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Chapter 1. Introduction
The LoongArch architecture (LoongArch) is an Instruction Set Architecture (ISA) that has Reduced
Instruction Set Computer (RISC) style. The LoongArch Reference Manual is used to explain the LoongArch
specification. This is the first of three volumes, which describes the basic part of LoongArch.

1.1. Overview of LoongArch ISA

LoongArch has the typical characteristics of RISC. LoongArch instructions are of fixed size and have
regular instruction formats. Most of the instructions have two source operands and one destination
operand. LoongArch is a load-store architecture; this means only the load/store instructions can access
memory the operands of the other instructions are within the processor core or the immediate number in
the instruction opcode.

LoongArch is divided into two versions, the 32-bit version (LA32) and the 64-bit version (LA64). LA64
applications are “application-level backward binary compatibility” with LA32 applications. That means LA32
applications can run directly on the machine compatible with LA64, but the behavior of system softwares
(such as the kernel) on the machine compatible with LA32 is not guaranteed to be the same as on the
machine compatible with LA64.

LoongArch is composed of a basic part (Loongson Base) and an expanded part, as shown in the figure. The
expansion part includes Loongson Binary Translation (LBT), Loongson VirtualiZation (LVZ), Loongson
SIMD EXtension (LSX), and Loongson Advanced SIMD EXtension(LASX).

Figure 1. LoongArch components

The basic part of LoongArch includes an non-privileged instruction set and a privileged instruction set. The
non-privileged instruction set defines commonly used integer and floating-point instructions, which can
adequately support the current mainstream compiler to generate efficient target codes.

The virtualization extension part of LoongArch is used for operating system virtualization to provide
hardware acceleration to improve performance. This part involves basically all privileged resources,
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including some privileged instructions and control and status registers, functions added in exceptions and
interrupts, memory management, and so on.

The binary translation extension part of LoongArch is used to improve the execution efficiency of the cross-
instruction system binary translation on the LoongArch platform. It expands on the basic part and also
includes two parts, the non-privileged instruction set and the privileged instruction set.

LoongArch vector instruction extension and advanced vector instruction extension both use SIMD
instructions to accelerate CPU-bound applications. They are basically the same in terms of instruction
functions. The difference is that the vector length of the vector instruction extension operation is 128 bits
and the vector length of the advanced vector instruction extension operation is 256 bits.

For the architecture compatible with LoongArch, the basic part of the LoongArch must be implemented,
and the extended part can be implemented optionally. Each extension part can be selected flexibly, but
when choosing to implement LASX, LSX must be implemented. Some optional subsets of functions are
included in the basic part and each extension part. The software can detect whether these optional

functions are implemented via the CPUCFG instruction.

The follow-up evolution of the LoongArch adopts a “fine-grained incremental evolution” method. The so-
called “fine-grained” means that each functional subset in the basic part or the extended part can evolve
independently. The so-called “incremental” means that for any part that can be evolved independently, the
higher version is always forward binary compatible[1] with the lower version.

Starting from Chapter 2 of this manual, the specification of the LoongArch will be described in detail. The
contents of Chapter 2 and 3 involve the non-privileged instruction set part of the architecture, including the
function definitions of basic integer instructions and basic floating-point instructions and their application-
level programming models. Chapters 4 to 7 are used to describe the privileged resources in the
architecture, mainly including the introduction of privileged instructions, control and status registers,
function specifications in operating modes, exceptions and interrupts, memory management, and etc. The
pseudo-code descriptions designed to describe the function definitions of instructions are concentrated in
Appendix A. The specific coding definitions of the instructions involved are listed in Appendix B.

1.2. Instruction formats

All LoongArch instructions are fixed 32 bits and required to be aligned on 4-byte boundaries. If the address
of an instruction is not aligned, address error exception will be triggered.

The style of instruction encoding is that all register operand fields are placed in order from low to high
starting from the 0th bit, while the opcode field is placed in order from the 31st bit from high to low. The
immediate field, which has different lengths according to different instruction types, is located between the
register field and the opcode field if the instruction contains an immediate operand. Specifically, it contains
9 typical instruction formats, including 3 formats without immediate data (2R, 3R, and 4R), and 6 formats
with immediate data (2RI8, 2RI12, 2RI14, 2RI16, 1RI21, and I26). The table below lists the specific
definitions of these 9 typical formats. There are a few instructions whose encoding style is not completely
equivalent to these 9 typical instruction formats. However, the number of such instructions is small and the
instructions change little, which will not be inconvenient for compiler developers.

Table 1. Typical Instruction Formats in LoongArch
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2RI14-type opcode I14 rj rd

2RI16-type opcode I16 rj rd

1RI21-type opcode I21[15:0] rj I21[20:16]

I26-type opcode I26[15:0] I26[25:16]

1.3. Assembly Instruction Mnemonic Formats

The assembly instruction mnemonic mainly includes the instruction name and the operand. LoongArch
considers the prefix and suffix of instruction names and operands to make it easier for assembly
programmers and compiler developers to use.

First, non-vector instructions and vector instructions, as well as integer and floating-point instructions, can
be distinguished by the prefix of instruction name. The instruction name of a 128-bit vector instruction

begins with the letter V; the instruction name of a 256-bit vector instruction begins with the letter XV. The

instruction name of a non-vector floating-point instruction begins with the letter F; the instruction name of a

128-bit vector floating-point instruction begins with VF; the instruction name of a 256-bit vector floating-

point instruction begins with XVF.

Secondly, most instructions use a suffix in the form of .XX in the instruction name to indicate the operand
type of the instruction. This form of suffix is only used to characterize the type of the instruction operand. If

the operand is an integer, the suffixes of the instruction name include .B (signed byte), .H (signed half

word), .W (signed word), .D (signed double word), .BU (unsigned byte), .HU (unsigned half word), .WU
(unsigned word), and .DU (unsigned double word). An exception is that if whether the operand is signed or

unsigned does not affect the result of the operation, the suffix of the instruction name will not carry U. In
this case, the suffix does not limit the operand to the signed number. If operand is a floating-point number,

the suffixes of the instruction name are .H (half precision), .S (single-precision), .D (double-precision), .W
(signed word), .L (signed double word), .WU (unsigned word), .LU (unsigned double word). In addition, for

instructions involving vector operations, the suffix .V of the instruction name indicates that the entire
vector data is operated as a whole. An exception is that if the length of the operand of an instruction is

determined by whether the processor is 32-bit or 64-bit, the instruction name has no suffix, such as SLT
instruction and SLTU instruction. Privileged instructions for operating CSRs, TLB, and Cache, and
instructions for moving data between different register files have no suffix.

If the length and sign of the source operand and the destination operand are the same, the instruction
name will have only one suffix. If the length and sign of all source operands are the same, but not the same
as the destination operand, the instruction name will have two suffixes. From left to right, the first suffix
decorates the destination operand, and the second suffix decorates the source operand. If the source
operation and destination operand are more complicated, the instruction name will list the destination
operand and each source operand in order from left to right. The order is consistent with the order of the

subsequent operands in the instruction mnemonic. For example, in the instruction MULW.D.WU rd, rj,
rk, .D decorates the destination operand rd, and .WU decorates the source operands rj and rk; this
means that the multiplication is to multiply two unsigned words to obtain a double word result which will be

written into rd. For another example, in the instruction CRC.WBW rd, rj, rk, the first .W decorates rd,

.B decorates rj, and the second .W decorates rk; this means that the CRC check operation is to use the

byte message in rj and the 32-bit original check value in rk to generate a new 32-bit check value which

will be written into rd.

Register operands distinguish register files by the first letter. rN refers to general registers; fN refers to

floating-point registers; vN refers to 128-bit vector registers; xN refers to 256-bit vector registers. Among
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them, N is a number that represents the Nth register.

1.4. Conventions Used in this Manual

1.4.1. Instruction Abbreviation

There are many instructions defined by LoongArch that appear frequently and have similar behaviors.
Generally, they only have some differences in operands. For the convenience of readers, such instructions
are often introduced together. For the sake of brevity, this manual uses abbreviation rules for the

instruction name. {A/B/C} means to use A, B, and C to combine the instruction name. A[B] means to use

A and AB to combine the instruction name. For example, ADD.{W/D} represents two instruction names

ADD.W and ADD.D, while BLT[U] represents two instruction names BLT and BLTU. A more complicated

example is ADD[I].{W/D}, which represents four instruction names ADD.W, ADD.D, ADDI.W and ADDI.D.
Even though instruction names can be abbreviated, it does not mean that their opcode fields have similar
contents.

1.4.2. References to Control and Status Registers

LoongArch defines a series of Control and Status Registers (CSRs), which are used to control the execution

behavior of instructions. Each CSR usually contains several fields. This manual use CSR.%%%%.#### to

refer to the #### field of the control and status register whose name is abbreviated as %%%%. For example,

CSR.CRMD.PLV represents the PLV field in the CRMD register. When the virtualization extension is
implemented, there are two sets of CSRs in the processor, one belongs to the Host and the other belongs to

the Guest. If the two sets of CSRs cannot be distinguished by the context, CSR.XXXX is used to represent

the CSRs of the Host and GCSR.XXXX is used to represent the CSRs of the Guest.

1.5. Version Evolution

The initial version of LoongArch is V1, denoted as LoongArch V1. The content of the standard is not
specified in the LoongArch Reference Manual and belongs to LoongArch V1 by default. Since LoongArch
V1, the subsequent evolution of LoongArch adopts the method of fine-grained incremental evolution. By
"fine-grained" evolution, I mean that each subset of functionality in the base or extensions can evolve
independently; By "incremental" I mean that a higher version is always compatible with the previous binary
for any part that can be evolved independently. In order to more concisely reflect the stages of the above
architecture evolution process, a number of new feature subset extensions added in a certain stage are
collectively referred to as a new version extension. For example, the new hardware page table traversal
support, byte/half-word atomic memory access instructions, and other additions to LoongArch V1 are
collectively referred to as LoongArch V1.1. It should be pointed out that the subset of features added in
each new version has its own identifier in the CPUCFG instruction return value. It is recommended that the
software use this information rather than the version number of the Godson architecture to determine the
supported features of the running processor. Architecture specifications do not require processor hardware
to implement functions that directly reflect the supported architecture version number.

1.5.1. New In LoongArch V1.1

LoongArch V1.1 adds the following:

1. New instructions for approximately solving floating-point root and inverse floating-point root, including
FRECIPE.S, FRECIPE.D, FRSQRTE.S, FRSQRTE.D for scalar operations. VFRECIPE.S, VFRECIPE.D,
VFRSQRTE.S, VFRSQRTE.D commands for 128-bit SIMD operations and XVFRECIPE.S, XVFRECIPE.D,
XVFRSQRTE.S, XVFRSQRTE.D commands for 256-bit SIMD operations instructions.

2. Add SC.Q instruction.

3. Add LLACQ.W, SCREL.W, LLACQ.D, SCREL instructions.

4. Add AMCAS.B, AMCAS.H, AMCAS.W, AMCAS.D, AMCAS_DB.B, AMCAS_DB.H, AMCAS_DB.W,
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AMCAS_DB.D, AMSWAP.B, AMSWAP.H instructions.

5. Add AMADD.B, AMADD.H, AMSWAP_DB.B, AMSWAP_DB.H, AMADD_DB.B, AMADD_DB.H instructions.

6. Add the function definition of non-zero hint value in the dbar instruction part.

7. A new method for determining whether 32-bit integer division instructions on 64-bit machines are
affected by the higher 32-bit value of the source operand register.

8. Standardize the way to determine the sequential execution behavior of load memory access operations
at the same address.

9. Add the definition of a message interrupt.

10. Hardware page table traversals are allowed.

1. Translator’s note: Forward compatibility here may be ambiguous.
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Chapter 2. Basic Integer Instructions
According to the context of the software runtime, the non-privileged instruction set of the basic part of
LoongArch includes basic integer instructions and basic floating-point instructions. This chapter will
describe the integer instruction part. The basic integer instruction part is the most basic part of the non-
privileged instruction subset.

2.1. Programming Model of Basic Integer Instruction

The basic integer instruction programming model described in this section only involves the operating
environment of the application software, which is always related to some privileged resources. Therefore,
the concept of privileged resources will be introduced where necessary to ensure the completeness of the
description. Although the content of privileged resources is covered here, it will not be expanded in detail.
Readers who need a comprehensive and in-depth understanding can refer to the relevant chapters in the
manual according to the prompts in the text.

2.1.1. Data Types

There are 5 data types operated by basic integer instructions, namely: bit (b), Byte (B, length 8b), Halfword
(H, length 16b), Word (W, length 32b), Doubleword (D, length 64b). In LA32, there are no integer instructions
for operating doubleword. Byte, half-word, word and double-word data types all use two’s complement
encoding.

2.1.2. Registers

The registers involved in basic integer instructions include General Registers (GR) and Program Counters
(PC), as shown in the figure.

Figure 2. GR and PC

2.1.2.1. General-purpose Registers

There are 32 General purpose Registers (GR), denoted as r0-r31, and the value of register r0 is always 0.
The length of GR is recorded as GRLEN. The length of GR in LA32 is 32 bits, and the length of GR in LA64 is
64 bits. There is an orthogonal relationship between basic integer instructions and general registers. That
is, from an architectural point of view, any register operand in this instruction can use any of the 32 GRs.

The only exception is that the destination register implicit in the BL instruction must be r1. In the standard

LoongArch Application Binary Interface (ABI), r1 is as storing the return address of a function call.
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2.1.2.2. PC

There is only one PC, which records the address of the current instruction. The PC register cannot be
modified directly by instructions, it can only be modified indirectly by branch instructions, exception trap

and exception return instructions. However, the PC register can be directly read as the source operand of

some non-branch instructions. The length of PC is always the same as the length of GR.

2.1.3. Running Privilege Levels

LoongArch defines 4 running Privilege LeVels (PLV), namely PLV0-PLV3. The specific privilege level of the
application is determined by the system software at runtime, and the application cannot accurately aware
this. In LoongArch, the application usually runs on PLV3. For more information about privilege levels, see
Privilege Levels.

2.1.3.1. Privileged Resources Accessible by Applications

Generally speaking, privileged resources cannot be directly accessed by application running at a non-

privileged level, but when RPCNTL1/RPCNTL2/RPCNTL3 in CSR.MISC is set, the CSRRD instruction can be
executed at the privilege level of PLV1/PLV2/PLV3 to read performance monitor counters. For more
information about performance monitor counters, see Control and Status Registers Related to Performance
Monitoring.

2.1.3.2. Disabling of Some Non-privileged Functions

Some non-privileged functions that are enabled by default after power-on reset can be disabled by the

system software during execution. By setting the DRDTL1/DRDTL2/DRDTL3 bits in CSR.MISC to 1, the

execution of RDTIME instructions at the PLV1/PLV2/PLV3 level can be prohibited, or will trigger the
Instruction Privilege error Exception (IPE).

2.1.4. Exceptions and interrupts

Exceptions and interrupts will interrupt the currently executing program and switch the control flow to the
entry of the exception/interrupt handler to start execution. Exceptions are caused by abnormal conditions
that occur during the execution of the instruction, and interrupts are caused by external events (such as
interrupt signal input). In the manual, it will strictly distinguish the two concepts of “generating an
exception/interrupt” and “triggering an exception/interrupt”. The difference between the two is that the
former does not necessarily cause a change in the control flow, while the latter must change the current
control flow to an entry point of the exception/interrupt handler.

The handling specifications for exceptions and interrupts belong to the privileged resource handling part of
the architecture. Here is a brief introduction to the exceptions that the application can perceive.

• SYStem call exception (SYS): the execution of the SYSCALL instruction will trigger the system call
exception immediately.

• BrEaKpoint exception (BEK): executing the BREAK instruction will trigger a breakpoint exception
immediately.

• Instruction Non-defined Exception (INE): if the executed instruction code is not defined in the
architecture, or the architecture specification defines the instruction as not existing in the current
context, then the instruction non-defined exception will be triggered immediately.

• Instruction Privilege error Exception (IPE): in addition to the special circumstances listed in Running
Privilege Levels, executing a privileged instruction in the application software will definitely trigger the
instruction privilege level error exception immediately.

• ADdress error Exception (ADE): when the program has a functional error that causes the address of the
instruction fetch or memory access instruction to appear illegal (such as the instruction fetch address
is not aligned on 4-byte boundaries, and the privileged address space is accessed), ADdress error
Exception for Fetching instructions (ADEF) or ADdress error Exception for Memory access instructions
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(ADEM) will be triggered.

• Floating-Point error Exception (FPE): when the floating-point number instruction is executed, special
processing is required for data exceptions, which can generate or trigger the basic floating-point error
exception. See Floating-Point Move Instructions for more information.

2.1.5. Memory Address Space

Only the virtual address space visible to the application is involved here. The translation of virtual memory
addresses to physical memory addresses is determined by the runtime environment. These contents relate
to the relevant specifications of privileged resources in the architecture and will be introduced in the
second half of this manual. The memory address space on LoongArch is a continuous linear address
space, which is addressed in bytes.

In LA32, the specification of the memory address space that application can access is: 0-231-1.

In LA64, the range of memory address space accessible by application is: 0-2VALEN-1-1. Generally VALEN is

in the range of [40,48]. Application can determine the specific value of VALEN by executing the CPUCFG
instruction to read the VALEN field of the 0x1 configuration word.

When the virtual address of the instruction fetch or memory access instruction in the application exceeds
the above range, ADEF or ADEM will be triggered.

2.1.6. Endian

LoongArch bit designations are always little-endian.

2.1.7. Memory Access Types

LoongArch supports three types of memory access: Coherent Cached (CC), Strongly-ordered UnCached
(SUC) and Weakly-ordered UnCached (WUC). The memory access type used for a location is associated
with the virtual address, which is determined by the Memory Access Type field. The relationship of the

memory access type and MAT field is: 0 - SUC, 1 - CC, 2 - WUC, and 3 - reserved. The memory access type
setting process is transparent to the application.

When using consistent cacheable access type, the accessed object can be either the final memory object
or the caches. This type of access is usually used to access faster.

When using SUC or WUC access, the final memory object can only be directly accessed. The difference
between the two is: SUC access meets sequential consistency, that is, all accesses are executed in strict
accordance with the order in the program and the next memory access operation cannot be started before
the current memory access operation is completely completed. While the WUC read access allows
speculative execution, and WUC written data can be merged inside the processor core to a larger scale
(such as a Cache line) and then written out in a burst mode. Subsequent writes in the merge process can
overwrite the data written earlier.

In LoongArch, only SUC memory access instructions must not have side effects, that is, such instructions
cannot be predictive executed. Software can use this feature to access I/O devices in the system through
SUC type memory access instructions. However, LoongArch allows SUC fetch instruction operations to
have side effects. This means that the access type is a SUC type of fetch instruction operation, even if it
originates from the result of branch prediction, it is allowed to be executed. In order to prevent the out-of-
core memory access operations generated by such speculative execution from erroneously entering the
illegal physical address space, it is necessary to filter out the risky accesses, This will be done on the chip.

The WUC type of access is usually used to accelerate the access to UC memory data, such as video
memory data.
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2.1.7.1. Cache Coherency Maintenance of Instruction Cache

The Cache coherency between the instruction Cache of a certain processor core and the Cache in other
processor cores or Cache Coherenr I/O Master must be maintained by hardware.

The Cache coherency maintenance between the instruction Cache and the data Cache within the processor
core can be implemented as hardware maintenance. This means that for the self-modifying code, the

software does not need to use the CACOP instruction to maintain the Cache coherency between the
instruction Cache and the data Cache within the same core. However, due to the pipeline structure and

speculative instruction fetching behavior, the software still needs to use the IBAR instruction to ensure that
the instruction fetching must be able to see the execution effect of the store instruction.

2.1.8. Unaligned Memory Access

The fetch addresses of all instruction fetches must be aligned on 4-byte boundaries, otherwise the ADEF
will be triggered.

Except for atomic memory access instructions, integer bound check memory access instructions and
floating-point bound check memory access instructions, other load/store memory access instructions can
be implemented to allow memory access addresses to be unaligned. However, in an implementation that

allows memory access address misalignment, the system mode software can configure the ALCL0-ALCL3
control bits in CSR.MISC to address these load/store memory access instructions at the privilege levels of
PLV0-PLV3. Alignment check is needed, too. For memory accessed instructions that require address
alignment checks, if the address accessed is not naturally aligned, an Address aLignment fault Exception
(ALE) will be triggered.

2.1.9. Overview of Memory Consistency

The memory consistency model of the LoongArch uses the Weak Consistency (WC) model. This section
only gives a brief description of the weak consistency model adopted by the architecture.

In the weak consistency model, synchronization operations need to be distinguished from ordinary memory
accesses. The programmer must use the synchronization operations defined by the architecture to protect
the access to the write shared unit to ensure that multiple processor cores have access to the write shared
unit mutually exclusive. The following restrictions are imposed on the sequence of memory access events:

• The execution of the synchronization operation satisfies the sequence consistency condition. That is,
synchronization operations are executed in all processor cores strictly in the order in which they appear
in the program, and the next synchronization operation cannot be started until the current
synchronization operation is completely completed.

• Before any ordinary memory access operation is allowed to be executed, all synchronization operations
prior to this memory access operation in the same processor core have been completed.

• Before any synchronization operation is allowed to be executed, all ordinary memory access operations
that precede this synchronization operation in the same processor have been completed.

The instructions that can generate synchronous operations in LoongArch include DBAR, IBAR, AM atomic

memory access instructions with DBAR function, and LL-SC instruction pairs.

2.2. Overview of Basic Integer Instructions

This section will describe the functions of application-level basic integer instructions in LA64. For LA32, it
only needs to implement a subset of them. The instruction list contained in this subset is shown in the
table. Because the length of GR in LA32 is only 32 bits, the sign extension operation in “sign extend the 32-

bit result into the general register rd” in the subsequent instruction description is not required.

Table 2. Application-level basic integer instructions in LA32
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Arithmetic
operation
instructions

ADD.W, SUB.W, ADDIW, ALSL.W, LU12L.W, SLT, SLTU, SLTI, SLTUI,

PCADDI, PCADDU12I, PCALAU12I,

AND, OR, NOR, XOR, ANDN, ORN, ANDI, ORI, XORI,

MUL.W, MULH.W, MULH.WU, DIV.W, MOD.W, DIV.WU, MOD.WU

Bit-shift
instructions

SLL.W, SRL.W, SRA.W, ROTR.W, SLLI.W, SRLI.W, SRAI.W, ROTRI.W

Bit-manipulation
instructions

EXT.W.B, EXT.W.H, CLO.W, CLZ.W, CTO.W, CTZ.W, BYTEPICK.W,

REVB.2H, BITREV.4B, BITREV.W, BSTRINS.W, BSTRPICK.W, MASKEQZ,
MASKNEZ

Branch instructions BEQ, BNE, BLT, BGE, BLTU, BGEU, BEQZ, BNEZ, B, BL, JIRL

Memory access
instructions

LD.B, LD.H, LD.W, LD.BU, LD.HU, ST.B, ST.H, STW, PRELD

Atomic memory
access instructions

LL.W, SC.W

Barrier instructions DBAR, IBAR

Other instructions SYSCALL, BREAK, RDTIMEL.W, RDTIMEH.W, CPUCFG

In addition, for those instructions whose data length of the operation object is GR length, the operation
length is 32 bits in LA32 and 64 bits in LA64. Unless there are special circumstances, no special
instructions will be given in the instruction function description.

2.2.1. Arithmetic Operation Instructions

2.2.1.1. ADD.{W/D}, SUB.{W/D}

Instruction formats:

add.w   rd, rj, rk
add.d   rd, rj, rk
sub.w   rd, rj, rk
sub.d   rd, rj, rk

The ADD.W instruction performs the operation that the [31:0] bit data in the general register rj plus the

[31:0] bit data in the general register rk; the resultant [31:0] bit is sign extension, then written into the

general register rd.

ADD.W:
    tmp = GR[rj][31:0] + GR[rk][31:0]
    GR[rd] = SignExtend(tmp[31:0],GRLEN)

The SUB.W instruction performs the operation that the [31:0] bit data in the general register rk minus the

[31:0] bit data in the general register rj; the resultant [31:0] bit is sign extension, then written into the
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general register rd.

SUB.W:
    tmp = GR[rj][31:0] - GR[rk][31:0]
    GR[rd] = SignExtend(tmp[31:0], GRLEN)

The ADD.D instruction performs the operation that the [63:0] bit data in the general register rj plus the

[63:0] bit data in the general register rk; the result is written into the general register rd.

ADD.D:
    tmp = GR[rj][63:0] + GR[rk][63:0]
    GR[rd] = tmp[63:0]

The SUB.D instruction performs the operation that the [63:0] bit data in the general register rj minus the

[63:0] bit data in the general register rk; writes the result into the general register rd.

SUB.D:
    tmp = GR[rj][63:0] - GR[rk][63:0]
    GR[rd] = tmp[63:0]

When the above instructions are executed, no special handling will be done on overflow.

2.2.1.2. ADDI.{W/D}, ADDU16I.D

Instruction formats:

addi.w      rd, rj, si12
addi.d      rd, rj, si12
addu16i.d   rd, rj, si16

The ADDI.W instruction performs the operation that the [31:0] bit data in the general register rj plus the

12-bit immediate si12 sign extension 32-bit data; the resultant [31:0] bit is sign extension, then written

into the general register rd.

ADDI.W:
    tmp = GR[rj][31:0] + SignExtend(si12, 32)
    GR[rd] = SignExtend(tmp[31:0], GRLEN)

The ADDI.D instruction performs the operation that the [63:0] bit data in the general register plus to the

64-bit data after 12-bit immediate si12 sign-extension; the result is written into the general register rd.

ADDI.D:
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    tmp = GR[rj][63:0] + SignExtend(si12, 64)
    GR[rd] = tmp[63:0]

ADDU16I.D shifts the 16-bit immediate sil6 logic to the left by 16 bits and then sign extensions the

resultant data, the result plus [63:0] bit data in the general register rj, and the result of the addition is

written into the general register rd. The ADDU16I.D instruction is used in conjunction with the LDPTR.W/D
and STPTR.W/D instructions to accelerate GOT table-based access in position-independent codes.

ADDU16I.D:
    tmp = GR[rj][63:0] + SignExtend({si16, 16'b0}, 64)
    GR[rd] = tmp[63:0]

When the above instructions are executed, no special handling will be done on overflow.

2.2.1.3. ALSL.{W[U]/D}

Instruction formats:

alsl.w  rd, rj, rk, sa2
alsl.d  rd, rj, rk, sa2
alsl.wu rd, rj, rk, sa2

The ALSL.W instruction performs the operation that logical shift the [31:0] bit data in the general register

rj to the left (sa2 + 1) and it plus the [31:0] bit data in the general register rk; then write the result

into the general register rd after the sign extension.

ALSL.W:
    tmp = (GR[rj][31:0] << (sa2+1)) + GR[rk][31:0]
    GR[rd] = SignExtend(tmp[31:0], GRLEN)

ALSL.WU logical shift the [31:0] bit data in the general register rj to the left (sa2 + 1) bit and it plus

the [31:0] bit data in the general register rk; then the result is [31:0] bit zero after expansion, write to

general register rd.

ALSL.WU:
    tmp = (GR[rj][31:0] << (sa2+1)) + GR[rk][31:0]
    GR[rd] = ZeroExtend(tmp[31:0], GRLEN)

The ALSL.D instruction performs the operation that logical shift the [63:0] bit data in the general register

rj (sa2 + 1) to the left and it plus the [63:0] bit data in the general register rk; then the result is

written into the general register rd.

ALSL.D:
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    tmp = (GR[rj][63:0] << (sa2+1)) + GR[rk][63:0]
    GR[rd] = tmp[63:0]

When the above instructions are executed, no special handling will be done on overflow.

TIP
When writing assembly, you need to fill in the immediate field with the real shift value, i.e.

(sa2+1), not the value in the immediate field of the instruction code.

2.2.1.4. LU12I.W, LU32I.D, LU52I.D

Instruction formats:

lu12i.w     rd, si20
lu32i.d     rd, si20
lu52i.d     rd, rj, si12

The LU12I.W instruction performs the operation that splice the 12-bit 0 behind the lowest bit of the 20-bit
immediate si20, then writes it into the general register rd after sign extension.

LU12I.W:
    GR[rd] = SignExtend({si20, 12'b0}, GRLEN)

The LU32I.D instruction performs the operation that splice the bit data [31:0] in the general register rd
behind the lowest bit of the 20-bit immediate si20 sign extension data; then the result is written into the

general register rd.

LU32I.D:
    GR[rd] = {SignExtend(si20, 32), GR[rd][31:0]}

The LU52I.D instruction performs the operation that splice the [51:0] bit data in the general register rj
behind the lowest bit of the 12-bit immediate sil2 sign extension data; then the result is written into the

general register rd.

LU52I.D:
    GR[rd] = {si12, GR[rj][51:0]}

When the above instructions are executed, no special handling will be done on overflow.

2.2.1.5. SLT[U]

Instruction formats:

    slt     rd, rj, rk
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    sltu    rd, rj, rk

The SLT instruction performs the operation that compares the data in the general register rj with the data

in the general register rk as signed integers. If the former is smaller than the latter, the value of the general

register rd is set to 1, otherwise it is set to 0.

SLT:
    GR[rd] = (signed(GR[rj]) < signed(GR[rk])) ? 1 : 0

The SLTU instruction performs the operation that compares the data in the general register rj with the

data in the general register rk as unsigned integers. If the former is less than the latter, the value of the

general register rd is set to 1, otherwise it is set to 0.

SLTU:
    GR[rd] = (unsigned(GR[rj]) < unsigned(GR[rk])) ? 1 : 0

The data length compared by SLT and SLTU is consistent with the length of the general register of the
executing machine.

2.2.1.6. SLT[U]I

Instruction formats:

slti    rd, rj, si12
sltui   rd, rj, si12

The SLTI instruction performs the operation that compares the data in the general register rj and the 12-

bit immediate sil2 sign extension data as a signed integer for size comparison. If the former is smaller

than the latter, the value of the general register rd is set to 1, otherwise it is set to 0.

SLTI:
    tmp = SignExtend(si12, GRLEN)
    GR[rd] = (signed(GR[rj]) < signed(tmp)) ? 1 : 0

The SLTUI instruction performs the operation that compares the data in the general register rj and the 12-

bit immediate sil2 sign extension data as an unsigned integer for size comparison. If the former is

smaller than the latter, the value of the general register rd is set to 1, otherwise it is set to 0.

SLTUI:
    tmp = SignExtend(si12, GRLEN)
    GR[rd] = (unsigned(GR[rj]) < unsigned(tmp)) ? 1 : 0
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The data length compared by SLTI and SLTUI is consistent with the length of the general register of the

executing machine. Note that for SLTUI instructions, immediate data is still sign extended.

2.2.1.7. PCADDI, PCADDU121, PCADDU18l, PCALAU12I

Instruction formats:

pcaddi      rd, si20
pcaddu12i   rd, si20
pcaddu18i   rd, si20
pcalau12i   rd, si20

The PCADDI instruction performs the operation that splice the 2 bit 0 behind the lowest bit of the 20-bit

immediate data si20 and sign extension, the resultant data plus the PC of the instruction; then the result of

the addition is written into the general register rd.

PCADDI:
    GR[rd]= PC + SignExtend({si20, 2'b0}, GRLEN)

The PCADDU12I instruction performs the operation that splice the 12-bit 0 behind the lowest bit of the 20-

bit immediate data si20 and signs extension, the resultant data plus the PC of the instruction; then the

result of the addition is written into the general register rd.

PCADDU12I:
    GR[rd] = PC + SignExtend({si20, 12'b0}, GRLEN)

The PCADDU18I instruction performs the operation that splice the 18-bit 0 behind the lowest bit of the 20-

bit immediate si20 and signs extension, the resultant data plus the PC of the instruction; then the result of

the addition is written into the general register rd.

PCADDU18I:
    GR[rd] = PC + SignExtend({si20, 18'b0}, GRLEN)

The PCALAU12I instruction performs the operation that splice the 12-bit 0 behind the lowest bit of the 20-

bit immediate data si20 and sign extension; the resultant data plus the PC of the instruction; then the

lowest 12 bits of the addition result are erased and written into the general register rd.

PCALAU12I:
    tmp = PC + SignExtend({si20, 12'b0}, GRLEN)
    GR[rd] = {tmp[GRLEN-1:12], 12'b0}

The data length of the above instruction operation is consistent with the length of the general register of
the executed machine.
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2.2.1.8. AND, OR, NOR, XOR, ANDN, ORN

Instruction formats:

and     rd, rj, rk
or      rd, rj, rk
nor     rd, rj, rk
xor     rd, rj, rk
andn    rd, rj, rk
orn     rd, rj, rk

The AND instruction performs the bitwise AND operation between the data in the general register rj and

the data in the general register rk; then the result is written into the general register rd.

AND:
    GR[rd] = GR[rj] & GR[rk]

The OR instruction performs the bitwise OR operation between the data in the general register rj and the

data in the general register rk; then the result is written into the general register rd.

OR:
    GR[rd] = GR[rj] | GR[rk]

The NOR instruction performs the bitwise OR operation between the data in the general register rj and the

data in the general register rk; then the result is written into the general register rd.

NOR:
    GR[rd] = ~(GR[rj] | GR[rk])

The XOR instruction performs the bitwise XOR operation between the data in the general register rj and the

data in the general register rk; then the result is written into the general register rd.

XOR:
    GR[rd] = GR[rj] ^ GR[rk]

The ANDN instruction performs the operation that reverses the data in the general register rk bit by bit, then

performs the bitwise AND operation with the data in the general register rk and the data in the general

register rj; then the result is written into the general register rd.

ANDN:
    GR[rd] = GR[rj] & (~GR[rk])
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The ORN instruction performs the operation that reverses the data in the general register rk bit by bit, then

performs a bitwise OR operation with the data in the general register rk and the data in the general register

rj, and the result is written into the general register rd.

ORN:
    GR[rd] = GR[rj] | (~GR[rk])

The data length of the above instruction operation is consistent with the length of the general register of
the executed machine.

2.2.1.9. ANDI, ORI, XORI

Instruction formats:

andi    rd, rj, ui12
ori     rd, rj, ui12
xori    rd, rj, ui12

The ANDI instruction performs the bitwise AND operation between the data in the general register rj and

the 12-bit immediate zero extension data; then the result is written into the general register rd.

ANDI:
    GR[rd] = GR[rj] & ZeroExtend(ui12, GRLEN)

The ORI instruction performs the bitwise OR operation between the data in the general register rj and the

12-bit immediate zero extension data; then the result is written into the general register rd.

ORI:
    GR[rd] = GR[rj] | ZeroExtend(ui12, GRLEN)

The XORI instruction performs the bitwise XOR operation between the data in the general register rj and

the 12-bit immediate zero extension data; then the result is written into the general register rd.

XORI:
    GR[rd] = GR[rj] ^ ZeroExtend(ui12, GRLEN)

The data length of the above instruction operation is consistent with the length of the general register of
the executed machine.

2.2.1.10. NOP

The NOP instruction is an alias for the instruction andi r0, r0, 0. Its function is only to occupy the 4-

byte instruction code position and increase the PC by 4, except that it will not change any other software-
visible processor state.
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2.2.1.11. MUL.{W/D}, MULH, {W[U]/D[U]}

Instruction formats:

mul.w       rd, rj, rk
mulh.w      rd, rj, rk
mulh.wu     rd, rj, rk
mul.d       rd, rj, rk
mulh.d      rd, rj, rk
mulh.du     rd, rj, rk

The MUL.W instruction performs the operation that multiplies the [31:0] bit data in the general register rj
with the [31:0] bit data in the general register rk, the result of the multiplication [31:0] bit data is

signed and written into the general register rd.

MUL.W:
    product = signed(GR[rj][31:0]) * signed(GR[rk][31:0])
    GR[rd] = SignExtend(product[31:0], GRLEN)

The MULH.W instruction performs the operation that multiplies the [31:0] bit data in the general register

rj with the [31:0] bit data in the general register rk as a signed number, the result of the multiplication

[63:32] bit data is sign extension and written into the general register rd.

MULH.W:
    product = signed(GR[rj][31:0]) * signed(GR[rk][31:0])
    GR[rd] = SignExtend(product[63:32], GRLEN)

The MULH.WU instruction performs the operation that multiplies the [31:0] bit data in the general register

rj with the [31:0] bit data in the general register rk as unsigned numbers, the result of the multiplication

[63:32] bit data is sign extension and written into the general register rd.

MULH.WU:
    product = unsigned(GR[rj][31:0]) * unsigned(GR[rk][31:0])
    GR[rd] = SignExtend(product[63:32], GRLEN)

The MUL.D instruction performs the operation that multiplies the [63:0] bit data in the general register rj
with the [63:0] bit data in the general register rk, the result of the multiplication [63:0] bit data and

written into the general register rd.

MUL.D:
    product = signed(GR[rj][63:0]) * signed(GR[rk][63:0])
    GR[rd] = product[63:0]
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The MULH.D instruction performs the operation that multiplies the [63:0] bit data in the general register

rj with the [63:0] bit data in the general register rk as a signed number, the result of the multiplication

[127:64] bit data and written into the general register rd.

MULH.D:
    product = signed(GR[rj][63:0]) * signed(GR[rk][63:0])
    GR[rd] = product[127:64]

The MULH.DU instruction performs the operation that multiplies the [63:0] bit data in the general register

rj and the [63:0] bit data in the general register rk as unsigned numbers, the result of the multiplication

[127:64] bit data and written into the general register rd.

MULH.DU:
    product = unsigned(GR[rj][63:0]) * unsigned(GR[rk][63:0])
    GR[rd] = product[127:64]

2.2.1.12. MULW.D.W[U]

Instruction formats:

    mulw.d.w    rd, rj, rk
    mulw.d.wu   rd, rj, rk

The MULW.D.W instruction performs the operation that multiplies the [31:0] bit data in the general

register rj with the [31:0] bit data in the general register rk as a signed number, and the 64-bit product

result is written into the general register rd.

MULW.D.W:
    product = signed(GR[rj][31:0]) * signed(GR[rk][31:0])
    GR[rd] = product[63:0]

The MULW.D.WU instruction performs the operation that multiplies the [31:0] bit data in the general

register rj with the [31:0] bit data in the general register rk as unsigned numbers, and writes the 64-bit

product result into the general register rd.

MULW.D.WU:
    product = unsigned(GR[rj][31:0]) * unsigned(GR[rk][31:0])
    GR[rd] = product[63:0]

2.2.1.13. DIV.{W[U]/D[U]}, MOD.{W[U]/D[U]}

Instruction formats:
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div.w       rd, rj, rk
mod.w       rd, rj, rk
div.wu      rd, rj, rk
mod.wu      rd, rj, rk
div.d       rd, rj, rk
mod.d       rd, rj, rk
div.du      rd, rj, rk
mod.du      rd, rj, rk

The DIV.W and DIV.WU instruction performs the operation that divide the [31:0] bit data in the general

register rj by the [31:0] bit data in the general register rk, and the resulting quotient is sign extension

and written into the general register rd.

DIV.W:
    quotient = signed(GR[rj][31:0]) / signed(GR[rk][31:0])
    GR[rd] = SignExtend(quotient[31:0], GRLEN)

DIV.WU:
    quotient = unsigned(GR[rj][31:0]) / unsigned(GR[rk][31:0])
    GR[rd] = SignExtend(quotient[31:0], GRLEN)

The MOD.W and MOD.WU instruction performs the operation that divide the [31:0] bit data in the general

register rj by the [31:0] bit data in the general register rk, and the resulting remainder is sign extension

and written into the general register rd.

MOD.W:
    remainder = signed(GR[rj][31:0]) % signed(GR[rk][31:0])
    GR[rd] = SignExtend(remainder[31:0], GRLEN)

MOD.WU:
    remainder = unsigned(GR[rj][31:0]) % unsigned(GR[rk][31:0])
    GR[rd] = SignExtend(remainder[31:0], GRLEN)

The DIV.D and DIV.DU instruction performs the operation that divide the [63:0] bit data in the general

register rj by the [63:0] bit data in the general register rk, and the resulting quotient sign extension and

written into the general register rd.

DIV.D:
    GR[rd] = signed(GR[rj][63:0]) / signed(GR[rk][63:0])

DIV.DU:
    GR[rd] = unsigned(GR[rj][63:0]) / unsigned(GR[rk][63:0])
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The MOD.D and MOD.DU instruction performs the operation that divide the [63:0] bit data in the general

register rj by the [63:0] bit data in the general register rk, and the resulting remainder is sign extension

and written into the general register rd.

MOD.D:
    GR[rd] = signed(GR[rj][63:0]) % signed(GR[rk][63:0])

MOD.DU:
    GR[rd] = unsigned(GR[rj][63:0]) % unsigned(GR[rk][63:0])

When DIV.W, MOD.W, DIV.D and MOD.D perform division operations, the operands are all regarded as

signed numbers. When DIV.WU, M0D.WU, DIV.DU and MOD.DU perform division operations, the source
operands are all regarded as unsigned numbers.

Each pair of instructions for finding the quotient/remainder satisfies the result of DIV.W/MOD.W, DIV.WU
/MOD.WU, DIV.D/MOD.D, DIV.DU/MOD.DU, the remainder and the dividend The sign is consistent and the
absolute value of the remainder is less than the absolute value of the divisor.

When the divisor is 0, the result can be any value, but no exception will be triggered.

2.2.2. Bit-shift Instructions

2.2.2.1. SLL.W, SRL.W, SRA.W, ROTR.W

Instruction formats:

sll.w       rd, rj, rk
srl.w       rd, rj, rk
sra.w       rd, rj, rk
rotr.w      rd, ri, rk

The SLL.W instruction performs the operation that logical left shifts the bit data of [31:0] in the general

register rj, and writes the sign extension of the shift result into the general register rd.

SLL.W:
    tmp = SLL(GR[rj][31:0], GR[rk][4:0])
    GR[rd] = SignExtend(tmp[31:0], GRLEN)

The SRL.W instruction performs the operation that logical right shifts the bit data of [31:0] in the general

register rj, and writes the sign extension of the shift result into the general register rd.

