR[r3]{63:56};
for (1 = 0; 1 < 8; i++) {
if (prel == ‘eq’)
tmp rel = x[i] == y[i];

else // ‘gt’
tmp rel = greater signed(sign_ext (x[i], 8),
sign_ext(yl[i], 8));

if (tmp rel)

res[i] = Oxff;
else
res[i] = 0x00;
}
GR[r;] = concatenate8(res([7], res[6], res[5], res[4],
res[3], res[2], res[l], res[0]);
} else if (two byte form) { // two-byte elements
x[0] = GR[r,]{15:0}; 0] = GR[r3]{15:0};
x[1] = GR[r,]{31:16}; 1] = GR[r3]{31:16};

2] = GR
GR

r3] {47:32};
r3]{63:48};

Yy
y
x[2] = GR[r,]1{47:32}; y
x[3] = GR[r,]1{63:48}; y
for (1 = 0; i < 4; i++) {
if (prel == ‘eq’)
tmp rel = x[i] == y[i];
else // ‘gt’
tmp rel = greater signed(sign _ext (x[i], 16),
sign ext(yl[i], 16));

w
fa
Il

if (tmp rel)
res[i] = Oxffff;
else
res[i] = 0x0000;
}

GR[r;] = concatenated (res[3], res[2], res[l], res[0]);
} else { // four-byte elements
x[0] = GR[r,]{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r,]1{63:32}; y[1l] = GR[r3]{63:32};
for (1 = 0; 1 < 2; i++) {
if (prel == ‘eq’)

tmp rel = x[i] == y[i];
else // ‘gt’
tmp rel = greater signed(sign ext (x[i], 32),
sign_ext (y[il, 32));

if (tmp rel)
res[i] = Oxffffffff;

Volume 3: Instruction Reference 3:207

pcmp

else
res[i] = 0x00000000;
}

GR[r;] = concatenate2(res[l], res[0]);
}
GR[r;].nat = GR[r,].nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

3:208 Volume 3: Instruction Reference

pmax

pmax — Parallel Maximum

Format:

Description:

(gp) pmaxt.u ry=ry r3 one_byte_form 12
(gp) pmax2 ry=ry r3 two_byte_form 12

The maximum of the two source operands is placed in the result register. In the
one_byte_form, each unsigned 8-bit element of GR r, is compared with the
corresponding unsigned 8-bit element of GR r; and the greater of the two is placed in
the corresponding 8-bit element of GR r,. In the two_byte_form, each signed 16-bit
element of GR r, is compared with the corresponding signed 16-bit element of GR r; and
the greater of the two is placed in the corresponding 16-bit element of GR r,.

Figure 2-34. Parallel Maximum Examples

GRr3: GRr3:

GRry: GRry:

pmax2

Volume 3: Instruction Reference 3:209

pmax

Operation:

Interruptions:

3:210

if

}

(BR[gp]) |
check target register(r;);

if (one byte form) { // one-byte elements
x[0] = GR[r,]{7:0}; y[0] GR[r3]{7:0};
x[1] = GR[r,]{15:8}; yvI[1] GR[r3]{15:8};
x[2] = GR[r,]{23:16}; vI(2] GR[r3]1{23:16};
x[3] = GR[r,]{31:24}; v (3] GR[r3]{31:24};
x[4] = GR[r,]1{39:32}; y[4] GR[r3]1{39:32};
x[5] = GR[r,]{47:40}; yI[5] GR[r3]1{47:40};
x[6] = GR[r,]{55:48}; yv[6] GR[r3] {55:48};
x[7] = GR[r,]{63:56}; yvI[7] GR[r3]{63:56};
for (1 = 0; 1 < 8; i++) {
res[i] = (zero ext(x[i],8) < zero ext(yl[i],8)) 2 yl[i] : x[i];
}
GR[r;] = concatenate8(res([7], res[6], res[5], resl[4],
res[3], res[2], res[l], res[0]);
} else { // two-byte elements
x[0] GR[r,]{15:0}; v (0] GR[r3]1{15:0};
x[1] = GR[r,]{31:16}; yI[1l] GR[r3]{31:16};
x[2] = GR[r,]{47:32}; yv(2] GR[r3]1{47:32};
x[3] = GR[r,]{63:48}; vI[3] GR[r3] {63:48};
for (1 = 0; 1 < 4; i++) {
res[i] = (sign ext(x[i],16) < sign ext(yl[i],16)) 2 y[i] : x[i];
}
GR[r;] = concatenate4(res[3], res[2], res[l], res[0]);
}
GR[r;].nat = GR[r,].nat || GR[r3].nat;

Illegal Operation fault

Volume 3: Instruction Reference

pmin

pmin — Parallel Minimum

Format:

Description:

(gp) pmint.u ry=ry, rs one_byte_form 12
(gp) pMIN2 ry=ry, r3 two_byte_form 12

The minimum of the two source operands is placed in the result register. In the
one_byte_form, each unsigned 8-bit element of GR r, is compared with the
corresponding unsigned 8-bit element of GR r; and the smaller of the two is placed in
the corresponding 8-bit element of GR r,. In the two_byte_form, each signed 16-bit
element of GR r, is compared with the corresponding signed 16-bit element of GR r; and
the smaller of the two is placed in the corresponding 16-bit element of GR r,.

pmin2

Figure 2-35. Parallel Minimum Examples

GRr3: GRr3:

GRry: GRry:

Volume 3: Instruction Reference 3:211

pmin

Operation: if (PRIgpl) {

check target register(r;);

if (one byte form) { // one-byte elements
x[0] = GR[r,]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r,]{15:8}; y[1l] = GR[r3]{15:8};
x[2] = GR[r,]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r,]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r,]1{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r,]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r,] {55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r,]{63:56}; y[7] = GR[r3]{63:56};
for (1 = 0; 1 < 8; i++) {
res[i] = (zero ext(x[i],8) < zero ext(yl[i],8)) 2 x[i] : y[i]l;
}
GR[r;] = concatenate8(res([7], res[6], res[5], resl[4],
res[3], res[2], res[l], res[0]);
} else { // two-byte elements
x[0] GR[r,]{15:0}; v (0] GR[r3]1{15:0};
x[1] = GR[r,]{31:16}; yI[1l] GR[r3]{31:16};
x[2] = GR[r,]{47:32}; yv(2] GR[r3]1{47:32};
x[3] = GR[r,]{63:48}; vI[3] GR[r3]{63:48};
for (1 = 0; 1 < 4; i++) {
res[i] = (sign ext(x[i],16) < sign ext(y[i],16)) 2 x[i] : y[i];
}
GR[r;] = concatenate4(res[3], res[2], res[l], res[0]);
}
GR[r;].nat = GR[r,].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

3:212 Volume 3: Instruction Reference

pmpy

pmpy — Parallel Multiply

Format: (gp) pmpy2.r ry=ry, rs right_form 12
(gp) pmpy2.l ry=rp 13 left_form 12

Description: Two signed 16-bit data elements of GR r, are multiplied by the corresponding two

signed 16-bit data elements of GR r; as shown in Figure 2-36. The two 32-bit results
are placed in GR r;.

Figure 2-36. Parallel Multiply Operation

GRr3: GRr3:
GRry: GRry:
GRrq: GRry:
pmpy2.1 pmpy2.r
Operation: if (PR[gp]) {

check target register(r;);

if (right form) {
GR[r;]{31:0} = sign ext(GR[r,]{15:0}, 16) *
sign ext (GR[r3] {15:0}, 16);
GR[r;]{63:32} = sign ext (GR[r,]{47:32}, 16) *
sign ext (GR[r3]{47:32}, 16);
} else { // left form
GR[r;]{31:0} = sign ext(GR[r,]{31:16}, 16) *
sign ext (GR[r3]{31:16}, 16);
GR[r;]{63:32} = sign ext (GR[r,]{63:48}, 16) *
sign ext (GR[r3]{63:48}, 16);
}

GR[r;].nat = GR[r,].nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:213

pmpyshr

pmpyshr — Parallel Multiply and Shift Right

Format:

Description:

3:214

(ap) pmpyshr2 ry = ry, rs, count, signed_form 1
(gp) pmpyshr2.u ry = ry, rs, count, unsigned_form 11

The four 16-bit data elements of GR r, are multiplied by the corresponding four 16-bit
data elements of GR r; as shown in Figure 2-37. This multiplication can either be signed
(pmpyshr2), or unsigned (pmpyshr2.u). Each product is then shifted to the right count,
bits, and the least-significant 16-bits of each shifted product form 4 16-bit results,
which are placed in GR r,. A count, of 0 gives the 16 low bits of the results, a count, of 16
gives the 16 high bits of the results. The allowed values for count, are given in

Table 2-46.

Table 2-46. Parallel Multiply and Shift Right Shift Options

count, Selected Bit Field from Each 32-bit Product
0 15:0
7 22:7
15 30:15
16 31:16

Figure 2-37. Parallel Multiply and Shift Right Operation

GR |"3:
16-bit
Source
GRry: Elements
32-bit
Products
Shift Right
count, Bits 16-bit
-bi
GRry: Result
Elements

pmpyshr2

Volume 3: Instruction Reference

Operation: if (PR[gpl) {

pmpyshr

check target register(r;);

x[0] = GR[r,]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r,]1{31:16}; y[1l] = GR[r3]{31:16};
x[2] = GR[r,]1{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r,]1{63:48}; y[3] = GR[r3]{63:48};
for (1 = 0; 1 < 4; i++) {
if (unsigned form) // unsigned multiplication
temp[i] = zero ext(x[i], 16) * zero ext(y[i], 16);
else // signed multiplication
temp[i] = sign ext(x[i], 16) * sign ext(y[i], 16);
res[i] = temp[i]{ (count, + 15) :count,};
}
GR[r;] = concatenate4 (res[3], res[2], res[l], res[0]);

GR[r;].nat = GR[r,].nat

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference

Il GR[r3].nat;

3:215

popcnt

popcnt — Population Count

Format:

Description:

Operation:

Interruptions:

3:216

(gp) popent ry=r3

The number of bits in GR r3 having the value 1 is counted, and the resulting sum is
placed in GR ry.

if

}

(PRIgp]) {
check target register(r;);

res = 0;

// Count up all the one bits

for (1 = 0; 1 < 64; i++) {
res += GR[r3]{i};

}

GR[r;] = res;
GR[r;].nat = GR[r3].nat;

Illegal Operation fault

Volume 3: Instruction Reference

probe

probe — Probe Access

Format:

Description:

(gp) probe.r ry=rs o regular_form, read_form, register_form M38
(gp) probe.w ry=r3 1, regular_form, write_form, register_form M38
(gp) probe.r ry = r3, imm, regular_form, read_form, immediate_form M39
(gp) probe.w r; = r3, imm, regular_form, write_form, immediate_form M39
(gp) probe.r.fault rs, imm, fault_form, read_form, immediate_form M40
(gp) probe.w.fault rs, imm, fault_form, write_form, immediate_form M40
(gp) probe.rw.fault rs, imm, fault_form, read_write_form, immediate_form M40

This instruction determines whether read or write access, with a specified privilege
level, to a given virtual address is permitted. In the regular_form, GR r, is set to 1 if the
specified access is allowed and to 0 otherwise. In the fault_form, if the specified access
is allowed this instruction does nothing; if the specified access is not allowed, a fault is
taken.

When PSR.dt is 1, the DTLB and the VHPT are queried for present translations to
determine if access to the virtual address specified by GR r; bits {60:0} and the region
register indexed by GR r; bits {63:61}, is permitted at the privilege level given by
either GR r, bits{1:03} or imm,. If PSR.pk is 1, protection key checks are also performed.
The read or write form specifies whether the instruction checks for read or write access,
or both.

When PSR.dt is 0, a regular_form probe uses its address operand as a virtual address
to query the DTLB only, because the VHPT walker is disabled. If the probed address is
found in the DTLB, the regular_form probe returns the appropriate value, if not an
Alternate Data TLB fault is raised if psr.ic is 1 or a Data Nested TLB fault is raised if
psr.ic is 0 or in-flight.

When PSR.dt is 0, a fault_form probe treats its address operand as a physical address,
and takes no TLB related faults.

A regular_form probe to an unimplemented virtual address returns 0. A fault_form
probe to an unimplemented virtual address (when PSR.dt is 1) or unimplemented
physical address (when PSR.dt is 0) takes an Unimplemented Data Address fault.

If this instruction faults, then it will set the non-access bit in the ISR and set the ISR
read or write bits depending on the completer. The faults generated by the different
forms of the probe instruction are shown in Table 2-47 below:

Volume 3: Instruction Reference 3:217

probe

3:218

Table 2-47. Faults for regular_form and fault_form Probe Instructions

Probe Form Type

Faults

regular_form

Register NaT Consumption fault
Virtualization fault?

Data Nested TLB fault

Alternate Data TLB fault

VHPT Data fault

Data TLB fault

Data Page Not Present fault

Data NaT Page Consumption fault
Data Key Miss fault

fault_form

Register NaT Consumption fault
Unimplemented Data Address fault
Virtualization fault?

Data Nested TLB fault

Alternate Data TLB fault

VHPT Data fault

Data TLB fault

Data Page Not Present fault

Data NaT Page Consumption fault
Data Key Miss fault

Data Key Permission fault

Data Access Rights fault

Data Dirty Bit fault

Data Access Bit fault

Data Debug fault

a. This instruction may optionally raise Virtualization faults, see Section 11.7.4.2.8, “Probe Instruction
Virtualization” on page 2:344 for details.

This instruction can only probe with equal or lower privilege levels. If the specified
privilege level is higher (lower number), then the probe is performed with the current

privilege level.

When PSR.vm is 1, this instruction may optionally raise Virtualization faults, see
Section 11.7.4.2.8, “Probe Instruction Virtualization” on page 2:344 for details.

Please refer to the Intel® Itanium® Software Conventions and Runtime
Architecture Guide for usage information of the probe instruction.

Volume 3: Instruction Reference

Operation:

Interruptions:

if

}

Illegal Operation fault

Register NaT Consumption fault
Unimplemented Data Address fault
Virtualization fault

Data Nested TLB fault

Alternate Data TLB fault

VHPT Data fault Data Access Bit fault

(PR[gp]) {

itype = NON ACCESS;

itype |= (read write form) ? READ|WRITE : ((write form)
itype |= (faultiform) ? PROBE FAULT : PROBE;

itype |= (register form) ? REGISTER FORM : IMM FORM;

if (!fault form)
check target register(r;);

if (GR[r3].nat || (register form ? GR[r,].nat : 0))
register nat consumption fault (itype);

tmp pl = (register form) ? GR[r,]{1:0} : immy;
if (tmp pl < PSR.cpl)
tmp pl = PSR.cpl;

if (fault form) {

? WRITE

tlb translate(GR[r3], 1, itype, tmp pl, &mattr, &defer);

} else { // regular form
if (impl probe intercept())
check probe virtualization fault(itype, tmp pl);
GR[r;] = tlb grant permission(GR[r3], itype, tmp pl);
GR[r;].nat = 0;

Data Key Miss fault

Data Dirty Bit fault

Data TLB fault Data Debug fault

Volume 3: Instruction Reference

Data Page Not Present fault
Data NaT Page Consumption fault

Data Key Permission fault
Data Access Rights fault

probe

: READ) ;

3:219

psad

psad — Parallel Sum of Absolute Difference

Format:

Description:

3:220

(gp) psadl ry=ryr3 12

The unsigned 8-bit elements of GR r, are subtracted from the unsigned 8-bit elements
of GR r;. The absolute value of each difference is accumulated across the elements and
placed in GR ry.

Figure 2-38. Parallel Sum of Absolute Difference Example

GR rq:

psad1

Volume 3: Instruction Reference

psad

Operation: if (PRIgp]) {
check target register(r;);

x[0] = GR[r,]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r,]1{15:8}; y[1l] = GR[r3]{15:8};
x[2] = GR[r,]1{23:16}; y[2] = GR[r3]1{23:16};
x[3] = GR[r,]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r,]1{39:32}; y[4] = GR[r3]1{39:32};
x[5] = GRI[r,]1{47:40}; y[5] = GR[r3]1{47:40};
x[6] = GR[r,]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r,]1{63:56}; y[7] = GR[r3]{63:56};
GR[r;] = 0;
for (1 = 0; i < 8; 1i++) {

temp[i] = zero ext(x[i], 8) - zero ext(y[i]l, 8);

if (templi] < 0)

temp([i] = -temp[i];

GR[r;] += temp[i];
}
GR[r;].nat = GR[r,].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:221

pshl

pshl — Parallel Shift Left

Format: (gp) pshl2 ry=ry, rg two_byte_form, variable_form 17
(gp) pshl2 r; = r,, counts two_byte form, fixed_form 18
(gp) pshld ry=ry, rs four_byte_form, variable_form 17
(gp) pshl4 ry = r,, counts four_byte form, fixed_form 18

Description: The data elements of GR r, are each independently shifted to the left by the scalar shift
count in GR r;, or in the immediate field counts. The low-order bits of each element are
filled with zeros. The shift count is interpreted as unsigned. Shift counts greater than 15

(for 16-bit quantities) or 31 (for 32-bit quantities) yield all zero results. The results are
placed in GR r;.

Figure 2-39. Parallel Shift Left Examples

GRry: GRry:

Shift Left

GRrq: E E E E GRrq: E E

pshl2 pshi4

Operation: if (PR[gp]) {
check target register(r;);

shift count = (variable form ? GR[r3] : countg);
tmp nat = (variable form ? GR[r3].nat : 0);

if (two byte form) { // two_byte form
if (shift count u> 16)
shift count = 16;
r;1{15:0} = GR[r,]{15:0} << shift count;
r;]{31:16} = GR[r,]{31:16} << shift count;
GR[r;]{47:32} = GR[r,]{47:32} << shift count;
GR[r;]{63:48} = GR[r,]{63:48} << shift count;
} else {
if (shift count u> 32)
shift count = 32;
GR[r;]1{31:0} = GR[r,;]{31:0} << shift count;
GR[r;]1{63:32} = GR[r,]{63:32} << shift count;

GR
GR

// four byte form

}

GR[r;].nat = GR[r,].nat || tmp nat;
}

Interruptions: Illegal Operation fault

3:222 Volume 3: Instruction Reference

pshladd

pshladd — Parallel Shift Left and Add

Format:

Description:

Operation:

Interruptions:

(gp) pshladd2 r; = r,, count,, ry A10

The four signed 16-bit data elements of GR r, are each independently shifted to the left
by count, bits (shifting zeros into the low-order bits), and added to the four signed
16-bit data elements of GR r;. Both the left shift and the add operations are saturating:
if the result of either the shift or the add is not representable as a signed 16-bit value,
the final result is saturated. The four signed 16-bit results are placed in GR r,;. The first
operand can be shifted by 1, 2 or 3 bits.

if (PR[gpl) {
check target register(r;);

x[0] = GR[r,]1{15:0}; y[0] = GR[r3]{15:0};

x[1] = GR[r,]1{31:16}; y[1l] = GR[r3]{31:16};
x[2] = GR[r,]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r,]1{63:48}; y[3] = GR[r3]{63:48};

max = sign ext (0x7fff, 16);
sign ext (0x8000, 16);

=
a2
=]

Il

for (i = 0; i < 4; i++) {
temp[i] = sign ext(x[1i], 16) << county;

if (temp[i] > max)

res[i] = max;
else if (temp[i] < min)
res[i] = min;
else {
res[i] temp[i] + sign ext(y[i], 16);

if (res[i] > max)

res[i] = max;
if (res[i] < min)
res[i] = min;
}
}
GR[r;] = concatenated (res[3], res[2], res[l], res[0]);
GR[r;].nat = GR[r,].nat || GR[r3].nat;

}
Illegal Operation fault

Volume 3: Instruction Reference 3:223

pshr

pshr — Parallel Shift Right

Format:

Description:

3:224

gp) pshr2 ry=rsry

gp) pshr2 ry = rs counts
gp) pshr2.u ry=r3 o

gp) pshr2.u r; =r3 counts
gp) pshrd ry=rs r,

gp) pshréd ry; = rs counts
gp) pshrd.u ry=r3 o

gp) pshrd.u r; =rs counts

(
(
(
(
(
(
(
(

signed_form, two_byte form, variable_form 15
signed_form, two_byte form, fixed_form 16
unsigned_form, two_byte form, variable_form 15
unsigned_form, two_byte_form, fixed_form 16
signed_form, four_byte form, variable_form 15
signed_form, four_byte_form, fixed_form 16
unsigned_form, four_byte form, variable_form 15
unsigned_form, four_byte form, fixed_form 16

The data elements of GR r; are each independently shifted to the right by the scalar
shift count in GR r,, or in the immediate field counts. The high-order bits of each
element are filled with either the initial value of the sign bits of the data elements in GR
ry (arithmetic shift) or zeros (logical shift). The shift count is interpreted as unsigned.
Shift counts greater than 15 (for 16-bit quantities) or 31 (for 32-bit quantities) yield all
zero or all one results depending on the initial values of the sign bits of the data
elements in GR r; and whether a signed or unsigned shift is done. The results are placed

in GR r,.

Volume 3: Instruction Reference

pshr

Operation: if (PRIgp]) {
check target register(r;);

shift count = (variable form ? GR[r,] : counts);
tmp nat = (variable form ? GR[r,].nat : 0);
if (two byte form) { // two byte form

if (shift count u> 16)
shift count = 16;
if (unsigned form) { // unsigned shift
GR[r;]{15:0} = shift right unsigned(zero ext (GR[r3]{15:0}, 16),
shift count);
shift right unsigned(zero ext (GR[r3]{31:16}, 16),
shift count);
GR[r;]{47:32} = shift right unsigned(zero ext (GR[r3]{47:32}, 16),
shift count);
GR[r;]{63:48} = shift right unsigned(zero ext (GR[r3]{63:48}, 16),
shift count);
} else { // signed shift
GR[r;]{15:0} = shift right signed(sign ext (GR[r3] {15:0}, 16),
shift count);
GR[r;]{31:16} = shift right signed(sign ext (GR[r3] {31:16}, 16),
shift count);
GR[r;]{47:32} = shift right signed(sign ext (GR[r3] {47:32}, 16),
shift count);
GR[r;]{63:48} = shift right signed(sign ext (GR[r3] {63:48}, 16),
shift count);

GR[r;1{31:16}

}
} else { // four byte form
if (shift count > 32)
shift count = 32;
if (unsigned form) { // unsigned shift
GR[r;]1{31:0} shift right unsigned(zero ext (GR[r3]{31:0}, 32),
shift count);
shift right unsigned(zero ext (GR[r3]{63:32}, 32),
shift count);
} else { // signed shift
GR[r;]1{31:0} shift right signed(sign ext (GR[r3]{31:0}, 32),
shift count);
shift right signed(sign ext (GR[r3] {63:32}, 32),
shift count);

GR[r;]{63:32)

GR[r;]{63:32}

GR[r;].nat = GR[r3].nat || tmp nat;
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:225

pshradd

pshradd — Parallel Shift Right and Add

(gp) pshradd2 ry =r,, count,, rg A10

Format:

Description:

Operation:

Interruptions:

3:226

The four signed 16-bit data elements of GR r, are each independently shifted to the
right by count, bits, and added to the four signed 16-bit data elements of GR r;. The
right shift operation fills the high-order bits of each element with the initial value of the
sign bits of the data elements in GR r,. The add operation is performed with signed
saturation. The four signed 16-bit results of the add are placed in GR r,. The first
operand can be shifted by 1, 2 or 3 bits.

if

}

(PRIgp]) {
check target register(r;);

x[0] = GR[r,]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r,]{31:16}; y[1l] = GR[r3]{31:16};
x[2] = GR[r,]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r,]{63:48}; y[3] = GR[r3]{63:48};
max = sign ext (0x7fff, 16);

min = sign ext (0x8000, 16);

for (i = 0; i < 4; i++) {

temp[i] = shift right signed(sign_ext(x[i], 16), count,);

res[i] = temp[i] + sign ext(y[i], 16);
if (res[i] > max)

res[i] = max;
if (res[i] < min)

res[i] = min;
}
GR[r;] = concatenate4(res[3], res[2], res[l], res[0]);
GR[r;].nat = GR[r,].nat || GR[r3].nat;

Illegal Operation fault

Volume 3: Instruction Reference

psub

psub — Parallel Subtract

Format:

Description:

Volume 3: Instruction Reference

(gp) psub1 r;=ry r3 one_byte form, modulo_form A9
(gp) psubl.sss ry=ry r3 one_byte_form, sss_saturation_form A9
(gp) psubl.uus ry=ry, r3 one_byte_form, uus_saturation_form A9
(gp) psubl.uuu r;=ry, r3 one_byte_form, uuu_saturation_form A9
(gp) psub2 ry=ry r3 two_byte form, modulo_form A9
(gp) psub2.sss ry=ry, r3 two_byte form, sss_saturation_form A9
(gp) psub2.uus ry=ry, rs two_byte form, uus_saturation_form A9
(gp) psub2.uuu r;=ry, r3 two_byte form, uuu_saturation_form A9
(gp) psubd r;=ry r3 four_byte_form, modulo_form A9

The sets of elements from the two source operands are subtracted, and the results
placed in GR r;.

If the difference between two elements cannot be represented in the result element
and a saturation completer is specified, then saturation clipping is performed. The
saturation can either be signed or unsigned, as given in Table 2-48. If the difference of
two elements is larger than the upper limit value, the result is the upper limit value. If
it is smaller than the lower limit value, the result is the lower limit value. The saturation
limits are given in Table 2-49.

Table 2-48. Parallel Subtract Saturation Completers
Completer Result r; treated as Source r, treated as Source r; treated as
SSS signed signed signed
uus unsigned unsigned signed
uuu unsigned unsigned unsigned
Table 2-49. Parallel Subtract Saturation Limits
Result r; Signed Result r; Unsigned
Size Element Width
Upper Limit Lower Limit Upper Limit Lower Limit
8 bit Ox7f 0x80 Oxff 0x00
2 16 bit Ox7fff 0x8000 Oxffff 0x0000

Figure 2-40. Parallel Subtract Examples

L

psub2

3:227

psub

Operation: if (PRIgpl) {
check target register(r;);

if (one byte form) { // one-byte elements
x[0] = GR[r,]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r,]1{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r,]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r,]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r,] {39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r,]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r,]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r,]{63:56}; y[7] = GR[r3]{63:56};
if (sss_saturation form) { // sss_saturation form
max = sign ext (0x7f, 8);
min = sign ext (0x80, 8);
for (1 = 0; 1 < 8; i++) {
temp[i] = sign ext(x[i], 8) - sign ext(y[i], 8);
}
} else if (uus saturation form) ({ // uus_saturation form
max = 0xff;
min = 0x00;
for (i = 0; i < 8; i++) {
temp[i] = zero ext(x[i], 8) - sign ext(y[i], 8);
}
} else if (uuu_saturation form) { // uuu_saturation form
max = 0xff;
min = 0x00;
for (1 = 0; 1 < 8; i++) {
temp[i] = zero ext(x[i], 8) - zero ext(yl[i], 8);
}
} else { // modulo form
for (1 = 0; 1 < 8; i++) {
temp([i] = zero ext(x[i], 8) - zero ext(y[i], 8);
}
}
if (sss_saturation form || uus saturation form ||
uuu_saturation form) {
for (1 = 0; 1 < 8; i++) {
if (temp[i] > max)
temp[i] = max;
if (temp[i] < min)
temp[i] = min;
}
}
GR[r;] = concatenate8(temp[7], temp[6], temp[5], templ[4],
temp[3], temp([2], temp[l], temp[0]);
} else if (two_byte form) ({ // two-byte elements
x[0] = GR[r,]{15:0}; y[0] = GR[r3]{15:0};
x[1] GR[r,]{31:16}; y[1l] = GR[r3]{31:16};
x[2] = GR[r,]1{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r,]{63:48}; y[3] = GR[r3]{63:48};
if (sss_saturation form) { // sss_saturation form

3:228 Volume 3: Instruction Reference

psub

max = sign ext (Ox7fff, 16);
min = sign ext (0x8000, 16);
for (1 = 0; i < 4; i++) |
temp[i] = sign ext(x[i], 16) - sign ext(y[i], 16);
}
} else if (uus_saturation form) { // uus_saturation form
max = Oxffff;
min = 0x0000;
for (1 = 0; i < 4; i++) {
temp[i] = zero ext(x[i], 16) - sign ext(y[i], 16);
}
} else if (uuu_saturation form) { // uuu_saturation form
max = Oxffff;
min = 0x0000;
for (1 = 0; 1 < 4; i++) {

temp[i] = zero ext(x[1i], 16) - zero ext(y[i], 16);
}
} else { // modulo_ form
for (1 = 0; 1 < 4; i++) {
temp[i] = zero_ext(x[i], lo) - zero_ext(y[i], 16);
}
}
if (sss_saturation form || uus_saturation form ||

uuu_saturation form) {
for (1 = 0; 1 < 4; i++) {
if (temp[i] > max)

temp[i] = max;
if (temp[i] < min)
temp[i] = min;
}
}
GR[r;] = concatenate4 (temp[3], temp[2], temp[l], temp[O0]);
} else { // four-byte elements
x[0] = GR[r,]{31:0}; y[0] = GR[r3]{31:0};

x[1] = GR[r,]1{63:32}; y[1] = GR[r3]{63:32};

for (1 = 0; 1 < 2; 1i++) { // modulo form
temp[i] = zero ext(x[1i], 32) - zero ext(y[i], 32);
}
GR[r;] = concatenate2(temp[l], temp([O0]);
}
GR[r;].nat = GR[r,].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:229

ptc.e

ptc.e — Purge Translation Cache Entry

Format:

Description:

Operation:

Interruptions:

Serialization:

3:230

(gp) ptc.e r3 m47

One or more translation entries are purged from the local processor’s instruction and
data translation cache. Translation Registers and the VHPT are not modified.

The number of translation cache entries purged is implementation specific. Some
implementations may purge all levels of the translation cache hierarchy with one
iteration of PTC.e, while other implementations may require several iterations to flush
all levels, sets and associativities of both instruction and data translation caches. GR r3
specifies an implementation-specific parameter associated with each iteration.

The following loop is defined to flush the entire translation cache for all processor
models. Software can acquire parameters through a processor dependent layer that is
accessed through a procedural interface. The selected region registers must remain
unchanged during the loop.

disable interrupts();
addr = base;
for (1 = 0; i < countl; i++) {
for (j = 0; j < count2; Jj++) {
ptc.e(addr);
addr += stride2;

}
addr += stridel;

}

enable interrupts();

This instruction can only be executed at the most privileged level, and when PSR.vm is
0.

if (PR[gp]) {
if (PSR.cpl !'= 0)
privileged operation fault (0);
if (GR[r3].nat)
register nat consumption fault(0);
if (PSR.vm == 1)
virtualization fault();
tlb purge translation cache(GR[r3]);
}

Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Software must issue a data serialization operation to ensure the purge is complete
before issuing a data access or non-access reference dependent upon the purge.
Software must issue instruction serialize operation before fetching an instruction
dependent upon the purge.

Volume 3: Instruction Reference

ptc.g, ptc.ga

ptc.g, ptc.ga — Purge Global Translation Cache

Format:

Description:

(gp) ptc.g rs rp global_form M45
(ap) ptc.ga rs, r global_alat_ form M45

The instruction and data translation cache for each processor in the local TLB coherence
domain are searched for all entries whose virtual address and page size partially or
completely overlap the specified purge virtual address and purge address range. These
entries are removed.

The purge virtual address is specified by GR r; bits{60:0} and the purge region
identifier is selected by GR r; bits {63:61%}. GR r, specifies the address range of the
purge as 1<<GR[r,]{7:2} bytes in size. See Section 4.1.1.7, “Page Sizes” on page 2:57
for details on supported page sizes for TLB purges.

Based on the processor model, the translation cache may be also purged of more
translations than specified by the purge parameters up to and including removal of all
entries within the translation cache.

ptc.g has release semantics and is guaranteed to be made visible after all previous
data memory accesses are made visible. Serialization is still required to observe the
side-effects of a translation being removed. If it is desired that the ptc.g become
visible before any subsequent data memory accesses are made visible, a memory fence
instruction (mf) should be executed immediately following the ptc.g.

ptc.g must be the last instruction in an instruction group; otherwise, its behavior
(including its ordering semantics) is undefined.

The behavior of the ptc.ga instruction is similar to ptc.qg. In addition to the behavior
specified for ptc.g the ptc.ga instruction encodes an extra bit of information in the
broadcast transaction. This information specifies the purge is due to a page remapping
as opposed to a protection change or page tear down. The remote processors within the
coherence domain will then take what ever additional action is necessary to make their
ALAT consistent. Matching entries in the local ALAT are optionally invalidated; software
must perform a local ALAT invalidation via the invala instruction on the processor
issuing the ptc.ga to ensure the local ALAT is coherent.

This instruction can only be executed at the most privileged level, and when PSR.vm is
0.

Unless specifically supported by the processors and platform, only one global purge
transaction may be issued at a time by all processors, the operation is undefined
otherwise. Software is responsible for enforcing this restriction. Implementations may
optionally support multiple concurrent global purge transactions. The firmware returns
if implementations support this optional behavior. It also returns the maximum number
of simultaneous outstanding purges allowed.

Propagation of ptc.g between multiple local TLB coherence domains is platform
dependent, and must be handled by software. It is expected that the local TLB
coherence domain covers at least the processors on the same local bus.

Volume 3: Instruction Reference 3:231

ptc.g, ptc.ga

Operation:

Interruptions:

Serialization:

3:232

if

}

Machine Check abort
Privileged Operation fault

(PR[gp]) A
if (!followed by stop())
undefined behavior();
if (PSR.cpl !'= 0)
privileged operation fault (0);
if (GR[r3].nat || GR[r,].nat)
register nat consumption fault(0);
if (unimplemented virtual address(GR[r3], PSR.vm))

if

unimplemented data address fault(0);
(PSR.vm == 1)
virtualization fault();

tmp rid = RR[GR[r3]{63:61}].rid;
tmp va = GR[r3]{60:0};
tmp size = GR[r,]{7:2};

tmp va = align to size boundary(tmp va, tmp size);

tlb must purge dtc entries(tmp rid, tmp va, tmp size);
tlb must purge itc entries(tmp rid, tmp va, tmp size);

if (global alat form) tmp ptc type = GLOBAL ALAT FORM;
else tmp ptc type = GLOBAL FORM;

tlb broadcast purge (tmp rid, tmp va, tmp size, tmp ptc type);

Register NaT Consumption fault

Unimplemented Data Address fault
Virtualization fault

The broadcast purge TC is not synchronized with the instruction stream on a remote
processor. Software cannot depend on any such synchronization with the instruction
stream. Hardware on the remote machine cannot reload an instruction from memory or
cache after acknowledging a broadcast purge TC without first retranslating the I-side
access in the TLB. Hardware may continue to use a valid private copy of the instruction
stream data (possibly in an I-buffer) obtained prior to acknowledging a broadcast purge
TC to a page containing the i-stream data. Hardware must retranslate access to an
instruction page upon an interruption or any explicit or implicit instruction serialization
event (e.g., srlz.i, rfi).

Software must issue the appropriate data and/or instruction serialization operation to
ensure the purge is completed before a local data access, non-access reference, or local

instruction fetch access dependent upon the purge.

Volume 3: Instruction Reference

ptc.l

ptc.l — Purge Local Translation Cache

Format:

Description:

Operation:

Interruptions:

Serialization:

(gp) ptc.l rs ry M45

The instruction and data translation cache of the local processor is searched for all
entries whose virtual address and page size partially or completely overlap the specified
purge virtual address and purge address range. All these entries are removed.

The purge virtual address is specified by GR r; bits{60:0} and the purge region
identifier is selected by GR r; bits {63:61}. GR r, specifies the address range of the
purge as 1<<GR[r,]{7:2} bytes in size. See Section 4.1.1.7, “Page Sizes” on page 2:57
for details on supported page sizes for TLB purges.

The processor ensures that all entries matching the purging parameters are removed.
However, based on the processor model, the translation cache may be also purged of
more translations than specified by the purge parameters up to and including removal
of all entries within the translation cache.

This instruction can only be executed at the most privileged level, and when PSR.vm is
0.

This is a local operation, no purge broadcast to other processors occurs in a
multiprocessor system. This instruction ensures that all prior stores are made locally
visible before the actual purge operation is performed.

if (PR[gp]l) A

if (PSR.cpl != 0)
privileged operation fault(0);
if (GR[r3].nat || GR[r,].nat)

register nat consumption fault (0);

if (unimplemented virtual address(GR[r3], PSR.vm))
unimplemented data address fault (0);

if (PSR.vm == 1)
virtualization fault();

tmp rid = RR[GR[r3]{63:61}].rid;

tmp va = GR[r3]{60:0};

tmp size = GR[r,]{7:2};

tmp va = align to size boundary(tmp va, tmp size);
tlb must purge dtc entries(tmp rid, tmp va, tmp size);
tlb must purge itc entries(tmp rid, tmp va, tmp size);

}

Machine Check abort Unimplemented Data Address fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Software must issue the appropriate data and/or instruction serialization operation to
ensure the purge is completed before a data access, non-access reference, or
instruction fetch access dependent upon the purge.

Volume 3: Instruction Reference 3:233

ptr

ptr — Purge Translation Register

Format:

Description:

3:234

(ap) ptrd r3rp data_form M45
(ap) ptri r3 ro instruction_form M45

In the data form of this instruction, the data translation registers and caches are
searched for all entries whose virtual address and page size partially or completely
overlap the specified purge virtual address and purge address range. All these entries
are removed. Entries in the instruction translation registers are unaffected by the data
form of the purge.

In the instruction form, the instruction translation registers and caches are searched for
all entries whose virtual address and page size partially or completely overlap the
specified purge virtual address and purge address range. All these entries are removed.
Entries in the data translation registers are unaffected by the instruction form of the
purge.

In addition, in both forms, the instruction and data translation cache may be purged of
more translations than specified by the purge parameters up to and including removal
of all entries within the translation cache.

The purge virtual address is specified by GR r; bits{60:0} and the purge region
identifier is selected by GR r; bits {63:61}. GR r, specifies the address range of the
purge as 1<<GR[r,]{7:2} bytes in size. See Section 4.1.1.7, “Page Sizes” on page 2:57
for details on supported page sizes for TLB purges.

This instruction can only be executed at the most privileged level, and when PSR.vm is
0.

This is a local operation, no purge broadcast to other processors occurs in a
multiprocessor system.

As described in Section 4.1.1.2, “Translation Cache (TC)” on page 2:49, the processor
may use the translation caches to cache virtual address mappings held by translation
registers. The ptr.i and ptr.d instructions purge the processor’s translation registers
as well as cached translation register copies that may be contained in the respective
translation caches.

Volume 3: Instruction Reference

ptr

Operation: if (PR[gpl) {
if (PSR.cpl != 0)
privileged operation fault(0);
if (GR[r3].nat || GR[r,].nat)

register nat consumption fault (0);

if (unimplemented virtual address(GR[r3], PSR.vm))
unimplemented data address fault (0);

if (PSR.vm == 1)
virtualization fault();

tmp rid = RR[GR[r3] {63:61}].rid;

tmp va = GR[r3]{60:0};

tmp size = GR[r,]{7:2};

tmp va = align to size boundary(tmp va, tmp size);

if (data form) {
tlb must purge dtr entries(tmp rid, tmp va, tmp size);
tlb must purge dtc entries(tmp rid, tmp va, tmp size);
tlb may purge itc entries(tmp rid, tmp va, tmp size);
} else { // instruction form
tlb must purge itr entries(tmp rid, tmp va, tmp size);
tlb must purge itc entries(tmp rid, tmp va, tmp size);
tlb may purge dtc entries(tmp rid, tmp va, tmp size);

}

Interruptions: Privileged Operation fault Unimplemented Data Address fault
Register NaT Consumption fault Virtualization fault

Serialization: For the data form, software must issue a data serialization operation to ensure the
purge is completed before issuing an instruction dependent upon the purge. For the
instruction form, software must issue an instruction serialization operation to ensure
the purge is completed before fetching an instruction dependent on that purge.

Volume 3: Instruction Reference 3:235

rfi

rfi — Return From Interruption

Format:

Description:

3:236

rfi B8

The machine context prior to an interruption is restored. PSR is restored from IPSR,
IPSR is unmodified, and IP is restored from IIP. Execution continues at the bundle
address loaded into the IP, and the instruction slot loaded into PSR.ri.

This instruction must be immediately followed by a stop; otherwise, operation is
undefined. This instruction switches to the register bank specified by IPSR.bn.
Instructions in the same instruction group that access GR16 to GR31 reference the
previous register bank. Subsequent instruction groups reference the new register bank.

This instruction performs instruction serialization, which ensures:

e prior modifications to processor register resources that affect fetching of
subsequent instruction groups are observed.

e prior modifications to processor register resources that affect subsequent execution
or data memory accesses are observed.

e prior memory synchronization (sync.i) operations have taken effect on the local
processor instruction cache.

e subsequent instruction group fetches (including the target instruction group) are
re-initiated after rfi completes.

The rfi instruction must be in an instruction group after the instruction group
containing the operation that is to be serialized.

This instruction can only be executed at the most privileged level, and when PSR.vm is
0. This instruction can not be predicated.

Execution of this instruction is undefined if PSR.ic or PSR.i are 1. Software must ensure
that an interruption cannot occur that could modify IIP, IPSR, or IFS between when
they are written and the subsequent rfi.

Execution of this instruction is undefined if IPSR.ic is 0 and the current register stack
frame is incomplete.

This instruction does not take Lower Privilege Transfer, Taken Branch or Single Step
traps.

If this instruction sets PSR.ri to 2 and the target is an MLX bundle, then an Illegal
Operation fault will be taken on the target bundle.

If IPSR.is is 1, control is resumed in the IA-32 instruction set at the virtual linear
address specified by IIP{31:0}. PSR.di does not inhibit instruction set transitions for
this instruction. If PSR.dfh is 1 after rfi completes execution, a Disabled FP Register
fault is raised on the target IA-32 instruction.

If IPSR.is is 1 and an Unimplemented Instruction Address trap is taken, IIP will contain
the original 64-bit target IP. (The value will not have been zero extended from 32 bits.)

When entering the IA-32 instruction set, the size of the current stack frame is set to
zero, and all stacked general registers are left in an undefined state. Software can not
rely on the value of these registers across an instruction set transition. Software must
ensure that BSPSTORE==BSP on entry to the IA-32 instruction set, otherwise
undefined behavior may result.

Volume 3: Instruction Reference

rfi

If IPSR.is is 1, software must set other IPSR fields properly for IA-32 instruction set
execution; otherwise processor operation is undefined. See Table 3-2, “Processor
Status Register Fields” on page 2:24 for details.

Software must issue a mf instruction before this instruction if memory ordering is
required between IA-32 processor-consistent and Itanium unordered memory
references. The processor does not ensure Itanium-instruction-set-generated writes
into the instruction stream are seen by subsequent IA-32 instructions.

Software must ensure the code segment descriptor and selector are loaded before
issuing this instruction. If the target EIP value exceeds the code segment limit or has a
code segment privilege violation, an IA_32_Exception(GPFault) exception is raised on
the target IA-32 instruction. For entry into 16-bit IA-32 code, if IIP is not within
64K-bytes of CSD.base a GPFault is raised on the target instruction.

EFLAG.rf and PSR.id are unmodified until the successful completion of the target IA-32
instruction. PSR.da, PSR.dd, PSR.ia and PSR.ed are cleared to zero before the target
IA-32 instruction begins execution.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software can
not rely on ALAT state across an instruction set transition. On entry to IA-32 code,
existing entries in the ALAT are ignored.

Operation: if (!followed by stop())
undefined behavior();

unimplemented address = 0;
if (PSR.cpl != 0)

privileged operation fault(0);

if (PSR.vm == 1)
virtualization fault();

taken rfi = 1;

PSR = CR[IPSR];

if (CR[IPSR].is == 1) { //resume IA-32 instruction set
if (CR[IPSR].ic == || CR[IPSR].dt == |
CR[IPSR].mc == || CR[IPSR].it == 0)

undefined behavior();
tmp IP = CR[IIP];
if (!impl uia fault supported() &&
((CR[IPSR].it && unimplemented virtual address(tmp IP, IPSR.vm))
[l (!CR[IPSR].it && unimplemented physical address(tmp IP))))
unimplemented address = 1;
//compute effective instruction pointer
EIP{31:0} = CR[IIP]{31:0} - AR[CSD] .Base;
//force zero-sized restored frame
rse restore frame(0, 0, CFM.sof);
CFM.sof = 0;
CFM.sol = 0;
CFM.sor = 0;

CFEM.rrb.gr 0;
CFEM.rrb.fr = 0;
CFM.rrb.pr = 0;

rse invalidate non current regs();
//The register stack engine is disabled during IA-32

Volume 3: Instruction Reference 3:237

Interruptions:

Serialization:

3:238

//instruction set execution.
} else { //return to Itanium instruction set
tmp IP = CR[IIP] & ~Oxf;
slot = CR[IPSR].ri;
if ((CR[IPSR].it && unimplemented virtual address(tmp IP, IPSR.vm))
[l (!CR[IPSR].it && unimplemented physical address(tmp IP)))
unimplemented address = 1;
if (CR[IFS].v) {
tmp growth = -CFM.sof;
alat frame update (-CR[IFS].ifm.sof, 0);
rse restore frame (CR[IFS].ifm.sof, tmp growth, CFM.sof);
CFM = CR[IFS].ifm;
}
rse enable current frame load();
}
IP = tmp TIP;
instruction serialize();
if (unimplemented address)
unimplemented instruction address trap(0, tmp IP);

Privileged Operation fault Unimplemented Instruction Address trap
Virtualization fault

Additional Faults on IA-32 target instructions

IA_32_Exception(GPFault)
Disabled FP Reg Fault if PSR.dfh is 1

An implicit instruction and data serialization operation is performed.

Volume 3: Instruction Reference

rsm

rsm — Reset System Mask

Format:

Description:

Operation:

(gp) rsm immyy, M44

The complement of the imm,, operand is ANDed with the system mask (PSR{23:0}) and
the result is placed in the system mask. See Section 3.3.2, “Processor Status Register
(PSR)” on page 2:23.

The PSR system mask can only be written at the most privileged level, and when
PSR.vm is 0.

When the current privilege level is zero (PSR.cpl is 0), an rsm instruction whose mask
includes PSR.i may cause external interrupts to be disabled for an
implementation-dependent number of instructions, even if the qualifying predicate for
the rsm instruction is false. Architecturally, the extents of this external interrupt
disabling “window” are defined as follows:

e External interrupts may be disabled for any instructions in the same instruction
group as the rsm, including those that precede the rsm in sequential program order,
regardless of the value of the qualifying predicate of the rsm instruction.

¢ If the qualifying predicate of the rsm is true, then external interrupts are disabled
immediately following the rsm instruction.

¢ If the qualifying predicate of the rsm is false, then external interrupts may be
disabled until the next data serialization operation that follows the rsm instruction.

The external interrupt disable window is guaranteed to be no larger than defined by the
above criteria, but it may be smaller, depending on the processor implementation.

