To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the

contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices

and power devices.

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

1RENESAS

RenesasTechnology Corp.

LENESAS

N
@)
=~
S
)
-
®
<
)
-
-
=

M16C/80 Series

Software Manual

MITSUBISHI 16-BIT SINGLE-CHIP
MICROCOMPUTER
M16C FAMILY / M16C/60 SERIES

—
O

Renesas Electronics
WWW.renesas.com Rev.D1 2000.03

Using This Manual

This manual is written for the M16C/80 series software. This manual can be used for all
types of microcomputers having the M16C/80 series CPU core.

The reader of this manual is expected to have the basic knowledge of electric and logic
circuits and microcomputers.

This manual consists of five chapters. The following lists the chapters and sections to be
referred to when you want to know details on some specific subject.

» To understand the outline of the M16C/80 series and its features Chapter 1, “Overview”

» To understand the operation of each addressing mode Chapter 2, “Addressing Modes”

» To understand instruction functions

(Syntax, operation, function, selectable src/dest (label), flag changes, description example,
related INSTIUCLIONS)ooo i e Chapter 3, “Functions”
 To understand instruction code and cycles......... Chapter 4, “Instruction Code/Number of Cycles”

This manual also contains quick references immediately after the Table of Contents. These
quick references will help you quickly find the pages for the functions or instruction code/
number of cycles you want to know.

» To find pages from mnemonic.........ccccoeeeeeevvvvennnnnnnn. Quick Reference in Alphabetic Order
» To find pages from function and mnemoniccc.cc.ee. Quick Reference by Function
* To find pages from mnemonic and addressing Quick Reference by Addressing

A table of symboals, a glossary, and an index are appended at the end of this manual.

M16C Family-related document list

Usages
(Microcomputer development flow)

- T f men nten
Selection of ype of document Contents
microcomputer
Data sheet and Hardware specifications (pin assignment,
o | data book memory map, specifications of peripheral func-
Outline design § tions, electrical characteristics, timing charts)
of system T | User's manual Detailed description about hardware specifica-
@© tions, operation, and application examples
: . L (connection with peripherals, relationship with
Detail design
software)
of system
o | Programming Method for creating programs using assembly
§ manual and C languages
g Software manual | Detailed description about operation of each
%) instruction (assembly language)
evaluation
M16C Family Line-up
M16C Family = ————— M16C/80 Series M16C/80 Group

M16C/60 Series

—— M16C/20 Series

M16C/60 Group
M16C/61 Group
M16C/62 Group

M16C/20 Group
M16C/21 Group

Chapter 1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

Chapter 2
2.1
2.2
2.3
2.4
25
2.6
2.7

Chapter 3
3.1
3.2
3.3

Chapter 4
4.1

4.2

Table of Contents

Overview
Features Of MLBC/BO SEIIESccciiitiiiieeiirieee ettt e et e et e e st e e e s r e e s snr e e e e s annreeeeeaan 2
AAIrESS SPACE ..ottt e e e oo oot e et e e e e e e e e b b e e e e e e e e e e e e e e a e ban e e e e 3
Register CONfIQUIALIONiiiiiiiiieiiee ettt e e e e e e e e s e s bbb e e e e e e e e e e e e e e e e aaananes 4
FIag REGISIEI(FLG) .eieiiiiiiititt ettt ettt e et e e e e e e s s st bbb e e e e e e e e e e e aeeeeaannnes 7
REQGISIEN BANKeeeeiiiiee ettt e oottt e et e e e e e e e s e st bbb e e e e e e e e e aeaaeeeeaaaaae 9
Internal State after RESEtiS ClEAred........c.uvviiiiiiiiici e 10
(D= L B Y 01T ST PPTRRR 11
DU es BN = (o =T 0 4[] o | PP PP PP PPPPPTTTRR 16
INSTIUCTION FOIMAL ...t e e e e e nnnreee s 18
RV Z=Tol (o] g =T o] PO PP PPPPPPPPPPPPRP 19
Addressing Modes
AAreSSING MOAESoeiiiiiiiiiie ettt s b e e st e e e ettt e e e s sabbe e e e e sabbebeeeeeanes 22
GUIE 10 THIS CRAPLET ...t et e e e 23
General INSrUCtioN AAArESSINGccoiiiiiiiieiiiie e 24
SPeCific INSLrUCHION AAAIESSINGceieiiiiiiee ittt e e 27
Bit INSIrUCLION AQUIESSING .ciueveiiee ittt e et e e s sab b e e e s saaaneae s 30
Bit INSIrUCLION AQUIESSING ..veeeiiiiiiiiiee ittt et e e e st e e e s ebenes 32
Read and write operations with 24-bit regiSters ... 35
Functions
GUide t0 ThiS CRAPLETeeeiiiiiiiei e e e e e e e e e e 38
FUNCHIONS ...tttk ettt e e e ek e e e e s e e e e e et e e e e e b b e e e e e e ann e e e e e e annns 43
INAEX INSTFUCTION ...ttt e e s e e s e e e e e an e e e e ennes 158
Instruction Code/Number of Cycles
GUIE 10 THIS CRAPLET ...ttt e e st eeeeeeanes 172

Instruction Code/NUMDBDEr Of CYCIEScoiiiiiiiiiiiii e 174

Chapter 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8

Chapter 6

6.1

Interrupt
OULINE OF INTEITUPL ...ttt ettt e e e e e e e e e e e e e e e ab bt nbebreeeeeas 302
[a1CT g] o OLe] o] (o] PP T PP PO TP UPPPTPPPRI 305
INTEITUPE SEQUEINCE ...ttt ettt e e e ettt a e e a e e e e e e e e e e e aeaeeeeeeeeeeesbnnnnnnns 307
Return from INterrupt ROULINEooiiiiiiiiiiie e 311
T C=Ta (U o1 o = 1 o] 11 3 PSPPI 311
MUIIPIE TNTEITUDLS .eeiiiieieiee ettt s et e e e et e e e e e eanes 312
Precautions fOr INTEITUPLSueeiiiiiice et 314
Exit from Stop Mode and Walit MOUEeviiiiiiiiiieiiiice e 314

Calculation Number of Cycles

INSErUCION QUEUE DUFFEI .. 316

Quick Reference in Alphabetic Order

Mnemonic See page for See page for Mnemonic See page for See page for
function instruction code/ function instruction code/
number of cycles number of cycles

ABS 43 174 | CMPX 72 206
ADC 44 174 | DADC 73 206
ADCF 45 176 | DADD 74 208
ADD 46 176 | DEC 75 210
ADDX 48 183 | DIV 76 210
ADJINZ 49 185 | DIVU 77 211
AND 50 186 | DIVX 78 212
BAND 52 188 | DSBB 79 213
BCLR 53 188 | DSUB 80 215
BITINDEX 54 189 ENTER 81 217
BMCnd 55 190 EXITD 82 217
BMEQ/Z 55 190 | EXTS 83 218
BMGE 55 190 | EXTZ 84 220
BMGEU/C 55 190 FCLR 85 221
BMGT 55 190 | FREIT 86 221
BMGTU 55 190 | FSET 87 222
BMLE 55 190 | INC 88 223
BMLEU 55 190 INDEXB 89 223
BMLT 55 190 INDEXBD 89 224
BMLTU/NC 55 190 INDEXBS 89 224
BMN 55 190 | INDEXL 89 225
BMNE/NZ 55 190 INDEXLD 89 225
BMNO 55 190 INDEXLS 89 226
BMO 55 190 | INDEXW 89 226
BMPZ 55 190 INDEXWD 89 227
BNAND 56 192 INDEXWS 89 227
BNOR 57 192 | INT 90 228
BNOT 58 193 | INTO 91 228
BNTST 59 193 | JCnd 92 229
BNXOR 60 194 JEQ/Z 92 229
BOR 61 194 JGE 92 229
BRK 62 195 JGEU/C 92 229
BRK2 63 195 JGT 92 229
BSET 64 196 JGTU 92 229
BTST 65 196 JLE 92 229
BTSTC 66 197 JLEU 92 229
BTSTS 67 198 JLT 92 229
BXOR 68 198 JLTU/NC 92 229
CLIP 69 199 JN 92 229
CMP 70 200 JNE/NZ 92 229

Quick Reference-1

Quick Reference in Alphabetic Order

Mnemonic See page for See page for Mnemonic See page for See page for
function instruction code/ function instruction code/
number of cycles number of cycles

JNO 92 229 | ROT 128 271
JPZ 92 229 | RTS 129 272
JMP 93 229 | SBB 130 273
JMPI 94 231 | SBINZ 131 275
JMPS 95 232 | SCend 132 276
JSR 96 233 SCEQ/Z 132 276
JSRI 97 234 SCGE 132 276
JSRS 08 235 SCGEU/C 132 276
LDC 99 235 SCGT 132 276
LDCTX 100 238 SCGTU 132 276
LDIPL 101 239 SCLE 132 276
MAX 102 239 SCLEU 132 276
MIN 103 241 SCLT 132 276
MOV 104 243 SCLTU/NC 132 276
MOVA 106 252 SCN 132 276
MOV Dir 107 253 SCNE/NZ 132 276
MOVHH 107 253 SCNO 132 276
MOVHL 107 253 SCPZ 132 276
MOVLH 107 253 | SCMPU 133 277
MOVLL 107 253 | SHA 134 278
MOVX 108 255 | SHL 136 281
MUL 109 255 | SIN 138 283
MULEX 110 257 | SMOVB 139 284
MULU 111 257 | SMOVF 140 284
NEG 112 259 | SMOVU 141 285
NOP 113 259 | SOUT 142 285
NOT 114 260 | SSTR 143 286
OR 115 260 | STC 144 286
POP 117 263 | STCTX 145 288
POPC 118 263 | STNZ 146 288
POPM 119 264 | STZ 147 289
PUSH 120 265 | STZX 148 289
PUSHA 121 267 | SUB 149 290
PUSHC 122 267 | SUBX 151 294
PUSHM 123 268 | TST 152 296
REIT 124 269 | UND 154 298
RMPA 125 269 | WAIT 155 298
ROLC 126 270 | XCHG 156 299
RORC 127 270 | XOR 157 299

Quick Reference-2

Quick Reference by Function

Function Mnemonic Content See page for | See page for
function | instruction code/
number of cycles

Transfer MOV Transfer 104 243
MOVA Transfer effective address 106 252

MOVDir Transfer 4-bit data 107 253

MOVX Transfer extend sign 108 255

POP Restore register/memory 117 263

POPM Restore multiple registers 119 264

PUSH Save register/memory/immediate data 120 265

PUSHA Save effective address 121 267

PUSHM Save multiple registers 123 268

STNZ Conditional transfer 146 288

STZ Conditional transfer 147 289

STZX Conditional transfer 148 289

XCHG Exchange 156 299

Bit BAND Logically AND bits 52 188
manupulation | BCLR Clear bit 53 188
BITINDEX Bit index 54 189

BMCnd Conditional bit transfer 55 190

BNAND Logically AND inverted bits 56 192

BNOR Logically OR inverted bits 57 192

BNOT Invert bit 58 193

BNTST Test inverted bit 59 193

BNXOR Exclusive OR inverted bits 60 194

BOR Logically OR bits 61 194

BSET Set bit 64 196

BTST Test bit 65 196

BTSTC Test bit & clear 66 197

BTSTS Test bit & set 67 198

BXOR Exclusive OR bits 68 198

Shift ROLC Rotate left with carry 126 270
RORC Rotate right with carry 127 270

ROT Rotate 128 271

SHA Shift arithmetic 134 278

SHL Shift logical 136 281

Arithmetic ABS Absolute value 43 174
ADC Add with carry 44 174

ADCF Add carry flag 45 176

ADD Add without carry 46 176

ADDX Add extend sigh without carry 48 183

CLIP Clip 69 199

CMP Compare 70 200

Quick Reference-3

Quick Reference by Function

Function Mnemonic Content See page for | See page for
function | instruction code/
number of cycles
Arithmetic CPMX Compare extended sigh 72 206
DADC Decimal add with carry 73 206
DADD Decimal add without carry 74 208
DEC Decrement 75 210
DIV Signed divide 76 210
DIvU Unsigned divide 77 211
DIVX Singed divide 78 212
DSBB Decimal subtract with borrow 79 213
DSuUB Decimal subtract without borrow 80 215
EXTS Extend sign 83 218
EXTZ Extend zero 84 220
INC Increment 88 223
MAX Select maximum value 102 239
MIN Select minimum value 103 241
MUL Signed multiply 109 255
MULEX Multiple extend sign 110 257
MULU Unsigned multiply 111 257
NEG Two’s complement 112 259
RMPA Calculate sum-of-products 125 269
SBB Subtract with borrow 130 273
SUB Subtract without borrow 149 290
SUBX Subtract extend without borrow 151 294
Logical AND Logical AND 50 186
NOT Invert all bits 114 260
OR Logical OR 115 260
TST Test 152 296
XOR Exclusive OR 157 299
Jump ADJINZ Add & conditional jump 49 185
SBJINZ Subtract & conditional jump 131 275
JCnd Jump on condition 92 229
JMP Unconditional jump 93 229
JMPI Jump indirect 94 231
JMPS Jump to special page 95 232
JSR Subroutine call 96 233
JSRI Indirect subroutine call 97 234
JSRS Special page subroutine call 98 235
RTS Return from subroutine 129 272
String SCMPU String compare unequal 133 277
SIN String input 138 283
SMOVB Transfer string backward 139 284
SMOVF Transfer string forward 140 284

Quick Reference-4

Quick Reference by Function

Function Mnemonic Content See page for | See page for
function | instruction code/
number of cycles
String SMOVU Transfer string 141 285
SOUT String output 142 285
SSTR Store string 143 286
Other BRK Debug interrupt 62 195
BRK2 Debug interrupt 2 63 195
ENTER Build stack frame 81 217
EXITD Deallocate stack frame 82 217
FCLR Clear flag register bit 85 221
FREIT Fast return from interrupt 86 221
FSET Set flag register bit 87 222
INDEX Type Index 89 223
INT Interrupt by INT instruction 90 228
INTO Interrupt on overflow 91 228
LDC Transfer to control register 99 235
LDCTX Restore context 100 238
LDIPL Set interrupt enable level 101 239
NOP No operation 113 259
POPC Restore control register 118 263
PUSHC Save control register 122 267
REIT Return from interrupt 124 269
STC Transfer from control register 144 286
STCTX Save context 145 288
SCcend Store on condition 132 276
UND Interrupt for undefined instruction 154 298
WAIT Wait 155 298

Quick Reference-5

Quick Reference by Addressing (general instruction addressing)

for

instruction
code
/number
of cycles

174

174

176

176

183

185

186

189

199

200

206

206

208

210

210

211

212

213

215

217

218

220

223

223

See |See page

page

for
function

43

44

45

46

48

49

50

54

69

70

72

73

74

75

76

77

78

79

80

81

83

84

88

89

Addressing

[Pesqe]

[9Tsqe]

[[uv]iyz:dsp]

[[g4/as]ot:dsp]

[[uv]oT:dsp]

[[g4/gs]8:dsp]

[[uy]g:dsp]

[[uw]]

VIVIVIV V[V V]V

VIVIVIV|VV|V]V

VIVIVIV|VV|V]V

VIVIVIV|VV|V]V

VIVIVIV|VIV|V]V

VIV VYV V] VY

VIVIVIV|VIV|V]V

VIVIVIV|VIV|V]V

VIVIVIV|VIV|V]V

VIVIVIV|VV|V]V

VIVIVIV|VV|V]V

VIVIVIV|VV|V]V

NINI#

CENNI#

VIVIVIV V|V V| V]V]V

VIVIV|V V[V V| V]V V

VCNINI#

ITINNI#

SININI#

vesqe

9Tsqe

[uylyz:dsp

[g4/as]oT:dsp

[uy]oT:dsp

[g4/gs]8:dsp

[uy]g:dsp

[uy]

uy

-/€4/HTY

VIVIVIVIY[V|V]V

VIVIVIVI V[V V|V V] V[V|V
VIVIVIVIV[V V]|V V]V

VIVIVIVI V[V V|V V] V[V|V

VIVIVIVIV[V V]|V V]V

VIVIVIVI VY|V V] V[V|V
VIVIVIVIV[V V]|V V]V

VIVIVIVI VY|V V] V[V|V

VIVIVIVI VY|V V] V|V

VIVIVIVI VY|V V] V[V|V

VIVIVIVI VY|V V] V[V|V

VIVIVIVI VY|V V] V[V|V

VIVIVIVI VY|V V] V[V|V

VIVIVIVI VY|V V] V[V|V

VIVIVIVI VY|V V] V[V|V

VIVIVIVIV[V V]|V V]V

VIVIVIVIV[V V]|V V]V

VIVIVIVIV[V V]|V V]V

VIVIVIVIV[V V]|V V]V

THEH/TH/TY

-/¢d/H0Yd

VIVIVI VIV Y] V| V[V V] V| V|V

VIV V|V Y[Y| V]| V| V|V V] V]V

0dcyd/04/10d

VERARE
VERARE
VERARE

VARARE

VAVHVSIVS V[V (V| V|V VY| V] V|V

VERARE
VERARE
VERARE
VERARE

VIVIVIVIVIV| VY[V V|V V] V]V|V

VoV VT
VERARE

V2

VERARE
VERARE
VERARE
VERARE
VERARE

VERARE
VERARE
VERARE
VERARE

Mnemonic

ABS

ADC

ADCF

ADD™

ADDX

ADJINZ™?

AND

BITINDEX

CLIP

CMP

CMPX

DADC

DADD

DEC

DIV

DIVU

DIVX

DSBB

DSUB

ENTER

EXTS

EXTZ

INC

INDEXType

*1 Has special instruction addressing.

y ROL/RO can be selected.

y R1L/R1 can be selected.
y ROL can be selected.

y ROH can be selected.
y R1L can be selected.

y R1H can be selected.

*2 On
*3 On
*4 On
*5 On
*6 On
*7 0On

Quick reference-6

Quick Reference by Addressing (general instruction addressing)

Mnemonic Addressing See |See page
page for
— for jinstruction
§ - ‘% - = E < % < 5 g ? % ? e /n(l:J(rJ:ser
EEEE %@%%%ggg‘é’égE:%%§§§§ﬁ of cycles
SEEEIEAEEEEEN I EEHEHE P
INT v 90 228
JMPpP? 93 229
JMPI VIV (VB IV [V V[V IV V|V |V 94 231
JMPS v 95 232
JSRI V2 VIV VB[V [V |V [V VYV [V]V 97 234
JSRS v 98 235
LDC™ V2V VS IV VIV [V IV VY|V VAR 99 235
LDIPL v 101 239
MAX VOV |V IV|VIVIVIVI|VIV|V]V|V|V 102 239
MIN Ve VIV V[V V|V VIV V|V I[V][V|V]V 103 241
MOV VIVIVIVIVIVIVIV|V VIV V|V V|V VY|V V]V V]Y 104 243
MOVA Vel Ve v VIVIV|VIVI|V]Y 106 252
MOVDir VIO |YB VY VY V[V VY 107 253
MOVX Vel Ve VIVIVIVIVIV[VIV]V]V VIVIVI|VI[VI|VI[V]V 108 255
MUL Vel v |VT VIVIVIVIVIVIV|V]V|V|V VIVIVI|VI[VI|VI[V]V 109 255
MULEX VIV VIV VIV I[V[V|V]Y VIVIVI|VI[VI|VI[V]V 110 257
MULU Ve VIV V[V [V|V VIV V|V I[VV|V]V VIVIVIVI[VIVI|V]V 111 257
NEG Ve VIV V[V V|V VIV V|V I[V]V VIVIVIVI[VIVI|V]V 112 259
NOT Ve VIV V[V V|V VIV V|V I[V]V VIVIVIVI[VIVI|V]V 114 260
OR Ve VIV V[V [V|V VIV V|V I[VV|V]V VIVIVIVI[VIVI|V]V 115 260
POP Ve VIV V[V V|V VIV V|V I[V]V VIVIVI|VI[VI|VI[V]V 117 263
POPM™ v v 119 264
PUSH VIVIVI|VIV|VIV|V|V ARARNAR Vv VIVIVI|VI[VI|VI|V]V 120 265
PUSHA VIVIVIVIVI|V]Y 121 267
*1 Has special instruction addressing. *9 Only R3R1 can be selected.
*2 Only RO/R2R0 can be selected. *10 Only ROL can be selected.
*3 Only R2 can be selected. *11 Only ROH can be selected.
*4 Only R1/R3R1 can be selected. *12 Only R1L can be selected.
*5 Only R3 can be selected. *13 Only R1H can be selected.
*6 Only ROL/RO can be selected.
*7 Only R1L/R1 can be selected.
*8 Only R2R0 can be selected.

Quick reference-7

Quick Reference by Addressing (general instruction addressing)

Mnemonic Addressing See |See page
page for
_ | |= for |instruction

E ;z" E _ % - _ E = g = function| code

eI A T e o
Sz5E| |z 3555522 2 2|2 2 B 2 ElE 5 B a2 o eveles

B2 2| Z|8|8|8|8|8|R|RIF|RIERIEISE 2= E:

PUSHM™ ARARARY 123 268
ROLC VANV |V VI VIV V|V V]|V V]V YARY 126 270
RORC VIV |V VI VIV V|V V]|V V]V VIVIVIV]Y 127 270
ROT VIV |V VI VIV V|V V]|V V]V VIVIVIV|V|V|V|V]V 128 271
SBB VIV VIV VY|V V]V V| VY] VY 130 273
SBJINZ? VIV |V VI VIV V|V V]|V V]V v 131 275
SCCnd VHVS|VE(NT I VI VIV |V |V V]|V V]V VIVIVIVIV]V|V]Y 132 276
SHA VIV IVIV|V| V| V||V V]|V[V|V|V VIVIVIV|V|V|V|V]Y 134 278
SHL VIV IVIV|V| V| V|V[V|V]|V|V]V VIVIVIV|V|V|V|V]Y 136 281
STC* VHVS|VE(NT I VI VIV |V |V V]|V V]V 144 286
STCTX* ARARARY 145 288
STNZ VIV VIV VY|V V]V V| VY] VY VIVIVIVIV]V|V]Y 146 288
STZ VIV VIV VY|V V]V V| VY] VY VIVIVIVIV]V|V]Y 147 289
STZX VIV VIV VY|V V]V V| VY] VY VIVIVIVIV]V|V]Y 148 289
SUB VIVIVIVIV] V| V|V[V| V]|V V|V] V]V v VIVIVI|VIV]V|V]Y 149 290
SUBX VWO V] VIV V|V V[V V[V] VY VIVIVIVIV]V|V]Y 151 294
TST A IRVARRVARRVAS IRV (VA IRV RVA NEVA IRV NRVA RV IRVA RRVA RS 152 296
XCHG A IRVARRVA RVAS IRV IRVA VA RRVA BRVA IRVA BRVA VA IR V| v VAR Y 156 299
XOR A IRVARRVARRVAS IRV (VA IRV RVA NEVA IRV NRVA RV IRVA RRVA RS VAIRYA BRYA BRVARRYA NRVA RV BRV) 157 299

*1 Has special instruction addressing.
*2 Only ROL/RO can be selected.

*3 Only R1L/R1 can be selected.

*4 Only RO can be selected.

*5 Only R2 can be selected.

*6 Only R1 can be selected.

*7 Only R3 can be selected.

*8 Only ROL/R2R0 can be selected.
*9 Only ROH can be selected.

*10 Only R1L/R3R1 can be selected.
*11 Only R1H can be selected.

Quick reference-8

Quick Reference by Addressing (special instruction addressing)

Mnemonic Addressing See page | See page
for function for
instruction
i é E g g g g code
- % g g g g g g g /number of
HENEIE R E s
Sln|QT|Z|h|b|ojlaja|lalalo
ADD™ v 46 176
ADJINZ* v 49 185
JCnd v 92 229
JMP™ v 93 229
JSR* v 96 233
LDC™ v VIV|V|Y 99 235
POPC v 118 263
POPM™ 4 119 264
PUSHC VIVIVIVI[VI|V V]|V 122 267
PUSHM? v 123 268
SBJINZ* v 131 275
sTCH VI IVIVIVI|VI|VI V|V V|| V]V 144 286

*1 Has general instruction addressing.

Quick reference-9

Quick Reference by Addressing (bit instruction addressing)

[} c ..m | 0| O N| N N M| < < | O ©) - | | | N
()} o - o (e} (e} (o] (o] (o] (0] (0] (o] (o] (o] (o] (o] (o] (o)} AN N
I o ..w (O TR — — — — — — — — i i i i — — AN N
S8 2829
O B3 © 5 0
n c £
c
g 0o N|lm|w|lol~ olo|lo| 9 gl w|l o]~ o] vl ~
c B 0| LI L LWL WL ©| ©| ©|l ©| ©| ©| ©| |
o c
o 2
QL
N 5
kS
2/d/z/s/a/o/iNn e Rl e
er:dseq'ug (= | |>|>=|>|=|=|s|=|=|>=|>=|>|>
Jzesequq [= | === |=|>|>|=|>|>|>|>|>|>
[uvlzziesequq |= | = | > ||| |=|>|=|=|=|>|>|>
o [ad/gsletesequq = | > | = || > | |>|>|=|>|[>=|>|> >
.m [uvleT:asequq |> | | > |> || > |>|>|>|>|>|>|> |~
M [ad/gsltTesedng |- > | | ||| === |>|>|>
uyltt:esequg [[| | || |> || |>|=|>|>]|>
uylug |= | = |=|=|=|=|=|=|=|=|=|>=|>|=>
uvyag (== == === = |=|=|>|>=|>|>
HTYTHug [= = (= (=== === ||| |>|>
Hod/10d'Nq | | > | |= | |= || |>|>|>|>|>|>
L
& s |0 | O
N
S O lx|&S|lZ2|E|E|wn|Q — x
5 z| 50|z |o|lol8|X|x||h|h|b|o|%|E
c <|o|=|Z2|Z2|Z2|Zz2|Z|0|n|lE|E|lE|X|O0|ln
= 0| 0|0 |0| 0|0 |0|n|d|d|o|o|{m|o|L|W

Quick reference-10

Quick reference-11

Chapter 1

Overview

1.1 Features of M16C/80 series

1.2 Address Space

1.3 Register Configuration

1.4 Flag Register (FLG)

1.5 Register Bank

1.6 Internal State after Reset is Cleared
1.7 Data Types

1.8 Data Arrangement

1.9 Instruction Format

1.10 Vector Table

Chapter 1 Overview 1.1 Features of M16C/80 series

1.1 Features of M16C/80 series

The M16C/80 series is a single-chip microcomputer developed for built-in applications where the micro-
computer is built into applications equipment.

The M16C/80 series supports instructions suitable for the C language with frequently used instructions
arranged in one- byte op-code. Therefore, it allows you for efficient program development with few memory
capacity regardless of whether you are using the assembly language or C language. Furthermore, some
instructions can be executed in one clock cycle, making fast arithmetic processing possible.

Its instruction set consists of 106 discrete instructions matched to the M16C's abundant addressing modes.
This powerful instruction set allows to perform register-register, register-memory, and memory-memory
operations, as well as arithmetic/logic operations on bits and 4-bit data.

M16C/80 series models incorporate a multiplier, allowing for high-speed computation.

B Features of M16C/80 series
* Register configuration

Data registers : Four 16-bit registers (of which two registers can be used as 8-bit registers, or two
registers are combined and can be used as 32-bit registers)

Address registers : Two 24-bit registers

Base registers : Two 24-bit registers

* Versatile instruction set

C language-suited instructions (stack frame manipulation) : ENTER, EXITD, etc.
Register and memory-indiscriminated instructions : MOV, ADD, SUB, etc.
Powerful bit manipulate instructions : BNOT, BTST, BSET, etc.
4-bit transfer instructions : MOVLL, MOVHL, etc.
Frequently used 1-byte instructions : MOV, ADD, SUB, JMP, etc.
High-speed 1-cycle instructions : MOV, ADD, SUB, etc.

» 16M-byte linear address area

Relative jump instructions matched to distance of jump
* Fast instruction execution time
Shortest 1-cycle instructions : 106 instructions include 39 1-cycle instructions.

B Speed performance (types incorporating a multiplier, operating at 20 MHz)

Register-register transfer :50 ns
Register-memory transfer 1100 ns
Register-register addition/subtraction :50 ns
8 bits x 8 bits register-register operation : 150 ns

16 bits x 16 bits register-register operation : 150 ns
16 bits / 8 bits register-register operation :0.9 us
32 bits / 16 bits register-register operation : 1.2 s

Chapter 1 Overview 1.2 Address Space

1.2 Address Space

Fig. 1.2.1 shows an address space.

Addresses 00000016 through 0003FF16 make up an SFR (special function register) area. In individual
models of the M16C series, the SFR area extends from 0003FF16 toward lower addresses.

Addresses from 00040016 on make up a memory area. In individual models of the M16C series, a RAM
area extends from address 00040016 toward higher addresses, and a ROM area extends from FFFFFF16
toward lower addresses. Addresses FFFE0016 through FFFFFF16 make up a fixed vector area.

000000186

The SFR area in each
SFER area model extends toward
lower-address locations
as much as available.

t
00040016 | | 0o/ RAM area | The RAM area in each
model extends toward
higher-address loca-
tions as much as
available.

External memory area

The ROM area in each
model extends toward
FFFEOO16 lower-address locations
FFFFFF16 Fixed vector area p as much as available.

Internal ROM area

Figure 1.2.1 Address area

Chapter 1 Overview

1.3 Register Configuration

The central processing unit (CPU) contains the 28 registers shown in Figure 1.3.1. Of these registers, RO,
R1, R2, R3, A0, Al, FB, and SB each consist of two sets of registers configuring two register banks.

1.3 Register Configuration

General register

High-speed interru

DMAC related regi

b23

b15

b0

FLG

ROH ROL

R1H R1L

R2

R3

AO

Al

SB

FB

USP

ISP

INTB

PC

pt register

b23

bl5

SVF

SVP

VCT

ster

b23

b15

o
o

DMDO

DMD1

DCTO

DCT1

DRCO

DRC1

DMAO

DMA1

DSAO0

DSAl1

DRAO

DRA1

Flag register

Data register

Address register

Static base register

Frame base register

User stack pointer
Interrupt stack pointer
Interrupt table register

Program counter

Save flag register

Save PC register

Vector register

DMA mode register

DMA transfer count register

DMA transfer count reload register

DMA memory address register

DMA SFR address register

DMA memory address reload register

Figure 1.3.1 CPU register configuration

Chapter 1 Overview 1.3 Register Configuration

(1) Data registers (RO, ROH, ROL, R1, R1H, R1L, R2, R3, R2R0, and R3R1)
These registers consist of 16 bits, and are used primarily for transfers and arithmetic/logic operations.
Registers RO and R1 can be halved into separate high-order (ROH, R1H) and low-order (ROL, R1L) parts
for use as 8-bit data registers. Moreover, you can combine R2 and RO or R3 and R1 to configure a 32-
bit data register (R2R0 or R3R1).

(2) Address registers (A0 and Al)

These registers consist of 24 bits, and have the similar functions as the data registers. These registers
are used for address register-based indirect addressing and address register-based relative address-

ing.

(3) Static base register (SB)
This register consists of 24 bits, and is used for SB-based relative addressing.

(4) Frame base register (FB)
This register consists of 24 bits, and is used for FB-based relative addressing.

(5) Program counter (PC)
This counter consists of 24 bits, indicating the address of an instruction to be executed next.

(6) Interrupt table register (INTB)
This register consists of 24 bits, indicating the initial address of an interrupt vector table.

(7) User stack pointer (USP) and interrupt stack pointer (ISP)
There are two types of stack pointers: user stack pointer (USP) and interrupt stack pointer (ISP), each
consisting of 24 bits.
The stack pointer (USP/ISP) you want can be switched by a stack pointer select flag (U flag).
The stack pointer select flag (U flag) is bit 7 of the flag register (FLG).
Set an even number to USP and ISP. When an even number is set, execution becomes efficient.

(8) Flag register (FLG)
This register consists of 11 bits, and is used as a flag, one bit for one flag. For details about the function
of each flag, see Section 1.4, "Flag Register (FLG)."

(9) Save flag register (SVF)

This register consists of 16 bits and is used to save the flag register when a high-speed interrupt is
generated.

(10) Save PC register (SVP)

This register consists of 16 bits and is used to save the program counter when a high-speed interrupt is
generated.

Chapter 1 Overview 1.3 Register Configuration

(11) Vector register (VCT)
This register consists of 24 bits and is used to indicate the jump address when a high-speed interrupt is
generated.

(12) DMA mode registers (DMD0O/DMD1)

These registers consist of 8 bits and are used to set the transfer mode, etc. for DMA.

(13) DMA transfer count registers (DCTO/DCT1)
These registers consist of 16 bits and are used to set the number of DMA transfers performed.

(14) DMA transfer count reload registers (DRCO/DRC1)
These registers consist of 16 bits and are used to reload the DMA transfer count registers.

(15) DMA memory address registers (DMAO/DMAL1)
These registers consist of 24 bits and are used to set a memory address at the source or destination of
DMA transfer.

(16) DMA SFR address registers (DSA0/DSA1)

These registers consist of 24 bits and are used to set a fixed address at the source or destination of
DMA transfer.

(17) DMA memory address reload registers (DRAO/DRA1)

These registers consist of 24 bits and are used to reload the DMA memory address registers.

Chapter 1 Overview 1.4 Flag Register (FLG)

1.4 Flag Register (FLG)

Figure 1.4.1 shows a configuration of the flag register (FLG). The function of each flag is detailed below.

(1) Bit 0: Carry flag (C flag)
This flag holds a carry, borrow, or shifted-out bit that has occurred in the arithmetic/logic unit.

(2) Bit 1: Debug flag (D flag)
This flag enables a single-step interrupt.
When this flag is set (= 1), a single-step interrupt is generated after an instruction is executed. When
an interrupt is acknowledged, this flag is cleared to 0.

(3) Bit 2: Zero flag (Z flag)
This flag is set when an arithmetic operation resulted in 0; otherwise, this flag is 0.

(4) Bit 3: Sign flag (S flag)

This flag is set when an arithmetic operation resulted in a negative value; otherwise, this flag is 0.

(5) Bit 4: Register bank select flag (B flag)
This flag selects a register bank. If this flag is 0, register bank 0 is selected; when the flag is 1,
register bank 1 is selected.

(6) Bit 5: Overflow flag (O flag)
This flag is set when an arithmetic operation resulted in overflow.

(7) Bit 6: Interrupt enable flag (I flag)
This flag enables a maskable interrupt.
When this flag is 0, the interrupt is disabled; when the flag is 1, the interrupt is enabled. When the
interrupt is acknowledged, this flag is cleared to O.

(8) Bit 7: Stack pointer select flag (U flag)
When this flag is 0, the interrupt stack pointer (ISP) is selected; when the flag is 1, the user stack
pointer (USP) is selected.
This flag is cleared to 0 when a hardware interrupt is acknowledged or an INT instruction of software
interrupt numbers 0 to 31 is executed.

(9) Bits 8-11: Reserved area

Chapter 1 Overview 1.4 Flag Register (FLG)

(10) Bits 12-14: Processor interrupt priority level (IPL)
The processor interrupt priority level (IPL) consists of three bits, allowing you to specify eight processor
interrupt priority levels from level 0 to level 7. If a requested interrupt's priority level is higher than the
processor interrupt priority level (IPL), this interrupt is enabled.

(11) Bit 15: Reserved area

b15 bo
IPL ulit|lo|B|s|z|D|c| Flag register (FLG)

Carry flag

— Debug flag

Zero flag

Sign flag

Register bank select flag

Overflow flag

Interrupt enable flag

Stack pointer select flag

Reserved area

Processor interrupt priority level

Reserved area

Figure 1.4.1 Configuration of flag register (FLG)

Chapter 1 Overview

1.5 Register Bank

The M16C has two register banks, each configured with data registers (RO, R1, R2, and R3), address
registers (A0 and Al), frame base register (FB), and static base register (SB). These two register banks
are switched over by the register bank select flag (B flag) of the flag register (FLG).

Figure 1.5.1 shows a configuration of register banks.

1.5 Register Bank

RO
R1
R2
R3
AO
Al
FB
SB

b23

Register bank 0 (B flag=10)

b15 b8b7 b0

| N Y Y A

Note: Register bank 1 is used for high-speed interrupts when using a high-speed interrupt. Also, when
using three or more DMAC channels, it is extended for use as a DMAC register.

Register bank 1 (Bflag=1)

b15 b8b7 b0

RO
R1
R2

1
1
1
1
1
1
I O I I A 1
1
1
I
I
R3 I
|
1
1
1
1
1
1
1
1
]

oy

23 EERTERERERRERE,
A0

Al
FB
SB

L1ty il

Figure 1.5.1 Configuration of register banks

Chapter 1 Overview 1.6 Internal State after Reset is Cleared

1.6 Internal State after Reset is Cleared

The following lists the content of each register after a reset is cleared.

* Data registers (RO, R1, R2, and R3) : 000016

» Address registers (A0 and Al) : 00000016

» Static base register (SB) : 00000016

» Frame base register (FB) : 00000016

* Interrupt table register (INTB) : 00000016

* User stack pointer (USP) : 00000016

* Interrupt stack pointer (ISP) : 00000016

* Flag register (FLG) : 000016

* DMA mode register (DMD0O/DMD1) : 0016

» DMA transfer count register (DCTO/DCT1) : indeterminate
» DMA transfer count reload register (DRCO/DRC1) . indeterminate
* DMA memory address register (DMAO/DMA1) : indeterminate
* DMA SFR address register (DSAO0/DSA1) : indeterminate
* DMA memory address reload register (DRAO/DRA1) :indeterminate
» Save flag register (SVF) . indeterminate
» Save PC register (SVP) : indeterminate
* Vector register (VCT) : indeterminate

10

Chapter 1 Overview 1.7 Data Types

1.7 Data Types

There are four data types: integer, decimal, bit, and string.

1.7.1 Integer

An integer can be a signed or an unsigned integer. A negative value of a signed integer is represented
by two's complement.

b7 b0

Signed byte (8 bit) integer

b7 b0

Unsigned byte (8 bit) integer m

b15 b0

Signed word (16 bit) integer R

b15 [l

Unsigned word (16 bit) integer (oo

b3l [l

Signed long word (32 bit) integer (... 0,...... ...

b3l il

UnSIgned Iong Word (32 blt) Integer | | | | I | | I | | I | |
S: Sign bit

Figure 1.7.1 Integer data

1.7.2 Decimal
This type of data can be used in DADC, DADD, DSBB, and DSUB.

Pack format b7 b0
(2 digits) [T
Pack format b15 bo
(4 digits) Lol

Figure 1.7.2 Decimal data

11

Chapter 1 Overview 1.7 Data Types

1.7.3 Bits
(1) Register bits
Figure 1.7.3 shows register bit specification.
Register bits can be specified by register direct (bit,RnH/RnL or bit,An). Use bit,RnH/RnL to specify
a bit in data register (RnH/RnL); use bit,An to specify a bit in address register (An).
For bit in bit,RnH/RnL and bit,An , you can specify a bit number in the range of 0 to 7.

RnH/RnL An

b7 bo b7 bo
bitRAH/RNL L 11] bitAn [0]
(bit:0 to 7, n:0,1)

(bit:0to 7, n:0,1)

Figure 1.7.3 Register bit specification

(2) Memory bits
Figure 1.7.4 shows addressing modes used for memory bit specification. Table 1.7.1 lists the address
range in which you can specify bits in each addressing mode. Be sure to observe the address range in
Table 1.7.1 when specifying memory bits.

Addressing mode ——Absolute addressing bit,base:19

bit,base:27

— FB-based relative addressing —E bit,base:11[FB]
bit,base:19[FB]

— Address register-based indirect — bit,[An]
addressing

— Address register-based relative bit,base:11[An]
addressing

— bit,base:19[An]
— bit,base:27[An]

Figure 1.7.4 Addressing modes used for memory bit specification

Table 1.7.1 Bit-Specifying Address Range

) Specification range
Addressing Lower limit (address) | Upper limit (address) The access range
bit,base:19 00000016 OOFFFF16
bit,base:27 00000016 FFFFFF16
bit,base:11[SB] | [SB] [SB]+000FF16 00000016 to FFFFFF16.
bit,base:19[SB] [SB] [SB]+0FFFF16 00000016 to FFFFFF1s.
bit,base:11[FB] [FB]-00008016 [FB]+00007F16 00000016 to FFFFFF16.
bit,base:19[FB] [FB]-00800016 [FB]+007FFF16 00000016 to FFFFFF1s6.
bit,[An] 00000016 FFFFFF16
bit,base:11[An] [An] [An]+0000FF16 00000016 to FFFFFF1s.
bit,base:19[An] [An] [An]+00FFFF16 00000016 to FFFFFF1s.
bit,base:27[An] [An] [An]+FFFFFF16 00000016 to FFFFFF1s.

12

Chapter 1 Overview

(1) Bit specification by bit, base
Figure 1.7.5 shows the relationship between memory map and bit map.
Memory bits can be handled as an array of consecutive bits. Bits can be specified by a given combina-
tion of bit and base. Using bit O of the address that is set to base as the reference (= 0), set the desired
bit position to bit. Figure 1.7.6 shows examples of how to specify bit 2 of address 0000A16.

1.7 Data Types

Address
b7 b0
0
n-1
n
n+1 j
"""""""""""" n+1 n n-1 0
"""""""""""" b7 bob7 bOb7 b0 b7 b0
_______________________ Sg____llllllllllll|||lllllIlll[____?e____Jllll|||
§ ?
~ Memory map =~ Bit
Figure 1.7.5 Relationship between memory map and bit map
Address 0000A16 N
b7 b2 b0
Address 0000916
b15 b10 b8b7 b0
BSET 10,9H
I e | | . I — 1 I These specification
examples all specify
bit 2 of address
Address 0000816
b23 b18 b16b15 b8b7 bo 0000A18
BSET 18,8H IIII|||IIIII|IIIIIII|IIII
Address 0000016
b87 b82 b80b79 b72 b7 b0
BSET 82,0H

J

Figure 1.7.6 Examples of how to specify bit 2 of address 0000A16

13

Chapter 1 Overview 1.7 Data Types

(2) SB/FB relative bit specification
For SB/FB-based relative addressing, use bit O of the address that is the sum of the address set to
static base register (SB) or frame base register (FB) plus the address set to base as the reference (=
0), and set the desired bit position to bit .

(3) Address register indirect/relative bit specification
For address register indirect addressing, use bit 0 of the address that is set to address register(An)
as the reference (= 0), and set the desired bit position to bit.
For address register indirect addressing, specified bit range is 0 to 7.
For address register relative addressing, use bit 0 of the address that is the sum of the address set to
address register (An) plus the address set to base as the reference (= 0), and set the desired bit
position to bit.

14

Chapter 1 Overview 1.7 Data Types

1.7.4 String
String is a type of data that consists of a given length of consecutive byte (8-bit) or word (16-bit) data.
This data type can be used in seven types of string instructions: character string backward transfer
(SMOVB instruction), character string forward transfer (SMOVF instruction), specified area initialize
(SSTR instruction), character string transfer compare(SCMPU instruction), character string transfer
(SMOVU instruction), character string input(SIN instruction) and character string output(SOUT instruc-
tion).

Byte (8-bit) data Word (16-bit) data

b7 b0 b15 b0
| 1 1 1 1 1 1 1 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
b7 b0 b15 b0
| 1 1 1 1 1 1 1 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
b7 b0 b15 b0

Figure 1.7.7 String data

15

h r 1 Overview
Chapte Overvie 1.8 Data Arrangement

1.8 Data Arrangement

1.8.1 Data Arrangement in Register
Figure 1.8.1 shows the relationship between a register's data size and bit numbers.

B3 o
Nibble (4-bit) data [
b7 b0

Byte (8-bit) data L]
bis b0

Word (16_b|t) data | Ll | Ll |
b1 b0

Long Word (32_b|t) data I I | I | I I |
MSB LSB

Figure 1.8.1 Data arrangement in register

16

Chapter 1 Overview

1.8.2 Data Arrangement in Memory

1.8 Data Arrangement

Figure 1.8.2 shows data arrangement in memory. Figure 1.8.3 shows some examples of operation.

b7 bo
N DATA
N+1
N+2
N+3

Byte (8-bit) data

b7 b0
N DATA(L)
N+1 DATA(M)
N+2 DATA(H)
N+3

24-bit (Address) data

b7 bo
N DATA(L)
N+1 DATA(H)
N+2
N+3

Word (16-bit) data

b7 b0
N DATA(LL)
N+1 DATA(LH)
N+2 DATA(HL)
N+3 DATA(HH)

Long Word (32-bit) data

Figure 1.8.2 Data arrangement in memory

Word (16-bit) data

MOV.B N,ROH
b7 bO Does not change.
N DATA
N+1 l l
N+2 b15 b0
N+3 RO | L1 PATAl‘ L1 | IR TR R TR N N
H L
Byte (8-bit) data
MOV.W N,RO
b7 b0
N DATA(L)
N+1 DATA(H) ¢ l
N+2 b15 b0
N+3 RO | . DATA(H), | | . DATAQL), | |
H L

Figure 1.8.3 Examples of operation

17

Chapter 1 Overview 1.9 Instruction Format

1.9 Instruction Format

The instruction format can be classified into four types: generic, quick, short, and zero. The number of
instruction bytes that can be chosen by a given format is least for the zero format, and increases succes-
sively for the short, quick, and generic formats in that order.

The following describes the features of each format.

(1) Generic format (:G)
Op-code in this format consists of 2 bytes. This op-code contains information on operation and src™ and
dest? addressing modes.
Instruction code here is comprised of op-code (2-3 bytes), src code (0-4 bytes), and dest code (0-3
bytes).

(2) Quick format (:Q)
Op-code in this format consists of two bytes. This op-code contains information on operation and imme-
diate data and dest addressing modes. Note however that the immediate data in this op-code is a
numeric value that can be expressed by -7 to +8 or -8 to +7 (varying with instruction).
Instruction code here is comprised of op-code (2 bytes) containing immediate data and dest code (0-3
bytes).

(3) Short format (:S)
Op-code in this format consists of one byte. This op-code contains information on operation and src and
dest addressing modes.Note however that the usable addressing modes are limited.
Instruction code here is comprised of op-code (1 byte), src code (0-2 bytes), and dest code (0-2 bytes).

(4) Zero format (:2)
Op-code in this format consists of one byte. This op-code contains information on operation (plus
immediate data) and dest addressing modes. Note however that the immediate data is fixed to 0, and
that the usable addressing modes are limited.
Instruction code here is comprised of op-code (1 byte) and dest code (0-2 bytes).

*1 srcis the abbreviation of "source."
*2 dest is the abbreviation of "destination."

18

Chapter 1 Overview 1.10 Vector Table

1.10 Vector Table

The vector table comes in two types: a special page vector table and an interrupt vector table. The special
page vector table is a fixed vector table. The interrupt vector table can be a fixed or a variable vector table.

1.10.1 Fixed Vector Table
The fixed vector table is an address-fixed vector table. The special page vector table is allocated to
addresses FFFEO016 through FFFFDB16, and part of the interrupt vector table is allocated to addresses
FFFFDC16 through FFFFFF16. Figure 1.10.1 shows a fixed vector table.
The special page vector table is comprised of two bytes per table. Each vector table must contain the 16
low-order bits of the subroutine's entry address. Each vector table has special page numbers (18 to 255)
which are used in JSRS and JMPS instructions.
The interrupt vector table is comprised of four bytes per table. Each vector table must contain the
interrupt handler routine's entry address.

FFFEOO16 | 255 E
________ [] special page number
FFFEO0216 254 0
Special page E
vector table]
: 1l
FFFFDB16 18 ___ 0
FFFFDC16 FFFFDC16E yndefined instruction
Interrupt FFFFEO16 £ Overflow -
vector table = E
FFFFE416 £ BRK instruction 3
FFFFFF16 FFFFE816 £ Address match =
\ FFFFEC16 | =
\ FFFFF016 £ \watchdog timer =
\ FFFFF416 | =
\ FFFFF816 £ Nl =
FFFFFC16 | =
\ Reset

Figure 1.10.1 Fixed vector table

19

Chapter 1 Overview 1.10 Vector Table

1.10.2 Variable Vector Table
The variable vector table is an address-variable vector table. Specifically, this vector table is a 256-byte
interrupt vector table that uses the value indicated by the interrupt table register (INTB) as the entry
address (IntBase). Figure 1.10.2 shows a variable vector table.
The variable vector table is comprised of four bytes per table. Each vector table must contain the
interrupt handler routine's entry address.
Each vector table has software interrupt numbers (0 to 63). The INT instruction uses these software
interrupt numbers.
The built-in peripheral 1/O interrupts are assigned to variable vector table by MCU type expansion.
Interrupts from the internal peripheral functions are assigned from software interrupt numbers 0. The
number of interrupts is different depending on MCU type. To accommodate future increases due to the
expansion of product line, Mitsubishi recommend using software interrupt numbers beginning with 63
when you use INT instruction interrupts.
The stack pointer (SP) used for INT instruction interrupts varies with each software interrupt number.
For software interrupt numbers 0 through 31, the stack pointer specifying flag (U flag) is saved when an
interrupt request is accepted and the interrupt sequence is executed after clearing the U flag to 0 and
selecting the interrupt stack pointer (ISP). The U flag that was saved before accepting the interrupt
request is restored upon returning from the interrupt handler routine.
For software interrupt numbers 32 through 63, the stack pointer is not switched over.
For peripheral I/O interrupts, the interrupt stack pointer (ISP) is selected irrespective of software inter-
rupt numbers when accepting an interrupt request as for software interrupt numbers 0 through 31.

b23 b0
INTBIIIIIII,r't?P'§?IIIIII||||

IntBase+4 = = %

IntBase+8 . E 31 [] | Vectors assign
= 4 0O | peripheral 110
— 3 U | interru
— - pts
— =l
— - D
— 3 0O Y
= 34 U
— =
— : D
= =
= 4 O
- 4 [
— - []
= = %Software interrupt

IntBase+252 = 3 Dnumbers
= 463 []

Figure 1.10.2 Variable vector table

20

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Chapter 2

Addressing Modes

Addressing Modes

Guide to This Chapter
General Instruction Addressing
Indirect Instruction Addressing
Special Instruction Addressing
Bit Instruction Addressing

Read and write operations with 24-bit reg-
isters

Chapter 2 Addressing Modes

2.1 Addressing Modes

This section describes addressing mode-representing symbols and operations for each addressing mode.
The M16C has four addressing modes outlined below.

(1) General instruction addressing
This addressing accesses an area from address 00000016 through address FFFFFF16.
The following lists the name of each general instruction addressing:
» Immediate
* Register direct
*» Absolute
» Address register indirect
» Address register relative
* SB relative
* FB relative
» Stack pointer relative

(2) Indirect instruction addressing
This addressing accesses an area from address 00000016 through address FFFFFF16.
The following lists the name of each indirect instruction addressing:
* Absolute indirect
» Two-stage address register indirect
» Address register relative indirect
* SB relative indirect
* FB relative indirect

(3) Special instruction addressing
This addressing accesses an area from address 00000016 through address FFFFFF16 and control reg-
isters.
The following lists the name of each specific instruction addressing:
» Control register direct
» Program counter relative

(4) Bit instruction addressing
This addressing accesses an area from address 00000016 through address FFFFFF16.
The following lists the name of each bit instruction addressing:
* Register direct
* Absolute
» Address register indirect
 Address register relative
* SB relative
* FB relative
* FLG direct

22

Chapter 2 Addressing Modes

2.2 Guide to This Chapter

The following shows how to read this chapter using an actual example.

(1)
/7 N\
Address egiste)elative
The value indicated by displacement
(dsp) plus the content of address Memor
register (AO/Al)—added not including y
the sign bits—cgfistiidtes the effective
dsp:16[A1] dsp
(3) asprzapn] address to be pperated)on. Register }
dsp:24[Al] | However, if the addition resulted in AO/AL [address |~ @
exceeding OFFFFFF16, the bits above N
4) bit 25 are ignored, and the address)
returns to 00000001s6. /
(1) Name

Indicates the name of addressing.

(2) Symbol

Represents the addressing mode.

(3) Explanation
Describes the addressing operation and the effective address range.

(4) Operation diagram
Diagrammatically explains the addressing operation.

23

Chapter 2

Addressing Modes

2.3 General Instruction Addressing
Immediate
b7 b0
#IMM The immediate data indicated by #IMM #IMM8 I_ILI
is the object to be operated on.
#IMM8
#lMMlG b15 b8b7 b0
HMML Lol]
#IMM32
b31 b24b23 b16b15 b8b7 b0
#IMMSZ |IIIIIII|IIIIIII|IIIIIII|IIIIIII|
Register direct .
Register
ROL The specified register is the object to b7 bo
ROH be operated on. ROL / R1L i' """""]Iu—'
R1L bi5 I
R1H ROH / R1H m________l
RO
b15 b8b7 b0
i s I
R2 R2/R3
b23 b16b15 b8b7 b0
R3 A0/ AL o
AO | O A 1111111
Al R2R0O/ b3t b24b23 b16bls bgb7 bo
R2R0 R3R1 IIIIIII|IIIIIIIIIIIIIII|IIIIIII|
R3R1
Absolute
Memory
abs16 The value indicated by abs constitutes the
abs24 effective address to be operated on.
The effective address range is 000000016 to abs16 /
000FFFF16 at abs16, and 000000016 to abs24
OFFFFFF16 at abs24.
Address register indirect
[AO] The value indicated by the content of
[A1] address register (AO/Al) constitutes Reai
the effective address to be operated egister Memory

on.

The effective address range is
000000016 to OFFFFFF16.

p01 A1

24

Chapter 2 Addressing Modes

Address register relative

The value indicated by displacement

value indicated by displacement
(dsp)—added including the sign
bits—constitutes the effective address
to be operated on.

However, if the addition resulted in
exceeding 000000016- OFFFFFF1s,
the bits above bit 25 are ignored, and
the address returns to 000000016 or
OFFFFFFis6.

dsp:8[AQ] Memory
dsp:8IAL (dsp) plus the content of address
Sp:8[Al] register (AO/Al)—added not including dsp
dsp:16[AQ] |the sign bits—constitutes the effective Register |
dsp:16[A1] address to be operated on. A0/ Al _» @
dsp:24[AQ] | However, if the addition resulted in
dsp:24[A1] |exceeding OFFFFFF1s, the bits above
bit 25 are ignored, and the address
returns to 000000016.
SB relative
) The address indicated by the content
dsp:8[SB] of static base register (SB) plus the
dsp:16[SB] |value indicated by displacement Register Memory
(dsp)—added not including the sign SB| address |- address
bits—constitutes the effective address |
to be operated on. dsp)
However, if the addition resulted in |
exceeding OFFFFFF16, the bits above
bit 25 are ignored, and the address
returns to 000000016.
FB relative
] o Memory
O] | e e (28 oy | When h sl gt
dsp:16[FB]

N

dsp — @
Register t

FB| address |- address

!
dsp - @

When the dsp value is positive

25

Chapter 2 Addressing Modes

Stack pointer relative

dsp:8[SP]

The address indicated by the content
of stack pointer (SP) plus the value
indicated by displacement (dsp)
added including the sign bits—consti-
tutes the effective address to be
operated on. The stack pointer (SP)
here is the one indicated by the U flag.

However, if the addition resulted in
exceeding 000000016- OFFFFFF1s, the
bits above bit 25 are ignored, and the
address returns to 000000016 or
OFFFFFFi6.

This addressing can be used in MOV
instruction.

When the dsp value is negative

N

dsp — @®
Register t

SP| address | address
|

dsp»@

L

When the dsp value is positive

Memory

26

Chapter 2 Addressing Modes

2.4 Indirect Instruction Addressing

Absolute indirect

[abs16]
[abs24]

The 4-byte value indicated by absolute
addressing constitutes the effective
address to be operated on.

