
Programmer’s Reference
Manual

IP2022 Internet Processor™

Revision History

Part #:: IP2K-DRM-2022PRM-13

© 2001 Ubicom, Inc. All rights reserved. No warranty is provided and no liability is assumed by Ubicom with
respect to the accuracy of this documentation or the merchantability or fitness of the product for a particular
application. No license of any kind is conveyed by Ubicom with respect to its intellectual property or that of
others. All information in this document is subject to change without notice.

Ubicom products are not authorized for use in life support systems or under conditions where failure of the
product would endanger the life or safety of the user, except when prior written approval is obtained from
Ubicom.

Ubicom™ and the Ubicom logo are trademarks of Ubicom, Inc.
Internet Processor™ is a trademark of Ubicom, Inc.
All other trademarks mentioned in this document are property of their respective companies.

Revision Release Date Summary of Changes

1.0 March 15, 2001 Original issue.

1.1 April 5, 2001 Merged with demo board User’s Guide.

1.2 June 7, 2001 Rewritten for the Unity IDE.

1.3 October 17,2001 Rewritten for the IP2022 REV2.0 & new

look and feel

Ubicom, Inc.
635 Clyde Avenue
Mountain View, CA 94043
tel 650 210 1500
fax 650 210 8715
www.ubicom.com

Overview... 1
1.1 Key Features ... 3
1.2 Architecture ... 7
1.2.1 CPU ... 7
1.2.2 Serializer/Deserializer Units (SERDES)... 7
1.2.3 Low-Power Support ... 8
1.2.4 Memory .. 8
1.2.5 Instruction Set .. 9

Writing Assembly Code ...11
2.1 Comments, Constants, and Symbols ...11
2.2 Directives... 14
2.3 Operators... 14
2.3.1 Prefix Operators... 15
2.3.2 Infix Operators ... 15
2.4 Syntax for Numeric Notation.. 16
2.5 Special Instructions ... 16
2.6 Memory.. 17
2.7 Assembly to C Calling Conventions .. 17
2.8 IP2022-Specific Reserved Words.. 18
2.9 Other Resources ... 19

Writing C Code... 21
3.1 Data Types... 21
3.1.1 IP2022 specific Data Types.. 21
3.2 Writing In-Line Assembly in C.. 22
3.2.1 Methods of defining assembly constants in C.. 22
3.2.2 Methods of defining assembly variables in C... 22
3.2.3 Methods of using C-defined constants in assembly..................................... 23
3.2.4 Methods of using C-defined variables in assembly...................................... 23
3.2.5 Methods of reaching SPR or GPR memory locations in C........................... 23
3.2.6 D() macro ... 24
3.2.7 In-Line Assembly in C Source Files ... 25
3.3 C to Assembly Calling Conventions .. 26

Instruction Set ... 29

4.1 Instruction Format.. 29
4.2 Addressing Modes... 29
4.3 Abbreviations Used ... 31
4.4 Summary of CPU Instructions ... 32
4.4.1 Logical Instructions .. 34
4.4.2 Arithmetic and Shift Instructions .. 35
4.4.3 Bit Operation Instructions... 38
4.4.4 Data Movement Instructions .. 39
4.4.5 Program Control Instructions ... 40
4.4.6 System Control Instructions ... 41
4.5 Instruction Descriptions ... 42

ADD fr,W .. 43
ADD W,fr .. 45

ADD W,#lit8 .. 47
ADDC fr,W .. 48
ADDC W,fr .. 50
AND fr,W .. 52
AND W,fr .. 53
AND W,#lit8 .. 54
BREAK .. 55
BREAK .. 56
CALL addr13 .. 57
CLR fr .. 59
CLRB fr,bit .. 60
CMP W,fr .. 61
CMP W,#lit8 .. 62
CSE W,#lit8 .. 63
CSE W,fr .. 64
CSNE W,fr .. 65
CSNE W,#lit8 .. 66
CWDT .. 67
DEC fr .. 68
DEC W,fr .. 69
DECSNZ fr .. 70
DECSNZ W,fr .. 71
DECSZ fr .. 72
DECSZ W,fr .. 73
FERASE .. 74
FREAD .. 76
FWRITE .. 78
INC fr .. 80
INC W,fr .. 81
INCSNZ fr .. 82
INCSNZ W,fr .. 83
INCSZ fr .. 84
INCSZ W,fr .. 85
INT .. 86
IREAD .. 87
IREADI .. 89
IWRITE .. 91
IWRITEI .. 93
JMP addr13 .. 95
LOADH addr8 .. 97
LOADL addr8 .. 98
MOV fr,W .. 99
MOV W,fr .. 100
MOV W,#lit8 .. 101
MULS W,fr .. 102
MULS W,#lit8 .. 104
MULU W,fr .. 105
MULU W,#lit8 .. 106
NOP .. 107

NOT fr .. 108
NOT W,fr .. 109
OR fr,W ...110
OR W,fr ...111
OR W,#lit8 ...112
PAGE addr3 ...113
POP fr ...115
PUSH fr ...116
PUSH #lit8 ...117
RET ...118
RETI #lit3 .. 120
RETNP .. 122
RETW #lit8 .. 124
RL fr .. 126

.. 126
RL W,fr .. 128

.. 128
RR fr .. 130

.. 130
RR W,fr .. 132

.. 132
SB fr,bit .. 134
SETB fr,bit .. 135
SNB fr,bit .. 136
SPEED #lit8 .. 137

.. 137
SUB fr,W .. 139
SUB W,fr .. 141
SUB W,#lit8 .. 142
SUBC fr,W .. 143
SUBC W,fr .. 145
SWAP fr .. 147
SWAP W,fr .. 148
TEST fr .. 149
XOR fr,W .. 150
XOR W,fr .. 151
XOR W,#lit8 .. 152

Preface
This manual describes the architecture and instruction set of the IP2022

Internet Processor. Much of the information in this manual overlaps with the

material in the data sheet, however this document presents a more detailed

description of the instruction set architecture for the benefit of programmers.

Refer to the data sheet for the electrical specifications, package mechanical

drawing, and ordering information.

Related Documentation

Documentation for the IP2022:

• IP2022 Data Sheet, available from Ubicom (#IP2K-DDS-IP2022DS).

• IP2022 Programmer’s Reference Manual, (this book, #IP2K-DRM-

2022PRM).

Documentation for the IP2022 Connectivity Kit:

• Connectivity Kit User’s Guide, available from Ubicom (#IP2K-DUG-

CK2UG).

Reference manuals for the tool chain:

• GNUPro Toolkit—GNUPro Utilities, available from Red Hat.

• GNUPro Toolkit—GNUPro Compiler Tools, available from Red Hat.

• GNUPro Toolkit—Debugging with GDB, available from Red Hat.
www.ubicom.com xi

Preface—IP2022 Programmer’s Reference Manual
xii www.ubicom.com

63.eps

ernet

I

ose I/O

n:
1.0Overview

The Ubicom IP2022 Internet Processor TM combines support for

communication physical layer, Internet protocol stack, device-

specific application and device-specific peripheral software

modules in a single chip, and is reconfigurable over the Internet.

Figure 1-1 IP2022 Block Diagram

It can be programmed, and reprogrammed, using pre-built

software modules and configuration tools to create true single-

chip solutions for a wide range of device-to-device and device-to-

human communication applications. Fabricated in an advanced

0.25-micron process, its RISC-based deterministic architecture

515-0

IP2022

 10Base-T Eth
 USB 1.1
 GPSI
 SPI
 UART/Modem
 Bluetooth HC

Customer Application
HTTP/SMTP/TFTP

TCP/UDP
IP/ICMP

Network Access Layer
ip

M
od

ul
e

 S
of

tw
ar

e

PHY Firmware

ipOS Operating System

High-Speed
Serial Unit 2
(SERDES)

ISP/ISD
Interface

8-Input
10-Bit
A/DC

PLL
Clock

Multiplier

5
Timers

High-Speed
Serial Unit 1
(SERDES)

General
Purpose
I/O Ports

4-Kbyte
Data
RAM

16-Kbyte
Inst./Data

RAM

64-Kbyte
Flash

Memory

Internet
Processor

CPU

8/16-Bit
Parallel

Slave Port

 ISA
 I2C
 General-Purp

Choices for
Communicatio

 10Base-T
 Ethernet
 USB 1.1
 GPSI
 SPI
 UART/Modem
 Bluetooth HCI

Host Bus

Choices for
Communication:

TM
www.ubicom.com 1

Overview—IP2022 Programmer’s Reference Manual
provides high-speed computation, flexible I/O control, efficient

data manipulation, in-system programming, and in-system

debugging.

Two hardware serializer/deserializer (SERDES) units give the

IP2022 the ability to directly connect to a variety of common

network interfaces. This function provides the ability to implement

on-chip 10Base-T Ethernet (MAC and PHY), USB, and a variety

of other fast serial protocols. The inclusion of two SERDES units

facilitate translation from one format to another, allowing the

IP2022 to be used as a protocol converter. The 100 MHz operating

frequency, with most instructions executing in a single cycle,

delivers the throughput needed for emerging network connectivity

applications, and a flash-based program memory allows both in-

system and on-the-fly reprogramming. The IP2022 implements

peripheral, communications and control functions as software

modules (ipModule™ software), replacing traditional hardware for

maximum system design flexibility. This approach allows rapid,

inexpensive product design and, when needed, quick and easy

reconfiguration to accommodate changes in market needs or

industry standards.

On-chip dedicated hardware also includes a PLL, an 8-channel

10-bit ADC, general-purpose timers, single-cycle multiplier,

analog comparator, LFSR units, external memory interface,

brown-out power voltage detector, watchdog timer, low-power

support, multi-source wakeup capability, user-selectable clock

modes, high-current outputs, and 52 general-purpose I/O pins.
2 www.ubicom.com

IP2022 Programmer’s Reference Manual—Overview
A TCP/IP network protocol stack is available, and a variety of

additional software that is necessary to form a complete end-to-

end connectivity solution is being developed. Tools for developing

with and using the IP2022, including the complete Red Hat

GNUPro tools, are available from leading suppliers.

1.1 Key Features

CPU Features

• RISC engine core with DC to 100 MHz operation

• 10 ns instruction cycle

• Compact 16-bit fixed-length instructions

• Single-cycle instruction execution on most instructions (3 cy-

cles for jumps and calls)

• 16-level hardware stack for high-performance subroutine link-

age

• 8 × 8 signed/unsigned single-cycle multiply

• Pointers and stack operation optimized for C compiler

• Uniform, linear address space (no register banks)

On-Chip Memory

• 64 Kbyte (32K × 16) program flash memory

• 16 Kbyte (8K × 16) program/data RAM

• 4 Kbyte linear-addressed data RAM

• Self-programming with built-in charge pump: instructions to

read, write, and erase flash memory

• Ability to address up to 128K bytes of external memory
www.ubicom.com 3

Overview—IP2022 Programmer’s Reference Manual
Fast and Deterministic Program Execution and
Interrupt Response

• Predictable execution rate for real-time applications

• Fast and deterministic 3-cycle interrupt response

• 30 ns internal interrupt response at 100 MHz including context

save

• Hardware save/restore of register context (PC, W, STATUS,

MULH, SPDREG, IPH, IPL, DPH, DPL, SPH, SPL, ADDRSEL,

DATAH, DATAL)

Multiple Networking Protocols and Physical Layer
Support Hardware

• Two full-duplex serializer/deserializer (SERDES) channels for

• 10Base-T (MAC/PHY), USB, and other fast serial protocols

– Embedded connectivity nodes

– Two channels for protocol bridging

– 10Base-T, GPSI, SPI, UART, USB protocols

– Squelch function for 10Base-T Ethernet

• Four hardware LFSR units

– CRC generation/checking

– Data-whitening

– Encryption

General-Purpose Hardware Peripherals

• Two 16-bit timers with 8-bit prescalers supporting:

– Timer mode

– PWM mode

– Capture/Compare mode

• Parallel host interface, 8/16-bit selectable for use as a com-

munications coprocessor
4 www.ubicom.com

IP2022 Programmer’s Reference Manual—Overview
• One 8-bit timer with programmable 8-bit prescaler

• One 8-bit real-time clock/counter with programmable 15-bit

prescaler and 32 kHz crystal input

• Watchdog timer with prescaler

• On-chip PLL clock multiplier with pre- and post-divider

– 100 MHz on-chip clock from 4 MHz external crystal

• 10-bit, 8-channel ADC with 1/2 LSB accuracy

• Analog comparator with hysteresis enable/disable

• Brown-out minimum supply voltage detector

• External interrupt inputs on 8 pins (Port B)

Sophisticated Power and Frequency/Clock
Management Support

• Operating voltage of 2.3V to 2.7V

• Switching the system clock frequencies between different

clock sources

• Changing the core clock using a selectable divider

• Shutting down the PLL and/or the OSC input

• Dynamic CPU speed control with speed instruction

• Power-On-Reset (POR) logic

Flexible I/O

• 52 I/O Pins

• 2.3V to 3.3V symmetric CMOS output drive

• 5V-tolerant inputs

• Port A pins capable of sourcing/sinking 24 mA

• Optional I/O synchronization to CPU core clock
www.ubicom.com 5

Overview—IP2022 Programmer’s Reference Manual
Programming and Debugging Support

• Updateable application program

– Run-time self programming

• On-chip in-system programming interface

• On-chip in-system debugging support interface

• Debugging at full IP2022 operating speed

• Programming at device supply voltage level

• Real-time emulation, program debugging, and integrated soft-

ware development environment

Complete Software Development Environment
Ubicom's Software Development Kit (SDK)

• IpOS™ operating system
• IpStack™ Software

– TCP/IP protocol stack
– NE2000 Ethernet drivers

• ipWeb Software - HTTP 1.1 Server
• ipFile Flash virtual file system
• ipIO Software - Device I/O driven interfaces

– MII, I2C, SPI, GPSI, UART
• ipModule™ Software - Pre-built Connectivity Software mod-

ules
– ipEthernet - 10Base-T Ethernet
– ipHomePlug - HomePlug power line networking
– ipUSB - USB 1.1 Host or Device
– ipBlue - Bluetooth
– ipWLANstation - 802.11b station (node or bridge)
– ipWLANaccesspoint - 802.11b access point

• Configuration tool
– Integrated tool to support rapid development efforts
6 www.ubicom.com

IP2022 Programmer’s Reference Manual—Overview
1.2 Architecture

1.2.1 CPU

The IP2022 implements an enhanced Harvard architecture (i.e.

separate instruction and data memories) with independent

address and data buses. The 16-bit program memory and 8-bit

dual-port data memory allow instruction fetch and data operations

to occur in parallel. The advantage of this architecture is that

instruction fetch and memory transfers can be overlapped by a

multistage pipeline, so that the next instruction can be fetched

from program memory while the current instruction is executed

with data from the data memory.

Ubicom has developed a revolutionary RISC-based architecture

that is deterministic, jitter free, and completely reprogrammable.

The IP2022 implements a four-stage pipeline (fetch, decode,

execute, and write back). At the maximum operating frequency of

100 MHz, instructions are executed at the rate of one per 10 ns

clock cycle.

1.2.2 Serializer/Deserializer Units (SERDES)

One of the key elements in optimizing the IP2022 for device-to-

device and device-to-human communication is the inclusion of two

on-chip serializer/deserializer (SERDES) units. These units

support popular communication protocols such as 10Base-T

Ethernet, GPSI, SPI, UART, and USB, allowing the IP2022 to be

used as a protocol converter in bridge and gateway applications.
www.ubicom.com 7

Overview—IP2022 Programmer’s Reference Manual
By performing data serialization and deserialization in hardware,

the CPU bandwidth needed to support serial communications is

greatly reduced, especially at high baud rates. Providing two units

allows easy implementation of protocol conversion or bridging

functions, such as a USB-to-Ethernet bridge.