SRL.W:
    tmp = SRL(GR[rj][31:0], GR[rk][4:0])
    GR[rd] = SignExtend(tmp[31:0], GRLEN)
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The SRA.W instruction performs the operation that arithmetical right shifts [31:0] bit data in the general

register rj, and writes the sign extension of the shift result into the general register rd.

SRA.W:
    tmp = SRA(GR[rj][31:0], GR[rk][4:0])
    GR[rd] = SignExtend(tmp[31:0], GRLEN)

The ROTR.W instruction performs the operation that cyclical right shifts the [31:0] bit data in the general

register rj, and writes the sign extension of the shift result into the general register rd.

ROTR.W:
    tmp = ROTR(GR[rj][31:0], GR[rk][4:0])
    GR[rd] = SignExtend(tmp[31:0], GRLEN)

The shift amount of the above-mentioned shift instruction is all [4:0] bit data in the general register rk,
and is regarded as an unsigned number.

2.2.2.2. SLLI.W, SRLI.W, SRAI.W, ROTRI.W

Instruction formats:

sliw        rd, rj, ui5
srli.w      rd, rj, ui5
srai.w      rd, rj, ui5
rotri.w     rd, rj, ui5

The SLLI.W instruction performs the operation that logical left shifts the [31:0] bit data in the general

register rj, and writes the sign extension of the shift result into the general register rd.

SLLI.W:
    tmp = SLL(GR[rj][31:0], ui5)
    GR[rd] = SignExtend(tmp[31:0], GRLEN)

The SRLI.W instruction performs the operation that logical right shifts the [31:0] bit data in the general

register rj to the right, and writes the sign extension of the shift result into the general register rd.

SRLI.W:
    tmp = SRL(GR[rj][31:0], ui5)
    GR[rd] = SignExtend(tmp[31:0], GRLEN)

The SRAI.W instruction performs the operation that arithmetical right shifts the bit data of [31:0] in the

general register rj, and writes the sign extension of the shift result into the general register rd.
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SRAI.W:
    tmp = SRA(GR[rj][31:0], ui5)
    GR[rd] = SignExtend(tmp[31:0], GRLEN)

The ROTRI.W instruction performs the operation that cyclical right shifts the [31:0] bit data in the general

register rj, and the sign extension of the shift result is written into the general register rd.

ROTRI.W:
    tmp = ROTR(GR[rj][31:0], ui5)
    GR[rd] = SignExtend(tmp[31:0], GRLEN)

The shift amounts of the above shift instructions are all 5-bit unsigned immediate ui5 in the instruction
code.

2.2.2.3. SLL.D, SRL.D, SRA.D, ROTR.D

Instruction formats:

sl.d        rd, rj, rk
srl.d       rd, rj, rk
sra.d       rd, rj, rk
rotr.d      rd, rj, rk

The SLL.D instruction performs the operation that logical left shifts the bit data of [63:0] in the general

register rj, and writes the sign extension of the shift result into the general register rd.

SLL.D:
    GR[rd] = SLL(GR[rj][63:0], GR[rk][5:0])

The SRL.D instruction performs the operation that logical right shifts the bit data of [63:0] in the general

register rj, and writes the sign extension of the shift result into the general register rd.

SRL.D:
    GR[rd] = SRL(GR[rj][63:0], GR[rk][5:0])

The SRA.D instruction performs the operation that arithmetic right shifts the bit data of [63:0] in the

general register rj, and writes the sign extension of the shift result into the general register rd.

SRA.D:
    GR[rd] = SRA(GR[rj][63:0], GR[rk][5:0])
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The ROTR.D instruction performs the operation that cyclical right shifts the bit data of [63:0] in the

general register rj, and writes the sign extension of the shift result into the general register rd.

ROTR.D:
    GR[rd] = ROTR(GR[rj][63:0], GR[rk][5:0])

The shift amount of the above-mentioned shift instruction is all [5:0] bit data in the general register rk,
and is regarded as an unsigned number.

2.2.2.4. SLLI.D, SRLI.D, SRAI.D, ROTRI.D

Instruction formats:

slli.d      rd, rj, ui6
srli.d      rd, rj, ui6
srai.d      rd, rj, ui6
rotri.d     rd, rj, ui6

The SLII.D instruction performs the operation that logicalleft shifts the bit data of [63:0] in the general

register rj, and the sign extension of the shift result is written into the general register rd.

SLLI.D:
    GR[rd] = SLL(GR[rj][63:0], ui6)

The SRLI.D instruction performs the operation that logical right shifts the bit data of [63:0] in the

general register rj, and writes the sign extension of the shift result into the general register rd.

SRLI.D:
    GR[rd] = SRL(GR[rj][63:0], ui6)

The SRAI.D instruction performs the operation that arithmetically right shifts the bit data of [63:0] in the

general register rj, and writes the sign extension of the shift result into the general register rd.

SRAI.D:
    GR[rd] = SRA(GR[rj][63:0], ui6)

The ROTRI.D instruction performs the operation that cyclical right shifts the [63:0] bit data in the general

register rj, and the sign extension of the shift result is written into the general register rd.

ROTRI.D:
    GR[rd] = ROTR(GR[rj][63:0], ui6)
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The shift amount of the above-mentioned shift instruction is the 6-bit unsigned immediate ui6 in the
instruction code.

2.2.3. Bit-manipulation Instructions

2.2.3.1. EXT.W{B/H}

Instruction formats:

ext.w.b     rd, rj
ext.w.h     rd, rj

The EXT.W.B instruction performs the operation that will sign extension the bit data of [7:0] in the

general register rj and write it into the general register rd.

EXT.W.B:
    GR[rd] = SignExtend(GR[rj][7:0], GRLEN)

The EXT.W.H instruction performs the operation that will sign extension the bit data of [15:0] in the

general register rj and write it into the general register rd.

EXT.W.H:
    GR[rd] = SignExtend(GR[rj][15:0], GRLEN)

2.2.3.2. CL{O/Z}.{W/D}, CT{O/Z}.{W/D}

Instruction formats:

clo.w       rd, rj
clo.d       rd, rj
clz.w       rd, rj
clz.d       rd, rj
cto.w       rd, rj
cto.d       rd, rj
ctz.w       rd, rj
ctz.d       rd, rj

The CLO.W instruction performs the operation that for the data of bit [31:0] in the general register rj, the

number of continuous bits 1 is measured from bit 31 to bit 0, and the result is written into the universal

register rd.

CLO.W:
    GR[rd] = CLO(GR[rj][31:0])
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The CLZ.W instruction performs the operation that for the data of bit [31:0] in the general register rj, the

number of continuous bits 0 is measured from bit 31 to bit 0, and the result is written into the universal

register rd.

CLZ.W:
    GR[rd] = CLZ(GR[rj][31:0])

The CTO.W instruction performs the operation that for the data of bit [31:0] in the general register rj, the

number of continuous bits 1 is measured from bit 0 to bit 31, and the result is written into the universal

register rd.

CTO.W:
    GR[rd] = CTO(GR[rj][31:0])

The CTZ.W instruction performs the operation that for the data of bit [31:0] in the general register rj, the

number of continuous bits 0 is measured from bit 0 to bit 31, and the result is written into the universal

register rd.

CTZ.W:
    GR[rd] = CTZ(GR[rj][31:0])

The CLO.D instruction performs the operation that for the data of bit [63:0] in the general register rj, the

number of continuous bits 1 is measured from bit 63 to bit 0, and the result is written into the universal

register rd.

CLO.D:
    GR[rd] = CL0(GR[rj][63:0])

The CLZ.D instruction performs the operation that for the data of bit [63:0] in the general register rj, the

number of continuous bits 1 is measured from bit 0 to bit 63, and the result is written into the universal

register rd.

CLZ.D:
    GR[rd] = CLZ(GR[rj][63:0])

The CTO.D instruction performs the operation that for the data of bit [63:0] in the general register rj, the

number of continuous bits 0 is measured from bit 0 to bit 63, and the result is written into the universal

register rd.

CTO.D:
    GR[rd] = CTO(GR[rj][63:0])
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The CTZ.D instruction performs the operation that for the data of bit [63:0] in the general register rj, the

number of continuous bits 0 is measured from bit 0 to bit 63, and the result is written into the universal

register rd.

CTZ.D:
    GR[rd] = CTZ(GR[rj][63:0])

2.2.3.3. BYTEPICK.{W/D}

Instruction formats:

bytepick.w  rd, rj, rk, sa2
bytepick.d  rd, rj, rk, sa3

The BYTEPICK.W instruction performs the operation that splice [31:0] bits in the general register rj
behind [31:0] bits in the general register rk, and intercepts 4 consecutive bytes starting from the

leftmost sa2 byte, and writes the 32-bit bit string symbol into universal register rd after expansion.

BYTEPICK.W:
    tmp = {GR[rk][8*(4-sa2):0], GR[rj][31:8*(4-sa2)]}
    GR[rd] = SignExtend(tmp[31:0], GRLEN)

The BYTEPICK.D instruction performs the operation that splice [63:0] bits in the general register rj

behind [63:0] bits in the general register rk, and intercepts 8 consecutive bytes starting from the

leftmost sa3 byte, and writes the 64-bit bit string symbol into universal register rd after expansion.

BYTEPICK.D:
    GR[rd] = {GR[rk][8*(8-sa3):0], GR[rj][63:8*(8-sa3)]}

2.2.3.4. REVB.{2H/4H/2W/D}

Instruction formats:

revb.2h     rd, rj
revb.4h     rd, ri
revb.2w     rd, rj
revb.d      rd, rj

The REVB.2H instruction performs the operation that arranges the 2 bytes in the [15:0] bits in the general

register rj in reverse order to form the [15:0] bits of the intermediate result, and reverses the 2 bytes in

the [31:16] in the general register rj Arrange the [31:16] bits of the intermediate result, and write the

32-bit intermediate result sign extended to the general register rd.
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REVB.2H:
    tmp0 = {GR[rj][ 7: 0], GR[rj][15: 8]}
    tmp1 = {GR[rj][23:16], GR[rj][31:24]}
    GR[rd] = SignExtend({tmp1, tmp0}, GRLEN)

The REVB.4H instruction performs the operation that arranges the 2 bytes in the [15:0] bits of the

general register rj in reverse order and writes them into the [15:0] bits of the general register rd, and

writes 2 words in the [31:16] bits of the general register rj. Write the sections in reverse order to bits

[31:16] of the general register rd, and write the 2 bytes of bits [47:32] in the general register rj in

reverse order to bits [47:32] of the general register rd. The 2 bytes in the [63:48] bits in the register rj
are written in the [63:48] bits in the general register rd in reverse order.

REVB.4H:
    tmp0 = {GR[rj][ 7: 0], GR[rj][15: 8]}
    tmp1 = {GR[rj][23:16], GR[rj][31:24]}
    tmp2 = {GR[rj][39:32], GR[rj][47:40]}
    tmp3 = {GR[rj][55:48], GR[rj][63:56]}
    GR[rd] = {tmp3, tmp2, tmp1, tmp0}

The REVB.2W instruction performs the operation that writes the 4 bytes in the [31:0] bits of the general

register rj into the [31:0] bits of the general register rd in reverse order, and writes 4 of the [63:32]
bits in the general register rj. Write the byte in reverse order to bits [63:32] of the general register rd.

REVB.2W:
    tmp0 = {GR[rj][ 7: 0], GR[rj][15: 8], GR[rj][31:24], GR[rj][23:16]}
    tmp1 = {GR[rj][39:32], GR[rj][47:40], GR[rj][55:48], GR[rj][63:56]}
    GR[rd] = {tmp1, tmp0}

REVB.D writes the 8 bytes in the [63:0] bits in the general register rj into the general register rd in
reverse order.

REVB.D:
    GR[rd] = {GR[rj][ 7: 0], GR[rj][15: 8], GR[rj][31:24],
GR[rj][23:16],
            GR[rj][39:32], GR[rj][47:40], GR[rj][55:48], GR[rj][63:56]}

2.2.3.5. REVH.{2W/D}

Instruction formats:

revh.2w     rd, rj
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revh.d      rd, rj

The REVH.2W instruction performs the operation that writes two half-words in bit [31:0] of general

purpose register rj into bit [31:0] of general purpose register rd, and two half-words in bit [63:32] of

general purpose register rj into bit [63:32] of general purpose register rd.

REVH.2W:
    tmp0 = {GR[rj][15: 0], GR[rj][31:16]}
    tmp1 = {GR[rj][47:32], GR[rj][63:48]}
    GR[rd] = {tmp1, tmp0}

The REVH.D instruction performs the operation that write four half-words in [63:0] bit of universal

register rj in reverse order to universal register rd.

REVH.D:
    GR[rd] = {GR[rj][15:0], GR[rj][31:16], GR[rj][47:32], GR[rj][63:48]}

2.2.3.6. BITREV.{4B/8B}

Instruction formats:

bitrev.4b   rd, rj
bitrev.8b   rd, rj

The BITREV.4B instruction performs the operation that the [7:0] bit in general register rj is arranged in

reverse order, the [15:8] bit in general register rj is arranged in reverse order, the [23:16] bit in general

register rj is arranged in reverse order, and the [31:24] bit in general register rj is arranged in reverse

order; the 32-bit intermediate result sign extension is written into general register rd in turn.

BITREV.4B:
    bstr32[31:24] = BITREV(GR[rj][31:24])
    bstr32[23:16] = BITREV(GR[rj][23:16])
    bstr32[15: 8] = BITREV(GR[rj][15: 8])
    bstr32[ 7: 0] = BITREV(GR[rj][ 7: 0])
    GR[rd] = SignExtend(bstr32, GRLEN)

The BITREV.8B instruction performs the operation that the [7:0] bit in general register rj is arranged in

reverse order, the [15:8] bit in general register rj is arranged in reverse order, the [23:16] bit in general

register rj is arranged in reverse order, the [31:24] bit in general register rj is arranged in reverse order;

the [39:32] bit in general register rj is arranged in reverse order; the [47:40] bit in general register rj
is arranged in reverse order; the [55:48] bit in general register rj is arranged in reverse order; the

[63:56] bit in general register rj is arranged in reverse order; the 32-bit intermediate result sign extension

is written into general register rd in turn.
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BITREV.8B:
    GR[rd][63:56] = BITREV(GR[rj][63:56])
    GR[rd][55:48] = BITREV(GR[rj][55:48])
    GR[rd][47:40] = BITREV(GR[rj][47:40])
    GR[rd][39:32] = BITREV(GR[rj][39:32])
    GR[rd][31:24] = BITREV(GR[rj][31:24])
    GR[rd][23:16] = BITREV(GR[rj][23:16])
    GR[rd][15: 8] = BITREV(GR[rj][15: 8])
    GR[rd][ 7: 0] = BITREV(GR[rj][ 7: 0])

2.2.3.7. BITREV.{W/D}

Instruction formats:

bitrev.w        rd, rj
bitrev.d        rd, rj

The BITREV.W instruction performs the operation that the [31:0] bit in general register rj is arranged in

reverse order; the 32-bit intermediate result sign extension is written into general register rd in turn.

BITREV.W:
    bstr32[31:0] = BITREV(GR[rj][31:0])
    GR[rd] = SignExtend(bstr32, GRLEN)

The BITREV.D instruction performs the operation that the [63:0] bit in general register rj is arranged in

reverse order; the 32-bit intermediate result sign extension is written into general register rd in turn.

BITREV.D:
    GR[rd] = BITREV(GR[rj][63:0])

2.2.3.8. BSTRINS.{W/D}

Instruction formats:

bstrins.w       rd, rj, msbw, lsbw
bstrins.d       rd, rj, msbd, lsbd

The BSTRINS.W instruction performs the operation that replaces the [msbw:lsbw] bit in the lowest 32

bits of the general register rd with the [msbw-lsbw:0] bit in the general register rj, and the resulting 32-

bit result is sign extension and written into the general register rd.
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BSTRINS.W:
    bstr32[31:msbw+1] = GR[rd][31: msbw+1]
    bstr32[msbw:lsbw] = GR[rj][msbw-lsbw:0]
    bstr32[lsbw-1:0] = GR[rd][lsbw-1:0]
    GR[rd] = SignExtend(bstr32[31:0], GRLEN)

The BSTRINS.D instruction performs the operation that replaces the [msbd:lsbd] bit in the general

register rd with the [msbd-lsbd:0] bit in the general register rj, and the rest of the general register rd
remains unchanged.

BSTRINS.D:
    GR[rd][63:msbd+1] = GR[rd][63:msbd+1]
    GR[rd][msbd:lsbd] = GR[rj][msbd-lsbd:0]
    GR[rd][lsbd-1:0] = GR[rd][lsbd-1:0]

2.2.3.9. BSTRPICK.{W/D}

Instruction formats:

bstrpick.w  rd, rj, msbw, lsbw
bstrpick.d  rd, rj, msbd, lsbd

BSTRPICK.W extracts the [msbw:Isbw] bit in the general register rj and zero-extends it to 32 bits, and

the formed 32-bit intermediate result is sign extension and written into the general register rd.

BSTRPICK.W:
    bstr32[31:0] = ZeroExtend(GR[rj][msbw:lsbw], 32)
    GR[rd] = SignExtend(bstr32[31:0], GRLEN)

BSTRPICK.D extracts the [msbd:Isbd] bit in the general register rj and zero-extends it to 64 bits and

writes it into the general register rd.

BSTRPICK.D:
    GR[rd] = ZeroExtend(GR[rj][msbd:lsbd], 64)

2.2.3.10. MASKEQZ, MASKNEZ

Instruction formats:

maskeqz     rd, rj, rk
masknez     rd, rj, rk

37



MASKEQZ and MASKNEZ instructions perform conditional assignment operations. When MASKEQZ is

executed, if the value of the general register rk is equal to 0, the general register rd is set to 0, otherwise it

is assigned to the value of the rj register.

MASKEQZ:
    GR[rd] = (GR[rk] == 0) ? 0 : GR[rj]

When MASKNEZ is executed, if the value of the general register rk is not equal to 0, the general register rd
is set to 0, otherwise it is assigned to the value of the rj register.

MASKNEZ:
    GR[rd] = (GR[rk] != 0) ? 0 : GR[rj]

2.2.4. Branch Instructions

2.2.4.1. BEQ, BNE, BLT[U], BGE[U]

Instruction formats:

beq     rj, rd, offs16
bne     rj, rd, offs16
blt     rj, rd, offs16
bge     rj, rd, offs16
bltu    rj, rd, offs16
bgeu    rj, rd, offs16

The BEQ instruction performs the operation that compares the values of general register rj and general

register rd, if the two are equal, jump to the target address, otherwise it does not jump.

BEQ:
    if GR[rj] == GR[rd]:
        PC = PC + SignExtend({offs16, 2'b0}, GRLEN)

The BNE instruction performs the operation that compares the values of general register rj and general

register rd, if the two are not equal, jump to the target address, otherwise it does not jump.

BNE:
    if GR[rj] != GR[rd]:
        PC = PC + SignExtend({offs16, 2'b0}, GRLEN)

The BLT instruction performs the operation that compares the values of general register rj and general

register rd as signed numbers. If the former is smaller than the latter, it jumps to the target address,
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otherwise it does not jump.

BLT:
    if signed(GR[rj]) < signed(GR[rd]):
        PC = PC + SignExtend({offs16, 2'b0}, GRLEN)

The BGE instruction performs the operation that compares the values of general register rj and general

register rd as signed numbers. If the former is greater than or equal to the latter, it jumps to the target
address, otherwise it does not jump.

BGE:
    if signed(GR[rj]) >= signed(GR[rd]):
        PC = PC + SignExtend({offs16, 2'b0}, GRLEN)

The BLTU instruction performs the operation that compares the values of general register rj and general

register rd as unsigned numbers. If the former is less than the latter, it jumps to the target address,
otherwise it does not jump.

BLTU:
    if unsigned(GR[rj]) < unsigned(GR[rd]):
        PC = PC + SignExtend({offs16, 2'b0}, GRLEN)

The BGEU instruction performs the operation that compares the values of general register rj and general

register rd as unsigned numbers. If the former is greater than or equal to the latter, it jumps to the target
address, otherwise it does not jump.

BGEU:
    if unsigned(GR[rj]) >= unsigned(GR[rd]):
        PC = PC + SignExtend({offs16, 2'b0}, GRLEN)

The calculation method of the jump target address of the above-mentioned six branch instructions is to

logically shift the 16-bit immediate offs16 in the instruction code by 2 bits and then sign expand, and the
resulting offset value is added to the PC of the branch instruction.

TIP
When writing assembly, you need to fill in the immediate field with the real offset value in

bytes, i.e. (offs16<<2).

2.2.4.2. BEQZ, BNEZ

Instruction formats:

beqz        rj, offs21
bnez        rj, offs21
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The BEQZ instruction performs the operation that judges the value of the general register rj, if it is equal to

0, jump to the target address, otherwise it does not jump.

BEQZ:
    if GR[rj] == 0:
        PC = PC + SignExtend({offs21, 2'b0}, GRLEN)

The BNEZ instruction performs the operation that judges the value of the general register rj, if it is not

equal to 0, it jumps to the target address, otherwise it does not jump.

BNEZ:
    if GR[rj] != 0:
        PC = PC + SignExtend({offs21, 2'b0}, GRLEN)

The jump target address of the above two branch instructions is to logical left shift the 21-bit immediate

offs21 in the instruction code by 2 bits and then sign extension, and the resulting offset value is added to

the PC of the branch instruction.

TIP
When writing assembly, you need to fill in the immediate field with the real offset value in

bytes, i.e. (offs21<<2).

2.2.4.3. B

Instruction formats:

b       offs26

The B instruction performs the operation that jumps to the target address unconditionally. The jump target

address is to logical left shift the 26-bit immediate offs26 in the instruction code by 2 bits and then sign

extension, and the resulting offset value is added to the PC of the branch instruction.

B:
    PC = PC + SignExtend({offs26, 2' b0}, GRLEN)

TIP
When writing assembly, you need to fill in the immediate field with the real offset value in

bytes, i.e. (offs26<<2).

2.2.4.4. BL

Instruction formats:

bl      offs26
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The BL instruction performs the operation that jumps to the target address unconditionally, and writes the

result of adding 4 to the PC value of the instruction into the No.1 general register r1.

The jump target address of the instruction is to shift the 26-bit immediate offs26 in the instruction code to
the left by 2 bits and then sign extend it. The shift value is added to the PC of the branch instruction.

BL:
    GR[1] = PC + 4
    PC = PC + SignExtend({offs26, 2'b0}, GRLEN)

In LA ABI, the No.1 general register r1 serves as the return address register ra.

TIP
When writing assembly, you need to fill in the immediate field with the real offset value in

bytes, i.e. (offs26<<2).

2.2.4.5. JIRL

Instruction formats:

jirl        rd, rj, offs16

JIRL jumps to the target address unconditionally, and the PC value of the instruction plus 4; then writes the

result into the general register rd.

The jump target address of the instruction is to logically shift the 16-bit immediate offs16 in the
instruction code by 2 bits to the left and then sign extension, and the resulting offset value is added to the

value in the general register rj.

JIRL:
    GR[rd] = PC + 4
    PC = GR[rj] + SignExtend({offs16, 2'b0}, GRLEN)

When rd is equal to 0, the function of JIRL is a common non-call indirect jump instruction.

JIRL with rd equal to 0, rj equal to 1 and offs16 equal to 0 is often used as an indirect jump from call
return.

TIP
When writing assembly, you need to fill in the immediate field with the real offset value in

bytes, i.e. (offs16<<2).

2.2.5. Common Memory Access Instructions

2.2.5.1. LD.{B[U]/H[U]/W[U]/D}, ST.{B/H/W/D}

Instruction formats:
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ld.b        rd, rj, si12
ld.h        rd, rj, si12
ld.w        rd, rj, si12
ld.d        rd, rj, si12
ld.bu       rd, rj, si12
ld.hu       rd, rj, si12
ld.wu       rd, rj, si12
st.b        rd, rj, si12
st.h        rd, rj, si12
st.w        rd, rj, si12
st.d        rd, rj, si12

LD.{B/H/W/D} retrieves the data of one byte/halfword/word/double word from the internal sign extension

and writes it into the general register rd.

LD.B:
    vaddr = GR[rj] + SignExtend(si12, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    byte = MemoryLoad(paddr, BYTE)
    GR[rd] = SignExtend(byte, GRLEN)

LD.H:
    vaddr = GR[rj] + SignExtend(si12, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    halfword = MemoryLoad(paddr, HALFWORD)
    GR[rd] = SignExtend(halfword, GRLEN)

LD.W:
    vaddr = GR[rj] + SignExtend(si12, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    word = MemoryLoad(paddr, WORD)
    GR[rd] = SignExtend(word, GRLEN)

LD.D:
    vaddr = GR[rj] + SignExtend(si12, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    GR[rd] = MemoryLoad(paddr, DOUBLEWORD)

LD.{BU/HU/WU} retrieves one byte/halfword/word data from the memory and writes it into the general
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register rd after zero extension.

LD.BU:
    vaddr = GR[rj] + SignExtend(si12, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    byte = MemoryLoad(paddr, BYTE)
    GR[rd] = ZeroExtend(byte, GRLEN)

LD.HU:
    vaddr = GR[rj] + SignExtend(si12, GRLEN)
    AddressCompli anceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    halfword = MemoryLoad(paddr, HALFWORD)
    GR[rd] = ZeroExtend(halfword, GRLEN)

LD.WU:
    vaddr = GR[rj] + SignExtend(si12, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    word = MemoryLoad(paddr, WORD)
    GR[rd] = ZeroExtend(word, GRLEN)

ST.{B/H/W/D} writes [7:0]/[15:0]/[31:0]/[63:0] bit data in general register rd into the memory.

ST.B:
    vaddr = GR[rj] + SignExtend(si12, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    MemoryStore(GR[rd][7:0], paddr, BYTE)

ST.H:
    vaddr = GR[rj] + SignExtend(si12, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    MemoryStore(GR[rd][15:0], paddr, HALFWORD)

ST.W:
    vaddr = GR[rj] + SignExtend(si12, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    MemoryStore(GR[rd][31:0], paddr, WORD)
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ST.D:
    vaddr = GR[rj] + SignExtend(si12, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    MemoryStore(GR[rd][63:0], paddr, DOUBLEWORD)

The memory access address calculation method of the above instruction is sum the value in the general

register rj and the sign extension 12-bit immediate value sil2.

For LD.{H[U]/W[U]/D} and ST.{B/H/W/D} instructions, no matter what kind of hardware
implementation and environmental configuration, as long as their memory access addresses are naturally
aligned When the memory access address is not naturally aligned, if the hardware implementation supports
non-aligned memory access and the current computing environment is configured to allow non-aligned
memory access, then the non-aligned exception will not be triggered, otherwise a non-aligned exception will
be triggered.

2.2.5.2. LDX.{B[U]/H[U]/W[U]/D}, STX.{B/H/W/D}

Instruction formats:

ldx.b       rd, rj, rk
ldx.h       rd, rj, rk
ldx.w       rd, rj, rk
ldx.d       rd, rj, rk
ldx.bu      rd, rj, rk
ldx.hu      rd, rj, rk
ldx.wu      rd, rj, rk
stx.b       rd, rj, rk
stx.h       rd, rj, rk
stx.w       rd, rj, rk
sbx.d       rd, rj, rk

LDX.{B/H/W/D} retrieves the data of one byte/halfword/word/double word from the internal sign

extension and writes it into the general register rd.

LDX.B:
    vaddr = GR[rj] + GR[rk]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    byte = MemoryLoad(paddr, BYTE)
    GR[rd] = SignExtend(byte, GRLEN)

LDX.H:
    vaddr = GR[rj] + GR[rk]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
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    halfword = MemoryLoad(paddr, HALFWORD)
    GR[rd] = SignExtend(halfword, GRLEN)

LDX.W:
    vaddr = GR[rj] + GR[rk]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    word = MemoryLoad(paddr, WORD)
    GR[rd] = SignExtend(word, GRLEN)

LDX.D:
    vaddr = GR[rj] + GR[rk]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    GR[rd] = MemoryLoad(paddr, DOUBLEWORD)

LDX.{BU/HU/WU} retrieves one byte/halfword/word data from the internal zero extension and writes it

into the general register rd.

LDX.BU:
    vaddr = GR[rj] + GR[rk]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    byte = MemoryLoad(paddr, BYTE)
    GR[rd] = ZeroExtend(byte, GRLEN)

LDX.HU:
    vaddr = GR[rj] + GR[rk]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    halfword = MemoryLoad(paddr, HALFWORD)
    GR[rd] = ZeroExtend(halfword, GRLEN)

LDX.WU:
    vaddr = GR[rj] + GR[rk]
    AddressCompli anceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    word = MemoryLoad(paddr, WORD)
    GR[rd] = ZeroExtend(word, GRLEN)

STX.{B/H/W/D} writes [7:0], [15:0], [31:0] and [63:0] bits of data in the general register rd into
the memory.
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STX.B:
    vaddr = GR[rj] + GR[rk]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    MemoryStore(GR[rd][7:0], paddr, BYTE)

STX.H:
    vaddr = GR[rj] + GR[rk]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    MemoryStore(GR[rd][15:0], paddr, HALFWORD)

STX.W:
    vaddr = GR[rj] + GR[rk]
    AddressCompli anceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    MemoryStore(GR[rd][31:0], paddr, WORD)

STX.D:
    vaddr = GR[rj] + GR[rk]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    MemoryStore(GR[rd][63:0], paddr, DOUBLEWORD)

The memory access address calculation method of the above instruction is the value in the general register

rj and the value in the general register rk. For LDX.{H[U]/W[U]/D} and STX.{B/H/W/D} instructions,
no matter what kind of hardware implementation and environment configuration, as long as its memory
access address is natural Aligned, will not trigger non-aligned exception; when the fetch address is not
naturally aligned, if the hardware implementation supports non-aligned memory access and the current
computing environment is configured to allow non-aligned memory access, then the non-aligned exception
will not be triggered, otherwise a non-aligned exception will be triggered.

2.2.5.3. LDPTR.{W/D}, STPTR.{W/D}

Instruction formats:

ldptr.w     rd, rj, si14
ldptr.d     rd, rj, si14
stptr.w     rd, rj, si14
stptr.d     rd, rj, si14

LDPTR.{W/D} retrieves the data of a word/double word from the internal sign extension and writes it into

the general register rd.

LDPTR.W:
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    vaddr = GR[rj] + SignExtend({si14, 2'b0}, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    word = MemoryLoad(paddr, WORD)
    GR[rd] = SignExtend(word, GRLEN)

LDPTR.D:
    vaddr = GR[rj] + SignExtend({si14, 2'b0}, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    GR[rd] = MemoryLoad(paddr, DOUBLEWORD)

STPTR.{W/D} Write the data of bits [31:0]/[63:0] in the general register rd into the memory.

STPTR.W:
    vaddr = GR[rj] + SignExtend({si14, 2'b0}, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    MemoryStore(GR[rd][31:0], paddr, WORD)

STPTR.D:
    vaddr = GR[rj] + SignExtend({si14, 2'b0}, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    MemoryStore(GR[rd][63:0], paddr, DOUBLEWORD)

The memory access address calculation method of the above instruction is to logical left shift the 14-bit

immediate data si14 by 2 bits, sign extension, and then sum the value in the general register rj.

TIP
When writing assembly, you need to fill in the immediate field with the real offset value in

bytes, i.e. (si14<<2).

For LDPTR.{W/D} and STPTR.{W/D} instructions, no matter what kind of hardware implementation and
environmental configuration, as long as the memory access address is naturally aligned, the non-aligned
exception will not be triggered; when the memory address is not naturally aligned, if the hardware
implementation supports unaligned memory access and the current computing environment is configured
to allow unaligned memory access, then the unaligned exception will not be triggered, otherwise it will
trigger the unaligned exception.

LDPTR.{W/D}, STPTR.{W/D} instructions are used in conjunction with ADDU16I.D instructions to
accelerate GOT table-based access in position-independent codes.

2.2.5.4. PRELD

Instruction formats:

47



preld       hint, rj, si12

PRELD Reads a cache-line of data from memory in advance into the Cache. The access address is the 12bit
immediate number of the value in the general register rj plus the symbol extension.

The processor learns from the hint in the PRELD instruction what type will be acquired and which level of

Cache the data to be taken back fill in, hint has 32 optional values (0 to 31), 0 represents load to level 1

Cache, and 8 represents store to level 1 Cache. The remaining hint values are not defined and are
processed for nop instructions when the processor executes.

If the Cache attribute of the access address of the PRELD instruction is not cached, then the instruction

cannot generate a memory access action and is treated as a NOP instruction. The PRELD instruction will
not trigger any exceptions related to MMU or address.

2.2.5.5. PRELDX

Instruction formats:

preldx      hint, rj, rk

The PRELDX instruction continuously prefetches data from memory into the Cache according to the

configuration parameters, and the continuously prefetched data is a block (block) of length block_size
starting from the specified base address (base) with a number of (block_num) spacing stride. The base

address is the sum of the [63:0] bits in the general register rj and the sign extension [15:0] bits in the

general register rk. The [I16] bits in general register rk are the address sequence ascending and

descending flag bits, with 0 indicating address ascending and 1 indicating address descending. The value

of bits [25:20] in general register rk is block_size, the basic unit of block_size is 16 bytes, so the

maximum length of a single block is 1KB. The value of bits [39:32] in general register rk is block_num-
1, so a single instruction can prefetch up to 256 blocks. The value of bits [59:44] in the block general

register rk is treated as a signed number and defines the stride between adjacent blocks, the basic unit of

stride is 1 byte. The value of bits [39:32] in rk is block.num-1, so a single instruction can prefetch up to

256 blocks. The value of bits [59:44] in general register rk is regarded as a signed number, which
defines the corresponding The basic unit of stride and stride between adjacent blocks is 1 byte.

hint in the PRELDX instruction indicates the type of prefetch and the level of Cache into which the fetched

data is to be filled. hint has 32 selectable values from 0 to 31. Currently, hint=0 is defined as load prefetch

to level 1 data Cache, hint=2 is defined as load prefetch to level 3 Cache, hint-8 is defined as store
prefetch to level 1 data Cache. The meaning of the rest of hint values is not defined yet, and the processor

executes it as NOP instruction.

If the Cache attribute of the access address of the PRELDX instruction is not cached, then the instruction

cannot generate a memory access action and is treated as a NOP instruction.

The PRELDX instruction does not trigger any exceptions related to MMU or address.

2.2.6. Bound Check Memory Access Instructions
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2.2.6.1. LD{GT/LE}.{B/H/W/D}, ST{GT/LE}.{B/H/W/D}

Instruction formats:

ldgt.b      rd, rj, rk
ldgt.h      rd, rj, rk
ldgt.w      rd, rj, rk
ldgt.d      rd, rj, rk
ldle.b      rd, rj, rk
ldle.h      rd, rj, rk
ldle.w      rd, rj, rk
ldle.d      rd, rj, rk
stgt.b      rd, rj, rk
stgt.h      rd, rj, rk
stgt.w      rd, rj, rk
stgt.d      rd, rj, rk
stle.b      rd, rj, rk
stle.h      rd, rj, rk
stle.w      rd, rj, rk
stle.d      rd, rj, rk

LDGT/LDLE.B/H/W/D fetches a byte/half word word/double word data symbol extension from memory

and writes it to the general register rd.

STGT/STLE.B/H/W/D writes the [7:0]/[15:0]/[31:0]/[63:0] bits of data from the general register

rd to memory.

The access addresses of the above instructions come directly from the values in the general register rj.
The access addresses of the above instructions are required to be naturally aligned, otherwise a non-
alignment exception will be triggered.

B/H/W/D and STGT.B/H/W/D instructions check whether the value in general register rj is greater than

the value in general register rk, and terminate the access operation and trigger the bound check exception

if the condition is not satisfied; B/H/W/D and STLE.B/H/W/D instructions check whether the value in

general register rj is less than or equal to the value in general register rk, and if the condition is not
satisfied, the access operation is terminated and the bound check exception is triggered.

LDGT.B:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] > GR[rk]:
        byte = MemoryLoad(paddr, BYTE)
        GR[rd] = SignExtend(byte, GRLEN)
    else:
        RaiseException(BCE)    # Bound Check Exception
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LDGT.H:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] > GR[rk]:
        halfword = MemoryLoad(paddr, HALFWORD)
        GR[rd] = SignExtend(halfword, GRLEN)
    else:
        RaiseException(BCE)    # Bound Check Exception

LDGT.W:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] > GR[rk]:
        word = MemoryLoad(paddr, WORD)
        GR[rd] = SignExtend(word, GRLEN)
    else:
        RaiseException(BCE)    # Bound Check Exception

LDGT.D:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] > GR[rk]:
        GR[rd] = MemoryLoad(paddr, DOUBLEWORD)
    else:
        RaiseException(BCE)    # Bound Check Exception

LDLE.B:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] <= GR[rk]:
        byte = MemoryLoad(paddr, BYTE)
        GR[rd] = SignExtend(byte, GRLEN)
    else:
        RaiseException(BCE)    # Bound Check Exception

LDLE.H:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
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    if GR[rj] <= GR[rk]:
        halfword = MemoryLoad(paddr, HALFWORD)
        GR[rd] = SignExtend(halfword, GRLEN)
    else:
        RaiseException(BCE)    # Bound Check Exception

LDLE.W:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] <= GR[rk]:
        word = MemoryLoad(paddr, WORD)
        GR[rd] = SignExtend(word, GRLEN)
    else:
        RaiseException(BCE)    # Bound Check Exception

LDLE.D:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] <= GR[rk]:
        GR[rd] = MemoryLoad(paddr, DOUBLEWORD)
    else:
        RaiseException(BCE)    # Bound Check Exception

STGT.B:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] > GR[rk]:
        MemoryStore(GR[rd][7:0], paddr, BYTE)
    else:
        RaiseException(BCE)    # Bound Check Exception

STGT.H:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] > GR[rk]:
        MemoryStore(GR[rd][15:0], paddr, HALFWORD)
    else:
        RaiseException(BCE)    # Bound Check Exception

STGT.W:
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    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] > GR[rk]:
        MemoryStore(GR[rd][31:0], paddr, WORD)
    else:
        RaiseException(BCE)    # Bound Check Exception

STGT.D:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] > GR[rk]:
        MemoryStore(GR[rd][63:0], paddr, DOUBLEWORD)
    else:
        RaiseException(BCE)    # Bound Check Exception

STLE.B:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] <= GR[rk]:
        MemoryStore(GR[rd][7:0], paddr, BYTE)
    else:
        RaiseException(BCE)    # Bound Check Exception

STLE.H:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] <= GR[rk]:
        MemoryStore(GR[rd][15:0], paddr, HALFWORD)
    else:
        RaiseException(BCE)    # Bound Check Exception

STLE.W:
    vaddr = GR[rij]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] <= GR[rk]:
        MemoryStore(GR[rd][31:0], paddr, WORD)
    else:
        RaiseException(BCE)    # Bound Check Exception
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STLE.D:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] <= GR[rk]:
        MemoryStore(GR[rd][63:0], paddr, DOUBLEWORD)
    else:
        RaiseException(BCE)    # Bound Check Exception

2.2.7. Atomic Memory Access Instructions

2.2.7.1. AM{SWAP/ADD/AND/OR/XOR/MAX/MIN}[DB].{W/D}, AM{MAX/MIN}[_DB].{WU/DU}

Instruction formats:

amswap.w        rd, rk, rj
amswap_db.w     rd, rk, rj
amswap.d        rd, rk, rj
amswap_db.d     rd, rk, rj
amadd.w         rd, rk, rj
amadd_db.w      rd, rk, rj
amadd.d         rd, rk, rj
amadd_db.d      rd, rk, rj
amand.w         rd, rk, rj
amand_db.w      rd, rk, rj
amand.d         rd, rk, rj
amand_db.d      rd, rk, rj
amor.w          rd, rk, rj
amor_db.w       rd, rk, rj
amor.d          rd, rk, rj
amor_db.d       rd, rk, rj
amxor.w         rd, rk, rj
amxor_db.w      rd, rk, rj
amxor.d         rd, rk, rj
amxor_db.d      rd, rk, rj
ammax.w         rd, rk, rj
ammax_db.w      rd, rk, rj
ammax.d         rd, rk, rj
ammax_db.d      rd, rk, rj
ammin.w         rd, rk, rj
ammin_db.w      rd, rk, rj
ammin.d         rd, rk, rj
ammin_db.d      rd, rk, rj
ammax.wu        rd, rk, rj
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ammax_db.wu     rd, rk, rj
ammax.du        rd, rk, rj
ammax_db.du     rd, rk, rj
ammin.wu        rd, rk, rj
ammin_db.wu     rd, rk, rj
ammin.du        rd, rk, rj
ammin_db.du     rd, rk, rj

The AM* atomic access instruction performs a sequence of “read-modify-write” operations on a memory
cell atomically. Specifically, it retrieves the old value at the specified address in memory and writes it to the

general register rd, performs some simple operations on the old value in memory and the value in the

general register rk, and then writes the result of the operations back to the specified address in memory.
The entire “read-modify-write” process is atomic, meaning that the processor executing the instruction
does not perform any other access-write operations nor does it trigger any exceptions during the time
between the return of the access read operation data and the global visibility of the access write operation,
and no other processor cores or cache-consistent. The module has global visibility of the execution of the
write operation on the Cache row where the instruction accesses the object.

The access address of an AM* atomic access instruction is the value of the general register rj. The access

address of an AM* atomic access instruction always requires natural alignment, and failure to meet this
condition will trigger a non-alignment exception.

Atomic access instructions ending in .W and .WU read and write memory and intermediate operations with

a data length of 32 bits, while atomic access instructions ending in .D and .DU read and write memory and

intermediate operations with a data length of 64 bits. Whether ending in .W or .WU, the data of a word
retrieved from memory by an atomic access instruction is symbolically extended and written to the general

register rd.

AMSWAP[.DB].{W/D} instruction writes the new value of memory from the general register rk.

AMADD[.DB].{W/D} instruction writes the new value of memory from the result ofold value of memory

plus the value in general register rk. AMAND[DB].{W/D} instruction writes the new value to memory as a

result of the bitwise AND operation of the old value in memory and the value in general register rk.