Memory

absl6 /abs24 —

b3 b0

(o] [[|

address

(The upper 8-bit is ignored.)

address LL
The effective address range is address LH
000000016 to OFFFFFF16. adaress HL
address HH
b31 b0
(ol [[|
address
(The upper 8-bit is ignored.)
Two-stage address register indirect
[[AO]] The 4-byte value indicated by address
register (AO/Al) indirect constitutes the Register Memory
[[A1]] effective address to be operated on.
AO /Al | address — address LL
The effective address range is address LH
000000016 to OFFFFFF16. address HL
address HH

27

Chapter 2 Addressing Modes

Address register relative indirect
[dsp:8[A0]] The 4-byte value indicated by
dso:8IAL address register relative constitutes dsp
[dsp:8[AL]] the effective address to be operated Register }
[dsp:16[A0]] |on. A0/ Al _»@ Memory
dsp:16[Al
[p. ALl The effective address range is — address LL
[dsp:24[AO]] | 000000016 to OFFFFFF1s. adress L1
. aaaress
[dSp.24[A1]] address HH
b3 b0
Lol [[|
address
(The upper 8-bit is ignored.)
SB relative indirect
[dsp:8[SB]] The 4-byte value indicated by SB
) relative constitutes the effective
[dsp:16[SB]] address to be operated on. . Memory
Register
The effective address range is SB —address
000000016 to OFFFFFF1s. i
dSp —_ @

L address LL
address LH
address HL
address HH

b31 bo
Lol [[|
address
(The upper 8-bit is ignored.)

28

Chapter 2 Addressing Modes

FB relative indirect
[dsp:8[FB]] | The 4-byte value indicated by FB M
dsn-16[FB relative constitutes the effective emory
[dsp:16[FB]] address to be operated on.
address LL
The effective address range is address LH
address HH
b31 bo
Lol [[|
address
—>
dsp — @
Register t
FB [address | —address
!
dsp — @
> address LL
address LH
address HL
address HH
b31 bo
Lo [[[]
address
(The upper 8-bit is ignored.)

29

Chapter 2 Addressing Modes

2.5 Special Instruction Addressing

Control register direct

INTB
ISP
SP
SB
FB
FLG
SVP
VCT
SVF
DMDO
DMD1
DCTO
DCT1
DRCO
DRC1
DMAO
DMA1l
DSAO
DSA1l
DRAO
DRA1

The specified control register is the
object to be operated on.

This addressing can be used in LDC
and STC instructions.

If you specify SP, the stack pointer
indicated by the U flag is the object to
be operated on.

INTB

ISP

USP

SB

FB

FLG

SVP

VCT

SVF

DMDO

DMD1

DCTO

DCT1

DRCO

DRC1

DMAO

DMA1

DSAO

DSAl1

DRAO

DRA1

b23 Register bo
|IIIIIIIIIIIIIIIIIIIIIII|
b23 b0
|IIIIIIIIIIIIIIIIIIIIIII|
b23 b0
|IIIIIIIIIIIIIIIIIIIIIII
b23 b0
|IIIIIIIIIIIIIIIIIIIIIII|
b23 b0
|IIIIIIIIIIIIIIIIIIIIIII|
b15 bo
IIIIIIIIIIIIIII|
b23 b0
|IIIIIIIIIIIIIIIIIIIIIII|
b23 b0
|IIIIIIIIIIIIIIIIIIIIIII
b15 b0
IIIIIIIIIIIIIII|
b7 b0
b7 b0

b15 b0
||||||||||||||||

b15 b0

b15 bo

bl5 bO
EEENEEEEEEEEEE
b23 b0
L
b23 b0
Ll
b23 b0
L
b23 b0
|||||||||||||||||||||||||
b23 b0

b23 b0

30

Chapter 2 Addressing Modes

2.5 Special Instruction Addressing

Program counter relative

label

* When the jump length specifier
(.length) is (.S)...

the base address plus the value
indicated by displacement
(dsp)—added not including the sign
bits—constitutes the effective ad-
dress.

This addressing can be used in JMP
instruction.

* When the jump length specifier
(.length) is (.B) or (\W)...

the base address plus the value
indicated by displacement
(dsp)—added including the sign bits
—constitutes the effective address.

However, if the addition resulted in
exceeding 000000016- OFFFFFF1s,
the bits above bit 25 are ignored, and
the address returns to 000000016 or
OFFFFFFis6.

This addressing can be used in IMP
and JSR instructions.

Memory
Base address
!
dsp —- @

|9 label

+0=dsp=+7
*1 The base address is the (start address of instruction + 2).

When the dsp value is negative

|% label

dsp - @
t

Base address

|

dsp - @

L label

When the dsp value is positive

When the specifier is (.B), -128 < dsp < +127
When the specifier is (\W), -32768 < dsp < +32767

*2 The base address varies with each instruction.

31

Chapter 2 Addressmg Modes 2.6 Bit Instruction Addressing

2.6 Bit Instruction Addressing

This addressing can be used in the following instructions:
BCLR, BSET, BNOT, BTST, BNTST, BAND, BNAND, BOR, BNOR, BXOR, BNXOR, BMCnd, BTSTS,

BTSTC

Register direct
bit,ROL The specified register bit is the object
bit. ROH to be operated on. bit , ROL
bit,R1L For the bit position (bit) you can
i specify 0 to 7.
b|t,RlH b7 ROL bo
bit,AO For the address register (A0,Al), you II
bit,Al can specify 8 low-order bits. n
Bit position
Absolute
; . The bit that is as much away from bit
bit,base:19 T
) 0 at the address indicated by base as b7 bo
bit,base:27 |the number of bits indicated by bit is base
the object to be operated on. e
The address range that can be AN A
specified by bit,base:19 and N
bit,base:27 respectively are >
000000016 through 000FFFF16 and L | |<. .
000000016 through OFFFFFF1s6. t
Bit position
Address register indirect
bit,[A0] The bit that is as much away from bit
bit [AL 0 at address indicated by address
it,[AL] register (AO/A1) as the number of bits Register b7 b0
is the object to be operated on. AO/A1 - .II
Bits at addresses 000000016 through t
OFFFFFF16 can be the object to be Bit position
operated on.
For the bit position (bit) you can
specify 0 to 7.

32

Chapter 2 Addressing Modes

2.6 Bit Instruction Addressing

Address register relative

bit,base:11[A0]
bit,base:11[A1]
bit,base:19[A0]
bit,base:19[A1]
bit,base:27[A0]
bit,base:27[A1]

The bit that is as much away
from bit O at the address indi-
cated by base as the number of
bits indicated by address regis-
ter (AO/Al) is the object to be
operated on.

However, if the address of the
bit to be operated on exceeds
OFFFFFF16, the bits above bit
25 are ignored and the address
returns to 000000016.

The address range that can be
specified by bit,base:11,
bit,base:19 and bit,base:27
respectively are 256 bytes,
65,536 bytes and 16,777,216
bytes from address register (A0/
Al) value.

Register

AOIAL — address
!
base — @

Memory
b7 b0

h)
(€
)

(€

L,

<

f

Bit position

SB relative

bit,base:11[SB]
bit,base:19[SB]

The bit that is as much away
from bit O at the address indi-
cated by static base register
(SB) plus the value indicated by
base (added not including the
sign bits) as the number of bits
indicated by bit is the object to
be operated on.

However, if the address of the
bit to be operated on exceeds
OFFFFFF1s, the bits above bit
25 are ignored and the address
returns to 000000016.

The address ranges that can be
specified by bit,base: 11, and
bit,base:19 respectively are 256
bytes, and 65,536 bytes from
the static base register (SB)
value.

Register

SB — address
|

base

Memory
b7 b0

)
ASY
P)
(€

- ®

L

<

f

Bit position

33

Chapter 2 Addressing Modes

2.6 Bit Instruction Addressing

FB relative

bit,base:11[FB]
bit,base:19[FB]

The bit that is as much away
from bit O at the address indi-
cated by frame base register
(FB) plus the value indicated by
base (added including the sign
bit) as the number of bits indi-
cated by bit is the object to be
operated on.

However, if the address of the
bit to be operated on exceeds
000000016-0FFFFFF1s, the bits
above bit 25 are ignored and the
address returns to 000000016 or
OFFFFFF1e.

The address range that can be
specified by bit,base:11 and
bit,base:19 are 128 bytes toward
lower addresses or 127 bytes
toward higher addresses from
the frame base register (FB)
value, and 32,768 bytes toward
lower addresses or 32,767 bytes
toward higher addresses, re-
spectively.

If the base value is negative

Register

t
= — address

If the base value is positive

Memory
11 1 |
t
(Bit position)
base — @ L A
l [T T T |
base — @ =~ ~

L,

f

Bit position

FLG direct

O ON W ®mO — C

The specified flag is the object to
be operated on.

This addressing can be used in
FCLR and FSET instructions.

b7

Register bo

FLG|U|

IIOIBISIZIchl

34

Chapter 2 Addressing Modes 2.7 Read and write operations with 24-bit registers

2.7 Read and write operations with 24-bit registers

This section describes operation when 24 bits register(A0, Al) is src or dest for each size specifier (.size/.B

W .L).

When (.B) is specified for the size specifier (.size)

* Read

The 8 low-order bits are read. The flags change
states depending on the result of 8-bit operation.

* Write
[Transfer instruction]

srcis zero-expanded to 16 bits and saved to the
low-order 16-bit. In this case, the 8 high-order bits
become 0. The flags change states depending on
the result of 16-bit transfer data.

[Operating instructions]
srcis zero-expanded to perform operation in 16-bit.

In this case, the 8 high-order bits become 0. The
flags change states depending on the result of 16-
bit operation.

b23 bl6bl5 b8 b7 b0

AO/A1 | I W

| Read
b7 b0

Zero-expanded
b15 b8 b7 Jol0)

i ! Write

b23 b16b15 b8 b7 b0
AO/AL 0016 0016

Zero-expanded
b15 b8 b7 b0

@ Operation

b23 b16bl5 b8 b7 b0
AO/Al1 (ignored

0016

| | Write

b23 bl6b15 b8 b7 b0
AO/AL 0016

35

Chapter 2 Addressing Modes 97

Read and write operations with 24-bit registers
|

When (\W) is specified for the size specifier (.size)

32 bits are read out after being zero-extended.
The flag varies depending on the result of a 32-bit
operation.

* Write
The low-order 24-bit is written, with the 8 high-
order bit ignored. The flag varies depending on
the result of a 32-bit operation (not the value of the
24-bit register).
Example: MOV.L#80000000h,A0
Flag status after execution
Sflag =1 (The MSB is bit 31.)

Z flag = 0 (Set to 1 when all of 32
bits are 0s.)
The value of AO after executing the above instruc-
tion becomes 00000016. However, since operation
is performed on 32-bit data, the S flag is setto 1
and the Z flag is cleared to 0.

* Read
) p23 b16b15 b8 b7 b0
The low order 16-bit are read. The flags change AOQ/AL
states depending on the result of 16-bit operation.
! Read
« Write 5 b8b7 b0
titiionts.
Write to the low order 16-bit. In this case, the 8
high-order bits become 0. The flags change states
depending on the result of 16-bit transfer data.
15 b8hT__bo
| Write
b23 b16b15 b8h7 b
A0/AL
When (.L) is specified for the size specifier (.size)
« Read Zero-expanded
b31 b24b23 b16b15 b8 b7 b0

AO/A1

| 0016 Wm

} Read

b31 b24b23 Db16b15 b8 b7 b0

b3l b24b23 bl6h15 b8 b7 b0

L. yicye
| Write

h23 bl6bl5 b8 b7 b0

AOIAL 7 iiizihviiziis

36

Chapter 3

Functions

3.1 Guide to This Chapter
3.2 Functions
3.3 Index Instructions

Chapter 3 Functions

3.1 Guide to This Chapter

3.1 Guide to This Chapter

This chapter describes the functionality of each instruction by showing syntax, operation, function, select-
able src/dest, flag changes, and description examples.
The following shows how to read this chapter by using an actual page as an example.

Chapter 3 Functions

3.2 Functions

Logically OR
o OR = OR
@) T X] OR [Instr Code/Number of Cycles]
) ize (:format) src,dest Page=260
| ' G,S (Can be specified)
B,W

@1+ I ation]

dest < src V dest [dest] < src V [dest]

dest « [src] \v dest [dest] [src] \y [dest]
(5)T— [tion]

\This instruction logically ORs dest and src together and stores the result in dest.

* When (\W) is specified for the size specifier (.size) and dest is the address register (A0, Al), the 8
high-order bits become 0. Also, when src is the address register, the 16 low-order bits of the address
register are the data to be operated on.

6) +— [@table src/dest] (See the next page for src/dest classified by format.)
src dest

ROL/RO ROH/R2 ROL/RO ROH/R2

R1L/R1 R1H/R3 R1L/R1 R1H/R3

AO/AO ALAL [AC] [A1] AO/AO AL/AL [AO] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] | dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[AQ0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]| dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[A1] abs24 absl6 | gspip4fA0] dsp:24[Al] abs24 abslé

#IMMB8/#IMM16

R3R1, R1H/R3/-, SP/SP/SP, and #IMM.

@4 hange]

Fag |lu|1l |o|B|S|zZz]|D]|C
Changd — | —| —| —| O| O| —| —

Conditions

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/

z

S : The flag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.

The flag is set when the transfer resulted in O; otherwise cleared.

OR.B:G
OR.B:G
OR.B:S
OR.W:G

8) 1 [ription Example]
ORB Ram:8[SB],ROL

AO,ROL
ROL,A0
#3,ROL
[R1L[[AC]]

; AO's 8 low-order bits and ROL are ORed.
; ROL is zero-expanded and ORed with AQ.

115

38

Chapter 3 Functions 3.1 Guide to This Chapter
. __|

(1) Mnemonic
Indicates the mnemonic explained in this page.

(2) Instruction code/number of cycles
Indicates the page in which instruction code/number of cycles is listed.
Refer to this page for instruction code and number of cycles.

(3) Syntax
Indicates the syntax of the instruction using symbols. If (:format) is omitted, the assembler chooses the
optimum specifier.

OR.size (: forrr|1at) src, dest

G,S - (f
B,wW - (e)

Vo | |
(@) (b) () ()

(&) Mnemonic OR
Describes the mnemonic.

(b) Size specifier size
Describes the data size in which data is handled. The following lists the data sizes that can be speci
fied:
.B Byte (8 bits)
W Word (16 bits)
L Long word (32 hits)
Some instructions do not have a size specifier.

(c) Instruction format specifier (: format)

Describes the instruction format. If (.format) is omitted, the assembler chooses the optimum speci-
fier. If (.format) is entered, its content is given priority. The following lists the instruction formats that
can be specified:

:G Generic format

:Q Quick format

:S Short format

:Z Zero format

Some instructions do not have an instruction format specifier.

(d) Operand src, dest
Describes the operand.

(e) Indicates the data size you can specify in (b).

() Indicates the instruction format you can specify in (c).

39

Chapter 3 Functions 3.1 Guide to This Chapter

Chapter 3 Functions
3.2 Functions

a4— @ Logically OR O R

(2) [x] OR [Instr Code/Number of Cycles]

) size (:format) src,dest Page=260
' G, S (Can be specified)
W, B

41— ation]

dest < src V dest [dest] <« src \V/ [dest]

dest [src]\/ dest [dest] « [src]\/ [dest]
(B)1T— [tion]

«This instruction logically ORs dest and src together and stores the result in dest.

« When (\W) is specified for the size specifier (.size) and dest is the address register (A0, Al), the 8
high-order bits become 0. Also, when src is the address register, the 16 low-order bits of the address
register are the data to be operated on.

6)+— [@table src/dest | (See the next page for src/dest classified by format.)
src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO0/AO Al/AL [AQ] [A1] AO/AO A1/AL [AO] [A1]

dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] | dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]| dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 absl6 | gspio4[A0] dspi24[Al] abs24 absl6
#IMM8/#IMM16

*1 Indirect addressing [srcland[dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/
R1/R3R1, R1H/R3/-, SP/SP/SP, and #IMM.

N —+— I hange]

Flag | U | | O|B|S|zZz|D]|]C

Changg — | —| —| —| O] O] —| —

Conditions
S : The flag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.
Z : The flag is set when the transfer resulted in 0; otherwise cleared.

@)1 1 gription Example]

ORB Ram:8[SB],ROL
OR.B:G AO,ROL : AO' s 8 low-order bits and ROL are ORed.
OR.B:G ROL,A0 ; ROL is zero-expanded and ORed with AO.
OR.B:S #3,ROL

OR.W:G [R1],[[AC]]

115

40

Chapter 3 Functions 3.1 Guide to This Chapter

(4) Operation
Explains the operation of the instruction using symbols.

(5) Function
Explains the function of the instruction and precautions to be taken when using the instruction.

(6) Selectable src / dest (label)
If the instruction has an operand, this indicates the format you can choose for the operand.

@)
[src) dest)

ROL/RO/R2R “~ROH/R2 ROL/RO “-ROH/R2 - (b)
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO0/A0 Al/Al1 [AO AO0/AO 1/A1 [
dsp:8[AQ0] dsp:8[Al] dsp:8[SB] dsp:8[FB] : dsp:8[Al] dsp:8[SB] dsp:8[FB] | (c)
dsp:16[AQ] dsp:16[Al] dsp:16[SB] dsp:16[FB :16[AQ] dsp: sp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 absl6 dsp:24[A :24[A1] abs24
#IMM8/#IMM16 Hﬁp\ - ()

(a) Items that can be selected as src (source). (e)

(b) Items that can be selected as dest (destination).
(c) Addressing that cannot be selected.
(d) Addressing that can be selected.

(e) Shown on the left side of the slash (ROL) is the addressing when data is handled in bytes (8 bits).
Shown on the middle side of the slash (RO) is the addressing when data is handled in words (16
bits).

Shown on the right side of the slash (R2R0) is the addressing when data is handled in words (32
bits).

(7) Flag change
Indicates a flag change that occurs after the instruction is executed. The symbols in the table mean the
following:

"—" The flag does not change.

"(O" The flag changes depending on condition.

(8) Description example
Shows a description example for the instruction.

41

Chapter 3 Functions 3.1 Guide to This Chapter

The following explains the syntax of each jump instruction JMP, JPMI, JSR, and JSRI by using an actual
example.

Chapter 3 Functions 3.2 Functions

1) —+— @ Unconditional jump JMP
(2) JuMP ction Code/Number of Cycles]
[tax |
C) length) label Page=195
' S, B, W, A (Can be specified)

(3) Syntax
Indicates the instruction syntax using a symbol.

JMP (.length) label
|

S,B,W,A — (d)
| | |

@ ® ©

(a) Mnemonic JMP
Describes the mnemonic.

(b) Jump distance specifier .length
Describes the distance of jump. If (.length) is omitted in JMP or JSR instruction, the assembler
chooses the optimum specifier. If (.length) is entered, its content is given priority.
The following lists the jump distances that can be specified:
.S 3-bit PC forward relative (+2 to +9)
.B 8-bit PC relative
W 16-bit PC relative
A 24-bit absolute

(c) Operand label
Describes the operand.

(d) Shows the jump distance that can be specified in (b).

42

Chapter 3 Functions 3.2 Functions

Absolute value
ABS ABSolute ABS
[Syntax] [Instruction Code/Number of Cycles]

ABS .size dest Page=174
' B, W

[Operation]
dest < | destl|
[dest] < | [dest]l

[Function]
 This instruction takes on an absolute value of dest and stores it in dest.

» When (\W) is specified for the size specifier (.size) and dest is the address register (A0, Al), the 8
high-oreder bits become 0.

[Selectable dest]

dest*!?
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except ROL/R0O/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C
Changel — | — | O | —]O|O|—|O
Conditions
O : The flag is set (= 1) when dest before the operation is -128 (.B) or -32768 (.W); otherwise cleared (=
0).

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
The flag is set when the operation resulted in 0; otherwise cleared.
C : The flag is indeterminate.

N

[Description Example]
ABS.B ROL
ABS.W [AQ]
ABS.W [[AQ]]

43

Chapter 3 Functions 3.2 Functions

Add with carry
ADdition with Carry

ADC

[Instruction Code/Number of Cycles]
Page=174

ADC

[Syntax]
ADC.size src,dest
' B,W

[Operation]

dest <« src + dest + C

[Function]

 This instruction adds dest, src and C flag together and stores the result in dest.

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0. Also, when src
is the address register, the 8 low-order bits of the address register are used as data to be operated on.

» When (\W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest]

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
RIL/R1 R1H/R3 R1L/R1 R1H/R3
AO/AOAG* ALIALIAT* [AQ] [Al] AO/AD/AG* ALIAL#AT [AQ] [A1]
dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] | gsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]| gsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB8/#IMM16

*1 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest
simultaneously.

[Flag Change]

Fag |lU| 1 |O|B|S|Z|D|C

Changel — |— | O | — 1 OO | =10

Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (\W) or - 32768 (.W) or

+127 (.B) or -128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in exceeding +65535 (\W) or +255 (.B);
otherwise cleared.

N

[Description Example]

ADC.B #2,ROL

ADC.W AO,RO

ADC.B AO,ROL ; AO's 8 low-order bits and ROL are added.
ADC.B ROL,AOQ ; ROL is zero-expanded and added with AQ.
ADC.W R1,[A1]

44

Chapter 3 Functions 3.2 Functions

Add carry flag
ADCF ADdition Carry Flag ADCF
[Syntax] [Instruction Code/Number of Cycles]

ADCF.size dest Page=176
' B,W

[Operation]
dest <« dest + C
[dest] <« [dest] + C

[Function]
 This instruction adds dest and C flag together and stores the result in dest.

* When (.W) is specified for the size specifier (.size) and dest is the address register (A0, Al), the 8
high-order bits become 0.

[Selectable dest]

dest*?
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO Al [AO] [Al]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]

Fag |lU| 1 |O|B|S|z|D|C
Changel — [— | O| =10 |10 | -0
Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.\W) or -32768 (.W) or
+127 (.B) or -128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in exceeding +65535 (.W) or +255 (.B);
otherwise cleared.

[Description Example]
ADCF.B ROL
ADCF.W Ram:16[AQ]

45

Chapter 3 Functions 3.2 Functions

Add without carry
ADDition

ADD

[Instruction Code/Number of Cycles]
Page=176

ADD

[Syntax]

ADD.size (:format) src,dest
[

G, Q,S (Can be specified)

B,W,L
[Operation]
dest < dest + src [dest] <« |[dest] + src
dest « dest + [src] [dest] <« [dest] + [src]

[Function]
 This instruction adds dest and src together and stores the result in dest.

» When (.B) is specified for the size specifier (.size) and dest is the address register (AO, Al), srcis zero-extended to
perform operation in 16 bits. In this case, the 8 high-oreder bits become 0. Also, when src is the address register, the
8 low-order bits of the address register are used as data to be operated on.

* When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order bits become 0.
Also, when srcis the address register, the 16 low-order bits of the address register are the data to be operated on.

« When (.L) is specified for the size specifier (.size) and dest is the address register, dest is zero-extended to perform
operation in 32 bits. The 24 low-order bits of the operation result are stored in dest. Also, when src is the address
register, srcis zero-extended to perform operation in 32bit. The flags also change states depending on the result of 32-
bit operation.

» When (.L) is specified for the size specifier (.size) and destis SP, destis zero-extended to perform operation in 32 bits,

and src is sign-extended to perform operation in 32 bits. The 24 low-order bits of the operation result are stored in
dest. The flags also change states depending on the result of 32-bit operation.

[Selectable src/dest |* * (See the next page for src/dest classified by format.)

src dest
ROL/RO/R2R0 ROH/R2/- ROL/RO/R2R0 ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO/A0/A0*2 A1/A1/AL1*? [AOQ] [A1] AO/A0/A0*2 A1/A1/A1*? [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM Sp*3

*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest simultaneously.

*3 Operation is performed on the stack pointer indicated by the U flag.

[Flag Change]

Fag |lU| 1 |O|B|S|Zz|D]|C
Changel — [— |O|—=|O|O|—-|0O
Conditions
O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or
-2147483648(.L), +32767 (.\W) or -32768 (.W), or +127 (.B) or -128 (.B); otherwise cleared.
S The flag is set when the operation resulted in MSB = 1; otherwise cleared.
z The flag is set when the operation resulted in 0; otherwise cleared.
C The flag is set when an unsigned operation resulted in exceeding +4294967295(.L) or +65535 (.W) or

+255 (.B); otherwise cleared.
[Description Example]
ADD.B [[AQ]],abs16
|
46

Chapter 3 Functions 3.2 Functions

[src/dest Classified by Format]

G format* ?

src dest
ROL/RO/R2R0 ROH/R2/- ROL/RO/R2R0 ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO/AO/A0*2 A1/A1/A1* [AOQ] [A1] AO/ADIAD*? AL/ALIAL* [AQ] [A1]
dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] |dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB8/#IMM16/#IMM32 Sp*

*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,

R1H/R3/-, SP/ISP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest

simultaneously.

*3 Operation is performed on the stack pointer indicated by the U flag. You can choose only #IMM16 for
src. You can choose only (.L) for the size specifier (.size).
In this case, you cannot use the indirect addressing mode.

Q format* 4
src dest

ROL/RO/R2R0O ROH/R2/-
R1L/R1/R3R1 R1H/R3/-
AO/AO/A0 A1/A1/A1 [A0] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMM3*S/#IMMA4*" SP*s

*4 |ndirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*5 Operation is performed on the stack pointer indicated by the U flag. You can choose only #IMM3 for src.

*6 When destis the SP, #IMM3 can be selected. The range of values that can be taken on is +1 < #iIMM3 < +8.

*7 When destis not the SP, #IMM4 can be selected. The range of values that can be taken on is -8 < #iMM4 <

+7.
S format "8
src dest
ROL/RO dsp:8[SB] dsp:8[FB] abs16
H#IMMS8/H#IMM16*°
#1*10 #2*10 AO*lO Al*lO
#IMM8*10 Sp*io

*8 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*9 You can choose the (.B) and (.W) for the size specifier (.size).

*10 You can choose only (.L) for the size specifier (.size). In this case, you cannot use the indirect address-
ing mode.

47

Chapter 3 Functions 3.2 Functions

Add extend sign without carry
AD DX ADDition eXtend sign AD DX
[Syntax] [Instruction Code/Number of Cycles]
ADDX src,dest Page=183

[Operation]

dest <« dest + EXTS(src) [dest] <« [dest] + EXTS(src)
dest <« dest + EXTS([src]) [dest] <« [dest] + EXTS([src])
[Function]

 Sign-extend the 8-bit src to 32 bits which are added to the 32-bit dest, and the result is stored in dest.

» When dest is the address register(A0, Al) , destis zero-extended to perform operation in 32 bits. The
24 low-order bits of the operation result are stored in dest. The flags also change states depending on
the result of 32-bit operation. Also, when src is the address register, src is zero-extended to perform
operation in 8 low-order bits.

[Selectable src/dest]* 1

src dest
ROL ROH R2R0 -
R1L R1H R3R1 -
A0 Al [AQ] [A1] AO Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] [dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8

*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/
R1/R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]

Fag |lU| |1 |O|B|S|Z|D|C
Changel — [— | O |—=|O|O|—-10
Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or
-2147483648(.L); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in exceeding +4294967295(.L); otherwise
cleared.

N

[Description Example]

ADDX ROL,A0
ADDX RAM:8[SB],R2R0
ADDX [AO],AL

|
48

Chapter 3 Functions 3.2 Functions

Add & conditional jump
AD\J NZ ADdition then Jump on Not Zero AD\] NZ
[Syntax] [Instruction Code/Number of Cycles]

ADJNZ.size src,dest,label Page=185
' B,W

[Operation]
dest <« dest + src
if dest+ 0then jump label

[Function]
 This instruction adds dest and src together and stores the result in dest.

* When the addition resulted in any value other than 0, control jumps to label. When the addition
resulted in O, the next instruction is executed.

» The op-code of this instruction is the same as that of SBINZ.

* When (.W) is specified for the size specifier (.size) and dest is the address register (A0, Al), the 8
high-oreder bits become 0.

[Selectable src/dest/label]

src dest label
ROL/RO ROH/R2
R1L/R1 R1H/R3
#IMM42 AO Al [AQ] [A1] PC2-126 =<label=PC"2+129

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*1 The range of values that can be taken on is - 8 < #IMM4 < +7.
*2 PC indicates the start address of the instruction.

[Flag Change]
Flag |lU| I |O|B|S|Z|D|C

Changel| — | — | —| —| = | —=| —| —

[Description Example]
ADINZW #-1,R0,label

49

Chapter 3 Functions 3.2 Functions

AN D Logi:\aliﬁl3 AND AN D

[Syntax] [Instruction Code/Number of Cycles]
AND.size (:format) src,dest Page=186
' G, S (Can be specified)
B,W
[Operation]
dest <« src A dest [dest] <« src A [dest]
dest « [src] A dest [dest] « [src] A [dest]
[Function]

* This instruction logically ANDs dest and src together and stores the result in dest.

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0. Also, when src
is the address register, the 8 low-order bits of the address register are used as data to be operated on.

» When (\W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest] * ? (See the next page for src/dest classified by format.)
src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/AOAB*? AL/ALMAR* [AQ] [Al] AO/ADHAG*? ALIALATY? [AQ] [A1]

dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP] and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose AO and/or Al for src and dest
simultaneously.

[Flag Change]

Fag |lU| Il |O|B|S|Z|D|C
Changel — |[— | — | — | O |O| —| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]
AND.B Ram:8[SB],ROL

AND.B:G ~ AO,ROL : AO's 8 low-order bits and ROL are ANDed.
AND.B:G ROL,A0 _ _
AND.B:S #3 ROL ; ROL is zero-expanded and ANDed with AO.

AND.W:G [AO],[[AL]

50

Chapter 3 Functions 3.2 Functions

[src/dest Classified by Format]

G format* ?

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/AD/AS* ATIAL/AT*? [AQ] [A1] AO/AD/AS*? A1/AL#AT*? [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SPISP/SP, dsp:8[SP], and #IMM.
*2 When you specify (.B) for the size specifier (.size), you cannot choose AO and/or Al for src and dest

simultaneously.

S format *

src dest
ROL/RO dsp:8[SB] dsp:8[FB] absl6

#IMMB8/#IMM16

*3 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

51

Chapter 3 Functions 3.2 Functions

Logically AND bits
BAN D Bit AND carry flag BAN D
[Syntax] [Instruction Code/Number of Cycles]
BAND src Page=188

[Operation]
C <« sc AN C

[Function]
 This instruction logically ANDs the C flag and src together and stores the result in the C flag.

» When srcis the address register (A0, Al), you can specify the 8 low-order bits for the address register.

[Selectable src]

SIc
bit, ROL bit, ROH bit,R1L bit,R1H
bit,AO bit,Al bit,[AO] bit,[A1]

bit,base:11[A0] bit,base:11[A1l] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]
bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

[Flag Change]

Fag |lU| I |O|B|S|Z|D]|C
Change| — |— | — | —|—|—|—1|O

Conditions
C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]

BAND flag

BAND 4,Ram

BAND 16,Ram:19[SB]
BAND 5,[A0]

52

Chapter 3 Functions 3.2 Functions

Clear bit
BCLR Bit CLeaR BCLR
[Syntax] [Instruction Code/Number of Cycles]
BCLR dest Page=188

[Operation]
dest <« O

[Function]
 This instruction stores 0 in dest.

» When dest is the address register (A0, Al), you can specify the 8 low-order bits for the address
register.

[Selectable dest]

dest
bit,ROL bit, ROH bit,R1L bit, R1H
bit,A0 bit,Al1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[Al] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]
bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

[Flag Change]
Feag |U| 1 |]O|B|S|Z|D|C

Change| — | — | — | — | —|— | —| —

[Description Example]

BCLR flag

BCLR 4,Ram

BCLR 16,Ram:19[SB]
BCLR 5,[AQ]

53

Chapter 3 Functions 3.2 Functions

BITINDEX 511 INDEX BITINDEX

[Syntax] [Instruction Code/Number of Cycles]
BITINDEX.silze src Page= 189

[Operation]

[Function]
 This instruction modifies addressing of the next bit instruction.
* No interrupt request is accepted immediately after this instruction.
» The operand specified in src constitutes the src or dest index value for the next bit instruction.

» For details, refer to Section 3.3, "Index Instructions."
[Selectable src]

Src
ROL/RO ROH/R2
RIL/R1 RIH/R3
AO/AO AL/AL [AO] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs:24 abs:16

[Flag Change]
Fag |lU| I |O|B|S|Z|D]|C

Change| — | — | — | —|— | —|—| —

[Description Example]
BITINDEX RO
BITINDEX [AQ]

54

Chapter 3 Functions

3.2 Functions

BMCnd

[Syntax]
BMCnd dest
[Operation]
if truethen dest < 1
else dest <« O
[Function]

Conditional bit transfer
Bit Move Condition

BMCnd

[Instruction Code/Number of Cycles]

Page=190

 This instruction transfers the true or false value of the condition indicated by Cndto dest. When the
condition is true, 1 is transferred; when false, 0 is transferred.
* When dest is the address register (A0, Al), you can specify the 8 low-order bits for the address

register.

» There are following kinds of Cnd.

Cnd Condition Expression|| Cnd Condition Expression
GEU/C| C=1 Equal to or greater than = LTUINC|C=0 Smaller than >
Cflagis 1. Cflagis 0.
EQ/Z |Z=1 Equal to = NEINZ |Z=0 Not equal £
Zflagis 1. Zflagis 0.
GTU |CAZ=1 Greater than < LEU |CAZ=0 Equal to or smaller than =
PZ [S=0 Positive or zero 0= N S=1 Negative 0>
GE SV0=0 Equal to or greater than = LE (SVO)V Z=1| Equal to or smaller than =
(signed value) (signed value)
GT (SY0)V Z=0 | Greater than (signed value < LT SV0=1 Smaller than (signed value) >
0 0=1 Oflagis 1. NO 0=0 Oflagis 0.
[Selectable dest]
dest
bit,ROL bit,ROH bit,R1L bit,R1H
bit,AO bit,A1 bit,[A0] bit,[A1]

bit,base:11[AQ]
bit,base:19[A0]

bit,base:11[A1]
bit,base:19[A1]

bit,base:11[SB] bit,base:11[FB]
bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1l] bit,base:27 bit,base:19
C
[Flag Change]
Fag ([lU| I |O|B|S|Z|D]|C
Change| — | — | — | — | — | —|—|*1 *1 The flag changes when you specified the C flag for dest.

[Description Example]

BMN

BMZ C

3,Ram:11[SB]

55

Chapter 3 Functions 3.2 Functions

Logically AND inverted bits
BNAND Bit Not AND carry flag BNAND
[Syntax] [Instruction Code/Number of Cycles]
BNAND src Page=192

[Operation |
C <« srcV C

[Function]
 This instruction logically ANDs the C flag and inverted src together and stores the result in the C flag.

» When srcis the address register (AO, Al), you can specify the 8 low-order bits for address register.

[Selectable src]

SIc
bit,ROL bit, ROH bit, R1L bit,R1H
bit,AO bit, AL bit,[AO] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]
bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

[Flag Change]

Fag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | —|—|—|—| O
Condition

C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]
BNAND flag
BNAND 4,Ram
BNAND 16,Ram:19[SB]
BNAND 5,[A0]

56

Chapter 3 Functions
3.2 Functions

Logically OR inverted bits
BNOR Bit Not OR carry flag BNOR
[Syntax] [Instruction Code/Number of Cycles]
BNOR src Page=192

[Operation]
C < src V C

[Function]
* This instruction logically ORs the C flag and inverted src together and stores the result in the C flag.

* When src is the address register (A0, Al), you can specify the 8 low-order bits for address register.

[Selectable src]

Src
bit,ROL bit,ROH bit,R1L bit,R1H
bit,AO bit,Al bit,[A] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]
bit,base:27[A0] bit,base:27[Al] bit,base:27 bit,base:19

[Flag Change]

Fag |lU| I |O|B|S|Z|D]|C
Change| — | — | — | —|—|—|—10O
Condition

C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]

BNOR flag

BNOR 4, Ram

BNOR 16,Ram:19[SB]
BNOR 5,[A0]

57

Chapter 3 Functions
3.2 Functions

Invert bit
BNOT Bit NOT BNOT
[Syntax] [Instruction Code/Number of Cycles]
BNOT dest Page=193

[Operation]
dest <« dest

[Function]
 This instruction inverts dest and stores the result in dest.

» When dest is the address register (A0, Al), you can specify the 8 low-order bits for the address regis-
ter.

[Selectable dest]

dest
bit,ROL bit,ROH bit,R1L bit,R1H
bit,A0 bit,Al bit,[AQ] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]
bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

[Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | —|—|— | —

[Description Example]

BNOT flag

BNOT 4,Ram

BNOT 16,Ram:19[SB]
BNOT 5,[A0]

58

Chapter 3 Functions
3.2 Functions

Test inverted bit
BNTST Bit Not TeST BNTST
[Syntax] [Instruction Code/Number of Cycles]
BNTST Src Page=193

[Operation]
Z <« sIc
C <« src

[Function]
* This instruction transfers inverted src to the Z flag and inverted src to the C flag.

* When srcis the address register (A0, Al), you can specify the 8 low-order bits for the address register.

[Selectable src]

Src
bit,ROL bit,ROH bit,R1L bit,R1H
bit,AO bit,Al bit,[A] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]
bit,base:27[A0] bit,base:27[Al] bit,base:27 bit,base:19

[Flag Change]

Fag (lU| | |O|B|S|Z|D|C
Changel — | — | — | —| =] O|—|O
Conditions

Z : The flag is set when srcis 0; otherwise cleared.
C : The flag is set when srcis 0; otherwise cleared.

[Description Example]
BNTST flag
BNTST 4,Ram
BNTST 16,Ram:19[SB]
BNTST 5,[A0]

59

Chapter 3 Functions
3.2 Functions

Exclusive OR inverted bits
BNXOR Bit Not eXclusive OR carry flag BNXOR
[Syntax] [Instruction Code/Number of Cycles]
BNXOR src Page=194

[Operation]
C < sic V C

[Function]
* This instruction exclusive ORs the C flag and inverted src and stores the result in the C flag.

* When srcis the address register (A0, Al), you can specify the 8 low-order bits for the address register.

[Selectable src]

Src
bit, ROL bit, ROH bit, R1L bit,R1H
bit,AO bit,Al bit,[AQ] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]
bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

[Flag Change]

Fag |U| I |O|B|S|Z|D|C
Change| — | — | — | —|—|—|—|O
Conditions

C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]
BNXOR flag
BNXOR 4,Ram
BNXOR 16,Ram:19[SB]
BNXOR 5,[A0]

60

Chapter 3 Functions
3.2 Functions

Logically OR bits
BOR Bit OR carry flag BOR
[Syntax] [Instruction Code/Number of Cycles]
BOR src Page=194

[Operation]
C < src VvV C

[Function]

* This instruction logically ORs the C flag and src together and stores the result in the C flag.

» When srcis the address register (A0, Al), you can specify the 8 low-order bits for the address register.

[Selectable src]

Src
bit,ROL bit,ROH bit,R1L bit,R1H
bit,AO bit,Al bit,[A] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]
bit,base:27[A0] bit,base:27[Al] bit,base:27 bit,base:19

[Flag Change]

Fag ([U| I |O|B|S|Z|D|C
Change| — | — | — | — | —|—|—|O
Conditions

C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]

BOR flag

BOR 4,Ram

BOR 16,Ram:19[SB]
BOR 5,[A0]

61

Chapter 3 Functions _
3.2 Functions

Debug interrupt
BRK BReak BRK

[Syntax] [Instruction Code/Number of Cycles]
BRK Page=195

[Operation]

* When anything other than FF16 exists in ad- * When FF16 exists in all addresses from
dresses from FFFFE416 to FFFFE716 FFFFE416 to FFFFE716
SP < SP - 2 SP < SP - 2
M(SP) <« FLG M(SP) <« FLG
SP < SP - 2 SP < SP - 2
M(SP*t <~ (PC + 1)H M(SP)*? < (PC + 1)H
SP < SP - 2 SP < SP - 2
M(SP) <« (PC + 1)mL M(SP) <« (PC + 1I)mL
PC < M(FFFFE41s6) PC < M(IntBase)
*1 The 8 high-order bits become indeterminate. *2 The 8 high-order bits become indeterminate.
[Function]

* This instruction generates a BRK interrupt.

» The BRK interrupt is a nonmaskable interrupt.

[Flag Change] *

Fllg |lU| 1 |O|B[S|Z|D|C | *1 Theflags are saved to the stack area before the BRK in-
Changel O | O | —|—|—|—10O| — struction is executed. After the interrupt, the flags
Conditions change state as shown on the left.

U : Theflag is cleared.
| : Theflagis cleared.
D : Theflag is cleared.

[Description Example]
BRK

62

Chapter 3 Functions
3.2 Functions

BRK?2 et BRK2

[Syntax] [Instruction Code/Number of Cycles]

BRK Page=195
[Operation]

SP ~ SP - 2

M(SP) < FLG

SP ~ SP - 2

MESP)*l « (PC + 1)H

SP «~ SP - 2

M(SP) «~ (PC + 1I)mL

PC <~ M(002016)

*1 The 8 high-order bits become indeterminate.

[Function]
* This instruction is provided for exclusive use in debuggers. Do not use it in user programs.

* A BRK2 interrupt is generated.

» The BRK2 interrupt is a nonmaskable interrupt.

[Flag Change] *

Flag |lU| 1 [O|B|S|Z|D|C | *1 The flags are saved to the stack area before the BRK2
Changel O | O | — | —|—|—|0O| — instruction is executed. After the interrupt, the flags
Conditions change state as shown on the left.

U : Theflag is cleared.
| : Theflagis cleared.
D : Theflag is cleared.

[Description Example]
BRK2

63

Chapter 3 Functions
3.2 Functions

Set bit
BSET Bit SET BSET
[Syntax] [Instruction Code/Number of Cycles]
BSET dest Page=196

[Operation]
dest <« 1

[Function]
* This instruction stores 1 in dest.

» When dest is the address register (A0, Al), you can specify the 8 low-order bits for the address regis-
ter.

[Selectable dest]

dest
bit,ROL bit, ROH bit,R1L bit, R1H
bit,AO bit,Al1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]
bit,base:27[A0] bit,base:27[Al] bit,base:27 bit,base:19

[Flag Change]
Fag lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | —|— | — | —

[Description Example]

BSET flag

BSET 4,Ram

BSET 16,Ram:19[SB]
BSET 5,[A0]

64

Chapter 3 Functions
3.2 Functions

Test bit
BTST Bit TeST BTST
[Syntax] [Instruction Code/Number of Cycles]

BTST (:format) src Page=196
' G, S (Can be specified)

[Operation]
Z <« src
C <« src

[Function]
* This instruction transfers inverted src to the Z flag and non-inverted src to the C flag.

* When src is the address register (AO, Al), you can specify the 8 low-order bits for the address register.

[Selectable src]

G format* !
src
bit,ROL bit,ROH bit,R1L bit,R1H
bit,AQ bit,Al bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[Al] bit,base:27 bit,base:19
S format

src
bit,base:19

[Flag Change]

Flag ([U| 1 |O|B|S|Z|D]|C
Change| = | — | — | —|—|O|—]0O
Conditions

Z : The flag is set when srcis 0; otherwise cleared.
C : The flag is set when srcis 1; otherwise cleared.

[Description Example]

BTST flag

BTST 4,Ram

BTST 16,Ram:19[SB]
BTST 5,[A0]

65

Chapter 3 Functions
3.2 Functions

Test bit & clear
BTSTC Bit TeST & Clear BTSTC
[Syntax] [Instruction Code/Number of Cycles]
BTSTC dest Page= 197

[Operation]
z <~ dest
C - dest
dest << O

[Function]
* This instruction transfers inverted dest to the Z flag and non-inverted destto the C flag. Then it stores
0 in dest.
» When dest is the address register (A0, Al), you can specify the 8 low-order bits for the address regis-
ter.
* Do not use this instruction for dest in SFR area.

[Selectable dest]

dest
bit,ROL bit,ROH bit,R1L bit,R1H
bit,A0 bit,Al bit,[AQ] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19
[Flag Change]
Fag |U| I |O|B|S|Z|D]|C
Change| — | — | — | — | —|O|—1]0O

Conditions
Z : The flag is set when destis 0; otherwise cleared.
C : The flag is set when destis 1; otherwise cleared.

[Description Example]
BTSTC flag
BTSTC 4,Ram
BTSTC 16,Ram:19[SB]
BTSTC 5,[A0]

66

Chapter 3 Functions

BTSTS

[Syntax]
BTSTS

[Operation]

Z -

C -

dest <«
[Function]

dest

dest

dest
1

Test bit & set
Bit TeST & Set

3.2 Functions

BTSTS

[Instruction Code/Number of Cycles]

Page=198

» This instruction transfers inverted destto the Z flag and non-inverted dest to the C flag. Then it stores

1in dest.

» When dest is the address register (A0, Al), you can specify the 8 low-order bits for the address regis-

ter.

* Do not use this instruction for dest in SFR area.

[Selectable dest]

[Flag Change]

bit,base:11[A0]
bit,base:19[A0]
bit,base:27[A0]

dest
bit,ROL bit,ROH bit,R1L bit,R1H
bit,A0 bit,Al bit,[AQ] bit,[A1]

bit,base:11[A1]
bit,base:19[A1]
bit,base:27[A1]

bit,base:11[SB]
bit,base:19[SB]
bit,base:27

bit,base:11[FB]
bit,base:19[FB]
bit,base:19

Fag |U| |1 |O|B|S|Z C
Change| — | — | — | — | — | O O
Conditions

Z : The flag is set when destis 0; otherwise cleared.
C : The flag is set when dest is 1; otherwise cleared.

[Description Example]

BTSTS
BTSTS
BTSTS
BTSTS

flag

4,Ram
16,Ram:19[SB]
5,[A0]

67

Chapter 3 Functions 3.2 Functions

Exclusive OR bits
BXO R Bit eXclusive OR carry flag BXO R
[Syntax] [Instruction Code/Number of Cycles]
BXOR src Page=198

[Operation]
C < src V C

[Function]
» This instruction exclusive ORs the C flag and src together and stores the result in the C flag.

» When srcis the address register (A0, Al), you can specify the 8 low-order bits for the address register.

[Selectable src]

Src
bit,ROL bit,ROH bit,R1L bit,R1H
bit,AO bit,Al bit,[AQ] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]
bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]
bit,base:27[A0] bit,base:27[Al] bit,base:27 bit,base:19

[Flag Change]

Fllg lU| 1 |O|B|S|Z|D|C
Change| — | — | — | — | —=|—=|—=1|0O

Conditions
C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]

BXOR flag

BXOR 4,Ram

BXOR 16,Ram:19[SB]
BXOR 5,[AQ]

68

Chapter 3 Functions 3.2 Functions

CLIP
CLIP cLIP CLIP
[Syntax] [Instruction Code/Number of Cycles]

CLIP.size srcl, src2, dest Page= 199
: B, W

[Operation]
if srcl > dest
then dest < srcl
if src2 < dest
then dest « src2

[Function]
* Signed compares srcl and dest and stores the content of srcl in dest if srcl is greater than dest. Next,
signed compares src2 and dest and stores the content of src2 in dest if src2 is samller than dest.
When srcl < dest < src2, dest is not changed.

» When (.W) is specified for the size specifier (.size), dest is the address register and writing to dest, the
8 high-order bits become 0.
* Srcl and src2 are set "srcl<src2".

[Selectable src/dest/label]

srcl, src2 dest
ROL/RO ROH/R2/-
R1L/R1 R1H/R3/-
/AO /A1 [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMMB8/#IMM16

[Flag Change]
Fag |lU| I |O|B|S|Z|D]|C

Change| — | — | —| —| = | — | —| —

[Description Example]
CLIP.W #5,#10,R1

CLIPW #5#5,[A0]

69

Chapter 3 Functions 3.2 Functions

CMP Contpare CMP

[Syntax] [Instruction Code/Number of Cycles]
CMP.size (:format) src,dest Page=200
' G, Q, S (Can be specified)
B,W,L
[Operation]
dest - src [dest] - src
dest - [src] [dest] - [src]
[Function]

» Each flag bit of the flag register varies depending on the result of subtraction of src from dest.

» When (.B) is specified for the size specifier (.size) and dest is the address register (A0, Al), srcis zero-
extended to perform operation in 16 bits. Also, when srcis the address register, the 8 low-order bits of
the address register are used as data to be operated on.

» When (.L) is specified for the size specifier (.size), and src or dest is the address register, address
register is zero-extended to perform operation in 32 bits. The flags also change states depending on
the result of 32-bit operation.

[Selectable src/dest J* * (See the next page for src/dest classified by format.)
src dest
ROL/RO/R2R0O ROH/R2/- ROL/RO/R2R0O ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO/AO/A0*? AL1/A1/A1** [AQ] [A1] AO/AQ/A0*? Al/AL/AL* [AQ] [A1]

dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM4/H#IMM8/#IMM16/#IMM32
*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 If you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest simul-
taneously.

[Flag Change]

Fag |lU| I |O|B|S|Z|D|C
Change| — | — | O | — | OO =10
Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or
-2147483648(.L), +32767 (\W) or -32768 (.\W), or +127 (.B) or -128 (.B); otherwise cleared.
S : Theflag is set when the operation resulted in MSB = 1; otherwise cleared.
. The flag is set when the operation resulted in O; otherwise cleared.
C : The flag is set when an unsigned operation resulted in any value equal to or greater than 0;
otherwise cleared.
[Description Example]
CMP.B:S #10,ROL
CMP.W:G RO,A0
CMP.W #-3,R0
CMP.B #5,Ram:8[FB]
CMP.B AO,ROL ; AO's 8 low-order bits and ROL are compared.
|

70

N

Chapter 3 Functions 3.2 Functions

[src/dest Classified by Format]

G format* *
src dest

ROL/RO/R2R0 ROH/R2/- ROL/RO/R2R0O ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO0/A0/A0*2 A1/A1/A1*2 [AQ] [A1] AO0/AO0/A0*? A1/A1/A1*2 [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16

[#IMMB/#IMM16/#IMM32

*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.
*2 If you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest simul-

taneously.

Q format* 3*4

src dest

ROL/RO ROH/R2
R1L/R1 R1H/R3
AO/AQ Al/Al [AQ] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMM4*S

*3 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,

R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.
*4 You can only specify (.B) or (.W) for the size specifier (.size).
*5 The range of values that can be taken on is -8 < #IMM4 < +7.

S format "7

Src

dest

#IMMB8/#IMM16

ROL/RO

dsp:8[SB]

dsp:8[FB]

absl16

dsp:8[SB]

dsp:8[FB]

absl16

ROL/RO

*6 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*7 You can only specify (.B) or (.W) for the size specifier (.size).

71

Chapter 3 Functions 3.2 Functions

Compare extended sign
C M PX CoMPare eXtend sign C M PX
[Syntax] [Instruction Code/Number of Cycles]
CMPX src,dest Page=206

[Operation]
dest/[dest] - EXTS(src)

[Function]
» Each flag of the flag register changes state according to the result derived by subtracting the sign-

extended 32-bit src from the 32-bit dest.
» When dest is the address register (A0Q, Al), it is zero-extended to perform operation in 32 bits and the
flags change their states depending on the result.

[Selectable src/dest |* !

src dest
R2R0 -
R3R1 -
AOQ Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMM8
*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]

Fag |U| 1 |O|B|S|Z|D|C
Changel — | — | O | — | OO =10
Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or
-2147483648(.L), otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

. The flag is set when the operation resulted in O; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than 0;

otherwise cleared.

N

[Description Example]
CMPX #10,R2R0
CMPX #5,A0

72

Chapter 3 Functions 3.2 Functions

Decimal add with carry
DAD C Decimal ADdition with Carry DAD C
[Syntax] [Instruction Code/Number of Cycles]

DADC.size src,dest Page=206
: B,W

[Operation]
dest <« src + dest + C

[Function]

* This instruction adds dest, src, and C flag together in decimal and stores the result in dest.

» When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register
are the data to be operated on.

[Selectable src/dest]

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
/AO /Al [AO] [Al] /AQ /Al [AO] [Al]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

[Flag Change]

Fag |U| I |O|B|S|Z|D]|C
Change| — | — | — | — | O|O|—1]0O
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in O; otherwise cleared.

C : The flag is set when the operation resulted in exceeding +9999 (.W) or +99 (.B); otherwise
cleared.

[Description Example]
DADC.B #3,ROL
DADCW R1,RO
DADC.W [AQ],R2

73

Chapter 3 Functions 3.2 Functions

Decimal add without carry
DADD Decimal ADDition DADD
[Syntax] [Instruction Code/Number of Cycles]

DADD.size src,dest Page=208
' B,W

[Operation]
dest <« src + dest

[Function]
* This instruction adds dest and src together in decimal and stores the result in dest.
* When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register
are the data to be operated on.

[Selectable src/dest |

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
/AO /Al [AO] [A1] /AQ /Al [AO] [Al]

dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

[Flag Change]

Fag lU| 1 |[O|B|S|Z|D]|C
Change| — | — | — | — | OO | =10
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in O; otherwise cleared.

C : The flag is set when the operation resulted in exceeding +9999 (.W) or +99 (.B); otherwise
cleared.

[Description Example]
DADD.B #3,ROL
DADD.W R1,RO
DADD.W [A0],[A1]

74

Chapter 3 Functions 3.2 Functions

Decrement
DEC DECrement DEC
[Syntax] [Instruction Code/Number of Cycles]

DEC.size dest Page= 210
: B, W

[Operation |
dest <~ dest - 1 [dest] <« [dest] - 1

[Function]
 This instruction decrements 1 from dest and stores the result in dest.

* When (\W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0.

[Selectable dest]

dest*!
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]

Flag ([U| I |O|B|S|Z|D]|C
Change| — | — | — | = | O|O|—| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]

DEC.W AO
DEC.B ROL
DEC.W RO

75

Chapter 3 Functions 3.2 Functions

Signed divide
DIV DIVide DIV
[Syntax] [Instruction Code/Number of Cycles]

DIV.size src Page=210
' B,W

[Operation]
* When the size specifier (.size) is (\W)
RO (quotient), R2 (remainder) < R2RO0:- src/[src]
* When the size specifier (.size) is (.B)
ROL (quotient), ROH (remainder) < RO-- src/[src]

[Function]

» This instruction divides R2R0 (R0)™ by signed src and stores the quotient in RO (ROL)* and the remain-
der in R2 (ROH)™L. The remainder has the same sign as the dividend. Shown in ()™ are the registers
that are operated on when you selected (.B) for the size specifier (.size).

* When (.B) is specified for the size specifier (.size) and src is the address register (A0, Al), the 8 low-
order bits of the address register are used as data to be operated on. The O flag is set when the
operation resulted in the quotient exceeding 8 bits or the divisor is 0. ROL and ROH is undefined.

* When (.W) is specified for the size specifier (.size) and srcis the address register, the 16 low-order bits
of the address register are the data to be operated on. The O flag is set when the operation resulted in
the quotient exceeding 16 bits or the divisor is 0. RO and R2 is undefined.

[Selectable src]

src*?
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO/AO A1/A1 [AO] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB/#IMM16

*2 Indirect addressing [src] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]

Feag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | O | — | —|—|— | —
Conditions

O : Theflag is set when the operation resulted in the quotient exceeding 16 bits (.W) or 8 bits (.B) or
the divisor is 0; otherwise cleared.

