To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the

contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices

and power devices.

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

1RENESAS

RenesasTechnology Corp.

LENESAS

N
@)
=~
S
)
-
®
<
)
-
-
=

M32R family

Software Manual

MITSUBISHI 32-BIT SINGLE-CHIP
MICROCOMPUTER

W
N

Renesas Electronics)])
WWW.renesas.com Revised pUbllcathn, 1998.07

KEEP SAFETY FIRST IN YOUR CIRCUIT DESIGNS !

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble may
occur with them. Trouble with semiconductors may lead to personal injury, fire or
property damage. Remember to give due consideration to safety when making your
circuit designs, with appropriate measures such as (i) placement of substitutive,
auxiliary circuits, (ii) use of non-flammable materials or (iii) prevention against any malfunction
or mishap.

NOTES REGARDING THESE MATERIALS

e These materials are intended as a reference to assist our customers in the selection
of the Mitsubishi semiconductor product best suited to the customer's application;
they do not convey any license under any intellectual property rights, or any other
rights, belonging to Mitsubishi Electric Corporation or a third party.

e Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts or circuit application examples contained in these materials.

e All information contained in these materials, including product data, diagrams and
charts, represent information on products at the time of publication of these
materials, and are subject to change by Mitsubishi Electric Corporation without
notice due to product improvements or other reasons. It is therefore recommended
that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for the latest product information before
purchasing a product listed herein.

e Mitsubishi Electric Corporation semiconductors are not designed or manufactured for
use in a device or system that is used under circumstances in which human life is
potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor when considering the use of a product
contained herein for any specific purposes, such as apparatus or systems for
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

e The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or
reproduce in whole or in part these materials.

e If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of
Japan and/or the country of destination is prohibited.

e Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for further details on these materials or the
products contained therein.

Table of contents

Table of contents

CHAPTER 1 CPU PROGRAMMING MODEL

I R 8 = U = o] (= RS 1-2
1.2 GeNeral-purpOSE FEOISIEIS ..ttt ettt e e e e e e s a e e eeaaaeaeeaeaaaas 1-2
I I o] | (o] I T=To [ES] (=] £ TP RP RS 1-3
1.3.1 Processor status word register: PSW (CRO)ooocviiiiiiiiiieeiieee e 1-4
1.3.2 Condition bit register: CBR (CRL)ciiiiiiiiiiiiiiiiiie it 1-5
1.3.3 Interrupt stack pointer: SPI (CR2)
User stack pointer: SPU (CR3) .o e e e 1-5
1.3.4 Backup PC: BPC (CRB) ..cueiiiiiiiiiiii ittt ettt 1-5
I N oo U1 U] = (o SRR 1-6
1.5 Program COUNTEI coooiiiiiieiiieieieeeeeee e e e e e e e e e e e e e et e e e e e e e e e e ee e 1-6
ISR D= = (o] 1 1 1= | PRSP 1-7
T R B T 1 = T Y/ =TS PP UUPPPPPTTSPPN 1-7
1.6.2 Data fOrMALS ..ot a e 1-8
1.7 AAAreSSiNg MOAE ...ttt e e e e e e e e st e et e e e e e e e e e s e nnbnbbeeeeeas 1-10

CHAPTER 2 INSTRUCTION SET

2.1 INSTIUCLION SEL OVEIVIEW ottt e e e e et e e e e e e et e e e e e e aaba e e e e eeraannns 2-2
2.1.1 Load/StOre INSTTUCTIONSccciveviiei et e e e e e e e e e e e e e e e e e erran e 2-2
2.1.2 Transfer iNSTTUCHIONS ...ccooii i e e e e e e e e e e e e e e e e e eeeeeeeeeees 2-4
2.1.3 Operation INSIFUCLIONSuuiiiiiiiieeeie ittt e e e e e e e s s s s e e e e e e s s s s rsrararrereeeeeesesanns 2-4
2.1.4 BranCh INSIIUCTIONS .. .coiiiiiiii et e e e e e e e e e e e e e e e eeaaaes 2-6
2.1.5 EIT-related INSIIUCLIONS ..uuiiiiiieiiie ettt e e e e e e e eebaans 2-8
2.1.6 DSP fUNCLION INSITUCLIONS ovvvuiiiiiiieiiii e e e et e e e e et aeeaees 2-8

A Y= (U o (o] TR {1 210 2-11

CHAPTER 3 INSTRUCTIONS

3.1 Conventions for instruction descriplion ... 3-2
3.2 INSIrUCLION dESCIIPLION oottt e et e e e st e e e e e s nbbaeeeeeas 3-5
APPENDICES

ApPeNndixX A INSTFUCTION TIST oo A-2

ApPeNdiX B PIpeliNe STAGES ..eeiiiiiiiiiiie it A-5
B.1 Overview of pipeline ProCeSSINGccceiiiiiiciiiieeie e A-5
B.2 Instructions and pipeline ProCesSSINGccccciviiiiiiiiee e A-6
B.3 PipeliN@ PrOCESSING ..oeiiiiiiiiiiiiiitee ettt e e e e e e e eee s A-7

Appendix C Instruction exXecution tiMe ... A-10

M32R family Software Manual

CRAPRPTER 1
CPU
PROGRAMMING
MODEL

1.1 CPU register

1.2 General-purpose registers
1.3 Control registers

1.4 Accumulator

1.5 Program counter

1.6 Data format

1.7 Addressing mode

CPU PROGRAMMING MODEL

1.1 CPU regqister

1.1 CPU regqister

The M32R CPU has 16 general-purpose registers, 5 control registers, an accumulator and a program
counter. The accumulator is of 64-bit width. The registers and program counter are of 32-bit width.

1.2 General-purpose registers

The 16 general-purpose registers (RO - R15) are of 32-bit width and are used to retain data and base
addresses. R14 is used as the link register and R15 as the stack pointer (SPI or SPU). The link register
is used to store the return address when executing a subroutine call instruction. The interrupt stack pointer
(SPI) and the user stack pointer (SPU) are alternately represented by R15 depending on the value of the
stack mode bit (SM) in the processor status word register (PSW).

0 31 0 31
RO R8
R1 R9
R2 R10
R3 R11
R4 R12
R5 R13
R6 R14 (link register)
R7 R15 (stack pointer) (see note)

Note: The interrupt stack pointer (SPI) and the user stack pointer (SPU) are alternatively
represented by R15 depending on the value of the stack mode bit (SM) in the PSW.

Fig. 1.2.1 General-purpose registers

1-2 M32R family Software Manual

CPU PROGRAMMING MODEL

1.3 Control registers

1.3 Control registers

There are 5 control registers which are the processor status word register (PSW), the condition bit register
(CBR), the interrupt stack pointer (SPI), the user stack pointer (SPU) and the backup PC (BPC). The MVTC
and MVFC instructions are used for writing and reading these control registers.

(see notes) CRN 0 sl
CRO PSW processor status register
CR1 CBR condition bit register
CR2 SPI interrupt stack pointer
CR3 SPU user stack pointer
CR6 BPC backup PC

Notes 1: CRn (n =0 - 3, 6) denotes the control register number.
2: The MVTC and MVFC instructions are used for writing and reading these control registers.

Fig. 1.3.1 Control registers

M32R family Software Manual 1-3

CPU PROGRAMMING MODEL

1.3 Control registers

1.3.1 Processor status word register: PSW (CRO0)

The processor status word register (PSW) shows the M32R CPU status. It consists of the current PSW
field, and the BPSW field where a copy of the PSW field is saved when EIT occurs.

The PSW field is made up of the stack mode bit (SM), the interrupt enable bit (IE) and the condition bit
(C).

The BPSW field is made up of the backup stack mode bit (BSM), the backup interrupt enable bit (BIE) and
the backup condition bit (BC) .

BPSW field PSW field
| | |
0 7 8 15 16 17 23 24 25 31
PSW oooooooooooooooom“ooooomm ooooom
BSM BIE BC SM IE C
D bit name function init. R W
16 BSM (backup SM) saves value of SM bit when EIT occurs undefined O O
17 BIE (backup IE) saves value of IE bit when EIT occurs undefined O O
23 BC (backup C) saves value of C bit when EIT occurs undefined O O
24 SM (stack mode) 0: uses R15 as the interrupt stack pointer 0 O O
1: uses R15 as the user stack pointer
25 IE (interrupt enable) 0: does not accept interrupt 0 O O
1: accepts interrupt
31 C (condition bit) indicates carry, borrow and overflow resulting 0 O O
from operations (instruction dependent)

Note: "init." ...initial state immediately after reset
"R"... O : read enabled
"W"... O : write enabled

1-4 M32R family Software Manual

CPU PROGRAMMING MODEL

1.3 Control registers

1.3.2 Condition bit register: CBR (CR1)

The condition bit register (CBR) is a separate register which contains the condition bit (C) in the PSW. The
value of the condition bit (C) in the PSW is reflected in this register. This register is read-only. An attempt
to write to the CBR with the MVTC instruction is ignored.

0 31

CBR OO00000OOOOOOOOOOOOOOOOOOOOOOOO‘C|

1.3.3 Interrupt stack pointer: SPI (CR2)

User stack pointer: SPU (CR3)
The interrupt stack pointer (SPI) and the user stack pointer (SPU) retain the current stack address. The
SPI and SPU can be accessed as the general-purpose register R15. R15 switches between representing
the SPI and SPU depending on the value of the stack mode bit (SM) in the PSW.

SPU|H

1.3.4 Backup PC: BPC (CR6)

The backup PC (BPC) is the register where a copy of the PC value is saved when EIT occurs. Bit 31 is
fixed at "0". When EIT occurs, the PC value immediately before EIT occurrence or that of the next
instruction is set. The value of the BPC is reloaded to the PC when the RTE instruction is executed.
However, the values of the lower 2 bits of the PC become "00" on returning (It always returns to the
word boundary).

0 31
BPC| B | ‘0|

M32R family Software Manual 1-5

CPU PROGRAMMING MODEL

1.4 Accumulator

1.4 Accumulator

The accumulator (ACC) is a 64-bit register used for the DSP function.

Use the MVTACHI and MVTACLO instructions for writing to the accumulator. The high-order 32 bits (bit O
- bit 31) can be set with the MVTACHI instruction and the low-order 32 bits (bit 32 - bit 63) can be set with
the MVTACLO instruction. Use the MVFACHI, MVFACLO and MVFACMI instructions for reading from the
accumulator. The high-order 32 bits (bit 0 - bit 31) are read with the MVFACHI instruction, the low order
32 bits (bit 32 - bit 63) with the MVFACLO instruction and the middle 32 bits (bit 16 - bit 47) with the
MVFACMI instruction.

The MUL instruction also uses the accumulator and the contents are destroyed when this instruction is
executed.

(see note)

’— read range with MVFACMI instruction j

|

78 15 16 31 32 47 48 63

0
ace| of]] | | |
L read/write range with J read/write range with

MVTACHI or MVFACHI instruction MVTACLO or MVFACLO instruction

Note: Bits 0 - 7 are always read as the sign-extended value of bit 8.
An attempt to write to this area is ignored.

1.5 Program counter
The program counter (PC) is a 32-bit counter that retains the address of the instruction being executed.
Since the M32R CPU instruction starts with even-numbered addresses, the LSB (bit 31) is always "0".

