
Lanai Instruction Set

This document describes the instruction set of the Lanai CPU.

Table of Contents

Table of Contents

General Information

Registers

The Machine Instruction Set

Concise Encoding Summary

Register Immediate (RI)

Register Register (RR)

Register Memory (RM)

Register Register Memory (RRM)

Conditional Branch (BR)

Conditional Branch Relative (BRR)

Conditional Set (SCC)

Special Load/Store (SLS)

Special Load Immediate (SLI)

Special Part-Word Load/Store (SPLS)

Count Trailing Zeros (TRAILZ)

Count Leading Zeros (LEADZ)

Population Count (POPC)

Instruction Interpretation

The Lanai Pipeline

Writing the Program Counter

The Lanai Assembler

General Assembler Info

Operand Types

Instruction Formats

Notes

General Information

 The Lanai is a pipelined, RISC-style, load-store, 32-bit processor.

 In the remainder of this specification, we shall refer to 8-bit data

units as bytes, to 16-bit units as half-words, and to 32-bit units as

words. Pointers to successive words differ by 4, pointers to half-words

differ by 2, and pointers to bytes differ by 1. All instructions are 1

word long. All word addresses must be word-aligned. All half-word

addresses must be half-word-aligned. Any least-significant bits of an

address that would make a memory access non-aligned are ignored. Memory

storage is big-endian (most-significant byte is stored at the lowest

byte address).

Registers

Registers are denoted as `rI', where 0 <= I < 32.

 `r0'-`r2'are special registers:

`r0'

 contains 0. `r0' may be the destination register of an

 instruction; if so, the result is discarded.

`r1'

 contains 0xFFFFFFFF. `r1' may be the destination register of an

 instruction; if so, the result is discarded.

`r2'

 is the program counter (`pc'):

 | . |0.0|

 word address

 Instructions that specify `pc' as the destination register modify

 `pc' in the same way and at the same time as any other register,

 but they also affect the execution flow. If not written by an

 instruction during a time-step, the program counter increments by

 four. The two low-order bits are hard-wired to zero.

`r3-r31'

 are general-purpose registers.

The Machine Instruction Set

Concise Encoding Summary

5/12/25, 12:59 AM [PUBLIC] Lanai Instruction Set

https://docs.google.com/document/d/1jwAc-Rbw1Mn7Dbn2oEB3-0FQNOwqNPslZa-NDy8wGRo/pub 1/10

The Lanai machine instructions are encoded as follows, and described in

detail below.

 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

+---+

|0.A.A.A| Rd | Rs1 |F.H| | RI

|1.0.0.S| Rd | Rs1 |P.Q| | RM

|1.0.1.S| Rd | Rs1 |P.Q| Rs2 |B.B.B|J.J.J.J.J|Y.L.E| RRM

|1.1.0.0| Rd | Rs1 |F.I| Rs2 |B.B.B|J.J.J.J.J|D.D.D| RR

|1.1.0.1| Rd | Rs1 |F.-|-.-.-.-.-.-.-.-.-.-.-.-.-.-|0.1| POPC

|1.1.0.1| Rd | Rs1 |F.-|-.-.-.-.-.-.-.-.-.-.-.-.-.-|1.0| LEADZ

|1.1.0.1| Rd | Rs1 |F.-|-.-.-.-.-.-.-.-.-.-.-.-.-.-|1.1| TRAILZ

|1.1.1.0|D.D.D| . |0.I| BR

|1.1.1.0|D.D.D|0.-| dst_reg |-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-|1.I| SCC

|1.1.1.0|D.D.D|1.-| Rs1 | |1.I| BRR

|1.1.1.1| Rd | |0.S| | SLS

|1.1.1.1| Rd | |1.0| | SLI

|1.1.1.1| Rd | Rs1 |1.1.0.Y.S.E.P.Q| | SPLS

The bits denoted by `-' are reserved for future extensions and should be

set to 0.

Register Immediate (RI)

Encoding:

 |0.A.A.A| | |F.H| |

 opcode Rd Rs1 constant (16)

Action:

 Rd <- Rs1 op constant

 Except for shift instructions, `H' determines whether the constant

is in the high (1) or low (0) word. The other halfword is 0x0000,

except for the `AND' instruction (`AAA' = 100), for which the other

halfword is 0xFFFF, and shifts (`AAA' = 111), for which the constant is

sign extended.

 `F' determines whether the instruction modifies (1) or does not

modify (0) the program flags.