1.2.3 Low-Power Support

Particular attention has been paid to minimizing power

consumption. For example, an on-chip PLL allows use of a lower-

frequency external source (e.g., an inexpensive 4 MHz crystal can

be used to produce a 100 MHz on-chip clock), which reduces both

power consumption and EMI. In addition, software can change the

execution speed of the CPU to reduce power consumption, and a

mechanism is provided for automatically changing the speed on

entry and return from an interrupt service routine. The speed
instruction specifies power-saving modes that include a clock

divisor between 1 and 128. This divisor only affects the clock to the

CPU core, not the timers. The speed instruction also specifies the

clock source (OSC1 clock, RTCLK oscillator, or PLL clock

multiplier), and whether to disable the OSC1 clock oscillator or the

PLL. The speed instruction executes using the current clock

divisor.

1.2.4 Memory

The IP2022 CPU executes from a 32K × 16 flash program

memory, 16K × 8 RAM program/data memory and 4K × 8 RAM
8 www.ubicom.com

IP2022 Programmer’s Reference Manual—Overview
data memory. In addition, the ability to write into the program flash

memory allows flexible non-volatile data storage. An interface is

available for up to 128K bytes of external memory, which can be

expanded to 2M bytes by using additional address bits on general

purpose I/O. The maximum execution rate is 30 MIPS from flash

memory and 100 MIPS from RAM. Speed-critical routines can be

copied from the flash memory to the RAM for faster execution. The

IP2022 has a mechanism for in-system programming of its flash

and RAM program memories through a four-wire SPI interface,

and software has the ability to reprogram the program memories

at run time. This allows the functionality of a device to be changed

in the field over the Internet.

1.2.5 Instruction Set

The IP2022 instruction set, using 16-bit words, implements a rich

set of arithmetic and logical operations, including signed and

unsigned 8-bit × 8-bit integer multiply with a 16-bit product. See

Chapter 4.5 "Instruction Descriptions" on page 42 for detailed

description of the instruction set.
www.ubicom.com 9

Overview—IP2022 Programmer’s Reference Manual
10 www.ubicom.com

2.0Writing Assembly Code

2.1 Comments, Constants, and Symbols

Comments can occur at the end of a line, after a pound sign (#) or

semicolon. The semicolon is recommended, as in:

clrb status,c ;this is a comment
;this whole line is a comment

Comments can also be enclosed in C-style comment delimiters,

such as:

/* this is a comment */

and:

/* this is
a multi-line
comment */

As with C, comments may not be nested.

Constants may be character constants, string constants, or

numeric constants. A character constant is a single quote followed

by a character, such as ’f which is a byte with the value 102

(decimal) corresponding to its ASCII code. A string constant

consists of one or more characters enclosed in double quotes,

such as "Ubicom". To use a character with special meaning or a
www.ubicom.com 11

Writing Assembly Code—IP2022 Programmer’s Reference Manual
character outside of the standard ASCII printing characters, a

backslash (\) is used to indicate a representation for the character,

as shown in Table 2-1.

A numeric constant is an integer. By default, it is interpreted as a

decimal number. To express it in binary, prefix the value with 0b,

e.g. 0b01101001. To express it in hex, prefix the value with 0x,

as in 0x9F. Hex digits may be either upper or lower case.

A symbol is a name for any nameable object, such as labels and

constants. A symbol consists of one or more characters from the

set of letters, digits, period (.), and underscore (_). A symbol may

not begin with a digit. Symbols are case-sensitive, so abc is

Table 2-1 Special Characters

Representation Value Character

\b 0x08 Backspace (control-H)

\f 0x0C Form Feed (control-L)

\n 0x0A New Line (control-J)

\r 0x0D Carriage Return (control-M)

\t 0x09 Horizontal Tab (control-I)

\xNN 0xNN NN is the ASCII code for the

character, in hex. E.g. \x09

is equivalent to \t.

\\ 0x5C Backslash (\)

\" 0x22 Double Quote (")
12 www.ubicom.com

IP2022 Programmer’s Reference Manual—Writing Assembly Code
distinct from aBc. Symbols may not be reserved words (see

Section 2.8).

The assembler has two special constructs for recovering the

address of a symbol in data memory. %lo8data(symbol) returns

the low byte of the address of symbol, and %hi8data(symbol)
returns the high byte. These are useful for initializing pointers used

in the IPH/IPL, DPH/DPL, and SPH/SPL registers. Another set of

constructs, %lo8insn(symbol) and %hi8insn(symbol), are

used to recover addresses in program memory. These are useful

for initializing pointers used in the ADDRH/ADDRL register.

To make a symbol visible outside the file it requires a global

directive.

Global Symbol Example:

.global _isr
_isr

page 1f
jmp1f

1:
page1b
jmp1b

.func emits debugging information to denote function name, and is

ignored unless the file is assembled with debugging enabled. Only

`--gstabs' is currently supported. label is the entry point of the

function and if omitted name prepended with the `leading char' is

used. `leading char' is usually _ or nothing, depending on the

target. All functions are currently defined to have void return type.

The function must be terminated with .endfunc.
www.ubicom.com 13

Writing Assembly Code—IP2022 Programmer’s Reference Manual
.func reset_vector,reset_vector
reset_vector:

movw, #FCFG_FRDTS_VALUE(SYSTEM_FREQ) |
.endfunc

2.2 Directives

Please consult the GNUPro Toolkit—GNUPro Auxiliary

Development Tools manual for a complete list of all assembler

directives.

The IP2022 assembler has four directives in addition to the

standard list:

.word—four bytes

.long—four bytes

.half—two bytes

.short—two bytes

2.3 Operators

Operators are arithmetic functions, like + or %. Prefix
operators are followed by an argument (see Prefix Operators).

Infix operators appear between their arguments (see Infix

Operators). Operators may be preceded and/or followed by

whitespace.
14 www.ubicom.com

IP2022 Programmer’s Reference Manual—Writing Assembly Code
2.3.1 Prefix Operators

The IP2022 assembler (as) has the following prefix operators,

each taking one argument, an absolute.

- (Negation) - Two’s complement negation.

~ (Complementation) - Bitwise not.

2.3.2 Infix Operators

Infix operators take two arguments, one on either side. Operators

have precedence, but operations with equal precedence are

performed left to right. Apart from + or -, both arguments must be

absolute, and the result is absolute.

• Highest Precedence

* (Multiplication)

/ (Division) Truncation is the same as the / C operator.

% (Remainder)

<

<< (Shift Left) Same as the << C operator.

>

>> (Shift Right) Same as the >> C operator.

• Intermediate Precedence

| (Bitwise Inclusive Or)

& (Bitwise And)

ˆ (Bitwise Exclusive Or)

! (Bitwise Or Not)

• Lowest Precedence
www.ubicom.com 15

Writing Assembly Code—IP2022 Programmer’s Reference Manual
+ (Addition) If either argument is absolute, the result has

the section of the other argument. You may not add to-

gether arguments from different sections.

- (Subtraction) If the right argument is absolute, the result

has the section of the left argument. If both arguments are

in the same section, the result is absolute. You may not

subtract arguments from different sections. In short, it’s

only meaningful to add or subtract the offsets in an ad-

dress; you can only have a defined section in one of the

two arguments.

2.4 Syntax for Numeric Notation

2.5 Special Instructions

The assembler has two special constructs for recovering the

address of a symbol in data memory. %lo8data(symbol) returns

the low byte of the address of symbol, and %hi8data(symbol)

returns the high byte. These are useful for initializing pointers used

Table 2-2 Notation Syntax

Notation Example

dec 65

bin 0b01000001

hex 0x41 or 0X41

octal O101

ascii ‘A
16 www.ubicom.com

IP2022 Programmer’s Reference Manual—Writing Assembly Code
in the IPH/IPL, DPH/DPL, and SPH/SPL registers. Another set of

constructs, %lo8insn(symbol) and %hi8insn(symbol), are used to

recover addresses in program memory. These are useful for

initializing pointers used in the ADDRH/ADDRL register.

2.6 Memory

The linker script file ip2kelf.ld defines the following sections:

.gpr - general-purpose registers (addresses 0x80 to 0xFF)

.data - preallocated, preinitialized data memory

.text - flash memory

.pram - program space allocated in program RAM

.pram_data - data space allocated in program RAM

.strings - strings stored in flash memory

.reset - reset vector

.config - configuration block

.bss - storage for globals. Initialized to zero.

If there is no memory assignment, data will be placed in Flash

memory.

2.7 Assembly to C Calling Conventions

Calling a C function from assembly

Call the C function as below:

lcall _main ;precede the C function label
;with an _
www.ubicom.com 17

Writing Assembly Code—IP2022 Programmer’s Reference Manual
2.8 IP2022-Specific Reserved Words

The following list shows all of the instruction mnemonic names

and special-purpose register names. Both the uppercase and

lowercase versions of these names are reserved words. Reserved

words may not be used as symbolic names.

adccfg
adch
adcl
adctmr
add
addc
addrh
addrl
and
break
call
callh
calll
clr
clrb
cmp
cmpcfg
cse
csne
cwdt
datah
datal
dec
decsnz
decsz
dph
dpl

fcfg
ferase
fread
fwrite
inc
incsnz
incsz
int
intspd
intvech
intvecl
ipch
ipcl
iph
ipl
iread
iwrite
jmp
loadh
loadl
mov
mulh
muls
mulu
nop
not
or

page
pch
pcl
pop
pspcfg
push
radir
rain
raout
rbdir
rbin
rbinte
rbinted
rbintf
rbout
rcdir
rcin
rcout
rddir
rdin
rdout
redir
rein
reout
ret
rfdir
rfin

rfout
rgdir
rgout
rl
rr
rtcfg
s1inte
s1intf
s1mode
rttmr
s1rbufh
s1rbufl
s1rcfg
s1rcnt
s1rsync
s1smask
s1tbufh
s1tbufl
s1tcfg
s1tmrh
s1tmrl
s2inte
s2intf
s2mode
s2rbufh
s2rbufl
s2rcfg

s2rcnt
s2rsync
s2smask
s2tbufh
s2tbufl
s2tcfg
s2tmrh
s2tmrl
sb
setb
snb
spdreg
speed
sph
spl
status
sub
subc
swap
t0cfg
t0tmr
t1cap1h
t1cap1l
t1cap2h
t1cap2l
t1cfg1h
t1cfg1l

t1cfg2h
t1cfg2l
t1cmp1h
t1cmp1l
t1cmp2h
t1cmp2l
t1cnth
t1cntl
t2cap1h
t2cap1l
t2cap2h
t2cap2l
t2cfg1h
t2cfg1l
t2cfg2h
t2cfg2l
t2cmp1h
t2cmp1l
t2cmp2h
t2cmp2l
t2cnth
t2cntl
tctrl
test
wreg
xcfg
xor
18 www.ubicom.com

IP2022 Programmer’s Reference Manual—Writing Assembly Code
2.9 Other Resources

This chapter only briefly describes the assembly-language syntax

and the IP2022-specific features of the GNU assembler. For a

complete description of the non-IP2022-specific features of the

assembly-language syntax, see the GNUPro Toolkit—GNUPro

Utilities manual.
www.ubicom.com 19

Writing Assembly Code—IP2022 Programmer’s Reference Manual
20 www.ubicom.com

3.0Writing C Code

3.1 Data Types

Please consult the GNUPro Toolkit—GNUPro Compiler Tools

manual for a complete list of all data types.

3.1.1 IP2022 specific Data Types

These are the primitive types defined by ipOS:

Basic Types

typedef char s8_t;

typedef unsigned char u8_t;

typedef short int s16_t;

typedef unsigned short int u16_t;

typedef long int s32_t;

typedef unsigned long int u32_t;

typedef long long int s64_t;

typedef unsigned long long int u64_t;

Boolean Type

typedef unsigned char bool_t;

Address Type

typedef unsigned short int addr_t;
www.ubicom.com 21

Writing C Code—IP2022 Programmer’s Reference Manual
Program RAM (PRAM) Address Type

typedef unsigned short int pram_addr_t;

Task Priority Type

typedef unsigned char priority_t;

Reference Count Type

typedef unsigned char ref_t;

3.2 Writing In-Line Assembly in C

Although it is possible to include inline assembly with in a C

function, Ubicom discourages the use of inline assembly and

recommends using separate stand-alone assembly functions.

3.2.1 Methods of defining assembly constants in C

1. Defining a constant that can be used in assembly:
asm("constant1=8");

2. Using a C-defined constant:
asm("constant1=%b0" : : "i"(UART_RX_FIFO_SIZE))

3.2.2 Methods of defining assembly variables in C

1. With this prototype:

volatile u8_t var1 __attribute__((section(".gpr")));
22 www.ubicom.com

IP2022 Programmer’s Reference Manual—Writing C Code
_var1 can be used in assembly and var1 can be used in C.

3.2.3 Methods of using C-defined constants in assembly

1. Where constant2 is a C-defined constant:
mov w,D(constant2)

3.2.4 Methods of using C-defined variables in assembly

1. Where var2 is a C-defined variable:
asm("mov w,%0" : : "d"(var2));

2. Where %0, %1, and %2 equal to output1, input1, and input2,

respectively and output1, input1, and input2 are variables

that are defined in C:

asm("mov w,%1 and w,%2 mov %0,w" : "d"(output1):
"d"(input1), "d"(input2));

3. Where input16 is a 16 bit variable; its low byte is used as

%L0, and high byte is used as %H0:

asm("mov w,%L0 push wreg mov w,%H0" : : "i"(input16));

3.2.5 Methods of reaching SPR or GPR memory locations
in C

1. Where S1RCFG is a SPR memory location (=0x0068):
*(u8_t *) S1RCFG = b01001000;
www.ubicom.com 23

Writing C Code—IP2022 Programmer’s Reference Manual
3.2.6 D() macro

D() is a macro which is defined in the ipOS.h header file to allow

the use of C defined constants in inline assembly. Take for

example the following code:

/*
* rtl8019_read()
* Perform an I/O read on the RTL8019.
*/ u8_t rtl8019_read8(u8_t address) __attribute__
((section (".pram")));
u8_t rtl8019_read8(u8_t address) {

u8_t result;
asm("

mov w, #~$1F
and "D(RTL8019_ADDR_PORT + RxOUT)", w
mov w, %1 or "D(RTL8019_ADDR_PORT + RxOUT)", w
nops "D(RTL8019_ADDR_SETUP_TIME)"
clrb "D(RTL8019_IORD_PORT + RxOUT)",

"(RTL8019_IORD_PIN)"
nops "D(RTL8019_READ_SETUP_TIME)"
mov w, "D(RTL8019_DATAL_PORT + RxIN)"
setb "D(RTL8019_IORD_PORT + RxOUT)",

"D(RTL8019_IORD_PIN)"
mov %0, w
"
: "=r" (result)
: "r" (address)

);
return result;

}

Each of the uppercase indentifiers are defines created by the

configuration tool. It is not possible to simply use the defines within

the inline assembly because the C preprocessor will not expand

defines within strings. We need to force the define to be evaluated,
24 www.ubicom.com

IP2022 Programmer’s Reference Manual—Writing C Code
and then for it to be added to the string. The two macros D() and

S() achieve this:

/*
* Inline assembly define
*/

#define S(arg) #arg
#define D(arg) S(arg)

The D() macro forces the expression to be fully expanded by the

preprocessor. The S() macro then turns its arguments into a string.

In C, two adjacent strings are concatenated into a single string.