0 31
PC PC B ’o|

L L L L L L L L L L 1 L L L L L

1-6 M32R family Software Manual

CPU PROGRAMMING MODEL

1.6 Data format

1.6 Data format

1.6.1 Data types
Signed and unsigned integers of byte (8 bits), halfword (16 bits), and word (32 bits) types are supported
as data in the M32R CPU instruction set. A signed integer is represented in a 2's complement format.

signed byte (8-bit) integer s

unsigned byte (8-bit) integer

signed halfword (16-bit) integer S

unsigned halfword (16-bit) integer

signed word (32-bit) integer S

unsigned word (32-bit) integer

S: sign bit

Fig. 1.6.1 Data types

M32R family Software Manual 1-7

CPU PROGRAMMING MODEL

1.6 Data format

1.6.2 Data formats

(1) Data format in a register
Data size of a register is always a word (32 bits).
Byte (8 bits) and halfword (16 bits) data in memory are sign-extended (the LDB and LDH instructions)
or zero-extended (the LDUB and LDUH instructions) to 32 bits, and loaded into the register.
Word (32 bits) data in a register is stored to memory by the ST instruction. Halfword (16 bits) data
in the LSB side of a register is stored to memory by the STH instruction. Byte (8 bits) data in the
LSB side of a register is stored to memory by the STB instruction.

from memor
<load > y

sign-extention (LDB instruction) or (LDB, LDUB instruction)
o zero-extention (LDUB instruction) 24 ¢ 31
RN |« byte
| |
sign-extention (LDH instruction) or from memory (LDH, LDUH instruction)
zero-extention (LDUH instruction)
0 16 # 31
Rn [« ‘ halfword
|

from memory (LD instruction)

0 # 31
RN w?rd
< store >
0 24 31
Rn byte

to memory (STB instruction)
0 16 31

RN halfword
|

to memory (STH instruction)
0 31

Rn word

| l

to memory (ST instruction)

Fig. 1.6.2 Data format in a register

1-8 M32R family Software Manual

CPU PROGRAMMING MODEL

1.6 Data format

(2) Data format in memory
Data stored in memory can be one of these types: byte (8 bits), halfword (16 bits) or word (32 bits).
Although the byte data can be located at any address, the halfword data and the word data can only
be located on the halfword boundary and the word boundary, respectively. If an attempt is made to
access data in memory which is not located on the correct boundary, an address exception occurs.

address
+0 +1 +2 +3
v v
B 0 7 8 15 16 23 24 31
[ove | | | |
b
m [one] | |
| | | bye | |
| | | | oy |
B | halfword | ‘ |
halfword ' ‘

N | halfword |
word [| : wc])rd [|

Fig. 1.6.3 Data format in memory

M32R family Software Manual 1-9

CPU PROGRAMMING MODEL

1.7 Addressing mode

1.7 Addressing mode

M32R supports the following addressing modes.

(1) Register direct [R or CR]
The general-purpose register or the control register to be processed is specified.

(2) Register indirect [@R]
The contents of the register specify the address of the memory. This mode can be used by all load/store
instructions.

(3) Register relative indirect [@(disp, R)]
(The contents of the register) + (16-bit immediate value which is sign-extended to 32 bits) specify the
address of the memory.

(4) Register indirect and register update

* 4 is added to the register contents [@R+]
the contents of the register before update specify address of memory
(can be specified with LD instruction).

* 4 is added to the register contents [@+R]
the contents of the register after update specify address of memory
(can be specified with ST instruction).

« 4 is subtracted from the register contents [@-R]
the contents of the register after update specify address of memory
(can be specified with ST instruction).

(5) immediate [#imm]
The 4-, 5-, 8-, 16- or 24-bit immediate value.

(6) PC relative [pcdisp]
(The contents of PC) + (8, 16, or 24-bit displacement which is sign-extended to 32 bits and 2 bits left-
shifted) specify the address of memory.

1-10 M32R family Software Manual

CRHAPTER 2
INSTRUCTION SET

2.1 Instruction set overview
2.2 Instruction format

INSTRUCTION SET

2.1 Instruction set overview

2.1 Instruction set overview
The M32R CPU has a RISC architecture. Memory is accessed by using the load/store instructions and other
operations are executed by using register-to-register operation instructions. A total of 83 instructions are

implemented.

M32R supports compound instructions such as " load & address update" and "store & address update" which
are useful for high-speed data transfer.

The M32R instruction set overview is explained below.

2.1.1 Load/store instructions
The load/store instructions carry out data transfers between a register and a memory.

LD Load

LDB Load hyte

LDUB Load unsigned byte
LDH Load halfword

LDUH Load unsigned halfword
LOCK Load locked

ST Store

STB Store byte

STH Store halfword
UNLOCK Store unlocked

2-2 M32R family Software Manual

INSTRUCTION SET

2.1 Instruction set overview

Three types of addressing modes can be specified for load/store instructions.

(1) Register indirect
The contents of the register specify the address. This mode can be used by all load/store instructions.

(2) Register relative indirect
(The contents of the register) + (32-bit sign-extended 16-bit immediate value) specifies the address.
This mode can be used by all except LOCK and UNLOCK instructions.

(3) Register indirect and register update

* 4 is added to the register value
the value in the register before update specifies the address
(can be specified only with the LD instruction).

* 4 is added to the register value
the value in the register after update specifies address
(can be specified only with the ST instruction).

» 4 is subtracted to the register value
the value in the register after update specifies address
(can be specified only with the ST instruction).

When accessing halfword and word size data, it is necessary to specify the address on the halfword
boundary or the word boundary (Halfword size should be such that the low-order 2 bits of the address are
"00" or "10", and word size should be such that the low order 2 bits of the address are "00"). If an unaligned
address is specified, an address exception occurs.
When accessing byte data or halfword data with load instructions, the high-order bits are sign-extended or
zero-extended to 32 bits, and loaded to a register.

M32R family Software Manual 2-3

INSTRUCTION SET

2.1 Instruction set overview

2.1.2 Transfer instructions
The transfer instructions carry out data transfers between registers or a register and an immediate value.

LD24 Load 24-bit immediate
LDI Load immediate

MV Move register

MVFC Move from control register
MVTC Move to control register
SETH Set high-order 16-bit

2.1.3 Operation instructions
Compare, arithmetic/logic operation, multiply and divide, and shift are carried out between registers.

e compare instructions

CMP Compare

CMPI Compare immediate

CMPU Compare unsigned

CMPUI Compare unsigned immediate

 arithmetic operation instructions

ADD Add

ADD3 Add 3-operand

ADDI Add immediate

ADDV Add with overflow checking

ADDV3 Add 3-operand with overflow checking
ADDX Add with carry

NEG Negate

SUB Subtract

SUBV Subtract with overflow checking
SUBX Subtract with borrow

2-4 M32R family Software Manual

« logic operation instructions

AND
AND3
NOT
OR
OR3
XOR
XOR3

AND

AND 3-operand

Logical NOT

OR

OR 3-operand

Exclusive OR

Exclusive OR 3-operand

* multiply/divide instructions

DIV
DIvU
MUL
REM
REMU

« shift instructions
SLL
SLL3
SLLI
SRA
SRA3
SRAI
SRL
SRL3
SRLI

Divide

Divide unsigned
Multiply

Remainder
Remainder unsigned

Shift left logical

Shift left logical 3-operand
Shift left logical immediate
Shift right arithmetic

Shift right arithmetic 3-operand
Shift right arithmetic immediate
Shift right logical

Shift right logical 3-operand
Shift right logical immediate

INSTRUCTION SET

2.1 Instruction set overview

M32R family Software Manual

2-5

INSTRUCTION SET

2.1 Instruction set overview

2.1.4 Branch instructions
The branch instructions are used to change the program flow.

BC Branch on C-bit

BEQ Branch on equal

BEQZ Branch on equal zero

BGEZ Branch on greater than or equal zero
BGTzZ Branch on greater than zero

BL Branch and link

BLEZ Branch on less than or equal zero
BLTZ Branch on less than zero

BNC Branch on not C-bit

BNE Branch on not equal

BNEZ Branch on not equal zero

BRA Branch

JL Jump and link

JMP Jump

NOP No operation

Only a word-aligned (word boundary) address can be specified for the branch address.

2-6 M32R family Software Manual

INSTRUCTION SET

2.1 Instruction set overview

The addressing mode of the BRA, BL, BC and BNC instructions can specify an 8-bit or 24-bit immediate
value. The addressing mode of the BEQ, BNE, BEQZ, BNEZ, BLTZ, BGEZ, BLEZ, and BGTZ instructions
can specify a 16-bit immediate value.

In the JMP and JL instructions, the register value becomes the branch address. However, the low-order
2-bit value of the register is ignored. In other branch instructions, (PC value of branch instruction) + (sign-
extended and 2 bits left-shifted immediate value) becomes the branch address. However, the low order
2-bit value of the address becomes "00" when addition is carried out. For example, refer to Figure 2.1.1.
When instruction A or B is a branch instruction, branching to instruction G, the immediate value of either
instruction A or B becomes 4.

Simultaneous with execution of branching by the JL or BL instructions for subroutine calls, the PC value
of the return address is stored in R14. The low-order 2-bit value of the address stored in R14 (PC value
of the branch instruction + 4) is always cleared to "0". For example, refer to Figure 2.1.1. If an
instruction A or B is a JL or BL instruction, the return address becomes that of the instruction C.

«—— 1 word (32 bits) N
address +0 +1 ‘ +2 ‘ +3
branch instruction — H'00 instruction A instruction B
H'04 instruction C instruction D
H'08 instruction E
H'0C instruction F
H'10 instruction G instruction H

Fig. 2.1.1 Branch addresses of branch instruction

M32R family Software Manual 2-7

INSTRUCTION SET

2.1 Instruction set overview

2.1.5 ElIT-related instructions
The EIT-related instructions carry out the EIT events (Exception, Interrupt and Trap). Trap initiation and
return from EIT are EIT-related instructions.

TRAP

RTE

Trap

Return from EIT

2.1.6 DSP function instructions

The DSP function instructions carry out multiplication of 32 bits x 16 bits and 16 bits x 16 bits or multiply
and add operation; there are also instructions to round off data in the accumulator and carry out transfer
of data between the accumulator and a general-purpose register.

MACHI
MACLO
MACWHI
MACWLO
MULHI
MULLO
MULWHI
MULWLO
MVFACHI
MVFACLO
MVFACMI
MVTACHI
MVTACLO
RAC
RACH

Multiply-accumulate high-order halfwords
Multiply-accumulate low-order halfwords
Multiply-accumulate word and high-order halfword
Multiply-accumulate word and low-order halfword
Multiply high-order halfwords

Multiply low-order halfwords

Multiply word and high-order halfword

Multiply word and low-order halfword

Move from accumulator high-order word

Move from accumulator low-order word

Move from accumulator middle-order word

Move to accumulator high-order word

Move to accumulator low-order word

Round accumulator

Round accumulator halfword

2-8

M32R family Software Manual

INSTRUCTION SET

2.1 Instruction set overview

6\/IULHI instruction l MULLO instruct%)g

Rsrcl

32 bits

MULWHI instruction MULWLO instruction

0 63
ACC
Rsrcl Rsrc2
0 15 16 31 0 15 16 31 0 63
v [[% [«]
| >
X
h
h
MACHI instruction MACLO instruction
0 63
ACC
Rsrcl Rsrc2
0 31 0 15 16 31 0 63
32 bits | | H ‘ L | | ACC
N
X
h

+

MACWLO instruction

MACWHI instruction
63

0

ACC

Note. The location in the accumulator of the result and the appropriate sign extension are performed
in the execution of the DSP function instruction. Refer to Chapter 3 for details.

Fig. 2.1.2 DSP function instruction operation 1 (multiply, multiply and accumulate)

M32R family Software Manual

2-9

INSTRUCTION SET

2.1 Instruction set overview

< word size round off > < halfword size round off >
0 63 0 63
| ACC | | ACC |
] — ‘
RAC instruction RACH instruction
0 J 63 0 \ v 63
| sign | data | 0 | | sign | data | 0 |
Note. The actual operation is processed in two steps.
Refer to Chapter 3 for details.
Fig. 2.1.3 DSP function instruction operation 2 (round off)
MVFACMI instruction
0 15 16 31 32 47 48 63 0 31
|]
MVFACHI A MVFACLO / ‘ ‘
instruction instruction l l
MVTACHI MVTACLO
l l /7 instruction V instruction \
0

31 0 31 32 63
| Rdest | | ACC |

Fig. 2.1.4 DSP function instruction operation 3 (transfer between accumulator and register)

2-10 M32R family Software Manual

INSTRUCTION SET

2.2 Instruction format

2.2 Instruction format

There are two major instruction formats: two 16-bit instructions packed together within a word boundary, and
a single 32-bit instruction (see Fig. 2.2.1). Figure 2.2.2 shows the instruction format of M32R family.