 `AAA' specifies the operation: `add' (000), `addc' (001), `sub'

(010), `subb' (011), `and' (100), `or' (101), `xor' (110), or `shift'

(111). For the shift, `H' specifies a logical (0) or arithmetic (1)

shift. The amount and direction of the shift are determined by the

sign extended constant interpreted as a two's complement number. The

shift operation is defined only for the range of:

 31 ... 0 -1 ... -31

 \ / \ /

 left right

 shift shift

 If and only if the `F' bit is 1, RI instructions modify the

condition bits, `Z' (Zero), `N' (Negative), `V' (oVerflow), and `C'

(Carry), according to the result. If the flags are updated, they are

updated as follows:

`Z'

 is set if the result is zero and cleared otherwise. As a special

case, the ‘subb’ instruction will keep ‘Z’ cleared if it was cleared

before instruction execution, and will compute it as usual if it was

previously set (used to facilitate 64bit comparisons).

`N'

 is set to the most significant bit of the result.

`V'

 For arithmetic instructions (`add', `addc', `sub', `subb') `V' is

 set if the sign (most significant) bits of the input operands are

 the same but different from the sign bit of the result and cleared

 otherwise. For other RI instructions, `V' is cleared.

`C'

 For arithmetic instructions, `C' is set/cleared if there is/is_not

 a carry generated out of the most significant when performing the

 twos-complement addition (`sub(a,b) == a + ~b + 1', `subb(a,b) ==

 a + ~b + `C''). For left shifts, `C' is set to the least

 significant bit discarded by the shift operation. For all other

 operations, `C' is cleared.

 A Jump is accomplished by `Rd' being `pc', and it has one delay slot.

 The all-0s word is the instruction `R0 <- R0 + 0', which is a no-op.

Register Register (RR)

Encoding:

 |1.1.0.0| | |F.I| |B.B.B|J.J.J.J.J|D.D.D|

 opcode Rd Rs1 Rs2 \ operation /

Action:

 `Rd <- Rs1 op Rs2' iff condition DDDI is true (for op!=SELECT)

 `Rd <- (condition DDDI is true) ? Rs1 : Rs2 (for op==SELECT)

 `DDDI’ is as described for the BR instruction.

 `F' determines whether the instruction modifies (1) or does not

modify (0) the program flags.

5/12/25, 12:59 AM [PUBLIC] Lanai Instruction Set

https://docs.google.com/document/d/1jwAc-Rbw1Mn7Dbn2oEB3-0FQNOwqNPslZa-NDy8wGRo/pub 2/10

 `BBB' determines the operation: `add' (000), `addc' (001), `sub'

(010), `subb' (011), `and' (100), `or' (101), `xor' (110), or "special"

(111). The `JJJJJ' field is irrelevant except for special.

 `JJJJJ' determines which special operation is performed:

 `10---' is a logical shift

 `11---' is an arithmetic shift

 ‘00000` is the SELECT operation

* The amount and direction of the shift are determined by the contents of

`Rs2' interpreted as a two's complement number. Specifically, bits 31

and 4..0 of Rs2 are concatenated to form a 6-bit signed integer, which is

interpreted as in the RI instruction.)

* For the SELECT operation, Rd gets Rs1 if condition DDDI is true,

Rs2 otherwise.

* All other `JJJJJ' combinations are reserved for instructions that may be

defined in the future.

 If the `F' bit is 1, RR instructions modify the condition bits, `Z'

(Zero), `N' (Negative), `V' (oVerflow), and `C' (Carry), according to

the result. All RR instructions modify the `Z', `N', and `V' flags.

Except for arithmetic instructions (`add', `addc', `sub', `subb'), `V'

is cleared. Only arithmetic instructions and shifts modify `C'. Right

shifts clear C.

 Note that if the F bit is set, the condition bits are modified even

if the (conditional) Rd assignment is not executed.

 A Jump is accomplished by `Rd' being `pc', and it has one delay slot.

 Conditional Jump support is LIMITED to the following cases:

 - (op != SELECT) && (DDDI == 0000) - jump to (Rs1 op Rs2)

 - (op == SELECT) - jump to either Rs1 or Rs2

 If (op != SELECT) && (DDDI != 0000), the behavior is undefined.

Register Memory (RM)

Encoding:

 |1.0.0.S| | |P.Q| |

 opcode Rd Rs1 constant (16)

Action:

 Rd <- Memory(ea) (Load) see below for the

 Memory(ea) <- Rd (Store) definition of ea.