When the current privilege level is non-zero (PSR.cpl is not 0), an rsm instruction whose
mask includes PSR.i may briefly disable external interrupts, regardless of the value of
the qualifying predicate of the rsm instruction. However, processor implementations
guarantee that non-privileged code cannot lock out external interrupts indefinitely
(e.g., via an arbitrarily long sequence of rsm instructions with zero-valued qualifying
predicates).

if (PR[gp]) |
if (PSR.cpl != 0)
privileged operation fault (0);

if (is_reserved field (PSR TYPE, PSR SM, immy,))
reserved register field fault();

if (PSR.vm == 1)
virtualization fault();

if (immy,{1}) PSR{1} = 0;) // be
1f (immpyu{2}) PSR{2} = 0;) // up
if (immyyu{3}) PSR{3} = 0;) // ac
if (immy,{4}) PSR{4} = 0;) // mfl
if (immyy{5}) PSR{5} = 0;) // mfh
if (immy,{13}) PSR{13} = 0;) // ic
if (immy,{14}) PSR{14} = 07) // i
if (imm,,{15}) PSR{15} = 0;) // pk
if (immy,{17}) PSR{17} = 0;) // dt
if (imm,,{18}) PSR{18} = 0;) // dfl
if (immy,{19}) PSR{19} = 0;) // dfh
if (immy,{20}) PSR{20} = 0;) // sp

Volume 3: Instruction Reference 3:239

rsm

if (immy,{21}) PSR{21} = 0;) // pp
if (imm,,{22}) PSR{22} = 0;) // di
if (imm,,{23}) PSR{23} = 0;) // si
}
Interruptions: Privileged Operation fault Virtualization fault

Reserved Register/Field fault

Serialization: Software must use a data serialize or instruction serialize operation before issuing
instructions dependent upon the altered PSR bits — except the PSR.i bit. The PSR.i bit is
implicitly serialized and the processor ensures that external interrupts are masked by

the time the next instruction executes.

3:240 Volume 3: Instruction Reference

rum

rum — Reset User Mask

Format:

Description:

Operation:

Interruptions:

Serialization:

(gp) rum immyy M44

The complement of the imm,, operand is ANDed with the user mask (PSR{5:0}) and the
result is placed in the user mask. See Section 3.3.2, “Processor Status Register (PSR)”
on page 2:23.

PSR.up is only cleared if the secure performance monitor bit (PSR.sp) is zero.
Otherwise PSR.up is not modified.

if (PR[gp]l) {

if

if
if

if

if

if
}

(is reserved field (PSR TYPE, PSR UM, immy,))
reserved register field fault();

(immy,{1}) PSR{1} = 0;) // be

(imm,4{2} && PSR.sp == 0) //non-secure perf monitor
PSR{2} = 0;) // up

(immy,{3}) PSR{3} = 0;) // ac

(immyy(4}) PSR{4} = 0;) // mfl

(immyy{5}) PSR{5} = 0;) // mfh

Reserved Register/Field fault

All user mask modifications are observed by the next instruction group.

Volume 3: Instruction Reference 3:241

setf

setf — Set Floating-point Value, Exponent, or Significand

Format:

Description:

3:242

(gp) setfs f,=r, single_form M18
(gp) setf.d f1=rs double_form M18
(gp) setf.exp f;=r, exponent_form M18
(gp) setf.sig f;=r, significand_form M18

In the single and double forms, GR r» is treated as a single precision (in the
single_form) or double precision (in the double_form) memory representation,
converted into floating-point register format, and placed in FR f;, as shown in Figure 5-4
and Figure 5-5 on page 1:93, respectively.

In the exponent_form, bits 16:0 of GR r, are copied to the exponent field of FR 7; and bit
17 of GR r; is copied to the sign bit of FR f;. The significand field of FR f; is set to one
(0x800...000).

Figure 2-41. Function of setf.exp

63 18 17 0
GR rq
FRf; |s|exponent| 1000 S 000

In the significand_form, the value in GR r, is copied to the significand field of FR f,.

The exponent field of FR f, is set to the biased exponent for 2.0%3 (0x1003E) and the
sign field of FR f, is set to positive (0).

Figure 2-42. Function of setf.sig

63 0

GRr1

.

FRf; |0 Ox1003E significand

For all forms, if the NaT bit corresponding to r, is equal to 1, FR 7, is set to NaTVal
instead of the computed result.

Volume 3: Instruction Reference

setf

Operation: if (PR[gpl) |
fp check target register(f;);
if (tmp isrcode = fp reqg disabled(f;, 0, 0, 0))
disabled fp register fault (tmp isrcode, O0);

if (!GR[r,].nat) {
if (single form)
FR[f;] = fp mem to fr format (GR[r,], 4, 0);
else if (double form)
FR[f;] = fp mem to fr format (GR[r,], 8, 0);
else if (significand form) {
1
]
1

FR[f;] .significand = GR[r,];
FR[f;] .exponent = FP INTEGER EXP;
FR[f;].sign = 0;

} else { // exponent form
FR[fl] .significand = 0x8000000000000000;
FR[fl].exp = GR[r2]{16:0};
FR[fl].sign = GR[r2]{17};
}
} else
FR[f;] = NATVAL;

fp update psr(f;);
}

Interruptions: Illegal Operation fault Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:243

shi

shl — Shift Left

Format: (gp) shl ry=ry, rs 17
(gp) shl ry = ry, countg pseudo-op of: (gp) dep.z r; = r,, counts, 64-countg

Description: The value in GR r, is shifted to the left, with the vacated bit positions filled with zeroes,
and placed in GR r;. The number of bit positions to shift is specified by the value in GR
ry or by an immediate value countg. The shift count is interpreted as an unsigned number.
If the value in GR r3 is greater than 63, then the result is all zeroes.

See “dep — Deposit” on page 3:51 for the immediate form.

Operation: if (PR[gpl) {
check target register(r;);

count = GR[r3];
GR[r;] = (count > 63) ? 0: GR[r,] << count;

GR[r;].nat = GR[r,].nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

3:244 Volume 3: Instruction Reference

shladd

shladd — Shift Left and Add

Format: (gp) shladd ry = r,, count,, rg A2

Description: The first source operand is shifted to the left by count, bits and then added to the second
source operand and the result placed in GR r;. The first operand can be shifted by 1, 2,
3, or 4 bits.

Operation: if (PR[gpl) {
check target register(r;);

GR[r;] = (GR[r,] << count,) + GR[r3];

GR[r;].nat = GR[r,].nat || GR[r3].nat;
}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:245

shladdp4

shladdp4 — Shift Left and Add Pointer

Format: (gp) shladdp4 r; = ry, counts, rs A2

Description: The first source operand is shifted to the left by count, bits and then is added to the
second source operand. The upper 32 bits of the result are forced to zero, and then bits
{31:303} of GR r; are copied to bits {62:61} of the result. This result is placed in GR r;.
The first operand can be shifted by 1, 2, 3, or 4 bits.

Figure 2-43. Shift Left and Add Pointer

GR o

Operation: if (PR[gp]) {
check target register(r;);

tmp res = (GR[r,] << count,) + GR[rj3];
tmp res = zero ext (tmp res{31:0}, 32);
tmp res{62:61} = GR[r3]{31:30};

GR[r;] = tmp res;

GR[r;].nat = GR[r,].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

3:246 Volume 3: Instruction Reference

shr — Shift Right

Format:

Description:

Operation:

Interruptions:

(gp) shr ry=rsry signed_form
(gp) shru ry=rs3r, unsigned_form
(gp) shr ry = rs, countg pseudo-op of: (gp) extr ry = rs, counts, 64-counts
(gp) shr.u ry = rs, countg pseudo-op of: (gp) extr.u ry = rs, counts, 64-counts

shr

15
15

The value in GR r3 is shifted to the right and placed in GR r;. In the signed_form the
vacated bit positions are filled with bit 63 of GR r3; in the unsigned_form the vacated
bit positions are filled with zeroes. The number of bit positions to shift is specified by
the value in GR r, or by an immediate value counts. The shift count is interpreted as an
unsigned number. If the value in GR r, is greater than 63, then the result is all zeroes
(for the unsigned_form, or if bit 63 of GR r3 was 0) or all ones (for the signed_form if

bit 63 of GR r3 was 1).

If the .u completer is specified, the shift is unsigned (logical), otherwise it is signed

(arithmetic).

See “extr — Extract” on page 3:54 for the immediate forms.

if (PRIgpl) {
check_target_register (rq:);

if (signed form) {

count = (GR[r,] > 63) ? 63 : GR[r,];

GR[r;] = shift right signed(GR[r3], count);
} else {

count = GR[r,];

GR[r;] = (count > 63) ? 0 : shift right unsigned(GR[r3], count);
}
GR[r;].nat = GR[r,].nat || GR[r3].nat;

}

Illegal Operation fault

Volume 3: Instruction Reference

3:247

shrp

shrp — Shift Right Pair

Format:

Description:

Operation:

Interruptions:

3:248

(gp) shrp ry = ry, r3, counts

110

The two source operands, GR r, and GR r;, are concatenated to form a 128-bit value and
shifted to the right countg bits. The least-significant 64 bits of the result are placed in
GR rq.

The immediate value counts can be any number in the range 0 to 63.

Figure 2-44. Shift Right Pair

GRry:

GRr3:

GRrq:

if

}

(PR[gp]) {
check target register(r;);

templ = shift right unsigned(GR[r3], county);
temp2 = GR[r,] << (64 - county);

GR[r;] = zero ext(templ, 64 - county) | temp2;
GR[r;].nat = GR[r,].nat || GR[r3].nat;

Illegal Operation fault

Volume 3: Instruction Reference

sriz

srlz — Serialize

Format:

Description:

Operation:

Interruptions:

(gp) sriz.i instruction_form M24
(gp) sriz.d data_form M24

Instruction serialization (srl1z.i) ensures:

e prior modifications to processor register resources that affect fetching of
subsequent instruction groups are observed,

¢ prior modifications to processor register resources that affect subsequent execution
or data memory accesses are observed,

e prior memory synchronization (sync.i) operations have taken effect on the local
processor instruction cache,

e subsequent instruction group fetches are re-initiated after sr1z.i completes.

The srlz.i instruction must be in an instruction group after the instruction group
containing the operation that is to be serialized. Operations dependent on the
serialization must be in an instruction group after the instruction group containing the
srlz.i.

Data serialization (srlz.d) ensures:

¢ prior modifications to processor register resources that affect subsequent execution
or data memory accesses are observed.

The srlz.d instruction must be in an instruction group after the instruction group
containing the operation that is to be serialized. Operations dependent on the
serialization must follow the sr1z.d, but they can be in the same instruction group as
the sriz.d.

A srlz cannot be used to stall processor data memory references until prior data
memory references, or memory fences are visible or “accepted” by the external
platform.

The following processor resources require a serialize to ensure side-effects are
observed; CRs, PSR, DBRs, IBRs, PMDs, PMCs, RRs, PKRs, TRs and TCs (refer to
Section 3.2, “Serialization” on page 2:17 for details).

if (PRIgpl) {
if (instruction form)
instruction serialize();
else // data_ form
data serialize();

}

None

Volume 3: Instruction Reference 3:249

ssm

ssm — Set System Mask

Format:

Description:

Operation:

Interruptions:

Serialization:

3:250

(gp) ssm immyy M44

The imm,, operand is ORed with the system mask (PSR{23:0}) and the result is placed
in the system mask. See Section 3.3.2, “Processor Status Register (PSR)” on
page 2:23.

The PSR system mask can only be written at the most privileged level, and when
PSR.vm is 0.

The contents of the interruption resources (that are overwritten when the PSR.ic bit is
1), are undefined if an interruption occurs between the enabling of the PSR.ic bit and a
subsequent instruction serialize operation.

if (PRIgpl) |
if (PSR.cpl !'= 0)
privileged operation fault (0);

if (is_reserved field (PSR TYPE, PSR SM, immy,))
reserved register field fault();

if (PSR.vm == 1)
virtualization fault();

if (immyyu{1}) PSR{1l} = 1;) // be
if (immyu{2}) PSR{2} = 1;) // up
if (immy,{3}) PSR{3} = 1;) // ac
if (immy,{4}) PSR{4} = 1;) // mfl
if (immyu{5}) PSR{5} = 1;) // mfh
if (imm,,{13}) PSR{13} = 1;) // ic
if (immy,{14}) PSR{14} = 1;) // i
if (immy,{15}) PSR{15} = 1;) // pk
if (immy,{17}) PSR{17} = 1;) // dt
if (imm,,{18}) PSR{18} = 1;) // dfl
if (imm,,{19}) PSR{19} = 1;) // dfh
if (immy,{20}) PSR{20} = 1;) // sp
if (immy,{21}) PSR{21} = 1;) // pp
if (imm,,{22}) PSR{22} = 1;) // di
if (immy,{23}) PSR{23} = 1;) // si

}

Privileged Operation fault Virtualization fault

Reserved Register/Field fault

Software must issue a data serialize or instruction serialize operation before issuing
instructions dependent upon the altered PSR bits from the ssm instruction. Unlike with
the rsm instruction, setting the PSR.i bit is not treated specially. Refer to Section 3.2,
“Serialization” on page 2:17 for a description of serialization.

Volume 3: Instruction Reference

st

st — Store

Format: (gp) stsz.sttype.sthint [r3] = r normal_form, no_base_update_form M6
(gp) stsz.sttype.sthint [r3] = ry, immyg normal_form, imm_base_update_form M5
(gp) st16.sttype.sthint [r3] = r,, ar.csd sixteen_byte_form, no_base_update_form M6
(gp) st8.spill.sthint [r3] = ro spill_form, no_base_update_form M6
(gp) st8.spill.sthint [rs] = ry, immyg spill_form, imm_base_update_form M5

Description: A value consisting of the least significant sz bytes of the value in GR r, is written to

memory starting at the address specified by the value in GR r;. The values of the sz
completer are given in Table 2-32 on page 3:151. The sttype completer specifies special
store operations, which are described in Table 2-50. If the NaT bit corresponding to GR
rg is 1, or in sixteen_byte_form or normal_form, if the NaT bit corresponding to GR r, is
1, a Register NaT Consumption fault is taken.

In the sixteen_byte_form, two 8-byte values are stored as a single, 16-byte atomic
memory write. The value in GR r, is written to memory starting at the address specified
by the value in GR r;. The value in the Compare and Store Data application register
(AR[CSD]) is written to memory starting at the address specified by the value in GR r;
plus 8.

In the spill_form, an 8-byte value is stored, and the NaT bit corresponding to GR r, is
copied to a bit in the UNAT application register. This instruction is used for spilling a
register/NaT pair. See Section 4.4.4, “Control Speculation” on page 1:60 for details.

In the imm_base_update form, the value in GR r; is added to a signed immediate value
(immg) and the result is placed back in GR r;. This base register update is done after the
store, and does not affect the store address, nor the value stored (for the case where r,
and r; specify the same register). Base register update is not supported for the st16
instruction.

Table 2-50. Store Types

sttype . . .
Completer Interpretation Special Store Operation
none Normal store
rel Ordered store An ordered store is performed with release semantics.

For more details on ordered stores see Section 4.4.7, *“Memory Access Ordering” on
page 1:73.

The ALAT is queried using the physical memory address and the access size, and all
overlapping entries are invalidated.

The value of the sthint completer specifies the locality of the memory access. The values
of the sthint completer are given in Table 2-51. A prefetch hint is implied in the base
update forms. The address specified by the value in GR r; after the base update acts as
a hint to prefetch the indicated cache line. This prefetch uses the locality hints specified
by sthint. See Section 4.4.6, “Memory Hierarchy Control and Consistency” on

page 1:69.

Hardware support for st16 instructions that reference a page that is neither a
cacheable page with write-back policy nor a NaTPage is optional. On processor models
that do not support such st16 accesses, an Unsupported Data Reference fault is raised
when an unsupported reference is attempted.

Volume 3: Instruction Reference 3:251

st

For the sixteen_byte_form, Illegal Operation fault is raised on processor models that do
not support the instruction. CPUID register 4 indicates the presence of the feature on
the processor model. See Section 3.1.11, “Processor Identification Registers” on

page 1:34 for details.

Table 2-51. Store Hints

sthint Completer Interpretation
none Temporal locality, level 1
nta Non-temporal locality, all levels
Operation: if (PR[gpl) {
size = spill form ? 8 : (sixteen byte form ? 16 : sz);

itype = WRITE;
if (size == 16) itype |= UNCACHE OPT;
otype = (sttype == ‘rel’) ? RELEASE : UNORDERED;

if (sixteen byte form && !instruction implemented(ST16))
illegal operation fault();

if (imm base update form)
check target register(rj);

if (GR[r3].nat || ((sixteen byte form || normal form) && GR[r,].nat))
register nat consumption fault (WRITE);

paddr = tlb translate(GR[r3], size, itype, PSR.cpl, &mattr,
&tmp unused) ;
if (spill form && GR[r,].nat) {
natd gr write(GR[r,], paddr, size, UM.be, mattr, otype, sthint);
}
else {
if (sixteen byte form)
mem writel6 (GR[r,], AR[CSD], paddr, UM.be, mattr, otype, sthint);
else
mem write (GR[r,], paddr, size, UM.be, mattr, otype, sthint);

if (spill form) {
bit pos = GR[r3]{8:3};
AR[UNAT] {bit pos} = GR[r,].nat;

alat inval multiple entries(paddr, size);
if (imm base update form) {
GR[r3] = GR[r3] + sign ext (immg, 9);
GR[r3].nat = 0;

mem implicit prefetch(GR[r3], sthint, WRITE);

}

Interruptions: Illegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault

3:252 Volume 3: Instruction Reference

Data TLB fault
Data Page Not Present fault
Data NaT Page Consumption fault

Volume 3: Instruction Reference

Unaligned Data Reference fault
Unsupported Data Reference fault

st

3:253

stf

stf — Floating-point Store

Format:

Description:

3:254

(gp) sftffsz.sthint [r3] = f, normal_form, no_base_update_form M13
(gp) sftffsz.sthint [rs] = f,, immg normal_form, imm_base_update_form M10
(gp) stf8.sthint [r3] =1, integer_form, no_base_update_form M13
(gp) stf8.sthint [rs] = f,, immg integer_form, imm_base_update_form M10
(gp) stf.spill.sthint [r3] = £, spill_form, no_base_update_form M13
(gp) stf.spill.sthint [r3] = f,, immg spill_form, imm_base_update_form M10

A value, consisting of fsz bytes, is generated from the value in FR f, and written to
memory starting at the address specified by the value in GR r;. In the normal_form, the
value in FR 7, is converted to the memory format and then stored. In the integer_form,
the significand of FR 1, is stored. The values of the fsz completer are given in Table 2-35
on page 3:157. In the normal_form or the integer_form, if the NaT bit corresponding to
GR r;is 1 or if FR f, contains NaTVal, a Register NaT Consumption fault is taken. See
Section 5.1, "Data Types and Formats” on page 1:85 for details on conversion from
floating-point register format.

In the spill_form, a 16-byte value from FR f, is stored without conversion. This
instruction is used for spilling a register. See Section 4.4.4, “Control Speculation” on
page 1:60 for details.

In the imm_base_update form, the value in GR r; is added to a signed immediate value
(immg) and the result is placed back in GR r;. This base register update is done after the
store, and does not affect the store address.

The ALAT is queried using the physical memory address and the access size, and all
overlapping entries are invalidated.

The value of the sthint completer specifies the locality of the memory access. The values
of the sthint completer are given in Table 2-51 on page 3:252. A prefetch hint is implied
in the base update forms. The address specified by the value in GR r; after the base
update acts as a hint to prefetch the indicated cache line. This prefetch uses the locality
hints specified by sthint. See Section 4.4.6, *“Memory Hierarchy Control and
Consistency” on page 1:69.

Hardware support for stfe (10-byte) instructions that reference a page that is neither a
cacheable page with write-back policy nor a NaTPage is optional. On processor models
that do not support such stfe accesses, an Unsupported Data Reference fault is raised
when an unsupported reference is attempted.

Volume 3: Instruction Reference

stf

Operation: if (PR[gpl) |
if (imm base update form)
check target register(rjs);
if (tmp isrcode = fp reqg disabled(f,, 0, 0, 0))
disabled fp register fault (tmp isrcode, WRITE);

if (GR[r3].nat || (!spill form && (FR[f,] == NATVAL)))
register nat consumption fault (WRITE) ;

size = spill form ? 16 : (integer form ? 8 : fsz);
itype = WRITE;
if (size == 10) itype |= UNCACHE OPT;

paddr = tlb translate(GR[r3], size, itype, PSR.cpl, &mattr, &tmp unused);
val = fp fr to mem format (FR[f,], size, integer form);
mem write(val, paddr, size, UM.be, mattr, UNORDERED, sthint);

alat _inval multiple entries(paddr, size);

if (imm base update form) {
GR[r3] = GR[r3] + sign ext(immg, 9);
GR[r3].nat = 0;
mem implicit prefetch(GR[r3], sthint, WRITE);

}

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Disabled Floating-point Register fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault

Volume 3: Instruction Reference 3:255

sub

sub — Subtract

Format:

Description:

Operation:

Interruptions:

3:256

(ap) sub ry=ryrs register_form A1
(gp) sub ry=ry, rs 1 minus1_form, register_form A1
(gp) sub ry =immg, rs imm8_form A3

The second source operand (and an optional constant 1) are subtracted from the first
operand and the result placed in GR ry. In the register form the first operand is GR r,; in
the immediate form the first operand is taken from the sign-extended immg encoding
field.

The minusl_form is available only in the register_form (although the equivalent effect
can be achieved by adjusting the immediate).

if (PRIgp]) {
check target register(r;);

tmp src (register form ? GR[r,] : sign ext (immg, 8));
tmp nat = (register form ? GR[r,].nat : 0);

if (minusl form)

GR[r;] = tmp_src - GR[r3] - 1;
else

GR[r;] = tmp src - GR[r3];
GR[r;].nat = tmp nat || GR[r3].nat;

}
Illegal Operation fault

Volume 3: Instruction Reference

sum

sum — Set User Mask

Format: (gp) sum immyy M44

Description: The imm,, operand is ORed with the user mask (PSR{5:03}) and the result is placed in
the user mask. See Section 3.3.2, “"Processor Status Register (PSR)” on page 2:23.

PSR.up can only be set if the secure performance monitor bit (PSR.sp) is zero.
Otherwise PSR.up is not modified.

Operation: if (PR[gpl) {
if (is_reserved field (PSR TYPE, PSR UM, immy,))
reserved register field fault();

if (immy,{1}) PSR{1} = 1;) // be

if (imm,,{2} && PSR.sp == 0) //non-secure perf monitor
PSR{2} = 1;) // up

if (immy,{3}) PSR{3} = 1;) // ac

if (immy,{4}) PSR{4} = 1;) // mfl

if (imm,,{5}) PSR{5} = 1;) // mfh

}
Interruptions: Reserved Register/Field fault

Serialization: All user mask modifications are observed by the next instruction group.

Volume 3: Instruction Reference 3:257

sxt

sxt — Sign Extend

Format: (gp) sxtxsz r;=rs 129

Description: The value in GR r;3 is sign extended from the bit position specified by xsz and the result
is placed in GR r,. The mnemonic values for xsz are given in Table 2-52.

Table 2-52. xsz Mnemonic Values

xsz Mnemonic Bit Position
1 7
2 15
4 31

Operation: if (PR[gpl) {
check_target_register (rq);

GR[r;] = sign ext(GR[r3],xsz * 8);

GR[r;].nat = GR[r3].nat;
}

Interruptions: Illegal Operation fault

3:258 Volume 3: Instruction Reference

sync

sync — Memory Synchronization

Format:

Description:

Operation:

Interruptions:

(gp) sync.i M24

sync.i ensures that when previously initiated Flush Cache (fc, fc.i) operations issued
by the local processor become visible to local data memory references, prior Flush
Cache operations are also observed by the local processor instruction fetch stream.
sync.i also ensures that at the time previously initiated Flush Cache (fc, fc.1i)
operations are observed on a remote processor by data memory references they are
also observed by instruction memory references on the remote processor. sync.1i is
ordered with respect to all cache flush operations as observed by another processor. A
sync.i and a previous fc must be in separate instruction groups. If semantically
required, the programmer must explicitly insert ordered data references (acquire,
release or fence type) to appropriately constrain sync.i (and hence fc and fc.1i)
visibility to the data stream on other processors.

sync.1i is used to maintain an ordering relationship between instruction and data
caches on local and remote processors. An instruction serialize operation must be used
to ensure synchronization initiated by sync.i on the local processor has been observed
by a given point in program execution.

An example of self-modifying code (local processor):

st [L1l] = data //store into local instruction stream

fc.i L1 //flush stale datum from instruction/data cache

7 //require instruction boundary between fc.i and sync.i
sync.i //ensure local and remote data/inst caches

//are synchronized

rr

srlz.i //ensure sync has been observed by the local processor,
P //ensure subsequent instructions observe
//modified memory
Ll: target //instruction modified

if (PRIgp]) |
instruction synchronize();

}

None

Volume 3: Instruction Reference 3:259

tak

tak — Translation Access Key

M46

The protection key for a given virtual address is obtained and placed in GR r,.

When PSR.dt is 1, the DTLB and the VHPT are searched for the virtual address specified
by GR r; and the region register indexed by GR r; bits {63:61}. If a matching present

translation is found, the protection key of the translation is placed in bits 31:8 of GR r,.
If a matching present translation is not found or if an unimplemented virtual address is

When PSR.dt is 0, only the DTLB is searched, because the VHPT walker is disabled. If no
matching present translation is found in the DTLB, the value 1 is returned.

A translation with the NaTPage attribute is not treated differently and returns its key

This instruction can only be executed at the most privileged level, and when PSR.vm is

Format: (gp) tak ry=r3

Description:
specified by GR r3, the value 1 is returned.
field.
0.

Operation: if (PR[gp]) |

Interruptions:

3:260

itype = NON_ACCESS|TAK;
check_target_register (rq);

if (PSR.cpl !'= 0)
privileged operation fault (itype);

if (GR[r3].nat)
register nat consumption fault (itype);

if (PSR.vm == 1)
virtualization fault();

GR[rl] = tlb access key(GR[r3], itype);
GR[r;].nat = 0;
}

Illegal Operation fault
Privileged Operation fault

Register NaT Consumption fault
Virtualization fault

Volume 3: Instruction Reference

tbit

tbit — Test Bit

Format:

Description:

(gp) tbit.trel.ctype p4, po = r3, posg 116

The bit specified by the posg immediate is selected from GR r3. The selected bit forms a
single bit result either complemented or not depending on the trel completer. This result
is written to the two predicate register destinations p; and p,. The way the result is
written to the destinations is determined by the compare type specified by ctype. See
the Compare instruction and Table 2-15 on page 3:39.

The trel completer values .nz and .z indicate non-zero and zero sense of the test. For
normal and unc types, only the .z value is directly implemented in hardware; the .nz
value is actually a pseudo-op. For it, the assembler simply switches the predicate target
specifiers and uses the implemented relation. For the parallel types, both relations are
implemented in hardware.

Table 2-53. Test Bit Relations for Normal and unc tbits

trel Test Relation Pseudo-op of
nz selected bit == z P> P2
z selected bit ==

Table 2-54. Test Bit Relations for Parallel tbits

trel Test Relation
nz selected bit ==
z selected bit ==

If the two predicate register destinations are the same (p; and p, specify the same
predicate register), the instruction will take an Illegal Operation fault, if the qualifying
predicate is set, or if the compare type is unc.

Volume 3: Instruction Reference 3:261

tbit

Operation:

Interruptions:

3:262

if (PR[gp]) |
if (p; == po)
illegal operation fault();

if (trel == ‘nz’)

tmp rel = GR[r3]{posg};
else

tmp rel = !GR[r3]{posg};

switch (ctype) {
case ‘and’:

if (GR[r3].nat || !tmp rel)
PR[p;] = 0;
PR[p,] = 0;

}

break;

case ‘or’:
if (!GR[r3].nat && tmp rel)

PR[p;] = 1;
PR[p,] = 1;
}
break;

case ‘or.andcm’ :
if (!GR[r3].nat && tmp rel)

PR[p;] = 1;
PR[p,] = 0;
}
break;
case ‘unc’:
default:
if (GR[r3].nat) {
PR[p;] = 0;
PR[p,] = 0;
} else {
PR[p;] = tmp rel;
PR[p,] = !tmp rel;
}
break;
}
} else {
if (ctype == ‘unc’) {

if (p; == po)

illegal operation fault();
PR[p;] = 0;
PR[p,] = 0;

}
Illegal Operation fault

{

{

{

//

//

//

//

//

//
//

‘nz’ - test for 1
‘z” - test for O
and-type compare

or-type compare

or.andcm-type compare

unc-type compare
normal compare

Volume 3: Instruction Reference

tf

tf — Test Feature

Format:

Description:

(gp) ff.trel.ctype p4, pp = immg 130

The immj value (in the range of 32-63) selects the feature bit defined in Table 2-57 to be
tested from the features vector in CPUID[4]. See Section 3.1.11, “Processor
Identification Registers” on page 1:34 for details on CPUID registers. The selected bit
forms a single-bit result either complemented or not depending on the trel completer.
This result is written to the two predicate register destinations p; and p,. The way the
result is written to the destinations is determined by the compare type specified by
ctype. See the Compare instruction and Table 2-15 on page 3:39.

The trel completer values .nz and .z indicate non-zero and zero sense of the test. For
normal and unc types, only the .z value is directly implemented in hardware; the .nz
value is actually a pseudo-op. For it, the assembler simply switches the predicate
target specifiers and uses the implemented relation. For the parallel types, both
relations are implemented in hardware.

Table 2-55. Test Feature Relations for Normal and unc tf

trel Test Relation Pseudo-op of
nz selected feature available z P> P2
z selected feature unavailable

Table 2-56. Test Feature Relations for Parallel tf

trel Test Relation
nz selected feature available
z selected feature unavailable

If the two predicate register destinations are the same (p; and p, specify the same
predicate register), the instruction will take an Illegal Operation fault, if the qualifying
predicate is set or the compare type is unc.

Table 2-57. Test Feature Features Assignment

immg Feature Symbol Feature

32 @clz clz feature

33 @mpy mpy4, mpyshl4 feature
34 - 63 none Not currently defined

Volume 3: Instruction Reference 3:263

tf

Operation: if (PR[gpl) {
if (p; == po)
illegal operation fault();

tmp rel = (psr.vm && pal vp env enabled() && VAC.a tf) ?
vepuid[4] {imm5} : cpuid[4] {imm5};

if (trel == ‘z') // ‘z' - test for 0, not 1
tmp_rel = Itmp_rel;

switch (ctype) {

case ‘and’: // and-type compare
if (!tmp rel) {
PR[p;] = 0;
PR[p,] = 0;
}
break;
case ‘or’: // or-type compare
if (tmp rel) {
PR[p;] = 1;
PR[p,] = 1;
}
break;
case ‘or.andcm’: // or.andcm-type compare
if (tmp rel) {
PR[p;] = 1;
PR[p,] = 0;
}
break;
case ‘unc’: // unc-type compare
default: // normal compare
PR[p;] = tmp rel;
PR[p,] = !tmp rel;
break;
}
} else {
if (ctype == ‘unc’) {

if (p; == po)

illegal operation fault();
PR[p;] = 0;
PR[p,] = 0;

}

Interruptions: Illegal Operation fault

3:264 Volume 3: Instruction Reference

thash

thash — Translation Hashed Entry Address
Format: (gp) thash ry=rs M46

Description: A Virtual Hashed Page Table (VHPT) entry address is generated based on the specified
virtual address and the result is placed in GR r;. The virtual address is specified by GR r;
and the region register selected by GR r; bits {63:617}.

If thash is given a NaT input argument or an unimplemented virtual address as an
input, the resulting target register value is undefined, and its NaT bit is set to one.

When the processor is configured to use the region-based short format VHPT
(PTA.vf=0), the value returned by thash is defined by the architected short format
hash function. See Section 4.1.5.3, “"Region-based VHPT Short Format” on page 2:63.

When the processor is configured to use the long format VHPT (PTA.vf=1), thash
performs an implementation-specific long format hash function on the virtual address
to generate a hash index into the long format VHPT.

In the long format, a translation in the VHPT must be uniquely identified by its hash
index generated by this instruction and the hash tag produced from the ttag
instruction.

The hash function must use all implemented region bits and only virtual address bits
{60:0} to determine the offset into the VHPT. Virtual address bits {63:61} are used
only by the short format hash to determine the region of the VHPT.

This instruction must be implemented on all processor models, even processor models
that do not implement a VHPT walker.

This instruction can only be executed when PSR.vm is 0.

Operation: if (PR[gpl) {
check target register(r;);

if (PSR.vm == 1)
virtualization fault();

if (GR[r3].nat || unimplemented virtual address(GR[r3], PSR.vm)) {
GR[r;] = undefined();
GR[r;].nat = 1;

} else {

tmp vr = GR[r3]{63:61};

tmp va = GR[r3]{60:0};

GR[r;] = tlb vhpt hash(tmp vr, tmp va, RR[tmp vr].rid,
RR[tmp vr].ps);

GR[r;].nat = 0;

}

Interruptions: Illegal Operation fault Virtualization fault

Volume 3: Instruction Reference 3:265

tnat

tnat — Test NaT

Format:

Description:

3:266

(gp) tnat.trel.ctype pq, po=rs3 "7

The NaT bit from GR r; forms a single bit result, either complemented or not depending
on the trel completer. This result is written to the two predicate register destinations, p;
and p,. The way the result is written to the destinations is determined by the compare
type specified by ctype. See the Compare instruction and Table 2-15 on page 3:39.

The trel completer values .nz and .z indicate non-zero and zero sense of the test. For
normal and unc types, only the .z value is directly implemented in hardware; the .nz
value is actually a pseudo-op. For it, the assembler simply switches the predicate target
specifiers and uses the implemented relation. For the parallel types, both relations are
implemented in hardware.

Table 2-58. Test NaT Relations for Normal and unc tnats

trel Test Relation Pseudo-op of
nz selected bit == z Py P2
z selected bit ==

Table 2-59. Test NaT Relations for Parallel thats

trel Test Relation
nz selected bit ==
z selected bit ==

If the two predicate register destinations are the same (p; and p, specify the same
predicate register), the instruction will take an Illegal Operation fault, if the qualifying
predicate is set, or if the compare type is unc.

Volume 3: Instruction Reference

tnat

Operation: if (PR[gpl) {
if (p; == po)
illegal operation fault();

if (trel == ‘nz’) // ‘nz’ - test for 1
tmp rel = GR[r3].nat;

else // ‘z' - test for O
tmp rel = !GR[r3].nat;

switch (ctype) {
case ‘and’: // and-type compare
if (!tmp rel) {
PR[p;] 0;
PR[p,] = 0;
}
break;
case ‘or’: // or-type compare
if (tmp rel) {
PR[p;] = 1;
PR[p,] = 1;
}
break;
case ‘or.andcm’: // or.andcm-type compare
if (tmp rel) {
PR[p;] = 1
PR[p,] =0

}
break;
case ‘unc’: // unc-type compare
default: // normal compare
PR[p;] = tmp rel;
PR[p,] = !tmp rel;
break;
}
} else {
if (ctype == ‘unc’) {
if (p; == po)
illegal operation fault();
PR[p;] = 0;
PR[p,] 0;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:267

tpa

tpa — Translate to Physical Address
Format: (gp) tpa ry=rg M46

Description: The physical address for the virtual address specified by GR r; is obtained and placed in
GR rq.
When PSR.dt is 1, the DTLB and the VHPT are searched for the virtual address specified
by GR r; and the region register indexed by GR r; bits {63:61}. If a matching present

translation is found the physical address of the translation is placed in GR r;. If a
matching present translation is not found the appropriate TLB fault is taken.

When PSR.dt is 0, only the DTLB is searched, because the VHPT walker is disabled. If no
matching present translation is found in the DTLB, an Alternate Data TLB fault is raised
if psr.ic is one or a Data Nested TLB fault is raised if psr.ic is zero.

If this instruction faults, then it will set the non-access bit in the ISR. The ISR read and
write bits are not set.

This instruction can only be executed at the most privileged level, and when PSR.vm is

0.
Operation: if (PR[gp]) |
itype = NON ACCESS|TPA;
check_target_register (rq);
if (PSR.cpl !'= 0)
privileged operation fault (itype);
if (GR[r3].nat)
register nat consumption fault (itype);
GR[r;] = tlb translate nonaccess(GR[r3], itype);
GR[r;].nat = 0;
}
Interruptions: Illegal Operation fault Alternate Data TLB fault
Privileged Operation fault VHPT Data fault
Register NaT Consumption fault Data TLB fault
Unimplemented Data Address fault Data Page Not Present fault
Virtualization fault Data NaT Page Consumption fault

Data Nested TLB fault

3:268 Volume 3: Instruction Reference

ttag

ttag — Translation Hashed Entry Tag

Format:

Description:

Operation:

Interruptions:

(qp) ttag ry=r3 M46

A tag used for matching during searches of the long format Virtual Hashed Page Table
(VHPT) is generated and placed in GR r,. The virtual address is specified by GR r; and
the region register selected by GR r; bits {63:61}.

If ttag is given a NaT input argument or an unimplemented virtual address as an input,
the resulting target register value is undefined, and its NaT bit is set to one.

The tag generation function generates an implementation-specific long format VHPT
tag. The tag generation function must use all implemented region bits and only virtual
address bits {60:03}. PTA.vf is ignored by this instruction.

A translation in the long format VHPT must be uniquely identified by its hash index
generated by the thash instruction and the tag produced from this instruction.

This instruction must be implemented on all processor models, even processor models
that do not implement a VHPT walker.

This instruction can only be executed when PSR.vm is 0.

if (PR[gpl) {
check_target_register(rl);

if (PSR.vm == 1)
virtualization fault();

if (GR[r3].nat || unimplemented virtual address(GR[r3], PSR.vm)) {
GR[r;] = undefined();
GR[r;].nat = 1;

} else {

tmp vr = GR[r3]{63:61};

tmp va = GR[r3]{60:0};

GR[r;] = tlb vhpt tag(tmp va, RR[tmp vr].rid, RR[tmp vr].ps);
GR[r;].nat = 0;

}

Illegal Operation fault Virtualization fault

Volume 3: Instruction Reference 3:269

unpack

unpack — Unpack

Format:

Description:

3:270

(gp) unpackl.h r;=ry r3
(gp) unpack2.h r;=ry r3
(gp) unpackd.h ry=ry, r3
(gp) unpackl.l ry=ry, rs
(gp) unpack2.l ry=ro, rs
(ap)

gp) unpack4.l ry=ry, rs

The data elements of GR r, and r; are unpacked, and the result placed in GR r;. In the

one_byte form, high_form
two_byte form, high_form
four_byte form, high_form
one_byte form, low_form
two_byte form, low_form
four_byte form, low_form

12
12
12
12
12
12

high_form, the most significant elements of each source register are selected, while in

the low_form the least significant elements of each source register are selected.

Elements are selected alternately from the source registers.

Volume 3: Instruction Reference

unpack

Figure 2-45. Unpack Operation

GRry:

unpack1.h

GRry:

unpack1.l

GR o

unpack2.h

GR o

unpack2.l

GR o

unpack4.h

GR o

unpack4.|

Volume 3: Instruction Reference 3:271

unpack

Operation: if (PRIgpl) {
check target register(r;);

if (one byte form) { // one-byte elements

x[0] = GR[IQ]{7 0}; y[0] = GR[r31{7:0};

x[1] = GR[r,]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r,]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r,]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r,]1{39:32}; yl[4] = GR[r;]{39:32};
x[5] = GR[r,]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r,]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r,]{63:56}; y[7] = GR[r3]{63:56};

if (high form)
GR[r;] = concatenate8(x[71, yI[7], x[6], y[6],
, x[4], yl[4]1);
else // low _form

GR[r;] = concatenate8(x[31, yI3], x[2], vI[2],
x[1], y[1], x[0], yI[0O1])
} else if (two byte form) ({ // two-byte elements
x[0] = GR[r,]{15:0}; y[0] = GR[r3]{15:0};
x[1] [r,1{31:16}; y[1l] = GR[r3]{31:16};
x[2] = GR[r,]1{47:32}; y[2] = GR[r3]{47:32};
x[3] = [r,]1{63:48}; y[3] = GR[r3]{63:48};
if (high form)
GR[r;] = concatenated (x[3], yI[3], x[2], y[2]);
else // low form
GR[r;] = concatenate4(x[1], y[1], x[0], y[0]);
} else { // four-byte elements
x[0] = GR[r,]{31:0}; y[0] = GR[r3]{31:0};

G G
x[1] = GR[r,]{63:32}; y[1] = GR[r3]{63:32};

if (high form)

GR[r;] = concatenate2(x[1], y[1]);
else // low_form
GR[r;] = concatenate2(x[0], y[O0])
}
GR[r;].nat = GR[r,].nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

3:272 Volume 3: Instruction Reference

vimsw

vmsw — Virtual Machine Switch

Format:

Description:

Operation:

Interruptions:

vmsw.0 zero_form B8
vmsw. 1 one_form B8

This instruction sets the PSR.vm bit to the specified value. This instruction can be used
to implement transitions to/from virtual machine mode without the overhead of an
interruption.

If instruction address translation is enabled and the page containing the vmsw
instruction has access rights equal to 7, then the new value is written to the PSR.vm
bit. In the zero_form, PSR.vm is set to 0, and in the one_form, PSR.vm is set to 1.

Instructions after the vmsw instruction in the same instruction group may be executed
with the old or new value of PSR.vm. Instructions in subsequent instruction groups will
be executed with PSR.vm equal to the new value.

If the above conditions are not met, this instruction takes a Virtualization fault.

This instruction can only be executed at the most privileged level. This instruction
cannot be predicated.

Implementation of PSR.vm is optional. If it is not implemented, this instruction takes
Illegal Operation fault. If it is implemented but either virtual machine features or the
vmsw instruction are disabled, this instruction takes Virtualization fault when executed
at the most privileged level.

if (!implemented vm())
illegal operation fault();

if (PSR.cpl != 0)
privileged operation fault (0);

if (! (PSR.it == 1 && itlb ar() == 7) || vm disabled() || vmsw_disabled())
virtualization fault();

if (zero form) {
PSR.vm = 0;

}

else {
PSR.vm = 1;

}

Illegal Operation fault Virtualization fault
Privileged Operation fault

Volume 3: Instruction Reference 3:273

xchg

xchg — Exchange

Format:

Description:

3:274

(gp) xchgsz.ldhint ry =[rs], ry M16

A value consisting of sz bytes is read from memory starting at the address specified by
the value in GR r;. The least significant sz bytes of the value in GR r; are written to
memory starting at the address specified by the value in GR r3. The value read from
memory is then zero extended and placed in GR r; and the NaT bit corresponding to GR
ry is cleared. The values of the sz completer are given in Table 2-60.

If the address specified by the value in GR r; is not naturally aligned to the size of the
value being accessed in memory, an Unaligned Data Reference fault is taken
independent of the state of the User Mask alignment checking bit, UM.ac (PSR.ac in the
Processor Status Register).

Both read and write access privileges for the referenced page are required.

Table 2-60. Memory Exchange Size

sz Completer Bytes Accessed
1 1 byte
2 2 bytes
4 4 bytes
8 8 bytes

The exchange is performed with acquire semantics, i.e., the memory read/write is
made visible prior to all subsequent data memory accesses. See Section 4.4.7,
“Sequentiality Attribute and Ordering” on page 2:82 for details on memory ordering.

The memory read and write are guaranteed to be atomic.

This instruction is only supported to cacheable pages with write-back write policy.
Accesses to NaTPages cause a Data NaT Page Consumption fault. Accesses to pages
with other memory attributes cause an Unsupported Data Reference fault.

The value of the Idhint completer specifies the locality of the memory access. The values
of the Idhint completer are given in Table 2-34 on page 3:152. Locality hints do not
affect program functionality and may be ignored by the implementation. See

Section 4.4.6, "Memory Hierarchy Control and Consistency” on page 1:69 for details.

Volume 3: Instruction Reference

Operation:

Interruptions:

if

}

xchg

(BR[gpP]) |
check target register(r;);

if (GR[r3].nat || GR[r,].nat)
register nat consumption fault (SEMAPHORE) ;

paddr = tlb translate(GR[r3], sz, SEMAPHORE, PSR.cpl, &mattr,
&tmp unused) ;

if (!ma supports semaphores (mattr))
unsupported data reference fault (SEMAPHORE, GR[r3]);

val = mem xchg(GR[r,], paddr, sz, UM.be, mattr, ACQUIRE, Idhint);
alat inval multiple entries(paddr, sz);

GR[r;] = zero ext(val, sz * 8);
GR[r;].nat = 0;

Illegal Operation fault Data Key Miss fault

Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault

Data Nested TLB fault Data Dirty Bit fault

Alternate Data TLB fault Data Access Bit fault

VHPT Data fault Data Debug fault

Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault

Data NaT Page Consumption fault

Volume 3: Instruction Reference 3:275

xma

xma — Fixed-Point Multiply Add

Format: (gp) xma.l f; =15 f, f, low_form F2
(gp) xma.lu f; =13 fy f, pseudo-op of: (gp) xma.l f;=f3, fy, f»
(gp) xma.h f;="f3 fy f, high_form F2
(gp) xma.hu f;=fs, fy f, high_unsigned_form F2

Description:

3:276

Two source operands (FR f; and FR 7,) are treated as either signed or unsigned integers
and multiplied. The third source operand (FR f,) is zero extended and added to the
product. The upper or lower 64 bits of the resultant sum are selected and placed in FR
fy.

In the high_unsigned_form, the significand fields of FR f; and FR 7, are treated as
unsigned integers and multiplied to produce a full 128-bit unsigned result. The
significand field of FR 1, is zero extended and added to the product. The most significant
64-bits of the resultant sum are placed in the significand field of FR ;.

In the high_form, the significand fields of FR f; and FR 7, are treated as signed integers
and multiplied to produce a full 128-bit signed result. The significand field of FR £, is
zero extended and added to the product. The most significant 64-bits of the resultant
sum are placed in the significand field of FR ;.

In the other forms, the significand fields of FR f; and FR f, are treated as signed integers
and multiplied to produce a full 128-bit signed result. The significand field of FR 1, is
zero extended and added to the product. The least significant 64-bits of the resultant
sum are placed in the significand field of FR f,.

In all forms, the exponent field of FR #; is set to the biased exponent for 2.093

(0x1003E) and the sign field of FR f, is set to positive (0).

Note: f1 as an operand is not an integer 1; it is just the register file format's 1.0
value.

In all forms, if any of FR 73, FR f, , or FR f, is @a NaTVal, FR f; is set to NaTVal instead of
the computed result.