1 word
address +0 +1 +2 +3
16-bit instruction A 16-bit instruction B
1 word
address +0 +1 +2 +3
32-bit instruction

Fig. 2.2.1 16-bit instruction and 32-bit instruction

< 16-bit instruction >

opl | R1 | op2 | R Ri=R1 op R2
opl R1 [Ri=R1 op c
opl | cond c Branch (Short Displacement)

< 32-bit instruction >

opl R1 op2 | Rz [Ri=R2 op ¢

opl R1 op2 | Rz [Compare and Branch
opl R1 c Ri=R1 op c

opl | cond c Branch

Fig. 2.2.2 Instruction format of M32R family

M32R family Software Manual 2-11

INSTRUCTION SET

2.2 Instruction format

The MSB (Most Significant Bit) of a 32-bit instruction is always "1".

The MSB of a 16-bit instruction in the high-order halfword is always "0" (instruction A in Figure 2.2.3),
however the processing of the following 16-bit instruction depends on the MSB of the instruction.

In Figure 2.2.3, if the MSB of the instruction B is "0", instructions A and B are executed sequentially; B is
executed after A. If the MSB of the instruction B is "1", instructions A and B are executed in parallel.
The current implementation allows only the NOP instruction as instruction B for parallel execution. The MSB
of the NOP instruction used for word arraignment adjustment is changed to "1" automatically by a standard
Mitsubishi assembler, then the M32R can execute this instruction without requiring any clock cycles.

MfB MfB < instruction execution sequence >
0| 16-bit instruction A 0| 16-bit instruction B [instruction A] --> [instruction B] sequential
0| 16-bit instruction A 1| 16-bitinstruction B [instruction A] & [instruction B] parallel
1 32-bit instruction

NOP instruction
—

inserted by assembler

L— 0111 | 0000 | 0000 | 0000

NOP instruction whose MSB is changed to "1"
I |

0| 16-bit instruction A 1111 | 0000 | 0000 | 0000 [instruction A] & [NOP] parallel

1 32-bit instruction

Fig. 2.2.3 Processing of 16-bit instructions

2-12 M32R family Software Manual

CHRHAPRPTER 3
INSTRUCTIONS

3.1 Conventions for instruction description
3.2 Instruction description

INSTRUCTIONS

3.1 Conventions for instruction description

3.1 Conventions for instruction description
Conventions for instruction description are summarized below.

[Mnemonic]
Shows the mnemonic and possible operands (operation target) using assembly language notation.

Table 3.1.1 Operand list

symbol addressing mode operation target

(see note)

R register direct general-purpose registers (RO - R15)

CR control register control registers (CR0O = PSW, CR1 = CBR, CR2 = SPI,
CR3 = SPU, CR6 = BPC)

@R register indirect memory specified by register contents as address

@(disp, R) register relative indirect

memory specified by (register contents) + (sign-extended value of
16-bit displacement) as address

@R+ register indirect and
register update

4 is added to register contents (memory specified by register
contents before update as address)

@+R register indirect and
register update

4 is added to register contents (memory specified by register contents
after update as address)

@-R register indirect and 4 is subtracted from register contents (memory specified by register
register update contents after update as address)

#imm immediate immediate value (refer to each instruction description)

pcdisp PC relative memory specified by (PC contents) + (8, 16, or 24-bit displacement

which is sign-extended to 32 bits and 2 bits left-shifted) as address

Note.

When expressing Rsrc or Rdest as an operand, a general-purpose register numbers (0 - 15) should
be substituted for src or dest. When expressing CRsrc or CRdest, control register numbers (0 - 3, 6)
should be substituted for src or dest.

[Function]
Indicates the operation performed by one instruction. Notation is in accordance with C language notation.

Table 3.1.2 Operation expression (operator)

operator meaning

+ addition (binomial operator)

- subtraction (binomial operator)

O multiplication (binomial operator)

3-2

M32R family Software Manual

INSTRUCTIONS

3.1 Conventions for instruction description

Table 3.1.3 Operation expression (operator) (cont.)

operator meaning

/ division (binomial operator)

% remainder operation (binomial operator)

++ increment (monomial operator)

—-— decrement (monomial operator)

- sign invert (monomial operator)

= substitute right side into left side (substitute operator)

+= adds right and left variables and substitute into left side (substitute operator)
—= subtract right variable from left variable and substitute into left side (substitute operator)
> greater than (relational operator)

< less than (relational operator)

>= greater than or equal to (relational operator)

<= less than or equal to (relational operator)

== equal (relational operator)

I= not equal (relational operator)

&& AND (logical operator)

I OR (logical operator)

! NOT (logical operator)

e

execute a conditional expression (conditional operator)

Table 3.1.4 Operation expression (bit operator)

operator meaning
<< bits are left-shifted
>> bits are right-shifted
& bit product (AND)
| bit sum (OR)
A bit exclusive or (EXOR)
~ bit invert
Table 3.1.5 Data type
expression type sign bit length range
char integer yes 8 —128 to +127
short integer yes 16 -32,768 to +32,767
int integer yes 32 -2,147,483,648 to +2,147,483,647
unsigned char integer no 8 0 to 255
unsigned short integer no 16 0 to 655,535
unsigned int integer no 32 0to 4,294,967,295
signed64bit integer yes 64 signed 64-bit integer (with accumulator)

M32R family Software Manual 3-3

INSTRUCTIONS

3.1 Conventions for instruction description

[Description]
Describes the operation performed by the instruction and any condition bit change.

[EIT occurrence]
Shows possible EIT events (Exception, Interrupt, Trap) which may occur as the result of the instruction's
execution. Only address exception (AE) and trap (TRAP) may result from an instruction execution.

[Instruction format]

Shows the bit level instruction pattern (16 bits or 32 bits). Source and/or destination register numbers are
put in the src and dest fields as appropriate. Any immediate or displacement value is put in the imm or
disp field, its maximum size being determined by the width of the field provided for the particular instruction.
Refer to 2.2 Instruction format for detail.

3-4 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

3.2 Instruction description
This section lists M32R family instructions in alphabetical order. Each page is laid out as shown below.

instruction name —J}——> A D D arithmetic oper

(instruction type and Add
full name are in center)
instruction mnemonic ——————> [Mnemonic]
Add Rdest,Rsrc

instruction function > [Function]
(expression corresponds to

C language method) Add

Rdest = Rdest + Rsrc;

instruction description ——— > [Description]
and effect on condition bit (C) ADD adds Rsrc to Rdest and puts the result in

The condition bit (C) is unchanged.

EIT eventswhichmay — 1 5 [EIT occurrence]
occur when this
instruction is executed None

16- or 32-bit instruction format 1 5 [instruction format]

[0000] dest [1010] src | Add Rde

M32R family Software Manual 3-5

INSTRUCTIONS

3.2 Instruction description

arithmetic/logic operation
ADD Adc ADD

[Mnemonic]
ADD Rdest,Rsrc

[Function]

Add
Rdest = Rdest + Rsrc;

[Description]

ADD adds Rsrc to Rdest and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0000 | dest [1010 |src ADD Rdest,Rsrc

3-6 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

A D D 3 arithm;tigdop:ge_rsltaioelz ailr:.(sjtruction A D D 3

[Mnemonic]

ADD3 Rdest,Rsrc,#imm16

[Function]

Add
Rdest = Rsrc + (signed short) imm16;

[Description]

ADD3 adds the 16-bit immediate value to Rsrc and puts the result in Rdest. The immediate
value is sign-extended to 32 bits before the operation.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1000 |dest | 1010 | src | imm|16

ADD3 Rdest,Rsrc,#imml16

M32R family Software Manual 3-7

INSTRUCTIONS

3.2 Instruction description

arithmetic operation instruction
ADDI Add immediate ADDI

[Mnemonic]
ADDI Rdest,#imm8

[Function]

Add
Rdest = Rdest + (signed char) immS8;

[Description]
ADDI adds the 8-bit immediate value to Rdest and puts the result in Rdest.
The immediate value is sign-extended to 32 bits before the operation.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

ADDI| Rdest,#imms8

0100 | dest imr|n8

3-8 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description
arithmetic operation instruction
A D DV Add with overflow checking A D DV

[Mnemonic]

ADDV Rdest,Rsrc

[Function]

Add
Rdest = (signed) Rdest + (signed) Rsrc;
C = overflow ? 1:0;

[Description]

ADDV adds Rsrc to Rdest and puts the result in Rdest.
The condition bit (C) is set when the addition results in overflow; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

0000 | dest |1000 |src ADDV Rdest,Rsrc

M32R family Software Manual 3-9

INSTRUCTIONS

3.2 Instruction description

AD DV3 Add Sir)gggzz Oveﬁrk?tg)CeTng\Llvatéohnecking AD DV3

[Mnemonic]

ADDV3 Rdest,Rsrc,#imm16

[Function]

Add
Rdest = (signed) Rsrc + (signed) ((signed short) imm16);
C = overflow ? 1:0;

[Description]

ADDV3 adds the 16-bit immediate value to Rsrc and puts the result in Rdest. The immediate
value is sign-extended to 32 bits before it is added to Rsrc.
The condition bit (C) is set when the addition results in overflow; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

1000 | dest | 1000 | src imm16

ADDV3 Rdest,Rsrc,#imm16

3-10 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

arithmetic operation instruction
ADDX Add with carry ADDX

[Mnemonic]

ADDX Rdest,Rsrc

[Function]

Add
Rdest = (unsigned) Rdest + (unsigned) Rsrc + C;
C =carry_out ? 1:0;

[Description]

ADDX adds Rsrc and C to Rdest, and puts the result in Rdest.
The condition bit (C) is set when the addition result cannot be represented by a 32-bit unsigned
integer; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

0000 | dest |1001 | src ADDX Rdest,Rsrc

M32R family Software Manual 3-11

INSTRUCTIONS

3.2 Instruction description

logic operation instruction
AND AND AND

[Mnemonic]
AND Rdest,Rsrc

[Function]

Logical AND
Rdest = Rdest & Rsrc;

[Description]
AND computes the logical AND of the corresponding bits of Rdest and Rsrc and puts the result

in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0000 | dest | 1100 | src AND Rdest,Rsrc

3-12 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

AND3 AND 3-operand AND3

[Mnemonic]

AND3 Rdest,Rsrc,#imm16

[Function]

Logical AND
Rdest = Rsrc & (unsigned short) imm16;

[Description]

AND3 computes the logical AND of the corresponding bits of Rsrc and the 16-bit immediate
value, which is zero-extended to 32 bits, and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1000 | dest | 1100 | src imr‘q16

AND3 Rdest,Rsrc,#imm1l16

M32R family Software Manual 3-13

INSTRUCTIONS

3.2 Instruction description

branch instruction
B C Branch on C-bit B C

[Mnemonic]
O BC pcdisp8
O BC pcdisp24
[Function]
Branch

O if(C==1) PC = (PC & Oxfffffffc) + (((signed char) pcdisp8) << 2);
O if (C==1) PC = (PC & Oxfffffffc) + (sign_extend (pcdisp24) << 2);
where
#define sign_extend(x) (((signed) ((X)<< 8)) >>8)

[Description]

BC causes a branch to the specified label when the condition bit (C) is 1.

There are two instruction formats; which allows software, such as an assembler, to decide on
the better format.