 `S' determines whether the instruction is a Load (0) or a Store (1).

 If Rd of a Load instruction is used as a source register by any of the

3 immediately following instructions, pipeline will be stalled until Rd

has been loaded. Sequential semantics are maintained.

 PQ operation

 -- --

 00 ea = Rs1

 01 ea = Rs1, Rs1 <- Rs1 + constant

 10 ea = Rs1 + constant

 11 ea = Rs1 + constant, Rs1 <- Rs1 + constant

 The constant is sign-extended for this instruction.

 A Jump is accomplished by `Rd' being `pc', and it has *two* delay slots.

Register Register Memory (RRM)

Encoding:

 |1.0.1.S| | |P.Q| |B.B.B|J.J.J.J.J|Y.L.E|

 opcode Rd Rs1 Rs2 \ operation /

Action:

 Rd <- Memory(ea) (Load) see below for the

 Memory(ea) <- Rd (Store) definition of ea.

 The RRM instruction is identical to the RM instruction except that:

 1. `Rs1 + constant' is replaced with `Rs1 op Rs2', where `op' is

 determined in the same way as in the RR instruction

 (except that the SELECT operation is NOT supported), and

 2. part-word memory accesses are allowed as specified below.

 If `BBB' != 111 (i.e.: For all but shift operations):

 If `YLE' = 01- => fuLl-word memory access

 If `YLE' = 00- => half-word memory access

 If `YLE' = 10- => bYte memory access

 If `YLE' = --1 => loads are zEro extended

 If `YLE' = --0 => loads are sign extended

 If `BBB' = 111 (For shift operations):

 fullword memory access are performed.

 All part-word loads write the least significant part of the

destination register with the higher-order bits zero- or sign-extended.

All part-word stores store the least significant part-word of the

source register in the destination memory location.

5/12/25, 12:59 AM [PUBLIC] Lanai Instruction Set

https://docs.google.com/document/d/1jwAc-Rbw1Mn7Dbn2oEB3-0FQNOwqNPslZa-NDy8wGRo/pub 3/10

Conditional Branch (BR)

Encoding:

 |1.1.1.0|D.D.D| . |0.I|

 opcode condition constant (23)

Action:

 if (condition) { `pc' <- 4*(zero-extended constant) }

The BR instruction is an absolute branch.

The constant is scaled as shown by its position in the instruction word such

that it specifies word-aligned addresses in the range [0,2^25-4].

The `DDDI' field selects the condition that causes the branch to be taken

(the `I' (Invert sense) bit inverts the sense of the condition):

 DDDI logical function [code, used for...]

 ---- -------------------------------------- ------------------------

 0000 1 [T, true]

 0001 0 [F, false]

 0010 C AND Z' [HI, high]

 0011 C' OR Z [LS, low or same]

 0100 C' [CC, carry cleared]

 0101 C [CS, carry set]

 0110 Z' [NE, not equal]

 0111 Z [EQ, equal]

 1000 V' [VC, oVerflow cleared]

 1001 V [VS, oVerflow set]

 1010 N' [PL, plus]

 1011 N [MI, minus]

 1100 (N AND V) OR (N' AND V') [GE, greater than or equal]

 1101 (N AND V') OR (N' AND V) [LT, less than]

 1110 (N AND V AND Z') OR (N' AND V' AND Z') [GT, greater than]

 1111 (Z) OR (N AND V') OR (N' AND V) [LE, less than or equal]

The instruction after the branch instruction is executed regardless of whether

the branch is taken or not, i.e. branch has one delay slot. Be very careful

if you find yourself wanting to put a branch in a branch delay slot!

Conditional Branch Relative (BRR)

Encoding:

 |1.1.1.0|D.D.D|1|-| Rs1 | |1.I|

 opcode condition constant (16)

Action:

if (condition) { ‘pc’ <- Rs1 + 4*sign-extended constant) }

BRR behaves like BR, except the branch target address is a 18-bit Rs1-relative

offset.

Conditional Set (SCC)

Encoding:

 |1.1.1.0|D.D.D|0.-| dst_reg |-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-|1.I|

 opcode condition

Action:

 dst_reg <- logical function result

SCC sets dst_reg to the boolean result (0 or 1) of computing the logical

function specified by DDDI, as described in the table for the BR instruction.