Volume 3: Instruction Reference

xma

Operation: if (PRIgp]l) {
fp check target register(f;);
if (tmp isrcode = fp reqg disabled(f;, f,, f3, f,))
disabled fp register fault (tmp isrcode, O0);

if (fp_is natval (FR[f,]) || fp is natval (FR[f3]) ||
fp is natval (FR[f,])) {
FR[fl] = NATVAL;

} else {

if (low form || high form)
tmp res 128 =

fp 164 x 164 to I128(FR[f3].significand, FR[f,].significand);
else // high unsigned form
tmp res 128 =

fp U64 x U64 to U128 (FR[f3].significand, FR[f,].significand);

tmp res 128 =
fp U128 add(tmp res 128, fp U64 to UI28(FR[f,].significand));

if (high form || high unsigned form)
FR[f;].significand = tmp res 128.hi;
else // low form

FR[f;] .significand = tmp res 128.lo;
FR[f;] .exponent = FP INTEGER EXP;
FR[f;].sign = FP_SIGN POSITIVE;
fp update psr(f;);

}

Interruptions: Disabled Floating-point Register fault

Volume 3: Instruction Reference 3:277

xmpy

xmpy — Fixed-Point Multiply

Format:

Description:

Operation:

3:278

(gp) xmpy.l f; =15 f4 pseudo-op of: (gp) xma.l f; =f3, fy, fO
(gp) xmpy.lu f;="fs f4 pseudo-op of: (gp) xma.l f; =f3, fy, fO
(gp) xmpy.h f, =15 f, pseudo-op of: (gp) xma.h f; = f3, f, fO
(gp) xmpy.hu f; =13 f, pseudo-op of: (gp) xma.hu f; = f3, f,, fO

Two source operands (FR f; and FR 7,) are treated as either signed or unsigned integers
and multiplied. The upper or lower 64 bits of the resultant product are selected and
placed in FR f,.

In the high_unsigned_form, the significand fields of FR f; and FR 7, are treated as
unsigned integers and multiplied to produce a full 128-bit unsigned result. The most
significant 64-bits of the resultant product are placed in the significand field of FR ;.

In the high_form, the significand fields of FR f; and FR 7, are treated as signed integers
and multiplied to produce a full 128-bit signed result. The most significant 64-bits of
the resultant product are placed in the significand field of FR f,.

In the other forms, the significand fields of FR f; and FR f, are treated as signed integers
and multiplied to produce a full 128-bit signed result. The least significant 64-bits of the
resultant product are placed in the significand field of FR f,.

In all forms, the exponent field of FR 7, is set to the biased exponent for 2.093
(0x1003E) and the sign field of FR f, is set to positive (0). Note: f1 as an operand is not
an integer 1; it is just the register file format’s 1.0 value.

See “xma — Fixed-Point Multiply Add” on page 3:276.

Volume 3: Instruction Reference

xor

xor — Exclusive Or

Format: (gp) xor ry=ry, rs register_form A1
(gp) xor ry =immg, rs imm8_form A3

Description: The two source operands are logically XORed and the result placed in GR r,. In the
register_form the first operand is GR ry; in the imm8_form the first operand is taken
from the immg encoding field.

Operation: if (PR[gpl) {
check target register(r;);

tmp src = (register form ? GR[r,] : sign_ext (immg, 8));
tmp nat = (register form ? GR[r,].nat : 0);

GR[r;] = tmp src * GR[rs3];

GR[r;].nat = tmp nat || GR[r3].nat;

}

Interruptions: Illegal Operation fault

Volume 3: Instruction Reference 3:279

zxt

zxt — Zero Extend

Format: (gp) zxtxsz r;=rs 129

Description: The value in GR r; is zero extended above the bit position specified by xsz and the result
is placed in GR r;,. The mnemonic values for xsz are given in Table 2-52 on page 3:258.

Operation: if (PR[gp]) {
check target register(r;);

GR[r;] = zero ext(GR[r3],xsz * 8);

GR[r;].nat = GR[r3].nat;
}

Interruptions: Illegal Operation fault

3:280 Volume 3: Instruction Reference

Pseudo-Code Functions

This chapter contains a table of all pseudo-code functions used on the Itanium

instruction pages.

Table 3-1. Pseudo-code Functions

Function

Operation

xxx_fault(parameters ...)

There are several fault functions. Each fault function accepts parameters specific to
the fault, e.g., exception code values, virtual addresses, etc. If the fault is deferred for
speculative load exceptions the fault function will return with a deferral indication.
Otherwise, fault routines do not return and terminate the instruction sequence.

xxx_trap(parameters ...)

There are several trap functions. Each trap function accepts parameters specific to
the trap, e.g., trap code values, virtual addresses, etc. Trap routines do not return.

acceptance_fence()

Ensures prior data memory references to uncached ordered-sequential memory
pages are “accepted” before subsequent data memory references are performed by
the processor.

alat_cmp(rtype, raddr)

Returns a one if the implementation finds an ALAT entry which matches the register
type specified by rtype and the register address specified by raddr, else returns
zero. This function is implementation specific. Note that an implementation may
optionally choose to return zero (indicating no match) even if a matching entry exists
in the ALAT. This provides implementation flexibility in designing fast ALAT lookup
circuits.

alat_frame_update(delta_bof, delta_sof)

Notifies the ALAT of a change in the bottom of frame and/or size of frame. This allows
management of the ALAT’s tag bits or other management functions it might need.

alat_inval()

Invalidate all entries in the ALAT.

alat_inval_multiple_entries(paddr, size)

The ALAT is queried using the physical memory address specified by paddr and the
access size specified by size. All matching ALAT entries are invalidated. No value is
returned.

alat_inval_single_entry(rtype, rega)

The ALAT is queried using the register type specified by rtype and the register
address specified by rega. At most one matching ALAT entry is invalidated. No value
is returned.

alat_read_memory_on_hit(ldtype, rtype,
raddr)

Returns a one if the implementation requires that the requested check load should
perform a memory access (requires prior address translation); returns a zero
otherwise.

alat_translate_address_on_hit(ldtype,
rtype, raddr)

Returns a one if the implementation requires that the requested check load should
translate the source address and take associated faults; returns a zero otherwise.

alat_write(ldtype, rtype, raddr, paddr,
size)

Allocates a new ALAT entry or updates an existing entry using the load type specified
by 1dtype, the register type specified by rtype, the register address specified by
raddr, the physical memory address specified by paddr, and the access size
specified by size. No value is returned. This function guarantees that at most only
one ALAT entry exists for a given raddr. Based on the load type 1dtype, if a
1d.c.nc, 1df.c.nc, or 1dfp.c.nc instruction's raddr matches an existing ALAT
entry's register tag, but the instruction's size and/or paddr are different than that of
the existing entry's, then this function may either preserve the existing entry, or
invalidate it and write a new entry with the instruction's specified size and paddr.

align_to_size_boundary(vaddr, size)

Returns vaddr aligned to the boundary specified by size.

branch_predict(wh, ih, ret, target, tag)

Implementation-dependent routine which updates the processor’s branch prediction
structures.

Volume 3: Pseudo-Code Functions

3:281

Table 3-1.

Intel® Itanium® Architecture Software Developer’s Manual Rev. 2.3

Pseudo-code Functions (Continued)

Function

Operation

check_branch_implemented(check_type)

Implementation-dependent routine which returns TRUE or FALSE, depending on
whether a failing check instruction causes a branch (TRUE), or a Speculative
Operation fault (FALSE). The result may be different for different types of check
instructions: CHKS_GENERAL, CHKS_FLOAT, CHKA_GENERAL, CHKA_FLOAT. In
addition, the result may depend on other implementation-dependent parameters.

check_probe_virtualization_fault(type,
cpl)

If implemented, this function may raise virtualization faults for specific probe
instructions. Please refer to the instruction page for probe instruction for details.

check_target_register(r1)

If the r1 argument specifies an out-of-frame stacked register (as defined by CFM) or
r1 specifies GRO, an lllegal Operation fault is delivered, and this function does not
return.

check_target_register_sof(r1, newsof)

If the r1 argument specifies an out-of-frame stacked register (as defined by the
newsof argument) or r1 specifies GRO, an lllegal Operation fault is delivered and
this function does not return.

concatenate2(x1, x2)

Concatenates the lower 32 bits of the 2 arguments, and returns the 64-bit result.

concatenate4(x1, x2, x3, x4)

Concatenates the lower 16 bits of the 4 arguments, and returns the 64-bit result.

concatenate8(x1, x2, x3, x4, x5, x6, x7,
x8)

Concatenates the lower 8 bits of the 8 arguments, and returns the 64-bit result.

data_serialize()

Ensures all prior register updates with side-effects are observed before subsequent
execution and data memory references are performed.

deliver_unmasked_pending_interrupt()

This implementation-specific function checks whether any unmasked external
interrupts are pending, and if so, transfers control to the external interrupt vector.

execute_hint(hint)

Executes the hint specified by hint.

fadd(fp_dp, fr2)

Adds a floating-point register value to the infinitely precise product and return the
infinitely precise sum, ready for rounding.

fcmp_exception_fault_check(f2, 3, frel,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the f£cmp instruction.

fevt_fx_exception_fault_check(fr2,
signed_form, trunc_form, sf *tmp_fp_env)

Checks for all floating-point faulting conditions for the fcvt. fx, fcvt. £xu,
fcvt.fx.trunc and fcvt. fxu. trunc instructions. It propagates NaNs.

fma_exception_fault_check(f2, f3, f4, pc,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fma instruction. It propagates
NaNs and special IEEE results.

fminmax_exception_fault_check(f2, f3, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the famax, famin, fmax, and fmin
instructions.

fms_fnma_exception_fault_check(f2, {3,
f4, pc, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fms and fnma instructions. It
propagates NaNs and special IEEE results.

fmul(fr3, frd)

Performs an infinitely precise multiply of two floating-point register values.

followed_by_stop()

Returns TRUE if the current instruction is followed by a stop; otherwise, returns
FALSE.

fp_check_target_register(f1)

If the specified floating-point register identifier is 0 or 1, this function causes an illegal
operation fault.

fp_decode_fault(tmp_fp_env)

Returns floating-point exception fault code values for ISR.code.

fp_decode_traps(tmp_fp_env)

Returns floating-point trap code values for ISR.code.

fp_equal(fr1, fr2)

|IEEE standard equality relationship test.

fp_fr_to_mem_format(freg, size)

Converts a floating-point value in register format to floating-point memory format. It
assumes that the floating-point value in the register has been previously rounded to
the correct precision which corresponds with the size parameter.

fp_ieee_recip(num, den)

Returns the true quotient for special sets of operands, or an approximation to the
reciprocal of the divisor to be used in the software divide algorithm.

fp_ieee_recip_sqrt(root)

Returns the true square root result for special operands, or an approximation to the
reciprocal square root to be used in the software square root algorithm.

fp_is_nan(freg)

Returns true when floating register contains a NaN.

3:282

Volume 3: Pseudo-Code Functions

Table 3-1.

Pseudo-code Functions (Continued)

Function

Operation

fp_is_nan_or_inf(freg)

Returns true if the floating-point exception_fault_check functions returned a IEEE
fault disabled default result or a propagated NaN.

fp_is_natval(freg)

Returns true when floating register contains a NaTVal

fp_is_normal(freg)

Returns true when floating register contains a normal number.

fp_is_pos_inf(freg)

Returns true when floating register contains a positive infinity.

fp_is_gnan(freg)

Returns true when floating register contains a quiet NaN.

fp_is_snan(freg)

Returns true when floating register contains a signalling NaN.

fp_is_unorm(freg)

Returns true when floating register contains an unnormalized
number.

fp_is_unsupported(freg)

Returns true when floating register contains an unsupported format.

fp_less_than(fr1, fr2)

IEEE standard less-than relationship test.

fp_lesser_or_equal(fr1, fr2)

|IEEE standard less-than or equal-to relationship test

fp_mem_to_fr_format(mem, size)

Converts a floating-point value in memory format to floating-point register format.

fp_normalize(fr1)

Normalizes an unnormalized fp value. This function flushes to zero any unnormal
values which can not be represented in the register file

fp_raise_fault(tmp_fp_env)

Checks the local instruction state for any faulting conditions which require an
interruption to be raised.

fp_raise_traps(tmp_fp_env)

Checks the local instruction state for any trapping conditions which require an
interruption to be raised.

fp_reg_bank_conflict(f1, f2)

Returns true if the two specified FRs are in the same bank.

fp_reg_disabled(f1, f2, f3, f4)

Check for possible disabled floating-point register faults.

fp_reg_read(freg)

Reads the FR and gives canonical double-extended denormals (and
pseudo-denormals) their true mathematical exponent. Other classes of operands are
unaltered.

fp_unordered(fr1, fr2)

IEEE standard unordered relationship

fp_update_fpsr(sf, tmp_fp_env)

Copies a floating-point instruction’s local state into the global FPSR.

fp_update_psr(dest_freg)

Conditionally sets PSR.mfl or PSR.mfh based on dest_freg.

fpecmp_exception_fault_check(f2, f3, frel,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fpcmp instruction.

fpcvt_exception_fault_check(f2,
signed_form, trunc_form, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the fpcvt. £x, fpcvt. fxu,
fpcvt. £x.trunc, and fpcvt. £xu. trunc instructions. It propagates NaNs.

fpma_exception_fault_check(f2, f3, f4, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the fpma instruction. It propagates
NaNs and special IEEE results.

fpminmax_exception_fault_check(f2, f3,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fpmin, fpmax, fpamin and
fpamax instructions.

fpms_fpnma_exception_fault_check(f2,
f3, f4, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fpms and fpnma instructions. It
propagates NaNs and special IEEE results.

fprcpa_exception_fault_check(f2, f3, sf,
*tmp_fp_env, *limits_check)

Checks for all floating-point faulting conditions for the fprcpa instruction. It
propagates NaNs and special IEEE results. It also indicates operand limit violations.

fprsqrta_exception_fault_check(f3, sf,
*tmp_fp_env, *limits_check)

Checks for all floating-point faulting conditions for the fprsqgrta instruction. It
propagates NaNs and special IEEE results. It also indicates operand limit violations.

frcpa_exception_fault_check(f2, f3, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the frcpa instruction. It
propagates NaNs and special IEEE results.

frsqrta_exception_fault_check(f3, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the frsqrta instruction. It
propagates NaNs and special IEEE results

ignored_field_mask(regclass, reg, value)

Boolean function that returns value with bits cleared to 0 corresponding to ignored
bits for the specified register and register type.

Volume 3: Pseudo-Code Functions

3:283

Intel® Itanium® Architecture Software Developer’s Manual Rev. 2.3

Table 3-1. Pseudo-code Functions (Continued)

Function

Operation

impl_check_mov_itir()

Implementation-specific function that returns TRUE if ITIR is checked for reserved
fields and encodings on a mov to ITIR instruction.

impl_check_mov_psr_I(gr)

Implementation-specific function to check bits {63:32} of gr corresponding to
reserved fields of the PSR for Reserved Register/Field fault.

impl_check_tlb_itir()

Implementation-specific function that returns TRUE if all fields of ITIR are checked for
reserved encodings on a TLB insert instruction regardless of whether the translation
is present.

impl_gitc_enable()

Implementation-specific function that indicates whether guest MOV-from-AR.ITC
optimization is enabled.

impl_ia32_ar_reserved_ignored(ar3)

Implementation-specific function which indicates how the reserved and ignored fields
in the specified IA-32 application register, ar3, behave. If it returns FALSE, the
reserved and/or ignored bits in the specified application register can be written, and
when read they return the value most-recently written. If it returns TRUE, attempts to
write a non-zero value to a reserved field in the specified application register cause a
Reserved Register/Field fault, and reads return 0; writing to an ignored field in the
specified application register is ignored, and reads return the constant value defined
for that field.

impl_iib()

Implementation-specific function which indicates whether Interruption Instruction
Bundle registers (11B0O-1) are implemented.

impl_itir_cwi_mask()

Implementation-specific function that either returns the value passed to it or the value
passed to it masked with zeros in bit positions {63:32} and/or {1:0}.

impl_ito()

Implementation-specific function which indicates whether Interval Timer Offset (ITO)
register is implemented.

impl_probe_intercept()

Implementation-specific function indicates whether probe interceptions are
supported.

impl_ruc()

Implementation-specific function which indicates whether Resource Utilization
Counter (RUC) application register is implemented.

impl_uia_fault_supported()

Implementation-specific function that either returns TRUE if the processor reports
unimplemented instruction addresses with an Unimplemented Instruction Address
fault, and returns FALSE if the processor reports them with an Unimplemented
Instruction Address trap.

implemented_vm()

Returns TRUE if the processor implements the PSR.vm bit (regardless of whether
virtual machine features are enabled or disabled).

instruction_implemented(inst)

Implementation-dependent routine which returns TRUE or FALSE, depending on
whether inst is implemented.

instruction_serialize()

Ensures all prior register updates with side-effects are observed before subsequent
instruction and data memory references are performed. Also ensures prior SYNC.i
operations have been observed by the instruction cache.

instruction_synchronize()

Synchronizes the instruction and data stream for Flush Cache operations. This
function ensures that when prior Flush Cache operations are observed by the local
data cache they are observed by the local instruction cache, and when prior Flush
Cache operations are observed by another processor’s data cache they are observed
within the same processor’s instruction cache.

is_finite(freg)

Returns true when floating register contains a finite number.

is_ignored_reg(regnum)

Boolean function that returns true if regnum is an ignored application register,
otherwise false.

is_inf(freg)

Returns true when floating register contains an infinite number.

is_interruption_cr(regnum)

Boolean function that returns true if regnum is one of the Interruption Control
registers (see Section 3.3.5, “Interruption Control Registers” on page 2:36), otherwise
false.

is_kernel_reg(ar_addr)

Returns a one if ar addr is the address of a kernel register application register

3:284

Volume 3: Pseudo-Code Functions

Table 3-1.

Pseudo-code Functions (Continued)

Function

Operation

is_read_only_reg(rtype, raddr)

Returns a one if the register addressed by raddr in the register bank of type rtype
is a read only register.

is_reserved_field(regclass, arg2, arg3)

Returns true if the specified data would write a one in a reserved field.

is_reserved_reg(regclass, regnum)

Returns true if register regnum is reserved in the regclass register file.

is_supported_hint(hint)

Returns true if the implementation supports the specified hint. This function may
depend on factors other than the hint value, such as which execution unit it is
executed on or the slot number the instruction was encoded in.

itlb_ar()

Returns the page access rights from the ITLB for the page addressed by the current
IP, or INVALID_AR if PSR.it is 0.

make_icache_coherent(paddr)

The cache line addressed by the physical address paddr is flushed in an
implementation-specific manner that ensures that the instruction cache is coherent
with the data caches.

mem_flush(paddr)

The line addressed by the physical address paddr is invalidated in all levels of the
memory hierarchy above memory and written back to memory if it is inconsistent with
memory.

mem_flush_pending_stores()

The processor is instructed to start draining pending stores in write coalescing and
write buffers. This operation is a hint. There is no indication when prior stores have
actually been drained.

mem_implicit_prefetch(vaddr, hint, type)

Moves the line addressed by vaddr to the location of the memory hierarchy specified
by hint. This function is implementation dependent and can be ignored. The type
allows the implementation to distinguish prefetches for different instruction types.

mem_promote(paddr, mtype, hint)

Moves the line addressed by paddr to the highest level of the memory hierarchy
conditioned by the access hints specified by hint. Implementation dependent and
can be ignored.

mem_read(paddr, size, border, mattr,
otype, hint)

Returns the size bytes starting at the physical memory location specified by paddr
with byte order specified by border, memory attributes specified by mattr, and
access hint specified by hint. otype specifies the memory ordering attribute of this
access, and must be UNORDERED or ACQUIRE.

mem_read_pair(*low_value, *high_value,
paddr, size, border, mattr, otype, hint)

Reads the size / 2 bytes of memory starting at the physical memory address
specified by paddr into low_value, and the size / 2 bytes of memory starting at the
physical memory address specified by (paddr + size/2)into high value, with
byte order specified by border, memory attributes specified by mattr, and access
hint specified by hint. otype specifies the memory ordering attribute of this access,
and must be UNORDERED or ACQUIRE. No value is returned.

mem_write(value, paddr, size, border,
mattr, otype, hint)

Writes the least significant size bytes of value into memory starting at the physical
memory address specified by paddr with byte order specified by border, memory
attributes specified by mattr, and access hint specified by hint. ot ype specifies the
memory ordering attribute of this access, and must be UNORDERED or RELEASE.
No value is returned.

mem_write16(gr_value, ar_value, paddr,
border, mattr, otype, hint)

Writes the 8 bytes of gr_value into memory starting at the physical memory address
specified by paddr, and the 8 bytes of ar value into memory starting at the physical
memory address specified by (paddr + 8), with byte order specified by border,
memory attributes specified by mattr, and access hint specified by hint. otype
specifies the memory ordering attribute of this access, and must be UNORDERED or
RELEASE. No value is returned.

mem_xchg(data, paddr, size, byte_order,
mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by paddr.
The read is conditioned by the locality hint specified by hint. After the read, the least
significant size bytes of data are written to size bytes in memory starting at the
physical address specified by paddr. The read and write are performed atomically.
Both the read and the write are conditioned by the memory attribute specified by
mattr and the byte ordering in memory is specified by byte order. otype specifies
the memory ordering attribute of this access, and must be ACQUIRE.

Volume 3: Pseudo-Code Functions

3:285

Intel® Itanium® Architecture Software Developer’s Manual Rev. 2.3

Table 3-1. Pseudo-code Functions (Continued)

Function

Operation

mem_xchg_add(add_val, paddr, size,
byte_order, mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by
paddr. The read is conditioned by the locality hint specified by hint. The least
significant size bytes of the sum of the value read from memory and add_val is
then written to size bytes in memory starting at the physical address specified by
paddr. The read and write are performed atomically. Both the read and the write are
conditioned by the memory attribute specified by mattr and the byte ordering in
memory is specified by byte order. otype specifies the memory ordering attribute
of this access, and has the value ACQUIRE or RELEASE.

mem_xchg_cond(cmp_val, data, paddr,
size, byte_order, mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by
paddr. The read is conditioned by the locality hint specified by hint. If the value read
from memory is equal to cmp_val, then the least significant size bytes of data are
written to size bytes in memory starting at the physical address specified by
paddr. If the write is performed, the read and write are performed atomically. Both the
read and the write are conditioned by the memory attribute specified by mattr and
the byte ordering in memory is specified by byte order. otype specifies the
memory ordering attribute of this access, and has the value ACQUIRE or RELEASE.

mem_xchg16_cond(cmp_val, gr_data,
ar_data, paddr, byte_order, mattr, otype,
hint)

Returns 8 bytes from memory starting at the physical address specified by paddr.
The read is conditioned by the locality hint specified by hint. If the value read from
memory is equal to cmp_val, then the 8 bytes of gr_data are written to 8 bytes in
memory starting at the physical address specified by (paddr & ~0x8), and the 8 bytes
of ar data are written to 8 bytes in memory starting at the physical address
specified by ((paddr & ~0x8) + 8). If the write is performed, the read and write are
performed atomically. Both the read and the write are conditioned by the memory
attribute specified by mattr and the byte ordering in memory is specified by

byte order. The byte ordering only affects the ordering of bytes within each of the
8-byte values stored. ot ype specifies the memory ordering attribute of this access,
and has the value ACQUIRE or RELEASE.

ordering_fence()

Ensures prior data memory references are made visible before future data memory
references are made visible by the processor.

partially_implemented_ip()

Implementation-dependent routine which returns TRUE if the implementation, on an
Unimplemented Instruction Address trap, writes 1P with the sign-extended virtual
address or zero-extended physical address for what would have been the next value
of IP. Returns FALSE if the implementation, on this trap, simply writes IIP with the full
address which would have been the next value of IP.

pending_virtual_interrupt()

Check for unmasked pending virtual interrupt.

pr_phys_to_virt(phys_id)

Returns the virtual register id of the predicate from the physical register id, phys id
of the predicate.

rotate_regs()

Decrements the Register Rename Base registers, effectively rotating the register
files. CFM.rrb.gr is decremented only if CFM.sor is non-zero.

rse_enable_current_frame_load()

If the RSE load pointer (RSE.BSPLoad) is greater than AR[BSP], the RSE . CFLE bit is
set to indicate that mandatory RSE loads are allowed to restore registers in the
current frame (in no other case does the RSE spill or fill registers in the current
frame). This function does not perform mandatory RSE loads. This procedure does
not cause any interruptions.

rse_ensure_regs_loaded(number_of byt
es)

All registers and NaT collections between AR [BSP] and
(AR[BSP]-number of bytes) which are not already in stacked registers are
loaded into the register stack with mandatory RSE loads. If the number of registers to
be loaded is greater than RSE.N_STACK PHYS an lllegal Operation fault is raised. All
registers starting with backing store address (AR[BSP] - 8) and decrementing down
to and including backing store address (AR[BSP] - number_of_bytes) are made part
of the dirty partition. With exception of the current frame, all other stacked registers
are made part of the invalid partition. Note that number of bytes may be zero. The
resulting sequence of RSE loads may be interrupted. Mandatory RSE loads may
cause an interruption; see Table 6-6, “RSE Interruption Summary” on page 6-145.

rse_invalidate_non_current_regs()

All registers outside the current frame are invalidated.

3:286

Volume 3: Pseudo-Code Functions

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

rse_load(type) Restores a register or NaT collection from the backing store (1oad address =
RSE.BspLoad - 8). If load_address{8:3} is equal to 0x3f then a NaT collection is
loaded into a NaT dispersal register. (dispersal register may not be the same
as AR[RNAT].) If load address{8:3} is not equal to 0x3f then the register
RSE.LoadReg - 1 is loaded and the NaT bit for that register is set to

dispersal register{load address{8:3}}. If the load is successful
RSE.BspLoad is decremented by 8. If the load is successful and a register was
loaded RSE. LoadReg is decremented by 1 (possibly wrapping in the stacked
registers). The load moves a register from the invalid partition to the current frame if
RSE.CFLE is 1, or to the clean partition if RSE.CFLE is 0. For mandatory RSE loads,
type is MANDATORY. Mandatory RSE loads may cause interruptions. See

Table 6-6, “RSE Interruption Summary” on page 6-145.

rse_new_frame(current_frame_size, A new frame is defined without changing any register renaming. The new frame size
new_frame_size) is completely defined by the new frame size parameter (successive calls are not
cumulative). If new frame size is larger than current frame size and the
number of registers in the invalid and clean partitions is less than the size of frame
growth then mandatory RSE stores are issued until enough registers are available.
The resulting sequence of RSE stores may be interrupted. Mandatory RSE stores
may cause interruptions; see Table 6-6, “RSE Interruption Summary” on page 6-145.

rse_preserve_frame(preserved_frame_si | The number of registers specified by preserved frame size are marked to be
ze) preserved by the RSE. Register renaming causes the preserved frame size
registers after GR[32] to be renamed to GR[32]. AR[BSP] is updated to contain the
backing store address where the new GR[32] will be stored.

rse_restore_frame(preserved_sol, The first two parameters define how the current frame is about to be updated by a
growth, current_frame_size) branch return or rfi: preserved sol defines how many registers need to be
restored below RSE.BOF; growth defines by how many registers the top of the
current frame will grow (growth will generally be negative). The number of registers
specified by preserved sol are marked to be restored. Register renaming causes
the preserved sol registers before GR[32] to be renamed to GR[32]. AR[BSP] is
updated to contain the backing store address where the new GR[32] will be stored. If
the number of dirty and clean registers is less than preserved_sol then mandatory
RSE loads must be issued before the new current frame is considered valid. This
function does not perform mandatory RSE loads. This function returns TRUE if the
preserved frame grows beyond the invalid and clean regions into the dirty region. In
this case the third argument, current frame size, is used to force the returned to
frame to zero (see Section 6.5.5, “Bad PFS used by Branch Return” on page 2:143).

rse_store(type) Saves a register or NaT collection to the backing store (store_address =
AR[BSPSTORE]). If store_address{8:3} is equal to 0x3f then the NaT collection
AR[RNAT] is stored. If store_address{8:3} is not equal to 0x3f then the register
RSE.StoreReg is stored and the NaT bit from that register is deposited in
AR[RNAT]{store_address{8:3}}. If the store is successful AR[BSPSTORE] is
incremented by 8. If the store is successful and a register was stored RSE.StoreReg
is incremented by 1 (possibly wrapping in the stacked registers). This store moves a
register from the dirty partition to the clean partition. For mandatory RSE stores, type
is MANDATORY. Mandatory RSE stores may cause interruptions. See Table 6-6,
“RSE Interruption Summary” on page 6-145.

rse_update_internal_stack_pointers(new | Given a new value for AR [BSPSTORE] (new store pointer) this function
_store_pointer) computes the new value for AR[BSP] . This value is equal to new_store pointer
plus the number of dirty registers plus the number of intervening NaT collections. This
means that the size of the dirty partition is the same before and after a write to

AR [BSPSTORE]. All clean registers are moved to the invalid partition.

sign_ext(value, pos) Returns a 64 bit number with bits pos-1 through 0 taken from value and bit pos-1 of
value replicated in bit positions pos through 63. If pos is greater than or equal to 64,
value is returned.

Volume 3: Pseudo-Code Functions 3:287

Intel® Itanium® Architecture Software Developer’s Manual Rev. 2.3

Table 3-1. Pseudo-code Functions (Continued)

Function

Operation

spontaneous_deferral(paddr, size,
border, mattr, otype, hint, *defer)

Implementation-dependent routine which optionally forces *defer to TRUE if all of
the following are true: spontaneous deferral is enabled, spontaneous deferral is
permitted by the programming model, and the processor determines it would be
advantageous to defer the speculative load (e.g., based on a miss in some particular
level of cache).

spontaneous_deferral_enabled()

Implementation-dependent routine which returns TRUE or FALSE, depending on
whether spontaneous deferral of speculative loads is enabled or disabled in the
processor.

tlb_access_key(vaddr, itype)

This function returns, in bits 31:8, the access key from the TLB for the entry
corresponding to vaddr and itype; bits 63:32 and 7:0 return 0. If vaddr is an
unimplemented virtual address, or a matching present translation is not found, the
value 1 is returned.

tlb_broadcast_purge(rid, vaddr, size,
type)

Sends a broadcast purge DTC and ITC transaction to other processors in the
multiprocessor coherency domain, where the region identifier (rid), virtual address
(vaddr) and page size (size) specify the translation entry to purge. The operation
waits until all processors that receive the purge have completed the purge operation.
The purge type (type) specifies whether the ALAT on other processors should also
be purged in conjunction with the TC.

tlb_enter_privileged_code()

This function determines the new privilege level for epc from the TLB entry for the
page containing this instruction. If the page containing the epc instruction has
execute-only page access rights and the privilege level assigned to the page is higher
than (numerically less than) the current privilege level, then the current privilege level
is set to the privilege level field in the translation for the page containing the epc
instruction.

tlb_grant_permission(vaddr, type, pl)

Returns a boolean indicating if read, write access is granted for the specified virtual
memory address (vaddr) and privilege level (pl). The access type (type) specifies
either read or write. The following faults are checked::

» Data Nested TLB fault

* Alternate Data TLB fault

* VHPT Data fault

+ Data TLB fault

» Data Page Not Present fault

» Data NaT Page Consumption fault

» Data Key Miss fault
If a fault is generated, this function does not return.

tlb_insert_data(slot, pte0, pte1, vaddr, rid,
tr)

Inserts an entry into the DTLB, at the specified slot number. pte0, ptel compose
the translation. vaddr and rid specify the virtual address and region identifier for the
translation. If tr is true the entry is placed in the TR section, otherwise the TC
section.

tlb_insert_inst(slot, pte0, pte1, vaddr, rid,
tr)

Inserts an entry into the ITLB, at the specified slot number. pte0, ptel compose
the translation. vaddr and rid specify the virtual address and region identifier for the
translation. If tr is true, the entry is placed in the TR section, otherwise the TC
section.

tlb_may_purge_dtc_entries(rid, vaddr,
size)

May locally purge DTC entries that match the specified virtual address (vaddr),
region identifier (rid) and page size (size). May also invalidate entries that partially
overlap the parameters. The extent of purging is implementation dependent. If the
purge size is not supported, an implementation may generate a machine check abort
or over purge the translation cache up to and including removal of all entries from the
translation cache.

3:288

Volume 3: Pseudo-Code Functions

Table 3-1. Pseudo-code Functions (Continued)

Function

Operation

tlb_may_purge_itc_entries(rid, vaddr,
size)

May locally purge ITC entries that match the specified virtual address (vaddr), region
identifier (rid) and page size (size). May also invalidate entries that partially overlap
the parameters. The extent of purging is implementation dependent. If the purge size
is not supported, an implementation may generate a machine check abort or over
purge the translation cache up to and including removal of all entries from the
translation cache.

tib_must_purge_dtc_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, DTC entries matching the specified region
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61}
(VRN) is ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache. If the specified purge
values overlap with an existing DTR translation, an implementation may generate a
machine check abort.

tlb_must_purge_dtr_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, DTR entries matching the specified region
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61}
(VRN) is ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache.

tlb_must_purge_itc_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, ITC entry matching the specified region
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61} (VRN) is
ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache. If the specified purge
values overlap with an existing ITR translation, an implementation may generate a
machine check abort.

tlb_must_purge_itr_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, ITR entry matching the specified region
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61} (VRN) is
ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache.

tlb_purge_translation_cache(loop)

Removes 1 to N translations from the local processor’s ITC and DTC. The number of
entries removed is implementation specific. The parameter loop is used to generate
an implementation-specific purge parameter.

tlb_replacement_algorithm(tlb)

Returns the next ITC or DTC slot number to replace. Replacement algorithms are
implementation specific. t1b specifies to perform the algorithm on the ITC or DTC.

tlb_search_pkr(key)

Searches for a valid protection key register with a matching protection key. The
search algorithm is implementation specific. Returns the PKR register slot number if
found, otherwise returns Not Found.

Volume 3: Pseudo-Code Functions

3:289

Table 3-1.

Intel® Itanium® Architecture Software Developer’s Manual Rev. 2.3

Pseudo-code Functions (Continued)

Function

Operation

tlb_translate(vaddr, size, type, cpl, *attr,
*defer)

Returns the translated data physical address for the specified virtual memory address
(vaddr) when translation enabled; otherwise, returns vaddr. size specifies the size
of the access, type specifies the type of access (e.g., read, write, advance, spec).
cpl specifies the privilege level for access checking purposes. *attr returns the
mapped physical memory attribute. If any fault conditions are detected and deferred,
tlb_translate returns with *defer set. If a fault is generated but the fault is not
deferred, tlb_translate does not return. tlb_translate checks the following faults:

* Unimplemented Data Address fault
+ Data Nested TLB fault

* Alternate Data TLB fault

* VHPT Data fault

+ Data TLB fault

» Data Page Not Present fault

» Data NaT Page Consumption fault
+ Data Key Miss fault

+ Data Key Permission fault

» Data Access Rights fault

« Data Dirty Bit fault

» Data Access Bit fault

» Data Debug fault

» Unaligned Data Reference fault

* Unsupported Data Reference fault

tlb_translate_nonaccess(vaddr, type)

Returns the translated data physical address for the specified virtual memory address
(vaddr). type specifies the type of access (e.g., FC, TPA). If a fault is generated,
tlb_translate_nonaccess does not return. The following faults are checked:

» Unimplemented Data Address fault
+ Virtualization fault (tpa only)

» Data Nested TLB fault

» Alternate Data TLB fault

* VHPT Data fault

+ Data TLB fault

+ Data Page Not Present fault

+ Data NaT Page Consumption fault
« Data Access Rights fault (£c only)

tlb_vhpt_hash(vrn, vaddr61, rid, size)

Generates a VHPT entry address for the specified virtual region number (vrn) and
61-bit virtual offset (vaddr61), region identifier (rid) and page size (size).
Tlb_vhpt_hash hashes vaddr, rid and size parameters to produce a hash index.
The hash index is then masked based on PTA.size and concatenated with PTA.base
to generate the VHPT entry address. The long format hash is implementation
specific.

tlb_vhpt_tag(vaddr, rid, size)

Generates a VHPT tag identifier for the specified virtual address (vaddr), region
identifier (rid) and page size (size). Tlb_vhpt_tag hashes the vaddr, rid and size
parameters to produce translation identifier. The tag in conjunction with the hash
index is used to uniquely identify translations in the VHPT. Tag generation is
implementation specific. All processor models tag function must guarantee that bit 63
of the generated tag is zero (ti bit).

undefined()

Returns an undefined 64-bit value.

undefined_behavior()

Causes undefined processor behavior. Extent of undefined behavior is described in
Section 3.5, “Undefined Behavior” on page 1:44.

3:290

Volume 3: Pseudo-Code Functions

Table 3-1. Pseudo-code Functions (Continued)

Function

Operation

unimplemented_physical_address(paddr)

Return TRUE if the presented physical address is unimplemented on this processor
model; FALSE otherwise. This function is model specific.

unimplemented_virtual_address(vaddr,
vm)

Return TRUE if the presented virtual address is unimplemented on this processor
model; FALSE otherwise. If vm is 1, one additional bit of virtual address is treated as
unimplemented. This function is model specific.

vm_all_probes()

Returns TRUE if the processor is configured to virtualize all probe instructions when
PSR.vm s 1. See Section 11.7.4.2.8, “Probe Instruction Virtualization” on
page 2:344 for details.

vm_disabled()

Returns TRUE if the processor implements the PSR.vm bit and virtual machine
features are disabled. See Section 3.4, “Processor Virtualization” on page 2:44 in
SDM and “PAL_PROC_GET_FEATURES — Get Processor Dependent Features
(17)” on page 2:446 in SDM for details.

vm_select_probes()

Returns TRUE if the processor is configured to virtualize selected probe instructions
when PSR.vm is 1. See Section 11.7.4.2.8, “Probe Instruction Virtualization” on
page 2:344 for details.

vmsw_disabled()

Returns TRUE if the processor implements the PSR.vm bit and the vmsw instruction
is disabled. See Section 3.4, “Processor Virtualization” on page 2:44 in SDM and
“PAL_PROC_GET_FEATURES - Get Processor Dependent Features (17)” on
page 2:446 in SDM for details.

zero_ext(value, pos)

Returns a 64 bit unsigned number with bits pos-1 through 0 taken from value and
zeroes in bit positions pos through 63. If pos is greater than or equal to 64, value is
returned.

Volume 3: Pseudo-Code Functions

3:291

Intel® Itanium® Architecture Software Developer’s Manual Rev. 2.3

3:292 Volume 3: Pseudo-Code Functions

Instruction Formats 4

Each Itanium instruction is categorized into one of six types; each instruction type may
be executed on one or more execution unit types. Table 4-1 lists the instruction types
and the execution unit type on which they are executed:

Table 4-1. Relationship between Instruction Type and Execution Unit Type
Insfrr;':;lon Description Execution Unit Type
A Integer ALU l-unit or M-unit
| Non-ALU integer l-unit
M Memory M-unit
F Floating-point F-unit
B Branch B-unit
L+X Extended [-unit/B-unit?

a. L+X Major Opcodes 0 - 7 execute on an Il-unit. L+X Major Opcodes 8 - F execute on a B-unit.

Three instructions are grouped together into 128-bit sized and aligned containers called
bundles. Each bundle contains three 41-bit instruction slots and a 5-bit template
field. The format of a bundle is depicted in Figure 4-1.

Figure 4-1. Bundle Format

127 87 86 46 45 5 4 0
instruction slot 2 instruction slot 1 instruction slot 0 ‘ template ‘
41 41 41

The template field specifies two properties: stops within the current bundle, and the
mapping of instruction slots to execution unit types. Not all combinations of these two
properties are allowed - Table 4-2 indicates the defined combinations. The three
rightmost columns correspond to the three instruction slots in a bundle; listed within
each column is the execution unit type controlled by that instruction slot for each
encoding of the template field. A double line to the right of an instruction slot indicates
that a stop occurs at that point within the current bundle. See “Instruction Encoding
Overview” on page 1:38 for the definition of a stop. Within a bundle, execution order
proceeds from slot 0 to slot 2. Unused template values (appearing as empty rows in
Table 4-2) are reserved and cause an Illegal Operation fault.

Extended instructions, used for long immediate integer and long branch instructions,
occupy two instruction slots. Depending on the major opcode, extended instructions
execute on a B-unit (long branch/call) or an I-unit (all other L+X instructions).

Volume 3: Instruction Formats 3:293

4.1

3:294

Table 4-2.

Template Field Encoding and Instruction Slot Mapping

Template

Slot 0

Slot 1 Slot 2

00

M-unit

l-unit

l-unit

01

M-unit

|-unit

l-unit

02

M-unit

|-unit

l-unit

03

M-unit

|-unit

04

M-unit

05

M-unit

06

07

08

l-unit

09

M-unit

M-unit

l-unit

0A

M-unit

M-unit

l-unit

0B

M-unit

M-unit

0C

l-unit

0D

OE

OF

10

1

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

a. The MLX template was formerly called MLI, and for compatibility, the X slot may encode break.i and nop.i in

addition to any X-unit instruction.

Format Summary

All instructions in the instruction set are 41 bits in length. The leftmost 4 bits (40:37) of
each instruction are the major opcode. Table 4-3 shows the major opcode assignments

for each of the 5 instruction types — ALU (A), Integer (I), Memory (M), Floating-point
(F), and Branch (B). Bundle template bits are used to distinguish among the 4 columns,

so the same major op values can be reused in each column.

Unused major ops (appearing as blank entries in Table 4-3) behave in one of four ways:
¢ Ignored major ops (white entries in Table 4-3) execute as nop instructions.

Volume 3: Instruction Formats

e Reserved major ops (light gray in the gray scale version of Table 4-3, brown in the
color version) cause an Illegal Operation fault.

e Reserved if PR[gp] is 1 major ops (dark gray in the gray scale version of Table 4-3,
purple in the color version) cause an Illegal Operation fault if the predicate register
specified by the gp field of the instruction (bits 5:0) is 1 and execute as a nop
instruction if 0.

e Reserved if PR[gp] is 1 B-unit major ops (medium gray in the gray scale version of
Table 4-3, cyan in the color version) cause an Illegal Operation fault if the predicate
register specified by the gp field of the instruction (bits 5:0) is 1 and execute as a
nop instruction if 0. These differ from the Reserved if PR[gp] is 1 major ops (purple)
only in their RAW dependency behavior (see "RAW Dependency Table” on

page 3:374).
Table 4-3. Major Opcode Assignments

Major Instruction Type

Op
(Bits A M/A F B L+X
40:37)

0 Misc 0| syssMemMgmt °| FPMisc ° Misc ©

1 Sys/Mem Mgmt '| FPMisc '

2

3 3

4 Deposit *| IntLd +Reg/getf *| FP Compare *

5 Shift/Test Bit °| IntLd/St+Imm °| FPClass °

6 FP Ld/St +Reg/setf © 6 movl ©

7 MM Mpy/Shift 7| FP Ld/St +lmm *

8 fma g

9 fma 9

A fms A

B fms &

C fnma c

D foma P

E fselect/xma E

F

Table 4-4 on page 3:296 summarizes all the instruction formats. The instruction fields
are color-coded for ease of identification, as described in Table 4-5 on page 3:298. A
color version of this chapter is available for those heavily involved in working with the
instruction encodings.

The instruction field names, used throughout this chapter, are described in Table 4-6 on
page 3:298. The set of special notations (such as whether an instruction is privileged)
are listed in Table 4-7 on page 3:299. These notations appear in the “Instruction”
column of the opcode tables.

Most instruction containing immediates encode those immediates in more than one
instruction field. For example, the 14-bit immediate in the Add Imm4 instruction
(format A4) is formed from the immy,, immgq, and s fields. Table 4-74 on page 3:368
shows how the immediates are formed from the instruction fields for each instruction
which has an immediate.

Volume 3: Instruction Formats 3:295

Table 4-4.

ALU
Shift L and Add
ALU Immg
Add Imm14
Add Imm22
Compare
Compare to Zero
Compare Immg
MM ALU
MM Shift and Add
MM Multiply Shift
MM Mpy/Mix/Pack
MM Mux1
MM Mux2
Shift R Variable
MM Shift R Fixed
Shift L Variable
MM Shift L Fixed
Bit Strings
Shift Right Pair
Extract
Dep.Z
Dep.Z Immg
Deposit Imm4
Deposit
Test Bit
Test NaT
Nop/Hint
Break
Int Spec Check
Move to BR
Move from BR
Move to Pred
Move to Pred Imm,,
Move from Pred/IP
Move to AR
Move to AR Immg
Move from AR
Sxt/Zxt/Czx
Test Feature
Int Load
Int Load +Reg
Int Load +Imm
Int Store
Int Store +Imm
FP Load
FP Load +Reg
FP Load +Imm
FP Store
FP Store +Imm
FP Load Pair
FP Load Pair +Imm
Line Prefetch
Line Prefetch +Reg
Line Prefetch +Imm
(Cmp &) Exchg
Fetch & Add
Set FR
Get FR

3:296

A1
A2
A3
Ad
A5
A6
A7
A8
A9
A10
1
12

13

14

15

16

17

18

19
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
M13
M14
M15
M16
M17
M18
M19

Instruction Format Summary
403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

8 Xoa Vel X4 | Xgp r3 I I
8 Xoa Vel Xa |Clyg 3 r2 1
8 S| Xog [Ve| X4 Xop r3 immyy, rq
8 S| X253 |Ve imm6d r3 imm7b rq
9 S immgy imms, r3 immzy, rq
C-E [tp] X5 [t r3 Iy 9
C-E tb Xo ta r3 0 (]
C-E [s| x|t r3 immzy, ©
8 [ZaXpa|Zn| X4 |X2p 3 2 Ty
8 Zy X2 [Zp) X4 Ct2d r3 p) I
Zg] X2a [Z0Ve| Cl2a | X2b 3 2 i
7 |24 X2a [Zb\Ve| X2¢ | X2b r3 P I
7 |24 X2a [Zb]Ve| X2c | X2b | mbtyg r2 r1
7 |2 X2a Zb)Ve| Xoc | X2b mhtg, 2 I
7 |24 X2a [Zb\Ve| X2¢ | X2b P I
7 [Za| X2a [Zb|Ve| X2¢ | X2b counts, I
7 |24 X2a ZbVe| X2c | X2b 's I
7 |Z4| X23 [Zp|Ve| Xoc | Xop | ccountse rq
7 ZE‘ X2a [Zp Vg Xoc | Xop r3 0 I
o Xy [X]| countgy ry
B Xp | X Ien6d POSghp y rq
5 Xo [X lengy y CpOSge rq
5 s| Xy |Xx lengg y CpOSg. immz, rq
5 S| Xo |X |en6d r3 CpOSg, rq
4 CpOSgy lengy r3 ry
O [X |ty 3 POse, |Y[C
5 | xo |t; r x| ylc
0 I X3 Xg y MMy,
0 T X3 X6 TMMy0s
0 S| X3 immy3; ry immy,
0 X3 tlmmgc I ‘ b1
0 X3 X ‘ b2 rq
0 s| X3 \ maskg, | ry maskz,
0 S| X3 imm27a
0 X3 Xg r
0 X3 Xg ars [
0 S| X3 X arg imm7b
0 X3 Xg r
0 X3 X I3 I
o | Xo ‘ta 0 X Immgy, y|Cc
4 m Xg X rq
4 m Xg X [[
5 S X i imm7b rq
4 m Xg X ry
5 S Xg i rp immz,
6 m Xg X
6 m Xg X ry
7 S Xg i immzy,
6 m X X f2
7 s Xg i fa immz,
6 m Xg X
6 m Xg X
© m Xg X
6 m Xg X rp
7 S Xg i imm7b
4 m X X Iy rq
4 m Xg X S| iop rq
© m Xg X Iy
4 m Xg X fp Iy

403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

Volume 3: Instruction Formats

Table 4-4.

