csr BlueCore~5-Multimedia
Kalimba DSP
User Guide

July 2006

CSR

Cambridge Science Park
Milton Road

Cambridge CB4 O0WH
United Kingdom

Registered in England 4187346

Tel: +44 (0)1223 692000
Fax: +44 (0)1223 692001
WWW.CSr.com

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

,r“ Contents

Contents
1 Introduction
2 KBY FRALUTES ..ttt ettt e ekttt e ekttt e e s eat et eea sk e be e £ e ea ek abeee £ e e b aebeen nh b beeee e ehbe e e eeenaeae s 7
SYSTEIM OVEIVIBW ...ttt ettt ettt e et ee e b bt e eh bt e ekt ee et be e ehe e e ah e e eassbe e ebbe e e eheeeea s be s ebbeebeeeannbe e ebbeeenneeeennee 8
K B €= 10 Lo F= D ST e 7 = TSROSO 9
3.2 Kalimba DSP IMEMOIYueiiiuiiiiiiiie ettt ettt ettt et te et e et e ee et e e ebe e eabeeeaneee s e e esaeeeeasee e abeeeneeeenneeaannes 9
3.3 Kalimba DSP PEIIPNEIAIScooiiiiiiie ettt ettt et e e be e eae e et e e sbeeaeeeennee e nnes 9
3.3.1 Memory Management Unit INtErfaceooouiiiiiii i 9
3.3.2 Programmable 1/0 Control
3.3.3 Interrupt Controlccccoceeeene.
3.3.4 Clock Source Select and TIMETccuiiriiiiiiiie ittt st st 9
3.3.5 DEDUG INtEITACE. i ettt ea e et ee e ee e b eenee e e 9
4 Kalimba DSP COre ArCRITECIUIEiiiiiiiciie ettt ettt et er et e e e 10
4.1 ArthmMEtic LOGIC UNit.. ..ottt ettt ettt ee e b be e saaeeenseeeebe e e eaneeenneeaanes 10
4.2 AJAreSS GENEIATONSccueiiiiitiieeie ittt ettt et rh e et ea e et ea e ea bttt e et et nh e e eh e eae e e nnee s 10
4.3 REGISEEIS ...ttt ettt e et ehae e et e e s bt e ehae e e nee et be e ehbeeenee e naeeenaeeeenaeaans 11
44 BanK 1 REGISIEISoiiiiiii ittt ettt et ee et e e e eh e e et ee et be e ehe e e eanee e ebe e e eaneeenneeeanas 11
A5 TFIAgS REGISLEN ... ettt e et e e ehe e e eaee et be e eaae e et eesae e e eae e ennneennae 12
4.5.1 NegatiVe FIag (IN) . ..ooo oottt et ee e ehbe e e eaeeeeee e e eabe e enneeneeaaas 12
R A o Y o= T N (74 TS USSR
453 CarryFlag (C).........
454 Overflow Flag (V)
4.5.5 Sticky OVErTIOW FIAQ (SV) ..ottt ettt e eb e e e e 13
4.5.6 User Definable FIag (UD)oooiiii ettt ettt ettt ee e sae e ennee e 13
45.7 Bit Reverse Flag (BR) .
4.5.8 User Mode Flag (UM)
4.5.9 CONAItION COUES.....coruiiiuiiiir ittt ettt ettt ea e et e ea bttt nae et e e nh et e eae st ee e
I 4 Y N O =T | T RSP RPRPY
4.7 BanK 2 REQGISIEIS ...t ettt et e e e e e ee e ee e e sa e bee e e e et et ee s e naeeae e eaees
4.7.1 Index Registers........

4.7.2 Modify Registers
4.7.3 Length Registers

4.8 Special Bank 3 registers

e T o o =10 T (o SRR
4.10 Debugcccceennnee. A7
5 MEMOTY OFQANISALION . ..eiiiitiiiaiiiiet ettt et ee et ettt e ettt e et ae e e sbeeeesaeeaa s ee s ehbe e et e eeaasee e ebbesesbeeenee e abbesssneeeanneeas 18
LI /(=10 To TV 1V T o J TSP
511 PM MEMOIY IMAP ...ttt et ettt e et e e e eaeee e ee e s be e ehaeeeeneee e sae e snneeenneanne
5.1.2 DMT MEMOTY MEP.....c ittt ettt et ea e et e ettt na e st e e b et aeeabe e nrenaes
5.1.3 DM2 Memory Map... .
6 INSTrUCTION SEE DESCIIPTION 1. eiie ittt ettt et e e bt e bt e e eaeee e ebe e e sbbeess e ebbe e e saeeeenneeennes
6.1 ADD and ADD With CARRY ..ottt ettt et et eh e st e e eaae e nnne e 22
6.2 SUBTRACT and SUBTRACT WIith BOITOW.coitiiiriie ittt et s 23
6.3 Bank1/2 Register Operations: ADD and SUBTRACToiiiiiiii it 24
6.4 Logical Operations: AND, OR @nd XORuoi ittt et e ee e s 25
6.5 Shifter: LSHIFT @nd ASHIFT ...ttt sttt e e sh et e naeenes 26
6.6 TMAC MOVE OPEIAtIONSuuiiiiieii ettt et ee ettt et e e ettt eeeaeee e nee e e esbeeemneeesbeeesaenneeeenaeess 27
6.7 Multiply: Signed 24-Bit Fractional and INteger..............ooiuiiiiii e 28
6.8 MULTIPLY and ACCUMULATE (56-Dit)ccuiiiiieie ittt e 29
6.9 LOAD / STORE With MemOry OffSEt.........c.ooiiiiiiiie et et 30
6.10 Sign Bits Detect and Block Sign Bits DeteCtcoiiiiiiiiiiieiie e 31
bc05-ug-001Pc © CSR plc 2006 Page 2 of 94

This material is subject to CSR’s non-disclosure agreement.

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

'/‘ Contents

6.11 DiVIde INSTIUCHON ...ttt et e et ea e et se e st b sae e e nre e 32
6.12 PUSH, POP and PLOOK Stack INSIrUCHONS....... ... 33
6.13 Program Flow: CALL, JUMP, RTS, RTI, SLEEP, DO...LOOP and BREAKcccccimiiiiinniiiiceenie 34
6.14 Indexed MEM_ACCESS_1 and MEM_ACCESS_2.........ccooiiiiiiiiiie et 35
A [83 U Toa 4 o] T @0 o | o T TSP UPRRPRPN 37
A I B o oI AN [0 15 (U T (o] o DO 38
A B o TN = B [0 1S U T (o] o DU 38
7.3 TYPE C INSTIUCHON ...ttt et e e bt e et e et ee e eabe e eaeeeeanesebbe e eaeeeennneeas 38
T4 SPECIAI CASES ... uuiiieie ittt ettt ee et e e e ehe e e ea e e et ae ek bt e eaeee e nbe e ehbeeaneeete e ahbeeenneeeenaaas 38
7.5 OP_CODE COQING..c.utiiuttiiiritie ittt ettt eab ettt ettt eh e et sa e sabe et e eh e esbe et en e eabe e e e e ehe et e s neeeane e 39
T8 AM FIEIA ...t et ea ettt a et eh e eae e ea e et et nh et ea e e
7.7 Carry Field (C Field) .
7.8 Bank 1/2 Register Select Field (B2RS Field)cooiiiiiiiiii et e 40
7.9 Saturation Select Field (V FIeld)oi et et 41
7.10 Sign Select Field (S FIlld)coo ittt et e e ebe e et et ee e eb e s enneeeeea e 41
7.11 ki Coding for LSHIFT @nd ASHIFTccuuiiii ettt et et e 41
7.12 rMAC Sub Registers Y|
A TSI 2SS | SRS TPRPPRS 42
A S | SR SPRPPRP 43
7.15 kis Coding Divide INSEIUCHONS.ooiiuiiiaiiii ettt e ee e e e e 43
7.16 StackBankSelect field @NCOTINGc.uoiiiiiiiiii ettt et ee e eb e eaeeeeeee s 44
8 Kalimba DSP PEIPNEIAIScoiiuiieiii ittt ettt et e e ehe e et e et ee e eb e e es e e e eaeee e ebbeeesbeeeannee s 45
8.1 IMMU INTEITACE ...ttt et eb e ettt eh e et e st et b st en e et se e naaenaee 46
8.1.1 REAU POITS ... e ettt 46
8.1.2 W POIS ... e e et e e e s 46
8.2 DISP TIMETS ..ttt ettt ettt eh et e eh e ettt eh st et eh e et e eh e eh et b saenh e eae e nre e 46
8.3 Kalimba INterrupt CONTrOIETo.uiiiii et ettt e eee e s e eaeeeennee e nnes 47
8.3.1 DSP Core Functionality During INterrupt.............ooiiiiimie i 47
8.3.2 Interrupt Controller FUNCHONANItYccoiiiiiii e e 47
8.4 Generation of MCU INTEITUPE ..o ittt et ee e te e eh e e e e s e enae e e ennee s 48
8.5 PIO Control48
8.6 MCU Memory WINAOWS iN DIM2...........uiiiiiiii ettt ettt et e ea e eae e s e enaeeenneeneeees 48
8.7 Flash Memory WINAOWS iN DIM2ottt e e e ee e e e sanae e e e saaeee e s 48
8.8 PM WINAOW iN DIMT ...ttt ettt ettt ea et eh e ea et e b et en st e nnae e 49
8.9 PM Flash Window with 64-word DireCt CaChe............oouuiiuiiiiiiiie et e 49
8.10 MCU 1/O Map Memory-Mapped Interface
8.11 GENEIAl REGISIEIS......eeeei ettt ettt et e et e ehe e et ee et e eabeeenneeeeneeas
8.12 Clock Rate Divider CONMIOLc.uiiuiiieie ittt ettt e et ea et en e sae e nnne e
£ T B B 1= o1 o o o USSP
Appendix A NUMDBDEr REPIESENTATIONcoiuuiiiiiiiiiie ittt ettt et etee e b e s sb e e ss e eeanseesbbe e e saeeeennees
A.1 Binary Integer RepreSentation e it e e enaees 50
A.2 Binary Fractional Representationoo e e 50
A3 Integer MUIPHCATION. ..o et et e e e e st ee e e e e e e s e sanaee e e e sanne e 50
A4 Fractional MUIIPIHCALIONcooii e ettt et e e e eae e era s e ee e e sannaeas 51
Appendix B: DSP Memory Mapped Registers52
B.5 DSP Memory Mappea /0.oo ittt ettt et e e e e eh e e eae e e ete e eabe e e e eae e 52
B.2 MMU Interface DSP REGISIEIS.......cocuuii ittt ettt e e e e ee e e s e s eeee s 57
B.3 TiMErs DSP REGISIEISoii ittt ettt ettt ee et e s e eaaeee et ee e ebeeeenneeennaeens 59

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 3 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

f"‘ Contents

B.4 Interrupt Controller DSP REGISLELSccc.uiiiiiiii ittt e e ee e 60
B.5 MCU Interrupt DSP REGISIEIS........coi ittt ettt ee et ee e sae e e e ee e eb e e eaeeeeee e 68
B.6 PIO CoNtrol DSP REGISTEISuiiiiiie ittt ettt et e e ebe e et et e e eb e e eaeeeenneaeas 68
B.7 MCU WiINdOW DSP REGISTEISeiiiuiiiiiiii ettt ettt ettt e ete e b e et e e e e e eb e e eaneeeneeeeas 72
B.8 Flash WIiNndOW DSP REGISIEIS........ccoiiiiiiiiiiiie ettt ettt et ee e st e e e e ee e e enaeeeneee s 72
B.9 PM WINAOW DSP REGISLEIS ...ttt ettt e ettt e e ee e e b ae e eaneeenee s 74
B.10 MCU IO Map Interface REGISIENS.........cc it ettt e 74
B.11 GeNneral DSP REGISIEIS ..ottt et e e et e e e eaeee e ee e e s e enneeeeneaaaas 76
B.12 PM Flash Window Control REGISLEIScoiiiuiiiiieii ettt e ee e eeeee e 77
B.13 Clock Divide Rate DSP REGISTEIS........coouiiiiiiiie ettt ettt et e e ee e e enae e eee e 78
B.14 Core State DSP REGISIEISoo ittt ettt e e ee e b e eaae e e e e e b beeeneeeenee e e
B.15 Bitreverse Function Memory-mapped Register
B.16 Kalimba Add/Subtract Core Configuration Register ..o 81
B.17 Stack Memory-mapped REGISLEIScooiiiiiiii ettt et s e ee e 82
B.18 Debug Profiling Memory-mapped REGISTEIScoiiiiiiii e 83
Appendix C: SOftWAre EXAMPIESooiiiiiiiiiii ettt ettt et ee et e e bttt e b be e ebbe e e saeeeebe e sbbeesnneeeanneas 86
C.1 Double-Precision Addition86
C.2 Fractional Double-Precision MUIIPIYoouiiii e et e 86
C.3 Integer Double-Precision MUHRIPIYcoo et 86
O 1 1 (=Y PP S 87
C.5 Cascaded Bi-QUad HR FIlEI.........ccccoiiiiii ittt e e 88
(O3 G = To [e PRSP PPRRPIE 89
DOCUMENT REFEIENCES ...ttt ettt et eh et h e a et eh e e bt e e bbb st eae et en e b ene e nn s 92
Terms @nd DEfiNITIONS ..c..oiiiiiiiiie ettt e h ettt et rr e eh bbb et nh e eh e e 93
[DToTod 014 g LT o o TE] o] oS RPRP 94

List of Figures

Figure 3.1: Kalimba DSP Co-Processor SUDSYSIEMooiiiiiiiii ettt et eeee s 8
Figure 4.1: Kalimba DSP Core Base ArChitECIUIE..........ccc.eii ittt 10
Figure 4.2: rIMAC Register
Figure 5.1: Memory Organisation
Figure 8.1: Kalimba DSP Peripheral INtErfaCes.ooiuiiiiiii et e 45
Figure 8.2: Example of MMU Interface Usage for a Wireless MP3 Playercccoooiiiiiiiiiiniiiieeeeeee e 46

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 4 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

f’“ Contents

List of Tables

Table 4.1: BaNK 1 REGISTEIS ... ittt ettt e et e es et e et ee e sbe e eaneeenneeeasbe e enneeenneaeannes 11
Table 4.2: rFIagS REGISTENottt et he e e e ee e b e e ea e e eaneeesbe e eaeeeenneeanneas 12
Table 4.3: CONAItION COUES........coriiiiiiiieiit ettt ettt eh e et ehe et es e sa e ettt nabe st se e sae e

Table 4.4: Bank 2 Registers
Table 4.5: Bank 3 Registers
Table 5.1: PM Memory Map

Table 5.2: DMT MEMOIY IMAP.......uii ittt et ettt ee et e e e ea e e ea e ee e e e es bt eeeanee e s be e esbeeenste s seeense e enneeanseess 19
Table 5.3: DM2 MEMOIY IMAPottt et ee et ee e ea et ee s s eheeee e s sasbeeeeeeeansaeeeean sanbeeesansbeeesen sannaeeae e naes 20
Table 6.1: Notational CONVENTIONo.ui ettt e et et ee e be e sae e e eante e sbe e eabeeeeneeeeneeas 21
Table 7.1: Instruction Coding FOrMAtottt e e e en e e e e e 37
Table 7.2: OPCODE CodiNg FOMMALooiiiii ittt ettt e ee et e et est e eae e eabeeenneeeeneens 39
TADIE 7.3: AM FIEIA ...ttt et ettt e s e s e eh b e e et et ehees e sa sheaees b see se e et eneenaeeaeenaesae e 40
Table 7.4: C Field OPONSo et a e et ee et e e eae e e eate e s be e esbeaneeeaasae e eabesenneeennseeas 40
TabIE 7.5: B2RS FIEIA ... eeeiee ittt et ettt et e s e sae e e e et e et esbes e seceaes e se e s e e e enaen s ensenaeseene 40
B oL A Y Y o TSSO 41
Table 7.7: SField........cccccceeeiiiis .41
Table 7.8: kig Coding Shift FOrMAt..........c.uoiiiiii et e e e eae e eaeee s 41
Table 7.9: IMAC SUD-REGISLETSttt ettt et e e et e et be e esae e e eae s e e enbe e enneeanneees 41
TADIE 7.10: ASHIFT ..ottt ettt ettt bt eh et e et et e aeeh e she sh e et et es Rt eheehbeseesees b seeeseeneensenaeenbenaeseenne 42
Table 7.11: LSHIFT..... ...43
Table 7.12: DIVIAE FI@IA ... et ettt ettt e et e e e et e e s be e eee eaneee s se e saeeeemneeanneees 43
Table 7.13: Divide Field Statesccciiiiii ettt et e e e eab et ee e ee e eabeeenneeeeaneeas 43
bc05-ug-001Pc © CSR plc 2006 Page 5 of 94

This material is subject to CSR’s non-disclosure agreement.

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

f"‘ Introduction

1 Introduction

The BlueCore™5-Multimedia Kalimba DSP User Guide is for developers of software applications and
algorithms for the DSP (Digital Signal Processor) co-processor on the BlueCore5-Multimedia device. It
documents the architecture of the Kalimba DSP, instruction set mnemonics and peripheral features, and includes
some example code. Read this document in conjunction with the other Kalimba tools documents that are
available:

= BluelLab Kalimba DSP Assembler User Guide (CSR reference bc5-ug-002P) which describes the
assembler software

= BluelLab xIDE User Guide (CSR reference blab-ug-002P) which describes xIDE, the software debugging
tool

One of the features of the BlueCore5-Multimedia device is an on-chip DSP co-processor, Kalimba. The Kalimba
DSP particularly targets audio processing applications for BlueCore. The likely audio processing applications
include:

= Sub-Band Coding (SBC) encoding and decoding, as defined in the Bluetooth Advanced Audio
Distribution Profile

= MP3 encoding and decoding, as defined in ISO/IEC 11172-3, and the sample rate extensions defined in
ISO/IEC 13818-3

= Advanced Audio Coding (AAC) encoding and decoding, as defined in ISO/IEC 13818-7
= Alternative voice/Hi-Fi CODECs
= Echo and noise cancellation
= Audio signal enhancement
= Stereo enhancement
= Equaliser
= Lost packet concealment
= Text to speech

= Voice recognition

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 6 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

,r“ Key Features

2 Key Features

The key features of the Kalimba DSP core include:

= 24-bit fixed point Kalimba DSP core
= 64MIPS performance which can be divided down for power saving
= 32-bit instruction word, dual 24-bit data memory:

= 16-bit program address space with 6Kword (6K x 32-bits) of physical RAM, external flash is
addressable with a 64-word direct cache

= 16-bit data address space in two banks with 16Kword and 12Kword (x 24-bits) of physical RAM
= Up to two data memory accesses can be performed in the same cycle as a program memory read
= Single-cycle 24 x 24-bit multiply with 56-bit accumulator
= Single-cycle barrel shifter with 56-bit input and 24-bit output
= 12-cycle divide (performed in the background)
= Majority of instructions can be conditional
= Zero overhead ring buffer indexing
= Zero overhead looping and unconditional branching
= Bit reversed addressing capability, and bit reverse data function

= Largely orthogonal instruction set, which is quick to learn and easy to write in algebraic assembler
language

= Stack instructions: PUSH, POP, PLOOK and overflow detection

= Low-power internal architecture
The key features of the Kalimba DSP peripherals include:

= Close integration into the rest of the BlueCore5-Multimedia

= Eight low-overhead read/write ports to transfer streaming data to and from the BlueCore5-Multimedia
subsystem

= Four shared memory-mapped registers

= Two memory-mapped windows into the BlueCore5-Multimedia MCU RAM for data exchange
= Three windows for access to the Flash data memory

= Flash Program memory interface with 64-word direct cache

= Memory-mapped interface to BlueCore5-Multimedia I/O address map

= Multiple interrupt sources including two 24-bit timers

= Read, write and direction control access to external programmable I/O (PIO) lines

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 7 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

Csr

~

System Overview

3 System Overview

The BlueCore5-Multimedia contains the Kalimba DSP shown in Figure 3.1 and consists of the following functional

elements:

= Kalimba DSP core
= DSP memory, this RAM is used for:
= Data memory
= Program memory
= Memory mapped I/O
= Memory management unit (MMU) interface
= Programmable 1/O control
= Interrupt control
= Clock source
= Timer

= Debug interface

MCU Register Interface (including Debug) >

Kalimba DSP

Memory Management Unit
Of BlueCore5
Subsystem

DSP MMU Port

Kalimba DSP Core

Registers

DSP’s MCU and FLASH Window Control

AN AYNEIIAS

Address
Generators

Data Memory
Interface

Instruction Decode

Program DEBUG

Flow

DSP Program Control

Kalimba DSP RAMS. Programmable Clock <= 64MHz

Data Mt 2 (DM2;
N alginlozri.b,([) < DSP Data Memory 2 Interface (DM2) >
Data Memory 1 (DM1)
16K x 24-bit DSP Data Memory 1 Interface (DM1)

Program Memory (PM)
6K x 32-bit

< DSP Program Memory Interface (PM) >

Kalimba DSP Peripherals

Clock Select PIO

PIO In/Qut

A

Internal Control Registers

IRQ to BlueCore5 Subsystem

MMU Interface

Interrupt Controller

IRQ from BlueCore5 Subsystem

Timer

1ps Timer Clock

A

MCU Window

Flash Window

<

PM Flash Interface >

Figure 3.1: Kalimba DSP Co-Processor Subsystem

bc05-ug-001Pc © CSR plc 2006

This material is subject to CSR’s non-disclosure agreement.