Special Load/Store (SLS)

Encoding:

 |1.1.1.1| | |0.S| |

 opcode Rd addr 5msb's address 16 lsb's

Action:

 If S = 0 (LOAD): Rd <- Memory(address);

 If S = 1 (STORE): Memory(address) <- Rd

 The instruction pipeline behavior is the same as for RM and

RRM instructions.

The two low-order bits of the 21-bit address are ignored. The address is zero

extended. Fullword memory accesses are performed.

Special Load Immediate (SLI)

Encoding:

 |1.1.1.1| | |1.0| |

 opcode Rd const 5msb's constant 16 lsb's

Action:

 Rd <- constant

5/12/25, 12:59 AM [PUBLIC] Lanai Instruction Set

https://docs.google.com/document/d/1jwAc-Rbw1Mn7Dbn2oEB3-0FQNOwqNPslZa-NDy8wGRo/pub 4/10

 The 21-bit constant is zero-extended.

Special Part-Word Load/Store (SPLS)

Encoding:

 |1.1.1.1| | |1.1.0.Y.S.E.P.Q| |

 opcode Rd Rs1 constant

Action:

 If `YS' = 11 (bYte Store):

 Memory(ea) <- (least significant byte of Rr)

 If `YS' = 01 (halfword Store):

 Memory(ea) <- (least significant half-word of Rr)

 If `YS' = 10 (bYte load): Rr <- Memory(ea)

 If `YS' = 00 (halfword load): Rr <- Memory(ea)

 [Note: here ea is determined as in the the RM instruction.]

 If `SE' = 01 then the value is zEro extended

 before being loaded into Rd.

 If `SE' = 00 then the value is sign extended

 before being loaded into Rd.

 `P' and `Q' are used to determine `ea' as in the RM instruction. The

constant is sign extended. The instruction pipeline behavior is the same

as for RM and RRM instructions.

 All part-word loads write the part-word into the least significant

part of the destination register, with the higher-order bits zero- or

sign-extended. All part-word stores store the least significant

part-word of the source register into the destination memory location.

Count Trailing Zeros (TRAILZ)

Encoding:

 |1.1.0.1| Rd | Rs1 |F.-|-.-.-.-.-.-.-.-.-.-.-.-.-.-|1.1|

Action:

 Rd <- Number of Trailing Zeroes in Rs1

Count Leading Zeros (LEADZ)

Encoding:

 |1.1.0.1| Rd | Rs1 |F.-|-.-.-.-.-.-.-.-.-.-.-.-.-.-|1.0|

Action:

 Rd <- Number of Leading Zeroes in Rs1

Population Count (POPC)

Encoding:

 |1.1.0.1| Rd | Rs1 |F.-|-.-.-.-.-.-.-.-.-.-.-.-.-.-|0.1|

Action:

 Rd <- Number of bits set in Rs1

Instruction Interpretation

The Lanai is a pipelined processor, so some instructions have delayed effects.

From the programmer’s perspective, the Lanai generally appears to execute all

operations in program order, except where the Program Counter is concerned.

● Branch instructions have one delay slot. (BR, BRR)

● Any move->’pc’ has one delay slot. (RI, RR, POPC, LEADZ, TRAILZ,

SCC, SLI)

● Any load->’pc’ has two delay slots. (RM, RRM, SLS)

● For instructions that are neither in a delay-slot, nor a memory

store,

the PC register points at the current instruction. Other cases of

using

%pc are undefined by the lanai ISA.

This simple model is enough to understand most, if not all, compiler-generated

assembly.

Writing the Program Counter

5/12/25, 12:59 AM [PUBLIC] Lanai Instruction Set

https://docs.google.com/document/d/1jwAc-Rbw1Mn7Dbn2oEB3-0FQNOwqNPslZa-NDy8wGRo/pub 5/10

A write into PC (just like BR and BRR) has one delay slot, and a load into PC

has two.

Consider the function return instruction sequence:

 ld -4[%fp],%pc ; Load return address from stack (two delay slots)

 add %fp,0x0,%sp ; Restore stack pointer

 ld -8[%fp],%fp ; Restore frame pointer

Two instructions are executed after the load-into-pc.

The Lanai Assembler

General Assembler Info

 Registers 0 to 31 are referred to, respectively, as `%r0' to `%r31'.