Int Spec Check
FP Spec Check
Int ALAT Check
FP ALAT Check
Sync/Sriz/ALAT
RSE Control
Int ALAT Inval
FP ALAT Inval
Flush Cache
Move to AR
Move to AR Immg
Move from AR
Move to CR
Move from CR
Alloc
Move to PSR
Move from PSR
Break
Probe
Probe Imm,
Probe Fault Imm,
TC Insert
Mv to Ind/TR Ins
Mv from Ind
Set/Reset Mask
Translation Purge
Translation Access
TC Entry Purge
Nop/Hint
IP-Relative Branch
Counted Branch
IP-Relative Call
Indirect Branch
Indirect Call
IP-Relative Predict
Indirect Predict
Misc
Break/Nop/Hint
FP Arithmetic
Fixed Multiply Add
FP Select
FP Compare
FP Class
FP Recip Approx
FP Recip Sqrt App
FP Min/Max/Pcmp
FP Merge/Logical
Convert FP to Fixed
Convert Fixed to FP
FP Set Controls
FP Clear Flags
FP Check Flags
Break
Nop/Hint
Break
Move Immg,
Long Branch
Long Call
Nop/Hint

Volume 3: Instruction Formats

M20
M21
M22
M23
M24
M25
M26
M27
M28
M29
M30
M31
M32
M33
M34
M35
M36
M37
M38
M39
M40
M41
M42
M43
M44
M45
M46
M47
M48
B1
B2
B3
B4
B5
B6
B7
B8
B9
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
X1

X3
X4
X5

Instruction Format Summary (Continued)
403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

1 s[X3 immy 3, ro immyz4
1 S X3 imm13c f2 imm7a
0 S X3 imm20b
0 S X3 imm20b
0 X3 X2 X4
0 X3 Xo X4
0 X3 | Xp | X4
0 X3 X2 X4
1 X| X3 Xg
1 X3 X6 ars [
0 S X3 Xo | X4 arg imm7b
1 X3 X6 r
1 X3 X6 [
1 X3 Xg r
1 X3 | sor sot ry
1 X3 Xg ro
1 X3 X r
0 i X3 Xo | X4 immzoé
1 X3 X6 []
1 X3 Xg i2b r1
1 X3 X5 i2p
1 X3 X6 M
1 X3 Xg ry
1 X3 X6 r
0 [i] X3 [iog] X4 immj1,
1 X3 Xg ry
1 X3 X6 r
1 X3 Xp
O I X3 [X X4 IMMagq
4 S IMMoqp ype
4 S immyqp btype
5 S imm20b b1
0 Xg b, btype
1 b, b4
7 S tze imm20b timm7a
2 tze X6 | bz timm7a
0 X6
0/2 i Xg | immzoa
8-D X| st f4 f3 f2
E X| Xo f4 f3 f2
E X f4 f3 f2
4 My sf M3 f3 f2 ta
5 | fep fclass7¢ fo t
0-1 ql| sf [x f3 f2
0-1 |qf sf [x f3
0-1 sf [x X6 f3 f2
0-1 X X6 f3 f2
0-1 sf [x Xg fo
0 X X6 f2
0 sf |[x Xg omaskz. amaskyy
0 sf [x Xg
0 s| sf [x Xg immyg,
0 | X Xg immzoa
0 | X X6 Y TMMy0a
0 1| X3 X5 TMMy0a TMMy
6 i immgq immse g |Vl immzy, r immyg4
C i immyqp btype immgg
D | imm20b b1 imm39
0 i X3 Xg | y | immzoa imm41

403938373635343332313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

Table 4-5. Instruction Field Color Key

Field & Color
Opcode Extension

Integer Instruction
Memory Instruction

Integer Source

Floating-point Instruction

Integer Destination

Special Register Destination

Floating-point Source

3:298

Branch Source

Ignored Field/Instruction

Branch Destination
Branch Tag Immediate

countsy, countgy

mbt4c, mhtgc

Table 4-6. Instruction Field Names
Field Name Description
arg application register source/target
b4, by branch register source/target
btype branch type opcode extension
c complement compare relation opcode extension
ccountgg multimedia shift left complemented shift count immediate

multimedia shift right/shift right pair shift count immediate

CpOSy deposit complemented bit position immediate

cr control register source/target

Ctog multimedia multiply shift/shift and add shift count immediate
d branch cache deallocation hint opcode extension
fi floating-point register source/target

fc,, felassy, floating-point class immediate

hint memory reference hint opcode extension

i, igp, Ipg, IMMy immediate of length 1, 2, or x

ih branch importance hint opcode extension

lenygq, lengg extract/deposit length immediate

m memory reference post-modify opcode extension
mask, predicate immediate mask

multimedia mux1/mux2 immediate

p sequential prefetch hint opcode extension

P4, P2 predicate register target

posgy, test bit/extract bit position immediate

q floating-point reciprocal/reciprocal square-root opcode extension
qp qualifying predicate register source

M general register source/target

s immediate sign bit

sf floating-point status field opcode extension

Volume 3: Instruction Formats

Table 4-6. Instruction Field Names (Continued)

Field Name Description

sof, sol, sor alloc size of frame, size of locals, size of rotating immediates

tas tp compare type opcode extension

the, timmy branch predict tag immediate

Vy reserved opcode extension field

wh branch whether hint opcode extension

X, Xp opcode extension of length 1 or n

y extract/deposit/test bit/test NaT/hint opcode extension

Za, Z multimedia operand size opcode extension

Table 4-7. Special Instruction Notations

Notation Description

e instruction ends an instruction group when taken, or for Reserved if PR[gp] is 1 (cyan)
encodings and non-branch instructions with a qualifying predicate, when its PR[qgp] is
1, or for Reserved (brown) encodings, unconditionally

f instruction must be the first instruction in an instruction group and must either be in
instruction slot 0 or in instruction slot 1 of a template having a stop after slot 0

i instruction is allowed in the | slot of an MLI template

| instruction must be the last in an instruction group

p privileged instruction

t instruction is only allowed in instruction slot 2

The remaining sections of this chapter present the detailed encodings of all instructions.
The “A-Unit Instruction encodings” are presented first, followed by the “I-Unit
Instruction Encodings” on page 3:310, “M-Unit Instruction Encodings” on page 3:323,
“B-Unit Instruction Encodings” on page 3:349, “F-Unit Instruction Encodings” on

page 3:356, and “X-Unit Instruction Encodings” on page 3:365.

Within each section, the instructions are grouped by function, and appear with their
instruction format in the same order as in Table 4-4, “Instruction Format Summary” on
page 3:296. The opcode extension fields are briefly described and tables present the
opcode extension assignments. Unused instruction encodings (appearing as blank
entries in the opcode extensions tables) behave in one of four ways:

Ignored instructions (white color entries in the tables) execute as nop instructions.

Reserved instructions (light gray color in the gray scale version of the tables, brown
color in the color version) cause an Illegal Operation fault.

Reserved if PR[qp] is 1 instructions (dark gray in the gray scale version of the
tables, purple in the color version) cause an Illegal Operation fault if the predicate
register specified by the gp field of the instruction (bits 5:0) is 1 and execute as a
nop instruction if 0.

Reserved if PR[gp] is 1 B-unit instructions (medium gray in the gray scale version
of the tables, cyan in the color version) cause an Illegal Operation fault if the
predicate register specified by the gp field of the instruction (bits 5:0) is 1 and
execute as a nop instruction if 0. These differ from the Reserved if PR[gp] is 1
instructions (purple) only in their RAW dependency behavior (see "RAW
Dependency Table” on page 3:374).

Volume 3: Instruction Formats 3:299

4.2

4.2.1

3:300

Some processors may implement the Reserved if PR[gp] is 1 (purple) and Reserved if
PR[gp] is 1 B-unit (cyan) encodings in the L+X opcode space as Reserved (brown).
These encodings appear in the L+X column of Table 4-3 on page 3:295, and in

Table 4-69 on page 3:366, Table 4-70 on page 3:366, Table 4-71 on page 3:367, and
Table 4-72 on page 3:367. On processors which implement these encodings as
Reserved (brown), the operating system is required to provide an Illegal Operation fault
handler which emulates them as Reserved if PR[gp] is 1 (cyan/purple) by decoding the
reserved opcodes, checking the qualifying predicate, and returning to the next
instruction if PR[gp] is 0.

Constant 0 fields in instructions must be 0 or undefined operation results. The
undefined operation may include checking that the constant field is 0 and causing an
Illegal Operation fault if it is not. If an instruction having a constant 0 field also has a
qualifying predicate (gp field), the fault or other undefined operation must not occur if
PR[gp] is 0. For constant O fields in instruction bits 5:0 (normally used for gp), the fault
or other undefined operation may or may not depend on the PR addressed by those
bits.

Ignored (white space) fields in instructions should be coded as 0. Although ignored in
this revision of the architecture, future architecture revisions may define these fields as
hint extensions. These hint extensions will be defined such that the 0 value in each field
corresponds to the default hint. It is expected that assemblers will automatically set
these fields to zero by default.

Unused opcode hint extension values (white color entries in Hint Completer tables)
should not be used by software. Processors must perform the architected functional
behavior of the instruction independent of the hint extension value (whether defined or
unused), but different processor models may interpret unused opcode hint extension
values in different ways, resulting in undesirable performance effects.

A-Unit Instruction Encodings

Integer ALU

All integer ALU instructions are encoded within major opcode 8 using a 2-bit opcode
extension field in bits 35:34 (x,5) and most have a second 2-bit opcode extension field
in bits 28:27 (x>p), @ 4-bit opcode extension field in bits 32:29 (x4), and a 1-bit
reserved opcode extension field in bit 33 (v.). Table 4-8 shows the 2-bit x5, and 1-bit
Ve assignments, Table 4-9 shows the integer ALU 4-bit+2-bit assignments, and

Table 4-12 on page 3:306 shows the multimedia ALU 1-bit+2-bit assignments (which
also share major opcode 8).

Table 4-8. Integer ALU 2-bit+1-bit Opcode Extensions

Opcode | Xxa, Ve
Bits Bits Bit 33
40:37 | 35:34 0 1

Integer ALU 4-bit+2-bit Ext (Table 4-9)
Multimedia ALU 1-bit+2-bit Ext (Table 4-12)

adds —imm 4 A4

addp4 — immq4 A4

W N~ O

Volume 3: Instruction Formats

Table 4-9. Integer ALU 4-bit+2-bit Opcode Extensions
Opcode | Xo, | Ve Xgq _ Xap
Bits Bits | Bit | Bits Bits 28:27
40:37 | 35:34 | 33 | 32:29 0 1 2
0
1
2
3
4
5
6
7
8 0 0
8
9
A
B
C
D
E
F
4.2.1.1 Integer ALU - Register-Register
40 373635343332 29282726 2019 1312 5 0
A1 r3 P r
4 2 1 4 2 7 7 7
Extension
Instruction Operands Opcode
X2a Ve X4 X2b
ry=ro, r 0
add T2 0
ry=rop rs 1 1
ry=ro r 1
sub 20 1
ry=rp rs 1 0
addp4 8 0 0 2 0
and 0
andcm ry=ro r3 3 1
or 2
xor 3
4.2.1.2 Shift Left and Add
40 373635343332 29282726 2019 1312 5 0
A2 s " n [
4 2 1 4 2 7 7 7
Extension
Instruction Operands Opcode
X2a Ve X4
shladd ¢ 8 0 0 4
rq = roy, count, r
shladdp4 T2 273 6

Volume 3: Instruction Formats

3:301

4.2.1.3 Integer ALU - Immediateg-Register
40 373635343332 29282726 2019 1312 5
A3 ‘ 8 ‘S‘XZa ‘Ve‘ X4 ‘XZb‘ r3 ‘ immz,
4 1 2 1 4 2 7 7
Extension
Instruction Operands Opcode
X2a Ve X4 X2b
sub 9 1
and 0
andcm ry=immg, r3 8 0 0 B 1
or 2
xor 3
4.2.1.4 Add Immediate;4
40 373635343332 2726 2019 1312 5
A4 ‘ 8 ‘ S ‘ X2g ‘Ve‘ immed r3 imm7b
4 1 2 1 6 7 7
Extension
Instruction Operands Opcode
X2a Ve
adds . 8 2 0
ry=immqyg, r
addp4 ! 3 3
4.2.1.5 Add Immediate,>
40 373635 2726 22212019 1312 5
A5 ‘ 9 ‘s‘ immgy immg ‘ rs ‘ immzy,
2 7
Instruction Operands Opcode
addl ry=immop, ry

4.2.2 Integer Compare

The integer compare instructions are encoded within major opcodes C - E using a 2-bit
opcode extension field (x5) in bits 35:34 and three 1-bit opcode extension fields in bits
33 (t;), 36 (tp), and 12 (c), as shown in Table 4-10. The integer compare immediate
instructions are encoded within major opcodes C - E using a 2-bit opcode extension
field (xp) in bits 35:34 and two 1-bit opcode extension fields in bits 33 (t;) and 12 (c),

as shown in Table 4-11.

3:302

Volume 3: Instruction Formats

Table 4-10. Integer Compare Opcode Extensions

Xo |ty | ty c Opcode
Bits | Bit| Bit | Bit Bits 40:37
35:34 |36 | 33 |12 c D E
0
0
1
0
0
1
1
0
0
0
1
1
0
1
1
0
0
1
0
0
1
1
1
0
0
1
1
0
1
1

Table 4-11. Integer Compare Immediate Opcode Extensions

Xy |ty c (_)pcode
Bits | Bit | Bit Bits 40:37
35:34 | 33 | 12 C D E
0
2
1
0
3

Volume 3: Instruction Formats 3:303

4.2.2.1

3:304

Integer Compare — Register-Register
40 373635343332 2726

A6

[C-E [u[x]4
4 12 1 6

2019

131211

I3

2

7

1

e

6 6

Instruction

Operands

Opcode

Extension

X2

tp

t, c

cmp.lt
cmp.ltu
cmp.eq

cmp.lt.unc
cmp.ltu.unc
cmp.eq.unc

cmp.eqg.and
cmp.eq.or
cmp.eg.or.andcm

cmp.ne.and
cmp.ne.or
cmp.ne.or.andcm

cmp4.It
cmp4.ltu
cmp4.eq

cmp4.lt.unc
cmp4.ltu.unc
cmp4.eqg.unc

cmp4.eq.and
cmp4.eq.or
cmp4.eq.or.andcm

cmp4.ne.and
cmp4.ne.or
cmp4.ne.or.andcm

P1: P2=1r2 I3

moO o mOoOOoOmoomOoOomoOomoOoOomoOomoao

Volume 3: Instruction Formats

4.2.2.2

Integer Compare to Zero - Register
40 373635343332 2726

A7

C-E [t x|t
4 1 2 1 6

2019

131211

3

7

Instruction

Operands

Opcode

Extension

X2

ty

ta

cmp.gt.and
cmp.gt.or
cmp.gt.or.andcm

cmp.le.and
cmp.le.or
cmp.le.or.andcm

cmp.ge.and
cmp.ge.or
cmp.ge.or.andcm

cmp.lt.and
cmp.lt.or
cmp.lt.or.andcm

cmp4.gt.and
cmp4.gt.or
cmp4.gt.or.andcm

cmp4.le.and
cmp4.le.or
cmp4.le.or.andcm

cmp4.ge.and
cmpé4.ge.or
cmp4.ge.or.andcm

cmp4.lt.and
cmp4.lt.or
cmp4.lt.or.andcm

Py, p2=10,r3

moO O mOoOOmOoOOom©OoOOoOmoOoOmoOoOm©OoOoOmoao

Volume 3: Instruction Formats

3:305

4.2.2.3 Integer Compare — Immediate-Register
40 373635343332

A8 [C:E [s|x | s
4 1 2 1 6 7

2726

2019

131211

imm7b

7

1

6 5 0

of e [

6 6

Instruction

Operands

Opcode

Extension

X2

t, c

cmp.lt
cmp.ltu
cmp.eq

cmp.lt.unc
cmp.ltu.unc
cmp.eq.unc

cmp.eqg.and
cmp.eq.or
cmp.eg.or.andcm

cmp.ne.and
cmp.ne.or
cmp.ne.or.andcm

cmp4.It
cmp4.ltu
cmp4.eq

cmp4.lt.unc
cmp4.ltu.unc
cmp4.eqg.unc

cmp4.eq.and
cmp4.eq.or
cmp4.eq.or.andcm

cmp4.ne.and
cmp4.ne.or
cmp4.ne.or.andcm

P1, p2 = immg, r3

moO O mOoOOoOmoomoOomoOoOmoOoOomoOomoao

4.2.3 Multimedia

All multimedia ALU instructions are encoded within major opcode 8 using two 1-bit
opcode extension fields in bits 36 (z;) and 33 (z,) and a 2-bit opcode extension field in
bits 35:34 (x5,) as shown in Table 4-12. The multimedia ALU instructions also have a
4-bit opcode extension field in bits 32:29 (x4), and a 2-bit opcode extension field in bits
28:27 (Xyp) as shown in Table 4-13 on page 3:307.

Table 4-12. Multimedia ALU 2-bit+1-bit Opcode Extensions

Opcode X2a z, z,
Bits 40:37 | Bits 35:34 | Bit 36 | Bit 33
0 0 Multimedia ALU Size 1 (Table 4-13)
8] 1 Multimedia ALU Size 2 (Table 4-14)
4 0 Multimedia ALU Size 4 (Table 4-15)

L

3:306

Volume 3: Instruction Formats

Multimedia ALU Size 1 4-bit+2-bit Opcode Extensions

X2b
Bits 28:27

X2b
Bits 28:27

Table 4-13.
Opcode | x5, z, z, X4
Bits Bits | Bit | Bit | Bits
40:37 [35:34| 36 | 33 | 32:29
0
1
2
3
4
5
6
8 1 0 0 !
8
9
A
B
C
D
E
F

Table 4-14.
Opcode | Xz, z, | Zp X4
Bits Bits | Bit | Bit | Bits
40:37 |35:34| 36 | 33 :

8 1 0 1

Volume 3: Instruction Formats

3:307

3:308

Table 4-15.

Multimedia ALU Size 4 4-bit+2-bit Opcode Extensions

Opcode | Xo, |2, |2y | X4 _ Xap
Bits Bits | Bit | Bit | Bits Bits 28:27
40:37 |35:34| 36 | 33 | 32:29 0 1 2 3
8 1 110

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Volume 3: Instruction Formats

4.2.3.1 Multimedia ALU

40 373635343332 29282726 2019 1312
A9 ‘ 8 ‘Za‘ X2a ‘Zb‘ X4 ‘ X2b ‘ 3 P 1
4 1 2 1 4 2 7 7 7
Extension
Instruction Operands Opcode
X2a Za Zp X4 X2b
padd1 0 0
padd2 1 0
padd4 1 0
padd1.sss 0 0 1
padd2.sss 1 0
padd1.uuu 0
0 2
padd2.uuu 1
padd1.uus 0
0 3
padd2.uus 1
psub1 0 0
psub2 1 0
psub4 1 0
psub1.sss 0
0 1
psub2.sss 1 1
psub1.uuu 0
ry=rop I3 8 1 0 2
psub2.uuu 1
psub1.uus 0
0 3
psub2.uus 1
avg1 0
pavg 0 2
pavg2 1 9
avg1l.raz 0
pavg 0 3
pavg2.raz 1
avgsub1 0
pava 0 3 2
pavgsub2 1
pcmp1.eq 0 0
pcmp2.eq 1 0
pcmp4.eq 1 0 9
pcmp1.gt 0 0
pcmp2.gt 1 1
pcmp4.gt 1 0
4.2.3.2 Multimedia Shift and Add
40 373635343332 29282726 2019 1312
A10 ‘ 8 ‘Za‘ X2q ‘Zb‘ X4 ‘ clog ‘ r3 r rq
4 2 7 7 7
Extension
Instruction Operands Opcode
X2a Z3 Zp X4
pshladd2 4
ry=roy, count,, rs 1 0 1
pshradd2 6

Volume 3: Instruction Formats

3:309

4.3

4.3.1

3:310

I-Unit Instruction Encodings

Multimedia and Variable Shifts

All multimedia multiply/shift/max/min/mix/mux/pack/unpack and variable shift
instructions are encoded within major opcode 7 using two 1-bit opcode extension fields
in bits 36 (z;) and 33 (z,) and a 1-bit reserved opcode extension in bit 32 (v,) as
shown in Table 4-16. They also have a 2-bit opcode extension field in bits 35:34 (x5;)
and a 2-bit field in bits 29:28 (x,p) and most have a 2-bit field in bits 31:30 (x,¢) as
shown in Table 4-17.

Table 4-16. Multimedia and Variable Shift 1-bit Opcode Extensions
Opcode | z, z, Ve
Bits Bit | Bit Bit 32
40:37 36 | 33 0
0 0 Multimedia Size 1 (Table 4-17)
- 1 Multimedia Size 2 (Table 4-18)
1 0 Multimedia Size 4 (Table 4-19)
1 Variable Shift (Table 4-20)
Table 4-17. Multimedia Opcode 7 Size 1 2-bit Opcode Extensions
Opcode | z, |z, | Ve X2a Xop Xa2c
Bits Bit |Bit|Bit| Bits | Bits Bits 31:30
40:37 36 |33 |32| 35:34 |29:28
0
1
0
2
3
0
1
1
2
3
7 0 0|0 .
0 unpack1.h 12
5 1 pmini.u 2 pmax1.u |2
2 unpack1.l 12 mix1.l 12
3 psad1 12
0
1
3
2
3

Volume 3: Instruction Formats

Table 4-18. Multimedia Opcode 7 Size 2 2-bit Opcode Extensions

Opcode | z, | z, | Ve | X2a Xop X2c
Bits | Bit | Bit | Bit | Bits | Bits Bits 31:30
40:37 | 36 | 33 | 32 |35:34 | 29:28 0 1 3
pshr2.u — var 15 pshl2 — var 17
0 pmpyshr2.u |1
pshr2 — var 15
pmpyshr2 |1
1 pshr2.u — fixed 16 popcnt 19
pshr2 — fixed 16
7 o|1]|o0
pack2.uss [2 unpack2.h 2
5 pmpy2.r 12
pack2.sss 12 unpack2.| 12 mix2.| 12
pmin2 12 pmax2 12 pmpy2.1 12
3 pshl2 — fixed 18

Table 4-19. Multimedia Opcode 7 Size 4 2-bit Opcode Extensions

Opcode | z, | zp | Vo | X2a X2p Xac
Bits | Bit | Bit | Bit | Bits | Bits Bits 31:30
40:37 | 36 | 33 | 32 [35:34| 29:28 0 1 2 3

pshr4.u — var 15 pshl4 — var 17

0 mpy4 12
pshr4 — var 15
mpyshl4 |2

1 pshr4.u — fixed 16
pshr4 — fixed 16
7 110/|0

unpack4.h 12
2
pack4.sss 12 unpack4.| 12 mix4.1 12

3 pshl4 — fixed 18

Volume 3: Instruction Formats 3:311

4.3.1.1

3:312

Table 4-20. Variable Shift Opcode 7 2-bit Opcode Extensions
Opcode | z, | z, | Ve | X2a Xop X2c
Bits | Bit | Bit | Bit | Bits | Bits Bits 31:30
40:37 | 36 | 33 | 32 | 35:34 | 29:28 0 1 2
shr.u —var 15 shl —var 17
0
1
7 11110
2
3

Multimedia Multiply and Shift

40 373635343332313029282726 2019 1312 6
7 r3 ry r
4 12 11 2 2 7 7 7
. Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b
mpyshr2 3
pmey ry=ry, r3, county 7 0 1 0 0
pmpyshr2.u 1

Volume 3: Instruction Formats

4.3.1.2 Multimedia Multiply/Mix/Pack/Unpack

40 373635343332313029282726 2019 1312 6
12 ‘ 7 ‘Za‘ X2a ‘Zb‘ve‘ X2c ‘ Xop ‘ ‘ 's ‘ r2 1
4 172 11 2 2 1 7 7
Extension
Instruction Operands Opcode
Z3 Zp Ve X2a X2b X2c
mpy4 1
by 1 0 0 3
mpyshl4 3
mpy2.r 1
pmpy: 0 1 3
pmpy2.1 3
mix1.r 0 0
mix2.r 0 1 0
mix4.r 1 0
2
mix1.l 0 0
mix2.1 0 1 2
mix4.| 1 0
pack2.uss 0 1 0
pack2.sss 0 1 0
ry=rop I3 7 0 2
pack4.sss 1 0 5
unpack1.h 0 0
unpack2.h 0 1 0
unpack4.h 1 0 1
unpack1.l 0 0
unpack2.| 0 1 2
unpack4.| 1 0
min1.u 0
P 0 0 1
pmax1.u 1
min2 0
P 0 1 3
pmax2 1
psad1 0 0 3 2
4.3.1.3 Multimedia Mux1
40 3736353433323130292827 2423 2019 1312 6
13 ‘ 7 ‘Za‘ X2a ‘Zb‘ve‘ X2c ‘ X2b ‘ ‘ mbtse ‘ r2 I
4 172 11 2 2 4 4 7 7
Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b X2¢
mux1 ry = ro, mbtypey 7 0 0 0 3 2 2
4.3.1.4 Multimedia Mux2
40 3736353433323130292827 2019 1312 6
14 ‘ 7 ‘Za‘ X2a ‘Zb‘ve‘ X2c ‘ X2b ‘ mhtge 2 1
4 12 11 2 2 8 7 7
Extension
Instruction Operands Opcode
Z3 Zp Ve X2a X2b X2c
mux2 ry = ro, mhtypeg 7 0 1 0 3 2 2

Volume 3: Instruction Formats

3:313

4.3.1.5 Shift Right - Variable
40 373635343332313029282726 2019 1312
5 [7 e v 00 x| [N .
4 12 11 2 2 1 7 7
Extension
Instruction Operands Opcode
Za3 Zp Ve X2a X2b X2¢
pshr2 0 1
pshr4 1 0 2
shr . 1 1 0 0 0
r{=rsr
pshr2.u 12 0 1
pshr4d.u 1 0 0
shr.u 1 1
4.3.1.6 Multimedia Shift Right - Fixed
40 3736353433323130292827 26 201918 141312
6 |7zl ool o x| counts, n e
4 12 11 2 2 1 1 1 7
Extension
Instruction Operands Opcode
Za Zp Ve X2a X2b X2c¢
pshr2 0 1 3
pshr4 1 0
ry = rs, counts 7 0 1 0
pshr2.u 0 1 1
pshr4.u 1 0
4.3.1.7 Shift Left — Variable
40 373635343332313029282726 2019 1312
7 L7 7 %a 7Vel Yac Yoo s
4 12 11 2 2 7 7 7
Extension
Instruction Operands Opcode
Z3 Zp Ve X2a X2b X2¢
pshi2 0 1
pshi4 ry=rp I3 7 1 0 0 0 0 1
shl 1 1
4.3.1.8 Multimedia Shift Left - Fixed
40 3736353433323130292827 2524 2019 1312 6 5 0
B L7 eammeerm | coour
4 1 11 2 5 7 6
Extension
Instruction Operands Opcode
Z3 Zp Ve X2a X2p X2¢
pshi2 0 1
ry = rp, counts 7 0 3 1 1
pshl4 1 0

3:314 Volume 3: Instruction Formats

4.3.1.9 Bit Strings

40 373635343332313029282726 2019 1312 6 5 0
9 L7 e [0 n [
4 1.2 11 2 2 1 7 7 7 6
Extension
Instruction Operands Opcode
Z; Zp Ve X2a X2p X2¢
opcnt 2
pop ry=rs 7 0 1 0 1 1
clz 3

4.3.2 Integer Shifts

The integer shift, test bit, and test NaT instructions are encoded within major opcode 5
using a 2-bit opcode extension field in bits 35:34 (x,) and a 1-bit opcode extension
field in bit 33 (x). The extract and test bit instructions also have a 1-bit opcode
extension field in bit 13 (y). Table 4-21 shows the test bit, extract, and shift right pair
assignments.

Table 4-21. Integer Shift/Test Bit/Test NaT 2-bit Opcode Extensions

Opcode X2 X Bity 13
Bits 40:37 | Bits 35:34 | Bit 33 0 p
0 Test Bit (Table 4-23) Test NaT/Test Feature (Table 4-23)
1 extr.u 111 extr 111
5 0
2 —
3 shrp 110

Most deposit instructions also have a 1-bit opcode extension field in bit 26 (y).
Table 4-22 shows these assignments.

Table 4-22. Deposit Opcode Extensions

y
Opcode Xo X Bit 26
Bits 40:37 | Bits 35:34 | Bit 33 0]
0 Test Bit/Test NaT/Test Feature (Table 4-23)
5 1 1 dep.z 112 dep.z —immg 113
2
3 dep —imm4 114

4.3.2.1 Shift Right Pair

40 373635343332 2726 2019 1312 6 5 0
o [5 [[xo[x] counteq
4 1 2 1 6 7 7 7 6
. Extension
Instruction Operands Opcode
X2
shrp ry=ro, r3, countg 5 3 0

Volume 3: Instruction Formats 3:315

4.3.2.2

4.3.2.3

4.3.2.4

4.3.2.5

4.3.2.6

4.3.3

3:316

Extract
40 373635343332 2726 2019 141312 6 5 0
5 [[alx[enes [N s [v] o [N
4 1 7 6 1 7 6
Extension
Instruction Operands Opcode
X2 X y
extr.u P 5 1 0 0
ry =rs, posg, len
extr 1= I3, POSg, l€Ng 1
Zero and Deposit
40 373635343332 272625 2019 1312 6 5 0
2[5 | el e |y e
4 1 2 1 6 1 7 7 6
Extension
Instruction Operands Opcode
X2 X y
dep.z ry=rp, posg, leng 5 1 1 0
Zero and Deposit Immediateg
40 373635343332 272625 2019 1312 6 5 0
e [s lsbebl e bl o | o | o G
4 1 2 1 6 1 6 7 7 6
Extension
Instruction Operands Opcode
Xo X y
dep.z ry = immg, posg, leng 5 1 1 1
Deposit Immediate,
40 373635343332 2726 2019 141312 6 5 0
a5 [s[x [x[lensd s wosey, | | [N
4 1 2 1 6 7 6 1 7 6
Extension
Instruction Operands Opcode
X2 X
dep ry =immy, r3, posg, leng 5 3 1
Deposit
40 3736 3130 2726 2019 1312 6 5 0
15 |4 [oposeg [lema | 1
4 6 4 7 7 7 6
Instruction Operands Opcode
dep ry=rp, 3, POSg, leny 4
Test Bit

All test bit instructions are encoded within major opcode 5 using a 2-bit opcode
extension field in bits 35:34 (x5) plus five 1-bit opcode extension fields in bits 33 (t;),
36 (tp), 12 (c), 13 (y) and 19 (x). Table 4-23 summarizes these assignments.

Volume 3: Instruction Formats

Table 4-23. Test Bit Opcode Extensions

Opcode B):fs t, ty c y Bi:(19
Bits 40:37 35:34 Bit 33 | Bit 36 | Bit 12 | Bit 13 o ‘ 1
0 0 tbit.z 116
1 tnat.z 117 | tf.z 130
0 0 tbit.z.unc 116
0 ! 1 tnat.z.unc 117 ‘ tf.z.unc 130
0 0 tbit.z.and 116
] 1 tnat.z.and 117 | tf.z.and 130
1 0 tbit.nz.and 116
1 tnat.nz.and 117 ‘ tf.nz.and 130
° 0 0 tbit.z.or 116
0 1 tnat.z.or 117 ‘ tf.z.or 130
0 0 tbit.nz.or 116
! 1 tnat.nz.or 117 tf.nz.or 130
! 0 0 tbit.z.or.andcm 16
1 1 tnat.z.or.andcm 17 ‘ tf.z.or.andcm 130
1 0 tbit.nz.or.andcm 116
1 tnat.nz.or.andcm 117 ‘ tf.nz.or.andcm 130
4.3.3.1 Test Bit
40 373635343332 2726 2019 14131211 6 5 0
e [5 [u[xll 2 posss[vlo] e [TaR T
4 1 2 1 6 7 6 11 6 6
Extension
Instruction Operands Opcode
Xo t, ty y c
tbit.z 0
tbit.z.unc 0 1
tbit.z.and 0 1 0
tbit.nz.and 1
tbit.z.or P P2 =13 POS ° 0 0 0
tbit.nz.or 0 1
tbit.z.or.andcm ! 0
tbit.nz.or.andcm ! 1

Volume 3: Instruction Formats 3:317

4.3.3.2 Test NaT

40 373635343332 2726 201918 14131211 6 5 0
7[5 Julxeld 5 | viel e e
4 1 2 1 6 7 1 11 6 6
Extension
Instruction Operands Opcode
Xo t, ty y X c
tnat.z 0
0
tnat.z.unc 0 1
tnat.z.and 1 0
tnat.nz.and 1
p1, P2=1r3 5 0 1 0
tnat.z.or 0 0
tnat.nz.or 1 1
tnat.z.or.andcm 1 0
tnat.nz.or.andcm 1
4.3.4 Miscellaneous I-Unit Instructions

The miscellaneous I-unit instructions are encoded in major opcode 0 using a 3-bit

opcode extension field (x3) in bits 35:33. Some also have a 6-bit opcode extension field
(xg) in bits 32:27. Table 4-24 shows the 3-bit assignments and Table 4-25 summarizes
the 6-bit assignments.

Table 4-24. Misc I-Unit 3-bit Opcode Extensions
Opcode X3
Bits 40:37 Bits 35:33
0 6-bit Ext (Table 4-25)
1 chk.s.i—int 120
2 mov to pr.rot —immyy 124
0 3 mov to pr 123

4
5
6
7 mov to b 121

3:318

Volume 3: Instruction Formats

Table 4-25. Misc I-Unit 6-bit Opcode Extensions
Opcode | x3 Xe
Bits | Bits | Bits Bits 32:31
40:37 |35:33 | 30:27 0 1 2 3

break.i 119

zxt1 129 mov from ip 125

1-bit Ext (Table 4-26)

mov.i to ar — immg 127

4.3.4.1 Nop/Hint (I-Unit)

zxt2 129 mov from b 122
zxt4 129 mov.i from ar 128

mov from pr 125
sxt1 129
sxt2 129
sxt4 129

czx1.1129
czx2.1129

mov.i to ar 126

czx1.r 129
czx2.r 129

I-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit opcode
extension field in bits 35:33 (x3), a 6-bit opcode extension field in bits 32:27 (xg), and
a 1-bit opcode extension field in bit 26 (y), as shown in Table 4-26.

Table 4-26. Misc I-Unit 1-bit Opcode Extensions
Opcode X3 Xg y
Bits 40:37 Bits 35:33 | Bits 32:27 Bit 26
0 nop.i
0 0 01 - p.
1 hint.i
40 373635 3332 272625 6 5 0
e [0 [iz, e
4 1 1 20 6
Extension
Instruction Operands Opcode
X3 X y
nop.i') 0
o immy4 0 0 01
hint.i 1
3:319

Volume 3: Instruction Formats

4.3.4.2 Break (I-Unit)

40 373635 3332 272625 6 5 0
o [0 Jile ke T | Mz, e
4 1 3 6 1 20 6
Extension
Instruction Operands Opcode
X3 X6
break.i' immy, 0 0 00
4.3.4.3 Integer Speculation Check (I-Unit)
40 373635 3332 2019 1312 6 5 0
20 [0 [sl% e o | o G
4 1 3 13 7 7 6
Extension
Instruction Operands Opcode
X3
chk.s.i ry, targetos 0 1
4.3.5 GR/BR Moves
The GR/BR move instructions are encoded in major opcode 0. See “Miscellaneous I-Unit
Instructions” on page 3:318 for a summary of the opcode extensions. The mov to BR
instruction uses a 2-bit “whether” prediction hint field in bits 21:20 (wh) as shown in
Table 4-27.
Table 4-27. Move to BR Whether Hint Completer
wh mwh
Bits 21:20
0
1
2
3
The mov to BR instruction also uses a 1-bit opcode extension field (x) in bit 22 to
distinguish the return form from the normal form, and a 1-bit hint extension in bit 23
(ih) (see Table 4-56 on page 3:354).
4.3.5.1 Move to BR
40 373635 3332 242322212019 1312 98 65 0
1 [0 [| tmmg oo [o [
4 1 3 9 11 2 7 4 3 6
Extension
Instruction Operands Opcode -
X3 X ih wh
mov.mwh.ih b= ro ta 0 - 0 | SeeTable 4-56 | See Table 4-27
mov.ret mwh.ih 1= 12 18d13 1 on page 3:354 | on page 3:320
3:320

Volume 3: Instruction Formats

4.3.5.2

4.3.6

4.3.6.1

4.3.6.2

4.3.6.3

4.3.7

Move from BR

40 373635 3332 2726 1615 1312 6 5
2 o [l | o SRR
4 1 3 6 " 3 7
Extension
Instruction Operands Opcode
X3 Xg
mov ry=by 0 0 31

GR/Predicate/IP Moves

The GR/Predicate/IP move instructions are encoded in major opcode 0. See

“Miscellaneous I-Unit Instructions” on page 3:318 for a summary of the opcode

extensions.

Move to Predicates — Register

40 373635 333231 2423 2019 1312 6 5
123 ‘ 0 ‘s‘ X3 ‘ ‘ maskg. ‘ ‘ ry maskz4
4 1 3 1 8 4 7 7
Extension
Instruction Operands Opcode
X3
mov pr = rp, maskq7 0 3
Move to Predicates — Immediatey,
40 373635 3332 6 5
24 | 0 |s| x| immyz,
4 1 3 27
Extension
Instruction Operands Opcode
X3
mov pr.rot = immyy 0 2
Move from Predicates/IP
40 373635 3332 2726 1312 6 5
s Lo [[x]x n [
4 1 3 6 14
Extension
Instruction Operands Opcode
X3 X
ry=i 30
mov 1=P 0 0
ry=pr 33

GR/AR Moves (I-Unit)

The I-Unit GR/AR move instructions are encoded in major opcode 0. (Some ARs are
accessed using system/memory management instructions on the M-unit. See "GR/AR

Moves (M-Unit)” on page 3:342.) See “Miscellaneous I-Unit Instructions” on
page 3:318 for a summary of the I-Unit GR/AR opcode extensions.

Volume 3: Instruction Formats

4.3.7.1 Move to AR - Register (I-Unit)

40 373635 3332 2726 2019 1312 6 5 0
s [0 | ORI e 7 e
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 X
mov.i arg=r, 0 0 2A
4.3.7.2 Move to AR - Immediateg (I-Unit)
40 373635 3332 2726 2019 1312 6 5 0
o7 o Ble] R w | e
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 X
mov.i ars = immg 0 0 0A
4.3.7.3 Move from AR (I-Unit)
40 373635 3332 2726 2019 1312 6 5 0
s [0 ([] n e
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 X
mov.i ry=ars 0 0 32
4.3.8 Sign/Zero Extend/Compute Zero Index
40 373635 3332 2726 2019 1312 6 5 0
e [0 ([l] = | oo e
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 Xe
zxt1 10
zxt2 1"
zxt4 12
sxt1 14
sxt2 15
ry=rs 0 0
sxt4 16
czx1.l 18
czx2.l 19
czx1.r 1C
czx2.r 1D
3:322 Volume 3: Instruction Formats

4.3.9 Test Feature

40 373635343332 2726 201918 14131211 6 5 0
0[5 [e[xl 0 x| imme [y[e[Ty (RGP
4 1 2 1 6 7 1 5 11 6 6
Extension
Instruction Operands Opcode
Xp t, ty y X c
tf.z 0
0
tf.z.unc 0 1
tf.z.and 1 0
tf.nz.and . 5 0 1 1 1
, P2 =imm
tf.z.or P P2 s 0 0
tf.nz.or 1 1
tf.z.or.andcm] 0
tf.nz.or.andcm 1

4.4 M-Unit Instruction Encodings

4.4.1 Loads and Stores

All load and store instructions are encoded within major opcodes 4, 5, 6, and 7 using a
6-bit opcode extension field in bits 35:30 (Xg). Instructions in major opcode 4 (integer
load/store, semaphores, and get FR) use two 1-bit opcode extension fields in bit 36 (m)
and bit 27 (x) as shown in Table 4-28. Instructions in major opcode 6 (floating-point
load/store, load pair, and set FR) use two 1-bit opcode extension fields in bit 36 (m)
and bit 27 (x) as shown in Table 4-29.

Table 4-28. Integer Load/Store/Semaphore/Get FR 1-bit Opcode
Extensions

Opcode m X
Bits 40:37 Bit 36 Bit 27
0 0 Load/Store (Table 4-30)
4 0 1 Semaphore/get FR (Table 4-33)
1 0 Load +Reg (Table 4-31)
1 .|

Table 4-29. Floating-point Load/Store/Load Pair/Set FR 1-bit Opcode

Extensions
Opcode m X
Bits 40:37 Bit 36 Bit 27
0 0 FP Load/Store (Table 4-34)
" 0 1 FP Load Pair/set FR (Table 4-37)
1 0 FP Load +Reg (Table 4-35)
1 1 FP Load Pair +Imm (Table 4-38)

The integer load/store opcode extensions are summarized in Table 4-30 on page 3:324,
Table 4-31 on page 3:324, and Table 4-32 on page 3:325, and the semaphore and get
FR opcode extensions in Table 4-33 on page 3:325. The floating-point load/store

Volume 3: Instruction Formats 3:323

3:324

opcode extensions are summarized in Table 4-34 on page 3:326, Table 4-35 on
page 3:326, and Table 4-36 on page 3:327, the floating-point load pair and set FR
opcode extensions in Table 4-37 on page 3:327 and Table 4-38 on page 3:328.

Table 4-30. Integer Load/Store Opcode Extensions
Opcode | m | x Xe
Bits | Bit | Bit | Bits Bits 31:30
40:37 | 36 | 27 | 35:32 0 1 2 3
0 Id1 M2 Id2 M2 1d4 M2 1d8 M2
1 Id1.s M2 ld2.s M2 Id4.s M2 1d8.s M2
2 Id1.a M2 Id2.a M2 Id4.a M2 1d8.a M2
3 Id1.sa M2 |d2.sa M2 Id4.sa M2 |d8.sa M2
4 Id1.bias M2 |d2.bias M2 Id4.bias M2 |d8.bias M2
5 Id1.acq M2 Id2.acq M2 Id4.acq M2 Id8.acq M2
4 0|0 !
8 Id1.c.clr M2 Id2.c.clr M2 Id4.c.clr M2 Id8.c.clr M2
9 Id1.c.nc M2 Id2.c.nc M2 Id4.c.nc M2 1d8.c.nc M2
A Id1.c.clr.acq M2 Id2.c.clr.acq M2 Id4.c.clr.acq M2 1d8.c.clr.acq M2
.
C st1 M6 st2 M6 st4 M6 st8 M6
D st1.rel M6 st2.rel M6 std.rel M6 st8.rel M6
E st8.spill M6
F
Table 4-31. Integer Load +Reg Opcode Extensions
Opcode | m | x Xe
Bits | Bit | Bit | Bits Bits 31:30
40:37 | 36 | 27 | 35:32 0 1 2 3
0 Id1 M2 1d2 M2 1d4 M2 1d8 M2
1 Id1.s M2 |d2.s M2 Id4.s M2 1d8.s M2
2 Id1.a M2 |d2.a M2 Id4.a M2 1d8.a M2
3 Id1.sa M2 |d2.sa M2 Id4.sa M2 |d8.sa M2
4 Id1.bias M2 |d2.bias M2 Id4.bias M2 |d8.bias M2
5 Id1.acq M2 Id2.acq M2 Id4.acq M2 Id8.acq M2
4 110 !
8 Id1.c.clr M2 Id2.c.clr M2 Id4.c.clr M2 1d8.c.clr M2
9 Id1.c.nc M2 Id2.c.nc M2 Id4.c.nc M2 1d8.c.nc M2
A ld1.c.clr.acq M2 ld2.c.clr.acq M2 Id4.c.clr.acq M2 1d8.c.clr.acq M2
B
C
D
E
F

Volume 3: Instruction Formats

Table 4-32.

Integer Load/Store +Imm Opcode Extensions

Volume 3: Instruction Formats

Opcode Xs
Bits Bits Bits 31:30
40:37 35:32 0 1 2 3
0 Id1 M3 Id2 M3 1d4 M3 1d8 M3
1 Id1.s M3 |d2.s M3 Id4.s M3 |d8.s M3
2 Id1.a M3 Id2.a M3 Id4.a M3 1d8.a M3
3 Id1.sa M3 ld2.sa M3 ld4.sa M3 |d8.sa M3
4 1d1.bias M3 |d2.bias M3 Id4.bias M3 |d8.bias M3
5 Id1.acq M3 Id2.acq M3 Id4.acq M3 Id8.acq M3
6 Id8.fill M3
= ==
° 8 Id1.c.clr M3 Id2.c.clr M3 Id4.c.clr M3 1d8.c.clr M3
9 Id1.c.nc M3 |d2.c.nc M3 Id4.c.nc M3 |d8.c.nc M3
A Id1.c.clr.acqg M3 ld2.c.clr.acq M3 Id4.c.clr.acq M3 1d8.c.clr.acq M3
B
C st1 M5 st2 M5 st4 M5 st8 M5
D st1.rel M5 st2.rel M5 std.rel M5 st8.rel M5
E st8.spill M5
= —=
Table 4-33. Semaphore/Get FR/16-Byte Opcode Extensions
Opcode | m | x Xs
Bits | Bit | Bit | Bits Bits 31:30
40:37 | 36 | 27 | 35:32 0 1 2 3
0 cmpxchg1.acq cmpxchg2.acq cmpxchg4.acq cmpxchg8.acq M16
M16 M16 M16
1 cmpxchg1.rel M16 | cmpxchg2.rel M16 | cmpxchg4.rel M16 | cmpxchg8.rel M16
2 xchg1 M16 xchg2 M16 xchg4 M16 xchg8 M16
fetchadd4.acq fetchadd8.acq M17
M17
fetchadd4.rel M17 | fetchadd8.rel M17
8 cmp8xchg16.acq
M16
9 cmp8xchg16.rel
M16
A 1d16 M2
B Id16.acq M2
Cc st16 M6
D st16.rel M6
E
F

3:325

Table 4-34. Floating-point Load/Store/Lfetch Opcode Extensions

Opcode | m | x Xe
Bits | Bit | Bit | Bits Bits 31:30
40:37 | 36 | 27 | 35:32 0 1 2 3
0 Idfe M9 1df8 M9 Idfs M9 Idfd M9
1 Idfe.s M9 1df8.s M9 Idfs.s M9 Idfd.s M9
2 Idfe.a M9 1df8.a M9 Idfs.a M9 Idfd.a M9
3 Idfe.sa M9 1df8.sa M9 Idfs.sa M9 Idfd.sa M9
4
5
6
6 00 !
8 Idfe.c.clr M9 1df8.c.clr M9 Idfs.c.clr M9 Idfd.c.clr M9
9 Idfe.c.nc M9 1df8.c.nc M9 Idfs.c.nc M9 Idfd.c.nc M9
N
Ifetch M18 Ifetch.excl M18 Ifetch.fault M18 | Ifetch.fault.excl M18
stfe M13 stf8 M13 stfs M13 stfd M13

stf.spill M13

MmO O W

Table 4-35. Floating-point Load/Lfetch +Reg Opcode Extensions

Ifetch M20 Ifetch.excl M20 Ifetch.fault M20 Ifetch.fault.excl M20

Opcode | m | x Xe
Bits | Bit | Bit | Bits Bits 31:30
40:37 | 36 | 27 | 35:32 0 1 2 3

0 Idfe M7 1dfg8 M7 Idfs M7 Idfd M7
1 Idfe.s M7 1df8.s M7 Idfs.s M7 Idfd.s M7
2 Idfe.a M7 1df8.a M7 Idfs.a M7 Idfd.a M7
3 Idfe.sa M7 |df8.sa M7 Idfs.sa M7 Idfd.sa M7
4
5
¢

6 110 !
8 Idfe.c.clr M7 1df8.c.clr M7 Idfs.c.clr M7 Idfd.c.clr M7
9 Idfe.c.nc M7 1df8.c.nc M7 Idfs.c.nc M7 Idfd.c.nc M7
A
B
C
D
E
F

3:326 Volume 3: Instruction Formats

Table 4-36.