AMOR[DB].{W/D} instruction writes a new value to memory from AMXOR[.DB]. The new value written to

memory by the {W/D} instruction is the result of the bitwise OR operation of the old value in memory and

the value in general register rk. AMMAX[_DB].{W/D} instruction writes the new value to memory as the

result of the bitwise AND operation of the old value in memory and the value in general register rk. The
new value written to memory is the maximum value obtained by comparing the old value in memory with

the value in general register rk as a signed number. [_DB].{W/D} instruction The new value written to
memory is the minimum value obtained by comparing the old value of memory with the value in general

register rk as if it were a signed number. The new value written to memory by the AMMAX[DB].[WU/DU]
instruction is the maximum value obtained by comparing the old value in memory with the value in general

register rk as an unsigned number. AMMIN[_DB].{WU/DU} instruction writes the new value to memory by
comparing the old value in memory with the value in general register rk as an unsigned number. The new
value written to memory is the minimum value obtained by comparing the old value in memory with the
value in general register rk as an unsigned number.

AM*_DB.W[U]/D[U] instruction not only completes the above atomized operation sequence, but also
implements the data barrier function at the same time. That is, all access operations preceding the atomic
access instruction in the same processor core are completed before such atomic access instructions are
allowed to be executed, and all access operations following the atomic access instruction in the same
processor core are allowed to be executed only after such atomic access instructions are executed.
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If the AM* atomic memory access instruction has the same register number as rd and rj, the execution
will trigger an Instruction Non-defined Exception.

If the AM* atomic memory access instruction has the same register number as rd and rk, the execution
result is uncertain. Please software to avoid this situation.

2.2.7.2. AM.{SWAP/ADD}[_DB].{B/H}

Instruction formats:

amswap.b        rd, rk, rj
amswap_db.b     rd, rk, rj
amswap.h        rd, rk, rj
amswap_db.h     rd, rk, rj
amadd.b         rd, rk, rj
amadd_db.b      rd, rk, rj
amadd.h         rd, rk, rj
amadd_db.h      rd, rk, rj

AM{SWAP/ADD}[_DB].{B/H} and AM{SWAP/ADD}[_DB].{W/D} are atomic access instructions, can
atomically complete the "read - modify - write" sequence of operations on a memory cell, the main
difference is that the data being accessed is byte/half-word or word/double-word.

AM{SWAP/ADD}[_DB].{B/H} retrieve the old byte/half word value at the specified address in memory

and write it to the general register rd after symbol extension, At the same time, the old value in the memory

is exchanged or added with the byte/half-word value of the general register rk [7:0]/[15:0] bit, and then the
byte/half-word results will be written back to the specified address of the memory. The entire "read-modify-
write" process is atomic, meaning that the execution of the instruction, from the access to read the data
return to the access to write the implementation of the effect of global visibility at the time, the processor
executing the instruction neither executes other memory access write operations nor triggers any
exception, and no other processor core or Cache coherence module can globally see the execution effect
of the write operation on the Cache line of the object accessed by the instruction.

AM{SWAP/ADD}[_DB].{B/H} The access address of an atomic access instruction is the value of general-

purpose register rj.

AM{SWAP/ADD}[_DB].H access address of an atomic access instruction is always required to be
naturally aligned, and a non-alignment exception is triggered if this condition is not met.

In addition to the above atomic sequence of operations, the AM{SWAP/ADD}_DB.{B/H} instruction also
implements the data barrier function. That is, when this kind of atomic access instruction is allowed to
execute before, all in the same processor core before the atomic access instruction access operations
have been completed; at the same time, only until the completion of this kind of atomic access instruction
execution, all in the same processor core after the atomic access instruction access operation is allowed to
execute.

If rd and rj have the same register number in AM{SWAP/ADD}[_DB].{B/H} instruction, there is no
exception for trigger instruction.

If the register numbers of rd and rk in an AM{SWAP/ADD}[_DB].{B/H} instruction are the same, the
execution result is uncertain, so please ask the software to avoid this situation.
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2.2.7.3. AMCAS[_DB].{B/H/W/D}

Instruction formats:

amcas.b         rd, rk, rj
amcas_db.b      rd, rk, rj
amcas.h         rd, rk, rj
amcas_db.h      rd, rk, rj
amcas.w         rd, rk, rj
amcas_db.w      rd, rk, rj
amcas.d         rd, rk, rj
amcas_db.d      rd, rk, rj

AMCAS[_DB].{B/H/W/D} instruction performs a byte/half-word/word/double-word sized Compare-and-
Swap operation on a specified address in memory: The byte/half-word/word/double-word value retrieved

from memory (old memory value) is compared with the value stored in the [7:0]/[15:0]/[31:0]/[63:0]
location of the general-purpose register rd (expected value), and the value stored in the

[7:0]/[15:0]/[31:0]/[63:0] location of the general-purpose register rk (new value) is written to the
same location in the memory only when the comparison results are equal. Regardless of whether the

comparison results are equal or not, the old memory value is written to the general-purpose register rd
after sign expansion.

The above process, If a write occurs because the old memory value is equal to the expected value, then the
entire "read - modify - write" process is atomic, that is, from the access to the read operation data return to
the access to the write operation to perform the effect of the global visibility of this time, the processor
executing the instruction is neither the implementation of the other access to the write operation nor trigger
Any exception, and no other processor core or Cache Consistency Module to the instruction access object
where the Cache line of the write operation of the execution of the effect of the global visible.

AMCAS[_DB].{H/W/D} The access address of the instruction is the value of general-purpose register rj,
and the access address is always required to be naturally aligned, if this condition is not met, a non-aligned
exception will be triggered.

In addition to the above atomic sequence of operations, the AMCAS_DB.{B/H/W/D} instruction also
implements the data barrier function. That is, when this kind of atomic access instruction is allowed to
execute before, all in the same processor core before the atomic access instruction access operations
have been completed; at the same time, only when this kind of atomic access instruction execution is
completed, all in the same processor core after the atomic access instruction access operations are
allowed to execute.

2.2.7.4. LL.{W/D}, SC.{W/D}

Instruction formats:

ll.w        rd, rj, si14
ll.d        rd, rj, si14
sc.w        rd, rj, si14
sc.d        rd, rj, si14

The two pairs of instructions, LL.W and SC.W, LL.D and SC.D, are used to implement an atomic “read,
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modify, and write” sequence of memory access operations. The LL.{W/D} instruction retrieves a
word/double-word data from the specified address of the memory and writes it to the general register rd

after sign extension, and the paired SC. {W/D} instruction operates on the same length of data and has the
same access Memory address. The atomic maintenance mechanism for the sequence of memory access

operations is that when LL.{W/D} is executed, the access address is recorded and the previous flag is set

(LLbit is set to 1), and the LLbit is checked when the SC.{W/D} instruction is executed. Only when the

LLbit is 1, the write action will actually occur, otherwise it will not be written. When the software needs to
successfully complete an atomic “read-modify-write” memory access operation sequence, it needs to

construct a loop to repeatedly execute the LLSC instruction pair until the SC is successfully completed. In

order to construct this loop, the SC.[W/D] instruction will write the flag of its execution success (or simply

the LLbit value seen when the SC instruction is executed) into the general register rd and return.

During the execution of the paired LLSC, the following events will clear the LLbit to 0:

• The ERTN instruction is executed and the KL0 bit in CSR.LLBCTL is not equal to 1 when executed;

• Other processor cores or Cache Coherent I/O masters perform a store operation on the Cache line

where the address corresponding to the LLbit is located.

If the memory access attribute of the LLSC instruction to the access address is not Cached, then the
execution result is uncertain.

2.2.7.5. SC.Q

Instruction formats:

SC.Q            rd, rk, rj

The SC.Q instruction is similar to the SC.D instruction and is used in conjunction with the LL.D instruction
to implement an atomic "read-modify-write" access sequence for 128-bit data.

SC.Q writes the 128-bit data {GR[rk][63:0], GR[rd][63:0]} obtained by splicing the general-purpose registers

rk and rd into memory, and its access address is the value of the general-purpose register rj. SC.Q
instruction will check LLbit when executing, and only when LLbit is 1, then it will write, otherwise it will not

write, SC.Q instruction will write the flag of success or failure (also can be understood as the value of LLbit

when SC.Q instruction executes) into general register rd and return to the memory.

The access address of SC.Q instruction is always required to be 16-byte aligned, if this condition is not
met, a non-aligned exception will be triggered.

If the SC.Q instruction’s memory access attribute for the access address is not consistently cacheable
(CC), the result of the execution is indeterminate.

2.2.7.6. LL.ACQ.{W/D}, SC.REL.{W/D}

Instruction formats:

ll.acq.w        rd, rj
ll.acq.d        rd, rj
sc.rel.w        rd, rj
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sc.rel.d        rd, rj

LL.ACQ.{W/D} is an LL.{W/D} instruction with read-acquire semantics, that is, only when LL.ACQ.{W/D}
is executed (globally visible), all subsequent access operations can start executing (globally visible effect);

SC.REL.{W/D} is an SC.{W/D} instruction with write-release semantics, that is, only when

SC.REL.{W/D} is executed (globally visible), all access operations can start executing (globally visible
effect).

The LL.ACQ.{W/D} instruction fetches a word/double word of data symbol expansion from the specified
address in memory and writes it to the general-purpose register rd, and at the same time records the

access address and places a flag (LLbit set to 1). The SC.REL.{W/D} instruction conditionally writes the

word/double-word value of [31:0]/[63:0] in the general-purpose register rd to the specified address in
the memory, whether or not to write to the memory depends on the LLbit, and only when the LLbit is 1 does

it really generate a write action, otherwise it does not write. SC.REL instruction will write the flag of

success or failure of its execution (which can be simply understood as the LLbit value seen by the SC.REL
instruction when it is executed) into the general-purpose register rd and return it, regardless of whether it
writes to the memory or not.

During paired LL-SC execution, the following events clear the LLbit to zero:

• An ERTN instruction is executed and the KLO bit in CSR.LLBCTL is not equal to 1 at the time of
execution.

• another processor core or Cache Coherent master completes a store operation on the Cache line
corresponding to the address of the LLbit.

LL.ACQ and SC.REL instructions always require a natural alignment of the access address, if this condition
is not met a non-alignment exception is triggered.

If the LL.ACQ and SC.REL instructions direct that the store access attribute of the access address is not
cache-consistent (CC), then the result of the execution is indeterminate.

2.2.8. Barrier Instructions

2.2.8.1. DBAR

Instruction formats:

dbar        hint

The DBAR instruction is used to complete the barrier function between load/store memory access
operations. The immediate hint it carries is used to indicate the synchronization object and synchronization
degree of the barrier.

A hint value of 0 is mandatory by default, and it indicates a fully functional synchronization barrier. Only

after all previous load/store access operations are completely executed, the DBAR 0 instruction can be

executed; and only after the execution of DBAR 0 is completed, all subsequent load/store access
operations can be executed.

If there is no special function implementation, all other hint values must be executed according to hint=0.
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2.2.8.2. IBAR

Instruction formats:

ibar        hint

The IBAR instruction is used to complete the synchronization between the store operation and the
instruction fetch operation within a single processor core. The immediate hint it carries is used to indicate
the synchronization object and synchronization degree of the barrier.

A hint value of 0 is mandatory by default. It can ensure that the instruction fetch after the IBAR 0
instruction must be able to observe the execution effect of all store operations before the IBAR 0
instruction.

2.2.9. CRC Check Instructions

2.2.9.1. CRC[C].W.{B/H/W/D}.W

Instruction formats:

crc.w.b.w       rd, rj, rk
crc.w.h.w       rd, rj, rk
crc.w.w.w       rd, rj, rk
crc.w.d.w       rd, rj, rk
crcc.w.b.w      rd, rj, rk
crcc.w.h.w      rd, rj, rk
crcc.w.w.w      rd, rj, rk
crcc.w.d.w      rd, rj, rk

CRC[C]W.{B/H/W/D}.W is used to calculate the CRC-32 checksum, which stores the 32-bit cumulative

CRC checksum stored in the general register rk in the general register rj [7:0]/[15:0]/[31:0]
/[63:0] bit message, get a new 32-bit CRC checksum according to the CRC-32 checksum generation

algorithm, and write it after sign extension into the general register rd. The difference is that

CRC.W.{B/H/W/D}.W uses IEEE802.3 polynomial (polynomial value is 0xEDB88320),

CRCC.W.{B/H/W/D}.W uses Castagnoli polynomial (polynomial value is 0x82F63B78). The CRC
instructions defined in this manual only support the “LSB first” (little endian) standard, which means that
the lowest bit of data (little endian) is transmitted first, and the lowest bit of the data is mapped to the
coefficient of the most significant term of the message polynomial.

CRC.W.B.W:
    chksum = CRC32(GR[rk][31:0], GR[rj][7:0], 8, 0xEDB88320)
    GR[rd] = SignExtend(chksum, GRLEN)

CRC.W.H.W:
    chksum = CRC32(GR[rk][31:0], GR[rj][15:0], 16, 0xEDB88320)
    GR[rd] = SignExtend(chksum, GRLEN)
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CRC.W.W.W:
    chksum = CRC32(GR[rk][31:0], GR[rj][31:0], 32, 0xEDB88320)
    GR[rd] = SignExtend(chksum, GRLEN)

CRC.W.D.W:
    chksum = CRC32(GR[rk][31:0], GR[rj][63:0], 64, 0xEDB88320)
    GR[rd] = SignExtend(chksum, GRLEN)

CRCC.W.B.W:
    chksum = CRC32(GR[rk][31:0], GR[rj][7:0], 8, 0x82F63B78)
    GR[rd] = SignExtend(chksum, GRLEN)

CRCC.W.H.W:
    chksum = CRC32(GR[rk][31:0], GR[rj][15:0], 16, 0x82F63B78)
    GR[rd] = SignExtend(chksum, GRLEN)

CRCC.W.W.W:
    chksum = CRC32(GR[rk][31:0], GR[rj][31:0], 32, 0x82F63B78)
    GR[rd] = SignExtend(chksum, GRLEN)

CRCC.W.D.W:
    chksum = CRC32(GR[rk][31:0], GR[rj][63:0], 64, 0x82F63B78)
    GR[rd] = SignExtend(chksum, GRLEN)

2.2.10. Other Miscellaneous Instructions

2.2.10.1. syscall

Instruction formats:

syscall     code

Executing the SYSCALL instruction will immediately and unconditionally trigger the system call exception.

The information carried in the code field in the instruction code can be used as a parameter passed by the
exception handling routine.

2.2.10.2. break

Instruction formats:

break       code

Executing the BREAK instruction will immediately and unconditionally trigger the breakpoint exception.

The information carried in the code field in the instruction code can be used as a parameter passed by the
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exception handling routine.

2.2.10.3. ASRT{LE/GT}.D

Instruction formats:

asrtle.d        rj, rk
asrtgt.d        rj, rk

The value in general register rj and general register rk are compared as signed numbers. If the
comparison conditions are not met, an exception for address bound checking is triggered. For the

ASRTLE.D instruction, if the value in the general register rj is greater than the value in the general register

rk, an exception is triggered; for the ASRTGT.D instruction, if the value in the general register rj is less

than or equal to the value in the general register rk, an exception is triggered.

2.2.10.4. RDTIME{L/H}.W, RDTIME.D

Instruction formats:

rdtimel.w       rd, rj
rdtimeh.w       rd, rj
rdtime.d        rd, rj

The LoongArch instruction system defines-a constant frequency timer, whose main body is-a 64-bit counter

called StableCounter. StableCounter is set to 0 after reset, and then increments by 1 every counting clock

cycle. When the count reaches all 1s, it automatically wraps around to 0 and continues to increment. At the
same time, each timer has a software-configurable globally unique-number, called Counter ID. The
characteristic of the constant frequency timer is that its timing frequency remains unchanged after reset,
no matter how the clock frequency of the processor core changes.

The RDTIME{L/W}.W and RDTIME.D instructions are used to read constant frequency timer information,

the StableCounter value is written into the general register rd, and the Counter ID number information is

written into the general register rj. The difference between the three instructions is the difference in the

Stable Counter information read. RDTIMEL.W reads the [31:0] bits of the Counter, RDTIMEH.W reads the

[63:32] bits of the Counter, and RDTIME.D reads The entire 64-bit Counter value. On a 64-bit processor,

the 32-bit value read by the RDTIME{L/H}.W instruction is sign extension and written to the general

register rd. The RDTIME(L/H).W instruction is defined so that the 64-bit Counter can also be accessed on
a 32-bit processor.

2.2.10.5. cpucfg

Instruction formats:

cpucfg      rd, rj

The CPUCFG instruction is used to dynamically identify which features of LoongArch are implemented in
the running processor during the execution of the software. The realization of the functional characteristics
of these instruction systems is recorded in the series of configuration information words. One
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configuration information word can be read once the CPUCFG instruction is executed.

When using the CPUCFG instruction, the source operand register rj stores the number of the configuration
information word to be accessed, and the configuration information word information read after the

instruction is executed is written into the general register rd. In LA64, each configuration information word
is 32 bits, which is written into the result register after the sign extension.

The configuration information word contains-series of configuration bits (fields), and its record form is

CPUCFG.<configuration word number>.<configuration information mnemonic
name>[bit subscript], where the single bit configuration bit is marked as bitXX, which means The XX
bit of the configuration word; the bit under the multi-bit configuration field is marked as bitXX:YY, which

means the continuous (XX-YY+1) bit from the XX bit to the YY bit of the configuration word. For example,

the 0th bit in the configuration word No.1 is used to indicate whether to implement LA32. Record this

configuration information as CPUCFG.1.LA32[bit0], where 0x1 indicates that the font size of the
configuration information word is No.1, and LA32 indicates this configuration The mnemonic name of the

information field is called LA32, and bit 0 means that the field of LA32 is located at bit 0 of the

configuration word. The PALEN field of the number of physical address bits supported by the 11th to 4th

digits of the configuration word No.1 is recorded as CPUCFG.1.PALEN[itl1:4].

The configuration information accessible by the CPUCFG instruction in the Godson architecture is listed in

the table. CPUCFG access to undefined configuration words will read back all 0 values. The undefined field

in the defined configuration word can be read back to any value when CPUCFG is executed, and the
software should not make any interpretation of it.

Table 3. The configuration information accessible by the CPUCFG instruction

Word
number

Bit
number

Annotation Implication

0x0 31:0 PRID Processor Identity
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Word
number

Bit
number

Annotation Implication

0x1 1:0 ARCH 2’b00 indicates the implementation of simplified LA32;

2’b01 indicates the implementation of LA32;

2’b10 indicates the implementation of LA64;

2’b11 is reserved.

2 PGMMU 1 indicates that the MMU supports page mapping mode

3 IOCSR 1 indicates support for the IOCSR instruction

11:4 PALEN The supported physical address bits PALEN value minus 1

19:12 VALEN The supported virtual address bits VALEN value minus 1

20 UAL 1 indicates support for non-aligned memory access

21 RI 1 indicates support for page attribute of “Read Inhibit”

22 EP 1 indicates support for page attribute of “Execution Protection”

23 RPLV 1 indicates support for page attributes of RPLV

24 HP 1 indicates support for page attributes of huge page

25 CRC 1 indicates that support CRC instruction

That is, information such as “Loongson3A5000 @ 2.5GHz”

26 MSG_INT 1 indicates that the external interrupt uses the message
interrupt mode, otherwise it is the level interrupt line mode
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Word
number

Bit
number

Annotation Implication

2 0 FP 1 indicates support for basic floating-point instructions

1 FP_SP 1 indicates support for single-precision floating-point numbers

2 FP_DP 1 indicates support for double-precision floating-point numbers

5:3 FP_ver The version number of the floating-point arithmetic standard. 1
is the initial version number, indicating that it is compatible
with the IEEE 754-2008 standard

6 LSX 1 indicates support for 128-bit vector extension

7 LASX 1 indicates support for 256-bit vector expansion

8 COMPLEX 1 indicates support for complex vector operation instructions

9 CRYPTO 1 indicates support for encryption and decryption vector
instructions

10 LVZ 1 indicates support for virtualization expansion

13:11 LVZ_ver The version number of the virtualization hardware acceleration

specification. 1 is the initial version number

14 LLFTP 1 indicates support for constant frequency counter and timer

17:15 LLFTP_ver Constant frequency counter and timer version number. 1 is the
initial version

18 LBT_X86 1 indicates support for X86 binary translation extension

19 LBT_ARM 1 indicates support for ARM binary translation extension

20 LBT_MIPS 1 indicates support for MIPS binary translation extension

21 LSPW 1 indicates support for the software page table walking
instruction

22 LAM 1 indicates support AM* atomic memory access instruction

24 HPTW 1 indicates support Page Table Walker

25 FRECIPE 1 indicates support FRECIPE.{S/D}、FRSQRTE.{S/D}. If 128-bit
vector extension is also supported, VFRECIPE.{S/D}
、VFRSQRTE.{S/D} is supported. If 256-bit vector extension is
also supported, XVFRECIPE.{S/D}、XVFRSQRTE.{S/D} is
supported.

26 DIV32 1 indicates that DIV.W[U] and MOD.W[U] instructions on 64-bit
machines compute only the low 32-bit data of the input register

27 LAM_BH 1 indicates support AM{SWAP/ADD}[_DB].{B/H}.

28 LAMCAS 1 indicates support AMCAS[_DB].{B/H/W/D}.

29 LLACQ_SCREL 1 indicates support LLACQ.{W/D}、SCREL.{W/D}.

30 SCQ 1 indicates support SC.Q.

64



Word
number

Bit
number

Annotation Implication

3 0 CCDMA 1 indicates support for hardware Cache coherent DMA

1 SFB 1 indicates support for Store Fill Buffer (SFB)

2 UCACC 1 indicates support for ucacc win

3 LLEXC 1 indicates support for LL instruction to fetch exclusive block
function_

4 SCDLY 1 indicates support random delay function after SC

5 LLDBAR 1 indicates support LL automatic with dbar function

6 ITLBTHMC 1 indicates that the hardware maintains the consistency
between ITLB and TLB

7 ICHMC 1 indicates that the hardware maintains the data consistency
between ICache and DCache in one processor core

10:8 SPW_LVL The maximum number of directory levels supported by the
page walk instruction

11 SPW_HP_HF 1 indicates that the page walk instruction fills the TLB in half
when it encounters a large page

12 RVA 1 indicates that the software configuration can be used to
shorten the virtual address range

16:13 RVAMAX-1 The maximum configurable virtual address is shortened by -1

17 DBAR_hints 1 indicates that the non-0 value of the DBAR is implemented
according to the recommended meaning of the manual.

23 LD_SEQ_SA 1 indicates that the hardware is enabled to guarantee
sequential execution of load operations at the same address.

0x4 31:0 CC_FREQ Constant frequency timer and the crystal frequency
corresponding to the clock used by the timer

0x5 15:0 CC_MUL Constant frequency timer and the corresponding multiplication
factor of the clock used by the timer

31:16 CC_DIV Constant frequency timer and the division coefficient
corresponding to the clock used by the timer

0x6 0 PMP 1 indicates support for the performance counter

3:1 PMVER In the performance monitor, the architecture defines the

version number of the event, and 1 is the initial version

7:4 PMNUM Number of performance monitors minus 1

13:8 PMBITS Number of bits of a performance monitor minus 1

14 UPM 1 indicates support for reading performance counter in user
mode
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Word
number

Bit
number

Annotation Implication

0x10 0 L1 IU_Present 1 indicates that there is a first-level instruction Cache or a first-
level unified Cache

1 L1 IU Unify 1 indicates that the Cache shown by L1 IU_Present is the
unified Cache

2 L1 D Present 1 indicates there is a first-level data Cache

3 L2 IU Present 1 indicates there is a second-level instruction Cache or a
second-level unified Cache

4 L2 IU Unitfy 1 indicates that the Cache shown by L2 IU_Present is the
unified Cache

5 L2 IU Private 1 indicates that the Cache shown by L2 IU_Present is
private to each core

6 L2 IU Inclusive 1 indicates that the Cache shown by L2 IU_Present has an
inclusive relationship to the lower levels (L1)

7 L2 D Present 1 indicates there is a secondary data Cache

8 L2 D Private 1 indicates that the secondary data Cache is private to each
core

9 L2 D Inclusive 1 indicates that the secondary data Cache has a containment
relationship to the lower level (L1)

10 L3 IU Present 1 indicates there is a three-level instruction Cache or a three-
level system Cache

11 L3 IU Unify 1 indicates that the Cache shown by L3 IU_Present is
unified Cache

12 L3 IU Private 1 indicates that the Cache shown by L3 IU_Present is
private to each core

13 L3 IU Inclusive 1 indicates that the Cache shown by L3 IU_Present has an
inclusive relationship to the lower levels (L1 and L2)

14 L3 D Present 1 indicates there is a three-level data Cache

15 L3 D Private 1 indicates that the three-level data Cache is private to each
core

16 L3 D Inclusive 1 indicates that the three-level data Cache has an inclusive
relationship to the lower levels (L1 and 12)

0x11 15:0 Way-1 Number of channels minus 1 (Cache corresponding to L1
IU_Present in configuration word 10)

23:16 Index-log2 log2(number of Cache rows per channel) (Cache

corresponding to L1 IU_Present in configuration word 10)

30:24 Linesize-log2 log2(Cache line bytes) (Cache corresponding to L1
IU_Present in configuration word 10)
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Word
number

Bit
number

Annotation Implication

0x12 15:0 Way-1 Number of channels minus 1 (Cache corresponding to L1 D
Present in configuration word 10)

23:16 Index-log2 log2(number of Cache rows per channel) (Cache

corresponding to L1 D Present in configuration word 10)

30:24 Linesize-log2 log2(Cache row bytes) (Cache corresponding to L1 D
Present in configuration word 10)

0x13 15:0 Way-1 Number of channels minus 1 (Cache corresponding to L2 IU
Present in configuration word 10)

23:16 Index-log2 log2(number of Cache rows per channel) (Cache

corresponding to L2 IU Present in configuration word 10)

30:24 Linesize-log2 log2(Cache row bytes) (Cache corresponding to L2 IU
Present in configuration word 10)

0x14 15:0 Way-1 Number of channels minus 1 (Cache corresponding to L3 IU
Present in configuration word 10)

23:16 Index-log2 log2(number of Cache rows per channel) (Cache

corresponding to L3 IU Present in configuration word 10)

30:24 Linesize-log2 log2(Cache row bytes) (Cache corresponding to L3 IU
Present in configuration word 10)
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Chapter 3. Basic Floating-Point Instructions
This chapter will introduce the floating-point number instructions in the basic part of the non-privileged
subset of LoongArch. The function definition of the basic floating-point instructions in LoongArch follows
the IEEE 754-2008 standard.

Basic floating-point instructions cannot be implemented separately from basic integer instructions.
Generally speaking, it recommends that implementing both basic integer instructions and basic floating-
point instructions at the same time. However, for some embedded applications that are cost-sensitive and
have extremely low floating-point processing performance requirements, the architecture specification also
allows not to implement basic floating-point instructions, or only implement single-precision floating-point
numbers and word integers in basic floating-point instructions. Whether the implementation of basic
floating-point instructions includes instructions for operating double-precision floating-point numbers and
double-word integers has nothing to do with whether the architecture is LA32 or LA64.

3.1. Programming Model of Basic Floating-Point Instructions

The basic floating-point instruction programming model described in this section only involves the content
that application software developers need to pay attention to. When software personnel use basic floating-
point instructions to program, they are on the basis of the basic integer instruction programming model,
and then proceed to involve the content described in this section.

3.1.1. Floating-Point Data Types

Floating-point data types include single-precision floating-point numbers and double-precision floating-
point numbers, both of which follow the definition in the IEEE 754-2008 standard specification.

3.1.1.1. Single-precision Floating-point

Single-precision floating-point numbers have a length of 32 bits and are organized into the following
format:

Figure 3. Single-precision floating-point number format

According to the different values of the fields of S, Exponent and Fraction, the floating-point number
values represented are shown in the table:

Table 4. Single-precision floating-point number calculation method

Exponent Fraction S bit[22] V

0 0 0 0 +0

1 0 -0

0 !=0 0 Any value Denormalized number, the value is +2-

126×(0.Fraction)

1 Any value Denormalized number, the value is -2-

126×(0.Fraction)
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Exponent Fraction S bit[22] V

[1,0xFE] Any value 0 Any value Normalized number, the value is +2Exponent-

127×(1.Fraction)

1 Any value Normalized number, the value is -2Exponent-

127×(1.Fraction)

0xFF 0 0 0 +∞

1 0 -∞

0xFF !=0 Any value 0 Signaling Not a Number, SNaN

Any value 1 Quiet Not a Number, QNaN

For the specific meaning of ±∞, SNaN and QNaN, please refer to the IEEE 754-2008 standard specification.

3.1.1.2. Double-precision Floating-point

Figure 4. Double-precision floating-point number format

According to the different values of the fields of S, Exponent and Fraction, the floating-point number
values represented are shown in the table:

Table 5. Double-precision floating-point number calculation method

Exponent Fraction S bit[51] V

0 0 0 0 +0

1 0 -0

0 !=0 0 Any value Denormalized number, the value is +2-

1022×(0.Fraction)

1 Any value Denormalized number, the value is -2-

1022×(0.Fraction)

[1,0x7FE] Any value 0 Any value Normalized number, the value is +2Exponent-

1023×(1.Fraction)

1 Any value Normalized number, the value is -2Exponent-

1023×(1.Fraction)

0x7FF 0 0 0 +∞

1 0 -∞

0x7FF !=0 Any value 0 Signaling Not a Number, SNaN

Any value 1 Quiet Not a Number, QNaN

For the specific meaning of ±∞, SNaN and QNaN, please refer to the IEEE 754-2008 standard specification.
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3.1.1.3. Non-numerical Result of Instructions

The non-numerical results produced by floating-point number instructions either come from NaN
propagation or are directly generated. There are two situations where NaN propagation is required.

Case 1: When the instruction generates an Invalid Operation floating-point exception due to a source
operand containing SNaN, but the InvalidOperation floating-point exception enable is invalid, a QNaN result
will be generated at this time. The value of this QNaN is to select the SNaN with the highest priority in the
source operand and propagate it to the corresponding NaN.

The rule for determining the priority of the source operand is: if there are two source operands fj and fk,

then the priority of fj is higher than fk; if there are three source operands fa, fj and fk, then the priority

of fa is higher than fj, fj have higher priority than fk.

The value generation rules for propagation of SNaN to QNaN are as follows:

• If the result is the same length as the source operand, then the highest position of the SNaN mantissa

will be propagated to 1, and the remaining bits remain unchanged. If the result is narrower than the
source operand, then keep the high bits of the mantissa, discard the low bits that exceed the range, and

finally set the highest bit of the mantissa to 1.

• If the result is wider than the source operand, then the lowest bit of the mantissa will be filled with 0,

and finally the highest position of the mantissa will be 1.

Case 2: When there is no SNaN in the source operand but QNaN exists, the QNaN with the highest priority is
selected as the result of this instruction. At this time, the way of judging the priority of the source operand
is the same as in the above situation.

Except for the above two cases, other cases that need to produce QNaN results will be directly set to the

default QNaN value. The default single-precision QNaN value is 0x7FC00000, and the default double-

precision QNaN value is 0x7FF8000000000000.

3.1.2. Fixed-Point Data Types

Some floating-point instructions (such as floating-point conversion instructions) also manipulate fixed-
point data, including Word (W, length 32b), and Longword (L, length 64b). Both word and longword data
types use two’s complement encoding.

3.1.3. Registers

Floating-point instruction programming involves registers such as Floating-point Register (FR), Condition
Flag Register (CFR) and Floatingpoint Control and Status Register (FCSR).

3.1.3.1. Floating-point Registers

There are 32 FRs, denoted as f0-f31, each of which can be read and written. Only when only floating-point
instructions that manipulate single-precision floating-point numbers and word integers are implemented,
the length of FR is 32 bits. Under normal circumstances, the length of FR is 64 bits, regardless of the LA32
or LA64. There is an “orthogonal” relationship between basic floating-point instructions and floating-point
registers, that is, from an architectural perspective, any floating-point register operand in these instructions
can use any one of the 32 FRs.
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Figure 5. Floating-point Registers

When the floating-point register records a single-precision floating-point number or word integer, the data

always appears in the [31:0] bits of the floating-point register, at this time the [63:32] bits of the
floating-point register can be any value.

3.1.3.2. Condition Flag Register

There are 8 CFRs, denoted as fcc0-fcc7, each of which can be read and written. The length of CFR is 1 bit.
The result of the floating-point comparison will be written into the condition flag register. When the

comparison result is true, it is set to 1, otherwise it is set to 0. The judgment condition of the floating-point
branch instruction comes from the condition register.

3.1.3.3. Floating-point Control and Status Register

There are 4 FCSRs, denoted as fcsr0-fcsr3. Among them, fcsr1-fcsr3 are aliases of some fields in

fcsr0, that is, accessing fcsrl-fcsr3 is actually accessing some fields of fcsr0. When the software

writes fcsr1-fcsr3, the corresponding field in fcsr0 is modified while the remaining bits remain

unchanged. The definition of each field of fcsr0 is shown in the table.

Table 6. Definitions of FCSR0 Register Fields

Bits Name Read&writ
e

Description

4:0 Enables RW The floating-point operation VZOUI exceptions each allow the enable
bit to trigger the exception trap.

Bit 4 corresponds to V, bit 3 corresponds to Z, bit 2 corresponds to O,

bit 1 corresponds to U, and bit 0 corresponds to I.

9:8 RM RW Rounding mode control. It contains 4 legal values, each with the
following meaning:

0: RNE, corresponding to roundTiesToEven in IEEE 754-2008;

1: RZ, corresponding to roundTowardZero in IEE 754-2008;

2: RP, corresponding to roundTowardsPositive in IEEE 754-2008;

3: RM, corresponding to roundTowardsNegative in IEEE 754-2008.
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Bits Name Read&writ
e

Description

20:16 Flags RW Since the last time the Flags field was cleared by the software, the

cumulative status of various floating-point operations VZOUI
exceptions that were generated but not caught.

Bit 20 corresponds to V, bit 19 corresponds to Z, bit 18 corresponds

to O, bit 17 corresponds to U, and bit 16 corresponds to I.

28:24 Cause RW The VZOUI exception caused by the last floating-point operation.

Bit 28 corresponds to V, bit 27 corresponds to Z, bit 26 corresponds

to O, bit 25 corresponds to U, and bit 24 corresponds to I.

FCSR1 is the alias of the Enables field in FCSR0. Its location is the same as in FCSR0.

FCSR2 is the alias of the Cause and Flags fields in FCSR0. The location of each field is consistent with

FCSR0.

FCSR3 is the alias of the RM field in FCSR0. Its location is the same as in FCSR0.

3.1.4. Floating-Point Exceptions

Floating-point exception means that when the floating-point processing unit cannot process the operand or
the result of floating-point calculation in a conventional manner, the floating-point functional unit will
generate a corresponding exception.

The basic floating-point instructions support five floating-point exceptions defined by IEEE 754-2008:

• Inexact (I)

• Underflow (U)

• Overflow (O)

• Division by Zero (Z)

• Invalid Operation (V)

Each bit of the Cause field in FCSR0 corresponds to the above-mentioned exceptions. After the execution
of each floating-point instruction, the occurrence of its exception will be updated to the Cause field of

FCSR0.

FCSR0 also contains an enable bit (Enables field) for each floating-point exception. The enable bit
determines whether an exception generated by the floating-point processing unit will trigger an exception

trap or set a status flag. When a floating-point exception occurs, if its corresponding Enable bit is 1, then a

floating-point exception trap will be triggered; if its corresponding Enable bit is 0, then the floating-point

exception trap will not be triggered, but Set the corresponding position of the Flag field in FCSR0 to 1.

During the execution of a floating-point instruction, multiple floating-point exceptions can be generated at
the same time.

When a floating-point exception is generated during the execution of a floating-point instruction but the
floating-point exception is not triggered, the floating-point processing unit will generate a default result.
Different exceptions produce default results in different ways. The table lists specific generation rules.

Table 7. Default results of floating-point exceptions
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Area Descriptio
n

Rounding
mode

Default result

I Inexact Any mode The result after rounding or the result after overflow

U Underflow RNE The result after rounding may be 0, subnormal, the normal number

with the smallest absolute value (single-precision: ±2-126
, double-

precision: ±2-1022
)

RZ The result after rounding, may be 0, subnormal

RP The rounded result may be 0, subnormal, the smallest positive normal

number (single-precision: +2-126
, double-precision: +2-1022

)

RM The rounded result may be 0, subnormal, the largest negative normal

number (single-precision: -2-126
, double-precision: -2-1022

)

O Overflow RNE Set the result to +∞ or -∞ according to the sign of the intermediate
result

RZ Set the result to the maximum number according to the sign of the
intermediate result

RP Correct negative overflow to the smallest negative number, and

correct positive overflow to +∞

RM Correct the positive overflow to the largest positive number, and

correct the negative overflow to -∞

Z Division by
Zero

Any mode Provide a corresponding signed infinity number

V InValid
Operation

Any mode Provide a QNaN

3.1.4.1. Illegal Operation Exception (V)

An invalid operation exception notification signal will be sent if and only if there is no valid defined result. If
no exception is triggered, a QNaN will be generated. Please refer to Characteristics of Accessing Control
and Status Registers of the IEEE 754-2008 specification for specific determination details of extraordinary
operation exceptions.

If an exception is allowed to fall into: the result register is not modified, the source register remains.

If exceptions are prohibited from trapping: If no other exceptions occur, QNaN is written to the target
register.

3.1.4.2. Division by Zero Exception (Z)

In the division operation, when the divisor is 0 and the dividend is-a limited non-zero data, the division by
zero exception is signaled.

If an exception is allowed to fall into: the result register is not modified, the source register remains

If an exception is forbidden to fall into: if no trap occurs, the result is a signed infinite value.

3.1.4.3. Overflow Exception (O)

Regarding the exponent field as an unbounded rounding of the intermediate result, when the absolute value
of the result obtained exceeds the maximum finite number of the target format, an overflow exception will
be notified.(This exception sets both inexact exception and flag bit)
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If an exception is allowed to fall into: the result register is not modified, the source register remains.

If exceptions are forbidden to fall into: If no trap occurs, the final result is determined by the rounding mode
and the sign of the intermediate result.

3.1.4.4. Underflow Exception (U)

When the detection result is a small non-zero value, an underflow exception will occur. The way to detect

small non-zero values is to detect after rounding. that is, for a non-zero result is in (-2Emin, 2Emin), the

result is considered to be a small non-zero value (Single-precision number Emin=-126, double-precision

number Emin=-1022). When FCSR.Enable.U=0, if the result is detected, a non-zero tiny value:

1. If the final rounded result of the floating-point operation is inaccurate, both U and I in FCSR.Cause
should be set to 1;

2. If the final rounded result of the floating-point operation is accurate, then U and I in FCSR.Cause are

not set to 1.

When FCSR.Enable.U=1, if the result is a non-zero tiny value, regardless of whether the final rounded
result of the floating-point operation is accurate or inaccurate, it will trigger a floating-point exception trap.

3.1.4.5. Inexact Exception (I)

FPU generates inaccurate exceptions when the following situations occur:

• Rounding result is imprecise.

• The rounding result overflows, and the enable bit of the overflow exception is not set.

If an exception is allowed to fall: If an inexact exception trap is enabled, the result register is not modified
and the source register is retained. Because this execution mode affects performance, inaccurate
exception traps are only enabled when necessary.

If an exception is prohibited, trapping is prohibited: If no other software trap occurs, the rounding or
overflow result is sent to the destination register.

3.2. Overview of Floating-Point Instructions

The instructions described in this section, except for FLDX.{S/D}, FSTX.{S/D}, FLD{GT/LE}.{S/D}
and FST{GT/LE}.{S/D} these 12 The floating-point memory access instructions only belong to the LA64,
and all other floating-point instructions are applicable to both LA32 and LA64.

3.2.1. Floating-Point Arithmetic Operation Instructions

3.2.1.1. F{ADD/SUB/MUL/DIV}.{S/D}

Instruction formats:

fadd.s      fd, fj, fk
fadd.d      fd, fj, fk
fsub.s      fd, fj, fk
fsub.d      fd, fj, fk
fmul.s      fd, fj, fk
fmul.d      fd, fj, fk
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fdiv.s      fd, fj, fk
fdiv.d      fd, fj, fk

The FADD.{S/D} instruction performs the operation that the single-precision/double-precision floating-

point number in the floating-point register fj plus the single-precision/double-precision floating-point

number in the floating-point register fk; then writes the result of the single-precision/double-precision

floating-point number to floating-point register fd. Floating-point addition operation follows the

specification of addition(x,y) operation in the IEEE 754-2008 standard.

FADD.S:
    FR[fd][31:0] = FP32_addition(FR[fj][31:0], FR[fk][31:0])

FADD.D:
    FR[fd] = FP64_addition(FR[fj], FR[fk])

The FSUB.{S/D} instruction performs the operation that the single-precision/double-precision floating-

point number in the floating-point register fj minus the single-precision/double-precision floating-point

number in the floating-point register fk, and write the result of the single-precision/double-precision

floating-point number to floating-point register fd. The floating-point subtraction operation follows the

subtraction(xy) operation specification in the IEEE 754-2008 standard.

FSUB.S:
    FR[fd][31:0] = FP32_subtraction(FR[fj][31:0], FR[fk][31:0])

FSUB.D:
    FR[fd] = FP64_subtraction(FR[fj], FR[fk])

The FMUL.{S/D} instruction performs the operation that multiplies the single-precision/double-precision

floating-point number in the floating-point register fj by the single-precision/double-precision floating-

point number in the floating-point register fk, and writes the result of the single-precision/double-precision

floating-point number To the floating-point register fd. The floating-point multiplication operation follows

the multiplication(xy) operation specification in the IEE 754-2008 standard.