3.2.7 In-Line Assembly in C Source Files

In-line assembly code is embedded in a C source file using the

asm statement. To prevent the compiler from re-ordering

instructions during its optimization phase, keep blocks of

assembly language instructions together in a single asm
statement with the volatile qualifier, as shown in the following

example:

asm volatile ("
1: sb S2INTF,4

page 1b
jmp 1b
clrb S2INTF,4
clrb STATUS,0
rl w,%0
mov S2TBUFL,w
mov w,#1
www.ubicom.com 25

Writing C Code—IP2022 Programmer’s Reference Manual
rl wreg
mov S2TBUFH,w"
:/* No output */
:"rS" (data)

);

For more information about the interface between C and in-line

assembly language, see the GNUPro Toolkit—GNUPro Compiler

Tools manual, pages 253 to 261.

3.3 C to Assembly Calling Conventions

Calling an assembly function from C

The function is written in assembly:

.section .text,"ax"

.global_my_func ;The assembly routine
;label must be declared
;global

.func _my_func,_my_func

.section .text._my_func

_my_func:

MOV W,#01
XOR RBOUT,W
RET

.endfunc

A prototype must be provided for the assembly function callmust

be made, such as:
26 www.ubicom.com

IP2022 Programmer’s Reference Manual—Writing C Code
void my_func(void) __attribute__((naked));

Then the function is simply invoked by calling the function:

my_func();

The assembly routine (callee) should do the same steps a C

function.

• Preserve the Frame Pointer

• Restore the Frame Pointer

For example:

_MyCFuncCall:
push $fe;Preserve Frame Pointer
mov W,SPL
mov $fe,W
mov W,SPH
push $fd
mov $fd,W

;
mov W,$3(SP);Access passed Parameters
mulu W,$4(SP);Multiply two Parameters
mov $81,W;Return Low Byte
mov W,MULH;Return High Byte
mov $80,W

;
pop $fd;Restore Frame Pointer
pop $fe
mov W,#$2
add SPL,W

ret;
www.ubicom.com 27

Writing C Code—IP2022 Programmer’s Reference Manual
28 www.ubicom.com

4.0Instruction Set

4.1 Instruction Format

4.2 Addressing Modes

The addressing modes are shown in Table 4-1. For a more

detailed explanation of these modes, see the IP2022 Data Sheet.

Table 4-1 Addressing Modes

Addressing Mode
Assembly
Language
Examples

Description

Immediate mov w,#0xff Immediate operand is the literal value

0xFF (i.e. 255 decimal).

Direct mov w,0xff

mov 0xff,w

Direct operand is the global register

at address 0xFF. Direct addressing

can only be used for addresses

between 0x01 and 0xFF (i.e. special-

purpose registers and global regis-

ters).
www.ubicom.com 29

Instruction Set—IP2022 Programmer’s Reference Manual
Indirect mov w,(ip)

mov (ip),w

Indirect operand is the location in

data memory addressed by the con-

tents of the IPH/IPL register.

Indirect with Offset,

Data Pointer

mov w,8(dp)

mov 8(dp),w

Indirect operand is the location in

data memory addressed by the con-

tents of the DPH/DPL register plus an

offset of 8. The offset is restricted to a

range of 0 to 255. The operand

address must be > 0x20.

Indirect with Offset,

Stack Pointer

mov w,8(sp)

mov 8(sp),w

Indirect operand is the location in

data memory addressed by the con-

tents of the SPH/SPL register plus an

offset of 8. The offset is restricted to a

range of 0 to 255. The operand

address must be > 0x20.

Table 4-1 Addressing Modes (continued)

Addressing Mode
Assembly
Language
Examples

Description
30 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
4.3 Abbreviations Used

Table 4-2 Key to Abbreviations and Symbols

Symbol Description

W Working register

fr File register field (an operand specified using direct addressing,
indirect addressing, or indirect-with-offset addressing)

PCL Virtual register for direct PC modification (direct address 0x09)

STATUS STATUS register (direct address 0x0B)

IPH Indirect Pointer High - Upper half of pointer for indirect address-
ing (direct address 0x04)

IPL Indirect Pointer Low - Lower half of pointer for indirect address-
ing (direct address 0x05)

DPH Upper half of data pointer for indirect-with-offset addressing
(direct address 0x0C)

DPL Lower half of data pointer for indirect-with-offset addressing
(direct address 0x0D)

SPH Upper half of stack pointer for indirect-with-offset addressing
(direct address 0x06)

SPL Lower half of stack pointer for indirect-with-offset addressing
(direct address 0x07)

C Carry bit in the STATUS register (bit 0)

DC Digit Carry bit in the STATUS register (bit 1)

Z Zero bit in the STATUS register (bit 2

BO Brown-out bit in the STATUS register (bit 3)

WD Watchdog Timeout bit in the STATUS register (bit 4)

PA2:PA0 Page bits in the STATUS register (bits 7:5)
www.ubicom.com 31

Instruction Set—IP2022 Programmer’s Reference Manual
4.4 Summary of CPU Instructions

WDT Watchdog Timer counter and prescaler

, File register/bit selector separator (e.g. clrb status,z)

lit8 8-bit immediate operand (i.e. literal) in assembly language instruction

addr13 13-bit address in assembly language instruction

(address) Contents of memory referenced by address

| Logical OR

|| Concatenation

^ Logical exclusive OR

& Logical AND

!= inequality

Table 4-2 Key to Abbreviations and Symbols

Symbol Description

Table 4-3 Key to Abbreviations and Symbols

Symbol Description

W Working register

fr File register field (an operand specified using direct addressing,
indirect addressing, or indirect-with-offset addressing)

PCL Virtual register for direct PC modification (direct address 0x09)

STATUS STATUS register (direct address 0x0B)

IPH Indirect Pointer High - Upper half of pointer for indirect address-
ing (direct address 0x04)
32 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
IPL Indirect Pointer Low - Lower half of pointer for indirect address-
ing (direct address 0x05)

DPH Upper half of data pointer for indirect-with-offset addressing
(direct address 0x0C)

DPL Lower half of data pointer for indirect-with-offset addressing
(direct address 0x0D)

SPH Upper half of stack pointer for indirect-with-offset addressing
(direct address 0x06)

SPL Lower half of stack pointer for indirect-with-offset addressing
(direct address 0x07)

C Carry bit in the STATUS register (bit 0)

DC Digit Carry bit in the STATUS register (bit 1)

Z Zero bit in the STATUS register (bit 2

BO Brown-out bit in the STATUS register (bit 3)

WD Watchdog Timeout bit in the STATUS register (bit 4)

PA2:PA0 Page bits in the STATUS register (bits 7:5)

WDT Watchdog Timer counter and prescaler

, File register/bit selector separator (e.g. clrb status,z)

lit8 8-bit immediate operand (i.e. literal) in assembly language instruction

addr13 13-bit address in assembly language instruction

(address) Contents of memory referenced by address

| Logical OR

|| Concatenation

Table 4-3 Key to Abbreviations and Symbols

Symbol Description
www.ubicom.com 33

Instruction Set—IP2022 Programmer’s Reference Manual
4.4.1 Logical Instructions

^ Logical exclusive OR

& Logical AND

!= inequality

Table 4-3 Key to Abbreviations and Symbols

Symbol Description

Table 4-4 Logical Instructions

Assembler
Syntax

Pseudocode
Definition Description Flags

Affected

and fr,w fr = fr & W AND fr,W into fr Z

and w,fr W = W & fr AND W,fr into W Z

and w,#lit8 W = W & lit8 AND W,literal into W Z

not fr fr = fr Complement fr into fr Z

not w,fr W = fr Complement fr into W Z

or fr,w fr = fr | W OR fr,W into fr Z

or w,fr W = W | fr OR W,fr into W Z

or w,#lit8 W = W | lit8 OR W,literal into W Z

xor fr,w fr = fr ^ W XOR fr,W into fr Z

xor w,fr W = W ^ fr XOR W,fr into W Z

xor w,#lit8 W = W ^ lit8 XOR W,literal into W Z
34 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
4.4.2 Arithmetic and Shift Instructions

Table 4-5 Arithmetic and Shift Instructions

Assembler
Syntax

Pseudocode
Definition Description Flags

Affected

add fr,w fr = fr + W Add fr,W into fr C, DC, Z

add w,fr W = W + fr Add W,fr into W C, DC, Z

add w,#lit8 W = W + lit8 Add W,literal into W C, DC, Z

addc fr,w fr = C + fr + W Add carry,fr,W into fr C, DC, Z

addc w,fr W = C + W + fr Add carry,W,fr into W C, DC, Z

clr fr fr = 0 Clear fr Z

cmp w,fr fr - W Compare W,fr
then update STATUS

C, DC, Z

cmp w,#lit8 lit8 - W Compare W,literal
then update STATUS

C, DC, Z

cse w,fr if (fr - W) = 0
then skip

Compare W,fr then skip if
equal

None

cse w,#lit8 if (lit8 - W) = 0
then skip

Compare W,literal then
skip if equal

None

csne w,fr if (fr - W) != 0
then skip

Compare W,fr then skip if
not equal

None

csne w,#lit8 if (lit8 - W) != 0
then skip

Compare W,literal then
skip if not equal

None

cwdt WDT = 0 Clear Watchdog Timer None

dec fr fr = fr - 1 Decrement fr into fr Z

dec w,fr W = fr -1 Decrement fr into W Z
www.ubicom.com 35

Instruction Set—IP2022 Programmer’s Reference Manual
decsnz fr fr = fr - 1
if fr != 0 then skip

Decrement fr into fr then
skip if not zero (STATUS
not updated)

None

decsnz w,fr W = fr - 1
if fr != 0 then skip

Decrement fr into W then
skip if not zero (STATUS
not updated)

None

decsz fr fr = fr - 1
if fr = 0 then skip

Decrement fr into fr then
skip if zero (STATUS not
updated)

None

decsz w,fr W = fr - 1
if fr = 0 then skip

Decrement fr into W then
skip if zero (STATUS not
updated)

None

inc fr fr = fr + 1 Increment fr into fr Z

inc w,fr W = fr + 1 Increment fr into W Z

incsnz fr fr = fr + 1
if fr != 0 then skip

Increment fr into fr then
skip if not zero (STATUS
not updated)

None

incsnz w,fr W = fr + 1
if fr != 0 then skip

Increment fr into W then
skip if not zero (STATUS
not updated)

None

incsz fr fr = fr + 1
if fr = 0 then skip

Increment fr into fr then
skip if zero (STATUS not
updated)

None

incsz w,fr W = fr + 1
if fr = 0 then skip

Increment fr into W then
skip if zero (STATUS not
updated)

None

Table 4-5 Arithmetic and Shift Instructions (continued)

Assembler
Syntax

Pseudocode
Definition Description Flags

Affected
36 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
muls w,fr MULH || W = W × fr Signed 8 × 8 multiply (bit
7 = sign) W,fr into MULH ||
W

None

muls w,#lit8 MULH || W = W × lit8 Signed 8 × 8 multiply (bit
7 = sign) W,literal into
MULH || W

None

mulu w,fr MULH || W = W × fr Unsigned 8 × 8 multiply
W,fr into MULH || W

None

mulu w,#lit8 MULH || W = W × lit8 Unsigned 8 × 8 multiply
W,literal into MULH || W

None

rl fr fr || C = C || fr Rotate fr left through carry
into fr

C

rl w,fr W || C = C || fr Rotate fr left through carry
into W

C

rr fr C || fr = fr || C Rotate fr right through
carry into fr

C

rr w,fr C || W = fr || C Rotate fr right through
carry into W

C

sub fr,w fr = fr - W Subtract W from fr into fr C, DC, Z

sub w,fr W = fr - W Subtract W from fr into W C, DC, Z

sub w,#lit8 W = lit8 - W Subtract W from literal
into W

C, DC, Z

subc fr,w fr = fr - C - W Subtract carry,W from fr
into fr

C, DC, Z

subc w,fr W = fr - C - W Subtract carry,W from fr
into W

C, DC, Z

Table 4-5 Arithmetic and Shift Instructions (continued)

Assembler
Syntax

Pseudocode
Definition Description Flags

Affected
www.ubicom.com 37

Instruction Set—IP2022 Programmer’s Reference Manual
4.4.3 Bit Operation Instructions

swap fr fr = fr3:0 || fr7:4 Swap high and low nib-
bles of fr into fr

None

swap w,fr W = fr3:0 || fr7:4 Swap high and low nib-
bles of fr into W

None

test fr if fr = 0 then Z = 1
else Z = 0

Test fr for zero and update
Z

Z

Table 4-5 Arithmetic and Shift Instructions (continued)

Assembler
Syntax

Pseudocode
Definition Description Flags

Affected

Table 4-6 Bit Operation Instructions

Assembler
Syntax

Pseudocode
Definition Description Flags

Affected

clrb fr,bit fr,bit = 0 Clear bit in fr None

sb fr,bit if fr,bit = 1 then skip Test bit in fr then skip if
set

None

setb fr,bit fr,bit = 1 Set bit in fr None

snb fr,bit if fr,bit = 0 then skip Test bit in fr then skip if
clear

None
38 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
4.4.4 Data Movement Instructions

Table 4-7 Data Movement Instructions

Assembler
Syntax

Pseudocode
Definition Description Flags

Affected

mov fr,w fr = W Move W into fr None

mov w,fr W = fr Move fr into W Z

mov w,#lit8 W = lit8 Move literal into W None

push fr (SP) = fr, then
SP = SP - 1

Move fr onto top of stack None

push #lit8 (SP) = lit8, then
SP = SP - 1

Move literal onto top of
stack

None

pop fr fr = SP + 1, then
SP = SP + 1

Move top of stack + 1into fr None
www.ubicom.com 39

Instruction Set—IP2022 Programmer’s Reference Manual
4.4.5 Program Control Instructions

Table 4-8 Program Control Instructions

Assembler
Syntax Description Flags

Affected

call addr13 Call subroutine None

jmp addr13 Jump None

int Software interrupt None

nop No operation None

ret Return from subroutine PA2:0

retnp Return from subroutine, without updating
page bits

None

reti #lit3 Return from interrupt All

retw #lit8 Return from subroutine with literal into W PA2:0
40 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
4.4.6 System Control Instructions

Table 4-9 System Control Instructions

Assembler
Syntax Description Flags

Affected

break Software breakpoint None

breakx Software breakpoint, extending the skip None

ferase Erase a 256 word flash block None

fread Read from flash memory None

fwrite Write into flash memory None

iread Read from external/program memory None

ireadi Read from external/program memory and
increment ADDRL by 2

None

iwrite Write into program RAM None

iwritei Write into external/program memory and
increment ADDRL by 2

None

loadh addr8 Load high data (byte) address into DPH None

loadl addr8 Load low data (byte) address into DPL None

page addr3 Load page bits from program address into
PA2:0 of the STATUS

PA2:0

speed #lit8 Change CPU speed by writing into the
SPDREG register

None
www.ubicom.com 41

Instruction Set—IP2022 Programmer’s Reference Manual
4.5 Instruction Descriptions

This section contains detailed information about the instructions

for the IP2022 Processor. Each instruction is described in detail

and the instruction descriptions are arranged in alphabetical order

by instruction mnemonic.
42 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
ADD fr,W

Operation: fr = fr + W

Bits affected: C, DC, Z

Opcode: 0001 111f ffff ffff

Description: This instruction adds the contents of W to the contents of the

specified data memory location and writes the 8-bit result

into the same data memory location. W is left unchanged.

The register contents are treated as unsigned values.

If the result of addition exceeds 0xFF, the C bit is set and the

lower eight bits of the result are written to the data memory

location. Otherwise, the C bit is cleared.

If there is a carry from bit 3 to bit 4, the DC (digit carry) bit is

set. Otherwise, the bit is cleared.

If the result of addition is zero, the Z bit is set. Otherwise, the

Z bit is cleared. A sum of 0x100 is considered zero and

therefore sets the Z bit.