Floating-point Load/Store/Lfetch +Imm Opcode Extensions

Opcode Xe
Bits Bits Bits 31:30
40:37 35:32 0 1 2 3
0 Idfe M8 1dfg8 M8 Idfs M8 |dfd M8
1 Idfe.s M8 1df8.s M8 Idfs.s M8 Idfd.s M8
2 Idfe.a M8 1df8.a M8 |dfs.a M8 |dfd.a M8
3 Idfe.sa M8 |df8.sa M8 Idfs.sa M8 Idfd.sa M8
4
5
:
7
! 8 Idfe.c.clr M8 1df8.c.clr M8 Idfs.c.clr M8 Idfd.c.clr M8

9 Idfe.c.nc M8 1df8.c.nc M8 Idfs.c.nc M8 Idfd.c.nc M8

. 00
B Ifetch M22 Ifetch.excl M22 Ifetch.fault M22 Ifetch.fault.excl M22
C stfe M10 stf8 M10 stfs M10 stfd M10
D
:
F

Table 4-37. Floating-point Load Pair/Set FR Opcode Extensions

Volume 3: Instruction Formats

Opcode | m | x Xs
Bits | Bit | Bit | Bits Bits 31:30
40:37 | 36 | 27 . 1 2 3
1dfp8 M11 Idfps M11 Idfpd M11
1dfp8.s M11 Idfps.s M11 Idfpd.s M11
Idfp8.a M11 Idfps.a M11 Idfpd.a M11
Idfp8.sa M11 Idfps.sa M11 Idfpd.sa M11
6 ol 1 setf.sig M18 setf.exp M18 setf.s M18 setf.d M18

Idfp8.c.clr M11

Idfps.c.clr M11

Idfpd.c.clr M11

1dfp8.c.nc M11

Idfps.c.nc M11

Idfpd.c.nc M11

3:327

Table 4-38.

Floating-point Load Pair +Imm Opcode Extensions

Opcode | m | x

Bits | Bit | Bit | Bits

40:37 | 36 | 27

The load and store instructions all have a 2-bit cache locality opcode hint extension field

Idfp8.c.clr M12

X
Bits 31:30
1 2 3
1dfp8 M12 Idfps M12 Idfpd M12
Idfp8.s M12 Idfps.s M12 |dfpd.s M12
Idfp8.a M12 ldfps.a M12 |dfpd.a M12
Idfp8.sa M12 Idfps.sa M12 Idfpd.sa M12

Idfps.c.clr M12

Idfpd.c.clr M12

Idfp8.c.nc M12

Idfps.c.nc M12

Idfpd.c.nc M12

in bits 29:28 (hint). Table 4-39 and Table 4-40 summarize these assignments.

Table 4-39. Load Hint Completer

hint
Bits 29:28

Idhint

Table 4-40. Store Hint Completer

hint

Bits 29:28 sthint

o —
s —

Volume 3: Instruction Formats

4.4.1.1

Integer Load

40 373635 3029282726 2019 1312 6 5
vz e r
4 1 6 2 1 7 7
Extension
Instruction Operands Opcode
m Xg hint
Id1.Idhint 00
1d2./dhint 01
1d4./dhint 02
1d8./dhint 03
1d1.s.Idhint 04
1d2.s.Idhint 05
Id4.s.Idhint 06
1d8.s./dhint 07
Id1.a./dhint 08
1d2.a./dhint 09
Id4.a./dhint 0A
1d8.a./dhint 0B
Id1.sa.ldhint 0oc
Id2.sa.ldhint ob
1d4.sa.ldhint OE
1d8.sa.ldhint OF
Id1.bias./dhint 10
Id2.bias./dhint 11
Id4.bias./dhint ry=1rsl 0 12
Id8 bias. Idhint 4 13 i‘;epzzt:‘;gﬁ:
Id1.acq./dhint 14
Id2.acq./dhint 15
Id4.acq./dhint 16
1d8.acq./dhint 17
1d8.fill./dhint 1B
Id1.c.clr.Idhint 20
1d2.c.clr./dhint 21
Id4.c.clr.ldhint 22
1d8.c.clr.ldhint 23
Id1.c.nc./dhint 24
Id2.c.nc./dhint 25
Id4.c.nc./dhint 26
Id8.c.nc./dhint 27
Id1.c.clr.acq./dhint 28
Id2.c.clr.acq./dhint 29
Id4.c.clr.acq./dhint 2A
1d8.c.clr.acq./dhint 2B
1d16./dhint 28
. rq, ar.csd = [rg 0
Id16.acq./dhint 2C

Volume 3: Instruction Formats

3:329

4.4.1.2 Integer Load - Increment by Register

40 373635 3029282726 2019 1312 6 5 0
ve [l - -
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg hint
1d1./dhint 00
1d2./dhint 01
Id4./dhint 02
1d8./dhint 03
I1d1.s.Idhint 04
1d2.s.Idhint 05
|d4.s.Idhint 06
1d8.s.Idhint 07
Id1.a.ldhint 08
Id2.a./dhint 09
Id4.a.Idhint 0A
|d8.a.Idhint 0B
Id1.sa.ldhint ocC
Id2.sa.ldhint oD
Id4.sa.ldhint OE
|d8.sa.ldhint OF
Id1.bias./dhint 10
Id2.bias./dhint 11

See Table 4-39

|d4.bias./dhint ry=1Irsl, ro 4 1 0 12 on page 3:328
|d8.bias./dhint 13
Id1.acq./dhint 14
Id2.acq./dhint 15
Id4.acq./dhint 16
1d8.acq./dhint 17
1d8.fill.Idhint 1B
Id1.c.clr./dhint 20
Id2.c.clr./dhint 21
Id4.c.clr.ldhint 22
1d8.c.clr./dhint 23
Id1.c.nc./dhint 24
Id2.c.nc.Idhint 25
Id4.c.nc.ldhint 26
1d8.c.nc.Idhint 27
Id1.c.clr.acq./dhint 28
Id2.c.clr.acq./dhint 29
Id4.c.clr.acq./dhint 2A
1d8.c.clr.acq./dhint 2B

3:330 Volume 3: Instruction Formats

4.4.1.3

Integer Load - Increment by Immediate

Volume 3: Instruction Formats

40 373635 3029282726 2019 1312 6 5
we (75 s oo |
4 1 6 1 7 7
Extension
Instruction Operands Opcode
Xg hint
Id1.Idhint 00
1d2./dhint 01
1d4.Idhint 02
1d8./dhint 03
1d1.s.Idhint 04
1d2.s./dhint 05
1d4.s.Idhint 06
1d8.s.Idhint 07
Id1.a.ldhint 08
1d2.a.ldhint 09
1d4.a./dhint 0A
1d8.a./dhint 0B
Id1.sa.ldhint 0oc
1d2.sa./dhint 0D
Id4.sa.ldhint OE
1d8.sa.ldhint OF
1d1.bias./dhint 10
Id2.bias./dhint 11
Id4 bias.Idhint ry = [r3), immyg 5 12 Seeplzzlzggg on
|d8.bias./dhint 13
Id1.acq./dhint 14
Id2.acq./dhint 15
Id4.acq./dhint 16
1d8.acq./dhint 17
1d8.fill./dhint 1B
Id1.c.clr.Idhint 20
1d2.c.clr./dhint 21
Id4.c.clr.ldhint 22
1d8.c.clr.ldhint 23
Id1.c.nc./dhint 24
1d2.c.nc./dhint 25
Id4.c.nc./dhint 26
1d8.c.nc.ldhint 27
Id1.c.clr.acq./dhint 28
Id2.c.clr.acq./dhint 29
Id4.c.clr.acq.ldhint 2A
Id8.c.clr.acq./dhint 2B

3:331

4.4.1.4

4.4.1.5

3:332

Integer Store

40 373635 3029282726 2019 1312 6 5 0
ve [4 fml 2 B
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode -
m X Xg hint
st1.sthint 30
st2.sthint 31
st4.sthint 32
st8.sthint 33
st1.rel.sthint [rl=1rs 0 0 34
. See Table 4-40

st2.rel.sthint 4 35 on page 3:328
st4.rel.sthint 36
st8.rel.sthint 37
st8.spill.sthint 3B
st16.sthint 30

. [r3] = ry, ar.csd 0 1
st16.rel.sthint 34
Integer Store - Increment by Immediate

40 373635 3029282726 2019 1312 6 5 0
vs 5 [s| I AN
4 1 7 7 6
Extension
Instruction Operands Opcode -
Xg hint
st1.sthint 30
st2.sthint 31
st4.sthint 32
st8.sthint 33
: _ . See Table 4-40 on

st1.rel.sthint [r3] = ry, immg 5 34 page 3:328
st2.rel.sthint 35
st4.rel.sthint 36
st8.rel.sthint 37
st8.spill.sthint 3B

Volume 3: Instruction Formats

4.4.1.6 Floating-point Load

40 373635 3029282726 2019 1312 6 5
Mo | m %]
1 6 2 1 7 7 7
Extension
Instruction Operands Opcode
m X Xg hint
Idfs./dhint 02
Idfd.Idhint 03
1df8./dhint 01
Idfe.ldhint 00
Idfs.s.Idhint 06
Idfd.s./dhint 07
1df8.s./dhint 05
Idfe.s./dhint 04
Idfs.a.ldhint 0A
Idfd.a./dhint 0B
1df8.a./dhint 09
Idfe.a./dhint 08
Idfs.sa.ldhint f1=[rs] 6 0 0 0E iieplzt;'z:‘;ﬁ:
Idfd.sa.ldhint OF
1df8.sa.ldhint oD
Idfe.sa.ldhint 0oc
Idf fill.Idhint 1B
Idfs.c.clr.Idhint 22
|dfd.c.clr.Idhint 23
|df8.c.clr.Idhint 21
Idfe.c.clr./dhint 20
Idfs.c.nc./dhint 26
Idfd.c.nc./dhint 27
1df8.c.nc./dhint 25
Idfe.c.nc./dhint 24

Volume 3: Instruction Formats

3:333

4.4.1.7 Floating-point Load — Increment by Register

40 373635 3029282726 2019 1312 6 5 0
Mz e ml
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg hint

|dfs./dhint 02
|dfd.Idhint 03
|df8.Idhint 01
|dfe.ldhint 00
|dfs.s.Idhint 06
|dfd.s./dhint 07
|df8.s.Idhint 05
|dfe.s.Idhint 04
|dfs.a.ldhint 0A
Idfd.a.ldhint 0B
|df8.a.Idhint 09
|dfe.a.ldhint 08
Idfs.sa.ldhint fr=1rsl 6 1 0 0E Seepz;'%g;g on
|dfd.sa.ldhint OF
|df8.sa.ldhint oD
Idfe.sa.ldhint oc
|df fill.Idhint 1B
Idfs.c.clr.Idhint 22
Idfd.c.clr./dhint 23
Idf8.c.clr.Idhint 21
Idfe.c.clr./dhint 20
Idfs.c.nc./dhint 26
Idfd.c.nc./dhint 27
1df8.c.nc./dhint 25
Idfe.c.nc./dhint 24

3:334 Volume 3: Instruction Formats

4.4.1.8 Floating-point Load — Increment by Immediate

40 373635 3029282726 2019 1312 6 5 0
ve [7 s [
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
Xg hint
Idfs./dhint 02
Idfd./dhint 03
|df8.Idhint 01
Idfe.ldhint 00
Idfs.s.Idhint 06
Idfd.s./dhint 07
1df8.s./dhint 05
Idfe.s.ldhint 04
Idfs.a.ldhint 0A
Idfd.a./dhint 0B
1df8.a./dhint 09
Idfe.a.ldhint 08
Idfs.sa.ldhint f; = [rg], immyg 7 0E Seep:zt;'zgg on
Idfd.sa.ldhint OF
1df8.sa.ldhint oD
Idfe.sa.ldhint ocC
Idf fill.Idhint 1B
Idfs.c.clr./dhint 22
Idfd.c.clr.Idhint 23
|df8.c.clr.Idhint 21
Idfe.c.clr.ldhint 20
Idfs.c.nc./dhint 26
Idfd.c.nc./dhint 27
1df8.c.nc./dhint 25
Idfe.c.nc./dhint 24
4.4.1.9 Floating-point Store
40 373635 3029282726 2019 1312 6 5 0
wis 780 Inl 1% 7 e
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg hint
stfs.sthint 32
stfd.sthint 33
stf8.sthint ral =, 6 0 0 31 Seengzggg on
stfe.sthint 30
stf.spill.sthint 3B

Volume 3: Instruction Formats 3:335

4.4.1.10 Floating-point Store — Increment by Immediate

40 373635 3029282726 2019 1312 6 5 0
wio 7 Dol e e | e R
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
Xg hint
stfs.sthint 32
stfd.sthint 33
stf8.sthint [r5] = fy, immyg 7 31 Seep;zgzg;g on
stfe.sthint 30
stf.spill.sthint 3B
4.4.1.11 Floating-point Load Pair
40 373635 3029282726 2019 1312 6 5 0
Mt 8 ml
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg hint
|dfps.Idhint 02
Idfpd./dhint 03
|dfp8./dhint 01
Idfps.s.Idhint 06
|dfpd.s./dhint 07
|dfp8.s./dhint 05
Idfps.a.ldhint 0A
Idfpd.a.ldhint 0B
Idfp8.a.ldh/r?t - : 0 1 09 See Table .4-39
Idfps.sa./dhint 0E on page 3:328
Idfpd.sa./dhint OF
|dfp8.sa.ldhint 0D
Idfps.c.clr./dhint 22
Idfpd.c.clr./dhint 23
Idfp8.c.clr./dhint 21
Idfps.c.nc./dhint 26
Idfpd.c.nc./dhint 27
|dfp8.c.nc./dhint 25

3:336 Volume 3: Instruction Formats

4.4.1.12 Floating-point Load Pair — Increment by Immediate
40 373635 3029282726 2019 1312 6 5
M2 | m x
1 6 2 1 7 7 7
Extension
Instruction Operands Opcode
m X Xg hint
Idfps.Idhint f1,fo=1rs, 8 02
Idfpd./dhint 03
) f1, fo=1r3], 16
|dfp8./dhint 01
Idfps.s.ldhint fq,fo=1rs], 8 06
Idfpd.s.Idhint 07
) fy, fo=1rs], 16
Idfp8.s.Idhint 05
Idfps.a.ldhint f1,fo=1rs, 8 0A
Idfpd.a.ldhint 0B
. f1, fo=1r3], 16
Idfp8.a./dhint 5 1 1 09 See Table 4-39
Idfps.sa.ldhint f, f=1rsl, 8 OE | onpage 3:328
Idfpd.sa.ldhint OF
. fy, fo=1rs], 16
Idfp8.sa.ldhint 0D
Idfps.c.clr./dhint f1, fo=1rs], 8 22
Idfpd.c.clr./dhint 23
. fy, fp=1rs], 16
Idfp8.c.clr.Idhint 21
Idfps.c.nc./dhint f;,fo=1r3, 8 26
Idfpd.c.nc./dhint 27
. fy, fa=1rs], 16
Idfp8.c.nc.ldhint 25
4.4.2 Line Prefetch

The line prefetch instructions are encoded in major opcodes 6 and 7 along with the

floating-point load/store instructions. See “Loads and Stores” on page 3:323 for a

summary of the opcode extensions.

The line prefetch instructions all have a 2-bit cache locality opcode hint extension field
in bits 29:28 (hint) as shown in Table 4-44.

Table 4-41. Line Prefetch Hint Completer

hint
Bits 29:28

Volume 3: Instruction Formats

Ifhint

3:337

4.4.2.1 Line Prefetch

40 373635 3029282726 2019 6 5 0
w1z [6 fml B
4 1 6 2 1 7 14 6
Extension
Instruction Operands Opcode -
m X Xg hint
Ifetch.excl./fhint 2D
. See Table 4-41 on
Ifetch.fault./fhint [rs] 6 0 0 2E page 3:337
Ifetch.fault.excl./fhint 2F
4.4.2.2 Line Prefetch - Increment by Register
40 373635 3029282726 2019 1312 6 5 0
wie |6l 0% 7 e
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode -
m X Xg hint
Ifetch.Ifhint 2C
Ifetch.excl./fhint 2D | See Table 4-41on
. [r3l, ra 6 1 0 .
Ifetch.fault./fhint 2E page 3:337
Ifetch.fault.excl./fhint 2F
4.4.2.3 Line Prefetch - Increment by Immediate
40 373635 3029282726 2019 1312 6 5 0
wis (7 fo e w
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode -
Xg hint
Ifetch.Ifhint 2C
Ifetch.excl./fhint . 2D See Table 4-41 on
) [r3], immyg 7)
Ifetch.fault./fhint 2E page 3:337
Ifetch.fault.excl./fhint 2F

4.4.3 Semaphores

The semaphore instructions are encoded in major opcode 4 along with the integer
load/store instructions. See “Loads and Stores” on page 3:323 for a summary of the
opcode extensions. These instructions have the same cache locality opcode hint
extension field in bits 29:28 (hint) as load instructions. See Table 4-39, “Load Hint
Completer” on page 3:328.

3:338 Volume 3: Instruction Formats

4.4.3.1

4.4.3.2

4.4.4

M16

M17

Exchange/Compare and Exchange

40 373635 3029282726 2019 1312 6 5
S : 2
4 1 6 2 1 7 7 7
Extension
Instruction Operands Opcode
m X Xg hint
cmpxchg1.acq./dhint 00
cmpxchg?2.acq.ldhint 01
cmpxchgé4.acq.ldhint 02
cmpxchg8.acq.ldhint 03
. ry=1rsl, rp, ar.ccv
cmpxchg1.rel.ldhint 04
cmpxchg2.rel.ldhint 05
cmpxchgé.rel.ldhint 06 See
. 4 0 1 Table 4-39 on
cmpxchg8.rel.ldhint 07 page 3:328
cmp8xchg16.acq./dhint 20
) rq=[rs], rp, ar.csd, ar.ccv
cmp8xchg16.rel./dhint 24
xchg1./dhint 08
xchg2./dhint 09
) ry=lrsl. rz
xchg4./dhint 0A
xchg8./dhint 0B
Fetch and Add - Immediate
40 373635 3029282726 2019 1615141312 6 5
RN sl v
1 6 2 1 7 1 6
Extension
Instruction Operands Opcode
m X Xg hint
fetchadd4.acq./dhint 12
fetchadd8.acq./dhint . 13 See Table 4-39
. ry=[rs), incs 0 1)
fetchadd4.rel./dhint 16 on page 3:328
fetchadd8.rel./dhint 17

Set/Get FR

The set FR instructions are encoded in major opcode 6 along with the floating-point

load/store instructions. The get FR instructions are encoded in major opcode 4 along
with the integer load/store instructions. See “Loads and Stores” on page 3:323 for a
summary of the opcode extensions.

Volume 3: Instruction Formats

3:339

4.4.4.1

4.4.4.2

4.4.5

4.4.5.1

4.4.5.2

3:340

Set FR

40 373635 3029282726 2019 1312 6 5 0
wis [6 m[Te] [o [T
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg
setf.sig 1C
setf.exp 1D
f1=f'2 6 1
setf.s 1E
setf.d 1F
Get FR
40 373635 3029282726 2019 1312 6 5 0
mig 4 fml X b n e
4 1 6 2 1 7 7 7 6
Extension
Instruction Operands Opcode
m X Xg
getf.sig 1C
etf.ex| 1D
g P r1=f2 4 1
getf.s 1E
getf.d 1F

Speculation and Advanced Load Checks

The speculation and advanced load check instructions are encoded in major opcodes 0
and 1 along with the system/memory management instructions. See "System/Memory
Management” on page 3:345 for a summary of the opcode extensions.

Integer Speculation Check (M-Unit)

40 373635 3332 2019 1312 6 5 0
m2o [[s[0 mmige |« mmy, [GOR
4 1 3 13 7 7 6
Extension
Instruction Operands Opcode
X3
chk.s.m ry, targetys 1 1
Floating-point Speculation Check
40 373635 3332 2019 1312 6 5 0
vt [e[mmsge L 7, [
4 1 3 13 7 7 6
Extension
Instruction Operands Opcode
X3
chk.s f,, targetys 1 3

Volume 3: Instruction Formats

4.4.5.3

4.4.5.4

4.4.6

4.4.6.1

Volume 3: Instruction Formats

Integer Advanced Load Check

40 373635 3332 1312 6 5 0
w2z [0 [s[he] immzop oon e
4 1 3 20 7 6
Extension
Instruction Operands Opcode
X3
chk.a.nc ‘] 0 4
rq, targe
chk.a.clr 7 [8rgetzs

Floating-point Advanced Load Check

40 373635 3332 1312 6 5 0
wzs [0 sl] B
4 1 3 20 7 6
. Extension
Instruction Operands Opcode
X3
chk.a.nc £t ¢ 0
, targe
chk.a.clr ! get2s 7

M24

Cache/Synchronization/RSE/ALAT

The cache/synchronization/RSE/ALAT instructions are encoded in major opcode 0 along
with the memory management instructions. See "System/Memory Management” on
page 3:345 for a summary of the opcode extensions.

Sync/Fence/Serialize/ALAT Control

40 373635 33323130 2726 6 5 0
IENE e
4 1 3 2 4 21 6
Extension
Instruction Opcode
X3 X4 Xo
invala 0 1
fwb 0
mf 2 2
mf.a 0 0 3
sriz.d 0
srlz.i 1 3
sync.i 3

3:341

4.4.6.2

4.4.6.3

4.4.6.4

4.4.6.5

4.4.7

3:342

M25

RSE Control

M26

M27

40 373635 33323130 2726 6 5 0
Lo [el u] [o]
1 3 2 4 21 6
Extension
Instruction Opcode
X3 X4 X2
flushrs f C
¢ 0 0 0
loadrs A
Integer ALAT Entry Invalidate
40 373635 33323130 2726 1312 6 5 0
Lo el u | on e
1 3 2 4 14 7 6
Extension
Instruction Operands Opcode
X3 X4 X2
invala.e rq 0 0 2 1
Floating-point ALAT Entry Invalidate
40 373635 33323130 2726 1312 6 5 0
Lo [[l u] oon o e
4 1 3 2 4 14 7 6
Extension
Instruction Operands Opcode
X3 X4 X2
invala.e f 0 0 3 1
Flush Cache
40 373635 3332 2726 2019 6 5 0
I I I I
4 1 3 6 14 6
Extension
Instruction Operands Opcode
X3 Xg X
fc 0
. ra 1 0 30
fc.i 1

GR/AR Moves (M-Unit)

The M-Unit GR/AR move instructions are encoded in major opcode 0 along with the
system/memory management instructions. (Some ARs are accessed using system

control instructions on the I-unit. See "GR/AR Moves (I-Unit)” on page 3:321.) See
“"System/Memory Management” on page 3:345 for a summary of the M-Unit GR/AR
opcode extensions.

Volume 3: Instruction Formats

4.4.7.1 Move to AR - Register (M-Unit)
40 373635 3332 2726 2019 1312 6 5
meo [0 ([l] as | n e
4 1 3 6 7 7 7
Extension
Instruction Operands Opcode
X3 Xe
mov.m arz=r, 1 0 2A
4.4.7.2 Move to AR - Immediateg (M-Unit)
40 373635 33323130 2726 2019 1312 6 5
wso [0 [sl % [ml | w | mma e
4 1 3 2 4 7 7 7
Extension
Instruction Operands Opcode
X3 X4 X2
mov.m ars =immg 0 0 8 2
4.4.7.3 Move from AR (M-Unit)
40 373635 3332 2726 2019 1312 6 5
wet [] el n e
4 1 3 6 7 7 7
Extension
Instruction Operands Opcode
X3 Xe
mov.m ry=ars 1 0 22
4.4.8 GR/CR Moves
The GR/CR move instructions are encoded in major opcode 0 along with the
system/memory management instructions. See “System/Memory Management” on
page 3:345 for a summary of the opcode extensions.
4.4.8.1 Move to CR
40 373635 3332 2726 2019 1312 6 5
we [LB] ; e
4 1 3 6 7 7 7
Extension
Instruction Operands Opcode
X3 Xe
mov P cr3=rp 1 0 2C
4.4.8.2 Move from CR
40 373635 3332 2726 2019 1312 6 5
wss [[el e n [
4 1 3 6 7 7 7
Extension
Instruction Operands Opcode
X3 Xe
mov P ry=crz 1 0 24

Volume 3: Instruction Formats

3:343

4.4.9 Miscellaneous M-Unit Instructions
The miscellaneous M-unit instructions are encoded in major opcode 0 along with the
system/memory management instructions. See “"System/Memory Management” on
page 3:345 for a summary of the opcode extensions.
4.4.9.1 Allocate Register Stack Frame
40 373635 33323130 2726 2019 1312 6 5 0
e [0 [[| w o
4 1 3 2 4 7 7 7 6
Extension
Instruction Operands Opcode
X3
allocf ry=arpfs, i,/ o, r 1 6
Note: The three immediates in the instruction encoding are formed from the operands
as follows:
sof=i+/1+o0
sol =i+ 1
sor=r>>3
4.4.9.2 Move to PSR
40 373635 3332 2726 2019 1312 6 5 0
M35 | s | % " e
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 X
mov P psr.l=r,] 0 2D
mov psr.um =r, 29
4.4.9.3 Move from PSR
40 373635 3332 2726 1312 6 5
mee [t [l % n [
4 1 3 6 14 7
Extension
Instruction Operands Opcode
X3 X6
mov P ry = psr] 0 25
mov ry=psrum 21
4.4.9.4 Break (M-Unit)
40 373635 33323130 272625 6 5 0
wor [0 [% e]] e
4 1 3 2 4 20 6
Extension
Instruction Operands Opcode
X3 X4 X2
break.m immy4 0 0 0 0

3:344 Volume 3: Instruction Formats

4.4.10 System/Memory Management

All system/memory management instructions are encoded within major opcodes 0 and
1 using a 3-bit opcode extension field (x3) in bits 35:33. Some instructions also have a
4-bit opcode extension field (x4) in bits 30:27, or a 6-bit opcode extension field (Xg) in
bits 32:27. Most of the instructions having a 4-bit opcode extension field also have a
2-bit extension field (x;) in bits 32:31. Table 4-42 shows the 3-bit assignments for
opcode 0, Table 4-43 summarizes the 4-bit+2-bit assignments for opcode 0, Table 4-44
shows the 3-bit assignments for opcode 1, and Table 4-45 summarizes the 6-bit
assignments for opcode 1.

Table 4-42. Opcode 0 System/Memory Management 3-bit Opcode
Extensions
Opcode X3
Bits 40:37 Bits 35:33
0 System/Memory Management 4-bit+2-bit Ext
(Table 4-43)
1
2
0 3
4 chk.a.nc —int M22
5 chk.a.clr — int M22
6 chk.a.nc — fp M23
7 chk.a.clr — fp M23
Table 4-43. Opcode 0 System/Memory Management 4-bit+2-bit Opcode
Extensions
Opcode | x3 X4 X2
Bits | Bits | Bits Bits 32:31
40:37 | 35:33|30:27 0 1 2 3
0 break.m M37 invala M24 fwb M24 srlz.d M24

1-bit Ext
(Table 4-46)

srlz.i M24

invala.e — int M26 mf M24
invala.e — fp M27 mf.a M24
sum M44

sync.i M24

rum M44

ssm M44

Volume 3: Instruction Formats

rsm M44
mov.m to ar — immg M30

loadrs M25

flushrs M25

3:345

Table 4-44. Opcode 1 System/Memory Management 3-bit Opcode

Extensions
X3
B?tzc:::ﬂ; Bits
’ 35:33

0 System/Memory Management 6-bit Ext (Table 4-45)

1 chk.s.m — int M20

2

1 3 chk.s — fp M21

4

5

6 alloc M34

7

Table 4-45. Opcode 1 System/Memory Management 6-bit Opcode
Extensions
Opcode | x;3 Xs
Bits Bits Bits Bits 32:31
40:37 |35:33| 30:27 0 1 3
0 mov to rr M42 mov from rr M43
1 mov to dbr M42 mov from dbr M43 mov from psr.um probe.rw.fault —
M36 imm, M40

2 mov to ibr M42 mov from ibr M43 mov.m from ar M31 probe.r.fault —

imm, M40
mov to pkr M42 mov from pkr M43 probe.w.fault —

3)

imm, M40
mov to pmc M42 | mov from pmc M43 mov from cr M33 ptc.e M47
mov to pmd M42 | mov from pmd M43 | mov from psr M36

1 0

mov from cpuid M43
probe.r —imm, M39
probe.w — imm, M39

probe.r M38

ptc.| M45 mov to psr.um M35

4.4.10.1

3:346

probe.w M38

MM OO T > ©H o N o ol b

ptc.g M45 thash M46 mov.m to ar M29
ptc.ga M45 ttag M46
ptr.d M45 mov to cr M32
ptr.i M45 mov to psr.l M35
itr.d M42 itc.d M41
itr.i M42 tak M46 itc.i M41
Probe - Register
40 373635 3332 2726 2019 1312 6 5 0
M38 ‘ 1 X3 X6 r r
4 1 3 6 7 7 7
Extension
Instruction Operands Opcode
X3 Xg
probe.r 38
ry=rsry 1 0
probe.w 39

Volume 3: Instruction Formats

4.4.10.2

4.4.10.3

4.4.10.4

4.4.10.5

Probe - Immediate,

40 373635 3332 2726 2019 15141312 6 5
meo [] [[e [] o G
4 1 3 6 7 2
Extension
Instruction Operands Opcode
X3 Xe
probe.r . 18
ry = rz, immy 1 0
probe.w 19
Probe Fault - Immediate,
40 373635 3332 2726 2019 15141312 6 5
mao [] e e
4 1 3 6 5 2 7
Extension
Instruction Operands Opcode
X3 Xe
probe.rw.fault 31
probe.r.fault rs, immy 1 0 32
probe.w.fault 33
Translation Cache Insert
40 373635 3332 2726 2019 1312 6 5
Mat |1 x| % r
4 1 3 6 7 7
Extension
Instruction Operands Opcode
X3 Xe
itc.d'P] 0 2E
r.
itc.i'P 2 2F
Move to Indirect Register/Translation Register Insert
40 373635 3332 2726 2019 1312 6 5
Ma2 | 1 x| % r,
4 1 3 6 7 7
Extension
Instruction Operands Opcode
X3 Xe
rrrsl = ro 00
dbrlrs] =ry 01
ibr[rs] = 02
mov P [r3l=r;
pkrlrs] = ry 03
pmclrs] = rp 1 0 04
pmd[rs] =r, 05
itr.d P dtr{rs] = ro OE
itr.i P itr[rs] = ro OF

Volume 3: Instruction Formats

3:347

4.4.10.6 Move from Indirect Register

40 373635 3332 2726 2019 1312 6 5 0
mas [0] e[[N n [
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode
X3 Xe
ry=rrlrg 10
ry = dbrirs] 1
mov P rq = ibr{rs] 12
ry = pkrlr: 13
1=Pp [3] 1 0
ry =pmcirg] 14
ry = pmd[rs] 15
mov .
rq = cpuid[rs] 17

4.4.10.7 Set/Reset User/System Mask

40 373635 33323130 2726 6 5 0
wae [0 [i1% J] 5] e
4 1 3 2 4 21 6
Extension
Instruction Operands Opcode
X3 Xg
sum 4
rum) 0 0 5
imm
ssmP 2 6
rsmP 7

4.4.10.8 Translation Purge

40 373635 3332 2726 2019 1312 6 5 0
mas [0 [% NN - I
4 1 3 6 7 7 7 6
Extension
Instruction Operands Opcode

X3 Xe
ptc.IP 09
ptc.g'P 0A
ptc.ga'P ra, ra 1 0 0B
ptr.d P ocC
ptr.i P oD

3:348 Volume 3: Instruction Formats

4.4.10.9

4.4.10.10

4.4.11

4.5

Translation Access

40 373635 3332 2726 2019 1312 6 5 0
we [0] LR o
4 1 3 6 7 7 6
Extension
Instruction Operands Opcode
X3 X6
thash 1A
ttag 1B
ry=rs 1 0
tpa P 1E
tak P 1F
Purge Translation Cache Entry
40 373635 3332 2726 2019 6 5 0
vaz [e [e
4 1 3 6 7 14 6
Extension
Instruction Operands Opcode
X3 X
ptc.e P rs 1 0 34

Nop/Hint (M-Unit)

M-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit
opcode extension field in bits 35:33 (x3), a 2-bit opcode extension field in bits 32:31
(x5), a 4-bit opcode extension field in bits 30:27 (X4), and a 1-bit opcode extension
field in bit 26 (y), as shown in Table 4-46.

Table 4-46. Misc M-Unit 1-bit Opcode Extensions

Opcode X3 Xg X2 y
Bits 40:37 Bits 35:33 | Bits 30:27 | Bits 32:31 Bit 26
0 nop.m
0 0 1 0 -
1 hint.m
40 373635 33323130 272625 6 5 0
was [0 [el = [y iz, e
1 20 6
Extension
Instruction Operands Opcode
X3 X4 X2 y
nop.m . 0
. immo4 0 0 1 0
hint.m 1
B-Unit Instruction Encodings
The branch-unit includes branch, predict, and miscellaneous instructions.
3:349

Volume 3: Instruction Formats

4.5.1 Branches

Opcode 0 is used for indirect branch, opcode 1 for indirect call, opcode 4 for IP-relative
branch, and opcode 5 for IP-relative call.

The IP-relative branch instructions encoded within major opcode 4 use a 3-bit opcode
extension field in bits 8:6 (btype) to distinguish the branch types as shown in
Table 4-47.

Table 4-47. IP-Relative Branch Types

Opcode btype
Bits 40:37 Bits 8:6
0
1
2
3
4
4
5
6
7

The indirect branch, indirect return, and miscellaneous branch-unit instructions are
encoded within major opcode 0 using a 6-bit opcode extension field in bits 32:27 (xg).
Table 4-48 summarizes these assignments.

Table 4-48. Indirect/Miscellaneous Branch Opcode Extensions

Xg
B?tz‘;%(:l; Bits Bits 32:31
30:27
0
1
2
3
4
5
6
0 7
8
9
A
B
c
D
E
F

3:350 Volume 3: Instruction Formats

The indirect branch instructions encoded within major opcodes 0 use a 3-bit opcode
extension field in bits 8:6 (btype) to distinguish the branch types as shown in
Table 4-49.

Table 4-49. Indirect Branch Types

Opcode Xg btype
Bits 40:37 Bits 32:27 Bits 8:6
0
1
2
3
0 20
4
5
6
7

The indirect return branch instructions encoded within major opcodes 0 use a 3-bit
opcode extension field in bits 8:6 (btype) to distinguish the branch types as shown in
Table 4-50.

Table 4-50. Indirect Return Branch Types

Opcode Xg btype
Bits 40:37 Bits 32:27 Bits 8:6
0
1
2
3
0 21
4
5
6
7

All of the branch instructions have a 1-bit sequential prefetch opcode hint extension
field, p, in bit 12. Table 4-51 summarizes these assignments.

Table 4-51. Sequential Prefetch Hint Completer

p
Bit 12 ph

0

The IP-relative and indirect branch instructions all have a 2-bit branch prediction
“whether” opcode hint extension field in bits 34:33 (wh) as shown in Table 4-52.
Indirect call instructions have a 3-bit "whether” opcode hint extension field in bits
34:32 (wh) as shown in Table 4-53.

Volume 3: Instruction Formats 3:351

Table 4-52.

Branch Whether Hint Completer

wh
Bits 34:33

0

1
2
3

Table 4-53.

bwh

wh
Bits 34:32

bwh

0

N ORI WN =

Indirect Call Whether Hint Completer

The branch instructions also have a 1-bit branch cache deallocation opcode hint
extension field in bit 35 (d) as shown in Table 4-54.

Volume 3: Instruction Formats

Table 4-54. Branch Cache Deallocation Hint Completer
d
Bit 35 dh
0
1
4.5.1.1 IP-Relative Branch
40 373635343332 131211 9 8 6 5
81 e
4 171 2 20 1 3 3 6
Extension
Instruction Operands | Opcode
btype P wh d
br.cond.bwh.ph.dh © 0 See See See
br.wexit.bwh.ph.dh®! | targetys 4 2 Table 4-51 on | Table 4-52 on | Table 4-54 on
br.wtop.bwh.ph.dh € 3 page 3:351 page 3:352 page 3:352
3:352

4.5.1.2

4.5.1.3

4.5.1.4

4.5.1.5

4.5.2

IP-Relative Counted Branch

40 373635343332

131211 98 6 5 0

T
3 6

immzop
4 11 2 20 1 3
Extension
Instruction Operands | Opcode
btype P wh d
br.cloop.bwh.ph.dh ©! 5 See See See
br.cexit.bwh.ph.dh et target,s 4 6 Table 4-510n | Table 4-52 on | Table 4-54 on
br.ctop.bwh.ph.dh e 7 page 3:351 page 3:352 page 3:352
IP-Relative Call
40 373635343332 131211 9 8 6 5 0
B3 immzop o e
4 11 2 20 1 3 3 6
Extension
Instruction Operands Opcode
P wh d
See Table 4-51 | See Table 4-52 | See Table 4-54
€ =
br.call.bwh.ph.dh ™ | by = targets 5 on page 3:351 | onpage 3:352 | on page 3:352
Indirect Branch
40 373635343332 2726 1615 131211 9 8 6 5 0
B4 x6 o B v RS
4 11 2 6 1 3 1 3 3 6
Extension
Instruction Operands | Opcode
Xg | btype P wh d
br.cond.bwh.ph.dh © 0 See See See
b 0 20 Table 4-51 | Table 4-52 | Table 4-54
brlabWhphdh e 2 1 on on on
br.ret.bwh.ph.dh © 21 4 page 3:351 | page 3:352 | page 3:352
Indirect Call
40 37363534 3231 1615 131211 9 8 6 5 0
= n B[o
4 11 3 16 3 1 3 3 6
Extension
Instruction Operands | Opcode
¢] wh d
See Table 4-51 | See Table 4-53 | See Table 4-54
€ =
br.call.owh.ph.dh b1 = bz L on page 3:351 | on page 3:352 | on page 3:352

Branch Predict/Nop/Hint

The branch predict, nop, and hint instructions are encoded in major opcodes 2 (Indirect
Predict/Nop/Hint) and 7 (IP-relative Predict). The indirect predict, nop, and hint
instructions in major opcode 2 use a 6-bit opcode extension field in bits 32:27 (Xg).

Table 4-55 summarizes these assignments.

Volume 3: Instruction Formats

3:353

3:354

Table 4-55. Indirect Predict/Nop/Hint Opcode Extensions

Opcode Xs
Bits Bits Bits 32:31
40:37 30:27 0 1 2 3
nop.b B9 brp B7
hint.b B9 brp.ret B7
2

MM OO W > o oo N WN| =~O

The branch predict instructions all have a 1-bit branch importance opcode hint
extension field in bit 35 (ih). The mov to BR instruction (page 3:320) also has this hint
in bit 23. Table 4-56 shows these assignments.

Table 4-56. Branch Importance Hint Completer

ih
Bit 23 or ih
Bit 35
0

1

The IP-relative branch predict instructions have a 2-bit branch prediction “whether”
opcode hint extension field in bits 4:3 (wh) as shown in Table 4-57. Note that the
combination of the .loop or .exit whether hint completer with the none importance hint
completer is undefined.

Table 4-57. IP-Relative Predict Whether Hint Completer

wh
Bits 4:3
0

ipwh

1
2
3

The indirect branch predict instructions have a 2-bit branch prediction “whether”
opcode hint extension field in bits 4:3 (wh) as shown in Table 4-58.

Volume 3: Instruction Formats

Table 4-58. Indirect Predict Whether Hint Completer

wh ,
Bits 4:3 indwh
0
1
2
3
4.5.2.1 IP-Relative Predict
40 373635343332 1312 6543 2 0
B6 ‘ 7 ‘sl toe ‘ immoqp, timmyz, ‘ - ‘
4 11 2 20 7 1 2 3
Extension
Instruction Operands Opcode
ih wh
, , See Table 4-56 on See Table 4-57 on
brp.ipwh.ih targetys, tagq3 7 bage 3:354 bage 3:354
4.5.2.2 Indirect Predict
40 373635343332 2726 1615 1312 6543 0
87 [2 | lw] x | b | immp, R |
4 11 2 6 1 3 7 1 2 3
Extension
Instruction Operands Opcode
Xg ih wh
brp.indwh.ih 10 See Table 4-56 on | See Table 4-58 on
bz tags 2 age 3:354 age 3:355
brp.ret.indwh.ih 11 page o page o
4.5.3 Miscellaneous B-Unit Instructions
The miscellaneous branch-unit instructions include a number of instructions encoded
within major opcode 0 using a 6-bit opcode extension field in bits 32:27 (xg) as
described in Table 4-48 on page 3:350.
4.5.3.1 Miscellaneous (B-Unit)
40 3736 3332 2726 6 5 0
B8 [Oo] [e] oo
4 4 6 21 6
Extension
Instruction Opcode
Xg
cover! 02
clrrrb ! 04
clrrrb.pr! 05
rfie!p 0 08
bsw.0'P 0C
bsw.1'P oD
epc 10

Volume 3: Instruction Formats

3:355

4.5.3.2

4.6

3:356

Extension
Instruction Opcode
X
vmsw.0 P 0 18
vmsw.1P 19
Break/Nop/Hint (B-Unit)
40 373635 3332 272625 6
so B[|| | e
4 1 3 6 1 20
Extension
Instruction Operands Opcode
Xe
break.b © 0
. 00
nop.b immgyy4 9
hint.b 01

F-Unit Instruction Encodings

The floating-point instructions are encoded in major opcodes 8 - E for floating-point
and fixed-point arithmetic, opcode 4 for floating-point compare, opcode 5 for
floating-point class, and opcodes 0 and 1 for miscellaneous floating-point instructions.

The miscellaneous and reciprocal approximation floating-point instructions are encoded
within major opcodes 0 and 1 using a 1-bit opcode extension field (x) in bit 33 and
either a second 1-bit extension field in bit 36 (q) or a 6-bit opcode extension field (Xg)
in bits 32:27. Table 4-59 shows the 1-bit x assignments, Table 4-62 shows the
additional 1-bit q assignments for the reciprocal approximation instructions; Table 4-60
and Table 4-61 summarize the 6-bit xg assignments.

Table 4-59. Miscellaneous Floating-point 1-bit Opcode Extensions
Opcode X
Bits 40:37 Bit 33
0 0 6-bit Ext (Table 4-60)

1 Reciprocal Approximation (Table 4-62)
0 6-bit Ext (Table 4-61)
1 Reciprocal Approximation (Table 4-62)

Volume 3: Instruction Formats

Table 4-60.

Opcode 0 Miscellaneous Floating-point 6-bit Opcode Extensions

Volume 3: Instruction Formats

Opcode | x X6
Bits Bit | Bits Bits 32:31
40:37 33
0 0
Table 4-61. Opcode 1 Miscellaneous Floating-point 6-bit Opcode Extensions
Opcode | x X6
Bits Bit | Bits Bits 32:31
40:37 | 33 .
1 0

3:357

4.6.1

3:358

Table 4-62. Reciprocal Approximation 1-bit Opcode Extensions

Opcode X q
Bits 40:37 Bit 33 Bit 36
0 0 frcpa F6
1 1 frsqrta F7
1 0 fprcpa F6
1 fprsqrta F7

Most floating-point instructions have a 2-bit opcode extension field in bits 35:34 (sf)
which encodes the FPSR status field to be used. Table 4-63 summarizes these
assignments.

Table 4-63. Floating-point Status Field Completer
sf ¢
Bits 35:34 s
0 .s0
1 .s1
2 .s2
3 .s3
Arithmetic

The floating-point arithmetic instructions are encoded within major opcodes 8 - D using
a 1-bit opcode extension field (x) in bit 36 and a 2-bit opcode extension field (sf) in bits
35:34. The opcode and x assignments are shown in Table 4-64.

Table 4-64. Floating-point Arithmetic 1-bit Opcode Extensions
Opcode
X Bits 40:37
Bit 36
8 9 A B (o] D
0 fma F1 fma.d F1 fms F1 fms.d F1 fnma F1 fnma.d F1
fma.s F1 fpma F1 fms.s F1 fpms F1 fnma.s F1 fponma F1

The fixed-point arithmetic and parallel floating-point select instructions are encoded
within major opcode E using a 1-bit opcode extension field (x) in bit 36. The fixed-point
arithmetic instructions also have a 2-bit opcode extension field (x5) in bits 35:34. These
assignments are shown in Table 4-65.

Table 4-65. Fixed-point Multiply Add and Select Opcode Extensions
X2
Opcode x Bits 35:34
Bits 40:37 Bit 36
0 | 1 | 2 ‘ 3
E 0 fselect F3
1 xma.l F2 _ xma.hu F2 | xma.h F2

Volume 3: Instruction Formats

4.6.1.1

4.6.1.2

4.6.2

4.6.3

Floating-point Multiply Add

40 3736353433 2726 2019 1312 6 5 0
ST T - PRI
4 1 2 7 7 7 7 6
Extension
Instruction Operands Opcode
X sf
fma.sf 8 0
fma.s.sf 1
fma.d.sf 9 0
fpma.sf 1
fms.sf A 0
fms.s.sf oz o f 1 See Table 4-63 on
fms.d.sf 1T ez 5 0 page 3:358
fpms.sf 1
fnma.sf 0
C
fnma.s.sf 1
fnma.d.sf b 0
fpnma.sf 1
Fixed-point Multiply Add
40 3736353433 2726 2019 1312 6 5 0
P2 LE nl W 7 e |6 e
4 1 2 7 7 7 7 6
Extension
Instruction Operands Opcode
X X2
xma.l 0
xma.h f1 = f3, f4, f2 E 1 3
xma.hu 2
Parallel Floating-point Select
40 3736353433 2726 2019 1312 6 5 0
Fs B X o[[e e G
4 1 2 7 7 7 7 6
Extension
Instruction Operands Opcode
X
fselect f1 = f3, f4, f2 E 0

Compare and Classify

The predicate setting floating-point compare instructions are encoded within major
opcode 4 using three 1-bit opcode extension fields in bits 33 (r;), 36 (rp), and 12 (t,),

and a 2-bit opcode extension field (sf) in bits 35:34. The opcode, ry, ry, and t;

assignments are shown in Table 4-66. The sf assighments are shown in Table 4-63 on

page 3:358.