[Description Example]

DIV.B AO :AQ's 8 low-order bits is the divisor.
DIV.B #4
DIV.W RO

DIV.W [[A1]]
76

Chapter 3 Functions 3.2 Functions

Unsigned divide
DIVU DIVide Unsigned DIVU
[Syntax] [Instruction Code/Number of Cycles]

DIVU.size src Page=211
' B,W

[Operation]
* When the size specifier (.size) is (.\W)
RO (quotient), R2 (remainder) < R2RO0 -~ src/[src]
* When the size specifier (.size) is (.B)
ROL (quotient), ROH (remainder) < RO <-src/[src]

[Function]

« This instruction divides R2R0 (R0)™ by unsigned src and stores the quotient in RO (ROL)™ and the
remainder in R2 (ROH)™. Shown in ()™ are the registers that are operated on when you selected (.B)
for the size specifier (.size).

* When (.B) is specified for the size specifier (.size) and src is the address register (A0, Al), the 8 low-
order bits of the address register are used as data to be operated on. The O flag is set when the
operation resulted in the quotient exceeding 8 bits or the divisor is 0. ROL and ROH is undefined.

* When (.W) is specified for the size specifier (.size) and src is the address register, the 16 low-order bits
of the address register are the data to be operated on. The O flag is set when the operation resulted in
the quotient exceeding 16 bits or the divisor is 0. RO and R2 is undefined.

[Selectable src]

src*?2
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO0/AD A1/AL [AO] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

*2 Indirect addressing [src] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]

Fag |lU |l |O|B|S |Z|D]|C
Change| — |— |O|—|—|—|— | —
Conditions

O : The flag is set when the operation resulted in the quotient exceeding 16 bits (.W) or 8 bits (.B) or
the divisor is 0; otherwise cleared.

[Description Example]

DIVU.B AO :AQ's 8 low-order bits is the divisor.
DIVU.B #4
DIVU.W RO

DIVUW [[A0]]
77

Chapter 3 Functions 3.2 Functions

Singed divide
D IVX DIVide eXtension D IVX
[Syntax] [Instruction Code/Number of Cycles]

DIVX.size src Page=212
' B,W

[Operation]
* When the size specifier (.size) is (.\W)
RO (quotient), R2 (remainder) < R2R0~- src/[src]
* When the size specifier (.size) is (.B)
ROL (quotient), ROH (remainder) < RO-- src/[src]

[Function]

» This instruction divides R2R0 (R0)" by signed src and stores the quotient in RO (ROL)* and the remain-
der in R2 (ROH)™. The remainder has the same sign as the divisor. Shown in ()™ are the registers
that are operated on when you selected (.B) for the size specifier (.size).

» When (.B) is specified for the size specifier (.size) and src is the address register (A0, Al), the 8 low-
order bits of the address register are used as data to be operated on. The O flag is set when the
operation resulted in the quotient exceeding 8 bits or the divisor is 0. ROL and ROH is undefined.

* When (.W) is specified for the size specifier (.size) and src is the address register, the 16 low-order bits
of the address register are the data to be operated on. The O flag is set when the operation resulted in
the quotient exceeding 16 bits or the divisor is 0. RO and R2 is undefined.

[Selectable src]

src*?
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO0/AO A1/A1 [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

*2 Indirect addressing [src] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]

Flag ull|o
Change | — [— | O | —| —|—|—| —

Conditions
O : The flag is set when the operation resulted in the quotient exceeding 16 bits (.W) or 8 bits (.B) or
the divisor is 0; otherwise cleared.

[Description Example]

DIVX.B AO : AO's 8 low-order bits is the divisor.
DIVX.B #4
DIVX.W RO

|
78

Chapter 3 Functions

DSBB

[Syntax]

DSBB.size
|

src,dest

Decimal subtract with borrow
Decimal SuBtract with Borrow

[Instruction Code/Number of Cycles]

[Operation |

dest < dest - src

[Function]

3.2 Functions

DSBB

Page=213

» This instruction subtracts src and inverted C flag from dest in decimal and stores the result in dest.

» When (\W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest]

src dest

ROL/RO ROH/R2 ROL/RO ROH/R2

R1L/R1 R1H/R3 R1L/R1 R1H/R3

/A0 /AL [AQ] [A1] /A0 /AL [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16
[Flag Change]

Fag (lU| I |O|B|S|Z|D|C

Change| — | — | — | — 1O |O|—=10

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.

C :
cleared.

[Description Example]

DSBB.B #3,ROL
DSBB.W R1,RO
DSBB.W [AO],[Al]

79

The flag is set when the operation resulted in any value equal to or greater than 0; otherwise

Chapter 3 Functions 3.2 Functions

Decimal subtract without borrow
DS U B Decimal SUBtract DS U B
[Syntax] [Instruction Code/Number of Cycles]

DSUB.size src,dest Page= 215
: B,W

[Operation]
dest <« dest - src

[Function]
* This instruction subtracts src from dest in decimal and stores the result in dest.

* When (\W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest]

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
/AO /Al [AO] [A1] /AQ /Al [AO] [Al]

dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

[Flag Change]

Flag ull|O|B|S|Zz|D|C
Change| — | — | — | — | O |O|—1]0O
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when the operation resulted in any value equal to or greater than 0; otherwise
cleared.

[Description Example]
DSUB.B #3,ROL
DSUB.W R1,RO
DSUB.W [AOQ],[AL]

80

Chapter 3

Functions

3.2 Functions

ENTE

[Syntax]
ENTER

[Operation]
SP
M(SP)*!
SP
M(SP)

FB
SP

[Function]

R

Src

~ SP - 2
~ FBH

~ SP - 2
~ FBL

~ SP

- SP -

src

Build stack frame
ENTER function

ENTER

[Instruction Code/Number of Cycles]
Page=217

*1 The 8 high-order bits become indeterminate.

 This instruction generates a stack frame. src represents the size of the stack frame. Set an even
number for src. (You can set odd number, but it is more effective to set even number for operation.)
» The diagrams below show the stack area status before and after the ENTER instruction is executed at
the beginning of a called subroutine.

Before instruction execution

Direction in
which address
increases
|
SP — | Return address (LL)
Return address (LH)
Return address (HL)
Return address (HH)
Argument of function
[Selectable src]
src
#IMM8
[Flag Change]
Flg lu|I |O|B|S|zZz|D|C
Change| — | — | — | —|—|—|— | —

[Description Example]

ENTER

#4

81

After instruction execution

SP | Auto variable area ' Number of bytes
| indicated by src
FB — FB (LL) -
FB(LH)
FB(HL)
FB (HH)

Return address (LL)
Return address (LH)
(

Return address (HL)
Return address (HH)
Argument of function

Chapter 3 Functions 3.2 Functions

Deallocate stack frame
EXITD EXIT and Deallocate stack frame EXITD

[Syntax] [Instruction Code/Number of Cycles]
EXITD Page=217

[Operation]

SP -~ FB

FBL -« M(SP)

SP ~ SP + 2

FBH -« M(SP)

SP ~ SP + 2

PCL -« M(SP)

SP «~ SP + 2

PCH «~ M(sP)*L

SP - SP + 2 *1 The 8 high-order bits become indeterminate.
[Function]

 This instruction deallocates the stack frame and exits from the subroutine.
» Use this instruction in combination with the ENTER instruction.

» The diagrams below show the stack area status before and after the EXITD instruction is executed
at the end of a subroutine in which an ENTER instruction was executed.

Before instruction execution After instruction execution

SPp — .
Auto variable area

Direction in which ad-
dress increases

|

FB — FB (LL)
FB(LH)
FB(HL)

FB (HH)
Return address (LL)
Return address (LH)
Return address (HL)
Return address (HH)
Argument of function

SP — | Argument of function

[Flag Change]
Fag flu| 1|O|B|S|Z|D]|C

Change| — | — | — | — | — | —| —| —

[Description Example]
EXITD

82

Chapter 3 Functions 3.2 Functions

Extend sign
EXTS EXTend Sign EXTS
[Syntax] [Instruction Code/Number of Cycles]

EXTS.size dest Page=218
' B,W
EXTS.size src,dest
' B
[Operation |
dest < EXTS(dest)
dest < EXTS(src)

[Function]
* This instruction sign extends dest and stores the result in dest.

» When you selected (.B) for the size specifier (.size), src or dest is sign extended to 16 bits. When dest
is the address register(A0, Al), the 8 high-order bits become 0.

» When you selected (\W) for the size specifier (.size), dest is sign extended to 32 bits. When RO is
selected for dest, R2 is used for the upper byte; when R1 is selected, R3 is used for the upper byte.
When dest is the address register, stores the 24 low-order bits of result in dest.

[Selectable src/dest]

dest*!
ROL/RO
R1L/R1
A0 Al [AO] [Al]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*1 You can only specify(.B) or (.W) for the size of specifier (.size).

src *2 dest*?
ROL ROH RO R2
R1L R1H R1 R3
[AO] [A1] AO Al [AO] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16

*2 You can only specify(.B) for the size of specifier (.size).

[Flag Change]

Fag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | O |O| —| —
Conditions

S : The flagis set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]
EXTS.B ROL

EXTSW RO
EXTSW [AQ]

83

Chapter 3 Functions

EXTZ

[Syntax]
EXTZ src,dest

[Operation]
dest <« EXTZ(src)

[Function]

Extend zero
EXTend Zero

3.2 Functions

EXTZ

[Instruction Code/Number of Cycles]

Page=220

* This instruction zero-extends src to 16 bits and stores the result in dest. When dest is the address

register(A0, Al), the 8 high-order bits become 0.

[Selectable src/dest |

src dest

ROL ROH RO R2
R1L R1H R1 R3

[AQ] [A1] AO Al [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
[Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | O |O| —| —
Conditions

S : The flag is always cleared to 0.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

[Description Example]
EXTZ ROL,R2
EXTZ [A1],[A0]

84

Chapter 3 Functions 3.2 Functions

Clear flag register bit
FCI—R Flag register CLeaR FCLR
[Syntax] [Instruction Code/Number of Cycles]
FCLR dest Page=221

[Operation]
dest < O

[Function]
* This instruction stores 0 in dest.

[Selectable dest]

dest
C D Z S B (@] I U
[Flag Change]
Fag (U| | |O|B|S|Z|D]|C
Change| *1 | *1 | *1 | *1 | *1 | *1 | *1 | *1 *1 The selected flag is cleared to 0.

[Description Example]
FCLR I
FCLR S

85

Chapter 3 Functions

3.2 Functions

FREIT

[Syntax]
FREIT

[Operation]

FLG <«

PC

-

[Function]

SVF
SVP

Fast return from Interrupt
Fast REturn from InTerrupt

FREIT

[Instruction Code/Number of Cycles]

Page= 221

» Restores the contents of PC and FLG from the high-speed interrupt registers that had been saved
when accepting a high-speed interrupt request upon returning from the interrupt handler routine.

[Flag Change]

Flag

U

Change

*1

*1

*1

*1

*1

*1

*1

*1

[Description Example]
FREIT

*]1 Becomes the content of SVF.

86

Chapter 3 Functions 3.2 Functions

Set flag register bit
FS ET Flag register SET FS ET
[Syntax] [Instruction Code/Number of Cycles]
FSET dest Page=222

[Operation]
dest < 1

[Function]
* This instruction stores 1 in dest.

[Selectable dest]

[Flag Change]

Flag |lU| 1 |O|B|S|Z|D]|C
Change| *1 | *1 | *1 | *1 | *1 | *1 | *1 | *1 *1 The selected flag is set (= 1).

[Description Example]

FSET I
FSET S

87

Chapter 3 Functions 3.2 Functions

Increment
INC INCrement INC
[Syntax] [Instruction Code/Number of Cycles]

INC.size dest Page=223
' B,W

[Operation]
dest < dest + 1 [dest] <« [dest] + 1

[Function]
 This instruction adds 1 to dest and stores the result in dest.

* When (\W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0.

[Selectable dest]

dest*!?
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]

Fag ([U| I |O|B|S|Z|D|C
Change| — | — | — |—=|O|O|—| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]

INC.W AO
INC.B ROL
INC.B [IA1]]

88

Chapter 3 Functions 3.2 Functions

INDEX Type INDEX Type INDEX Type

[Syntax] [Instruction Code/Number of Cycles]
INDEXType.size src Page= 223
|

[Operation]

[Function]
* This instruction modifies addressing of the next instruction.
» No interrupts are enabled until after the modifying instruction is executed.
» Use this instruction to access arrays.
* For details, refer to Section 3.3, "Index Instructions."

» There are following types for Type:

Type Function
B
BD Modifies the addressing of the next instruction in units of bytes.
BS
w
WD Modifies the addressing of the next instruction in units of words.
WS
L

LD Modifies the addressing of the next instruction in units of long words.
LS

[Selectable src]

Src
ROL/RO ROH/R2
R1L/R1 RIH/R3
AO/AD AL/AL [AO] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

[Flag Change]
Flag Uull|o|B[S|Z|D|C

Change | — | — | —m | —= | — | — | — | —

[Description Example]
INDEXB.W RO
INDEXLS.B [AQ]

89

Chapter 3 Functions 3.2 Functions

I N T Interrupt by INT instruction I N T
INTerrupt
[Syntax] [Instruction Code/Number of Cycles]
INT src Page=228

[Operation]

SP - SP - 2
M(SP) <« FLG
SP - SP - 2
MESP)* < (PC + 2)H
SP - SP - 2
M(SP) <« (PC + 2L
PC - M(IntBase + src X 4) *1 The 8 high-order bits become indeterminate.
[Function]
* This instruction generates a software interrupt specified by src. src represents a software interrupt
number.

* When srcis 31 or smaller, the U flag is cleared to 0 and the interrupt stack pointer (ISP) is used.
» When srcis 32 or larger, the stack pointer indicated by the U flag is used.
» The interrupts generated by the INT instruction are nonmaskable interrupts.

 The interrupt number of src must be in the range of 0 to 63, including both ends.

[Selectable src]

Src

#IMM6E12

*1 #IMM denotes a software interrupt number.
*2 The range of values that can be taken on is 0 < #IMM6 < 63.

[Flag Change]

Flag ulitlolBlslzIplc] ™ Tthe fltggs are savedt t(()j thi fsttacI:hargatbefori tf:ﬁ II\H’ in-
struction is executed. er the interrupt, the flags
Ch — =] == —
ange | O 1O o change state as shown on the left.
Conditions

U : The flag is cleared when the software interrupt number is 31 or smaller. The flag does not change
when the software interrupt number is 32 or larger.

| : Theflagis cleared.

D : Theflagis cleared.

[Description Example]
INT #0

90

Chapter 3 Functions

INTO

[Syntax]
INTO

[Operation]

[Function]

=

%

3
tttr ot

SP - 2
FLG

SP - 2
(PC + 1)H
SP - 2
(PC + 1)L
M(FFFFEO16)

Interrupt on overflow
INTerrupt on Overflow

*1 The 8 high-order bits become indeterminate.

3.2 Functions

INTO

[Instruction Code/Number of Cycles]

Page=228

* When the O flag is 1, this instruction generates an overflow interrupt. When the flag is 0, the next
instruction is executed.

» The overflow interrupt is a nonmaskable interrupt.

[Flag Change]

c | *1 The flags are saved to the stack area before the INTO

Fag (U| I |O|B|S|Z|D
Change| O | Q| —|—|—|—]|0O]| —
Conditions

U : Theflagis cleared.
| : Theflagis cleared.
D : Theflag is cleared.

[Description Example]

INTO

91

instruction is executed. After the interrupt, the flags
change state as shown on the left.

Chapter 3 Functions 3.2 Functions

Jump on condition
J Cnd Jump on Condition J Cnd
[Syntax] [Instruction Code/Number of Cycles]
JCnd label Page=229

[Operation]
if true then jump label

[Function]
* This instruction causes program flow to branch off after checking the execution result of the preceding

instruction against the following condition. When the condition indicated by Cnd is true, control jumps
to label . When false, the next instruction is executed.
» The following conditions can be used for Cnd.

Cnd Condition Expression|| Cnd Condition Expression

GEU/C| C=1 Equal to or greater than = LTUINC|C=0 Smaller than >
Cflagis 1. Cflagis 0.

EQ/Zz |Z=1 Equal to = NE/NZ |Z=0 Not equal z
Zflagis 1. Zflagis 0.

GTU |CAZ=1 Greater than < LEU |CAZ=0 Equal to or smaller than =

PZ |S=0 Positive or zero 0= N S=1 Negative 0>

GE |SV0=0 Equal to or greater than = LE (SV0)V Z=1 Equal to or smaller than Z
(signed value) (signed value)

GT (SV 0)V Z=0| Greater than (signed value) < LT SVO0=1 Smaller than (signed value) >

0 0=1 Oflagis 1. NO 0=0 Oflagis 0.

[Selectable label]
label Cnd
PC1-127 =label =PC"+128 | GEU/C, GTU, EQ/Z, N, LTU/NC, LEU, NE/NZ, PZ,
LE, O, GE, GT, NO, LT
*1 PC indicates the start address of the instruction.

[Flag Change]
Fag (lU| 1 |]O|B|S|Z|D]|C

Change| — | — | — | — | —|—| —| —

[Description Example]
JEQ label
JNE label

92

Chapter 3 Functions 3.2 Functions

Unconditional jump
JMP JUMP JMP

[Syntax] [Instruction Code/Number of Cycles]
JMP(.length) label Page=229
: S,B,W,A

[Operation]
PC <« label

[Function]

* This instruction causes control to jump to label.

[Selectable label]

Jength label

.S PC*+2 = label = PC+9

.B PC*-127 =label =PC"+128

W PC-32767 = label = PC"'+32768
A abs24

*1 The PC indicates the start address of the instruction.

[Flag Change]
Fag |lU| 1 |O|B|S|Z|D|C

Change| — | — | — | —|—|— | — | —

[Description Example]
JMP label

93

Chapter 3 Functions 3.2 Functions

Jump indirect
\]MPI JUMP Indirect \JMPI
[Syntax] [Instruction Code/Number of Cycles]

JMPI.length src Page=231
: W, A

[Operation]
* When jump distance specifier (.length) is (.\W) * When jump distance specifier (.length) is (.A)
PC <« PC £ src PC < src

[Function]

» This instruction causes control to jump to the address indicated by src. When src is memory, specify
the address at which the low-order address is stored.

» When you selected (\W) for the jump distance specifier (.length), control jumps to the start address of the instruc-
tion plus the address indicated by src (added including the sign bits). When src is memory, the required
memory capacity is 2 bytes.

» When srcis memory and (.A) is selected for the jump distance specifier (.length), the required memory
capacity is 3 bytes.

[Selectable src]
When you selected (.W) for the jump distance specifier (.length)

SIc
RO R2
R1 R3
AO Al [AO] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

When you selected (.A) for the jump distance specifier (.length)
src

R2R0
R3R1
A0 Al [A0] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

[Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C

Change| = | — | — | — | —|—|— | —

[Description Example]

JMPLA Al
JMPILW RO

94

Chapter 3 Functions 3.2 Functions

J M P S Jump to special page J M P S

JUuMP Special page
[Syntax]
JMPS src

[Instruction Code/Number of Cycles]
Page=232

[Operation |
PCH <~ FFi1e
PCML < M(FFFE1s - src X 2)

[Function]

» This instruction causes control to jump to the address set in each table of the special page vector table

plus FF000016. The area across which control can jump is from address FF000016 to address
FFFFFF16.

* The special page vector table is allocated to an area from address FFFEQ016 to address FFFFDB16.

* srcrepresents a special page number. The special page humber is 255 for address FFFEQO16, and 18
for address FFFFDA16.

[Selectable src]

Src

#IMM8'12

*1 #IMM denotes a special page number.

*2 The range of values that can be taken on is 18 < #IMM8 < 255.

[Flag Change]
Flag |lU| I |O|B|[S|Z|D]|C

Change| — | — | — | — | —|—| —| —

[Description Example]
JMPS #20

95

Chapter 3 Functions 3.2 Functions

Subroutine call
Jump SubRoutine

JSR JSR

[Syntax] [Instruction Code/Number of Cycles]
JSR(.length) label Page=233
: W, A
[Operation]
SP ~ SP - 2
M(SP)*1 «~ (PC + n*dH
SP -~ SP - 2
M(SP) «~ (PC + n*9mL
PC - label

*1 The 8 high-oreder bits become 0.
*2 ndenotes the number of instruction bytes.

[Function]
* This instruction causes control to jump to a subroutine indicated by label .

[Selectable label]

Jength

label

W

PC- 32767= label= PC"'+32768

A

abs24

*1 The PC indicates the start address of the instruction.

[Flag Change]
Fag |lU| I |O|B|S|Z|D]|C

Change| — | — | — | = | — | — | — | —

[Description Example]

JSR.W func
JSR.A func

96

Chapter 3 Functions 3.2 Functions

Indirect subroutine call
JSRI Jump SubRoutine Indirect JSRI
[Syntax] [Instruction Code/Number of Cycles]
JSRI.length Src Page=234
: W, A
[Operation]
When jump distance specifier (.length) is (.\W) When jump distance specifier (.length) is (.A)
SP ~ SP - 2 SP ~ SP - 2
M(SP)* < (PC + n*?)H M(SP)*~ (PC + n*?)H
SP «~ SP - 2 SP ~ SP - 2
M(SP) <« (PC + n*?)mL M(SP) <~ (PC + n*?)H
PC ~ PC T src PC <« src

*1 The 8 high-oreder bits become 0.
*2 n denotes the number of instruction bytes.

[Function]
This instruction causes control to jump to a subroutine at the address indicated by src. When srcis
memory, specify the address at which the low-order address is stored.

* When you selected (.W) for the jump distance specifier (.length), control jumps to a subroutine at the
start address of the instruction plus the address indicated by src (added including the sign bits). When
src is memory, the required memory capacity is 2 bytes.

* When srcis memory and (.A) is selected for the jump distance specifier (.length), the required memory
capacity is 3 bytes.

[Selectable src]
When you selected (.W) for the jump distance specifier (.length)

Src
RO R2
R1 R3
AO Al [A0] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

When you selected (.A) for the jump distance specifier (.length)
src

R2R0O
R3R1
A0 Al [A0] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

[Flag Change]
Flag Uujl|O|/B|S|Z|D|C

Change | — | — | — | — | — | — | — | —

[Description Example]

JSRILA Al
JSRI.W RO

97

Chapter 3 Functions 3.2 Functions

Special page subroutine call
\]SRS Jump SubRoutine Special page \JSRS
[Syntax] [Instruction Code/Number of Cycles]
JSRS src Page= 235

[Operation]

SP -~ SP - 2

M(SP)*1 «~ (PC + 2)H

SP «~ SP - 2

M(SP) - (PC + 2)mL

PCH - FFi6

PCML - M (FFFE16 - src X 2)

*1 The 8 high-oreder bits become 0.

[Function]

This instruction causes control to jump to a subroutine at the address set in each table of the special
page vector table plus FFO00016. The area across which program flow can jump to a subroutine is from
address FF000016 to address FFFFFF16.

* The special page vector table is allocated to an area from address FFFEQ0016 to address FFFFDB16.
* src represents a special page number. The special page humber is 255 for address FFFEQO16, and 18
for address FFFFDA16.

[Selectable src]

Src

#IMM8'1"2

*1 #IMM denotes a special page number.

*2 The range of values that can be taken on is 18 < #IMM8 < 255.

[Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[Description Example]
JSRS #18

98

Chapter 3 Functions 3.2 Functions

Transfer to control register
I_ DC LoaD Control register I—DC
[Syntax] [Instruction Code/Number of Cycles]
LDC src,dest Page=235

[Operation]
dest <« src

[Function]
* This instruction transfers src to the control register indicated by dest.

* When memory is specified for src, the following bytes of memory are required.
2 bytes : DMDO0*!, DMD1*!, FLG, DCTO, DCT1, DRCO, DRC1, SVF
4 bytes*? : FB, SB, SP*3, ISP*3, INTB*3, VCT, SVP, DMAO, DMAL, DRAO, DRA1, DSA0, DSA1

*1 The low-order 8 bit of src is transfered.
*2 The low-order 24 bit of src is transfered.

*3 Set even number for SP, ISP and INTB even though odd number can be set. It is more effective to set
even number for operation.

[Selectable src/dest]

src dest
RO R2 DMDO DMD1 DCTO DCT1
R1 R3 DRCO DRC1 FLG SVF
AO/AQ AL/Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM16/#IMM24
R2R0O - FB SB Sp ISP
R3R1 - INTB VCT SVP
IAO Al [A0] [Al] DMAO DMA1 DRAO DRAL
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] DSAO DSA1
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMM16/#IMM24
*4 QOperation is performed on the stack pointer indicated by the U flag.

[Flag Change]
Fag |lU| I |O|B|S|Z|D|C
Change| *5 | *5 | *5 | *5 | *5 | *5 | *5 | *5 [*5 The flag changes only when destis FLG.

[Description Example]
LDC AO,FB

99

Chapter 3 Functions 3.2 Functions

LDCTX e LDCTX

[Syntax] [Instruction Code/Number of Cycles]
LDCTX abs16,abs24 Page=238
[Function]

* This instruction restores task context from the stack area.

* Set the RAM address that contains the task number in abs16 and the start address of table data in abs24.

* The required register information is specified from table data by the task number and the data in the stack area is
transferred to each register according to the specified register information. Then the SP correction value is
added to the stack pointer (SP). For this SP correction value, set the number of bytes you want to the trans-
ferred. Calculated as 2 bytes when transferring the RO, R1, R2, or R3 registers. A0, Al, SB, and FB
are calculated as 4 bytes.

« Information on transferred registers is configured as shown below. Logic 1 indicates a register to be
transferred and logic O indicates a register that is not transferred.

MSB LSB

FB|SB| Al |AO0 |[R3 |[R2 |[R1 [RO

< Transferred sequentially beginning
with RO

* The table data is comprised as shown below. The address indicated by abs24 is the base address of
the table. The data stored at an address apart from the base address as much as twice the content of
abs16 indicates register information, and the next address contains the stack pointer correction value.

abs24 — Base address | Register information for the task whose task number = 0. o
of table (See the above diagram.)
SP correction value for the task whose task number = 0.
Direction in Register information for the task whose task number = 1. abs16x2
which address (See the above diagram.)
Increases SP correction value for the task whose task number = 1.
b 3R
— . |
Register information for the task whose task number =n*. [— —
(See the above diagram.)
SP correction value for the task whose task number = n™. *1 n=0to 255

[Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | —| — | — | —| —

[Description Example]
LDCTX Ram,Rom_TBL

100

Chapter 3 Functions 3.2 Functions

Set interrupt enable level
I— D I P I— LoaD Interrupt Permission Level I— D I P L
[Syntax] [Instruction Code/Number of Cycles]
LDIPL src Page=239

[Operation]
IPL < src

[Function]
* This instruction transfers src to IPL.

[Selectable src]

Src

#IMM3™

*1 The range of values that can be taken on is 0 < #IMM3 < 7.

[Flag Change]
Fag | U| I |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[Description Example]
LDIPL #2

101

Chapter 3 Functions

MAX

[Syntax]

MAX.size src,dest
|

Select maximum value
MAX select

[Operation]
if (src > dest)
then dest <« src

[Function]

3.2 Functions

MAX

[Instruction Code/Number of Cycles]

Page= 239

* Singed compares src and dest and transfers src to dest when src is greater than dest. No change
occurs when src is smaller than or equal to dest.

* When (\W) is specified for the size specifier (.size), dest is the address register and writing to dest, the
8 high-order bits of the operation result are become 0. Also, when src is the address register, trans-
fers the 16 low-order bits of the address register to dest.

[Selectable src/dest |

src dest

ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3

AO Al [AQ] [A1] AO Al [AQ] [Al]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16
[Flag Change]

Fag ([lU| 1 |]O|B|S|Z|D]|C
Change| — | — | = | = | = | — | — | —

[Description Example]
MAX.B #0ABH,ROL
MAX.W #-1,R2

102

Chapter 3 Functions

MIN

[Syntax]

MIN.size src,dest

Select minimum value
MIN select

[Operation]
if (src < dest)
then dest < src

[Function]

3.2 Functions

MIN

[Instruction Code/Number of Cycles]

Page:24l

* Signed compares src and dest and transfers src to dest when src is smaller than dest. No change
occurs when src is greater than or equal to dest.
* When (\W) is specified for the size specifier (.size), dest is the address register and writing to dest, the

8 high-order bits of the operation result are become 0. Also, when src is the address register, trans-
fers the 16 low-order bits of the address register to dest.

[Selectable src/dest]

src dest

ROL/RO ROH/R2 ROL/RO ROH/R2

R1L/R1 R1H/R3 R1L/R1 R1H/R3

/A0 /A1 [AQ] [A1] AO Al [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16
[Flag Change]

Feag (lU| 1 |]O|B|S|Z|D]|C

Change| — | — | — | = | — | — | — | —

[Description Example]

MIN.B #0ABH,ROL

MIN.W #-1,R2

103

Chapter 3 Functions 3.2 Functions

MOV Move, MOV

[Syntax] [Instruction Code/Number of Cycles]
MOV .size (:format) src,dest Page=243
: G,Q,Z,S (Can be specified)
B,W,L
[Operation]
dest <« src [dest] < src
dest <« [src] [dest] <« [src]

[Function]
e This instruction transfers src to dest.

» When (.B) is specified for the size specifier (.size) and dest is the address register (A0, Al), srcis zero-
extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0. Also, when src
is the address register, the 8 low-order bits of the address register are used as data to be operated on.

* When (\W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

» When (.L) is specified for the size specifier (.size) and dest is the address register, the 8 high-order bits
of srcis ignored and the 24 low-order bits of src is stored to dest. Also, when src is the address
register, srcis zero-extended to perform operation in 32 bits. The flags also change states depending

on the result of 32-bit operation.

[Selectable src/dest I* * (See the next page for src/dest classified by format.)
src dest
ROL/RO/R2R0O ROH/R2/- ROL/RO/R2R0O ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO/A0/A0*? A1/A1/A1*? [AQ] [A1] AO0/AO0/A0*? A1/A1/A1*2 [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16

#IMM dsp:8[SP]*® dsp:8[SP]*®

*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest

simultaneously.
*3 When srcor destis dsp:8[SP], you cannot choose indirect addressing [src] or [dest] neither.

[Flag Change]

Fag |lU| 1| O|B|S|Z|D|C
Change| — | — | — | — | O | O | —1| —
Conditions

S : The flag is set when the transfer resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the transfer resulted in O; otherwise cleared.

[Description Example]

MOV.B:S #0ABH,ROL
MOV.W #1,R2
MOV.W [A1],[[A2]]

|
104

Chapter 3 Functions 3.2 Functions
|

[src/dest Classified by Format]

G format * !

src dest
ROL/RO/R2R0 ROH/R2/- ROL/RO/R2R0O ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO/A0/A0* A1/A1/A1*? [AQ] [A1] AO/AQ/A0*2 A1/A1/A1* [AQ] [A1]

dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al1] abs24 abs16

#IMMSB/HIMM16/#IMM32 dsp:8[SP]*%*® dsp:8[SP]*3*4*5

*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest
simultaneously.

*3 Operation is performed on the stack pointer indicated by the U flag. You cannot choose dsp:8 [SP] for
src and dest simultaneously.

*4 When you specify (.B) or (W) for the size specifier (.size) and srcis not #IMM, you can choose dsp:8 [SP] for dest.

*5 When src or destis dsp:8[SP], you cannot choose indirect addressing [src] or [dest] neither.

Q format * 5*7

src dest
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO/AQ Al/A1 [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

#IMM4*8

*6 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, dsp:8[SP], and #IMM.

*7 You can only specify (.B) or (.W) for the size specifier (.size).
*8 The range of values that can be taken on is - 8 < #IMM4 < +7.

S format * ©
src dest
ROL/R0O*1%*11 dsp:8[SB]**'dsp:8[FB]*'* absl16*!! ROL/RO*1*11 R1L/R1*1*12 dsp:8[SB]*'dsp:8[FB]***
#IMM8/#IMM16*1! abs16*!
dsp:8[SB]***dsp:8[FB]** abs16**
#IMM16*13/#IMM24*14 AO0*13/AQ*14 AL*3[AL*14

*9 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, dsp:8[SP], and #IMM.

*10 You cannot choose the same registers for src and dest simultaneously.

*11 You can only specify (.B) or (.W) for the size specifier (.size).

*12 When src is not #iMM8/IMM16, you can only choose R1L/R1 for dest .

*13 You can specify (.W) for the size specifier (.size). In this case, you cannot use indirect addressing mode for dest.

*14 You can specify (.L) for the size specifier (.size). In this case, you cannot use indirect addressing mode for dest.

Z format * 15

src dest
ROL/RO dsp:8[SB] dsp:8[FB] abs16

#0
*15 You can specify (.B) or (.W) for the size specifier (.size).

105

Chapter 3 Functions

MOVA

[Syntax]
MOVA

[Operation]

src,dest

dest <« EVA(src)

[Function]

Transfer effective address
MOVe effective Address

[Instruction Code/Number of Cycles]

 This instruction transfers the affective address of src to dest.

[Selectable src/dest |

3.2 Functions

MOVA

Page= 252

src dest

R2R0
R3R1
A0 Al

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

[Flag Change]

Fag lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[Description Example]

MOVA

Ram:16[SB],A0

106

Chapter 3 Functions 3.2 Functions

MOV Dir ivixphethe MOV Dir

[Syntax] [Instruction Code/Number of Cycles]
MOV Dir src,dest Page= 253
[Operation]
Dir Operation
HH H4:dest <« H4:src
HL L4:dest <« H4:src
LH H4:dest <« L4:src
LL L4:dest <« Ld:src
[Function]
* Be sure to choose ROL for either src or dest.
Dir Function
HH Transfers sre(8 bits)'s 4 high-order bits to dest(8 bits)'s 4 high-order bits.
HL Transfers src(8 bits)'s 4 high-order bits to dest(8 bits)'s 4 low-order bits.
LH Transfers sre(8 bits)'s 4 low-order bits to dest(8 bits)'s 4 high-order bits.
LL Transfers src(8 bits)'s 4 low-order bits to dest(8 bits)'s 4 low-order bits.

[Selectable src/dest]

src dest
ROL/REARZ2RE ROHR2/- ROL/RE/R2RE ROH/R2/-
R1LARHR3RE R1H/AR3~ RHARHRIRE: RIH/R3~
ABIABHAS ATATAT [AO] [A1] AGAOIAD ALALAY AO} FAH

dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB] | dsp:8{A6} dsp:8fAt} dsp:8[SB] dsp:8iFB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]| dsp:16{A6] dsp:i6fAt] dspi6[SB] dspi6iFB]

dsp:24[A0] dsp:24[Al] abs24 abs16 dsp24fAB dsp24fAt abs24 abs16
#ivivt

ROL/ARE/R2RE ROHR2/- ROL/RE/R2RO ROH/R2/~
RI/RIR3IRE RIHMR3~ RIL/ARHR3IRE R1H/R3-
AOIABIAD AHATAT {A6] At ADIABIAD ALALATL [AQ] [A1]

Gspi8iAL dspiBfAt] aspiB{SBl dspiB{FBl | dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dspribiAG] dspribiAL] dspiibiSB] dspriSiFBi| dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
tsp:24fAB} dsp:24fAl] absZ4 absi6 dsp:24[A0] dsp:24[Al] abs24 abs16

[Flag Change]
Fag (lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | = | —= | = | — | —

[Description Example]
MOVHH ROL,[AQ]
MOVHL ROL,[AQ]

|
107

Chapter 3 Functions 3.2 Functions

Transfer extend sign
M OVX MOVe eXtend Sign M OVX
[Syntax] [Instruction Code/Number of Cycles]
MOVX src,dest Page= 255

[Operation]
dest/[dest] <« EXTS(src)

[Function]
* Sign-extends the 8-bit immdiate to 32 bits before transferring it to dest.

* When dest is the address register (AO, Al), the 24 low-order bits are transferred. The flags also
change state for the 32 bits transfers performed.

[Selectable src/dest |

src dest *!
R2R0
R3R1
A0 Al [A0] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMM8*2

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 The range of values that can be taken on is -128 < #IMM8 < +127

[Flag Change]

Fag |lU| 1| O|B|S|Z|D|C
Change| — | — | — | — | O | O | —| —
Conditions

S : The flag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.
Z : The flag is set when the transfer resulted in O; otherwise cleared.

[Description Example]

MOVX #10,A0
MOVX #5,[[AL]]

108

Chapter 3 Functions 3.2 Functions

Signed multiply
MUL MULtiple MUL

[Syntax] [Instruction Code/Number of Cycles]
MUL.size src,dest Page= 255
: B,W
[Operation]
dest < dest X src [dest] <« [dest] x src
dest <« dest X [src] [dest] <« [dest] X [src]
[Function]

 This instruction multiplies src and dest together including the sign bits and stores the result in dest.

» When you selected (.B) for the size specifier (.size), src and dest both are operated on in 8 bits and the
result is stored in 16 bits. When you specified an address register(A0, Al) for either src or dest, opera-
tion is performed on the address register's 8 low-order bits. When dest is the address register, the 8
high-order bits become 0.

» When you selected (.W) for the size specifier (.size), src and dest both are operated on in 16 bits and
the result is stored in 32 bits. When you specified RO or R1 for dest, the result is stored in R2R0 or
R3R1 accordingly. When the address register is selected for dest, the 24 low-order bits of the 32-bit
operation result is stored. When the address register is selected for src, operation is performed using
the 16 low-order bits of the register.

[Selectable src/dest |* 1

src dest
ROL/RO ROH/R2 ROL/RO
R1L/R1 R1H/R3 R1L/R1
AO/ADAG*? AL/AL/AT*2 [AQ] [A1] AO/ADAG*? ALJAL/AL*? [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB/H#IMM16
*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest
simultaneously.

[Flag Change]
Fag ([U| 1 |]O|B|S|Z|D]|C

Change| — | — | — | — | — | — | —| —

[Description Example]
MUL.B AO0,ROL : ROL and AO's 8 low-order bits are multiplied.
MUL.W #3,R0
MUL.B ROL,R1L
MUL.W AO,Ram
MULW [AO][[AL]]

109

Chapter 3 Functions 3.2 Functions

Multipl extend sign
MUI—EX MULtiple EXtend MUI—EX
[Syntax] [Instruction Code/Number of Cycles]
MULEX src Page=257

[Operation]
R1R2R0 <« R2R0O X src/[src]

[Function]

» Multiplies src (16-bit data) and R2R0 including the sign and stores the result in R1IR2R0.

[Selectable src]

src*!

R3
AO Al [AO] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16
*1 Indirect addressing [src] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]
Fag ([U| I |O|B|S|Z|D]|C

Change| — | — | — | = | = | = | —| —

[Description Example]
MULEX AO
MULEX R3
MULEX Ram
MULEX [[AO]]

110

Chapter 3 Functions 3.2 Functions

Unsigned multiply
M U I—U MULtiple Unsigned M U I—U
[Syntax] [Instruction Code/Number of Cycles]

MULU.size src,dest Page=257
|

[Operation]

dest < dest X src [dest] < [dest] X src
dest <« dest X [src] [dest] « [dest] X [src]
[Function]

 This instruction multiplies src and dest together not including the sign bits and stores the result in dest.

» When you selected (.B) for the size specifier (.size), src and dest both are operated on in 8 bits and the
result is stored in 16 bits. When you specified an address register(AO, Al) for either src or dest,
operation is performed on the address register's 8 low-order bits. When dest is the address register, the
8 high-order bits become 0.

» When you selected (.\W) for the size specifier (.size), src and dest both are operated on in 16 bits and
the result is stored in 32 bits. When you specified RO or R1 for dest, the result is stored in R2R0 or
R3R1 accordingly. When the address register is selected for dest, the 24 low-order bits of the 32-bit
operation result is stored. When the address register is selected for src, operation is performed using
the 16 low-order bits of the register.

[Selectable src/dest] * 1

src dest
ROL/RO ROH/R2 ROL/RO
R1L/R1 R1H/R3 R1L/R1
AO/ADAG*? ALIAL/AT*? [AQ] [A1] AO/ADAG*? ALIAL/AT* [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al1] abs24 abs16
#IMM8/#IMM16

*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/
R1/R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest
simultaneously.

[Flag Change]
Fag ([U| I |O|B|S|Z|D]|C

Change| — | — | — | = | — | = | — | —

[Description Example]

MULU.B AO,ROL ; ROL and A0's 8 low-order bits are multiplied.
MULU.W #3,R0

MULU.B ROL,R1L

MULU.W AO,Ram

MULU.W [R1],[[AO]]

111

Chapter 3 Functions 3.2 Functions

Two’s complement
NEG NEGate NEG

[Instruction Code/Number of Cycles]

[Syntax]
NEG.size dest Page=259
: B,W
[Operation]
dest < 0 - dest [dest] <« 0O - [dest]

[Function]
 This instruction takes the 2's complement of dest and stores the result in dest.

* When (\W) is specified for the size specifier (.size) and dest is the address register(A0Q, Al), the 8
high-order bits become 0.

[Selectable dest]

dest*?
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]

Fag ([U| 1 |O|B|S|Z|D]|C
Change] — | — | O | —|O|O|—1]0
Conditions

O : Theflag is set when dest before the operation is - 128 (.B) or - 32768 (.W); otherwise cleared.
S The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in O; otherwise cleared.

C The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]

NEG.B ROL
NEGW Al
NEG.W [[A0]]

112

Chapter 3 Functions 3.2 Functions

No operation
NOP No OPeration NOP
[Syntax] [Instruction Code/Number of Cycles]
NOP Page= 259

[Operation]
PC < PC + 1

[Function]
* This instruction adds 1 to PC.

[Flag Change]
Feg lU| I |O|B|S|Z|D|C

Change| — | — | — | — | — | — | — | —

[Description Example]
NOP

113

Chapter 3 Functions 3.2 Functions

N OT Invel\rlt g_lll_ bits N OT

[Syntax] [Instruction Code/Number of Cycles]

NOT.size dest Page=260
' B,W

[Operation]
dest < dest [dest] < [dest]

[Function]
* This instruction inverts dest and stores the result in dest.

» When (\W) is specified for the size specifier (.size) and dest is the address register(A0, Al), the 8 high-
order bits become 0.

[Selectable dest]

dest*!?
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]

Fag |U| I |O|B|S|Z|D|C
Change| — | — | — | — | O | O | —| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]
NOT.B ROL
NOT.W Al

114

Chapter 3 Functions 3.2 Functions

Logically OR
OR

OR

[Instruction Code/Number of Cycles]
Page= 260

OR

[Syntax]
OR:.size (:format) src,dest
[

G, S (Can be specified)

B,W
[Operation]
dest <« src VvV dest [dest] < src Vv [dest]
dest « [src] Vv dest [dest] « [src] v [dest]
[Function]

 This instruction logically ORs dest and src together and stores the result in dest.

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to perform operation in 16 bits. In this case, the 8 high-order bits become 0. Also, when src
is the address register, the 8 low-order bits of the address register are used as data to be operated on.

* When (\W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest |* * (See the next page for src/dest classified by format.)

dsp:16[A0] dsp:16[A1]
dsp:24[A0] dsp:24[Al]

dsp:16[SB] dsp:16[FB]

abs24

abs16

dsp:16[A0] dsp:16[A1]
dsp:24[A0] dsp:24[Al]

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/A0/AD*? AL/AL/AT* [AQ] [Al] AO/AD/AG*2 ATIAL/AL*2 [AO] [Al]
dsp:8[AQ0] dsp:8[Al] dsp:8[SB] dsp:8[FB] dsp:8[AQ0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[SB] dsp:16[FB]

abs24

abs16

#IMM8/#IMM16

*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 If you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest simul-

taneously.

[Flag Change]

Fag ([U| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | O | O| —| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.

[Description Example]

OR.B Ram:8[SB],ROL

OR.B:G AO,ROL ; AQO's 8 low-order bits and ROL are ORed.
OR.B:G ROL,AO ; ROL is zero-expanded and ORed with AO.
OR.B:S #3,ROL

OR.W:G [R1],[TAO]]

115

Chapter 3 Functio

ns

[src/dest Classified by Format]

3.2 Functions

G format* *
src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/A0AD*? ALIAL/AT* [AO] [A1] AO/AD#AB*? ALJAL/AL*? [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1]
dsp:24[A0] dsp:24[Al]
#IMM8/#IMM16

dsp:16[SB] dsp:16[FB]
abs24 absl6

dsp:16[A0] dsp:16[A1]
dsp:24[A0] dsp:24[Al]

dsp:16[SB] dsp:16[FB]
abs24 absl16

Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,

*1
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.
*2 If you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest simul-
taneously.
S format
src dest
ROL/RO dsp:8[SB] dsp:8[FB] absl6

#IMMB8/#IMM16

R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

116

*2 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,

Chapter 3 Functions 3.2 Functions

Restore register/memory
POP Sor POP

[Syntax] [Instruction Code/Number of Cycles]
POP.size dest Page=263

‘ B,W
[Operation]
dest/[dest] <« M(SP)
SP ~ SP + 2

*1 Even when (.B) is specified for the size specifier (.size), SP is increased by 2.

[Function]
* This instruction restores dest from the stack area.
* When (.\W) is specified for the size specifier (.size) and dest is the address register(A0, Al), the 8 high-
order bits become 0.

[Selectable dest]

dest*?
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO Al [A0] [A1]

dsp:8[AQ0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[AQ0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

*2 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]

Fag |lU| 1 |[O|B|S|Z|D]|C
Change| — | — | — | — | — | — | — | —

[Description Example]

POP.B ROL
POP.W A0

117

Chapter 3 Functions

3.2 Functions

POPC

[Syntax]

POPC dest

[Operation]
* When dest is DCTO, DCT1, DMDO, DMD1,
DRCO, DRC1, SVF or FLG
dest** <« M(SP)
SP ~ SP + 2
*1 The 8 low-order bytes are saved when dest is

DMDO or DMDL1.

[Function]

Restore control register
POP Control register

POPC

[Instruction Code/Number of Cycles]
Page=263

* When dest is FB, SB, SP, ISP or INTB
dest*? «— M(SP)
SP*¥® <« SP + 4
*2 The 3 low-order byte are saved.
*3 4 is not added to SP when dest is SP, or dest

is ISP while U flag is "0".

* This instruction restores from the stack area to the control register indicated by dest.

» Restored stack area is indicated by the U flag.

[Selectable dest]

[Flag Change]
Fag (lU| 1 |]O|B|S|Z|D|C
Change| *2 | *2 | x2 | xD | *D | ¥ | *D | *D

POPC SB

dest
FB SB Spt ISP
INTB
DCTO DCT1 DMDO DMD1
DRCO DRC1 SVF FLG

*1 Operation is performed on the stack pointer indi-
cated by the U flag.

*2 The flag changes only when destis FLG.

118

Chapter 3 Functions 3.2 Functions

Restore multiple registers
POPM POP Multiple POPM
[Syntax] [Instruction Code/Number of Cycles]
POPM dest Page=264

[Operation]
dest*® M(SP)
SP - SP + n1* X 2
SP - SP + n2%2 X 4
*1 nl denotes the number of RO, R1, R2 and R3 registers to be restored.
*2 n2 denotes the number of A0, Al, SB and FB registers to be restored.
*3 The 3 low-order bytes are saved when dest is A0, Al, SB and FB.

[Function]
* This instruction restores the registers selected by dest collectively from the stack area.
* Registers are restored from the stack area in the following order:

FB|SB|A1|AO0 [R3 |R2 |[R1 |RO

< Restored sequentially beginning
with RO

[Selectable dest]

dest™
RO R1 R2 R3 A0 Al SB FB
*3 You can choose multiple dest.

[Flag Change]
Fag |flU| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[Description Example]
POPM RO,R1,A0,SB,FB

119

Chapter 3 Functions 3.2 Functions

Save register/memory/immediate data
PUSH PUSH PUSH

[Syntax] [Instruction Code/Number of Cycles]

PUSH.size src Page=265
' B,W,L

[Operation]

* When the size specifier (.size) is (.B) * When the size specifier (.size) is (\W)
SP «~ SP - 2 SP <= SP - 2
M(SP)** < src/[src] M(SP) < src/[src]

*1 The 8 high-order bits become indeterminate.
Even when (.B) is specified for the size specifier (.size) , SP is decreased by 2.

* When the size specifier (.size) is (.L)
SP < SP - 4
M(SP)*? « srcl/[src]
*2 When srcis address register(A0, Al), the 8 high-order bits become 0.

[Function]
* This instruction saves src to the stack area.
* When (.W) is specified for the size specifier (.size) and srcis the address register, the 16 low-order bits

of the address register are the data to be operated on.

[Selectable src]

src*3
ROL/RO/R2R0 ROH/R2/-
R1L/R1/R3R1 R1H/R3/-
AO/AO A1/A1 [AQ] [A1]

dsp:8[AQ0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[AQ] dsp:24[Al] abs24 abs16
#IMM8/#IMM16/#IMM32

*3 Indirect addressing [src] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]
Fag (lU| 1 |]O|B|S|Z|D|C
Change| — | — | — | — | —|—|—| —

[Description Example]

PUSH.B #5
PUSHW #100H
PUSH.L R2R0

120

Chapter 3 Functions 3.2 Functions

Save effective address
PUSHA PUSH effective Address PUSHA
[Syntax] [Instruction Code/Number of Cycles]
PUSHA src Page=267

[Operation]
SP ~ SP - 4
M(SP)*t <« EVA(src)
*1 The 8 high-order bits become indeterminate.

[Function]
* This instruction saves the effective address of src to the stack area.

[Selectable src]

Src

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[AQ] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

[Flag Change]
Flag Uulljo|B|S|Z|D|C

Change| — | — | — | — | — | — | — | —

[Description Example]
PUSHA Ram:8[FB]
PUSHA Ram:16[SB]

121

Chapter 3 Functions

PUSHC

[Syntax]

PUSHC Src

[Operation]
* When src is DCTO, DCT1, bDMDO, DMD1,
DRCO, DRC1, SVF or FLG
SP < Sp - 2
M(SP)*1< src
*1 When src is DMDO or DMD1, the 8 high-
order bits become indeterminate.

[Function]

Save control register
PUSH Control register

3.2 Functions

PUSHC

[Instruction Code/Number of Cycles]
Page=267

* When srcis FB, SB, SP, ISP or INTB

SP -~ SP -
M(SP)*2« src*®
*2 The 8 high-order bits become 0.

*3 SP before 4 is subtracted is saved when src

is SP, or src is ISP while U flag is "0".

4

« This instruction saves the control register indicated by src to the stack area.

[Selectable src]

Src
FB SB SP= ISP
INTB
DCTO DCT1 DMDO DMD1
DRCO DRC1 SVF FLG

*3 Operation is performed on the stack pointer indicated by the U flag.

[Flag Change]
uj|l

Flag

Change

[Description Example]
PUSHC SB

122

Chapter 3 Functions 3.2 Functions

Save multiple registers
PUSHM PUSH Multiple PUSHM
[Syntax] [Instruction Code/Number of Cycles]
PUSHM Src Page=268

[Operation]
SP ~ SP - n1*® X 2
SP <~ SP - n2¢t X 4
M(SP)*® < src
*1 nl denotes the number of RO, R1, R2 and R3 registers to be saved.
*2 n2 denotes the number of A0, Al, SB and FB registers to be saved.

*3 When srcis A0, Al, SB or FB, the 8 high-order bits become 0.

[Function]

» This instruction saves the registers selected by src collectively to the stack area.
 The registers are saved to the stack area in the following order:

RO|R1| R2| R3| AO|Al|SB|FB

< Saved sequentially beginning with FB

[Selectable src]

src™
RO R1 R2 R3 A0 A1 SB FB
*4 You can choose multiple src.

[Flag Change]
Fag lU| 1 |O|[B|S|Z|D]|C

Change| — | — | — | — | — | —| — | —

[Description Example]
PUSHM RO,R1,A0,SB,FB

123

Chapter 3 Functions 3.2 Functions

Return from interrupt
R E I T REturn from InTerrupt R E I T
[Syntax] [Instruction Code/Number of Cycles]
REIT Page=269

[Operation]

PCML - M(SP)
SP -~ SP + 2
PCH «~ M(SP)*
SP -~ SP + 2
FLG <~ M(SP)
SP -~ SP + 2

*1 The 8 high-order bits are saved.

[Function]
* This instruction restores the PC and FLG that were saved when an interrupt request was accepted to
return from the interrupt handler routine.

[Flag Change]
Fag lU| 1 |O|B|S|Z|D]|C
Change| *1 | *1 | *1 | *1 | *1 | *1 | *1 | *1

*1 Becomes the value in the stack.

[Description Example]
REIT

124

Chapter 3 Functions 3.2 Functions

Calculate sum-of-products
R M PA Repeat MultiPle & Addition R M PA
[Syntax] [Instruction Code/Number of Cycles]
RMPA.size Page= 269

[Operation] ™

Repeat
RIR2R0O <« RIR2RO0 + M(AO) X M(A1)
AO ~ A0 + 217
Al «~ Al + 21>
R3 < R3 -1
Until R3=0

*1 When you set a value 0 in R3, this instruction is ingored.
*2 Shown in ()™ applies when (.B) is selected for the size specifier (.size).

[Function]

* This instruction performs sum-of-product calculations, with the multiplicand address indicated by A0, the
multiplier address indicated by A1, and the count of operation indicated by R3. Calculations are
performed including the sign bits and the result is stored in R1IR2R0.

 The content of the address register when the instruction is completed indicates the next address of the
last-read data.

» When an interrupt request is received during instruction execution, the interrupt is acknowledged after
a sum-of- product addition is completed (i.e., after the content of R3 is decremented by 1).

* Make sure that R1IR2R0 has the initial value set.

[Flag Change]

Fag ([U| I |O|B|S|Z|D]|C
Change| — | — | Q| —| = | —| —| —
Conditions

O : The flag is set when +23%1-1 or -2% is exceeded during operation; otherwise cleared.

[Description Example]
RMPA.B

125

Chapter 3 Functions 3.2 Functions

Rotate left with carry
R O I—C ROtate to Left with Carry R O I—C
[Syntax] [Instruction Code/Number of Cycles]

ROLC.size dest Page=270
' B,W

_‘MSB dest[desf| _ LSB I
[Function]

This instruction rotates dest one bit to the left including the C flag.

[Operation]

When (\W) is specified for the size specifier (.size) and dest is the address register(A0, Al), the 8
high-order bits become 0.

[Selectable dest]

dest*!?
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]

Fag ([U| 1l |O|B|S|Z|D]|C
Change| — | — | — | — | OO | —10O
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in dest = 0; otherwise cleared.
C : The flag is set when the shifted-out bit is 1; otherwise cleared.

[Description Example]
ROLC.B ROL
ROLCW RO
ROLC.W [[A0]]

126

Chapter 3 Functions 3.2 Functions

Rotate right with carry
RO RC ROtate to Right with Carry RO RC
[Syntax] [Instruction Code/Number of Cycles]

RORC.size dest Page=270
' B,W

[Operation]

’_.||\/|SB dest/[dest] LSB |—’| c |

[Function]

This instruction rotates dest one bit to the right including the C flag.

When (\W) is specified for the size specifier (.size) and dest is the address register(A0, Al), the 8
high-order bits become 0.

[Selectable dest]

dest*?
ROL/RO ROH/R2
R1L/R1 R1H/R3
A0 Al [A0] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]

Fag |U| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | O |O|—10
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in dest = 0; otherwise cleared.
C : The flag is set when the shifted-out bit is 1; otherwise cleared.

[Description Example]
RORC.B ROL
RORC.W RO
RORC.W [[AQ]]

127

Chapter 3 Functions 3.2 Functions

ROT ROTate ROT

[Syntax] [Instruction Code/Number of Cycles]
ROT.size src,dest Page=271
: B,W
[Operation] srce<0
L] |
—|MSB dest/[des] LSB [—’,_|
|]

src>0

[Function]

» This instruction rotates dest left or right the number of bits indicated by src. The bit overflowing from LSB
(MSB) is transferred to MSB(LSB) and the C flag.

» The direction of rotate is determined by the sign of src. When src is positive, bits are rotated left; when
negative, bits are rotated right.