Page 8 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

,r“ System Overview

3.1 Kalimba DSP Core

The Kalimba DSP core is an open-platform DSP that can perform signal processing functions on over-air data or
audio CODEC data to enhance audio applications. Figure 3.1 and Section 0 show how the DSP interfaces to
other functional blocks within BlueCore5-Multimedia.

3.2 Kalimba DSP Memory

The Kalimba DSP contains the following on-chip RAM:

= 16K x 24-bit for data memory 1 (DM1)
= 12K x 24-bit for data memory 2 (DM2)

= 6K x 32-bit for program memory (PM) with 64-word direct cache for Flash program space

3.3 Kalimba DSP Peripherals

3.3.1 Memory Management Unit Interface

The MMU Interface consists of a series of virtual read and write ports that stream transfers to/from the rest of the
BlueCore5-Multimedia.

3.3.2 Programmable I/O Control

BlueCore5-Multimedia has up to 24 programmable /O lines controlled by firmware running on the device. The
Kalimba DSP core can read any digital I/O directly but can only write to or change the pin direction of digital
outputs that the MCU has enabled. (This is done through the VM application.) A full description of the I/O control
is in Section 8.5.

3.3.3 Interrupt Control

The interrupt controller function within the Kalimba DSP covers interrupt control of the Kalimba DSP core. It
allows interrupt sources selection and control of their priority setting within three levels. Alongside the interrupts
caused by hardware, there are four software event interrupts available, with a further 16 interrupt events that
directly correspond to the 16 interrupt events available to the Bluecore5-Multimedia MCU.

3.3.4 Clock Source Select and Timer

The Kalimba DSP consists of a clock source select interface, which is a clock-rate divider circuit that is
controllable from both the Kalimba DSP core and the on-board MCU. The Kalimba DSP also has two timers with
a 1us time base available.

3.3.5 Debug Interface

The BlueCore5-Multimedia contains a hardware interface that assists in the debugging of applications running on
the Kalimba DSP core.

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 9 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

= — Kalimba DSP Core Architecture

4 Kalimba DSP Core Architecture

Figure 4.1 shows the Kalimba DSP core architecture.

HAddress Generator AG1
<——Data Memory 1 Interface—» pata Memory
<«——Data Memory 2 Interface——| Interface
HAddress Generator AG2
ALU
AddSub Multiply

9 Instruction < > Bank 1

Registers

Decode
Logic:
AND, OR, XOR t
Program Memory Interface—
Program Flow < > Debug [€—Debug Interface—
Clock and Interrupts———|

Figure 4.1: Kalimba DSP Core Base Architecture

4.1 Arithmetic Logic Unit

The arithmetic logic unit (ALU) performs the following functions:

= Add and subtract arithmetic
= Logic operations:
= AND, OR, and XOR
= Single-cycle multiply, multiply/add and multiply/subtract
= Logical and arithmetic shift operations with a 56-bit input and 24-bit output
= Derive exponent and block derive exponent operations, which detect the number of redundant sign bits
» Signed divide, taking a 48-bit dividend (numerator) and a 24-bit divisor (denominator)"

= Stack instruction control: PUSH, POP and PL OOK with overflow detection

This operation is performed in the background, taking 12 clock cycles.

4.2 Address Generators

The address generators (AGs) form data memory addresses for indexed memory reads or writes. Each AG has
four associated address pointers (index registers). When an index register is used for a memory access, it is
post-modified by a value in a specified modify register, or by a 2-bit constant. With two independent AGs, the
DSP can generate two addresses simultaneously for dual indexed memory accesses.

Length values may be associated with four of the index registers to implement automatic modulo addressing for
circular buffers.

When the appropriate mode bit is set in the r Fl ags register, the output of AG1 is bit-reversed then driven on to
the address bus. This feature enables addressing in radix-2 Fast Fourier Transform (FFT) algorithms; see the
Radix-2 FFT code in appendix C for an example of its use.

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 10 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

= ,r“ Kalimba DSP Core Architecture

4.3 Registers

There are two banks of 16 registers, with an additional bank of special registers for use with the stack
instructions:

= Bank 1 are general registers described in Section 4.4 that can be used by virtually all instructions.

= Bank 2 registers are used for the control of index memory accesses described in Section 4.5.
4.4 Bank 1 Registers

Bank 1 registers are general registers used by virtually all instructions.

Only registers r MAC, r O-r 5 can be used by indexed memory access instructions.

16-bit registers (r Li nk, r Fl ags and r | nt Li nk) are zero padded to 24-bit. Writing to them does not affect
the flags register.

o
No. | Name # bits | Description g
0 Nul | NA Always read as zero, writing only affects flags (hence can be used for condition n
testing) o
1 r MAC 56 The 5§-bits are used for multiply accumulate instructions and the input to shift 3
operations.
For 24-bit operations: 91
= Read as bits [47:24] (with saturation and unbiased rounding)(”, g
= Written as bits [47:24] with sign extension and trailing zero padding to :
make 56-bits :
2 ro 24 General register —
3 rl 24 General register 5
4 r2 24 General register 0
5 r3 24 General register g'.
6 ra 24 General register Q
7 r5 24 General register P
8 ré 24 General register 9_’
9 r7 24 General register §'
10 |[r8 24 General register o
11 r9 24 General register Q
12 rlo 24 General register and is used as the loop counter for zero overhead loops U
13 | rLink 16 Call instructions put the return PC address in this register for use by rt s m
instructions® -U
14 rFl ags 16 Status and mode flags see below for a description
15 | rintLink | 16 The return PC address is stored in this register for use by r t i instructions %
Table 4.1: Bank 1 Registers 2
Notes: G)
=
Q.
@

All registers are set to 0 (zero) on DSP reset:

™ Unbiased rounding is as follows:

rMACrounded = rMAC[47:24] + rMAC[23];
if (rMAC[23:0] == 0x800000) then rMACrounded[0] = O;
This has the effect of rounding odd r MAC[47:24] values away from zero and even r MAC[47:24] value
towards zero, yielding a zero large sample bias assuming uniformly distributed values.
@ There is no hardware subroutine stack, so to allow multi depth subroutine calls a software stack
implementation or equivalent is required.

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 11 of 94

,r“ Kalimba DSP Core Architecture

45 rFlags Register

The r Fl ags register is a 16-bit register that is located in register bank 1 of Kalimba shown in Table 4.1. The
individual bits that make up the r Fl ags register and their value after reset are as shown in Table 4.2. This
register has a natural split into two bytes:

= The least significant byte contains the presently active flags used by Kalimba.

= The most significant byte contains a stored value of the flags.

The flags are stored when an interrupt has occurred and then restored back to these values after Kalimba has
finished servicing the interrupt. Interrupts are serviced three instructions after the interrupt request line goes high
(not including prefix instructions). The INT_ versions of the various flags are the copies that are stored at the
point of interrupt service. The rt i instruction then automatically restores the flags to their previous value.

Olo|lo|a
<|l<|[<]J]Oo|lO|lo]|O
231219122 |¢
Name I I I ool | Qo]
Z= | x|>(Q2 ol 23S S1S1219212]9
Sla|d|S|>oIN|Zlg 222|533
LI L S I I R L E| o | o o oL T
Z(Z|1Z2|Z|Z2|Z2|Z2|Z |5 |aoaldb|D|>|l0o|N]|=z
Reset State 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15(14 113|121 11110 | 9 8 7 6 5 4 3 2 1 0

Table 4.2: rFlags Register

45.1 Negative Flag (N)

Thisis set if the result of the instruction is negative (most significant bit set), and cleared otherwise.

45.2 Zero Flag (2)

This is set if the result of the instruction is zero, and cleared otherwise.

45.3 Carry Flag (C)

The state of the carry flag is:

= For an addition, C is set if the addition produced a carry (that is, an unsigned overflow), and is cleared
otherwise.

= For a subtraction, C is cleared if the subtraction produced a borrow (that is, an unsigned underflow), and
is set otherwise.

= For other operations (including multiply accumulate), C is left unchanged.
45.4 Overflow Flag (V)

The state of the overflow flag is:

= For addition, subtraction, arithmetic shifts, integer multiplies and multiply accumulates, V is set if signed
overflow occurred, regarding the operands and result as two’s complement signed integers, and is
cleared otherwise.

= The setting/clearing of the V flag for the r MAC register occurs if there is overflow past the 56th bit,
whereas for the 24-bit registers it is if overflow occurs past the 24th bit. When writing to the 16-bit
registers overflow has limited meaning so the V flag remains unchanged.

= For other operations, V is left unchanged.

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 12 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

,r“ Kalimba DSP Core Architecture

455 Sticky Overflow Flag (SV)

Set whenever the V flag is set but can only be cleared in software by explicitly writing to the r FI ags register.

45.6 User Definable Flag (UD)

A special USERDEF condition code is TRUE if this flag is set and FALSE if this flag is clear. Use it in the code
sections to improve speed and code clarity where optionally a particular instruction needs to execute.

45.7 Bit Reverse Flag (BR)

If set, the output of Address Generator 1 (index registers | 0-1 3) is bit-reversed before being driven to the
address bus.

45.8 User Mode Flag (UM)

If set, interrupts are serviced. On entry to the interrupt service routine (PC address 0x0002), this flag is cleared
and so no further interrupts are serviced unless the flag is manually set for example to support interrupt priority.
Execution of a return from interrupt (r t i) instruction sets this flag to the value of INT_UM_FLAG (normally set

unless altered in software). During an interrupt service routine, the INT_UM_FLAG contains the stored value of
the user mode flag prior to the interrupt.

459 Condition Codes

The state of the flags present in the r FI ags register forms the basis of the condition codes in Table 4.3 for the
Kalimba DSP.

Condition Condition Flag State Condition Code
Z (Zero) | EQ (Equal) Z=1 0000
NZ (Not Zero) / NE (Not equal) Z=0 0001
C (ALU carry) / NB (Not ALU borrow) c=1 0010
NC (Not ALU carry) /B (ALU borrow) C=0 0011
NEG (Negative) N=1 0100
POS (Positive) N=0 0101
V (ALU overflow) V=1 0110
NV (Not ALU overflow) V=0 0111
HI (unsigned higher) C=1ANDZ=0 1000
LS (unsigned lower or same) C=00RZ=1 1001
GE (Signed Greater than or equal) N=V 1010
LT (Signed Less than) N!=V 1011
GT (Signed Greater than) Z=0ANDN=V 1100
LE (Signed Less than or equal) Z=10RN!=V 1101
USERDEF (user defined) USERDEF =1 1110
Always true don’t care 1111

Table 4.3: Condition Codes

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 13 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

h—-'/j Kalimba DSP Core Architecture

4.6

rMAC Register

The r MACregister is a 56-bit register that is located in register bank 1 of Kalimba indicated in Table 4.1. The
r MAC register splits into a set of separately accessible sub-registers. Figure 4.2 lists the size of these registers:

rMAC rMACO

r MAC is the overall 56-bit register

r MACO is a 24-bit register that forms the lower part of the r MAC register
r MACL is a 24-bit register that forms the middle part of the r MAC register
r MAC2 is a 8-bit register that forms the higher part of the r MAC register

r MAC12 is a 32-bit register that is a combination of IMAC2 and rMAC1 that forms part of the r MAC
register

55 48 47 24 23 0
rMAC2 rMAC1

rMAC12

Figure 4.2: rMAC Register

bc05-ug-001Pc

© CSR plc 2006

This material is subject to CSR’s non-disclosure agreement. Page 14 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

,r“ Kalimba DSP Core Architecture

4.7 Bank 2 Registers

Bank 2 registers are for the control of index memory accesses, and set up modulo addressing through a circular
memory buffer.

No. | Name | #bits | Description

0 10 16 Index register for Address Generator 1 (AG1)

1 11 16 Index register for AG1

2 12 16 Index register for AG1

3 13 16 Index register for AG1

4 14 16 Index register for Address Generator 2 (AG2)

5 15 16 Index register for AG2

6 16 16 Index register for AG2

7 17 16 Index register for AG2

8 MD 16 Modify register for any index register

9 ML 16 Modify register for any index register

10 e 16 Modify register for any index register

11 M3 16 Modify register for any index register

12 LO 16 Length register for Index register | 0

13 L1 16 Length register for Index register | 1

14 L4 16 Length register for Index register | 4

15 L5 16 Length register for Index register | 5

Table 4.4: Bank 2 Registers

Note:

All Bank 2 registers are sign extended to 24-bit for arithmetic operations

All registers are set to 0 (zero) on DSP reset
4.7.1 Index Registers

The index register contains the address pointers to data memory used with indexed addressing. These registers
allow transfer of data to and from selected Bank1 registers using the address contained within this register. See
Section 6.14 for further details. The index registers | O to | 3 are associated with AG1 and 14 to| 7 are
associated with AG2.

4.7.2 Modify Registers

When an index register is used for a memory access, it can be post-modified by a value contained in the modify
register, or by a 2-bit constant.

4.7.3 Length Registers

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

Length register values are associated with four of the index registers, as listed in Table 4.4, to implement
automatic modulo addressing for circular buffers. To disable automatic modulo addressing set the corresponding
length register to zero.

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 15 of 94

,r“ Kalimba DSP Core Architecture

4.8 Special Bank 3 registers

These additional registers can be used by the stack instructions to accelerate pushing and popping registers to
the stack, particularly for interrupt routine entry and exit.

No. | Name # Description
bits
0 RVACO 24 The LS 24 bits of r MAC
1 RVAC1 24 The middle 24 bits of r MAC
2 RMAC2 8 The MS 8 bits or r MAC
3 Dol oopSt art 16 Start address fordo Loops. Identical to memory-mapped
MM_DOLOOP_START
4 Dol oopEnd 16 End address fordo Loops. Identical to memory-mapped
MM_DOLOOP_END
Di vResul t 24 Divider result
D vRemai nder | 24 Divider remainder

Table 4.5: Bank 3 Registers

Note:
All special Bank3 registers are only accessible with the stack instructions. Pushing Di vResul t or
Di vRemai nder will stall the DSP until any background divides have completed, popping will cancel
any current background divides.
All registers are set to 0 (zero) on DSP reset.

4.9 Program Flow

The program counter (PC) supplies addresses to the program memory. An instruction register holds the currently
executing instruction. This instruction register introduces a single level of pipelining into the program flow. During
one clock cycle, the instruction register has instructions fetched and loaded into it and during the following cycle
they are executed. To allow zero overhead branching and no pipeline hazards with memory reads the processor
also acts on the direct signal from the memory, i.e. the next instruction executed, to set up the address bus and
control lines for a memory read. However, certain instructions have stalls imposed to reduce long combinatorial
paths within the DSP. These stalls occur whenever any of the following happens:

e A conditional branch occurs

e A main-instruction memory read occurs where the result of the previous instruction is used as the
address for the next instruction

e A conditional memory read occurs

e The value of r 10 is set immediately before the start of a Do ... Loop
e Anrt s occurs immediately after changing r Li nk

e Anrti occurs immediately after changing r | nt Li nk

e Anindex memory read occurs on either AG1 or AG2 where the corresponding index register is modified
immediately before the indexed read

e The bitreverse (BR) flag is altered immediately before an AG1 indexed memory access

Hence, there are stall cycles in the following code examples:

= Stall due to conditional branch:

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 16 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

f’“ Kalimba DSP Core Architecture

r0 = r0 - 1;
if POS jump dont_add ten;
r0O = r0 + 10;
dont_add_ten:
= Stall due to main-instruction memory read:
ro0 100;
rl M[r0];
= Stall due to modifying r 10 before ado ... | oop:
rl0 = 100;
do Loop; //Stall here due to modifying rl0 before do..loop
r0O = r0 + 1;
Loop:
= Stall due to setting index register before a memory read:

I0 100;
rl rl + r2
r0 = M[IO, 1]; //Stall here since IO is set up immediately before

= Stall due to changing r Li nk beforeanrts:

POP rLink;
rts; //stall here due to modifying rLink before rts

Another feature of the program flow of the Kalimba DSP is the hardware zero overhead looping instruction. The
register r 10 is loaded with the number of times that the code between the do instruction and the | oop label
executes. r 10 is then automatically decremented and a jump taken (if needed) at the same time as executing
the instruction before the ‘loop’ label. For example:

= Zero overhead looping:
rl0 = 10;
rl = 4; // A stall would occur if this wasn’t here
do loop; // copies 10 words of data from
r0 = M[IO,1]; // address I0 to address I2.
M[I2,1] = rO0; // Takes 22 cycles in total.
loop:

410 Debug

There is debugging hardware in the Kalimba DSP used by the debugger, xIDE or kaldbg. It provides the following
features:

= Reset, Run, Stop, Step

= Setting and reading of the program counter (PC)

= Program breakpoint

= Data memory breakpoint (read, write, or read/write)
= Instruction Break

= Read/write of register values

= External to the DSP core itself there is debug circuitry to read/write memory locations as seen by the
DSP on either of its 3 memory buses PM, DM1 and DM2

= Read/clear profiling counters:
= Number of clocks
= Number of instructions executed

= Number of stall cycles

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 17 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

___/‘ Memory Organisation

5 Memory Organisation

The Kalimba DSP core has two 24-bit data memory banks, DM1 and DM2, each having a 15-bit address space,
and a single 32-bit program memory (PM) having a 16-bit address space. Accessing all three memories
simultaneously is possible in the same clock cycle, assuming no conflicts; this is a three-bank Harvard
architecture. Conflicts introduce an appropriate number of wait cycles. Figure 5.1 is a view of the Kalimba DSP
memory organisation containing size information and peripheral memory mapping.

BlueCore5-Multimedia has the following physical RAM for the Kalimba DSP:
= DM1 = 16K x 24-bit
= DM2 = 12K x 24-bit
= PM = 6K x 32-bit

The BlueCore5-Multimedia subsystem MCU initialises the Kalimba DSP. During initialisation program and data
coefficient download to the DSP occurs through auto-incrementing memory-mapped registers in the MCU. The
MCU then sets the initial clock frequency for the Kalimba DSP to use before starting it running. API calls from the
virtual machine (VM) running on the MCU invokes the program download, and Kalimba DSP initialisation.