The parallel floating-point compare instructions are described on page 3:362.

Volume 3: Instruction Formats

3:359

Table 4-66. Floating-point Compare Opcode Extensions

Opcode ty
Bits | s | Bit3e Bit12
40:37 0 1
0 0 fcmp.eq F4 fcmp.eq.unc F4
4 1 fcmp.It F4 fcmp.lt.unc F4
1 0 fcmp.le F4 fcmp.le.unc F4
1 fcmp.unord F4 fcmp.unord.unc F4

The floating-point class instructions are encoded within major opcode 5 using a 1-bit
opcode extension field in bit 12 (t;) as shown in Table 4-67.

Table 4-67. Floating-point Class 1-bit Opcode Extensions

Opcode t,
Bits 40:37 Bit 12
5 0 fclass.m F5
1 fclass.m.unc F5

4.6.3.1 Floating-point Compare

40 373635343332 2726 2019 131211 6 5 0
F4 f T
4 1 2 1 6 7 7 1 6 6
Extension
Instruction Operands Opcode
ra rp ta sf
fcmp.eq.sf 0 0
fcmp.It.sf 1 0
fcmp.le.sf 1 0
femp.unord.sf _ 1 See Table 4-63
P1, P2 =12, f3 4 3:358
fcmp.eq.unc.sf 0 0 on page o:
fcmp.lt.unc.sf 1 4
fcmp.le.unc.sf 1 0
fcmp.unord.unc.sf 1
4.6.3.2 Floating-point Class
40 373635343332 2726 2019 131211 6 5 0
S desse |6 [l e
4 2 2 6 7 7 1 6 6
Extension
Instruction Operands Opcode :
a
fclass.m 0
p1, po =1, fclassg 5

fclass.m.unc 1

3:360 Volume 3: Instruction Formats

4.6.4 Approximation

4.6.4.1 Floating-point Reciprocal Approximation

There are two Reciprocal Approximation instructions. The first, in major op 0, encodes
the full register variant. The second, in major op 1, encodes the parallel variant.

40 373635343332 2726 2019 1312 6 5 0
Fs z o | o e
4 17 2 1 6 7 7 7 6
Extension
Instruction Operands Opcode
X q sf
frcpa.sf 0 See Table 4-63 on
f1,po=15 f3 1 0 page 3:358

fprcpa.sf 1

4.6.4.2 Floating-point Reciprocal Square Root Approximation

There are two Reciprocal Square Root Approximation instructions. The first, in major op
0, encodes the full register variant. The second, in major op 1, encodes the parallel

variant.
40 373635343332 2726 2019 1312 6 5 0
F7 f I e
4 1 2 1 6 7 7 7 6
Extension
Instruction Operands Opcode
X q sf
frsqrta.sf _ 0 See Table 4-63 on
fr.p2="13 1 1 3-358
fprsqrta.sf 1 page o
3:361

Volume 3: Instruction Formats

4.6.5

3:362

Minimum/Maximum and Parallel Compare

There are two groups of Minimum/Maximum instructions. The first group, in major op
0, encodes the full register variants. The second group, in major op 1, encodes the
parallel variants. The parallel compare instructions are all encoded in major op 1.

40 373635343332 2726 2019 1312 6 5 0
Fo Lot bl | % o [
4 1 2 1 6 7 7 7 6
Extension
Instruction Operands Opcode
X Xg sf

fmin.sf 14

fmax.sf 15

famin.sf 0 16

famax.sf 17

fpmin.sf 14

fpmax.sf 15

fpamin.sf 16

fpamax.sf _ 17 See Table 4-63 on

f1 =1, f3 0 .

fpcmp.eq.sf 30 page 3:358
fpcmp.It.sf 1 31

fpcmp.le.sf 32

fpcmp.unord.sf 33

fpcmp.neq.sf 34

fpcmp.nlt.sf 35

fpcmp.nle.sf 36

fpcmp.ord.sf 37

Volume 3: Instruction Formats

4.6.6 Merge and Logical

40 3736 343332 2726 2019 1312 6 5 0
Fo ot X % [8 e [n e
4 3 1 6 7 7 7 6
Extension
Instruction Operands Opcode

X Xg
fmerge.s 10
fmerge.ns 11
fmerge.se 12
fmix.Ir 39
fmix.r 3A
fmix.| 3B
fsxt.r 3C
fsxt.| 3D
fpack 0 28
fswap f1 =1 f3 0 34
fswap.nl 35
fswap.nr 36
fand 2C
fandcm 2D
for 2E
fxor 2F
fpmerge.s 10
fpmerge.ns 1 11
fpmerge.se 12

4.6.7 Conversion

4.6.7.1 Convert Floating-point to Fixed-point

40 373635343332 2726 2019 1312 6 5 0
Fro [o=1] [t e [n T e
4 17 2 1 6 7 7 7 6
Extension
Instruction Operands Opcode
X Xg sf
fevt.fx.sf 18
fevt.fxu.sf 0 19
fevt.fx.trunc.sf 1A
fevt.fxu.trunc.sf 1B See Table 4-63 on
fi=1 0)
fpevt.fx.sf 18 page 3:358
fpevt.fxu.sf q 19
fpevt.fx.trunc.sf 1A
fpevt.fxu.trunc.sf 1B

Volume 3: Instruction Formats 3:363

4.6.7.2

Convert Fixed-point to Floating-point

40 3736 343332 2726 2019 1312 6 5 0
Fe o] W] e | 0w e
4 3 1 6 7 7 7 6
Extension
Instruction Operands Opcode
X Xg
fevt.xf fi=1 0 0 1C
4.6.8 Status Field Manipulation
4.6.8.1 Floating-point Set Controls
40 373635343332 2726 2019 1312 6 5 0
Fi2 [0 st re | ok | amske e
4 1 2 1 6 7 7 7 6
Extension
Instruction Operands Opcode
X Xg sf
See Table 4-63 on
fsetc.sf amaskz, omaskz 0 0 04 page 3:358
4.6.8.2 Floating-point Clear Flags
40 373635343332 2726 6 5 0
SO e e
1 2 1 6 21 6
Extension
Instruction Opcode
X Xg sf
felrf.sf 0 0 05 See Table 4-63 on page 3:358
4.6.8.3 Floating-point Check Flags
40 373635343332 272625 6 5 0
Fia [0 o[% T i e
4 1 2 1 6 1 20 6
Extension
Instruction Operands Opcode
X Xg sf
See Table 4-63 on
fchkf.sf targetos 0 0 08 page 3:358

3:364

Volume 3: Instruction Formats

4.6.9 Miscellaneous F-Unit Instructions

4.6.9.1 Break (F-Unit)
40 373635343332 272625 6 5 0
Fis [0 [RE | immsgg e
4 1 1 6 1 20
Extension
Instruction Operands Opcode
X XG
break.f immy4 0 0 00
4.6.9.2 Nop/Hint (F-Unit)
F-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit
opcode extension field in bits 35:33 (x3), a 6-bit opcode extension field in bits 32:27
(xg), and a 1-bit opcode extension field in bit 26 (y), as shown in Table 4-46.
Table 4-68. Misc F-Unit 1-bit Opcode Extensions
Opcode X Xg y
Bits 40:37 Bit :33 Bits 32:27 Bit 26
0 .
0 0 01 n?pf
1 hint.f
40 373635343332 272625 6 5 0
Fe [0 M T im0, B
4 12 1 6 1 20 6
Extension
Instruction Operands Opcode
X Xe y
nop.f . 0
. immgy4 0 0 01
hint.f
4.7 X-Unit Instruction Encodings
The X-unit instructions occupy two instruction slots, L+X. The major opcode, opcode
extensions and hints, gp, and small immediate fields occupy the X instruction slot. For
movl, break.x, and nop.x, the immy, field occupies the L instruction slot. For brl, the
immsg field and a 2-bit Ignored field occupy the L instruction slot.
4.7.1 Miscellaneous X-Unit Instructions

Volume 3: Instruction Formats

The miscellaneous X-unit instructions are encoded in major opcode 0 using a 3-bit
opcode extension field (x3) in bits 35:33 and a 6-bit opcode extension field (xg) in bits
32:27. Table 4-69 shows the 3-bit assignments and Table 4-70 summarizes the 6-bit
assignments. These instructions are executed by an I-unit.

3:365

4.7.1.1

4.7.2

3:366

X1

Table 4-69. Misc X-Unit 3-bit Opcode Extensions

Opcode X3
Bits 40:37 Bits 35:33
0 6-bit Ext (Table 4-70)
1
2
3
0

4
5
6
7

Table 4-70. Misc X-Unit 6-bit Opcode Extensions

Opcode | x5 X6
Bits Bits Bits Bits 32:31
40:37 35:33 | 30:27 0
0 break.x X1
1 1-bit Ext

(Table 4-73)

Break (X-Unit)

40 373635 3332 272625 6 5 040 0
(o Q%]]
4 1 3 6 1 20 6 41

. Extension
Instruction Operands Opcode
X3 X
break.x immgy 0 0 00

Move Long Immediateg,
The move long immediate instruction is encoded within major opcode 6 using a 1-bit

reserved opcode extension in bit 20 (v.) as shown in Table 4-71. This instruction is
executed by an I-unit.

Volume 3: Instruction Formats

Table 4-71. Move Long 1-bit Opcode Extensions

Opcode Ve
Bits 40:37 Bit 20
0 movl X2
6
1
40 373635 2726 22212019 1312 65 040 0
x2 [o [wme | mme [mm | o
4 1 9 5 11 7 7 6 41
Extension
Instruction Operands Opcode
VC
movl ' ry=immey 6 0
4.7.3 Long Branches

Long branches are executed by a B-unit. Opcode C is used for long branch and opcode
D for long call.

The long branch instructions encoded within major opcode C use a 3-bit opcode
extension field in bits 8:6 (btype) to distinguish the branch types as shown in

Table 4-72.
Table 4-72. Long Branch Types
Opcode btype
Bits 40:37 Bits 8:6
0
1
2
c 3
4
5
6
7

The long branch instructions have the same opcode hint fields in bit 12 (p), bits 34:33
(wh), and bit 35 (d) as normal IP-relative branches. These are shown in Table 4-51 on
page 3:351, Table 4-52 on page 3:352, and Table 4-54 on page 3:352.

131211 9 8 6 5 0140 210
» |
1 3 3 6 39 2

Extension

4.7.3.1 Long Branch
40 373635343332

xs [CH "I immagp

Instruction Operands | Opcode

btype p wh d

brl.cond.bwh.ph.dh €'

targetgy C

See Table 4-51
on page 3:351

See Table 4-52
on page 3:352

See Table 4-54
on page 3:352

Volume 3: Instruction Formats

4.7.3.2

4.7.4

4.8

3:368

X4

X5

Long Call

40 373635343332 131211 9 8 6 5 040 210
o | b
4 171 2 20 1 3 3 6 39 2
Extension
Instruction Operands Opcode
P wh d
el - See Table 4-51 See Table 4-52 See Table 4-54
brl.call.bwh.ph.dh by = targetes D on page 3:351 on page 3:352 | on page 3:352

Nop/Hint (X-Unit)

X-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit
opcode extension field in bits 35:33 (x3), a 6-bit opcode extension field in bits 32:27
(xg), and a 1-bit opcode extension field in bit 26 (y), as shown in Table 4-73. These
instructions are executed by an I-unit.

Table 4-73. Misc X-Unit 1-bit Opcode Extensions
Opcode X3 Xg y
Bits 40:37 Bits 35:33 | Bits 32:27 Bit 26
0
0 0 01
1
40 373635 3332 272625
‘ 0 ‘ i ‘ X3 ‘ Xg ‘y‘ immyg,
4 1 3 6 1 20
Extension
Instruction Operands Opcode
X3 X6 y
nop.x . 0
) immegy 0 0 01
hint.x

Immediate Formation

Table 4-74 shows, for each instruction format that has one or more immediates, how
those immediates are formed. In each equation, the symbol to the left of the equals is
the assembly language name for the immediate. The symbols to the right are the field
names in the instruction encoding.

Table 4-74. Immediate Formation
Instruction Immediate Formation
Format
A2 county = ctyy + 1
A3 A8 127 M30 immg = sign_ext(s << 7 | immz, 8)
A4 immyq4 = sign_ext(s << 13 | immgq << 7 | immyy, 14)
A5 immy, = sign_ext(s << 21 | immg, << 16 | immgq << 7 | immyy, 22)
A10 county = (ctyg > 2) ? reservedQP? : ctyg + 1
I county = (Ctyg ==0) 2 0 : (Ctyg == 1) ? 7 : (cthg ==2) ? 15: 16

Volume 3: Instruction Formats

Table 4-74.

Immediate Formation (Continued)

Instruction Immediate Formation
Format
13 mbtypey = (mbty, == 0) ? @brcst : (mbtye == 8) ? @mix : (mbty, == 9) ? @shuf : (mbt,, ==
0xA) ? @alt : (mbt,, == 0xB) ? @rev : reservedQP?
14 mhtypeg = mhtg
16 countg = countgy,
18 counts = 31 — ccounts,
110 countg = countgy
1 leng = lengg + 1
pOSg = pOSgp
leng = lengq + 1
112
posg = 63 — cpose
leng = lengq + 1
113 posg = 63 — CpoSE
immg = sign_ext(s << 7 | immy,, 8)
leng = lengg + 1
114 posg = 63 — cposgy
immy = sign_ext(s, 1)
leng = lengg + 1
115
posg = 63 — CpOsgq
116 posg = pOSgy,
118 119 M37 M48 immyq =i <<20 | immyg,
121 tagqs = IP + (sign_ext(timmg, 9) << 4)
123 mask,7 = sign_ext(s << 16 | maskg; << 8 | maskz, << 1, 17)
124 immy, = sign_ext(s << 43 | immy7, << 16, 44)
130 immg = immgy, + 32
M3 M8 M22 immg = sign_ext(s << 8 | i << 7 | immyp, 9)
M5 M10 immg = sign_ext(s << 8 | i << 7 | immy,, 9)
M17 incg = sign_ext(((s) ? -1 :1) * ((ipp ==3) ? 1: 1 << (4 —iy)), 6)
120 M20 M21 targetys = IP + (sign_ext(s << 20 | immy3; << 7 | immy,, 21) << 4)
M22 M23 targetys = IP + (sign_ext(s << 20 | immyqy, 21) << 4)
il = sol
M34 o = sof — sol
r=sor<<3
M39 M40 immy = ip,
M44 imm24 =i<<23 | i2d << 21 | imm21a
B1 B2 B3 targetys = IP + (sign_ext(s << 20 | immyqp, 21) << 4)
B6 targetys = IP + (sign_ext(s << 20 | immyqp, 21) << 4)
tagqz = IP + (sign_ext(tye << 7 | timmy,, 9) << 4)
B7 tagqz = IP + (sign_ext(tye << 7 | timmy,, 9) << 4)
B9 imm21 =i<<20 I immzoa
F5 fclassg = felass << 2 | fc,
amasky = amaskyy,
F12
omaskz = omasky.
F14 targetys = IP + (sign_ext(s << 20 | immyq,, 21) << 4)
F15F16 immyq =i <<20 | immyg,
X1 X5 imm62 = imm41 <<21 | i<<20 | imm20a
X2 immgy =1 << 63 |immyq << 22 | i, << 21| immge << 16 | immgy << 7 | immy,,
X3 X4 targetgy = IP + ((i << 59 | immgg << 20 | immyqy,) << 4)

Volume 3: Instruction Formats

3:369

a. This encoding causes an lllegal Operation fault if the value of the qualifying predicate is 1.

§

3:370 Volume 3: Instruction Formats

Resource and Dependency Semantics 5

5.1 Reading and Writing Resources

An Itanium instruction is said to be a reader of a resource if the instruction’s qualifying
predicate is 1 or it has no qualifying predicate or is one of the instructions that reads a
resource even when its qualifying predicate is 0, and the execution of the instruction
depends on that resource.

An Itanium instruction is said to be an writer of a resource if the instruction’s
qualifying predicate is 1 or it has no qualifying predicate or writes the resource even
when the qualifying predicate is 0, and the execution of the instruction writes that
resource.

An Itanium instruction is said to be a reader or writer of a resource even if it only
sometimes depends on that resource and it cannot be determined statically whether
the resource will be read or written. For example, cover only writes CR[IFS] when
PSR.ic is 0, but for purposes of dependency, it is treated as if it always writes the
resource since this condition cannot be determined statically. On the other hand, rsm
conditionally writes several bits in the PSR depending on a mask which is encoded as an
immediate in the instruction. Since the PSR bits to be written can be determined by
examining the encoded instruction, the instruction is treated as only writing those bits
which have a corresponding mask bit set. All exceptions to these general rules are
described in this appendix.

5.2 Dependencies and Serialization

A RAW (Read-After-Write) dependency is a sequence of two events where the first is a
writer of a resource and the second is a reader of the same resource. Events may be
instructions, interruptions, or other ‘uses’ of the resource such as instruction stream
fetches and VHPT walks. Table 5-2 covers only dependencies based on instruction
readers and writers.

A WAW (Write-After-Write) dependency is a sequence of two events where both events
write the resource in question. Events may be instructions, interruptions, or other
‘updates’ of the resource. Table 5-3 covers only dependencies based on instruction
writers.

A WAR (Write-After-Read) dependency is a sequence of two instructions, where the
first is a reader of a resource and the second is a writer of the same resource. Such
dependencies are always allowed except as indicated in Table 5-4 and only those
related to instruction readers and writers are included.

A RAR (Read-After-Read) dependency is a sequence of two instructions where both are
readers of the same resource. Such dependencies are always allowed.

Volume 3: Resource and Dependency Semantics 3:371

5.3

3:372

RAW and WAW dependencies are generally not allowed without some type of
serialization event (an implied, data, or instruction serialization after the first writing
instruction. (See Section 3.2, “Serialization” on page 2:17 for details on serialization.)
The tables and associated rules in this appendix provide a comprehensive list of readers
and writers of resources and describe the serialization required for the dependency to
be observed and possible outcomes if the required serialization is not met. Even when
targeting code for machines which do not check for particular disallowed dependencies,
such code sequences are considered architecturally undefined and may cause code to
behave differently across processors, operating systems, or even separate executions
of the code sequence during the same program run. In some cases, different
serializations may yield different, but well-defined results.

The serialization of application level (non-privileged) resources is always implied. This
means that if a writer of that resource and a subsequent read of that same resource are
in different instruction groups, then the reader will see the value written. In addition,
for dependencies on PRs and BRs, where the writer is a non-branch instruction and the
reader is a branch instruction, the writer and reader may be in the same instruction

group.

System resources generally require explicit serialization, i.e., the use of a sr1z.i or
srlz.d instruction, between the writing and the reading of that resource. Note that
RAW accesses to CRs are not exceptional - they require explicit data or instruction
serialization. However, in some cases (other than CRs) where pairs of instructions
explicitly encode the same resource, serialization is implied.

There are cases where it is architecturally allowed to omit a serialization, and that the
response from the CPU must be atomic (act as if either the old or the new state were
fully in place). The tables in this appendix indicate dependency requirements under the
assumption that the desired result is for the dependency to always be observed. In
some such cases, the programmer may not care if the old or new state is used; such
situations are allowed, but the value seen is not deterministic.

On the other hand, if an impliedF dependency is violated, then the program is
incorrectly coded and the processor's behavior is undefined.

Resource and Dependency Table Format Notes

e The “Writers” and “Readers” columns of the dependency tables contain instruction
class names and instruction mnemonic prefixes as given in the format section of
each instruction page. To avoid ambiguity, instruction classes are shown in bold,
while instruction mnemonic prefixes are in regular font. For instruction mnemonic
prefixes, all instructions that exactly match the name specified or those that begin
with the specified text and are followed by a ‘.’ and then followed by any other text
will match.

e The dependency on a listed instruction is in effect no matter what values are
encoded in the instruction or what dynamic values occur in operands, unless a
superscript is present or one of the special case instruction rules in Section 5.3.1
applies. Instructions listed are still subject to rules regarding qualifying predicates.

¢ Instruction classes are groups of related instructions. Such names appear in
boldface for clarity. The list of all instruction classes is contained in Table 5-5. Note
that an instruction may appear in multiple instruction classes, instruction classes

Volume 3: Resource and Dependency Semantics

may expand to contain other classes, and that when fully expanded, a set of
classes (e.g., the readers of some resource) may contain the same instruction
multiple times.

e The syntax ‘x\y’ where x and y are both instruction classes, indicates an unnamed
instruction class that includes all instructions in instruction class x but that are not
in instruction class y. Similarly, the notation ‘x\y\z’ means all instructions in
instruction class x, but that are not in either instruction class y or instruction class
z.

e Resources on separate rows of a table are independent resources. This means that
there are no serialization requirements for an event which references one of them
followed by an event which uses a different resource. In cases where resources are
broken into subrows, dependencies only apply between instructions within a
subrow. Instructions that do not appear in a subrow together have no
dependencies (reader/writer or writer/writer dependencies) for the resource in
question, although they may still have dependencies on some other resource.

e The dependencies listed for pairs of instructions on each resource are not unique -
the same pair of instructions might also have a dependency on some other resource
with a different semantics of dependency. In cases where there are multiple
resource dependencies for the same pair of instructions, the most stringent
semantics are assumed: instr overrides data which overrides impliedF which
overrides implied which overrides none.

¢ Arrays of numbered resources are represented in a single row of a table using the
% notation as a substitute for the number of the resource. In such cases, the
semantics of the table are as if each humbered resource had its own row in that
table and is thus an independent resource. The range of values that the % can take
are given in the “Resource Name” column.

e An asterisk **’ in the "Resource Name” column indicates that this resource may not
have a physical resource associated with it, but is added to enforce special
dependencies.

e A pound sign ‘#’ in the “Resource Name” column indicates that this resource is an
array of resources that are indexed by a value in a GR. The number of individual
elements in the array is described in the detailed description of each resource.

e The “"Semantics of Dependency” column describes the outcome given various
serialization and instruction group boundary conditions. The exact definition for
each keyword is given in Table 5-1.

Table 5-1. Semantics of Dependency Codes

Semantics of

Dependency Code Serialization Type Required Effects of Serialization Violation

instr Instruction Serialization (See “Instruction Atomic: Any attempt to read a resource after one or
Serialization” on page 2:18). more insufficiently serialized writes is either the

data Data Serialization (See “Data Serialization” on value previously in the register (before any of the
page 2:18) unserialized writes) or the value of one of any

— - - — unserialized writes. Which value is returned is

implied Instruction Group Break. Writer and reader must be in

unpredictable and multiple insufficiently serialized
reads may see different results. No fault will be
caused by the insufficient serialization.

separate instruction groups. (See “Instruction
Sequencing Considerations” on page 1:39).

Volume 3: Resource and Dependency Semantics 3:373

Table 5-1. Semantics of Dependency Codes (Continued)

Semantics of

Dependency Code Serialization Type Required Effects of Serialization Violation
impliedF Instruction Group Break (same as above). An undefined value is returned, or an lllegal
stop Stop. Writer and reader must be separated by a stop. | OPeration fault may be taken. If no fault is taken,

the value returned is unpredictable, and may be
unrelated to past writes, but will not be data which
could not be accessed by the current process (e.g.,
if PSR.cpl != 0, the undefined value to return
cannot be read from some control register).

none None N/A

specific Implementation Specific

SC Special Case Described elsewhere in book, see referenced
section in the entry.

5.3.1 Special Case Instruction Rules

The following rules apply to the specified instructions when they appear in Table 5-2,
Table 5-3, Table 5-4, or Table 5-5:

e An instruction always reads a given resource if its qualifying predicate is 1 and it

appears in the “"Reader” column of the table (except as noted). An instruction
always writes a given resource if its qualifying predicate is 1 and it appears in the
“Writer” column of the table (except as noted). An instruction never reads or writes
the specified resource if its qualifying predicate is 0 (except as noted). These rules
include branches and their qualifying predicate. Instructions in the
unpredicatable-instructions class have no qualifying predicate and thus always
read or write their resources (except as noted).

An instruction of type mov-from-PR reads all PRs if its PR[gp] is true. If the
PR[gp] is false, then only the PR[gp] is read.

An instruction of type mov-to-PR writes only those PRs as indicated by the
immediate mask encoded in the instruction.

A st8.spill only writes AR[UNAT]{X} where X equals the value in bits 8:3 of the
store’s data address. A 1d8.fill instruction only reads AR[UNAT]{Y} where Y
equals the value in bits 8:3 of the load’s data address.

Instructions of type mod-sched-brs always read AR[EC] and the rotating register
base registers in CFM, and always write AR[EC], the rotating register bases in CFM,
and PR[63] even if they do not change their values or if their PR[gp] is false.
Instructions of type mod-sched-brs-counted always read and write AR[LC], even
if they do not change its value.

For instructions of type pr-or-writers or pr-and-writers, if their completer is
or.andcm, then only the first target predicate is an or-compare and the second
target predicate is an and-compare. Similarly, if their completer is and.orcm, then
only the second target predicate is an or-compare and the first target predicate is
an and-compare.

rum and sum only read PSR.sp when the bit corresponding to PSR.up (bit 2) is set in
the immediate field of the instruction.

5.3.2 RAW Dependency Table

Table 5-2 architecturally defines the following information:

3:374

Volume 3: Resource and Dependency Semantics

Table 5-2.

e A list of all architecturally-defined, independently-writable resources in the Itanium
architecture. Each row represents an ‘atomic’ resource. Thus, for each row in the
table, hardware will probably require a separate write-enable control signal.

e For each resource, a complete list of readers and writers.

e For each instruction, a complete list of all resources read and written. Such a list
can be obtained by taking the union of all the rows in which each instruction
appears.

RAW Dependencies Organized by Resource

Resource Name Writers Readers Semantics of
Dependency
ALAT chk.a.clr, mem-readers-alat, none
mem-readers-alat, mem-writers, chk-a,
mem-writers, invala-all invala.e
AR[BSP] br.call, brl.call, br.ret, cover, br.call, brl.call, br.ia, br.ret, cover, impliedF
mov-to-AR-BSPSTORE, rfi flushrs, loadrs,
mov-from-AR-BSP, rfi
AR[BSPSTORE] alloc, loadrs, flushrs, alloc, br.ia, flushrs, impliedF
mov-to-AR-BSPSTORE mov-from-AR-BSPSTORE
AR[CCV] mov-to-AR-CCV br.ia, cmpxchg, impliedF
mov-from-AR-CCV
AR[CFLG] mov-to-AR-CFLG br.ia, mov-from-AR-CFLG impliedF
AR[CSD] Id16, mov-to-AR-CSD br.ia, cmp8xchg16, impliedF
mov-from-AR-CSD, st16
ARI[EC] mod-sched-brs, br.ret, br.call, brl.call, br.ia, mod-sched-brs, impliedF
mov-to-AR-EC mov-from-AR-EC
AR[EFLAG] mov-to-AR-EFLAG br.ia, mov-from-AR-EFLAG impliedF
AR[FCR] mov-to-AR-FCR br.ia, mov-from-AR-FCR impliedF
AR[FDR] mov-to-AR-FDR br.ia, mov-from-AR-FDR impliedF
AR[FIR] mov-to-AR-FIR br.ia, mov-from-AR-FIR impliedF
AR[FPSR].sf0.controls mov-to-AR-FPSR, fsetc.sO br.ia, fp-arith-s0, fcmp-s0, fpcmp-s0, | impliedF
fsetc, mov-from-AR-FPSR
AR[FPSR].sf1.controls mov-to-AR-FPSR, fsetc.s1 br.ia, fp-arith-s1, fcmp-s1, fpcmp-s1,
mov-from-AR-FPSR
AR[FPSR].sf2.controls mov-to-AR-FPSR, fsetc.s2 br.ia, fp-arith-s2, fcmp-s2, fpcmp-s2,
mov-from-AR-FPSR
AR[FPSR].sf3.controls mov-to-AR-FPSR, fsetc.s3 br.ia, fp-arith-s3, fcmp-s3, fpcmp-s3,
mov-from-AR-FPSR
AR[FPSR].sf0.flags fp-arith-s0, fcIrf.sO, fcmp-s0, br.ia, fchkf, impliedF
fpcmp-s0, mov-to-AR-FPSR mov-from-AR-FPSR
AR[FPSR].sf1.flags fp-arith-s1, fcirf.s1, fcmp-s1, br.ia, fchkf.s1,
fpcmp-s1, mov-to-AR-FPSR mov-from-AR-FPSR
AR[FPSR].sf2.flags fp-arith-s2, fcirf.s2, fcmp-s2, br.ia, fchkf.s2,
fpcmp-s2, mov-to-AR-FPSR mov-from-AR-FPSR
AR[FPSR].sf3.flags fp-arith-s3, fcirf.s3, fcmp-s3, br.ia, fchkf.s3,
fpcmp-s3, mov-to-AR-FPSR mov-from-AR-FPSR
AR[FPSR].traps mov-to-AR-FPSR br.ia, fp-arith, fchkf, fcmp, fpcmp, impliedF
mov-from-AR-FPSR
AR[FPSR].rv mov-to-AR-FPSR br.ia, fp-arith, fchkf, fcmp, fpcmp, impliedF
mov-from-AR-FPSR
AR[FSR] mov-to-AR-FSR br.ia, mov-from-AR-FSR impliedF
Volume 3: Resource and Dependency Semantics 3:375

Table 5-2.

RAW Dependencies Organized by Resource (Continued)

Resource Name

Writers

Readers

Semantics of

Dependency

AR[ITC] mov-to-AR-ITC br.ia, mov-from-AR-ITC impliedF

AR[K%], mov-to-AR-K' br.ia, mov-from-AR-K' impliedF

%in0-7

AR[LC] mod-sched-brs-counted, br.ia, mod-sched-brs-counted, impliedF

mov-to-AR-LC mov-from-AR-LC

AR[PFS] br.call, brl.call alloc, br.ia, br.ret, epc, impliedF
mov-from-AR-PFS

mov-to-AR-PFS alloc, br.ia, epc, impliedF
mov-from-AR-PFS
br.ret none
AR[RNAT] alloc, flushrs, loadrs, alloc, br.ia, flushrs, loadrs, impliedF
mov-to-AR-RNAT, mov-from-AR-RNAT
mov-to-AR-BSPSTORE

AR[RSC] mov-to-AR-RSC alloc, br.ia, flushrs, loadrs, impliedF
mov-from-AR-RSC,
mov-from-AR-BSPSTORE,
mov-to-AR-RNAT,
mov-from-AR-RNAT,
mov-to-AR-BSPSTORE

AR[RUC] mov-to-AR-RUC br.ia, mov-from-AR-RUC impliedF

AR[SSD] mov-to-AR-SSD br.ia, mov-from-AR-SSD impliedF

AR[UNATK%}, mov-to-AR-UNAT, st8.spill br.ia, 1d8fill, impliedF

% in 0 - 63 mov-from-AR-UNAT

AR%, none br.ia, mov-from-AR-rv' none

% in 8-15, 20, 22-23, 31,

33-35, 37-39, 41-43, 46-47,

67-111

AR%, mov-to-AR-ig' br.ia, mov-from-AR-ig' impliedF

% in 48-63, 112-127

BR%, br.call’, brl.call’ indirect-brs’, indirect-brp’, impliedF

%in0-7 mov-from-BR'

mov-to-BR' indirect-brs' none
indirect-brp1, impliedF
mov-from-BR'

CFM mod-sched-brs mod-sched-brs impliedF
cover, alloc, rfi, loadrs, br.ret, br.call, impliedF
brl.call
cfm-readers? impliedF

br.call, brl.call, br.ret, clrrrb, cover, cfm-readers impliedF
rfi
alloc cfm-readers none

CPUID# none mov-from-IND-CPUID? specific

CR[CMCV] mov-to-CR-CMCV mov-from-CR-CMCV data

CR[DCR] mov-to-CR-DCR mov-from-CR-DCR, data
mem-readers-spec

3:376 Volume 3: Resource and Dependency Semantics

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers Semantics of
Dependency
CRIEQI] mov-to-CR-EOI none SC Section
5.8.3.4, “End of
External
Interrupt
Register (EOI —
CR67)” on
page 2:124
CRJIFA] mov-to-CR-IFA itc.i, itc.d, itr.i, itr.d implied
mov-from-CR-IFA data
CR[IFS] mov-to-CR-IFS mov-from-CR-IFS data
rfi implied
cover rfi, mov-from-CR-IFS implied
CRIIHA] mov-to-CR-IHA mov-from-CR-IHA data
CRJIIB%], mov-to-CR-IIB mov-from-CR-1IB data
% in0-1
CRIIIM] mov-to-CR-1IM mov-from-CR-1IM data
CRIIIP] mov-to-CR-IIP mov-from-CR-IIP data
rfi implied
CRIIIPA] mov-to-CR-IPA mov-from-CR-IIPA data
CRI[IPSR] mov-to-CR-IPSR mov-from-CR-IPSR data
rfi implied
CR[IRR%)], mov-from-CR-IVR mov-from-CR-IRR' data
% in0-3
CRIISR] mov-to-CR-ISR mov-from-CR-ISR data
CRIITIR] mov-to-CR-ITIR mov-from-CR-ITIR data
itc.i, itc.d, itr.i, itr.d implied
CR[ITM] mov-to-CR-ITM mov-from-CR-ITM data
CRI[ITO] mov-to-CR-ITO mov-from-AR-ITC, mov-from-CR-ITO |data
CR[ITV] mov-to-CR-ITV mov-from-CR-ITV data
CRJIVA] mov-to-CR-IVA mov-from-CR-IVA instr
CRIIVR] none mov-from-CR-IVR SC Section
5.8.3.2,
“External
Interrupt Vector
Register (IVR —
CR65)” on
page 2:123
CRILID] mov-to-CR-LID mov-from-CR-LID SC Section
5.8.3.1, “Local
ID (LID —
CR64)” on
page 2:122
CR[LRR%)], mov-to-CR-LRR' mov-from-CR-LRR' data
% in0-1
CR[PMV] mov-to-CR-PMV mov-from-CR-PMV data
CRI[PTA] mov-to-CR-PTA mov-from-CR-PTA, mem-readers, data
mem-writers, non-access, thash
Volume 3: Resource and Dependency Semantics 3:377

Table 5-2.

RAW Dependencies Organized by Resource (Continued)

Resource Name

Writers

Readers

Semantics of

Dependency
CR[TPR] mov-to-CR-TPR mov-from-CR-TPR, data
mov-from-CR-IVR
mov-to-PSR-1"7, ssm'” SC Section
5.8.3.3, “Task
Priority Register
(TPR — CR66)"
on page 2:123
fi implied
CR%, none mov-from-CR-rv' none
% in 3, 5-7, 10-15, 18, 28-63,
75-79, 82-127
DBR## mov-to-IND-DBR3 mov-from-IND-DBR? impliedF
probe-all, Ifetch-all, data
mem-readers, mem-writers
DTC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, | mem-readers, mem-writers, data
itc.i, itc.d, itr.i, itr.d non-access
itc.i, itc.d, itr.i, itr.d ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, itc.i, |impliedF
itc.d, itr.i, itr.d
ptc.e, ptc.g, ptc.ga, ptc., ptr.i, ptr.d | ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none
itc.i, itc.d, itr.i, itr.d impliedF
DTC_LIMIT* ptc.g, ptc.ga ptc.g, ptc.ga impliedF
DTR itr.d mem-readers, mem-writers, data
non-access
ptc.g, ptc.ga, ptc.l, ptr.d, itr.d impliedF
ptr.d mem-readers, mem-writers, data
non-access
ptc.g, ptc.ga, ptc.l, ptr.d none
itr.d, itc.d impliedF
FR%, none fr-readers’ none
% in0-1
FR%, fr-writers \Idf-c"\Idfp-c’ fr-readers’ impliedF
% in2-127 Idf-c’, Idfp-c’ fr-readers’ none
GRO none gr-readers’ none
GR%, Id-¢c"13 gr-readers’ none
%in1-127 gr-writers1\ld-c1'13 gr-readers1 impliedF
IBR# mov-to-IND-IBR® mov-from-IND-IBR® impliedF
InService* mov-to-CR-EOI mov-from-CR-IVR data
mov-from-CR-IVR mov-from-CR-IVR impliedF
mov-to-CR-EOI mov-to-CR-EOI impliedF
P all all none
ITC ptc.e, ptc.g, ptc.ga, ptc., ptr.i, ptr.d | epc, vmsw instr
itc.i, itc.d, itr.i, itr.d impliedF
ptr.i, ptr.d, ptc.e, ptc.g, ptc.ga, ptc.| none
itc.i, itc.d, itr.i, itr.d epc, vmsw instr
itc.d, itc.i, itr.d, itr.i, ptr.d, ptr.i, ptc.g, impliedF
ptc.ga, ptc.l
ITC_LIMIT* ptc.g, ptc.ga ptc.g, ptc.ga impliedF
3:378 Volume 3: Resource and Dependency Semantics

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name

Writers

Readers

Semantics of

Dependency
ITR itr.i itr.i, itc.i, ptc.g, ptc.ga, ptc.l, ptr.i impliedF
epc, vmsw instr
ptr.i itc.i, itr.i impliedF
ptc.g, ptc.ga, ptc.l, ptr.i none
epc, vmsw instr
memory mem-writers mem-readers none
PKR# mov-to-IND-PKR® mem-readers, mem-writers, data
mov-from-IND-PKR?, probe-all
mov-to-IND-PKR* none
mov-from-IND-PKR® impliedF
mov-to-IND-PKR? impliedF
PMC# mov-to-IND-PMC> mov-from-IND-PMC3 impliedF
mov-from-IND-PMD? SC Section
7.2.1, “Generic
Performance
Counter
Registers” for
PMCIO].fr on
page 2:156
PMD# mov-to-IND-PMD? mov-from-IND-PMD? impliedF
PRO pr-writers1 pr-readers-br1, none
pr-readers-nobr-nomovpr1 ,
mov-from-PR12,
mov-to-PR2
PR%, pr-writers1 , pr-readers-nobr-nomovpr1 , impliedF
%in1-15 mov-to-PR-allreg’ mov-from-PR,
mov-to-PR 2
pr-writers-fp1 pr-readers-br1 impliedF
pr-writers-int', pr-readers-br’ none
mov-to-PR-allreg’
PR%, pr-writers1 , pr-readers-nobr-nomovpr1 , impliedF
% in 16 - 62 mov-to-PR-allreg’, mov-from-PR,
mov-to-PR-rotreg mov-to-PR"?
pr-writers-fp1 pr-readers-br1 impliedF
pr-writers-int', pr-readers-br’ none
mov-to-PR-allreg’,
mov-to-PR-rotreg
PR63 mod-sched-brs, pr-readers-nobr-nomovpr1 , impliedF
pr-writers1 , mov-from-PR,
mov-to-PR-allreg’, mov-to-PR'2
mov-to-PR-rotreg
pr-writers-fp1, pr-readers-br1 impliedF
mod-sched-brs
pr-writers-int1 , pr-readers-br1 none
mov-to-PR-aIIreg7,
mov-to-PR-rotreg
Volume 3: Resource and Dependency Semantics 3:379

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers Semantics of
Dependency
PSR.ac user-mask-writers-partial7, mem-readers, mem-writers implied
mov-to-PSR-um
sys-mask-writers-partial7, mem-readers, mem-writers data
mov-to-PSR-I
user-mask-writers-partial’, mov-from-PSR, impliedF
mov-to-PSR-um, mov-from-PSR-um
sys-mask-writers-partial7,
mov-to-PSR-I
fi mem-readers, mem-writers, impliedF
mov-from-PSR, mov-from-PSR-um
PSR.be user-mask-writers-partial7, mem-readers, mem-writers implied
mov-to-PSR-um
sys-mask-writers-partial’, mem-readers, mem-writers data
mov-to-PSR-I
user-mask-writers-partial’, mov-from-PSR, impliedF
mov-to-PSR-um, mov-from-PSR-um
sys-mask-writers-partial7,
mov-to-PSR-I
fi mem-readers, mem-writers, impliedF
mov-from-PSR, mov-from-PSR-um
PSR.bn bsw, rfi gr-readers'®, gr-writers° impliedF
PSR.cpl epc, br.ret priv-ops, br.call, brl.call, epc, implied
mov-from-AR-ITC,
mov-from-AR-RUC,
mov-to-AR-ITC,
mov-to-AR-RSC,
mov-to-AR-RUC,
mov-to-AR-K,
mov-from-IND-PMD,
probe-all, mem-readers,
mem-writers, Ifetch-all
rfi priv-ops, br.call, brl.call, epc, impliedF
mov-from-AR-ITC,
mov-from-AR-RUC,
mov-to-AR-ITC,
mov-to-AR-RSC,
mov-to-AR-RUC,
mov-to-AR-K,
mov-from-IND-PMD,
probe-all, mem-readers,
mem-writers, Ifetch-all
PSR.da fi mem-readers, Ifetch-all, mem-writers, | impliedF
probe-fault
PSR.db mov-to-PSR-I Ifetch-all, mem-readers, data
mem-writers, probe-fault
mov-from-PSR impliedF
rfi Ifetch-all, mem-readers, impliedF
mem-writers,
mov-from-PSR, probe-fault
PSR.dd rfi Ifetch-all, mem-readers, probe-fault, |impliedF
mem-writers

3:380 Volume 3: Resource and Dependency Semantics

Table 5-2.

RAW Dependencies Organized by Resource (Continued)

Resource Name

Writers

Readers

Semantics of

Dependency
PSR.dfh sys-mask-writers-partial’, fr-readers®, fr-writers® data
mov-to-PSR-| mov-from-PSR impliedF
rfi fr-readers®, fr-writers®, impliedF
mov-from-PSR
PSR.dfl sys-mask-writers-partial7, fr-writers®, fr-readers® data
mov-to-PSR-| mov-from-PSR impliedF
rfi fr-writerss, fr-readerss, impliedF
mov-from-PSR
PSR.di sys-mask-writers-partial7, br.ia data
mov-to-PSR-| mov-from-PSR impliedF
rfi br.ia, mov-from-PSR impliedF
PSR.dt sys-mask-writers-partial7, mem-readers, mem-writers, data
mov-to-PSR-I non-access
mov-from-PSR impliedF
rfi mem-readers, mem-writers, impliedF
non-access, mov-from-PSR
PSR.ed rfi Ifetch-all, impliedF
mem-readers-spec
PSR.i sys-mask-writers-partial7, mov-from-PSR impliedF
mov-to-PSR-I, rfi
PSR.ia rfi all none
PSR.ic sys-mask-writers-partial7, mov-from-PSR impliedF
mov-to-PSR-| cover, itc.i, itc.d, itr.i, itr.d, data
mov-from-interruption-CR,
mov-to-interruption-CR
rfi mov-from-PSR, cover, itc.i, itc.d, itr.i, impliedF
itr.d, mov-from-interruption-CR,
mov-to-interruption-CR
PSR.id rfi all none
PSR.is br.ia, rfi none none
PSR.it rfi branches, mov-from-PSR, chk, epc, impliedF
fchkf, vmsw
PSR.Ip mov-to-PSR-I mov-from-PSR impliedF
br.ret data
rfi mov-from-PSR, br.ret impliedF
PSR.mc rfi mov-from-PSR impliedF
PSR.mfh fr-writers?, mov-from-PSR-um, impliedF
user-mask-writers-partial’, mov-from-PSR
mov-to-PSR-um,
sys-mask-writers-partial7,
mov-to-PSR-, rfi
PSR.mfl fr-writers?, mov-from-PSR-um, impliedF
user-mask-writers-partial7, mov-from-PSR
mov-to-PSR-um,
sys-mask-writers-partial’,
mov-to-PSR-, rfi
Volume 3: Resource and Dependency Semantics 3:381

Table 5-2.

RAW Dependencies Organized by Resource (Continued)

Resource Name

Writers

Readers

Semantics of

Dependency
PSR.pk sys-mask-writers-partial7, Ifetch-all, mem-readers, data
mov-to-PSR-I mem-writers, probe-all
mov-from-PSR impliedF
fi Ifetch-all, mem-readers, impliedF
mem-writers, mov-from-PSR,
probe-all
PSR.pp sys-mask-writers-partial’, mov-from-PSR impliedF
mov-to-PSR-l, rfi
PSRuri fi all none
PSR.rt mov-to-PSR-I mov-from-PSR impliedF
alloc, flushrs, loadrs data
fi mov-from-PSR, alloc, flushrs, loadrs impliedF
PSR.si sys-mask-writers-partial7, mov-from-PSR impliedF
mov-to-PSR-| mov-from-AR-ITC, mov-from-AR-RUC | data
rfi mov-from-AR-ITC, impliedF
mov-from-AR-RUC, mov-from-PSR
PSR.sp sys-mask-writers-partial7, mov-from-PSR impliedF
mov-to-PSR-| mov-from-IND-PMD, data
mov-to-PSR-um, rum, sum
rfi mov-from-IND-PMD, mov-from-PSR, |impliedF
mov-to-PSR-um, rum, sum
PSR.ss fi all impliedF
PSR.tb mov-to-PSR-| branches, chk, fchkf data
mov-from-PSR impliedF
fi branches, chk, fchkf, mov-from-PSR impliedF
PSR.up user-mask-writers-partial7, mov-from-PSR-um, impliedF
mov-to-PSR-um, mov-from-PSR
sys-mask-writers-partial7,
mov-to-PSR-l, rfi
PSR.vm vmsw mem-readers, mem-writers, implied
mov-from-AR-ITC,
mov-from-AR-RUC,
mov-from-IND-CPUID,
mov-to-AR-ITC, mov-to-AR-RUC,
priv-ops\vmsw, cover, thash, ttag
fi mem-readers, mem-writers, impliedF
mov-from-AR-ITC,
mov-from-AR-RUC,
mov-from-IND-CPUID,
mov-to-AR-ITC, mov-to-AR-RUC,
priv-ops\vmsw, cover, thash, ttag
RR# mov-to-IND-RR® mem-readers, mem-writers, itc.i, itc.d, |data
itr.i, itr.d, non-access, ptc.g, ptc.ga,
ptc.l, ptr.i, ptr.d, thash, ttag
mov-from-IND-RR® impliedF
RSE rse-writers 4 rse-readers'* impliedF
3:382 Volume 3: Resource and Dependency Semantics

5.3.3 WAW Dependency Table

General rules specific to the WAW table:

¢ All resources require at most an instruction group break to provide sequential

behavior.

e Some resources require no instruction group break to provide sequential behavior.

e There are a few special cases that are described in greater detail elsewhere in the
manual and are indicated with an SC (special case) result.

e Each sub-row of writers represents a group of instructions that when taken in pairs
in any combination has the dependency result indicated. If the column is split in
sub-columns, then the dependency semantics apply to any pair of instructions
where one is chosen from left sub-column and one is chosen from the right
sub-column.