The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
0111 | 1100 | pedisp8 BC pcdisp8
1111 | 1100 | pcdis;l)24 | | BC pcdisp24

3-14 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description
branch instruction
B E Q Branch on equal B E Q

[Mnemonic]

BEQ Rsrcl,Rsrc2,pcdispl6

[Function]

Branch
if (Rsrcl == Rsrc2) PC = (PC & Oxfffffffc) + (((signed short) pcdispl6) << 2);

[Description]

BEQ causes a branch to the specified label when Rsrcl is equal to Rsrc2.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 |srcl cpooo §c2 pedispl6
BEQ Rsrcl,Rsrc2,pcdispl6

M32R family Software Manual 3-15

INSTRUCTIONS

3.2 Instruction description

branch instruction
B EQZ Branch on equal zero B E QZ
[Mnemonic]

BEQZ Rsrc,pcdispl6

[Function]

Branch
if (Rsrc ==0) PC = (PC & Oxfffffffc) + (((signed short) pcdispl6) << 2);

[Description]

BEQZ causes a branch to the specified label when Rsrc is equal to zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 {0000 (1000 |src ||ocdisp1|6
BEQZ Rsrc,pcdispl6

3-16 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

branch instruction
B G EZ Branch on greater than or equal zero B G EZ

[Mnemonic]

BGEZ Rsrc,pcdispl6

[Function]

Branch
if ((signed) Rsrc >=0) PC = (PC & Oxfffffffc) + (((signed short) pcdispl6) << 2);

[Description]

BGEZ causes a branch to the specified label when Rsrc treated as a signed 32-bit value is
greater than or equal to zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 {0000 |1011 |src rl)cdispll6
BGEZ Rsrc,pcdispl6

M32R family Software Manual 3-17

INSTRUCTIONS

3.2 Instruction description

branch instruction
B G TZ Branch on greater than zero B G TZ

[Mnemonic]

BGTZ Rsrc,pcdispl6

[Function]

Branch
if ((signed) Rsrc > 0) PC = (PC & Oxfffffffc) + (((signed short) pcdispl6) << 2);

[Description]

BGTZ causes a branch to the specified label when Rsrc treated as a signed 32-bit value is
greater than zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 {0000 (1101 |src pcdisplIG

BGTZ Rsrc,pcdispl6

3-18 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

branch instruction
B L Branch and link B L

[Mnemonic]
O BL pcdisp8
ad BL pcdisp24
[Function]

Subroutine call (PC relative)
0 R14 = (PC & Oxfffffffc) + 4;
PC = (PC & Oxfffffffc) + (((signed char) pcdisp8) << 2);
0 R14 = (PC & Oxfffffffc) + 4;
PC = (PC & Oxfffffffc) + (sign_extend (pcdisp24) << 2);
where
#define sign_extend(x) (((signed) ((X)<< 8)) >>8)

[Description]

BL causes an unconditional branch to the address specified by the label and puts the return

address in R14.
There are two instruction formats; this allows software, such as an assembler, to decide on the

better format.
The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
0111 | 1110 pcdisP8 BL pcdisp8
1111 | 1110 | || podisp24 | BL pcdisp24

M32R family Software Manual 3-19

INSTRUCTIONS

3.2 Instruction description

branch instruction
B L EZ Branch on less than or equal zero B L EZ

[Mnemonic]

BLEZ Rsrc,pcdispl6

[Function]

Branch
if ((signed) Rsrc <= 0) PC = (PC & Oxfffffffc) + (((signed short) pcdispl6) << 2);

[Description]

BLEZ causes a branch to the specified label when the contents of Rsrc treated as a signed 32-
bit value, is less than or equal to zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 |0000 (1100 |src ||ocdisp1|6
BLEZ Rsrc,pcdispl6

3-20 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description
branch instruction
B LTZ Branch on less than zero B LTZ

[Mnemonic]

BLTZ Rsrc,pcdispl6

[Function]

Branch
if ((signed) Rsrc < 0) PC = (PC & Oxfffffffc) + (((signed short) pcdispl6) << 2);

[Description]

BLTZ causes a branch to the specified label when Rsrc treated as a signed 32-bit value is less
than zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 |0000 1010 |src pcdispl?

BLTZ Rsrc,pcdispl6

M32R family Software Manual 3-21

INSTRUCTIONS

3.2 Instruction description

branch instruction
B N C Branch on not C-bit B N C

[Mnemonic]
O BNC pcdisp8
O BNC pcdisp24
[Function]
Branch

O if (C==0) PC = (PC & Oxfffffffc) + (((signed char) pcdisp8) << 2);
O if (C==0) PC = (PC & Oxfffffffc) + (sign_extend (pcdisp24) << 2);
where
#define sign_extend(x) (((signed) ((x)<< 8)) >>8)

[Description]

BNC branches to the specified label when the condition bit (C) is 0.

There are two instruction formats; this allows software, such as an assembler, to decide on the
better format.

The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
0111 | 1101 pcdispl)8 BNC pcdisp8
1111 | 1101 | pcdis;|)24 | | BNC pcdisp24

3-22

M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

branch instruction
B N E Branch on not equal B N E

[Mnemonic]

BNE Rsrcl,Rsrc2,pcdispl6

[Function]

Branch
if (Rsrcl != Rsrc2) PC = (PC & Oxfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BNE causes a branch to the specified label when Rsrcl is not equal to Rsrc2.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 [srcl 4)001 gc2 pedisp16,
BNE Rsrcl,Rsrc2,pcdispl6

M32R family Software Manual 3-23

INSTRUCTIONS

3.2 Instruction description

branch instruction
B N EZ Branch on not equal zero B N EZ

[Mnemonic]

BNEZ Rsrc,pcdispl6

[Function]

Branch
if (Rsrc !=0) PC = (PC & Oxfffffffc) + (((signed short) pcdispl6) << 2);

[Description]

BNEZ causes a branch to the specified label when Rsrc is not equal to zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 |0000 (1001 |src pl)cdisp1§
BNEZ Rsrc,pcdispl6

3-24 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

branch instruction
BRA Branch BRA

[Mnemonic]
O BRA pcdisp8
O BRA pcdisp24
[Function]
Branch

0 PC = (PC & Oxfffffffc) + (((signed char) pcdisp8) << 2);
O PC = (PC & Oxfffffffc) + (sign_extend (pcdisp24) << 2);
where
#define sign_extend(x) (((signed) ((x)<< 8)) >>8)

[Description]

BRA causes an unconditional branch to the address specified by the label.

There are two instruction formats; this allows software, such as an assembler, to decide on the
better format.

The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
0111 | 11112 pcdisp8 BRA pcdisp8
1111 | 1111 | || pedisp24 | BRA pcdisp24

M32R family Software Manual 3-25

INSTRUCTIONS

3.2 Instruction description

C I\/I P com;g;em ig;trrgction C I\/I P

[Mnemonic]
CMP Rsrcl,Rsrc?2

[Function]

Compare
C = ((signed) Rsrcl < (signed) Rsrc2) ? 1:0;

[Description]
The condition bit (C) is set to 1 when Rsrcl is less than Rsrc2. The operands are treated as

signed 32-bit values.

[EIT occurrence]

None

[Encoding]
CMP Rsrcl,Rsrc2

0000 | srcl [0100 prc2

3-26 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description
compare instruction
CMPI Compare immediate CMPI

[Mnemonic]

CMPI Rsrc,#imm16

[Function]

Compare
C = ((signed) Rsrc < (signed short) imm16) ? 1:0;

[Description]

The condition bit (C) is set when Rsrc is less than 16-bit immediate value. The operands are
treated as signed 32-bit values. The immediate value is sign-extended to 32-bit before the
operation.

[EIT occurrence]

None

[Encoding]

1000 |0000 (0100 |src | imml(li
CMPI Rsrc,#imm16

M32R family Software Manual 3-27

INSTRUCTIONS

3.2 Instruction description

CMPU Compare unsignet CMPU

[Mnemonic]
CMPU Rsrcl,Rsrc?2

[Function]

Compare
C = ((unsigned) Rsrcl < (‘unsigned) Rsrc2) ? 1:0;

[Description]
The condition bit (C) is set when Rsrcl is less than Rsrc2. The operands are treated as unsigned

32-bit values.

[EIT occurrence]

None

[Encoding]
CMPU Rsrcl,Rsrc2

0000 | srcl (0101 prc2

3-28 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

C M P U I Compaioemﬁz;‘eig;gz;u?i::”nediate C M P U I

[Mnemonic]

CMPUI Rsrc,#imm16

[Function]

Compare
C = ((unsigned) Rsrc < (unsigned) ((signed short) imm16)) ? 1:0;

[Description]

The condition bit (C) is set when Rsrc is less than the 16-bit immediate value. The operands are treated
as unsigned 32-bit values. The immediate value is sign-extended to 32-bit before the operation.

[EIT occurrence]

None

[Encoding]

1000 [0000 0101 |src | immlEIS
CMPUI Rsrc,#imm1l16

M32R family Software Manual 3-29

INSTRUCTIONS

3.2 Instruction description

multiply and divide instruction
DIV Divide DIV

[Mnemonic]

DIV Rdest,Rsrc

[Function]

Signed division
Rdest = (signed) Rdest / (signed) Rsrc;

[Description]

DIV divides Rdest by Rsrc and puts the quotient in Rdest.

The operands are treated as signed 32-bit values and the result is rounded toward zero.
The condition bit (C) is unchanged.

When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None

[Encoding]

1001 | dest | 0000 | src 0000 | 0000 | 0000 [0000

DIV Rdest,Rsrc

3-30 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

multiply and divide instruction
DIVU Divide unsigned DIVU

[Mnemonic]

DIVU Rdest,Rsrc

[Function]

Unsigned division
Rdest = (unsigned) Rdest / (unsigned) Rsrc;

[Description]

DIVU divides Rdest by Rsrc and puts the quotient in Rdest.

The operands are treated as unsigned 32-bit values and the result is rounded toward zero.
The condition bit (C) is unchanged.

When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None

[Encoding]

1001 | dest | 0001 | src 0000 | 0000 | 0000 {0000
DIVU Rdest,Rsrc

M32R family Software Manual 3-31

INSTRUCTIONS

3.2 Instruction description

branch instruction
J L Jump and link J L

[Mnemonic]
JL Rsrc

[Function]

Subroutine call (register direct)
R14 = (PC & Oxfffffffc) + 4;

PC = Rsrc & Oxfffffffc;

[Description]
JL causes an unconditional jump to the address specified by Rsrc and puts the return address

in R14.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

Rsrc

0001 | 1110 | 1100 | src JL

3-32 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

J I\/I P brancf; L/j’l:r.:tpruction J I\/I P

[Mnemonic]

JMP Rsrc

[Function]

Jump
PC = Rsrc & Oxfffffffc;

[Description]

JMP causes an unconditional jump to the address specified by Rsrc.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0001 | 1111 |1100 |src JMP Rsrc

M32R family Software Manual 3-33

INSTRUCTIONS

3.2 Instruction description

load/store instruction
LD Loac
[Mnemonic]
O LD Rdest,@Rsrc
O LD Rdest,@Rsrc+
O LD Rdest,@(displ6,Rsrc)
[Function]
Load
O Rdest = *(int *) Rsrc;
O Rdest = *(int *) Rsrc, Rsrc += 4;
0 Rdest = *(int *) (Rsrc + (signed short) disp16);

[Description]

LD

[0 The contents of the memory at the address specified by Rsrc are loaded into Rdest.
O The contents of the memory at the address specified by Rsrc are loaded into Rdest.

Rsrc is post incremented by 4.

0 The contents of the memory at the address specified by Rsrc combined with the 16-

bit displacement are loaded into Rdest.

The displacement value is sign-extended to 32 bits before the address calculation.