Program Memory (PM) Data Memory 1 (DM1) Data Memory 2 (DM2)
OxFFFF Unmapped OXTFFF Ralimba Memory Mapped Reaister gﬁéégg
0x7800 MCU Access Window 2
Mapped PM 0xF000
LS 16-bits MCU Access Window 1
0x6000 O0xE000
Unmapped
0x5800 Flash Access Window 3
Mapped Flash Mapped PM 0xD000
MS 16-bits Flash Access Window 2
0x4000 0xC000
Flash Access Window 1
0xB000
0x1800 Physical RAM
Flash Cache (64 words) Dm1 Physical RAM
0x17CO
DM2
Physical RAM PM
0x0000 0x0000 0x8000

-t 32-bi Lt - 4-bi L -t Ll

Figure 5.1: Memory Organisation

51 Memory Map

The memory organisation shown in Figure 5.1 can be broken down into their individual memory maps as shown
in the tables in Section 5.1.1 to Section 5.1.3 (and Appendix B Table 1 for the DSP memory map).

5.1.1 PM Memory Map

The program memory map for Kalimba shown in Table 5.1 contains 6Kwords (6K x 32-bits) of physical program
memory RAM. The highest 64 words of RAM may be used as cache for the PM flash space. The remaining
58Kwords can be mapped into flash. Memory-mapped registers in the DSP decide the flash start address and
size of the region of flash that is mapped. The MCU can control the priority given to flash accesses between the
Kalimba DSP and MCU.

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 18 of 94

= _A Memory Organisation

Data Length

Description
Word
Start End (Words)

0x0000 | Ox17BF | 6K (-64words) | General-purpose RAM (program memory)

0x17C0 | OX17FF 64words Cache for flash PM space, or general-purpose RAM if flash not used

0x1800 | OXFFFF 58Kwords Mapped to flash

Table 5.1: PM Memory Map

51.2 DM1 Memory Map

The first data memory bank DM1 has a memory map shown in Table 5.2 containing:
= 16Kwords (16K x 24-bits) of data memory for the DSP
= A window of 6Kwords of program memory split into the most and least significant halves

= The remaining areas of the memory map allow for future variants

Data
Length

(Words) Description

Start End

0x0000 | Ox3FFF 16K General purpose RAM (data memory 1)

0x4000 | OxX57FF 6K Mapped to program memory MS-16bits

0x5800 | OX5FFF 2K Available for RAM expansion in future variants
0x6000 | OX77FF 6K Mapped to program memory LS-16bits
0x7800 | OX7FFF 2K Available for RAM expansion in future variants

Table 5.2: DM1 Memory Map

5.1.3 DM2 Memory Map

The second data memory bank DM2 memory map shown in Table 5.3 has the following distinct areas:

= 12Kwords (12K x 24-bits) of general purpose data RAM for the DSP.

= Three 4Kwords windows into the flash memory, which could be used by the DSP for items such as
slower access coefficient tables.

= There are two MCU windows 4K and 3.75Kwords into the MCU memory to allow for control information
and message passing.

= The final 256words of the memory map are reserved for the memory mapped 1/O for the DSP that is
explained further in Appendix B: DSP Memory Mapped Registers.

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 19 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

—

Memory Organisation

Data Length

Start End (Words)

Description

0x8000 | OXAFFF 12K

General-purpose RAM (data memory 2)

0xB00O | OXBFFF 4K

Flash window 1

0xC000 | OxCFFF 4K

Flash window 2

0xDO00 | OxDFFF 4K

Flash window 3

OxEO00 | OXEFFF 4K

Window into MCU memory 1

O0xFO00 | OXFEFF | 4K-256

Window into MCU memory 2

OxFFOO | OxFFFF 256

DSP Memory-mapped I/O registers (See Appendix B: DSP Memory
Mapped Registers for details)

Table 5.3: DM2 Memory Map

bc05-ug-001Pc

This material is subject to CSR’s non-disclosure agreement.

© CSR plc 2006 Page 20 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

—

Instruction Set Description

6 Instruction Set Description

The instruction set for the BlueCore5-Multimedia is an algebraic assembler instruction set compared to the
mnemonic assemblers found in traditional microcontrollers. Algebraic assemblers suit the architecture of a DSP,
as it is able to express complex and parallel instructions in an understandable way. This section describes each

instruction in more detail.

Table 6.1 outlines the notation conventions used in describing the syntax:

Parallel lines | |

Vertical parallel bars enclose lists of syntax options. One of the choices listed must be
chosen.

Angled brackets
<non bold italics>

Anything in non bold italics enclosed by angled brackets is an optional part of the
instruction statement.

A B,C

Denotes a register operand. By default, the register must be chosen from the list of
Bank1 registers. If subscribed with ‘Bank1/2’ then the register can be chosen from
either Bank1 or Bank2

K1e, ks Denotes a constant, the subscripted number being the size of the number in bits.

M[x] Means the data in the memory location with address x’.

M[i,m] Means the data in the memory location with address ‘', and that after the read/write the
value of the register ‘i’ is modified according to the equation: i=i+m;

cond A condition code from Table 4.3, e.g. NZ

MEM_ACCESS_1
MEM_ACCESS_2

Represents a memory access instruction that can be appended to an instruction where
indicated. The valid memory access instructions that can be appended are covered by
the Indexed MEM_ACCESS_1/2 in Section 6.14

Important Note:

Table 6.1: Notational Convention

The Kalimba DSP architecture has been designed to carry out single-cycle instructions. Any exceptions are
noted in the description for the instruction, e.g. the divide instruction and in section 4.9.

bc05-ug-001Pc

© CSR plc 2006

This material is subject to CSR’s non-disclosure agreement. Page 21 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

,r“ Instruction Set Description

6.1 ADD and ADD with CARRY

Syntax:

Type A: <ifcond> |C=A+B <+Carry> <MEM_ACCESS_1>;
C=A+M[B]
C=M[A]+B
M[C]=A+B

Example: 1if 2 r3 = rl + M[r2] + Carry
r4 = M[IO, MO];

Type B: C=A+kis <+Carry>;
C=A+M[k16]
C = M[A] + kis
Mlkig] =A+C
Example: r3 = M[rl] + 10 + Carry;

Type C: C=C+A <+Carry> <MEM_ACCESS_1> <MEM_ACCESS_2>;
C=C+M[A]

Example: r3 = r3 + M[rl] + Carry
rd M[IO,MO]
rs5 M[I4,M1];

Description:

Test the optional condition and, if TRUE, perform the addition. If the condition is FALSE, perform a no-operation
(NOP) but MEM _ACCESS 1 still carried out. Omitting the condition performs the addition unconditionally. The
addition operation adds the first source operand to the second source operand and, if designated by the “+
Carry’ notation, adds the ALU carry bit, C. The result is stored in the destination operand. The operands may be
either one of the 16 Bank1 registers, a 16-bit sign extended constant (24-bit with prefix instruction), or memory
pointed to by the register or a constant.

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared otherwise

V Set if an arithmetic overflow occurs and cleared C Setif a carry is generated and cleared otherwise
otherwise

Note:
If one of the source operands is Nul | then a load/store is assumed. Therefore, the C and V flags are
unchanged.
If all operands are Nul | then a NOP is assumed. Therefore, all flags are unchanged.
When writing to r Li nk the result is stored in r Li nk and so the flags are not applicable.
Additions and subtractions may be saturated on overflow by setting the

ADDSUB_SATURATE_ON_OVERFLOW memory-mapped register. This causes saturation of signed
numbers (positive saturation to Ox 7FFFFF, negative saturation to 0x800000).

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 22 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

,r“ Instruction Set Description

6.2 SUBTRACT and SUBTRACT With Borrow

Syntax:

Type A: <ifcond> | C=A-B <-Borrow> <MEM_ACCESS_1>;
C=A-M[B]
C=M[A]-B
M[C]=A-B

if Z r3 = rl - r2 - Borrow
r4 = M[IO, MO];

Example:
Type B: C=A-kss <-Borrow>;
C = A - Mk+g]
C =M[A] - kis
Mksg] =A-C
C = kqg-A
Example: r3 = M[rl] - 10 - Borrow;

Type C=C-A <-Borrow> <MEM_ACCESS_1> <MEM_ACCESS_2>;
C1/2:

C=C-M[A]
Example: r3 = r3 - rl - Borrow
M[IO,M0]

rd =
r5 = M[I4,M1];

Description:

Test the optional condition and, if TRUE, perform the subtraction. If the condition is FALSE, perform a NOP, but
MEM_ACCESS_1 still carried out. Omitting the condition performs the subtraction unconditionally. The subtraction
operation subtracts the second source operand from the first source operand and optionally, if designated by the
“- Borrow’ notation, subtracts the inverse of the ALU carry bit, C. The result is stored in the destination
operand. The operands may be either one of the 16 Bank1 registers, a 16-bit sign extended constant (24-bit with
prefix instruction), or memory pointed to by the register or constant.

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared otherwise

V Set if an arithmetic overflow occurs and cleared C Cleared if a borrow is generated and set
otherwise otherwise

Note:

If one of the source operands is Nul | then a negate is assumed. The C and V flags are set or cleared as
appropriate. Note the difference between BlueCore5-Multimedia and BlueCore3-Multimedia, where the C
and V flags are left unchanged.

When writing to r Li nk the result is stored in r Li nk and so the flags are not applicable.

Additions and subtractions may be saturated on overflow by setting the
ADDSUB_SATURATE_ON_OVERFLOW memory mapped register. This causes saturation of signed
numbers (positive saturation to Ox 7FFFFF, negative saturation to 0Xx800000).

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 23 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

—

Instruction Set Description

6.3 Bank1/2 Register Operations: ADD and SUBTRACT

Syntax:

Type A:

Type B:

Type C1/2:

Description:

<if cond>

Example:

Example:

Example:

Caanki1rz = Asankizz + Beankii2

Caankir2 = Asank1/2 - Beankire
if 2 I0 = I4 + r2
rl = M[I1,M1];

Caanki1iz = Asankirz + Kie
Caankir2 = Asankir2 - Kie
Ceaank1i2 = K1 - Aankis2

I0 = r2 + 5;

CBANK1/2 = CBANK1/2 + ABANK1/2

Caankirz = Ceanki/z - ABaNK1/2

r2 = r2 + I2
r0 = M[IO,MO]
rl = M[I4,M1];

<MEM_ACCESS_1>;

<MEM_ACCESS_1>

<MEM_ACCESS_2>;

Test the optional condition and, if TRUE, perform the specified cross-bank addition or subtraction. If the condition
is FALSE, perform a NOP, but MEM ACCESS 1 still carried out. Omitting the condition performs the addition or
subtraction unconditionally. The operands may be either one of the 16 Bank1 or 16 Bank2 registers or a 16-bit
sign extended constant (24-bit with prefix instruction).

Flags Generated:

Z Setif the result equals zero and cleared otherwise N

V Set if an arithmetic overflow occurs and cleared C
otherwise (see Note).

Note:

Set if the result is negative and cleared otherwise

For addition: set if a carry generated.

For subtraction: cleared if a borrow is generated

(see Note).

If one of the source operands is Null then a load/store assumed. The C and V flags are left unchanged.

If the destination register is from bank2 (i.e. 16-bit) then the C and V flags are left unchanged.

Additions and subtractions may be saturated on overflow by setting the
ADDSUB_SATURATE_ON_OVERFLOW memory mapped register. This causes saturation of signed

numbers (positive saturation to Ox 7FFFFF, negative saturation to 0Xx800000). This will only occur where
the destination register is a Bank1 24-bit register.

bc05-ug-001Pc

© CSR plc 2006
This material is subject to CSR’s non-disclosure agreement.

Page 24 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

f’“ Instruction Set Description

6.4 Logical Operations: AND, OR and XOR

Syntax:
Type A: <ifcond> | C=AANDB <MEM_ACCESS_1>;
C=AO0ORB
C=AXORB
Example: 1if Z r3 = rl AND r2
r0 = M[IO,MO];
Type B: C=AANDKkis |;
C=AO0OR k15
C =AXOR k15
Example: r3 = rl XOR 10;
Type C1/2: C=CANDA <MEM_ACCESS 1> <MEM_ACCESS_2>;
C=CORA
C=CXORA
Example: r3 = r3 OR rl
r0 = M[IO,MO]
r2 = M[I4,M1];
Description:

Test the optional condition and, if TRUE, perform the specified bit wise logical operation (logical AND, OR, or XOR).
If the condition is FALSE, perform a NOP, but MEM ACCESS 1 still carried out. Omitting the condition performs the
operation unconditionally. The operands may be either one of the 16 Bank1 registers or a 16-bit sign extended
constant (24-bit with prefix instruction).

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared otherwise
V Left unchanged C Left unchanged

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 25 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

Instruction Set Description

(

6.5 Shifter: LSHIFT and ASHIFT

Syntax:

Type A: <if cond> I C=AO0OPB I <MEM_ACCESS_1>;

Example: if Z r3 = r2 LSHIFT rl
ro = M[IO,MO];

Type B: C=AO0Pk; ;
rMACO = A OP k;
rMAC12 = A OP ky
rMAC2 = A OP k;
rMAC = A OP k7 (LO)
rMAC = A OP k7 (MI)
rMAC = A OP k7 (HI)
C=kis OPA
Example: rMACO = r2 LSHIFT 4;

Type C1/2: |c=cora | <MEM_AccESS 1> <MEM_ACCESS 2>;

Example: r2 = r2 ASHIFT r7
rs5 M[IO,M2]
rl M[I4,M1];

Description:

Test the optional condition and, if TRUE, perform the specified shift operation (arithmetic or logical). If the
condition is FALSE, perform a NOP, but MEM _AcCCESS_ 1 still carried out. Omitting the condition performs the shift
unconditionally. A positive number causes a shifting to the left and a negative number causes a shifting to the
right. For an arithmetic shift to the right sign extension bits added as needed. If overflow occurs in an arithmetic
shift, i.e. non-sign bits being shifted out, then the overflow flag is set and the result is saturated to 2°°-1 or -2%°
depending on the sign of the input. No rounding occurs for ASHIFT or LSHIFT. The operands may be either one
of the 16 Bank1 registers or a constant specified in the instruction.

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared otherwise

V ASHIFT: Set if an arithmetic overflow occurs C Left unchanged
and cleared otherwise

LSHIFT: Left unchanged

Note:

OP is either ASHIFT (arithmetic) or LSHIFT (logical).
If r MAC s the source operand, the full 56 bits are used as input to the shifter. (The output of the shifter is
always 24-bit.)
For Type B instructions the destination operand can be:
= Either, r MACO, r MAC12, or r MAC2, causing the other bits of r MAC to be unaffected (writing to

r MAC12 writes the data into r MAC1 and causes sign extension (ASHI FT) or zero fill (LSHI FT)
into r MAC2)

= Or, r MAC, with a data format tag (LO, MI, HI) to select which word of r MAC the 24-bit result from
the shifter should be written to, the other bits of r MAC are sign-extended / zero-padded as
appropriate

The source register may also be a 16-bit sign-extended constant (or 24-bit constant with prefix).

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 26 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

f’“ Instruction Set Description

6.6 rMAC Move Operations

Syntax:
Type B: rMACO rMACO ;
rMAC2 = rMAC1
rMAC2
A
Example: rMACO = rMACL;
rMAC12 = rMACO (SE) ;
rMAC1 (ZP)
rMAC2
A
Example: rMAC1l2 = rMACO (SE);
C = rMACO ;
rMAC1
Example: r3 = rMACO;
C = rMAC2 (SE) ;
(ZP)
Example: r3 = rMAC2 (ZP);
Description:

These are move instructions, implemented as a special case of LSHIFT and ASHIFT, to support loading and
reading of the individual sections of the r MAC register (r MAC2, r MACL, and r MACO) shown in Figure 4.2. When
writing to r MACL, the data is either sign extended or zero padded into r MAC2. The format specifiers, SE and ZP,
are required to specify how r MAC2 filled.

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared otherwise
V Left unchanged C Left unchanged

Note:

These operations are always implemented as a Type B instruction, i.e. no parallel memory reads can be
performed.

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 27 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

,r“ Instruction Set Description

6.7 Multiply: Signed 24-Bit Fractional and Integer

Syntax:
Type A: <if cond> |C=A*B (frac) | <(sat)> <MEM_ACCESS_1>;
(int)
Example: 1f 2 r3 = r2 * rl (int) (sat)
r5 = M[IO,M2];
Type B: |C=A*k16 (frac) | <(sat)>;
(int)
Example: r6 = r2 * 0.34375 (frac);
Type C1/2: |C=C*B (frac) | <(sat)> <MEM_ACCESS_1> <MEM_ACCESS_2>;
(int)
Example: r2 = r2 * r7 (int) (sat)
r0 = M[IO,1]
rl = M[I4,-1];
Description:

Test the optional condition and, if TRUE, perform the specified multiply operation (fractional or integer). If the
condition is FALSE, perform a NOP, but MEM ACCESS_ 1 still carried out. Omitting the condition performs the
operation unconditionally. A fractional multiply, (f r ac) , treats the source and destination operands as
fractional numbers with 2% representing +1 and 2% representing -1. An integer multiply, (i nt) , treats the
source and destination operands as integer numbers. Optionally, if designated by the (sat) notation, the result
of an integer multiply is saturated if overflow occurs. Unbiased rounding is always done for a fractional multiply
operation. The operands may be either one of the 16 Bank1 registers or a 16-bit left justified constant (24-bit
with prefix instruction). See Appendix A on number representation for information on multiply operations.

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared
otherwise

V frac: Left unchanged C Left unchanged

int: Set if an arithmetic signed overflow occurs
and cleared otherwise

Note:

A saturated fractional multiplication has no significance therefore (sat) is not an option with (f rac) .

The 16-bit constant is left justified to 24-bits by adding 8 zeros as the LSBs. This allows the 16-bit constant
to represent fixed point fractional numbers between +1 and -1.
Unbiased rounding is as follows:

rMACrounded = rMAC[47:24] + rMAC[23];

if (rMAC[23:0] == 0x800000) then rMACrounded[0] = 0;
This has the effect of rounding odd r MAC[47:24] values away from zero and even r MAC[47:24] values
towards zero, yielding a zero large sample bias assuming uniformly distributed values.

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 28 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

,r“ Instruction Set Description

6.8 MULTIPLY and ACCUMULATE (56-bit)

Syntax:
Type A: <ifcond> | IMAC=A*B <(SS)> | <MEM_ACCESS_1>;
rMAC =rMAC +A*B <(Sv)>
rMAC =rMAC -A*B <(Us)>
<(UU)>
Example: 1if Z rMAC = rMAC + rl*r2 (SS)
r5 = M[IO,MO];
Type B: rMAC = A * ki <(SS)> |;
rMAC = rMAC + A * ki | <(SU)>
rMAC =rMAC - A * kg | <(US)>
<(UU)>
Example: rMAC = rMAC + rl * 0.24254 (SS);
Type C1/2: rMAC=C*A <(SS)» <MEM_ACCESS_ 1> <MEM_ACCESS 2>;
rMAC=rMAC +C* A <(Sv)>
rMAC =rMAC -C * A <(Us)>
<(UU)>
Example: rMAC = rMAC - r3 * rl (SS)
r2 = M[IO0,1]
rl = M[I4,-1];
Description:

Test the optional condition and, if TRUE, perform the specified multiply/accumulate. If the condition is FALSE,
perform a NOP, but MEM AccCESS 1 still carried out. Omitting the condition performs the operation unconditionally.
The data format field to the right of the operands specifies whether each respective operand is in signed (S) or
unsigned (U) format. The effective binary point is between bits 47 and 46. The operands may be either one of the
16 Bank1 registers or a 16-bit left -justified constant (24-bit with prefix instruction). See Appendix A on number
representation for information on multiply operations.

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared otherwise

V Setif overflow occurs past the 56" bitand cleared C Left unchanged
otherwise

Note:

Where (SS) is the default if no data format is specified.

The 16-bit constant is left justified to 24-bits by adding 8 zeros as the LSBs. This allows the 16-bit constant to
represent fixed point fractional numbers between +1 and -1.