» When srcis an immediate, the number of rotates is - 8 to +8(20). You cannot set values less than - 8, equal
to 0, or greater than +8.

» When srcis a register, the number of rotates is -16 to +16. Although you can set 0, no bits are rotated and
no flags are changed. When you set a value less than -17 or greater than +17, the result of rotation is
indeterminate.

» When (.\W) is specified for the size specifier (.size) and dest is the address register(A0, Al), the 8 high-
order bits become 0.

[Selectable src/dest |

src dest* !
ROL/RO ROH/R2
R1H R1L/R1 *2 R1H/R3/*2
AO Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMM4*3

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When srcis R1H, you cannot choose R1 or R1H for dest.

*3 The range of values that can be taken on is - 8 < #IMM4 < +8. However, you cannot set 0.

[Flag Change]

Fag lU| 1 |O|[B|S|Z|D]|C
Change — | — | = |=|O 0O |=|0 *4 When the number of rotates is 0, no flags are changed.
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.
C : The flag is set when the bit shifted out last is 1; otherwise cleared.
[Description Example]
ROT.B #1,ROL ; Rotated left
ROT.B #-1,ROL ; Rotated right
ROT.W R1H,R2
|
128

Chapter 3 Functions 3.2 Functions

Return from subroutine
RTS ReTurn from Subroutine RTS
[Syntax] [Instruction Code/Number of Cycles]
RTS Page=272

[Operation]
PCML < M(SP)
SP - SP + 2
PCH <« M(SP)*
SP - SP + 2
*1 The 8 low-order bits are saved.

[Function]

 This instruction causes control to return from a subroutine.

[Flag Change]

Fag ([U| 1 |O|B|S|Z|D]|C
Change| — | — | — | = | — | = | = | —

[Description Example]
RTS

129

Chapter 3 Functions 3.2 Functions

Subtract with borrow
S B B SuBtract with Borrow S B B
[Syntax] [Instruction Code/Number of Cycles]
SBB.silze src,dest Page= 273

[Operation]
dest <« dest - src - C

[Function]

 This instruction subtracts src and inverted C flag from dest and stores the result in dest.

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0. Also, when src
is the address register, the 8 low-order bits of the address register are used as data to be operated on.

* When (\W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest |

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/A0HAG* AL/AL/AT* [AQ] [A1] AO/AQHAG* AL/AL/AL* [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB/#IMM16

*1 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest
simultaneously.

[Flag Change]

Fag ([U| 1]|]O|B|S|Z|D]|C
Change| — | — 1 O |—]|O|O|—|0O
Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.\W) or -32768 (.W), or +127
(.B) or -128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

The flag is set when the operation resulted in O; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than 0;
otherwise cleared.

N

[Description Example]
SBB.B #2,ROL
SBB.W AQ,RO
SBB.B AO,ROL ; AO's 8 low-order bits and ROL are operated on.
SBB.B ROL,AQ ; ROL is zero-expanded and operated with AO.

|
130

Chapter 3 Functions 3.2 Functions

Subtract & conditional jump
S B\] NZ SuBtract then Jump on Not Zero S B\] NZ
[Syntax] [Instruction Code/Number of Cycles]

SBJINZ.size src,dest,label Page= 275
' B,W

[Operation]
dest <« dest - src
if dest # 0 then jump label

[Function]

* This instruction subtracts src from dest and stores the result in dest.

» When the operation resulted in any value other than 0, control jumps to label. When the operation
resulted in O, the next instruction is executed.

» The op-code of this instruction is the same as that of ADIJNZ.

* When (\W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest/label |

src dest label
ROL/RO ROH/R2
R1L/R1 R1H/R3/-
#IMMA4™ AO Al [AQ] [A1] PC™?-126 < label < PC?+129

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*1 The range of values that can be taken on is -7 < #IMM4 < +8.
*2 The PC indicates the start address of the instruction.

[Flag Change]
Fag ([U| 1 |O|B|S|Z|D]|C

Change| — | — | — | = | = | = | — | —

[Description Example]
SBINZ.W #1,R0,label
SBINZW #2,[Al],label

131

Chapter 3 Functions 3.2 Functions

Store on condition
Store Condition on Condition

SCCnd SCCnd

[Syntax] [Instruction Code/Number of Cycles]
SCCnd label Page=276
[Operation]
if truethen dest <« 1 if true then [dest] <« 1
else dest « O else [dest] < O
[Function]

* When the condition specified by Cnd is true, this instruction stores a 1 in dest ; when the condition is
false, it stores a 0 in dest.

» When dest is the address register(A0, Al), the 8 high-order bits of the address register become 0.

* There are following types of Cnd.

Cnd Condition Expression|| Cnd Condition Expression
GEUIC| C=1 Equal to or greater than = LTU/NC|C=0 Smaller than >
Cflagis 1. Cflagis 0.
EQ/z |zZ=1 Equal to = NE/NZ |Z=0 Not equal *
Zflagis 1. Zflag is 0.
GTU |CAZ=1 Greater than < LEU |CAZ=0 Equal to or smaller than =
Pz S=0 Positive or zero 0= N S=1 Negative 0>
GE |SVO0=0 Equal to or greater than = LE (SV0) VZ=1| Equal to or smaller than =
(signed value) (signed value)
GT | (SV0)VZ=0| Greater than (signed value) < LT SVO0=1 Smaller than (signed value) >
0 0=1 Oflagis 1. NO 0=0 Oflagis 0.
[Selectable dest]
dest*?
RO R2
R1 R3
AO Al [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]

Fag (lU| 1 |]O|B|S|Z|D|C
Change| — | — | — | — | — | — | —| —
[Description Example]

SCC ROL

SCC [dsp:8[A0]]

132

Chapter 3 Functions 3.2 Functions

String compare unequal
SCM PU String CoMPare Unequal SCM PU
[Syntax] [Instruction Code/Number of Cycles]
SCMPU.silze Page=277

[Operation]

* When the size specifier (.size) is (.B) * When the size specifier (.size) is (.\W)
Repeat Repeat
M(AO) — M(A1) (compared by byte) M(AO) — M(A1) (compared by byte)
tmp0 <« M(AO) If M(AO)=M(A1) and M(A0)20 then M(AO+1)-M(A1+1)
tmp2 < M(AL) (compared by byte)
A0 <« AO0+1 tmp0 < M(AO)
Al <« Al+1 tmpl < M(AO0+1)
Until (tmp0=0) 11 (tmpO£tmp2) tmp2 <« M(AL)
tmpO0, tmp2: temporary registers tmp3 « M(Al+1)

A0 <« AO0+2

Al < Al+2
Until (tmp0=0) 1 (tmp1=0) n (tmp0£tmp2) 11 (tmpl#tmp3)
tmpO0, tmp1l, tmp2, tmp3: temporary registers

[Function]
» Compares strings until contents do not match when compared in the address incrementing direction
from the comparison address (AO) to the compared address (A1), until M(AO) = 0 or M(A0+1)=0 (when
(.W) is specified for the size specifier (.size)) .
» The contents of the address register (A0, A1) when the instruction is terminated become indetermi-
nate.
» When an interrupt is requested during instruction execution, the interrupt is accepted after comparison

of one data is completed.

[Flag Change]

Fag (lU| 1 |O|B|S|Z|D|C
Change|l — | — | O |—|O|O|—]0
Conditions

O : The flag is set when a signed operation of M(A0)—M(A1) resulted in exceeding +127 or
-128; otherwise cleared.

S : The flag is set when the operation of M(A0)-M(A1) resulted in MSB = 1; otherwise cleared.

Z : The flag is set when fined 0 in M(AO) and terminated, or M(A0)-M(A1)=0 (when compared result
is matched); the flag is cleared when M(A0)-M(A1)£0 (when compared result is not matched).

C : The flag is set when an unsigned operation of M(AO0)-M(A1) resulted in any value equal to or
greater then O; otherwise cleared.

[Description Example]
SCMPU.W

133

Chapter 3 Functions 3.2 Functions

Shift arithmetic
SHA SHift Arithmetic SHA

[Syntax] [Instruction Code/Number of Cycles]
SHA size src,dest Page=278
' B,W,L
[Operation]]
When src <0 - {MSB dest[dest)] LSBf— C |
When src >0 | C |0—| MSB dest/[dest] LSB |1— 0
[Function]

» This instruction arithmetically shifts dest left or right the number of bits indicated by src. The bit over-
flowing from LSB(MSB)is transferred to the C flg.

» The direction of shift is determined by the sign of src. When src is positive, bits are shifted left; when
negative, bits are shifted right.

» When srcis an immediate and you selected (.B) or (.\W) for the size specifier (.size), the number of
shifts is -8 to +8(#0). You cannot set values less than -8, equal to 0, or greater than +8. When you
selected (.L) for the size specifier (.size), the number of shifts is -16 to +16(#0). You cannot set values
less than -16, equal to O, or greater than +16.

» When srcis a register, the number of shifts is -16 to +16. Although you can set 0, no bits are shifted
and no flags are changed. When you set a value less than -16 or greater than +16, the result of shift
is indeterminate.

» When (.L) is specified for the size specifier (.size) and dest is the address register, dest is zero-
extended to perform operation in 32 bits. The 24 low-order bits of the operation result are stored in
dest.

[Selectable src/dest |

src dest* !
ROL/RO/R2R0 ROH/R2/-
R1H*? R1L/R1/R3R1*? R1H/R3/-*2
AO/AQ Al/Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMMA/#IMM8*2

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When srcis R1H, you cannot choose R1, R1H or R3R1 for dest.

*3 When (.B) or (.\W) is selected for the size specifier (.size), the range of values that can be taken on is
-8 <#IMM4 < +8(#20). When (.L) is selected for the size specifier (.size), the range of values that can
be taken on is -16 < #IMM8 < +16 (z0).

134

Chapter 3 Functions 3.2 Functions

[Flag Change J* *

Fag ([U| 1 |O|B|S|Z|D]|C
Change| — | — |O| = |00 =10 *1 When the number of shifts is 0, no flags are changed.
Conditions

O*? : The flag is cleared when all the shift resulted in MSB and shift out bit are the same value;
otherwise set.

S*2 : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z*? : The flag is set when the operation resulted in 0; otherwise cleared.

C*2 : The flag is set when the bit at last shifted out is 1; otherwise cleared.

*2 When (.L) is specified for the sign specifier (.size) and dest is the address register(A0, Al), the flag
become indeterminate.

[Description Example]

SHA.B #3,ROL ; Arithmetically shifted left
SHA.B #-3,ROL ; Arithmetically shifted right
SHA.L R1H,Ram:8[A1]

SHAW RIH,[A1]]

135

Chapter 3 Functions

3.2 Functions

Shift logical
SH I— SHift Logical SH L
[Syntax] [Instruction Code/Number of Cycles]
SHL.size src,dest Page=281

: B,W,L
[Operation]

When src< 0 0 —|MSB dest[dest] LSBl—| C]

When src> 0 [C——{MSB dest[des] LSB|—— 0

[Function]

* This instruction logically shifts dest left or right the number of bits indicated by src. The bit overflowing

from LSB (MSB) is transferred to the C flag.

» The direction of shift is determined by the sign of src. When src is positive, bits are shifted left; when

negative, bits are shifted right.

* When srcis an immediate and (.B) or (.W) is specified for the size specifier (.size), the number of shifts
is -8 to +8(#0). You cannot set values less than -8, equal to 0, or greater than +8. When (.L) is
specified for the size specifier (.size), the number of shifts is -16 to +16(#0). You cannot set values

less than -16, or greater than +16.

* When srcis a register, the number of shifts is -16 to +16. Although you can set 0, no bits are shifted
and no flags are changed. When you set a value less than -16 or greater than +16, the result of shift

is indeterminate.

[Selectable src/dest |

src dest* !
ROL/RO/R2R0 ROH/R2/-
R1H*2 R1L/R1/R3R1*? R1H/R3/-*?

AO/AQ AL/AL [AOQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMM4 *3
*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/

R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2
*3

When srcis R1H, you cannot choose R1, R1H or R3R1 for dest.
When (.B) or (.\W) is selected for the size specifier (.size), the range of values that can be taken on is

-8 < #IMM4 < +8(20). When (.L) is selected for the size specifier (.size), the range of values that can be

taken on is -16 < #IMM8 < +16 (#0).

136

Chapter 3 Functions 3.2 Functions

[Flag Change J* *

Fag ([U| 1 |O|B|S|Z|D]|C
Change| — |— | — | =|0O|0O|=|0]|™ When the number of shifts is 0, no flags are changed.
Conditions

S*2; The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z*2: The flag is set when the operation resulted in 0; otherwise cleared.

C*2. The flag is set when the bit shifted out last is 1; otherwise cleared.

*2 When (.L) is specified for the sign specifier (.size) and dest is the address register(A0, Al), the flag
become indeterminate.

[Description Example]

SHL.B #3,ROL ; Logically shifted left
SHL.B #-3,ROL ; Logically shifted right
SHL.L R1H,Ram:8[A1]

SHL.W R1H,[[AO]]

137

Chapter 3 Functions

3.2 Functions

SIN

[Syntax]

SIN.size
|

[Operation] ™

» When size specifier (.size) is (.B)

While R3#0 Do
M(A1l) < M(AO)
Al -~ Al +
R3 <~ R3 -
End

1
1

String input
String INput

SIN

[Instruction Code/Number of Cycles]
Page=283

» When size specifier (.size) is (W)

While R3#0 Do
M(A1) < M(AO0)
Al ~ Al + 2

End

R3 < R3 -1

*1 When you set a value 0 in R3, this instruction is ingored.

[Function]

* Transfers strings from the fixed source address indicated by AO to the destination address indicated by

Al in the address incrementing direction as many times as specified by R3.
» Set the source of transfer address in A0, the destination address in Al, and the transfer count in R3.

» The content of A1 when the instruction is terminated indicates the next address following the last data

transferred.

* When an interrupt is requested during instruction execution, the interrupt is accepted after comparison

of one data is completed.

[Flag Change]

Flag | U

I | O|B

Change| — | — | —

[Description Example]
SIN.W

138

Chapter 3 Functions

3.2 Functions

SMOVB

[Syntax]

SMOVB.size
|

Transfer string backward
String MOVe Backward
[Instruction Code/Number of Cycles]

[Operation] ™

* When size specifier (.size) is (.B)

While R3#0 Do
M(A1)

A0
Al

R3
End

*1 When you set a value 0 in R3, this instruction is ingored.

[Function]

-

ttt

M(AO)

AO
Al
R3

N

SMOVB

Page=284

» When size specifier (.size) is (W)

While R3#0 Do
M(Al) <«
A0 -
Al -
R3 -
End

M(AO)
A0 -
Al -
R3 -

= NN

* This instruction transfers string in successively address decrementing direction from the source ad-
dress indicated by AO to the destination address indicated by Al.

» Set the transfer count in R3.

» The address register(A0, A1) when the instruction is completed contains the next address of the last-

read data.
* When an interrupt request is received during instruction execution, the interrupt is acknowledged after

one data transfer is completed.

[Flag Change

]

Flag | U

Change| —

[Description Example]

SMOVB.B

139

Chapter 3 Functions

SMOVF

[Syntax]

SMOVF.size
|

Transfer string forward
String MOVe Forward

[Operation] ™

* When size specifier (.size) is (.B)

While R3#0 Do
M(Al) <«
A0 -
Al -
R3 -
End

M(AO)
AO + 1
Al + 1
R3 - 1

3.2 Functions

SMOVF

[Instruction Code/Number of Cycles]

Page=284

» When size specifier (.size) is (W)

While R3#0 Do
M(Al) <«
A0 -
Al -
R3 -
End

*1 When you set a value 0 in R3, this instruction is ingored.

[Function]

M(AOQ)

A0 + 2
Al + 2
R3 - 1

« This instruction transfers string in successively address incrementing direction from the source ad-
dress indicated by AQO to the destination address indicated by Al.

* Set the transfer count in R3.

» The address register (A0, A1) when the instruction is completed contains the next address of the last-

read data.

* When an interrupt request is received during instruction execution, the interrupt is acknowledged after

one ansfer is completed.

[Flag Change]

Flag | U | |

Change| — | —

[Description Example]

SMOVF.W

140

Chapter 3 Functions 3.2 Functions

S M OVU String;-rlf/lrg(f; SLjrrl'lr:—:'%ual S M OVU

[Syntax] [Instruction Code/Number of Cycles]

SMOVU.size Page=285
: B,W

[Operation]

* When size specifier (.size) is (.B) » When size specifier (.size) is (W)
Repeat Repeat
M(Al) < M(AO) (transfered by byte) M(Al) < M(AO) (transfered by word)
tmp0 <« M(AO) tmp0 <« M(AO)
AO -~ A0 + 1 tmpl <« M(AO+1)
Al ~ Al + 1 A0 ~ A0 + 2
Until tmp0 =0 Al ~ Al + 2
tmpO0: temporary register Until (tmp0 = 0) i (tmp1 = 0)
tmpO, tmpl: temporary registers
[Function]

» Transfers strings from the source address indicated by AO to the destination address indicated by Al in
the address incrementing direction until O is detected.
» The contents of the address register (A0, A1) when the instruction is terminated become indetermi-

nate.
» When an interrupt is requested during instruction execution, the interrupt is accepted after comparison

of one data is completed.

[Flag Change]
Fag |lU| I |O|[B|S|Z|D]|C
Change| — | — | — | — | —|—|—| —

[Description Example]
SMOVU.B

141

Chapter 3 Functions 3.2 Functions

Store string output S O U T

SO U T String OUTput
[Syntax] [Instruction Code/Number of Cycles]
SOUT.size Page=285
: B,W
[Operation] ™
* When size specifier (.size) is (.B) » When size specifier (.size) is (W)
While R3#0 Do While R3#0 Do
M(A1l) < M(A0) M(A1) < M(A0)
A0 ~ A0 + 1 A0 ~ A0 + 2
R3 < R3 - 1

R3 «~ R3 - 1
End

End

*1 When you set a value 0 in R3, this instruction is ingored.

[Function]
* This instruction transfers strings from the source address indicated by AO to the fixed destination

address indicated by Al in the address incrementing direction as many times as specified by R3.
» Set the source of transfer address in A0, the destination address in Al, and the transfer count in R3.

» The content of AO when the instruction is terminated indicates the next address following the last

data transferred.
» When an interrupt request is received during instruction execution, the interrupt is acknowledged

after one data transfer is completed.

[Flag Change]
Flag |[U[1 |O|B|S|Z|D]|C

Change| — | — | —

[Description Example]
SOUT.W

|
142

Chapter 3 Functions 3.2 Functions

Store string S ST R

SST R String SToRe
[Syntax] [Instruction Code/Number of Cycles]
SSTR.size Page=286
: B, W
[Operation] ™
* When size specifier (.size) is (.B) » When size specifier (.size) is (W)
While R3#0 Do While R3%0 Do
M(Al) « ROL M(A1) < RO
Al «~ Al + 1 Al « Al + 2
R3 « R3 -1

R3 « R3 -1
End

End

*1 When you set a value 0 in R3, this instruction is ingored.

[Function]
* This instruction stores string, with the store data indicated by ROL/RO, the transfer address indi-

cated by Al, and the transfer count indicated by R3.
» The content of A1 when the instruction is terminated indicates the next address following the last

data transferred.
» When an interrupt request is received during instruction execution, the interrupt is acknowledged

after one data transfer is completed.

[Flag Change]
Fag |U| 1 |]O|B|S|Z|D|C

Change| — | — | —

[Description Example]
SSTR.B

|
143

Chapter 3 Functions 3.2 Functions

ST C Transfer from control register ST C

STore from Control register
[Syntax] [Instruction Code/Number of Cycles]
STC src,dest Page= 286

[Operation]
dest <« src

[Function]
» This instruction transfers the control register indicated by src to dest. When dest is memory, specify
the address in which to store the low-order address.
* When memory is specified for dest, the following bytes of memory are required.
2 bytes : DMDO*!, DMD1*!, FLG, DCTO, DCT1, DRCO, DRC1, SVF
4 bytes : FB*1, SB*1, SP*, ISP*!, INTB*!, VCT*!, SVP*!, DMAO*!, DMA1*!, DRAO*!, DRA1*1,
DSAO0*!, DSA1*

*1 The 1 high-order byte of dest becomes indeterminate.

[Selectable src/dest]

src dest
DMDO DMD1 DCTO DCT1 RO R2
DRCO DRC1 FLG SVF R1 R3
A0 Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[Al] abs24 abs16

FB SB Sp*2 ISP R2R0 -

INTB VCT SVP R3R1 -

DMAO DMA1 DRAO DRA1 AO Al [AQ] [A1]

DSAO0 DSAl dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*2 Operation is performed on the stack pointer indicated by the U flag.

[Flag Change]
Fag |[U| 1]|]O|B|S|Z|D]|C

Change| — | — | — | = | = | = | — | —

[Description Example]
STC FLG,RO
STC FB,A0

144

Chapter 3 Functions 3.2 Functions

Save context
STCTX STore ConTeXt STCTX
[Syntax] [Instruction Code/Number of Cycles]
STCTX abs16,abs24 Page=288

[Operation]

[Function]

* This instruction saves task context to the stack area.

* Set the RAM address that contains the task number in abs16 and the start address of table data in abs24.

* The required register information is specified from table data by the task number and the data in the
stack area is transferred to each register according to the specified register information. Then the SP
correction value is subtracted to the stack pointer (SP). For this SP correction value, set the number of
bytes you want to the transferred. Calculated as 2 bytes when transferring the RO, R1, R2, or R3
registers. A0, Al, SB, and FB are calculated as 4 bytes.

« Information on transferred registers is configured as shown below. Logic 1 indicates a register to be
transferred and logic O indicates a register that is not transferred.

MSB LSB

FB|SB|Al1|AO0 |R3 |[R2 |[R1 |RO

— Transferred sequentially
beginning with FB

* The table data is comprised as shown below. The address indicated by abs24 is the base address of
the table. The data stored at an address apart from the base address as much as twice the content of
abs16 indicates register information, and the next address contains the stack pointer correction value.

abs24 — Bfatseb;elddress Register information for the task whose task number = 0. [
of table .
(See the above diagram.)
SP correction value for the task whose task number = 0.
. L i i i abs16 X2
Direction in Register information for the task whose task number = 1.
Wh'Ch address (See the above diagram.)
increases .
SP correction value for the task whose task number = 1.
‘ R R
L
Register information for the task whose task number = n.,
(See the above diagram.)
SP correction value for the task whose task number = n™., *1 n=0to 255
[Flag Change]
Fag |lU| 1]|]O|B|S|Z|D]|C

Change| — | — | — | = | = | = | — | —

[Description Example]
STCTX Ram,Rom_TBL

145

Chapter 3 Functions 3.2 Functions

Conditional transfer
STNZ STore on Not Zero STNZ
[Syntax] [Instruction Code/Number of Cycles]

STNZ.size src,dest Page= 288
: B,W

[Operation]
if Z=0then dest/[dest] < src

[Function]
* This instruction transfers src to dest when the Z flag is 0. dest is not changed when the Z flag is 1.
» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0.
* When (\W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order

bits become 0.

[Selectable src/dest |

src dest* !
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO0/AD A1/AL [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMM8/#IMM16

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]
Fag |l U| 1 |]O|B|S|Z|D]|C

Change| — | — | — | — | = | = | — | —

[Description Example]

STNZ.B #5Ram:8[SB]
STNZW #15,[[A1]]

146

Chapter 3 Functions 3.2 Functions

Conditional transfer
STZ STore on Zero STZ
[Syntax] [Instruction Code/Number of Cycles]

STZ.size src,dest Page=289
' B, W

[Operation]
if Z=1then dest/[dest] <« src

[Function]
 This instruction transfers src to dest when the Z flag is 1. dest is not changed when the Z flag is 1.
» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0.
* When (\W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order

bits become 0.

[Selectable src/dest]

src dest* !
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO0/AQ A1/AL [A0] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

#IMMB8/#IMM16

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]
Fag |U| I |]O|B|S|Z|D|C

Change| — | — | — | = | = | — | — | —

[Description Example]

STZ.B #5,Ram:8[SB]
STZW #10,[[AQ]]

147

Chapter 3 Functions 3.2 Functions

Conditional transfer
STZX STore on Zero eXtention STZX
[Syntax] [Instruction Code/Number of Cycles]

STZX.size srcl,src2,dest Page=289
' B,W

[Operation]

If Z=1then dest < srcl If Z=1then[dest] <« srcl
else dest < src2 else [dest] <« src2
[Function]
 This instruction transfers srcl1 to dest when the Z flag is 1. When the Z flag is 0, it transfers src2 to
dest.

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0.
» When (\W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order

bits become 0.

[Selectable src/dest |

src dest* !
ROL/RO ROH/R2
R1L/R1 R1H/R3
AO/AQ A1/Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB/#IMM 16

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]
Fag ([U| 1 |]O|B|S|Z|D]|C

Change| — | — | — | — | — | = | — | —

[Description Example]

STZX.B #1,#2,Ram:8[SB]
STZX.W #5#10,[R0]

148

Chapter 3 Functions 3.2 Functions

Subtract without borrow
SU B SUBtract SU B

[Syntax] [Instruction Code/Number of Cycles]
SUB.size (:format) src,dest Page=290
' G, S (Can be specified)
B,W,L
[Operation]
dest <« dest - src [dest] <« [dest] - src
dest <« dest - [src] [dest] <« [dest] - [src]
[Function]

* This instruction subtracts src from dest and stores the result in dest.

* When (.B) is specified for the size specifier (.size) and destis the address register (AQ, Al), srcis zero-
extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0. Also, when src
is the address register, the 8 low-order bits of the address register are used as data to be operated on.

* When (\W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

* When (.L) is specified for the size specifier (.size) and dest is the address register, dest is zero-
extended to perform operation in 32 bits. The 24 low-order bits of the operation result are stored in
dest. When src is the address register, srcis zero-extended to perform operation in 32 bits. The flags

also change states depending on the result of 32-bit operation.

[Selectable src/dest]* * (See the next page for src/dest classified by format.)
src dest
ROL/RO/R2R0 ROH/R2/- ROL/RO/R2R0 ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO/AO0/A0*2 A1/A1/A1*? [AQ] [A1] AO/AO0/A0*2 A1/A1/A1*2 [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB/#IMM16/#IMM32

*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest
simultaneously.

[Flag Change]

Fag |U| | |O|B|S|Z|D|C
Change| — | — 1 O| —|O|O|—-1]0O
Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or
-2147483648(.L), +32767 (\W) or -32768 (W), or +127 (.B) or -128 (.B); otherwise cleared.

S : Theflag is set when the operation resulted in MSB = 1; otherwise cleared.

The flag is set when the operation resulted in O; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than O;
otherwise cleared.

N

149

Chapter 3 Functions 3.2 Functions

[Description Example]

SUB.B AO,ROL ; AQ's 8 low-order bits and ROL are operated on.
SUB.B ROL,A0 ; ROL is zero-expanded and operated with AO.
SUB.B Ram:8[SB],ROL

SUBW #2,[A0]

[src/dest Classified by Format]

G format* !
src dest
ROL/RO/R2R0 ROH/R2/- ROL/R0O/R2R0O ROH/R2/-
R1L/R1/R3R1 R1H/R3/- R1L/R1/R3R1 R1H/R3/-
AO0/AO0/A0*2 A1/A1/A1*? [AQ] [A1] AO/AQ/A0*2 A1/A1/A1*? [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMMB/HIMM16/#IMM32
*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest
simultaneously.

S format

src dest =
ROL/RO dsp:8[SB] dsp:8[FB] absl6

#IMMB/#IMM16**

*3 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SPISP/SP, dsp:8[SP], and #IMM.

*4 You can specify only (.B) or (.W) for the size specifier (.size).

150

Chapter 3 Functions 3.2 Functions

Subtract extend without borrow
SU BX SUBtract eXtend SU BX
[Syntax] [Instruction Code/Number of Cycles]
SUBX src,dest Page=294

[Operation]

dest <« dest - EXT(src) [dest] < [dest] - EXT(src)
dest « dest - EXT([src]) [dest] « [dest] - EXT([src])
[Function]

* This instruction subtracts 8-bit src from dest (32 bits) after sign-extending src to 32 bits and stores the
result in dest.

* When dest is the address register (AO, Al), dest is zero-extended to perform operation in 32 bits. The
24 low-order bits of the operation result are stored in dest. The flags also change states depending on
the result of 32-bit operation.

[Selectable src/dest |* !

src dest
ROL ROH R2R0 -
R1L R1H R3R1 -
AO Al [AQ] [A1] AO Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8

*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]

Fag |[U| I |O|B|S|Z|D]|C
Change| — | — | O | —|O|O|—=1]0O
Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or
-2147483648(.L); otherwise cleared.

S : Theflag is set when the operation resulted in MSB = 1; otherwise cleared.

The flag is set when the operation resulted in O; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than O;
otherwise cleared.

N

[Description Example]

SUBX ROL,A0
SUBX Ram:8[SB],R2R0
SUBX #2,[A0]

151

Chapter 3 Functions 3.2 Functions

Test
TST TesT TST
[Syntax] [Instruction Code/Number of Cycles]

TST.size(:format) src,dest Page= 296
' G, S (Can be specified)

B,W

[Operation]
dest /A src

[Function]

» Each flag in the flag register changes state depending on the result of logical AND of src and dest.

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to perform operation in 16 bits. Also, when srcis the address register, the 8 low-order bits of
the address register are used as data to be operated on.

* When (\W) is specified for the size specifier (.size) and srcis the address register, the 16 low-order bits

of the address register are the data to be operated on.

[Selectable src/dest] (See the next page for src/dest classified by format.
src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/ADHAO* ALAL/ATH [AD] [AL] AO/ADAGH ALAL/ATH [AQ] [AL]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] |dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

*1 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest
simultaneously.

[Flag Change]

Fag |U| I |O|B|S|Z|D]|C
Change| — | — | — | = | O|O| —| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]

TST.B #3,ROL
TST.B AO0,ROL ; AQ's 8 low-order bits and ROL are operated on.
TST.B ROL,AO0 ; ROL is zero-expanded and operated on with AO.

152

Chapter 3 Functions 3.2 Functions

[src/dest Classified by Format]

G format
src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/AO0/AE* AL/AL/AE [AQ] [Al] AO/AQ/AD* AL/AL/AL* [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16

*1 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest
simultaneously.

S format

src dest
ROL/RO dsp:8[SB] dsp:8[FB] absl6

#IMMB8/#IMM16

153

Chapter 3 Functions

3.2 Functions

UND

[Syntax]
UND

[Operation]

Interrupt for undefined instruction

SP ~ SP -
M(SP) ~ FLG
SP ~ SP -
M(SP)*: ~ (PC 1H
SP ~ SP -
M(SP) < (PC + 1L
PC ~ M(FFFFDC16)

UNDefined instruction

UND

[Instruction Code/Number of Cycles]

*1 The 8 high-order bits become indeterminate.

[Function]

« This instruction generates an undefined instruction interrupt.

» The undefined instruction interrupt is a nonmaskable interrupt.

[Flag Change]

Fag |[U| 1 |O|B|S

Change| O | Q| — | — | —

O |O

becomes as shown on the left.

Conditions
U : Theflagis cleared.
| : Theflagis cleared.
D : Theflagis cleared.

[Description Example]
UND

154

Page=298

c | *1 The flags are saved to the stack area before the UND
instruction is executed. After the interrupt, the flag status

Chapter 3 Functions 3.2 Functions

Wait
WAIT WAIT WAIT
[Syntax] [Instruction Code/Number of Cycles]
WAIT Page= 298

[Operation]

[Function]

 Stops program execution. Program execution is restarted when an interrupt whose priority is higher
than that of the stop/wait restoring interrupt priority setup bit is accepted or a reset is generated.

[Flag Change]
Fag |[U| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[Description Example]

WAIT

155

Chapter 3 Functions 3.2 Functions

Exchange
XCHG eXCHanGe XCHG
[Syntax] [Instruction Code/Number of Cycles]

XCHG.size src,dest Page=299
: B,W

[Operation]
dest/[dest] <— src

[Function]

* This instruction exchanges contents between src and dest.

» When (.B) is specified for the size specifier (.size) and dest is address register(A0, Al), 24 bits of zero-
expanded src data are placed in the address register and the 8 low-order bits of the address register
are placed in src.

* When (.\W) is specified for the size specifier (.size) and dest is address register, 24 bits of zero- ex-
panded src data are placed in the address register and the 16 low-order bits of the address register are
placed in src. When src is address register, 24 bits data are placed in the address register and the 16
low-order bits of the address register are placed in dest.

[Selectable src/dest |

src dest* !
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO Al AOQ/A0 Al/Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

[Flag Change]
Fag lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[Description Example]

XCHG.B ROL,AO0 ; AO's 8 low-order bits and ROL's zero-expanded value are exchanged.
XCHG.W RO,Al
XCHG.B ROL,[A0]

156

Chapter 3 Functions 3.2 Functions

Exclusive OR
XO R eXclusive OR XO R
[Syntax] [Instruction Code/Number of Cycles]

XOR:.size src,dest Page=299
: B,W

[Operation]

dest <« dest V src [dest] <« [dest] V src
dest « dest vy [src] [dest] < [dest] V [src]
[Function]

* This instruction exclusive ORs src and dest together and stores the result in dest.

» When (.B) is specified for the size specifier (.size) and destis the address register (A0, Al), srcis zero-
extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0. Also, when src
is the address register, the 8 low-order bits of the address register are used as data to be operated on.

* When (\W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when srcis the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest |* !

src dest
ROL/RO ROH/R2 ROL/RO ROH/R2
R1L/R1 R1H/R3 R1L/R1 R1H/R3
AO/ADHAG*2 ALIALHAT* [AQ] [A1] AO/AQ/AD*2 AL/AL/AL*2 [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
#IMM8/#IMM16
*1 Indirect addressing [src] and [dest] can be used in all addressing except ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or Al for src and dest
simultaneously.

[Flag Change]

Fag |U| I |O|B|S|Z|D|C
Change| — | — | — | — | OO | —=| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.

[Description Example]
XOR.B AOQ,ROL ; AO's 8 low-order bits and ROL are exclusive ORed.
XOR.B ROL,AOQ ; ROL is zero-expanded and exclusive ORed with AO.
XOR.B #3,ROL
XOR.W AO0,A1
XOR.W [AQ],[[AL]]

|
157

Chapter 3 Functions 3.3 Index instructions

3.3 Index instructions

This section explains each INDEX instruction individually.

The INDEX instructions are provided for use on arrays. The execution addresses are derived by unsigned
adding the addresses indicated by src and dest of the next instruction to be executed after the INDEX
instruction to the content of src of the INDEX instruction.

The modifiable size is from 0 to 65535(64KB).

No interrupt request is not accepted immediately after the INDEX instruction.

The 10 types of INDEX instructions shown below are supported.

(1) INDEXB.size src
The INDEXB (INDEX Byte) instruction is used for arrays arranged in bytes.
The execution addresses for the INDEXB instruction are derived by unsigned adding the src content of
the INDEXB instruction to the addresses indicated by src and dest of the next instruction to be executed.
For the next instruction executed after the INDEXB instruction, be sure to choose memory for both src
and dest. Also, specify .B for the size specifier.

Example: mem1 address
INDEXB.B src v
MOV.B:G mem1,mem2 The src content of > @
INDEXB Transfer
Specify .B Memory L

Operation in C language = =
mem2 address

char src; ‘
char mem1f},mem2[]; The src content of >
INDEXB

memz2[src] = mem1[src];

Instruction which is modified by INDEXB

The src and dest of

ADC, ADD:G*'2, AND, CMP:G*!, MAX, MIN, MOV:G***3, MUL, MULU, OR, SBB, SUB,
TST, XOR.

*1 You can only specify G format.

*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXB instruction.

158

Chapter 3 Functions 3.3 Index instructions

(2) INDEXBD.size src
The INDEXBD (INDEX Byte Dest) instruction is used for arrays arranged in bytes.
The execution addresses for the INDEXBD instruction are derived by unsigned adding the src content of
the INDEXBD instruction to the addresses indicated by dest(some instructions are src) of the next in-
struction to be executed.
For the next instruction executed after the INDEXBD instruction, be sure to choose memory for
dest(some instructions are src). Also, specify .B for the size specifier.

Example:
b mem1 address Transfer
INDEXBD.B src
MOV .B: meml,mem2
@) G eml,me
Specify .B Memory
Operation in C language
. mem2 address
char src,mem1; .
har mem?2[];
cha em2(l; The src content of >
INDEXBD
mem2[src] = mem1; D

Instruction which is modified by INDEXBD

The dest of

ABS, ADC, ADCF, ADD:G*'*2, AND, CLIP, CMP:G*!, DEC, INC, MAX, MIN, MOV:G**3,
MUL, MULU, NEG, NOT, OR, POP, ROLC, RORC, ROT, SBB, SHA, SHL, STNZ, STZ,
STZX, SUB, TST, XCHG, XOR.

The src of

DIV, DIVU, DIVX, PUSH

*1 You can only specify G format.

*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXBD instruction.

159

Chapter 3 Functions 3.3 Index instructions

(3) INDEXBS.size src
The INDEXBS (INDEX Byte Src) instruction is used for arrays arranged in bytes.
The execution addresses for the INDEXBS instruction are derived by unsigned adding the src content of
the INDEXBS instruction to the addresses indicated by src of the next instruction to be executed.
For the next instruction executed after the INDEXBS instruction, be sure to choose memory for src.
Also, specify .B for the size specifier.

Example:
meml1 address
INDEXBS.B src v
MOV'%:G —mwemz The src content of >
Specify .B Memory INDEXBS Transfer
Operation in C language
char src,memz2;
char mem1(];
mem2 = meml[src], mem?2 address

Instruction which is modified by INDEXBS

The src of
ADC, ADD:G**2, AND, CMP:G*!, MAX, MIN, MOV:G**3, MUL, MULU, OR, SBB, SUB,
TST, XOR

*1 You can only specify G format.
*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXBS instruction.

160

Chapter 3 Functions 3.3 Index instructions

(4)INDEXW.size src
The INDEXW (INDEX Word) is used for arrays arranged in words.
The execution addresses for the INDEXW instruction are derived by unsigned adding twice the src
content of the INDEXW instruction to the addresses indicated by src and dest of the next instruction to
be executed. The range of src of INDEXW instruction that can be taken on is from 0 to 32767. You can
not set otherwise.
For the next instruction executed after the INDEXW instruction, be sure to choose memory for both src
and dest. Also, specify .W for the size specifier.

Example: meml1 address
INDEXW.B src) v
. Twice the src
MOV-V_\(G . meml,\mefmZ content of INDEXW > D
Specify .\W Memory |—> Transfer
Operation in C language
char src; E g
memZ2 address
char mem1[],mem2[]; '
Twice the src
content of INDEXwW > @
mema2[src] = mem1[src]; }

Instruction which is modified by INDEXW

The src and dest of
ADC, ADD:G**2, AND, CMP:G*, MAX, MIN, MOV:G**3, MUL, MULU, OR, SBB, SUB,
TST, XOR.

*1 You can only specify G format.
*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXW instruction.

161

Chapter 3 Functions 3.3 Index instructions

(5) INDEXWD.size Src
The INDEXWD (INDEX Word Dest) is used for arrays arranged in words.
The execution addresses for the INDEXWD instruction are derived by unsigned adding twice the src content
of the INDEXWD instruction to the addresses indicated by dest (some instructions are src) of the next instruc-
tion to be executed.
The range of src of INDEXWD instruction that can be taken on is from 0 to 32767. You cannot set
otherwise.
For the next instruction executed after the INDEXWD instruction, be sure to choose memory for
dest(some instructions are src). Also, specify .W for the size specifier.

Example:
mem1 address Transfer
INDEXWD.B src
MOV.W:G meml,mem?2
N
Specify W \Memory £ 4
Operation in C language
char sre: mem?2 address
int mem1; Twice the src v
; . content of >
int mem2[]; INDEXWD
mem2[src] = mem1;

Instruction which is modified by INDEXWD
The dest of
ABS, ADC, ADCF, ADD:G***?2, AND, CLIP, CMP:G**, DEC, INC, MAX, MIN, MOV:G*'*3,
MUL, MULU, NEG, NOT, OR, POP, ROLC, RORC, ROT, SBB, SCcnd, SHA, SHL,
STNZ, STZ, STZX, SUB, TST, XCHG, XOR.
The src of
DIV, DIVU, DIVX, PUSH, JMPI, JSRI.

*1 You can only specify G format.
*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXWD instruction.

162

Chapter 3 Functions 3.3 Index instructions

(6) INDEXWS.size src
The INDEXWS (INDEX Word Src) is used for arrays arranged in words.
The execution addresses for the INDEXWS instruction are derived by unsigned adding twice the src
content of the INDEXWS instruction to the addresses indicated by src of the next instruction to be
executed. The range of src of INDEXWS instruction that can be taken on is from 0 to 32767. You can
not set otherwise.
For the next instruction executed after the INDEXWS instruction, be sure to choose memory for src.
Also, specify .W for the size specifier.

Example: mem1 address
INDEXWS.B src Twice the src v
MOV.W:G _ meml,mem2 contentof > @ == *
"\ Specify .W =~ Memory INDEXWS S Transfer
Operation in C language
char SIc;
int memdi[]; i A
int mem2[J; T T

mem2 address

mem2 = meml[src];

Instruction which is modified by INDEXWS
The src of
ADC, ADD:G*™*2, AND, CMP:G*!, MAX, MIN, MOV:G*™*3, MUL, MULU, OR, SBB, SUB,
TST, XOR.

*1 You can only specify G format.
*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXWS instruction.

163

Chapter 3 Functions 3.3 Index instructions

(7) INDEXL.size src

The INDEXL (INDEX Long word) is used for arrays arranged in long words.

The execution addresses for the INDEXL instruction are derived by unsigned adding four times the src
content of the INDEXL instruction to the addresses indicated by src and dest of the next instruction to be
executed. The range of src of INDEXL instruction that can be taken on is from 0 to 16383. You can not
set otherwise.

For the next instruction executed after the INDEXL instruction, be sure to choose memory for both src
and dest. Also, specify .L for the size specifier.

Example: mem1 address
INDEXL.B src Four times the src v
MOV.L.G meml,mem2 content of INDEXL >
= . e -~ I
Specify .L Memory

Transfer

Operation in C language
char Src; =
long mem1[],mem2[]; mem?2 address

Four times the src ¢
memz2[src] = mem1[src]; content of INDEXL > D

.
}H

————«

(C
)

(C
)
[{

Instruction which is modified by INDEXL
The src and dest of
ADD:G**2, CMP:G*!, MOV:G*'*3, SUB.

*1 You can only specify G format.
*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXL instruction.

164

Chapter 3 Functions 3.3 Index instructions

(8) INDEXLD.size src
The INDEXLD (INDEX Long word Dest) is used for arrays arranged in long words.
The execution addresses for the INDEXLD instruction are derived by unsigned adding four times the src
content of the INDEXLD instruction to the addresses indicated by dest (some instructions are src) of the
next instruction to be executed. The range of src of INDEXLD instruction that can be taken on is from 0
to 16383. You can not set otherwise.
For the next instruction executed after the INDEXLD instruction, be sure to choose memory for dest
(some instructions are src). Also, specify .L for the size specifier.

Example:
mem1 address
INDEXLD.B src Transfer
MOV.L:G meml,merQZ
Specify .L Memory =~ 4
Operation in C language mem?2 address
char SIC; Four times the v
. src content of > P
long mem1; INDEXLD ~ A
long mem2[];
}H
mem2[src] = mem1;

Instruction which is modified by INDEXLD

The dest of ADD:G*'*2, CMP:G*t, MOV:G*'*3, SUB, SHA, SHL.
The src of IMPI, JSRI.

*1 You can only specify G format.
*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXLD instruction.

165

Chapter 3 Functions 3.3 Index instructions

(9) INDEXLS.size src
The INDEXLS (INDEX Long word Src) is used for arrays arranged in long words.
The execution addresses for the INDEXLS instruction are derived by unsigned adding four times the src
content of the INDEXLS instruction to the addresses indicated by src of the next instruction to be ex-
ecuted. The range of src of INDEXLS instruction that can be taken on is from 0 to 16383. You cannot
set otherwize.
For the next instruction executed after the INDEXLS instruction, be sure to choose memory for src.
Also, specify .L for the size specifier.

Example: mem1 address
INDEXLS.B src . v
Four times the src
MOV.L.G | mem1,mem2 content of INDEXLS > (D | 1
Specify .L Memory T T
Operation in C language Transfer
char Src;
long mem1[]; A A
long mem2; i T
mem?2 address
mem2 = meml[src];

Instruction which is modified by INDEXLS
The src of ADD:G***2, CMP:G*!, MOV:G*1*3, SUB.
*1 You can only specify G format.
*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXLS instruction.

166

Chapter 3 Functions 3.3 Index instructions

(10) BITINDEX.size src
The BITINDEX instruction is operated on the bit that is apart from bit O of the address indicated by dest
as many bits as indicated by src of BITINDEX.

Make sure the next instruction to be executed after BITINDEX is a bit instruction. Also, be sure to
specify memory for src or dest.

Example:
BITINDEX.B/W src
meml1 address <—[
BSET 3,meml l\l\l L1
\ -~ \\\ ~
Bit instruction \ Memory = S
Becomes invalid. I | |‘1 P
Bit position

Instruction which is modified by BITINDEX
The src of BAND, BNAND, BNOR, BNTST, BNXOR, BOR, BTST:G*, BXOR.
The dest of BCLR, BMcnd, BNOT, BSET, BTSTC, BTSTS.

*1 You can only specify G format.

167

Chapter 3 Functions 3.3 Index instructions

(11) Nextinstructions that can be executed after INDEX
The table below lists the next instructions that can be executed after each INDEX instruction.

Valid instruction

INDEXB.B/.W*? | ADC, ADD:G*4, AND, CMP:G, MAX, MIN, MOV:G*3, MUL,
MULU, OR, SBB, SUB,TST,XOR

The src and dest of above instructions.
INDEXBD.B/.W*2 | ABS, ADC, ADCF, ADD:G**, AND, CLIP, CMP:G, DEC, DIV, DIVU, DIVX, PUSH

INC, MAX, MIN, MOV:G*3, MUL, MULU, NEG, NOT, OR, The src of above instructions.
POP, ROLC, RORC, ROT, SBB, SCcnd, SHA, SHL,
STNZ, STZ, STZX, SUB, TST, XCHG, XOR

The dest of above instructions.

INDEXBS.B/.W*? | ADC, ADD:G*4, AND, CMP:G, MAX, MIN, MOV:G*3, MUL,
MULU, OR, SBB, SUB, TST, XOR

The src of above instructions.

INDEXW.B/.W*2 [ADC, ADD:G**, AND, CMP:G, MAX, MIN, MOV:G*3, MUL,
MULU, OR, SBB, SUB, TST, XOR

The src and dest of above instructions.
INDEXWD.B/.W*?| ABS, ADC, ADCF, ADD:G*4, AND, CLIP, CMP:G, DEC, DIV, DIVU, DIVX, PUSH, JMPI,
INC, MAX, MIN, MOV:G*3, MUL, MULU, NEG, NOT, OR, JSRI

POP, ROLC, RORC, ROT, SBB, SHA, SHL, STNZ, STZ, The src of above instructions.
STZX, SUB, TST, XCHG, XOR

The dest of above instructions.

INDEXWS.B/.W*2[ADC, ADD:G**, AND, CMP:G, MAX, MIN, MOV:G*3, MUL,
MULU, OR, SBB, SUB, TST, XOR

The src of above instructions.

INDEXL.B/.W*2 ADD:G**, CMP:G, MOV:G*3, SUB

The src and dest of above instructions.
INDEXLD.B/.W*? | ADD:G**, CMP:G, MOV:G*3, SHA, SHL, SUB JMPI*, JSRI*!

The dest of above instructions. The src of above instructions.
INDEXLS.B/.W*? | ADD:G**, CMP:G, MOV:G*3, SUB
The src of above instructions.

BITINDEX.B/.W | BAND, BNAND, BNOR, BNTST, BNXOR, BOR, BCLR, BMcnd, BNOT, BSET,
BTST:G, BXOR BTSTC, BTSTS
The src of above instructions. The dest of above instructions.

*1 Since the size is specified for .A(3 bytes) by .L(4 bytes), care must be taken when using the
data table.

*2 The ADD, CMP, and MOV instructions are valid in only the G format.

*3 The dsp:8[SP] cannot be used in src or dest of MOV instruction.

*4 The SP cannot be used in src or dest of ADD instruction.

168

Chapter 3 Functions 3.3 Index instructions

(12) Addressing modes
The table below lists the addressing modes that become valid in the next instructions that can be ex-
ecuted after INDEX. Indirect addressing modes can be used in each instruction.

src dest
[A0] (Al] [A0] [Al]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |[dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] dsp:16[FB] [dsp:16[A0] dsp:16[Al] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[Al] abs24 abs16 dsp:24[A0] dsp:24[Al] abs24 abs16
*1 For the MOV instruction you cannot use dsp8:[SP].
*2 The SP in the ADD instruction cannot be used.
*3 You cannot use ROL/RO/R2R0, ROH/R2/-, R1L/R1/R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

169

Chapter 3 Functions 3.3 Index instructions

170

Chapter 4

Instruction Code/Number of Cycles

4.1 Guide to This Chapter
4.2 Instruction Code/Number of Cycles

Chapter 4 Instruction Code 41 Guide to This Chapter

4.1 Guide to This Chapter

This chapter describes instruction code and number of cycles for each op-code.

The following shows how to read this chapter by using an actual page as an example.

Chapter 4 Instruction Code 4.2 Instruction Code/Number of Cycles

L
S

b7 b0 b7 b0
371 |1 {0)1 010 101 1 1|0 1] #mm
N1 L1 1 1 1] L1
Number of Bytes/Number of Cycles]
(4) Byte{s/Cycjes 2/2

(1)
2 O e #IMM, dest M@

b7 0 b7 b0 b7 b0 dest code
(3) | [0000/0001)t 0 0 0 d4d3d2sZEdLdO 1 111 111 |Z:—p8,
[#AMM16 |
[dsp24/abs24 |
-size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B[O ROL/RO-- |1 0 0 1 0 dsp8[SB] |0 0 1 1 0
W1 RILURL~— |1 0 0 1 1 |9SP8ISBFBL Igepgre) [0 0 1 1 1
Rn ROHR2- |1 0 0 0 0 dsp:16[A0] |0 1 0 0 0
RIMR3- |1 0 0 0 1 |9SPI6IAN F4epa6ia1) [0 1 0 0 1
A0 00010 dsp:16[SB] |0 1 0 1 O
An Al 00011 |9SPA6ISBIFB] [yqpaeFB) [0 1 0 1 1
[A0] 00000 dsp:24[A0] [0 1 1 0 O
[An] [A1] 00001 |9P24AN Taqpogan) [0 11 0 1
dsp:8[A0] |0 0 1 0 0O |abslé abs16 01111
dsp:8IAN] Igspgia1] |0 0 1 0 1 |abs2a abs24 01110
(4) —ENu@f Bytes/Number of Cycles |
dest Rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An]|dsp:16[SB/FB] dsp:24[An] |abs16 |abs24
Bytes/Cycles | 4/3| 43| ai5| si5 5/5 6/5 6/5 715 65 | 7/5

172

Chapter 4 Instruction Code 41 Guide to This Chapter

(1) Mnemonic

Shows the mnemonic explained in this page.

(2) Syntax

Shows an instruction syntax using symbols.

(3) Instruction code

Shows instruction code. Entered in () are omitted depending on src/dest you selected.

Content at start ~ Content at (start Content at (start Contents at addresses following (start
address of address of instruc- address of instruc- address of instruction + 2)
instruction tion+1) tion+2) (See the following figure.)

OO0 OOOooOooOoOoOOoooooOoOoood N o
b7 b0 b7 b7 b0 dest code
0000{0001{1 0,0 0 H4d3dasiZid1d01 11,1 1,1

dsp24/abs24 |

Correspondence

Correspondence Correspondenc

PN

size (SIZE dest d4 d8 d2 d1 Ho dest da d3 d2 d1)do
B ROL/RO/-- |1 0 01 0 dsp:8[SB] |0 0341 0
w1 RILURL~— |1 0 0 1 1 |9SP8ISBIFB I4epeFR) [0 0 1 1 1
Rn ROH/R2- |1 0 0 0 0 dsp:16[A0] |0 1 0 0 0

RIH/R3- |1 0 0 0 1 |9SPA6IAN Tgepagial) [0 1 0 0 1

A0 00010 dsp:16[SB] |0 1 0 1 0

An AL 0001 1 |9SPABISBIFB] fyepa6iFe] |0 1 0 1 1

[AO] 00000 dsp:24[A0] [0 1 1 0 O

[An] [A1] 00001 |9P24AN Fagpoaial [0 1 1 0 1

dsp:8[A0] 0010 0 |absl6 abs16 01111

dsp:8[An] dsp:8[Al] |0 0 1 0 1 |abs24 abs24 01110

Contents at addresses following (start address of instruction + 2) are arranged as follows:

+0 +1 +2
NN T o
b7 b0
dsp8 .
#IMMS8 8 bits
b7 b0 b7 b0
dspl6
abs16 Low-order 8 bits High-order 8 bits
#IMM16
b7 b0 b7 b0 b7 bo
abs24
dsp24 Low-order 8 bits Middle-order 8bits High-order 8 bits
#IMM24

(4) Table of cycles

Shows the number of cycles required to execute this instruction and the number of instruction bytes.
The number of cycles shown are the minimum possible, and they vary depending on the following conditions:
* Number of bytes that have been loaded in the instruction queue buffer

 Accessing of an external memory using 8-bit external bus

» Whether a wait is inserted in the bus cycle

Instruction bytes are indicated on the left side of the slash and execution cycles are indicated on the right side.

173

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) ABS.size dest
b7 b0 b7 b0 dest code
1 0 1 0|d4 d3 d2SIZEJjd1d0 0 1|1 1 1 1
L1 1 L1 L1 1 L1 1
*1 When dest is indirectly addressed the code has 00001001 | dsp24/abs24 |

added at the beginning.

.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | o ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBL fyspgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 o 1|dspl6iAnl dsp:16[A1] [0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 11 dsp:16[SB/FB] dsp:16[FB] 01011
[AQ] 0 0O0O0O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsp:24[An] dsp24Al |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 0]|abs16 abs16 01111
dsp:8[An] dsp:8[AL] 0 01 0 1]|abs24 abs24 01110

[Number of Bytes/Number of Cycles]
dest Rn | An | [An] | dsp:8[An]| dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] |abs16 | abs24
Bytes/Cycles | 2/1| 2/1| 2/3 3/3 3/3 4/3 4/3 5/3 4/3 | 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3, respectively.