The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

[Encoding]
0010 | dest | 1100 | src LD Rdest,@Rsrc
0010 | dest |1110 | src LD Rdest,@Rsrc+
1010 | dest | 1100 | src | disp|16

LD Rdest,@(displ6,Rsrc)

3-34 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

LD24 Load 24-bit mmediate L D24

[Mnemonic]

LD24 Rdest,#imm24

[Function]

Load
Rdest = imm24 & OxOOffffff;

[Description]

LD24 loads the 24-bit immediate value into Rdest. The immediate value is zero-extended to 32
bits.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1110 | dest | imrr|124

LD24 Rdest,#imm24

M32R family Software Manual 3-35

INSTRUCTIONS

3.2 Instruction description

load/store instruction
LDB Load byte LDB
[Mnemonic]

O LDB Rdest,@Rsrc
O LDB Rdest,@(displ6,Rsrc)

[Function]

Load
O Rdest
O Rdest

*(signed char *) Rsrc;
*(signed char *) (Rsrc + (signed short) disp16);

[Description]
O LDB sign-extends the byte data of the memory at the address specified by Rsrc and loads
it into Rdest.

O LDB sign-extends the byte data of the memory at the address specified by Rsrc combined
with the 16-bit displacement, and loads it into Rdest.

The displacement value is sign-extended to 32 bits before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]
0010 | dest | 1000 | src LDB Rdest,@Rsrc
1010 | dest | 1000 | src | disp|16

LDB Rdest,@(displ6,Rsrc)

3-36 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description
load/store instruction
L D H Load halfword L D H

[Mnemonic]

O LDH Rdest,@Rsrc
O LDH Rdest,@(disp16,Rsrc)

[Function]

Load
O Rdest
O Rdest

*(signed short *) Rsrc;
*(signed short *) (Rsrc + (signed short) displ16);

[Description]
O LDH sign-extends the halfword data of the memory at the address specified by Rsrc and
loads it into Rdest.

O LDH sign-extends the halfword data of the memory at the address specified by Rsrc combined
with the 16-bit displacement, and loads it into Rdest.

The displacement value is sign-extended to 32 bits before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

[Encoding]
0010 |dest | 1010 | src LDH Rdest,@Rsrc
1010 |dest |1010 | src | disp|16

LDH Rdest,@(displ6,Rsrc)

M32R family Software Manual 3-37

INSTRUCTIONS

3.2 Instruction description

transfer instruction
L D I Load immediate L D I

[Mnemonic]
O LDl Rdest,#imm8
O LDl Rdest,#imm1l16
[Function]
Load

0 Rdest = (signed char) imm8;
0 Rdest = (signed short) imm16;

[Description]

0 LDI loads the 8-bit immediate value into Rdest.
The immediate value is sign-extended to 32 bits.

0 LDI loads the 16-bit immediate value into Rdest.
The immediate value is sign-extended to 32 bits.
The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
0110 | dest imms LDl Rdest,#imm8
|
1001 | dest | 1111 |0000 . imng16

LDl Rdest,#imml16

3-38 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

load/store instruction
LDUB Load unsigned byte LDUB
[Mnemonic]

O LDUB Rdest,@Rsrc
O LDUB Rdest,@(displ6,Rsrc)

[Function]

Load
O Rdest
O Rdest

*(unsigned char *) Rsrc;
*(unsigned char *) (Rsrc + (signed short) disp16);

[Description]

O LDUB zero-extends the byte data from the memory at the address specified by Rsrc and loads
it into Rdest.

O LDUB zero-extends the byte data of the memory at the address specified by Rsrc combined
with the 16-bit displacement, and loads it into Rdest.

The displacement value is sign-extended to 32 bits before address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0010 |dest | 1001 | src LDUB Rdest,@Rsrc

1010 | dest | 1001 | src | disp|16
LDUB Rdest,@(displ6,Rsrc)

M32R family Software Manual 3-39

INSTRUCTIONS

3.2 Instruction description

LDUH Load unsigned halword LDUH
[Mnemonic]

O LDUH Rdest,@Rsrc
O LDUH Rdest,@(displ6,Rsrc)

[Function]

Load
O Rdest
O Rdest =

*(unsigned short *) Rsrc;
*(unsigned short *) (Rsrc + (signed short) displ16);

[Description]
O LDUH zero-extends the halfword data from the memory at the address specified by Rsrc and
loads it into Rdest.

O LDUH zero-extends the halfword data in memory at the address specified by Rsrc combined
with the 16-bit displacement, and loads it into Rdest.

The displacement value is sign-extended to 32 bits before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

[Encoding]
0010 | dest | 1011 | src LDUH Rdest,@Rsrc
1010 | dest | 1011 | src . displ6

LDUH Rdest,@(displ6,Rsrc)

3-40 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

LOCK *Load locked | LOCK

[Mnemonic]

LOCK Rdest,@Rsrc

[Function]

Load locked
LOCK =1, Rdest = *(int *) Rsrc;

[Description]

The contents of the word at the memory location specified by Rsrc are loaded into Rdest. The
condition bit (C) is unchanged.

This instruction sets the LOCK bit in addition to simple loading.

When the LOCK bit is 1, external bus master access is not accepted.

The LOCK bit is cleared by executing the UNLOCK instruction.

The LOCK bit is internal to the CPU and cannot be accessed directly except by using the LOCK
or UNLOCK instructions.

[EIT occurrence]

Address exception (AE)

[Encoding]

0010 |dest |1101 | src LOCK Rdest,@Rsrc

M32R family Software Manual 3-41

INSTRUCTIONS

3.2 Instruction description

DSP function instruction
MACHI Multiply-accumulate MACHI

high-order halfword

[Mnemonic]
MACHI Rsrcl,Rsrc2

[Function]

Multiply and add
accumulator += ((signed) (Rsrcl & 0xffff0000) * (signhed short) (Rsrc2 >> 16));

[Description]

MACHI multiplies the high-order 16 bits of Rsrcl and the high-order 16 bits of Rsrc2, then adds
the result to the low-order 56 bits in the accumulator.

The LSB of the multiplication result is aligned with bit 47 in the accumulator, and the portion
corresponding to bits 8 through 15 of the accumulator is sign-extended before addition. The
result of the addition is stored in the accumulator. The high-order 16 bits of Rsrcl and Rsrc2
are treated as signed values.

The condition bit (C) is unchanged.

0 15 16 31
‘ high-orderlﬁbits‘ ‘ Rsrcl
X ‘ high-orderlﬁbits‘ ‘ Rsrc2
Sign extension‘ 4—}0 0 ‘ Result of the multiplication

Value in accumulator before the

+ execution of the MACHI instruction
Sign extension ‘ 4—}0 ‘ Value in accumulator after the
execution of the MACHI instruction
0 78 15 16 31 32 47 48
[EIT occurrence]
None
[Encoding]
0011 | srcl | 0100 |src2 MACHI Rsrcl,Rsrc2

3-42 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

MACLO

[Mnemonic]

MACLO Rsrcl,Rsrc?

[Function]

Multiply and add

DSP function instruction
Multiply-accumulate M AC L O

low-order halfword

accumulator += ((signed) (Rsrcl << 16) * (signed short) Rsrc2) ;

[Description]

MACLO multiplies the low-order 16 bits of Rsrcl and the low-order 16 bits of Rsrc2, then adds
the result to the low order 56 bits in the accumulator.

The LSB of the multiplication result is aligned with bit 47 in the accumulator, and the portion
corresponding to bits 8 through 15 of the accumulator is sign-extended before addition. The
result of the addition is stored in the accumulator. The low-order 16 bits of Rsrcl and Rsrc2
are treated as signed values.

The condition bit (C) is unchanged.

0 15 16 31
‘ ‘Iow—order 16 bits‘ Rsrcl

X ‘ ‘Iow-order 16 bits‘ Rsrc2

Sign extension ‘ 4—}0

‘ ‘ 0 ‘ Result of the multiplication

+

Value in accumulator before the
execution of the MACLO instruction

Sign extension ‘ A—P ‘

‘ ‘ Value in accumulator after the
execution of the MACLO instruction

0 78 1516

[EIT occurrence]

None

[Encoding]

3132 47 48

0011 |srcl | 0101 |src2

MACLO Rsrcl,Rsrc2

M32R family Software Manual 3-43

INSTRUCTIONS

3.2 Instruction description

MACWHI wutipy-accumuiae wore MACWHI

and high-order halfword

[Mnemonic]
MACWHI Rsrcl,Rsrc2

[Function]

Multiply and add
accumulator += ((signed) Rsrcl * (signed short) (Rsrc2 >> 16));

[Description]

MACWHI multiplies the 32 bits of Rsrcl and the high-order 16 bits of Rsrc2, then adds the result
to the low-order 56 bits in the accumulator.

The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion
corresponding to bits 8 through 15 of the accumulator is sign extended before addition. The
result of addition is stored in the accumulator. The 32 bits of Rsrcl and the high-order 16 bits
of Rsrc2 are treated as signed values.

The condition bit (C) is unchanged.

0 15 16 31
32 bits ‘ Rsrcl
X ‘ high-order 16 bits ‘ ‘ Rsrc2
Sign extension ‘ 4—’-0 ‘ ‘ ‘ Result of the multiplication

+ ‘ ‘ ‘ ‘ Value in accumulator before the

execution of the MACWHI instruction
Sign extension ‘ 4—}0 Value in accumulator after the
0 78 15 16 31 32 47 48 execution of the MACWHI instruction
[EIT occurrence]
None
[Encoding]
0011 | srcl | 0110 |(src2 MACWHI Rsrcl,Rsrc2

3-44 M32R family Software Manual

MACWLO

INSTRUCTIONS

3.2 Instruction description

DSP function instruction
Multiply-accumulate M ACW L O

word and low-order halfword

[Mnemonic]

MACWLO Rsrcl,Rsrc2

[Function]

Multiply and add

accumulator += ((signed) Rsrcl * (signed short) Rsrc2) ;

[Description]

MACWLO multiplies the 32 bits of Rsrcl and the low-order 16 bits of Rsrc2, then adds the result

to the low-order 56 bits in the accumulator.

The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion
corresponding to bits 8 through 15 of the accumulator is sign-extended before the addition. The
result of the addition is stored in the accumulator. The 32 bits Rsrcl and the low-order 16 bits

of Rsrc2 are treated as signed values.
The condition bit (C) is unchanged.

0 15 16 31
\ 32 bits | Rsrcl
X ‘ ‘ low-order 16 bits ‘ Rsrc2
Sign extension ‘ 4—}0 ‘ ‘ ‘ Result of the multiplication
+ ‘ ‘ ‘ ‘ Value in accumulator before the
execution of the MACWLO instruction
Sign extension ‘ 4_+. ‘ ‘ ‘ Value in accumulator after the
execution of the MACWLO instruction
0 78 15 16 3132 47 48

[EIT occurrence]

None

[Encoding]

0011 |srcl | 0111 |src2

MACWLO Rsrcl,Rsrc2

M32R family Software Manual 3-45

INSTRUCTIONS

3.2 Instruction description

multiply and divide instruction
MUL Muliply MUL

[Mnemonic]

MUL Rdest,Rsrc

[Function]

Multiply
{ signed64bit tmp;
tmp = (signed64bit) Rdest * (sighed64bit) Rsrc;
Rdest = (int) tmp;}

[Description]

MUL multiplies Rdest by Rsrc and puts the result in Rdest.
The operands are treated as signed values.
The condition bit (C) is unchanged. The contents of the accumulator are destroyed by this

instruction.

[EIT occurrence]

None

[Encoding]

0001 | dest | 0110 | src MUL Rdest,Rsrc

3-46 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description
DSP function instruction
M U L H I Multiply high-order halfwords M U L H I

[Mnemonic]

MULHI Rsrcl,Rsrc2

[Function]

Multiply
accumulator = ((signed) (Rsrcl & Oxffff000) * (signed short) (Rsrc2 >> 16));

[Description]

MULHI multiplies the high-order 16 bits of Rsrcl and the high-order 16 bits of Rsrc2, and stores
the result in the accumulator.