Cycles: 1 (3, if jumping by using PCL as the destination)
www.ubicom.com 43

Instruction Set—IP2022 Programmer’s Reference Manual
Example: add 0x099,w

This example adds the contents of W to data memory

location 0x099. For example, if the data memory location

holds 0x7F and W holds 0x02, this instruction adds 0x02 to

0x7F, writes the result 0x81 into the data memory location,

and clears the C and Z bits. It sets the DC bit because of the

carry from bit 3 to bit 4.
44 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
ADD W,fr

Operation: W = W + fr

Bits affected: C, DC, Z

Opcode: 0001 110f ffff ffff

Description: This instruction adds the contents of the specified data

memory location to the contents of W and writes the 8-bit

result into W. The data memory location is left unchanged.

The register contents are treated as unsigned values.

If the result of addition exceeds 0xFF, the C bit is set and the

lower eight bits of the result are written to W. Otherwise, the

C bit is cleared.

If there is a carry from bit 3 to bit 4, the DC (digit carry) bit is

set. Otherwise, the DC bit is cleared.

If the result of addition is zero, the Z bit is set. Otherwise, the

Z bit is cleared. A sum of 0x100 is considered zero and

therefore sets the Z bit.

Cycles: 1
www.ubicom.com 45

Instruction Set—IP2022 Programmer’s Reference Manual
Example: add w,0x099

This example adds the contents of data memory location

0x099 to W. For example, if the data memory location holds

0x81 and W holds 0x82, this instruction adds 0x81 to 0x82

and writes the lower eight bits of the result, 0x03, into W. It

sets the C bit because of the carry out of bit 7, and clears the

DC bit because there is no carry from bit 3 to bit 4. The Z bit

is cleared because the result is nonzero.
46 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
ADD W,#lit8

Operation: W = W + lit8

Bits affected: C, DC, Z

Opcode: 0111 1011 kkkk kkkk

Description: This instruction adds an 8-bit literal value (a value specified

within the instruction) to the contents of W and writes the 8-

bit result into W. The operands are treated as unsigned

values.

If the result of addition exceeds 0xFF, the C bit is set and the

lower eight bits of the result are written to W. Otherwise, the

C bit is cleared.

If there is a carry from bit 3 to bit 4, the DC (digit carry) bit is

set. Otherwise, the DC bit is cleared.

If the result of addition is zero, the Z bit is set. Otherwise, the

Z bit is cleared. A sum of 0x100 is considered zero and

therefore sets the Z bit.

Cycles: 1

Example: add w,#0x12

This example adds 0x12 to the contents of W. For example,

if W holds 0x82, this instruction adds 0x12 to 0x82 and writes

the lower eight bits of the result, 0x94, into W. It clears the C

bit because there is no carry out of bit 7, and clears the DC

bit because there is no carry from bit 3 to bit 4. The Z bit is

cleared because the result is nonzero.
www.ubicom.com 47

Instruction Set—IP2022 Programmer’s Reference Manual
ADDC fr,W

Operation: fr = C + fr + W

Bits affected: C, DC, Z

Opcode: 0101 111f ffff ffff

Description: This instruction adds the contents of W and the C bit to the

contents of the specified data memory location and writes

the 8-bit result into the same data memory location. W is left

unchanged. The register contents are treated as unsigned

values.

If the result of addition exceeds 0xFF, the C bit is set and the

lower eight bits of the result are written to the data memory

location. Otherwise, the C bit is cleared.

If there is a carry from bit 3 to bit 4, the DC (digit carry) bit is

set. Otherwise, the bit is cleared.

If the result of addition is zero, the Z bit is set. Otherwise, the

Z bit is cleared. A sum of 0x100 is considered zero and

therefore sets the Z bit.

Cycles: 1
48 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
Example: addc 0x099,w

This example adds the contents of W and the C bit to data

memory location 0x099. For example, if the data memory

location holds 0x7F, W holds 0x02, and the carry bit is set,

this instruction adds 0x03 to 0x7F, writes the result 0x82 into

the data memory location, and clears the C and Z bits. It sets

the DC bit because of the carry from bit 3 to bit 4.
www.ubicom.com 49

Instruction Set—IP2022 Programmer’s Reference Manual
ADDC W,fr

Operation: W = C + W + fr

Bits affected: C, DC, Z

Opcode: 0101 110f ffff ffff

Description: This instruction adds the contents of the specified data

memory location and the C bit to the contents of W and writes

the 8-bit result into W. The data memory location is left

unchanged. The register contents are treated as unsigned

values.

If the result of addition exceeds 0xFF, the C bit is set and the

lower eight bits of the result are written to W. Otherwise, the

C bit is cleared.

If there is a carry from bit 3 to bit 4, the DC (digit carry) bit is

set. Otherwise, the DC bit is cleared.

If the result of addition is zero, the Z bit is set. Otherwise, the

Z bit is cleared. A sum of 0x100 is considered zero and

therefore sets the Z bit.

Cycles: 1
50 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
Example: addc w,0x099

This example adds the contents of data memory location

0x099 and the C bit to W. If the data memory location holds

0x71, W holds 0x92, and the C bit is set, this instruction adds

0x72 to 0x92 and writes the lower eight bits of the result 0x04

into W. It sets the C bit because of the carry out of bit 7, clears

the DC bit because there is no carry from bit 3 to bit 4, and

clears the Z bit because the result is nonzero.
www.ubicom.com 51

Instruction Set—IP2022 Programmer’s Reference Manual
AND fr,W

Operation: fr = fr & W

Bits affected: Z

Opcode: 0001 011f ffff ffff

Description: This instruction performs a bitwise logical AND of the

contents of the specified data memory location and W, and

writes the 8-bit result into the same data memory location. W

is left unchanged. If the result is zero, the Z bit is set.

Cycles: 1

Example: and 0x099,W

This example performs a bitwise logical AND of the working

register W with a value stored in data memory location

0x099. The result is written back to the data memory

location.

For example, suppose that the data memory location 0x099

holds the value 0x0F and W holds the value 0x13. The

instruction takes the logical AND of 0x0F and 0x13 and

writes the result 0x03 back to the data memory location. The

result is nonzero, so the Z bit is cleared.
52 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
AND W,fr

Operation: W = W & fr

Bits affected: Z

Opcode: 0001 010f ffff ffff

Description: This instruction performs a bitwise logical AND of the

contents of W and the specified data memory location, and

writes the 8-bit result into W. The data memory location is left

unchanged. If the result is zero, the Z bit is set.

Cycles: 1

Example: and w,0x099

This example performs a bitwise logical AND of the value

stored in data memory location 0x099 with W. The result is

written back to W.

For example, suppose that the data memory location 0x099

holds the value 0x0F and W holds the value 0x13. The

instruction takes the logical AND of 0x0F and 0x13 and

writes the result 0x03 into W. The result is nonzero, so the Z

bit is cleared.
www.ubicom.com 53

Instruction Set—IP2022 Programmer’s Reference Manual
AND W,#lit8

Operation: W = W & lit8

Bits affected: Z

Opcode: 0111 1110 kkkk kkkk

Description: This instruction performs a bitwise logical AND of the

contents of W and an 8-bit literal value, and writes the 8-bit

result into W. If the result is zero, the Z bit is set.

Cycles: 1

Example: and w,#0x0F

This example performs a bitwise logical AND of W with the

literal value 0x0F. The result is written back to W.

For example, suppose that W holds the value 0x50. The

instruction takes the logical AND of this value with 0x0F and

writes the result 0x00 into W. The result is zero, so the Z bit

is set.
54 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
BREAK

Operation: See text below.

Bits affected: None

Opcode: 0000 0000 0000 0001

Description: This instruction enters the Break mode used for software

debugging. On entry into Break mode, the CPU pipeline is

flushed, and program execution stops with the CPU

executing a continuous series of nop instructions. The break
instruction is used to suspend program execution at a

specified point, so that the contents of registers can be

examined through the debugging interface. Break mode can

be exited only by reset or debugging commands issued

through the ISD/ISP interface.

Cycles: 1

Example: break

Enter break mode. Not useful except when using a

debugger.
www.ubicom.com 55

Instruction Set—IP2022 Programmer’s Reference Manual
BREAK

Operation: See text below.

Bits affected: None

Opcode: 0000 0000 0000 0101

Description: This instruction enters the Break mode (and extends a skip)

used for software debugging. On entry into Break mode, the

CPU pipeline is flushed, and program execution stops with

the CPU executing a continuous series of nop instructions.

The breakx instruction is used to suspend program

execution at a specified point, so that the contents of

registers can be examined through the debugging interface,

and then provide a skip. Break mode can be exited only by

reset or debugging commands issued through the ISD/ISP

interface.

The breakx instruction would be used only to provide a

break immediately following a skip-on-condition instruction

(sb, snb).

Cycles: 2

Example: breakx

Enter break mode, extending a skip. Not useful except when

using a debugger.
56 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
CALL addr13

Operation: top-of-stack = PC15:0 + 1
PC12:0 = addr13
PC15:13 = PA2:0

Bits affected: None

Opcode: 110k kkkk kkkk kkkk

Description: This instruction calls a subroutine. The full 16-bit address of

the next program instruction is saved on the stack and the

program counter is loaded with a new address, which causes

a jump to that program address. Bits 12:0 come from the 13-

bit constant value in the instruction, and bits 15:13 come from

the PA2:0 bits in the STATUS register. The subroutine is

terminated by a ret instruction, which restores the saved

address to the program counter. Execution proceeds from

the instruction following the call instruction.

Cycles: 3
www.ubicom.com 57

Instruction Set—IP2022 Programmer’s Reference Manual
Example: page 0x600 ;set page bits
call addxy ;call subroutine addxy
nop ;addxy results
;available here
...

addxy: ;subroutine address label
mov w,#0F ;subroutine begins
add w,0x099
...
ret ;return from subroutine

The call instruction in this example calls a subroutine

called addxy. When the call instruction is executed, the

address of the following instruction (the nop instruction) is

pushed onto the stack and the program jumps to the addxy

routine. When the ret instruction is executed, the 16-bit

program address saved on the stack is popped and restored

to the program counter, which causes the program to

continue with the instruction immediately following the call

instruction.
58 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
CLR fr

Operation: fr = 0

Bits affected: Z

Opcode: 0000 011f ffff ffff

Description: This instruction clears the specified data memory location. It

also sets the Z bit unconditionally.

Cycles: 1

Example: clr 0x099

This example clears data memory location 0x099 and sets

the Z bit.
www.ubicom.com 59

Instruction Set—IP2022 Programmer’s Reference Manual
CLRB fr,bit

Operation: fr,bit = 0

Bits affected: None

Opcode: 1000 bbbf ffff ffff

Description: This instruction clears a bit in the specified data memory

location without changing the other bits in the register. The

data memory location address and the bit number (0 through

7) are the instruction operands.

Cycles: 1

Example: clrb 0x099,7

This example clears the most significant bit of data memory

location 0x099.
60 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
CMP W,fr

Operation: fr - W; result is discarded, STATUS is updated

Bits affected: C, DC, Z

Opcode: 0000 010f ffff ffff

Description: This instruction subtracts the contents of W from the contents

of the specified data memory location and discards the

result. The data memory location and W are left unchanged.

Only the STATUS register bits are updated.

If the result of subtraction is negative (W is larger than fr), the

C bit is cleared and the lower eight bits of the result are

written to W. Otherwise, the C bit is set.

If there is a borrow from bit 3 to bit 4, the DC (digit carry) bit

is cleared. Otherwise, the bit is set.

If the result of subtraction is zero, the Z bit is set. Otherwise,

the Z bit is cleared.

Cycles: 1

Example: cmp w,0x099

This example subtracts the contents of W from data memory

location 0x099. For example, if the data memory location

holds 0x35 and W holds 0x06, this instruction subtracts 0x06

from 0x35. It then sets the C bit, clears the DC bit, and clears

the Z bit. The contents of the data memory location and W

are left unchanged.
www.ubicom.com 61

Instruction Set—IP2022 Programmer’s Reference Manual
CMP W,#lit8

Operation: lit8 - W; result is discarded, STATUS is updated

Bits affected: C, DC, Z

Opcode: 0111 1001 kkkk kkkk

Description: This instruction subtracts the contents of W from an 8-bit

literal and discards the result. W is left unchanged. Only the

STATUS register bits are updated.

If the result of subtraction is negative (W is larger than lit8),

the C bit is cleared and the lower eight bits of the result are

written to W. Otherwise, the C bit is set.

If there is a borrow from bit 3 to bit 4, the DC (digit carry) bit

is cleared. Otherwise, the bit is set.

If the result of subtraction is zero, the Z bit is set. Otherwise,

the Z bit is cleared.

Cycles: 1

Example: cmp w,#0x0F

This example subtracts the contents of W from 0x0F. For

example, if W holds 0x06, this instruction subtracts 0x06

from 0x0F. It then clears the C bit, clears the DC bit, and

clears the Z bit. The contents of W are left unchanged.
62 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
CSE W,#lit8

Operation: fr - W; if result is zero, skip next instruction

Bits affected: None

Opcode: 0100 001f ffff ffff

Description: This instruction subtracts the contents of W from the

specified data memory location and discards the result. The

data memory location and W are left unchanged. If the result

is zero (i.e. W and the literal are equal), the following

instruction is skipped. The STATUS register bits are not

updated.

Cycles: 1 if tested condition is false, 2 if tested condition is true

Example: cse w,0x0F0 ;compare W with 0x0F0
ret ;if not equal, return
nop ;else, skip to here

This example compares the contents of W with the contents

of data memory location 0x0F0. If W and the data memory

location hold the same contents, then the ret instruction is

executed, otherwise the nop instruction is executed.
www.ubicom.com 63

Instruction Set—IP2022 Programmer’s Reference Manual
CSE W,fr

Operation: lit8 - W; if result is zero, skip next instruction

Bits affected: None

Opcode: 0111 0111 kkkk kkkk

Description: This instruction subtracts the contents of W from an 8-bit

literal and discards the result. W is left unchanged. If the

result is zero (i.e. W and the literal are equal), the following

instruction is skipped. The STATUS register bits are not

updated.

Cycles: 1 if tested condition is false, 2 if tested condition is true

Example: cse w,#0x1B ;compare W against
;escape char.

jmp normal_char ;if equal, jump
;to normal_char

jmp escape_char ;else, jump
;to escape_char

This example compares the contents of W with the ASCII

code for the escape character. If W holds 0x1B, then the

escape_char routine is called, otherwise the normal_char
routine is called.
64 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
CSNE W,fr

Operation: fr - W; if result is nonzero, skip next instruction

Bits affected: None

Opcode: 0100 000f ffff ffff

Description: This instruction subtracts the contents of W from the

specified data memory location and discards the result. The

data memory location and W are left unchanged. If the result

is nonzero (i.e. W and the literal are not equal), the following

instruction is skipped. The STATUS register bits are not

updated.

Cycles: 1 if tested condition is false, 2 if tested condition is true

Example: csne w,0x0F0 ;compare W against
;register 0x0F0

ret ;if equal, return
nop ;else, skip to here

This example compares the contents of W with the contents

of data memory location 0x0F0. If W and the data memory

location hold the same contents, then the nop instruction is

executed, otherwise the ret instruction is executed.
www.ubicom.com 65

Instruction Set—IP2022 Programmer’s Reference Manual
CSNE W,#lit8

Operation: lit8 - W; if result is nonzero, skip next instruction

Bits affected: None

Opcode: 0111 0110 kkkk kkkk

Description: This instruction subtracts the contents of W from an 8-bit

literal and discards the result. W is left unchanged. If the

result is nonzero (i.e. W and the literal are not equal), the

following instruction is skipped. The STATUS register bits are

not updated.