ADC

(1) ADC.size #IMM, dest
Z b0 b7 b0 b7 J10] dest code
0000|0001l 1 O O O|d4 d3 d2|SizZ§d1 do 1 Of|1 1 1 O |ds_p8|
1 1 1 1 1 1 1 1 1 1 1
[dsp24/abs24 |
.size |SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROURO/— |1 00 1 0 dsp:8[SB] 00110
w1 RILRL-— |1 0 0 1 1 |9SPBISB/FBL fyspg8lFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1|dspI6lAn] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 0 01 1|9sPIBISBIFBl [4qh16[FB] 01011
[A0] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsp24An dsp:24[A1] 01101
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] |abs16 | abs24
Bytes/Cycles | 4/1 | 4/1| 4/3 5/3 5/3 6/3 6/3 713 6/3 713

*1 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

174

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) ADC.size src, dest
b7 bo b7 b0 b7 Y src code dest code
0000|0001]| 1 s4 s3 s2|d4 d3 d2|sizdi do s1 sO[0 1 0 O
1 | 1 1 | | 1 | 1 | 1
| dsp24/abs24 NRY dsp24/abs24 |
.size | SIZE sre/dest s4s3s2s1s0 sre/dest s4 s3s2s1s0
B 1 o d4 d3 d2 d1 do d4 d3 d2 d1 do
w1 ROL/RO/-— 10010 dsp:8[SB] 00110
R1L/R1/-- 10 0 1 1|9SPBISBFBL [4ep8iFR] 00111
Rn ROH/R2/- 10000 dsp:16[A0] |0 1 0 0 O
R1H/R3/- 10 0 o 1|dspa6lAn] dsp:16[A1] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|9SPI6ISBIFBl Tqen16fFB] |0 1 0 1 1
[AQ] 0 0O0O0DO dsp:24[A0] 01100
[An] [A1] 000 o 1|dSP24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0Q] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[AL] 001 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An [[An] | dsp:8[An] | dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Rn 3/113/11]3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
An 3/113/11]3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
[An] 3/3|3/3|3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[An] a3 |43 44| 54 5/4 6/4 6/4 714 614 | 7/4
dsp:8[SB/FB] | 4/3 | 4/3 | 4/4 | 5/4 5/4 6/4 6/4 714 614 | 7/4
dsp:16[An] 5/3 |53 54| 6/4 6/4 714 714 8/4 714 | 8/4
dsp:16[SB/FB] | 5/3 | 5/3 | 5/4 | 6/4 6/4 714 714 8/4 714 | 8/4
dsp:24[An] 6/3 | 6/3 |64 74 714 8/4 8/4 9/4 84 | 94
absl16 5/3 | 5/3 | 5/4 6/4 6/4 7/4 714 8/4 714 8/4
abs24 6/3 | 6/3 | 6/4 714 7/4 8/4 8/4 9/4 8/4 9/4

175

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
ADCF
(1) ADCF.size dest
b7 bo b7 bo dest code
1 0 1 1|d4d3 d2pEld1do 0 1|1 1 1 0 absm
*1 When destis ind_ire(_:tly addressed the code has 00001001 | dsp24/abs24 |
added at the beginning.
.Size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBL I4en8iFay 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 o 1|dspl6iAnl dsp:l6[A] |0 1L 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsp:24[An] dsp:24[A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] [abs16 |abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

ADD

(1) ADD.size:G #IMM,dest
b7 bo b7 bo dest code
1 0 0 O0|d4 d3 d2flZEjd1 d0 1 0|1 1 1 O
L1 1 L1 I L1 1
*1 When dest is indi_rec_tly addressed the code has 00001001 | dsp24/abs24 |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SP8ISB/FBL I4engiFB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 0 1 |dsPl6lAn] dspl6[A]] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|dsPIBISB/FBl heo16fFB] |0 1 0 1 1
[A0] 00O0O00O dsp:24[A0] 01100
[An] [A1] 000 0 1|dsp24An] dsp:24[A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] |[dsp:24[An] [abs16 |abs24
Bytes/Cycles | 3/1 | 3/1| 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

176

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
ADD
(2) ADD.L:G #IMM, dest
b7 b0 b7 bo dest code
1 0 0 0[d4d3d2 0]dldo 1 1/0 0 0 1 absw | #IMM32
*1 When dest is indirectly addressed the code has 00001001 | dsp24/abs24 |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
---/---IR2R0 10010 dsp:8[SB] 00110
—/—R3RL |1 0 0 1 1 |9SPBISBIFBI [yqn:giFa] 00111
Rn - 10000 dsp:16[A0] 01000
weefee]- 10 0 o 1|dspaelAn] dsp:16[A1] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9SPIBISBIFBl Igon1efFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 00 0 0 1]|dsP24lAn] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0|[absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An |[An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] [abs16 [abs24
Bytes/Cycles | 6/2 | 6/2 | 6/5 715 7/5 8/5 8/5 9/5 8/5 9/5

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

177

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

ADD
(3) ADD.size:Q #IMM, dest
b7 bo b7 bo dest code
1 1 1 SIZEJd4 d3 d2§izEdd1 do 1 1 IMM4
L1111 11 1 111
*1 When dest is |nd|_rec_tly addressed the code has 00001001 \| dsp24/abs2a |
added at the beginning.
size | SIZE1 | SIZE2 #IMM IMM4 #IMM IMM4
.B 0 0 0 0000 -8 1000
W 0 1 +1 0001 -7 1001
L 1 0 +2 0010 -6 1010
+3 0011 -5 1011
+4 0100 -4 1100
+5 0101 -3 1101
+6 0110 -2 1110
+7 0111 -1 1111
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
ROL/RO/R2RO (1 0 0 1 O dsp:8[SB] 00110
RILRUR3RL |1 0 0 1 1 |9SPBISB/FBL fyspgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 o 1|dspi6iAn dsp:16[AL] 01001
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|9sPI6ISB/FBL Fyep16FB] |0 1 0 1 1
[A0] 000O0OO dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsp24lAn dsp:24[A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0O O|absl6 abs16 01111
dsp:8[An] dsp:8[A1] 00 10 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
When (.B) and (.W) is specified for the size specifier (.size)
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] [abs16 |abs24
Bytes/Cycles | 2/1 | 2/1| 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

When (.L) is specified for the size specifier (.size)

dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] [abs16 [abs24

Bytes/Cycles | 2/2 | 2/2 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

178

Chapter 4

Instruction Code/Number of Cycles

(4) ADD.size:S

b7

#IMM, dest

b0

Ololdlldo

0 1
|

1 |SIZE

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

.Size | SIZE dest d1l do
B 0 RN ROL/RO 0 o
W 1 dsp:8[SB] 1 0
dsp:8[SB/FB] dsp:8[FB] 1 1
abs16 abs16 0 1
dest Rn | dsp:8[SB/FB] | abs16
Bytes/Cycles | 2/1 3/3 4/3

4.2 Instruction Code/Number of Cycles

dest code

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size) the number of bytes in the table is increased by 1.

(5) ADD.L:S #IMM, AO/AL

b7 b0
1|OI|MMIO l|1|0 do

#IMM | IMM AO/A1 do
#1 0 A0 0
#2 1 Al 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles

1/2

179

ADD

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(6) ADD.size:G src, dest
b7 bo b7 bo src code dest code
1 s4 s3 s2|d4 d3 d2BizE[d1 dO0 s1 sO|1 O O O
L L L 1
*1 For indirect addressing, the following number is added at | dsp24/abs2d | [dsp2diabs24d |
the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
.size | SIZE src/dest s4 s3s2s1s0 src/dest s4 5352510
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
R1L/R1/--- 10011 dsp:8[SB/FB] dsp:8[FB] 00111
Rn ROH/R2/- 10000 . dsp:16[A0] 01000
R1H/R3/- 100 0 1|dsP16AN] dsp:l6[A] |0 1 0 0 1
A0 00010 . ; dsp:16[SB] 01010
AN Al 0 0 0 1 1|®PIOBFBl Taspaere] [0 1 0 1 1
A [AQ] 00000 dsp:240A dsp:24[A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAnl dsp:24A1] [0 1 1 0 1
dsp:8[A0] 0 01 0 O]labsli6 absl16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src destf rp | An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Rn 2/1]2/1]2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
An 2/1]2/1]2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
[An] 2/312/3]2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
dsp:8[An] 3/313/3]3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[SB/FB] | 3/3 | 3/3 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:16[An] 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:16[SB/FB] | 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:24[An] 5/3 | 5/3 | 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4
abs16 4/3 | 413 | 414 5/4 5/4 6/4 6/4 7/4 6/4 7/4
abs24 5/3 | 5/3 | 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

180

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(7) ADD.L:G src, dest
b7 bo b7 bo src code dest code
1 s4 s3 s2(d4 d3 d2 1|dl1 do s1 sO|0 O 1 O
——— em—— T L
*1 For indirect addressing, the following number is added at | dsp24/abs2a | | dsp24/abs24 |
the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
src/dest s4 53 s2 s1s0 src/dest s4 8352 s1s0
d4 d3 d2 d1 do d4 d3 d2 d1 d0
~/--/[R2RO |1 0 0 1 0 J } dsp:8[SB] 00110
J—R3R1 |1 0 o 1 1 |9SPBISBIFBl 4o 8iFR 00111
Rn weemef- 10000 teorL6IA dsp:16[A0] 01000
S 10 0 0 1 |dsPi6lAN] dsp:l6[Al] |0 1 0 0 1
A0 00010 deo ; dsp:16[SB] 01010
An Al 000 11 sp:16[SB/FB] dsp:16[FB] 01011
A [AQ] 00000 o240 dsp:24[A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAnl dsp24[Al] |0 1101
dsp:8[A0] 0 01 0 O]labsli6 absl16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Rn 212 |22 | 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
An 212 |22 | 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
[An] 2/5 | 2/5 | 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8
dsp:8[An] 3/5 |3/5|3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8
dsp:8[SB/FB] |3/5 | 3/5 | 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8
dsp:16[An] 4/5 | 4/5 | 4/8 5/8 5/8 6/8 6/8 718 6/8 718
dsp:16[SB/FB] | 4/5 | 4/5 | 4/8 5/8 5/8 6/8 6/8 718 6/8 718
dsp:24[An] 5/5 | 5/5 | 5/8 6/8 6/8 718 718 8/8 718 8/8
abs16 4/5 | 4/5 | 4/8 5/8 5/8 6/8 6/8 718 6/8 718
abs24 5/5 | 5/5 | 5/8 6/8 6/8 718 718 8/8 718 8/8

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

181

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
ADD
(8) ADD.L:G #IMM16, SP
b7 b0 b7 bo
101 1|0 1 1 0]|0 0 0 1[0 0 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 4/2

(9) ADD.L:Q #IMM3, SP

h7 b0
0|1|i2|i1 O|O|1|i0
#IMM3 i2 i1 i0 #IMM3 i2 i1 i0
+1 0 0O +5 1 00
+2 0 0 1 +6 1 0 1
+3 010 +7 1 10
+4 011 +8 1 11

[Number of Bytes/Number of Cycles]

Bytes/Cycles

1/1

182

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(10) ADD.L:S #IMM8, SP

b7 b0 b7 b0
1|O|1|1 0I1|1I0 OIOIOIO 0|0|1|1 #IMME

[Number of Bytes/Number of Cycles]
Bytes/Cycles 3/2

ADDX

(1) ADDX #IMM, dest

b7 b0 b7 b0 dest code
1|0|0|0 d4|d3ld2|0 dlld0|0|1 OIOIOIl abslG
*1 When dest is indirectly addressed the code has 00001001 _-_
added at the beginning. | dsp24/abs24 |
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
---/---/R2R0 10010 dsp:8[SB] 00110
—/—R3RL |1 0 0 1 1 |94SPBISBIFBl Iysp8iFa 00111
Rn - 10000 dsp:16[A0] 01000
— 100 0 1|dspi6lAn dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPIBISBIFBl Tyeh16fFB] |0 1 0 1 1
[A0] 00O0O0O dsp:24[A0] 01100
[An] [A1] 000 o 1]|dsp24An dsp:24[A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0|absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] [abs16 [abs24
Bytes/Cycles | 3/2 | 3/2] 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

183

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
ADDX
(2) ADDX src, dest
b7 bo b7 bo src code dest code
1 s4 s3 s2|d4 d3 d2 0|d1 do s1 sOJ0 O 1 O
1 1 1 1 1 1 1 1 1 1 1 1
*1 For indirec'F addressing, the following number is added at | dsp24/abs24 | | dsp24/abs24 |
the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
src s4 s3 s2 sl s0 src s4 s3 52 s1s0
ROL/---/--- 10010 dsp:8[SB] 00110
R1L/—/— 10 0 1 1 |9SPBISBIFBl [4eo8FB] 00111
Rn ROH/-—- 10000 dsp:16[A0] 01000
R1H/~—/- 100 0 1|dsPi6AN] dsp:l6[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 00 0 1 1|dSPIBISBIFBL Ign16fFB] |0 1 0 1 1
[AQ] 00O0O0TO dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O]labsi6 abs16 01111
dsp:8[An] dsp:8[A1] 00 1 0 1|abs24 abs24 01110
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
---/--IR2R0 10010 dsp:8[SB] 00110
/—R3RL |1 0 0 1 1 |94SPBISBIFBl Iyep8iFa 00111
Rn el 10000 dsp:16[A0] 01000
ceefee]- 10 0 o 1|dspi6iAnl dsp:16[A1] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|9SPIBISBIFB] I4qn16[FR] 01011
[A0] 000O0OO dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsP24An dsp:24[A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O][absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
Number of Bytes/Number of Cycles]
src dest(Rrp | An [An] [dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Rn 212 12/2 | 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
An 2/2 |2/2 |2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
[An] 2/5 |2/5 |2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8
dsp:8[An] 3/5 |3/5 | 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8
dsp:8[SB/FB] |3/5 |3/5 |3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8
dsp:16[An] 4/5 14/5 | 4/8 5/8 5/8 6/8 6/8 718 6/8 718
dsp:16[SB/FB] |4/5 | 4/5 | 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8
dsp:24[An] 5/5 |5/5 | 5/8 6/8 6/8 718 718 8/8 7/8 8/8
abs16 4/5 | 4/5 | 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8
abs24 5/5 |5/5 | 5/8 6/8 6/8 718 7/8 8/8 7/8 8/8

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

. __|

184

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
ADJNZ
(1) ADJNZ.size #IMM, dest, label
b7 b0 b7 bo dest code label code
1 1 1 1]|d4 d3 d2pizE{d1do 0 1 IMM4
L1 1 L1 11 1 L1 1
[dsp24/abs24 |
dsp8 (label code) = address indicated by label - (start address of instruction + 2)
size | SIZE #IMM IMM4 #IMM IMM4
.B 0 0 0000 -8 1000
W 1 +1 0001 -7 1001
+2 0010 -6 1010
+3 0011 -5 1011
+4 0100 -4 1100
+5 0101 -3 1101
+6 0110 -2 1110
+7 0111 -1 1111
dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
ROL/RO/--- 10010 dsp:8[SB] 00110
RILRL— |1 0 0 1 1 |9SPBISBIFBL fyep8iFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 o 1|dspi6iAn dsp:il6[A] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|dSPIBISBIFB] I4qn.16[FB] 01011
[AO] 000O0OO dsp:24[AQ] 01100
[An] [A1] 0 0 0 0 1]|dsp24An dsp:24[A1] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O]|absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] [abs16 [abs24
Bytes/Cycles | 3/2 | 3/2 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

*1 When branched to label, the number of cycles in the table is increased by 2.

185

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
AND
(1) AND.size:G #IMM, dest
b7 bo b7 bo dest code
1 0 0 0|d4 d3 d2BIZE|d1d0 1 1|1 1 1 1
L1111 T I
*1 When dest is |nd|_rec_tly addressed the code has 00001001 | dsp24/abs2a |
added at the beginning.
.Size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBL I4en8iFay 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 o 1|dspl6iAnl dsp:l6[A] |0 1L 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsp:24[An] dsp:24[A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] [abs16 |abs24
Bytes/Cycles | 3/1 | 3/1| 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.\W) is specified for the size specifier (.size) the number of bytes in the table is increased by 1.

AND

(2) AND.size:S

b7

#IMM, dest

b0

0I lldlldo

1 1 0
L1

SIZE

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

.size |SIZE dest dldo
.B 0 RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0

dsp:8[SB/FB] dsp:8[FB] 1 1
abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

dest

Rn

dsp:8[SB/FB]

abs16

Bytes/Cycles

2/1

3/3 4/3

dest code

#IMM8

#IMM16

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size) the number of bytes in the table is increased by 1.

186

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(3) AND.size:G src, dest
b7 bo b7 bo src code dest code
1 s4 s3 s2|d4 d3 d2PIZE|d1 dO s1 sO|1 1 O 1
B — - L1 1 H— dspl6/abs16 dspl6/absl16
*1 For indirect addressing, the following number is added at | dsp24/abs24 | | dsp24/abs24 |

the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

.Size | SIZE src/dest s4 5352 s1s0 src/dest s4 5352 s1 s0
B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
A 1 ROL/RO/--- 10010 dsp:8[SB] 00110
R1L/R1/--- 100 1 1 dsp:8[SB/FB] dsp:8[FB] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1 dsp:16[An] dsp:16[A1] 0100 1
A0 00010 . , dsp:16[SB] 01010
An Al 000 1 1|ISPBISBIFBL HgepierB] [0 1 0 1 1
[AQ] 000O00O _ dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dSP24lAn] dsp:24[A1] 01101
dsp:8[A0] 0 01 0 0]|absi6 abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1 |abs24 abs24 01110

[Number of Bytes/Number of Cycles]
src dest| rn | An [An] [dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Rn 2/112/1|2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
An 2/112/1|2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
[An] 2/312/3 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
dsp:8[An] 3/313/3|3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[SB/FB] | 3/3 |3/3 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:16[An] 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 714 6/4 7/4
dsp:16[SB/FB] | 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 714 6/4 714
dsp:24[An] 5/3 | 5/3 | 5/4 6/4 6/4 714 714 8/4 7/4 8/4
abs16 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 7/4 6/4 714
abs24 5/3 | 5/3 | 5/4 6/4 6/4 7/4 7/4 8/4 714 8/4

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

187

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
BAND
(1) BAND src
b7 b0 b7 b0 b7 b0 src code
0000 [0001 | 1 . 1 | 0 | 1 s4|s3|52I 0 sllsoI 0 IO 1 IBITI ab316
[dsp24/abs24 |
src s4 s3 s2 s1s0 src s4 53 s2s1s0
bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 O
bit, ROH 100 0 o|Ptbase:ll[SB/FB] |y hose11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit,R1H 100 0 1|Pitbasel9An] bit,base:19[A1] |0 1 0 0 1
bit,A0 00010 bit,base:19[SB] [0 1 0 1 O
An bit, A1 0 0 0 1 1|Ptbase:19[SBIFB] fy hoser1olFB] [0 1 0 1 1
bit,[A0] 00O0O0O bit,base:27[A0] [0 1 1 0 O
[An] bit,[A1] 000 0 1|Ptbase27(An] bit,base:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bitbase:11[AN] I hase11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
. . . bit,base:11 | bit,base:11 | bitbase:19 | bit,base:19 |bitbase:27 | . . .
src bit,Rn | bit,An | bit,[An] [An] [SBIFE] [An] [SBIFE] [An] bit,base:19 | bitbase:27
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
BCLR
(1) BCLR dest
b7 bo b7 bo dest code
1101 4 Id3 Id2 ° d1|d0|1 1.0 BIT, ab316
[dsp24/abs24 |
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 O
bit, ROH 100 0 o|Ptbase:ll[SBFB] |y hose11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit,R1H 1 0 0 0 1 |Pitbase27[An] bitbase:19[Al] |0 1 0 0 1
bit,A0 00010 bit,base:19[SB] [0 1 0 1 0
An bit, A1 0 0 0 1 1|Ptbase:19[SBIFB] fy hoser1olFB] [0 1 0 1 1
bit,[A0] 00O0O0O bit,base:27[A0] [0 1 1 0 O
[An] bit,[A1] 000 0 1|Ptbase27(An] bit,base:27[Al] |0 1 1 0 1
bit,base:11[A0] {0 0 1 0 O |bit,base:19 bit,base:19 01111
bit,base:11[AN] [hase:11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
dest bitRn | bitAn | bitfAn] bitbase:11 | hitbase:11 | bitbase:19 | bitbase:19 [bit,base:27 bit base19 | bit base27
' ' ' [An] [SB/FB] [An] [SB/FB] [An] ' '
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

188

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BITINDEX

(1) BITINDEX.size src

b7 b0 b7 bo src code
1 10 0d4d3d2pzErdo 1 ot 1 1 o
1 1 1 1 1 1 1 1 1 1 1
| dsp24/abs24 |
.size | SIZE src s4 s3s2 s1s0 src s4 s3s2s1s0
B | O ROLURO/—- |1 0 0 1 O dsp:8[SB] 00110
w1 RILRL/— |1 0 0 1 1 |9sP8ISBIFBl I4qn8(FR] 00111
Rn ROH/R2/- 10000 dsp:l6[A0] |0 1 0 0 O
R1H/R3/- 100 0 1|dspi6lAn] dsp:l6[Al] |0 1 0 0 1
AO 00010 dsp:l6[SB] |0 1 0 1 0
An AL 000 1 1|IsPI6ISBIFBl Fysni6FB] |0 1 0 1 1
[A0] 00000 dsp:24[AQ] 01100
[An] [AL] 0 00 0 1|dsp24(An] dsp24[Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O]|absl6 abs16 01111
dsp:8[An] dsp:8[A1] 00 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] |absl16 |abs24
Bytes/Cycles | 2/4 |2/4 | 26 | 33 36 406 406 5/6 46 | sle

*1 The cycles of next instruction to be executed Is increased by 1.

189

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BMcnd

(1) BMcnd dest

b7 b0 b7 bo dest code
1 1 0 1|d4d3d2 0fdrdo o1 o mIT 0ojojo] enp]
L1 1 L1 1 [] L1
[dsp24/abs24 |
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do

bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 O
bit,ROH 100 0 o|Ptbase:ll[SBIFB] |y hose11[FB] |0 0 1 1 1

Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit, R1H 1 0 0 0 1 |pPitbase19[An] bit,base:19[A1] |0 1 0 0 1
bit,A0 00010 bit,base:19[SB] [0 1 0 1 O

An bit, AL 0 0 0 1 1|Ptbase:19[SBIFB] Iy hoce1oFB] [0 1 0 1 1
bit,[AQ] 000O0OO bit,base:27[A0] |0 1 1 0 0O

[An] bit, [A1] 000 0 1|pPtbase:27[An] bit,base:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111

bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110

Cnd CND cnd CND

LTU/NC 0 0 0 0 |GEUIC 1000

LEU 00 0 1 |GTU 1001

NE/NZ 00 1 0 |EQ/Z 1010

PZ 001 1]|N 1011

NO 010010 1100

GT 01 0 1 |LE 1101

GE 01 10 [LT 1110

[Number of Bytes/Number of Cycles]

dest bitRn | bitan | bitfan] bit,base:11 | bit,base:11 | bitbase:19 | bitbase:19 | bit,base:27 bitbase:19 | bit base27
' ' ' [An] [SBIFB] [An] [SBIFB] [An] ' '

Bytes/Cycles | 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

190

Chapter 4

Instruction Code/Number of Cycles

(2) BMcnd C
b7 b0 b7 b0
1|1|0|1 lIOIOIlOClI CIZNDI
cnd C | CND Cnd Cc | cnDp
LTU/NC 0] o000 [GEUIC 11000
LEU 0001 |GTU 11001
NE/NZ 0| 010 [EQz 1/010
PZ 0| 011 |N 1/011
NO 0100 |O 11100
GT 0101 |LE 11101
GE 0| 110 (LT 11110

[Number of Bytes/Number of Cycles]

Bytes/Cycles

212

191

4.2

Instruction Code/Number of Cycles

BMcnd

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BNAND

(1) BNAND src

7 b0 b7 b0 b7 b0 src code
0000j0001|]1 1 O 1|s4s3s2 0s1s0O O 1]1 BIT |ds_p8|
1 1 1 1 1 | 1 1 1 1 1
[dsp24/abs24 |
src s4 s3s2s1s0 src s4 s3s2s1s0
bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 0
bit, ROH 100 0 o|Ptbasell[SBFB] Iy ase11(FB] |0 0 1 1 1
Rn bit,R1L 10011 bitbase:19[A0] |0 1 0 0 O
bit,R1H 100 0 1|Pitbasel9An] bit,base:19[A1] |0 1 0 0 1
bit,A0 00010 bit,base:19[SB] [0 1 0 1 0
An bit, A1 0 0 0 1 1|Pitbase:19[SBIFB] Iy hose1olFB] |0 1 0 1 1
bit,[A0] 00O0O0Of bit,base:27[A0] [0 1 1 0 0
[An] bit,[A1] 000 0 1|Ptbase27(An] bitbase:27[A1] |0 1 1 0 1
bit,base:11[A0] {0 0 1 0 O |bit,base:19 bit,base:19 01111
bitbase:11[AN] I hase11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
. . . bit,base:11 | bitbase:11 | bit,base:19 | bit,base:19 | bitbase:27 | . . .
src bit,Rn | bit,An | bit,[An] [An] [SBIFE] [An] [SBIFE] [An] bit,base:19 | bit,base:27
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
BNOR
(1) BNOR src
b7 bo b7 bo b7 bo src code
000000011 1 O 1|s4 s3s2 O|slsO 1 1|0 BIT [dsps |
1 1 1 1 1 | 1 1 1 1 1
[dsp24/abs24 |)
src s4 s3 s2 s1s0 src s4 53 s2s1s0
bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 O
bit,ROH 100 0 o|Ptbase:1l[SBIFB] |y hase11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit, R1H 1 0 0 0 1 |Pitbase:19[An] bit,base:19[A1] |0 1 0 0 1
bit,A0 00010 bit,base:19[SB] [0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbasel9[SBIFB] |y pace1oFB] [0 1 0 1 1
bit,[AQ] 000O0OO bit,base:27[A0] |0 1 1 0 O
[An] bit, [A1] 0 00 0 1|Pitbase:27(An] bit,base:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 O O |bit,base:19 bit,base:19 01111
bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bit,base:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
.)) bit,base:11 | bit,base:11 | bit,base:19 | bitbase:19 |bit,base:27 | . .)
src bit,Rn | bit, An | bit,[An] [An] [SBIFB] [An] [SBIFB] [An] bit,base:19 | bit,base:27
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

192

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
BNOT
(1) BNOT dest
b7 b0 b7 b0 dest code
1 10 1pH4d3d2 0 fdido 0|1 1| BIT
L1 1 | I 11] L1
[dsp24/abs24 |
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
bit,ROL 1 0010 bit,base:11[SB] |0 0 1 1 O
bit,ROH 100 0 o|Ptbase:ll[SBFB] |y hase11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit, R1H 100 0 1|PtbaseloAn] bit,base:19[A1] |0 1 0 0 1
bit,A0 00010 bit,base:19[SB] [0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbase:19[SBIFB] [y hose1o/FB] (0 1 0 1 1
bit,[AQ] 00O0O0O bit,base:27[A0] |0 1 1 0 O
[An] bit, [A1] 000 0 1|Ptbase:27[An] bitbase:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bitbase:11[AN] [hase11[A1] [0 0 1 0 1 |bitbase:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
dest bitRn | bitAn | bitfAr] bit,base:11 | bit,base:11 | bit,base:19 | bit,base:19 | bit,base:27 bitbase:19 | bit base:27
' ' ' [An] [SB/FB] [An] [SB/FB] [An] ' ’
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
BNTST
(1) BNTST src
b7 b0 b7 b0 b7 b0 src code
0000/0001| 1 1 0 1|s4 s3s2 0|s1s0 0 00| BIT [dsp8 |
[dsp24/abs24 |
src s4 s3 s2 s1s0 src s4 s3 s2 s1 s0
bit,ROL 1 0010 bit,base:11[SB] |0 0 1 1 O
bit,ROH 10 0 0 o|Ptbase:ll[SBFB] |y hase11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit, R1H 1 0 0 0 1 |Pitbasel19fAn] bit,base:19[A1] |0 1 0 0 1
bit,AO0 00010 bit,base:19[SB] |0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbase:19[SBIFB] |y hace1o[FB] |0 1 0 1 1
bit,[AO] 00000 bit,base:27[A0] {0 1 1 0 0
[An] bit,[A1] 000 0 1|pPitbase:27[An] bitbase:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bit,base:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
. .) bitbase:11 | bitbase:11 | bitbase:19 | bitbase:19 | bit,base:27)
src bit,Rn | bit,An | bit,[An] [An] [SBIFE] [An] [SBIFE] [An] bit base:19 | bit,base:27
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

193

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
BNXOR
(1) BNXOR src
7 bo b7 bo b7 bo src code
0000j0001]1 1 O 1|s4s3s2 0s1s0 1 1]1 BIT |ds_p8|
1 1 1 1 1 | 1 1 1 1 1
[dsp24/abs24 |)
src s4 s3 s2 s1s0 src s4 53 s2s1s0

bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 O

bit, ROH 100 0 o|Ptbase:ll[SB/FB] |y hose11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O

bit,R1H 100 0 1|Pitbasel9An] bit,base:19[A1] |0 1 0 0 1

bit,A0 00010 bit,base:19[SB] [0 1 0 1 O
An bit, A1 0 0 0 1 1|Ptbase:19[SBIFB] fy hoser1olFB] [0 1 0 1 1

bit,[A0] 00O0O0O bit,base:27[A0] [0 1 1 0 O
[An] bit,[A1] 000 0 1|Ptbase27(An] bit,base:27[A1] |0 1 1 0 1

bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bitbase:11[AN] I hase11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]

. . . bit,base:11 | bit,base:11 | bit,base:19 | bit,base:19 | bitbase:27 | . . .
src bit,Rn | bit, An | bit,[An] [An] [SBIFE] [An] [SBIFE] [An] bit,base:19 | bit,base:27
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
BOR
(1) BOR src
b7 b0 b7 b0 b7 b0 src code
0000 |0001| 1 1 0 1|s4 s3s2 0[slsO 1 0]0 BIT,)

[dsp24/abs24 |
src s4 s3 s2 s1s0 src s4 53 s2s1s0

bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 O

bit,ROH 100 0 o|Ptbase:1l[SBIFB] |y hase11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O

bit, R1H 1 0 0 0 1 |Pitbase:19[An] bit,base:19[A1] |0 1 0 0 1

bit,A0 00010 bit,base:19[SB] [0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbasel9[SBIFB] |y pace1oFB] [0 1 0 1 1

bit,[AQ] 000O00O bit,base:27[A0] |0 1 1 0 O
[An] bit, [A1] 0 00 0 1|Pitbase:27(An] bit,base:27[A1] |0 1 1 0 1

bit,base:11[A0] |0 0 1 O O |bit,base:19 bit,base:19 01111
bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bit,base:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]

) .) bit,base:11 | hitbase:11 | bitbase:19 | bitbase:19 |bitbase:27 | .)
src bit,Rn | bit, An | bit,JAn] [An] [SBIFB] [An] [SBIFB] [An] bit,base:19 | bit,base:27
Bytes/Cycles | 3/2 | 3/2 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

194

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BRK

(1) BRK

b7 b0

0O 0 0 0JO O O O
| | | | |]

[Number of Bytes/Number of Cycles]

Bytes/Cycles 117

*1 When you specify the target address of the BRK interrupt by use of the interruput table register (INTB) the number of
cycles shown in the table increases by 2. At this time, set FF16 in address FFFFE416 through FFFFE716.

BRK2

(1) BRK2

b7 b0

0O 0 0 O]J]1 0 O0 O
| | | | |]

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/19

195

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
BSET
(1) BSET dest
7 b b7 bo dest code
1 1 0 1 fd4d3d2 0 [dldo 1)1 1 BIT
L1 1 1 1 1 1] L1
[dsp24/abs24 |
dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 0
bit, ROH 10 0 0 o|Pitbase:ll[SBIFB] [\ hose11FB] [0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] [0 1 0 0 O
bit,R1H 100 0 1|Ptbasel9An] bitbase:19Al] |0 1 0 0 1
bit,AO 00010 bitbase:19[SB] [0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbase:19[SBIFB] fy hose1o/FB] |0 1 0 1 1
bit,[A0] 00O0O0Of bit,base:27[A0] [0 1 1 0 O
[An] bit,[A1] 0 0 0 0 1|Pithase:27[An] bitbase:27[Al] |0 1 1 0 1
bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bit,base:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
dest bitRn | bitAn | bit[An] bit,base:11 | bit,base:11 | bit,base:19 | bit,base:19 | bit,base:27 bitbase:19 | bit base:27
' ' ' [An] [SBIFB] [An] [SBIFB] [An] ' '
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
BTST
(1) BTST:G src
b7 b0 b7 bo src code
1 1 0 1 k4s3s201[1s00]0 O BIT
L1 1 I]] L1
[dsp24/abs24 |
src s4 s3 s2 s1s0 src s4 53 s2s1s0
bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 O
bit,ROH 100 0 o|Ptbase:1l[SBIFB] |y hase11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit, R1H 1 0 0 0 1 |Pitbase:19[An] bit,base:19[A1] |0 1 0 0 1
bit,A0 00010 bit,base:19[SB] [0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbasel9[SBIFB] |y pace1oFB] [0 1 0 1 1
bit,[AQ] 000O0OO bit,base:27[A0] |0 1 1 0 0O
[An] bit, [A1] 0 00 0 1|Pitbase:27(An] bit,base:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 O O |bit,base:19 bit,base:19 01111
bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bit,base:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
. .) bitbase:11 | bitbase:11 | bit,base:19 | bitbase:19 |bitbase:27 | .)
src bit,Rn | bit,An | bit,[An] [An] [SBIFB] [An] [SBIFB] [An] bit,base:19 | bit,base:27
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

196

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) BTST:S src

b7 b0 src code
0 0 b2bl|{1 0 1 [0
src bit,base:19

[Number of Bytes/Number of Cycles]

Bytes/Cycles 313

BTSTC

(1) BTSTC dest

b7 bo b7 bo dest code
1 10 1p4d3d2 ofdido 1]o o] BIT
L1 L1 1 L1 ! L1
[dsp24/abs24 |
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
bit,ROL 1 0010 bit,base:11[SB] |0 0 1 1 O
bit,ROH 100 0 o|Ptbase:ll[SB/FB] |y hase11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit,R1H 1 0 0 0 1 |Pitbase19fAn] bitbase:19[Al] |0 1 0 0 1
bit,AO0 00010 bit,base:19[SB] |0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbase:19[SBIFB] [y hose1o/FB] [0 1 0 1 1
bit,[AQ] 00O0O0O bit,base:27[A0] |0 1 1 0 O
[An] bit, [A1] 000 o 1|Ptbase:27[An] bitbase:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bit,base:11[AN] [hase:11[A1] |0 0 1 0 1 |bitbase:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
dest bitRn | bitAn | bit[Ar] b't’?:i?ll b'[tSbBafFeB]l ! b't’?:i?lg b'[tSbBa/SFeB]l) b't’?:i?ﬂ bitbase:19 | bitbase:27
Bytes/Cycles | 2/2 2/2 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

197

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
BTSTS
(1) BTSTS dest
7 b b7 bo dest code
1 1 0 1 fd4d3d2 0 [dldo 1]0 1 BIT
L1 1 1 1 1 1] L1
[dsp24/abs24 |
dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 0
bit, ROH 10 0 0 o|Pitbase:ll[SBIFB] [\ hose11FB] [0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] [0 1 0 0 O
bit,R1H 100 0 1|Ptbasel9An] bitbase:19Al] |0 1 0 0 1
bit,AO 00010 bitbase:19[SB] [0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbase:19[SBIFB] fy hose1o/FB] |0 1 0 1 1
bit,[A0] 0 00O0O O bit,base:27[A0] [0 1 1 0 O
[An] bit,[A1] 0 0 0 0 1|Pithase:27[An] bitbase:27[Al] |0 1 1 0 1
bit,base:11[A0] |0 0 1 0 O |bit,base:19 bit,base:19 01111
bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bit,base:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
dest bitRn | bitan | bitjar] bit,base:11 | bitbase:11 | bitbase:19 | bitbase:19 | bit,base:27 bitbase:19 | bit base:27
' " ' [An] [SBIFB] [An] [SBIFB] [An] ' '
Bytes/Cycles | 2/2 2/2 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
BXOR
(1) BXOR src
b7 b0 b7 b0 b7 b0 src code
00001000111 1 O 1|s4 s3s2 0fs1sO0 1 011 BIT)
1 | 1 | 1 | 1 | 1 1 |
[dsp24/abs24 |
src s4 s3 s2 s1s0 src s4 53 s2s1s0
bit,ROL 1 0010 bit,base:11[SB] [0 0 1 1 O
bit,ROH 100 0 o|Ptbase:1l[SBIFB] |y hase11[FB] |0 0 1 1 1
Rn bit,R1L 10011 bit,base:19[A0] |0 1 0 0 O
bit, R1H 1 0 0 0 1 |Pitbase:19[An] bit,base:19[A1] |0 1 0 0 1
bit,A0 00010 bit,base:19[SB] [0 1 0 1 O
An bit, AL 0 0 0 1 1|Ptbasel9[SBIFB] |y pace1oFB] [0 1 0 1 1
bit,[AQ] 000O0OO bit,base:27[A0] |0 1 1 0 0O
[An] bit, [A1] 0 00 0 1|Pitbase:27(An] bit,base:27[A1] |0 1 1 0 1
bit,base:11[A0] |0 0 1 O O |bit,base:19 bit,base:19 01111
bit,base:11[An] bit,base:11[A1] |0 0 1 0 1 |bit,base:27 bit,base:27 01110
[Number of Bytes/Number of Cycles]
. .) bitbase:11 | bitbase:11 | bitbase:19 | bitbase:19 [bitbase:27 | .)
src bit,Rn | bitAn | bit,[An] [An] [SBIFB] [An] [SBIFB] [An] bit,base:19 | bit,base:27
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

198

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) CLIP.size #IMM1, #IMM2, dest
b7 b0 b7 b0 b7 b0
0000{0001| 1 0 0 0|d4 d3 d2|siz§dl d0 1 1[1 1 1 0
dest code
[#vvie-l | [#IMM16-2 |
| dsp24/abs24
.size |SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4qngiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 o 1|dspl6lAn dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPI6ISBIFBl I4en16FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absl6 abs16 01111
dsp:8[An] .
dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An |[An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 5/6 | 5/6 | 5/8 6/8 6/8 718 718 8/8 718 8/8

*1 When (.\W) is specified for the size specifier (.size) the numberof bytes in the table is increased by 2.

199

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

CMP

(1) CMP.size:G #IMM, dest
b7 b0 b7 bo dest code
1 0 0 1|dsd3d2pizElardo 1 o1 1 1 o
*1 When dest is indirectly addressed, the code has Soo22/ab<2a
00001001 added at the beginning. | P |
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
.B 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4epngiFa 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
RLH/R3/- 100 o 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An AL 0 0 0 1 1|9SPI6ISBIFBL f4sp:16(FB] 010011
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP:24[An] dsp:24[A1] 01101
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] .
dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/1 | 3/1 | 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.\W) is specified for the size specifier (.size), the number of bytes in the table is increased by 1.

CMP
(2) CMP.L:G #IMM32, dest
b7 bo b7 bo dest code
10 1 0|d4d3d2 0[ddo 1 1[0 0 0 1 absl6 | #AMMS2
*1 When dest is indir_ect_ly addressed, the code has 00001001 | dsp2alabs24 |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
-=-/---/R2R0 10010 dsp:8[SB] 00110
/—R3RL |1 0 0 1 1 |94SPBISB/FBI I4sp8iFBy 00111
Rn - 10000 dsp:16[A0] 01000
S 100 0 1|dspi6lAn] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysh16fFB] |0 1 0 1 1
[AO] 00000O dsp:24[A0] 01100
[An] [A1] 000 o 1]|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]absle abs16 01111
dsp:8[An] dsp:8[A1] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 |[abs24
Bytes/Cycles | 6/2 | 6/2 | 6/4 714 714 8/4 8/4 9/4 8/4 9/4

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

200

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
CMP
(3) CMP.size:Q #IMM, dest
b7 b0 b7 bo dest code
1 1 1 0 |d4 d3 d2fiZE|d1d0 O 1 IMM4
I TN N A 11 1 L1 1
*1 When dest is indirectly addn_ass'ed, the code has | dsp2alabs2a
00001001 added at the beginning.
size | SIZE #IMM IMM4 #IMM IMM4
B 0 0 0000 -8 1000
W 1 +1 0001 -7 1001
+2 0010 -6 1010
+3 0011 -5 1011
+4 0100 -4 1100
+5 0101 -3 1101
+6 0110 -2 1110
+7 0111 -1 1111
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
ROL/RO/--- 10010 dsp:8[SB] 00110
R1L/R1/- 10 0 1 1|UsPBISBIFBL TyengiFB] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1|dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISBIFBl [yqh16[FB] 01011
[AO] 000O00O0 dsp:24[A0] 01100
[An] [A1] 000 0 1|dsp24An dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 01 0 0]absl6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

201

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

CMP
(4) CMP.size:S #IMM, dest
b7 bo dest code
0 1 dl do|o 1 1|z
*1 When dest is indirectly addressed, the code has
00001001 added at the beginning.
.size | SIZE dest d1do
B | 0 RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0
dsp:8[SB/FB] dsp:8[FB] 1 1
abs16 abs16 0 1

[Number of Bytes/Number of Cycles]
dest Rn | dsp:8[SB/FB] | absl16

Bytes/Cycles |2/1 3/3 4/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.\W) is specified for the size specifier (.size), the number of bytes in the table is increased by 1.

202

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(5) CMP.size:G src, dest
b7 bo b7 bo src code dest code
dsp8 dsp8
1 s4 s3 s2|d4 d3 d2 plZE|d1 dO s1 sO|0O 1 1 O
*1 For indirect addressing, the following number is added at | Jsp2alabs2a | dsp2aiabs2a

the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

.size | SIZE src/dest s4 5352 s1s0 src/dest s4 3525150
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 10010 dsp:8[SB] 00110
R1L/R1/--- 10011 dsp:8[SBIFE] dsp:8[FB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1 dsp:16[An] dsp:16[A1] 0100 1
A0 00010 ; ; dsp:16[SB] 01010
An Al 0 0 0 1 1|WSPLBISBIFBL T4ep16iFR] 010011
[AQ] 000O0O ds02 dsp:24[A0] 01100
(Al J[ag] 0 0 0 0 1|dsP24AN dsp:24[Al] |0 1 1 0 1
dsp:8[A0] 0 01 0 O|abslé abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1 |abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An [An] [dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Rn 2/1 12/1]2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
An 2/1 12/1]2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
[An] 213 12/3 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
dsp:8[An] 3/3 13/3 |34 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[SB/FB] |3/3 | 3/3 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:16[An] 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 714 6/4 714
dsp:16[SB/FB] | 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 714 6/4 714
dsp:24[An] 5/3 | 5/3 | 5/4 6/4 6/4 714 714 8/4 714 8/4
abs16 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 714 6/4 714
abs24 5/3 | 5/3 | 5/4 6/4 6/4 7/4 714 8/4 714 8/4

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

203

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(6) CMP.L:G src, dest
b7 bo b7 bo src code dest code
1 s4 s3 s2|d4 d3 d2 1|d1 do s1 sO|0 O O 1
*1 For indirect addressing, the following number is added at | dsp2aiabs2a | Jsp2alabs2a
the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
src/dest s4 s3 52 s1s0 src/dest sS4 s3s2s1s0
d4 d3 d2 d1 do d4 d3 d2 d1 do
—-/--/IR2R0O 10010 seo. / dsp:8[SB] 00110
~/—R3R1 |1 0 o 1 1 |ISPBSBFBL l4epgiFe] 00111
Rn e mef- 10000 . dsp:16[A0] 01000
" 10 0 o 1|dsPL6iAn] dsp:16[Al] |0 1 0 0 1
A0 00010 J , dsp:16[SB] 01010
An AL 0 0 0 1 1|WPOISBFBL TasperBl [0 1 0 1 1
[AQ] 00000 dsno dsp:24[AQ] 01100
Al A 0000 1|%2AN lgspaial] o0 1101
dsp:8[AQ] 0 0 1 0 O]|absi6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest[rn | An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Rn 212 |12/2 | 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
An 212 12/2 | 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
[An] 2/5 | 2/5 | 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8
dsp:8[An] 3/5|3/5|3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8
dsp:8[SB/FB] |3/5 | 3/5 | 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8
dsp:16[An] 4/5 | 4/5 | 4/8 5/8 5/8 6/8 6/8 718 6/8 718
dsp:16[SB/FB] | 4/5 | 4/5 | 4/8 5/8 5/8 6/8 6/8 718 6/8 718
dsp:24[An] 5/5 | 5/5 | 5/8 6/8 6/8 718 718 8/8 718 8/8
abs16 4/5 | 4/5 | 4/8 5/8 5/8 6/8 6/8 718 6/8 718
abs24 5/5 | 5/5 | 5/8 6/8 6/8 718 718 8/8 718 8/8

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

204

Chapter 4

Instruction Code/Number of Cycles

CMP

(7) CMP.size:S src,
b7 b0
Ollldlldo OIOIO SIZE

RO/ROL

*1 When src is indirectly addressed, the code has 00001001
added at the beginning.

.size | SIZE src d1do
.B 0 dsp:8[SB] 1 0
w | 1 | |9sPBISBIFBl [4s8iFR] 11

abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

Src

dsp:8[SB/FB]

absl6

Bytes/Cycles

2/3

3/3

4.2 Instruction Code/Number of Cycles

src code

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

205

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

CMPX

(1) CMPX #IMM, dest

b7 bo b7 bo dest code
10 1 0[d4d3d2 0fdldoo 1]0 0 0 1 absm
*1 When dest is indirectly addrt_ass_ed, the code has |_dsp2 AabsA |
00001001 added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3d2d1do
—/—/R2RO [1 0 0 1 O dsp:8[SB] 00110
—/—/R3RL |1 0 0 1 1 |ISPBISBIFBl IypgiFe] 00111
Rn Ny 10000 dsp:16[A0] 01000
Ry 10 0 0 1 |dspl6lAn] dsp:16[A1] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsp24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0fabs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |[abs16 |[abs24
Bytes/Cycles | 3/2 | 3/12 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

DADC

(1) DADC.size #IMM, dest

b7 bo_b7 bo_b7 b0 dest code
0000{0001] 1 0 0 0|d4 d3 d2fsizEld1 do 0 0|1 1 1 0 [dsp8 |
1 1 1 1 1 1 1 1 1 1 1
| dsp24/abs24 |
.size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
B | 0 ROL/RO/-— 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fysngFa] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 o 1|dspl6lAn] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tyon16fFB] |0 1 0 1 1
[AO] 0000O0O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsp24An dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[AL] 00 10 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] [abs16 |[abs24
Bytes/Cycles | 4/4 | 4/4 | 4/6 5/6 5/6 6/6 6/6 716 6/6 716

*1 When (.\W)is specified for the size specifier(.size), the numberof bytes in the table is increased by 1.

206

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) DADC.size src, dest
b7 bo b7 b0 b7 b0 src code dest code
0000/ 0001| 1 s4 s3 s2|d4 d3 d2[sizE{d1l do s1 sO|1 O O O [dep8 |
1 1 1 1 1 1 1 1 1 1 1
[dsp24/abs24 | | dsp24/abs24 |
.Size | SIZE sre/dest s4 s3s2 51 s0 src/dest s4 s3 52 s1s0
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
RILUR1- |1 0 o 1 1 |WSPBSBFBL loepgira] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1|dsPi6lAn dsp:16[A] |0 1 0 0 1
A0 00010 J , dsp:16[SB] 01010
An Al 0 0 0 1 1|WPOISBFBL Faspaerel [0 1 0 1 1
A [AC] 00000] . ua dsp:24{A0] 01100
[An] [A1] 0 0 0 o 1|dsP24An dsp24[Al] |0 1 10 1
dsp:8[AQ] 0 01 0 O|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest | rp | An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An]| dsp:16[SB/FB] [dsp:24[An] | abs16 | abs24
Rn 3/4 | 3/4 | 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
An 3/4 | 3/4 | 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
[An] 3/6 | 3/6 | 3/7 a/7 a/7 517 517 6/7 517 6/7
dsp:8[An] 4/6 | 416 | 417 517 5/7 6/7 6/7 717 6/7 717
dsp:8[SB/FB] | 4/6 | 4/6 | 417 517 5/7 6/7 6/7 717 6/7 717
dsp:16[An] 5/6 | 5/6 | 5/7 6/7 6/7 717 717 8/7 717 8/7
dsp:16[SB/FB] | 5/6 | 5/6 | 5/7 6/7 6/7 717 717 8/7 717 8/7
dsp:24[An] 6/6 | 6/6 | 6/7 717 717 8/7 8/7 9/7 8/7 9/7
absl16 5/6 | 5/6 | 5/7 6/7 6/7 717 717 8/7 717 8/7
abs24 6/6 | 6/6 | 6/7 717 717 8/7 8/7 9/7 8/7 9/7

207

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

DADD

(1) DADD.size #IMM, dest

b7 bo_b7 bo_b7 bo dest code
0000{0001] 1 0 0 0|d4 g3 d2fszEldr do 0 1|1 1 1 of [L9sPE
1 1 1 1 1 1 1 1 1 1 1
| dsp24/abs24 |
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | O ROL/RO/— 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4epeiFay 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspi6lAn] dspil6[A] |0 1 0 0 1
AO 00010 dsp:16[SB] |0 1 0 1 O
An Al 000 1 1|dSPA6ISBIFB] I4sp6FB] |0 1 0 1 1
[A0] 00000 dsp:24[AQ] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absl6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 4/4 | 414 | 4/6 5/6 5/6 6/6 6/6 716 6/6 716

*1 When (.\W) is specified for the size specifier (.size), the number of bytes in the table is increased by 1.

208

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) DADD.size src, dest
b7 bo b7 bo b7 bo src code dest code
0000/0001| 1 s4 s3 s2|d4 d3 d2[sizEfdl do s1 sO[0 O O O [dsp8 |
1 1 1 1 1 1 1 1 1 1 1
[dsp24/abs24 | | dsp24/abs24 |
.Size | SIZE sre/dest s4 s3s2 51 s0 src/dest s4 s3 52 s1s0
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
RILUR1- |1 0 o 1 1 |WSPBSBFBL loepgira] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1|dsPi6lAn dsp:16[A] |0 1 0 0 1
A0 00010 J , dsp:16[SB] 01010
An Al 0 0 0 1 1|WPOISBFBL Faspaerel [0 1 0 1 1
A [AC] 00000] . ua dsp:24{A0] 01100
[An] [A1] 0 0 0 o 1|dsP24An dsp24[Al] |0 1 10 1
dsp:8[AQ] 0 01 0 O|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An [An] [dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Rn 3/4 | 3/4 | 36 4/6 4/6 5/6 5/6 6/6 5/6 6/6
An 3/4 | 3/4 | 36 4/6 4/6 5/6 5/6 6/6 5/6 6/6
[An] 3/6 | 3/6 | 3/7 a/7 a/7 517 517 6/7 5/7 6/7
dsp:8[An] 4/6 | 416 | 417 517 5/7 6/7 6/7 717 6/7 717
dsp:8[SB/FB] | 4/6 | 416 | 4/7 5/7 517 6/7 6/7 717 6/7 717
dsp:16[An] 5/6 | 5/6 | 5/7 6/7 6/7 717 717 8/7 717 8/7
dsp:16[SB/FB]| 5/6 | 5/6 | 5/7 6/7 6/7 717 717 8/7 717 8/7
dsp:24[An] 6/6 | 6/6 | 6/7 717 717 8/7 8/7 9/7 8/7 9/7
abs16 5/6 | 5/6 | 5/7 6/7 6/7 717 717 8/7 717 8/7
abs24 6/6 | 6/6 | 6/7 717 717 8/7 8/7 9/7 8/7 9/7

209

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

DEC

(1) DEC.size dest

b7 bo b7 bo dest code
dsp8
1 0 1 1|d4 d3 d2pIZEjd1d0O O O |1 1 1 O
L1 1 L1 11 1 L1 1 dsp16/abs16

*1 When dest is indirectly addregse_d,the code has | dsp2aabsad |
00001001 added at the beginning.
.Size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4epngiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:l6[Al] |0 1L 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP:24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |[abs16 |[abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

DIV

(1) DIV.size #IMM
b7 b0 b7 b0
1 0 1 110 0 0 O0OJO 1 O BPIZEfO O 1 1 [#MMS |
| L1 1 11 I
.size | SIZE
.B 0
W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 3/18

*1 When (.\W) is specified for the size specifier (.size), the number of bytes and cycles in the table are increased by 1 and
6, respectively.

210

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) DIV.size src
b7 b0 b7 bo src. code
1 0 O O|s4 s3 s2BlZFl[s1 sO 0 1|1 1 1 O
L1111 111 L1 1
*1 When src is indirectly addressed, the code has 00001001
o | dsp24/abs24
added at the beginning.
.Size | SIZE src s4 s3s2s1s0 src s4 8352 s1s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
wl 1 RILURL— |1 0 0 1 1 |9SPBISB/FBL [4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en16FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24lAn] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|[abs16 abs16 01111
dsp:8[An] :
dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An| [An] | dsp:8[An]| dsp:8[SB/FB]] dsp:16[Ar]] dsp:16[SB/FB]|dsp:24[An] |abs16 [abs24
Bytes/Cycles |2/18]|2/18| 2/20 3/20 3/20 4/20 4/20 5/20 4/20 | 5/20

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

DIVU

*3 When (.W) is specified for the size specifier (.size), the number of bytes in the table is increased by 6.

[Number of Bytes/Number of Cycles]

Bytes/Cycles

3/18

(1) DIVU.size #IMM
b7 b0 b7 b0
1 01 1/]0 0 0O O|O O O PIZEfO O 1 1 [MMS |
L1 1 L1 1 11 L1 1
.size |SIZE
.B 0
W 1

*1 When (.W) is specified for the size specifier (.size), the number of bytes and cycles in the table are increased by 1 and

5, respectively.

211

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

DIVU
(2) DIV.size src
b7 b0 b7 b0 src code
1 0 0 O |s4 s3 s2PizE[s1 s0 0 01 1 1 0O
I N T A N [111
*1 When src is indirectly addressed, the code has 00001001
added at the beginning. | dsp2d/abs24 |
.Size | SIZE src sS4 83 s2s1s0 src s4 8352 s1s0
B| 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4epngiFa 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:l6[Al] |0 1L 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AQ] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP:24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] [abs16 |[abs24
Bytes/Cycles |2/18]2/18|2/20 3/20 3/20 4/20 4/20 5/20 4/20 | 5/20

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (W) is specified for the size specifier (.size), the number of cycles in the table is increased by 5.

DIVX

(1) DIVX.size #IMM

b7 b0 b7 b0
1 0 1 120 0 1 0|0 1 O PpPIZEfO O 1 1 m’
1 1 1 1 1 1 1 1 1 1 1
.Size | SIZE
.B 0
W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 3/18

*1 When (.\W) is specified for the size specifier (.size), the number of bytes and cycles in the table are increased by 1 and
6, respectively.

212

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) DIVX.size src
b7 b0 b7 b0 src code
1 0 0 1(s4 s3 s2flzEls1sO 0 1|1 1 1 0O
L1111 111 L1 1
*1 When src is indirectly addressed,the code has 00001001
] | dsp24/abs24
added at the beginning.
.Size | SIZE src s4 s3s2s1s0 src s4 8352 s1s0
Bl 0 ROL/RO/--- 10010 dsp:8[SB] 00110
wl 1 RILURL— |1 0 0 1 1 |9SPBISB/FBL [4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|9sPI6ISBIFBL I4qn16[FB] 01011
[AQ] 000O0OO dsp:24[AQ] 01100
[An] [A1] 0 0 0 0 1|dsP24lAn] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|[abs16 abs16 01111
dsp:8[An] :
dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An| [An]| dsp:8[An]| dsp:8[SB/FB] dsp:16[Ah] dsp:16[SB/FB] dsp:24[Aplabsl6{abs24
Bytes/Cycles |2/18] 2/14 2/2(3/20 3/20 4/20 4/20 5/20 4/20 | 5/20

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size), the number of cycles in the table is increased by 6.

DSBB

(1) DSBB.size #IMM, dest

b7 bo b7 bo_b7 bo dest code
0000[0001] 1 0 0 1|d4 d3 d2lszEfar do 0 o1 1 1 o [LfcRE]
1 1 1 1 1 1 1 1 1 1 1
| dsp24/abs24 |
.size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
B | 0 ROL/RO/-— 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fyspgFa] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1|dspi6lAn] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9SPA6ISB/FBL Tysn16fFB] |0 1 0 1 1
[AO] 00000O dsp:24[A0] 01100
[An] [A1] 000 0 1]|dsp24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O]abslé abs16 01111
dsp:8[An] dsp:8[AL] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Btyes/Cycles | 4/2 | 4/2 | 4/4 5/4 5/4 6/4 6/4 714 6/4 714

*1 When (.\W) is specified for the size specifier (.size), the numberof bytes in the table is increased by 1.