However, the LSB of the multiplication result is aligned with bit 47 in the accumulator, and the
portion corresponding to bits 0 through 15 of the accumulator is sign-extended. Bits 48 through
63 of the accumulator are cleared to 0. The high-order 16 bits of Rsrcl and Rsrc2 are treated
as signed values.

The condition bit (C) is unchanged.

0 15 16 31
‘ high-order 16 bits ‘ ‘ Rsrcl
X ‘ high-order 16 bits ‘ ‘ Rsrc2
Sign extension 4—}. 0 Value in accumulator after the
g ‘ ‘ ‘ execution of the MALHI instruction
0 15 16 3132 47 48 3

[EIT occurrence]

None

[Encoding]

0011 |srcl |0000 |src2 MULHI Rsrcl,Rsrc2

M32R family Software Manual 3-47

INSTRUCTIONS

3.2 Instruction description
DSP function instruction
M U L LO Multiply low-order halfwords M U L LO

[Mnemonic]
MULLO Rsrcl,Rsrc?2

[Function]

Multiply
accumulator = ((signed) (Rsrcl << 16) * (signed short) Rsrc2);

[Description]
MULLO multiplies the low-order 16 bits of Rsrcl and the low-order 16 bits of Rsrc2, and stores
the result in the accumulator.
The LSB of the multiplication result is aligned with bit 47 in the accumulator, and the portion
corresponding to bits 0 through 15 of the accumulator is sign extended. Bits 48 through 63 of
the accumulator are cleared to 0. The low-order 16 bits of Rsrcl and Rsrc2 are treated as
signed values.
The condition bit (C) is unchanged.

0 15 16 31
‘ low-order 16 bits‘ Rsrcl

X ‘ ‘ low-order 16 bits ‘ Rsrc2
Si tensi 4—+. 0 Value in accumulator after the
g extension L 15 16 3132 47 48 execution of the MULLO instruction
[EIT occurrence]
None
[Encoding]
0011 | srcl | 0001 |src2 MULLO Rsrcl,Rsrc2

3-48 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

MULWHI " wiioywes — MULWHI

and high-order halfword

[Mnemonic]

MULWHI Rsrcl,Rsrc?2

[Function]

Multiply
accumulator = ((signed) Rsrcl * (signed short) (Rsrc2 >> 16));

[Description]

MULWHI multiplies the 32 bits of Rsrcl and the high-order 16 bits of Rsrc2, and stores the result

in the accumulator.

The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion
corresponding to bits 0 through 15 of the accumulator is sign-extended. The 32 bits of Rsrcl
and high-order 16 bits of Rsrc2 are treated as signed values.

The condition bit (C) is unchanged.

0 15 16 31
32 bits ‘ Rsrcl
X ‘ high-order 16 bits ‘ ‘ Rsrc2
Sign extension 4—+. Value in accumulator after the
’ ‘ ‘ ‘ ‘ execution of the MULWHI instruction
0 15 16 31 32 47 48 3

[EIT occurrence]

None

[Encoding]

0011 |srcl | 0010 |src2 MULWHI Rsrcl,Rsrc?2

M32R family Software Manual 3-49

INSTRUCTIONS

3.2 Instruction description

MULWLO iy woaans MULWLO

low-order halfword

[Mnemonic]
MULWLO Rsrcl,Rsrc?2

[Function]

Multiply
accumulator = ((signed) Rsrcl * (signed short) Rsrc2);

[Description]
MULWLO multiplies the 32 bits of Rsrcl and the low-order 16 bits of Rsrc2, and stores the result

in the accumulator.
The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion

corresponding to bits 0 through 15 of the accumulator is sign extended. The 32 bits of Rsrcl
and low-order 16 bits of Rsrc2 are treated as signed values.
The condition bit (C) is unchanged.

0 15 16 31
32 bits ‘ Rsrcl
X ‘ low-order 16 bits ‘ Rsrc2
Si tensi 4—+. Value in accumulator after the
'gn extension ‘ ‘ ‘ ‘ execution of the MULWLO instruction
0 15 16 3132 47 48 3
[EIT occurrence]
None
[Encoding]
0011 |srcl | 0011 |src2 MULWLO Rsrcl,Rsrc2

3-50 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description
transfer instruction
M V Move register M V

[Mnemonic]

MV Rdest,Rsrc

[Function]

Transfer
Rdest = Rsrc;

[Description]

MV moves Rsrc to Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0001 | dest | 1000 | src MV Rdest,Rsrc

M32R family Software Manual 3-51

INSTRUCTIONS

3.2 Instruction description

MVFACH]I

[Mnemonic]

MVFACHI

[Function]

Rdest

DSP function instruction
Move from accumulator
high-order word

Transfer from accumulator to register
Rdest = (int) (accumulator >> 32) ;

[Description]

MVFACH]I

MVFACHI moves the high-order 32 bits of the accumulator to Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0101

dest

1111

0000

MVFACHI Rdest

3-52

M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

MVFACL

[Mnemonic]

MVFACLO Rdest

[Function]

DSP function instruction
Move from accumulatorl\/l V FA(: L O

low-order word

Transfer from accumulator to register

[Description]

Rdest = (int) accumulator ;

MVFACLO moves the low-order 32 bits of the accumulator to Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0101

dest

1111

0001

MVFACLO Rdest

M32R family Software Manual 3-53

INSTRUCTIONS

3.2 Instruction description

MVFACM

[Mnemonic]

MVFACMI

[Function]

Rdest

DSP function instruction

Move from accumulator
middle-order word

Transfer from accumulator to register
Rdest = (int) (accumulator >> 16) ;

[Description]

MVEFACMI

MVFACMI moves bits16 through 47 of the accumulator to Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0101

dest

1111

0010

MVFACMI Rdest

3-54

M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description
transfer instruction
MVFC Move from control register MVFC

[Mnemonic]

MVFC Rdest,CRsrc

[Function]

Transfer from control register to register
Rdest = CRsrc ;

[Description]

MVFC moves CRsrc to Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0001 |dest |1001 | src MVFC Rdest,CRsrc

M32R family Software Manual 3-55

INSTRUCTIONS

3.2 Instruction description

MVTACH]I

[Mnemonic]

MVTACHI

[Function]

Rsrc

DSP function instruction
Move to accumulator
high-order word

Transfer from register to accumulator
accumulator [0 : 31] = Rsrc ;

[Description]

MVTACHI

MVTACHI moves Rsrc to the high-order 32 bits of the accumulator.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0101

SIrc

0111

0000

MVTACHI Rsrc

3-56

M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

MV TACLO “vove o sccumuzr MV TACLO

low-order word

[Mnemonic]

MVTACLO Rsrc

[Function]

Transfer from register to accumulator
accumulator [32 : 63] = Rsrc ;

[Description]

MVTACLO moves Rsrc to the low-order 32 bits of the accumulator.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0101 | src | 0111 |0001 MVTACLO Rsrc

M32R family Software Manual 3-57

INSTRUCTIONS

3.2 Instruction description
transfer instruction
MVTC Move to control register MVTC

[Mnemonic]

MVTC Rsrc,CRdest

[Function]

Transfer from register to control register
CRdest = Rsrc ;

[Description]

MVTC moves Rsrc to CRdest.
If PSW(CRO) is specified as CRdest, the condition bit (C) is changed; otherwise it is unchanged.

[EIT occurrence]

None

[Encoding]

0001 | dest | 1010 | src MVTC Rsrc,CRdest

3-58 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

arithmetic operation instruction
NEG Negate NEG

[Mnemonic]

NEG Rdest,Rsrc

[Function]

Negate
Rdest = 0 — Rsrc ;

[Description]

NEG negates (changes the sign of) Rsrc treated as a signed 32-bit value, and puts the result
in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0000 | dest |0011 | src NEG Rdest,Rsrc

M32R family Software Manual 3-59

INSTRUCTIONS

3.2 Instruction description

NOP

[Mnemonic]

NOP

[Function]

No operation

/7\—

[Description]

NOP performs no operation. The subsequent instruction then processed.

*/

branch instruction
No operation

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0111

0000

0000

0000

NOP

NOP

3-60

M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

NOT

[Mnemonic]

NOT Rdest,Rsrc

[Function]

Logical NOT
Rdest = ~ Rsrc ;

[Description]

logic operation instruction

Logical NOT N OT

NOT inverts each of the bits of Rsrc and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0000

dest

1011

SIrc

NOT Rdest,Rsrc

M32R family Software Manual 3-61

INSTRUCTIONS

3.2 Instruction description

logic operation instruction
OR o OR

[Mnemonic]
OR Rdest,Rsrc

[Function]

Logical OR

Rdest = Rdest Rsrc ;

[Description]
OR computes the logical OR of the corresponding bits of Rdest and Rsrc, and puts the result

in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

OR Rdest,Rsrc

0000 | dest | 1110 | src

3-62 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description
logic operation instruction
OR3 OR 3-operand OR3

[Mnemonic]

OR3 Rdest,Rsrc,#imm16

[Function]

Logical OR
Rdest = Rsrc | (unsigned short) imm16 ;

[Description]

OR3 computes the logical OR of the corresponding bits of Rsrc and the 16-bit immediate value,
which is zero-extended to 32 bits, and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1000 | dest | 1110 | src imnplG
OR3 Rdest,Rsrc,#imm16

M32R family Software Manual 3-63

INSTRUCTIONS

3.2 Instruction description

DSP function instruction
RAC Round accumulator RAC
[Mnemonic]

RAC

[Function]

{ signed64bit tmp;

if(0x0000 3fff ffff 8000 =< accumulator)
tmp = 0x0000 3fff ffff 8000;

else if(accumulator =< 0xffff c000 0000 0000)
tmp = Oxffff cO00 0000 0000;

else {
tmp = accumulator + 0x0000 0000 0000 4000;
tmp = tmp & Oxffff ffff ffff 8000;}

accumulator = tmp << 1;}

[Description]

RAC rounds the contents in the accumulator to word size and stores the result in the accumulator.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0101 | 0000 | 1001 |000O RAC

3-64 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

[Supplement]

This instruction is executed in two steps as shown below:

<step 1>

The value in the accumulator is altered depending on the value of bits 8 through 63.

8 16 32 48 63

[
!

_ 8 63
A 7F FFFF FFFF FFFF [00 [3FFF [FreF | 8000 |

positive| 0o 3FFF FFFF 8000 _| 48 49

8 63
e | ooseeerrerrerr | | [0]

. if bit 49 is O , there is no carry.
—— 00 0000 0000 0000 if bit 49 is 1, the bit is carried.

Bits 49 to 63 are cleared (zero).
. 4

FF BFFF FFFF FFFF _| —I|8 63

FF C000 0000 0000 |

8 63
v 80000000000000 | > LFFL cooo [oooo | 0000 |

negative
value

<step 2>
8 16 32 48 63

1-bit shift to the left

i ion < TN [o] y2lue in the accumulator after the
Sign extension execution of the RAC instruction

8 16 32 4748 63

M32R family Software Manual 3-65

INSTRUCTIONS

3.2 Instruction description

DSP function instruction
RAC H Round accumulator halfword RAC H

[Mnemonic]

RACH

[Function]

{ signed64bit tmp;
if(0x0000 3fff 8000 0000 =< accumulator)
tmp = 0x0000 3fff 8000 0000;
else if(accumulator =< 0xffff c000 0000 0000)
tmp = Oxffff cO00 0000 0000;
else {
tmp = accumulator + 0x0000 0000 4000 0000;
tmp = tmp & Oxffff ffff 8000 0000;}
accumulator = tmp << 1;}

[Description]

RACH rounds the contents in the accumulator to halfword size and stores the result in the
accumulator.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0101 | 0000 | 1000 [0000 RACH

3-66 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

[Supplement]

This instruction is executed in two steps, as shown below.

<step 1>

Value in the accumulator is altered depending on the value of bits 8 through 63.