Cycles: 1 if tested condition is false, 2 if tested condition is true

Example: csne w,#0x1B ;compare W against
;escape char.

jmp escape_char ;if equal, jump
;to escape_char

jmp normal_char;else, jump to
;normal_char

This example compares the contents of W with the ASCII

code for the escape character. If W holds 0x1B, then the

escape_char routine is called, otherwise the normal_char
routine is called.
66 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
CWDT

Operation: Clears Watchdog timer counter and prescaler counter

Bits affected: Z

Opcode: 0000 0000 0000 0100

Description: This instruction clears the Watchdog Timer counter to zero.

It also clears the Watchdog prescaler.

If the Watchdog Timer is enabled, the application software

must execute this instruction periodically in order to prevent

a Watchdog reset.

Cycles: 1

Example: cwdt

This example clears the Watchdog Timer counter and the

Watchdog Timer prescaler.
www.ubicom.com 67

Instruction Set—IP2022 Programmer’s Reference Manual
DEC fr

Operation: fr = fr - 1

Bits affected: Z

Opcode: 0000 111f ffff ffff

Description: This instruction decrements the specified register file by one.

If the data memory location holds 0x01, it is decremented to

0x00 and the Z bit is set. Otherwise, the bit is cleared.

If the data memory location holds 0x00, it is decremented to

0xFF.

Cycles: 1

Example: dec 0x099

This example decrements data memory location 0x099.
68 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
DEC W,fr

Operation: W = fr - 1

Bits affected: Z

Opcode: 0000 110f ffff ffff

Description: This instruction decrements the value in the specified

register file by one and moves the 8-bit result into W. The

data memory location is left unchanged.

If the data memory location holds 0x01, the value moved into

W is 0x00 and the Z bit is set. Otherwise, the Z bit is cleared.

Cycles: 1

Example: dec w,0x099

This example decrements the value in the data memory

location at 0x099 and moves the result into W. For example,

if the data memory location holds 0x75, the value 0x74 is

loaded into W, and the Z bit is cleared. The data memory

location still holds 0x75 after execution of the instruction.
www.ubicom.com 69

Instruction Set—IP2022 Programmer’s Reference Manual
DECSNZ fr

Operation: fr = fr - 1; if nonzero result, then skip next instruction

Bits affected: None

Opcode: 0100 111f ffff ffff

Description: This instruction decrements the specified register file by one

and tests the new register value. If that value is not zero, the

next program instruction is skipped. Otherwise, execution

proceeds normally with the next instruction.

Cycles: 1 if tested condition is false, 2 if tested condition is true

Example: back1:
decsnz 0x18
jmp back1
mov 0x19,w

The decsnz instruction decrements data memory location

0x18. If the result is zero, execution proceeds normally with

the jmp instruction to back1. If the result is nonzero, the jmp

instruction is skipped, and the mov instruction is executed.
70 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
DECSNZ W,fr

Operation: W = fr - 1; if nonzero result, then skip next instruction

Bits affected: None

Opcode: 0100 110f ffff ffff

Description: This instruction decrements the value in the specified data

memory location and moves the result to W. The data

memory location is left unchanged.

If the result is zero, the next instruction in the program is

skipped. Otherwise, program execution proceeds normally

with the next instruction.

Cycles: 1 if tested condition is false, 2 if tested condition is true

Example: decsnz w,0x099;decrement 0x099 and
;load result into W

ret ;return if result is 0
nop ;otherwise continue here

This example takes the contents of data memory location

0x099, decrements that value, and moves the result to W. If

the result is nonzero, the ret instruction is skipped and the

nop instruction is executed. If the result is zero, the ret

instruction is executed.
www.ubicom.com 71

Instruction Set—IP2022 Programmer’s Reference Manual
DECSZ fr

Operation: fr = fr - 1; if result is 0, then skip next instruction

Bits affected: None

Opcode: 0010 111f ffff ffff

Description: This instruction decrements the specified register file by one

and tests the new register value. If that value is zero, the next

program instruction is skipped. Otherwise, execution

proceeds normally with the next instruction.

Cycles: 1 if tested condition is false, 2 if tested condition is true

Example: back1:
decsz 0x18
jmp back1
mov 0x19,w

The decsz instruction decrements data memory location

0x18. If the result is nonzero, execution proceeds normally

with the jmp instruction. If the result is zero, the jmp

instruction is skipped and the mov instruction is executed.
72 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
DECSZ W,fr

Operation: W = fr - 1; if result is 0, then skip next instruction

Bits affected: None

Opcode: 0010 110f ffff ffff

Description: This instruction decrements the value in the specified data

memory location and moves the result to W. The data

memory location is left unchanged.

If the result is zero, the next instruction in the program is

skipped. Otherwise, program execution proceeds normally

with the next instruction.

Cycles: 1 if tested condition is false, 2 if tested condition is true

Example: decsz w,0x099 ;decrement 0x099 and
;load result into W

ret ;return if result is 0
nop ;otherwise continue

;from here

This example takes the contents of data memory location

0x099, decrements that value, and moves the result to W. If

the result is zero, the ret instruction is skipped and the nop

instruction is executed. If the result is nonzero, the ret

instruction is executed.
www.ubicom.com 73

Instruction Set—IP2022 Programmer’s Reference Manual
FERASE

Operation: See text below.

Bits affected: FBUSY bit in the XCFG register

Opcode: 0000 0000 0000 0011

Description: This instruction erases a 512-byte (256-word) block of

program flash memory. The ADDRH register specifies bits

15:8 of the byte address of the block. If the block is not in

program flash memory, no operation is performed. The

instruction is non-blocking (i.e. other instructions may

execute before the erase operation is complete).

After executing this instruction, the FBUSY bit in the XCFG

register is set. When the erase operation is complete, the

FBUSY bit goes clear. This instruction must not be executed

if the FBUSY bit is already set from a previous iread,

ireadi, iwrite, iwritei, fread, fwrite, or ferase

instruction. Program execution out of flash memory is not

possible while the FBUSY bit is set, therefore this instruction

can only be executed from program RAM.

Cycles: 1
74 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
Example: mov w,#0x01 ;load W with 0x01
mov addrx,w ;copy W to ADDRX
mov w,#0x83 ;load W with 0x83
mov addrh,w ;copy W to ADDRH
ferase ;erase block

This example erases the 512-byte (256-word) block from

byte address 0x18300 to 0x183FF.

The erase operation does not complete and the flash

memory is not accessible until the FBUSY bit goes clear after

the ferase instruction is executed. Therefore, any

subsequent code that uses the flash memory must either

check the state of the FBUSY bit or wait a sufficient number

of delay cycles before proceeding.
www.ubicom.com 75

Instruction Set—IP2022 Programmer’s Reference Manual
FREAD

Operation: DATAH || DATAL = (ADDRX || ADDRH || ADDRL)

Bits affected: FBUSY bit in the XCFG register

Opcode: 0000 0000 0001 1011

Description: This instruction transfers data from program flash memory to

data memory. The 24-bit ADDRX/ADDRH/ADDRL register

specifies the address of a 16-bit word in program memory

which is loaded into the DATAH/DATAL register. If the

address is not in program flash memory, no operation is

performed. The instruction is non-blocking (i.e. other

instructions may execute before the read operation is

complete).

After executing this instruction, the FBUSY bit in the XCFG

register is set. When the read operation is complete, the

FBUSY bit goes clear. This instruction must not be executed

if the FBUSY bit is already set from a previous iread,

ireadi, iwrite, iwritei, fread, fwrite, or ferase

instruction. Program execution out of flash memory is not

possible while the FBUSY bit is set, therefore this instruction

can only be executed from program RAM.

Cycles: 1
76 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
Example: mov w,#0x01 ;load W with 0x01
mov addrx,w ;copy W to ADDRX
mov w,#0x83 ;load W with 0x83
mov addrh,w ;copy W to ADDRH
mov w,#0x80 ;load W with 0x80
mov addrl,w ;copy W to ADDRL
fread ;read flash memory
... ;wait for FBUSY =0 or
... ;delay for longer than
... ;flash access time
mov w,datal ;move low byte to W
mov 0xFE,w ;copy W to 0xFE
mov w,datah ;move high byte to W
mov 0xFF,w ;copy W to 0xFF

This example reads the 16-bit data stored at byte address

0x18380 in program flash memory. First, ADDRH and

ADDRL are loaded with 0x018380. After the fread

instruction, the DATAH/DATAL register holds the data stored

in program memory at byte address 0x18380. Then, the

lower byte is loaded into data memory location 0xFE and the

upper byte is loaded into data memory location 0xFF.
www.ubicom.com 77

Instruction Set—IP2022 Programmer’s Reference Manual
FWRITE

Operation: (ADDRX || ADDRH || ADDRL) = DATAH || DATAL

Bits affected: FBUSY bit in the XCFG register

Opcode: 0000 0000 0001 1010

Description: This instruction writes a word of data to program flash

memory from data memory. The 24-bit

ADDRX/ADDRH/ADDRL register specifies the address of a

16-bit word in program memory which is loaded with the

contents of the DATAH/DATAL register. If the address is not

in program flash memory, no operation is performed. The

instruction is non-blocking (i.e. other instructions may

execute before the write operation is complete).

After executing this instruction, the FBUSY bit in the XCFG

register is set. When the write operation is complete, the

FBUSY bit goes clear. This instruction must not be executed

if the FBUSY bit is already set from a previous iread,

ireadi, iwrite, iwritei, fread, fwrite, or ferase

instruction. Program execution out of flash memory is not

possible while the FBUSY bit is set, therefore this instruction

can only be executed from program RAM.

Cycles: 1
78 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
Example: mov w,#0x01 ;load W with 0x01
mov addrx,w ;copy W to ADDRX
mov w,#0x83 ;load W with 0x83
mov addrh,w ;copy W to ADDRH
mov w,#0x80 ;load W with 0x80
mov addrl,w ;copy W to ADDRL
mov w,0xFE ;copy 0xFE to W
mov datal,w ;copy W to DATAL
mov w,0xFF ;copy 0xFF to W
mov datah,w ;copy W to DATAH
fwrite ;write flash memory

This example writes the 16-bit data held in the

DATAH/DATAL register to address 0x18380 in program flash

memory. First, ADDRX/ADDRH/ADDRL is loaded with

0x018380. Then, DATAH/DATAL is loaded from 0xFE and

0xFF. Finally, the fwrite instruction loads program flash

memory from DATAH/DATAL with the data that came from

registers 0xFE and 0xFF.

The write operation does not complete and the flash memory

is not accessible until the FBUSY bit goes clear after the

fwrite instruction is executed. Therefore, any subsequent

code that uses the flash memory must either check the state

of the FBUSY bit or wait a sufficient number of delay cycles

before proceeding.
www.ubicom.com 79

Instruction Set—IP2022 Programmer’s Reference Manual
INC fr

Operation: fr = fr + 1

Bits affected: Z

Opcode: 0010 101f ffff ffff

Description: This instruction increments the specified register file by one.

If the data memory location holds 0xFF and is incremented

to 0x00, the Z bit is set. Otherwise, the Z bit is cleared.

Cycles: 1

Example: inc 0x099

This example increments data memory location 0x099.
80 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
INC W,fr

Operation: W = fr + 1

Bits affected: Z

Opcode: 0010 100f ffff ffff

Description: This instruction increments the value in the specified register

file by one and moves the 8-bit result into W. The data

memory location is left unchanged.

If the data memory location holds 0xFF, the value moved into

W is 0x00 and the Z bit is set. Otherwise, the Z bit is cleared.

Cycles: 1

Example: inc w,0x099

This example increments the value at data memory location

0x099 and moves the result into W. For example, if the data

memory location holds 0x75, the value 0x76 is loaded into W,

and the Z bit is cleared. The data memory location still holds

0x75 after execution of the instruction.
www.ubicom.com 81

Instruction Set—IP2022 Programmer’s Reference Manual
INCSNZ fr

Operation: fr = fr + 1; if result is nonzero, then skip next instruction

Bits affected: None

Opcode: 0101 101f ffff ffff

Description: This instruction increments the specified register file by one

and tests the new register value. If that value is nonzero, the

next program instruction is skipped. Otherwise, execution

proceeds normally with the next instruction.

Cycles: 1 if tested condition is false, 2 if tested condition is true

Example: back1:
incsnz 0x099
jmp back1
mov 0x017,w

The incsnz instruction increments data memory location

0x099. If the result is zero, execution proceeds normally with

the jmp instruction to back1. If the result is nonzero, the jmp

instruction is skipped and the mov instruction is executed.
82 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
INCSNZ W,fr

Operation: W = fr + 1; if result is nonzero, then skip next instruction

Bits affected: None

Opcode: 0101 100f ffff ffff

Description: This instruction increments the value in the specified data

memory location and moves the result to W. The data

memory location is left unchanged.

If the result is nonzero, the next instruction in the program is

skipped. Otherwise, program execution proceeds normally

with the next instruction.

Cycles: 1 if tested condition is false, 2 if tested condition is true

Example: incsnz w,0x099 ;load 0x099 + 1 to W
ret ;return if 0x099 + 1 is 0
nop ;otherwise continue here

This example takes the contents of data memory location

0x099, increments that value, and moves the result to W. If

the result is nonzero, the ret instruction is skipped and the

nop instruction is executed. If the result is zero, the ret

instruction is executed.
www.ubicom.com 83

Instruction Set—IP2022 Programmer’s Reference Manual
INCSZ fr

Operation: fr = fr + 1; if result is 0, then skip next instruction

Bits affected: None

Opcode: 0011 111f ffff ffff

Description: This instruction increments the specified data memory

location by one and tests the new register value. If that value

is zero, the next program instruction is skipped. Otherwise,

execution proceeds normally with the next instruction.

Cycles: 1 if tested condition is false, 2 if tested condition is true

Example: back1:
incsz 0x099
jmp back1
nop

The incsz instruction increments data memory location

0x099. If the result is nonzero, execution proceeds normally

with the jmp instruction to back1. If the result is zero, the

jmp instruction is skipped and the nop instruction is

executed.
84 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
INCSZ W,fr

Operation: W = fr + 1; if result is 0, then skip next instruction

Bits affected: None

Opcode: 0011 110f ffff ffff

Description: This instruction increments the value in the specified data

memory location and moves the result to W. The data

memory location is left unchanged.

If the result is zero, the next instruction in the program is

skipped. Otherwise, program execution proceeds normally

with the next instruction.

Cycles: 1 if tested condition is false, 2 if tested condition is true

Example: incsz w,0x099 ;load 0x099 + 1 to W
ret ;return if 0x099 + 1 is 0
nop ;otherwise continue here

This example takes the contents of data memory location

0x099, increments that value, and moves the result to W. If

the result is zero, the ret instruction is skipped and the nop

instruction is executed. If the result is nonzero, the ret

instruction is executed.
www.ubicom.com 85

Instruction Set—IP2022 Programmer’s Reference Manual
INT

Operation: See text below

Bits affected: None

Opcode: 0000 0000 0000 0110

Description: This instruction raises an interrupt if the GIE bit is set and the

INT_EN bit is clear. If the GIE bit is clear or the INT_EN bit is

set, no operation is performed.

Cycles: 3

Example: int ;software interrupt
86 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
IREAD

Operation: DATAH || DATAL = (ADDRX || ADDRH || ADDRL)

Bits affected: None

Opcode: 0000 0000 0001 1001

Description: This instruction transfers data from external memory,

program flash memory, or program RAM to data memory.

The 24-bit ADDRX/ADDRH/ADDRL register specifies the

address of a 16-bit word which is loaded into the

DATAH/DATAL register. The instruction is blocking (i.e. no

other instructions may execute until it completes) when it is

used to read program RAM or when it is executed from

program flash memory to read program flash memory. The

instruction is non-blocking when it is used to read external

memory or when it is executed from program RAM to read

program flash memory.