Table 5-3. WAW Dependencies Organized by Resource

Resource Name

Writers

Semantics of

Dependency
ALAT mem-readers-alat, mem-writers, chk.a.clr, none
invala-all
AR[BSP] br.call, brl.call, br.ret, cover, mov-to-AR-BSPSTORE, rfi impliedF
AR[BSPSTORE] alloc, loadrs, flushrs, mov-to-AR-BSPSTORE impliedF
AR[CCV] mov-to-AR-CCV impliedF
AR[CFLG] mov-to-AR-CFLG impliedF
AR[CSD] |d16, mov-to-AR-CSD impliedF
AR[EC] br.ret, mod-sched-brs, mov-to-AR-EC impliedF
AR[EFLAG] mov-to-AR-EFLAG impliedF
AR[FCR] mov-to-AR-FCR impliedF
AR[FDR] mov-to-AR-FDR impliedF
AR[FIR] mov-to-AR-FIR impliedF
AR[FPSR].sf0.controls mov-to-AR-FPSR, fsetc.sO impliedF
AR[FPSR].sf1.controls mov-to-AR-FPSR, fsetc.s1 impliedF
AR[FPSR].sf2.controls mov-to-AR-FPSR, fsetc.s2 impliedF
AR[FPSR].sf3.controls mov-to-AR-FPSR, fsetc.s3 impliedF
AR[FPSR].sf0.flags fp-arith-s0, fcmp-s0, fpcmp-s0 none
felrf.s0, femp-s0, fp-arith-s0, fclrf.s0, mov-to-AR-FPSR impliedF
fpcmp-s0, mov-to-AR-FPSR
AR[FPSR].sf1.flags fp-arith-s1, fcmp-s1, fpcmp-s1 none
fclrf.s1, femp-s1, fp-arith-s1, fclrf.s1, mov-to-AR-FPSR impliedF
fpcmp-s1, mov-to-AR-FPSR
AR[FPSR].sf2.flags fp-arith-s2, fcmp-s2, fpcmp-s2 none
fclrf.s2, fcmp-s2, fp-arith-s2, fclrf.s2, mov-to-AR-FPSR impliedF
fpcmp-s2, mov-to-AR-FPSR
AR[FPSR].sf3.flags fp-arith-s3, fcmp-s3, fpcmp-s3 none
fclrf.s3, fcmp-s3, fp-arith-s3, fclrf.s3, mov-to-AR-FPSR impliedF
fpcmp-s3, mov-to-AR-FPSR
AR[FPSR].rv mov-to-AR-FPSR impliedF
AR[FPSR].traps mov-to-AR-FPSR impliedF
AR[FSR] mov-to-AR-FSR impliedF
AR[ITC] mov-to-AR-ITC impliedF
Volume 3: Resource and Dependency Semantics 3:383

Table 5-3. WAW Dependencies Organized by Resource (Continued)

Resource Name

Writers

Semantics of

Dependency
AR[K%], mov-to-AR-K' impliedF
%in0-7
AR[LC] mod-sched-brs-counted, mov-to-AR-LC impliedF
AR[PFS] br.call, brl.call none
br.call, brl.call mov-to-AR-PFS impliedF
AR[RNAT] alloc, flushrs, loadrs, impliedF
mov-to-AR-RNAT,
mov-to-AR-BSPSTORE
AR[RSC] mov-to-AR-RSC impliedF
AR[RUC] mov-to-AR-RUC impliedF
AR[SSD] mov-to-AR-SSD impliedF
AR[UNAT{%}, mov-to-AR-UNAT, st8.spill impliedF
% in0-63
AR%, none none
% in 8-15, 20, 22-23, 31,
33-35, 37-39, 41-43, 46-47,
67-111
AR%, mov-to-AR-ig' impliedF
% in 48 - 63, 112-127
BR%, br.call', brl.call’ mov-to-BR' impliedF
%in0-7 mov-to-BR' impliedF
br.caII1, brl.call’ none
CFM mod-sched-brs, br.call, brl.call, br.ret, alloc, clrrrb, cover, rfi impliedF
CPUID# none none
CR[CMCV] mov-to-CR-CMCV impliedF
CRIDCR] mov-to-CR-DCR impliedF
CRIEOI] mov-to-CR-EOI SC Section
5.8.3.4, “End of
External Interrupt
Register (EOI —
CR67)” on
page 2:124
CRIIFA] mov-to-CR-IFA impliedF
CRJ[IFS] mov-to-CR-IFS, cover impliedF
CRI[IHA] mov-to-CR-IHA impliedF
CR[IIB%], mov-to-CR-IIB impliedF
% in0-1
CR[lIM] mov-to-CR-IIM impliedF
CR[IIP] mov-to-CR-IIP impliedF
CR[IIPA] mov-to-CR-IIPA impliedF
CR[IPSR] mov-to-CR-IPSR impliedF
CR[IRR%], mov-from-CR-IVR impliedF
%in0-3
CR[ISR] mov-to-CR-ISR impliedF
CRIITIR] mov-to-CR-ITIR impliedF
CR[ITM] mov-to-CR-ITM impliedF
CR[ITO] mov-to-CR-ITO impliedF
3:384 Volume 3: Resource and Dependency Semantics

Table 5-3. WAW Dependencies Organized by Resource (Continued)

Resource Name Writers %in;::::rs]cc;/f
CRI[ITV] mov-to-CR-ITV impliedF
CRIIVA] mov-to-CR-IVA impliedF
CRIIVR] none SC
CRILID] mov-to-CR-LID SC
CRI[LRR%], mov-to-CR-LRR' impliedF
% in0-1
CR[PMV] mov-to-CR-PMV impliedF
CR[PTA] mov-to-CR-PTA impliedF
CR[TPR] mov-to-CR-TPR impliedF
CR%, none none
% in 3, 5-7, 10-15, 18, 28-63,

75-79, 82-127
DBR# mov-to-IND-DBR® impliedF
DTC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none
ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, itc.i, itc.d, itr.i, itr.d impliedF
itc.i, itc.d, itr.i, itr.d
DTC_LIMIT* ptc.g, ptc.ga impliedF
DTR itr.d impliedF
itr.d ptr.d impliedF
ptr.d none
FR%, none none
% in0-1
FR%, fr-writers, Idf-c', Idfp-c’ impliedF
% in2-127
GRO none none
GR%, Id-c’, gr-writers' impliedF
% in1-127
IBR# mov-to-IND-IBR® impliedF
InService* mov-to-CR-EOI, mov-from-CR-IVR SC
IP all none
ITC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none
ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, itc.i, itc.d, itr.i, itr.d impliedF
itc.i, itc.d, itr.i, itr.d
ITR itr.i itr.i, ptr.i impliedF
ptr.i none
memory mem-writers none
PKR# mov-to-IND-PKR® mov-to-IND-PKR* none
mov-to-IND-PKR® impliedF
PMC# mov-to-IND-PMC3 impliedF
PMD# mov-to-IND-PMD? impliedF
PRO pr-writers1 none
Volume 3: Resource and Dependency Semantics 3:385

Table 5-3. WAW Dependencies Organized by Resource (Continued)

Resource Name Writers Semantics of
Dependency
PR%, pr-and-writers1 none
%in1-15 pr-or-writers' none
pr-unc-writers-fp', pr-unc-writers-fp', impliedF
pr-unc-writers-int1 , pr-unc-writers-int1 ,
pr-norm-writers-fp1 , pr-norm-writers-fp1 ,
pr-norm-writers-int', pr-norm-writers-int',
pr-and-writers1 , pr-or-writers1 ,
mov-to-PR-aIIreg7 mov-to-PR-aIIreg7
PR%, pr-and-writers1 none
% in 16 - 62 pr-or-writers' none
pr-unc-writers-fp1 , pr-unc-writers-fp1 , impliedF
pr-unc-writers-int1 , pr-unc-writers-int1 ,
pr-norm-writers-fp1 , pr-norm-writers-fp1 ,
pr-norm -writers-int', pr-norm-writers-int1 ,
pr-and-writers1 , pr-or-writers1 ,
mov-to-PR-aIIreg7, mov-to-PR-aIIreg7,
mov-to-PR-rotreg mov-to-PR-rotreg
PR63 pr-and-writers' none
pr-or-writers' none
mod-sched-brs, mod-sched-brs, impliedF
pr-unc-writers-fp', pr-unc-writers-fp',
pr-unc-writers-int1 , pr-unc-writers-int1 ,
pr-norm-writers-fp1 , pr-norm-writers-fp1 ,
pr-norm-writers-int', pr-norm-writers-int',
pr-and-writers1 , pr-or-writers1 ,
mov-to-PR-aIIreg7, mov-to-PR-aIIreg7,
mov-to-PR-rotreg mov-to-PR-rotreg
PSR.ac user-mask-writers-partial7, mov-to-PSR-um, impliedF
sys-mask-writers-partial7, mov-to-PSR-I, rfi
PSR.be user-mask-writers-partial7, mov-to-PSR-um, impliedF
sys-mask-writers-partial’, mov-to-PSR, rfi
PSR.bn bsw, rfi impliedF
PSR.cpl epc, br.ret, rfi impliedF
PSR.da rfi impliedF
PSR.db mov-to-PSR-I, rfi impliedF
PSR.dd rfi impliedF
PSR.dfh sys-mask-writers-partial7, mov-to-PSR-I, rfi impliedF
PSR.dfl sys-mask-writers-partial7, mov-to-PSR-I, rfi impliedF
PSR.di sys-mask-writers-partial7, mov-to-PSR-I, rfi impliedF
PSR.dt sys-mask-writers-partial7, mov-to-PSR-I, rfi impliedF
PSR.ed fi impliedF
PSR.i sys-mask-writers-partial7, mov-to-PSR-I, rfi impliedF
PSR.ia rfi impliedF
PSR.ic sys-mask-writers-partial7, mov-to-PSR-I, rfi impliedF
PSR.id rfi impliedF
PSR.is br.ia, rfi impliedF
PSR.it rfi impliedF
PSR.Ip mov-to-PSR-I, rfi impliedF
PSR.mc fi impliedF
3:386 Volume 3: Resource and Dependency Semantics

Table 5-3.

WAW Dependencies Organized by Resource (Continued)

Semantics of
Resource Name
Dependency
PSR.mfh fr-writers® none
user-mask-writers-partial7, user-mask-writers-partial7, impliedF
mov-to-PSR-um, fr-writers?®, mov-to-PSR-um,
sys-mask-writers-partial’, sys-mask-writers-partial’,
mov-to-PSR-I, rfi mov-to-PSR-, rfi
PSR.mfl fr-writers® none
user-mask-writers-partial7, user-mask-writers-partial7, impliedF
mov-to-PSR-um, fr-writers®, mov-to-PSR-um,
sys-mask-writers-partial7, sys-mask-writers-partial7,
mov-to-PSR-l, rfi mov-to-PSR-I, rfi
PSR.pk sys-mask-writers-partial’, mov-to-PSR-|, rfi impliedF
PSR.pp sys-mask-writers-partial7, mov-to-PSR-, rfi impliedF
PSR.ri rfi impliedF
PSR.rt mov-to-PSR-, rfi impliedF
PSR.si sys-mask-writers-partial7, mov-to-PSR-, rfi impliedF
PSR.sp sys-mask-writers-partiaI7, mov-to-PSR-, rfi impliedF
PSR.ss rfi impliedF
PSR.tb mov-to-PSR-, rfi impliedF
PSR.up user-mask-writers-partial7, mov-to-PSR-um, impliedF
sys-mask-writers-partial’, mov-to-PSR-I, fi
PSR.vm rfi, vmsw impliedF
RR# mov-to-IND-RR® impliedF
RSE rse-writers 4 impliedF
5.3.4 WAR Dependency Table
A general rule specific to the WAR table:

1. WAR dependencies are always allowed within instruction groups except for the
entry in Table 5-4 below. The readers and subsequent writers specified must be
separated by a stop in order to have defined behavior.

Table 5-4. WAR Dependencies Organized by Resource

Resource Name Readers Writers Semantics of Dependency
PR63 pr-readers.-br1 mod-sched-brs stop
5.3.5 Listing of Rules Referenced in Dependency Tables

Volume 3: Resource and Dependency Semantics

The following rules restrict the specific instances in which some of the instructions in
the tables cause a dependency and must be applied where referenced to correctly
interpret those entries. Rules only apply to the instance of the instruction class, or
instruction mnemonic prefix where the rule is referenced as a superscript. If the rule is
referenced in Table 5-5 where instruction classes are defined, then it applies to all
instances of the instruction class.

Rule 1. These instructions only write a register when that register’s number is explicitly

encoded as a target of the instruction and is only read when it is encoded as a
source of the instruction (or encoded as its PR[gp]).

3:387

3:388

Rule 2. These instructions only read CFM when they access a rotating GR, FR, or PR.
mov-to-PR and mov-from-PR only access CFM when their qualifying
predicate is in the rotating region.

Rule 3. These instructions use a general register value to determine the specific indirect
register accessed. These instructions only access the register resource specified
by the value in bits {7:0} of the dynamic value of the index register.

Rule 4. These instructions only read the given resource when bits {7:0} of the indirect
index register value does not match the register number of the resource.

Rule 5. All rules are implementation specific.

Rule 6. There is a dependency only when both the index specified by the reader and
the index specified by the writer have the same value in bits {63:61}.

Rule 7. These instructions access the specified resource only when the corresponding
mask bit is set.

Rule 8. PSR.dfh is only read when these instructions reference FR32-127. PSR.dfl is
only read when these instructions reference FR2-31.

Rule 9. PSR.mfl is only written when these instructions write FR2-31. PSR.mfh is only
written when these instructions write FR32-127.

Rule 10.The PSR.bn bit is only accessed when one of GR16-31 is specified in the
instruction.

Rule 11.The target predicates are written independently of PR[gp], but source registers
are only read if PR[gp] is true.

Rule 12.This instruction only reads the specified predicate register when that register is
the PR[qgp].

Rule 13.This reference to Id-c only applies to the GR whose value is loaded with data
returned from memory, not the post-incremented address register. Thus, a stop
is still required between a post-incrementing Id-c and a consumer that reads
the post-incremented GR.

Rule 14.The RSE resource includes implementation-specific internal state. At least one
(and possibly more) of these resources are read by each instruction listed in the
rse-readers class. At least one (and possibly more) of these resources are
written by each instruction listed in the rse-writers class. To determine exactly
which instructions read or write each individual resource, see the corresponding
instruction pages.

Rule 15.This class represents all instructions marked as Reserved if PR[gp] is 1 B-type
instructions as described in “Format Summary” on page 3:294.

Rule 16.This class represents all instructions marked as Reserved if PR[gp] is 1
instructions as described in “Format Summary” on page 3:294.

Rule 17.CR[TPR] has a RAW dependency only between mov-to-CR-TPR and
mov-to-PSR-I or ssm instructions that set PSR.i, PSR.pp or PSR.up.

Volume 3: Resource and Dependency Semantics

5.4 Support Tables

Table 5-5. Instruction Classes

Class

Events/Instructions

all

predicatable-instructions, unpredicatable-instructions

branches

indirect-brs, ip-rel-brs

cfm-readers

fr-readers, fr-writers, gr-readers, gr-writers, mod-sched-brs,
predicatable-instructions, pr-writers, alloc, br.call, brl.call, br.ret, cover, loadrs, rfi, chk-a,
invala.e

chk-a chk.a.clr, chk.a.nc

cmpxchg cmpxchg1, cmpxchg2, cmpxchg4, cmpxchg8, cmp8xchg16

czx czx1, czx2

fcmp-s0 femp[Field(sf)==s0]

fcmp-s1 fcmp[Field(sf)==s1]

fcmp-s2 fcmp[Field(sf)==s2]

fcmp-s3 fcmp[Field(sf)==s3]

fetchadd fetchadd4, fetchadd8

fp-arith fadd, famax, famin, fcvt.fx, fevt.fxu, fevt.xuf, fma, fmax, fmin, fmpy, fms, fnma, fnmpy, fnorm,
fpamax, fpamin, fpcvt.fx, fpcvt.fxu, fpma, fpmax, fpmin, fpmpy, foms, fpnma, fpnmpy, fprepa,
fprsqrta, frcpa, frsqrta, fsub

fp-arith-s0 fp-arith[Field(sf)==s0]

fp-arith-s1 fp-arith[Field(sf)==s1]

fp-arith-s2 fp-arith[Field(sf)==s2]

fp-arith-s3 fp-arith[Field(sf)==s3]

fp-non-arith fabs, fand, fandcm, fclass, fcvt.xf, fmerge, fmix, fneg, fnegabs, for, fpabs, fpmerge, fpack,
fpneg, fpnegabs, fselect, fswap, fsxt, fxor, xma, xmpy

fpcmp-s0 fpcmpl[Field(sf)==s0]

fpecmp-s1 fpcmp[Field(sf)==s1]

fpcmp-s2 fpcmp[Field(sf)==s2]

fpcmp-s3 fpcmp[Field(sf)==s3]

fr-readers fp-arith, fp-non-arith, mem-writers-fp, pr-writers-fp, chk.s[Format in {M21}], getf

fr-writers fp-arith, fp-non-arith\fclass, mem-readers-fp, setf

gr-readers gr-readers-writers, mem-readers, mem-writers, chk.s, cmp, cmp4, fc, itc.i, itc.d, itr.i, itr.d,

mov-to-AR-gr, mov-to-BR, mov-to-CR, mov-to-IND, mov-from-IND, mov-to-PR-allreg,
mov-to-PSR-l, mov-to-PSR-um, probe-all, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, setf, tbit,
tnat

gr-readers-writers

mov-from-IND, add, add|, addp4, adds, and, andcm, clz, czx, dep\dep[Format in {I13}],
extr, mem-readers-int, Id-all-postinc, Ifetch-postinc, mix, mux, or, pack, padd, pavg,
pavgsub, pcmp, pmax, pmin, pmpy, pmpyshr, popcnt, probe-regular, psad, pshl,
pshladd, pshr, pshradd, psub, shl, shladd, shladdp4, shr, shrp, st-postinc, sub, sxt, tak,
thash, tpa, ttag, unpack, xor, zxt

gr-writers alloc, dep, getf, gr-readers-writers, mem-readers-int, mov-from-AR, mov-from-BR,
mov-from-CR, mov-from-PR, mov-from-PSR, mov-from-PSR-um, mov-ip, movl

indirect-brp brp[Format in {B7}]

indirect-brs br.call[Format in {B5}], br.cond[Format in {B4}], br.ia, br.ret

invala-all invala[Format in {M24}], invala.e

ip-rel-brs mod-sched-brs, br.call[Format in {B3}], brl.call, brl.cond, br.cond[Format in {B1}], br.cloop

Id Id1, Id2, Id4, Id8, Id8.fill, Id16

Id-a Id1.a, 1d2.a, 1d4.a, Id8.a

Volume 3: Resource and Dependency Semantics 3:389

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions
Id-all-postinc Id[Format in {M2 M3}], Idfp[Format in {M12}], Idf[Format in {M7 M8}]
Id-c Id-c-nc, Id-c-clr
Id-c-clr Id1.c.clr, Id2.c.clr, Id4.c.clr, I1d8.c.clr, Id-c-clr-acq
Id-c-clr-acq Id1.c.clr.acq, Id2.c.clr.acq, Id4.c.clr.acq, Id8.c.clr.acq
Id-c-nc Id1.c.nc, 1d2.c.nc, Id4.c.nc, 1d8.c.nc
Id-s Id1.s, Id2.s, Id4.s, 1d8.s
Id-sa Id1.sa, Id2.sa, Id4.sa, Id8.sa
Idf Idfs, Idfd, Idfe, Idf8, Idf.fill
Idf-a ldfs.a, Idfd.a, Idfe.a, Idf8.a
Idf-c Idf-c-nc, Idf-c-cir
Idf-c-clr Idfs.c.clr, Idfd.c.clr, Idfe.c.clr, Idf8.c.cIr
Idf-c-nc Idfs.c.nc, Idfd.c.nc, Idfe.c.nc, 1df8.c.nc
Idf-s ldfs.s, Idfd.s, Idfe.s, Idf8.s
Idf-sa Idfs.sa, Idfd.sa, Idfe.sa, Idf8.sa
Idfp Idfps, Idfpd, Idfp8
Idfp-a Idfps.a, Idfpd.a, Idfp8.a
Idfp-c Idfp-c-nc, Idfp-c-clr
Idfp-c-cIr Idfps.c.clr, Idfpd.c.clr, Idfp8.c.clr
Idfp-c-nc Idfps.c.nc, Idfpd.c.nc, Idfp8.c.nc
Idfp-s Idfps.s, Idfpd.s, Idfp8.s
Idfp-sa Idfps.sa, Idfpd.sa, Idfp8.sa
Ifetch-all Ifetch
Ifetch-fault Ifetch[Field(Iftype)==fault]

Ifetch-nofault

Ifetch[Field(Iftype)==

Ifetch-postinc

Ifetch[Format in {M20 M22}]

mem-readers

mem-readers-fp, mem-readers-int

mem-readers-alat

Id-a, Idf-a, Idfp-a, Id-sa, Idf-sa, Idfp-sa, Id-c, Idf-c, Idfp-c

mem-readers-fp

Idf, Idfp

mem-readers-int

cmpxchg, fetchadd, xchg, Id

mem-readers-spec

Id-s, Id-sa, Idf-s, Idf-sa, Idfp-s, Idfp-sa

mem-writers

mem-writers-fp, mem-writers-int

mem-writers-fp

stf

mem-writers-int

cmpxchg, fetchadd, xchg, st

mix

mix1, mix2, mix4

mod-sched-brs

br.cexit, br.ctop, br.wexit, br.wtop

mod-sched-brs-counted

br.cexit, br.cloop, br.ctop

mov-from-AR

mov-from-AR-M, mov-from-AR-l, mov-from-AR-IM

mov-from-AR-BSP

mov-from-AR-M[Field(ar3) == BSP]

mov-from-AR-BSPSTORE

mov-from-AR-M[Field(ar3) == BSPSTORE]

mov-from-AR-CCV

mov-from-AR-M[Field(ar3) == CCV]

mov-from-AR-CFLG

mov-from-AR-M[Field(ar3) == CFLG]

mov-from-AR-CSD

mov-from-AR-M[Field(ar3) == CSD]

mov-from-AR-EC

mov-from-AR-l[Field(ar3) == EC]

mov-from-AR-EFLAG

mov-from-AR-M[Field(ar3) == EFLAG]

mov-from-AR-FCR

mov-from-AR-M[Field(ar3) == FCR]

3:390

Volume 3: Resource and Dependency Semantics

Table 5-5.

Instruction Classes (Continued)

Class

Events/Instructions

mov-from-AR-FDR

mov-from-AR-M[Field(ar3) == FDR]

mov-from-AR-FIR

mov-from-AR-M[Field(ar3) == FIR]

mov-from-AR-FPSR

mov-from-AR-M[Field(ar3) == FPSR]

mov-from-AR-FSR

mov-from-AR-M[Field(ar3) == FSR]

mov-from-AR-I

mov_ar[Format in {I28}]

mov-from-AR-ig

mov-from-AR-IM[Field(ar3) in {48-63 112-127}]

mov-from-AR-IM

mov_ar[Format in {128 M31}]

mov-from-AR-ITC

mov-from-AR-M[Field(ar3) == ITC]

mov-from-AR-K

mov-from-AR-M[Field(ar3) in {KO K1 K2 K3 K4 K5 K6 K7}]

mov-from-AR-LC

mov-from-AR-I[Field(ar3) == LC]

mov-from-AR-M

mov_ar[Format in {M31}]

mov-from-AR-PFS

mov-from-AR-I[Field(ar3) == PFS]

mov-from-AR-RNAT

mov-from-AR-M[Field(ar3) == RNAT]

mov-from-AR-RSC

mov-from-AR-M[Field(ar3) == RSC]

mov-from-AR-RUC

mov-from-AR-M[Field(ar3) == RUC]

mov-from-AR-rv

none

mov-from-AR-SSD

mov-from-AR-M[Field(ar3) == SSD]

mov-from-AR-UNAT

mov-from-AR-M[Field(ar3) == UNAT]

mov-from-BR

mov_br[Format in {I22}]

mov-from-CR

mov_cr[Format in {M33}]

mov-from-CR-CMCV

mov-from-CRJ[Field(cr3) == CMCV]

mov-from-CR-DCR

mov-from-CR[Field(cr3) == DCR]

mov-from-CR-EOI

mov-from-CR[Field(cr3) == EOI]

mov-from-CR-IFA

mov-from-CRJ[Field(cr3) == IFA]

mov-from-CR-IFS

mov-from-CR[Field(cr3) == IFS]

mov-from-CR-IHA

mov-from-CR[Field(cr3) == IHA]

mov-from-CR-1IB

mov-from-CR[Field(cr3) in {IIBO 1IB1}]

mov-from-CR-1IM

mov-from-CR[Field(cr3) == lIM]

mov-from-CR-IIP

mov-from-CR[Field(cr3) == IIP]

mov-from-CR-IIPA

mov-from-CRJ[Field(cr3) == [IPA]

mov-from-CR-IPSR

mov-from-CR[Field(cr3) == IPSR]

mov-from-CR-IRR

mov-from-CRJ[Field(cr3) in {IRRO IRR1 IRR2 IRR3}]

mov-from-CR-ISR

mov-from-CR[Field(cr3) == ISR]

mov-from-CR-ITIR

mov-from-CR[Field(cr3) == ITIR]

mov-from-CR-ITM mov-from-CR[Field(cr3) == ITM]
mov-from-CR-ITO mov-from-CR[Field(cr3) == ITO]
mov-from-CR-ITV mov-from-CR[Field(cr3) == ITV]
mov-from-CR-IVA mov-from-CR[Field(cr3) == IVA]
mov-from-CR-IVR mov-from-CRJ[Field(cr3) == IVR]
mov-from-CR-LID mov-from-CRJ[Field(cr3) == LID]
mov-from-CR-LRR mov-from-CR[Field(cr3) in {LRRO LRR1}]
mov-from-CR-PMV mov-from-CRJ[Field(cr3) == PMV]
mov-from-CR-PTA mov-from-CRJ[Field(cr3) == PTA]

mov-from-CR-rv

none

mov-from-CR-TPR

mov-from-CRJ[Field(cr3) == TPR]

Volume 3: Resource and Dependency Semantics

3:391

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions

mov-from-IND mov_indirect[Format in {M43}]

mov-from-IND-CPUID mov-from-IND[Field(ireg) == cpuid]

mov-from-IND-DBR mov-from-IND[Field(ireg) == dbr]

mov-from-IND-IBR mov-from-IND[Field(ireg) == ibr]

mov-from-IND-PKR mov-from-IND[Field(ireg) == pkr]

mov-from-IND-PMC mov-from-IND[Field(ireg) == pmc]

mov-from-IND-PMD mov-from-IND[Field(ireg) == pmd]

mov-from-IND-priv mov-from-IND[Field(ireg) in {dbr ibr pkr pmc rr}]

mov-from-IND-RR mov-from-IND[Field(ireg) == rr]

mov-from-interruption-CR mov-from-CR-ITIR, mov-from-CR-IFS, mov-from-CR-IIB, mov-from-CR-IIM,
mov-from-CR-lIP, mov-from-CR-IPSR, mov-from-CR-ISR, mov-from-CR-IFA,
mov-from-CR-IHA, mov-from-CR-IIPA

mov-from-PR mov_pr[Format in {I25}]

mov-from-PSR mov_psr[Format in {M36}]

mov-from-PSR-um mov_um[Format in {M36}]

mov-ip mov_ip[Format in {I25}]

mov-to-AR mov-to-AR-M, mov-to-AR-|

mov-to-AR-BSP mov-to-AR-M[Field(ar3) == BSP]

mov-to-AR-BSPSTORE mov-to-AR-M[Field(ar3) == BSPSTORE]

mov-to-AR-CCV mov-to-AR-M[Field(ar3) == CCV]

mov-to-AR-CFLG mov-to-AR-M[Field(ar3) == CFLG]

mov-to-AR-CSD mov-to-AR-M[Field(ar3) == CSD]

mov-to-AR-EC mov-to-AR-I[Field(ar3) == EC]

mov-to-AR-EFLAG mov-to-AR-M[Field(ar3) == EFLAG]

mov-to-AR-FCR mov-to-AR-M[Field(ar3) == FCR]

mov-to-AR-FDR mov-to-AR-M[Field(ar3) == FDR]

mov-to-AR-FIR mov-to-AR-M[Field(ar3) == FIR]

mov-to-AR-FPSR mov-to-AR-M[Field(ar3) == FPSR]

mov-to-AR-FSR mov-to-AR-M[Field(ar3) == FSR]

mov-to-AR-gr mov-to-AR-M[Format in {M29}], mov-to-AR-I[Format in {I26}]

mov-to-AR-| mov_ar[Format in {126 127}]

mov-to-AR-ig mov-to-AR-IM[Field(ar3) in {48-63 112-127}]

mov-to-AR-IM mov_ar[Format in {I26 127 M29 M30}]

mov-to-AR-ITC mov-to-AR-M[Field(ar3) == ITC]

mov-to-AR-K mov-to-AR-M[Field(ar3) in {KO K1 K2 K3 K4 K5 K6 K7}]

mov-to-AR-LC mov-to-AR-I[Field(ar3) == LC]

mov-to-AR-M mov_ar[Format in {M29 M30}]

mov-to-AR-PFS mov-to-AR-l[Field(ar3) == PFS]

mov-to-AR-RNAT mov-to-AR-M[Field(ar3) == RNAT]

mov-to-AR-RSC mov-to-AR-M[Field(ar3) == RSC]

mov-to-AR-RUC mov-to-AR-M[Field(ar3) == RUC]

mov-to-AR-SSD mov-to-AR-M[Field(ar3) == SSD]

mov-to-AR-UNAT mov-to-AR-M[Field(ar3) == UNAT]

mov-to-BR mov_br[Format in {I21}]

mov-to-CR mov_cr[Format in {M32}]

mov-to-CR-CMCV mov-to-CR[Field(cr3) == CMCV]

3:392 Volume 3: Resource and Dependency Semantics

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions
mov-to-CR-DCR mov-to-CR[Field(cr3) == DCR]
mov-to-CR-EOI mov-to-CR[Field(cr3) == EOI]
mov-to-CR-IFA mov-to-CR[Field(cr3) == IFA]
mov-to-CR-IFS mov-to-CR[Field(cr3) == IFS]
mov-to-CR-IHA mov-to-CR[Field(cr3) == IHA]
mov-to-CR-1I1B mov-to-CR[Field(cr3) in {IIBO 11B1}]
mov-to-CR-IIM mov-to-CR[Field(cr3) == [IM]
mov-to-CR-IIP mov-to-CR[Field(cr3) == IIP]
mov-to-CR-IIPA mov-to-CR[Field(cr3) == IIPA]
mov-to-CR-IPSR mov-to-CR[Field(cr3) == IPSR]
mov-to-CR-IRR mov-to-CR[Field(cr3) in {IRRO IRR1 IRR2 IRR3}]
mov-to-CR-ISR mov-to-CR[Field(cr3) == ISR]
mov-to-CR-ITIR mov-to-CR[Field(cr3) == ITIR]
mov-to-CR-ITM mov-to-CR[Field(cr3) == ITM]
mov-to-CR-ITO mov-to-CR[Field(cr3) == ITO]
mov-to-CR-ITV mov-to-CR[Field(cr3) == ITV]
mov-to-CR-IVA mov-to-CR[Field(cr3) == IVA]
mov-to-CR-IVR mov-to-CR[Field(cr3) == IVR]
mov-to-CR-LID mov-to-CR[Field(cr3) == LID]

mov-to-CR-LRR

mov-to-CR[Field(cr3) in {LRRO LRR1}]

mov-to-CR-PMV

mov-to-CRI[Field(cr3) == PMV]

mov-to-CR-PTA

mov-to-CR[Field(cr3) == PTA]

mov-to-CR-TPR

mov-to-CR[Field(cr3) == TPR]

mov-to-IND

mov_indirect[Format in {M42}]

mov-to-IND-CPUID

mov-to-IND[Field(ireg) == cpuid]

mov-to-IND-DBR

mov-to-IND[Field(ireg) == dbr]

mov-to-IND-IBR

mov-to-IND[Field(ireg) == ibr]

mov-to-IND-PKR

mov-to-IND[Field(ireg) == pkr]

mov-to-IND-PMC

mov-to-IND[Field(ireg) == pmc]

mov-to-IND-PMD

mov-to-IND[Field(ireg) == pmd]

mov-to-IND-priv

mov-to-IND

mov-to-IND-RR

mov-to-IND[Field(ireg) == rr]

mov-to-interruption-CR

mov-to-CR-ITIR, mov-to-CR-IFS, mov-to-CR-lIB, mov-to-CR-lIM, mov-to-CR-IIP,
mov-to-CR-IPSR, mov-to-CR-ISR, mov-to-CR-IFA, mov-to-CR-IHA, mov-to-CR-IIPA

mov-to-PR

mov-to-PR-allreg, mov-to-PR-rotreg

mov-to-PR-allreg

mov_pr[Format in {I23}]

mov-to-PR-rotreg

mov_pr[Format in {I24}]

mov-to-PSR-I

mov_psr[Format in {M35}]

mov-to-PSR-um

mov_um[Format in {M35}]

mux mux1, mux2

non-access fc, Ifetch, probe-all, tpa, tak
none -

pack pack2, pack4

padd padd1, padd2, padd4

pavg pavg1, pavg2

Volume 3: Resource and Dependency Semantics

3:393

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions
pavgsub pavgsub1, pavgsub2
pcmp pcmp1, pcmp2, pcmp4
pmax pmax1, pmax2
pmin pmin1, pmin2
pmpy pmpy2
pmpyshr pmpyshr2

pr-and-writers

pr-gen-writers-int[Field(ctype) in {and andcm}],
pr-gen-writers-int[Field(ctype) in {or.andcm and.orcm}]

pr-gen-writers-fp

fclass, fcmp

pr-gen-writers-int

cmp, cmp4, tbit, tf, tnat

pr-norm-writers-fp

pr-gen-writers-fp[Field(ctype)==

pr-norm-writers-int

pr-gen-writers-int[Field(ctype)==

pr-or-writers

pr-gen-writers-int[Field(ctype) in {or orcm}],
pr-gen-writers-int[Field(ctype) in {or.andcm and.orcm}]

pr-readers-br

br.call, br.cond, brl.call, brl.cond, br.ret, br.wexit, br.wtop, break.b, hint.b, nop.b,
ReservedBQP

pr-readers-nobr-nomovpr

add, addl, addp4, adds, and, andcm, break.f, break.i, break.m, break.x, chk.s, chk-a, cmp,
cmp4, cmpxchg, clz, czx, dep, extr, fp-arith, fp-non-arith, fc, fchkf, fcIrf, fcmp, fetchadd,
fpcmp, fsetc, fwb, geff, hint.f, hint.i, hint.m, hint.x, invala-all, itc.i, itc.d, itr.i, itr.d, Id, Idf, Idfp,
Ifetch-all, mf, mix, mov-from-AR-M, mov-from-AR-IM, mov-from-AR-l, mov-to-AR-M,
mov-to-AR-l, mov-to-AR-IM, mov-to-BR, mov-from-BR, mov-to-CR, mov-from-CR,
mov-to-IND, mov-from-IND, mov-ip, mov-to-PSR-l, mov-to-PSR-um, mov-from-PSR,
mov-from-PSR-um, movl, mux, nop.f, nop.i, nop.m, nop.x, or, pack, padd, pavg,
pavgsub, pcmp, pmax, pmin, pmpy, pmpyshr, popcnt, probe-all, psad, pshl, pshladd,
pshr, pshradd, psub, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.d, ptr.i, ReservedQP, rsm, setff, shl,
shladd, shladdp4, shr, shrp, srlz.i, sriz.d, ssm, st, stf, sub, sum, sxt, sync, tak, tbit, tf, thash,
tnat, tpa, ttag, unpack, xchg, xma, xmpy, xor, zxt

pr-unc-writers-fp

pr-gen-writers-fp[FieId(ctype)==unc]11, fprcpa”, fprsqrta”, frcpa”, frsqrta11

pr-unc-writers-int

pr-gen-writers-int[Field(ctype)==unc] "

pr-writers

pr-writers-int, pr-writers-fp

pr-writers-fp

pr-norm-writers-fp, pr-unc-writers-fp

pr-writers-int

pr-norm-writers-int, pr-unc-writers-int, pr-and-writers, pr-or-writers

predicatable-instructions

mov-from-PR, mov-to-PR, pr-readers-br, pr-readers-nobr-nomovpr

priv-ops mov-to-IND-priv, bsw, itc.i, itc.d, itr.i, itr.d, mov-to-CR, mov-from-CR, mov-to-PSR-I,
mov-from-PSR, mov-from-IND-priv, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, rfi, rsm, ssm, tak,
tpa, vmsw

probe-all probe-fault, probe-regular

probe-fault probe[Format in {M40}]

probe-regular

probe[Format in {M38 M39}]

psad psad1

pshli pshi2, pshi4

pshladd pshladd2

pshr pshr2, pshr4

pshradd pshradd2

psub psub1, psub2, psub4

ReservedBQP 18

ReservedQP -16

3:394 Volume 3: Resource and Dependency Semantics

Table 5-5. Instruction Classes (Continued)

Class

Events/Instructions

rse-readers

alloc, br.call, br.ia, br.ret, brl.call, cover, flushrs, loadrs, mov-from-AR-BSP,
mov-from-AR-BSPSTORE, mov-to-AR-BSPSTORE, mov-from-AR-RNAT,
mov-to-AR-RNAT, rfi

rse-writers alloc, br.call, br.ia, br.ret, brl.call, cover, flushrs, loadrs, mov-to-AR-BSPSTORE, ffi
st st1, st2, st4, st8, st8.spill, st16

st-postinc stf[Format in {M10}], st[Format in {M5}]

stf stfs, stfd, stfe, stf8, stf.spill

sxt sxt1, sxt2, sxt4

sys-mask-writers-partial

rsm, ssm

unpack

unpack1, unpack2, unpack4

unpredicatable-instructions

alloc, br.cloop, br.ctop, br.cexit, br.ia, brp, bsw, clrrrb, cover, epc, flushrs, loadrs, rfi, vmsw

user-mask-writers-partial

rum, sum

xchg

xchg1, xchg2, xchg4, xchg8

zxt

zxt1, zxt2, zxt4

Volume 3: Resource and Dependency Semantics 3:395

3:396 Volume 3: Resource and Dependency Semantics

Index

3:397 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

3:398 Intel® Itanium Architecture Software Developer’s Manual, Rev. 2.3

INDEX FOR VOLUMES 1, 2, 3 AND 4

A Stores Register) 1:30
BSR Instruction 4:37

AAA Instruction 4:21 bsw Instruction 3:34
AAD Instruction 4:22 BSWAP Instruction 4:39
AAM Instruction 4:23 BT Instruction 4:40
AAS Instruction 4:24 BTC Instruction 4:42
Aborts 2:95, 2:538 BTR Instruction 4:44
ACPI 2:631 BTS Instruction 4:46

P-states 2:315, 2:637 Bundle Format 1:38
Acquire Semantics 2:507 Bundles 1:38, 1:141
ADC Instruction 4:25, 4:26 Byte Ordering 1:36
ADD Instruction 4:27, 4:28
add Instruction 3:14 C
addp4 Instruction 3:15
ADDPS Instruction 4:486 CALL Instruction 4:48
Address Space Model 2:561 CBW Instruction 4:57
ADDSS Instruction 4:487 CCV (Compare and Exchange Value Register) 1:30
Advanced Load 1:153, 1:154 CDQ Instruction 4:85
Advanced Load Address Table (ALAT) 1:64 CFM (Current Frame Marker) 1:27
Advanced Load Check 1:154 Character Strings 1:83
ALAT (Advanced Load Address Table) 1:64 Check Code 1:161

Coherency 2:554 Check Load 1:154

Data Speculation 1:17 chk Instruction 3:35
alloc Instruction 3:16 CLC Instruction 4:59
AND Instruction 4:29, 4:30 CLD Instruction 4:60
and Instruction 3:18 CLI Instruction 4:61
andcm Instruction 3:19 clrrrb Instruction 3:37
ANDNPS Instruction 4:488 CLTS Instruction 4:63
ANDPS Instruction 4:489 clz Instruction 3:38
Application Architecture Guide 1:1 CMC (Corrected Machine Check) 2:350
Application Memory Addressing Model 1:36 CMC Instruction 4:64
Application Register (AR) 1:23, 1:28, 1:140 CMCV (Corrected Machine Check Vector) 2:126
AR (Application Register) 1:28, 1:140 CMP Instruction 4:69
Arithmetic Instructions 1:51 cmp Instruction 3:39
ARPL Instruction 4:31, 4:32 cmp4 Instruction 3:43

CMPPS Instruction 4:490

B CMPS Instruction 4:71

) CMPSB Instruction 4:71
Backing Store 2:133 CMPSD Instruction 4:71
Banked General Registers 2:42 CMPSS Instruction 4:493
Bit Field and Shift Instructions 1:52 CMPSW Instruction 4:71
Bit Strings 1:84 CMPXCHG Instruction 4:74
Boot Sequence 2:13 cmpxchg Instruction 2:508, 3:46
BOUND Instruction 4:33 CMPXCHGB8B Instruction 4:76
BR (Branch Register) 1:26, 1:140 Coalescing Attribute 2:78
br Instruction 3:20 COMISS Instruction 4:496

br.ia 1:112, 2:596 Compare and Exchange Value Register (CCV) 1:30
Branch Hints 1:78, 1:176 Compare and Store Data Register (CSD) 1:30
Branch Instructions 1:74, 1:145 Compare Types 1:55
Branch Register (BR) 1:19, 1:26, 1:140 Context Management 2:549
break Instruction 2:556, 3:29 Context Switching 2:557
Break Instruction Fault 2:151 Operating System Kernel 2:558
brl Instruction 3:30 User-Level 2:557
brp Instruction 3:32 Control Dependencies 1:148
BSF Instruction 4:35 Control Registers 2:29
BSP (RSE Backing Store Pointer Register) 1:29 Control Speculation 1:16, 1:60, 1:142, 1:151,

BSPSTORE (RSE Backing Store Pointer for Memory

Index for Volumes 1, 2, 3 and 4 Index:1

INDEX

1:155, 2:579
Control Speculative Load 1:156
Corrected Error 2:350
Corrected Machine Check Vector (CMCV) 2:126
cover Instruction 3:48
CPUID (Processor Identification Register) 1:34
CPUID Instruction 4:78
Cross-modifying Code 2:533
CSD (Compare and Store Data Register) 1:30
Current Frame Marker (CFM) 1:27
CVTPI2PS Instruction 4:498
CVTPS2PI Instruction 4:500
CVTSI2SS Instruction 4:502
CVTSS2SI Instruction 4:503
CVTTPS2PI Instruction 4:504
CVTTSS2SI Instruction 4:506
CWD Instruction 4:85
CWDE Instruction 4:57, 4:86
czx Instruction 3:49

D

DAA Instruction 4:87

DAS Instruction 4:88

Data Arrangement 1:81

Data Breakpoint Register (DBR) 2:151, 2:152
Data Debug Faults 2:152

Data Dependencies 1:149, 1:150, 3:371
Data Poisoning 2:302

Data Prefetch Hint 1:148

Data Serialization 2:18

Data Speculation 1:17, 1:63, 1:143, 1:151, 2:579

Data Speculative Load 1:154

DBR (Data Breakpoint Register) 2:151, 2:152
DCR (Default Control Register) 2:31
Debugging 2:151

DEC Instruction 4:89

Default Control Register (DCR) 2:31
Dekker’s Algorithm 2:529

dep Instruction 3:51

DIV Instruction 4:91

DIVPS Instruction 4:507

DIVSS Instruction 4:508

EC (Epilog Count Register) 1:33

EFLAG (IA-32 EFLAG Register) 1:123

EMMS Instruction 4:400

End of External Interrupt Register (EOI) 2:124
Endian 1:36

ENTER Instruction 4:94

EOI (End of External Interrupt Register) 2:124
epc Instruction 2:555, 3:53

Epilog Count Register (EC) 1:33

Explicit Prefetch 1:70

External Controller Interrupts 2:96

Index:2

External Interrupt 2:96, 2:538

External Interrupt Control Registers (CR64-81)
2:42

External Interrupt Request Registers (IRR0-3)
2:125

External Interrupt Vector Register (IVR) 2:123

External Task Priority Cycle (XTP) 2:130

External Task Priority Register (XTPR) 2:605

ExtINT (External Controller Interrupt) 2:96

extr Instruction 3:54

F

F2XM1 Instruction 4:97
FABS Instruction 4:99
fabs Instruction 3:55
FADD Instruction 4:100
fadd Instruction 3:56
FADDP Instruction 4:100
famax Instruction 3:57
famin Instruction 3:58
fand Instruction 3:59
fandcm Instruction 3:60
Fatal Error 2:350

Fault Handlers 2:583
Faults 2:96, 2:537

FBLD Instruction 4:103
FBSTP Instruction 4:105
fc Instruction 3:61

fchkf Instruction 3:63
FCHS Instruction 4:108
fclass Instruction 3:64
FCLEX Instruction 4:109
fclrf Instruction 3:66
FCMOI Instruction 4:115
FCMOVcc Instruction 4:110
fcmp Instruction 3:67
FCOM Instruction 4:112
FCOMIP Instruction 4:115
FCOMP Instruction 4:112
FCOMPP Instruction 4:112
FCOS Instruction 4:118

FCR (IA-32 Floating-point Control Register) 1:126

fcvt Instruction

fevt.fx 3:70

fevt.xf 3:72

fevt.xuf 3:73
FDECSTP Instruction 4:120
FDIV Instruction 4:121
FDIVP Instruction 4:121
FDIVR Instruction 4:124
FDIVRP Instruction 4:124
Fence Semantics 2:508
fetchadd Instruction 2:508, 3:74
FFREE Instruction 4:127
FIADD Instruction 4:100