213

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) DSBB.size src, dest
7 ha h7 ha h7 ha src code dest code
0000 [0001| 1 s4 s3 s2|d4 d3 d2 BizE|d1 dO s1 sO|1 O 1 O [dsp8 |
1 1 1 1 1 1 1 1 1 1
[dsp24/abs24 | | dsp24/abs24
.Size | SIZE sro/dest s4 s3s2s1s0 src/dest s4 5352 s1s0
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
R1L/R1/— 10 0 1 1 |9sPBISBIFBL I4ep8F] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 o 1|dspi6lAn] dsp:l6[A] |0 1 0 0 1
A0 00010 4 ; dsp:16[SB] 01010
An Al 0 0 0 1 1 |ISPLBISBIFBL Fyep16iFB] 01011
A [A] 00000} . u; dsp:24{A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAnl dsp24[Al] |0 1 10 1
dsp:8[AQ] 0 0 1 0 0|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An |[An]| dsp:8[An] | dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] [dsp:24[An] | abs16 | abs24
Rn 3/2 | 3/2| 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
An 3/2 | 3/2| 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
[An] 3/4 | 3/4 | 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5
dsp:8[An] aj4 | 4/4 | a5 5/5 5/5 6/5 6/5 7/5 6/5 | 7/5
dsp:8[SB/FB] | 4/4 | 4/4 | 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5
dsp:16[An] 5/4 | 5/4 | 5/5 6/5 6/5 7/5 7/5 8/5 7/15 | 8/5
dsp:16[SB/FB] | 5/4 | 5/4 | 5/5 6/5 6/5 715 715 8/5 7/5 8/5
dsp:24[An] 6/4 | 6/4 | 6/5 7/5 715 8/5 8/5 9/5 8/5 | 95
absl16 5/4 | 5/4 | 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5
abs24 6/4 | 6/4 | 6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5

214

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
DSUB
(1) DSUB.size #IMM, dest
b7 bo b7 bo b7 bo dest code
0000{0001|1 0 O 1 |d4 d3 d2|Sizfd1 do 0 1|1 1 1 O [dsp8 |
1 1 1 1 1 1 1 1 1 1 1
[dsp24/abs24 |
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fyengFB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1|dspi6lAn] dsp:16[A1] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|ISPA6ISB/FBL Tyen16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 00 0 0 1|dsp24An] dsp24Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|absl6 abs16 01111
dsp:8[An] dsp:8[A1] 00 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 |[abs24
Bytes/Cycles | 4/12 | 4/2| 4/4 5/4 5/4 6/4 6/4 714 6/4 714

*1 When (.W) is specified for the size specifier (.size), the numberof bytes in the table is increased by 1.

215

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) DSUB.size src, dest
7 bo b7 bo b7 bo src code dest code
0000 |0001| 1 s4 s3 s2|d4 d3 d2BizE[|dl d0 s1 sOf0O 0 1 0O [dsp8 |
1 1 1 1 1 1 1 1 1 1 1
[dsp24/abs24 | | dsp24/abs24
.Size | SIZE sro/dest s4 5352 s1s0 src/dest s4 5352 5150
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
R1L/RL/~ 10 0 1 1 |9sPBISBIFBL I4ep8F] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 o 1|dspi6lAn] dsp:l6[A] |0 1 0 0 1
A0 00010 4 ; dsp:16[SB] 01010
An Al 0 0 0 1 1|WSPLOISBIFBL J4epa6iFR] 01011
A [A] 00000} . u; dsp:24{A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAN dsp:24Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 0|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest [Rn | An [[An] |dsp:8[An] |dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Rn 3/2 |3/2 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
An 3/2 |3/2 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
[An] 3/4 |3/4 |3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5
dsp:8[An] a/4 |4/4 |4/5 5/5 5/5 6/5 6/5 7/5 6/5 | 7/5
dsp:8[SB/FB] |4/4 |4/4 |4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5
dsp:16[An] 5/4 |5/4 |5/5 6/5 6/5 7/5 7/5 8/5 715 | 8/5
dsp:16[SB/FB] |5/4 |5/4 |5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5
dsp:24[An] 6/4 |6/4 |6/5 7/5 715 8/5 8/5 9/5 8/5 | 95
abs16 5/4 |5/4 |5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5
abs24 6/4 |6/4 |6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5

216

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

ENTER

(1) ENTER #IMM

b7 b0

1110|1100 #IMM8

Number of Bytes/Number of Cycles]
Bytes/Cycles 2/4

EXITD

(1) EXITD

b7 b0
1 1 1 1 lIlIOIO

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/8

217

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

EXTS

(1) EXTS.size dest

b7 b0 b7 b0 dest code
1 1 0 0d4d3 d2fize[drdo 0 1]1 1 1 o0
L1 1 L1 [L1 1 [dspl6/absi6 |
[dsp24/abs24 |
size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/—— 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4epngiFa 00111
Rn el 10000 dsp:16[A0] 01000
o] 10 0 0 1|dspl6lAn] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISBIFBL [ysp:16[FB] 010011
[AC] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP:24[An] dsp:24[A1] 01101
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 |21 |2/3 | 313 3/3 4/3 4/3 5/3 53 | 53

*1 When (.\W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

218

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) EXTS.B src,dest
b7 b0 b7 b0 b7 b0 src code dest code
0000{0001| 1 s4 s3 s2|da d3 d2 0|d1do s1 sofo 1 1 1 |[LdsP8]
—— —— E— ——
[dsp24/abs24 |1\ dsp24/abs24 |
src s4 s3 s2 sl s0 Src s4 s3 s2 s1s0
ROL/---/--- 10010 dsp:8[SB] 00110
R1L/-—/— 100 1 1|9P8ISBFBL I4sp8iFe] 00111
Rn ROH/—/- 10000 dsp:16[AQ] 01000
R1H/—/- 100 0 1|9sPi6lAn] dsp:16[A1] |0 1 0 0 1
00010 dsp:16[SB] 01010
An 0 00 1 1|9sPI6ISBIFBl Tyon16fFB] |0 1 0 1 1
[AQ] 00000 dsp:24[A0] 01100
[An] [A1] 000 0 1|dsP24An] dsp:24[A1] 01101
dsp:8[A0] 0 0 1 0 0]|absi6 absl6 01111
dsp:8[An] dsp:8[AL] 0010 1|abs24 abs24 01110
dest d4 d3 d2 d1 do dest d4 d3d2d1do
--IRO/--- 10010 dsp:8[SB] 00110
—/R1/— 10 0 1 1|IsP8ISBIFBl [4engiFe] 00111
Rn —IR2I- 10000 dsp:16[A0] 01000
—IR3I- 10 0 0 1|dspl6lAn] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|dSPIBISBIFBl I4en16FB] |0 1 0 1 1
[AQ] 0000O0O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsp:24lAn] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0|[abs16 abs16 01111
dsp:8[An] ;
dsp:8[Al] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest rpn | An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] [dsp:24[An] |abs16 | abs24
RN 31 31|33 | 43 4/3 5/3 5/3 6/3 5/3 | 613
[An] 33 (33|34 | a4 4/4 5/4 5/4 6/4 5/4 | e/4
dsp:8[An] 43 (43 |a/a| 54 5/4 6/4 6/4 714 6/4 | 7/4
dsp:8[SB/FB] |4/3 |4/3 |4/4 | 5/4 5/4 6/4 6/4 714 6/4 | 7/4
dsp:16[An] 5/3 |53 |5/4| 6/4 6/4 714 714 8/4 714 | si4
dsp:16[SB/FB] | 5/3 |5/3 | 5/4 | 6/4 6/4 714 714 8/4 714 | s/4
dsp:24[An] 6/3 63 |6/4| 7/4 714 8/4 8/4 9/4 84 | 94
abs16 5/3 |53 |5/4| 6/4 6/4 714 714 8/4 714 | 8/4
abs24 6/3 |63 |6/4| 7/4 714 8/4 8/4 9/4 84 | 94

219

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

EXTZ

(1) EXTZ src,dest
b7 b0 b7 b0 b7 b0 src code dest code
0000{0001| 1 s4 s3 s2|d4 d3 d2 0[d1do s1 sof1 o 1 1 |[Ldse8]
—— —— —— —t—
[dsp24/abs24 |1\ dsp24/abs24 |
src s4 s3 s2 s1 s0 Src s4 s3 s2 sl1s0
ROL/---/--- 10010 dsp:8[SB] 00110
R1L/~—/— 100 1 1|9SP8ISBIFBL I4engFB] 00111
Rn ROH/—/- 10000 dsp:16[AQ] 01000
RLH//- 100 o 1|dspl6lAn] dsp:16[A1] |0 1 0 0 1
00010 dsp:16[SB] 01010
An 0 00 1 1|9sPI6ISB/FBl Tyon16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 0 1|dsp24An dsp:24[A1] 01101
dsp:8[AQ] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[AL] 0 0 1 0 1|abs24 abs24 01110
dest d4 d3 d2 d1 do dest d4 d3d2d1do
---/RO/--- 10010 dsp:8[SB] 00110
IR/ 10 0 1 1|9sPBISBIFBL yspgFB] 00111
Rn —IR2I- 10000 dsp:16[A0] 01000
—IR3- 10 0 0 1|dspl6lAn] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en16FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP:24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn [An [[An]|dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
RN 31 |31 |33 a3 413 5/3 5/3 6/3 53 | 6/3
[An] 33 |33 (34| a4 4/4 5/4 5/4 6/4 5/4 | el4
dsp:8[An] 43 |43 |44 | s5/4 5/4 6/4 6/4 714 64 | 714
dsp:8[SB/FB] | 4/3 | 4/3 |4/4 | 5/4 5/4 6/4 6/4 714 64 | 714
dsp:16[An] 53 |5/3 | 54| 64 6/4 714 714 8/4 74 | 84
dsp:16[SB/FB] | 5/3 | 5/3 | 5/4 | 6/4 6/4 714 714 8/4 74 | s/a
dsp:24[An] 6/3 |6/3|6/a| 74 714 8/4 8/4 9/4 8/a | 94
abs16 513 |5/3 |54 64 6/4 714 714 8/4 714 | s/4
abs24 6/3 |6/3|6/a| 74 714 8/4 8/4 9/4 8/a | 94

220

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

FCLR

(1) FCLR dest

b7 b0 b7 b0
llOlOOlllllOlDIESIT

dest

m
wn

P ol o o |lo|+

Cl—|Om W0 NITOO
N -l eNeNN v)
Pk |jo|o - Ik oo

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/1

FREIT

(1) FREIT

b7 b0
1I0IOI1 1 1 1 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/3

221

Chapter 4

FSET

Instruction Code/Number of Cycles

(1) FSET dest

b7 b0 b7 b0

1|l|0|1 OIOIOIll DIESIT
dest DEST

c 000

D 001

z 010

S 011

B 100

O 101

' 110

U 111

[Number of Bytes/Number of Cycles]

Bytes/Cycles

2/1

222

4.2

Instruction Code/Number of Cycles

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

INC

(1) INC.size dest
b7 b0 b7 bo dest code
1 0 1 0]d4 d3 d2plzE[d1do 0 O f1 1 1 O
L1111 111 L1 1
*1 When dest is indirectly addressed,the code has 00001001
L | dsp24/abs24 |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBL [4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|9sPI6ISBIFBL I4qn16[FB] 01011
[AQ] 000O0OO dsp:24[AQ] 01100
[An] [A1] 0 0 0 0 1|dsP24lAn] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|[abs16 abs16 01111
dsp:8[An] :
dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

INDEXB

(1) INDEXB.size src
b7 b0 b7 b0 src code
1|0|0|0 s4|s3I52|0 Sl|so|0 SlZEO|O|1|1 _
| dsp24/abs24 |
.size | SIZE src $4 53525150 src 54535251 s0
B | o0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILR1/- |1 0 0 1 1 |dsPB[SBIFB] I4q0gFR] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
RIH/R3/- 100 0 1|dspl6[An] dsp:16[Al] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An AL 0 0 0 1 1|9sp16SBIFB] Tysn16fFB] |0 1 0 1 1
[AQ] 000O0O dsp:24[A0] 01100
[An] [AL] 0 0 0 0 1|dsp:24(An] dsp24Al] |0 1 1 0 1
dsp:8[AQ] 0 01 0 Ofabsi6 abs16 01111
dsp:8[An] dsp:8[AL] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 2/2 | 2/12 | 2/4 3/4 3/4 4/4 414 5/4 4/4 5/4

*1 When (.\W) is specified for the size specifier(.size) the number of cycles in the table is increased by 2.

223

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

INDEXBD

(1) INDEXBD.size src

7 bo b7 bo src. code
1 0 1 0O|s4s3s2 0|sls0O 0BPpizEfO 0 1 1
1 1 1 1 1 1 1 1 1 1 1
[dsp24/abs24 |
.Size | SIZE src sS4 83 s2s1s0 src s4 8352 s1s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4epngiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:l6[Al] |0 1L 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AO] 0000O0O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP:24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.
INDEXBS
(1) INDEXBS.size src
b7 b0 b7 bo src code
1 1 0 0]s4 s3s2 0]|sls0 0BizEJo 0 1 1 [dsp8 |
| | 1 | 1 | 1 | | | 1
| dsp24/abs24 |
.Size | SIZE src sS4 s3 s2 s1s0 src s4 s3 52 51 s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fysngFa] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 o 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tyon16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsp24An dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[AL] 00 10 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] | dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

224

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

INDEXL

(1) INDEXL.size src
b7 bo b7 b0 src code
1 0 0 1(s4s3s2 0fs1s0o 1pizEfo 0 1 1
[L1 L1 L1
[dsp24/abs24 |
.Size | SIZE src s4 s3s2s1s0 src s4 8352 s1s0
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBL [4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en16FB] |0 1 0 1 1
[AQ] 0000O0O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24lAn] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|[abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 2/4 | 2/14 | 2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6

*1 When (.\W) is specified for the size specifier(.size) the number of cycles in the table is increased by 2.

INDEXLD

(1) INDEXLD.size src
b7 bo b7 b0 src code
1 0 1 1s4s3s2 0s1s0o 1pzEJO0 0O 1 1
L1 L1 1 L1 L1
| dsp24/abs24 |
.Size | SIZE src s4 53 s2s1s0 src s4 s3 52 51 s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fyepgFB] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 o 1|dspl6lAn dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 0 1]|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]abslé abs16 01111
dsp:8[An] dsp:8[AL] 00 10 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/2 | 2/2 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

225

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

INDEXLS

(1) INDEXLS.size src
b7 b0 b7 bo src code
1 0 0 1|s4s3s2 0]|sls0 0BizEjo 0 1 1
L1 1 L1 1 11 L1 1
[dsp24/abs24 |
.Size | SIZE src sS4 83 s2s1s0 src s4 8352 s1s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4epngiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:l6[Al] |0 1L 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AQ] 0000O0O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP:24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An |[An] [dsp:8[An] |dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] fsp:24[An] pbsl6 [abs24
Bytes/Cycles |2/2 |2/2 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
*1 When (.\W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.
INDEXW
(1) INDEXW.size src
b7 bo b7 b0 src code
1 0 0 Os4 s3s2 0sls0 1BizEjo 0 1 1
[[| L1 [
| dsp24/abs24 |
.Size | SIZE src sS4 s3 s2 s1s0 src s4 s3 52 51 s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fysngFa] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 o 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tyon16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsp24An dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[AL] 00 10 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] | dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/2 | 2/12 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 2.

226

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

INDEXWD

(1) INDEXWD.size src

b7 b0 b7 bo src. code
1,0 1 0[s4s3s20[sLs0 1pzE[0 0 1 1 absm
[dsp24/abs24 |
.Size | SIZE src s4 s3s2s1s0 src s4 8352 s1s0
B | O ROL/RO/— 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBL [4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
AO 00010 dsp:l6[SB] |0 1 0 1 O
An Al 000 1 1|dSPIBISBIFBl I4en16FB] |0 1 0 1 1
[A0] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24lAn] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|[abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]

src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*1 When (.\W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

INDEXWS

(1) INDEXWS.size src

b7 bo b7 b0 src code
1 1 0 O0fs4s3s2 0fs1s0o 1pzEJ0 O 1 1
L1 L1 1 L1 L1
| dsp24/abs24 |
.Size | SIZE src s4 53 s2s1s0 src s4 s3 52 51 s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fyepgFB] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 o 1|dspl6lAn dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 0 1]|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]abslé abs16 01111
dsp:8[An] dsp:8[AL] 00 10 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

227

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

INT

(1) INT #IMM

b7 b0

1. 0 1 1112 12 1 0 L.IMm6_[dd

[Number of Bytes/Number of Cycles]
Bytes/Cycles 2/ 12

INTO

(1) INTO

b7 b0

1|0|1|1 1 1 11

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/1

*1 When O flag is 1, the number of cycles in the table is increased by 13.

228

Chapter 4

(1) Jend

b7

Instruction Code/Number of Cycles

label
b0

1 c3 c2cl
11 1

1 0 1 cO

labe code

dsp8 = address indicated by label - (start address of instruction +1)

Ccnd c3c2clco cnd c3c2clco
LTU/NC 0 0 0 0 | GEUIC 1 000
LEU 0 00 1 |GTU 1 00 1
NE/NZ 0 01 0| EQ/Z 1 010
Pz 0 01 1 |N 1 01 1
NO 0100]{|O 1100
GT 0 1 0 1 |LE 1101
GE 0 1 1 0 |LT 1110

[Number of Bytes/Number of Cycles]

Bytes/Cycles

2/1

*1 When branched to label the number of cycles in the table is increased by 2.

(1) IMP.S label
b7 b0
0 1 d2di|1 0 1 doO

] | | | |]

label d2 d1 do label d2 d1 do
PC+2 0 00 [PC+6 100
PC+3 0 01]|PC+7 101
PC+4 010 |PC+8 110
PC+5 011 |PC+9 111

Bytes/Cycles

1/3

Number of Bytes/Number of Cycles]

229

4.2

Instruction Code/Number of Cycles

Jcnd

JMP

Chapter 4

JMP

Instruction Code/Number of Cycles

(2) IMP.B label
b7) label code
1I OI 1I 1 1I 0 Il Il L£§Eij

dsp8 = address indicated by label - (start address of instruction +1)

Bytes/Cycles 213
JMP
(3) IMP.W label
b7 b0
1,1,0 01,1 1,0

Number of Bytes/Number of Cycles]

label code

dspl6 = address indicated by label - (start address of instruction +1)

[Number of Bytes/Number of Cycles]

Bytes/Cycles

313

230

4.2

Instruction Code/Number of Cycles

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(4) IMP.A label
b7 b0 label code
1 1.0 01 1 00 | abs24
L1 1 I |
[Number of Bytes/Number of Cycles]
Bytes/Cycles 4/3
(1) IMPLW src
b7 b0 b7 b0 src code
1 1 0 O|s4s3s2 1sls0 0 O0f1 1 1 1
L1 1 111 L1 1 [
| dsp24/abs24 |
src s4s3s2s1s0 src s4 53 s2s1s0

---/RO/--- 1 0010 dsp:8[SB] 00110

IR/~ 100 1 1|dsp8[SBIFB] [yqngiFa] 00111
Rn —IR2/- 10000 dsp:16[AQ] 01000

—IR3/- 10 0 0 1|dsp:l6An] dsp:16[A1] |0 1 0 0 1

A0 00010 dsp:16[SB] 01010
An AL 0 0 01 1|dsp16[SB/FB] 4o 16(FB] |0 1 0 1 1

[AO] 00O0O0DO dsp:24[AQ] 01100
[An] A1] 0 0 0 0 1]|dsp:24[An] dsp:24[Al] 01101

dsp:8[A0] 0 0 1 0 Ofabsi6 abs16 01111
dsp:8[An] dsp:8[A1] 0 0 1 0 1(abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An [[An] [dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 2/7 | 2/7 | 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8

231

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

JMPI

(2) IMPLLA src

b7 bo b7 bo src code

1 0 0 0O|s4s3s2 0fstls0o 0 0f0 0 0 1

| | 1 | 1 1 1 | | 1 | 1
| dsp24/abs24 |
src $4s35251s0 src s4 s3 s2 s1 s0

—-/---/R2R0O 10010 dsp:8[SB] 00110
—/—R3R1 |1 0 0 1 1|9dsP8[SB/FB] [4o gFR] 00111

Rn e mef- 10000 dsp:16[A0] 01000
" 100 0 1|dsp:16[An] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010

An AL 0 0 0 1 1|9sp16SBIFBl Tyen16fFB] [0 1 0 1 1
[AQ] 0 0O0O0DO dsp:24[AQ] 01100

[An] [AL] 0 0 0 0 1 |dsp:24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 01 0 Olabsi6 abs16 01111

dsp:8[An] dsp:8[AL] 0 0 1 0 1|abs24 abs24 01110

[Number of Bytes/Number of Cycles]

src Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |[dsp:24[An] |abs16 [abs24

Bytes/Cycle 2/5 | 2/5| 2/7 3/7 3/7 a/7 a/7 5/7 a/7 5/7

JMPS

(1) IMPS #IMM8

b7 bo

1,10 1{1,1,00 [FAMMS |

Number of Bytes/Number of Cycles]
Bytes/Cycles 2/8

232

Chapter 4 Instruction Code/Number of Cycles

(1) JSR.W

b7

label

Jo]0]

label code

1|1|O|0 1

| ll

1.1

dsp16

dspl6 = address indicated by label - (start address of instruction +1)

Bytes/Cycles 3/3
(2) JISR.A label
b7 b0
1,1, 0,0]1,1

Number of Bytes/Number of Cycles]

label code

abs24

Bytes/Cycles

4/3

Number of Bytes/Number of Cycles]

233

4.2

Instruction Code/Number of Cycles

JSR

JSR

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

JSRI

(1) ISRI.W src

b7 bo b7 bo src code
1 1 0 O|s4s3s2 1(s1sO O 11 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
| dsp24/abs24 |
src s4 53525150 src 5453525150
--/RO/--- 10010 dsp:8[SB] 00110
R1/— 1 0 0 1 1|dspBISBIFB] 4o, 8FR] 00111
Rn —IR2/- 10000 dsp:16[AQ] 01000
R3- 1 0 0 0 1|dsp:16[An] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An AL 0 00 1 1|dsPA6ISBIFBl I4en16[FB] |0 1 0 1 1
[AO] 000OO dsp:24[AQ] 01100
[An] Al] 0 0 0 0 1|dsp:24[An] dsp:24[A1] 01101
dsp:8[A0] 0 01 0 Ofabsi6 abs16 01111
dsp:8[An] dsp:8[A1] 0 01 0 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |[dsp:24[An] |abs16 [abs24
Bytes/Cycles | 2/7 | 2/7 | 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8
JSRI
(2) JISRILA src
b7 bo b7 bo src code
1 0 0 1|s4s3s20sls0O 0O 0f0 0 O 1
1 1 1 1 1 1 1 1 1 1 1 1
| dsp24/abs24 |
src $4 53525150 src s4 s3 s2 s1 s0
—-/---/R2R0O 10010 dsp:8[SB] 00110
—/—R3R1 |1 0 0 1 1|9dsP8[SBIFB] [yo gFR] 00111
Rn e mef- 10000 dsp:16[A0] 01000
" 10 0 0 1|dsp:16[An] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An AL 0 0 0 1 1|9sp16[SBIFBl Tysn16fFB] [0 1 0 1 1
[AQ] 00 O0O0DO dsp:24[A0] 01100
[An] [AL] 0 0 0 0 1|dsp:24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 01 0 Olabsi6 abs16 01111
dsp:8[An] dsp:8[AL] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] [dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 2/5 | 2/5 | 2/7 3/7 3/7 a/7 a/7 5/7 a/7 5/7

234

Chapter 4

(1) JSRS

b7

Instruction Code/Number of Cycles

#IMM8

b0

1 1 0 1
I

1 1 0
|1

1

#IMM8

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/8
(1) LDC #IMM16, dest
b7 b0 b7 b0
1|1|o|1 Ollloll 1|o|1|0 D|ES|T
dest DEST

DCTO 00O

DCT1 001

FLG 010

SVF 011

DRCO 100

DRC1 101

DMDO 110

DMD1 111

Bytes/Cycles

4/1

Number of Bytes/Number of Cycles]

235

4.2 Instruction Code/Number of Cycles

#IMM16

JSRS

LDC

Chapter 4

Instruction Code/Number of Cycles

LDC
(2) LDC #IMM24, dest
b7 b0 b7 b0
1}1\0‘1 0‘1‘010Jo‘1‘01 DJES'I"
|
dest DEST
INTB 00O
SP 001
SB 010
FB 011
SVP 100
VCT 101
110
ISP 111
[Number of Bytes/Number of Cycles]
Bytes/Cycles 512
LDC
(3) LDC #IMM24, dest
b7 b0 b7 b0
1‘1‘o|1 OJl‘O‘l 0‘1J1\01 ?EST
dest DEST
00O
001
DMAO 010
DMAl 011
DRAO 100
DRA1 101
DSAO 110
DSAl 111

[Number of Bytes/Number of Cycles]

Bytes/Cycles 5/2

236

4.2 Instruction Code/Number of Cycles

#MM24

#MM24

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(4) LDC src, dest
b7 b0 b7 b0 b7 b0 src code
-dsp8
0000{0001| 1 1 0 1|s4 s3 s2 1|s1 s0 0 0| 1| DEST [ds05]
L1 L1 L1 L
| dsp24/abs24 |
src s4 5352 s1s0 src s4 s3 s2 s1 s0 dest | DEST
---/R0O/--- 1 0010 dsp:8[SB] 00110 DCTO |000
—IR1/— 100 1 1|9SP8ISBIFBL [ysp8lFa] 00111 DCT1 |001
Rn —IR2I- 10000 dsp:16[A0] 01000 FLIG |o010
—IR3/- 100 0 1[9sPI6IAN] Fasp16[Al] 01001| [svF |o11
A0 00010 dsp:16[SB] 01010 DRCO 100
An Al 0 0 0 1 1|9SPLBISBIFBL 4oy 16(FB] 01011| [DRCL 101
[AO] 0 0O0O0O O dsp:24[AQ] 01100 DMDO (110
[An] [A1] 000 0 1|dsP:24An dsp:24[A1] 01101 DMDL [111
dsp:8[A0] 0 0 1 0 O]absl6 abs16 01111
dsp:8[AN] [4sp:glAL] 00 10 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An |[An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cyclse | 3/1 | 3/1 | 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
(5) LDC src, dest
b7 bo b7 bo src code
1 1 0 1|s4s3s2 1|sls0 0 00| DEST
L1 1 [L1 1 L
| dsp24/abs24 |
sre s4 s3 52 51 s0 src s4 s3 52 s1s0 dest | DEST
---/---/[R2R0 1 0010 dsp:8[SB] 00110 INTB |000
—/—R3RL |1 0 0 1 1 |9SPBISBIFBL TyengFR] 00111 P |oo1
Rn eefeee]- 10000 dsp:16[A0] 01000 SB 010
S 10 0 0 1|9PI6IAN Fapia6lAl] 01001 B o1l
A0 00010 dsp:16[SB] 01010 SVP 100
An Al 0 0 0 1 1 |ISPIBISBIFB] [sh16[FR] 01011 VCT |101
[AO] 00000 dsp:24[A0] 01100 110
[An] [A1] 00001 dsp:24{An] dsp:24[A1] 01101 ISP 111
dsp:8[AQ] 0 0 1 0 Ofabs16 abs16 01111
dsp:8[AN] [4sp:8lAT] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An |[An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/2 | 2/2 | 2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6

237

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(6) LDC src, dest
b7 b0 b7 b0 b7 b0 src code
-d 8
0000{0001| 1,1 O, 61 |s4 s3,s2 1|s1 s0, 0 OO DEST m
L=l "1 [Tl I (i
| dsp24/abs24 |
sre s4 s3s2s1s0 src s4 s3 52 s1s0 dest | DEST
---/---/R2R0 10010 dsp:8[SB] 00110 000
—R3RL |1 0 0 1 1 |9SPBISBIFBL I4ep8(FB] 00111 — loo1
Rn " 10000 dsp:16[A0] 01000 DMAO | 010
el 100 0 1[|9sPI6ANl Fasp16[Al] 01001 DMAL| 011
AO 00010 dsp:16[SB] 01010 DRAO (100
An Al 0 0 0 1 1|9sPI6ISBIFBL [4qn16[FB] 01011 DRAL | 101
[AO] 00000 dsp:24[A0] 01100 DSA0 [110
[An] Al] 0 0 0 0 1|dsp:24[An] dsp:24[A1] 01101 DSAL [111
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8IANL [gspgiat] 0 010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] | dsp:8[An] | dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] | dsp:24[An] | absl6 | abs24
Bytes/Cyclse [3/3 |3/3 | 3/6 al6 4/6 5/6 5/6 6/6 5/6 6/6
(1) LDCTX abs16,abs24
b7 b0 b7 b0
[abs16 | | abs24

101 14,0 1 1 021 1 0 O0f0 O 1 1
I I 111

Number of Bytes/Number of Cycles]
Bytes/Cycles 7/10 +m

*1 m denotes the number of transfers performed.
m = (Number of RO,R1,R2,R3) + 2 x (Number of A0,A1,FB,SB)

238

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

LDIPL

(1) LDIPL #IMM

b7 b0 b7 b0
lll\oll 0‘1\0‘1 1‘1‘1\01 ‘IMI\/‘I3

[Number of Bytes/Number of Cycles]

Bytes/Cycles 22

MAX

(1) MAX.size #IMM, dest

b7 b0 b7 b0 b7 b0 dest code
0000 [0001|1 O O O |d4 d3 d2|SIZEjd1 d0O 1 1|1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
| dsp24/abs24 |
.size |SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
B | O ROL/RO/~— 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fyspgFa] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|9SPI6ISBIFBl 4oy 16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 0 1]|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O]|absl6 abs16 01111
dsp:8[An] dsp:8[AL] 00 10 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An |[An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 4/3 | 413|455 | /5 5/5 6/5 6/5 715 65 | 715

*1 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

239

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) MAX.size src, dest
7 ho h7 ho b7 ho src code dest code
0000 [0001| 1 s4 s3 s2|d4 d3 d2|Siz§dl dO s1 sO|1 1 0O 1 [dsp8 |
1 1 1 1 1 1 1 1 1 1 1
[dsp24/abs24 | | dsp24/abs24
.size | SIZE sre/dest s4 5352 s1s0 src/dest s4 s3s2s1s0
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
R1L/RL/~ 10 0 1 1|9SPBISBIFBL I4ep8iFR] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 o 1|dsPi6lAn dsp:16[A] |0 1 0 0 1
A0 00010 J , dsp:16[SB] 01010
An Al 0 0 0 1 1|WSPLOSBFBL f4ep16iFE] 01011
A [A] 00000] . ua dsp:24{A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAn dsp:24Al] [0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O]|absi6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An [An] | dsp:8[An] | dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] [dsp:24[An] | abs16 | abs24
Rn 3/2 | 3/2 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
An 3/2 | 3/2 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
[An] 3/4 | 3/4 | 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5
dsp:8[An] 4/4 | 4/4 | 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5
dsp:8[SB/FB] | 4/4 | 4/4 | 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5
dsp:16[An] 5/4 | 5/4 | 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5
dsp:16[SB/FB]| 5/4 | 5/4 | 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5
dsp:24[An] 6/4 | 6/4 | 6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5
abs16 5/4 | 5/4 | 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5
abs24 6/4 | 6/4 | 6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5

240

Chapter 4

Instruction Code/Number of Cycles

4.

2 Instruction Code/Number of Cycles

MIN

(1) MIN.size #IMM,dest
7 bo b7 b0 b7 bo dest code
0000[0001| 1 0 0 o|ds d3 dofszEldr do 1 of1 1 o1 1| [LEseE
1 1 1 1 1 1 1 1 1 1 1
| dsp24/abs24 |
size | SIZE dest d4 d3 d2 d1 do dest 44 d3 d2 d1 do
B | 0 ROL/RO/— |1 0 0 1 0 dsp:8[SB] 00110
w1 RILURL~— |1 0 0 1 1 |9SPBISB/FBL I4ep8iFay 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 0 1 |dspi6lAn] dsp:6[Al] |0 1 0 0 1
AO 00010 dsp:16[SB] |0 1 0 1 0
An Al 0 00 1 1|ISPIBISBIFBL Igon16fFB] |0 1 0 1 1
[A0] 00000 dsp:24[AQ] 01100
[An] [A1] 0 0 0 0 1|dsp24[An] dsp24[A] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0 |absil6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An [[An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] Hdsp:24[An] |abs16 |abs24
Bytes/Cycles | 4/3 |4/3 |45 | 5i5 5/5 6/5 6/5 7I5 65 | 75

*1 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

241

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) MIN.size src, dest
b7 bo b7 b0 b7 b0 src code dest code
dsp8
0000 [0001| 1 s4 s3 s2|d4 d3 d2|SiZdl dO s1 sOf1 1 0O O
[dsp24/abs24 | | dsp24/abs24 |
.Size | SIZE sre/dest s4 s3s2 51 s0 src/dest s4 5352 s1s0
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
RILUR1- |1 0 o 1 1 |WSPBSBFBL l4epgiFa] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 o 1|dsPi6lAn dsp:16[A] |0 1 0 0 1
A0 00010 J , dsp:16[SB] 01010
An AL 0 0 0 1 1|WPIOISBFBL TasperBl [0 1 0 1 1
A [A] 00000] . ua dsp:24{A0] 01100
[An] [A1] 0 0 0 o 1|dsP24An dsp24[Al] |0 1 10 1
dsp:8[AQ] 0 0 1 0 O]|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest |[Rn | An [An] |dsp:8[An] |dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] Hdsp:24[An] |abs16 |abs24
Rn 3/2 |3/2 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
An 3/2 |3/2 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
[An] 3/4 |3/4 |3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5
dsp:8[An] 4/4 | 4/4 |4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5
dsp:8[SB/FB] |4/4 |4/4 |4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5
dsp:16[An] 5/4 |5/4 |5/5 6/5 6/5 715 715 8/5 7/5 8/5
dsp:16[SB/FB] |5/4 |5/4 |5/5 6/5 6/5 715 715 8/5 7/5 8/5
dsp:24[An] 6/4 |6/4 |6/5 715 715 8/5 8/5 9/5 8/5 9/5
abs16 5/4 |5/4 |5/5 6/5 6/5 715 715 8/5 7/5 8/5
abs24 6/4 |6/4 |6/5 715 7/5 8/5 8/5 9/5 8/5 9/5

242

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MOV

(1) MOV.size:G #IMM,dest

b7 b0 b7 bo dest code
1 0 0 1]|d4 d3 d2fizE|d1do 1 0|1 1 1 1
[L1 L1 L1
*1 When dest is indi_rec_tly addressed the code has 00001001 | dsp24/abs2a |
added at the beginning.
.Size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
Bl O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBI T4qpngiFa 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 0 1|dspi6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPI6ISBIFBl I4en16FB] |0 1 0 1 1
[AQ] 0000O00O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absl6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/1 | 3/1 | 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

MOV
(2) MOV.L:G #IMM,dest
b7 b0 b7 bo dest code
1 0 1 1|d4d3d2 0fdildo 1 1|0 0 0 1 | AMM32
L1 L1 1 L1 L1
*1 When dest is indi_rec_tly addressed the code has 00001001 | dsp24alabs24 |
added at the beginning.
dest d4 d3 d2 d1do dest d4 d3 d2 d1do

--/---/R2R0 10010 dsp:8[SB] 00110

/—R3RL |1 0 0 1 1 |9sPBISBIFBl I4e 8iFB 00111
Rn " 10000 dsp:16[AQ] 01000

weef el 100 0 1|dsPi6lAn dsp:16[A1] 01001

A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1

[AQ] 00000 dsp:24[A0] 01100
[An] [A1] 000 0 1]|dsp24An dsp24[Al] |0 1 1 0 1

dsp:8[A0] 0 0 1 0 0]abslé abs16 01111
dsp:8[An] dsp:8[AL] 0010 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 6/2 | 6/2 | 6/2 712 712 8/2 8/2 9/2 8/2 9/2

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

243

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
MOV
(3) MOV.size:Q #IMM4, dest
b7 b0 b7 b0 dest code
1 1 1 1|d4 d3 d2pizE[d1do 1 © IMM4
I R A L1 1 L1 1
*1 When dest is |nd|r_ect!y addressed the code has 00001001 | dsp2dlabs2a
added at the beginning.
.size |SIZE #IMM IMM4 #IMM IMM4
B] O 0 0000 | 8 1000
W1 +1 0001 | 7 1001
+2 0010 | 6 1010
+3 0011 | S 1011
+4 0100 [4 1100
+5 0101 | -3 1101
+6 0110 | 2 1110
+7 0111 | -1 1111
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
ROL/RO/--- 10010 dsp:8[SB] 001 0
R1L/R1/-- 100 1 1|IsP8ISBFBL ypgiFB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1|dspl6lAn dsp:16[AL] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|ISPI6ISBIFBL [4e016[FR] 01011
[AQ] 000O0O dsp:24[AQ] 01100
[An] [A1] 000 0 1|dsp24An dsp24Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 0]|absl6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 | 2/1| 2/1 3/1 3/1 4/1 4/1 5/1 4/1 5/1

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

244

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
MOV
(4) MOV.size:S #IMM, dest
b7 b0 dest code
O O di dof O 1 O]|SIZE
i B

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

.size | SIZE dest dl do
.B 0 RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0

dsp:8[SB/FB] dsp:8[FB] 1 1
absl16 abs16 0 1

[Number of Bytes/Number of Cycles]

dest

Rn | dsp:8[SB/FB] | absl16

Bytes/Cycles

2/1 3/2 4/2

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

(5) MOV size:S #IMM,AO/AL
b7 b0
1 | O|SIZE| 1 |1 Il | 0 |dOo
.size | SIZE AO0/AL do
W 0 A0 0
L 1 Al 1

[Number of Bytes/Number of Cycles]

#MM An
#IMM16 3/1
#IMM24 4/2

245

#IMM16

#MM24

MOV

Chapter 4

MOV

(6) MOV.size:Z

b7

Instruction Code/Number of Cycles

b0

Ololdlldo

OIOI15IZE

#0, dest

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

.size |SIZE dest dldo
B 0 RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0

dsp:8[SB/FB] dsp:8[FB] 1 1
abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

dest

Rn | dsp:8[SB/FB] | abs16

Bytes/Cycles

1/1 2/1 3/1

4.2 Instruction Code/Number of Cycles

dest code

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

246

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MOV

(7) MOV.size:G src, dest

b7 b0 b7 b0 src code dest code
dsp8 dsp8

1 s4 s3 s2(d4 d3 d2PBIZE|d1 d0O s1 sO|1 O 1 1

*1 For indirect addressing, the following number is added at | dsp24/abs2a | dsp24/abs2a

the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

.size | SIZE sre/dest s4 5352 s1s0 src/dest s4 3525150
B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
A 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
R1L/R1/--- 100 11 dsp:8[SB/FE] dsp:8[FB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 o 1|dspi6lAn] dsp:16[A] |0 1 0 0 1
A A0 00010 0 16/SB/EE dsp:16[SB] 01010
: Al 000 1 1|dsPL6l I asp:16[FB] 010011
A [AQ] 000O00O dso241A dsp:24[A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAn dsp:24[A1] 01101
dsp:8[A0] 0 01 0 0|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110

[Number of Bytes/Number of Cycles]
src dest| rn | An [An]| dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Rn 2/1 121121 3/1 3/1 4/1 4/1 5/1 4/1 5/1
An 2/1 121121 3/1 3/1 4/1 4/1 5/1 4/1 5/1
[An] 2/3 1213 1|2/3 3/2 3/2 4/2 4/2 5/2 4/2 5/2
dsp:8[An] 3/313/3]3/3 4/2 4/2 5/2 5/2 6/2 5/2 6/2
dsp:8[SB/FB] | 3/313/3|3/3 4/2 4/2 5/2 5/2 6/2 5/2 6/2
dsp:16[An] 4/3 |1 4/3 | 4/3 5/2 5/2 6/2 6/2 712 6/2 712
dsp:16[SB/FB] | 4/3 | 4/3 | 4/3 5/2 5/2 6/2 6/2 712 6/2 712
dsp:24[An] 5/3 | 5/3 | 5/3 6/2 6/2 7/2 712 8/2 712 8/2
abs16 4/3 | 4/3 | 4/3 5/2 5/2 6/2 6/2 7/2 6/2 7/2
abs24 5/3 | 5/3 | 5/3 6/2 6/2 7/2 712 8/2 712 8/2

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3,
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

247

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(8) MOV.L:G src, dest
b7 b0 b7 b0 src code dest code
1 s4 s3 s2|d4 d3 d2 1|dl1 dO s1 sO|O0O O 1 1
*1 For indirect addressing, the following number is added at | dsp24/abs24 | dsp24/abs24
the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
src/dest s4 83 s2s1s0 src/dest s4 53 s2 s1s0
d4 d3 d2 d1 do d4 d3 d2 d1 do
-—/—--/IR2R0O 10010 . dsp:8[SB] 00110
——R3R1 |1 0 0 1 1 |°PBISBFBL foopaiFe] 00111
Rn - 1oo000f dsp:16[A0] |0 1 0 0 0
A 10 0 o 1|dsPi6iAN] dsp:16[Al] [0 1 0 0 1
A0 00010 4 ; dsp:16[SB] 01010
AN Al 0 0 0 1 1|WPIOISBFBL f4opi16iFB] [0 1 0 1 1
[A0] 0000O00O o2 dsp:24[A0] 01100
[An] [AL] 0000 1% Taspaaial] [0 11 01
dsp:8[AQ] 0 0 1 0 0|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1 |abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rp | An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Rn 212 |2/2 |2/2 3/2 3/2 4/2 4/2 5/2 4/2 5/2
An 212 |2/2 |2/2 3/2 3/2 4/2 4/2 5/2 4/2 5/2
[An] 2/4 | 2/4 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
dsp:8[An] 3/4 |3/4 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[SB/FB] |3/4 |3/4 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:16[An] 4/4 | 4/4 | 4l4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:16[SB/FB] | 4/4 | 4/4 | 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:24[An] 5/4 | 5/4 | 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4
abs16 4/4 | 4/4 | 414 5/4 5/4 6/4 6/4 7/4 6/4 7/4
abs24 5/4 | 5/4 | 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3

respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are

increased by 1 and 6, respectively.

248

Chapter 4

Instruction Code/Number of Cycles

(9) MOV.size:S

b7

b0

0I OlsllsO

1I OIO SIZE

src, ROL/RO

*1 When src is indirectly addressed the code has 00001001
added at the beginning.

.size | SIZE src sl s0
.B 0 dsp:8[SB] 1 0
w | 1 | |9sPBISBIFBl [4s8iFR] 11

abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

Src

dsp:8[SB/FB]

absl16

Bytes/Cycles

2/2

3/2

4.2 Instruction Code/Number of Cycles

src code

MOV

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

(10) MOV.size:S

b7

b0

0 1 s1 s0
[

1 1|1 SIZE
|

src, R1L/R1

*1 When src is indirectly addressed the code has 00001001
added at the beginning.

.size | SIZE src sl s0
.B 0 RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0

dsp:8[SB/FB] dsp:8[FB] 1 1
abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

Src

Rn | dsp:8[SB/FB] | abs16

Bytes/Cycles

1/3 2/3

3/3

src code

MOV

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3, respectively.

249

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(11) MOV.size:S ROL/RO, dest
b7 bo dest code
0 0 d1doj0 O OfSZE —

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

.Size | SIZE dest dl do
B 0 dsp:8[SB] 1 0
w | 1 | |9sPBISBIFB] [ysp8[FE] 11

abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

dest

dsp:8[SB/FB]

absl16

Bytes/Cycles

2/1

3/1

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

MOV
(12) MOV.L:S src, AO/Al
7 bo src code
0,1 s1s0|1 0 0 ,dO
TR —
*1 When dest is indirectly addressed the code has 00001001
added at the beginning.
src sl s0 AO/AL do
dsp:8[SB] 1 0 AO 0
dsp:8[SBIFB] [4sp.8[FB] 11 AL 1
abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

Src

dsp:8[SB/FB]

abs16

Bytes/Cycles

2/3

3/3

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
. __|
250

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
MOV
(13) MOV.size:G dsp:8[SP], dest
b7 bo b7 bo src code dest code
1 0 1 1|d4 d3 d2fizE[d1d0 O O |1 11
L1 1 | L1 1 1 1
| dsp24/abs24 |
.Size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
Bl O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBL T4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 0 1|dspi6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPI6ISBIFBl I4en16FB] |0 1 0 1 1
[AQ] 0000O0O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absl6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 [abs24
Bytes/Cycles | 3/3 | 3/3| 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
MOV
(14) MOV.size:G src, dsp:8[SP]
b7 b0 b7 b0 src code dest code
1 0 1 0|s4 s3 s2flzE[s1 sO 0 O |1 11
L1 1 L1 L1 1]
dsp24/abs24 |
.Size | SIZE src s4 s3s2s1s0 src s4 s3s2s1s0
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fyepgFa] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1|dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|ISPA6ISB/FBL Tyen16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 00 0 0 1]|dsp24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O]abslé abs16 01111
dsp:8[An] dsp:8[AL] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/3 | 3/3 | 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

251

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MOVA

(1) MOVA src, dest
b7 b0 b7 bO src code
1 1 0 1|s4s3s2 1|sls0O 0 1| 1| DEST
L1 [L1 L1
| dsp24/abs24
dest | DEST src s4 83 s2s1s0 src s4 s3 52 51 s0
R2R0O |000 dsp:8[A0] 00100 dsp:16[SB] 01010
R3R1 |001| [OSPBIAN] dsp:8[Al] |0 0 1 o 1|9SPIBISB/FBl Tysh1eFB] |0 1 0 1 1
A0 010 dsp:8[SB] 00110 dsp:24[A0] 01100
Al |o11]| |9SPBISBIFBl 4ol |0 0 1 1 1 |dsP24[An] dsp24Al] |0 1 1 0 1
dsp:16[AQ] 0 1 0 0 0fabsi6 abs16 01111
dsp:16[An] dsp:16[Al] |0 1 0 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] dsp:16[SB/FB]| dsp:24[An] absl6 | abs24
Bytes/Cycles 3/2 3/2 4/2 4/2 5/2 4/2 5/2

252

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MOV Dir

(1) MOVDir ROL, dest
dest code
b7 b0 b7 b0 b7 b0
00000001| 1, 0 1 02|d4 d3 d2 O [dl d0 o1 ,00|1 1 1 o3
| dsp24/abs24
Dir 03 02 01 00
LL 0100
HL 0101
LH 0110
HH 0111
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
ROL/--/--- 10010 dsp:8[SB] 00110
R1L/-/ 100 1 1|9SP8ISBIFBL 4en8FR] 00111
Rn ROH/---/- 10000 dsp:16[AQ] 01000
R1H/-~/- 100 0 1|dspl6lAn dsp:16[A1] 01001
00010 dsp:16[SB] 01010
An 0 00 1 1|9sPI6ISB/FBl Tyen16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[AQ] 01100
[An] [A1] 00 0 0 1]|dsp24lAn dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]abslé abs16 01111
dsp:8[An] dsp:8[AL] 00 10 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] | dsp:8[An]| dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB]| dsp:24[An] | abs16 | abs24
MOVHH,
MOVLL 3/3|3/3| 3/5 a/5 4/5 5/5 5/5 6/5 5/5 6/5
MOVHL,
MOVLH 3/6|3/6 | 3/8 4/8 4l8 5/8 5/8 6/8 5/8 6/8

253

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MOV Dir
(2) MOV Dir src, ROL
b7 b b7 b0 b7 bo src code
000000011 0 1 02|s4 s3 s2 0 [s1 s0 01 00|1 1 1 03
| dsp24/abs24
Dir 03 02 01 00
LL 0 00O
HL 0 0 01
LH 0 010
HH 0 011
src s4 s3s2 s1s0 src s4 s3 52 s1s0
ROL/——/— 10010 dsp:8[SB] 00110
R1L/-/- 100 1 1|9SP8ISBIFBL T4en8FR] 00111
Rn ROH/~—-/- 10000 dsp:16[A0] 01000
R1H/--/- 100 o 1|dspl6lAn] dsp:16[A1] 01001
00010 dsp:16[SB] 01010
An 0 00 1 1|9sPI6ISB/FBl Tysn16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 00 0 0 1]|dsp24lAn dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[AL] 00 1 0 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] | dsp:8[An]| dsp:8[SB/FB] |dsp:16[An] | dsp:16[SB/FB]| dsp:24[An] | abs16 | abs24
MOVHH,
MOVLL 3/3/3/3 | 3/5 415 415 5/5 5/5 6/5 5/5 | 6/5
MOVHL,
MOVLH 3/6 |3/6| 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8

254

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
MOVX
(1) MOVX #IMM, dest
b7 b0 b7 b0 dest code
1 0 1 1|ddd3d2 0|dildo O 10 0 O 1)
| L1 | |
*1 When dest is indirectly addressed the code has 00001001 | dsp24/abs24 |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
--/---/R2R0 10010 dsp:8[SB] 00110
J—R3R1 |1 0 0 1 1 |9sP8ISBIFBl |4sp8iFR] 00111
Rn " 10000 dsp:16[AQ] 01000
ceefee]- 10 0 o 1|dspl6lAn] dsp:16[A1] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tyen16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 0 1|dsP24An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 01 0 0]absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An [[An] |dsp:8[An] |dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] Hsp:24[An] jabsl16 [abs24
Bytes/Cycles | 3/2 [3/2 | 3/2 4/2 4/2 5/2 5/2 6/2 5/2 6/2

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

MUL

(1) MUL.size #IMM, dest
b7 b0 b7 bo dest code
1 0 0 0d4 d3 d2§izEfdido 0 1 |1 1 1 1
1 1 | 1 | | 1 1 1 1 |
*1 When dest is indi_recjfly addressed the code has 00001001 | dsp2alabs24 |
added at the beginning.
.size |SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL~— |1 0 0 1 1 |9SPBISB/FBI I4ep8iFay 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1|dspi6lAn] dsp:l6[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9SPIBISBIFBL I4on16fFB] |0 1 0 1 1
[AO] 0000O00O0 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsp24[An] dsp24[A] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0fabsi16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/3 | 3/3 | 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3, respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

255

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MUL

(2) MUL.size src, dest

b7 b0 b7 b0 src code dest code
dsp8 dsp8
1 s4 s3 s2|d4 d3 d2PplzE|d1 d0O s1 sO|1 1 O O
*1 For indirect addressing, the following number is added at | dsp2alabs2d | Jsp2alabs2a

the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

.Size | SIZE sro/dest s4 5352 s1s0 src/dest s4 s3s2s1s0
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 10010 dsp:8[SB] 00110
R1L/R1/--- 10 0 1 1|9SPBISBIFBL FasngiFa] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1 dsp:16[An] dsp:16[A1] 0100 1
A0 00010 4 ; dsp:16[SB] 01010
An Al 0 0 0 1 1|WSPLOISBIFBL J4epa6iFR] 01011
[AQ] 000O0O o2 dsp:24{A0] 01100
[An] [AL] 0 0 0 o 1|dsP4AN dsp24/All |0 1 10 1
dsp:8[AQ] 0 01 0 0]|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 00 1 0 1 |abs24 abs24 01110

[Number of Bytes/Number of Cycles]
src dest|rn [An [An] |dsp:8[An] |dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] Hdsp:24[An] |abs16 |abs24
Rn 2/3 |2/13 |2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
An 2/3 |2/13 |2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
[An] 2/5 |2/5 |2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6
dsp:8[An] 3/5 |3/5 |3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:8[SB/FB] |3/5 |3/5 |3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:16[An] 4/5 |4/5 |4/6 5/6 5/6 6/6 6/6 716 6/6 716
dsp:16[SB/FB] |4/5 |4/5 |4/6 5/6 5/6 6/6 6/6 716 6/6 716
dsp:24[An] 5/5 |5/5 |5/6 6/6 6/6 716 716 8/6 716 8/6
abs16 4/5 |4/5 |4/6 5/6 5/6 6/6 6/6 716 6/6 716
abs24 5/5 |5/5 |5/6 6/6 6/6 716 716 8/6 716 8/6

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

256

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MULEX

(1) MULEX src
b7 b0 b7 b0 src code
1 1 0 0Ofs4s3s2 1sl.s0, 1 1|1 1 1 0
1 1 1 —— I. 1 1 1 1 1 1 1 1
*1 When src is indirectly addressed the code has 00001001
] | dsp24/abs24 |
added at the beginning.
src s4 53 s2s1s0 src s4 s3 52 s1s0
wef] - 10010 dsp:8[SB] 00110
eeefeefen 10 0 1 1|IsP8ISBIFBl [4engiFe] 00111
Rn - 10000 dsp:16[AQ] 01000
—IR3I- 10 0 0 1 |dspl6lAn] dsp:16[A1] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|dSPIBISBIFBl I4en16FB] |0 1 0 1 1
[A0] 00O0O0O dsp:24[AQ] 01100
[An] [A1] 0 0 0 0 1|dsp24lAn] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0fabs16 abs16 01111
dsp:8[An] ;
dsp:8[Al] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Bytes/Cycles | 2/8 | 2/8]| 2/10 3/10 3/10 4/10 4/10 5/10 4/10 | 5/10

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

MULU

(1) MULU.size #IMM, dest
b7 b0 b7 bo dest code
1 0 O O0|d4 d3 d2plzEjdido 0 O |1 1 1 1
L1 L1 L1 L1
*1 When dest is indi_rec_tly addressed the code has 00001001 | dsp24alabs24 |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
B 0 ROL/RO/--- 1 0010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fyspgFa] 00111
Rn ROH/R2/- 1 0000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1|dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9SPA6ISB/FBL Tysn16fFB] |0 1 0 1 1
[A0] 000O0OO dsp:24[A0] 01100
[An] [A1] 000 0 1]|dsp24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O]abslé abs16 01111
dsp:8[An] dsp:8[AL] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] [dsp:24[An] |abs16 | abs24
Bytes/Cycles | 3/3| 3/3| 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5
*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3, respectively.