Cycles: 4 (blocking)/1 (non-blocking)
www.ubicom.com 87

Instruction Set—IP2022 Programmer’s Reference Manual
Example: mov w,#0x00 ;load W with 0x00
mov addrx,w ;copy W to ADDRX
mov w,#0x03 ;load W with 0x03
mov addrh,w ;copy W to ADDRH
mov w,#0x80 ;load W with 0x80
mov addrl,w ;copy W to ADDRL
iread ;read program memory
... ;(nop read access timing)
mov w,datal ;move low byte to W
mov 0xFE,w ;copy W to 0xFE
mov w,datah ;move high byte to W
mov 0xFF,w ;copy W to 0xFF

This example reads a word stored at byte address 0x000380

in program RAM. First, ADDRX/ADDRH/ADDRL is loaded

with 0x000380. After the iread instruction, the

DATAH/DATAL register holds the word read from program

RAM. Then, the lower byte of the word is copied to data

memory location 0xFE and the upper byte is copied to data

memory location 0xFF.
88 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
IREADI

Operation: DATAH || DATAL = (ADDRX || ADDRH || ADDRL)

ADDRL = ADDRL + 2

Bits affected: None

Opcode: 0000 0000 0001 1101

Description: This instruction transfers data from program flash memory or

program RAM to data memory. The 24-bit

ADDRX/ADDRH/ADDRL register specifies the address of a

16-bit word which is loaded into the DATAH/DATAL register,

then the address is incremented by 2. The instruction is

blocking (i.e. no other instructions may execute until it

completes) when it is used to read program RAM or when it

is executed from program flash memory to read program

flash memory. The instruction is non-blocking when it is

executed from program RAM to read program flash memory.

Cycles: 4 (blocking)/1 (non-blocking)
www.ubicom.com 89

Instruction Set—IP2022 Programmer’s Reference Manual
Example: mov w,#0x00 ;load W with 0x00
mov addrx,w ;copy W to ADDRX
mov w,#0x03 ;load W with 0x03
mov addrh,w ;copy W to ADDRH
mov w,#0x80 ;load W with 0x80
mov addrl,w ;copy W to ADDRL
ireadi ;read program memory
... ;(nop read access timing)
mov w,datal ;move low byte to W
mov 0xFE,w ;copy W to 0xFE
mov w,datah ;move high byte to W
mov 0xFF,w ;copy W to 0xFF

This example reads a word stored at byte address 0x000380

in program RAM. First, ADDRX/ADDRH/ADDRL is loaded

with 0x000380. After the ireadi instruction, the

DATAH/DATAL register holds the word read from program

RAM. Then, the lower byte of the word is copied to data

memory location 0xFE and the upper byte is copied to data

memory location 0xFF.
90 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
IWRITE

Operation: (ADDRX || ADDRH || ADDRL) = DATAH || DATAL

Bits affected: None

Opcode: 0000 0000 0001 1000

Description: This instruction transfers data from data memory to external

RAM or program RAM. The 24-bit ADDRX/ADDRH/ADDRL

register specifies the address of a 16-bit word which is

loaded into the contents of the DATAH/DATAL register. If the

address is not in external RAM or program RAM, no

operation is performed. The instruction is blocking (i.e. no

other instructions may execute until it completes) when it is

used to write program RAM. The instruction is non-blocking

when it is used to write external RAM.

Cycles: 4 (blocking)/1 (non-blocking)
www.ubicom.com 91

Instruction Set—IP2022 Programmer’s Reference Manual
Example: mov w,#0x00 ;load W with 0x00
mov addrx,w ;copy W to ADDRX
mov w,#0x03 ;load W with 0x03
mov addrh,w ;copy W to ADDRH
mov w,#0x80 ;load W with 0x80
mov addrl,w ;copy W to ADDRL
mov w,0xFE ;copy 0xFE to W
mov datal,w ;copy W to DATAL
mov w,0xFF ;copy 0xFF to W
mov datah,w ;copy W to DATAH
iwrite ;write program RAM

This example writes the contents of the DATAH/DATAL

register to address 0x000380 in program RAM. First, the

ADDRX/ADDRH/ADDRL register is loaded with 0x000380.

Then, the DATAH/DATAL register is loaded from 0xFE and

0xFF. Finally, the iwrite instruction loads program RAM

from DATAH/DATAL.
92 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
IWRITEI

Operation: (ADDRX || ADDRH || ADDRL) = DATAH || DATAL

ADDRL = ADDRL + 2

Bits affected: None

Opcode: 0000 0000 0001 1100

Description: This instruction transfers data from data memory to program

RAM. The 24-bit ADDRX/ADDRH/ADDRL register specifies

the address of a 16-bit word which is loaded with the

contents of the DATAH/DATAL register, then the address is

incremented by 2. If the address is not in program RAM, no

operation is performed. The instruction is blocking (i.e. no

other instructions may execute until it completes) when it is

used to write program RAM.

Cycles: 4 (blocking)/1 (non-blocking)
www.ubicom.com 93

Instruction Set—IP2022 Programmer’s Reference Manual
Example: mov w,#0x00 ;load W with 0x00
mov addrx,w ;copy W to ADDRX
mov w,#0x03 ;load W with 0x03
mov addrh,w ;copy W to ADDRH
mov w,#0x80 ;load W with 0x80
mov addrl,w ;copy W to ADDRL
mov w,0xFE; copy 0xFE to W
mov datal,w ;copy W to DATAL
mov w,0xFF ;copy 0xFF to W
mov datah,w ;copy W to DATAH
iwritei ;write program RAM and

;increment ADDRL

This example writes the contents of the DATAH/DATAL

register to address 0x000380 in program RAM. First, the

ADDRX/ADDRH/ADDRL register is loaded with 0x000380.

Then, the DATAH/DATAL register is loaded from 0xFE and

0xFF. Finally, the iwritei instruction loads program RAM

from DATAH/DATAL.
94 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
JMP addr13

Operation: PC12:0 = addr13

PC15:13 = PA2:PA0

Bits affected: None

Opcode: 111k kkkk kkkk kkkk

Description: This instruction causes the program to jump to a specified

address. It loads the program counter with the new address.

Bits 12:0 come from the 13-bit constant value in the

instruction, and bits 15:13 come from the PA2:PA0 bits in the

STATUS register. The STATUS register must hold the

appropriate value prior to the jump instruction.

Cycles: 3
www.ubicom.com 95

Instruction Set—IP2022 Programmer’s Reference Manual
Example: snb STATUS,0 ;skip if carry clear
page 0x6000 ;set page bits
jmp overflo ;jump to overflo
nop ;continue here if no jump
overflo: ;jump destination
nop ;continue here if jump taken
...

This example shows one way to implement a conditional

jump. The jmp instruction, if executed, causes a jump to

overflo. The snb instruction (test bit and skip if clear)

causes the jmp instruction to be either executed or skipped,

depending on the state of the carry bit (bit 0 of the STATUS

register). Because the skip instruction is immediately

followed by a page instruction, two instructions (page and

jmp) will be skipped if the carry bit is clear. The PA2:PA0 bits

of the STATUS register must hold the three high-order bits

(bits 15:13) of the word address of the overflo entry point

prior to the jmp instruction. This is the purpose of the page

instruction.
96 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
LOADH addr8

Operation: DPH = addr8(15:8)

Bits affected: None

Opcode: 0111 0000 kkkk kkkk

Description: This instruction loads the high 8 bits of a data address into

DPH. A skip over a loadh instruction results in an extended

skip (following instruction also skipped).

From assembly language, a 16-bit address is specified. The

assembler takes the high 8 bits of the address and encodes

it in the instruction. The low 8 bits are ignored.

Cycles: 1

Example: MyRegisters = 0x048A ;define symbolic
;address

loadh MyRegisters ;load 0x02 to DPH
loadl MyRegisters ;load 0x45 to DPL

The first line of this example is a declaration that the symbolic

address MyRegisters is the byte address 0x048A (word

address 0x0245). The second line loads DPH with the high 8

bits of the word address for MyRegisters. The third line

loads DPL with the low 8 bits of the word address for

MyRegisters.
www.ubicom.com 97

Instruction Set—IP2022 Programmer’s Reference Manual
LOADL addr8

Operation: DPL = addr8(7:0)

Bits affected: None

Opcode: 0111 0001 kkkk kkkk

Description: This instruction loads the low 8 bits of a data address into

DPH. A skip over a loadl instruction results in an extended

skip (following instruction also skipped).

From assembly language, a 16-bit address is specified. The

assembler takes the low 8 bits of the address and encodes it

in the instruction. The high 8 bits are ignored.

Cycles: 1

Example: MyRegisters = 0x048A ;define symbolic
;address

loadh MyRegisters ;load 0x02 to DPH
loadl MyRegisters ;load 0x45 to DPL

The first line of this example is a declaration that the symbolic

address MyRegisters is the byte address 0x048A (word

address 0x0245). The second line loads DPH with the high 8

bits of the word address for MyRegisters. The third line

loads DPL with the low 8 bits of the word address for

MyRegisters.
98 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
MOV fr,W

Operation: fr = W

Bits affected: None

Opcode: 0000 001f ffff ffff

Description: This instruction moves the contents of W into the specified

data memory location. W is left unchanged.

Cycles: 1

Example: mov 0x099,w ;move W to 0x099

This example moves the contents of W into data memory

location 0x099.
www.ubicom.com 99

Instruction Set—IP2022 Programmer’s Reference Manual
MOV W,fr

Operation: W = fr

Bits affected: None

Opcode: 0010 000f ffff ffff

Description: This instruction moves the contents of the specified data

memory location into W. The data memory location is left

unchanged.

If the data is zero, the Z bit is set. Otherwise, the Z bit is

cleared.

Cycles: 1

Example: mov w,0x099 ;move register to W

This example moves the contents of the data memory

location at address 0x099 into W. The Z bit is set if the value

is zero or cleared if the value is nonzero.
100 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
MOV W,#lit8

Operation: W = lit8

Bits affected: None

Opcode: 0111 1100 kkkk kkkk

Description: This instruction loads an 8-bit literal into W.

Cycles: 1

Example: mov w,#0x75

This example loads the literal 0x75 into W.
www.ubicom.com 101

Instruction Set—IP2022 Programmer’s Reference Manual
MULS W,fr

Operation: MULH || W = W x fr

Bits affected: None

Opcode: 00101 010f ffff ffff

Description: This instruction performs a signed multiply of the contents of

the specified data memory location by the contents of W. The

low 8 bits of the product are written to W, and the high 8 bits

are written to the MULH register. The data memory location

is left unchanged.

Both operands are interpreted as two’s-complement

numbers, and the result loaded into MULH || W is also in

two’s complement format.

Cycles: 1
102 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
Example: muls w,0x099 ;signed multiply,
;0x099 by W into MULH and W

This example multiplies the contents of the data memory

location at address 0x099 by the contents of W into W. The

high byte of the result is loaded into the MULH register, and

the low byte is loaded into W.

If W holds 0x07 and 0x099 holds 0x06, the result loaded into

MULH || W will be 0x002A (42 decimal).

If W holds 0xF9 (-7 decimal) and 0x099 holds 0x06, the result

loaded into MULH || W will be 0xFFD6 (-42 decimal).

If W holds 0xF9 (-7 decimal) and 0x099 holds 0xFA (-6

decimal), the result loaded into MULH || W will be 0x002A (42

decimal).
www.ubicom.com 103

Instruction Set—IP2022 Programmer’s Reference Manual
MULS W,#lit8

Operation: MULH || W = W × lit8

Bits affected: None

Opcode: 0111 0011 kkkk kkkk

Description: This instruction performs a signed multiply of an 8-bit literal

by the contents of W. The low 8 bits of the product are written

to W, and the high 8 bits are written to the MULH register.

The data memory location is left unchanged.

Both operands are interpreted as two’s-complement

numbers, and the result loaded into MULH || W is also in

two’s complement format.

Cycles: 1

Example: muls w,#0x75

This example multiplies the contents of W by the literal 0x75

into W. The high byte of the result is loaded into the MULH

register, and the low byte is loaded into W.

If W holds 0x07 and lit8 is 0x06, the result loaded into MULH

|| W will be 0x002A (42 decimal).

If W holds 0xF9 (-7 decimal) and lit8 is 0x06, the result

loaded into MULH || W will be 0xFFD6 (-42 decimal).

If W holds 0xF9 (-7 decimal) and lit8 is 0xFA (-6 decimal), the

result loaded into MULH || W will be 0x002A (42 decimal).
104 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
MULU W,fr

Operation: MULH || W = W × fr; high 8 bits of unsigned product

Bits affected: None

Opcode: 0101 000f ffff ffff

Description: This instruction performs an unsigned multiply of the

contents of the specified data memory location by the

contents of W. The low 8 bits of the product are written to W,

and the high 8 bits are written to the MULH register. The data

memory location is left unchanged.

Cycles: 1

Example: mulu w,0x099 ;unsigned multiply,
;0x099 by W into W

This example multiplies the contents of the data memory

location at address 0x099 by the contents of W into W. The

high byte of the result is loaded into the MULH register, and

the low byte is loaded into W.
www.ubicom.com 105

Instruction Set—IP2022 Programmer’s Reference Manual
MULU W,#lit8

Operation: MULH || W = W × lit8

Bits affected: None

Opcode: 0111 0010 kkkk kkkk

Description: This instruction performs an unsigned multiply of an 8-bit

literal by the contents of W. The low 8 bits of the product are

written to W, and the high 8 bits are written to the MULH

register. The data memory location is left unchanged.

Cycles: 1

Example: mulu w,#0x75

This example multiplies the contents of W by the literal 0x75

into W. The high byte of the result is loaded into the MULH

register, and the low byte is loaded into W.
106 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
NOP

Operation: None

Bits affected: None

Opcode: 0000 0000 0000 0000

Description: This instruction does nothing except to cause a one-cycle

delay in program execution.

Cycles: 1

Example: sb 0x05,4 ;set bit 4 in Port A
nop ;no operation, 1-cycle delay
sb 0x05,6 ;set bit 5 in Port A

This example shows how a nop instruction can be used as a

one-cycle delay between two successive read-modify-write

instructions that modify the same I/O port. This delay

ensures reliable results at high clock rates.
www.ubicom.com 107

Instruction Set—IP2022 Programmer’s Reference Manual
NOT fr

Operation: fr = fr

Bits affected: Z

Opcode: 0010 011f ffff ffff

Description: This instruction complements each bit of the specified data

memory location and writes the result back into the same

register. If the result is zero, the Z bit is set.

Cycles: 1

Example: not 0x099 ;complement 0x099

Suppose that data memory location 0x099 holds the value

0x1C. This instruction takes the complement of 0x1C and

writes the result 0xE3 back to location 0x099. The result is

nonzero, so the Z bit is cleared.
108 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
NOT W,fr

Operation: W = fr

Bits affected: Z

Opcode: 0010 010f ffff ffff

Description: This instruction loads the one’s complement of the specified

data memory location into W. The data memory location is

left unchanged.

If the value loaded into W is zero, the Z bit is set. Otherwise,

the bit is cleared.

Cycles: 1

Example: mov w,0x099

This example moves the one’s complement of data memory

location 0x099 into W. For example, if the data memory

location holds 0x75, the complement of this value 0x8A is

loaded into W, and the Z bit is cleared. The data memory

location is left unchanged.
www.ubicom.com 109

Instruction Set—IP2022 Programmer’s Reference Manual
OR fr,W

Operation: fr = fr | W

Bits affected: Z

Opcode: 0001 001f ffff ffff

Description: This instruction performs a bitwise logical OR of the contents

of the specified data memory location and W, and writes the

8-bit result into the same data memory location. W is left

unchanged. If the result is zero, the Z bit is set.