To get the result of the equivalent integer multiplication, the result should be shifted to the right by 1-bit.

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 29 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

f’“ Instruction Set Description

6.9 LOAD / STORE with Memory Offset

Syntax:

Type A: <if cond> C=M[A + B]
M[C + A]=B

Example: 1if Z r3 = M[rl + r2]
r4 = M[IO,MO];

<MEM_ACCESS_1>;

Type B: C =M[A + kqg] ;
M[C + kig] = A
Example: M[r3 + 6] = rl;
Type C: | c=mic+A | <MEM_AccESS 1> <MEM_ACCESS 25;
Example: r3 = M[r3 + r2]
r4 = M[IO,1]
r5 = M[I4,-1];
Description:

Test the optional condition and, if TRUE, perform the specified load/store, including memory offset. If the condition
is FALSE, perform a NOP, but MEM ACCESS 1 still carried out. Omitting the condition performs the load/store

unconditionally. The operands may be either one of the 16 Bank1 registers or a 16-bit constant specified in the
instruction.

Flags Generated:

Z Set if the result operand equals zero and cleared N Set if the result is negative and cleared otherwise
otherwise

V Left unchanged C Leftunchanged

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 30 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

f’“ Instruction Set Description

6.10 Sign Bits Detect and Block Sign Bits Detect

Syntax:
TypeA: <ifcond> | C=SIGNDETA | <MEM_ACCESS_1>;
Example: if Z r3 = SIGNDET rMAC
r4 = M[IO,MO];
Type C: | c=BLKSIGNDETA | <MEM_ACCESS_1> <MEM_ACCESS_2>;
Example: r3 = BLKSIGNDET rl
r4 = M[TO,1]
r5 = M[I4,-1];
Description:

SI GNDET returns the number of redundant sign bits of the source operand. For example:

0000 1101 0101 0101 1100 1111 - has 3 redundant sign bits

1001 0101 0101 0100 0111 1111 - has 0 redundant sign bits

0000 0000 0000 0000 0000 0001 - has 22 redundant sign bits

11111111 1111 1111 1111 1111 - has 23 redundant sign bits

0000 0000 0000 0000 0000 0000 - has 23 redundant sign bits (special case)

Valid results are 0 to 23 for the 24-bit registers, and -8 to 47 for r MAC.

BLKSI GNDET returns the smaller of the result of SI GNDET and the present value of the destination operand.
When performed on a series of numbers, it can derive the effective exponent of the number largest in magnitude.

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared otherwise
V Left unchanged C Left unchanged

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 31 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

f’“ Instruction Set Description

6.11 Divide Instruction

Syntax:
Type B: Div=rMAC /A ;
C = DivResult
C = DivRemainder
Example: Div = rMAC / rl;
r2 = DivResult;
r3 = DivRemainder;
Description:

The Di v = r MAC/ Ainstruction initiates the divide block to start its multi-cycle 48-bit / 24-bit integer divide. The
overflow flag is set if the Di vResul t is wider than 24-bits. In this case, the result is saturated to 28 0r 22 -1and
the remainder is invalid. The result and/or remainder of the divide is available after 12 cycles. If the result or
remainder is requested before the 12 cycles has elapsed then program flow is suspended until the result is ready.
To carry out a fractional divide the value in r MAC needs to be first right shifted by 1 bit before carrying out the divide
operation. The result of the divide may also be PUSHed directly onto the stack, which will stall the DSP if the divide
is not yet completed.

Integer Divide example (86420 / 7 = 12345 remainder 5):

rMAC = 0; // clear rMAC

r0 = 86420;

rMACO = rO0; // LS word of rMAC now equals 86420;
r0o = 7;

Div = rMAC / r0;

rl = DivResult; // rl = 12345

r2 = DivRemainder; // r2 =5

Fractional Divide example (0.25/0.75 = 0.3333):

rMAC = 0.25;

r0 = 0.75;

rMAC = rMAC ASHIFT -1;

Div = rMAC / r0;

rl = DivResult; // rl = 0.33333;

Flags Generated:

After: Div = r MAC A;
Z Left unchanged N Left unchanged

V Set if a divide exception occurs (divide by zero or C Left unchanged
overflow in Di vResul t) and cleared otherwise

After: C = DivResul t;orC = D vRemi nder;
Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared otherwise
V Left unchanged C Left unchanged

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 32 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

,r“ Instruction Set Description

6.12 PUSH, POP and PLOOK Stack Instructions

Syntax:
Type A: <if cond> | push Cganki/2/3 <MEM_ACCESS_1>;
pop C sanki/2/3
Examples: if Z push r0
r5 = M[IO,M2];
If NZ pop DivResult;
Type B: push Kie ;

push Cpanki/2i3tkie
C sanki/2i3 = plook kig
Examples: push I0 + 4;
M3 = plook 2;
Type C1/2: push Cganki/2/3 <MEM_ACCESS_1> <MEM_ACCESS_2>;

pop C eanki1/2/3

Examples: push r0
rs5 M[IO,1]
rl M[I4,-1];

Description:

Test the optional condition and, if TRUE, perform the specified stack operation. If the condition is FALSE,
perform a NOP, but MEM ACCESS 1 still carried out. Omitting the condition performs the operation
unconditionally. The operands may be any one of the 16 Bank1, any of the 16 Bank2 and any of the special
Bank3 registers. Memory-mapped registers set the stack start address and end address. Type B push pushes
the result of a 16 bit constant (or 24-bit with prefix) and the selected register. A pl 00k returns the contents of
M STACK_PO NTER - k16] without modifying the stack pointer. The memory-mapped stack pointer is
incremented with a push and decremented with a pop, and holds the current stack write address.

Flags Generated:

Z Set if the operand (push) or result (pop / N Setif the operand (push) or result (pop /
pl 0ok) is Zero, cleared otherwise, left pl ook) is negative, cleared otherwise, left
unchanged if operand/result is r FI ags unchanged if operand/result is r FI ags

VvV pl ook: Left unchanged C Leftunchanged
push: Set if a stack overflow occurs
pop: Set if a stack underflow occurs

Notes:

A Conditional pop with condition FALSE carries out the read regardless, but destination register, flags and
STACK PO NTER remain unchanged

There is no stack underflow flag when destination is r Fl ags

push of Di vResul t or Di vRermai nder whilst a Divide is busy will stall program flow until divide
completes and then push the divide result. A conditional push of Di vResul t or Di vRenai nder with
condition FALSE will cause the program flow to stall anyway until divide completes, but not push the
result, set flags or increment stack pointer

pop of Di vResul t or Di vRemmi nder whilst the divider is busy will fail to alter the value of

Di vResul t or Di vRemai nder , but the stack pointer will be decremented and flags will be set
accordingly.

When Popping DoLoopSt art , DoLoopEnd or r10, all values must be popped at least 2 instructions
before the end of a DO...LOCP.

Writing to memory-mapped M $STACK_START_ADDR] sets M $STACK_PO NTER] equal to
M $STACK_START_ADDR] .

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 33 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

h—-ﬂ]j Instruction Set Description

Popping to r MAC12 sign-extends into r MAC2.

6.13 Program Flow: CALL, JUMP, RTS, RTI, SLEEP, DO...LOOP and BREAK
Syntax:
Type A: <if cond> | jump A ;
call A
rts
rti
sleep
Example: if Z jump ril;
Type B: <if cond> | jump kie ;
call k15
do k15
Example: rl1l0 = 100;
do loop;
rMAC = rMAC + r0 * rl
r3 = M[I4,1];
loop:
Type C: <if cond> | rts
rti
Example: 1if NZ rts;
I break | ;
Example: Dbreak;
Description:

Omitting the condition performs the program flow. If the condition is TRUE perform program flow below, else

execute
jump
do

sleep

call

rti

rts

break

a NOP:
Program execution jumps to the address in operand (either a register or a constant, e.g. an address label.

For zero overhead looping, instructions between DOand | oop are executed until register r 10 is zero,
r 10 is decremented by one each loop. If r 10 is zero at start then no loop instructions executed and a
jump to | oop occurs. If ado...| oop is executed in an interrupt service routine (ISR), r 10 and the
memory mapped registers MM _DOLOOP_START and MM_DCOL OOP_ END should be saved.

Program execution paused and the DSP put in lower power mode. Interrupts still handled in sleep. The ISR
is responsible for issuing a software event that causes wake up from a sleep instruction.

Loads r Li nk register with return address (PC+1) and jumps to address in operand (either a register or a
constant e.g. an address label).

Sets PC equal to value of r | nt Li nk register, and restores flags to their pre-interrupt status, i.e. the MS
byte of r FI ags register is copied to the LS byte.

Sets PC equal to value of r Li nk register. Stack depths greater than one must be implemented in
software.

For program debug, used by xIDE, a break instruction either acts as a nop, orj unp to self.

Flags Generated:

Flags Z,

N, V and C left unchanged

bc05-ug-001Pc

© CSR plc 2006

This material is subject to CSR’s non-disclosure agreement. Page 34 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

—

Instruction Set Description

Note: See Section 10.4 for information about stalls.

6.14 Indexed MEM_ACCESS_1 and MEM_ACCESS_2

Syntax:

Type A:

Example:

Type C:

MEM_ACCESS_1
Regac1 = M[lag1, Mag1]
M[lac1, Mag1] = Regac1
M[IO,MO0] = rl;

Regac1 = M[lag1, Mag1]
M[lac1, Mag1] = Regac1

Regac1 = M[lagt, MKag1]
M[lag1, MKag1] = Regac1

MEM_ACCESS_2

Regac2 = M[lag2, Mag2] ;
M[lag2, Mag2] = Regac2

M[lag2, MKag2] = Regac:

| Regac2 = M[lacz2, MKag2] |

Example: r0 = M[I0,MO]
M[I4,M1] = rl;

Permitted Registers

Regact / Regag2 10, r1,r2, r3, r4, r5 and rMAC lact 10,11, 12and I3
Mac1/ Mag2 MO, M1, M2 and M3 lac2 14,15,16 and 17
MKag1 / MKag2 -1,0,1and 2

Description:

Any Type C instruction can also perform up to two memory reads/writes in the same instruction cycle as the main
ALU part of the instruction. Regac1acz selects the source or destination register for the memory read or write. lag1/ac2
selects the index register to use for the memory read, and either Mag1ac2 selects the modify register or MKag1/ac2
selects the modify constant (-1, 0, +1, or +2) to use for the post modify of the index register. Type A instructions can
perform a single memory read/write with the limitation that the modify operand is not a constant, i.e. must be
Mag1/ag2.

Memory Access Timing:

Only one access (read or write) permitted per memory bank per clock cycle. If AG1 and AG2 both access DM1 in the
same instruction then the two memory accesses are queued with the AG1 access occurring first. Memory reads set
up the memory bus the instruction before, whereas memory writes take place at the end of the current instruction.
This means that if the previous instruction does a memory write, then the current instruction delays by one clock
cycle if it tries to read the same memory bank as the previous instruction wrote to. External wait signals from
peripherals may slow down the instruction cycle.

Flags Generated:

No flags affected by the memory access part of instructions.

Note:
Regac1ac2 selects one of the first eight Bank1 register, i.e. Nul | , r MAC, r O—r 5. If the Nul | register is
selected then no memory read/write is performed.

Type A instructions use Address Generator 1 (AG1) so can only use index registers | O-1 3. They must use a
modify register rather than a modify constant.

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 35 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

csr

h—r';j Instruction Set Description

Type C instructions use AG1 and AG2 so one memory access must use | 0-1 3 and the other must use | 4-1 7.
They must either both use a modify register or both use a modify constant.

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 36 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

—

Instruction Coding

7 Instruction Coding

Instruction coding is relatively simple and orthogonal so that the instruction decode is efficient. There are three
basic coding formats: Type A, B, and C. Table 7.1 outlines the format of the instruction with corresponding
definitions described in Section 7.5 to Section 7.15.

31[3020282726 25] 24 [23]22]21[20[19181716 15]14[13]12J1s[0] o[8[7[e6[s[4a[3]2]1]o]Type
o]0 wie| Regast lac1 Mact RegB cond A
o1 RegA P B
OP_CODE 110 RegC StackBankSelect aGL Mact | ac2 Macz Crec
1]t wite| Reguor Bt e || REOAe? " s | Cooner
tJaJaJaJa]1]of1]o 0o o o o o o o o 0 0 0o 0 0 0 0 Kereen(7:0] PFIX

Notes:

OP_CODE
RegA

RegB

RegC

cond

k1e / kpreFix
AG1/AG2

Regac1 / Regac2

Iac1/ lac2

Mag1/ Magz
Mkac1 / Mkag2
StackBankSelect

Table 7.1: Instruction Coding Format

Selects the instruction operation, see Section 7.5

Selects a register to use as the first source operand for instructions. Bank1 registers are
used by default, Bank 2 is selected within OP_CODE for certain instructions

Selects a register to use as the first source operand for instructions. Bank1 registers are
used by default, Bank 2 is selected within OP_CODE for certain instructions

Selects 1 of 16 registers to use as the destination register for instructions. For Type C
instructions RegC also defines the first source operand, see Table 7.2. Bank1 registers
are used by default, Bank2 is selected within OP_CODE for certain instructions

Selects an optional condition to be met for the instruction to be executed, otherwise a
no-operation will be executed

A 16-bit / 8-bit constant used by Type B instructions
Selects whether the indexed memory access is a read (0) or a write (1)

Selects one of the first eight Bank1 registers: r MAC, r O-r 5; for the source/destination
register of multifunction memory reads and writes. If Null is selected then no read or
write is performed

Selects one of the index registers, | 0-1 3 for AG1, and | 4-1 7 for AG2, for multifunction
memory reads and writes

Selects one of the modify registers, MD-M3, for multifunction memory reads and writes
Selects a fixed constant to use for the modify: -1, 0, +1, or +2
Selects the bank of registers to use for stack operations

bc05-ug-001Pc

© CSR plc 2006

This material is subject to CSR’s non-disclosure agreement. Page 37 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

___A Instruction Coding

7.1 Type A Instruction

Type A is a conditional instruction, with an additional single memory read or write operation. The instruction can
accept two input operands and one output operand (which may be different). Operands can be any of the 16
Bank1 registers (Load/Store instructions permit the usage of Bank2 registers and PUSH/POP Instructions permit
the use of Bank1, 2 and special bank3 registers). For the memory access, index registers | 0-1 3 select the
address, the destination or source register can be any of the first eight Bank1 registers: rMAC, r0 - r5. At the
end of the instruction the index register is post modified by one of the modify registers M0-M3.

A Type A instruction has the following syntax:

<if cond> RegC = RegA 0P RegB <MEM ACCESS 1>;

7.2 Type B Instruction

Type B is a non-conditional instruction similar to Type A, but with one of the operands being a 16-bit constant
stored in the instruction word. To use a 24-bit constant prefix the Type B instruction with the prefix (PFIX)
instruction. No additional memory access operation permitted. The PFIX instruction is automatic if needed by the
assembler kalasm2.

A Type B instruction has the following syntax:

RegC = RegA op® constant;
7.3 Type C Instruction
Type C is a non-conditional instruction similar to a Type A, except that one of the input operands is also the
output operand. In addition, two memory reads or writes may occur in the same clock cycle; one memory access
uses Address Generator 1 (index registers 10-I3) and the other uses Address Generator 2 (index registers | 4-
| 7). The index registers can be either post modified by the M0-M3 registers or by a 2-bit signed modify constant
(valid values: -1, 0, 1, or 2).
A Type C instruction has the following syntax:

RegC = RegC OP") RegA <MEM ACCESS 1> <MEM _ACCESS 2>;

7.4 Special Cases

Program flow instructions such as j unp, cal | , rt s, etc; use a slight variation on the above types, as they can
always be conditional. Also the multiply accumulate instructions all write their result to the rMAC register.

Note:
M OP refers to operation which can include Addition, Subtraction, Multiplication, OR, AND, Exclusive OR.

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 38 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

h—'—]/ Instruction Coding

75 OP_CODE Coding

Table 7.2 shows the instruction decoding of the OP_CODE field shown in Table 7.1

OP_CODE Action (Type A)(l) Action (Type B) Action (Type cREG,CONST)(Z) Description
000 AM | C | RegC =RegA + RegB RegC = RegA + kis RegC = RegC + RegA Add®
001 AM C | RegC =RegA — RegB RegC = RegA - ki RegC = RegC — RegA Subtract
010 B2RS RegCg1 = RegAgy2 + RegB gy RegC g12 = RegAgip + kig RegC g1/2 = RegCgi, + RegAgi2 Bank1/2 Add
011 B2RS | ReqCur = RegAsm-RegBays | oo er2 ~ ReGherz -kis RegCesiz = RegCaiz - Reghsrz | Bank1/2 Subtract
RegC 12 = kig-RegAgi2
100 0 0 0 | RegC =RegAAND RegB RegC = RegA AND kg RegC = RegC AND RegA Logical AND
100 0 0 1| RegC =RegAOR RegB RegC = RegA OR kqg RegC = RegC OR RegA Logical OR
100 0 1 0 | RegC =RegA XOR RegB RegC = RegA XOR kg RegC = RegC XOR RegA Logical XOR
100 0 1 1| RegC =RegA LSHIFT RegB RegC = RegA LSHIFT k" RegC = RegC LSHIFT RegA Logical Shift
100 1 0 0 | RegC =RegAASHIFT RegB RegC = RegA ASHIFT kqg® RegC = RegC ASHIFT RegA Arithmetic Shift
100 1 1 V| RegC =RegA * RegB (int) RegC = RegA * kqg (int) RegC = RegC * RegA (int) Integer signed multiply
100 1 0 1| RegC =RegA * RegB (frac) RegC = RegA * k¢ (frac) RegC = RegC * RegA (frac) Fractional signed multiply
101 0 S S| rMAC =rMAC + RegA * RegB rMAC = rMAC + RegA * kig rMAC = rMAC + RegC * RegA Multiply accumulate (56-bit)
101 1 S S| rMAC =rMAC - RegA * RegB rMAC = rMAC — RegA * kqg rMAC = rMAC — RegC * RegA Multiply subtract (56-bit)
110 0 S S| rMAC =RegA * RegB rMAC = RegA * kqg rMAC = RegC * RegA Multiply (48-bit)
110 1 0 0 | RegC =M[RegA + RegB] RegC = M[RegA + ki¢] RegC = M[RegC + RegA] Load with offset
110 1 0 1| MRegA + RegB] = RegC M[RegA + k4¢] = RegC - Store with offset
Div = rMAC / RegA
110 1 1 0| RegC = SignDet RegA RegC = DivResult? RegC = BIkSignDet RegA :g:::tt:gg’ Divide / Block
RegC = DivRemainder?
10 1 1 1| JUMPRegA if [RegC=cond] JUMP ks | if [RegC = cond] RTS Jump to program address /
111 0 0 0| CALLRegA if [RegC=cond] CALL ki if [RegC = cond] RTI ﬁfe”rfl;’;m“““e return from
111 0 o0 1| sLEep DO LOOP BREAK fgoi;t/"Dse'ii’; gfed:k’ p?)?nt
111 0 1 0 | FUTURE USE® RegC = ks LSHIFT RegA FUTURE USE® Logical Shift of a constant
111 0 1 1| FUTURE USE® RegC = kis ASHIFT RegA | FUTURE USE® Arthmetic Shift of a
" 10 o PUSH RegC g1z PUSH RegC g2 + kig PUSH RegC g1 Stack Operations
POP RegC g1, ® RegC g1, = PLOOK kys © POP RegC gy, ®
1M1 0 1 FUTURE USE®
1M1 1 x FUTURE USE®

Allows 24-bit constants for
Type B operations — by
111 1 1 1 PREFIX instruction prefixing the following
instruction’s ks by the 8-bit
kprerix value.