FMUL.S:
    FR[fd][31:0] = FP32_multiplication(FR[fj][31:0], FR[fk][31:0])

FMUL.D:
    FR[fd] = FP64_multiplication(FR[fj], FR[fk])

The FDIV.{S/D} instruction performs the operation that divides the single-precision/double-precision

floating-point number in the floating-point register fj by the single-precision/double-precision floating-

point number in the floating-point register fk, and writes the result of the single-precision/double-precision

floating-point number To the floating-point register fd. The floating-point division operation follows the

division(x, y) operation specification in the IEEE 754-2008 standard.

75



FDIV.S:
    FR[fd][31:0] = FP32_division(FR[fj][31:0], FR[fk][31:0])

FDIV.D:
    FR[fd] = FP64_division(FR[fj], FR[fk])

When the operand is a single-precision floating-point number, the upper 32 bits of the resulting floating-
point register can be any value.

3.2.1.2. F{MADD/MSUB/NMADD/NMSUB}.{S/D}

Instruction formats:

fmadd.s     fd,fj,fk,fa
fmadd.d     fd,fj,fk,fa
fmsub.s     fd,fj,fk,fa
fmsub.d     fd,fj,fk,fa
fnmadd.s    fd,fj,fk,fa
fnmadd.d    fd,fj,fk,fa
fnmsub.s    fd,fj,fk,fa
fnmsub.d    fd,fj,fk,fa

The FMADD.{S/D} instruction performs the operation that multiplies the single-precision/double-precision

floating point number in floating point register fj with the single-precision/double-precision floating point

number in floating point register fk. The result is added to the single-precision/double-precision floating

point number in the floating point register fa. The result of the single-precision/double-precision floating

point number is written to the floating point register fd

FMADD.S:
    FR[fd][31:0] = FP32_fusedMultiplyAdd(FR[fj][31:0], FR[fk][31:0],
FR[fa][31:0])

FMADD.D:
    FR[fd] = FP64_fusedMultiplyAdd(FR[fj], FR[fk], FR[fa])

The FMSUB.{S/D} instruction performs the operation that multiplies the single-precision/double-precision

floating-point number in the floating-point register fj with the single-precision/double-precision floating-

point number in the floating-point register fk, the result minus the floating-point register fa Single-
precision/double-precision floating-point numbers, the single-precision/double-precision floating-point

number results obtained are written into the floating-point register fd.

FMSUB.S:
    FR[fd][31:0] = FP32_fusedMultiplyAdd(FR[fj][31:0], FR[fk][31:0],
-FR[fa][31:0])
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FMSUB.D:
    FR[fd] = FP64_fusedMultiplyAdd(FR[fj], FR[fk], -FR[fa])

The FNMADD.{S/D} instruction performs the operation that multiplies the single-precision/double-

precision floating-point number in the floating-point register fj with the single-precision/double-precision

floating-point number in the floating-point register fk, the result plus the single-precision/double-precision

floating-point number in the floating-point register fa Precision/double-precision floating-point number, the
obtained single-precision/double-precision floating-point number result is negative and written into the

floating-point register fd.

FNMADD.S:
    FR[fd][31:0] = -FP32_fusedMultiplyAdd(FR[fj][31:0], FR[fk][31:0],
FR[fa][31:0])

FNMADD.D:
    FR[fd] = -FP64_fusedMultiplyAdd(FR[fj], FR[fk], FR[fa])

The FNMSUB.{S/D} instruction performs the operation that multiplies the single-precision/double-

precision floating-point number in the floating-point register fj with the single-precision/double-precision

floating-point number in the floating-point register fk, the result minus the floating-point register fa Single-
precision/double-precision floating-point number, the result of the single-precision/double-precision

floating-point number obtained is negative and written into the floating-point register fd.

FNMSUB.S:
    FR[fd][31:0] = -FP32_fusedMultiplyAdd(FR[fj][31:0], FR[fk][31:0],
-FR[fa][31:0])

FNMSUB.D:
    FR[fd] = -FP64_fusedMultiplyAdd(FR[fj], FR[fk], -FR[fa])

The above four floating-point fusion multiply-add operations follow the specification of the
fusedMultiplyAdd(xy,z) operation in the IEEE 754-2008 standard.

3.2.1.3. F{MAX/MIN}{S/D}

Instruction formats:

fmax.s      fd, fj, fk
fmax.d      fd, fj, fk
fmin.s      fd, fj, fk
fmin.d      fd, fj, fk

The FMAX.{S/D} instruction selects the larger of the single-precision/double-precision floating-point

number in the floating-point register fj and the single-precision/double-precision floating-point number in
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the floating-point register fk to write into the floating-point register fd. The operation of these two

instructions follows the specification of maxNum(x,y) operation in the IEEE 754-2008 standard.

FMAX.S:
    FR[fd][31:0] = FP32_maxNum(FR[fj][31:0], FR[fk][31:0])

FMAX.D:
    FR[fd] = FP64_maxNum(FR[fj], FR[fk])

The FMIN.{S/D} instruction selects the smaller of the single-precision/double-precision floating-point

number in the floating-point register fj and the single-precision/double-precision floating-point number in

the floating-point register fk to write into the floating-point register fd. The operation of these two

instructions follows the minNum(x,y) operation specification in the IEEE 754-2008 standard.

FMIN.S:
    FR[fd][31:0] = FP32_minNum(FR[fj][31:0], FR[fk][31:0])

FMIN.D:
    FR[fd] = FP64_minNum(FR[fj], FR[fk])

3.2.1.4. F{MAXA/MINA}.{S/D}

Instruction formats:

fmaxa.s     fd, fj, fk
fmaxa.d     fd, fj, fk
fmina.s     fd, fj, fk
fmina.d     fd, fj, fk

The FMAXA.{S/D} instruction selects the larger absolute value of the single-precision/double-precision

floating-point number in the floating-point register fj and the single-precision/double-precision floating-

point number in the floating-point register fk to write to the floating-point register fd. The floating-point

addition operation follows the specification of maxNumMag(x.v) operation in IEEE 754-2008 standard.

FMAXA.S:
    FR[fd][31:0] = FP32_maxNumMag(FR[fj][31:0], FR[fk][31:0])

FMAXA.D:
    FR[fd] = FP64_maxNumMag(FR[fj], FR[fk])

The FMINA.{S/D} instruction selects the smaller absolute value of the single-precision/double-precision

floating-point number in the floating-point register fj and the single-precision/double-precision floating-

point number in the floating-point register fk to write to the floating-point register fd. The floating-point
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addition operation follows the specification of minNumMag(x,y) operation in IEEE 754-2008 standard.

FMINA.S:
    FR[fd][31:0] = FP32_minNumMag(FR[fj][31:0], FR[fk][31:0])

FMINA.D:
    FR[fd] = FP64_minNumMag(FR[fj], FR[fk])

3.2.1.5. F{ABS/NEG}.{S/D}

Instruction formats:

fabs.s      fd, fj
fabs.d      fd, fj
fneg.s      fd, fj
fneg.d      fd, fj

The FABS.{S/D} instruction selects the single-precision/double-precision floating-point number in the

floating-point register fj, takes its absolute value(that is, the symbol position is 0, and other parts remain

unchanged), and writes it into the floating-point register fd. Floating-point addition operations follow the

specification of abs(x) operation in the EEE 754-2008 standard.

FABS.S:
    FR[fd][31:0] = FP32_abs(FR[fj][31:0])

FABS.D:
    FR[fd] = FP64_abs(FR[fj])

The FNEG.{S/D} instruction selects the single-precision/double-precision floating-point number in the

floating-point register fj, takes the opposite number(that is, inverts the sign bit, and other parts remain

unchanged), and writes it into the floating-point register fd. Floating-point addition operations follow the
negate(x) operation specification in the EEE 754-2008 standard.

FNEG.S:
    FR[fd][31:0] = FP32_negate(FR[fj][31:0])

FNEG.D:
    FR[fd] = FP64_negate(FR[fj])

3.2.1.6. F{SQRT/RECIP/RSQRT}.{S/D}

Instruction formats:
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fsqrt.s         fd, fj
fsqrt.d         fd, fj
frecip.s        fd, fj
frecip.d        fd, fj
frsqrt.s        fd, fj
frsqrt.d        fd, fj

These instructions are operations related to square root and reciprocal.

The FSQRT.{S/D} instruction selects the single-precision/double-precision floating-point number in the

floating-point register fj, and writes the single-precision/double-precision floating-point number obtained

after the square root to the floating-point register fd. The floating-point root operation follows the

squareRoot(x) operation specification in the IEEE 754-2008 standard.

FSQRT.S:
    FR[fd][31:0] = FP32_squareRoot(FR[fj][31:0])

FSQRT.D:
    FR[fd] = FP64_squareRoot(FR[fj])

The FRECIP.{S/D} instruction selects the single-precision/double-precision floating-point number in the

floating-point register fj, divides the floating-point number by 1.0, and writes the resulting single-

precision/double-precision floating-point number into the floating-point register fd. It is equivalent to the

division(1.0, x) operation in the IEEE 754-2008 standard.

FRECIP.S:
    FR[fd][31:0] = FP32_division(1.0,FR[fj][31:0])

FRECIP.D:
    FR[fd] = FP64_division(1.0,FR[fj])

The FRSQRT.{S/D} instruction selects the single-precision/double-precision floating-point number in the

floating-point register fj, takes its square root and then divides the obtained single-precision/double-
precision floating-point number by 1.0, and the obtained single-precision/double-precision floating-point

number is written to the floating-point register fd. The floating-point squared-inverse operation follows the

specification of rSqrt(x) operation in IEEE 754-2008 standard.

FRSQRT.S:
    FR[fd][31:0] = FP32_division(1.0, FP_squareRoot(FR[fj][31:0]))

FRSQRT.D:
    FR[fd] = FP64_division(1.0, FP_squareRoot(R[fj]))

80



3.2.1.7. F{SCALEB/LOGB/COPYSIGN}.{S/D}

Instruction formats:

fscaleb.s       fd, fj, fk
fscaleb.d       fd, fj, fk
flogb.s         fd, fj
flogb.d         fd, fj
fcopysign.s     fd, fj, fk
fcopysign.d     fd, fj, fk

The FSCALEB.{S/D} instruction selects the single-precision/double-precision floating point number a in

the floating point register fj, Then take the word/double word integer N in the floating point register fk,
and calculate a*2N, The obtained single-precision/double-precision floating point number is written to the

floating point register fd. These two instructions follow the IEEE754-2008 standard scaleB(x, N)
operation specification.

FSCALEB.S:
    FR[fd][31:0] = FP32_scaleB(FR[fj][31:0], FR[fk][31:0])

FSCALEB.D:
    FR[fd] = FP64_scaleB(FR[fj], FR[fk])

The FLOGB.{S/D} instruction selects the single-precision/double-precision floating-point number in the

floating-point register fj, calculates its logarithm based on 2, and writes the obtained single-

precision/double-precision floating-point number into the floating-point register fd . Floating-point

exponential operations follow the specification of logB(x) operation in the IEEE 754-2008 standard.

FLOGB.S:
    FR[fd][31:0] = FP32_logB(FR[fj][31:0])

FLOGB.D:
    FR[fd] = FP64_logB(FR[fj])

The FCOPYSIGN.{S/D} instruction selects the single-precision/double-precision floating-point number in

the floating-point register fj, and changes its sign bit to the sign bit of the single-precision/double-

precision floating-point number in the floating-point register fk, and the new one is obtained Single-

precision/double-precision floating-point numbers are written into the floating-point register fd. The

floating-point copy sign operation follows the specification of copySign(x, y) operation in the IEEE 754-
2008 standard.

FCOPYSIGN.S:
    FR[fd][31:0] = FP32_copySign(FR[fi][31:01, FR[fk][31:0]])

FCOPYSIGN.D:
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    FR[fd] = FP64_copySign(FR[fj], FR[fk])

3.2.1.8. FCLASS.{S/D}

Instruction formats:

fclass.s    fd, fj
fclass.d    fd, fj

This instruction judges the category of the floating-point number in the floating-point register fj. The result
of the judgment is composed of 10 bits of information. The meaning of each bit is shown in the following
table:

Table 8. Results of floating-point classification

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9

SNaN QNaN Negative value Positive value

∞ Normal Subnorm
al

0 ∞ Normal Subnorm
al

0

When the determined data meets the condition corresponding to a certain bit, the corresponding bit of the

result information vector will be set to 1. This instruction corresponds to the class(x) function in the
IEEE-754-2008 standard.

FCLASS.S:
    FR[fd][31:0] = FP32_class(FR[fj][31:0])

FCLASS.D:
    FR[fd] = FP64_class(FR[fj])
    sedMultiplyAdd(FR[fj], FR[fk], FR[fa])

3.2.1.9. F{RECIPE/RSQRTE}.{S/D}

Instruction formats:

frecipe.s           fd, fj
frecipe.d           fd, fj
frsqrte.s           fd, fj
frsqrte.d           fd, fj

The FRECIPE.{S/D} instruction selects the single-precision or double-precision floating-point number in

the floating-point register fj, calculates the single-precision or double-precision floating-point number

approximation obtained by dividing the floating-point number by 1.0, and writes the approximation to the

floating-point register fd . The relative error of the approximation is less than 2^-14.

When the input value is 2^N, the output value is 2^-N. The results when the input value is QNaN, SNaN, ±∞,
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±0, the conditions for generating floating-point exceptions, and the default results when floating-point

exceptions are generated without triggering exceptions are the same as those of the FRECIP.{S/D}
instruction.

FRECIPE.S:
    FR[fd][31:0] = FP32_reciprocal_estimate(FR[fj][31:0])
FRECIPE.D:
    FR[fd] = FP64_reciprocal_estimate(FR[fj])

FRSQRTE.{S/D} instruction selects the single/double precision floating point number in the floating point

register fj, first extract the Square Root it, and then divides the approximate result by 1.0, and then writes

the obtained single/double precision floating point number into the floating point register fd. The relative

error of the obtained approximation is less than 2^-14.

When the input value is 2^2N, the output value is 2^-N. The results when the inputs are QNaN, SNaN, ±∞,

and ±0, the conditions for generating floating-point exceptions, and the default results when floating-point

exceptions are generated but not triggered are the same as those of the FRSQRT.{S/D} instruction.

FRSQRTE.S:
    FR[fd][31:0] = FP32_reciprocal_squareroot_estimate(FR[fj][31:0])
FRSQRTE.D:
    FR[fd] = FP64_reciprocal_squareroot_estimate(FR[fj])

3.2.2. Floating-Point Comparison Instructions

3.2.2.1. FCMP.cond.{S/D}

Instruction formats:

fcmp.cond.s    cc, fj, fk
fcmp.cond.d    cc, fj, fk

This is a floating-point comparison instruction, which stores the result of the comparison into the specified

status code (CC). There are 22 types of cond for this instruction. These comparison conditions and
judgment standards are listed in the following table.

Table 9. Floating-point comparison conditions and judgment standards
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Mnemoni
c

Cond Meaning True
Conditio

n

QNaN
Exceptio

n

IEEE 754-2008 Funtion

CAF 0x0 None None No

CUN 0x8 Incomparable UN compareQuietUnordered

CEQ 0x4 Equal EQ compareQuietEqual

CUEQ 0xC Equal or
incomparable

UN EQ

CLT 0x2 Less than IT compareQuietLess

CULT 0xA Less than or
incomparable

UN LT compareQuietLessUnordered

CLE 0x6 Less than or equal
to

LT EQ compareQuietLessEqual

CULE 0xE Less than or equal
to or incomparable

UN LT
EQ

compareQuietNotGreater

CNE 0x10 Vary GT LT

COR 0x14 Orderly GT LT
EQ

CUNE 0x18 Incomparable or
unequal

UN GT
LT

compareSignalingNotEqual

SAF 0x1 None None Yes

SUN 0x9 Is not greater than
or equal to

UN

SEQ 0x5 equal EQ compareSignalingEqual

SUEQ 0xD Not greater than or
less than

UN EQ

SLT 0x3 Less than IT compareSignalingLess

SULT 0xB Is not greater than
or equal to

UN LT compareSignalingLessUnordered

SLE 0x7 Less than or equal
to

IT EQ compareSignalingLessEqual

SULE 0xF Not greater than UN LT
EQ

compareSignalingNotGreater

SNE 0x11 Vary GT LT

SOR 0x15 Orderly GT LT
EQ

SUNE: 0x19 Incomparable or
unequal

UN GT
LT

Note: UN means no comparison, EQ means equal, IT means less than. When there is at least one NaN in
two operands, the two numbers cannot be compared.

84



3.2.3. Floating-Point Conversion Instructions

3.2.3.1. FCVT.S.D, FCVT.D.S

Instruction formats:

fcvt.s.d    fd, fj
fcvt.d.s    fd, fj

The FCVT.S.D instruction performs the operation that the double-precision floating-point number in the

floating-point register fj to be converted into a single-precision floating-point number, and the obtained

single-precision floating-point number is written into the floating-point register fd.

FCVT.S.D:
    FR[fd][31:0] = FP32_convertFormat(FR[fj], FP64)

The FCVT.D.S instruction performs the operation that the single-precision floating-point number in the

floating-point register fj to be converted into a double-precision floating-point number, and the obtained

double-precision floating-point number is written into the floating-point register fd.

FCVT.D.S:
    FR[fd] = FP64_convertFormat(FR[fj][31:0], FP32)

The floating-point format conversion operation follows the specification of the convertFormat(x)
operation in the IEEE 754-2008 standard.

3.2.3.2. FFINT{S/D}.{W/L}, FTINT.{W/L}.{S/D}

Instruction formats:

ffint.s.w       fj
ffint.s.I       fj
ffint.d.w       fj
ffint.d.I       fj
ftint.w.s       fj
ftint.w.d       fj
ftint.l.s       fj
ftint.l.d       fj

The FFINT{S/D}.{W/L} instruction selects the integer/long-integer fixed-point number in the floating-

point register fj and converts it into a single-degree/double-precision floating-point number, and the

obtained single-precision/double-precision floating-point number is written to Floating-point register fd.

This floating-point format conversion operation follows the convertFromInt(x) operation specification
in the EEE 754-2008 standard.
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FFINT.S.W:
    FR[fd][31:0] = FP32_convertFromInt(FR[fj][31:0], SINT32)

FFINT.S.L:
    FR[fd][31:0] = FP32_convertFromInt(FR[fj], SINT64)

FFINT.D.W:
    FR[fd] = FP64_convertFromInt(FR[fj][31:0], SINT32)

FFINT.D.L:
    FR[fd] = FP64_convertFromInt(FR[fj], SINT64)

FTINT{W/L}.{S/D} instruction selects the single-degree/double-precision floating-point number in the

floating-point register fj to be converted into an integer/long-integer fixed-point number, and the obtained

integer/long-integer fixed-point number is written To the floating-point memory fd. According to the

different states in FCSR, the operations in the IEEE 754-2008 standard followed by this floating-point format
conversion operation are shown in the following table.

Table 10. Standard for converting to integer

Rounding mode Whether to report
floating-point

imprecision exceptions

IEEE 754-2008 Function

Round to the nearest
even number

Yes convertToIntegerTiesToEven(X)

Round towards zero convertToIntegerTowardZero(x)

Round towards positive
infinity

convertToIntegerTowardPositive(x)

Round towards negative
infinity

converrtToIntegerTowardNegative(x)

Round to the nearest
even number

No convertToIntegerExactTiesToEven(x)

Round towards zero convertToIntegerExactTowardZero(x)

Round towards positive
infinity

convertToIntegerExactTowardPositive(x)

Round towards negative
infinity

convertToIntegerExactTowardNegative(x)

FTINT.W.S:
    FR[fd][31:0] = FP32convertToSint32(FR[fj][31:0], FCSR.Enables.I,
FCSR.RM)

FTINT.W.D:
    FR[fd] = FP64convertToSint32(FR[fj], FCSR.Enables.I, FCSR.RM)

FTINT.L.S:
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    FR[fd][31:0] = FP32convertToSint64(FR[fj][31:0], FCSR.Enables.I,
FCSR.RM)

FTINT.L.D:
    FR[fd] = FP64convertToSint64(FR[fj], FCSR.Enables.I, FCSR.RM)

3.2.3.3. FTINT{RM/RP/RZ/RNE}.{W/L}.{S/D}

Instruction formats:

ftintrm.w.s     fd, fj
ftintrm.w.d     fd, fj
ftintrm.l.s     fd, fj
ftintrm.l.d     fd, fj
ftintrp.w.s     fd, fj
ftintrp.w.d     fd, fj
ftintrp.l.s     fd, fj
ftintrp.l.d     fd, fj
ftintrz.w.s     fd, fj
ftintrz.w.d     fd, fj
ftintrz.l.s     fd, fj
ftintrz.l.d     fd, fj
ftintrne.w.s    fd, fj
ftintrne.w.d    fd, fj
ftintrne.l.s    fd, fj
ftintrne.l.d    fd, fj

These instructions convert floating-point numbers to fixed-point numbers with the specified rounding

pattern. FTINTRM.{W/L}.{S/D} instruction selects the single-precision/double-precision floating-point

number in the floating-point register fj and converts it to integer-type long integer-type fixed point number,
and the resulting integer-type/long integer-type fixed point number is written to the floating-point register

fd, using the “round to negative infinity” mode.

FTINTRM.W.S:
    FR[fd][31:0] = FP32convertToSint32(FR[fj][31:0], FCSR.Enables.I, 3)

FTINTRM.W.D:
    FR[fd] = FP64convertToSint32(FR[fj], FCSR.Enables.I, 3)

FTINTRM.L.S:
    FR[fd][31:0] = FP32convertToSint64(FR[fj][31:0], FCSR.Enables.I, 3)

FTINTRM.L.D:
    FR[fd] = FP64convertToSint64(FR[fj], FCSR.Enables.I, 3)
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FTINTRP.{W/L}.{S/D} instruction selects the single-precision/double-precision floating-point number in

the floating-point register fj, converts it to integer/long-integer fixed point number, and writes the

integer/long-integer fixed point number into the floating-point register fd, using the "rounding to positive
infinity" method.

FTINTRP.W.S:
    FR[fd][31:0] = FP32convertToSint32(FR[fj][31:0], FCSR.Enables.I, 2)

FTINTRP.W.D:
    FR[fd] = FP64convertToSint32(FR[fj], FCSR.Enables.I, 2)

FTINTRP.L.S:
    FR[fd][31:0] = FP32convertToSint64(FR[fj][31:0], FCSR.Enables.I, 2)

FTINTRP.L.D:
    FR[fd] = FP64convertToSint64(FR[fj], FCSR.Enables.I, 2)

FTINTRZ.{W/L}.{S/D} instruction selects the single-degree/double-precision floating-point number in

floating-point register fj, converts it to integer/long-integer fixed-point number, and writes the obtained

integer/long-integer fixed-point number to floating-point register fd, using the "rounding to zero" method.

FTINTRZ.W.S:
    FR[fd][31:0] = FP32convertToSint32(FR[fj][31:0], FCSR.Enables.I, 1)

FTINTRZ.W.D:
    FR[fd] = FP64convertToSint32(FR[fj], FCSR.Enables.I, 1)

FTINTRZ.L.S:
    FR[fd][31:0] = FP32convertToSint64(FR[fj][31:0], FCSR.Enables.I, 1)

FTINTRZ.L.D:
    FR[fd] = FP64convertToSint64(FR[fj], FCSR.Enables.I, 1)

FTINTRNE.{W/L}{S/D} instruction selects the single-precision/double-precision floating-point number in

floating-point register fj, converts it to integer long integer fixed point number, and writes the obtained

integer/long-integer fixed point number to floating-point register fd, using the "rounding to the nearest even
number" method.

FTINTRNE.W.S:
    FR[fd][31:0] = FP32convertToSint32(FR[fj][31:0], FCSR.Enables.I, 0)

FTINTRNE.W.D:
    FR[fd] = FP64convertToSint32(FR[fj], FCSR.Enables.I, 0)

FTINTRNE.L.S:
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    FR[fd][31:0] = FP32convertToSint64(FR[fj][31:0], FCSR.Enables.I, 0)

FTINTRNE.L.D:
    FR[fd] = FP64convertToSint64(FR[fj], FCSR.Enables.I, 0)

The operations in the IEEE 754-2008 standard that the above four floating-point format conversion
operations follow are shown in the following table.

Table 11. Standard for floating-point conversion

Instruction name Whether to report
floating-point

imprecision exceptions

IEEE 754-2008 Function

FTINTRNE.{W/L}.{S/D
}

Yes convertToIntegerExactTiesToEven(x)

FTINTRZ.{W/L}.{S/D} convertToIntegerExactTowardZero(x)

FTINTRP.{W/L}.{S/D} convertToIntegerExactTowardPositive(x)

FTINTRM.{W/L}{S/D} convertToIntegerExactTowardNegative(x)

FTINTRNE.{W/L}.{S/D
}

No convertToIntegerTiesToEven(x)

FTINTRZ.{W/L}.{S/D} convertToIntegerTowardZero(x)

FTINTRP{W/L}.{S/D} convertToIntegerTowardPositive(x)

FTINTRM.{W/L}.{S/D} convertToIntegerTowardNegative(x)

3.2.3.4. FRINT.{S/D}

Instruction formats:

frint.s    fd, fj
frint.d    fd, fj

The FRINT.{S/D} instruction selects the single-precision/double-precision floating-point number in the

floating-point register fj and converts it to a single-precision/double-precision floating-point number with
integer value, and the resulting single-precision/double-precision floating-point number is written to the

floating-point register fd. According to the different states in FCSR, this floating-point format conversion
operation follows the operation in IEEE 7542008 standard as shown in the following table.

Table 12. Standard for rounding to integer
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Rounding mode Whether to report
floating-point

imprecision exceptions

IEEE 754-2008 Function

Round to the nearest
even number

Yes roundToIntegralExact(x)

Round towards zero

Round towards positive
infinity

Round towards negative
infinity

Round to the nearest
even number

No roundToIntegerTiesToEven(x)

Round towards zero roundToIntegerTowardZero(x)

Round towards positive
infinity

roundToIntegerTowardPositive(x)

Round towards negative
infinity

roundToInteger TowardNegative(x)

FRINT.S:
    FR[fd][31:0] = FP32_roundToInteger(FR[fj], FCSR.Enables.I, FCSR.RM)

FRINT.D:
    FR[fd] = FP64_roundToInteger(FR[fj], FCSR.Enables.I, FCSR.RM)

3.2.4. Floating-Point Move Instructions

3.2.4.1. FMOV.{S/D}

Instruction formats:

fmov.s      fd, fj
fmov.d      fd, fj

FMOV{S/D} writes the value of the floating-point register fj into the floating-point register fd in the single-

precision/double-precision floating-point number format. If the value of fj is not in the single-
precision/double-precision floating-point number format, the result is uncertain.

FMOV.S:
    FR[fd][31:0] = FR[fj][31:0]

FMOV.D:
    FR[fd] = FR[fj]

The above instruction operations are non-arithmetic and will not cause IEEE 754 exceptions, nor will they
modify the Cause and Flags fields of the floating-point control and status register.
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3.2.4.2. FSEL

Instruction formats:

fsel        fd, fj, fk, ca

The FSEL instruction performs conditional assignment operations.

When FSEL is executed, if the value of the condition flag register ca is equal to 0, the value of the floating-

point register fj is written into the floating-point register fd, otherwise the value of the floating-point

register fk is written into the floating-point register fd.

FSEL:
    FR[fd] = CFR[ca] ? FR[fk] : FR[fj]

3.2.4.3. MOVGR2FR.{W/D}, MOVGR2FRH.W

Instruction formats:

movgr2fr.w      fd, rj
movgr2fr.d      fd, rj
movgr2frh.w     fd, rj

MOVGR2FR.W writes the low 32-bit value of the general register rj into the low 32-bit of the floating-point

register fd. If the length of the floating-point register is 64 bits, the high 32-bit value of fd is uncertain.

MOVGR2FR.W:
    FR[fd][31:0] = GR[rj][31:0]

MOVGR2FRH.W writes the low 32-bit value of the general register rj into the high 32-bit of the floating-point

register fd, and the low 32-bit value of the floating-point register fd remains unchanged.

MOVGR2FRH.W:
    FR[fd][63:32] = GR[rj][31:0]
    FR[fd][31: 0] = FR[fd][31:0]

MOVGR2FR.D writes the 64-bit value of general register rj into floating-point register fd.

MOVGR2FR.D:
    FR[fd] = GR[rj]
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3.2.4.4. MOVFR2GR.{S/D}, MOVFRH2GR.S

Instruction formats:

movfr2gr.s      rd, fj
movfr2gr.d      rd, fj
movfrh2gr.s     rd, fj

MOVFR2GRMOVFRH2GR.S sign extensions the low/high 32-bit value of the floating-point register fj and

writes it into the general register rd.

MOVFR2GR.S:
    GR[rd] = SignExtend(FR[fj][31: 0], GRLEN)

MOVFRH2GR.S:
    GR[rd] = SignExtend(FR[fj][63:32], GRLEN)

MOVFR2GR.D writes the 64-bit value of the floating-point register fj into the general register rd.

MOVFR2GR.D:
    GR[rd] = FR[fj]

3.2.4.5. MOVGR2FCSR, MOVFCSR2GR

Instruction formats:

movgr2fcsr      fcsr, rj
movfcsr2gr      rd,   fcsr

MOVGR2FCSR modifies the value of the software writable field corresponding to the floating-point control

and status register indicated by fcsr according to the value of the lower 32 bits of the general register rj. If

the MOVGR2FCSR instruction modifies FCSR0 so that the bits of the Cause field and the corresponding

Enables bit are both 1, or modify the Enables field of FCSR1 and the Cause field of FCSR2 so that the Cause

bit and the corresponding Enables bit are both 1, the M0VGR2FCSR instruction itself No floating-point
exception will be triggered.

MOVGR2FCSR:
    FCSR[fcsr] = GR[rd][31:0]

MOVFCSR2GR sign extensions the 32-bit value of the floating-point control and status register indicated by

fcsr and writes it into the general register rd.

MOVFCSR2GR:
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    GR[rd] = SignExtend(FCSR[fcsr], GRLEN)

If the floating-point control and status register indicated by fcsr in the above instruction does not exist, the
result is uncertain.

3.2.4.6. MOVFR2CF, MOVCF2FR

Instruction formats:

movfr2cf        cd, fj
movcf2fr        fd, cj

MOVFR2CF writes the value of the lowest bit of the floating-point register fj into the condition flag register

cd.

MOVFR2CF:
    CFR[cd] = FR[fj][0]

MOVCF2FR writes the value of the condition flag register cj into the lowest bit of the floating-point register

fd.

MOVCF2FR:
    FR[fd][0] = CFR[cj]

3.2.4.7. MOVGR2CF, MOVCF2GR

Instruction formats:

movgr2cf    cd, rj
movcf2gr    rd, cj

MOVGR2CF writes the value of the lowest bit of the general register rj into the condition flag register cd.

MOVGR2CF:
    CFR[cd] = GR[rj][0]

MOVCF2GR writes the value of the condition flag register cj into the lowest bit of the general register rd
and clears the other bits.

MOVCF2GR:
    GR[rd][0] = CFR[cj]
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3.2.5. Floating-Point Branch Instructions

3.2.5.1. BCEQZ, BCNEZ

Instruction formats:

bceqz   cj, offs21
bcnez   cj, offs21

BCEQZ judges the value of the condition flag register cj, if it is equal to 0, jump to the target address,

otherwise it does not jump. BCNEZ judges the value of the condition flag register cj, if it is not equal to 0,
jump to the target address, otherwise it does not jump. The jump target address of the above two branch
instructions is to logically shift the 21-bit immediate offs21 in the instruction code to the left by 2 bits and

then sign extension, and the resulting offset value plus the PC of the branch instruction.

BCEQZ:
    if CFR[cj] == 0:
        PC = PC + SignExtend({offs21, 2'b0}, GRLEN)

BCNEZ:
    if CFR[cj] != 0:
        PC = PC + SignExtend({offs21, 2'b0}, GRLEN)

TIP
When writing assembly, you need to fill in the immediate field with the real offset value in

bytes, i.e. (offs21<<2).

3.2.6. Floating-Point Common Memory Access Instructions

3.2.6.1. FLD.{S/D}, FST.{S/D}

Instruction formats:

flds    fd, rj, si12
fld.d   fd, rj, si12
fst.s   fd, rj, si12
fst.d   fd, rj, si12

FLD.S retrieves a word of data from the internal memory and writes it into the lower 32 bits of the floating-

point register fd. If the length of the floating-point register is 64 bits, the high 32-bit value of fd is uncertain.

FLD.D retrieves a double word from the internal memory and writes it into the floating-point register fd.

FST.S writes the low 32-bit word data in the floating-point register fd into the memory.

FST.D writes double-word data in the floating-point register fd into the memory.
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The access address of the above instruction is calculated by summing the value in the general register rj
with the symbolically expanded 12-bit immediate number si12.

FLD.{S/D} and FST.{S/D} instructions, regardless of the hardware implementation and environment
configuration, as long as the access address is naturally aligned, the non-alignment exception will not be
triggered; when the access address is not naturally aligned, if the hardware implementation supports non-
aligned access and the current computing environment is configured to allow non-aligned access, then the
non-alignment exception will not be triggered; otherwise, the non-alignment exception will be triggered.
Otherwise, the non-alignment exception will be triggered.

FLD.S:
    vaddr = GR[rj] + SignExtend(si12, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    word = MemoryLoad(paddr, WORD)
    FR[fd][31:0] = word

FLD.D:
    vaddr = GR[rj] + SignExtend(si12, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    doubleword = MemoryLoad(paddr, DOUBLEWORD)
    FR[fd] = doubleword

FST.S:
    vaddr = GR[rj] + SignExtend(si12, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    MemoryStore(FR[fd][31:0], paddr, WORD)

FST.D:
    vaddr = GR[rj] + SignExtend(si12, GRLEN)
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    MemoryStore(FR[fd][63:0], paddr, DOUBLEWORD)

3.2.6.2. FLDX.{S/D}, FSTX.{S/D}

Instruction formats:

fldx.s  fd, rj, rk
fldx.d  fd, rj, rk
fstx.s  fd, rj, rk
fstx.d  fd, rj, rk
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FLDX.S retrieves a word of data from the memory and writes it into the lower 32 bits of the floating-point

register fd. If the length of the floating-point register is 64 bits, the high 32-bit value of fd is uncertain.

FLDX.D retrieves a double word of data from the memory and writes it into the floating-point register fd.

FSTX.S writes the low 32-bit word data in the floating-point register fd into the memory.

FSTX.D writes the double word data in the floating-point register fd into the memory.

The memory access address calculation method of the above instruction is to add sum the value in the

general register rj and the value in the general register rk.

For FLDX.{S/D} and FSTX.{S/D} instructions, no matter what kind of hardware implementation and
environmental configuration, as long as the memory access address is naturally aligned, the non-aligned
exception will not be triggered; When the memory address is not naturally aligned, if the hardware
implementation supports unaligned memory access and the current computing environment is configured
to allow unaligned memory access, then the unaligned exception will not be triggered, otherwise it will
trigger the unaligned exception.

FLDX.S:
    vaddr = GR[rj] + GR[rk]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    word = MemoryLoad(paddr, WORD)
    FR[fd][31:0] = word

FLDX.D:
    vaddr = GR[rj] + GR[rk]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    doubleword = MemoryLoad(paddr, DOUBLEWORD)
    FR[fd] = doubleword

FSTX.S:
    vaddr = GR[rj] + GR[rk]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    MemoryStore(FR[fd][31:0], paddr, WORD)

FSTX.D:
    vaddr = GR[rj] + GR[rk]
    AddressCompli anceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    MemoryStore(FR[fd][63:0], paddr, DOUBLEWORD)
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3.2.7. Floating-Point Bound Check Memory Access Instructions

3.2.7.1. FLD{GT/LE}.{S/D}, FST{GT/LE}.{S/D}

Instruction formats:

fldgt.s     fd, rj, rk
fldgt.d     fd, rj, rk
fldle.s     fd, rj, rk
fldle.d     fd, rj, rk
fstgt.s     fd, rj, rk
fstgt.d     fd, rj, rk
fstle.s     fd, rj, rk
fstle.d     fd, rj, rk

FLD{GT/LE}.{S/D} determines if the valid address is out of bounds and writes the value from memory to
the floating-point register.

FLD{GT/LE}.S checks if the value in general register rj is greater/less than/equal to the value in general

register rk, and if the condition is met, fetches a word of data from memory and writes it to the lower 32

bits of floating-point register fd. If the floating-point register is 64 bits wide, the high 32-bit value of fd is
not determined.

FLD{GT/LE}.D checks if the value in general register rj is greater than/less than/equal to the value in

general register rk, and if the condition is met, fetches a double word of data from memory and writes it to

floating-point register fd.

FST{GT/LE}.{S/D} determines if the valid address is out of bounds, and writes the value of the floating-
point register to memory.

FST{GT/LE}.S checks if the value in general register rj is greater/less than/equal to the value in general

register rk, and if the condition is met, writes the low 32-bit word data in floating-point register fd to
memory.

FST{GT/LE}.D checks if the value in general register rj is greater than/less than or equal to the value in

general register rk, and if the condition is satisfied, writes the double word data in floating-point register fd
to memory.

The access address of the above instruction comes directly from the value in general register rj. The
access addresses of the above instructions are required to be naturally aligned, otherwise a non-alignment
exception will be triggered. The above instruction terminates the access operation and triggers the bound
check exception if the check condition is not satisfied.

FLDGT.S:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] > GR[rk]:
        word = MemoryLoad(paddr, WORD)
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        FR[fd][31:0] = word
    else:
        RaiseException(BCE)    # Bound Check Exception

FLDGT.D:
    vaddr = GR [rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] > GR[rk]:
        FR[fd] = MemoryLoad(paddr, DOUBLEWORD)
    else:
        RaiseException(BCE)    # Bound Check Exception

FLDLE.S:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] <= GR[rk]:
        word = MemoryLoad(paddr, WORD)
        FR[fd][31:0] = word
    else:
        RaiseException(BCE)    # Bound Check Exception

FLDLE.D:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] <= GR[rk]:
        FR[fd] = MemoryLoad(paddr, DOUBLEWORD)
    else:
        RaiseException(BCE)    # Bound Check Exception

FSTGT.S:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] > GR[rk]:
        MemoryStore(FR[fd][31:0], paddr, WORD)
    else:
        RaiseException(BCE)    # Bound Check Exception

FSTGT.D:
    vaddr = GR[rij]
    AddressComplianceCheck(vaddr)
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    paddr = AddressTranslation(vaddr)
    if GR[rj] > GR[rk]:
        MemoryStore(FR[fd][63:0], paddr, DOUBLEWORD)
    else:
        RaiseException(BCE)    # Bound Check Exception

FSTLE.S:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] <= GR[rk]:
        MemoryStore(FR[fd][31:0], paddr, WORD)
    else:
        RaiseException(BCE)    # Bound Check Exception

FSTLE.D:
    vaddr = GR[rj]
    AddressComplianceCheck(vaddr)
    paddr = AddressTranslation(vaddr)
    if GR[rj] <= GR[rk]:
        MemoryStore(FR[fd][63:0], paddr, DOUBLEWORD)
    else:
        RaiseException(BCE)    # Bound Check Exception
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Chapter 4. Overview of Privileged Resources

4.1. Privilege Levels

The processor cores are divided into four privilege levels (PLV0 to PLV3), which are uniquely determined by

the value of the PLV field in CSR.CRMD.

Among all privilege levels, PLV0 is the privilege level with the highest privilege and is the only privilege level
that can use privileged instructions and access all privileged resources. The three privilege levels, PLV1 to
PLV3, cannot execute privileged instructions to access privileged resources, but the three privilege levels
have different access rights under the MMU’s mapped address translation mode.

For Linux systems, only the PLV0 level can correspond to the kernel state in the architecture, while the
PLV3 level is recommended for the user state.

4.2. Overview of Privilege Instructions

All privileged instructions are accessible only at the PLV0 privilege level. The only exception is that when

the RPERF1/RPERF2/RPERF3 in CSR.MISC is configured to 1, the CSRRD instruction can be executed at
PLV1/PLV2/PLV3 privilege level to read the performance counter.

4.2.1. CSR Access Instructions

Instruction formats:

csrrd       rd, csr_num
csrwr       rd, csr_num
csrxchg     rd, rj, csr_num

The CSRRD, CSRWR, and CSRXCHG instructions are used to access the CSRs in software. The CSRRD
instruction writes the value of the specified CSR to the general register rd. The CSRWR instruction writes the

old value of the general register rd to the specified CSR and updates the old value of the specified CSR to

the general register rd. The CSRXCHG instruction writes the old value of the general register rd to the bits

of the specified CSR corresponding to the write mask 1 according to the write mask information stored in

the general register rj. The CSRXCHG instruction writes the old value of the general register rd to the bits

of the specified CSR corresponding to the write mask of 1 according to the write mask information stored

in the general register rj. The rest of the bits in the CSR remain unchanged, and the old value of the CSR is

updated to the general register rd.

All CSRs are addressed independently. The addressable value of the CSRs in the above instruction is

derived from the 14-bit immediate csr_num in the instruction. csr_num for CSR 0 is 0, csr_num for CSR 1

is 1, and so on.

The length of all CSR registers is either 32 bits or equal to the length of GR in the architecture, so CSR

access instructions do not distinguish between lengths. In LA32, all CSRs are naturally 32 bits wide. In

LA64, CSRs with a fixed 32-bit length in the definition are always written to the general purpose register rd
after symbolic expansion.

When a CSR access instruction accesses a CSR that is not defined in the architecture or not implemented

in hardware, the read operation returns an all 0 values and the write operation does not modify any
software-visible state of the processor.
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4.2.2. IOCSR Access Instructions

4.2.2.1. IOCSR{RD/WR}.{B/H/W/D}

Instruction formats:

iocsrrd.b       rd, rj
iocsrrd.h       rd, rj
iocsrrd.w       rd, rj
iocsrrd.d       rd, rj
iocsrwr.b       rd, rj
iocsrwr.h       rd, rj
iocsrwr.w       rd, rj
iocsrwr.d       rd, rj

I0CSR{RD/WR}.{B/H/W/D} instructions are used to access the IOCSR.