*3 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.
|

257

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MULU

(2) MULU.size src, dest

b7 b b7 bo src code dest code
dsp8 dsp8

1 s4 s3 s2|d4 d3 d2[SIZEJd1l dO s1 sO|0 1 O O

*1 For indirect addressing, the following number is added at | dsp2d/abs2d | dsp24/abs2a

the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

-size | SIZE sre/dest s4 5352 s1s0 src/dest s4 s3s2s1s0
B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 170010 dsp:8[SB] 00110
R1L/RL/--- 10 0 1 1|9SPBISBFBL fyengiFa] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1 dsp:16[An] dsp:16[A1] 0100 1
AO boot1o} , dsp:16[SB] 01010
An Al 0 0 0 1 1|dSPI6ISBIFBL I4sp 16[FB] 01011
[AQ] 000O00O dsno dsp:24[A0] 01100
[An] [AL] 0 0 0 0 1|dsPR4AN dsp:24/A |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O0]absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1|abs24 abs24 01110

[Number of Bytes/Number of Cycles]
sre dest Rn| An [An] dsp:8[An]| dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB]| dsp:24[An]| absl16| abs24
Rn 2/3| 2/3] 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
An 2/3| 2/3] 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
[An] 2/5| 2/5] 2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6
dsp:8[An] 3/5| 3/5] 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:8[SB/FB] | 3/5| 3/5| 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6
dsp:16[An] 4/5| 4/5| 4/6 5/6 5/6 6/6 6/6 716 6/6 716
dsp:16[SB/FB]| 4/5| 4/5| 4/6 5/6 5/6 6/6 6/6 716 6/6 716
dsp:24[An] 5/5| 5/5] 5/6 6/6 6/6 716 716 8/6 716 8/6
abs16 4/5| 4/5| 4/6 5/6 5/6 6/6 6/6 716 6/6 716
abs24 5/5| 5/5] 5/6 6/6 6/6 716 716 8/6 716 8/6

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

258

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
NEG
(1) NEG.size dest
b7 bo b7 b0 dest code
1 010d4d3d25IZEdldOlOllll
*1 When dest is |nd|rectly addressed the code has 00001001 | dsp2alabs2a |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [yengiFe] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1 |dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9SPIBISBIFBL I4on16fFB] |0 1 0 1 1
[AO] 00O00O0O dsp:24[A0] 01100
[An] [A1] 000 o 1]|dsp24An] dsp24[A] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0|[absi16 abs16 01111
dsp:8[An] dsp:8[A1L] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

[Number of Bytes/Number of Cycles]

Bytes/Cycles

11

259

NOP

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1NOT .size dest
b7 b0 b7 b0 dest code
1 0 1 0|d4 d3 d2plzEjdid0o O 1|1 1 1 O
L1 1 L1 [L1 1
*1 When dest is indirectly addressed the code has 00001001 | dsp2a/abs2a |

added at the beginning.

size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/— |1 0 0 1 0 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4epngiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] |0 1 0 0 O
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:l6[Al] |0 1L 0 0 1
AO 00010 dsp:16[SB] |0 1L 0 1 0
An Al 0 00 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[A0] 00000 dsp:24A0] |0 1 1 0 0
[An] [A1] 0 0 0 0 1|dsP:24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110

[Number of Bytes/Number of Cycles]
dest Rn | An | [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 21| 21| 23| 313 33 413 413 5/3 a3 | 53

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

OR

(1) OR.size:G #IMM, dest
b7 b0 b7 bo dest code
1 0 O O0|d4 d3 d2plZE|d1d0 1 O f1 1 1 1
*1 When dest is indirectly addressed the code has 00001001
e [dsp24/abs24 |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fyep8iFa 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
RIH/R3/- 10 0 0 1|dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl 4o 16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 o0 1]|dsp24An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/1| 3/1| 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

260

Chapter 4

Instruction Code/Number of Cycles

(2) OR.size:S

b7

#IMM, dest

bo

0
|

1|d1| do

0I lI 0| SIZE

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

.Size | SIZE dest dldo
.B 0 RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0

dsp:8[SB/FB] dsp:8[FB] 1 1
absl6 abs16 0 1

[Number of Bytes/Number of Cycles]

dest

Rn

dsp:8[SB/FB]

abs16

Bytes/Cycles

2/1

3/3

4/3

4.2 Instruction Code/Number of Cycles

dest code

OR

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

261

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

OR

(3) OR.size:G src, dest

b7 b0 b7 bo src code dest code
dsp8 dsp8
1 s4 s3 s2|d4 d3 d2PBIZE[d1 dO s1 sO|0O 1 O 1 |_p|
*1 For indirect addressing, the following number is added at | dsp24/abs24 | dsp24/abs24

the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

-size | SIZE src/dest s4 5352 s1s0 src/dest s4 s3s2s1s0
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 170010 dsp:8[SB] 00110
R1L/R1/--- 10011 dsp:8[SB/FE] dsp:8[FB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 0 1 dsp:16[An] dsp:16[A1] 0100 1
A0 00010 J , dsp:16[SB] 01010
An Al 0 0 0 1 1|dSPLOSBFBL T4sp16[FR] 01011
[AQ] 000O00O dsno dsp:24[A0] 01100
[An] [AL] 0 0 0 o 1|dsP24AN dsp24[Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|absl6 absl16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1|abs24 abs24 01110

[Number of Bytes/Number of Cycles]
sre dest|rn [An [An] |dsp:8[An] |dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] Hsp:24[An] |abs16 [abs24
Rn 2/1 |2/1 |2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
An 2/1 |2/1 |2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
[An] 2/3 |2/3 |2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
dsp:8[An] 3/3 |3/3 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[SB/FB] |[3/3 |3/3 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:16[An] 4/3 |4/3 |4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:16[SB/FB] (4/3 |4/3 |4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:24[An] 5/3 |5/3 |5/4 6/4 6/4 714 714 8/4 7/4 8/4
abs16 4/3 |4/3 |4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
abs24 5/3 |5/3 |5/4 6/4 6/4 714 7/4 8/4 7/4 8/4

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

262

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

POP

(1) POP.size dest
b7 b0 b7 b0 dest code
1 0 1 1]|d4 d3 d2PBizE[d1 d0o 1 O |1 1 1 1 [dsp8 |
TRl G Al Sl il [dspiorabsis |
*1 When dest is indirectly addressed the code has 00001001
L | dsp24/abs24 |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
Wl 1 R1L/R1/-- 100 1 1|sP8ISBIFBL [yepgFB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 o 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|ISPI6ISBIFB] [4qn16[FB] 01011
[AQ] 000O0O dsp:24[A0] 01100
[An] [A1] 000 0 1|dsp24An dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]absi6 abs16 01111
dsp:8[An] :
dsp:8[A1l] 0 01 0 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] | dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/3 | 2/3 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

POPC

(1) POPC dest

b7 b0 b7 b0
110100111‘0‘1\01D‘ES"I'

dest DEST dest DEST
DCTO 0 0 0 |DRCO 1.0 0
DCT1 0 0 1|DRC1 10 1
FLG 0 1 0 |pbmDo 110
SVF 0 1 1 |DbmD1 11 1

[Number of Bytes/Number of Cycles]
Bytes/Cycles 2/3

263

Chapter 4

POPC

Instruction Code/Number of Cycles

(2) POPC dest
b7 b0 b7 b0
11 0|1 0}0\1 1 o‘oJllo I‘DES‘T
L |
dest DEST dest DEST
INTB 0O 0 O |- 1 0 O
SP 0o 0 1]|-- 1 0 1
SB 01 0| 1 10
FB 0 1 1]ISP 1 11
[Number of Bytes/Number of Cycles]
Bytes/Cycles 2/4
(1)POPM dest
b7 b0
1000|111 0
L1 1 |
dest
FB|SB|Al | AO| R3| R2| R1 | RO
DEST"?
l l l l l l l

*1 The bit for a selected register is 1.

The bit for a non-selected register is 0.

[Number of Bytes/Number of Cycles]

Bytes/Cycles

2/1+m

*2 m denotes the number of register to be restored.

m = (number of RO, R1,R2,R3)+ 2 x (number of A0,A1,FB,SB)

264

4.2

Instruction Code/Number of Cycles

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

PUSH

(1) PUSH.size #IMM
b7 b0

1 0 1 0|1 1 1|SIZE

Rt Tt Rl
.size |SIZE

.B 0

W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 211
*1 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

PUSH

(2) PUSH.size src
b7 bo b7 bo src code
1 1 0 0|s4 s3 s2PlzE[s1s0 0 O0f1 1 1 0
1 1 1 1 1 1 1 1 1 1 1
*1 When src is indirgctly addressed the code has 00001001 | dsp24labs2a
added at the beginning.
.size | SIZE src s4 83 s2s1s0 src s4 53 s2 s1s0
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL~— |1 0 o 1 1 |9SPBISB/FBl I4sp8iFe] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|dSPIBISBIFBl I4en16[FB] 01011
[AO] 0000O0O dsp:24[A0] 01100
[An] [A1] 000 0 1|dsP24An] dsp:24[A] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

265

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

PUSH

(3) PUSH.L #IMM32

b7 b0 b7 bo

1 01 1|0 1 1 0/0 1 0 1|0 0 1 1 AMM32

1 1 | 1 | | | 1 1 1 1 |

[Number of Bytes/Number of Cycles]

Bytes/Cycles 6/3

PUSH

(4) PUSH.L src

b7 b0 b7 b0 src code

101054535203150000001

*1 When src is |nd|rectly addressed the code has 00001001 | dsp2alabs2d |

added at the beginning.
src s4 83 s2s1s0 src s4 s3 52 51 s0

—-/--IR2R0 10010 dsp:8[SB] 00110
/—R3RL |1 0 0 1 1 |94SPBISB/FBI I4sp8iFBy 00111

Rn - 10000 dsp:16[A0] 01000
S 100 0 1|dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010

An Al 0 00 1 1|9sPI6ISB/FBl Tysh16fFB] |0 1 0 1 1
[AO] 0000O0O0 dsp:24[A0] 01100

[An] [A1] 000 o 1]|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]absle abs16 01111

dsp:8[An] dsp:8[A1] 0010 1]|abs24 abs24 01110

[Number of Bytes/Number of Cycles]

src Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24

Bytes/Cycles | 2/2 | 2/2 | 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

266

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

PUSHA

(1) PUSHA src

b7 b0 b7 b0 src code

1 0 1 1]|s4 s3s2 0|si1sO 0 00 O 0 1

1 L1 L1 1 L1 1 1 L1
| dsp24/abs24 |
src s4 835251 s0 src s4 s3 s2 s1s0

o] - 10010 dsp:8[SB] 00110
oeefeefme 10 0 1 1|IsP8ISBIFBl [yspgFa] 00111

Rn - 10000 dsp:16[AQ] 01000
ceefee]- 10 0 0 1|dspi6lAn] dsp:16[A1] |0 1 0 0 1
00010 dsp:16[SB] 01010

An 0 00 1 1|dSPI6ISBIFB] I4en16[FB] 01011
00000 dsp:24[A0] 01100

[An] 0 0 0 0 1]|dsp24An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absl6 abs16 01111

dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110

[Number of Bytes/Number of Cycles]

src dsp:8[An] | dsp:8[SB/FB] dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] absl6 | abs24

Bytes/Cycles 3/3 3/3 4/3 4/3 5/3 4/3 5/3

PUSHC
(1) PUSHC src
b7 b0 b7 b0

11010‘0‘011J0\1‘01 JSR(%
!

src SRC Src SRC
DCTO 0 0 0 |DRCO 1 0 0
DCT1 0 0 1 |DRC1 1 0 1
FLG 0 1 o |DMDO 1 1 0
SVF 0 1 1 |DMD1 1 1 1

Number of Bytes/Number of Cycles]
Bytes/Cycles 2/1

267

Chapter 4

PUSHC

Instruction Code/Number of Cycles

(2) PUSHC src

b7 b0 b7 b0
1‘1‘0|1 O}O\O‘l O‘OJlO ‘SRC‘

src SRC Src SRC

INTB 0O 0 0 |— 1 0 O
SP 0O 0 1| 1 0 1
SB 0O 1 0| 1 10
FB 0O 1 1]|ISP 1 1 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles

2/4

PUSH

M

(1) PUSHM src
b7 b0
1 0 0 OJ1 1 1 1 SRC
| | | | |]
Src
RO|R1|[R2| R3| A0 | Al | SB | FB
SRC*!
l l l l l l l

*1 The bit for a selected register is 1.
The bit for a non-selected register is 0.

[Number of Bytes/Number of Cycles]

Bytes/Cycles

2/m

*2 m denotes the number of registers to be saved.

m = (number of RO,R1,R2,R3)+2x(number of A0,A1,FB,SB)

268

4.2

Instruction Code/Number of Cycles

Chapter 4

(1) REIT

b7

Instruction Code/Number of Cycles

1 0 0 1
| I |

Bytes/Cycles

1/6

(1) RMPA.size

[Number of Bytes/Number of Cycles]

b7 b0 b7 bo
1 01 12 0 O O|JO 1 O pIZEJO O 1 1
1 1 1 1 1 1 1 1 1 1 1

.size |SIZE

.B 0

W 1

Number of Bytes/Number of Cycles]

Bytes/Cycles

2/7+2m

*1 m denotes the number of operations performed.

269

4.2

Instruction Code/Number of Cycles

REIT

RMPA

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
ROLC
(1) ROLC.size dest
b7 b0 b7 bo dest code
1 0 1 1]|d4 d3 d2PBizF[d1do 1 01 1 1 O [dsp |
[T T R R L1 1 L1 1
*1 When dest is indirectly addressed the code has 00001001 | dsp2dlabs2a |

added at the beginning.

size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/-— 10010 dsp:8[SB] 00110
Wl 1 R1L/R1/-- 100 1 1|9sPBISBFBL fyepgFB] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|dSPIBISBIFBl I4en16[FB] 01011
[A] 00000 dsp:24[A0] 01100
[An] [A1] 000 0 1|dsp24An] dsp24Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110

[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/1 |21 |2/3 | 33 3/3 413 413 5/3 43 | 513

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

RORC

(1) RORC.size dest
b7 bo b7 bo dest code
1 0 1 0|d4 d3 d2plZEjdid0o 2 O |1 1 1 O
L 11 11 L1 1 L 1 1
*1 When dest is |nd|_rec_tly addressed the code has 00001001 | dsp2aabsad |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL/~— |1 0 0 1 1 |9SP8ISB/FBI I4engiFR] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:l6[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|dSPIBISBIFBl I4en16[FB] 01011
[AO] 000O0OO dsp:24[AQ] 01100
[An] [A1] 000 0 1|dsp24An dsp24[A] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 |[abs24
Bytes/Cycles | 2/1 | 2/1 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

270

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
ROT
(1) ROT.size #IMM, dest
b7 b0 b7 b0 dest code
1 1 1 0]|d4 d3 d2pizE[d1d0o 1 O IMM4
I R N R R L1 1 L1 1
*1 When dest is |nd|!'ec_tly addressed the code has 00001001 | dsp2alabsad
added at the beginning.
.size | SIZE #IMM IMM4 dest IMM4
.B 0 +1 0O 0 0 0]1 1 0 0 O
W 1 +2 0O 0 0 1]-2 1 0 0 1
+3 0O 0 1 o0f-3 1 0 1 O
+4 0O 0 1 1|-4 1 0 1 1
+5 0 1 0 0|5 1 1 0 O
+6 0 1 0 1|-6 1 1 0 1
+7 0O 1 1 0f-7 1 1 1 O
+8 0 1 1 1(-8 1 1 1 1
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
ROL/RO/--- 10010 dsp:8[SB] 00110
RILURL— |1 0 0 1 1 |9SPBISB/FBl [4qpngiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 o 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en16FB] |0 1 0 1 1
[AQ] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsp24lAn] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 00 10 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] | absl6 | abs24
Bytes/Cycles |2/m |2/m| 22+m | 3/2+m 3/2+m 4/2+m 4/2+m 5/2+m 4/2+m |5/2+m

*2 m denotes the number of rotates performed.
*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

271

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

ROT
(2) ROT.size R1H, dest
b7 bo b7 bo dest code
1 0 1 0]d4 d3 d2pizF[d1do 1 1|1 1 1 1
IR R N A R | L1
*1 When dest is |nd|_rec_tly addressed the code has 00001001 | dsp2alabs2d |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 R1L/—/— 100 1 1|9SP8ISBIFBl [4en8[FR] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
—IR3/- 100 0 1|dspl6lAn dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tyon16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 00 0 0 1]|dsP24An dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[AL] 001 0 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An | [An] |dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] | abs16 | abs24
Bytes/Cycles | 2/2+m|2/2+m|2/3+m| 3/3+m 3/3+m 4/3+m 4/3+m 5/3+m |4/3+m|5/3+m

*2 m denotes the number of rotates performed.
*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

RTS

(1) RTS

b7 o]0}

Number of Bytes/Number of Cycles]
Bytes/Cycles 1/6

272

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) SBB.size #IMM, dest
dest code
b7 b0 b7 b0 b7 b0
-dsp8 -#IMMB
00000001 1 0 O 1|d4 d3 d2|SizEfd1 do 1 Of1 1.0 [dspt] (e
| dsp24/abs24 |
.Size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | o0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBL [4qpgiFa 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[Al] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en16FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP24lAn] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|[abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] jabs16 |abs24
Bytes/Cycles | 4/1 | 4/1 | 4/3 5/3 5/3 6/3 6/3 713 6/3 713

*1 When (W) is specified for the size specifier(.size),the number of bytes in the table is increased by 1.

273

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) SBB.size src, dest
7 bo b7 bo b7 bo src code dest code
D000 [0001| 1 s4 s3 s2|d4 d3 d2|Siz§dl dO s1 sO| 0 1 1 O [dse8 |
| dsp24/abs24 | | dsp24/abs24
.size | SIZE sre/dest s4 5352 s1s0 src/dest s4 3525150
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
R1L/R1/— 100 1 1|9sPBISBIFBl I4ep8iFB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 o 1|dsPi6lAn dspl6[A] |0 1 0 0 1
A A0 00010 J , dsp:16[SB] 01010
: AL 0 0 0 1 1|ISPLOISBIFBL T4epa6iFR] 010011
A [AC] 00000] . ua dsp:24{A0] 01100
[An] [A1] 0 0 0 o 1|dsP24lAn dsp24[Al] |0 110 1
dsp:8[A0] 0 0 1 0 O]|absi6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An [[An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Rn 3/113/1|3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
An 3/113/1|3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
[An] 3/313/3|3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[An] 4/3 | 413 | 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:8[SB/FB] | 4/3 | 4/3 | 4/14 5/4 5/4 6/4 6/4 7/4 6/4 7/4
dsp:16[An] 5/3 | 5/3 | 5/4 6/4 6/4 714 714 8/4 714 8/4
dsp:16[SB/FB]| 5/3 | 5/3 | 5/4 6/4 6/4 714 714 8/4 714 8/4
dsp:24[An] 6/3 | 6/3 | 6/4 7/4 7/4 8/4 8/4 9/4 8/4 9/4
abs16 5/3 | 5/3 | 5/4 6/4 6/4 714 714 8/4 714 8/4
abs24 6/3 | 6/3|6/4 714 714 8/4 8/4 9/4 8/4 9/4

274

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SBINZ

(1) SBINZ.size #IMM, dest, label

b7 b0 b7 bo dest code label code
dsp8
1 1 1 1]|d4 d3 d2[SIZEjd1d0 0 1 IMM4
111 11 L1 1 111
| dsp24/abs24 |

dsp8 (label code) = address indicated by label - (start address of instruction +2)

.size | SIZE #IMM IMM4 #IMM IMM4
B | 0 0 0000 | +8 1000
W 1 -1 0001 +7 1001
-2 0010 | +6 1010
-3 0011 | +5 1011
-4 0100 | +4 1100
5 0101 | +3 1101
-6 0110 | +2 1110
7 0111 | +1 1111
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
ROL/RO/— 10010 dsp:8[SB] 00110
RILRL— |1 0 0 1 1 |9SPBISB/FBL FyepgiFa] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:16[A1] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISBIFBl Tysn16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[AQ] 01100
[An] [A1] 00 0 0 1|dsp24lAn dsp24Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 Ofabsi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An| [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Bytes/Cycles | 3/2| 32| 3/4 | 4/4 414 5/4 5/4 6/4 54 | el4

*1 When branched to label the number of cycles in the table is increased by 2.

275

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SCCnd

(1) sCCnd dest
b7 bo_b7 bo dest code
1101d4d3d21d1d011 CND
.
*1 When dest is |nd|rectly addressed the code has 00001001 | TSp2diabsaa
added at the beginning.
Cnd CND Cnd CND
LTU/NC 0 0 0 0| GEUIC 10 00
LEU 0 00 1|GTU 1 0 0 1
NE/NZ 0 0 1 0fEQZ 1010
Pz 0 0 1 1N 101 1
NO 01 00|00 1 1 00
GT 0 1 0 1fLE 110 1
GE 0 1 1 0]|LT 1 1 1 0
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
RO/--~/--- 10010 dsp:8[SB] 00110
R/ - 1 0 0 1 1|IsP8ISBIFBl [4spgFe] 00111
Rn R2/---/- 10000 dsp:16[A0] 01000
R3/-—- 10 0 0 1 |dspl6lAn] dsp:16[A1] 01001
---/AQ/--- 00010 dsp:16[SB] 01010
An AL 0 00 1 1|dSPABISBIFBl I4en16fFB] |0 1 0 1 1
[AQ] 00000O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsp24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0fabs16 abs16 01111
dsp:8[An] dsp:8[AL] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An| [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Bytes/Cycles | 2/1| 2/1| 2/1 3/1 3/1 4/1 4/1 5/1 4/1 5/1

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

276

Chapter 4

Instruction Code/Number of Cycles

(1) SCMPUé.size

4.2 Instruction Code/Number of Cycles

SCMPU

b7 b0 b7 b0
1 01 1|1 0 0 0|1 1 Oo@pIZElO O 1 1
1 1 1 1 1 1 1 1 1 1 1
.size | SIZE
.B 0
W 1
[Number of Bytes/Number of Cycles]
Size specifier Bytes/Cycles Remark
Contents match and Contents do not match and
the instruction is terminated | the instruction is terminated
.B 2/6+3m 2/6+3m The last 0 (null) is the 8 high-order bits
W 2/6+1.5m 2/9+1.5m of word
W 2/8+1.5m 2/10+1.5m The last O(null) is the 8 low-order bits
of word

*1 m denotes t

he number of transfers performed.

277

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SHA

(1) SHA.size #IMM, dest
b7 b0 b7 b0 dest code
1111 da Id3 Id2 BIZE | d1 Ido 00 MM4- absm
*1 When dest is indi_rec_tly addressed the code has 00001001 |_dsp2 T7absod
added at the beginning.
.size |SIZE #IMM IMM4 #IMM IMM4
B |0 +1 0 00 0]-1 1000
W1 +2 000 1]-2 1001
+3 0 01 0]-3 1010
+4 0 01 1|4 1011
+5 010 0]-5 1100
+6 0 1 0 1]|-6 1101
+7 011 0|7 1110
+8 01 1 1]|-8 1111
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
ROL/RO/--- 10010 dsp:8[SB] 00110
RILURL— |1 0 0 1 1 |9SPBISB/FBl T4epngiFa 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 o 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tyen16fFB] |0 1 0 1 1
[AO] 000O0O dsp:24[A0] 01100
[An] [A1] 00 0 0 1]|dsp24lAn dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[AL] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn| An| [An] | dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] | dsp:24[An] | absl6 | abs24
Bytes/Cycles |2/m| 2/m| 22+m| 3/2+m 3/2+m 4/2+m 4/2+m 5/2+m | 4/2+m | 5/2+m

*2 m denotes the number of shifts performed.
*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

278

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
SHA
(2) SHA.L #IMM, dest
b7 b0 b7) dest code
10 1 0|d4d3d20]|dldo 1 0|0 0 0 1 absw
*1 When dest is indi_rec_tly addressed the code has 00001001 |_dsp2 A7absoA |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3d2d1do
---/---IR2R0 10010 dsp:8[SB] 00110
——R3RL |1 0 0 1 1 |9SP8ISB/FBl [yqpngiFB 00111
Rn - 10000 dsp:16[AQ] 01000
weefee]- 10 0 0 1 |dspl6lAn] dsp:16[A1] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|dSPIBISBIFBl I4en16FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsp24lAn] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0fabs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An]| dsp:8[SB/FB] | dsp:16[An]| dsp:16[SB/FB]| dsp:24[An]|jabs16 | abs24
Bytes/Cycles | 3/3+m|3/3+m|3/2+m | 4/3+m 4/3+m 5/3+m 5/3+m 6/3+m |5/3+m | 6/3+m

*2 m denotes the number of shifts performed.

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

SHA
(3) SHA.size R1H, dest
b7 b0 b7 bo dest code
1 0 1 1|d4 d3 d2flzE[dl1do 1 11 1 1 0O
L1 1 L1 1 |
*1 When dest is |nd|_recjfly addressed the code has 00001001 | dsp24/abs2a |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 R1L/—/— 100 1 1|9sP8ISBIFBl [4eng[FR] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
—IR3/- 100 0 1|dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9SPA6ISB/FBL Tysn16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 0 1]|dsp24An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O]abslé abs16 01111
dsp:8[An] dsp:8[AL] 0010 1]|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB]| dsp:24[An]| abs16 | abs24
Bytes/Cycles |2/2+m |2/2+m |2/3+m | 3/3+m 3/3+m 4/3+m 4/3+m 5/3+m |4/3+m |5/3+m

*2 m denotes the number of shifts performed.
*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

279

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
SHA
(4) SHA.L R1H, dest
b7 bo b7 bo dest code
1 1 0 0fd4d3d2 0fddoo 10 0o 0 1
L1 1 L1 L1 L1 1
*1 When dest is indi_rec_tly addressed the code has 00001001 | dsp2aiabs2a |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
«=-/---/R2R0 10010 dsp:8[SB] 00110
- 100 1 1|9sP8ISBIFBl T4engFR] 00111
Rn " 10000 dsp:16[A0] 01000
weefee]- 10 0 0 1 |dspi6lAn] dsp:16[A1] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|9SPIBISBIFB] 4o 16[FB] 01011
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 0 1|dsp24An dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An]|abs16 | abs24
Bytes/Cycles | 2/4+m|2/4+m |2/4+m| 3/4+m 3/4+m 4/4+m 4/4+m 5/4+m |4/4+m | 5/4+m

*2 m denotes the number of shifts performed.

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

280

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
SHL
(1) SHL.size #IMM, dest
b7 bo b7 bo dest code
1 1 1 0|d4 d3 d2flzE|d1d0 O O #IMM4
| L1 | |
*1 When dest is indi_rec_tly addressed the code has 00001001 | dsp24/abs2a
added at the beginning.
.size | SIZE #IMM IMM4 dest IMM4
B 0 +1 0 0 0 0f-1 1 0 0 O
W 1 +2 0O 0 0 1]-2 1 0 0 1
+3 0O 0 1 0]-3 1 0 1 O
+4 0O 0 1 1|4 1 0 1 1
+5 0 1 0 o0f-5 1 1 0 O
+6 0 1 0 1|-6 1 1 0 1
+7 0O 1 1 0f-7 1 1 1 0
+8 0 1 1 1)]-8 1 1 1 1
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
ROL/RO/--- 10010 dsp:8[SB] 00110
R1L/R1/-- 100 1 1|9sPBISBFBL FyepgFB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 o 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|IsPI6ISBIFBL [4en16[FB] 01011
[AQ] 000O0O dsp:24[A0] 01100
[An] [A1] 000 0 1|dsP24An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 01 0 0]abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] | abs16 | abs24
Bytes/Cycles |2/m|2/m|2/2+m| 3/2+m 3/2+m 4/2+m 4/2+m 5/2+m 4/2+m |5/2+m

*2 m denotes the number of shifts performed.

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

281

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SHL
(2) SHL.L #IMM, dest
b7 b0 b7 bO dest code
1.0 0 1]d4d3d20[dd0 1 0]0 0 0 1
*1 When dest is indi_rec_tly addressed the code has 00001001 |_dsp2 ST |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3d2d1do
--/---/R2R0 10010 dsp:8[SB] 00110
/—R3RL |1 0 0 1 1 |9SPBISB/FBl [4qpgiFa 00111
Rn - 10000 dsp:16[AQ] 01000
ceefee]- 10 0 0 1|dspl6lAn] dsp:16[A1] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en6FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsp24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] | abs16 | abs24
Bytes/Cycles | 3/3+m|3/3+m|3/3+m | 4/3+m 4/3+m 5/3+m 5/3+m 6/3+m |5/3+m |6/3+m

*2 m denotes the number of shifts performed.
*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

SHL
(3) SHL.size R1H, dest
b7 bo b7 bo dest code
1 0 1 0|d4 d3 d2pizEjd1 do 1 1|1 1 1 O
I R R I L1 1 [
*1 When dest is |nd|r_ect!y addressed the code has 00001001 | dSp24/abs2a |
added at the beginning.
.size |SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fyongFa] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
—IR3/- 100 0 1|dspl6lAn dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tyon16fFB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 00 0 0 1]|dsp24An dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[AL] 00 10 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB]| dsp:24[An]| abs16 | abs24
Bytes/Cycles | 2/2+m|2/2+m|3/3+m | 3/3+m 3/3+m 4/3+m 4/3+m 5/3+m |4/3+m | 5/3+m

*2 m denotes the number of shifts performed.

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
|

282

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(4) SHL.L R1H, dest
b7 b0 b7 bo dest code
1 1 0 0]|d4 d3 d2|{0fdl do 0 0|0 O O 1
11 1 L1 I 111
*1 When dest is indirectly addressed the code has 00001001 | dsp2alabs2a |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
---/---/IR2R0O 10010 dsp:8[SB] 00110
weefeme] 100 1 1|9sPBISBIFBL I4engFB] 00111
Rn - 10000 dsp:16[AQ] 01000
ceefee- 10 0 0 1|dspl6lAn] dsp:16[A1] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|ISPIBISBIFBl I4en16[FB] 01011
[A0] 00O0O0OO dsp:24[AQ] 01100
[An] [A1] 000 0 1|dsP24An] dsp24Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] :
dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] | dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] | dsp:24[An] | abs16 | abs24
Bytes/Cycles | 2/4+m |2/4+m| 2/4+m | 3/4+m 3/4+m 4/4+m 4/4+m 5/4+m |4/4+m |5/4+m

*2 m denotes the number of shifts performed.

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

(1) SIN.size
b7 b0 b7 b0
101 1]0 0 1 0f1 0 oGPpZElO O 1 1
| | 1 | 1 1 1 | | | 1
.Size | SIZE
.B 0
W 1

Bytes/Cycles

2/1+2m

Number of Bytes/Number of Cycles]

*1 m denotes the number of transfers performed.

283

SIN

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SMOVB

(1) SMOVB:.size
b7 b0 b7 b0
l|0|1|101lOlIOIOSIZEOIOI1I1

.size | SIZE
.B 0
W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles | 2/1+2m
*1 m denotes the number of transfers performed.

SMOVF

(1) SMOVF.size

b7 b0 b7 b0

1 01 110 0 O OJ|1 O O PlZEJO O 1 1
1 1 1 1 1 1 1 1 1 1 1

.size |SIZE
.B 0
W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles | 2/1+2m
*1 m denotes the number of transfers performed.

284

Chapter 4 Instruction Code/Number of Cycles

(1) SMOVU.size

b7 b0 b7 b0

1 01 1112 0 O OJ1 O O jIZEfO O 1 1
L1 1 L1 1 11 L1 1

.size | SIZE
.B 0
W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles | 2/1+2m

*1 m denotes the number of transfers performed.

(1) SOUT.size

b7 b0 b7 b0

101 1]0 1 0 O|1 O O PpPIZEJO O 1 1
L1 1 L1 1 11 L1 1

.size | SIZE
.B 0
W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles | 2/1+2m

*1 m denotes the number of transfers performed.

285

4.2

Instruction Code/Number of Cycles

SMOVU

SOUT

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SSTR

(1) SSTR.size

b7 b0 b7 b0

1 01 1j]1 0 0 O|O O O PIZEJO O 1 1
| I | L1 L1 1

.size | SIZE
.B 0
W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/2+m

*1 m denotes the number of transfers performed.

STC

(1) STC src, dest

b7 b0 b7 b0 b7 bo dest code

00000001 | 1 1 0 1|d4 d3 d2 1|dldo 0 1|0 | SRC

| dsp24/abs24
src SRC dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
- 000 ~/-/R2RO [1 0 0 1 O dsp:8[SB] 00110
- 001 /—R3RL |1 0 0 1 1 |9sPBISBIFBl I4e 8iFa 00111
pMAO| 010 | |R" v 10000 dsp:16[A0] 01000
DMAL| 011 — 100 0 1|dspl6lAn dsp:16[A1] 01001
DRAO| 100 A0 00010 dsp:16[SB] 01010
DRAL| 101 | |A" AL 0 00 1 1|9sPI6ISB/FBl Tyon16fFB] |0 1 0 1 1
DSAO| 110 [AO] 00000 dsp:24[A0] 01100
DsAL | 111 | [AN] [AL] 0 0 0 0 1]|dsp24An dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[AL] 00 10 1]|abs24 abs24 01110

[Number of Bytes/Number of Cycles]

dest Rn | An| [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Bytes/Cycles | 3/3| 3/3| 3/3| 4/3 413 5/3 5/3 6/3 513 | 613

286

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
STC
(2) STC src, dest
b7 bo b7 bo b7 bo dest code
00000001 1 1 O 1|d4d3d2 1/d1d0 0 1|1| SRC %absm
[dsp24/abs24
src | SRC dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
DCTO | 000 ---/RO/--- 10010 dsp:8[SB] 00110
DCT1| 001 IR/ 100 1 1|9SPBISBIFBL I4engFB] 00111
FLG |o10 | [R" —IR2I- 10000 dsp:16[AQ] 01000
SVF |011 IR3I- 100 o 1|dspl6lAn dsp:16[A1] |0 1 0 0 1
DRCO| 100 AO 00010 dsp:16[SB] 01010
DRC1| 101 | |A" Al 0 00 1 1|9sPI6ISBIFBl Tyen16fFB] |0 1 0 1 1
DMDO| 110 [AO] 00000 dsp:24[A0] 01100
pmD1| 111 | |AM [AL] 00 0 0 1]|dsp24lAn dsp24[Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 00 10 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] [dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/2 | 3/12 | 3/2 4/2 4/2 5/2 5/2 6/2 5/2 6/2
STC
(3) STC src, dest
b7 bo b7 bo dest code
1 1 0 1|d4dd3d2 1|dldo 0 1|0 | SRC
L1 L1 L1 L
| dsp24/abs24 |
src | SRC dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
INTB | 000 ~/—/R2RO |1 0 0 1 O dsp:8[SB] 00110
sP | oo1 /—R3RL |1 0 0 1 1 |d4SPBISB/FB] I4s 8iFB 00111
sB |o1w0| [R" el 10000 dsp:16[A0] 01000
FB | o011 - 10 0 0 1|dspi6lAn] dsp:16[A1] |0 1 0 0 1
svP | 100 AO 00010 dsp:16[SB] 01010
VeT | 101 | [A" Al 000 1 1|dSPI6ISBIFBl I4en16FB] |0 1 0 1 1
- 110 [AQ] 0 00O0O dsp:24[AQ] 01100
ISP | 111 | AN [A1] 000 0 1|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[AQ] 0 0 1 0 O|absl6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 2/3 | 2/3 | 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

287

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

STCTX

(1) STCTX absl6, abs24

b7 b0 b7 b0

T 01 1Jo 1 1 0]t 10 1]oo 1 1] L@ | abs24
| | 1 | 1 1 1 | | 1 | 1
[Number of Bytes/Number of Cycles]
Bytes/Cycles 7/10+2m
*1 m denotes the number of transfers performed.
STNZ
(1) STNZ.size #IMM, dest
b7 bo b7 bo dest code
1 0 0 1 |d4 d3 d2§IzEf[d1d0 O 1 |1 1 1 1 [dse6 |
N TN R I [111
*1 When dest is |nd|_rec_tly addressed,the code has 00001001 | dsp2alabs2d |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1do dest d4 d3 d2 d1 do
.B 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl fysngFa] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 100 o 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Tyon16fFB] |0 1 0 1 1
[AO] 000O00O dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1]|dsp24An dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[AL] 00 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] [dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/2 | 3/2 | 3/2 4/2 4/2 5/2 5/2 6/2 5/2 6/2

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

288

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
STZ
(1) STZ.size #IMM, dest
b7 bo b7 bo dest code
1 0 0 1 [d4 d3 d2$lzE[d1do 0 O |1 1 1 1
[T TR T M M I L1 1
*1 When dest is |nd|_recftly addressed the code has 00001001 | dspdabsad |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
Bl O ROL/RO/--- 10010 dsp:8[SB] 00110
Wl 1 R1L/R1/-- 100 1 1|IsP8ISBIFBL [ypgiFB] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 100 0 1|dspl6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|ISPI6ISBIFBL [4e016[FR] 01011
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 0 1|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[A0] 001 0 Olabsi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An [[An] |dsp:8[An] |dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] Hsp:24[An] jabsl16 [abs24
Bytes/Cycles | 3/2 [3/2 | 3/2 4/2 4/2 5/2 5/2 6/2 5/2 6/2

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When Z flag is 0,the number of cycles in the table is increased by 1.
*4 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

(1) STZX.size

#IMM1, #IMM2, dest

STZX

b7 b0 b7 bo dest code
1 0 O 1 |d4 d3 d2¥$lzE|jdild0o 12 1 |1 1 1 1
I N T M N | 11 [#mMie1l | [#MMI6-2 |
*1 When dest is |nd|_recjfly addressed the code has 00001001 | dsp2dabsad |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
Bl O ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILRL— |1 0 0 1 1 |9SPBISB/FBl [ysngiFe] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspi6lAn] dsp:16[A1] 01001
AO 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Iyon16fFB] |0 1 0 1 1
[AO] 0000O0O dsp:24[A0] 01100
[An] [A1] 000 o 1]|dsp24Anl dsp24[A] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0|absi6 abs16 01111
dsp:8[An] dsp:8[A1L] 0010 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An |[An] [dsp:8[An] [dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] fisp:24[An] fbsl16 Jabs24
Bytes/Cycles |4/3 [4/3 | 4/3 5/3 5/3 6/3 6/3 713 6/3 713

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 2.

289

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) SUB.size:G #IMM, dest
dest code
b7 b0 b7 b0
1 0 0 0 |d4 d3 d2plZE|ld1d0O 1 1 |1 1 1 O
*1 When dest is indirectly addressed the code has 00001001 | dsp2alabs2a |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
.B 0 ROL/RO/--- 10010 dsp:8[SB] 00110
Wl 1 R1L/R1/-- 10 0 1 1|UsPBISBIFBL TyngiFe] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 o 1|dspl6lAn] dsp:16[AL] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISBIFBL [yqh16[FB] 01011
[A0] 00O0O0TO dsp:24[AQ] 01100
[An] [A1] 000 0 1|dsp24An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0fabsi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An| [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Bytes/Cycles | 3/1] 3/1| 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

SuUB

(2) SUB.L:G #IMM, dest
b7 b0 b7 bo dest code
1|0|0|1 d4ld3|d2|0 dlldo |1|1 olololl _ | AMM32
*1 When dest is indirectly addressed,the code has 00001001 | dsp24labs24 |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
---/---/IR2R0 10010 dsp:8[SB] 00110
—/—R3RL |1 0 0 1 1 |USPBISBIFBl fyongiFe] 00111
Rn - 10000 dsp:16[A0] 01000
S 100 0 1|dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|9sPI6ISB/FBl Iyon16fFB] |0 1 0 1 1
[A0] 00O0O00O dsp:24[A0] 01100
[An] [A1] 000 o0 1]|dsp24An dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0]absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1]|abs2s abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An| [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] |[dsp:24[An] |abs16 | abs24
Bytes/Cycles | 6/2| 6/2| 6/5 715 7/5 8/5 8/5 9/5 8/5 9/5

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

290

Chapter 4

Instruction Code/Number of Cycles

(3) SUB.size:S #IMM, dest
b7 b0
OIOIdlldO lllllS|ZE

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

.size | SIZE dest dl do
B | o0 RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0

dsp:8[SB/FB] dsp:8[FE] 1 1
abs16 abs16 0 1

[Number of Bytes/Number of Cycles]

dest

Rn

dsp:8[SB/FB]

absl16

Bytes/Cycles

2/1

3/3

4/3

4.2 Instruction Code/Number of Cycles

dest code

SUB

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

201

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(4) SUB.size:G src, dest
b7 b0_b7 b0 sre code dest code
dsp8 dsp8
1 s4 s3 s2|d4 d3 d2 §IZEd1 dO s1 sO |1 O 1 O
*1 For indirect addressing, the following number is added at | dsp2alabs2a | dsp24labs24

the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

.Size | SIZE sre/dest s4 s3 52 51 s0 src/dest s4 5352 5150
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
W 1 ROL/RO/--- 10010 dsp:8[SB] 00110
R1L/R1/--- 10 0 1 1|%PBISBRFBL opaire] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 1000 1 dsp:16[An] dsp:16[A1] 01001
A0 00010 J , dsp:16[SB] 01010
An AL 0 0 0 1 1|WPOISBFBL TasperBl [0 1 0 1 1
[AQ] 00000 dsno dsp:24[AQ] 01100
An] [A1] 000 o0 1|MPAY Tasp2aa [0 11 0 1
dsp:8[AQ] 0 0 1 0 O]|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1|abs24 abs24 01110

[Number of Bytes/Number of Cycles]
src dest [Rn | An |[An] |dsp:8[An] |dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] ldsp:24[An] |abs16 |abs24
Rn 2/1 |2/1 |2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
An 2/1 |2/1 |2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
[An] 213 |2/3 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
dsp:8[An] 3/3 13/3 |3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[SB/FB] |3/3 [3/3 |3/4 4/4 414 5/4 5/4 6/4 5/4 | 6/4
dsp:16[An] 4/3 (413 | 4/4 5/4 5/4 6/4 6/4 714 6/4 | 7/4
dsp:16[SB/FB] | 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 714 6/4 714
dsp:24[An] 5/3 | 5/3 |5/4 6/4 6/4 714 714 8/4 714 | 8/4
abs16 4/3 1413 | 414 5/4 5/4 6/4 6/4 714 6/4 714
abs24 5/3 |5/3 | 5/4 6/4 6/4 714 714 8/4 714 8/4

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

292

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles

SUB

(5) SUB.L:G src, dest
b7 b0 b7 b0 src code dest code
1 s4 s3 s2|d4 d3 d2 1 |dl1 d0 s1 sO|0O O O O [dsp8 |
*1 For indirect addressing, the following number is added at | dsp24labs2a | | dsp24/abs2a |
the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
src/dest s4 83 s2s1s0 src/dest s4 s3 52 51 s0
d4 d3 d2 d1 do d4 d3 d2 d1 do
---/---IR2R0 10010 R dsp:8[SB] 00110
J—R3R1 |1 0 o 1 1 |ISPBISBIFBl 4o 8iFR] 00111
Rn wefemef- 10000 Ce16A dsp:16[A0] 01000
—— 10 0 o 1|dsPl6iAN] dsp:16[A1] |0 1 0 0 1
A0 00010 . ; dsp:16[SB] 01010
AN Al 0 0 0 1 1|ISPIOISBFBL f4opt6FB] [0 1 0 1 1
A [AO] 00000 0 241A dsp:24[AQ] 01100
[An] [A1] 0 0 0 o 1|dsP24lAnl dsp:24[Al] |0 11 0 1
dsp:8[A0] 0 01 0 0]|abslé abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1 |abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An | [An]|dsp:8[An] |dsp:8[SB/FB] | dsp:16[An] | dsp:16[SB/FB] |[dsp:24[An] |abs16 |abs24
Rn 2/2 (272 | 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
An 2/2 (272 | 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
[An] 2/5 [2/5 | 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8
dsp:8[An] 3/5 | 3/5 |3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8
dsp:8[SB/FB] |3/5 |3/5 | 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8
dsp:16[An] 4/5 | 4/5 | 4/8 5/8 5/8 6/8 6/8 718 6/8 718
dsp:16[SB/FB] | 4/5 | 4/5 | 4/8 5/8 5/8 6/8 6/8 718 6/8 718
dsp:24[An] 5/5 | 5/5 |5/8 6/8 6/8 718 718 8/8 718 8/8
abs16 4]/5 | 4/5 | 4/8 5/8 5/8 6/8 6/8 718 6/8 718
abs24 5/5 | 5/5 | 5/8 6/8 6/8 718 718 8/8 718 8/8

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are

increased by 1 and 6, respectively.

293

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SUBX

(1) SUBX #IMM, dest
b7 bo b7 bo dest code
10 0 1[d4d3d2 0|dld 0 1]0 0 0 1 |ddss—p:16£ab516
*1 When dest is indi_rec_tly addressed the code has 00001001 |_dsp2 AabsA |
added at the beginning.
dest d4 d3 d2 d1 do dest d4 d3d2d1do
---/--/R2R0 10010 dsp:8[SB] 00110
/—R3RL |1 0 0 1 1 |9SPBISB/FBL [4qpngiFa 00111
Rn - 10000 dsp:16[AQ] 01000
ceefee]- 10 0 0 1|dspl6lAn] dsp:16[A1] |0 1 0 0 1
A0 00010 dsp:16[SB] 01010
An Al 000 1 1|dSPIBISBIFBl I4en16FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsp24[An] dsp24[Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/2 | 3/2 | 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

294

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
SUBX
(2) SUBX src, dest
b7 b0 b7 b0 src code dest code
1 s4 s3 s2|d4 d3 d2 0 |d1 dO s1 sO|0O O O O %
*1 Forindirect addressing, the following number is added at | dsp24labs2d | dsp24labs2d
the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
src s4 53 s2 s1s0 src s4 s3 s2 s1s0
ROL/---/--- 10010 dsp:8[SB] 00110
RAL/--/ - 10 0 1 1|9P8ISBIFBL I4spalFe] 00111
Rn ROH/---/- 10000 dsp:16[A0] 01000
R1H/—/- 10 0 0 1 |dspi6lAn] dsp:16[A1] 01001
A0 00010 dsp:16[SB] 01010
An Al 0 00 1 1|dSPIBISBIFBl I4en16FB] |0 1 0 1 1
[AO] 00000 dsp:24[A0] 01100
[An] [A1] 000 o 1]|dsp24An dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 0|[abs16 abs16 01111
dsp:8[An] dsp:8[A1L] 0010 1|abs2s abs24 01110
dest d4 d3 d2 d1 do dest d4 d3 d2 d1do
«=-/---/R2R0 10010 dsp:8[SB] 00110
“J—/R3R1 |1 0 0 1 1 |USPBISBIFBL I4engFR] 00111
Rn el 10000 dsp:16[AQ] 01000
weefee]- 10 0 0 1|dspl6lAn] dsp:16[A1] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|dSPIBISBIFBl I4en16[FB] 01011
[AO] 0000O0O dsp:24[A0] 01100
[An] [A1] 000 0 1|dsp24An] dsp24[A] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|abs16 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest| rn | An |[An] | dsp:8[An] [dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 |abs24
Rn 212 | 2/2] 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
An 212 | 2/2] 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5
[An] 2/5 | 2/5]2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8
dsp:8[An] 3/5 | 35| 38 4/8 4/8 5/8 5/8 6/8 5/8 | 6/8
dsp:8[SB/FB] | 3/5|3/5 | 3/8 4/8 4/8 5/8 5/8 6/8 5/8 | 6/8
dsp:16[An] 4/5 1 4/5 | 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8
dsp:16[SB/FB] | 4/5 | 4/5 | 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8
dsp:24[An] 5/5 | 5/5 | 5/8 6/8 6/8 7/8 7/8 8/8 7/8 8/8
abs16 4/5 1 4/5 | 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8
abs24 5/5 | 5/5 | 5/8 6/8 6/8 718 718 8/8 718 8/8

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

295

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

TST

(1) TST.size:G #IMM, dest

b7 bo b7 bo dest code
1 0 0 1|d4d3 d2pizEldido 1 1|1 1 1 o0
L1 1 11 L1 1 L1 1
| dsp24/abs24 |
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | O ROL/RO/— 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [4epeiFay 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspi6lAn] dspil6[A] |0 1 0 0 1
AO 00010 dsp:16[SB] |0 1 0 1 O
An Al 000 1 1|dSPA6ISBIFB] I4sp6FB] |0 1 0 1 1
[A0] 00000 dsp:24[AQ] 01100
[An] [A1] 0 0 0 0 1|dsP24[An] dsp24Al] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absl6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An] |dsp:8[An] | dsp:8[SB/FB] |dsp:16[An] |dsp:16[SB/FB] [dsp:24[An] |abs16 |abs24
Bytes/Cycles | 3/1 | 3/1 | 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

*1 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

TST
(2) TST.size:S #IMM, dest
b7 bo dest code
0 0 dLdol1l 1 0sizE
.size | SIZE dest dldo
B | o0 RN ROL/RO 0 0
W 1 dsp:8[SB] 1 0
dsp:8[SB/FB] dsp:8[FB] 1 1
abs16 abs16 0 1

Number of Bytes/Number of Cycles]
dest Rn | dsp:8[SB/FB] |abs16

Bytes/Cycles |2/1 3/3 4/3

*1 When (.\W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

296

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(3) TST.size:G src, dest
b7 b0 b7 b0 b7 bo src code dest code
d
0000|0001| 1 s4 s3 s2|d4 d3 d2|SIZ§d1 dO s1 sO|1 O O 1 Iﬂ,
[dsp24/abs24 | [dsp24/abs24 |
.Si SIZE
Size sr/dest s4 s3 s2 sl s0 src/dest s4 5352 s1s0
.B 0 d4 d3 d2 d1 do d4 d3 d2 d1 do
w1 ROL/RO/--- 10010 dsp:8[SB] 001 0
R1L/R1/--- 100 11 dsp:8[SB/FB] dsp:8[FB] 00111
Rn ROH/R2/- 10000 dsp:16[AQ] 01000
R1H/R3/- 10 0 o 1|dspi6lAn] dsp:16[A] |0 1 0 0 1
A A0 00010 0 16/SB/EE dsp:16[SB] 01010
: Al 000 1 1|dsPL6l I' | dsp:16[FB] 01011
A [AQ] 000O00O 0 241A dsp:24[A0] 01100
[An] [A1] 0 0 0 0 1|dsP2alAn] dsp:24[A1] 01101
dsp:8[AQ] 0 0 1 0 O|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 0 1 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src dest | Rn [An |[An] | dsp:8[An] | dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB/FB] |dsp:24[An] |abs16 | abs24
Rn 3/113/1]3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
An 3/113/1]3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3
[An] 3/3|3/3|3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[An] 4/3 | 413 | 414 5/4 5/4 6/4 6/4 714 6/4 | 714
dsp:8[SB/FB] | 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 714 6/4 | 714
dsp:16[An] 5/3 | 5/3 | 5/4 6/4 6/4 714 714 8/4 714 | 8/4
dsp:16[SB/FB]| 5/3 | 5/3 | 5/4 6/4 6/4 714 7/4 8/4 714 | 8/4
dsp:24[An] 6/3 | 6/3 | 6/4 714 714 8/4 8/4 9/4 8/4 9/4
abs16 5/3 | 5/3 | 5/4 6/4 6/4 714 7/4 8/4 714 8/4
abs24 6/3 | 6/3 | 6/4 714 714 8/4 8/4 9/4 8/4 9/4

297

Chapter 4

UND

(1) UND

b7

Instruction Code/Number of Cycles

Number of Bytes/Number of Cycles]

Bytes/Cycles 1/13

(1) WAIT

b7 b0 b7 b0
1 01 110 0 1 O 0 00 O

0 0
]

1 1
]

[Number of Bytes]

Bytes

298

4.2

Instruction Code/Number of Cycles

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

XCHG

(1) XCHG.size src, dest

b7 bo b7 bo dest code
1 1 0 1 |d4 d3 d2PplIzE|dl d0o O O |1 SRC
111 11 111 L1
*1 When dest is |nd|_recjfly addressed the code has 00001001 | dsp2alabs2a |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- |1 0 0 1 O dsp:8[SB] 00110
w1 RIURL— |1 0 0 1 1 |9SP8ISB/FBl f4eneiFB] |0 0 1 1 1
Rn ROH/R2- |1 0 0 0 0 dsp:16[A0] |0 1 0 0 O
Src__ | SRC RIHR3- |1 0 0 0 1 |9PA8IAN Fyehi6ia1] |0 1 0 0 1
ROL/RO/— 1000 A0 00010 dsp:16[SB] [0 1 0 1 O
RlL//Rlzll'" 001 An Al 0 0 0 1 1|9SPIBISBIFB] [G4eh16/FB] [0 1 0 1 1
22:/23/: 182 . [AC] 00000 o dsp:24[A0] |0 1 1 0 0
[A1] 00001 : dsp:i24[Al] |0 1 1 0 1
A0 010 dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
Al 011 dsp:8[AN] T4sp:g[All |0 0 1 0 1 |abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An| [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] |dsp:24[An] | abs16 | abs24
Bytes/cycles | 2/3| 2/3| 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

XOR

(1) XOR.size #IMM, dest

b7 b0 b7 b0 dest code
1 0 0O 1]|d4 d3 d2plZEjdr1d0 O O |1 1 1 O
L1 1 L1 L1 1 L1 1
*1 When dest is indi_rec_tly addressed,the code has 00001001 | dsp2alabs24 |
added at the beginning.
.size | SIZE dest d4 d3 d2 d1 do dest d4 d3 d2 d1 do
B | 0 ROL/RO/--- 10010 dsp:8[SB] 00110
w1 RILURL— |1 0 0 1 1 |9SPBISB/FBl [yengFB] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 0 1|dspl6lAn] dsp:6[Al] |0 1 0 0 1
AO 00010 dsp:16[SB] 01010
An Al 0 0 0 1 1|9SPIBISBIFB] I4qn16[FR] 01011
[AO] 0000O dsp:24[A0] 01100
[An] [A1] 00 0 o 1]|dsp24Anl dsp24[A1] |0 1 1 0 1
dsp:8[A0] 0 0 1 0 O|absi6 abs16 01111
dsp:8[An] dsp:8[A1] 0010 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
dest Rn | An | [An]|dsp:8[An]| dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] [dsp:24[An] |abs16 | abs24
Bytes/Cycles | 3/1| 3/1| 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

*2 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.
. __|

299

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) XOR:.size src, dest
b7 b b7 bo src code dest code
[dsp8] [dsp8 |
1 s4 s3 s2|d4 d3 d2 piZE|d1 dO s1 sO|1 O O 1 - -
*1 For indirect addressing, the following number is added at | dsp24/abs24 | dsp24/abs24
the beginning of code:
01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed
size | SIZE sre/dest s4 s3 52 s1 s0 src/dest s4 5352150
B 0 d4 d3 d2 d1 do d4 d3 d2 d1 d0
W 1 ROL/RO/--- 1 0010 dsp:8[SB] 00110
R1L/R1/--- 10011 dsp:8[SB/FB] dsp:8[FB] 00111
Rn ROH/R2/- 10000 dsp:16[A0] 01000
R1H/R3/- 10 0 o 1|dsPi6lAn dspl6[A] |0 1 0 0 1
A0 00010 do , dsp:16[SB] 01010
AN Al 0 0 0 1 1|WPIOISBFBL f4op1eFB] [0 1 0 1 1
A [AQ] 00000 dso:240A dsp:24[AQ] 01100
[An] [A1] 0 0 0 o 1|0sP24lAnl dsp24[All |0 1101
dsp:8[A0] 0 01 0 O]|absl6 abs16 01111
dsp:8[An] dsp:8[Al] 0 01 0 1|abs24 abs24 01110
[Number of Bytes/Number of Cycles]
src destl Ry [An [An] | dsp:8[An] | dsp:8[SB/FB]| dsp:16[An]| dsp:16[SB/FB] |dsp:24[An] | abs16 | abs24
Rn 2/1 |21 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
An 2/1 |21 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3
[An] 213 | 213 | 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4
dsp:8[An] 3/3|3/3]3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:8[SB/FB] | 3/3 | 3/3 | 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4
dsp:16[An] 4/3 | 413 | 4/4 5/4 5/4 6/4 6/4 714 6/4 7/4
dsp:16[SB/FB] | 4/3 | 4/3 | 4/4 5/4 5/4 6/4 6/4 714 6/4 714
dsp:24[An] 5/3 | 5/3 | 5/4 6/4 6/4 714 714 8/4 7/4 8/4
abs16 4/3 | 413 | 4/4 5/4 5/4 6/4 6/4 714 6/4 714
abs24 5/3 | 5/3 | 5/4 6/4 6/4 714 714 8/4 714 8/4

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

300

Chapter 5

Interrupt

5.1 Outline of Interrupt

5.2 Interrupt Control

5.3 Interrupt Sequence

5.4 Return from Interrupt Routine

5.5 Interrupt Priority

5.6 Multiple Interrupts

5.7 Precautions for Interrupts

5.8 Exit from Stop Mode and Wait Mode

Chapter 5 Interrupt 5.1 Outline of Interrupt

5.1 Outline of Interrupt
When an interrupt request is acknowledged, control branches to the interrupt routine that is set to an inter-
rupt vector table. Each interrupt vector table must have had the start address of its corresponding interrupt
routine set. For details about the interrupt vector table, refer to Section 1.10, “Vector Table.”