Table 7.2: OPCODE Coding Format

Type A is conditional with i f [cond] and can contain single memory access MEM_ACCESS 1
@ Type C permits two simultaneous memory access MEM_ACCESS_1 and MEM ACCESS 2

The add instruction is also used to implement load/stores to registers/memory by setting one of the
source registers as Null. Setting all 3 operands as Null implements a no-operation (NOP) instruction

See section 7.11 and section 7.15 for encoding of ki for r MAC shift instructions and Divide instructions
There are three spare OP_CODES plus various other spare coding space for future instructions
® PUSH/POP instruction is chosen in theStackBankSelect Field, see Section 7.16

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 39 of 94

apINg JasM) dSd equijey eIP3WI|NAI-§210)3Nn|g

~

Instruction Coding

7.6

Selects different memory addressing modes

AM Field

AM Type A Type B Type Creciconst
00 RegC = RegA [OP] RegB RegC = RegA [OP] K16 RegC = RegC [OP] RegA
01 RegC = RegA [OP] M[RegB] RegC = RegA [OP] M[K16] | RegC = RegC [OP] M[RegA]
10 RegC = M[RegA] [OP] RegB RegC = M[RegA] [OP] K16 -
11 M[RegC] = RegA [OP] RegB M[K16] = RegC [OP] RegA -
Table 7.3: AM Field
7.7 Carry Field (C Field)

Selects whether addition/subtraction performed with carry and the appropriate state shown in Table 7.4.

C Description
0 Do not use carry / borrow
Use carry / borrow
Table 7.4: C Field Options
7.8 Bank 1/2 Register Select Field (B2RS Field)

Bank 1/2 register select for add/subtract instructions are shown in Table 7.5.

instructions are only valid for SUBTRACT opcodes.

Subtract from constant Type B

B2RS

Type A

Type B

Type CreciconsTt

000

RegCrankt = RegAgank1 = RegBganki

RegCgankt = RegAsank1 + Kie

RegCrank1 = RegCaanki = RegAganki

001

RegCgankt = RegAgank1 £ RegBaank2

RegCgankt = K1s - RegAganki

RegCgankt = RegCgank1 + RegABank2

010

RegCrank1 = RegAgank2 + RegBgank1

RegCgankt = RegAsank2 + K1e

011

RegCgankt = RegAgank2 £ RegBgank2

RegCgankt = Kis - RegAgankz

100

RegCgank2 = RegAgank1 + RegBgank1

RegCgank2 = RegAsank1 + Kie

101

RegCgank2 = RegAgank1 + RegBgank2

RegCgank2 = K1s - RegAganki

110

RegCrank2 = RegAgank2 + RegBgank1

RegCgank2 = RegAsank2 + K1e

RegCgankz = RegCgank2 + RegABanki1

111

RegCgank2 = RegAgank2 + RegBgank2

RegCgank2 = K16 - RegAgankz

RegCgank2 = RegCgank2 £ RegAsgank2

Table 7.5: B2RS Field

bc05-ug-001Pc

© CSR plc 2006

This material is subject to CSR’s non-disclosure agreement.

Page 40 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

& _A Instruction Coding

7.9 Saturation Select Field (V Field)

Selects whether to enable saturation on the result and the options shown in Table 7.6. Note also that additions
and subtractions may be saturated on overflow by setting the ADDSUB_SATURATE_ON_OVERFLOW memory
mapped register bit.

\% Description

No saturation

Saturation

Table 7.6: V Field

7.10 Sign Select Field (S Field)

Selects signed/unsigned multiplies and the various options shown in Table 7.7.

S Description

00 unsigned x unsigned
01 unsigned x signed
10 signed x unsigned
11 signed x signed

Table 7.7: S Field

7.11 ki Coding for LSHIFT and ASHIFT

k1e coding section from the instruction coding format shown in Table 7.1 splits into its individual bits and their
functionality listed in Table 7.8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o Jolofo o] o] Dest_Sel ShiftAmount

Table 7.8: kig Coding Shift Format
Note:
ShiftAmount: Is a signed 7-bit number that is the amount to shift the input.
Positive is a left shift, negative is a right shift.

Dest_Sel: When the destination register is rMAC, selects how the 24-bit output from the shifter is
used.

7.12 rMAC Sub Registers

The full 56-bits of the r MAC register are accessible as their individual sub-registers outlined in Table 7.9. See
Section 7.13 and Section 7.14 for further details on how to load the individual sub registers.

Bit 55-48 47 -24 23-0

rMAC Register rMAC2 rMACA1 rMACO

Table 7.9: rMAC Sub-Registers

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 41 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

—

Instruction Coding

7.13

ASHIFT

Table 7.10 represents how the arithmetic shift instruction is encoded within the instruction coding format shown in
Table 7.1 for further information on the LSHIFT instruction see Section 6.5.

Dest_Sel | New rMAC2 New rMAC1 New rMACO Example
001 Sign extend Sign extend SHIFTER_OUTPUT | rMAC =r? ASHIFT kis (0)
000 Sign extend SHIFTER_OUTPUT | Trailing zeros rMAC = r? ASHIFT k4 (1)
010 SHIFTER_OUTPUT Trailing zeros Trailing zeros rMAC = r? ASHIFT k4 (2)
101 Old rMAC2 Old rMAC1 SHIFTER_OUTPUT | rMACO = r? ASHIFT ki
100 Sign extend SHIFTER_OUTPUT | Old rMACO rMAC1 =r? ASHIFT k4
110 SHIFTER_OUTPUT Old rMAC1 Old rMACO rMAC2 =r? ASHIFT ki

Table 7.10: ASHIFT

bc05-ug-001Pc

This material is subject to CSR’s non-disclosure agreement.

© CSR plc 2006

Page 42 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

& _A Instruction Coding

7.14 LSHIFT

Table 7.11 represents how the logical shift instruction is encoded within the instruction coding format shown in
Table 7.1, for further information on the LSHIFT instruction see Section 6.5.

Dest_Sel New rMAC2 New rMAC1 New rMACO Example
001 Zero fill Zero fill SHIFTER_OUTPUT | rMAC = r? LSHIFT k16 (0)
000 Zero fill SHIFTER_OUTPUT | Trailing zeros rMAC = r? LSHIFT ky¢ (1)
010 SHIFTER_OUTPUT | Trailing zeros Trailing zeros rMAC = r? LSHIFT k46 (2)
101 Old rMAC2 Old rMAC1 SHIFTER_OUTPUT | rMACO = r? LSHIFT ks
100 Zero fill SHIFTER_OUTPUT | OId rMACO rMAC1 =r? LSHIFT kqe
110 SHIFTER_OUTPUT | Old rMAC1 Old rMACO rMAC2 = r? LSHIFT k4

Table 7.11: LSHIFT

Both the LHIFT and ASHIFT instruction enable the user to write to the three individual sub-registers rMAC2/1/0,
hence providing a way of loading r MAC with a double precision number. It also allows shift operations of r MAC
with the destination being the r MAC register, which speeds up double precision calculations. See r MAC move
operations in Section 0 for more details.

7.15 ki Coding Divide Instructions

Table 7.12 k4 coding divide instruction represents how the background divide instruction is encoded within the
instruction coding format shown in Table 7.1.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Not used Div

Table 7.12: Divide Field

The functionality of the individual divide bits is explained more fully in Table 7.13.

Div Assembly Syntax Operation
Div = r MAC / Initiates a 32-bit/16-bit divide. The overflow flag is set if a divide
00 RedA exception occurs. Calculation of the divide takes 12 clock cycles but
9 program execution continues while the divide is calculated.
01 RggC = The result and/or remainder of a divide are available 12 cycles after
Di vResul t the divide is initiated. In this period, normal program execution
RegC = continues. If the result is requested early then program execution is
10 i i automatically delayed until the result is available.
Di vRemai nder y aelay
11 NA Not used

Table 7.13: Divide Field States

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 43 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

—

Instruction Coding

7.16 StackBankSelect field encoding

Table 7.12 shows the instruction coding for the StackBankSelectField with stack opcodes.

StackBankSelect Field RegC bank Operation

0 0 0 0 Bank1 registers POP/PLOOK
0 0 0 1 Bank1 registers PUSH

0 0 1 0 Bank2 registers POP/PLOOK
0 0 1 1 Bank2 registers PUSH

0 1 0 0 Bank3 special registers POP/PLOOK

0 1 0 1 Bank3 special registers PUSH

0 1 1 X FUTURE USE FUTURE USE

1 X X X FUTURE USE FUTURE USE

Table 7.14: StackBankSelect Field Coding

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 44 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

csr

h—-'/j Kalimba DSP Peripherals

8 Kalimba DSP Peripherals

The Kalimba DSP for the BlueCore5-Multimedia consists of the DSP core, the DSP peripherals and their
associated interfaces. This section covers the peripherals and interfaces.

See Appendix B for information relating to registers.

Kalimba2 DSP Co-Processor

Map PMinto |/———— PM
PM DM1 PM
Wait
Wait - Address Wait >
L Space EEEEE—
= Kalimba DM1
= Debug Wait .
Interface ————m»] Kalimba DSP Core
DM1 Controlled
Wit) V| by MCUISPI DM2
Wait
| wat |
DM2
Wait L 1T [> Register Debug
4 4
= ‘ AL
2
Map MCU
and Flash 5=
" N =
MMU MCU and Flash Window) \Window into z I
DM2 5 &
Address % M
Space H
H
L Flash Bank Select 1MHz 32-Bit
-t
| /! Timers -t Count from
L DSP Event (To MCU Interrupt Controller) Memory Mapped Context Switch Register I/F Core
-t
L PIO In/Out - Kalimba
-~ a Local Timer Control
Registers,
Mapped into El
DM2 Interrupt Control 8
I\ 7
s g
- SW0-3 and PIO Events 8
zlo |]
| S| @z 2
MMU Port 8-Bit 28 |sR
" Half Duplex_ MMU Interface < E Eé(v ~
TS
217 |3 Unmapped Event
=[S |8 x -
R (ER
g
v e Kalimba
P Interrupt Controller Clock:
- - DSP Control, '
Clock Rate Select MCU Registers e.g. Run, Stop, Step etc. 96/n MHz
MCU E 13 from
ven
MCU Register Interface Deisters usad for Contral BY « > Ag:l?i%l;e
Mcu
RAM Bank Select na3
-t

Figure 8.1: Kalimba DSP Peripheral Interfaces

The Kalimba DSP peripherals include:

= Memory management unit (MMU) interface, for stream transfers to/from the BlueCore5-Multimedia
subsystem

= Three Memory mapped windows into the flash

= Two memory mapped windows into the MCU RAM

= Memory-mapped register interface into the MCU ram and I/O map
= Program memory window into flash with 64-word direct cache

= Two 1us timers

= Interrupt controller with three priority levels and wake up from sleep
= Memory mapped access to the DSP program memory through DM1
= Clock rate divider controllable by both the DSP and the MCU

= Debug interface

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 45 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

f’“ Kalimba DSP Peripherals

8.1 MMU Interface

The MMU Interface on BlueCore5-Multimedia for the Kalimba DSP contains four virtual read ports and four virtual
write ports; an example of the usage of these ports is in Figure 8.2.

BlueCore5 Multimedia

Radio Link ; :
! MMU Transfers 1

1

{ H MP3 Stream > !
] BlueCore5-Multimedia DSP Co-Processor :

i Subsystem Subsystem !

! 1

1

1

'

1

1

2 \emm Teft + Right
' Audio PCM
1

Figure 8.2: Example of MMU Interface Usage for a Wireless MP3 Player

8.1.1 Read Ports

Eight virtual read ports appear as memory mapped registers in DM2. The ports have the ability to use:
= 8-bit, 16-bit or 24-bit word size
= Byte swap capability (little endian/big endian)
= Sign-extension, if required

8.1.2 Write Ports

Eight virtual write ports appear as memory mapped registers in DM2. The ports have the ability to use:
= 8-bit, 16-bit or 24-bit word size
= Byte swap capability (little endian/big endian)
= 16-bit saturation, if required

8.2 DSP Timers

The features of the Kalimba DSP timer are as follows:

= A 48-bit TIMER_TIME register (read-only) clocked @ 1MHz

= Two trigger value registers, each, if enabled, cause an appropriate interrupt (LS 24 bits of TIMER_TIME
only used for trigger values)

See Appendix B for control register details.

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 46 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

f"‘ Kalimba DSP Peripherals

8.3 Kalimba Interrupt Controller

This section covers the functionality of Kalimba DSP during interrupts looking at the events of the Kalimba DSP
core and the interrupt controller, as well as investigating the interrupt controller registers.

8.3.1 DSP Core Functionality During Interrupt

Upon reception of an interrupt, this is when the IRQ is high; the DSP core performs the following:

= r | ntLink is loaded with the contents of current Program counter

= Program counter is loaded with the address of the interrupt service routine, e.g. 0x0002
= The flags register is saved

= Perform interrupt service routine

= If enabled, switches to faster interrupt clock rate

When the interrupt service routine completes the DSP needs to return to the routine it had been running prior to
the interrupt; this executed with art i instruction. The rt i instruction carries out the following:

= Restores the r FI ags register to the non-interrupt state
= Loads the program counter(PC) with the contents of the r | nt Li nk register
Note:

Saving/restoring of further registers is up to the programmer.
8.3.2 Interrupt Controller Functionality

The functionality of the interrupt controller is:

= Selectable interrupt sources:
= Timer1 and Timer2
= MCUEvent
= PIOEvent
= BufferError/Software error
= SwEvent0, SwEvent1, SwEvent2 and SwEvent3
= 16 MCUs interrupt sources made available to the DSP
= Three interrupt priority levels as well as wake-up from sleep
= Registers to save and restore the interrupt controller which allows for nested interrupts

= Optional event signal to cause clock rate change

See Appendix B for control register details.

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 47 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

,r“ Kalimba DSP Peripherals

8.4 Generation of MCU Interrupt

Writing to the DSP2MCU_EVENT_DATA register causes an interrupt to be sent to the MCU, the value of this
register can be seen by the MCU. In a similar way the MCU can generate an interrupt to the DSP, with the event
type being stored in the MCU2DSP_EVENT_DATA register. These registers can be used to pass messages
between MCU and DSP and vice versa.

See Appendix B for control register details.

8.5 PIO Control

This section describes the interface between the Kalimba DSP and the programmable /O (P1O) of the
BlueCore5-Multimedia. Control of the PIO from the Kalimba DSP is as follows:

= Kalimba DSP can read BlueCore5-Multimedia PIO lines
= Under the control of the MCU the Kalimba DSP can write to PIO lines
= Under the control of the MCU the Kalimba DSP can change the direction of PIO lines

= PIO line change can generate a Kalimba DSP interrupt

The MCU controls which PIO bits have write access permission for the Kalimba DSP. This information is set
through VM functions.

See Appendix B for control register details.

8.6 MCU Memory Windows in DM2

Two windows in DM2 shown in Figure 5.1 allow the Kalimba DSP to access MCU memory. The primary use of
this memory window is for message passing and control information.

The MCU controls access to this window. A start address and a size for each window can be set, and whether
the DSP has read access or read/write access. This information is set by the MCU firmware used.

See Appendix B for control register details.

8.7 Flash Memory Windows in DM2

The purpose of the Flash Memory Windows in DM2 is to permit the DSP access to the external flash (up to
32Mbit), this could be, for example, to access further coefficients, download a new program. The window size is
4Kwords and the FLASH_BANK_SELECT registers selects which 4K block is visible to the DSP.

See Appendix B for control register details.

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 48 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

,r“ Kalimba DSP Peripherals

8.8 PM Window in DM1

The PM window within the DM1 memory bank permits the DSP to change its own program or to be extra data
memory (16-bit). For safety, it is possible to disable the window.

The MCU must enable the DSP to have access to the PM mapped into DM1. The DSP must then enable access
as well.

See Appendix B for control register details.

8.9 PM Flash Window with 64-word Direct Cache

The PM flash window permits the DSP to access program memory directly from flash/ROM. DSP memory-
mapped registers control the start address and size of this flash space.

The 32-bit DSP PM bus is mapped into the 16-bit flash space with alternate MS and LS words being stored in
flash.

The MCU must enable the DSP to have access to the PM flash window. The DSP must the enable access too.
When this interface is enabled, a 64-word direct cache is mapped into the upper 64 words of physical program
RAM, allowing zero-overhead accesses for cached instructions.

See Appendix B for control register details.

8.10 MCU I/O Map Memory-Mapped Interface

The DSP may read or write to any of the MCU’s IO map through a memory-mapped interface. For safety, this
interface must first be enabled by the MCU. This interface is utilised by writing the required address to the DSP
memory mapped MCU_REGS_ADDRESS and then reading from or writing to MCU_REGS_DATA

See Appendix B for control register details.

8.11 General Registers
The General Registers are for communication between the MCU and the Kalimba DSP.

See Appendix B for control register details.

8.12 Clock Rate Divider Control

The Kalimba DSP may control its own clock frequency. It may also force the MCU/MMU clock to operate at a
faster, 32MHz clock frequency for accelerated MMU port transfers by setting a DSP memory-mapped register

See Appendix B for control register details.

8.13 Debugging

The MCU registers and the serial peripheral interface (SPI) can:

= Read and write any of the DSP core’s internal registers
= Control: Single Step, Run, Stop, Breakpoints, etc
= Read and write any individual location in PM, DM1 or DM2, as seen by the DSP

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 49 of 94

apINg JasM dSd equije)y| _IPSWINA-§210)3Nn|g

CSrr

h"/] Appendix A: Number RepresentationKalimba DSP
Perpnaran.

Appendix A: Number Representation

The number representation used by the Kalimba DSP is outlined in this Appendix.
A.1 Binary Integer Representation

Two's complement

Only 8 bits shown for clarity

Sign Bit Example

— 7 5 3 2
\‘Ig0|1|0|1|1|0|0 =2"+2°4+2°+2
]) =-128+32+8+4
Bit Weights 27 26 25 24 23 22 21 20 l\ =.84

Radix Point

A.2 Binary Fractional Representation

Only 8 bits shown for clarity

A.3 Integer Multiplication

SignBit Operand A . Operand B
23 Integer Bitg/ Radix Point /
I | I O I O /A
Sign Bit Result l
\‘ 47 Integer Bits /
NN N N N Y 7
Il
l l (Optional Saturation)
23 Integer Bits,
Output Word [] /T]
I/
Example 1: Example 2:
Operand A =123 Operand A =12345
Operand B = 456 Operand B = 67890
Output Word = 56088 Output Word = 8388607 (With Saturation)

Output Word = -758750 (Without Saturation)

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 50 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

_A Appendix A: Number RepresentationKalimba DSP
Perpnerars.

A.4 Fractional Multiplication

signBit Operand A Operand B

23 Fractional Bi tﬁ /{
Radix Pomt /

@

2 Sign Bits R | i
N esult 46 Fractional Bits /]
CIT] T T T T T T TTTTI)TT]
/ // / (1-Bit Left Shift to Maintain
47 Fractional Bits Normalised Radix Point Position)
0
_ Q. B B L | |//| L9] Double Precision Output
1 Sign Bit - V _ Used by MAC Instructions

Unbiased Round

23 Fractional
El:l:l:l:l:%tlj Single Precision Output

Example:

Operand A = 0x654321=0.79111111

Operand B = 0x123456 = 0.14222217

Output word = OXOE66D7F2822C
=0.11251353589 (Double Precision)
= 0xOE66D8 (Unbiased Round)
=0.11251354 (Single Precision)

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 51 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

o

£ _A Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnerars.

Appendix B: DSP Memory Mapped Registers

B.5 DSP Memory Mapped I/O

As described in Section 5.1.3, the DSP memory mapped I/O forms a reserved part of the DM2 memory map.
Appendix B Table 1lists the memory-mapped registers.