8 16 32 48 63

[
|

A 7F FFFF FFFF FFFF | 8 E

— [00] 3FFF | 8000 | 0000 |

positive | 00 3FFF FFFF 8000 _| 8 32 33 63

value | 00 3FFF FFFF 7FFF |
: ol

. if bit 33 is 0, there is no carry.
—— 00 0000 0000 0000 if bit 33 is 1, the bit is carried.
H Bits 33 to 63 are cleared (zero).

: 8 63
P B P | T 6000 | G000 |
FF C000 0000 0000

8 63
v 80000000000000 | * LFEL cooo [oooo | 0000 |

negative
value

LXYYY XY

<step 2>

8 16 32 48 63

[N o [o]

1-bit shift to the left

Value in the accumulator after the
execution of the RACH instruction

Sign extension [+ NN 0 [o

|
8 16 3132 4748 63

M32R family Software Manual 3-67

INSTRUCTIONS

3.2 Instruction description

multiply and divide instruction
REM Remainder REM

[Mnemonic]

REM Rdest,Rsrc

[Function]

Signed division
Rdest = (signed) Rdest % (signed) Rsrc ;

[Description]

REM divides Rdest by Rsrc and puts the quotient in Rdest. The operands are treated as signed

32-bit values.
The quotient is rounded toward zero and the quotient takes the same sign as the dividend.

The condition bit (C) is unchanged.
When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None

[Encoding]

1001 | dest | 0010 | src 0000 | 0000 | 0000 |0000
REM Rdest,Rsrc

3-68 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description
multiply and divide instruction
REMU Remainder unsigned REMU

[Mnemonic]

REMU Rdest,Rsrc

[Function]

Unsigned division
Rdest = (unsigned) Rdest % (unsigned) Rsrc ;

[Description]

REMU divides Rdest by Rsrc and puts the quotient in Rdest.
The operands are treated as unsigned 32-bit values.

The condition bit (C) is unchanged.

When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None

[Encoding]

1001 | dest | 0011 | src 0000 | 0000 | 0000 {0000
REMU Rdest,Rsrc

M32R family Software Manual 3-69

INSTRUCTIONS

3.2 Instruction description
ElIT-related instruction
RTE Return from EIT RTE

[Mnemonic]

RTE

[Function]

Return from EIT
SM = BSM ;
IE = BIE ;
C = BC;
PC = BPC & Oxfffffffc ;

[Description]

RTE restores the SM, IE and C bits of the PSW from the BSM, BIE and BC bits, and jumps to
the address specified by BPC.

[EIT occurrence]

None

[Encoding]

0001 | 0000 | 1101 |0110 RTE

3-70 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

SETH Seirahﬂ;fﬁi(;,:;gcggjbit SETH

[Mnemonic]

SETH Rdest,#imm16

[Function]

Transfer instructions
Rdest = (short) imm16 << 16 ;

[Description]

SETH loads the immediate value into the 16 most significant bits of Rdest.
The 16 least significant bits become zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1101 |dest | 1100 |0000 | imrr|116

SETH Rdest,#imml16

M32R family Software Manual 3-71

INSTRUCTIONS

3.2 Instruction description

SLL Shift lef logica SLL

[Mnemonic]
SLL Rdest,Rsrc

[Function]

Logical left shift
Rdest = Rdest << (Rsrc & 31) ;

[Description]
SLL left logical-shifts the contents of Rdest by the number specified by Rsrc, shifting zeroes into

the least significant bits.
Only the five least significant bits of Rsrc are used.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0001 | dest | 0100 | src SLL Rdest,Rsrc

3-72 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

S L L3 Shift Ie?fi(:)g’iitgllcg?gperand S L L3

[Mnemonic]

SLL3 Rdest,Rsrc,#imm16

[Function]

Logical left shift
Rdest = Rsrc << (imml16 & 31) ;

[Description]

SLL3 left logical-shifts the contents of Rsrc into Rdest by the number specified by the 16-bit
immediate value, shifting zeroes into the least significant bits.

Only the five least significant bits of the 16-bit immediate value are used.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1001 | dest | 1100 | src | imn|116
SLL3 Rdest,Rsrc,#imm16

M32R family Software Manual 3-73

INSTRUCTIONS

3.2 Instruction description

S L L I Shift Ie?fi((t);r;f:glciﬁrg;ediate S L L I

[Mnemonic]
SLLI Rdest,#imm5

[Function]

Logical left shift
Rdest = Rdest << immb5 ;

[Description]
SLLI left logical-shifts the contents of Rdest by the number specified by the 5-bit immediate

value, shifting zeroes into the least significant bits.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

SLLI Rdest,#immb5

0101 | dest |010 | immb5

3-74 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

SRA Shift right arthmetic SRA

[Mnemonic]

SRA Rdest,Rsrc

[Function]

Arithmetic right shift
Rdest = (signed) Rdest >> (Rsrc & 31) ;

[Description]

SRA right arithmetic-shifts the contents of Rdest by the number specified by Rsrc, replicates the
sign bit in the MSB of Rdest and puts the result in Rdest.

Only the five least significant bits are used.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0001 | dest |0010 | src SRA Rdest,Rsrc

M32R family Software Manual 3-75

INSTRUCTIONS

3.2 Instruction description

S RA3 Shift rightS,Z?itiI:zflreutcizog-operand S RA3

[Mnemonic]
SRA3 Rdest,Rsrc,#imm16

[Function]

Arithmetic right shift
Rdest = (signed) Rsrc >> (imml16 & 31) ;

[Description]
SRABS right arithmetic-shifts the contents of Rsrc into Rdest by the number specified by the 16-

bit immediate value, replicates the sign bit in Rsrc and puts the result in Rdest.

Only the five least significant bits are used.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1001 | dest | 1010 | src | imrr|116 |
SRA3 Rdest,Rsrc,#imml16

3-76 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

S RAI Shift righffg)crl}tigfr:rélgzormmediate S RAI

[Mnemonic]

SRAI Rdest,#imm5

[Function]

Arithmetic right shift
Rdest = (signed) Rdest >> immb5 ;

[Description]

SRAI right arithmetic-shifts the contents of Rdest by the number specified by the 5-bit immediate
value, replicates the sign bit in MSB of Rdest and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0101 |dest |001 | immb5 SRAI Rdest,#immb5

M32R family Software Manual 3-77

INSTRUCTIONS

3.2 Instruction description

SRL Shift right logical SRL

[Mnemonic]
SRL Rdest,Rsrc

[Function]

Logical right shift
Rdest = (unsigned) Rdest >> (Rsrc & 31) ;

[Description]
SRL right logical-shifts the contents of Rdest by the number specified by Rsrc, shifts zeroes into

the most significant bits and puts the result in Rdest.
Only the five least significant bits of Rsrc are used.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0001 | dest | 0000 | src SRL Rdest,Rsrc

3-78 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

S R L 3 Shift rigshllifi(;g?f:rglctg-gperand S R L 3

[Mnemonic]

SRL3 Rdest,Rsrc,#imm16

[Function]

Logical right shift
Rdest = (unsigned) Rsrc >> (imml6 & 31) ;

[Description]

SRL3 right logical-shifts the contents of Rsrc into Rdest by the number specified by the 16-
bit immediate value, shifts zeroes into the most significant bits. Only the five least significant
bits of the immediate value are valid.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1001 | dest | 1000 | src ‘ imrp16
SRL3 Rdest,Rsrc,#imm16

M32R family Software Manual 3-79

INSTRUCTIONS

3.2 Instruction description

S R L I Shift rigiiztifltoig?gglctiironnmediate S R L I

[Mnemonic]
SRLI Rdest,#imm5

[Function]

Logical right shift
Rdest = (unsigned) Rdest >> (imm5 & 31) ;

[Description]
SRLI right arithmetic-shifts Rdest by the number specified by the 5-bit immediate value, shifting

zeroes into the most significant bits.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

SRLI Rdest,#immb5

0101 | dest |[000 | imm5

3-80 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

load/store instruction
ST Store ST

[Mnemonic]

O ST Rsrcl,@Rsrc2

O ST Rsrcl,@+Rsrc2

O ST Rsrcl,@-Rsrc2

O ST Rsrcl,@(displ6,Rsrc2)
[Function]

Store

O *(int*) Rsrc2 = Rsrcl,;

O Rsrc2 += 4, * (int*) Rsrc2 = Rsrcl,;

O Rsrc2 -=4, * (int*) Rsrc2 = Rsrcl;

O *(int*) (Rsrc2 + (signed short) displ6) = Rsrcl,;

[Description]

O ST stores Rsrcl in the memory at the address specified by Rsrc2.

O ST increments Rsrc2 by 4 and stores Rsrcl in the memory at the address specified by the
resultant Rsrc2.

O ST decrements Rsrc2 by 4 and stores the contents of Rsrcl in the memory at the address
specified by the resultant Rsrc2.

[0 ST stores Rsrcl in the memory at the address specified by Rsrc combined with the 16-bit
displacement. The displacement value is sign-extended before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

M32R family Software Manual 3-81

INSTRUCTIONS

3.2 Instruction description

[Encoding]

0010 | srcl | 0100 |src2 ST Rsrcl,@Rsrc2

0010 | srcl | 0110 |src2 ST Rsrcl,@+Rsrc2
0010 | srcl | 0111 |src2 ST Rsrcl, @-Rsrc2
1010 | srcl | 0100 |src2 disp|16

ST Rsrcl,@(displ6,Rsrc2)

3-82

M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

load/store instruction
STB Store byte STB

[Mnemonic]

O STB Rsrcl,@Rsrc2

O STB Rsrcl,@(displ6,Rsrc2)
[Function]

Store

0 * (char *) Rsrc2 = Rsrcl;
O * (char*) (Rsrc2 + (signed short) displ6) = Rsrcl;

[Description]

0 STB stores the least significant byte of Rsrcl in the memory at the address specified by
Rsrc2.

0 STB stores the least significant byte of Rsrcl in the memory at the address specified by Rsrc
combined with the 16-bit displacement.

The displacement value is sign-extended to 32 bits before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]
0010 |srcl | 0000 |src2 STB Rsrcl,@Rsrc2
1010 |srcl | 0000 |src2 | disp|l6

STB Rsrcl,@(displ6,Rsrc2)

M32R family Software Manual 3-83

INSTRUCTIONS

3.2 Instruction description

STH

load/store instruction

Store

STH

halfword

[Mnemonic]
O STH Rsrcl,@Rsrc2
O STH Rsrcl,@(displ6,Rsrc2)
[Function]
Store
0 * (short *) Rsrc2 = Rsrcl;
0

[Description]

* (short *) (Rsrc2 + (signed short) displ6) = Rsrcl;

0 STH stores the least significant halfword of Rsrcl in the memory at the address

specified by Rsrc2.
0 STH stores the least significant halfword of Rsrcl in the memory at the address specified by
Rsrc combined with the 16-bit displacement. The displacement value is sign-extended to 32

bits before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]
Address exception (AE)

[Encoding]
0010 | srcl | 0010 |src2 STH Rsrcl,@Rsrc2
1010 |srcl | 0010 |[src2 disp16

STH Rsrcl,@(displ6,Rsrc2)

M32R family Software Manual

3-84

INSTRUCTIONS

3.2 Instruction description

arithmetic operation instruction
SUB Subiract SUB

[Mnemonic]

SUB Rdest,Rsrc

[Function]

Subtract
Rdest = Rdest - Rsrc;

[Description]

SUB subtracts Rsrc from Rdest and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0000 | dest | 0010 | src SUB Rdest,Rsrc

M32R family Software Manual 3-85

INSTRUCTIONS

3.2 Instruction description

arithmetic operation instruction
S U BV Subtract with overflow checking S U BV

[Mnemonic]
SUBV Rdest,Rsrc

[Function]

Subtract
Rdest = Rdest - Rsrc;

C = overflow ? 1:0;

[Description]
SUBV subtracts Rsrc from Rdest and puts the result in Rdest.
The condition bit (C) is set when the subtraction results in overflow; otherwise, it is cleared.