Other recognized names are `%sp' (`%r4'), `%fp' (`%r5'), `%rv' (`%r8'), `%rca'

(`%r15'). They stand for, respectively:

 "`s'tack `p'ointer,"

 "`f'rame `p'ointer,"

 "`r'return `v'alue,"

 "`r'egister for `c'onstant `a'ddresses."

 Instructions modify the flags (Z, N, V, C) only when requested by

the .f instruction option.

Operand Types

The following operand types may appear in assembly instructions:

BRABS

 An unsigned, 23-bit, immediate absolute branch address or a

 register. Note that the 2 lsb's must be 0.

BROFF

 A signed, 16-bit, immediate relative branch offset.

 Note that the 2 lsb's must be 0.

AND_CONST

 A 32-bit unsigned constant with either the high or low halfword == 0xffff

CONST

 A 32-bit unsigned constant with either the high or low halfword == 0

LCONST

 A 21-bit unsigned constant

SIGNED_CONST_10

 A 10 bit signed constant

SIGNED_CONST

 A 16-bit signed constant

SHIFT_CONST

 A 6-bit signed constant in the range [-31,31]

OP1

 One of "`add', `addc', `sub', `subc', `and', `or', `xor', `sha'"

OP2

 One of "`add', `addc', `sub', `subc', `and', `or', `xor', `sh',

 `sha'"

RDEST

 A register

SRC1

 A register

SRC2

 A register

SRC3

 A register

 Negative constants may be written with a `-' sign or as a 32-bit

constant, which will be truncated appropriately. For example, `-4' and

`0xFFFFFFFC' are valid SHIFT_CONSTs.

Instruction Formats

In this section:

 * Braces (`<>') indicate optional text. E.g.: "c<onc>at" matches

 "cat" or "concat" only.

 * A vertical bar ("|") indicates a list of alternative matches.

 E.g.: "walk<s|ing|ed>" matches "walk", "walks", "walking", or

 "walked"<.

 * Braces (`{}') indicate mandatory text. E.g.: "walk{s|ing|ed}"

 matches "walks", "walking", or "walked" only.

 * For all instructions, unless otherwise specified, `pc' <- `pc' + 4 .

 Instruction Machine Instruction

 add<.f> SRC1, CONST, RDEST RI

 RDEST <- SRC1 + CONST

 NOTES: (1),(4)

 add<.f> SRC1, SRC2, RDEST RR

 RDEST <- SRC1 + SRC2

 NOTES: (1),(4)

5/12/25, 12:59 AM [PUBLIC] Lanai Instruction Set

https://docs.google.com/document/d/1jwAc-Rbw1Mn7Dbn2oEB3-0FQNOwqNPslZa-NDy8wGRo/pub 6/10

 addc<.f> SRC1, SRC2, RDEST RI

 RDEST <- SRC1 + SRC2 + C

 NOTES: (1),(4) C is the carry flag from %ps

 addc<.f> SRC1, CONST, RDEST RR

 RDEST <- SRC1 + CONST + C

 NOTES: (1),(4) C is the carry flag from %ps

 and<.f> SRC1, AND_CONST, RDEST RI

 RDEST <- SRC1 & AND_CONST

 NOTES: (1),(4)

 and<.f> SRC1, SRC2, RDEST RR

 RDEST <- SRC1 & SRC2

 NOTES: (1),(4)

 b?? BRABS BR

 if (?? condition is true)

 then %pc <- BRABS

 NOTES: (6)

 b??.r BROFF BRR

 if (?? condition is true)

 then %pc <- SRC1 + BROFF

 NOTES: (5), (6)

In the ``b??'' instructions above, ``b??'' must be replaced with one

of the branch mnemonics in the table below. Each of these branch

mnemonics specifies the conditions under which the branch is taken (see BR).

 inst. branch condition branches if true

 ----- ---------------- ----------------

 bt true 1

 bf false 0

 bhi|bugt high C AND Z'

 bls|bule low or same C' OR Z

 bcc|bult carry clear C'

 bcs|buge carry set C

 bne not equal Z'

 beq equal Z

 bvc overflow cleared V'

 bvs overflow set V

 bpl plus N'

 bmi minus N

 bge greater than or equal (N AND V) OR (N' AND V')

 blt less than (N AND V') OR (N' AND V)

 bgt greater than (N AND V AND Z') OR (N' AND V' AND Z')

 Instruction Machine Instruction

 <u>ld SIGNED_CONST[SRC1], RDEST RM

 RDEST <- mem(SRC1+SIGNED_CONST)