Address | Name Size RW | Description
(Bit)

OxFFOO | INT_SW_ERROR_EVENT_TRIGGER 0 RW | Reading or Writing causes a
software error event

OxFFO1 | INT_GBL_ENABLE 1 RW | Resets interrupt controller state

OxFF02 | INT_ENABLE 1 RW | Enable searching for an interrupt
source

OxFFO3 | INT_CLK_SWITCH_EN 1 RW | Enable switching of DSP clock to a
special interrupt clock rate

OxFFO04 | INT_SOURCES_EN 9 RW | Enables interrupt sources for
Kalimba

OxFFO5 | INT_PRIORITIES 18 RW | Set priority levels of individual
interrupts

OxFF06 | INT_LOAD_INFO 14 RW | Restore information of lowest
priority interrupt during a nested
interrupt

OxFFO7 | INT_ACK 1 RW | Clears current interrupt request

OxFFO08 | INT_SOURCE 5 R Contains current interrupt source

OxFF09 [INT_SAVE_INFO 13 R Save information of lowest priority
interrupt during a nested interrupt

OxFFOA | DSP2MCU_EVENT_DATA 16 RW | Interrupt event data to MCU

OxFFOB | MCU2DSP_EVENT_DATA 16 R Interrupt event data from MCU

OxFFOC | TIMER1_EN 1 RW | Enable Timer1 interrupt

OxFFOD | TIMER2_EN 1 RW | Enable Timer2 interrupt

OxFFOE | TIMER1_TRIGGER 24 RW | Timer1 trigger value

OxFFOF | TIMER2_TRIGGER 24 RW | Timer2 trigger value

OxFF10 | WRITE_PORTO_DATA 8/16/24 W Write port O

OxFF11 | WRITE_PORT1_DATA 8/16/24 W Write port 1

OxFF12 | WRITE_PORT2_DATA 8/16/24 W Write port 2

OxFF13 | WRITE_PORT3_DATA 8/16/24 W Write port 3

OxFF14 | WRITE_PORT4_DATA 8/16/24 W Write port 4

OxFF15 | WRITE_PORT5_DATA 8/16/24 W Write port 5

OxFF16 | WRITE_PORT6_DATA 8/16/24 W Write port 6

OxFF17 | WRITE_PORT7_DATA 8/16/24 W Write port 7

OxFF18 | READ_PORTO_DATA 8/16/24 R Read port 0

OxFF19 | READ_PORT1_DATA 8/16/24 R Read port 1

OxFF1A | READ_PORT2_DATA 8/16/24 R Read port 2

OxFF1B | READ_PORT3_DATA 8/16/24 R Read port 3

OxFF1C | READ_PORT4_DATA 8/16/24 R Read port 0

OxFF1D | READ_PORT5_DATA 8/16/24 R Read port 1

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 52 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

o

£ _A Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnerars.
Address | Name Size RW | Description
(Bit)

OxFF1E | READ_PORT6_DATA 8/16/24 R Read port 2

OxFF1F | READ_PORT7_DATA 8/16/24 R Read port 3

OxFF20 | PORT_BUFFER_SET 0 RW | Background (write)/Foreground
(read) MMU buffer set

OxFF21 | MM_DOLOOP_START 16 RW | Start address of zero overhead loop

OxFF22 | MM_DOLOOP_END 16 RW | End address of zero overhead loop

OxFF23 | MM_QUOTIENT 24 RW | Quotient result of division instruction

OxFF24 | MM_REM 24 RW | Remainder result of division
instruction

OxFF25 | GENERAL_FROM_MCUO 16 R For message passing from on board
MCU to the Kalimba

OxFF26 | GENERAL_FROM_MCU1 16 R Register for message passing from
on board MCU to the Kalimba

OxFF27 | GENERAL_FROM_MCU2 16 R Register for message passing from
on board MCU to the Kalimba

OxFF28 | GENERAL_FROM_MCU3 16 R Register for message passing from
on board MCU to the Kalimba

OxFF29 | GENERAL_TO_MCUO 16 RW | Register for message passing from
Kalimba to the on board MCU

OxFF2A | GENERAL_TO_MCU1 16 RW | Register for message passing from
Kalimba to the on board MCU

OxFF2B | GENERAL_TO_MCU2 16 RW | Register for message passing from
Kalimba to the on board MCU

OxFF2C | GENERAL_TO_MCU3 16 RW | Register for message passing from
Kalimba to the on board MCU

OxFF2D | CLOCK_DIVIDE_RATE 4 RW | Configuration for clock frequency
used by Kalimba during normal
operation

OxFF2E | INT_CLOCK_DIVIDE_RATE 4 RW | Configuration for clock frequency
used by Kalimba during interrupt
service, when selected

OxFF2F | PIO_IN 24 R Programmable input register used
by DSP to read PIO0 —23 and AIOO-
3

OXFE30 | PIO OUT 24 RW | Programmable output register used

- by DSP to write PIO0 —23 and

AlO0-3

0xFF31 | PIO EVENT EN MASK 24 RW | Used to select which PIOs and AlOs

B - are used for interrupt sources

OxFF32 | INT_SWO0_EVENT 1 RW | Select software event 0 to cause
interrupt request on Kalimba

OxFF33 | INT_SW1_EVENT 1 RW | Select software event 1 to cause
interrupt request on Kalimba

OxFF34 | INT_SW2_EVENT 1 RW | Select software event 2 to cause
interrupt request on Kalimba

OxFF35 | INT_SW3_EVENT 1 RW | Select software event 3 to cause
interrupt request on Kalimba

OxFF36 | FLASH_WINDOW1_START_ADDR 24 RW | Start address for 4K block 1
mapped into DM2, see Figure 5.1

OxFF37 | FLASH_WINDOW2_START_ADDR 24 RW [Start address for 4K block 2
mapped into DM2, see Figure 5.1

bc05-ug-001Pc

© CSR plc 2006
This material is subject to CSR’s non-disclosure agreement.

Page 53 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

~

Appendix B: DSP Memory Mapped RegistersKalimba DSP

Perpnerars.

Address | Name Size RW | Description

(Bit)

OxFF38 | FLASH_WINDOW3_START_ADDR 24 RW | Start address for ~4K block 3
mapped into DM2, see Figure 5.1

OxFF39 | NOSIGNX_GENREGS 1 RW | General sign extension enable

OxFF3A | NOSIGNX_MCUWIN1 1 RW | Enable sign extension in MCU
window 1

OXFF3B | NOSIGNX_MCUWIN2 1 RW | Enable sign extension in MCU
window 2

OxFF3C | NOSIGNX_FLASHWIN1 1 RW | Enable sign extension in flash
window 1

OXxFF3D | NOSIGNX_FLASHWIN2 1 RW | Enable sign extension in flash
window 2

OXFF3E | NOSIGNX_FLASHWIN3 1 RW | Enable sign extension in flash
window 3

OXFF3F | NOSIGNX_PMWIN 1 RW | Enable sign extension in PM
window

OxFF40 | PM_WIN_ENABLE 1 RW | Allows program memory to be
mapped into DM1 memory map see
Figure 5.1

OxFF41 | STACK_START_ADDR 16 RW | Stack start address

OxFF42 | STACK_END_ADDR 16 RW | Stack end address (> Start address,
stack build upwards)

OxFF43 | STACK_POINTER 16 RW | Current stack pointer

OxFF44 | NUM_RUN_CLKS _MS 8 RW | MS 8 bits of Number of clocks
encountered whist running since
counter last reset. Writing to
register resets it.

OxFF45 | NUM_RUN_CLKS LS 24 RW | LS 24 bits of Number of clocks
encountered whist running since
counter last reset. Writing to
register resets it.

OxFF46 | NUM_INSTRS_MS 8 RW | MS 8 bits of Number of instructions
encountered since counter last
reset. Writing to register resets it.

OxFF47 | NUM_INSTRS_LS 24 RW | LS 24 bits of Number of instructions
encountered since counter last
reset. Writing to register resets it.

OxFF48 | NUM_STALLS MS 8 RW [MS 8 bits of Number of instruction
stalls encountered since counter last
reset. Writing to register resets it.

OxFF49 | NUM_STALLS LS 24 RW | LS 24 bits of Number of instruction
stalls encountered since counter last
reset. Writing to register resets it.

OxFF4A | TIMER_TIME 24 R LS 24 bits of 48-bit timer value
increment every 1us

OxFF4B | TIMER_TIME_MS 24 R MS 24 bits of 48-bit timer value
increment every 1us

OxFF4C | WRITE_PORTO_CONFIG 4 RW | Data size, Endian mode and
saturation for write port 0

OxFF4D | WRITE_PORT1_CONFIG 4 RW | Data size, Endian mode and
saturation for write port 1

OxFF4E | WRITE_PORT2_CONFIG 4 RW | Data size, Endian mode and
saturation for write port 2

bc05-ug-001Pc

© CSR plc 2006
This material is subject to CSR’s non-disclosure agreement.

Page 54 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

h"-/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnerars.
Address | Name Size RW | Description
(Bit)

OxFF4F | WRITE_PORT3_CONFIG 4 RW | Data size, Endian mode and
saturation for write port 3

OxFF50 | WRITE_PORT4_CONFIG 4 RW | Data size, Endian mode and
saturation for write port 4

OxFF51 | WRITE_PORT5_CONFIG 4 RW | Data size, Endian mode and
saturation for write port 5

OxFF52 | WRITE_PORT6_CONFIG 4 RW | Data size, Endian mode and
saturation for write port 6

OxFF53 | WRITE_PORT7_CONFIG 4 RW | Data size, Endian mode and
saturation for write port 7

OxFF54 | READ_PORTO_CONFIG 4 RW | Data size, Endian mode and sign
extension for read port 0

OxFF55 | READ_PORT1_CONFIG 4 RW | Data size, Endian mode and sign
extension for read port 1

OxFF56 | READ_PORT2_CONFIG 4 RW | Data size, Endian mode and sign
extension for read port 2

OxFF57 | READ_PORT3_CONFIG 4 RW | Data size, Endian mode and sign
extension for read port 3

OxFF58 | READ_PORT4_CONFIG 4 RW | Data size, Endian mode and sign
extension for read port 4

OxFF59 | READ_PORT5_CONFIG 4 RW | Data size, Endian mode and sign
extension for read port 5

OxFF5A | READ_PORT6_CONFIG 4 RW | Data size, Endian mode and sign
extension for read port 6

OxFF5B | READ_PORT7_CONFIG 4 RW | Data size, Endian mode and sign
extension for read port 7

OxFF5C | PM_FLASH_WINDOW_START_ADDR 24 RW | Start address in flash for program
memory flash window

OxFF5D | PM_FLASH_WINDOW_SIZE 16 RW | Size of program memory window in
number of instructions (double for
number of flash addresses used)

OxFF5E | MCUREGS_ENABLE 1 RW | Enables the DSP memory-mapped
access to the MCU’s 10 map.
Reading reads the value of the
MCU'’s own enable

OxFF5F | NOSIGNX_MCUREGS 1 RW | Enables sign extension of the MCU
10 map interface

OxFF60 | MCUREGS_ADDRESS 16 RW | MCU IO map address to read/write

OxFF61 | MCUREGS_DATA 16 RW | MCU IO map data read/write

OxFF62 | BITREVERSE_DATA 24 RW | Reading this location reads back the
bitreverse of the value written to it

OxFF63 | INT_MCU_PRIORITIES_MS 16 RW | Priorities for the first 8 of the MCU’s
interrupt events

OxFF64 | INT_MCU_PRIORITIES_LS 16 RW | Priorities for the last 8 of the MCU’s
interrupt events

OxFF65 | INT_MCU_SOURCES_EN 16 RW | Enables for the MCU’s 16 interrupt
events

OxFF66 | PIO_DIR 24 RW | Direction enables for the DSP’s
PIOs

© CSR plc 2006

bc05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 55 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

o

£ _A Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnerars.
Address | Name Size RW | Description
(Bit)

OxFF67 | ADDSUB_SATURATE_ON_OVERFLOW 1 RW | 1 to enable saturation on overflow
for addition or subtraction in the
ALU

OxFF68 | FORCE_FAST_MMU_CLOCK 1 RW [1 to force the MMU/XAP clock to
operate at full speed

OxFF69 | BITSERIAL_RWB_LENGTH 17 RW | Control register to start bitserial data
transfers from the DSP

OxFF6A | BITSERIAL_BUFFER_LEVEL 16 R Bitserial buffer level status

OxFF6B | BITSERIAL_EVENT 1 RW | Bitserial Event status

OxFF6C | BITSERIAL_BUSY 1 R Bitserial Busy status

Appendix B Table 1: DSP Memory Mapped 1/O

bc05-ug-001Pc © CSR plc 2006

This material is subject to CSR’s non-disclosure agreement.

Page 56 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

h"-/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnaran.

B.2 MMU Interface DSP Registers

Tables in this section list a group of registers used for communication and control between the Kalimba DSP and
the MCU on the BlueCore5-Multimedia.

WRITE_PORT[0/1/2/3/4/5/6/7]_DATA

Bit Description

23:.0

Data bits 0-23

Note Memory mapped location for the write port 0 to 7 data

Appendix B Table 2: Data Bits for Write Port 0to 7

WRITE_PORT[0/1/2/3/4/5/6/7]_CONFIG

Bit Description

23:4 [3]2] 1o

| |_ 00 = 8-bit write

01 = 16-bit write
10 = 24-bit write

1 = Big endian

0 = Little endian

1=16-bit saturate

0=no saturation

Unused

Note This register is cleared on system reset
The stereo audio interface of BlueCore5-Multimedia uses Little Endian format

Appendix B Table 3: Configuration Bits for Write Port 0 to 7

READ_PORT[0/1/2/3/4/5/6/7]_DATA

Bit Description

23:.0

Data bits 0-23

Note Memory mapped location for the read port 0 to 7 data

Appendix B Table 4: Data Bits for Read Port 0 to 7

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 57 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

G

Appendix B: DSP Memory Mapped RegistersKalimba DSP

PETTETar

READ_PORT[0/1/2/3/4/5/6/7]_CONFIG

Bit

23:4 [3]2] 1o

Description

00 = 8-bit read
01 = 16-bit read
10 = 24-bit read

1 = Big endian
0 = Little endian

1 = No sign
extension
0 = Sign
extension

Unused

Note This register is cleared on system reset

The stereo audio interface of BlueCore5-Multimedia uses Little Endian format

Appendix B Table 5: Configuration Bits for Read Port 0to 7

PORT_BUFFER_SET

Bit

23:.0

Description

Reading: Starts
foreground buffer
set — DSP stalls
until complete

Writing: Starts
background
buffer set — DSP
only stalls if an
MMU port
access is made
before buffer set
is complete

Note This register is of width zero — always reads value written is not used

Appendix B Table 6: Configuration Bits for Read Port 0to 7

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 58 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

~

Appendix B: DSP Memory Mapped RegistersKalimba DSP

Perpnerars.
B.3 Timers DSP Registers
Three groups of registers make up the Kalimba DSP timer, these are:
TIMER_TIME[_MS]
Bit Description

23:.0

Data bits 0-23 or
47-24 for 1us
count value

Note A 48-bit read only register, the value is incremented every 1us, split into two 24-bit DSP
registers
Appendix B Table 7: The Timer Time Registers
TIMER[1/2]_TRIGGER
Bit Description
23.0
Data bits 0-23 for
1us trigger count
value
Note A 24-bit trigger value. If the appropriate enable register, TIMER[1/2]_EN, is set then an interrupt
is generated when TIMER_TIME = TIMER[1/2]_TRIGGER
Appendix B Table 8: The Threshold Value Registers for Timer Trigger 1 and 2
TIMER[1/2]_EN
Bit Description
23:1 | o
| |_ 1 = Enable timer
interrupt
0 = Disable timer
interrupt
Unused
Note This register is cleared on system reset

Appendix B Table 9: Enable Bits for Timer 1 and Timer 2 Interrupts

bc05-ug-001Pc

© CSR plc 2006

This material is subject to CSR’s non-disclosure agreement. Page 59 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

~

Appendix B: DSP Memory Mapped RegistersKalimba DSP

Perpnerars.

B.4 Interrupt Controller DSP Registers

This section covers the registers concerned with interrupt control on the DSP.

INT_GBL_ENABLE
Bit Description
231 | o
| I_ 0 = Reset
interrupt

controller state

Unused
Note This register is cleared on system reset
Appendix B Table 10: Interrupt Controller State Reset Bit
INT_ENABLE
Bit Description
231 | o
| I_ 1 =Enable
searching for an
interrupt source
0 = Disable
searching for an
interrupt source
Unused
Note This register is cleared on system reset
Appendix B Table 11: Enable Interrupt Searching Bit
INT_CLK_SWITCH_EN
Bit Description
231 | o
| [|1=EnableDsp
clock rate switch
during interrupt
0 = Disable DSP
clock rate switch
during interrupt
Unused
Note The DSP special clock rate during interrupt is DSP_INT_CLOCK_RATE described in

Section 8.12
This register is cleared on system reset

Appendix B Table 12: Enable Interrupt Clock Rate Bit

bc05-ug-001Pc

© CSR plc 2006
This material is subject to CSR’s non-disclosure agreement.

Page 60 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

G

Appendix B: DSP Memory Mapped RegistersKalimba DSP

PETTETar

INT_SOURCES_EN

Bit

23:9

[e[7]efs]afa]afa]o

Description

Timer1
interrupt

1 = Enable
0 = Disable

Timer2
interrupt

1 = Enable
0 = Disable

MCU interrupt
1 =Enable
0 = Disable

PIO line
change
interrupt

1 = Enable
0 = Disable

MMU
unmapped
event interrupt

1 = Enable
0 = Disable

Software0
event interrupt

1 = Enable
0 = Disable

Software1
event interrupt

1 = Enable
0 = Disable

Software2
event interrupt

1 = Enable
0 = Disable

Software3
event interrupt

1 = Enable
0 = Disable

Unused

Note

Bit 0:

hobd

INT_SOURCE_TIMER1_POSN

INT_SOURCE_MCU_POSN

5
INT_SOURCE_TIMER2_POSN 6:
7
8

INT_SOURCE_PIO_POSN

INT_SOURCE_MMU_UNMAPPED_POSN

INT_SOURCE_SWO0_POSN
INT_SOURCE_SW1_POSN
INT_SOURCE_SW2_POSN
INT_SOURCE_SW3_POSN

Appendix B Table 13: Interrupt Source Enable Bits

bc05-ug-001Pc

© CSR plc 2006

This material is subject to CSR’s non-disclosure agreement.

Page 61 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnerars.

G

INT_PRIORITIES

Bit

Description

1.0

17:16
15:14
3:2

11:10
9:8
7:6
5:4

23:18
13:12

|_ Timer1

interrupt
priority

Timer2
interrupt
priority

MCU
interrupt
priority

PIO line
change
interrupt
priority

MMU
unmapped
event
interrupt
priority

Software0
event
interrupt
priority

Software1
event
interrupt
priority

Software2
event
interrupt
priority

Software3
event
interrupt
priority

Unused

Note Priority level for each interrupt is a 2-bit value where the range is 3 (highest priority level) to 0
(lowest)

Appendix B Table 14: Interrupt Priority Level Bits

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 62 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

~

Appendix B: DSP Memory Mapped RegistersKalimba DSP

PETTETar

INT_MCU_SOURCES_EN

Bit

23:16 [15|14 [13|12[11]10] o[8[7|6 5[4 [3]2[1]0

Description

MCU Interrupt source 0
Enable

MCU Interrupt source 1
Enable

MCU Interrupt source 2
Enable

MCU Interrupt source 3
Enable

MCU Interrupt source 4
Enable

MCU Interrupt source 5
Enable

MCU Interrupt source 6
Enable

MCU Interrupt source 7
Enable

MCU Interrupt source 8
Enable

MCU Interrupt source 9
Enable

MCU Interrupt source 10
Enable

MCU Interrupt source 11
Enable

MCU Interrupt source 12
Enable

MCU Interrupt source 13
Enable

MCU Interrupt source 14
Enable

MCU Interrupt source 15
Enable

Unused
Note Bit 0: INT_MCU_SOURCE_TIMER 8: INT_MCU_SOURCE_BAQI
1: INT_MCU_SOURCE_TIMER2 9: INT_MCU_SOURCE_SPI
2: INT_MCU_SOURCE_RADIO_TX 10: INT_MCU_SOURCE_UNMAPPED
3: INT_MCU_SOURCE_RADIO_RX 11: INT_MCU_SOURCE_SWO0
4: INT_MCU_SOURCE_DATA_OUT 12: INT_MCU_SOURCE_SW1
5: INT_MCU_SOURCE_DATA_IN 13: INT_MCU_SOURCE_SW2
6: INT_MCU_SOURCE_VOICE_OUT 14: INT_MCU_SOURCE_SW3
7: INT_MCU_SOURCE_VOICE_IN 15: INT_MCU_SOURCE_IO_AUX

Appendix B Table 15: MCU Interrupt Source Enable Bits

bc05-ug-001Pc

© CSR plc 2006
This material is subject to CSR’s non-disclosure agreement.