5.1.1 Types of Interrupts
Figure 5.1.1 lists the types of interrupts. Table 5.1.1 and 5.1.2 list the source of interrupts (non-
maskable) and the fixed vector tables.

[] Undefined instruction (UND instruction)
[] Overflow (INTO instruction)
Software [] BRK instruction
[] BRK2 instruction
[] INT instruction

Interrupt

TV >et
NM

|:|

Special Watchdog timer

N o

0 g
Single step
H il Address matched
[]
]

Hardware

U
Peripheral I/0™

*1 Peripheral I/O interrupts are generated by the peripheral functions built into the microcomputer
system. High-speed interrupt can be used as highest priority in peripheral I/O interrupts.

Figure 5.1.1. Classification of interrupts

Table 5.1.1 Interrupt Source (Nonmaskable) and Fixed Vector Table

Interrupt source Vector table addresses Remarks
Address (L) to address (H)
Undefined instruction FFFFDC16 to FFFFDF16 | Interrupt generated by the UND instruction.
Overflow FFFFEO16 to FFFFE316 | Interrupt generated by the INTO instruction.

Executed beginning from address indicated by

BRK instruction FFFFE416 to FFFFE716
vector in variable vector table if content of address
FFFFE716 is FF16.
Address match FFFFE816 to FFFFEB16 | Can be controlled by an interrupt enable bit.
Watchdog timer FFFFFO16 to FFFFF316
NMI FFFFF816 to FFFFFB16 | External interrupt generated by driving NMI pin low.
Reset FFFFFC16 to FFFFFF16

302

Chapter 5 Interrupt 5.1 Outline of Interrupt

Table 5.1.2 Interrupt Exclusively for Emulator (Nonmaskable) and Vector Table

Interrupt source Vector table addresses Remarks
Address (L) to address (H)
BRK2 instruction Interrupt vector table register exclusively for This interrupt is used
) emulator exclusively for debugger
Single step 00002016 to 00002316 purposes.
B Maskable interrupt: This type of interrupt can be controlled by using the | flag to enable (or

disable) an interrupt or by changing the interrupt priority level.
B Nonmaskable interrupt: This type of interrupt cannot be controlled by using the | flag to enable (or

disable) an interrupt or by changing the interrupt priority level.

5.1.2 Software Interrupts
Software interrupts are generated by some instruction that generates an interrupt request when ex-
ecuted. Software interrupts are nonmaskable interrupts.
(1) Undefined-instruction interrupt

This interrupt occurs when the UND instruction is executed.

(2) Overflow interrupt

This interrupt occurs if the INTO instruction is executed when the O flag is 1.

The following lists the instructions that cause the O flag to change:

ABS, ADC, ADCF, ADD, ADDX, CMP, CMPX, DIV, DIVU, DIVX, NEG, RMPA, SBB, SCMPU, SHA, SUB,
SUBX

(3) BRK interrupt

This interrupt occurs when the BRK instruction is executed.

(4) BRK2 interrupt

This interrupt occurs when the BRK2 instruction is executed. This interrupt is used exclusively for
debugger purposes. You normally do not need to use this interrupt.

(5) INT instruction interrupt

This interrupt occurs when the INT instruction is executed after specifying a software interrupt number
from 0 to 63. Note that software interrupt numbers O to 43 are assigned to peripheral I/O interrupts. This
means that by executing the INT instruction, you can execute the same interrupt routine as used in
peripheral 1/O interrupts.

The stack pointer used in INT instruction interrupt varies depending on the software interrupt number.
For software interrupt numbers 0 to 31, the U flag is saved when an interrupt occurs and the U flag is
cleared to 0 to choose the interrupt stack pointer (ISP) before executing the interrupt sequence. The
previous U flag before the interrupt occurred is restored when control returns from the interrupt routine.
For software interrupt numbers 32 to 63, such stack pointer switchover does not occur.

However, in peripheral 1/O interrupts, the U flag is saved when an interrupt occurs and the U flag is
cleared to O to choose ISP.

Therefore movement of U flag is different by peripheral I/O interrupt or INT instruction in software interrupt
number 32 to 43.

303

Chapter 5 Interrupt 5.1 Outline of Interrupt

5.1.3 Hardware Interrupts

There are Two types in hardware Interrupts; special interrupts and Peripheral 1/O interrupts.

(1) Special interrupts

Special interrupts are nonmaskable interrupts.

* Reset
A reset occurs when the RESET pin is pulled low.

« NMI interrupt
This interrupt occurs when the NMI pin is pulled low.

» Watchdog timer interrupt
This interrupt is caused by the watchdog timer.

» Address-match interrupt
This interrupt occurs when the program's execution address matches the content of the address match
register while the address match interrupt enable bit is set (= 1).
This interrupt does not occur if any address other than the start address of an instruction is set in the
address match register.

* Single-step interrupt
This interrupt is used exclusively for debugger purposes. You normally do not need to use this inter-
rupt. A single-step interrupt occurs when the D flag is set (= 1); in this case, an interrupt is generated
each time an instruction is executed.

(2) Peripheral I/O interrupts

These interrupts are generated by the peripheral functions built into the microcomputer system. The
types of built-in peripheral functions vary with each M16C model, so do the types of interrupt causes. The
interrupt vector table uses the same software interrupt numbers 0—43 that are used by the INT instruction.
Peripheral 1/O interrupts are maskable interrupts. For details about peripheral I/O interrupts, refer to the
M16C User’s Manual.

For peripheral I/O interrupts, the U flag is saved when an interrupt occurs and the U flag is cleared to O to
choose the interrupt stack pointer (ISP) before executing the interrupt sequence. The previous U flag
before the interrupt occurred is restored when control returns from the interrupt routine.

(3) High-speed interrupts

High-speed interrupts are interrupts in which the response is executed at high-speed. High-speed inter-
rupt can be used as highest priority in peripheral 1/O interrupts.

Execute a FREIT instruction to return from the high-speed interrupt routine.

For details about high-speed interrupt, refer to the M16C User's Manual.

304

Chapter 5 Interrupt 5.2 Interrupt Control

5.2 Interrupt Control

The following explains how to enable/disable maskable interrupts and set acknowledge priority. The expla-
nation here does not apply to non-maskable interrupts.

Maskable interrupts are enabled and disabled by using the interrupt enable flag (I flag), interrupt priority
level select bit, and processor interrupt priority level (IPL). Whether there is any interrupt requested is
indicated by the interrupt request bit. The interrupt request bit and interrupt priority level select bit are
arranged in the interrupt control register provided for each specific interrupt. The interrupt enable flag (I
flag) and processor interrupt priority level (IPL) are arranged in the flag register (FLG).

For details about the memory allocation and the configuration of interrupt control registers, refer to the
M16C User's Manual.

5.2.1 Interrupt Enable Flag (I Flag)
The interrupt enable flag (I flag) is used to disable/enable maskable interrupts. When this flag is set (=
1), all maskable interrupts are enabled; when the flag is cleared to 0, they are disabled. This flag is
automatically cleared to O after a reset is cleared.
When the | flag is changed, the altered flag status is reflected in determining whether or not to accept an
interrupt request at the following timing:
« If the flag is changed by an REIT or FREIT instruction, the changed status takes effect begin-
ning with that REIT or FREIT instruction.
* If the flag is changed by an FCLR, FSET, POPC, or LDC instruction, the changed status takes
effect beginning with the next instruction.

When changed by REIT or FREIT instruction

Determination whether or not to
Interrupt request generated accept interrupt request
{} —® Time
/
Interrupt sequence g

Previous
instruction REIT

(If I flag is changed from 0 to 1 by REIT instruction)

When changed by FCLR, FSET, POPC, or LDC instruction
Determination whether or not to

Interrupt request generated accept interrupt request
{} ——Pp Time
_______________ 7
Previous . .
instruction FSET | Next instruction |Interrupt sequence g
______________ o

(If I flag is changed from 0 to 1 by FSET instruction)

Figure 5.2.1 Timing at which changes of | flag are reflected in interrupt handling

5.2.2 Interrupt Request Bit

This bit is set (= 1) when an interrupt request is generated. This bit remains set until the interrupt request
is acknowledged. The bit is cleared to 0 when the interrupt request is acknowledged.
This bit can be cleared to 0 (but cannot be set to 1) in software.

305

Chapter 5 Interrupt 5.2 Interrupt Control

5.2.3 Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)
Interrupt priority levels are set by the interrupt priority select bit in an interrupt control register. When an
interrupt request is generated, the interrupt priority level of this interrupt is compared with the processor
interrupt priority level (IPL). This interrupt is enabled only when its interrupt priority level is greater than
the processor interrupt priority level (IPL). This means that you can disable any particular interrupt by
setting its interrupt priority level to 0.

Table 5.2.1 shows how interrupt priority levels are set. Table 5.2.2 shows interrupt enable levels in
relation to the processor interrupt priority level (IPL).

The following lists the conditions under which an interrupt request is acknowledged:
* Interrupt enable flag (1 flag) =1

* Interrupt request bit =1

* Interrupt priority level > Processor interrupt priority level (IPL)

The interrupt enable flag (I flag), interrupt request bit, interrupt priority level select bit, and the processor
interrupt priority level (IPL) all are independent of each other, so they do not affect any other bit.

Table 5.2.1 Interrupt Priority Levels Table 5.2.2 IPL and Interrupt Enable Levels
Interrupt priori_ty Interrupt priority level Priority Prgcgssor interrupt Enabled interrupt priority
level select bit order priority level (IPL) levels
2o o |Level o (interrupt disabled) | —— Pz 1Pl Plo nterrupt levels 1 and above are enabled.
0 0 1 Level 1 Low o o0 1 Interrupt levels 2 and above are enabled.
0 1 o0 Level 2 o0 1 o0 Interrupt levels 3 and above are enabled.
0o 1 1 Level 3 o 1 1 Interrupt levels 4 and above are enabled.
1 0 O Level 4 1 0 0 Interrupt levels 5 and above are enabled.
1 0 1 Level 5 1 0 1 Interrupt levels 6 and above are enabled.
1 1 0 Level 6 1 1 o0 Interrupt levels 7 and above are enabled.
1 1 1 Level 7 High 1 1 1 All maskable interrupts are disabled.

When the processor interrupt priority level (IPL) or the interrupt priority level of some interrupt is

changed, the altered level is reflected in interrupt handling at the following timing:

« If the processor interrupt priority level (IPL) is changed by an REIT or FREIT instruction, the changed
level takes effect beginning with the REIT or FREIT instruction.

« If the processor interrupt priority level (IPL) is changed by a POPC, LDC, or LDIPL instruction, the
changed level takes effect beginning with the next instruction.

« If the interrupt priority level of a particular interrupt is changed by an instruction such as MOV, the
changed level takes effect beginning with the instruction that is executed two clock or two clock peri-
ods after the last clock of the instruction used.

306

Chapter 5 Interrupt 5.2 Interrupt Control

5.2.4 Reuwrite the interrupt control register
When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the
interrupt request bit is not set sometimes even if the interrupt request for that register has been gener-
ated. This will depend on the instruction. If this creates problems, use the below instructions to change
the register.
Instructions : AND, OR, BCLR, BSET

5.3 Interrupt Sequence

An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the

instant the interrupt routine is executed — is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the

execution of the instruction is completed, and transfers control to the interrupt sequence from the next

cycle. If an interrupt occurs during execution of either the SCMPU, SIN, SMOVB, SMOVF, SMOVU,

SSTR, SOUT or RMPA instruction, the processor temporarily suspends the instruction being executed,

and transfers control to the interrupt sequence.

In the interrupt sequence, the processor carries out the following in sequence given:

(1) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading address
00000016 (address 00000216 when high-speed interrupt).

(2) Saves the content of the flag register (FLG) as it was immediately before the start of interrupt sequence
in the temporary register (Note) within the CPU.

(3) Sets the interrupt enable flag (I flag), the debug flag (D flag), and the stack pointer select flag (U flag) to
“0” (the U flag, however does not change if the INT instruction, in software interrupt numbers 32 through
63, is executed)

(4) Saves the content of the temporary register (Note 1) within the CPU in the stack area. Saves in the flag
save register (SVF) in high-speed interrupt.

(5) Saves the content of the program counter (PC) in the stack area. Saves in the PC save register (SVP)
in high-speed interrupt.

(6) Sets the interrupt priority level of the accepted instruction in the IPL.

After the interrupt sequence is completed, the processor resumes executing instructions from the first ad-

dress of the interrupt routine.

Note: This register cannot be utilized by the user.

307

Chapter 5 Interrupt 5.3 Interrupt Sequence

5.3.1 Interrupt Response Time
The interrupt response time means a period of time from when an interrupt request is generated till when
the first instruction of the interrupt routine is executed. This period consists of time (a) from when an
interrupt request is generated to when the instruction then under way is completed and time (b) in which
an interrupt sequence is executed. Figure 5.3.1 shows the interrupt response time.

Interrupt request generated Interrupt request acknowledged

b o

Instruction in interrupt S

i Interrupt sequence .
Instruction pt seq routine

-—) g (b) >

Interrupt response time

(a) Time from when interrupt request is generated to when the instruction then under execu-
tion is completed

(b) Time in which the interrupt sequence is executed

Figure 5.3.1. Interrupt response time

Time (a) varies with each instruction being executed. The DIVX instruction requires a maximum time that
consists of 29* cycles.
Time (b) is shown in table 5.3.1.

* |t is when the divisor is immediate or register. When the divisor is memory, the following value is

added.
* Normal addressing 12+ X
« Index addressing 3+ X
« Indirect addressing 5+ X+2Y
* Indirect index addressing :5+ X+2Y

X is number of wait of the divisor area. Y is number of wait of the indirect address stored area.
When X and Y are in odd address or in 8 bits bus area, double the value of X and Y.

308

Chapter 5 Interrupt 5.3 Interrupt Sequence

Table 5.3.1 Interrupt Sequence Execution Time

Interrupt Interrupt vector address 16 bits data bus 8 bits data bus
Peripheral 1/0 Even address 14 cycles 16 cycles
Odd address*? 16 cycles 16 cycles
INT instruction Even address 12 cycles 14 cycles
Odd address*? 14 cycles 14 cycles
NMI Even address*! 13 cycles 15 cycles

Watchdog timer
Undefined instruction
Address match

Overflow Even address*! 14 cycles 16 cycles
BRK instruction Even address 17 cycles 19 cycles
(Variable vector table) Odd address*? 19 cycles 19 cycles
Single step Even address*! 19 cycles 21 cycles

BRK2 instruction
BRK instruction

(Fixed vector table)
High-speed interrupt*3 Vector table is internal register 5 cycles

*1 The vector table is fixed to even address.
*2 Allocate interrupt vector addresses in even addresses as must as possible.
*3 The high-speed interrupt is independent of these conditions.

5.3.2 Changes of IPL When Interrupt Request Acknowledged
When an interrupt request is acknowledged, the interrupt priority level of the acknowledged interrupt is
set to the processor interrupt priority level (IPL).
If an interrupt request is acknowledged that does not have an interrupt priority level, the value shown in
Table 5.3.2 is set to the IPL.

Table 5.3.2 Relationship between Interrupts without Interrupt Priority Levels and IPL

Interrupt sources without interrupt priority levels Value that is set to IPL
Watchdog timer, NMI 7

Reset 0

Other Not changed

309

Chapter 5 Interrupt

5.3 Interrupt Sequence

5.3.3 Saving Registers
In an interrupt sequence, only the contents of the flag register (FLG) and program counter (PC) are
saved to the stack area.
The order in which these contents are saved is as follows: First, the FLG register is saved to the stack
area. Next, the 16 high-order bits and 16 low-order bits of the program counter expanded to 32-bit are
saved. Figure 5.3.2 shows the stack status before an interrupt request is acknowledged and the stack
status after an interrupt request is acknowledged.
In a high-speed interrupt sequence, the contents of the flag register (FLG) is saved to the flag save
register (SVF) and program counter (PC) is saved to PC save register (SVP).
If there are any other registers you want to be saved, save them in software at the beginning of the
interrupt routine. The PUSHM instruction allows you to save all registers except the stack pointer (SP)
by a single instruction.

Stack status before interrupt request is acknowledged

Address Stack area Address Stack area
Program counter
m-6 m-6 (PCL) [SP]
Program counter New stack
m-5 m-5 (PCw) pointer value
Program counter
m-4 m-4 (PCw)
m-3 m-3 0 0
Flag register
m-—2 m-2 (FLGL)
Flag register
m-1 m-1 (FLGh)
[SP]
m Content of Stack pointer Content of
previous stack value before m previous stack
1 Content of interrupt occurs Content of
m+ previous stack m+1 previous stack

Stack status after interrupt request is acknowledged

Figure 5.3.2 Stack status before and after an interrupt request is acknowledged

310

Chapter 5 Interrupt 5.4 Return from Interrupt Routine

5.4 Return from Interrupt Routine

As you execute the REIT instruction at the end of the interrupt routine, the contents of the flag register (FLG)
and program counter (PC) that have been saved to the stack area immediately preceding the interrupt
sequence are automatically restored. In high-speed interrupt, as you execute the REIT instruction at the end
of the interrupt routine, the contents of the flag register (FLG) and program counter (PC) that have been
saved to the save registers immediately preceding the interrupt sequence are automatically restored.

Then control returns to the routine that was under execution before the interrupt request was acknowledged,
and processing is resumed from where control left off.

If there are any registers you saved via software in the interrupt routine, be sure to restore them using an
instruction (e.g., POPM instruction) before executing the REIT or FREIT instruction.

5.5 Interrupt Priority

If two or more interrupt requests are sampled active at the same time, whichever interrupt request is ac-
knowledged that has the highest priority.

Maskable interrupts (Peripheral 1/O interrupts) can be assigned any desired priority by setting the interrupt
priority level select bit accordingly. If some maskable interrupts are assigned the same priority level, the
interrupt that a request came to most in the first place is accepted at first, and then, the priority between
these interrupts is resolved by the priority that is set in hardware™.

Certain nonmaskable interrupts such as a reset (reset is given the highest priority) and watchdog timer
interrupt have their priority levels set in hardware. Figure 5.5.1 lists the hardware priority levels of these
interrupts.

Software interrupts are not subjected to interrupt priority. They always cause control to branch to an inter-
rupt routine whenever the relevant instruction is executed.

*1 Hardware priority varies with each M16C model. Please refer to your M16C User’'s Manual.

Reset > NMI > Watchdog > Peripheral 1/0 > Single step > Address match

Figure 5.5.1. Interrupt priority that is set in hardware

311

Chapter 5 Interrupt 5.6 Multiple interrupts

5.6 Multiple Interrupts

The following shows the internal bit states when control has branched to an interrupt routine:
» The interrupt enable flag (I flag) is cleared to 0 (interrupts disabled).
» The interrupt request bit for the acknowledged interrupt is cleared to 0.
» The processor interrupt priority level (IPL) equals the interrupt priority level of the acknowledged interrupt.

By setting the interrupt enable flag (I flag) (= 1) in the interrupt routine, you can reenable interrupts so that an
interrupt request can be acknowledged that has higher priority than the processor interrupt priority level
(IPL). Figure 5.6.1 shows how multiple interrupts are handled.

The interrupt requests that have not been acknowledged for their low interrupt priority level are kept pend-
ing. When the IPL is restored by an REIT and FREIT instruction and interrupt priority is resolved against it,
the pending interrupt request is acknowledged if the following condition is met:

Interrupt priority level of > Restored processor interrupt
pending interrupt request priority level (IPL)

312

h r Interr
Chapter 5 terrupt 5.6 Multiple interrupts

Interrupt request

i - >
generated Nesting

Reset >

Main routine

Time

Interrupt 1 .

U

Interrupt priority level = 3

Interrupt 2 Multiple interrupts
/

5

|

Interrupt priority level = 5

Interrupt 3 >

D

Interrupt priority level = 2

Not acknowledged because
of low interrupt priority

Main routine instructions
are not executed.

. Interrupt enable flag

: Processor interrupt priority level
: Automatically executed.

: Be sure to set in software.

Figure 5.6.1. Multiple interrupts

313

Chapter 5 Interrupt

5.7 Precautions for Interrupts

(1) Reading addresses 000000 16 and 000002 16
» When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and
interrupt request level) in the interrupt sequence from address 00000016. When high-speed interrupt
is occurred, CPU read from address 00000216.
The interrupt request bit of the certain interrupt will then be set to “0”".
However, reading addresses 00000016 and 00000216 by software does not set request bit to “0”.

(2) Setting the stack pointer
* The value of the stack pointer imnmediately after reset is initialized to 00000016. Accepting an interrupt
before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in
the stack pointer before accepting an interrupt. When using the NMI interrupt, initialize the stack
pointer at the beginning of a program. Any interrupt including the NMI interrupt is generated immedi-
ately after executing the first instruction after reset. Set an even number to the stack pointer. When an
even number is set, execution efficiency is increased.

(3) Rewrite the interrupt control register

» When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the
interrupt request bit is not set sometimes even if the interrupt request for that register has been gener-
ated. This will depend on the instruction. If this creates problems, use the below instructions to change
the register.

Instructions : AND, OR, BCLR, BSET

5.8 Exit from Stop Mode and Wait Mode

When using an peripheral /O interrupt to exit stop mode or wait mode, the relevant interrupt must have been
enabled and set to a priority level above the level set by the interrupt priority set bits for exiting a stop/wait
state. Set the interrupt priority set bits for exiting a stop/wait state to the same level as the processor interrupt
level (IPL) of flag register (FLG).

RESET and NMI interrupt are independent of the interrupt priority set bits for exiting a stop/wait state, and
stop/wait state is exited.

314

Chapter 6

Calculation Number of Cycles

6.1 Instruction queue buffer

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

6.1 Instruction queue buffer

The M16C/80 series have 8-stage (8-byte) instruction queue buffers. If the instruction queue buffer has a
free space when the CPU can use the bus, instruction codes are taken into the instruction queue buffer.
This is referred to as “prefetch”. The CPU reads (fetches) these instruction codes from the instruction
gueue buffer as it executes a program.

Explanation about the number of cycles in Chapter 4 assumes that all the necessary instruction codes are
placed in the instruction queue buffer, and that data is read or written to the memory connected via a 16-bit
bus (including the internal memory) beginning with even addresses without software wait or RDY or other
wait states. In the following cases, more cycles may be needed than the number of cycles shown in this
manual:

» When not all of the instruction codes needed by the CPU are placed in the instruction queue buffer...
Instruction codes are read in until all of the instruction codes required for program execution are avail-
able. Furthermore, the number of read cycles increases in the following cases:

(1) The number of read cycles increases as many as the number of wait cycles incurred when reading
instruction codes from an area in which software wait or RDY or other wait states exist.

(2) When reading instruction codes from memory chips connected to an 8-bit bus, more read cycles are
required than for 16-bit bus.

» When reading or writing data to an area in which software wait or RDY or other wait states exist...

The number of read or write cycles increases as many as the number of wait cycles incurred.

» When reading or writing 16-bit data to memory chips connected to an 8-bit bus...

The memory is accessed twice to read or write one 16-bit data. Therefore, the number of read or write
cycles increases by one for each 16-bit data read or written.

» When reading or writing 16-bit data to memory chips connected to a 16-bit bus beginning with an odd
address...

The memory is accessed twice to read or write one 16-bit data. Therefore, the number of read or write
cycles increases by one for each 16-bit data read or written.

Note that if prefetch and data access occur in the same timing, data access has priority. Also, if more than
seven bytes of instruction codes exist in the instruction queue buffer, the CPU assumes there is no free

space in the instruction queue buffer and, therefore, does not prefetch instruction code.

Figures 6.1.1 to 6.1.8 show examples of instruction queue buffer operation and CPU execution cycles.

316

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

L”nségcé')‘(’encsution (ovp TEST11 Ywmovw(JMP TEST 12)
Fetch code | 7A | COEB | A | | |
Content at jump address is / / Content at jump address is
prefetched at the same time the Fetch Fetch prefetched at the same time the
instruction queue buffer is cleared. instruction queue buffer is cleared.
pE | c9 [/co\|(7a)| pE | c9 | c9
Instruction pe | eB [\es/| bE | DE EB EB
queue buffer DE 7A DE DE BB
DE DE DE DE FF
DE DE
DE
DE

Jump address

ek S VR S s O

Address bus ~<FFC02A><FFC02C FFCO2E) FFC030) FFC032) FFC036 FFC038>—

RD P

=
~-
=
==
=

Data bus(H)

Data bus(L)

BN
LI
CIEILE
BN
ERER:
IE]

|
-
T
o)
o)
T
T

WR

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
|:| . Indicates the locations of the instruction queue buffer that are cleared.

Sample program

Address Code Instruction
FFC024 TEST_10:

FFC024 7A JMP TEST_ 11
FFC025 DE NOP

FFC026 DE NOP

FFC027 DE NOP

FFC028 DE NOP

FFC029 DE NOP

FFC02A DE NOP

FFC02B DE NOP

FFCO02C TEST_11:

FFC02C C9EB MOV.W:G RO,R1
FFCO2E 7A JMP TEST_12
FFCO2F DE NOP

FFCO030 DE NOP

FFCO031 DE NOP

FFC032 DE NOP

FFCO033 DE NOP

FFCO034 DE NOP

FFCO035 DE NOP

FFCO036 TEST_12:

Figure 6.1.1. When executing a register transfer instruction starting from an even address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

317

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

Instructions C JMP TEST 11 vovw)(JMP TEST 12)
under execution
reteh code =] [[Jees[za[[[|
Content at jump address is Not all codes are ready in the
prefetched at the same time the Fetch instruction queue buffer, so
instruction queue buffer is cleared.\‘ Fetch the next read is performed
DE | c9 | co |/co\|(7AD| DE co | co | co
Instruction DE e [\es/| pe | bE EB | EB
queue buffer DE 7A 7A | DE | DE BB | BB
DE DE DE DE FF
DE DE DE DE 9E
DE DE
DE

Jump address

H

L

Ve

Address bus ~<FFC02A FFCOZD><FFC02E><FFC030><FFCO32><FFCO34><FFC037><FFC038><FFCO3§»

vt — oo

Data bus (L) @ @ @ @ \/D—_E/ @ @
) P P P P P P P P P
WR

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

|:| - Indicates the locations of the instruction queue buffer that are cleared.
Sample program

Address Code Instruction

FFC024 TEST_10:

FFC024 7B JMP TEST_11
FFC025 DE NOP

FFC026 DE NOP

FFC027 DE NOP

FFC028 DE NOP

FFC029 DE NOP

FFCO02A DE NOP

FFCO02B DE NOP

FFCO02C DE NOP

FFCO02D TEST_11:

FFCO02D C9EB MOV.W:G RO,R1
FFCO2F 7A JMP TEST_12
FFCO030 DE NOP

FFC031 DE NOP

FFC032 DE NOP

FFCO033 DE NOP

FFC034 DE NOP

FFC035 DE NOP

FFC036 DE NOP

FFCO037 TEST_12:

Figure 6.1.2. When executing a register transfer instruction starting from an odd address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)
|

318

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

Instructions JMP TEST_11 MOV.W JMP TEST_12
under execution ()()()
Fetchcode | 7A | BOFB [0020 | A | |
Content at jump Content at jump address
address is prefetched at is prefetched at the
the same time the Fetch Fetch same time the instruction
instruction queue buffer Fetch queue buffer is cleared.
Is cleared. DE <7A> DE | B9 | B9
DE | FB Q:Bj \2cy DE DE | FB | FB
Instruction DE DE DE 00
queue buffer
DE 20 DE DE DE 20
DE DE
DE
DE

Jump address

Address bus ~<FFC02A><FFC02C><FFC02E><FFC030>< 02000 ><FFC032><FFC034><FFC038><FFC03A>>

Content at address 200116
patabus ¢ {25 —{FB}—{20—{Pe—{aa)—{pe—{pE—{re)—{=)

A Content at address 200016

S 5 2 0 e
B5 P P P P DR P P P P

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
DR : Indicates a data read.
: Indicates the locations of the instruction queue buffer that are cleared.

Sample program

Address Code Instruction

FFCO024 TEST_10:

FFC024 7A JMP TEST_11
FFC025 DE NOP

FFC026 DE NOP

FFC027 DE NOP

FFC028 DE NOP

FFCO029 DE NOP

FFCO02A DE NOP

FFCO02B DE NOP

FFCO02C TEST_11:

FFCO02C B9FB0020 MOV.W:G 02000h,R1
FFCO030 7A JMP TEST_12
FFCO031 DE NOP

FFC032 DE NOP

FFCO033 DE NOP

FFC034 DE NOP

FFCO035 DE NOP

FFCO036 DE NOP

FFCO037 DE NOP

FFCO038 TEST_12:

Figure 6.1.3. When executing an instruction to read from even addresses starting from an even address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

319

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

Instructions JMP TEST 11 MOV.W JMP TEST 12
under execution (— X X)
Fetch code | 7A | | | BOFB | 0020 | | | 7A | | |
Content at jump Content at jump address
address is prefetched at is prefetched at the
the same time the Fetch Fetch same time the instruction
instruction queue buﬁer\ Fetch)/ queue buffer is cleared.
Is cleared. DE | B9 [/BoN[/on\] 7A [7a [(7AD] DE | B9 | B9
pE | FB |[\rB /\20/| DE | DE | DE | DE | FB | FB
Instruction DE 01 7A DE | DE 01
queue buffer
DE 20 DE DE DE 20
DE DE
DE
DE

Jump address

4

Address bus {FFCOZA FFC02C FFC02E><FFCO30>< 02001>< 02002><FFCO32><FFC034><FFC038><FFCO3A>—

Content at address 200116
o) = N - = - R
= S S B R s i
P P DR P P [

P DR

3|

w)
» &1 (&
o

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
DR : Indicates a data read.

|:| . Indicates the locations of the instruction queue buffer that are cleared.

Sample program

Address Code Instruction

FFC024 TEST_10:

FFC024 7A JMP TEST_11
FFC025 DE NOP

FFC026 DE NOP

FFC027 DE NOP

FFC028 DE NOP

FFCO029 DE NOP

FFCO02A DE NOP

FFC02B DE NOP

FFC02C TEST_11:

FFC02C B9FB0120 MOV.W:G 02001h,R1
FFC030 7A JMP TEST_12
FFC031 DE NOP

FFC032 DE NOP

FFC033 DE NOP

FFC034 DE NOP

FFCO035 DE NOP

FFC036 DE NOP

FFC037 DE NOP

FFC038 TEST_12:

Figure 6.1.4. When executing an instruction to read from odd addresses starting from an even address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

320

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

Instructions JMP TEST_11 MOV.W JMP TEST_12
under execution ()(X)
rechcose | A | | [ewelom] | Jomor] |]
Content at jump Content at jump address
address is prefetched at is prefetched at the
the same time the Fetch Fetch same time the instruction
instruction queue buffer\\ Fetch)/ queue buffer is cleared.
is cleared. DE | B7 |/B7\| 00\ 02 [02 [/02\] DE [B7 | B7
pE | B [\rB /[\20/| 20 | 20 [[20 || DE | FB | FB
Instruction
DE 00 02 TA 7A DE 00
queue buffer U
DE 20 20 DE DE 20
DE DE
DE DE
DE
Jump address

%€

Al
Address bus <FFC02 FFC02C><FFCOZE><FFCOSO>< 02000 ><FFCOSZ><FFCO34>< 02002 ><FFC03 FFc03c>»
Content at address 200116

Data bus (H) @ @ @ @ @ M a

Content at address 200016
o oo oA
RD P P = P DR P P P P P

WR DW

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
DR : Indicates a data read.
DW : Indicates a data write.

|:| : Indicates the locations of the instruction queue buffer that are cleared.

Sample program

Address Code Instruction

FFC024 TEST_10:

FFC024 7A JMP TEST_11
FFCO025 DE NOP

FFC026 DE NOP

FFC027 DE NOP

FFCO028 DE NOP

FFCO029 DE NOP

FFCO02A DE NOP

FFC02B DE NOP

FFC02C TEST_11:

FFC02C B7FB00200220 MOV.W 02000h,02002h
FFCO032 A JMP TEST_12
FFCO033 DE NOP

FFC034 DE NOP

FFCO035 DE NOP

FFCO036 DE NOP

FFCO037 DE NOP

FFCO038 DE NOP

FFCO039 DE NOP

FFCO3A TEST_12:

Figure 6.1.5. When executing an instruction to transfer data between even addresses starting from an even address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

321

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

LnnS(;;urCéifgsution C JMP TEST_11)(MOV.W)(JMP TEST_12)

Fetch code | 7A | | |59FB| 0020| | 7A | | |

Content at jump Content at jump address

address is prefetched at is prefetched at the

the same time the Fetch Fetch same time the instruction

instruction queue buffer\ Fetch / queue buffer is cleared.
B9

is cleared. DE /B [/ 00| 7A [C7AD|[DE B9 B9
DE FB |\FB /[\ 20 /| DE DE DE FB FB

Instruction DE 00 7A DE DE 00
queue buffer
DE 20 DE DE DE 20
DE DE
DE
DE

Jump address

FFCO30><FFCO32>< 02000 ><FFC034><FFC036><FFCO3A><FFC03(>>

FFCO2E

=
=

Address bus <FFC02C

A Content at address 200016
RD P P P P DR P P P P
‘WR

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
DR : Indicates a data read.
|:| : Indicates the locations of the instruction queue buffer that are cleared.

Sample program

Address Code Instruction

FFCO026 TEST_10:

FFC026 7A JMP TEST_11
FFC027 DE NOP

FFC028 DE NOP

FFC029 DE NOP

FFCO02A DE NOP

FFC02B DE NOP

FFC02C DE NOP

FFCO02D DE NOP

FFCO2E TEST_11:

FFCO2E B9FB0020 MOV.W:G 02000h,R1
FFCO032 7A JMP TEST_12
FFC033 DE NOP

FFC034 DE NOP

FFC035 DE NOP

FFC036 DE NOP

FFC037 DE NOP

FFC038 DE NOP

FFCO039 DE NOP

FFCO3A TEST_12:

Figure 6.1.6. When executing an instruction to read from even addresses starting from an even address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus with wait state)

322

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

Instructions JMP TEST_11 MOV.W JMP TEST_12

under execution (X X)

Fetchcode | 7A | | [BoFB | 0080 | | | 7 | | |
Content at jump Content at jump address
address is prefetched at is prefetched at the
the same time the Fetch Fetch same time the instruction
instruction queue buffer\\ Fetch)/ queue buffer is cleared.
Is cleared. DE | B9 [/Bo\][/00N\] 7A [7a [C7AD] DE [B9 | B9

pE | /B [\Fr8 /[\ 80/ pE | DE | DE | DE | FB | FB
o | 7A

Instruction DE DE DE 00
queue buffer
DE 80 DE DE DE 80
DE DE
DE
DE

Jump address

1

Address bus <FFC02A><FFC02C><FFC02E><FFCO30>< 08000>< 08001 ><FFC032><FFC034><FFCO38><FFCO3/—>»

Content at address 800016 Content at address 800116

Ty
ety — -8B

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
DR : Indicates a data read.
I:I : Indicates the locations of the instruction queue buffer that are cleared.

Sample program

Address Code Instruction

FFC024 TEST_10:

FFC024 7A JMP TEST 11
FFC025 DE NOP

FFC026 DE NOP

FFC027 DE NOP

FFC028 DE NOP

FFC029 DE NOP

FFC02A DE NOP

FFC02B DE NOP

FFC02C TEST_11:

FFC02C B9FB0080 MOV.W:G 08000h,R1
FFC030 7A JMP TEST_12
FFC031 DE NOP

FFC032 DE NOP

FFC033 DE NOP

FFC034 DE NOP

FFC035 DE NOP

FFC036 DE NOP

FFC037 DE NOP

FFCO038 TEST_12:

Figure 6.1.7. When executing a read instruction for memory connected to 8-bit bus
(Program area: 16-bit bus without wait state; Data area: 8-bit bus without wait state)

323

Chapter 6 Calculation number of cycles 6.1 Instruction queue buffer

Instructions IMP TEST 11 MOV.W JMP TEST_12
under execution (— X X —)

Fetch code | 7A | | |BQFB| |ooso| | | A | | | |

Content at jump address

j Content at jump address
is prefetched at the \ is prefetcheg at the
same time the instruction Fetch Fetch Fetch same time the instruction
queue buffer is cleared.)/ queue buffer is cleared.

pE | B9 | B9 [/B9 00 |/00\ 7a |C7a) pE | B9 | B9 | B9
DE B \F8/| 80 | s |\s0/| DE | DE | DE | DE FB | FB
Instruction K / \ /
queue buffer DE 00 7A | 7A DE | DE 00
DE

Jump address

e T LML LU LLLUL

Address bus
<FFC027><FFC02§<FFCOZD FFC02E><FFC02%< FFC03(><FFCO31>< 08000>< 08001 ><FFCOSZ><FF0033><FF6038><FFC039><FFCO3A>»

Data bus (H) Content at address 800016

ot — 38
P P P P

Content at address 800116

-
p| |P| |P| |DR] |DR Pl |P

Sl
O

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
DR : Indicates a data read.
I:I - Indicates the locations of the instruction queue buffer that are cleared.

Sample program

Address Code Instruction

FFC024 TEST _10:

FFC024 7A IMP TEST 11
FFC025 DE NOP

FFC026 DE NOP

FFC027 DE NOP

FFC028 DE NOP

FFC029 DE NOP

FFC02A DE NOP

FFC02B DE NOP

FFC02C TEST_11:

FFC02C B9FB0080 MOV.W:G ~ 08000h,R1
FFC030 7A JIMP TEST_12
FFC031 DE NOP

FFC032 DE NOP

FFC033 DE NOP

FFC034 DE NOP

FFC035 DE NOP

FFC036 DE NOP

FFC037 DE NOP

FFCO038 TEST_12:

Figure 6.1.8. When executing a read instruction for memory connected to 8-bit bus
(Program area: 8-bit bus without wait state; Data area: 8-bit bus without wait state)

324

Q&A
Information in a Q&A form to be used to make the most of the M16C family is given below.
Usually, one question and the answer to it are given on one page; the upper section is for the
guestion, and the lower section is for the answer (if a pair of question and answer extends over two
or more pages, a page number is given at the lower-right corner).
Functions closely connected with the contents of a page are shown at its upper-right corner.

Q&A-1

CPU

Q

How do I distinguish between the static base register (SB) and the frame base register (FB)?

Only positive displacement is allowed in SB Relative Addresing, while FB Relative Address-
ing can be with positive or negative displacement.

If you write a program in C, Mitsubishi C compiler uses FB as a stack frame base register.
You can use SB and FB as intended in programming in the assembly language.

CPU

Q

What is the difference between the user stack pointer (USP) and the interrupt stack pointer
(ISP)?, What are their roles?

You use USP when using the OS. When several tasks run, the OS secures stack areas to
save registers of individual tasks. Also, stack areas have to be secured, task by task, to be
used for handling interrupts that occur while tasks are being executed. If you use USP and
ISP in such an instance, the stack for interrupts can be shared by these tasks; this allows
you to efficiently use stack areas.

Q&A-2

CPU

Q

What is the difference between the DIV instruction and the DIVX instruction?

Either of the DIV instruction and the DIVX instruction is an instruction for signed division,
the sign of the remainder is different.

The sign of the remainder left after the DIV instruction is the same as that of the dividend, on
the contrary, the sign of the remainder of the DIVX instruction is the same as that of the
divisor.

In general, the following relation among quotient, divisor, dividend, and remainder holds.
dividend = divisor quotient + remainder

Since the sign of the remainder is different between these instructions, the quotient ob-
tained either by dividing a positive integer by a negative integer or by dividing a negative
integer by a positive integer using the DIV instruction is different from that obtained using
the DIVX instruction.

For example, dividing 10 by —3 using the DIV instruction yields —3 and leaves +1, while doing
the same using the DIVX instruction yields —4 and leaves —2.

Dividing —10 by +3 using the DIV instruction yields —3 and leaves —1, while doing the same
using the DIVX instruction yields —4 and leaves +2.

Q&A-3

Interrupt

Q

Is it possible to change the value of the interrupt table register (INTB) while a program is
being executed?

A

Yes. But there can be a chance that the microcomputer runs away out of control if an inter-
rupt request occurs in changing the value of INTB. So it is not recommended to frequently
change the value of INTB while a program is being executed.

Q&A-4

Table of symbols

Symbols used in this software manual are explained below. They are good in this manual only.

Symbol-1

Symbol Meaning
- Transposition from the right side to the left side
- Interchange between the right side and the left side
+ Addition
- Subtraction
X Multiplication
- Division
A Logical conjunction
v Logical disjunction
v Exclusive disjunction
- Logical negation
dsp24 24-bit displacement
dspl6 16-bit displacement
dsp8 8-bit displacement
EVA() An effective address indicated by what is enclosed in ()
EXTS() Sign extension indicated by what is enclosed in ()
EXTZ() Zero extension indicated by what is enclosed in ()
(HH) Higher-order byte of higher-order word of a register or memory (highest byte)
HA4: Four higher-order bits of an 8-bit register or 8-bit memory
(HL) Lower-order byte of higher-order word of a register or memory
[Absolute value
(LH) Higher-order byte of lower-order word of a register or memory
(LL) Lower-order byte of lower-order word of a register or memory (lowest byte)
L4: Four lower-order bits of an 8-bit register or 8-bit memory
LSB Least Significant Bit
M() Content of memory indicated by what is enclosed in ()
MSB Most Significant Bit
PCH Higher-order byte of the program counter
PCML Middle-order byte and lower-order byte of the program counter
FLGH Four higher-order bits of the flag register
FLGL Eight lower-order bits of the flag register

Indirect addressing

Symbol-2

Glossary

Technical terms used in this software manual are explained below. They are good in this manual only.

Glossary-1

Term

Meaning Related word

borrow

carry

context

decimal addition

displacement

effective address

LSB

Tomove a digit to the next lower position. carry

Tomove a digit to the next higher position. borrow

Registers that a program uses.

An addition in terms of decimal system.

The difference between the initial position and later

position.

An after-modification address to be actually used.

Abbreviation for Least Significant Biit MSB
The bit occupying the lowest-order position of a data item.

Glossary-2

Term

Meaning Related word

MSB

operand

operation

operation code

overflow

pack

SFR area

Abbreviation for Most Significant Bit
The bit occupying the highest-order position of a
data item.

A part of instruction code that indicates the objecton | gg
which an operation is performed.

A generic term for move, comparison, bit processing, operation code
shift, rotation, arithmetic, logic, and branch.

A part of instruction code that indicates what sort of
operation the instruction performs.

To exceed the maximum expressible value as a result gperand
of an operation.

To join data items.

Used to mean to form two 4-bit data items into one 8-
bit data item, to form two 8-bit data items into one 16-
bit data item, etc.

Abbreviation for Special Function Area. An area in unpack
which control bits of peripheral circuits embodied in a
microcomputer and control registers are located.

Glossary-3

Term

Meaning Related word

shift out

sign bit

sign extension

stack frame

string

unpack

Zero extension

To move the content of a register either to the right or
left until fully overflowed.

A bit that indicates either a positive or a negative (the
highest-order bit).

To extend a data length in which the higher-order to be
extended are made to have the same sign of the sign
bit. For example, sign-extending FF16 results in
FFFF16, and sign-extending OF16 results in 000F16.

An area for automatic variables the functions of the C
language use.

A sequence of characters.

To restore combined items or packed information to pack
the original form. Used to mean to separate 8-bit
information into two parts — 4 lower-order bits and

four higher-order bits, to separate 16-bit information

into two parts — 8 lower-order bits and 8 higher-order

bits, or the like.

To extend a data length by turning higher-order bits to
0's. For example, zero-extending FF16 to 16 bits
results in O0FF16.

Glossary-4

AO and Al e 5
A1AQ eee 5

Address register eee 5
Address space e 3

Addressing mode eee 22

B

B flag e 6
Byte (8-bit) data s 16

C
C flag e 6
Carry flag «+s 6
Cycles e 139

D

D flag e+ 6

Data arrangement in memory ees 17

Data arrangement in Register ess 16

Data register e 4
Data type e 10
Debug flag «ss 6

Description example e 37

dest eee 18

FB e 5
Fixed vector table ees 19
Flag change ees 37

Flag register ess 5

FLG ee¢ 5

Index

Index-1

Frame base register e 5

Function eee 37

Interrupt table register e 5
| flag e 6

Instruction code ees 139
Instruction Format eee 18
Instruction format specifier e 35
INTB eee 5

Integer eee 10

Interrupt enable flag s 6
Interrupt stack pointer eee 5
Interrupt vector table eee 19
IPL eoe 7

ISP eee 5

L

Long word (32-bit) data e 16

M

Maskable interrupt eee 248
Memory bit eee 12

Mnemonic eee 35, 38

N
Nibble (4-bit) data e 16
Nonmaskable interrupt eee 248
O

O flag e+ 6
Operand e+ 35, 38

Operation e 37

Overflow flag e 6

PC o 5

Processor interrupt priority level ees 7

Program counter eee 5

R

RO, R1, R2, and R3 e« 4
ROH, R1H eee 4

ROL, R1L ee 4

R2R0 e 4

R3R1 e 4

Register bank e 8

Register bank select flag *ss 6
Register bit eee 12

Related instruction ees 37

Reset eee 9

Sflag e 6

SB e 5

Selectable src / dest (label) ees 37
Sign flag e+ 6

Size specifier e 35

Software interrupt number eee 20
Special page number eee 19
Special page vector table e 19
Src eee 18

Stack pointer eee 5

Stack pointer select flag e 6

Index-2

Static base register e 5
String ees 15

Syntax eee 35, 38

U flag e 6
User stack pointer eee 5

USP e 5

\Y,

Variable vector table eee 20

W

Word (16-bit) data e 16

Z

Z flag e 6

Zero flag e 6

Revision History

Revision History

Version Revision

Contents for change date

REV.C | Chapter 5 addition '99.1.26

* Page 20 line 20
(IPL) --> (ISP)

* Page 32 Absolute
000FFF16 --> 000FFFF16

« Page 95 JMPS Operation
FFFFFE16 --> FFFE16

* Page 96 JSR Operation
SP-1-->SP-2

« Page 98 JMRS Operation
FFFFFE16 --> FFFE16

* Page 133 SCMPU Operation
temp --> tmp

« Page 276 SCCnd dest An
----- > ---/A0/---
----- > ---/Al/---

* Page 4 line 2 '99.1.26
13 registers --> 28 registers
* Page 89 INDEXType
[Description Example]
INDEXB RO --> INDEXB.W RO
INDEXLS [A0] > INDEXLS.B [A0]
» Page 138-143 SIN, SMOVB, SMOVF, SOUT, SSTR
[Operation]
Delate 'Repeat' and 'Until ...'

« Page 62- BRK, BRK2, ENTER, EXITD, INT, INTO, POPC, POPM, REIT, RTS, UND 99.3.12
Note for PCH, FBH and M(SP) is added.
e Page 120 PUSH
*2 The 8 high-order bits are 0 --> indeterminate
* Page 133 SCMPU
* When the size specifier (.size) is (\W)
If M(A)=M(A1) then M(A0+1)-M(A1+1) -->
If M(A)=M(A1) and M(A0)%0 then M(AO+1)-M(A1+1)
* Page 135 SHA
[Flag change] O
« Page 173 (4) Table of cycles
* Page 268 PUSHM [Byte number/ cycle number]
1/m -->2/m

» Page 5 (9) Save flag register '99.712

24 bits --> 16 bits

M16C/80 Series

Reuvision history Software Manual

Revision history-1

Revision History

Version Revision
Contents for change
date
REV.D | Chapter 6 addition 99.10.25
» Page 5 (9) Save flag register (SVF)
24 bit --> 16 bit
* Page 10 1.6 Internal State after Reset is Cleared
» Save flag register (SVF) :indeterminate --> addition
» Save PC register (SVP) :indeterminate --> addition
« Vector register (VCT) :indeterminate --> addition
» Page 69 CLIP [Function]
« Srcl and src2 are set "srcl<src2". --> addition
» Page 99 LDC [Function]
*3 SP and ISP --> SP, ISP and INTB
» Page 118 POPC [Operation]
*3 --> addition
» Page 120 PUSH [Operation]
*2 ..., the 8 high-order bits become indeterminate. --> become 0
» Page 120 PUSHC [Operation]
*3 --> addition
» Page 149 SUB [Function] Line 10
When srcis the address register, srcis zero-extended to perform operation in 32
bits. --> addition
« Page 193 BNTST [Number of Bytes/Number of Cycles]
dest -->src
» Page 196 BSET [Number of Bytes/Number of Cycles]
dest -->src
» Page 229 JMP
dsp = address indicated by label - (start address of instruction +2) --> Delete
[Number of Bytes/Number of Cycles] 1/4 --> 1/3
» Page 231 JMPI [Number of Bytes/Number of Cycles]
dest -->src
* Page 232 JMPI [Number of Bytes/Number of Cycles] dest --> src
* Page 234 JSRI (1) and (2) [Number of Bytes/Number of Cycles] dest --> src
» Page 231 JMPI (2)
d4 d3d2d1d0 -->s4s3s2s1s0
* Page 257 MULEX [Number of Bytes/Number of Cycles] dest --> src
» Page 120 PUSH [Operation] 99.10.28
*2 When srcis address register(A0, Al), the 8 high-order bits become indetermi-
nate. --> ... become 0.
* Page 234 (2)JSRI.A
d4 d3d2 d1d0 --> s4s3s2s1s0
REV.D1 | « Page 303(2) Overflow interrupt 00.03.02
CMPX addition
Revisi hi M16C/80 Series
evision history Software Manual

Revision history-2

Keep safety first in your circuit designs!

¢ Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble may
occur with them. Trouble with semiconductors may lead to personal injury, fire or
property damage. Remember to give due consideration to safety when making your
circuit designs, with appropriate measures such as (i) placement of substitutive,
auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any
malfunction or mishap.

Notes regarding these materials

e These materials are intended as a reference to assist our customers in the selection
of the Mitsubishi semiconductor product best suited to the customer's application;
they do not convey any license under any intellectual property rights, or any other
rights, belonging to Mitsubishi Electric Corporation or a third party.

e Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in
these materials.

¢ All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication
of these materials, and are subject to change by Mitsubishi Electric Corporation
without notice due to product improvements or other reasons. It is therefore
recommended that customers contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor for the latest product information before
purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical
errors. Mitsubishi Electric Corporation assumes no responsibility for any damage,
liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation
by various means, including the Mitsubishi Semiconductor home page (http://
www.mitsubishichips.com).

e When using any or all of the information contained in these materials, including
product data, diagrams, charts, programs, and algorithms, please be sure to evaluate
all information as a total system before making a final decision on the applicability of
the information and products. Mitsubishi Electric Corporation assumes no
responsibility for any damage, liability or other loss resulting from the information
contained herein.

e Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human life is
potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor when considering the use of a product
contained herein for any specific purposes, such as apparatus or systems for
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

e The prior written approval of Mitsubishi Electric Corporation is necessary to reprint
or reproduce in whole or in part these materials.

e If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan
and/or the country of destination is prohibited.

e Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semicon
ductor product distributor for further details on these materials or the products con
tained therein.

M16C/80 Series
Software Manual

RENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

	Using This Manual
	M16C Family-related document list
	Table of Contents
	Quick Reference in Alphabetic Order
	Chapter 1
	1.1 Features of M16C/80 series
	1.2 Address Space
	1.3 Register Configuration
	1.4 Flag Register (FLG)
	1.5 Register Bank
	1.6 Internal State after Reset is Cleared
	1.7 Data Types
	1.8 Data Arrangement
	1.9 Instruction Format
	1.10 Vector Table

	Chapter 2
	2.1 Addressing Modes
	2.2 Guide to This Chapter
	2.3 General Instruction Addressing
	2.4 Indirect Instruction Addressing
	2.5 Special Instruction Addressing
	2.6 Bit Instruction Addressing
	2.7 Read and write operations with 24-bit registers

	Chapter 3
	3.1 Guide to This Chapter
	ABS
	ADC
	ADCF
	ADD
	ADDX
	ADJNZ
	AND
	BAND
	BCLR
	BITINDEX
	BMCnd
	BNAND
	BNOR
	BNOT
	BNTST
	BNXOR
	BOR
	BRK
	BRK2
	BSET
	BTST
	BTSTC
	BTSTS
	BXOR
	CLIP
	CMP
	CMPX
	DADC
	DADD
	DEC
	DIV
	DIVU
	DIVX
	DSBB
	DSUB
	ENTER
	EXITD
	EXTS
	EXTZ
	FCLR
	FREIT
	FSET
	INC
	INDEXType
	INT
	INTO
	JCnd
	JMP
	JMPI
	JMPS
	JSR
	JSRI
	JSRS
	LDC
	LDCTX
	LDIPL
	MAX
	MIN
	MOV
	MOVA
	MOVDir
	MOVX
	MUL
	MULEX
	MULU
	NEG
	NOP
	NOT
	OR
	POP
	POPC
	POPM
	PUSH
	PUSHA
	PUSHC
	PUSHM
	REIT
	RMPA
	ROLC
	RORC
	ROT
	RTS
	SBB
	SBJNZ
	SCCnd
	SCMPU
	SHA
	SHL
	S IN
	SMOVB
	SMOVF
	SMOVU
	SOUT
	SSTR
	STC
	STCTX
	STNZ
	STZ
	STZX
	SUB
	SUBX
	TST
	UND
	WAIT
	XCHG
	XOR
	3.3 Index instructions

	Chapter 4
	4.1 Guide to This Chapter
	ABS
	ADC
	ADCF
	ADD
	ADDX
	ADJNZ
	AND
	BAND
	BCLR
	BITINDEX
	BMcnd
	BNAND
	BNOR
	BNOT
	BNTST
	BNXOR
	BOR
	BRK
	BRK2
	BSET
	BTST
	BTSTC
	BTSTS
	BXOR
	CLIP
	CMP
	CMPX
	DADC
	DADD
	DEC
	DIV
	DIVU
	DIVX
	DSBB
	DSUB
	ENTER
	EXITD
	EXTS
	EXTZ
	FCLR
	FREIT
	FSET
	INC
	INDEXB
	INDEXBD
	INDEXBS
	INDEXL
	INDEXLD
	INDEXLS
	INDEXW
	INDEXWD
	INDEXWS
	INT
	INTO
	Jcnd
	JMP
	JMPI
	JMPS
	JSR
	JSRI
	JSRS
	LDC
	LDCTX
	LDIPL
	MAX
	MIN
	MOV
	MOVA
	MOVDir
	MOVX
	MUL
	MULEX
	MULU
	NEG
	NOT
	OR
	POP
	POPC
	POPM
	PUSH
	PUSHA
	PUSHC
	PUSHM
	REIT
	RMPA
	ROLC
	RORC
	ROT
	RTS
	SBB
	SBJNZ
	SCCnd
	SCMPU
	SHA
	SHL
	SIN
	SMOVB
	SMOVF
	SMOVU
	SOUT
	SSTR
	STC
	STCTX
	STNZ
	STZ
	STZX
	SUB
	SUBX
	TST
	UND
	WAIT
	XCHG
	XOR

	Chapter 5
	5.1 Outline of Interrupt
	5.2 Interrupt Control
	5.3 Interrupt Sequence
	5.4 Return from Interrupt Routine
	5.5 Interrupt Priority
	5.6 Multiple Interrupts
	5.7 Precautions for Interrupts
	5.8 Exit from Stop Mode and Wait Mode

	Chapter 6
	6.1 Instruction queue buffer

	Q & A
	Table of symbols
	Glossary
	Index
	Revision History