All IOCSR registers use independent addressing space, and the basic unit of addressing is byte. All data is

stored in the IOCSR space in a little-endian storing {B/H/W/D} instruction’s IOCSR address is from the

general register rj.

The IOCSRRD.{B/H/W/D} instruction fetches byte/half-word/word/double-word length data from the

specified address in the IOCSR space, and writes it to the general register rd after symbolic expansion.

The IOCSRWR.{B/H/W/D} instruction writes the [7:0]/[15:0]/[31:0]/[63:0] bits of data in the

general register rd to the beginning of the specified address in the IOCSR space.

The IOCSRRD.D and IOCSRWR.D instructions appear only in LA64.

IOCSR registers can typically be accessed by multiple processor cores simultaneously. The execution of
IOCSR access instructions on multiple processor cores satisfies the sequential consistency condition.

4.2.3. Cache Maintenance Instructions

4.2.3.1. CACOP

Instruction formats:

cacop   op, rj, si12

The CACOP instruction is mainly used for Cache initialization and cache-consistency maintenance.

The value of the general register rj, plus the sign-extended 12-bit immediate number si12, gives the

virtual address VA used by the CACOP instruction, which is used to indicate the location of the Cache line
being operated on.

Which Cache is accessed by the CACOP instruction and what Cache operation is performed is determined

by the 5-bit op in the instruction. op[2:0] indicates the Cache object to be operated on, and op[4:3]
indicates the type of operation.
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The Cache object indicated by op[2:0] is in the same order as the Cache identified in CPUCFG10. For

example, when CPUCFG10=0x02C3D, op[2:0]=0 indicates operation of the first-level private instruction

Cache, op[2:0]=1 indicates operation of the first-level private data Cache, op[2:0]=2 indicates

operation of the second-level private mixed Cache, and op[2:0]=3 indicates operation of the third-level
shared mixed Cache.

op[4:3]=0 is used for Cache initialization (StoreTag), mainly to write the contents of the CSR.CTAG to
the tag of the specified Cache row using direct address indexing. Suppose the Cache to be accessed has

(1<<Way) ways, each ways has (1<<Index) Cache line, and each Cache line size is (1<<0ffset) bytes,

then the direct address indexing method means that the VA[Index+offset1.0ffset] of the VA[Way-
1:0] way of the Cache is [operated: 0ffset] line of the Cache.

op[4:3]=1 means that the cache-consistency (Index Invalidate / Invalidate and Writeback) is maintained
by direct address indexing. See the previous paragraph for a definition of the direct address indexing
method. The operation to maintain consistency is an invalidate and writeback operation on the specified
Cache. If the operation is on the instruction Cache, then only the invalidation operation is performed, not the
writing back of the data in the Cache row. The data written back into which level of memory is determined
by the specific implementation of the Cache hierarchy and the inclusion or mutually exclusive relationship
between the levels. For data Cache or mixed Cache, it is up to the implementation to decide whether to
write back the data in the Cacche row only if it is dirty.

op[4:3]=2 means that Cache coherency is maintained by query indexing (Hit Invalidate / Invalidate and
Writeback).

The operation of maintaining Cache coherency here is the same as described in the above paragraph. The

so-called query index approach treats the VA of the CACOP instruction as a normal load instruction to
access the Cache to be operated on, and if it hits, it operates on the hit Cache row, otherwise it does not do
any operation. Since this query process may involve virtual-to-real address translation, the CACOP
instruction may trigger TLB-related exceptions in this case. However, since the CACOP instruction operates
on Cache rows, there is no need to consider address alignment or not in this case.

op[4:3]=3 is an implementation of a custom Cache operation and is not explicitly functionally defined in
the architecture specification.

4.2.4. TLB Maintenance Instructions

4.2.4.1. TLBSRCH

Instruction formats:

tlbsrch

The functional definition of the TLBSRCH instruction without implementing the LVZ extension is given here.

Use the information of CSR.ASID and CSR.TLBEHI to query TLB. If there is a hit entry, the index of the hit

entry is written to the Index field of CSR.TLBIDX, and the INV field of CSR.TLBIDX is set to 0; if there is

no hit entry, the INV field of CSR.TLBIDX is set to 1.

The rules for calculating the index of each entry in the TLB are, starting from 0, incremental numbering, first

STLB and then MTLB, STLB from the 0th line to the last line of the 0th way, then the 0th line to the last line

of the 1st way, until the last line of the last way, MTLB from the 0th line to the last line.
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4.2.4.2. TLBRD

Instruction formats:

tlbrd

The functional definition of the TLBRD instruction without implementing the LVZ extension is given here.

The value of the Index field of CSR.TLBIDX is used as the index to read the specified entry in the TLB. If
the specified location is a valid TLB entry, the page table information of the TLB entry is written to

CSR.TLBEHI, CSR.TLBELO0, CSR.TLBELO1 and CSR.TLBIDX.PS, and the INV field of CSR.TLBIDX is

set to 0; if the specified location is an invalid TLB entry, then CSR.TLBEHI, CSR.TLBELO0 and

CSR.TLBELO1 is set to 0; and the INV field of CSR.TLBIDX is set to 1; TLBIDX.PS is set to 0 and the INV
field of CSR.TLBIDX is set to 1.

Note that valid/invalid TLB entries and valid/invalid page table entries in the TLB are two concepts.

If the index used for the access exceeds the range of the TLB, the behavior of the processor is undefinded.

4.2.4.3. TLBWR

Instruction formats:

tlbwr

The functional definition of the TLBWR instruction without implementing the LVZ extension is given here.

The TLBWR instruction fills the page table entry information stored in the TLB-related CSRs into the TLB.

The page table entry information to be populated comes from CSR.TLBEHI, CSR.TLBELO0,

CSR.TLBELO1 and CSR.TLBIDX_PS. If CSR.TLBIDX.NE=1, then the TLB is populated with an invalid TLB

entry; only if CSR.TLBIDX.NE=0, the TLB is populated with a valid TLB entry.

The location where the page table entry is written to the TLB is specified by the value of the Index field of

CSR.TLBIDX. Please refer to the TLBSRCH instruction for the calculation rules of each index in the TLB for
the specific corresponding rules. If a page table entry is to be written to the STLB, but a conflict occurs

between the value of the Index field of CSR.TLBIDX and VPPN and CSR.TLBIDX.PS in CSR.TLBEHI, the
behavior of the processor is undefinded.

4.2.4.4. TLBFILL

The functional definition of the TLBFILL instruction without implementing the LVZ extension is given here.

The TLBFILL instruction fills the page table entry information stored in the TLB-related CSRs into the TLB.

The page table entry information to be populated comes from CSR.TLBEHI, CSR.TLBELO0,

CSR.TLBELO1 and CSR.TLBIDX_PS. If CSR.TLBIDX.NE=1, then the TLB is populated with an invalid TLB

entry; only if CSR.TLBIDX.NE=0, the TLB is populated with a valid TLB entry.

Whether to write to STLB or MTLB is first made based on the page size of the page table entry being filled.
When the page size of the page table entry being filled is equal to the page size configured for STLB

(CSR.STLBPS) it will be filled to STLB, otherwise it will be filled to MTLB. Which way the page table entry is
filled to STLB, or which entry is filled to MTLB is randomly selected by the hardware.
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4.2.4.5. TLBCLR

Instruction formats:

tlbclr

The contents of the TLB are invalidated according to the information of the TLB-related CSRs to maintain
the consistency of the page table data between the TLB and the memory. The functional definition of the

TLBCLR instruction without implementing the LVZ extension is given here.

When CSR.index.index falls within the range of MTLB (greater than or equal to the number of STLB

entries), TLBCLR is executed to invalidate all page table entries in MTLB with G=0 and ASID equal to

CSR.ASID.ASID.

When CSR.index.index falls within the STLB range (less than the number of STLB entries), execute a

TLBCLR to invalidate all page table entries in the STLB that are equal to G=0 and ASID equal to

CSR.ASID.ASID in the group indicated by the low bit of CSR.index.index.

4.2.4.6. TLBFLUSH

Instruction formats:

tlbflush

The contents of the TLB are invalidated according to the information of the TLB-related CSRs to maintain
the consistency of the page table data between the TLB and the memory. The functional definition of

TLBCLR instruction without implementing LVZ extension is given here.

When CSR.index.index falls within the MTLB range (greater than or equal to the number of STLB

entries), TLBCLR is executed to invalidate all page table entries in the MTLB.

When CSR.index.index falls within the STLB range (less than the number of STLB entries), a TLBCLR is

executed to invalidate all page table entries in the group indicated by the low CSR.index.index in the
STLB.

4.2.4.7. INVTLB

Instruction formats:

invtlb  op, rj, rk

The INVTLB instruction is used to invalidate the contents of the TLB to maintain consistency of the page

table data between the TLB and memory. The functional definition of the INVTLB instruction is given here
for the case where the LVZ extension is not implemented.

Of the three source operands of the instruction, op is a 5-bit immediate number to indicate the type of
operation.

The [9:0] bits of the general register rj hold the ASID information required for the invalid operation

(called “register specified ASID”), and the remaining bits must be filled with 0. When the operation
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indicated by op does not require an ASID, the general register rj should be set to r0.

The general register rk is used to store the virtual address information required for invalid operations

(called “register specified VA”). When the operation indicated by the op does not require virtual address

information, the general register rk should be set to r0.

The operations corresponding to each op are shown in the following table, and the op that does not appear
in the table will trigger a reserved instruction exception.

Table 13. Operations corresponding to each op in the INVTLB instruction

op Operation

0x0 Clear all page table entries

0x1 Clears all page table entries. The effect of this operation is exactly the same as op=0.

0x2 Clears all G=1 page table entries.

0x3 Clears all page table entries with G=0.

0x4 Clears all page table entries with G=0 and ASID equal to the ASID specified in the register.

0x5 Clear all page table entries with G=0 and ASID equal to the register specified ASID, and VA

equal to the register specified VA.

0x6 Clear all page table entries where G=1 or ASID is equal to the ASID specified in the register

and VA is equal to the VA specified in the register.

4.2.5. Software page walking Instructions

4.2.5.1. LDDIR

Instruction formats:

lddir   rd, rj, level

The LDDIR instruction is used for accessing directory entries during software page table walking.

The 5-bit immediate level in the LDDIR instruction indicates which page table is currently being accessed.

level=1 corresponds to Dir0 in PWCL, level=2 corresponds to Dirl in PWCL, level=3 corresponds to

Dir2 in PWCH, and level=4 corresponds to Dir3 in PWCH.

If bit [6] of the general register rj is 0, it means that the content of rj is the physical address of the base

address of the level page table at this time. In this case, the LDDIR instruction will access the level page

table according to the current TLB refill address, retrieve the base address of the corresponding level+1
page table, and write it to the general register rd.

If bit [6] of general register rj is 1, it means that the content in rj is a large page (Huge Page) page table

entry. In this case, after executing the LDDRI instruction, the value in the general register rj will be written

directly to the general register rd.

4.2.5.2. LDPTE

Instruction formats:
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ldpte   rj, seq

The LDPTE instruction is used for page table entry accesses during software page table walking.

The immediate number seq in the LDPTE instruction is used to indicate whether an even or odd number of

pages are being accessed. The result is written to CSR.TLBRELO0 when an even page is accessed. The

result will be written to CSR.TLBRELO1 when an odd page is accessed.

If bit [6] of the general register rj is 0, the content of rj is the physical address of the base address of

the page table at that level of the PTE. In this case, the LDPTE instruction will access the PTE level page
table according to the currently processed TLB refill address, retrieve the page table entry and write it to the
corresponding CSR.

If bit [6] of the general register rj is 1, it means that the content of rj is a large page (Huge Page) page

table entry. In this case, the LDPTE instruction is executed, and the value in general register rj is directly
converted into the final page table entry format and written to the corresponding CSR.

4.2.6. Other Miscellaneous Instructions

4.2.6.1. ERTN

Instruction formats:

ertn

The ERTN instruction is used to return from exception processing.

If the exception being processed is a debug exception clear the DM bit in the CSR.DEBUG to 0, and jump to

the address stored in the CSR.DEBUG to start fetching.

If the exception being processed is something other than a debug exception, update the PPLV, PIE, and

PWE information corresponding to the exception to CSR.CRMD, update the PVM in CSR.VMCTL to

CSR.VMCTL.VM, and jump to the ERA corresponding to the exception to start fetching instructions.

If the exception processed is an error-related exception, the PPLV, PIE and PWE information corresponding

to the exception is from CSR.MERRCTL, and the ERA corresponding to the exception is from

CSR.MERRERA. In addition, the PDA, PPG, PDCAF and PDCAM information in CSR.MERRCTL should be

updated to CSR.CRMD.

If the exception being processed is a TLB refill exception, the PPLV, PIE, and PWE information

corresponding to the exception is from CSR.TLBRPRMD, and the ERA corresponding to the exception is

from CSR.TLBRERA. In addition, it is necessary to clear DA field 0 and PG field 1 in CSR.CRMD.

If the exception being handled is not a debug exception, an error-related exception, or a TLB refill exception,

then the PPLV, PIE and PWE information corresponding to the exception is from CSR.PRMD, and the ERA
corresponding to the exception is from CSR.ERA.

When executing the ERTN instruction, if the KL0 bit in CSR.LLBCTL is not equal to 1, then the LLbit is set

to 0, otherwise the LLbit is not modified.
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4.2.6.2. DBCL

Instruction formats:

dbcl        code

Executing DBCL instruction will immediately enter debug mode.

4.2.6.3. IDLE

Instruction formats:

idle        hint

After executing the IDLE instruction, the processor core will stop fetching instructions and enter the wait
state until it is woken up by an interrupt or is reset. After waking up from the wait state by an interrupt, the

first instruction executed by the processor core is the one after IDLE.
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Chapter 5. Memory Management

5.1. Physical Address Space

The physical address space range of memory is 0-2PALEN-1.

In LA32, PALEN is theoretically a positive integer not exceeding 32, and its specific value is determined by

the implementation, which is usually recommended to be 32.

In LA64, PALEN is theoretically a positive integer not exceeding 60, and its specific value is determined by
the implementation.

The system software can determine the specific value of PALEN by reading the PALEN field of the 0x1
configuration word with the CPUCFG instruction.

5.2. Virtual Address Space and Address Translation Mode

The virtual address space is linear/flat in LoongArch. For PLV0 level, the virtual address space size is 232

bytes in LA32 and 264 bytes in LA64. However, the 264-byte virtual address space is not always legal in LA64.
It can be assumed that there are some virtual address holes. The legal virtual address space is closely
related to the address translation mode, which is described in the next section in conjunction with the
definition of the address translation mode.

The MMU in LoongArch supports two modes of translating virtual addresses to physical addresses: direct
address translation mode and mapped address translation mode.

When CSR.CRMD.DA=1 and CSR.CRMD.PG=0, the MMU of the processor core is in direct address

translation mode. In this mode, the physical address is by default equal to the [PALEN-1:0] bits of the
virtual address (zero extension if necessary), unless the implementation uses other higher priority
translation rules. The entire virtual address space is legal at this point. The processor will enter the direct
address translation mode after reset.

When CSR.CRMD.DA=0 and CSR.CRMD.PG=1, the MMU of the processor core is in mapped address
translation mode. Specifically, there are two types of address translation modes: direct mapped address
translation mode (direct mapped mode) and page table mapped address translation mode (page table
mapped mode). When translating addresses, the direct mapped mode is preferred. Only when the address
cannot be translated by the direct mapped mode, the page table mapped mode is used for translation. See
Direct Mapped Address Translation Mode for details on the direct mapped mode and Memory
Management of Page Table Mapping for details on the page table mapped mode. The rules for virtual
address space legality during using the page table mapped mode in LA64 are presented here. The

[63:PALEN] bits of the legal virtual address must be the same as the [PALEN-1] bits, otherwise an
ADdress error Exception (ADE) will be triggered. In direct mapped mode, however, this address illegality
check is not required.

5.2.1. Direct Mapped Address Translation Mode

When the MMU of the processor core is in mapped address translation mode, direct mapping of virtual and
physical addresses can also be accomplished through the mechanism of direct mapping configuration
windows. There are four direct mapping configuration windows. The first two windows can be used for
both fetch and load/store operations, and the last two windows are used for load/store operations only.

The system software sets each of the four direct mapping configuration windows by configuring the

CSR.DMW0-CSR.DMW3 configuration window registers. Each window can be used to configure not only for
the address range, but also for the privilege levels under which the window is available, as well as the type
of memory access for virtual address within the address range.
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In LA64, each direct mapping configuration window can be configured with a virtual address space which
length is PALEN bytes. When a virtual address hits a valid direct mapping configuration window, its

physical address is equal to the [PALEN-1:0] bits of itself. The hit is determined as follows: the highest 8

bits of the virtual address ([63:60] bits) are equal to the VSEG field in the configuration window register,
and the current privilege level is available.

For example, if PALEN is equal to 48 and DMWO is set to 0x9000000000000011, virtual address space

0x9000000000000000-0x9000FFFFFFFFFFFF will be directly mapped to physical address space 0x0-

0xFFFFFFFFFFFF at the PLV0 privilege level, the memory access type of which is consistent and
cacheable.

In LA32, each direct mapping configuration window can be configured with a virtual address space which

length is 229
 bytes. When a virtual address hits a valid direct mapping configuration window, its physical

address is equal to the combination of the [28:0] bits of itself and the high bits of the the configuration

window register. The hit is determined as follows: the highest 4 bits of the virtual address ([31:29] bits)

are equal to the [31:29] bits in the configuration window register, and the current privilege level is
available.

For example, if DMW0 is set to 0x80000011, virtual address space 0x80000000-0x8FFFFFFF will be

directly mapped to physical address space 0x0-0x1FFFFFFF at the PLV0 privilege level, the memory
access type of which is consistent and cacheable.

5.2.2. 32-bit Address Mode in LA64

When the binary application in LA32 runs on the processor that implements LA64, the calculation involving
address in the instruction needs to be handled specially in order to obtain the same operation result, which

is the 32-bit address mode control in LA64. When VA32L1/VA32L2/VA32L3 in CSR.MISC is set to 1, the
software running at PLV1/PLV2/PLV3 level will run in 32-bit address mode. At this time, the virtual address

will be zero extended to 64 bits. The 32-bit results of executing instructions like BL, JIRL and PCADD will
also be sign extended to 64 bits.

5.2.3. Virtual Address Reduction Mode in LA64

In order to reduce the number of page table levels in some occasions, the virtual address reduction mode is

also provided in LA64. When the system software set RDVA in the CSR.RVACFG register to a value from 1
to 8, the valid bits of the virtual address in mapped address translation mode are treated as (VALEN-
RDVA) bits. For example, when VALEN=48 and RDVA is set to 8, the [63:40] bits of the legal address

must be a sign expansion of the [39] bit.

5.3. Memory Access Types

As mentioned in Memory Access Types, there are three types of memory access in LoongArch, including
CC, SUC, and WUC.

When the MMU of the processor core is in direct address translation mode, the memory access types of all

fetch operations are determined by CSR.CRMD.DATF, and the memory access types of all load/store

operations are determined by CSR.CRMD.DATM.

When the MMU of the processor core is in mapped address translation mode, the memory access types
are divided into two cases. If the address of a fetch or load/store operation falls on one of the direct
mapping configuration windows, then its memory access type is determined by the MAT field in the CSR
register that is configured in the window. If the fetch or load/store can only be mapped through the page
table, then its memory access type is determined by the MAT field in the page table entry.
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In any case, the definition of the control value for the memory access type is always the same: 0 for

strongly-ordered uncached, 1 for coherent cached, 2 for weakly-ordered uncached, and 3 for reserved.

5.4. Memory Management of Page Table Mapping

In mapped address translation mode, all legal addresses, except those that fall in the direct mapping
configuration window, must be mapped through the page table to complete the translation of virtual
addresses to physical addresses. As a temporary Cache for the processor to store information about page
tables in the operating system, TLB is used to speed up the translation of virtual addresses to physical
addresses for fetch and load/store operations in mapped address translation mode.

5.4.1. TLB Organizational Structure

The TLB in LoongArch is divided into two parts, one is Singular-Page-Size TLB (STLB) which has the same
page size for all table entries, and the other is Multiple page size TLB (MTLB) which supports different page
sizes for different table entries.

The page size is the same as the page size configured in the STLB, and it is up to the implementation to
decide whether a page table entry can enter the MTLB, with no restrictions in the architecture specification.

During the translation of a virtual address to a physical address, the STLB and the MTLB look up
simultaneously. Accordingly, the software needs to ensure that there are no simultaneous hits of MTLB and
STLB, otherwise the processor behavior will be undefined.

The MTLBs are fully associative, and the STLBs are multi-way set associative. For STLB, if it has 2INDEX

groups and the configured page size is 2PS
 bytes, the hardware querying STLB is using the

[PS+INDEX:PS] bits of the virtual address as the index of each way.

5.4.2. TLB Entry

The table entry formats of STLB and MTLB is basically the same, the only difference is that each table entry
of MTLB contains the page size information, while STLB does not need to store the page size information
repeatedly because it is the same page size. For STLB, the page size of the page table entry is configured

by the system software in the PS field of the CSR.STLBPS register.

The format of each TLB table entry is shown in the figure and contains two parts: the comparison part and
the physical translation part.

Figure 6. TLB entry formats

The comparison part of TLB table entries includes:

• Existence bit (E), 1 bit. When this bit is set, it indicates that the page table entry exists and can
participate in lookup matching.

• Address Space IDentifier (ASID), 10 bits. ASID is used to distinguish the same virtual address in
different processes and to avoid performance loss caused by clearing the entire TLB during process

switching. The operating system assigns a unique ASID to each process, and the TLB needs to match

the ASID in addition to the address when performing lookups.
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• Global flag bit (G), 1 bit. When this bit is set, the lookup is not checked for ASID consistency. If the
operating system needs to share the same virtual address among all processes, this bit can be set.

• Page Size (PS), 6 bits. PS appears only in the MTLB. It is used to specify the size of the pages stored in

this page table entry. The value is a power of 2 of the page size. That is, for a page size of 16KB,

PS=14.

• Virtual Pair of Page frames Number (VPPN), (VALEN-13) bits. The physical translation part holds the
translation information for a adjacent odd even pair of page tables, so the virtual page number stored in

the TLB page table entry is the content of the virtual page number divided by 2 in the operating system.
The lowest bit of the virtual page number does not need to be stored. When searching for the TLB, the
lowest bit of the virtual page number is used to decide whether to select the odd-numbered page or the
even-numbered page for physical translation.

The physical translation part of the table entry holds the translation information for a adjacent odd even
pair of page tables, and the information for each page includes:

• Valid bit (V), 1 bit. This bit is set when the page table entry is valid. Note the difference between the P
bit when performing lookups. The P bit refers to whether a page table entry on the TLB table entry is

present. A page table entry is present even if it is invalid (V=0).

• Dirty bit (D), 1 bit. This bit is set when there is dirty data on the address space where the page table
entry is located.

• Non-Readable bit (NR), 1 bit. This bit is set when no load operation is allowed on the address space
where this page table entry is located. This control bit is only exist in LA64.

• Non-eXecutable bit (NX), 1 bit. This bit is set when a fetch operation is not allowed on the address
space where this page table entry is located. This control bit is only exist in LA64.

• Memory Access Type (MAT), 2 bits. MAT controls the type of memory access that falls on the address
space where the page table entry is located. See Memory Access Types for the specific meaning of
each value.

• Privilege LeVel (PLV), 2 bits. PLV refers to the privilege level corresponding to this page table entry.

When RPLV=0, the page table entry can be accessed by any program whose privilege level is not lower

than PLV; when RPLV=1, the page table entry can only be accessed by programs whose privilege level

is equal to PLV.

• Restricted Privilege LeVel (RPLV), 1 bit. RPLV refers to whether a page table entry is accessed only by

programs corresponding to the privilege level. See above in PLV. This control bit is only exist in LA64.

• Physical Page Number (PPN), (PALEN-12) bits. When the page size is larger than 4KB, the [log2PS-
1:12] bits of the PPN stored in the TLB can be any value.

5.4.3. Software Management of TLB

The management of TLBs in LoongArch involves software work. In the current version of this architecture
specification, TLB refill and consistent maintenance between TLB and page tables are still all led by
software.

5.4.3.1. TLB-related Exceptions

The TLB performs translation of virtual addresses to physical addresses automatically by hardware.
However, when there is no match in the TLB, or when the page table entry is invalid or illegally accessed
despite the match, an exception needs to be triggered and handed over to the OS kernel or other
supervisory programs. The exception is further handled by software to maintain the content of the TLB or
to make a final ruling on the legality of the program execution. The exceptions related to TLB management
in LoongArch are as follows:
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• TLB refill exception: This exception is triggered when the virtual address of an access operation does
not have a match in the TLB, which notifies the system software to perform a TLB refill. This exception
has a separate exception entry, a separate CSR for maintaining the exception context, and a separate
set of CSRs as TLB access interface; that means the exception is allowed to be triggered during the

processing of other exceptions. While the TLB refill exception being caught, CRMD will be set to 1 and

PG will be set to 0. This means the hardware will enter the direct address translation mode
automatically, so that the TLB refill exception handler itself will not trigger the TLB refill exception
again, and the exception context will not be saved and recovered. In order to distinguish CSRs used by
the TLB refill exception and CSRs available for other exceptions, the hardware will automatically set

CSR.TLBRERA.ISTLBR to 1 while the exception is caught.

• Page invalid exception for load operation: This exception is triggered when the virtual address of the

load operation finds a match in the TLB with V=0.

• Page invalid exception for store operation: This exception is triggered when the virtual address of the

store operation finds a match in the TLB with V=0.

• Page invalid exception for fetch operation: This exception is triggered when the virtual address of the

fetch operation finds a match in the TLB with V=0.

• Page privilege level ilegal exception: This exception is triggered when the virtual address of the access

operation finds a matching entry in the TLB with V=1, but the privilege level of the access is illegal. The

privilege level is illegal when RPLV=0 and CSR.CRMD.PLV is greater than the PLV in the page table

entry, or when RPLV=1 and CSR.CRMD.PLV is not equal to the PLV in the page table entry.

• Page modify exception: This exception is triggered when the virtual address of the store operation finds

a match in the TLB with V=1 and privilege level is legal and D=0.

• Page non-readable exception: This exception is triggered when the virtual address of the load operation

finds a match in the TLB with V=1 and privilege level is legal and NR=1.

• Page non-executable exception: This exception is triggered when the virtual address of the fetch

operation finds a match in the TLB with V=1 and privilege level is legal and NX=1.

5.4.3.2. TLB-related Instructions

The TLB-related instructions mainly involve operations such as lookup, read, write, and invalidate the TLB
for filling, updating, and consistency maintenance of the TLB. See TLB Maintenance Instructions and
Software page walking Instructions for specific instruction definitions.

5.4.3.3. TLB-related CSRs

TLB-related CSRs are divided into three categories according to their functions. The first category is used
for the interactive interface of TLBs other than TLB refill exceptions. The second category is used for
software and hardware page walking. The third category is used for TLB refill exceptions.

The first category includes:

• BADV

• TLBEHI

• TLBELO0

• TLBELO1

• TLBIDX

• ASID

• STLBPS
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The second category includes:

• PGDL

• PGDH

• PGD

• PWCL

• PWCH

The third category includes:

• TLBRENTRY

• TLBRERA

• TLBRBADV

• TLBREHI

• TLBRELO0

• TLBRELO1

• TLBRPRMD

• TLBRSAVE

See Basic Control and Status Registers for details of how each CSR register above interacts with the TLB.

5.4.3.4. Initialization of TLB

LoongArch allows not to implement the hardware initialization of the TLB, but to let the software in the boot

phase perform this function by executing INVTLB r0, r0.

5.4.4. TLB-based Translation of Virtual Addresses to Physical Addresses

The TLB-based translation of virtual addresses to physical addresses is described here. For the
convenience of description, the following is presented in pseudocode form with STLB first and MTLB
second, while the hardware implementation of the processor can look up STLB and MTLB at the same time.

# va: virtual address to be found.
# mem_type: memory acess type. FETCH refers to fetch operation, LOAD
refers to load operation, and STORE refers to store operation.
# plv: current privilege level, i.e., CSR.CRMD.PLV.
# pa: physical addresses after translation.
# mat: memory acess type after translation.
# VALEN: number of valid bits of the virtual address.
# PALEN: number of valid bits of the physical address.
# STLB[][]: STLB[N][M] refers to the Nth way and the Mth entry of STLB.
# STLB_WAY: number of ways of STLB.
# STLB_INDEX: the power of 2 of the number of groups in each way of
STLB, i.e., each way has 2STLB_INDEX groups.
# MTLB[]: MTLB[N] refers to the Nth entry of MTLB.
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# MTLB_ENTRIES: number of entries of MTLB.

# look up STLB
stlb_found = 0
stlb_ps = CSR.STLBPS.PS
stlb_idx = va[stlb_ps+STLB_INDEX-1:stlb_ps]
for way in range(STLB_WAY):
    if (STLB[way][stlb_idx].E == 1) and
    ((STLB[way][stlb_idx].G == 1) or (STLB[way][stlb_idx].ASID ==
CSR.ASID.ASID))
 and
    (STLB[way][stlb_idx].VPPN[VALEN-1:stlb_ps+1]==va[VALEN-
1:stlb_ps+1]):
    if (stlb_found == 0):
        stlb_found = 1
        if (va[stlb_s] == 0):
            sfound_v = STLB[way][stlb_idx].V0
            sfound_d = STLB[way][stlb_idx].D0
            sfoundnr = STLB[way][stlb_idx].NR0
            sfound_ne = STLB[way][stlb_idx].NE0
            sfound_mat = STLB[way][stlb_idx].MAT0
            sfound_plv = STLB[way][stlb_idx].PLV0
            sfound_rplv = STLB[way][stlb_idx].RPLV0
            sfound_pfn = STLB[way][stlb_idx].PFN0
        else:
            sfound_v = STLB[way][stlb_idx].V1
            sfound_d = STLB[way][stlb_idx].D1
            sfound_nr = STLB[way][stlb_idx].NR1
            sfound_ne = STLB[way][stlb_idx].NE1
            sfound_mat = STLB[way][stlb_idx].MAT1
            sfound_plv = STLB[way][stlb_idx].PLV1
            sfound_rplv = STLB[way][stlb_idx].RPLV1
            sfound_pfn = STLB[way][stlb_idx].PFN1
        else:
            # There are multiple hits, so the processor behavior will be
undefined.

# look up MTLB
mtlb_found = 0
for i in range (MTLB_ENTRIES):
    if (MTLB[i].E == 1) and
    ((MTLB[i].G == 1) or (MTLB[i].ASID == CSR.ASID.ASID)) and
    (MTLB[i].VPPN[VALEN-1:MTLB[i].PS+1] == va[VALEN-1:MTLB[i].PS+1]):
    if (mtlb_found == 0):
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            mtlb_found = 1
            mfound_ps - MTLB[i].PS
        if (va[mfound_ps] == 0):
            mfound_v = MTLB[i].V0
            mfound_d = MTLB[i].DO
            mfound_nr = MTLB[i].NRO
            mfound_ne - MTLB[i].NEO
            mfound_mat = MTLB[i].MATO
            mfound_plv = MTLB[i].PLV0
            mfound_rplv = MTLB[i].RPLVO
            mfound_pfn = MTLB[i].PFNO
        else:
            mfound_v = MTLB[i].V1
            mfound_d = MTLB[i].D1
            mfound_nr = MTLB[i].NR1
            mfound_ne = MTLB[i].NE1
            mfound_mat = MTLB[i].MAT1
            mfound_plv = MTLB[i].PLV1
            mfound_rplv = MTLB[i].RPLV1
            mfound_pfn = MTLB[i].PFN1
    else:
        # There are multiple hits, so the processor behavior will be
undefined.

if (stlb_found == 1) and (mtlb_found == 1):
    # There are multiple hits, so the processor behavior will be
undefined.
elif (stlb_found == 1):
    found_v = sfound_v
    found_d = sfound_d
    found_nr = sfound_nr
    found_ne = sfound_ne
    found_mat = sfound_mat
    found_plv = sfound_plv
    found_rplv = sfound_rplv
    found_pfn = sfound_pfn
    found_ps = stlb_ps
elif (mtlb_found == 1):
    found_v = mfound_v
    found_d = mfound_d
    found_nr = mfound_nr
    found_ne = mfound_ne
    found_mat = mfound_mat
    found_plv = mfound_plv
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    found_rplv = mfound_rplv
    found_pfn = mfound_pfn
    found_ps = mfound_ps
else:
    SignalException(TLBRD)    # Trigger TLB refill exception.

if (found_v == 0):
    case mem_type:
    FETCH : SignalException(PIF)    # Trigger page invalid exception for
fetch operation.
    LOAD : SignalException(PIL)     # Trigger page invalid exception for
load operation.
    STORE : SignalException(PIS)    # Trigger page invalid exception for
store operation.
elif (mem_type == FETCH) and (found_ne == 1):
    SignalException(PNX)    # Trigger page non-executable exception.
elif ((found_rplv == 0) and (plv > found_plv)) or
     ((found_rplv == 1) and (plv != found_plv)):
    SignalException(PPE)    # Trigger page privilege level ilegal
exception.
elif (mem_type == L0AD) and (found_nr == 1):
    SignalException(PNR)    # Trigger page non-readable exception.
elif (mem_type == STORE) and (found_d == 0)
     and ((plv == 3) or (CSR.MISC[16+plv] == 0)) :    # The function
that disable the check of write protection is not enabled.
    SignalException(PME)    # Trigger page modify exception.
else:
    pa = {found_pfn[PALEN-1:found_ps], va[found.ps-1:0]}
    mat = found_mat

5.4.5. Multi-level Page Table Structure Supported by page walking

Whether the LDDIR and LDPTE instructions are used to implement software page walking or hardware page
walking, the supported multi-level page table structure is the same, as shown in the figure.
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Figure 7. Multi-level page table structure supported by page walking

The base address of the top-level directory (global directory) of the traversed page table called PGD is

determined by the (PALEN-1) bit of the queried virtual address. When this bit is 0, the PGD comes from

CSR.PGDL; when this bit is 1, the PGD comes from CSR.PGDH. This means that the entire page table

structure is (PALEN-1) bits.

The specifications of each level of directory entries and page table entries are configured by the system

software in CSR.PWCL and CSR.PWCH.

Whether the LDDIR and LDPTE instructions are used to implement software page walking or hardware page
walking, the system software needs to define the page table entries in the following format.

Figure 8. Table entry format for common pages

Figure 9. Table entry format for huge pages

In the above definition of the page table entry format, the main differences between the page table entry of
a huge page and the page table entry of a common page are:

1. Bit 6 of the directory entry is the huge page table entry flag bit, and 1 indicates that the directory entry
actually stores the page table entry of a huge page at this time;

2. The G bit of the common page table entry is in bit 6, while the G bit of the huge page table entry is in bit

12.
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Bits not defined in either of these formats are automatically ignored by the LDDIR and LDPTE instructions
or hardware page walking.

The P field defined in the above page table entry format represents whether the physical page exists, and

the W field represents whether the page is writable. This information is not filled in the TLB table entry, but
is used during the page walking.

Due to the double-page memory structure of the TLB table entries, for the huge page table entries (which
has only one), the hardware page table refill or the software LDPTE instruction will automatically split the
two page table entries in half according to the information of the huge page table entries and then fill in the

TLB. For example, if the standard page size is 16KB, the size of the first-level huge page size is usually

32MB. After the LDPTE rj, 0 and LDPTE rj, 1 instructions are executed during page walking, The TLB

will be filled with two page table entries (page size is 16MB) without special software intervention.

Because the address mapping is in direct address translation mode during TLB Refill exception (TLBR), the

addresses configured in the PGD and in the directory entries of the page table in memory must be physical
addresses.
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Chapter 6. Exceptions and interrupts

6.1. Interrupts

6.1.1. Interrupt Types

Interrupts in LoongArch take the form of line-based interrupts. Each processor core can record 13 line-
based interrupts: one Inter-Processor Interrupt (IPI), one Timer Interrupt (TI), one Performance Monitor
Counter Overflow Interrupt (PMCOV), eight HardWare Interrupts (HWI0-HWI7), and two SoftWare Interrupts
(SWI0-SWI1). All line-based interrupts are level-triggered and are high level triggered.

The interrupt source for inter-processor interrupts comes from an interrupt controller outside the core,

which is recorded by the processor core in the CSR.ESTA.IS[12] bit.

The interrupt source for the timer interrupt is from the constant frequency timer in the core. This interrupt is
triggered when the constant frequency timer counts down to zero. The timer interrupt is recorded by the

processor core in the CSR.ESTA.IS[11] bit. Clearing the timer interrupt is accomplished by the software

via writing 1 to CSR.TICLR.TI.

The interrupt source for the performance monitor counter overflow interrupt comes from the performance

monitor counter in the core. This interrupt is triggered when the [63] bit of the performance counter of any

enabled interrupt is 1. The performance monitor counter overflow interrupt is recorded by the processor

core in the CSR.ESTA.IS[10] bit. To clear a performance monitor counter overflow interrupt, set the

performance monitor counter of the interrupt that is triggered to 0 at the [63] bit, or disable the interrupt
for that performance monitor counter.

The interrupt source for hardware interrupts comes from outside the processor core, and its direct source

is usually an interrupt controller outside the core. 8 hardware interrupts (HWI[7:0]) are recorded by the

processor core in the CSR.ESTA.IS[9:2] bits .

The source of the software interrupt comes from the internal core of the processor, and the software writes

1 to CSR.ESTA.IS[1:0] to set up the software interrupt and 0 to clear it.

The index of the location of the interrupt recorded by the CSR.ESTA.IS field is also called the Interrupt

Number (Int Number). Int number for SWI0 is equal to 0, int number for SWI1 is equal to 1, … , int number of

IPI is equal to 12.

6.1.2. Interrupt Priority

The response to multiple interrupts at the same time is arbitrated by a fixed priority. The higher the int
number, the higher the priority. Therefore, IPI has the highest priority, TI the second highest, … , SWI0 has
the lowest priority.

6.1.3. Interrupt Entry

Interrupts are treated as an exception once they are marked to the instruction by the processor, so the
calculation of interrupt entries follows the rules for calculating general exception entries. See Exception
Entry for the rules of calculating the general exception entries. The exception number for an interrupt is its

own int number plus 64. The exception number for interrupt SWI0 is 64, the exception number for interrupt

SWI1 is 65, … , and so on.

6.1.4. Process of Processor Responding to Interrupts

The interrupt signal from each interrupt source is recorded by the processor in the CSR.ESTA.IS field. The
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value of this field and the value of the local interrupt enable field configured by software in the

CSR.ECFG.LIE field perform the bitwise AND operation to obtain a 13-bit interrupt vector (int_vec).

When CSR.CRMD.IE=1 and int_vec is not all 0 values, the processor considers that there is an interrupt
that needs to be responded to. So the processor picks an instruction from the executed instruction stream
and marks it with a special kind of exception — interrupt exception.

The subsequent process of the processor is the same as that of the general exception, see the description
in General Hardware Exception Handling of General Exceptions.

6.2. Message-Interrupts

6.2.1. Message-Interrupt Types

In the Loongson architecture, 256 message interrupts can be recorded inside each logical processor core,
which can include message-type intercore interrupts and message-type hard interrupts input from outside
the processor core. Within a processor core, four 64-bit CSRS, CSR.MSGIS0 to CSR.MSGIS3, record in turn
whether messages from 0 to 255 are interrupted or not. The exact source of the 256 message interrupts
inside each processor core is determined by the implementation, and software developers need to refer to
the specific chip user manual for information.

6.2.2. Message-Interrupt-Priority

Loongson architecture adopts a fixed priority among 256 message interrupts in each logical processor
core. The larger the interrupt number, the higher the priority, that is, message number 255 has the highest
priority, message number 254 has the second,…… , message 0 has the lowest interrupt priority.

Only message interrupts recorded inside each logical processor core whose priority is not lower than the
message interrupt enable priority threshold (recorded in the CSR.MSGIE.PT field) can be further selected
and set by the hardware.

When there are both message interrupt request and line interrupt request in a processor core, the message
interrupt request has higher priority than the line interrupt request.

6.2.3. Message-Interrupt-Entry

All message interrupts adopt a uniform entry, and the "entry page number" of their computed entry address
coincides with the line interrupt, coming from an "in-page offset" equal to 2(CSR.ECFG.VS+2)×78(0x4E) of
their computed entry address.

6.2.4. Message-Interrupt-Response-Processing

When the message interrupt is routed to the specified processor core, the processor core will set the
corresponding status position of internal CSR.MSGIS0~CSR.MSGIS3 to 1 according to the interrupt
number, and this process is recorded for the message interrupt. Then the processor core selects the
interrupt with the highest priority among the recorded message interrupts whose interrupt number is not
lower than the message interrupt enable priority threshold (recorded in the CSR.MSGIE.PT field), and
records its message interrupt number in the CSR.MSGOR.INTNUM field, and sets the CSR.MSGOR.NULL bit
to zero CSR.ESTAT.MSGINT position 1, this process picks and sets the message interrupt request for the
message interrupt. When the CSR.ESTAT.MSGINT bit is 1, only the global interrupt enables CSR.CRMD.IE to
block the message interrupt requests that are picked and set.

In the case that the CSR.ESTAT.MsgInt bit is 1, if the software reads the CSR.MSGIR register, the hardware
will automatically clear the corresponding status of CSR.MSGIS0 to CSR.MSGIS3 according to the message
interrupt number currently recorded in the CSR.MSGIR.INTUM field 0. If there is no more selected message
interrupt in CSR.MSGIS0~CSR.MSGIS3 after the interrupt status bit of this message is cleared 0, the
CSR.ESTAT.MSGINT bit will be cleared 0 by the hardware and CSR.MSGIR.NULL position 1 in the next
processor core internal clock cycle. Software developers are especially reminded that because of the "read
clear" nature of the CSR.MSGIR register, it is recommended to read the CSR.ESTAT.MSGINT bits when

120



checking for pending message interrupts.

6.3. Exceptions

6.3.1. Exception Entry

The entry for the TLB refill exception comes from CSR.TLBRENTRY.