Page 63 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

h"-/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnaran.

INT_MCU_PRIORITIES_MS
Bit Description
2316 | 1514 [1312 [11:10 | 98 | 76 | 54 | 32 | 10

L 1 L1 L1 L1 L L

MCU Interrupt source 8
Enable

MCU Interrupt source 9
Enable

MCU Interrupt source 10
Enable

MCU Interrupt source 11
Enable

MCU Interrupt source 12
Enable

MCU Interrupt source 13
Enable

MCU Interrupt source 14
Enable

MCU Interrupt source 15
Enable

Unused

Note Priority level for each interrupt is a 2-bit value where the range is 3 (highest priority level) to 0
(lowest)

Appendix B Table 16: MCU Interrupt Source Priorities MS

INT_MCU_PRIORITIES_LS
Bit Description
2316 | 1514 [1312 [11:10 | 98 | 76 | 54 | 32 | 10

L1 1 L1 L1 L1 L

MCU Interrupt source 0
Enable

MCU Interrupt source 1
Enable

MCU Interrupt source 2
Enable

MCU Interrupt source 3
Enable

MCU Interrupt source 4
Enable

MCU Interrupt source 5
Enable

MCU Interrupt source 6
Enable

MCU Interrupt source 7
Enable

Unused

Note Priority level for each interrupt is a 2-bit value where the range is 3 (highest priority level) to 0
(lowest)

Appendix B Table 17: MCU Interrupt Source Priorities LS

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 64 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

h"/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnerars.
INT_SOURCE
Bit Description
235 | 4:0
| | | Current Interrupt
| Source
Unused
Note Current Interrupt Source is a 5-bit value that represents the current interrupt as follows:
00000 Timer1 interrupt
00001 Timer2 interrupt
00010 MCU interrupt
00011 PIO line change interrupt
00100 MMU unmapped event interrupt
00101 Software0 event interrupt
00110 Software1 event interrupt priority
00111 Software2 event interrupt
01000 Software3 event interrupt
01001 MCU Timer interrupt
01010 MCU Timer2 interrupt
01011 MCU Radio TX interrupt
01100 MCU Radio RX interrupt
01101 MCU Data Out interrupt
01110 MCU Data In interrupt
01111 MCU Voice Out interrupt
10000 MCU Voice In interrupt
10001 MCU BQI/COEX/DSP/BITSERIAL/IO_AUX2 interrupt
10010 MCU SPI USER interrupt
10011 MCU PROC Unmapped interrupt
10100 MCU SWO interrupt
10101 MCU SW1 interrupt
10110 MCU SW2 interrupt
10111 MCU SW3 interrupt
11000 MCU IO_AUX event/UART interrupt

Appendix B Table 18: Current Interrupt Source Bits

bc05-ug-001Pc

© CSR plc 2006

This material is subject to CSR’s non-disclosure agreement.

Page 65 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

tr
h"-/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnerars.
INT_ACK
Bit Description
231 | o
| I_ 0 = Clears
current interrupt
request (IRQ)
Unused
Note Writing to this register acknowledges an interrupt request. It de-asserts the IRQ line to Kalimba
DSP, reverts the Kalimba clock back to the non interrupt version, and initiates the search for a
new interrupt

Appendix B Tablel9: Interrupt Request Acknowledge Bit

INT_LOAD_INFO

Bit Description

23:14 [13 | 12:8 [7] 6:2 I

|_A I_A |_A I_ Interrupt priority

value to restore
see Appendix B
Tables 14,16
and 17

Interrupt source
number (0-24) to
restore see
Appendix B
Table 18

Interrupt active
signal state to
restore

Interrupt request
number (0-24) to
optionally clear
see Appendix B
Table 18

0 = Clear the
Interrupt request
number in bits 8
to 12

Unused

Note Used to restore information about a previous lower priority interrupt

See the nested interrupts example code for an example of its use.

Appendix B Table 20: Restore Information about a Previous Lower Priority Interrupt

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 66 of 94

CSrr

G

Appendix B: DSP Memory Mapped RegistersKalimba DSP

PETTETar

INT_SAVE_INFO

Bit

23:13 | 12:8 [7]

1.0

Description

L |

Previous lower
priority interrupt
priority value see
Appendix B
Tables 14, 16
and 17

Previous lower
priority interrupt
source number
(0-24) see
Appendix B
Table 18

Previous lower
priority interrupt
active signal
state

New interrupt
source number
(0-24) see
Appendix B
Table 18.

Unused

Note Used to save information about the current interrupt

See the nested interrupts example code for an example of its use

Appendix B Table 21: Save Information about Current Interrupt

INT_SW[0/1/2/3]_EVENT

Bit

23:1

Description

1 = Software
Event (causes
interrupt if
enabled see
Appendix B
Table 13)

Unused

Note This register is cleared on system reset

Appendix B Table 22: Software Event 0 to 3 Interrupt Request

bc05-ug-001Pc

© CSR plc 2006
This material is subject to CSR’s non-disclosure agreement.

Page 67 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

tr
h"-/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnerars.
INT_SW_ERROR
Bit Description
23.0
Unused
Note Reading or writing this register will cause a software error interrupt event. It is the first memory-

altered

mapped register, and is designed to trap rogue software before memory-mapped registers are

Appendix B Table 23: Software Event 0 to 3 Interrupt Request

B.5 MCU Interrupt DSP Registers

DSP2MCU_EVENT_DATA

Bit Description
23:16 | 15:0
| | Event data from
DSP to MCU
Unused
Note This register is cleared on system reset
Appendix B Table 24: Interrupt Event Data to MCU
MCU2DSP_EVENT_DATA
Bit Description
23:16 | 15:0
| | Event data from
MCU to DSP
Unused
Note This register is cleared on system reset

Appendix B Table 25: Interrupt Event Data from MCU

B.6 PIO Control DSP Registers

Shown below are the PIO registers accessed by the DSP:

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 68 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

~

Appendix B: DSP Memory Mapped RegistersKalimba DSP

PETTETar

PIO_IN

Bit

2320 [19:16 | 15:0

Description

Reads value
onPIO15t0 0

Bit 15 = PIO 15
{ {
Bit0 =PIOO

Reads value
on PIO 19 to
16 (depending
on firmware
control of
UART and
PCM
interfaces)

Bit 19 = PIO 19
{ {
Bit 16 = PIO 16

Reads value
on PIO 23 to
20 (depending
on firmware
control of
UART and
PCM
interfaces) or
AlO 3 to 0 (if
available)

Bit 23 = PIO 23
{ {
Bit 20 = PIO 20

Note

A read only register of the PIO input.
This register is cleared on system reset

Appendix B Table 26: PIO Input Register

bc05-ug-001Pc

© CSR plc 2006
This material is subject to CSR’s non-disclosure agreement.

Page 69 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

~

Appendix B: DSP Memory Mapped RegistersKalimba DSP

PETTETar

PIO_OUT

Bit Description

2320 [19:16 | 15:0

Writes value

onPIO 15100
Bit 15 = PIO 15
3 \?
Bit0 =PIOO0

Writes value

on PIO 19 to
16 (depending
on firmware
control of
UART and
PCM
interfaces)

Bit 19 = PIO 19
{ {
Bit 16 = PIO 16

Writes value

on PIO 23 to
20 (depending
on firmware
control of
UART and
PCM
interfaces) or
AlO 3 to 0 (if
available)

Bit 23 = PIO 23
{ {
Bit 20 = PIO 20

Note

Writes to the PIO lines. There is a MCU register which controls which bits of the PIO port are
controlled by the MCU and which by Kalimba.

Appendix B Table 27: PIO Output Register

PIO_DIR

Bit Description

23:.0

| Writes Drive

enable to PIO
23to 0

Bit 23 = PIO 23
{ {
Bit0 =PIO0

Note

Controls direction of the PIO lines. There is a MCU register which controls which bits of the PIO
port have direction controlled by the MCU and which by Kalimba.

Depending on specific part and firmware, not all PIOs will be available, or available as
configurable Inputs or outputs

Appendix B Table 28: PIO Drive enable Register

bc05-ug-001Pc

© CSR plc 2006

This material is subject to CSR’s non-disclosure agreement. Page 70 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

~

Appendix B: DSP Memory Mapped RegistersKalimba DSP

PETTETar

PIO_EVENT_EN_MASK

Bit

Description

2320 [19:16 | 15:0

1 = Select

event change

to cause an

interrupt on

PIO15t0 0

Bit 15 = PIO 15
S S

Bit0 =PIOO

1 = Select
event change
to cause an
interrupt on
PIO 19 to 16
(depending on
firmware
control of
UART and
PCM
interfaces)

Bit 19 = PIO 19
{ {
Bit 16 = PIO 16

1 = Select
event change
to cause an
interrupt on
PIO 23 to 20
(depending on
firmware
control of
UART and
PCM
interfaces) or
AlO 3 to O (if
available)

Bit 23 = PIO 23
{ {
Bit 20 = PIO 20

Note

A bit mask that selects which bits of the PIO port should cause an interrupt if PIO changes

state.
This register is cleared on system reset

Appendix B Table 29: PIO Event Change Interrupt Mask Register

bc05-ug-001Pc

© CSR plc 2006
This material is subject to CSR’s non-disclosure agreement.

Page 71 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

h"-/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnaran.

B.7 MCU Window DSP Registers

The data word size for the MCU and the DSP differ. The MCU has a 16-bit data width and the DSP has 24-bit
data width. A register controls how the MCU presents data to the DSP, i.e. whether it is sign extended or not.

NOSIGNX_MCUWIN[1/2]

Bit Description

23:1 | o

| I_ 1 = Disable sign

extension in

MCU Access
Window see

Figure 5.1

0 = Enable sign
extension in
MCU Access
Window see
Figure 5.1

Unused

Note Sign extension is from 16-bit MCU value to the 24-bit Kalimba DSP value
This register is cleared on system reset

Appendix B Table 30: MCU Access Window 0 to 1 Sign Extension Enable Bit

B.8 Flash Window DSP Registers

FLASH_WINDOW][1/2/3]_START_ADDR

Bit Description

23:.0

Flash/ROM start
address for flash
window 1, 2 or 3

Note Selects the flash address that maps to the start of flash windows 1, 2 or 3. The windows are
always of size 4KWords

Appendix B Table 31: Start address register for flash memory mapped into the three DSP flash windows

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 72 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

tr
h"/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Penpnerarn.
NOSIGNX_FLASHWIN[1/2/3]
Bit Description

23:1 | o

| I_ 1 = Disable sign

extension from
flash window
1/2/3 value see
Figure 5.1

0 = Enable sign
extension from
flash window
1/2/3 value see
Figure 5.1

Unused

Note

Sign extension of the 16-bit flash value to the 24-bit Kalimba DSP value for each of the three
flash windows.

This register is cleared on system reset

Appendix B Table 32: Flash Access Window Sign Extension Enable Bit

bc05-ug-001Pc

© CSR plc 2006

This material is subject to CSR’s non-disclosure agreement. Page 73 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

_A Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnerars.

B.9 PM Window DSP Registers

NOSIGNX_PMWIN

Bit Description

23:1 | o

| |_ 1 = Disable sign

extension from
PM Window
value in DM1
see Figure 5.1

0 = Enable sign
extension from
PM Window
value in DM1
see Figure 5.1

Unused
Note Sign extension of the PM values when it is windowed as two 16-bit values in the two 24-bit
banks of DM in the Kalimba DSP.
This register is cleared on system reset
Appendix B Table 33: PM Access Window Sign Extension Enable Bit
PM_WIN_ENABLE
Bit Description

23:1 | o

| |_ 1 = Enable PM

mapping into
DM1 see Figure
5.1

Unused

Note | This register is cleared on system reset

Appendix B Table 34: Flash Access Window Sign Extension Enable Bit

B.10 MCU IO Map Interface Registers

The DSP Registers which control the access to the MCU’s 10 map are:

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 74 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

tr
h"-/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Penpnerarn.
MCUREGS_ENABLE
Bit Description
231 | o

1 = Enable MCU
register interface

0 = Disable MCU
Interface

Unused
Note This register is cleared on system reset
The MCU firmware must also enable the DSP’s access to the MCU registers. Reading the
value of this register returns the value of the MCU’s enable bit
Appendix B Table 35: MCU 1O register map interface enable
NOSIGNX_MCUREGS
Bit Description
231 | o
| || 1=16bitmcu
registers are
sign-extended to
24-bits when
read by the DSP
0 = 16-bit MCU
registers are
zero-padded to
24-bits when
read by the DSP
Unused
Note This register is cleared on system reset
The MCU firmware must also enable the DSP’s access to the MCU registers.
Appendix B Table 36: MCU IO register map sign-extension
MCUREGS_ADDRESS
Bit Description
23:16 | 15:0
[] The MCU 10 map
address to access
when
reading/writing
MCUREGS_DATA
Unused
Note This register is cleared on system reset
The MCU firmware must also enable the DSP’s access to the MCU registers.

Appendix B Table 37: MCU IO register map address

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 75 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

tr
h"-/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpherarns.
MCUREGS_DATA
Bit Description
23:16 | 15:0
[| The MCU IO
map data to

write or read
data for reads

Unused

Note

This register is cleared on system reset
The MCU firmware must also enable the DSP’s access to the MCU registers.

Writing to this register starts the write of given data to the address set up in
MCUREGS_ADDRESS

Reading from this register returns the data from MCU register addressed by
MCUREGS_ADDRESS

Appendix B Table 38: MCU IO register map data

B.11 General DSP Registers

The General Registers are:

GENERAL_FROM_MCU[0/1/2/3]

Bit Description

23:16 | 15:0

| | 16-bit read only

registers from

MCU
Unused
Note 16-bit read only registers with their value coming from a MCU register. See below for optional
sign extension to 24-bits
Appendix B Table 39: General Register 0 to 4 from MCU to Kalimba
GENERAL_TO_MCU[0/1/2/3]
Bit Description
23:16 | 15:0
| | 16-bit registers
written by
Kalimba and
read by MCU
Unused
Note 16-bit registers written by Kalimba, read by MCU, and seen by a VM function’.
Appendix B Table 40: General Register 0to 4 to MCU from Kalimba
Note:

™ Details of this VM function are under development

bc05-ug-001Pc

© CSR plc 2006

This material is subject to CSR’s non-disclosure agreement. Page 76 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

tr
h"-/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnerars.
NOSIGNX_GENREGS
Bit Description
231 | o
I_ 1 = Disable sign
extension from
general MCU
registers
0 = Enable sign
extension from
general MCU
registers
Unused
Note Sign extension of the 16-bit general MCU registers to the 24-bit Kalimba DSP value.
This register is cleared on system reset
Appendix B Table 41: General MCU Registers Sign Extension Enable Bit
B.12 PM Flash Window Control Registers
The registers that control the window into program memory flash are:
PM_FLASH_WINDOW_START_ADDR
Bit Description
23.0

Flash/ROM start
address for PM
flash window

Note

0x1800

This register is cleared on system reset

Selects the flash address that maps to the start of program memory flash at DSP PM address

Appendix B Table 42: Start address register for program memory flash window

bc05-ug-001Pc

© CSR plc 2006
This material is subject to CSR’s non-disclosure agreement.

Page 77 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnerars.

G

PM_FLASH_WINDOW_SIZE

Bit Description

23:16 | 15:0

| | 16-bit register
that controls the
size of program
memory flash
space available
to the DSP in
32-bit DSP
words (double
for size of flash
space required)

Unused

Note Setting to zero disables the program memory flash window and cache
This register is cleared on system reset

Appendix B Table 43: Size register for program memory flash window

B.13 Clock Divide Rate DSP Registers

CLOCK_DIVIDE_RATE

Bit Description

23:4 | 3:0

| | Is 4-bit value, n,
that sets divide
ratio from the
base clock
frequency for the
DSP.

Divide ratio = 2"
e.g.
0=+1%
1=+2
2=+4

=+8

\’
15 =+ 32768

Unused

Note This register is cleared on system reset

Appendix B Table 44: DSP Clock Rate Register for Normal Operation

Note:

™ Details of this VM function are under development

@ nitial release of BlueCore5-Multimedia and Multimedia External is 64MHz or 64MIPs

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 78 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

tr
h"-/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Penpnerarn.
INT_CLOCK_DIVIDE_RATE
Bit Description

23:4

3.0

Is 4-bit value, n,
that sets divide
ratio from the
base clock
frequency for the
DSP during
interrupt.

Divide ratio = 2"
e.g.
0=+1
1=+2
2=+4
3=+8
\?
15 =+ 32768

Unused

Note

For Kalimba to use this clock frequency during interrupt INT_CLOCK_SWITCH_EN register

must be enabled see Appendix B Table 12
This register is cleared on system reset

Appendix B Table 45: DSP Clock Rate Register for Interrupt Operation

FORCE_FAST_MMU_CLOCK

Bit

23:1

| o

Description

L

1 = Force the
MCU and MMU
clocks to run at
maximum
(32MHz) speed

0 = Release the
MCU and MMU
clock speeds

Unused

Note

This register can be used to accelerate MMU buffer transfers if firmware permits the MCU clock

rate to be forced
This register is cleared on system reset

Appendix B Table 46: DSP Register for forcing MCU/MMU clocks

B.14 Core State DSP Registers

The following registers are used for context saving of the DSP core:

bc05-ug-001Pc

© CSR plc 2006
This material is subject to CSR’s non-disclosure agreement.

Page 79 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

tr
h"-/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnerars.
MM_DOLOOP_START
Bit Description
23: 16 | 15:0
| | 16-bit register
that defines the
start address for
do loops
Unused
Note This register is memory-mapped for context saving, e.g. for interrupt routine entry
Appendix B Table 47: DSP Do Loop start address register
MM_DOLOOP_END
Bit Description
23: 16 | 15: 0
| | 16-bit register
that defines the
end address for
do loops
Unused
Note This register is memory-mapped for context saving, e.g. for interrupt routine entry
Appendix B Table 48: DSP Do Loop end address register
MM_QUOTIENT
Bit Description
23.0
Kalimba core
divider quotient
Note This register is memory-mapped for context saving, e.g. for interrupt routine entry

Appendix B Table 49: DSP Divider Quotient

MM_REM
Bit Description
23.0
Kalimba core
divider
remainder
Note This register is memory-mapped for context saving, e.g. for interrupt routine entry

Appendix B Table 50: DSP Divider Remainder

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 80 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

h"-/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnaran.

B.15 Bitreverse Function Memory-mapped Register

The memory-mapped bitreverse function register is:

BITREVERSE_DATA

Bit Description
23.0
Reading this
register returns
the 24-bit

bitreverse of the
data previously

written to it
Note This register should not be used from within an interrupt
Appendix B Table 51: DSP Bitreverse data memory-mapped register
B.16 Kalimba Add/Subtract Core Configuration Register
The memory-mapped register to control saturation in the Kalimba add/subtract core is:
ADDSUB_SATURATE_ON_OVERFLOW
Bit Description

23:1 | o

| I_ 1 = Enable

saturation on
overflow with
DSP
add/subtracts
0 = Disable
saturation on
overflow with
DSP
add/subtracts

Unused

Note Interrupts should be blocked before enabling add/sub saturation, and saturation should be
disabled before unblocking interrupts

This register is cleared on system reset

Appendix B Table 52: DSP add/subtract core saturation configuration register

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 81 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

h"-/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnaran.