Cycles: 1

Example: or 0x099,w ;move fr OR W to fr

This example performs a bitwise logical OR of W with a value

stored in data memory location 0x099. The result is written

back to the data memory location 0x099.

For example, suppose that the data memory location 0x099

holds the value 0x0F and W holds the value 0x13. The

instruction takes the logical OR of 0x0F and 0x13 and writes

the result 0x1F back to data memory location 0x099. The

result is nonzero, so the Z bit is cleared.
110 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
OR W,fr

Operation: W = W | fr

Bits affected: Z

Opcode: 0001 000f ffff ffff

Description: This instruction performs a bitwise logical OR of the contents

of W and the specified data memory location, and writes the

8-bit result into W. The data memory location is left

unchanged. If the result is zero, the Z bit is set.

Cycles: 1

Example: or w,0x099 ;move W OR fr to W

This example performs a bitwise logical OR of the value

stored in data memory location 0x099 with W. The result is

written back to W.

For example, suppose that the data memory location 0x099

holds the value 0x0F and W holds the value 0x13. The

instruction takes the logical OR of 0x0F and 0x13 and writes

the result 0x1F into W. The result is nonzero, so the Z bit is

cleared.
www.ubicom.com 111

Instruction Set—IP2022 Programmer’s Reference Manual
OR W,#lit8

Operation: W = W | lit8

Bits affected: Z

Opcode: 0111 1101 kkkk kkkk

Description: This instruction performs a bitwise logical OR of the contents

of W and an 8-bit literal value, and writes the 8-bit result into

W. If the result is zero, the Z bit is set.

Cycles: 1

Example: or w,#0x0F ;set low four W bits

This example performs a bitwise logical OR of W with the

literal value 0x0F. The result is written back to W.

For example, suppose that W holds the value 0x50. The

instruction takes the logical OR of this value with 0x0F and

writes the result 0x5F into W. The result is nonzero, so the Z

bit is cleared.
112 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
PAGE addr3

Operation: PA2:0 = addr(16:14)

Bits affected: PA2:0

Opcode: 0000 0000 0001 0nnn

Description: This instruction writes a three-bit value into the PA2:0 bits of

the STATUS register (bits 7:5). These bits select the program

memory page for subsequent jump and subroutine call

instructions.

In assembly language, the full program memory address is

specified. The assembler encodes the three high-order bits

of this address into the instruction opcode and ignores the

fourteen low-order bits.

If a skip instruction is immediately followed by a page

instruction and the tested condition is true, then two

instructions are skipped and the operation consumes three

cycles. This is useful for conditional branching to another

page in which a page instruction precedes a jmp instruction.

If several page instructions immediately follow a skip

instruction then they are all skipped plus the next instruction,

and a cycle is consumed for each.

Cycles: 1
www.ubicom.com 113

Instruction Set—IP2022 Programmer’s Reference Manual
Example: page 0x8000 ;load PA2:0 with 010
call home1 ;jump to page 2

This example sets the PA2:0 bits in the STATUS register to

010. This means that the subsequent call instruction calls

a subroutine that starts in the address range of byte address

0x8000 to 0x9FFE (word address 0x4000 to 0x4FFF) .
114 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
POP fr

Operation: fr = (SP + 1), then SP = SP + 1

Bits affected: None

Opcode: 0100 011f ffff ffff

Description: This instruction increments the SPH/SPL register, then

copies the register addressed by the SPH/SPL register to the

specified data memory location. This stack is independent of

the hardware stack used for subroutine calls and returns.

Cycles: 1

Example: pop 0x0F0 ;pop stack to 0x0F0

The pop instruction in this example pops a byte off the stack

and loads it into the data memory location at address 0x0F0.
www.ubicom.com 115

Instruction Set—IP2022 Programmer’s Reference Manual
PUSH fr

Operation: (SP) = fr, then SP = SP - 1

Bits affected: None

Opcode: 0100 010f ffff ffff

Description: This instruction copies the specified data memory location to

the register addressed by the SPH/SPL register, then

decrements the SPH/SPL register. This stack is independent

of the hardware stack used for subroutine calls and returns.

Cycles: 1

Example: push 0x0F0 ;push 0x0F0 onto stack

The push instruction in this example pushes the contents of

the data memory location at address 0x1F0 onto the stack.
116 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
PUSH #lit8

Operation: (SP) = lit8, then SP = SP - 1

Bits affected: None

Opcode: 0111 0100 kkkk kkkk

Description: This instruction copies an 8-bit literal to the register

addressed by the SPH/SPL register, then decrements the

SPH/SPL register. This stack is independent of the stack

used for subroutine calls and returns.

Cycles: 1

Example: push 0x#FF ;push #0xFF onto stack

The push instruction in this example pushes 0xFF onto the

stack.
www.ubicom.com 117

Instruction Set—IP2022 Programmer’s Reference Manual
RET

Operation: program counter = top-of-stack

Bits affected: PA2:0

Opcode: 0000 0000 0000 0111

Description: This instruction causes a return from a subroutine. It pops the

16-bit value previously stored on the stack and restores that

value to the program counter. This causes the program to

jump to the instruction immediately following the call

instruction that called the subroutine. The hardware stack

used for subroutine call and return is independent from the

stack used with the push and pop instructions.

The ret instruction modifies the PA2:0 bits in the STATUS

register to return to the correct place in the program.

Cycles: 3
118 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
Example: page 0x0000 ;set page bits
calladdxy ;call subroutine addxy
nop ;addxy results available here
...

addxy: ;subroutine entry point
mov w,0x099 ;subroutine start
add w,0x00F
...
ret ;return from subroutine

The call instruction in this example calls a subroutine

called addxy. When the call instruction is executed, the

address of the following instruction (the nop instruction) is

pushed onto the stack and the program jumps to the addxy

routine. When the ret instruction is executed, the saved

program address is popped from the stack and restored to

the program counter, which causes the program to continue

with the instruction immediately following the call

instruction.
www.ubicom.com 119

Instruction Set—IP2022 Programmer’s Reference Manual
RETI #lit3

Operation: restore CPU registers from shadow registers

Bits affected: STATUS register restored, which affects all bits

Opcode: 0000 0000 0000 1nnn

Description: This instruction causes a return from an interrupt service

routine. It restores the 16-bit program counter value that was

saved when the interrupt occurred. In addition, there are

three instruction options encoded by the three low-order bits

of the instruction, as shown in the table below.

Bit Function

2 Reinstate the pre-interrupt speed

1 = enable, 0 = disable

1 Store the PC+1 value in the INTVECH and INTVECL registers

1 = enable, 0 = disable

0 Add W to the T0TMR register

1 = enable, 0 = disable

Cycles: 3
120 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
Example: org 0 ;set address to 0x000
... ;ISR code goes here
reti #0x4 ;return from interrupt

This is an example of an interrupt service routine. When an

interrupt occurs, the CPU registers are saved into a set of

shadow registers. The program then jumps to the interrupt

service routine, which starts at a default address of 0x000

(software can change this address by loading a new interrupt

vector into the INTVECH and INTVECL register pair). The

interrupt service routine should determine the cause of the

interrupt, clear the interrupt flag bit for the event that raised

the interrupt, perform any required service for that event, and

end with the reti instruction.

The reti instruction restores the contents of the program

counter from the shadow registers. This causes the IP2022

to continue program execution from the point at which the

program was interrupted.

In this example, the immediate operand specifies restoration

of the pre-interrupt speed, but no modification is made to the

interrupt vector or the T0TMR register.
www.ubicom.com 121

Instruction Set—IP2022 Programmer’s Reference Manual
RETNP

Operation: program counter = top-of-stack

Bits affected: None

Opcode: 0000 0000 0000 0010

Description: This instruction causes a return from a subroutine. It pops the

16-bit value previously stored on the stack and restores that

value to the program counter. This causes the program to

jump to the instruction immediately following the call

instruction that called the subroutine. The hardware stack

used for subroutine call and return is independent from the

stack used with the push and pop instructions.

The retnp instruction does not use (and does not affect) the

PA2:0 bits.

Cycles: 3
122 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
Example: page 0x0000 ;set page bits
calladdxy ;call subroutine addxy
nop ;addxy results available here
...

addxy: ;subroutine entry point
mov w,0x099 ;subroutine start
add w,0x00F
...
ret ;return from subroutine

The call instruction in this example calls a subroutine

called addxy. When the call instruction is executed, the

address of the following instruction (the nop instruction) is

pushed onto the stack and the program jumps to the addxy

routine. When the ret instruction is executed, the saved

program address is popped from the stack and restored to

the program counter, which causes the program to continue

with the instruction immediately following the call

instruction.
www.ubicom.com 123

Instruction Set—IP2022 Programmer’s Reference Manual
RETW #lit8

Operation: W = lit8

program counter = top-of-stack

Bits affected: PA2:0

Opcode: 0111 1000 kkkk kkkk

Description: This instruction loads an 8-bit literal into W and causes a

return from a subroutine. The literal can be used to

implement lookup tables. The instruction pops the 16-bit

value previously stored on the stack and restores that value

to the program counter. This causes the program to jump to

the instruction immediately following the call instruction

that called the subroutine. The hardware stack used for

subroutine call and return is independent from the stack used

with the push and pop instructions.

It is not necessary to set the PA2:0 bits in the STATUS

register to return to the correct place in the program. This is

because the full 16-bit program address is restored from the

stack. The ret instruction does not use (and does not affect)

the PA2:0 bits.

Cycles: 3
124 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
Example: mov w,0x0F0 ;load W with index
add pcl,w ;add index to the pc
retw #0xFF ;if index is 0,

;return with 0xFF in W
retw #0xF0 ;if index is 1,

;return with 0xF0 in W
retw #0x0F ;if index is 2,

;return with 0x0F in W
retw #0x00 ;if index is 3,

;return with 0x00 in W

This example shows an index being read from data memory

location 0x0F0 and being added to the program counter,

which causes a jump into an array of retw instructions.

Depending on what the index is, one of the retw instructions

will be executed. Each retw instruction returns a different

value in W.
www.ubicom.com 125

Instruction Set—IP2022 Programmer’s Reference Manual
RL fr

Operation: fr || C = C || fr

Bits affected: C

Opcode: 0011 011f ffff ffff

Description: This instruction rotates the bits of the specified data memory

location left through the C bit and moves the 8-bit result into

the data memory location.

The bits obtained from the register are shifted left by one bit

position. C is shifted into the least significant bit position and

the most significant bit is shifted out into C, as shown in the

diagram below.

515-044.eps

Data Memory Location

After Instruction

Data Memory Location

Before Instruction

C Bit

Cycles: 1
126 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
Example: rl 0x099

This example rotates the bits of data memory location 0x099

left through the C bit. If the data memory location holds 0x14

and the C bit is set, after this instruction is executed, the data

memory location will hold 0x29 and the C bit will be clear.
www.ubicom.com 127

Instruction Set—IP2022 Programmer’s Reference Manual
RL W,fr

Operation: W || C = C || fr

Bits affected: C

Opcode: 0011 010f ffff ffff

Description: This instruction rotates the bits of the specified data memory

location left through the C bit and moves the 8-bit result into

W. The data memory location is left unchanged.

The bits obtained from the register are shifted left by one bit

position. C is shifted into the least significant bit position and

the most significant bit is shifted out into C, as shown in the

diagram below.

515-075.eps

W Register

Data Memory Location

C Bit

Cycles: 1
128 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
Example: rl w,0x099

This example rotates the bits of data memory location 0x099

left through the C bit and moves the result into W. If the data

memory location holds 0x14 and the C bit is set, after this

instruction is executed, W will hold 0x29 and the C bit will be

clear. The data memory location will still hold 0x14 after

execution of the instruction.
www.ubicom.com 129

Instruction Set—IP2022 Programmer’s Reference Manual
RR fr

Operation: C || fr = fr || C

Bits affected: C

Opcode: 0011 001f ffff ffff

Description: This instruction rotates the bits of the specified data memory

location right through the C bit and moves the 8-bit result into

the data memory location.

The bits obtained from the register are shifted right by one bit

position. C is shifted into the most significant bit position and

the least significant bit is shifted out into C, as shown in the

diagram below.

515-045.eps

Data Memory Location

After Instruction

Data Memory Location

Before Instruction

C Bit

Cycles: 1
130 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
Example: rr 0x099

This example rotates the bits of data memory location 0x099

right through the C bit. If the data memory location holds

0x12 and the C bit is set, after this instruction is executed, the

data memory location will hold 0x89 and the C bit will be

clear.
www.ubicom.com 131

Instruction Set—IP2022 Programmer’s Reference Manual
RR W,fr

Operation: C || W = fr || C

Bits affected: C

Opcode: 0011 000f ffff ffff

Description: This instruction rotates the bits of the specified data memory

location right through the C bit and moves the 8-bit result into

W. The data memory location is left unchanged.

The bits obtained from the register are shifted right by one bit

position. C is shifted into the most significant bit position and

the least significant bit is shifted out into C, as shown in the

diagram below.

515-074.eps

W Register

Data Memory Location

C Bit

Cycles: 1
132 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
Example: rr w,0x099

This example rotates the bits of data memory location 0x099

right through the C bit and moves the result into W. If the data

memory location holds 0x12 and the C bit is set, after this

instruction is executed, W will hold 0x89 and the C bit will be

clear. The data memory location will still hold 0x12 after

execution of the instruction.
www.ubicom.com 133

Instruction Set—IP2022 Programmer’s Reference Manual
SB fr,bit

Operation: if fr,bit = 1, skip next instruction

Bits affected: None

Opcode: 1011 bbbf ffff ffff

Description: This instruction tests a bit in the specified data memory

location. The data memory location and the bit number (0

through 7) are the instruction operands. If the bit is 1, the next

instruction in the program is skipped. Otherwise, program

execution proceeds normally with the next instruction.

Cycles: 1 if tested condition is false, 2 if tested condition is true

Example: sb STATUS,0 ;test carry bit
inc 0x099 ;increment if carry=0
nop

This example tests the carry bit (bit 0 of the STATUS

register). If the bit is 1, the inc instruction is skipped and the

nop instruction is executed. Otherwise, program execution

proceeds normally with the inc instruction.
134 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
SETB fr,bit

Operation: fr,bit = 1

Bits affected: None

Opcode: 1001 bbbf ffff ffff

Description: This instruction sets a bit in the specified data memory

location to 1 without changing the other bits in the register.

The data memory location and the bit number (0 through 7)

are the instruction operands.

Cycles: 1

Example: setb 0x099,7

This example sets the most significant bit of data memory

location 0x099.
www.ubicom.com 135

Instruction Set—IP2022 Programmer’s Reference Manual
SNB fr,bit

Operation: if fr,bit = 0, skip next instruction

Bits affected: None

Opcode: 1010 bbbf ffff ffff

Description: This instruction tests a bit in the specified data memory

location. The data memory location and the bit number (0

through 7) are the instruction operands. If the bit is 0, the next

instruction in the program is skipped. Otherwise, program

execution proceeds normally with the next instruction.

Cycles: 1 if tested condition is false, 2 if tested condition is true

Example: snb STATUS,0 ;test carry bit
inc 0x099 ;increment if carry=1
nop

This example tests the carry bit (bit 0 of the STATUS

register). If that bit is 0, the dec instruction is skipped and the

nop instruction is executed. Otherwise, program execution

proceeds normally with the inc instruction.
136 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
SPEED #lit8

Operation: SPDREG = lit8

Bits affected: None

Opcode: 0000 0001 nnnn nnnn

Description: This instruction writes an 8-bit value into the SPDREG

register. This register controls the power-down options,

system clock source, and clock divisor used to generate the

CPU core clock from the system clock. The format of the

SPDREG register is shown below.