 NOTES: (2), (3)

 <u>ld SRC2[SRC1], RDEST RRM

 RDEST <- mem(SRC1+SRC2)

 NOTES: (2),(3)

 <u>ld{.h|.b} SIGNED_CONST_10[SRC1], RDEST SPLS

 RDEST <- mem(SRC1+SIGNED_CONST_10)

 NOTES: (2),(3)

 <u>ld SIGNED_CONST[*SRC1], RDEST RM

 RDEST <- mem(SRC1+SIGNED_CONST)

 SRC1 <- SRC1+SIGNED_CONST

 NOTES: (2),(3)

 ld [{--|++}SRC1], RDEST RM

 RDEST <- mem(SRC1 {-|+} 4)

 SRC1 <- SRC1 {-|+} 4

 NOTES: (2),(3)

 <u>ld.h [{--|++}SRC1], RDEST SPLS

 RDEST <- mem(SRC1 {-|+} 2)

 SRC1 <- SRC1 {-|+} 2

 NOTES: (2),(3)

 <u>ld.b [{--|++}SRC1], RDEST SPLS

 RDEST <- mem(SRC1 {-|+} 1)

 SRC1 <- SRC1 {-|+} 1

 NOTES: (2),(3)

 <u>ld SRC2[*SRC1], RDEST RRM

 RDEST <- mem(SRC1+SRC2)

 SRC1 <- SRC1+SRC2

 NOTES: (2),(3)

 <u>ld{.h|.b} SIGNED_CONST_10[*SRC1], RDEST SPLS

 RDEST <- mem(SRC1+SIGNED_CONST_10)

 SRC1 <- SRC1+SIGNED_CONST_10

 NOTES: (2),(3)

 <u>ld SIGNED_CONST[SRC1*], RDEST RM

 RDEST <- mem(SRC1)

 SRC1 <- SRC1+SIGNED_CONST

 NOTES: (2),(3)

 ld [SRC1{--|++}], RDEST RM

 RDEST <- mem(SRC1)

 SRC1 <- SRC1 {-|+} 4

 NOTES: (2),(3)

 <u>ld.h [SRC1{--|++}], RDEST SPLS

 RDEST <- mem(SRC1)

 SRC1 <- SRC1 {-|+} 2

 NOTES: (2),(3)

 <u>ld.b [SRC1{--|++}], RDEST SPLS

 RDEST <- mem(SRC1)

 SRC1 <- SRC1 {-|+} 1

 NOTES: (2),(3)

 <u>ld SRC2[SRC1*], RDEST RRM

 RDEST <- mem(SRC1)

 SRC1 <- SRC1+SRC2

 NOTES: (2),(3)

 <u>ld{.h|.b} SIGNED_CONST_10[SRC1*], RDEST SPLS

 RDEST <- mem(SRC1)

 SRC1 <- SRC1+SIGNED_CONST_10

 NOTES: (2),(3)

 ld [SRC1 OP2 SRC2], RDEST RRM

 RDEST <- mem(SRC1 OP2 SRC2)

 NOTES: (2),(3)

 ld [*SRC1 OP2 SRC2], RDEST RRM

5/12/25, 12:59 AM [PUBLIC] Lanai Instruction Set

https://docs.google.com/document/d/1jwAc-Rbw1Mn7Dbn2oEB3-0FQNOwqNPslZa-NDy8wGRo/pub 7/10

 RDEST <- mem(SRC1 OP2 SRC2)

 SRC1 <- SRC1 OP2 SRC2

 NOTES: (2),(3)

 ld [SRC1* OP2 SRC2], RDEST RRM

 RDEST <- mem(SRC1)

 SRC1 <- SRC1 OP2 SRC2

 NOTES: (2),(3)

 ld [LCONST], RDEST SLS

 RDEST <- mem(LCONST)

 NOTES: (2),(3)

 popc SRC1, RDEST POPC

 RDEST <- Number of bits set in SRC1

 leadz SRC1, RDEST LEADZ

 RDEST <- Number of Leading Zeroes in SRC1

 trailz SRC1, RDEST TRAILZ

 RDEST <- Number of Trailing Zeroes in SRC1

 Instruction Machine Instruction

 OP.CC[.f] SRC1, SRC2, RDEST RR

 if (condition(CC) == true)

 RDEST <- src1 op src2

 if (.f is specified)

 update flags.

 where OP is one of {add,addc,sub,subb,and,or,xor,sha,shl}

 and CC is one of {t,f,hi,ugt,ls,ule,cs,uge,ne,eq,vc,vs,pl,mi,ge,lt,gt}.