B.17 Stack Memory-mapped Registers

The memory-mapped registers to control the Kalimba'’s stack instructions are:

STACK_START_ADDR

Bit Description

23:16 | 15: 0

| | 16-bit register
that controls the
start address of
the stack. This
may be in DM1
or DM2.

Unused

Note Writing to this register sets also STACK_POINTER to STACK_START_ADDR
The stack builds upwards. Therefore:
STACK_END_ADDR = STACK_START_ADDDR

Appendix B Table 53: Stack Start address register

STACK_END_ADDR

Bit Description

23:16 | 15:0

| | 16-bit register
that controls the
start address of
the stack. This
may be in DM1
or DM2, but
must be in the
same bank as
the start
address.

Unused

Note The stack builds upwards. Therefore:
STACK_END_ADDR = STACK_START_ADDDR

Appendix B Table 54: Stack End address register

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 82 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

G

Appendix B: DSP Memory Mapped RegistersKalimba DSP

PETTETar

STACK_POINTER

Bit

23:16 | 15:0

Description

16-bit register that
controls the
current value of
the stack pointer.
This is the
address to which
the next PUSH
instruction will
write. The next
POP instruction
will read address
the address one
lower than
STACK_POINTER

Unused

Note Writing to STACK_START_ADDR sets STACK_POINTER to STACK_START_ADDR too in

order to initialize the stack.

Appendix B Table 55: Stack Pointer memory-mapped register

B.18 Debug Profiling Memory-mapped Registers

The memory-mapped for debug profiling information are:

NUM_RUN_CLKS_MS

Bit

Description

23:8 | 7:0

8 MS bits of the

| 32-bit number of
clocks counter

Unused

Note This register holds the MS 8 bits of the 32-bit number of clocks executed whilst the DSP is

running since the counter was reset.

The entire 32-bit register is cleared to zero by writing any value to this register

Appendix B Table 56: DSP Number of clocks MS bits register

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 83 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

tr
h"-/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Perpnerars.
NUM_RUN_CLKS_LS
Bit Description
23:0
24 LS bits of the
32-bit number of
clocks counter
Note This register holds the LS 24 bits of the 32-bit number of clocks executed whilst the DSP is

running since the counter was reset.

The entire 32-bit register is cleared to zero by writing any value to this register

Appendix B Table 57: DSP Number of clocks LS bits register

NUM_INSTRS_MS

Bit

23:8 |

7:0

Description

L

8 MS bits of the
32-bit number of
instructions
counter

Unused

Note This register holds the MS 8 bits of the 32-bit number of instructions encountered since the

counter was.

The entire 32-bit register is cleared to zero by writing any value to this register

Appendix B Table 58: DSP Number of instructions MS bits register

NUM_INSTRS_LS
Bit Description
23.0

24 LS bits of the
32-bit number of
instructions
counter

Note This register holds the LS 24 bits of the 32-bit number of instructions encountered since the

counter was reset.

The entire 32-bit register is cleared to zero by writing any value to this register

Appendix B Table 59: DSP Number of instructions LS bits register

bc05-ug-001Pc © CSR plc 2006

This material is subject to CSR’s non-disclosure agreement.

Page 84 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

tr
h"-/] Appendix B: DSP Memory Mapped RegistersKalimba DSP
Penpnerarn.
NUM_STALLS_MS
Bit Description

23:8 | 7:0

[] [| 8Mmsbits of the

| 32-bit number of
stalls counter

Unused
Note This register holds the MS 8 bits of the 32-bit number of stalls encountered since the counter
was.
This counter only counts stalls due to instruction combinations (e.g. Modifying an index
register the instruction before it is used for a read, conditional branches, etc... - see section
4.10 for details), not stalls due to Memory bank conflicts or MMU ports
The entire 32-bit register is cleared to zero by writing any value to this register
Appendix B Table 60: DSP Number of stalls MS bits register
NUM_STALLS_LS
Bit Description
23.0
24 LS bits of the
32-bit number of
instructions
counter
Note This register holds the LS 24 bits of the 32-bit number of stalls encountered since the counter

was reset.

This counter only counts stalls due to instruction combinations (e.g. Modifying an index
register the instruction before it is used for a read, conditional branches, etc... - see section
4.10 for details), not stalls due to Memory bank conflicts or MMU ports

The entire 32-bit register is cleared to zero by writing any value to this register

Appendix B Table 61: DSP Number of stalls LS bits register

bc05-ug-001Pc

© CSR plc 2006

This material is subject to CSR’s non-disclosure agreement. Page 85 of 34

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

_h""d Appendix C: Software ExamplesKalimba DSP Peripherals

Appendix C: Software Examples

This section contains samples of example code for the Kalimba DSP.

C.1 Double-Precision Addition

// Double-precision addition: Z = X + Y

//

// Where

// X = {ro,rl}; - ie. r0 is MSW and rl is LSW
// Y = {r2,r3};

// Z = {r5,r4};

// Computation time: 2 cycles

r4d = rl + r3; // add LSWs

r5 = r0 + r2 + Carry; // add MSWs

C.2 Fractional Double-Precision Multiply

// Fractional double-precision multiply: Z = X * Y

//

// Where:

// X = {ro,rl}; - ie. r0 is MSW and rl is LSW
// Y = {r2,r3};

// Z = {r4,r5,r6,r7}; - ie. Z is 96-bit

// Computation time: 12 cycles

rMAC = rl * r3 (UU); // Compute LSW

r7 = rMACO; // save ZO

rMACO = rMAC1; // shift right rMAC by 24-bits

rMAC12 = rMAC2;
rMAC = rMAC + r0 * r3 (SU); // compute inner products
rMAC = rMAC + r2 * rl (SU);

r6 = rMACO; // save Z1

rMACO = rMAC1; // shift right rMAC by 24-bits
rMAC12 = rMAC2;

rMAC = rMAC + r0 * r2 (SS); // compute MSWs

r5 = rMACO; // save Z2

r4 = rMAC1; // save Z3

C.3 Integer Double-Precision Multiply

// Integer double-precision multiply: Z = X * Y

//

// Where:

// X = {ro,rl}; - ie. r0 is MSW and rl is LSW
// Y = {r2,r3};

// Z = {r4,r5,r6,r7}; - ie. Z is 96-bit

// Computation time: 12 cycles

rMAC = rl * r3 (UU); // Compute LSW

r7 = rMAC LSHIFT 15; // save ZO

rMACO = rMACIL; // shift right 24-bits

rMAC12 = rMAC2;
rMAC = rMAC + r0 * r3 (SU);
rMAC = rMAC + r2 * rl (SU);
r6 = rMAC LSHIFT 15; //
YMACO = rMACI; //
rMAC12 = rMAC2;
rMAC = rMAC + r0 * r2 (SS); // compute MSWs
//
//

// compute inner products
save Zz1

shift right 24-bits

r5 rMAC LSHIFT 15; save Z2
r4 rMAC LSHIFT -1; save Z3

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 86 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

Ccsrr

h"/] Appendix C: Software ExamplesKalimba DSP Peripherals

C.4 FIR Filter
// FIR filter

Input parameters:
points to oldest input value in delay line
filter length (N)
points to beginning of filter coefficient table
filter length (N)
rl0 = filter length - 1 (N-1)
Return values:
rMAC = sum of products output
/ Computation time: N + 2 cycles

g
S

fir filter:

rMAC = O
rl = M[IO,1]
r2 = M[I4,1];

do fir loop;
rMAC = rMAC + rl * r2

rl = M[IO0,1]
r2 = M[I4,1];
fir loop:

rMAC = rMAC + rl * r2;

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 87 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

h"/] Appendix C: Software ExamplesKalimba DSP Peripherals

C.5 Cascaded Bi-Quad IIR Filter

Cascaded biquad IIR filter

Equation of each section:
y(n) = (b0*x(n) + bl*x(n-1) + b2*x(n-2)
- al*y(n-1) - a2*y(n-2)) << scalefactor

Input Values:
r0 input sample
I0 points to oldest input value in delay line
(no biquads*2 + 2)
points to a list of scale factors for each biquad section
points to scaled coefficients b2,bl,b0,a2,al,... etc
2 * num biquads + 2

=
[=
[T IR TR TR

num_biquads
L4 5 * num biquads
MO -3
M1 1
rl0 = num biquads
Return Values:
r0 = output sample
rlo0 - cleared
10,I1,I14,L.0,L1,L4,M0,M1 - unaffected
rl,r2,r3,r4 - affected

T T T T T N N N N
N e N e N
[y
o

Computation time: 8 * num_biquads + 3

biquad filter:
do biquad loop;

rl = M[IO,1] // get x(n-2)
r2 = M[I4,1]; // get coef b2
rMAC = rl * r2
r3 = M[IO0,1] // get x(n-1)
r2 = M[I4,1]; // get coef bl
rMAC = rMAC + r3 * r2
r4 = M[I1,1] // get scalefactor
r2 = M[I4,1]; // get coef boO
rMAC = rMAC + r0 * r2
rl = M[IO,1] // get y(n-2)
r2 = M[I4,1]; // get coef a2
rMAC = rMAC - rl * r2
rl = M[IO,MO] // get y(n-1)
r2 = M[I4,M1]; // get coef al
rMAC = rMAC - rl * r2
M[IO,1] = r3; // store new x(n-2)
r0 = rMAC ASHIFT r4
M[IO,M1] = x0; // store new x(n-1)
bigquad loop:
M[IO,1T = rl; // store new y(n-2)
M[IO,1] = rO0; // store new y(n-1)

bc05-ug-001Pc

© CSR plc 2006
This material is subject to CSR’s non-disclosure agreement.

Page 88 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

~

Appendix C: Software ExamplesKalimba DSP Peripherals

C.6 Radix-2 FFT

// An optimised FFT

subroutine with a simple interface

//

// Input Values:

// SEfft_npts - Number of points (a power of 2)
// $Inputreal - Input array real parts

// $Inputimag - Input array imag parts

// 10,L1,14,L5 - should be initialised to 0.
//

// Return Values:

// SRefft - Output array real parts

// $Inputreal - Output array imag parts

// All registers altered

//

// Computation time:

//

// No clock cycles = TBA

// where n = log2 (fft_npts)

//

// fftnpts: 64 128 256 512

//

// No Clks: TBA

// Declare local variables:
. VAR groups;

.VAR node_space;

#include "twiddle_ factors.h"

// -- ENTRY POINT --

fast_fft:

MO = O;

Ml = 1;

// -- Process the n-1 stages of butterflies --
rl = 1;

M[groups] = rl; // groups = 1

r0 = M[$fft_npts];
r0 = r0 ASHIFT -1;

M[node_space] = r0; // node space = Npts / 2

r0 = SIGNDET r0;

rl = 22;

r9 = rl - r0; // log2(Npts) - 1

stage_loop:
rl0 = M[node_space];
M2 = rl0; // M2 = node_space
r8 = M[groups] ;
r2 = r8 LSHIFT 1;
M[groups] = r2; // groups = groups * 2;
I0 = &twid_ imag; // I0 -> (-S) of WO
I2 = &SInputreal; // I2 -> x0 in 1st group of stage
I1 = I2 + M2; // Il -> x1 in 1st group of stage
I6 = &SInputimag; // I6 -> y0 in 1st group of stage
I3 = I6 + M2; // I3 -> yl in 1st group of stage
I4 = &twid _real; // I4 -> C of WO

bc05-ug-001Pc

This material is subject to CSR’s non-disclosure agreement.

© CSR plc 2006 Page 89 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

~

Appendix C: Software ExamplesKalimba DSP Peripherals

group_loop:
r2 = M[I4,1];
r6 = r2; // r6=C
r3 = M[I1,0]; // r3=x1
rMAC = r3 * 16 // TMAC=x1*C
r5 = M[I3,0]; // r5=y1l
r2 = M[IO,1];
r7 = r2; // r7=(-8)
rl0 = M[node_spacel] ;

do bfly loop;

rMAC = rMAC - r5 * 7 // rMAC=x1*C-yl*-S
r0 = M[I2,0]; // r0=x0
rl = r0 + rMAC // rl=x0'=x0+ (x1*C-yl*-S)
r2 = M[I3,M1]; // r2=yl (dummy read)
rl = r0 - rMAC // rl=x1'=x0- (x1*C-yl*-S)
M[I2,M1] = rl; // DM=x0'
rMAC = r3 * r7 // TMAC=x1* (-S)
M[I1,M1] = rl // DM=x1'
r4a = M[I6,M0]; // ra=y0
rMAC = rMAC + r5 * r6 // rMAC=x1*(-S)+yl*C
r5 = M[I3,-1]; // r5=next yl
rl = r4 + rMAC // rl=y0'=yO0+ (yl*C+x1l* (-S))
r3 = M[I1,MO0]; // r3=next x1
r4d = r4 - rMAC // rl=yl'=y0- (y1l*C+x1* (-S))
M[I6,M1] = rl; // DM=yO'
rMAC = r3 * 16 // TMAC=x1*C
M[I3,M1] = r4; // DM=yl'
bfly loop:
r2 = M[I1,M2]; // move: x1, x0, yl, and y0
r3 = M[I3,M2]; // onto next group with dummy reads
r8 = r8 - M1

r2 = M[I2,M2]
r3 = M[Ie,M2];
if NZ jump group_ loop;

rl0 = M[node_spacel] ;
rl0 = rl1l0 ASHIFT -1; // node_ space = node space / 2;
M[node_spacel] = rl0;

r9 = r9 - 1;
NZ jump stage loop;

-- Process the last stage of butterflies separately --

= &twid imag; // I0 -> (-S) of WO
= &$Inputreal; // I2 -> x0

=I5 + 1; /) I1 -> x1

= 2;

= BITREVERSE (&$Refft) ; // Refft bitreversed
= M[$fft_npts];

= SIGNDET rO0;

=xr0 - 7;

= 1;

= rl LSHIFT r0;

= rl; // Bitreversed modifier
= &twid real; // I4 -> C of WO

= &$Inputimag; // 16 -> y0

=16 + 1; // I5 -> y1

bc05-ug-001Pc

© CSR plc 2006
This material is subject to CSR’s non-disclosure agreement.

Page 90 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

h"/] Appendix C: Software ExamplesKalimba DSP Peripherals

r2 = M[I4,M1]

r5 = M[I2,M2]; // r5=yl
r6 = r2 // r6=C
r3 = M[I1,M2]; // r3=x1
rMAC = r3 * 16 // TMAC=x1*C
r2 = M[I0,1]; // r2=(-8)
rl0 = M[$fft_npts];
r10 = rl0 ASHIFT -1; // Npts / 2
do last_loop;
rMAC = rMAC - r5 * r2 // rMAC=x1*C-yl*-S
r0 = M[I5,M2]; // r0=x0
rl = r0 + rMAC; // rl=x0'=x0+ (x1*C-yl*-S)

// enable Bit Reverse addressing on AGl
rFlags = rFlags OR BR_FLAG;

rl = r0 - rMAC // rl=x1'=x0- (x1*C-yl*-S)
M[I3,M3] = rl; // DM=x0'

rMAC = r3 * 12 // TMAC=x1* (-S)

M[I3,M3] = rl // DM=x1'

r4a = M[I6,MO0]; // ra=yo

// disable Bit Reverse addressing on AG1l
rFlags = rFlags AND NOT_ BR FLAG;

rMAC = rMAC + r5 * 16 // TMAC=x1*(-S)+yl*C
r2 = M[I4,M1] /] r2=C;
r3 = M[I1,M2]; // r3=next x1
rl = r4 + rMAC // rl=y0'=yO0+ (yl*C+x1* (-S))
r5 = M[I2,M2]; // r5=next yl
r4d = r4d - rMAC // rl=yl'=y0- (y1l*C+x1* (-S))
M[I6,M1] = rl; // DM=yO'
r6 = r2 // r6=C
r2 = M[IO,M1]; // r2=(-8)
rMAC = r3 * 16 // TMAC=x1*C
M[I6,M1] = r4; // DM=yl'
last_loop:
I3 = BITREVERSE (&$Inputreal) ;
I5 = &$Inputimag;

// enable Bit Reverse addressing on AG1l
rFlags = rFlags OR BR_FLAG;

r2 = M[I5,1];

rl0 = N;

do bit rev imag;
r2 = M[I5,M1]
M[I3,M3] = r2;

bit_rev_imag:

// disable Bit Reverse addressing on AGl
rFlags = rFlags AND NOT BR FLAG;
rts;

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 91 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

h_"/] Document ReferencesKalimba DSP Peripherals

Document References

Document Reference

Bluetooth Advanced Audio Distribution Profile

Information technology -- Coding of moving pictures and associated
audio for digital storage media at up to about 1,5 Mbit/s -- Part 3: Audio

ISO/IEC 11172-3

Information technology -- Generic coding of moving pictures and

associated audio information -- Part 3: Audio ISO/IEC 13818-3

Information technology -- Generic coding of moving pictures and

associated audio information -- Part 7: Advanced Audio Coding (AAC) ISO/IEC 13818-7

BlueCore5-Multimedia Kalimba DSP Assembler User Guide bc05-ug-002P
BluLab xIDE User Guide blab-ug-002P
BlueCore5-Multimedia Data Sheet bc05-ds-004P

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 92 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

CSrr

~

Terms and DefinitionsKalimba DSP Peripherals

Terms and Definitions

AG Address Generator

ALU Arithmetic Logic Unit

BlueCore™ Group term for CSR’s range of Bluetooth chips
Bluetooth® Wireless technology providing audio and data transfer over short-range radio connections
CODEC COder DECoder

CSR CSR plc

DSP Digital Signal Processor

FFT Fast Fourier Transform

FIR Finite Infinite Response filter

IIR Infinite Impulse Response filter

ISR Interrupt Service Routine

Kalimba A CSR DSP core architecture

Kalasm2 Product name for BlueCore5-Multimedia Kalimba DSP Core Assembler
LS Least Significant

LSW Least Significant Word

MAC Multiply ACcumulate

MCU MicroController Unit

MS Most Significant

MSW Most Significant

NOP No Operation

PC Program Counter

PIO Programmable Input Output

PM Program Memory

RAM Random Access Memory

RTI ReTurn from Interrupt

RTS ReTurn from Subroutine

SPI Serial Peripheral Interface

VM Virtual Machine

bc05-ug-001Pc

© CSR plc 2006
This material is subject to CSR’s non-disclosure agreement.

Page 93 of 94

apINg JasM dSd equiljey| _IPSWIINIAI-§210)3Nn|g

,r“ Document HistoryKalimba DSP Peripherals

Document History

Revision Date Reason for Change:
OCT 05 Original draft of this document. (CSR reference: bc05-ug-001Pa)
FEB 05 Updates throughout

c JUL 06 First note (concerns C and V flags) updated in SUBTRACT and

SUBTRACT with Borrow. Copyright information updated

BlueCore5-Multimedia Kalimba DSP

User Guide

bc05-ug-001Pc

July 2006

Unless otherwise stated, words and logos marked with ™ or ® are trademarks registered or owned by CSR plc or
its affiliates. Bluetooth® and the Bluetooth logos are trademarks owned by Bluetooth SIG, Inc. and licensed to
CSR. Other products, services and names used in this document may have been trademarked by their respective
owners.

The publication of this information does not imply that any license is granted under any patent or other rights
owned by CSR plc.

CSR reserves the right to make technical changes to its products as part of its development programme.

While every care has been taken to ensure the accuracy of the contents of this document, CSR cannot accept
responsibility for any errors.

CSR’s products are not authorised for use in life-support or safety-critical applications.

© CSR plc 2006

be05-ug-001Pc This material is subject to CSR’s non-disclosure agreement.

Page 94 of 94

apINg JasM) dSd equijey| eIPS3WINA-§210)3Nn|g