The entry for the machine error exception comes from CSR.MERRENTRY.

Exceptions other than the above two exceptions are called general exceptions, and their entries are

calculated by address|offset. Here | is a bitwise OR operation.

All general exception entries have the same base address from CSR.EENTRY.

The offset of the general exception entry is determined by both the mode of the interrupt offset and the

exception number (ecode), which is equal to 2(CSR.ERG.V+2)×(ecode+64). See the ecode column in Table of
exception encoding for general exceptions except interrupts; the ecode for interrupts is its int number plus

64.

When CSR.ECFG.VS=0, all general exceptions have the same entry, and the software needs to determine

the specific exception type by Ecode and IS fields in CSR.ESTA. When CSR.ECFG.VS!=0, different
interrupt sources have different exception entries and the software does not need to confirm the exception

type by CSR.ESTA.

Since the exception entry is an offset on the base address calculated by bitwise OR operation, when

CSR.ECFG.VS!=0, during assigning the exception entry base address, the software needs to ensure that
all possible offsets do not exceed the bound alignment space corresponding to the low bit of the entry base
address.

6.3.2. Exception Priority

The exception priority follows two basic principles: first, the interrupt priority is higher than the exception;
second, for the exception, the highest priority is detected in the fetching stage, followed by the priority
detected in the decoding stage, and the priority detected in the execution stage.

For exceptions detected in the fetching stage: the highest priority is given to the fetch operation watchpoint
exception, the second highest priority is given to the fetch operation address error exception, the second
highest priority is given to TLB-related exceptions, and the lowest priority is given to the machine error
exception.

The exceptions that can be detected in the decoding stage are mutually exclusive, so there is no need to
consider the priority between them.

Only memory access instructions may trigger multiple exceptions at the same time during the execution
stage, with the following priorities in descending order: Address aLignment fault Exception (ALE) caused by
unaligned addresses for memory access instructions requesting alignment addresses > ADdress error
Exception (ADE) > Bound Check Exception (BCE)[1] > TLB-related exceptions[2] > Address aLignment fault
Exception (ALE) caused by addresses that span two pages of different Cache attributes for memory access
instructions allowing non-alignment addresses.

6.3.3. General Hardware Exception Handling of General Exceptions

There may be some differences in the handling of different general exceptions by the processor, and the
general hardware exception handling of general exceptions is described here.
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When a general exception is triggered, the processor does the following:

• Store PLV and IE in CSR.CRMD to PPLV and PIE in CSR.PRMD, then set PLV in CSR.CRMD to 0 and IE
to 0;

• For implementations that support the Watch function, also store WE in CSR.CRMD to PWE in CSR.PRMD
and then set WE in CSR.CRMD to 0;

• Record PC that triggered the exception by CSR.ERA;

• Jump to the exception entry to fetch instructions.

When the software executes the ERTN instruction returning from general exceptions, the processor does
the following:

• Restore PPLV and PIE in CSR.PRMD to PLV and IE in CSR.CRMD;

• For implementations that support the Watch function, also restore PWE in CSR.PRMD to WE in

CSR.CRMD;

• Jump to the address recorded by CSR.ERA to fetch instructions.

For the above hardware implementation, the software needs to save PPLV and PIE in CSR.PRMD if the

interrupt needs to be enabled during the exception handling, and restore the saved contents to CSR.PRMD
before the exception returns.

6.3.4. Hardware Exception Handling of TLB Refill Exception

When the TLB refill exception is triggered, the processor does the following:

• Store PLV and IE in CSR.CRMD to PPLV and PIE in CSR.TLBRPRMD, then set PLV in CSR.CRMD to 0,

IE to 0, DA to 1 and PG to 0.

• For implementations that support the Watch function, also store WE in CSR.CRMD to PWE in

CSR.TLBRPRMD, and then set WE in CSR.CRMD to 0;

• Record the [GRLEN-1:2] bits of the PC that triggered the exception instruction by ERA in

CSR.TLBRERA, and set IsTLBR in CSR.TLBRERA to 1;

• Record the virtual memory access address that triggered the exception (or PC if triggered by fetching

instructions) by CSR.TLBRBADV and the [PALEN-1:13] bits of address by VPPN in CSR.TLBREHI;

• Jump to the exception entry configured by CSR.TLBRENTRY to fetch instructions.

When software executes the ERTN instruction to return from TLB refill exception, the processor does the
following:

• Restore PPLV and PIE in CSR.TLBRPRMD to PLV and IE in CSR.CRMD;

• For implementations that support the Watch function, restore PWE in CSR.TLBRPRMD to WE in

CSR.CRMD;

• Set DA in CSR.CRMD to 0 and PG to 1;

• Set IsTLBR in CSR.TLBRERA to 0;

• Jump to the address recorded by CSR.TLBRERA to fetch instructions.
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6.3.5. Hardware Exception Handling of Machine Error Exception

When the machine error exception is triggered, the processor does the following:

• Store PLV, IE, DA, PG, DATF and DATM in CSR.CRMD to PPLV, PIE, PDA, PPG, PDATF and PDATM in

CSR.MERRCTL, then set PLV in CSR.CRMD to 0, IE to 0, DA to 1, PG to 0, DATF to 0, and DATM to 0;

• For implementations that support the Watch function, also store WE in CSR.CRMD to PWE in

CSR.MERRCTL, and then set WE in CSR.CRMD to 0;

• Record PC that triggered the exception instruction by CSR.MERRERA;

• Set IsMERR in CSR.MERRCTL to 1;

• Record the specific error message by CSR.ERRINFO and CSR.MERRINFO1;

• Jump to the exception entry configured by CSR.MERRENTRY to fetch instructions.

When the software executes the ERTN instruction returning from the machine error exception, the
processor does the following:

• Restore PPLV, PIE, PDA, PPG, PDATF and PDATM in CSR.MERRCTL;

• For implementations that support the Watch function, also restore PWE in CSR.MERRCTL to WE in

CSR.CRMD;

• Set the IsMERR in CSR.TLBRERA to 0;

• Jump to the address recorded by CSR.MERRERA to fetch instructions.

6.4. Reset

A reset will reset all logic in the processor core and place the circuit in a determined state. The definition of
the state of the processor after reset is given here.

The PC after the reset is 0x1C000000. Since the MMU must be in direct address translation mode after the

reset, the physical address of the first instruction fetched after reset is also 0x1000000.

After the reset, the contents of the registers in the determined state are:

• PLV in CSR.CRMD is 0, IE is 0, DA is 1, PG is 0, DATF is 0, DATM is 0, and WE is 0;

• FPUen, VPUen, XVPUen and BTUen in CSR.PUCTL are all 0 values;

• All configurable bits in CSR.MISC are 0;

• VS and LIE in CSR.ECFG are 0;

• All bits of IS[1:0] in CSR.ESTA are 0;

• RDVA in CSR.RVACFG is 0;

• En in CSR.TCFG is 0;

• KLO in CSR.LLBCTL is 0;

• IsTLBR in CSR.TLBRERA is 0;

• IsMERR in CSR.MERRCTL is 0;

• PLV0-PLV3 in all implemented CSR.DMWs are 0;
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• All configurable bits except EvCode in all implemented CSR.PMCFGs are 0;

• All configurable bits in all implemented data breakpoint CSRs are 0;

• All configurable bits in all implemented instruction breakpoint CSRs are 0;

• DST in CSR.DEBUG is 0.

In addition to what is specified above, the values of all other software-visible registers in the processor are
undefinded after the reset. The software has to set their values before they can be used.

Whether TLB and Cache need to do a hardware reset during the reset is decided by the implementation.
The software responsible for booting determines whether to do a software reset via the processor
configuration information.

1. It is generated only when it is a memory access instruction of bound class.

2. The definition of TLB-related exceptions dictates that only one TLB-related exception will be generated by a single memory access
instruction in any case.
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Chapter 7. Control and Status Registers

7.1. Overview of Control and Status Registers

Table 14. Overview of Control and Status Registers

Address Name

0x0 CuRrent MoDe information CRMD

0x1 PRe-exception MoDe information PRMD

0x2 Extended component Unit ENable EUEN

0x3 MISCellaneous controller MISC

0x4 Exception ConFiGuration ECFG

0x5 Exception STATus ESTAT

0x6 Exception Return Address ERA

0x7 BAD virtual Address BADV

0x8 BAD Instruction BADI

0xC Exception ENTRY address EENTRY

0x10 TLB InDeX TLBIDX

0x11 TLB Entry HIgh-order bits TLBEHI

0x12 TLB Entry LOw-order bits 0 TLBELO0

0x13 TLB Entry LOw-order bits 1 TLBELO1

0x18 Address Space IDentifier ASID

0x19 Page Global Directory base address for Lower half address
space

PGDL

0x1A Page Global Directory base address for Higher half address
space

PGDH

0x1B Page Global Directory base address PGD

0x1C Page Walk Controller for Lower half address space PWCL

0x1D Page Walk Controller for Higher half address space PWCH

0x1E STLB Page Size STLBPS

0x1F Reduced Virtual Address ConFiGuration RVACFG

0x20 CPU IDentity CPUID

0x21 Privileged Resource ConFiGuration 1 PRCFG1

0x22 Privileged Resource ConFiGuration 2 PRCFG2

0x23 Privileged Resource ConFiGuration 3 PRCFG3

0x30+n (0 ≤ n ≤
15)

Data SAVA register SAVEn

0x40 Timer IDentity TID

0x41 Timer ConFiGuration TCFG
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Address Name

0x42 Timer VALue TVAL

0x43 CouNTer Compensation CNTC

0x44 Timer Interrupt CLeaRing TICLR

0x60 LLBit ConTroLler LLBCTL

0x80 IMPlementation-specific ConTroLler 1 IMPCTL1

0x81 IMPlementation-specific ConTroLler 2 IMPCTL2

0x88 TLB Refill exception ENTRY address TLBRENTRY

0x89 TLB Refill exception BAD Virtual address TLBRBADV

0x8A TLB Refill Exception Return Address TLBRERA

0x8B TLB Refill exception data SAVE register TLBRSAVE

0x8C TLB Refill exception Entry LOw-order bits 0 TLBRELO0

0x8D TLB Refill exception Entry LOw-order bits 1 TLBRELO1

0x8E TLB Refill exception Entry HIgh-order bits TLBREHI

0x8F TLB Refill exception PRe-exception MoDe information TLBRPRMD

0x90 Machine ERRor ConTroLler MERRCTL

0x91 Machine ERRor INFOrmation 1 MERRINFO1

0x92 Machine ERRor INFOrmation 2 MERRINFO2

0x93 Machine ERRor exception ENTRY address MERRENTRY

0x94 Machine ERRor Exception Return Address MERRERA

0x95 Machine ERRor exception data SAVE register MERRSAVE

0x98 Cache TAGs CTAG

0x180+n (0 ≤ n
≤ 3)

Direct Mapping configuration Window n DMWn

0x200+2n (0 ≤ n
≤ 31)

Performance Monitor ConFiGuration n PMCFGn

0x201+2n (0 ≤ n
≤ 31)

Performance Monitor overall CouNTer n PMCNTn

0x300 Memory load/store WatchPoint overall Controller MWPC

0x301 Memory load/store WatchPoint overall Status MWPS

0x310+8n (0 ≤ n
≤ 7)

Memory load/store WatchPoint n ConFiGuration 1 MWPnCFG1

0x311+8n (0 ≤ n
≤ 7)

Memory load/store WatchPoint n ConFiGuration 2 MWPnCFG2

0x312+8n (0 ≤ n
≤ 7)

Memory load/store WatchPoint n ConFiGuration 3 MWPnCFG3
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Address Name

0x313+8n (0 ≤ n
≤ 7)

Memory load/store WatchPoint n ConFiGuration 4 MWPnCFG4

0x380 Fetch WatchPoint overall Controller FWPC

0x381 Fetch WatchPoint overall Status FWPS

0x390+8n (0 ≤ n
≤ 7)

Fetch WatchPoint n ConFiGuration 1 FWPnCFG1

0x391+8n (0 ≤ n
≤ 7)

Fetch WatchPoint n ConFiGuration 2 FWPnCFG2

0x392+8n (0 ≤ n
≤ 7)

Fetch WatchPoint n ConFiGuration 3 FWPnCFG3

0x393+8n (0 ≤ n
≤ 7)

Fetch WatchPoint n ConFiGuration 4 FWPnCFG4

0x500 DeBuG register DBG

0x501 Debug Exception Return Address DERA

0x502 Debug data SAVE register DSAVE

7.2. Characteristics of Accessing Control and Status
Registers

7.2.1. Attributes of Reading and Writing

The definition of the “read/write” attribute for each field is described later in this manual in the control and
status register field definition. The “read/write” attributes are defined primarily from the perspective of
software and are divided into four types:

• RW - readable and writable. Software can write any value, except for illegal values that are explicitly
stated in the definition and lead to uncertainty in the processor’s execution. Normally, software writes
to these fields before it reads them, and what is read should be the value written. However, when the
accessed field can be updated by hardware, or when an interrupt occurs between the two instructions
executing the read and write operation, it is possible that the read value is not consistent with the
written value.

• R - read-only. Software writes to these fields will not update their contents, and will have no side
effects.

• R0 - always return 0 if read these fields. But at the same time software must ensure that either it avoids

updating these fields by setting the CSR write mask bit, or it must write 0 when updating these fields.
This requirement is to ensure software backward compatibility. For hardware implementations, fields
marked with this attribute will prohibit software writing.

• W1 - write 1 is valid. Software writes 0 to these fields will not clear them to 0 and will have no side
effects. Also, the read values of these fields have no real meaning and software should ignore these
values.

7.2.2. Length of Control and Status Registers in LA32 and LA64

The length of all status control registers is either fixed 32 bits, or it depends on whether the implementation
is LA32 or LA64. For the first type of registers, when they are accessed by CSR instructions in LA64, retrun
values of reading these registers are symbolic expansion to 64 bits, and bits higher than 32 bits of values of

127



writing to them are automatically ignored by hardware. For the second type, the definitions will clearly
indicate the difference between LA32 and LA64.

7.2.3. Access Effects of Undefined and Unimplemented Control and Status Registers

When software uses CSR instructions to access CSR objects that are not defined in the architecture
specification or that are implementable entries defined in the architecture specification but not
implemented by the specific hardware, the return value of reading can be any value, but the write operation
will not change the software-visible processor state.

Although software writes to these undefined or unimplemented status control registers do not change the
software-visible processor state, software should not write to these registers if it wants to ensure backward
compatibility.

7.3. Conflicts Caused by Control and Status Registers

Conflicts caused by the control and status register are maintained by the hardware, and the software does
not need to add barrier-type instructions for avoiding conflict.

7.4. Basic Control and Status Registers

7.4.1. Current Mode Information (CRMD)

The information in this register is used to determine the the processor core’s privilege level, global interrupt
enable bit, watchpoint enable bit, and address translation mode at that time.

Table 15. Definition of current mode information register

Bits Name Read/Write Description

1:0 PLV RW Current privilege level. The legal value range is 0 to 3, where 0 is

the highest privilege level and 3 is the lowest privilege level.

When an exception is triggered, the hardware sets the value of

this field to 0 to ensure that it is at the highest privilege level after
being caught.

When the ERTN instruction is executed to return from the

exception handler, if CSR.MERRCTL.IsMERR=1, the hardware

restores the value of the PPLV field of CSR.MERRCTL to here;

otherwise, if CSR.TLBRERA.IsTLBR=1, the hardware restores

the value of the PPLV field of CSR.TLBRPRMD to here; otherwise,

the hardware restores the value of the PPLV field of

CSR.TLBRPRMD to here;

otherwise, the hardware restores the value of the PPLV field of

CSR.TLBRPRMD to here. Hardware restores the value of the PPLV
field of CSR.PRMD to here.
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Bits Name Read/Write Description

2 IE RW Current global interrupt enable bit, which is active high.

When an exception is triggered, the hardware sets the value of

this field to 0, to ensure that the interrupt is masked when caught.

This field needs to be explicitly set to 1 when the exception
handler decides to re-open the interrupt response.

When the ERTN instruction is executed to return from the

exception handler, if CSR.MERRCTL.IsMERR=1, the hardware

restores the value of the PIE field of CSR.MERRCTL to this field;

Otherwise, if CSR.TLBRERA.IsTLBR=1, the hardware restores

the value of the PIE field of CSR.TLBRPRMD here;

Otherwise, the hardware restores the value of the PIE field of

CSR.PRMD to here.

3 DA RW Direct address translation mode enable bit, which is active high.

The hardware sets this field to 1 when a TLB refill exception or a
machine error exception is triggered.

If CSR.MERRCTL.IsMERR=1, the hardware restores the value of

the PDA field of CSR.MERRCTL when the ERTN instruction is
executed and returns from the exception handler;

otherwise, if CSR.TLBRERA.IsTLBR=1, the hardware sets this

field to 0.

The legal combination of DA and PG bits is 0, 1 or 1, 0. The result
is uncertain when the software is configured for other
combinations.

4 PG RW Mapped address translation mode enable bit, which is active high.

The hardware sets this field to 0 when a TLB refill exception or a
machine error exception is triggered.

When the ERTN instruction is executed to return from an
exception handler,

if CSR.MERRCTL.IsMERR=1, the hardware restores the value of

the PPG field of CSR.MERRCTL to this;

otherwise, if CSR.TLBRERA.IsTLBR=1, the hardware sets this

field to 1.

The legal combination of PG and DA bits is 0, 1 or 1, 0. The result
is uncertain when the software is configured for other
combinations.
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Bits Name Read/Write Description

6:5 DATF RW The type of memory access for fetch operations when in direct
address translation mode.

The hardware sets this field to 0 when a machine error exception
is triggered.

When the execution of the ERTN instruction returns from the

exception handler and CSR.MERRCTL.IsMERR=1, the hardware

restores the value of the PDATF field of CSR.MERRCTL to here.

In the case of using software to handle TLB refill, when the

software sets PG to 1, it needs to set the DATF field to 0b01 at
the same time, which is the consistent cacheable type.

8:7 DATM RW The type of memory access for load and store operations when in
direct address translation mode.

The hardware sets this field to 0 when a machine error exception
is triggered.

When the execution of the ERTN instruction returns from the

exception handler and CSR.MERRCTL.IsMERR=1, the hardware

restores the value of the PDATM field of CSR.MERRCTL to here.

In the case of using software to handle TLB refill, when the

software sets PG to 1, it needs to set DATM to 0b01 at the same
time, i.e., consistent cacheable type.

9 WE RW Instruction and data watchpoints enable bit, which is active high.

The hardware sets the value of this field to 0 when an exception is
triggered.

When the ERTN instruction is executed to return from the
exception handler.

If CSR.MERRCTL.IsMERR=1, the hardware restores the value of

the PWE field of CSR.MERRCTL to here;

otherwise, if CSR.TLBRERA.IsTLBR=1, the hardware restores

the value of the PWE field of CSR.TLBRPRMD to here;

Otherwise, the hardware restores the value of the PWE field of

CSR.PRMD here.

31:10 0 R0 Reserved field. Return 0 if read this field and the software does
not allow to change its value.

7.4.2. Pre-exception Mode Information (PRMD)

When an exception is triggered, if the exception type is not TLB refill exception and machine error
exception, the hardware will save the processor core’s privilege level, global interrupt enable bit and
watchpoint enable bit at that time to the pre-exception mode information register for restoring the
processor core to the context when the exception returns.
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Table 16. Definition of pre-exception mode information register

Bits Name Read/Write Description

1:0 PPLV RW When an exception is triggered, the hardware records the old

value of the PLV field in CSR.CRMD in this field if the exception
type is not a TLB refill exception and a machine error exception.

When the exception being processed is neither a TLB refill

exception (CSR.TLBRERA.IsTLBR=0) nor a machine error

exception (CSR.MERRCTL.IsMERR=0), the hardware restores the

value of this field to the PLV field of CSR.CRMD when the ERTN
instruction is executed to return from the exception handler.

2 PIE RW When an exception is triggered, the hardware records the old

value of the IE field in CSR.CRMD in this field if the exception type
is not a TLB refill exception and a machine error exception.

When the exception being processed is neither a TLB refill

exception (CSR.TLBRERA.IsTLBR=0) nor a machine error

exception (CSR.MERRCTL.IsMERR=0), the hardware restores the

value of this field to the IE field of CSR.CRMD when the ERTN
instruction is executed to return from the exception handler.

3 PWE RW When an exception is triggered, the hardware records the old

value of the WE field in CSR.CRMD in this field if the exception type
is not a TLB refill exception and a machine error exception.

When the exception being processed is neither a TLB refill

exception (CSR.TLBRERA.IsTLBR=0) nor a machine error

exception (CSR.MERRCTL.IsMERR=0), the hardware restores the

value of this field to the WE field of CSR.CRMD when the ERTN
instruction is executed to return from the exception handler.

31:4 0 R0 Reserved field. Return 0 if read this field and the software does
not allow to change its value.

7.4.3. Extended Component Unit Enable (EUEN)

In addition to the base integer instruction set and the privileged instruction set, the base floating-point
instruction set, the binary translation extension instruction set, the 128-bit vector extension instruction set,
and the 256-bit vector extension instruction set each have software-configurable enable bits. When these
enable controls are disabled, execution of the corresponding instruction will trigger the corresponding
instruction unavailable exception. Software uses this mechanism to determine the scope when saving the
context. Hardware implementations can also use the control bits here to implement circuit power control.

Table 17. Definition of extended component unit enable register

Bits Name Read/Write Description

0 FPE RW The base floating-point instruction enable bit. When this bit is 0,
execution of the base floating-point instruction as described in
Overview of Floating-Point Instructions will trigger a floating-point
instruction disable exception (FPD).

1 SXE RW The 128-bit vector expansion instruction enable bit. When this bit

is 0, execution of the 128-bit vector expansion instruction as
described in Volume 2 will trigger the 128-bit vector expansion
instruction disable exception (SXD).
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Bits Name Read/Write Description

2 ASXE RW The 256-bit vector expansion instruction enables the control bit.

When this bit is 0, execution of the 256-bit vector expansion
instruction as described in Volume 2 will trigger the 256-bit vector
expansion instruction disable exception (ASXD).

3 BTE RW Binary translation expansion instruction enable bit. When this bit

is 0, execution of the binary translation expansion instruction
described in Volume 2 will trigger the binary translation expansion
instruction disable exception (BTD).

31:4 0 R0 Reserved field. Return 0 if read this field, and software is not
allowed to change its value.

7.4.4. Miscellaneous Controller (MISC)

This register contains a number of control bits for the operating behavior of the processor core at different
privilege levels, including whether to enable 32-bit address mode, whether to allow partially privileged
instructions at non-privileged levels, whether to enable address non-alignment check, and whether to
enable page table write protection check.

Table 18. Definition of miscellaneous controller register

Bits Name Read/Write Description

0 0 RO Reserved field. Return 0 if read this field and software is not
allowed to change its value.

1 VA32L1 RW Whether to enable 32-bit address mode at the PLV1 privilege

level. 0 - disable, 1 - enable. This bit can be read and written only
in LA64, at the LA32 privilege level, this attribute is R0.

2 VA32L2 RW Whether to turn on 32-bit address mode at the PLV2 privilege

level. 0 - disable, 1 - enable. This bit is read/write only in LA64,
and at the LA32 privilege level, this attribute is R0.

3 VA32L3 RW Whether to enable 32-bit address mode at the PLV3 privilege

level. 0 - disable, 1 - enable. This bit is read/write only in LA64,
and at the LA32 privilege level, this attribute is R0.

4 0 R0 Reserved field. Return 0 if read this field and software is not
allowed to change its value.

5 DRDTL1 RW Whether to disable RDTIME-like instructions at the PLV1 privilege

level. When this bit is 1, execution of an RDTIME-like instruction at
the PLV1 privilege level will trigger an instruction privilege level
error exception (IPE).

6 DRDTL2 RW Whether to disable RDTIME-like instructions at the PLV2 privilege

level. When this bit is 1, execution of RDTIME-like instructions at
PLV2 privilege level will trigger instruction privilege level error
exception (IPE).

7 DRDTL3 RW Whether to disable RDTIME class instructions at the PLV3

privilege level. When this bit is 1, execution of RDTIME-like
instructions at the PLV3 privilege level will trigger an instruction
privilege level error exception (IPE).

8 0 R0 Reserved field. Return 0 if read this field and software is not
allowed to change its value.
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Bits Name Read/Write Description

9 RPCNTL1 RW Whether to allow software reads of the performance counter at

the PLV1 privilege level. When this bit is 1, the PLV1 privilege level

PCNT will not trigger an instruction privilege level error exception

(IPE), if the CSRRD instruction is used to access any of the
implemented performance counters at the PLV1 privilege level.

10 RPCNTL2 RW Whether software reads of the performance counter are allowed

at the PLV2 privilege level. When this bit is 1, the PLV2 privilege

level When this bit is 1, accessing any implemented performance

counter PCNT with CSRRD instruction at the PLV2 privilege level
does not trigger instruction privilege level error exception (IPE).

11 RPCNTL3 RW Whether software reads of the read performance counter are

allowed at the PLV3 privilege level. When this bit is 1, the PLV3

privilege level When this bit is 1, accessing any implemented

performance counter PCNT with the CSRRD instruction at the
PLV3 privilege level does not trigger an instruction privilege level
error exception (IPE).

12 ALCL0 RW Whether to perform a non-alignment check for non-vector
load/store instructions that are allowed to be non-aligned at PLV0

privilege level. 1 indicates that the check is performed, and an
address alignment error exception is triggered if illegal. This bit is
read/write only if the hardware implementation supports non-
aligned addresses for these non-vector load/store instructions.

Otherwise, the bit is a read-only constant 1.

13 ALCL1 RW Whether to perform a non-alignment check for non-vector
load/store instructions[1] that are allowed to be non-aligned at the

PLV1 privilege level. 1 indicates that the check is performed and
triggers an address alignment error exception if illegal.

This bit is read/write only if the hardware implementation
supports non-aligned addresses for these non-vector load/store

instructions. Otherwise, the bit is a read-only constant 1.

14 ALCL2 RW Whether to perform a non-alignment check for non-vector
load/store instructions[1] that are allowed to be non-aligned at the

PLV2 privilege level. 1 indicates that the check is performed and
triggers an address alignment error exception if illegal.

This bit is read/write only if the hardware implementation
supports non-aligned addresses for these non-vector load/store

instructions. Otherwise, the bit is a read-only constant 1.

15 ALCL3 RW Whether to perform a non-alignment check for non-vector
load/store instructions[1] that are allowed to be non-aligned at the

PLV3 privilege level. 1 indicates that the check is performed and
triggers an address alignment error exception if illegal.

This bit is read/write only if the hardware implementation
supports non-aligned addresses for these non-vector load/store

instructions. Otherwise, the bit is a read-only constant 1.
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Bits Name Read/Write Description

16 DWPL0 RW Whether to disable the check of the page table entry write
protection during TLB virtual and real address translation at the

PLV0 privilege level. When this bit is 1, the store instruction will
not trigger a page modification exception even if it accesses a

page table entry with D=0.

17 DWPL1 RW Whether to disable the check of the page table entry write
protection during TLB virtual and real address translation at the

PLV1 privilege level. When this bit is 1, the store instruction will
not trigger a page modification exception even if it accesses a

page table entry with D=0.

18 DWPL2 RW Whether to disable the check of the page table entry write
protection during TLB virtual and real address translation at the

PLV2 privilege level. When this bit is 1, the store instruction will
not trigger a page modification exception even if it accesses a

page table entry with D=0.

31:19 0 RO Reserved field. Return 0 if read this field and software is not
allowed to change its value.

7.4.5. Exception Configuration (ECFG)

This register is used to control the entry calculation method of exceptions and interrupts and the local
enable bit of each interrupt.

Table 19. Definition of exception configuration register

Bits Name Read/Write Description

12:0 LIE RW Local interrupt enable bits, which are high valid. These local
interrupt enable bits correspond to the 13 interrupt sources

recorded in the IS field in CSR.ESTAT. Each bit controls one
interrupt source.

15:13 0 R0 Reserved field. Return 0 if read this field, and software is not
allowed to change its value.

18:16 VS KW Configure the spacing of exceptions and interrupt entries. When

VS=0, all exceptions and interrupts have the same entry base

address. When VS!=0, the entry base address spacing between

each exception and interrupt is 2VS instructions. Since the TLB
refill exceptions and machine error exceptions have separate
entry base addresses, the entry of both exceptions is not affected

by the VS field.

31:19 0 RO Reserved field. Return 0 if read this field, and software is not
allowed to change its value.

7.4.6. Exception Status (ESTAT)

This register records the status information of the exceptions, including the first and second level encoding
of the triggered exceptions, and the status of each interrupt.

Table 20. Definition of exception status register
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Bits Name Read/Write Description

1:0 IS[1:0] RW The status bits of the two software interrupts. Bit 0 and 1
correspond to SWI0 and SWI1 respectively.

Software interrupt setting is also done by these two bits, writing 1
sets the interrupt, and writing 0 clears the interrupt.

12:2 IS[12:2] R The interrupt status bit. 1 indicates that the corresponding
interrupt is set up. There is 1 inter-processor interrupt (IPI), 1
timer interrupt (TI), 1 performance counter overflow interrupt
(PCOV), 8 hardware interrupts (HWI0-HWI7).

In line-based interrupt mode, the hardware only records each
interrupt source per clock cycle to these bits. The requirement
that all interrupts must be level interrupts at this time is
guaranteed by the interrupt source and is not maintained here.

15:13 0 R0 Reserved field. Return 0 if read this field, and software is not
allowed to change its value.

21:16 Ecode R Exception encoding. When an exception is triggered: if it is a TLB
refill exception or a machine error exception, this field remains
unchanged; otherwise, the hardware writes the value defined in

the Ecode column in the following table to this field according to
the exception type.

30:22 EsubCode R Exception sub encoding. When an exception is triggered: if it is a
TLB refill exception or a machine error exception, the field
remains unchanged; otherwise, the hardware writes the value

defined in the EsubCode column in the following table to this
field according to the exception type.

31 0 R0 Reserved field. Return 0 if read this field and software is not
allowed to change its value.

Table 21. Table of exception encoding

Ecode EsubCode Exception Code Exception Type

0x0 INT Only when CSR.ECFG.VS=0, it means it is an
INTerrupt.

0x1 PIL Page Invalid exception for Load operation

0x2 PIS Page Invalid exception for Store operation

0x3 PIF Page Invalid exception for Fetch operation

0x4 PME Page Modification Exception

0x5 PNR Page Non-Readable exception

0x6 PNX Page Non-eXecutable exception

0x7 PPI Page Privilege level Illegal exception

0x8 0 ADEF ADdress error Exception for Fetching instructions

1 ADEM ADdress error Exception for Memory access
instructions

0x9 ALE Address aLignment fault Exception
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Ecode EsubCode Exception Code Exception Type

0xA BCE Bound Check Exception

0xB SYS SYStem call exception

0xC BRK BReaKpoint exception

0xD INE Instruction Non-defined Exception

0xE IPE Instruction Privilege error Exception

0xF FPD Floating-Point instruction Disable exception

0x10 SXD 128-bit vector (SIMD instructions) eXpansion
instruction Disable exception

0x11 ASXD 256-bit vector (Advanced SIMD instructions) e
Xpansion instruction Disable exception

0x12 0 FPE Floating-Point error Exception

1 VFPE Vecctor Floating-Point error Exception

0x13 0 WPEF WatchPoint Exception for Fetch watchpoint

1 WPEM WatchPoint Exception for Memory load/store
watchpoint

0x14 BTD Binary Translation expansion instruction Disable
exception

0x15 BTE Binary Translation related exceptions

0x16 GSPR Guest Sensitive Privileged Resource exception

0x17 HVC HyperVisor Call exception

0x18 0 GCSC Guest CSR Software Change exception

1 GCHC Guest CSR Hardware Change exception

0x1A-0x3E Reserved Codes

7.4.7. Exception Return Address (ERA)

When an exception is triggered, if the exception type is neither a TLB refill exception nor a machine error

exception, the PC of the instruction that triggered the exception will be recorded in this register.

Table 22. Definition of exception program counter register

Bits Name Read/Write Description

GRLEN-1:0 PC RW When an exception is triggered:

this field remains unchanged if the exception is a TLB refill
exception or a machine error exception;

otherwise, the hardware records the PC of the instruction that
triggered the exception here. For LA64, in this case, if the privilege
level that triggered the exception is in 32-bit address mode, then

the higher 32 bits of the recorded PC are forced to 0.
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7.4.8. Bad Virtual Address (BADV)

This register is used to record the bad address when a bad address exception is triggered. Such exceptions
include:

• ADdress error Exception for Fetching instructions (ADEF), at this time the PC of the instruction is
recorded

• ADdress error Exception for Memory access instructions (ADEM)

• Address aLignment fault Exception (ALE)

• Bound Check Exception (BCE)

• Page Invalid exception for Load operation (PIL)

• Page Invalid exception for Store operation (PIS)

• Page Invalid exception for Fetch operation (PIF)

• Page Modification Exception (PME)

• Page Non-Readable exception (PNR)

• Page Non-eXecutable exception (PNX)

• Page Privilege level Illegal exception (PPI)

Table 23. Definition of bad virtual address register

Bits Name Read/Write Description

GRLEN-1:0 VAddr RW When a bad address exception exception is triggered, the
hardware records the bad address here. For LA64, if the privilege
level that triggered the exception is in 32-bit address mode, the

high 32 bits of the recorded virtual address are forced to 0.

7.4.9. Bad Instruction (BADI)

This register is used to record the instruction code of the instruction that triggers the synchronous-related
exception. The so-called synchronous-related exceptions are all exceptions except the INTerrupt (INT), the
Guest CSR Hardware Change exception (GCHC), and the Machine ERRor exception (MERR).

Table 24. Definition of bad instruction register

Bits Name Read/Write Description

31:0 Inst R When a synchronous-related exception is triggered, the hardware
records the instruction code that triggered the exception here.

7.4.10. Exception Entry Base Address (EENTRY)

This register is used to configure the entry base address for general exceptions and interrupts.

Table 25. Definition of exception entry base address register

Bits Name Read/Write Description

11:0 0 R Read-only constant 0, writing to this field is ignored.

GRLEN-
1:12

VPN RW The virtual page table number of the entry base address for
general exceptions and interrupts.
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7.4.11. Reduced Virtual Address Configuration (RVACFG)

This register is used to control the length of the address being reduced in the virtual address reduction
mode.

Table 26. Definition of reduced virtual address configuration register

Bits Name Read/Write Description

3:0 RBits RW The number of the high order bits of the address to be reduced in
the virtual address reduction mode. It can be configured to a

value between 0 and 8.

0 is a special configuration value that means that the virtual
address reduction mode is disabled.

If the configured value is greater than 8, the processor behavior is
undefined.

31:4 0 R0 Reserved field. Return 0 if read this field and software is not
allowed to change its value.

7.4.12. CPU Identity (CPUID)

This register contains the processor core number information.

Table 27. Definition of CPU identity register

Bits Name Read/Write Description

8:0 CoreID R The number of the processor core. This information is used by
the software to distinguish the individual processor cores in a
multi-core system. When the system is integrated, the processor
core number information for each processor core is set by the
hardware according to the specific implementation. It is
recommended that the processor core number be incremented

from 0 in the system.

31:9 0 R0 Reserved field. Return 0 if read this field and software is not
allowed to change its value.

7.4.13. Privileged Resource Configuration 1 (PRCFG1)

This register contains the privileged resources information.

Table 28. Definition of privileged resource configuration 1 register

Bits Name Read/Write Description

3:0 SAVENum R The number of SAVE control and status registers.

11:4 TimerBits R The number of valid bits of the timer minus 1.

14:12 VSMax R The maximum value that can be set for the exception and

interrupt vector entry spacing (CSR.ECTL.VS).

31:15 0 R0 Reserved field. Return 0 if read this field and software is not
allowed to change its value.
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7.4.14. Privileged Resource Configuration 2 (PRCFG2)

This register contains the privileged resources information.

Table 29. Definition of privileged resource configuration 2 register

Bits Name Read/Write Description

GRLEN-1:0 PSAVL R Indicates the page size that the TLB can support (Page Size).

When bit i is 1, it indicates that a page size of 2i
 bytes is

supported.

7.4.15. Privileged Resource Configuration 3 (PRCFG3)

This register contains the privileged resources information.

Table 30. Definition of privileged resource configuration 3 register

Bits Name Read/Write Description

3:0 TLBType R Indicates how the TLB is organized:

0: No TLB;

1: a fully associated Multiple page size TLB (MTLB)

2: One fully associative Multiple page size TLB (MTLB) + one
group associative Singular-Page-Size TLB (STLB);

Other values: Reserved.

11:4 MTLBEntri
es

R When TLBType=0, the field is read-only constant 0;

When TLBType=1 or TLBType=2, the value of this field is the
number of entries in the fully associative multipage size TLB

minus 1.

19:12 STLBWays R When TLBType=0 or TLBType=1, the field is read-only constant

at 0;

When TLBType=2, the value of this field is the number of ways in

the group associative singular-page-size TLB minus 1.

25:20 STLBSets R When TLBType=0 or TLBType=1, the field is read-only constant

to 0;

When TLBType=2, the value of this field is the power of the
number of entries per way in the group associative singular-page-

size TLB, i.e., 2STLBSets
 entries per way.

31:26 0 R0 Reserved field. Return 0 if read this field and the software is not
allowed to change its value.

7.4.16. Data Save Register (SAVE)

The data save registers are used to temporarily store data for the system software. Each data save register
can store data from one general-purpose register.
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The minimum number of data save registers is 1, and the maximum number is 16. The exact number of

registers can be found in CSR.PRCFG1.SAVENum. Starting from SAVE0, the addresses of each SAVE
register are 0x30, 0x31, … , 0x30+SAVENum-1.

All data save control and status registers have the same format, as shown in the table.

Table 31. Definition of data save register

Bits Name Read/Write Description

GRLEN-1:0 Data RW Data for software to read and write only. The hardware does not
modify the contents of this field except for the execution of CSR
instructions.

7.4.17. LLBit Controller (LLBCTL)

This register is used for the access control operations performed on the LLBit.

Table 32. Definition of LLBit controller register

Bits Name Read/Write Description

0 ROLLB R A read-only bit. Reading this bit will return the value of the current

LLBit.

1 WCLLB W1 A software writing 1 to this bit will clear the LLBit to 0. A

software writing 0 to this bit will be ignored by hardware.

2 KLO RW Used to control the operation of the LLBit when the ERTN
instruction is executed. When this bit is 1, the LLBit is not

cleared to 0 when the ERTN instruction is executed. But the bit is

automatically cleared to 0 by the hardware; it means that each

time KLO is set to 1, it can only affect the execution of the ERTN
instruction once.

31:3 0 R0 Reserved field. Return 0 if read this field, and software is not
allowed to change its value.

7.4.18. Implementation-specific Controller 1 (IMPCTL1)

This register contains control information related to the microstructure characteristics at the time of the
specific implementation. Its format and the specific meaning of each field are defined by the specific
implementation.

7.4.19. Implementation-specific Controller 2 (IMPCTL2)

This register contains control information related to the microstructure characteristics at the time of the
specific implementation. Its format and the specific meaning of each field are defined by the specific
implementation.

7.4.20. Cache Tags (CTAG)

This register is used when the CACOP instruction accesses the Cache directly, to store the contents read

from the CacheTag or the contents to be written to the CacheTag. The format and the meaning of each
field are defined by the implementation.
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7.5. Control and Status Registers Related to Mapped Address
Translation

7.5.1. TLB Index (TLBIDX)

This register contains information such as the index associated with the TLB-related instruction when

executing TLB-related instructions. The length of the Index field in the table depends on implementation,

although LoongArch allows for an Index length of no more than 16 bits.

This register also contains the information related to the PS and P fields in the TLB table entry when
executing TLB-related instructions.

Table 33. Definition of TLB index register

Bits Name Read/Write Description

n-1:0 Index RW When executing the TLBRD and TLBWR instructions, the index of
the access TLB table entry comes from here.

When executing the TLBSRCH instruction, if it hits, the index of the
hit entry is recorded here.

For the correspondence between index values and TLB table
entries, refer to the relevant section in TLB Maintenance
Instructions.

15:n 0 R Read-only constant 0, writing to this field is ignored.

23:16 0 RO Reserved field. Return 0 if read this field and software is not
allowed to change its value.

29:24 PS RW When executing the TLBRD instruction, the value read from the PS
field of the TLB table entry is recorded here.

When executing the TLBWR and TLBFILL instructions with

CSR.TLBRERA.IsTLBR=0, the value written to the PS field of the
TLB table entry comes from here.

30 0 RO Reserved field. Return 0 if read this field and the software does
not allow to change its value.

31 NE RW 1 means the TLB table entry is empty (invalid TLB table entry),

and 0 means the TLB table entry is non-empty (valid TLB table
entry)

When executing the TLBSRCH instruction, this bit is recorded as 0
if there is a hit entry, otherwise it is recorded as 1.

When executing the TLBRD instruction, the E bit read from the
TLB table entry is inverted and recorded here.

When executing the TLBWR instruction, and when

CSR.TI.BRFPC.IsTT.BR=0, the value written to the E bit of the
TLB entry is written after it is inverted. If

CSR.TLBRERA.IsTLBR=1, then the E bit of the TLB entry being

written is always set to 1, regardless of the value of that bit.
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7.5.2. TLB Entry High-order Bits (TLBEHI)

This register contains the information related to the virtual page number of the high-order bits of the TLB

table entry during ececuting TLB-related instructions. Since the length of the VPPN field contained in the
high-order bits of the TLB table entry is related to the range of valid virtual addresses supported by the
implementation, the definition of the relevant register field is expressed separately.

Table 34. Definition of TLB entry high order bits register in LA64

Bits Name Read/Write Description

12:0 0 R Read-only constant 0, writing to this field is ignored.

VALEN-
1:13

VPPN RW When executing the TLBRD instruction, the value of the VPPN field
read from the TLB table entry is recorded here.