Index for Volumes 1, 2, 3 and 4

FICOM Instruction 4:128

FICOMP Instruction 4:128

FIDIV Instruction 4:121

FIDIVR Instruction 4:124

FILD Instruction 4:130

FIMUL Instruction 4:145

FINCSTP Instruction 4:132

Firmware 1:7, 2:623

Firmware Address Space 2:283

Firmware Entrypoint 2:281, 2:350

Firmware Interface Table (FIT) 2:287

FIST Instruction 4:134

FISTP Instruction 4:134

FISUB Instruction 4:182, 4:183

FISUBR Instruction 4:185

FIT (Firmware Interface Table) 2:287

FLD Instruction 4:137

FLD1 Instruction 4:139

FLDCW Instruction 4:141

FLDENV Instruction 4:143

FLDL2E Instruction 4:139

FLDL2T Instruction 4:139

FLDLG2 Instruction 4:139

FLDLNZ2 Instruction 4:139

FLDPI Instruction 4:139

FLDZ Instruction 4:139

Floating-point Architecture 1:19, 1:85, 1:205

Floating-point Exception Fault 1:102

Floating-point Instructions 1:91

Floating-point Register (FR) 1:139

Floating-point Software Assistance Exception
Handler (FPSWA) 2:587

Floating-point Status Register (FPSR) 1:31, 1:88

flushrs Instruction 3:76

fma Instruction 1:210, 3:77

fmax Instruction 3:79

fmerge Instruction 3:80

fmin Instruction 3:82

fmix Instruction 3:83

fmpy Instruction 3:85

fms Instruction 3:86

FMUL Instruction 4:145

FMULP Instruction 4:145

FNCLEX Instruction 4:109

fneg Instruction 3:88

fnegabs Instruction 3:89

FNINIT Instruction 4:133

fnma Instruction 3:90

fnmpy Instruction 3:92

FNOP Instruction 4:148

fnorm Instruction 3:93

FNSAVE Instruction 4:162

FNSTCW Instruction 4:176

FNSTENV Instruction 4:178

FNSTSW Instruction 4:180

for Instruction 3:94

Index for Volumes 1, 2, 3 and 4

INDEX

fpabs Instruction 3:95

fpack Instruction 3:96

fpamax Instruction 3:97

fpamin Instruction 3:99

FPATAN Instruction 4:149

fpcmp Instruction 3:101

fpcvt Instruction 3:104

fpma Instruction 3:107

fpmax Instruction 3:109

fpmerge Instruction 3:111

fpmin Instruction 3:113

fpmpy Instruction 3:115

fpms Instruction 3:116

fpneg Instruction 3:118

fpnegabs Instruction 3:119

fpnma Instruction 3:120

fpnmpy Instruction 3:122

fprcpa Instruction 3:123

FPREM Instruction 4:151

FPREM1 Instruction 4:154

fprsqgrta Instruction 3:126

FPSR (Floating-point Status Register) 1:31, 1:88

FPSWA (Floating-point Software Assistance
Handler) 2:587

FPTAN Instruction 4:157

FR (Floating-point Register) 1:139

frcpa Instruction 3:128

FRNDINT Instruction 4:159

frsqrta Instruction 3:131

FRSTOR Instruction 4:160

FSAVE Instruction 4:162

FSCALE Instruction 4:165

fselect Instruction 3:134

fsetc Instruction 3:135

FSIN Instruction 4:167

FSINCOS Instruction 4:169

FSQRT Instruction 4:171

FSR (IA-32 Floating-point Status Register) 1:126

FST Instruction 4:173

FSTCW Instruction 4:176

FSTENV Instruction 4:178

FSTP Instruction 4:173

FSTSW Instruction 4:180

FSUB Instruction 4:182, 4:183

fsub Instruction 3:136

FSUBP Instruction 4:182, 4:183

FSUBR Instruction 4:185

FSUBRP Instruction 4:185

fswap Instruction 3:137

fsxt Instruction 3:139

FTST Instruction 4:188

FUCOM Instruction 4:190

FUCOMI Instruction 4:115

FUCOMIP Instruction 4:115

FUCOMP Instruction 4:190

FUCOMPP Instruction 4:190

Index:3

INDEX

FWAIT Instruction 4:386

fwb Instruction 3:141

FXAM Instruction 4:193

FXCH Instruction 4:195

fxor Instruction 3:142

FXRSTOR Instruction 4:509
FXSAVE Instruction 4:512, 4:515
FXTRACT Instruction 4:197
FYL2X Instruction 4:199
FYL2XP1 Instruction 4:201

General Register (GR) 1:25, 1:139

getf Instruction 3:143
GR (General Register) 1:139

H

hint Instruction 3:145
HLT Instruction 4:203

I
I/O Architecture 2:615
IA-32
IA-32 Application Execution 1:109
IA-32 Applications 2:239, 2:595
IA-32 Architecture 1:7, 1:21
IA-32 Current Privilege Level (PSR.cpl) 2:243
IA-32 EFLAG Register 1:123, 2:243
IA-32 Exception
Alignment Check Fault 2:229
Code Breakpoint Fault 2:215
Data Breakpoint, Single Step, Taken
Branch Trap 2:216
Device Not Available Fault 2:221
Divide Fault 2:214
Double Fault 2:222
General Protection Fault 2:226
INT 3 Trap 2:217
Invalid Opcode Fault 2:220
Invalid TSS Fault 2:223
Machine Check 2:230
Overflow Trap 2:218
Page Fault 2:227
Pending Floating-point Error 2:228
Segment Not Present Fault 2:224
SSE Numeric Error Fault 2:231
Stack Fault 2:225
IA-32 Execution Layer 1:109
IA-32 Floating-point Control Registers 1:126
IA-32 Instruction Reference 4:11
IA-32 Instruction Set 2:253
IA-32 Intel® MMX™ Technology 1:129
IA-32 Intercept
Gate Intercept Trap 2:235
Instruction Intercept Fault 2:233
Index:4

Locked Data Reference Fault 2:237
System Flag Trap 2:236
IA-32 Interrupt
Software Trap 2:232
IA-32 Interruption 2:111
IA-32 Interruption Vector Definitions 2:213
IA-32 Interruption Vector Descriptions 2:213
IA-32 Memory Ordering 2:265
IA-32 Physical Memory References 2:262
IA-32 SSE Extensions 1:20, 1:130
IA-32 System Registers 2:246
IA-32 System Segment Registers 2:241
IA-32 Trap Code 2:213
IA-32 Virtual Memory References 2:261
IBR (Index Breakpoint Register) 2:151, 2:152
IDIV Instruction 4:204
IFA (interuption Faulting Address) 2:541
IFS (Interruption Function State) 2:541
IHA (Interruption Hash Address) 2:41, 2:541
IIBO (Interruption Instruction Bundle 0) 2:541
IIB1 (Interruption Instruction Bundle 1) 2:541
IIM (Interruption Immediate) 2:541
IIP (Interruption Instruction Pointer) 2:541
IIPA (Interruption Instruction Previous Address)
2:541
Implicit Prefetch 1:70
IMUL Instruction 4:207
IN Instruction 4:210
INC Instruction 4:212
In-flight Resources 2:19
INIT (Initialization Event) 2:96, 2:306, 2:635
Initialization Event (INIT) 2:96
INS Instruction 4:214
INSB Instruction 4:214
INSD Instruction 4:214
Instruction Breakpoint Register (IBR) 2:151,
2:152
Instruction Debug Faults 2:151
Instruction Dependencies 1:148
Instruction Encoding 1:38
Instruction Formats 3:293
SSE 4:483
Instruction Group 1:40
Instruction Level Parallelism 1:15
Instruction Pointer (IP) 1:27, 1:140
Instruction Scheduling 1:148, 1:150, 1:164
Instruction Serialization 2:18
Instruction Set Architecture (ISA) 1:7
Instruction Set Modes 1:110
Instruction Set Transition 1:14
Instruction Set Transitions 2:239, 2:596
Instruction Slot Mapping 1:38
Instruction Slots 1:38
INSW Instruction 4:214
INT (External Interrupt) 2:96
INT3 Instruction 4:217

Index for Volumes 1, 2, 3 and 4

INTA (Interrupt Acknowledge) 2:130
Inter-processor Interrupt (IPI) 2:127
Interrupt Acknowledge Cycle 2:130
Interruption Control Registers (CR16-27) 2:36
Interruption Handler 2:537
Interruption Handling 2:543
Interruption Hash Address 2:41
Interruption Instruction Bundle Registers (IIBO-1)
2:42

Interruption Processor Status Register (IPSR) 2:36
Interruption Register State 2:540
Interruption Registers 2:538
Interruption Status Register (ISR) 2:36
Interruption Vector 2:165

Alternate Data TLB 2:178

Alternate Instruction TLB 2:177

Break Instruction 2:185

Data Access Rights 2:191

Data Access-Bit 2:184

Data Key Miss 2:181

Data Nested TLB 2:179

Data TLB 2:176

Debug 2:200

Dirty-Bit 2:182

Disabled FP-Register 2:195

External Interrupt 2:186

Floating-point Fault 2:203

Floating-point Trap 2:204

General Exception 2:192

IA-32 Exception 2:210

IA-32 Intercept 2:211

IA-32 Interrupt 2:212

Instruction Access Rights 2:190

Instruction Access-Bit 2:183

Instruction Key Miss 2:180

Instruction TLB 2:175

Key Permission 2:189

Lower-Privilege Transfer Trap 2:205

NaT Consumption 2:196

Page Not Present 2:188

Single Step Trap 2:208

Speculation 2:198

Taken Branch Trap 2:207

Unaligned Reference 2:201

Unsupported Data Reference 2:202

Virtual External Interrupt 2:187

Virtualization 2:209
Interruption Vector Address 2:35, 2:538
Interruption Vector Table 2:538
Interruptions 2:95, 2:537
Interrupts 2:96, 2:114

External Interrupt Architecture 2:603
Interval Time Counter (ITC) 1:31
Interval Timer Match Register (ITM) 2:32
Interval Timer Offset (ITO) 2:34
Interval Timer Vector (ITV) 2:125

Index for Volumes 1, 2, 3 and 4

INDEX

INTn Instruction 4:217

INTO Instruction 4:217

invala Instruction 3:146

INVD instructions 4:228

INVLPG Instruction 4:230

IP (Instruction Pointer) 1:27, 1:140

IPI (Inter-processor Interrupt) 2:127

IPSR (Interruption Processor Status Register)
2:36, 2:541

IRET Instruction 4:231

IRETD Instruction 4:231

IRR (External Interrupt Request Registers) 2:125

ISR (Interruption Status Register) 2:36, 2:165,
2:541

Itanium Architecture 1:7

Itanium Instruction Set 1:21

Itanium System Architecture 1:20

Itanium System Environment 1:7, 1:21

ITC (Interval Time Counter) 1:31, 2:32

itc Instruction 3:147

ITIR (Interruption TLB Insertion Register) 2:541

ITM (Interval Time Match Register) 2:32

ITO (Interval Timer Offset) 2:34

itr Instruction 3:149

ITV (Interval Timer Vector) 2:125

IVA (Interruption Vector Address) 2:35, 2:538

IVA-based interruptions 2:95, 2:537

IVR (External Interrupt Vector Register) 2:123

J

Jcc Instruction 4:239
JMP Instruction 4:243
JMPE Instruction 1:111, 2:597, 4:249

K

Kernel Register (KR) 1:29
KR (Kernel Register) 1:29

L

LAHF Instruction 4:251
Lamport’s Algorithm 2:530
LAR Instruction 4:252
Large Constants 1:53

LC (Loop Count Register) 1:33
Id Instruction 3:151

Idf Instruction 3:157

Idfp Instruction 3:161
LDMXCSR Instruction 4:516
LDS Instruction 4:255

LEA Instruction 4:258
LEAVE Instruction 4:260
LES Instruction 4:255
Ifetch Instruction 3:164
LFS Instruction 4:255

LGDT Instruction 4:264

Index:5

INDEX

LGS Instruction 4:255 MOVAPS Instruction 4:527
LIDT Instruction 4:264 MOVD Instruction 4:401
LLDT Instruction 4:267 MOVHLPS Instruction 4:529
LMSW Instruction 4:270 MOVHPS Instruction 4:530
Load Instructions 1:58 movl Instruction 3:187
loadrs Instruction 3:167 MOVLHPS Instruction 4:532
Loads from Memory 1:147 MOVLPS Instruction 4:533
Local Redirection Registers (LRRO-1) 2:126 MOVMSKPS Instruction 4:535
Locality Hints 1:70 MOVNTPS Instruction 4:578
LOCK Instruction 4:272 MOVNTQ Instruction 4:579
LODS Instruction 4:274 MOVQ Instruction 4:403
LODSB Instruction 4:274 MOVS Instruction 4:292
LODSD Instruction 4:274 MOVSB Instruction 4:292
LODSW Instruction 4:274 MOVSD Instruction 4:292
Logical Instructions 1:51 MOVSS Instruction 4:536
Loop Count Register (LC) 1:33 MOVSW Instruction 4:292
LOOP Instruction 4:276 MOVSX Instruction 4:294
Loop Optimization 1:160, 1:181 MOVUPS Instruction 4:538
LOOPcc Instruction 4:276 MOVZX Instruction 4:295
Lower Privilege Transfer Trap 2:151 MP Coherence 2:507
LRR (Local Redirection Registers) 2:126 mpy4 Instruction 3:188
LSL Instruction 4:278 mpyshl4 Instruction 3:189
LSS Instruction 4:255 MUL Instruction 4:297
LTR Instruction 4:282 MULPS Instruction 4:540
MULSS Instruction 4:541
M Multimedia Instructions 1:79
Machine Check (MC) 2:95, 2:296, 2:351 Multimedia Support 1:20
Machine Check Abort (MCA) 2:632 Multi-threading 1:177
MASKMOVQ Instruction 4:576 Multiway Branches 1:173
MAXPS Instruction 4:519 mux Instruction 3:190
MAXSS Instruction 4:521
MC (Machine Check) 2:351 N
MCA (Machine Check Abort) 2:95, 2:296, 2:632 NaT (Not a Thing) 1:155
Memory 1:36 NaTPage (Not a Thing Attribute) 2:86
Cacheable Page 2:77 NaTVal (Not a Thing Value) 1:26
Memory Access 1:142 NEG Instruction 4:299
Memory Access Ordering 1:73 NMI (Non-Maskable Interrupt) 2:96
Memory Attribute Transition 2:88 Non-Maskable Interrupt (NMI) 2:96
Memory Attributes 2:75, 2:524 NOP Instruction 4:301
Memory Consistency 1:72 nop Instruction 3:193
Memory Fences 2:510 Not A Thing (NaT) 1:155
Memory Instructions 1:57 Not a Thing Attribute (NaTPage) 2:86
Memory Management 2:561 Not a Thing Value (NatVal) 1:26
Memory Ordering 2:507, 2:510 NOT Instruction 4:302
IA-32 2:525
Memory Reference 1:147 O
Memory Regions 2:561 OLR (On Line Replacement) 2:351
Memory Synchronization 2:526 Operating Environments 1:14
mf Instruction 2:510, 2:526, 3:168 Operating System - See OS (Operating System)
mf.a 2:615 OR Instruction 4:304
MINPS Instruction 4:523 or Instruction 3:194
MINSS Instruction 4:525 ORPS Instruction 4:542
mix Instruction 3:169 0S (Operating System)
MMX technology 1:20 Boot Flow Sample Code 2:639
MOV Instruction 4:284 Boot Sequence 2:625
mov Instruction 3:172 FPSWA handler 2:587

Index:6 Index for Volumes 1, 2, 3 and 4

Illegal Dependency Fault 2:584
Long Branch Emulation 2:585
Multiple Address Spaces 1:20, 2:562
OS_BOOT Entrypoint 2:283
OS_INIT Entrypoint 2:283
OS_MCA Entrypoint 2:283
OS_RENDEZ Entrypoint 2:283
Performance Monitoring Support 2:620
Single Address Space 1:20, 2:565
Unaligned Reference Handler 2:583
Unsupported Data Reference Handler 2:584

OUT Instruction 4:306

OUTS Instruction 4:308

OUTSB Instruction 4:308

OUTSD Instruction 4:308

OUTSW Instruction 4:308

P

pack Instruction 3:195

PACKSSDW Instruction 4:405

PACKSSWB Instruction 4:405

PACKUSWAB Instruction 4:408

padd Instruction 3:197

PADDB Instruction 4:410

PADDD Instruction 4:410

PADDSB Instruction 4:413

PADDSW Instruction 4:413

PADDUSB Instruction 4:416

PADDUSW Instruction 4:416

PADDW Instruction 4:410

Page Access Rights 2:56

Page Sizes 2:57

Page Table Address 2:35

PAL (Processor Abstraction Layer) 1:7, 1:21,

2:279, 2:351

PAL Entrypoints 2:282
PAL Initialization 2:306
PAL Intercepts 2:351
PAL Intercepts in Virtual Environment 2:332
PAL Procedure Calls 2:628
PAL Procedures 2:353
PAL Self-test Control Word 2:295
PAL Virtualization 2:324
PAL Virtualization Optimizations 2:335
PAL Virtualization Services 2:486
PAL Virtuallization Disables 2:346
PAL_A 2:283
PAL_B 2:283
PAL_BRAND_INFO 2:366
PAL_BUS_GET_FEATURES 2:367
PAL_BUS_SET_FEATURES 2:369
PAL_CACHE_FLUSH 2:370
PAL_CACHE_INFO 2:374
PAL_CACHE_INIT 2:376
PAL_CACHE_LINE_INIT 2:377
PAL_CACHE_PROT_INFO 2:378

Index for Volumes 1, 2, 3 and 4

PAL_CACHE_READ 2:380
PAL_CACHE_SHARED_INFO 2:382
PAL_CACHE_SUMMARY 2:384
PAL_CACHE_WRITE 2:385
PAL_COPY_INFO 2:388
PAL_COPY_PAL 2:389
PAL_DEBUG_INFO 2:390
PAL_FIXED_ADDR 2:391
PAL_FREQ_BASE 2:392
PAL_FREQ_RATIOS 2:393
PAL_GET_HW_POLICY 2:394
PAL_GET_PSTATE 2:320, 2:396, 2:637
PAL_HALT 2:314

PAL_HALT_INFO 2:401
PAL_HALT_LIGHT 2:314, 2:403
PAL_LOGICAL_TO_PHYSICAL 2:404
PAL_MC_CLEAR_LOG 2:407
PAL_MC_DRAIN 2:408
PAL_MC_DYNAMIC_STATE 2:409
PAL_MC_ERROR_INFO 2:410
PAL_MC_ERROR_INJECT 2:421
PAL_MC_EXPECTED 2:434
PAL_MC_HW_TRACKING 2:432
PAL_MC_RESUME 2:436
PAL_MEM_ATTRIB 2:437
PAL_MEMORY_BUFFER 2:438
PAL_PERF_MON_INFO 2:440
PAL_PLATFORM_ADDR 2:442
PAL_PMI_ENTRYPOINT 2:443
PAL_PREFETCH_VISIBILITY 2:444
PAL_PROC_GET_FEATURES 2:446
PAL_PROC_SET_FEATURES 2:450
PAL_PSTATE_INFO 2:319, 2:451
PAL_PTCE_INFO 2:453
PAL_REGISTER_INFO 2:454
PAL_RSE_INFO 2:455
PAL_SET_HW_POLICY 2:456
PAL_SET_PSTATE 2:319, 2:458, 2:637
PAL_SHUTDOWN 2:460
PAL_TEST_INFO 2:461
PAL_TEST_PROC 2:462
PAL_VERSION 2:465
PAL_VM_INFO 2:466
PAL_VM_PAGE_SIZE 2:467
PAL_VM_SUMMARY 2:468
PAL_VM_TR_READ 2:470
PAL_VP_CREATE 2:471
PAL_VP_ENV_INFO 2:473
PAL_VP_EXIT_ENV 2:475
PAL_VP_INFO 2:476
PAL_VP_INIT_ENV 2:478
PAL_VP_REGISTER 2:481
PAL_VP_RESTORE 2:483
PAL_VP_SAVE 2:484
PAL_VP_TERMINATE 2:485
PAL_VPS_RESTORE 2:499

Index:7

INDEX

INDEX

PAL_VPS_RESUME_HANDLER 2:492
PAL_VPS_RESUME_NORMAL 2:489
PAL_VPS_SAVE 2:500
PAL_VPS_SET_PENDING_INTERRUPT 2:495
PAL_VPS_SYNC_READ 2:493
PAL_VPS_SYNC_WRITE 2:494
PAL_VPS_THASH 2:497
PAL_VPS_TTAG 2:498
PAL-based Interruptions 2:95, 2:537
PALE_CHECK 2:282, 2:296
PALE_INIT 2:282, 2:306
PALE_PMI 2:282, 2:310
PALE_RESET 2:282, 2:289
PAND Instruction 4:419
PANDN Instruction 4:421
Parallel Arithmetic 1:79
Parallel Compares 1:172
Parallel Shifts 1:81
pavg Instruction 3:201
PAVGB Instruction 4:563
pavgsub Instruction 3:204
PAVGW Instruction 4:563
pcmp Instruction 3:206
PCMPEQB Instruction 4:423
PCMPEQD Instruction 4:423
PCMPEQW Instruction 4:423
PCMPGTB Instruction 4:426
PCMPGTD Instruction 4:426
PCMPGTW Instruction 4:426
Performance Monitor Data Register (PMD) 1:33
Performance Monitor Events 2:162
Performance Monitoring 2:155, 2:619
Performance Monitoring Vector 2:126
PEXTRW Instruction 4:565
PFS (Previous Function State Register) 1:32
Physical Addressing 2:73
PIB (Processor Interrupt Block) 2:127
PINSRW Instruction 4:566
PKR (Protection Key Register) 2:564
Platform Management Interrupt (PMI) 2:96,
2:310, 2:538, 2:637
PMADDWD Instruction 4:429
pmax Instruction 3:209
PMAXSW Instruction 4:567
PMAXUB Instruction 4:568
PMC (Performance Monitor Configuration) 2:155
PMD (Performance Monitor Data Register) 1:33
PMD (Performance Monitor Data) 2:155
PMI (Platform Management Interrupt) 2:96,
2:310, 2:538, 2:637
pmin Instruction 3:211
PMINSW Instruction 4:569
PMINUB Instruction 4:570
PMOVMSKB Instruction 4:571
pmpy Instruction 3:213
pmpyshr Instruction 3:214

Index:8

PMULHUW Instruction 4:572

PMULHW Instruction 4:431

PMULLW Instruction 4:433

PMV (Performance Monitoring Vector) 2:126

POP Instruction 4:311

POPA Instruction 4:315

POPAD Instruction 4:315

popcnt Instruction 3:216

POPF Instruction 4:317

POPFD Instruction 4:317

POR Instruction 4:435

Power Management 2:313

Power-on Event 2:351

PR (Predicate Register) 1:26, 1:140

Predicate Register (PR) 1:26, 1:140

Predication 1:17, 1:54, 1:143, 1:163, 1:164

Prefetch Hints 1:176

PREFETCH Instruction 4:580

Preserved Values 2:351

Previous Function State (PFS) 1:32

Privilege Level Transfer 1:84

Privilege Levels 2:17

probe Instruction 3:217

Procedure Calls 2:549

Processor Abstraction Layer - See PAL (Processor
Abstraction Layer)

Processor Abstraction Layer (PAL) 2:279

Processor Boot Flow 2:623

Processor Identification Registers (CPUID) 1:34

Processor Interrupt Block (PIB) 2:127

Processor Min-state Save Area 2:302

Processor Reset 2:95

Processor State Parameter (PSP) 2:299, 2:308

Processor Status Register (PSR) 2:23

Programmed 1/0 2:534

Protection Keys 2:59, 2:564

psad Instruction 3:220

PSADBW Instruction 4:573

Pseudo-Code Functions 3:281

pshl Instruction 3:222

pshladd Instruction 3:223

pshr Instruction 3:224

pshradd Instruction 3:226

PSHUFW Instruction 4:575

PSLLD Instruction 4:437

PSLLQ Instruction 4:437

PSLLW Instruction 4:437

PSP (Processor State Parameter) 2:308

PSR (Processor Status Register) 2:23

PSRAD Instruction 4:440

PSRAW Instruction 4:440

PSRLD Instruction 4:443

PSRLQ Instruction 4:443

PSRLW Instruction 4:443

psub Instruction 3:227

PSUBB Instruction 4:446

Index for Volumes 1, 2, 3 and 4

PSUBD Instruction 4:446
PSUBSB Instruction 4:449
PSUBSW Instruction 4:449
PSUBUSB Instruction 4:452
PSUBUSW Instruction 4:452
PSUBW Instruction 4:446
PTA (Page Table Address Register) 2:35
ptc Instruction

ptc.e 2:569, 3:230

ptc.g 2:570, 3:231

ptc.ga 2:570, 3:231

ptc.l 2:568, 3:233
ptr Instruction 3:234
PUNPCKHBW Instruction 4:455
PUNPCKHDQ Instruction 4:455
PUNPCKHWD Instruction 4:455
PUNPCKLBW Instruction 4:458
PUNPCKLDQ Instruction 4:458
PUNPCKLWD Instruction 4:458
PUSH Instruction 4:320
PUSHA Instruction 4:323
PUSHAD Instruction 4:323
PUSHF Instruction 4:325
PUSHFD Instruction 4:325
PXOR Instruction 4:461

R

RAW Dependency 1:149

RCL Instruction 4:327

RCPPS Instruction 4:543

RCPSS Instruction 4:545

RCR Instruction 4:327

RDMSR Instruction 4:331

RDPMC Instruction 4:333

RDTSC Instruction 4:335
Read-after-write Dependency 1:149
Recoverable Error 2:351

Recovery Code 1:153, 1:154, 1:156
Region Identifier (RID) 2:561
Region Register (RR) 2:58, 2:561
Register File Transfers 1:82
Register Rotation 1:19, 1:185
Register Spill and Fill 1:62

Register Stack 1:18, 1:47

Register Stack Configuration Register (RSC) 1:29
Register Stack Engine (RSE) 1:144, 2:133
Register State 2:549

Release Semantics 2:507
Rendezvous 2:301

REP Instruction 4:337

REPE Instruction 4:337

REPNE Instruction 4:337

REPNZ Instruction 4:337

REPZ Instruction 4:337

Reserved Variables 2:351

Reset Event 2:95, 2:351

Index for Volumes 1, 2, 3 and 4

INDEX

Resource Utilization Counter (RUC) 1:31, 2:33

RET Instruction 4:340

rfi Instruction 2:543, 3:236

RID (Region Identifier) 2:561

RNAT(RSE NaT Collection Register) 1:30

ROL Instruction 4:327

ROR Instruction 4:327

Rotating Registers 1:145

RR (Region Register) 2:58, 2:561

RSC (Register Stack Configuration Register) 1:29

RSE (Register Stack Engine) 2:133

RSE Backing Store Pointer (BSP) 1:29

RSE Backing Store Pointer for Memory Stores
(BSPSTORE) 1:30

RSE NaT Collection Register (RNAT) 1:30

RSM Instruction 4:346

rsm Instruction 3:239

RSQRTPS Instruction 4:547

RSQRTSS Instruction 4:548

RUC (Resource Utilization Counter) 1:31, 2:33

rum Instruction 3:241

S

SAHF Instruction 4:347
SAL (System Abstraction Layer) 1:7, 1:21, 2:352,
2:630
SAL_B 2:283
SALE_ENTRY 2:282, 2:291, 2:305
SALE_PMI 2:282, 2:310
SAL Instruction 4:348
SAR Instruction 4:348
SBB Instruction 4:352
SCAS Instruction 4:354
SCASB Instruction 4:354
SCASD Instruction 4:354
SCASW Instruction 4:354
Scratch Register 2:352
Self Test State Parameter 2:293
Self-modifying Code 2:532
Semaphore Instructions 1:59
Semaphores 2:508
Serialization 2:17, 2:537
SETcc Instruction 4:356
setf Instruction 3:242
SFENCE Instruction 4:581
SGDT Instruction 4:359
SHL Instruction 4:348
shl Instruction 3:244
shladd Instruction 3:245
shladdp4 Instruction 3:246
SHLD Instruction 4:362
SHR Instruction 4:348
shr Instruction 3:247
SHRD Instruction 4:364
shrp Instruction 3:248
SHUFPS Instruction 4:549

Index:9

INDEX

SIDT Instruction 4:359

Single Step Trap 2:151

SLDT Instruction 4:367

SMSW Instruction 4:369

Software Pipelining 1:19, 1:75, 1:145, 1:181

Speculation 1:16, 1:142, 1:151
Control Speculation 1:16
Data Speculation 1:17
Recovery Code 1:17, 2:580
Speculation Check 1:156

SQRTPS Instruction 4:551

SQRTSS Instruction 4:552

srlz Instruction 3:249

SSE Instructions 4:463

ssm Instruction 3:250

st Instruction 3:251

Stacked Calling Convention 2:352

Stacked General Registers 2:550

Stacked Registers 1:144

Static Calling Convention 2:352

Static General Registers 2:550

STC Instruction 4:371

STD Instruction 4:372

stf Instruction 3:254

STI Instruction 4:373

STMXCSR Instruction 4:553

Stops 1:38

Store Instructions 1:59

Stores to Memory 1:147

STOS Instruction 4:376

STOSB Instruction 4:376

STOSD Instruction 4:376

STOSW Instruction 4:376

STR Instruction 4:378

SUB Instruction 4:379

sub Instruction 3:256

SUBPS Instruction 4:554

SUBSS Instruction 4:555

sum Instruction 3:257

sxt Instruction 3:258

sync Instruction 3:259
sync.i 2:526

System Abstraction Layer - See SAL (System

Abstraction Layer)

System Architecture 1:20

System Environment 2:13

System Programmer’s Guide 2:501

System State 2:20

T

tak Instruction 3:260

Taken Branch trap 2:151

Task Priority Register (TPR) 2:123, 2:605
tbit Instruction 3:261

TC (Translation Cache) 2:49, 2:567

Index:10

Template Field Encoding 1:38
Templates 1:141
TEST Instruction 4:381
tf Instruction 3:263
thash Instruction 3:265
TLB (Translation Lookaside Buffer) 2:47, 2:565
tnat Instruction 3:266
tpa Instruction 3:268
TPR (Task Priority Register) 2:123, 2:605
TR (Translation Register) 2:48, 2:566
Translation Cache (TC) 2:49, 2:567
purge 2:568
Translation Instructions 2:60
Translation Lookaside Buffer (TLB) 2:47, 2:565
Translation Register (TR) 2:48, 2:566
Traps 2:96, 2:537
ttag Instruction 3:269

U

UCOMISS Instruction 4:556

UD2 Instruction 4:383

UEFI (Unified Extensible Firmware Interface)
2:630

UM (User Mask Register) 1:33

UNAT (User NaT Collection Register) 1:31, 1:156

Uncacheable Page 2:77

Unchanged Register 2:352

Unordered Semantics 2:507

unpack Instruction 3:270

UNPCKHPS Instruction 4:558

UNPCKLPS Instruction 4:560

User Mask (UM) 1:33

User NaT Collection Register (UNAT) 1:31, 1:156

\'}

VERR Instruction 4:384

VERW Instruction 4:384

VHPT (Virtual Hash Page Table) 2:61, 2:571
VHPT Translation Vector 2:173

Virtual Addressing 2:45

Virtual Hash Page Table (VHPT) 2:61, 2:571
Virtual Machine Monitor (VMM) 2:352

Virtual Processor Descriptor (VPD) 2:325, 2:352
Virtual Processor State 2:352

Virtual Processor Status Register (VPSR) 2:327
Virtual Region Number (VRN) 2:561
Virtualization 2:44, 2:324

Virtualization Acceleration Control (vac) 2:329
Virtualization Disable Control (vdc) 2:329

VMM (Virtual Machine Monitor) 2:352

vmsw Instruction 3:273

VPD (Virtual Processor Descriptor) 2:325, 2:352
VPSR (Virtual Processor Status Register) 2:327
VRN (Virtual Region Number) 2:561

Index for Volumes 1, 2, 3 and 4

w

WAIT Instruction 4:386

WAR Dependency 1:149

WAW Dependency 1:149

WBINVD Instruction 4:387
Write-after-read Dependency 1:149
Write-after-write Dependency 1:149
WRMSR Instruction 4:389

X

XADD Instruction 4:391
XCHG Instruction 4:393

xchg Instruction 2:508, 3:274
XLAT Instruction 4:395

XLATB Instruction 4:395

xma Instruction 3:276

xmpy Instruction 3:278

XOR Instruction 4:397

xor Instruction 3:279

XORPS Instruction 4:562

XTP (External Task Priority Cycle) 2:130
XTPR (External Task Priority Register) 2:605

Z

zxt Instruction 3:280

Index for Volumes 1, 2, 3 and 4

Index:11

INDEX

INDEX

Index:12 Index for Volumes 1, 2, 3 and 4

Inte

Copyright ©1999-2010 Intel Corporation. All rights reserved.
Intel, the Intel logo, Intel Inside, and Itanium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Other names and brands may be claimed as the property of others.
0510/FL/DS/NOD/RRD/2K 323207-001US

	Intel® Itanium® Architecture Software Developer’s Manual, Volume 3: Intel® Itanium® Instruction Set Reference
	1 About this Manual
	1.1 Overview of Volume 1: Application Architecture
	1.1.1 Part 1: Application Architecture Guide
	1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture

	1.2 Overview of Volume 2: System Architecture
	1.2.1 Part 1: System Architecture Guide
	1.2.2 Part 2: System Programmer’s Guide
	1.2.3 Appendices

	1.3 Overview of Volume 3: Intel® Itanium® Instruction Set Reference
	1.4 Overview of Volume 4: IA-32 Instruction Set Reference
	1.5 Terminology
	1.6 Related Documents
	1.7 Revision History

	2 Instruction Reference
	2.1 Instruction Page Conventions
	2.2 Instruction Descriptions
	add - Add
	addp4 - Add Pointer
	alloc - Allocate Stack Frame
	and - Logical And
	andcm - And Complement
	br - Branch
	break - Break
	brl - Branch Long
	brp - Branch Predict
	bsw - Bank Switch
	chk - Speculation Check
	clrrrb - Clear RRB
	clz - Count Leading Zeros
	cmp - Compare
	cmp4 - Compare 4 Bytes
	cmpxchg - Compare and Exchange
	cover - Cover Stack Frame
	czx - Compute Zero Index
	dep - Deposit
	epc - Enter Privileged Code
	extr - Extract
	fabs - Floating-point Absolute Value
	fadd - Floating-point Add
	famax - Floating-point Absolute Maximum
	famin - Floating-point Absolute Minimum
	fand - Floating-point Logical And
	fandcm - Floating-point And Complement
	fc - Flush Cache
	fchkf - Floating-point Check Flags
	fclass - Floating-point Class
	fclrf - Floating-point Clear Flags
	fcmp - Floating-point Compare
	fcvt.fx - Convert Floating-point to Integer
	fcvt.xf - Convert Signed Integer to Floating-point
	fcvt.xuf - Convert Unsigned Integer to Floating-point
	fetchadd - Fetch and Add Immediate
	flushrs - Flush Register Stack
	fma - Floating-point Multiply Add
	fmax - Floating-point Maximum
	fmerge - Floating-point Merge
	fmin - Floating-point Minimum
	fmix - Floating-point Mix
	fmpy - Floating-point Multiply
	fms - Floating-point Multiply Subtract
	fneg - Floating-point Negate
	fnegabs - Floating-point Negate Absolute Value
	fnma - Floating-point Negative Multiply Add
	fnmpy - Floating-point Negative Multiply
	fnorm - Floating-point Normalize
	for - Floating-point Logical Or
	fpabs - Floating-point Parallel Absolute Value
	fpack - Floating-point Pack
	fpamax - Floating-point Parallel Absolute Maximum
	fpamin - Floating-point Parallel Absolute Minimum
	fpcmp - Floating-point Parallel Compare
	fpcvt.fx - Convert Parallel Floating-point to Integer
	fpma - Floating-point Parallel Multiply Add
	fpmax - Floating-point Parallel Maximum
	fpmerge - Floating-point Parallel Merge
	fpmin - Floating-point Parallel Minimum
	fpmpy - Floating-point Parallel Multiply
	fpms - Floating-point Parallel Multiply Subtract
	fpneg - Floating-point Parallel Negate
	fpnegabs - Floating-point Parallel Negate Absolute Value
	fpnma - Floating-point Parallel Negative Multiply Add
	fpnmpy - Floating-point Parallel Negative Multiply
	fprcpa - Floating-point Parallel Reciprocal Approximation
	fprsqrta - Floating-point Parallel Reciprocal Square Root Approximation
	frcpa - Floating-point Reciprocal Approximation
	frsqrta - Floating-point Reciprocal Square Root Approximation
	fselect - Floating-point Select
	fsetc - Floating-point Set Controls
	fsub - Floating-point Subtract
	fswap - Floating-point Swap
	fsxt - Floating-point Sign Extend
	fwb - Flush Write Buffers
	fxor - Floating-point Exclusive Or
	getf - Get Floating-point Value or Exponent or Significand
	hint - Performance Hint
	invala - Invalidate ALAT
	itc - Insert Translation Cache
	itr - Insert Translation Register
	ld - Load
	ldf - Floating-point Load
	ldfp - Floating-point Load Pair
	lfetch - Line Prefetch
	loadrs - Load Register Stack
	mf - Memory Fence
	mix - Mix
	mov - Move Application Register
	mov - Move Branch Register
	mov - Move Control Register
	mov - Move Floating-point Register
	mov - Move General Register
	mov - Move Immediate
	mov - Move Indirect Register
	mov - Move Instruction Pointer
	mov - Move Predicates
	mov - Move Processor Status Register
	mov - Move User Mask
	movl - Move Long Immediate
	mpy4 - Unsigned Integer Multiply
	mpyshl4 - Unsigned Integer Shift Left and Multiply
	mux - Mux
	nop - No Operation
	or - Logical Or
	pack - Pack
	padd - Parallel Add
	pavg - Parallel Average
	pavgsub - Parallel Average Subtract
	pcmp - Parallel Compare
	pmax - Parallel Maximum
	pmin - Parallel Minimum
	pmpy - Parallel Multiply
	pmpyshr - Parallel Multiply and Shift Right
	popcnt - Population Count
	probe - Probe Access
	psad - Parallel Sum of Absolute Difference
	pshl - Parallel Shift Left
	pshladd - Parallel Shift Left and Add
	pshr - Parallel Shift Right
	pshradd - Parallel Shift Right and Add
	psub - Parallel Subtract
	ptc.e - Purge Translation Cache Entry
	ptc.g, ptc.ga - Purge Global Translation Cache
	ptc.l - Purge Local Translation Cache
	ptr - Purge Translation Register
	rfi - Return From Interruption
	rsm - Reset System Mask
	rum - Reset User Mask
	setf - Set Floating-point Value, Exponent, or Significand
	shl - Shift Left
	shladd - Shift Left and Add
	shladdp4 - Shift Left and Add Pointer
	shr - Shift Right
	shrp - Shift Right Pair
	srlz - Serialize
	ssm - Set System Mask
	st - Store
	stf - Floating-point Store
	sub - Subtract
	sum - Set User Mask
	sxt - Sign Extend
	sync - Memory Synchronization
	tak - Translation Access Key
	tbit - Test Bit
	tf - Test Feature
	thash - Translation Hashed Entry Address
	tnat - Test NaT
	tpa - Translate to Physical Address
	ttag - Translation Hashed Entry Tag
	unpack - Unpack
	vmsw - Virtual Machine Switch
	xchg - Exchange
	xma - Fixed-Point Multiply Add
	xmpy - Fixed-Point Multiply
	xor - Exclusive Or
	zxt - Zero Extend

	3 Pseudo-Code Functions
	4 Instruction Formats
	4.1 Format Summary
	4.2 A-Unit Instruction Encodings
	4.2.1 Integer ALU
	4.2.1.1 Integer ALU - Register-Register
	4.2.1.2 Shift Left and Add
	4.2.1.3 Integer ALU - Immediate8-Register
	4.2.1.4 Add Immediate14
	4.2.1.5 Add Immediate22

	4.2.2 Integer Compare
	4.2.2.1 Integer Compare - Register-Register
	4.2.2.2 Integer Compare to Zero - Register
	4.2.2.3 Integer Compare - Immediate-Register

	4.2.3 Multimedia
	4.2.3.1 Multimedia ALU
	4.2.3.2 Multimedia Shift and Add

	4.3 I-Unit Instruction Encodings
	4.3.1 Multimedia and Variable Shifts
	4.3.1.1 Multimedia Multiply and Shift
	4.3.1.2 Multimedia Multiply/Mix/Pack/Unpack
	4.3.1.3 Multimedia Mux1
	4.3.1.4 Multimedia Mux2
	4.3.1.5 Shift Right - Variable
	4.3.1.6 Multimedia Shift Right - Fixed
	4.3.1.7 Shift Left - Variable
	4.3.1.8 Multimedia Shift Left - Fixed
	4.3.1.9 Bit Strings

	4.3.2 Integer Shifts
	4.3.2.1 Shift Right Pair
	4.3.2.2 Extract
	4.3.2.3 Zero and Deposit
	4.3.2.4 Zero and Deposit Immediate8
	4.3.2.5 Deposit Immediate1
	4.3.2.6 Deposit

	4.3.3 Test Bit
	4.3.3.1 Test Bit
	4.3.3.2 Test NaT

	4.3.4 Miscellaneous I-Unit Instructions
	4.3.4.1 Nop/Hint (I-Unit)
	4.3.4.2 Break (I-Unit)
	4.3.4.3 Integer Speculation Check (I-Unit)

	4.3.5 GR/BR Moves
	4.3.5.1 Move to BR
	4.3.5.2 Move from BR

	4.3.6 GR/Predicate/IP Moves
	4.3.6.1 Move to Predicates - Register
	4.3.6.2 Move to Predicates - Immediate44
	4.3.6.3 Move from Predicates/IP

	4.3.7 GR/AR Moves (I-Unit)
	4.3.7.1 Move to AR - Register (I-Unit)
	4.3.7.2 Move to AR - Immediate8 (I-Unit)
	4.3.7.3 Move from AR (I-Unit)

	4.3.8 Sign/Zero Extend/Compute Zero Index
	4.3.9 Test Feature

	4.4 M-Unit Instruction Encodings
	4.4.1 Loads and Stores
	4.4.1.1 Integer Load
	4.4.1.2 Integer Load - Increment by Register
	4.4.1.3 Integer Load - Increment by Immediate
	4.4.1.4 Integer Store
	4.4.1.5 Integer Store - Increment by Immediate
	4.4.1.6 Floating-point Load
	4.4.1.7 Floating-point Load - Increment by Register
	4.4.1.8 Floating-point Load - Increment by Immediate
	4.4.1.9 Floating-point Store
	4.4.1.10 Floating-point Store - Increment by Immediate
	4.4.1.11 Floating-point Load Pair
	4.4.1.12 Floating-point Load Pair - Increment by Immediate

	4.4.2 Line Prefetch
	4.4.2.1 Line Prefetch
	4.4.2.2 Line Prefetch - Increment by Register
	4.4.2.3 Line Prefetch - Increment by Immediate

	4.4.3 Semaphores
	4.4.3.1 Exchange/Compare and Exchange
	4.4.3.2 Fetch and Add - Immediate

	4.4.4 Set/Get FR
	4.4.4.1 Set FR
	4.4.4.2 Get FR

	4.4.5 Speculation and Advanced Load Checks
	4.4.5.1 Integer Speculation Check (M-Unit)
	4.4.5.2 Floating-point Speculation Check
	4.4.5.3 Integer Advanced Load Check
	4.4.5.4 Floating-point Advanced Load Check

	4.4.6 Cache/Synchronization/RSE/ALAT
	4.4.6.1 Sync/Fence/Serialize/ALAT Control
	4.4.6.2 RSE Control
	4.4.6.3 Integer ALAT Entry Invalidate
	4.4.6.4 Floating-point ALAT Entry Invalidate
	4.4.6.5 Flush Cache

	4.4.7 GR/AR Moves (M-Unit)
	4.4.7.1 Move to AR - Register (M-Unit)
	4.4.7.2 Move to AR - Immediate8 (M-Unit)
	4.4.7.3 Move from AR (M-Unit)

	4.4.8 GR/CR Moves
	4.4.8.1 Move to CR
	4.4.8.2 Move from CR

	4.4.9 Miscellaneous M-Unit Instructions
	4.4.9.1 Allocate Register Stack Frame
	4.4.9.2 Move to PSR
	4.4.9.3 Move from PSR
	4.4.9.4 Break (M-Unit)

	4.4.10 System/Memory Management
	4.4.10.1 Probe - Register
	4.4.10.2 Probe - Immediate2
	4.4.10.3 Probe Fault - Immediate2
	4.4.10.4 Translation Cache Insert
	4.4.10.5 Move to Indirect Register/Translation Register Insert
	4.4.10.6 Move from Indirect Register
	4.4.10.7 Set/Reset User/System Mask
	4.4.10.8 Translation Purge
	4.4.10.9 Translation Access
	4.4.10.10 Purge Translation Cache Entry

	4.4.11 Nop/Hint (M-Unit)

	4.5 B-Unit Instruction Encodings
	4.5.1 Branches
	4.5.1.1 IP-Relative Branch
	4.5.1.2 IP-Relative Counted Branch
	4.5.1.3 IP-Relative Call
	4.5.1.4 Indirect Branch
	4.5.1.5 Indirect Call

	4.5.2 Branch Predict/Nop/Hint
	4.5.2.1 IP-Relative Predict
	4.5.2.2 Indirect Predict

	4.5.3 Miscellaneous B-Unit Instructions
	4.5.3.1 Miscellaneous (B-Unit)
	4.5.3.2 Break/Nop/Hint (B-Unit)

	4.6 F-Unit Instruction Encodings
	4.6.1 Arithmetic
	4.6.1.1 Floating-point Multiply Add
	4.6.1.2 Fixed-point Multiply Add

	4.6.2 Parallel Floating-point Select
	4.6.3 Compare and Classify
	4.6.3.1 Floating-point Compare
	4.6.3.2 Floating-point Class

	4.6.4 Approximation
	4.6.4.1 Floating-point Reciprocal Approximation
	4.6.4.2 Floating-point Reciprocal Square Root Approximation

	4.6.5 Minimum/Maximum and Parallel Compare
	4.6.6 Merge and Logical
	4.6.7 Conversion
	4.6.7.1 Convert Floating-point to Fixed-point
	4.6.7.2 Convert Fixed-point to Floating-point

	4.6.8 Status Field Manipulation
	4.6.8.1 Floating-point Set Controls
	4.6.8.2 Floating-point Clear Flags
	4.6.8.3 Floating-point Check Flags

	4.6.9 Miscellaneous F-Unit Instructions
	4.6.9.1 Break (F-Unit)
	4.6.9.2 Nop/Hint (F-Unit)

	4.7 X-Unit Instruction Encodings
	4.7.1 Miscellaneous X-Unit Instructions
	4.7.1.1 Break (X-Unit)
	X1

	4.7.2 Move Long Immediate64
	X2

	4.7.3 Long Branches
	4.7.3.1 Long Branch
	X3

	4.7.3.2 Long Call
	X4

	4.7.4 Nop/Hint (X-Unit)
	X5

	4.8 Immediate Formation

	5 Resource and Dependency Semantics
	5.1 Reading and Writing Resources
	5.2 Dependencies and Serialization
	5.3 Resource and Dependency Table Format Notes
	5.3.1 Special Case Instruction Rules
	5.3.2 RAW Dependency Table
	5.3.3 WAW Dependency Table
	5.3.4 WAR Dependency Table
	5.3.5 Listing of Rules Referenced in Dependency Tables

	5.4 Support Tables

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