 RDEST must not be equal to PC unless CC is “t” (unconditional jump).

 SEL.CC[.f] SRC1, SRC2, RDEST RR

 if (condition(CC) == true)

 RDEST <- src1

 else

 RDEST <- src2

 if (.f is specified)

 update flags.

 with CC one of {t,f,hi,ugt,ls,ule,cs,uge,ne,eq,vc,vs,pl,mi,ge,lt,gt}

 RDEST may be equal to PC.

 mov CONST,SRC1 RI

 SRC1 <- CONST

 NOTES: (1)

 mov SRC2,SRC1 RR

 SRC1 <- SRC2

 NOTES: (1)

 mov LCONST,SRC1 SLI

 SRC1 <- LCONST

 NOTES: (1)

 mov AND_CONST,SRC1 RI

 SRC1 <- AND_CONST

 NOTES: (1)

 nop RI

 (does nothing)

 or<.f> SRC1, CONST, RDEST RI

 RDEST <- SRC1 | SRC2

 NOTES: (1),(4)

 or<.f> SRC1, SRC2, RDEST RR

 RDEST <- SRC1 | SRC2

 NOTES: (1),(4)

 popc SRC1, RDEST POPC

 RDEST <= Number of bits set in SRC1

 s?? RDEST SCC

 RDEST <- condition

 The condition is specified as for b??

 sh<.f> SRC1, SHIFT_CONST, RDEST RI

 RDEST <- SRC1 << SHIFT_CONST

 NOTES: (1),(4), (7) logical shift performed

 sh<.f> SRC1, SRC2, RDEST RR

 IF(31>=SRC2>=0)THEN

 RDEST <- SRC1 << SHIFT_CONST

 ELSE IF(0>SRC2>=-31)

 RDEST <- SRC1 >> -SHIFT_CONST

 ELSE

 result undefined

 NOTES: (1),(4), logical shift performed

 Instruction Machine Instruction

 sha<.f> SRC1, SHIFT_CONST, RDEST RI

 RDEST <- SRC1 << SHIFT_CONST

 NOTES: (1),(4), (7) arithmetic shift performed

 sha<.f> SRC1, SRC2, RDEST RR

 IF(31>=SRC2>=0)THEN

 RDEST <- SRC1 << SHIFT_CONST

 ELSE IF(0>SRC2>=-31)

 RDEST <- SRC1 >> -SHIFT_CONST

 ELSE

 result is undefined

 NOTES: (1),(4)

 st SRC1, SIGNED_CONST[SRC3] RM

 mem(SRC3+SIGNED_CONST) <- SRC1

 NOTES: (3)

 st{.h|.b} SRC1, SIGNED_CONST_10[SRC3] SPLS

 mem(SRC3+SIGNED_CONST_10) <- SRC1

 NOTES: (3)

 st<.h|.b> SRC1, SRC2[SRC3] RRM

 mem(SRC3+SRC2) <- SRC1

 NOTES: (3)

 st SRC1, SIGNED_CONST[*SRC3] RM

 mem(SRC3+SIGNED_CONST) <- SRC1

 SRC3 <- SRC3+SIGNED_CONST

 NOTES: (3)

5/12/25, 12:59 AM [PUBLIC] Lanai Instruction Set

https://docs.google.com/document/d/1jwAc-Rbw1Mn7Dbn2oEB3-0FQNOwqNPslZa-NDy8wGRo/pub 8/10

 st{.h|.b} SRC1, SIGNED_CONST_10[*SRC3] SPLS

 mem(SRC3+SIGNED_CONST_10) <- SRC1

 SRC3 <- SRC3+SIGNED_CONST_10

 NOTES: (3)

 st SRC1, [{--|++}SRC3] RM

 mem(SRC3 {-|+} 4) <- SRC1

 SRC3 <- SRC3 {-|+} 4

 NOTES: (3)

 st.h SRC1, [{--|++}SRC3] SPLS

 mem(SRC3 {-|+} 2) <- SRC1

 SRC3 <- SRC3 {-|+} 2

 NOTES: (3)

 st.b SRC1, [{--|++}SRC3] SPLS

 mem(SRC3 {-|+} 1) <- SRC1

 SRC3 <- SRC3 {-|+} 1

 NOTES: (3)

 st<.h|.b> SRC1, SRC2[*SRC3] RRM

 mem(SRC3+SRC2) <- SRC1

 SRC3 <- SRC3+SRC2

 NOTES: (3)