If CSR.TLBRERA.IsTLBR=0, the VPPN value used to query TLB

when executing TLBSRCH instruction and the value of VPPN field

written to TLB table entry when executing TLBWR and TLBFILL
instructions come from here.

When the page invalid exception for load operation, page invalid
exception for store operation, page invalid exception for fetch
operation, page modification exception, page non-readable
exception, page non-executable exception, and page privilege

level ilegal exception are triggered, the [VALEN-1:13] bits of the
virual address that triggered the exception are recorded here.

63:VALEN Sign_Ext R Return a signed extension value of the highest bits of the VPPN
field if read this field and writing to this field is ignored.

Table 35. Definition of TLB entry high order bits register in LA32

Bits Name Read/Write Description

12:0 0 R Read-only constant 0, writing to this field is ignored.

31:13 VPPN RW When executing the TLBRD instruction, the value of the VPPN field
read from the TLB table entry is recorded here.

If CSR.TLBRERA.IsTLBR=0, the VPPN value used to query TLB

when executing TLBSRCH instruction and the value of VPPN field

written to TLB table entry when executing TLBWR and TLBFILL
instructions come from here.

When the page invalid exception for load operation, page invalid
exception for store operation, page invalid exception for fetch
operation, page modification exception, page non-readable
exception, page non-executable exception, and page privilege

level ilegal exception are triggered, the [31:13] bits of the virual
address that triggered the exception are recorded here.

7.5.3. TLB Entry Low-order Bits (TLBELO0, TLBELO1)

TLBELO0 and TLBELO1 registers contain the information related to the physical page number of the low-
order bits of the TLB table entry during executing TLB-related instructions. Since TLB adopts a dual-page
structure, the low-order bits of TLB table entry corresponds to the odd and even physical page table entries,

where the even page information is in TLBELO0 and the odd page information is in TLBELO1. TLBELO0 and
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TLBELO1 registers have exactly the same format definition, and the definition of each field is in the table.

When CSR.TLBRERA.IsTLBR=0, and when executing the TLBWR and TLBFILL instructions, and the

written values of the G, PFN0, V0, PLV0, MATO, D0, NR0, NX0, RPLV0, PFN1, V1, PLV1, MATl, D1, NR1, NX1,

and RPLV1 fields of the TLB table entry come from TLBELOO and TLBELO1 fields, respectively.

When executing the TLBRD instruction, the above information read from the TLB table entry is written to the

corresponding fields in the TLBELO0 and TLBELO1 registers one by one.

Table 36. Definition of TLB entry low order bits in LA64

Bits Name Read/Write Description

0 V RW Valid bit (V) of the page table entry.

1 D RW Dirty bit (D) of the page table entry.

3:2 PLV RW Privilege LeVel of the page table entry (PLV).

5:4 MAT RW Memory Access Type (MAT) of the page table entry.

6 G RW Global flag bit (G) of the page table entry.

When executing the TLBFILL and TLBWR instructions, the G bit in

TLBELO0 and TLBELO1 is 1 only if both bits are 1.

The G bit of the page table entry filled into the TLB will be 1 only

when the G bit in both TLBELO0 and TLBELO1 is 1.

When executing the TLBRD instruction, when the G bit of the TLB

table entry read is 1, the G bits in TLBELO0 and TLBELO1 are set

to 1 at the same time.

11:7 0 R Read-only constant 0, writing to this field is ignored.

PALEN-
1:12

PPN RW Physical Page Number (PPN) of the page table.

60:PALEN 0 R Read-only constant 0, writing to this field is ignored.

61 NR RW Non-Readable bit (NR) of the page table entry.

62 NX RW Non-eXecutable bit (NX) of the page table entry.

63 RPLV RW Restricted Privilege LeVel enable (RPLV) of the page table. When

RPLV=0, the page table entry can be accessed by any program

whose privilege level is not lower than PLV; when RPLV=1, the
page table entry can only be accessed by programs whose

privilege level is equal to PLV.

Table 37. Definition of TLB entry low order bits in LA32

Bits Name Read/Write Description

0 V RW Valid bit (V) of the page table entry.

1 D RW Dirty bit (D) of the page table entry.

3:2 PLV RW Privilege LeVel (PLV) of the page table entry.
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Bits Name Read/Write Description

5:4 MAT RW Memory Access Type (MAT) of the page table entry.

6 G G Global flag bit (G) of the page table entry.

When executing the TLBFILL and TLBWR instructions, the G bit in

TLBELO0 and TLBELO1 is 1 only if both bits are 1.

The G bit of the page table entry filled into the TLB will be 1 only

when the G bit in both TLBELO0 and TLBELO1 is 1.

When executing the TLBRD instruction, when the G bit of the TLB

table entry read is 1, the G bits in TLBELO0 and TLBELO1 are set

to 1 at the same time.

7 0 R Read-only constant 0, writing to this field is ignored.

31:8 PPN RW Physical Page Number (PPN) of the page table.

7.5.4. Address Space Identifier (ASID)

This register contains the Address Space IDentifier (ASID) information for access operations and TLB-

related instructions. The length of the ASID may increase further as the architecture specification evolves,

and this information is given directly to facilitate software to specify the length of the ASID.

Table 38. Definition of address space identifier register

Bits Name Read/Write Description

9:0 ASID RW The address space identifier corresponding to the currently
executing program.

It is used as the ASID key value information for querying the TLB
when fetching instructions and executing the load/store
instructions.

When executing the TLBSRCH, TLBCLR and INVTLB instructions,
it is used as the ASID key value information for querying the TLB.

When executing the TLBWR or TLBFILL instructions, the value
written to the ASID field of the TLB table entry is derived from this.

The contents of the ASID field read from the TLB table entry

when executing the TLBRD instruction are recorded here.

15:0 0 R Read-only constant 0, writing to this field is ignored.

23:16 ASIDBITS R The length of the ASID field. It is directly equal to the value of this
field.

31:24 0 R0 Reserved field. Return 0 if read this field and software is not
allowed to change its value.

7.5.5. Page Global Directory Base Address for Lower Half Address Space (PGDL)

This register is used to configure the base address of the global directory for the lower half address space.
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It is required that the base address of the global directory must be aligned to a 4KB bound address.

This register also contains the information related to the PS and P fields in the TLB table entry when
executing the TLB-related instructions.

Table 39. Definition of page global directory base address for lower half address space register

Bits Name Read/Write Description

11:0 0 R Read-only constant 0, writing to this field is ignored.

GRLEN-
1:12

Base RW The base address of the global directory in the lower half address

space. By lower half address space, it means that the [VALEN-1]
bit of the virtual address is equal to 0.

7.5.6. Page Global Directory Base Address for Higher Half Address Space (PGDH)

This register is used to configure the base address of the global directory for the higher half address space.

The base address of the global directory must be aligned to the 4KB bound address, so the lowest 12 bits

of this register are not configurable by software and are read-only constant 0.

Table 40. Definition of page global directory base address for higher half address space register

Bits Name Read/Write Description

11:0 0 R Read-only constant 0, writing to this field is ignored.

GRLEN-
1:12

Base RW The base address of the global directory in the high half address

space. By higher half address space, it means that the [VALEN-
1] bit of the virtual address is equal to 1.

7.5.7. Page Global Directory Base Address (PGD)

This register is a read-only register, whose content is the global directory base address information
corresponding to the bad virtual address in the current context.

Table 41. Definition of page global directory base address register

Bits Name Read/Write Description

11:0 0 R Read-only constant 0, writing to this field is ignored.

GRLEN_1:1
2

Base R If the highest bit of the bad virtual address in the current context

is 0, the return value of reading is equal to the Base field of

CSR.PGDL; otherwise, the read return value is equal to the Base
field of CSR.PGDH.

When CSR.TLBRERA.IsTLBR=0, the bad virtual address

information in the current context is located in CSR.BADV;
otherwise, the bad virtual address information is located in

CSR.TLBRBADV.

7.5.8. Page Walk Controller for Lower Half Address Space (PWCL)

The information in this register and the CSR.PWCH register together define the page table structure used in
the operating system. This information will be used to instruct software or hardware to perform page table
walking. See Multi-level Page Table Structure Supported by page walking for an illustration of the page
table structure and walking process.
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PWCL is implemented in LA32 only, for which the PWCL register must contain all the information needed to
describe the page table structure, resulting in the last page table and the lowest two levels of the directory

starting at no more than 32 bits, a restriction that still exists in LA64.

Table 42. Definition of page walk controller for lower half address space register

Bits Name Read/Write Description

4:0 PTbase RW The start address of the last page table.

9:5 PTwidth RW The number of index bits of the last level page table.

14:10 Dirl_base RW The starting address of the lowest level directory.

19:15 Dirl_widt
h

RW The number of index bits of the lowest level directory. 0 means
there is no such level.

24:20 Dir2_base RW The starting address of the next lower level directory.

29:25 Dir2_widt
h

RW The number of index bits of the next lowest level directory. 0
means there is no such level.

31:30 PTEWidth RW The length of each page table entry in the memory. 0 - 64 bit; 1 -

128 bit; 2 - 192 bit; 3 - 256 bit.

7.5.9. Page Walk Controller for Higher Half Address Space (PWCH)

This register and the information in the CSR.PWCL register together define the page table structure used in
the operating system. This information will be used to instruct software or hardware to perform page table
walking. See Multi-level Page Table Structure Supported by page walking for an illustration of the page
table structure and walking process.

This register is only defined in LA64.

Table 43. Definition of page walk controller for higher half address space register

Bits Name Read/Write Description

5:0 Dir3_base RW The starting address of the next higher level directory.

11:6 Dir3_widt
h

RW The number of index bits of the next higher level directory. 0
means there is no such level.

17:12 Dir4_base RW The starting address of the highest level directory.

23:18 Dir4_widt
h

RW The number of index bits of the highest level directory. 0 means
there is no such level.

31:24 0 R0 Reserved field. Return 0 if read this field, and the software does
not allow to change its value.

7.5.10. STLB Page Size (STLBPS)

This register is used to configure the size of the page in the STLB.

Table 44. Definition of STLB page size register

Bits Name Read/Write Description

5:0 PS RW The STLB is a power of 2 of the page size. For example, if the

page size is 16KB, then PS=0xE.
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Bits Name Read/Write Description

31:6 0 R0 Reserved field. Return 0 if read this field and software is not
allowed to change its value.

7.5.11. TLB Refill Exception Entry Base Address (TLBRENTRY)

This register is used to configure the entry base address of the TLB refill exception. Since the processor
core will enter direct address translation mode after the TLB refill exception is triggered, the entry base
address filled here should be a physical address.

Table 45. Definition of TLB refill exception entry base address register in LA64

Bits Name Read/Write Description

11:0 0 R Read-only constant 0, writing to this field is ignored.

PALEN-
1:12

PPN RW The [PALEN-1:12] bits of the entry base address of the TLB
refill exception entry base address. The address filled in here by
the system software should be the physical address.

63:PALEN 0 R Read-only constant 0, writing to this field is ignored.

Table 46. Definition of TLB refill exception entry base address register in LA32

Bits Name Read/Write Description

11:0 0 R Read-only constant 0, writing to this field is ignored.

31:12 PPN RW The [31:12] bits of the entry base address of the TLB refill
exception entry base address. The address filled in here by the
system software should be the physical address.

7.5.12. TLB Refill Exception Bad Virtual Address (TLBRBADV)

This register is used to record the bad virtual address that triggered the TLB refill exception.

Table 47. Definition of TLB refill exception bad virtual address register

Bits Name Read/Write Description

GRLEN-1:0 VAddr RW When the TLB refill exception is triggered, the hardware records
the bad virtual address here. For LA64, in this case, if the privilege
level that triggered the exception is in 32-bit address mode, then

the high 32 bits of the recorded virtual address will be set to 0.

7.5.13. TLB Refill Exception Return Address (TLBRERA)

This register is used to record the PC of the instruction that triggered the TLB refill exception. In addition,
this register contains flag bits to identify the current exception as a TLB refill exception.

Table 48. Definition of TLB refill exception program counter register
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Bits Name Read/Write Description

0 IsTLBR RW 1 indicates that it is currently in the context of TLB refill exception
processing.

The hardware sets this bit to 1 when a TLB refill exception is
triggered.

When this bit is 1, execution of the ERTN instruction will clear it to

0 only if CSR.MERRCTL.IsMERR=0, otherwise it remains
unchanged.

Because the architecture defines a separate set of CSRs for TLB

refill exceptions, when this bit is 1.

• When ERTN returns, the information used to recover

CSR.CRMD will come from CSR.TLBRPRMD;

• ERTN return address will come from CSR.TLBRERA;

• The table entries to be written by TLBWR and TLBFILL
instructions will come from CSR.TLBREHI, CSR.TLBELO0
and CSR.TLBELO1;

• TLBSRCH instruction queries information from

CSR.TLBREHI;

• The bad virtual address required for LDDIR and LDPTE
instruction execution will come from CSR.TLBRBADV.

1 0 R Read-only constant 0, writing to this field is ignored.

GRLEN-1:2 PC RW Record the [GRLEN-1:2] bits of the PC of the instruction that

triggered the TLB refill exception. When the execution of ERTN
instruction returns from the TLB refill exception handler (at this

time, this register IsTLBR=1 and CSR.MERRCTL.IsMERR=0).

7.5.14. TLB Refill Exception Data Save Register (TLBRSAVE)

This register is used to store data temporarily for the system software. Each dava save register can hold
the data of one general-purpose register.

The reason for the additional SAVE register for TLB refill exception processing is to address the case where
a TLB refill exception is triggered during the processing of exceptions except the TLB refill exception.

Table 49. Definition of TLB refill exception data save register

Bits Name Read/Write Description

GRLEN-1:0 Data RW Data for software to read and write only. The hardware does not
modify the contents of this field except for the execution of CSR
instructions.

7.5.15. TLB Refill Exception Entry Low-order Bits (TLBRELO0, TLBRELO1)

The TLBRELO0/TLBRELO1 registers are used to store the information related to the physical page number
of the low-order bits of the TLB table entry during executing the TLB-related instructions (when the TLB

refill exception context CSR.TLBRERA.IsTLBR=1). The format of TLBRELO0/TLBRELO1 registers and the
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meaning of each field are the same as TLBELO0/TLBELO1 registers.

However, the TLBRELO0/TLBRELO1 registers are not an exact copy of the TLBELO0/TLBELO1 registers in

the case of CSR.TLBRERA.IsTLBR=1. This is reflected in two points:

• Regardless of the value of CSR.TLBRERA.IsTLBR, the TLBRD instruction updates only the TLBELO0
/TLBELO1 registers.

• Regardless of the value of CSR.TLBRERA.IsTLBR, the LDPTE instruction updates only the TLBRELO0
/TLBRELO1 registers.

Table 50. Definition of TLB refill exception entry low order bits register in LA64

Bits Name Read/Write Description

0 V RW Valid bit (V) of the page table entry.

1 D RW Dirty bit (D) of the page table entry.

3:2 PLV RW Privilege LeVel (PLV) of the page table entry.

5:4 MAT RW Memory Access Type (MAT) of the page table entry.

6 G RW Global flag bit (G) of the page table entry.

When executing the TLBFILL and TLBWR instructions, the G bit of

the page table entry filled into the TLB is 1 only when the G bit in

both TLBELO0 and TLBELO1 is 1.

11:7 0 R Read-only constant 0, writing to this field is ignored.

PALEN-
1:12

PPN RW Physical Page Number (PPN) of the page table.

60:PALEN 0 R Read-only constant 0, writing to this field is ignored.

61 NR RW Non-Readable bit (NR) of the page table entry.

62 NX RW Non-eXecutable bit (NX) of the page table entry.

63 RPLV RW Restricted Privilege LeVel enable (RPLV) for the page table. When

RPLV=0, the page table entry can be accessed by any program

whose privilege level is not lower than PLV; when RPLV=1, the
page table entry can only be accessed by programs whose

privilege level is equal to PLV.

Table 51. Definition of tlb refill exception entry low order bits register in LA32

Bits Name Read/Write Description

0 V RW Valid bit (V) of the page table entry.

1 D RW Dirty bit (D) of the page table entry.

3:2 PLV RW Privilege LeVel of the page table entry (PLV).

5:4 MAT RW Memory Access Type (MAT) of the page table entry.
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Bits Name Read/Write Description

6 G RW Global flag bit (G) of the page table entry. When executing

TLBFILL and TLBWR instructions, the G bit of the page table entry

filled into the TLB is 1 only when the G bits in both TLBELO0 and

TLBELO1 are 1.

11:7 0 R Read-only constant 0, writing to this field is ignored.

31:12 PPN RW Physical Page Number (PPN) of the page table.

7.5.16. TLB Refill Exception Entry High-order Bits (TLBREHI)

When in the TLB refill exception context (CSR.TLBRERA.IsTLBR=1), the TLBREHI register stores the
information related to the physical page number of the low-order bits of the TLB table entry during

executing TLB-related instructions, etc. The format of the TLBREHI register and the meaning of each field

are the same as the TLBEHI register.

However, the TLBREHI register is not an exact replica of the TLBEHI register in the case of

CSR.TLBRERA.IsTLBR=1. This is reflected in:

• Regardless of the value of CSR.TLBRERA.IsTLBR equals, the execution of the TLBRD instruction

updates only the TLBEHI register.

Table 52. Definition of TLB refill exception entry high order bits register in LA64

Bits Name Read/Write Description

5:0 PS RW Page size specified by TLB refill exception. That is, when

CSR.TLBRERA.IsTLBR=1, when executing TLBWR and TLBFILL
instructions and the value of the PS field of the written TLB table
entry comes from this.

12:0 0 R The read-only constant is 0, and writes are ignored.

VALEN-
1:13

VPPN RW When CSR.TLBRERA.IsTLBR=1, the value of VPPN used for

querying TLB when executing TLBSRCH instruction, and the value

of VPPN field of TLB table entry written when executing TLBWR
and TLBFILL instructions come from here. When a TLB refill

exception is triggered, the [VALEN-1:13] bits of the virtual
address that triggered the exception are recorded here.

63:VALEN Sign_Ext R The return value read from these bits is a signed extension of the

highest bits of the VPPN field; writing to these bits is ignored.

Table 53. Definition of tlb refill exception entry high order bits register in LA32

Bits Name Read/Write Description

12:0 0 R Read-only is constant to 0, and writes are ignored.

31:13 VPPN RW With CSR.TLBRERA.ISTLBR=1, the VPPN value used to query

the TLB when executing the TLBSRCH instruction, and the value of

the VPPN field written to the TLB table entry when executing the

TLBWR and TLBFILL instructions come from here. When a TLB

refill exception is triggered, the [31:13] bits of the virtual
address that triggered the exception are recorded here.
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7.5.17. TLB Refill Exception Pre-exception Mode Information (TLBRPRMD)

When a TLB refill exception is triggered, the hardware saves the processor core’s privilege level, Guest
mode, global interrupt enable bit, and watchpoint enable bit into this register at that time, which is used to
restore the processor core to the field when the exception returns.

Table 54. Definition of TLB refill exception pre-exception mode information register

Bits Name Read/Write Description

1:0 PPLV RW When the TLB refill exception is triggered, the hardware records

the old value of the PLV field in CSR.CRMD in this field. When

CSR.TLBRERAIsTLBR=1, the hardware restores the value of this

field to the PLV field of CSR.CRMD when the ERTN instruction is
executed to return from the exception handler.

2 PIE RW When the TLB refill exception is triggered, the hardware records

the old value of the IE field in the CSR.CRMD in this field. When

CSR.TLBRERAIsTLBR=1, the hardware restores the value of this

field to the IE field of CSR.CRMD when the ERTN instruction is
executed to return from the exception handler.

3 0 R If the virtualization extension is not implemented, this bit is read-

only constant to 0 and writes are ignored.

4 PWE RW When the TLB refill exception is triggered, the hardware records

the old value of the WE field in the CSR.CRMD in this field. When

CSR.TLBRERAIsTLBR=1, the hardware restores the value of this

field to the WE field of CSR.CRMD when the ERTN instruction is
executed to return from the exception handler.

31:5 0 R0 Reserved field. Return 0 if read this field, and software is not
allowed to change its value.

7.5.18. Direct Mapping Configuration Window n (DMW0-DMW3)

This -group sender is involved in completing the direct mapping address translation mode. See Direct
Mapped Address Translation Mode for more information about this address translation mode.

Table 55. Definition of direct mapping configuration window n register in LA64

Bits Name Read/Write Description

0 PLV0 RW 1 indicates that the configuration of this window can be used for
direct mapping address translation at the PLV0 privilege level.

1 PLV1 RW 1 indicates that the configuration of this window can be used for
direct mapping address translation at the PLV1 privilege level.

2 PLV2 RW 1 indicates that the configuration of this window can be used for
direct map address translation at the PLV2 privilege level.

3 PLV3 RW 1 indicates that the configuration of this window can be used for
direct mapping address translation at the PLV3 privilege level.

5:4 MAT RW The virtual address falls under the memory access type of the
access operation in this mapping window.

59:6 0 R0 Reserved field. Return 0 if read this field and software is not
allowed to change its value.
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Bits Name Read/Write Description

63:60 VSEG RW The [63:60] bits of the virtual address of the direct mapping
window.

Table 56. Definition of direct mapping configuration window n register in LA32

Bits Name Read/Write Description

0 PLV0 RW 1 indicates that the configuration of this window can be used for
direct mapping address translation at the PLV0 privilege level.

1 PLV1 RW 1 indicates that the configuration of this window can be used for
direct mapping address translation at the PLV1 privilege level.

2 PLV2 RW 1 indicates that the configuration of this window can be used for
direct map address translation at the PLV2 privilege level.

3 PLV3 RW 1 indicates that the configuration of this window can be used for
direct mapping address translation at the PLV3 privilege level.

5:4 MAT RW The virtual address falls under the memory access type of the
access operation in this mapping window.

24:6 0 R0 Reserved field. Return 0 if read this field and software is not
allowed to change its value.

27:25 PSEG RW The [31:29] bits of the physical address of the direct mapping
window.

28 0 R0 Reserved field. Return 0 if read this field and software is not
allowed to change its value.

31:29 VSEG RW The [31:29] bits of the virtual address of the direct mapping
window.

7.6. Control and Status Registers Related to Timers

7.6.1. Timer Identity (TID)

Each timer in the processor has a unique identifiable number, which is configured by the software in this
register. Each timer also uniquely corresponds to a timer, and when the software reads the timer value

using the RDTIME instruction, the timer ID number that is returned along with it is the corresponding timer
number.

Table 57. Definition of timer identity register

Bits Name Read/Write Description

31:0 TID RW Timer number. It can be configured via software. During a
processor core reset, the hardware can reset it to the same value

as the CoreID in CSR.CPUID.

7.6.2. Timer Configuration (TCFG)

This register is the interface to the software configuration timer. The number of valid bits of the timer is

determined by the implementation, so the length of the TimeVal field in this register will change
accordingly.

Table 58. Definition of timer configuration register
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Bits Name Read/Write Description

0 En RW Timer enable bit. Only when this bit is 1, the timer will perform
countdown self decrement and set up the timing interrupt signal

when it decrements to 0 value.

1 Periodic RW Timer cycle mode control bit. If this bit is 1, when the timer

decreases to 0, the timer will set up the timer interrupt signal and
reload the timer to the initial value configured in the TimeVal field,
and then continue to decrement itself in the next clock cycle. If

this bit is 0, the timer will stop counting until the software

configures the timer again when the countdown reaches 0.

n-1:2 InitVal RW The initial value of the timer countdown self decrement count.

This initial value must be an integer multiple of 4. The hardware
will automatically fill in the lowest bit of the field value. Two bits

of 0 are added before it is used.

GRLEN-1:n 0 R Read-only constant 0, writing to this field is ignored.

7.6.3. Timer Value (TVAL)

The software can read this register to know the current count value of the timer. The number of valid bits of

the timer is determined by the implementation, so the length of the TimeVal field in this register will also
change.

Table 59. Definition of timer value register

Bits Name Read/Write Description

n-1:0 TimeVal R The count value of the current timer.

GRLEN-1:n 0 R Read-only constant 0, writing to this field is ignored.

7.6.4. Counter Compensation (CNTC)

This register can be configured by the software to correct the timer’s readout value. The final readout value
will be the original timer count value plus the timer compensation value. It is important to note that
configuring this register does not directly change the timer’s count value.

In LA32, this register is 32-bit and its value will be sign extended to 64 bits and then added to the original
counter value.

Table 60. Definition of counter compensation register

Bits Name Read/Write Description

GRLEN-1:0 Compensta
ion

RW Software-configurable counter compensation values.

7.6.5. Timer Interrupt Clearing (TICLR)

The software clears the timed interrupt signal set by the timer by writing 1 to bit 0 of this register.

Table 61. Definition of timer interrupt clearing register
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Bits Name Read/Write Description

0 CLR W1 When 1 is written to this bit, the clock interrupt flag is cleared. The

value read from this register is always 0.

31:1 0 R0 Reserved field. Return 0 if read this field and software is not
allowed to change its value.

7.7. Control and Status Registers Related to RAS

7.7.1. Machine Error Controller (MERRCTL)

Since the timing of machine error exceptions cannot be predicted and controlled by the software, a
separate set of CSRs is defined for machine error exceptions in order not to destroy any other site when
triggering machine error exceptions, which is used by the system software to save and restore other sites.

This set of independent CSRs except MERRERA and MERRSAVE, the rest are concentrated in MERRCTL
register.

Table 62. Definition of machine error controller register

Bits Name Read/Write Description

0 IsMERR R 1 indicates that it is currently in the context of machine error
exception processing. The hardware sets this bit to 1 when a
machine error exception is triggered.

When this bit is 1, execution of the ERTN instruction will clear it to

0.

Because the architecture defines a separate set of CSRs for

machine error exceptions, when this bit is 1,

* when ERTN returns, information used to restore the CSRs will

come from PPLV, PLV and so on of this field;

* when ERTN returns, address information will come from

CSR.MERRERA.

1 Repairabl
e

RW 1 means that the hardware can automatically fix machine errors
that occur, so the exception handler can return directly without
any processing.

3:2 PPLV RW When a machine error exception is triggered, the hardware

records the old value of the PLV field in CSR.CRMD in this field.

When the IsMERR of this register is 1, the hardware returns from

the exception handler by executing the ERTN instruction. The

hardware restores the value of this field to the PLV field of

CSR.CRMD.

4 PIE R When a machine error exception is triggered, the hardware

records the old value of the IE field in CSR.CRMD in this field.

When IsMERR of this register is 1, the hardware restores the

value of this field to the IE field of CSR.CRMD when the ERTN
instruction is executed to return from the exception handler.
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Bits Name Read/Write Description

5 0 RW If the virtualization expansion is not implemented, this field is

read-only constant 0 and writing to this field is ignored.

6 PWE RW When a machine error exception is triggered, the hardware

records the old value of the WE field in CSR.CRMD in this field.

When IsMERR of this register is 1, the hardware restores the

value of this field to the WE field in CSR.CRMD when the ERTN
instruction is executed to return from the exception handler.

7 PDA RW When a machine error exception is triggered, the hardware

records the old value of the DA field in the CSR.CRMD in this field.

When IsMERR of this register is 1, the hardware restores the

value of this field to the DA field of CSR.CRMD when the ERTN
instruction is executed to return from the exception handler.

8 PPG RW When a machine error exception is triggered, the hardware

records the old value of the PG field in the CSR.CRMD in this field.

When IsMERR of this register is 1, the hardware restores the value

of this field to the PG field of CSR.CRMD when the ERTN
instruction is executed to return from the exception handler.

10:9 PDATF RW When a machine error exception is triggered, the hardware

records the old value of the DATF field in the CSR.CRMD in this
field.

When IsMERR of this register is 1, the hardware restores the

value of this field to the DATF field of CSR.CRMD when the ERTN
instruction is executed to return from the exception handler.

12:11 PDATM RW When a machine error exception is triggered, the hardware

records the old value of the DATM field in the CSR.CRMD in this
field.

When IsMERR of this register is 1, the hardware restores the

value of this field to the DATM field of CSR.CRMD when the ERTN
instruction is executed to return from the exception handler.

15:13 0 R0 Reserved field. Return 0 if read this field and software must write

0, or mask out this field by csr mask write.

23:16 Cause R Machine error type code. Currently only the 0x1 value is defined
for Cache checksum errors.

The rest of the encoded values are reserved.

31:24 0 R0 Reserved field. Return 0 if read this field and software is not
allowed to change its value.

7.7.2. Machine Error Information (MERRINFO1, MERRINFO2)

When a machine error exception is triggered, the hardware will store more information related to that error
into these two registers for system software diagnostic purposes. The format and the meaning of each
field are defined by the implementation.
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7.7.3. Machine Error Exception Entry Base Address (MERRENTRY)

This register is used to configure the entry base address of the machine error exception. Since the
processor core will enter the direct address translation mode after the machine error exception is triggered,
the entry base address filled here should be the physical address.

Table 63. Definition of machine error exception entry base address register in LA64

Bits Name Read/Write Description

11:0 0 R Read-only constant 0, writing to this field is ignored.

PALEN-
1:12

PPN RW The [PALEN-1:12] bits of the entry base address of the
machine error exception. The address filled in here by the system
software should be the physical address.

63:PALEN 0 R Read-only constant 0, writing to this field is ignored.

Table 64. Definition of machine error exception entry base address register in LA32

Bits Name Read/Write Description

11:0 0 R Read-only constant 0, writing to this field is ignored.

31:12 PPN RW The [31:12] bits of the entry base address of the machine error
exception. The address entered here by the system software
should be a physical address.

7.7.4. Machine Error Exception Return Address (MERRERA)

This register is used to record the PC of the instruction that triggered the machine error exception.

Table 65. Definition of machine error exception return address register

Bits Name Read/Write Description

GRLEN-1:0 PC RW The PC of the instruction that triggered the machine error
exception is recorded. The value stored here is used as the return

address when the ERTN instruction is executed to return from the
machine error exception handler (when

CSR.MERRCTL.IsMERR=1).

7.7.5. Machine Error Exception Data Save Register (MERRSAVE)

This register is used to store data temporarily for the system software. Each dava save register can hold
the data of one general-purpose register.

The reason for the additional SAVE register for the machine error exception handler is that the timing of the
machine error exception cannot be predicted and controlled by the software, and it may occur during the
processing of any other exception.

Table 66. Definition of machine error exception data save register

Bits Name Read/Write Description

GRLEN-1:0 DATA RW Data for software to read and write only. The hardware will not
modify the contents of this field except for the execution of CSR
instructions.
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7.8. Control and Status Registers Related to Performance
Monitoring

LoongArch defines a hardware performance monitoring mechanism to support software performance
analysis. The main body of this mechanism is a series of performance monitors. At least one performance
monitor is implemented, and up to 32 monitors are implemented, the number is determined by the
implementation. The software can determine how many performance monitors are available by reading the

CPUCFG.6.PMNUM[bit7:4].

Each performance monitor contains two CSRs: a Performance Monitoring ConFiGuration register (PMCFG)

and a Performance Monitoring CouNTer register (PMCNT).

All CSRs related to performance monitoring are alternately addressed starting at address 0x200, with the

nth performance monitoring configuration register at address 0x200+n, and the nth performance

monitoring counter at address 0x201+n. The format of all performance monitoring configuration registers

is the same, as described in Performance Monitor Configuration n (PMCFG); the format of all performance

monitoring counters is the same, as described in Performance Monitor Overall Counter n (PMCNT).

7.8.1. Performance Monitor Configuration n (PMCFG)

Table 67. Definition of performance monitor configuration n register

Bits Name Read/Write Description

9:0 EvCode RW The event number of the performance event being monitored. The
definition of event numbers is divided into two parts, a part whose
meaning is specified in the architecture specification and must be
implemented by all processors compatible with this architecture,
and a remaining part whose meaning is implementation specific
and is defined by the processor’s implementer.

15:10 0 R0 Reserved fields. Return 0 if read this field, and software is not
allowed to change its value.

16 PLV0 RW PLV0 privilege level enables counting for this performance

monitor. 1 - count, 0 - stop.

17 PLV1 RW PLV1 privilege level enables counting for this performance

monitor. 1 - count, 0 - stop.

18 PLV2 RW PLV2 privilege level enables counting for this performance

monitor. 1 - count, 0 - stop.

19 PLV3 RW Count enable for this performance monitor at the PLV3 privilege

level. 1 - count, 0 - stop.

20 PMIEn RW Performance monitoring count overflow interrupt enable bit for

this performance monitor. 1 - enable, 0 - disable.

22:21 0 R If the virtualization expansion is not implemented, this field is

read-only constant 0 and writing to this field is ignored.

31:23 0 R0 Reserved field. Return 0 if read this field and software is not
allowed to change its value.

7.8.2. Performance Monitor Overall Counter n (PMCNT)

Table 68. Definition of performance monitor overall counter n register
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Bits Name Read/Write Description

GRLEN-1:0 Count RW The counter is incremented by 1 for each performance event
monitored by the performance monitor.

If the performance monitor has enabled the performance
monitoring count overflow interrupt, and when the highest bit of

Count is 1, the interrupt is triggered. This also means that the
software can cancel the interrupt by clearing the highest bit of

Count to 0.

7.9. Control and Status Registers Related to Watchpoints

LoongArch defines hardware watchpoint functions for fetch and load/store operations. After the software
configures the watchpoints for fetch and load/store, the processor hardware will monitor the access
addresses of the fetch and load/store operations and trigger a watchpoint exception when the watchpoint
setting conditions are met.

The control and status registers associated with the watchpoints are used as interfaces for software to
configure the watchpoints for fetch and load/store operations. Load/store watchpoints and fetch
watchpoints each have a similar layout of control and status registers, a register for the overall
configuration of all watchpoints, a register for the status of all watchpoints, and the four registers. The

address of the overall configuration register of the load/store watchpoint is 0x300, the address of the

overall status register of the load/store watchpoint is 0x301, and the addresses of the four configuration

registers from 1 to 4 of the nth load/store watchpoint are 0x310+8n, 0x311+8n, 0x312+8n, and

0x313+8n, respectively. The address of the overall configuration register of the fetch instruction

watchpoint is 0x380, the address of the overall status register of the fetch instruction watchpoint is 0x381,

and the addresses of the four configuration registers 1-4 of the nth fetch instruction watchpoint are

0x390+8n, 0x391+8n, 0x392+8n, 0x393+8n in order.

The maximum number of load/store watchpoints and fetch instruction watchpoints is 14 each, and the
actual number is determined by the implementation. The software can determine how many hardware

watchpoints can be used by reading the values of CSR.MWPC.Num and CSR.FWPC.Num.

7.9.1. Memory Load/Store Watchpoint Overall Controller (MWPC)

This register contains configuration information to inform the software of the exact number of load/store
watchpoints.

It is important to note that the global enable control signal for all watchpoints is in the WE bit of CSR.CRMD.

Table 69. Definition of memory load/store watchpoint overall controller register

Bits Name Read/Write Description

5:0 Num R The number of load/store watchpoints.

19:16 0 R If no virtualization extension is implemented, the field is read-only

constant to 0 and writes are ignored.

31:20 0 R0 Reserved field. Reads return 0 and the software does not allow to
change its value.

7.9.2. Memory Load/Store Watchpoint Overall Status (MWPS)

Table 70. Definition of memory load/store watchpoint overall status register
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Bits Name Read/Write Description

n-1:0 Status RW1[2] The hit status of the load/store watchpoint. It corresponds to the

watchpoint one by one, and bit i corresponds to watchpoint i.

When an address with a load/store operation hits a watchpoint,

the corresponding bit is set to 1. The hardware does not clear the
bits in this field except during a reset.

The software can only clear them by writing 1, writing 0 is
ignored.

15:n 0 R Read-only constant 0, writing to this field is ignored.

16 Skip RW The software notifies the hardware to ignore the next load/store

watchpoint hit by setting this location to 1. By ignoring, it means
that neither the corresponding bit in the Stauts field of this

register is set to 1 nor the watchpoint exception is triggered. This
function can avoid endlessly triggering the same watchpoint
repeatedly without canceling it, thus simplifying the handling of
watchpoint exceptions.

When the Skip bit is 1, if the hardware encounters a loadjstore hit,
it will ignore the hit and clear the Skip bit to 0. This means that

each time the software sets the Skip bit to 1, the hardware will
ignore at most one hit. This feature also causes the software to

write 1 to this bit and then read out the value which may not be 1.

This Skip bit corresponds to all load/store watchpoints. If the
software modifies the configuration of the breakpoint and

replaces it, do not set this bit, or even write 0 to clear it for safety
reasons.

31:17 0 R Read-only constant 0, writing to this field is ignored.

7.9.3. Memory Load/Store Watchpoint n Configuration (MWPnCFG1-MWPnCFG4)

The information contained in the configuration 1 to 3 registers of each load/store watchpoint is used
directly for the comparison judgment of the watchpoint check. Assuming that the address of the operation
to be compared is maddr and the byte range is mbyten, the process of determining the hit of each
watchpoint is as follows:

1. If CSR.CRMD.WE=0, the judgment is terminated, otherwise turn 2;

2. If the current is not in debug mode but the DMOnly bit of MWPCFG3 is equal to 1, the judgment is

terminated, otherwise turn to 3;

3. If the bit corresponding to the current privilege level in PLV0-PLV3 of MWPCFG3 is equal to 0, the

judgment is terminated, otherwise turn to 4;

4. If the operation is a load operation but the LoadEn bit in MWPCFG3 is equal to 0, or the operation is a

store operation but the StoreEn bit in MWPCFG3 is equal to 0, the judgment is terminated, otherwise go

to 5;

5. If the LCL bit in MWPCFG3 is equal to 1, but the CSR.ASID.ASID is not equal to the ASID in MWPCFG4,

the judgment is terminated, otherwise go to 6;

6. If (maddr & (~MWPCFG2.Mask)) != (MWPCFG1.VAaddr & (~MWPCFG2.Mak)), that is, the
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address comparison is not equal, the judgment terminates, otherwise turn 7;

7. If (~bytemask[7:0] & mbyten[7:0]) is equal to all 0 values, the judgment is terminated,
otherwise the watchpoint is considered to be hit.

The concepts of mbyten and bytemask, which appear in the description of the judgment process above,
are explained further below.

mbyten represents the bytes involved in the operation, which is an 8-bit bit vector whose value is related to
the type of load/store operation and the low value of the address, as defined in the table:

Table 71. Definition of load/store watchpoint judgment process mbyten

Intsruction Name maddr[2:0]

0 1 2 3 4 5 6 7

LD[X].B[U], ST[X].B,

LD{GT/LE}.B, ST{GT/LE}.B

0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80

LD[X].H[U], ST[X].H

LD{GT/LE}.H, ST{GT/LE}.H

0x30 0x0C 0x30 0xC0

LD[X].W[U], ST[X].W,

LD{GT/LE}.W, ST{GT/LE}.W,

LDPTR.W, STPTR.W,

LL.W, SC.W,

AM{SWAP/ADD/AND/OR/XOR/MA
X/MIN}[.DB].W,

AM{MAX/MIN}[_DBI].WU,

FLD[X].S, FST[X]S,

FLD{GT/LE}.S,
FST{GT/LE}.S

0x0F 0xF0
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Intsruction Name maddr[2:0]

LD[X].D, ST[X].D,

LD{GT/LE}.D, ST[GT/LE].D,

LDPTR.D, STPTR.D,

LL.D, SC.D,

AM{SWAP/ADD/AND/OR/XOR/MA
X/MIN}[_DB].D,

AM{MAX/MIN}[_DB].DU,

FLD[X].D, FST[X].D,

FLD{GT/LE}.D,
FST{GT/LE}.D

0xFF

bytemask indicates which bytes do not participate in the comparison mask when watchpoint comparison,

which is an 8-bit bit vector whose value is related to the low bit of VAddr in MWPCFG1 and Size in
MWPCF`G3, as defined as shown.

Table 72. Definition of load store watchpoint bytemask

MWPCFG3.Size MWPCFG1.Vaddr[2:0]

0 1 2 3 4 5 6 7

0b00 0x00

0b01 0xF0 0x0F

0b10 0xFC 0xF3 0xCF 0x3F

0b11 0xFE 0xFD 0xFB 0xF7 0xEF 0xDF 0xBF 0x7F

Table 73. Definition of memory load/store watchpoint n configuration 1 register

Bits Name Read/Write Description

GRLEN-1:0 VAddr RW The virtual address to be compared for this load/store
watchpoint.

Table 74. Definition of memory load/store watchpoint n configuration 2 register

Bits Name Read/Write Description

GRLEN-1:0 Mask RW Mask bit for address comparison for this load/store watchpoint.

If bit i (0 ≤ i < GRLEN) is 1, it means that bit i of the address
is not involved in the comparison.

Table 75. Definition of memory load/store watchpoint n configuration 3 register
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Bits Name Read/Write Description

0 DMOnly RW A bit of 1 indicates that the load/store watchpoint is only
available in debug mode. Here “available” contains two meanings:
first, the configuration register of the watchpoint can be modified
by software in this mode, and second, the check hit of the
watchpoint will trigger the watchpoint exception and mark the
status of the watchpoint only in this mode.

This bit can only be modified in debug mode (CSR.DBG.DM=1).
This means that the (Host) software running in debug mode has
the priority to use the watchpoint.

1 PLV0 RW This watchpoint triggers the enable of the watchpoint exception

at the PLV0 privilege level. 1 - enable, 0 - disable.

2 PLV1 RW The watchpoint triggers the watchpoint exception enable at the

PLV1 privilege level. 1 - enable, 0 - disable.

3 PLV2 RW The watchpoint triggers the enable of the watchpoint exception at

the PLV2 privilege level. 1 - enable, 0 - disable.

4 PLV3 RW The watchpoint triggers the enablement of the watchpoint

exception at the PLV3 privilege level. 1 - enable, 0 - disable.

6:5 0 R If virtualization extensions are not implemented, the field is read-

only constant at 0 and writes are ignored.

7 LCL RW 1 indicates that the ASID comparison is performed during the
watchpoint check

8 LoadEn RW 1 indicates a watchpoint check for load operations, otherwise no
check.

9 StoreEn RW 1 means that a watchpoint check is performed for the store
operation, otherwise, no check is performed.

11:10 Size RW Which bytes fall within the comparison range when the
watchpoint check is performed.