7 6 5 4 3 0

PWRD1:0 CLK1:0 CDIV3:0

PWRD1:0 - Controls whether the PLL clock multiplier and OSC

oscillator are running.

CLK1:0 - Selects the system clock source.

CDIV3:0 - Selects the clock divisor used to generate the system

clock.

Cycles: 1 instruction cycle (as opposed to clock cycles)
www.ubicom.com 137

Instruction Set—IP2022 Programmer’s Reference Manual
Example: nop ;assume divisor is 4, so
;instruction takes 4 cycles

speed div8 ;change divisor to 8,
;instruction takes 4 cycles

nop ;instruction takes 8 cycles
speed div1 ;change divisor to 1,

;instruction takes 8 cycles
nop ;instruction takes 1 cycle

In this example, div1 and div8 are assumed to be

constants defined with appropriate bit settings for the

SPDREG register encoding.

If the clock divisor prior to the first speed instruction is 4, the

first nop and speed instructions each take 4 clock cycles.

The first speed instruction changes the clock divisor to 8, so

the second nop and speed instructions each take 8 clock

cycles.

The second speed instruction changes the clock divisor to

1, so the third nop instruction takes 1 clock cycle.
138 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
SUB fr,W

Operation: fr = fr - W

Bits affected: C, DC, Z

Opcode: 0000 101f ffff ffff

Description: This instruction subtracts the contents of W from the contents

of the specified data memory location and writes the 8-bit

result into the same data memory location. W is left

unchanged. The register contents are treated as unsigned

values.

If the result of subtraction is negative (W is larger than fr), the

C bit is cleared and the lower eight bits of the result are

written to the data memory location. Otherwise, the C bit is

set.

If there is a borrow from bit 3 to bit 4, the DC (digit carry) bit

is cleared. Otherwise, the bit is set.

If the result of subtraction is zero, the Z bit is set. Otherwise,

the bit is cleared.

Cycles: 1
www.ubicom.com 139

Instruction Set—IP2022 Programmer’s Reference Manual
Example 1: sub 0x099,w

This example subtracts the contents of W from data memory

location 0x099. For example, if the data memory location

holds 0x35 and W holds 0x06, this instruction subtracts 0x06

from 0x35 and writes the result 0x2F into the data memory

location. It also sets the C bit, clears the DC bit, and clears

the Z bit.

Example 2: mov w,0x095 ;load W from 0x095
sub 0x097,w; subtract low bytes
;C = 0 for borrow out
mov w,0x096 ;load W from 0x096
subc 0x098,w ;subtract high bytes

This example performs 16-bit subtraction of data memory

locations 0x095 (low byte) and 0x096 (high byte) from data

memory locations 0x097 (low byte) and 0x098 (high byte).

The sub instruction subtracts the contents of 0x095 from

0x097 and clears the C bit if a borrow occurs out of bit 7, or

sets the C bit otherwise. The subc instruction subtracts the

contents of 0x096 from 0x098 with borrow-in using the C bit.
140 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
SUB W,fr

Operation: W = fr - W

Bits affected: C, DC, Z

Opcode: 0000 100f ffff ffff

Description: This instruction subtracts the contents of W from the contents

of the specified data memory location and writes the 8-bit

result into W. The data memory location is left unchanged.

The register contents are treated as unsigned values.

If the result of subtraction is negative (W is larger than fr), the

C bit is cleared and the lower eight bits of the result are

written to W. Otherwise, the C bit is set.

If there is a borrow from bit 3 to bit 4, the DC (digit carry) bit

is cleared. Otherwise, the bit is set.

If the result of subtraction is zero, the Z bit is set. Otherwise,

the Z bit is cleared.

Cycles: 1

Example: sub w,0x099

This example subtracts the contents of W from data memory

location 0x099 and moves the result into W. For example, if

the data memory location holds 0x35 and W holds 0x06, this

instruction subtracts 0x06 from 0x35 and writes the result

0x2F into W. It also sets the C bit, clears the DC bit, and

clears the Z bit. The data memory location is left unchanged.
www.ubicom.com 141

Instruction Set—IP2022 Programmer’s Reference Manual
SUB W,#lit8

Operation: W = lit8 - W

Bits affected: C, DC, Z

Opcode: 0111 1010 kkkk kkkk

Description: This instruction subtracts the contents of W from an 8-bit

literal and writes the 8-bit result into W. The register contents

are treated as unsigned values.

If the result of subtraction is negative (W is larger than lit8),

the C bit is cleared and the lower eight bits of the result are

written to W. Otherwise, the C bit is set.

If there is a borrow from bit 3 to bit 4, the DC (digit carry) bit

is cleared. Otherwise, the bit is set.

If the result of subtraction is zero, the Z bit is set. Otherwise,

the bit is cleared.

Cycles: 1

Example: sub w,#0xFF

This example subtracts the contents of W from 0xFF. For

example, if W holds 0x06, this instruction subtracts 0x06

from 0xFF and writes the result 0xF9 into W. It also sets the

C bit, clears the DC bit, and clears the Z bit.
142 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
SUBC fr,W

Operation: fr = fr - C - W

Bits affected: C, DC, Z

Opcode: 0100 101f ffff ffff

Description: This instruction subtracts the contents of W and the

complement of the C bit (which indicates borrow) from the

contents of the specified data memory location and writes

the 8-bit result into the same data memory location. W is left

unchanged. The register contents are treated as unsigned

values.

If the result of subtraction is negative (W + C is larger than

fr), the C bit is cleared and the lower eight bits of the result

are written to the data memory location. Otherwise, the C bit

is set.

If there is a borrow from bit 3 to bit 4, the DC (digit carry) bit

is cleared. Otherwise, the bit is set.

If the result of subtraction is zero, the Z bit is set. Otherwise,

the bit is cleared.

Cycles: 1
www.ubicom.com 143

Instruction Set—IP2022 Programmer’s Reference Manual
Example 1: subc 0x099,w

This example subtracts the contents of W and the

complement of the C bit from data memory location 0x099.

For example, if the data memory location holds 0x35, W

holds 0x06, and the C bit is clear, this instruction subtracts

0x07 from 0x35 and writes the result 0x2E into the data

memory location. It also sets the C bit, clears the DC bit, and

clears the Z bit.

Example 2: mov w,0x095 ;load W from 0x095
sub 0x097,w ;subtract low bytes
;C = 0 for borrow out
mov w,0x096 ;load W from 0x096
subc 0x098,w ;subtract high bytes

This example performs 16-bit subtraction of data memory

locations 0x095 (low byte) and 0x096 (high byte) from data

memory locations 0x097 (low byte) and 0x098 (high byte).

The sub instruction subtracts the contents of 0x095 from

0x097 and clears the C bit if a borrow occurs out of bit 7, or

sets the C bit otherwise. The subc instruction subtracts the

contents of 0x096 from 0x097 with borrow-in using the C bit.
144 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
SUBC W,fr

Operation: W = fr - C - W

Bits affected: C, DC, Z

Opcode: 0100 100f ffff ffff

Description: This instruction subtracts the contents of W and the

complement of the C bit (which indicates borrow) from the

contents of the specified data memory location and writes

the 8-bit result into W. The data memory location is left

unchanged. The register contents are treated as unsigned

values.

If the result of subtraction is negative (W is larger than fr), the

C bit is cleared and the lower eight bits of the result are

written to W. Otherwise, the C bit is set.

If there is a borrow from bit 3 to bit 4, the DC (digit carry) bit

is cleared. Otherwise, the bit is set.

If the result of subtraction is zero, the Z bit is set. Otherwise,

the Z bit is cleared.

Cycles: 1
www.ubicom.com 145

Instruction Set—IP2022 Programmer’s Reference Manual
Example: subc w,0x099

This example subtracts the contents of W from data memory

location 0x099 and moves the result into W. For example, if

the data memory location holds 0x35, W holds 0x06, and the

C bit is clear, this instruction subtracts 0x07 from 0x35 and

writes the result 0x2E into W. It also sets the C bit, clears the

DC bit, and clears the Z bit. The data memory location is left

unchanged.
146 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
SWAP fr

Operation: fr = fr3:0 || fr7:4

Bits affected: None

Opcode: 0011 101f ffff ffff

Description: This instruction exchanges the high-order and low-order

nibbles (4-bit fields) of the specified data memory location.

Cycles: 1

Example: swap 0x099

This example swaps the high-order and low-order nibbles of

data memory location 0x099. For example, if the memory

location holds 0xA5, after executing this instruction, it will

hold 0x5A.
www.ubicom.com 147

Instruction Set—IP2022 Programmer’s Reference Manual
SWAP W,fr

Operation: W = fr3:0 || fr7:4

Bits affected: None

Opcode: 0011 100f ffff ffff

Description: This instruction exchanges the high-order and low-order

nibbles (4-bit fields) of the value in the specified data memory

location and moves the result to W. The data memory

location is left unchanged.

Cycles: 1

Example: swap W,0x099

This example swaps the high-order and low-order nibbles of

the value in data memory location 0x099 and moves the

result into W. For example, if the data memory location holds

0xA5, after executing this instruction, W will hold 0x5A.
148 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
TEST fr

Operation: if fr = 0, then Z = 1, else Z = 0

Bits affected: Z

Opcode: 0010 001f ffff ffff

Description: This instruction moves the contents of the specified data

memory location into the same register. There is no net effect

except to set or clear the Z bit. If the register holds zero, the

bit is set. Otherwise, the bit is cleared. If the test instruction

is performed on the T0TMR register, the Timer 0 prescaler is

initialized to zero. If the prescaler is about to expire causing

Timer 0 to increment and the test instruction is executed,

Timer 0 will not increment.

Cycles: 1

Example: test 0x099 ;test 0x099
sb STATUS,2 ;skip if Z=1
inc w ;increment W
nop

This example tests the contents of data memory location

0x099. The test instruction sets or clears the Z bit based on

the contents of the data memory location. The sb instruction

tests the Z bit and skips to the nop instruction if the Z bit is

set. The inc instruction is executed only if the data memory

location is nonzero.
www.ubicom.com 149

Instruction Set—IP2022 Programmer’s Reference Manual
XOR fr,W

Operation: fr = fr ^ W

Bits affected: Z

Opcode: 0001 101f ffff ffff

Description: This instruction performs a bitwise exclusive OR of the

contents of the specified data memory location and W, and

writes the 8-bit result into the same data memory location. W

is left unchanged. If the result is zero, the Z bit is set.

Cycles: 1

Example: xor 0x099,w ;move fr XOR W to fr

This example performs a bitwise logical XOR of W with a

value stored in data memory location 0x099. The result is

written back to the data memory location 0x099.

For example, suppose that the data memory location 0x099

is holds the value 0x0F and W holds the value 0x13. The

instruction takes the logical XOR of 0x0F and 0x13 and

writes the result 0x1C back to the data memory location. The

result is nonzero, so the Z bit is cleared.
150 www.ubicom.com

IP2022 Programmer’s Reference Manual—Instruction Set
XOR W,fr

Operation: W = W ^ fr

Bits affected: Z

Opcode: 0001 100f ffff ffff

Description: This instruction performs a bitwise exclusive OR of the

contents of W and the specified data memory location, and

writes the 8-bit result into W. The data memory location is left

unchanged. If the result is 0x00, the Z bit is set.

Cycles: 1

Example: xor w,0x099 ;move W XOR fr to W

This example performs a bitwise logical XOR of the value

stored in data memory location 0x099 with W. The result is

written back to W.

For example, suppose that the data memory location 0x099

holds the value 0x0F and W holds the value 0x13. The

instruction takes the logical XOR of 0x0F and 0x13 and

writes the result 0x1C into W. The result is nonzero, so the Z

bit is cleared.
www.ubicom.com 151

Instruction Set—IP2022 Programmer’s Reference Manual
XOR W,#lit8

Operation: W = W ^ lit8

Bits affected: Z

Opcode: 0111 1111 kkkk kkkk

Description: This instruction performs a bitwise exclusive OR of the

contents of W and an 8-bit literal value, and writes the 8-bit

result into W. If the result is 0x00, the Z bit is set.

Cycles: 1

Example: xor w,0x#0F ;complement W3:0

This example performs a bitwise logical XOR of W with the

literal value 0x0F. The result is written back to W.

For example, suppose that W holds the value 0x51. The

instruction takes the logical XOR of this value with 0x0F and

writes the result 0x5E into W. The result is nonzero, so the Z

bit is cleared.
152 www.ubicom.com

	Overview
	1.1 Key Features
	1.2 Architecture
	1.2.1 CPU
	1.2.2 Serializer/Deserializer Units (SERDES)
	1.2.3 Low-Power Support
	1.2.4 Memory
	1.2.5 Instruction Set

	Writing Assembly Code
	2.1 Comments, Constants, and Symbols
	2.2 Directives
	2.3 Operators
	2.3.1 Prefix Operators
	2.3.2 Infix Operators

	2.4 Syntax for Numeric Notation
	2.5 Special Instructions
	2.6 Memory
	2.7 Assembly to C Calling Conventions
	2.8 IP2022-Specific Reserved Words
	2.9 Other Resources

	Writing C Code
	3.1 Data Types
	3.1.1 IP2022 specific Data Types

	3.2 Writing In-Line Assembly in C
	3.2.1 Methods of defining assembly constants in C
	3.2.2 Methods of defining assembly variables in C
	3.2.3 Methods of using C-defined constants in assembly
	3.2.4 Methods of using C-defined variables in assembly
	3.2.5 Methods of reaching SPR or GPR memory locations in C
	3.2.6 D() macro
	3.2.7 In-Line Assembly in C Source Files

	3.3 C to Assembly Calling Conventions

	Instruction Set
	4.1 Instruction Format
	4.2 Addressing Modes
	4.3 Abbreviations Used
	4.4 Summary of CPU Instructions
	4.4.1 Logical Instructions
	4.4.2 Arithmetic and Shift Instructions
	4.4.3 Bit Operation Instructions
	4.4.4 Data Movement Instructions
	4.4.5 Program Control Instructions
	4.4.6 System Control Instructions

	4.5 Instruction Descriptions
	ADD fr,W
	ADD W,fr
	ADD W,#lit8
	ADDC fr,W
	ADDC W,fr
	AND fr,W
	AND W,fr
	AND W,#lit8
	BREAK
	BREAK
	CALL addr13
	CLR fr
	CLRB fr,bit
	CMP W,fr
	CMP W,#lit8
	CSE W,#lit8
	CSE W,fr
	CSNE W,fr
	CSNE W,#lit8
	CWDT
	DEC fr
	DEC W,fr
	DECSNZ fr
	DECSNZ W,fr
	DECSZ fr
	DECSZ W,fr
	FERASE
	FREAD
	FWRITE
	INC fr
	INC W,fr
	INCSNZ fr
	INCSNZ W,fr
	INCSZ fr
	INCSZ W,fr
	INT
	IREAD
	IREADI
	IWRITE
	IWRITEI
	JMP addr13
	LOADH addr8
	LOADL addr8
	MOV fr,W
	MOV W,fr
	MOV W,#lit8
	MULS W,fr
	MULS W,#lit8
	MULU W,fr
	MULU W,#lit8
	NOP
	NOT fr
	NOT W,fr
	OR fr,W
	OR W,fr
	OR W,#lit8
	PAGE addr3
	POP fr
	PUSH fr
	PUSH #lit8
	RET
	RETI #lit3
	RETNP
	RETW #lit8
	RL fr
	RL W,fr
	RR fr
	RR W,fr
	SB fr,bit
	SETB fr,bit
	SNB fr,bit
	SPEED #lit8
	SUB fr,W
	SUB W,fr
	SUB W,#lit8
	SUBC fr,W
	SUBC W,fr
	SWAP fr
	SWAP W,fr
	TEST fr
	XOR fr,W
	XOR W,fr
	XOR W,#lit8