 Instruction Machine Instruction

 st SRC1, SIGNED_CONST[SRC3*] RM

 mem(SRC3) <- SRC1

 SRC3 <- SRC3+SIGNED_CONST

 NOTES: (3)

 st{.h|.b} SRC1, SIGNED_CONST[SRC3*] SPLS

 mem(SRC3) <- SRC1

 SRC3 <- SRC3+SIGNED_CONST

 NOTES: (3)

 st SRC1, [SRC3{--|++}] RM

 mem(SRC3) <- SRC1

 SRC3 <- SRC3 {-|+} 4

 NOTES: (3)

 st.h SRC1, [SRC3{--|++}] SPLS

 mem(SRC3) <- SRC1

 SRC3 <- SRC3 {-|+} 2

 NOTES: (3)

 st.b SRC1, [SRC3{--|++}] SPLS

 mem(SRC3) <- SRC1

 SRC3 <- SRC3 {-|+} 1

 NOTES: (3)

 st<.h|.b> SRC1, SRC2[SRC3*] RRM

 mem(SRC3) <- SRC1

 SRC3 <- SRC3+SRC2

 NOTES: (3)

 st<.h|.b> RDEST, [SRC1 OP2 SRC2] RRM

 mem(SRC1 OP2 SRC2) <- RDEST

 st<.h|.b> RDEST, [*SRC1 OP1 SRC2] RRM

 mem(SRC1 OP1 SRC2) <- RDEST

 src1 <- src1 op2 src2

 st<.h|.b> RDEST, [SRC1* OP2 SRC2] RRM

 mem(SRC1) <- RDEST

 src1 <- src1 op2 src2

 st RDEST, [LCONST] SLS

 mem(LCONST) <- RDEST

 Instruction Machine Instruction

 sub<.f> SRC1, CONST, RDEST RI

 RDEST <- SRC1 - CONST

 NOTES: (1),(4)

 sub<.f> SRC1, SRC2, RDEST RR

 RDEST <- SRC1 - SRC2

 NOTES: (1),(4)

 subb<.f> SRC1, CONST, RDEST RI

 RDEST <- SRC1 - CONST + C

 NOTES: (1),(4) C is the carry bit

 subb<.f> SRC1, SRC2, RDEST RR

 RDEST <- SRC1 - SRC2 + C

 NOTES: (1),(4) C is the carry bit

 xor<.f> SRC1, CONST, RDEST RI

 RDEST <- SRC1 XOR CONST

 NOTES: (1),(4)

 xor<.f> SRC1, SRC2, RDEST RR

 RDEST <- SRC1 XOR SRC2

 NOTES: (1),(4)

Notes

 1. If the destination register is `pc', one more instruction will be

 executed before execution continues at the location specified by

 the address stored to `pc' by this instruction.

 2. a. Memory loads into `pc' have *two* delay slots. That is, two

 more instructions will be executed after the instruction

 performing the load before execution resumes at the location

 specified by the value loaded into `pc'.

 b. The byte loaded by a `ld.b' or the halfword loaded by a `ld.h'

 instruction is sign-extended to 32 bits before being saved in

 RDEST. The byte loaded by a `uld.b' or the halfword loaded

5/12/25, 12:59 AM [PUBLIC] Lanai Instruction Set

https://docs.google.com/document/d/1jwAc-Rbw1Mn7Dbn2oEB3-0FQNOwqNPslZa-NDy8wGRo/pub 9/10

 by a `uld.h' instruction is zero-extended to 32 bits before

 being saved in RDEST.

 c. RDEST in a `ld' instruction is not changed until after the

 following instruction. For further information, see RM.

 3. `.h' => halfword memory access

 `.b' => byte memory access

 4. `.f' => modify the flags

 5. Relative branches branch relative to the current `pc'. The current `pc'

 generally contains the address of the current instruction being executed.

 6. Branches have a delay slot. See PC.

 7. Here, a right shift is performed if SHIFT_CONST is negative.

5/12/25, 12:59 AM [PUBLIC] Lanai Instruction Set

https://docs.google.com/document/d/1jwAc-Rbw1Mn7Dbn2oEB3-0FQNOwqNPslZa-NDy8wGRo/pub 10/10