31:12 0 R0 Reserved field. Return 0 if read this field, and the software does
not allow to change its value.

Table 76. Definition of memory load/store watchpoint n configuration 4 register

Bits Name Read/Write Description

9:0 ASID RW The ASID being compared

15:10 0 R Read-only is always 0, writes are ignored.

23:16 0 R If the virtualization extension is not implemented, the field is read-

only constant to 0 and writes are ignored.

31:24 0 R Read-only constant 0, writing to this field is ignored.

7.9.4. Fetch Watchpoint Overall Controller (FWPC)

This register contains configuration information to inform the software of the exact number of watchpoints
to be fetched.

It is important to note that the global enable control signal for all watchpoints is in the WE bit of the

CSR.CRMD.
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Table 77. Definition of fetch watchpoint overall controller register

Bits Name Read/Write Description

5:0 Num R the number of fetch watchpoints.

19:16 0 R If the virtualization extension is not implemented, the field is read-

only constant 0, and writing to this field is ignored.

31:20 0 R0 Reserved field. Reads return 0 and the software does not allow to
change its value.

7.9.5. Fetch Watchpoint Overall Status (FWPS)

Table 78. Definition of fetch watchpoint overall status register

Bits Name Read/Write Description

n-1:0 Status RW1[3] The hit status of the surveillance point. It corresponds to the

watchpoint one by one, with bit i corresponding to watchpoint i.

When a PC with a fetch instruction hits a watchpoint, its

corresponding bit is set to 1, the hardware does not clear the bits
in this field except during reset.

The software can only clear them by writing 1, writing 0 is
ignored.

15:n . 0 R Read-only constant 0, writing to this field is ignored.

16 Skip RW The software notifies the hardware to ignore the next fetch point

hit result by setting this location to 1. By ignore, it means that

neither the corresponding bit in the Stauts field of this register is
set to 1 nor the watchpoint exception is triggered. This function
can avoid endlessly triggering the same watchpoint repeatedly
without canceling it, thus simplifying the handling of watchpoint
exceptions.

When the Skip bit is 1, if the hardware encounters a hit on a fetch

point, it will ignore the hit and clear the Skip bit to 0. This means

that each time the software sets the Skip bit to 1, the hardware
will ignore at most one hit on the point. This feature also causes
the software to write 1 to this bit and then read out the value

which may not be 1.

This Skip bit corresponds to all fetch watchpoints. If the
software modifies the configuration of the breakpoint and

replaces it, do not set this bit, or even write 0 to clear it for safety
reasons.

31:17 0 R Read-only constant 0, writing to this field is ignored.

7.9.6. Fetch Watchpoint n Configuration (FWPnCFG1-FWPnCFG3)

The information contained in the configuration 1 to 3 registers of each fetch instruction watchpoint is used
directly for comparison judgments of watchpoint checks. The process of judging the hit of each watchpoint
is as follows:
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1. If CSR.CRMD.WE=0, the judgment is terminated, otherwise turn 2;

2. If the current is not in debug mode but the DMOnly bit of FWPCFG3 is equal to 1, the judgment is

terminated, otherwise turn to 3;

3. If the bit corresponding to the current privilege level in PLV0-PLV3 of FWPCFG3 is equal to 0, judge and

terminate, otherwise turn to 4;

4. If the LCL bit in FWPCFG3 is equal to 1, but the CSR.ASID.ASID is not equal to the ASID in FWPCFG4,

the judgment is terminated, otherwise turn 6;

5. If (pc & (~FWPCFG2.Mask)) != (FWPCFG1.VAddr & (~FWPCFG2.Mask)), that is, the address
comparison is not equal, the judgment is terminated, otherwise the watchpoint is considered hit.

Table 79. Definition of fetch watchpoint n configuration 1 register

Bits Name Read/Write Description

GRLEN-1:0 VAddr RW the virtual address of the fatch watchpoint to be compared.

Table 80. Definition of fetch watchpoint n configuration 2 register

Bits Name Read/Write Description

GRLEN-1:0 Mask RW the mask bit of the fetch watchpoint address comparison. If bit i
(0 ≤ i < GRLEN) is 1, it means that bit i of the address is not
involved in the comparison.

Table 81. Definition of fetch watchpoint n configuration 3 register

Bits Name Read/Write Description

0 DMOnly RW A bit of 1 indicates that the fetch point is only available in debug
mode. Here "available" contains two meanings: First, the
configuration register of the fetch watchpoint can be modified by
software in this mode, and second, the check hit of the
watchpoint will trigger a watchpoint exception and mark the
status of the watchpoint only in this mode.

This bit can only be modified in debug mode (CSR.DBG.DM=1).
This means that the (Host) software running in debug mode has
the priority to use the watchpoint.

1 PLV0 RW This watchpoint triggers the enable of the watchpoint exception

at the PLV0 privilege level. 1 - enable, 0 - disable.

2 PLV1 RW The watchpoint triggers the watchpoint exception enable at PLV1

privilege level. 1 - enable, 0 - disable.

3 PLV2 RW The watchpoint triggers the enable of the watchpoint exception at

the PLV2 privilege level. 1 - enable, 0 - disable.

4 PLV3 RW This watchpoint triggers the enablement of the watchpoint

exception at the PLV3 privilege level. 1 - enable, 0 - disable.

6:5 0 R If virtualization extensions are not implemented, the field is read-

only constant to 0 and writes are ignored.

7 LCL RW 1 indicates that the comparison of ASIDs is performed during the
watchpoint check.

31:8 0 R0 Reserved field. Return 0 if read this field and software is not
allowed to change its value.
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Table 82. Definition of fetch watchpoint n configuration 4 register

Bits Name Read/Write Description

9:0 ASID RW The ASID being compared

15:10 0 R Read-only constant 0, writing to this field is ignored.

23:16 0 R If the virtualization extension is not implemented, the field is read-

only constant 0 and writing to this field is ignored.

31:24 0 R Read-only constant 0, writing to this field is ignored.

7.10. Control and Status Registers Related to Debugging

7.10.1. Debug Register (DBG)

Table 83. Definition of debug data save register

Bits Name Read/Write Description

0 DST R 1 to indicate that it is currently in debug mode.

The hardware sets this bit to 1 when a debug exception is
triggered in non-debug mode.

When this bit is 1, the ERTN instruction is executed to clear this

bit to 0.

7:1 DRev R The version number of the debugging mechanism. 1 is the initial
version.

8 DEI R 1 indicates that the debug exception type caught in debug mode
is DEbug Interrupt (DEI).

9 DCL R 1 indicates that the type of debug exception caught in debug
mode is a Debug CaLl exception (DCL).

10 DFW R 1 indicates that the type of debug exception caught in debug
mode is the Debug Fetch Watchpoint exception (DFW).

11 DMW R 1 indicates that the debug exception type caught in debug mode
is the Debug load/store (Memory) Watchpoint exception (DMW).

15:12 0 R0 Read only as 0.

21:16 Ecode R When a non-debug exception occurs in debug mode, the
exception type code is recorded here. The meaning of the codes
here is basically the same as the definitions in Table of exception
encoding, with only three differences:

• The TLB refill exception reuses the 0x7 exception code;

• The debug call exception uses the 0xC exception code;

• The machine error exception uses the 0xE exception code.

31:22 0 R0 Read only as 0.
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7.10.2. Debug Exception Return Address (DERA)

Table 84. Definition of debug exception program counter register

Bits Name Read/Write Description

63:0 PC RW When a debug exception is triggered in non-debug mode, the

hardware records the PC that triggered the exception here.

When CSR.DBG.DM=1, the return address is fetched from here

when the ERTN instruction is executed.

7.10.3. Debug Data Save Register (DSAVE)

This register is used to store data temporarily for the system software. Each dava save register can hold
the data of one general-purpose register.

An additional SAVE register for debug exception handler is provided because debug exceptions can occur
in any scenario and the handling of debug exceptions should be transparent to the software on the Host
being debugged.

Table 85. Definition of debug register

Bits Name Read/Write Description

63:0 Data RW Data for software to read and write only. The hardware does not
modify the contents of this field except for the execution of CSR
instructions.

1. The instructions affected by this control bit include LD[X].{H[U]/W[U]/D}, ST[X].{H/W/D}, LDPTR.{W/D}, STPTR.{W/D},

FLD[X].{S/D}, FST[X].{S/D}, LDPTE, LDDIR, IOCSRRD.{H/W/D} and IOCSRWR.{H/WD}.

2. Translator’s note: This may be the fifth attribute not listed in Attributes of Reading and Writing.

3. Translator’s note: This may be the fifth attribute not listed in Attributes of Reading and Writing.
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Appendix A: Pseudocode Descriptions of the
Function Definitions

A.1. Interpretation of Operators in Pseudocode

This section lists the meaning of the statement keywords and various operators involved in pseudocode, as
well as the operator precedence relationships. In addition, the common conventions for different binary
representations of numeric values in pseudocode are as follows:

• No prefix or 'd or ##'d prefix for decimal numbers, where the ##'d prefix means that the decimal

number is ## bits wide;

• The prefix 'b or ##'b is used for binary numbers, where the prefix ##'b indicates that the length of the

binary number is ## bits;

• The prefix 'h or ##'h indicates the hexadecimal number, where the prefix ##'h indicates that the

hexadecimal number is ## bits wide, and the hexadecimal value of A-F uses uppercase letters.

Table 86. Interpretation of semantic keyword

Operators Meaning

Return_Type
Function_Name(Variable, ...):
    Function_Body
return Return_Value

Function Definition

if Condition1:
    Statement1
elif Condition2:
    Statement2
else:
    Statement3

Conditional Statements

case Variable of:
    value1: Statement1
    value2: Statement2
    default: Default_Statement

case conditional statement

Condition ? TRUE_Statement:
FALSE_Statement

Conditional Judgment Statements

for Variable in Sequence:
    Statements

for loop statement
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Operators Meaning

range(N)
A sequence of integers from 0 to N-1 in steps of 1

range(Start, End, Step)
Sequence of specified step values from the start
value (inclusive) to the end value (exclusive)

break
Terminate the current loop

signed(...)
Signed integers

unsigned(...)
Unsigned integers

fp16(...)
Half-precision floating-point numbers

fp32(...)
Single-precision floating-point numbers

fp64(...)
Double-precision floating-point numbers

boolean
Boolean Type

bit
Bit type

integer
Integer type

bits(N)
N-bit type

ZeroExtend(Variable, N)
Variable zero extended to N bits

SignExtend(Variable, N)
Variable sign extended to N bits

isSNaN(Variable)
TRUE if the variable is a signaling NaN number,

FALSE otherwise

isQNaN(Variable)
TRUE if the variable is quiet NaN number, FALSE
otherwise
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Operators Meaning

SignalException(Exception)
Trigger exception

#
Single line comment

=
Assignment

Table 87. Interpretation of bit string operators

Operators Meaning

[M:N] Bit N to bit M of the bit string

{N{M}} Copy bit string M N times and splice them

{N, M, …} Splice bit strings N, M, … in order

Table 88. Interpretation of arithmetic operators

Operators Meaning

+ Add

- Subtract

* Multiply

/ Divide

% Modulo

** Power

Table 89. Interpretation of comparison operators

Operators Meaning

== equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Table 90. Interpretation of bit operators

Operators Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

~ Bitwise INVERSE
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Operators Meaning

<< Logical Left Shift

>> Logical Right Shift

>>> Arithmetic Right Shift

Table 91. Interpretation of logical operators

Operators Meaning

and Logical AND

or Logical OR

not Logical NOT

Table 92. Operator priority

Operators Meaning

** Power

- Inverse by place

*, /, % Multiply, Divide, Modulo

+, - Add, Subtract

<<, >>, >>> Logical left shift, logical right shift, arithmetic right
shift

& Bitwise AND

^, | Bitwise XOR, bitwise OR

>, <, >=, <= Greater than, less than, greater than or equal to, less
than or equal to

==, != Equal to, not equal to

not Logical NOT

and, or Logical AND, logical OR

A.2. Pseudocode Descriptions of Functional Functions

The pseudocode involved in the instruction descriptions in this manual is defined as follows.

A.2.1. Logical Left Shift

bits(N) SLL(bits(N) x, integer sa):
    if sa == 0:
        result = x
    else:
        result = {x[N-sa-1:0], {sa{1'b0}}}
    return result
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A.2.2. Logical Right Shift

bits(N) SRL(bits(N) x, integer sa):
    if sa == 0:
        result = x
    else:
        result = {{sa{1'b0}}, x[N-1:sa]}
    return result

A.2.3. Arithmetic Right Shift

bits(N) SRA(bits(N) x, integer sa):
    if sa == 0:
        result = x
    else:
        result = {{sa{x[N-1]}}, x[N-1:sa]}
    return result

A.2.4. Circular Right Shift

bits(N) ROTR(bits(N) x, integer sa):
    if sa == 0:
        result = x
    else:
        result = {x[sa-1:0], x[N-1:sa]}
    return result

A.2.5. Count the Number of Consecutive 1’s Starting from High Order Bits

{bits(N)} CLO(bits(N) x):
    cnt = 0
    for i in range(N):
        if x[N-1-i] == 1'b0:
            return cnt
        else:
            cnt = cnt + 1

A.2.6. Count the Number of Consecutive 0’s Starting from High Order Bits

{bits(N)} CLZ(bits(N) x):
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    cnt = 0
    for i in range(N):
        if x[N-1-i] == 1'b1:
            return cnt
        else:
            cnt = cnt + 1

A.2.7. Count the Number of Consecutive 1’s Starting from Low Order Bits

{bits(N)} CTO(bits(N) x):
    cnt = 0
    for i in range(N):
        if x[i] == 1'b0:
            return cnt
        else:
            cnt = cnt + 1

A.2.8. Count the Number of Consecutive 0’s Starting from Low Order Bits

{bits(N)} CTZ(bits(N) x):
    cnt = 0
    for i in range(N):
        if x[i] == 1'b1:
            return cnt
        else:
            cnt = cnt + 1

A.2.9. Reverse the Order of the Bit String

{bits(N)} BITREV(bits(N) x):
    for i in range(N):
        res[i] = x[N-1-i]
    return res

A.2.10. CRC-32 Checksum Calculation

bits(32) CRC32(old_chksum, msg, width, poly):
    new_chksum = (old_chksum & 0xFFFFFFFF) ^ {{(64-width){1'b0}}, msg}
    for i in range(width):
        if (new_chksum & 1'b1):
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            new_chksum = (new_chksum >> 1) ^ poly
        else:
            new_chksum = (new_chksum >> 1)
    return new_chksum

A.2.11. Single Precision Floating-point to Signed Word Integer

{bits(32)} FP32convertToSint32(bits(32) x, bits(1) I_en, bits(2) rm):
    case {I_en, rm} of:
        {1'b1, 2'd0}: return Sint32_convertToIntegerExactTiesToEven(x)
        {1'b1, 2'd1}: return Sint32_convertToIntegerExactTowardZero(x)
        {1'b1, 2'd2}: return
Sint32_convertToIntegerExactTowardPositive(x)
        {1'b1, 2'd3}: return
Sint32_convertToIntegerExactTowardNegative(x)
        {1'b0, 2'd0}: return Sint32_convertToIntegerTiesToEven(x)
        {1'b0, 2'd1}: return Sint32_convertToIntegerTowardZero(x)
        {1'b0, 2'd2}: return Sint32_convertToIntegerTowardPositive(x)
        {1'b0, 2'd3}: return Sint32_convertToIntegerTowardNegative(x)

A.2.12. Single Precision Floating-point to Signed Double Word Integer

{bits(64)} FP32convertToSint64(bits(32) x, bits(1) I_en, bits(2) rm):
    case {I_en, rm} of:
        {1'b1, 2'd0}: return Sint32_convertToIntegerExactTiesToEven(x)
        {1'b1, 2'd1}: return Sint32_convertToIntegerExactTowardZero(x)
        {1'b1, 2'd2}: return
Sint32_convertToIntegerExactTowardPositive(x)
        {1'b1, 2'd3}: return
Sint32_convertToIntegerExactTowardNegative(x)
        {1'b0, 2'd0}: return Sint32_convertToIntegerTiesToEven(x)
        {1'b0, 2'd1}: return Sint32_convertToIntegerTowardZero(x)
        {1'b0, 2'd2}: return Sint32_convertToIntegerTowardPositive(x)
        {1'b0, 2'd3}: return Sint32_convertToIntegerTowardNegative(x)

A.2.13. Double Precision Floating-point to Signed Word Integer

{bits(64)} FP64convertToSint32(bits(64) x, bits(1) I_en, bits(2) rm):
    case {I_en, rm} of:
        {1'b1, 2'd0}: return Sint64_convertToIntegerExactTiesToEven(x)
        {1'b1, 2'd1}: return Sint64_convertToIntegerExactTowardZero(x)
        {1'b1, 2'd2}: return
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Sint64_convertToIntegerExactTowardPositive(x)
        {1'b1, 2'd3}: return
Sint64_convertToIntegerExactTowardNegative(x)
        {1'b0, 2'd0}: return Sint64_convertToIntegerTiesToEven(x)
        {1'b0, 2'd1}: return Sint64_convertToIntegerTowardZero(x)
        {1'b0, 2'd2}: return Sint64_convertToIntegerTowardPositive(x)
        {1'b0, 2'd3}: return Sint64_convertToIntegerTowardNegative(x)

A.2.14. Double Precision Floating-point to Signed Double Word Integer

{bits(64)} FP64convertToSint64(bits(64) x, bits(1) I_en, bits(2) rm):
    case {I_en, rm} of:
        {1'b1, 2'd0}: return Sint64_convertToIntegerExactTiesToEven(x)
        {1'b1, 2'd1}: return Sint64_convertToIntegerExactTowardZero(x)
        {1'b1, 2'd2}: return
Sint64_convertToIntegerExactTowardPositive(x)
        {1'b1, 2'd3}: return
Sint64_convertToIntegerExactTowardNegative(x)
        {1'b0, 2'd0}: return Sint64_convertToIntegerTiesToEven(x)
        {1'b0, 2'd1}: return Sint64_convertToIntegerTowardZero(x)
        {1'b0, 2'd2}: return Sint64_convertToIntegerTowardPositive(x)
        {1'b0, 2'd3}: return Sint64_convertToIntegerTowardNegative(x)

A.2.15. Round Single Precision Floating-point

{bits(32)} FP32_roundToInteger(bits(N) x, bits(1) I_en, bits(2) rm):
    if (I_en):
        return FP32_roundToIntegralExact(x)
    elif (rm == 0):
        return FP32_roundToIntegerTiesToEven(x)
    elif (rm == 1):
        return FP32_roundToIntegerTowardZero(x)
    elif (rm == 2):
        return FP32_roundToIntegerTowardPositive(x)
    elif (rm == 3):
        return FP32_roundToIntegerTowardNegative(x)

A.2.16. Round Double Precision Floating-point

{bits(64)} FP64_roundToInteger(bits(N) x, bits(1) I_en, bits(2) rm):
    if (I_en):
        return FP64_roundToIntegralExact(x)
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    elif (rm=0):
        return FP64_roundToIntegerTi esToEven(x)
    elif (rm=1):
        return FP64_roundToIntegerTowardZero(x)
    elif (rm=2):
        return FP64_roundToIntegerTowardPositive(x)
    elif (rm=3):
        return FP64_roundToIntegerTowardNegative(x)
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Appendix B: Table of Instruction Encoding
Table 93. Table of instruction encoding

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CLO
.W

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 rj rd

CLZ
.W

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 rj rd

CTO
.W

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 rj rd

CTZ
.W

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 rj rd

CLO
.D

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 rj rd

CLZ
.D

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 rj rd

CTO
.D

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 rj rd

CTZ
.D

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 rj rd

REV
B.2
H

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 rj rd

REV
B.4
H

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 rj rd

REV
B.2
W

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 rj rd

REV
B.D

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 rj rd

REV
H.2
W

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 rj rd

REV
H.D

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 rj rd

BIT
REV
.4B

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 rj rd
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3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

BIT
REV
.8B

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 rj rd

BIT
REV
.W

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 rj rd

BIT
REV
.D

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 rj rd

EXT
.W.
H

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 rj rd

EXT
.W.
B

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 rj rd

RDT
IME
L.W

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 rj rd

RDT
IME
H.W

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 rj rd

RDT
IME
.D

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 rj rd

CPU
CFG

rd,
rj

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 rj rd

ASR
TLE
.D

rj,
rk

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 rk rj 0 0 0 0 0

ASR
TGT
.D

rj,
rk

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 rk rj 0 0 0 0 0

ALS
L.W

rd,
rj,
rk,
sa2

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 sa2 rk rj rd

ALS
L.W
U

rd,
rj,
rk,
sa2

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 sa2 rk rj rd
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1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

BYT
EPI
CK.
W

rd,
rj,
rk,
sa2

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 sa2 rk rj rd

BYT
EPI
CK.
D

rd,
rj,
rk,
sa3

0 0 0 0 0 0 0 0 0 0 0 0 1 1 sa3 rk rj rd

ADD
.W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 rk rj rd

ADD
.D

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 rk rj rd

SUB
.W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 rk rj rd

SUB
.D

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 rk rj rd

SLT rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 rk rj rd

SLT
U

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 rk rj rd

MAS
KEQ
Z

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 rk rj rd

MAS
KNE
Z

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 rk rj rd

NOR rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 rk rj rd

AND rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 rk rj rd

OR rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 rk rj rd
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3
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2
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2
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2
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2
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2
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2
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1
9
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1
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1
2

1
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1
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0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

XOR rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 rk rj rd

ORN rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 rk rj rd

AND
N

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 rk rj rd

SLL
.W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 rk rj rd

SRL
.W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 rk rj rd

SRA
.W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 rk rj rd

SLL
.D

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 rk rj rd

SRL
.D

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 rk rj rd

SRA
.D

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 rk rj rd

ROT
R.W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 rk rj rd

ROT
R.D

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 rk rj rd

MUL
.W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 rk rj rd

MUL
H.W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 rk rj rd
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1
0

0
9

0
8
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7
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6
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0
4

0
3

0
2

0
1

0
0

MUL
H.W
U

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 rk rj rd

MUL
.D

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 rk rj rd

MUL
H.D

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 rk rj rd

MUL
H.D
U

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 rk rj rd

MUL
W.D
.W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 rk rj rd

MUL
W.D
.WU

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 rk rj rd

DIV
.W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 rk rj rd

MOD
.W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 rk rj rd

DIV
.WU

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 rk rj rd

MOD
.WU

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 rk rj rd

DIV
.D

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 rk rj rd

MOD
.D

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 rk rj rd

DIV
.DU

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 rk rj rd
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MOD
.DU

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 rk rj rd

CRC
.W.
B.W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 rk rj rd

CRC
.W.
H.W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 rk rj rd

CRC
.W.
W.W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 rk rj rd

CRC
.W.
D.W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 rk rj rd

CRC
C.W
.B.
W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 rk rj rd

CRC
C.W
.H.
W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 rk rj rd

CRC
C.W
.W.
W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 rk rj rd

CRC
C.W
.D.
W

rd,
rj,
rk

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 rk rj rd

BRE
AK

cod
e

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 code

DBC
L

cod
e

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 code

SYS
CAL
L

cod
e

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 code

ALS
L.D

rd,
rj,
rk,
sa2

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 sa2 rk rj rd
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SLL
I.W

rd,
rj,
ui5

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ui5 rj rd

SLL
I.D

rd,
rj,
ui6

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 ui6 rj rd

SRL
I.W

rd,
rj,
ui5

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 ui5 rj rd

SRL
I.D

rd,
rj,
ui6

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 ui6 rj rd

SRA
I.W

rd,
rj,
ui5

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 ui5 rj rd

SRA
I.D

rd,
rj,
ui6

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 ui6 rj rd

ROT
RI.
W

rd,
rj,
ui5

0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 ui5 rj rd

ROT
RI.
D

rd,
rj,
ui6

0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 ui6 rj rd

BST
RIN
S.W

rd,
rj,
msb
w,
lsb
w

0 0 0 0 0 0 0 0 0 1 1 msbw 0 lsbw rj rd

BST
RPI
CK.
W

rd,
rj,
msb
w,
lsb
w

0 0 0 0 0 0 0 0 0 1 1 msbw 1 lsbw rj rd

BST
RIN
S.D

rd,
rj,
msb
d,
lsb
d

0 0 0 0 0 0 0 0 1 0 msbd lsbd rj rd
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BST
RPI
CK.
D

rd,
rj,
msb
d,
lsb
d

0 0 0 0 0 0 0 0 1 1 msbd lsbd rj rd

FAD
D.S

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 fk fj fd

FAD
D.D

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 fk fj fd

FSU
B.S

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 fk fj fd

FSU
B.D

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 fk fj fd

FMU
L.S

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 fk fj fd

FMU
L.D

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 fk fj fd

FDI
V.S

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 fk fj fd

FDI
V.D

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 fk fj fd

FMA
X.S

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 fk fj fd

FMA
X.D

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 fk fj fd

FMI
N.S

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 fk fj fd

FMI
N.D

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 fk fj fd
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FMA
XA.
S

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 fk fj fd

FMA
XA.
D

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 fk fj fd

FMI
NA.
S

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 fk fj fd

FMI
NA.
D

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 fk fj fd

FSC
ALE
B.S

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 fk fj fd

FSC
ALE
B.D

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 fk fj fd

FCO
PYS
IGN
.S

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 fk fj fd

FCO
PYS
IGN
.D

fd,
fj,
fk

0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 fk fj fd

FAB
S.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 fj fd

FAB
S.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 fj fd

FNE
G.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 fj fd

FNE
G.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 fj fd

FLO
GB.
S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 fj fd

FLO
GB.
D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 fj fd
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FCL
ASS
.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 fj fd

FCL
ASS
.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 fj fd

FSQ
RT.
S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 fj fd

FSQ
RT.
D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 fj fd

FRE
CIP
.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 fj fd

FRE
CIP
.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 fj fd

FRS
QRT
.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 fj fd

FRS
QRT
.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 fj fd

FRE
CIP
E.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 fj fd

FRE
CIP
E.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 fj fd

FRS
QRT
E.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 fj fd

FRS
QRT
E.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 fj fd

FMO
V.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 fj fd

FMO
V.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 fj fd
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MOV
GR2
FR.
W

fd,
rj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 rj fd

MOV
GR2
FR.
D

fd,
rj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 rj fd

MOV
GR2
FRH
.W

fd,
rj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 1 rj fd

MOV
FR2
GR.
S

rd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 0 1 fj rd

MOV
FR2
GR.
D

rd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 1 0 fj rd

MOV
FRH
2GR
.S

rd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 fj rd

MOV
GR2
FCS
R

fcs
r,
rj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 0 rj fcsr

MOV
FCS
R2G
R

rd,
fcs
r

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 fcsr rd

MOV
FR2
CF

cd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 fj 0 0 cd

MOV
CF2
FR

fd,
cj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 cj fd

MOV
GR2
CF

cd,
rj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0 rj 0 0 cd
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MOV
CF2
GR

rd,
cj

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 cj rd

FCV
T.S
.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 fj fd

FCV
T.D
.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 fj fd

FTI
NTR
M.W
.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 fj fd

FTI
NTR
M.W
.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0 fj fd

FTI
NTR
M.L
.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1 fj fd

FTI
NTR
M.L
.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 fj fd

FTI
NTR
P.W
.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 fj fd

FTI
NTR
P.W
.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 fj fd

FTI
NTR
P.L
.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 fj fd

FTI
NTR
P.L
.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 fj fd
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FTI
NTR
Z.W
.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 1 fj fd

FTI
NTR
Z.W
.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0 fj fd

FTI
NTR
Z.L
.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0 1 fj fd

FTI
NTR
Z.L
.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 fj fd

FTI
NTR
NE.
W.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 fj fd

FTI
NTR
NE.
W.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 fj fd

FTI
NTR
NE.
L.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 fj fd

FTI
NTR
NE.
L.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 1 0 fj fd

FTI
NT.
W.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 fj fd

FTI
NT.
W.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 fj fd

FTI
NT.
L.S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 0 1 fj fd
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FTI
NT.
L.D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 fj fd

FFI
NT.
S.W

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 fj fd

FFI
NT.
S.L

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 fj fd

FFI
NT.
D.W

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 fj fd

FFI
NT.
D.L

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0 fj fd

FRI
NT.
S

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1 fj fd

FRI
NT.
D

fd,
fj

0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 fj fd

SLT
I

rd,
rj,
si1
2

0 0 0 0 0 0 1 0 0 0 si12 rj rd

SLT
UI

rd,
rj,
si1
2

0 0 0 0 0 0 1 0 0 1 si12 rj rd

ADD
I.W

rd,
rj,
si1
2

0 0 0 0 0 0 1 0 1 0 si12 rj rd

ADD
I.D

rd,
rj,
si1
2

0 0 0 0 0 0 1 0 1 1 si12 rj rd

LU5
2I.
D

rd,
rj,
si1
2

0 0 0 0 0 0 1 1 0 0 si12 rj rd
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AND
I

rd,
rj,
ui1
2

0 0 0 0 0 0 1 1 0 1 ui12 rj rd

ORI rd,
rj,
ui1
2

0 0 0 0 0 0 1 1 1 0 ui12 rj rd

XOR
I

rd,
rj,
ui1
2

0 0 0 0 0 0 1 1 1 1 ui12 rj rd

CSR
RD

rd,
csr

0 0 0 0 0 1 0 0 csr 0 0 0 0 0 rd

CSR
WR

rd,
csr

0 0 0 0 0 1 0 0 csr 0 0 0 0 1 rd

CSR
XCH
G

rd,
rj,
csr

0 0 0 0 0 1 0 0 csr rj!=0,1 rd

CAC
OP

cod
e,
rj,
si1
2

0 0 0 0 0 1 1 0 0 0 si12 rj code

LDD
IR

rd,
rj,
lev
el

0 0 0 0 0 1 1 0 0 1 0 0 0 0 level rj rd

LDP
TE

rj,
seq

0 0 0 0 0 1 1 0 0 1 0 0 0 1 seq rj 0 0 0 0 0

IOC
SRR
D.B

rd,
rj

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 rj rd

IOC
SRR
D.H

rd,
rj

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 rj rd

IOC
SRR
D.W

rd,
rj

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 rj rd

IOC
SRR
D.D

rd,
rj

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 rj rd
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IOC
SRW
R.B

rd,
rj

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 rj rd

IOC
SRW
R.H

rd,
rj

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 rj rd

IOC
SRW
R.W

rd,
rj

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 rj rd

IOC
SRW
R.D

rd,
rj

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 rj rd

TLB
CLR

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

TLB
FLU
SH

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

TLB
SRC
H

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

TLB
RD

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

TLB
WR

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

TLB
FIL
L

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

ERT
N

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

IDL
E

lev
el

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 level

INV
TLB

op,
rj,
rk

0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 rk rj op

FMA
DD.
S

fd,
fj,
fk,
fa

0 0 0 0 1 0 0 0 0 0 0 1 fa fk fj fd
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FMA
DD.
D

fd,
fj,
fk,
fa

0 0 0 0 1 0 0 0 0 0 1 0 fa fk fj fd

FMS
UB.
S

fd,
fj,
fk,
fa

0 0 0 0 1 0 0 0 0 1 0 1 fa fk fj fd

FMS
UB.
D

fd,
fj,
fk,
fa

0 0 0 0 1 0 0 0 0 1 1 0 fa fk fj fd

FNM
ADD
.S

fd,
fj,
fk,
fa

0 0 0 0 1 0 0 0 1 0 0 1 fa fk fj fd

FNM
ADD
.D

fd,
fj,
fk,
fa

0 0 0 0 1 0 0 0 1 0 1 0 fa fk fj fd

FNM
SUB
.S

fd,
fj,
fk,
fa

0 0 0 0 1 0 0 0 1 1 0 1 fa fk fj fd

FNM
SUB
.D

fd,
fj,
fk,
fa

0 0 0 0 1 0 0 0 1 1 1 0 fa fk fj fd

FCM
P.c
ond
.S

cd,
fj,
fk

0 0 0 0 1 1 0 0 0 0 0 1 cond fk fj 0 0 cd

FCM
P.c
ond
.D

cd,
fj,
fk

0 0 0 0 1 1 0 0 0 0 1 0 cond fk fj 0 0 cd

FSE
L

fd,
fj,
fk,
ca

0 0 0 0 1 1 0 1 0 0 0 0 0 0 ca fk fj fd
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ADD
U16
I.D

rd,
rj,
si1
6

0 0 0 1 0 0 si16 rj rd

LU1
2I.
W

rd,
si2
0

0 0 0 1 0 1 0 si20 rd

LU3
2I.
D

rd,
si2
0

0 0 0 1 0 1 1 si20 rd

PCA
DDI

rd,
si2
0

0 0 0 1 1 0 0 si20 rd

PCA
LAU
12I

rd,
si2
0

0 0 0 1 1 0 1 si20 rd

PCA
DDU
12I

rd,
si2
0

0 0 0 1 1 1 0 si20 rd

PCA
DDU
18I

rd,
si2
0

0 0 0 1 1 1 1 si20 rd

LL.
W

rd,
rj,
si1
4

0 0 1 0 0 0 0 0 si14 rj rd

SC.
W

rd,
rj,
si1
4

0 0 1 0 0 0 0 1 si14 rj rd

LL.
D

rd,
rj,
si1
4

0 0 1 0 0 0 1 0 si14 rj rd

SC.
D

rd,
rj,
si1
4

0 0 1 0 0 0 1 1 si14 rj rd

LDP
TR.
W

rd,
rj,
si1
4

0 0 1 0 0 1 0 0 si14 rj rd
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STP
TR.
W

rd,
rj,
si1
4

0 0 1 0 0 1 0 1 si14 rj rd

LDP
TR.
D

rd,
rj,
si1
4

0 0 1 0 0 1 1 0 si14 rj rd

STP
TR.
D

rd,
rj,
si1
4

0 0 1 0 0 1 1 1 si14 rj rd

LD.
B

rd,
rj,
si1
2

0 0 1 0 1 0 0 0 0 0 si12 rj rd

LD.
H

rd,
rj,
si1
2

0 0 1 0 1 0 0 0 0 1 si12 rj rd

LD.
W

rd,
rj,
si1
2

0 0 1 0 1 0 0 0 1 0 si12 rj rd

LD.
D

rd,
rj,
si1
2

0 0 1 0 1 0 0 0 1 1 si12 rj rd

ST.
B

rd,
rj,
si1
2

0 0 1 0 1 0 0 1 0 0 si12 rj rd

ST.
H

rd,
rj,
si1
2

0 0 1 0 1 0 0 1 0 1 si12 rj rd

ST.
W

rd,
rj,
si1
2

0 0 1 0 1 0 0 1 1 0 si12 rj rd
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ST.
D

rd,
rj,
si1
2

0 0 1 0 1 0 0 1 1 1 si12 rj rd

LD.
BU

rd,
rj,
si1
2

0 0 1 0 1 0 1 0 0 0 si12 rj rd

LD.
HU

rd,
rj,
si1
2

0 0 1 0 1 0 1 0 0 1 si12 rj rd

LD.
WU

rd,
rj,
si1
2

0 0 1 0 1 0 1 0 1 0 si12 rj rd

PRE
LD

hin
t,
rj,
si1
2

0 0 1 0 1 0 1 0 1 1 si12 rj hint

FLD
.S

fd,
rj,
si1
2

0 0 1 0 1 0 1 1 0 0 si12 rj fd

FST
.S

fd,
rj,
si1
2

0 0 1 0 1 0 1 1 0 1 si12 rj fd

FLD
.D

fd,
rj,
si1
2

0 0 1 0 1 0 1 1 1 0 si12 rj fd

FST
.D

fd,
rj,
si1
2

0 0 1 0 1 0 1 1 1 1 si12 rj fd

LDX
.B

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 rk rj rd

LDX
.H

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 rk rj rd
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LDX
.W

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 rk rj rd

LDX
.D

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 rk rj rd

STX
.B

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 rk rj rd

STX
.H

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 rk rj rd

STX
.W

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 rk rj rd

STX
.D

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 rk rj rd

LDX
.BU

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 rk rj rd

LDX
.HU

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 rk rj rd

LDX
.WU

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 rk rj rd

PRE
LDX

hin
t,
rj,
rk

0 0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 rk rj hint

FLD
X.S

fd,
rj,
rk

0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 rk rj fd

FLD
X.D

fd,
rj,
rk

0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 0 rk rj fd

FST
X.S

fd,
rj,
rk

0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 rk rj fd
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FST
X.D

fd,
rj,
rk

0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 rk rj fd

SC.
Q

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0 rk rj fd

LLA
CQ.
W

rd,
rj

0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 rj fd

SCR
EL.
W

rd,
rj

0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 rj fd

LLA
CQ.
D

rd,
rj

0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 rj fd

SCR
EL.
D

rd,
rj

0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 1 1 rj fd

AMC
AS.
B

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 rk rj fd

AMC
AS.
H

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 0 1 rk rj fd

AMC
AS.
W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 rk rj fd

AMC
AS.
D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1 rk rj fd

AMC
AS_
DB.
B

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 0 0 rk rj fd

AMC
AS_
DB.
H

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 0 1 rk rj fd

AMC
AS_
DB.
W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 rk rj fd
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AMC
AS_
DB.
D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 1 1 rk rj fd

AMS
WAP
.B

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 rk rj fd

AMS
WAP
.H

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 rk rj fd

AMA
DD.
B

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 0 rk rj fd

AMA
DD.
H

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 1 rk rj fd

AMS
WAP
_DB
.B

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0 rk rj fd

AMS
WAP
_DB
.H

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 1 rk rj fd

AMA
DD_
DB.
B

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 1 0 rk rj fd

AMA
DD_
DB.
H

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 rk rj fd

AMS
WAP
.W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 rk rj rd

AMS
WAP
.D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 rk rj rd

AMA
DD.
W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 rk rj rd
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AMA
DD.
D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 rk rj rd

AMA
ND.
W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 rk rj rd

AMA
ND.
D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1 rk rj rd

AMO
R.W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 0 rk rj rd

AMO
R.D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 rk rj rd

AMX
OR.
W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 rk rj rd

AMX
OR.
D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 0 1 rk rj rd

AMM
AX.
W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 rk rj rd

AMM
AX.
D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 rk rj rd

AMM
IN.
W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 rk rj rd

AMM
IN.
D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 rk rj rd

AMM
AX.
WU

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 rk rj rd

AMM
AX.
DU

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 rk rj rd
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AMM
IN.
WU

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 rk rj rd

AMM
IN.
DU

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 rk rj rd

AMS
WAP
_DB
.W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 rk rj rd

AMS
WAP
_DB
.D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 rk rj rd

AMA
DD_
DB.
W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 rk rj rd

AMA
DD_
DB.
D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 1 rk rj rd

AMA
ND_
DB.
W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 0 rk rj rd

AMA
ND_
DB.
D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 1 rk rj rd

AMO
R_D
B.W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 rk rj rd

AMO
R_D
B.D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0 1 rk rj rd

AMX
OR_
DB.
W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 rk rj rd
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AMX
OR_
DB.
D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 rk rj rd

AMM
AX_
DB.
W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 rk rj rd

AMM
AX_
DB.
D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 0 1 rk rj rd

AMM
IN_
DB.
W

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 rk rj rd

AMM
IN_
DB.
D

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 rk rj rd

AMM
AX_
DB.
WU

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 rk rj rd

AMM
AX_
DB.
DU

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 rk rj rd

AMM
IN_
DB.
WU

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 rk rj rd

AMM
IN_
DB.
DU

rd,
rk,
rj

0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 rk rj rd

DBA
R

hin
t

0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 hint

IBA
R

hin
t

0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1 hint
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FLD
GT.
S

fd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 rk rj fd

FLD
GT.
D

fd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 rk rj fd

FLD
LE.
S

fd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0 rk rj fd

FLD
LE.
D

fd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 1 1 rk rj fd

FST
GT.
S

fd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 rk rj fd

FST
GT.
D

fd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 rk rj fd

FST
LE.
S

fd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0 rk rj fd

FST
LE.
D

fd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 rk rj fd

LDG
T.B

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 rk rj rd

LDG
T.H

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 rk rj rd

LDG
T.W

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 rk rj rd

LDG
T.D

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 rk rj rd

LDL
E.B

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 rk rj rd
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LDL
E.H

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 rk rj rd

LDL
E.W

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 rk rj rd

LDL
E.D

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 rk rj rd

STG
T.B

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 rk rj rd

STG
T.H

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 rk rj rd

STG
T.W

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 rk rj rd

STG
T.D

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 rk rj rd

STL
E.B

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 rk rj rd

STL
E.H

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 rk rj rd

STL
E.W

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 rk rj rd

STL
E.D

rd,
rj,
rk

0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 rk rj rd

BEQ
Z

rj,
off
s

0 1 0 0 0 0 offs[15:0] rj offs[20:16
]

BNE
Z

rj,
off
s

0 1 0 0 0 1 offs[15:0] rj offs[20:16
]
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BCE
QZ

cj,
off
s

0 1 0 0 1 0 offs[15:0] 0 0 cj offs[20:16
]

BCN
EZ

cj,
off
s

0 1 0 0 1 0 offs[15:0] 0 1 cj offs[20:16
]

JIR
L

rd,
rj,
off
s

0 1 0 0 1 1 offs[15:0] rj rd

B off
s

0 1 0 1 0 0 offs[15:0] offs[25:16]

BL off
s

0 1 0 1 0 1 offs[15:0] offs[25:16]

BEQ rj,
rd,
off
s

0 1 0 1 1 0 offs[15:0] rj rd

BNE rj,
rd,
off
s

0 1 0 1 1 1 offs[15:0] rj rd

BLT rj,
rd,
off
s

0 1 1 0 0 0 offs[15:0] rj rd

BGE rj,
rd,
off
s

0 1 1 0 0 1 offs[15:0] rj rd

BLT
U

rj,
rd,
off
s

0 1 1 0 1 0 offs[15:0] rj rd

BGE
U

rj,
rd,
off
s

0 1 1 0 1 1 offs[15:0] rj rd
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