[EIT occurrence]

None

[Encoding]

SUBV Rdest,Rsrc

0000 | dest | 0000 | src

3-86 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description

arithmetic operation instruction
S U BX Subtract with borrow S U BX
[Mnemonic]

SUBX Rdest,Rsrc

[Function]

Subtract
Rdest = (unsigned) Rdest - (unsigned) Rsrc - C;
C = borrow ? 1: 0;

[Description]

SUBX subtracts Rsrc and C from Rdest and puts the result in Rdest.
The condition bit (C) is set when the subtraction result cannot be represented by a 32-bit
unsigned integer; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

0000 |dest | 0001 | src SUBX Rdest,Rsrc

M32R family Software Manual 3-87

INSTRUCTIONS

3.2 Instruction description

TRAP

[Mnemonic]

TRAP #imm4

[Function]
Trap occurrence
BPC = PC + 4;
BSM = SM;
BIE = IE;
BC =C;
IE = 0O;
C=0;

call_trap_handler(imm4);

[Description]

ElIT-related instruction
Trap

TRAP

TRAP generates a trap with the trap number specified by the 4-bit immediate value.
IE and C bits are cleared to "0".

[EIT occurrence]

Trap (TRAP)

[Encoding]

0001

0000

1111

mm4

TRAP #imm4;

3-88

M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description
load/store instruction
UNLOCK soewokes UNLOCK

[Mnemonic]

UNLOCK Rsrcl,@Rsrc2

[Function]

Store unlocked
if (LOCK==1){* (int*) Rsrc2 = Rsrcl; }
LOCK = 0;

[Description]

When the LOCK bit is 1, the contents of Rsrcl are stored at the memory location specified by
Rsrc2. When the LOCK bit is 0, store operation is not executed. The condition bit (C) is unchanged.
This instruction clears the LOCK bit to 0 in addition to the simple storage operation.

The LOCK bit is internal to the CPU and cannot be accessed except by using the LOCK and
UNLOCK instructions.

[EIT occurrence]

Address exception (AE)

[Encoding]

0010 |srcl | 0101 |src2 UNLOCK Rsrcl,@Rsrc?2

M32R family Software Manual 3-89

INSTRUCTIONS

3.2 Instruction description

logic operation instruction
XOR Exclusive OR XOR

[Mnemonic]
XOR Rdest,Rsrc

[Function]

Exclusive OR
Rdest = (unsigned) Rdest » (unsigned) Rsrc;

[Description]
XOR computes the logical XOR of the corresponding bits of Rdest and Rsrc, and puts the result

in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]
XOR Rdest,Rsrc

0000 | dest | 1101 | src

3-90 M32R family Software Manual

INSTRUCTIONS

3.2 Instruction description
logic operation instruction
X O R 3 Exclusive OR 3-operand X O R 3

[Mnemonic]

XOR3 Rdest,Rsrc,#imm16

[Function]

Exclusive OR
Rdest = (unsigned) Rsrc * (unsigned short) imm16;

[Description]

XOR3 computes the logical XOR of the corresponding bits of Rsrc and the 16-bit immediate
value, which is zero-extended to 32 bits, and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1000 |dest |1101 | src | imrr|116
XOR3 Rdest,Rsrc,#imm16

M32R family Software Manual 3-91

APRPENDICES

Appendix A Instruction list
Appendix B Pipeline stages
Appendix C Instruction execution time

APPENDICES

Appendix A Instruction list

Appendix A

Instruction list

The M32R family instruction list is shown below (in alphabetical order).

mnemonic function condition bit (C)
ADD Rdest,Rsrc Rdest = Rdest + Rsrc -
ADD3 Rdest,Rsrc,#imm16 Rdest = Rsrc + (sh)imm16 -
ADDI Rdest,#imm8 Rdest = Rdest + (sb)imm8 -
ADDV Rdest,Rsrc Rdest = Rdest + Rsrc change
ADDV3 Rdest,Rsrc,#imm16 Rdest = Rsrc + (sh)imm16 change
ADDX Rdest,Rsrc Rdest = Rdest + Rsrc + C change
AND Rdest,Rsrc Rdest = Rdest & Rsrc -
AND3 Rdest,Rsrc,#imm16 Rdest = Rsrc & (uh)imm16 -
BC pcdisp8 if(C) PC=PC+((sb)pcdisp8<<2) -
BC pcdisp24 if(C) PC=PC+((s24)pcdisp24<<2) -
BEQ Rsrcl,Rsrc2,pcdispl6 if(Rsrcl == Rsrc2) PC=PC+((sh)pcdispl16<<2) -
BEQZ Rsrc,pcdispl6 if(Rsrc == 0) PC=PC+((sh)pcdisp16<<2) -
BGEZ Rsrc,pcdispl6 if(Rsrc >= 0) PC=PC+((sh)pcdisp16<<2) -
BGTz Rsrc,pcdispl6 if(Rsrc > 0) PC=PC+((sh)pcdisp16<<2) -
BL pcdisp8 R14=PC+4,PC=PC+((sb)pcdisp8<<2) -
BL pcdisp24 R14=PC+4,PC=PC+((s24)pcdisp24<<2) -
BLEZ Rsrc,pcdispl6 if(Rsrc <= 0) PC=PC+((sh)pcdisp16<<2) -
BLTZ Rsrc,pcdispl6 if(Rsrc < 0) PC=PC+((sh)pcdisp16<<2) -
BNC pcdisp8 if(!1C) PC=PC+((sb)pcdisp8<<2) -
BNC pcdisp24 if(IC) PC=PC+((s24)pcdisp24<<2) -
BNE Rsrcl1,Rsrc2,pcdispl6 if(Rsrcl != Rsrc2) PC=PC+((sh)pcdisp16<<2) -
BNEZ Rsrc,pcdispl6 if(Rsrc = 0) PC=PC+((sh)pcdisp16<<2) -
BRA pcdisp8 PC=PC+((sb)pcdisp8<<2) -
BRA pcdisp24 PC=PC+((s24)pcdisp24<<2) -
CMP Rsrcl,Rsrc2 (s)Rsrcl < (s)Rsrc2 change
CMPI Rsrc,#imm16 (s)Rsrc < (sh)imm16 change
CMPU Rsrc1,Rsrc2 (u)Rsrcl < (u)Rsrc2 change
CMPUI Rsrc,#imm16 (u)Rsrc < (u)((sh)imm16) change
DIV Rdest,Rsrc Rdest = (s)Rdest / (s)Rsrc -
DIVU Rdest,Rsrc Rdest = (u)Rdest / (u)Rsrc -

JL Rsrc R14 = PC+4, PC = Rsrc -
JMP Rsrc PC = Rsrc -
LD Rdest,@(disp16,Rsrc) Rdest = *(s *)(Rsrc+(sh)disp16) -
LD Rdest,@Rsrc Rdest = *(s *)Rsrc -
LD Rdest,@Rsrc+ Rdest = *(s *)Rsrc, Rsrc +=4 -

A-2

M32R family Software Manual

APPENDICES

Appendix A Instruction list

mnemonic function condition bit (C)
LD24 Rdest,#imm24 Rdest = imm24 & 0xO0O0ffffff -
LDB Rdest,@(disp16,Rsrc) Rdest = *(sb *)(Rsrc+(sh)disp16) -
LDB Rdest,@Rsrc Rdest = *(sb *)Rsrc -
LDH Rdest,@(disp16,Rsrc) Rdest = *(sh *)(Rsrc+(sh)disp16) -
LDH Rdest,@Rsrc Rdest = *(sh *)Rsrc -
LDI Rdest,#imm16 Rdest = (sh)imm16 -
LDI Rdest,#imm8 Rdest = (sb)imm8 -
LDUB Rdest,@(disp16,Rsrc) Rdest = *(ub *)(Rsrc+(sh)disp16) -
LDUB Rdest,@Rsrc Rdest = *(ub *)Rsrc -
LDUH Rdest,@(disp16,Rsrc) Rdest = *(uh *)(Rsrc+(sh)disp16) -
LDUH Rdest,@Rsrc Rdest = *(ub *)Rsrc -
LOCK Rdest,@Rsrc LOCK =1, Rdest = *(s *)Rsrc -
MACHI Rsrcl,Rsrc2 accumulator += (s)(Rsrcl & 0xffff0000) -

* (s)((s)Rsrc2>>16)
MACLO Rsrcl,Rsrc2 accumulator += (s)(Rsrc1<<16) * (sh)Rsrc2 -
MACWHI Rsrcl,Rsrc2 accumulator += (s)Rsrcl * (s)((s)Rsrc2>>16) -
MACWLO Rsrcl,Rsrc2 accumulator += (s)Rsrcl * (sh)Rsrc2 -
MUL Rdest,Rsrc Rdest = (s)Rdest * (s)Rsrc -
MULHI Rsrcl,Rsrc2 accumulator = (s)(Rsrcl & 0xffff0000) -
* (s)((s)Rsrc2>>16)
MULLO Rsrcl,Rsrc2 accumulator = (s)(Rsrcl<<16) * (sh)Rsrc2 -
MULWHI Rsrcl,Rsrc2 accumulator = (s)Rsrcl * (s)((s)Rsrc2>>16) -
MULWLO Rsrcl,Rsrc2 accumulator = (s)Rsrcl * (sh)Rsrc2 -
MV Rdest,Rsrc Rdest = Rsrc -
MVFACHI Rdest Rdest = accumulater >> 32 -
MVFACLO Rdest Rdest = accumulator -
MVFACMI Rdest Rdest = accumulator >> 16 -
MVFC Rdest,CRsrc Rdest = CRsrc -
MVTACHI Rsrc accumulator[0:31] = Rsrc -
MVTACLO Rsrc accumulator[32:63] = Rsrc -
MVTC Rsrc,CRdest CRdest = Rsrc change
NEG Rdest,Rsrc Rdest = 0 - Rsrc -
NOP /*no-operation*/ -
NOT Rdest,Rsrc Rdest = ~Rsrc -
OR Rdest,Rsrc Rdest = Rdest | Rsrc -
OR3 Rdest,Rsrc,#imm16 Rdest = Rsrc | (uh)imm16 -
RAC Round the 32-bit value in the accumulator -
RACH Round the 16-bit value in the accumulator -
REM Rdest,Rsrc Rdest = (s)Rdest % (s)Rsrc -
REMU Rdest,Rsrc Rdest = (u)Rdest % (u)Rsrc -
RTE PC = BPC & Oxfffffffc, change

PSW[SM,IE,C] = PSW[BSM,BIE,BC]

M32R family Software Manual

A-3

APPENDICES

Appnedix A Instruction list

mneminic function condition bit (C)
SETH Rdest,#imm16 Rdest = imm16 << 16 —
SLL Rdest,Rsrc Rdest = Rdest << (Rsrc & 31) -
SLL3 Rdest,Rsrc,#imm16 Rdest = Rsrc << (imm16 & 31) -
SLLI Rdest,#imm5 Rdest = Rdest << imm5 -
SRA Rdest,Rsrc Rdest = (s)Rdest >> (Rsrc & 31) -
SRA3 Rdest,Rsrc,#imm16 Rdest = (s)Rsrc >> (imm16 & 31) -
SRAI Rdest,#imm5 Rdest = (s)Rdest >> imm5 -
SRL Rdest,Rsrc Rdest = (u)Rdest >> (Rsrc & 31) -
SRL3 Rdest,Rsrc,#imm16 Rdest = (u)Rsrc >> (imm16 & 31) -
SRLI Rdest,#imm5 Rdest = (u)Rdest >> imm5 -
ST Rsrcl,@(displ6,Rsrc2) *(s *)(Rsrc2+(sh)disp16) = Rsrcl -
ST Rsrcl,@+Rsrc2 Rsrc2 += 4, *(s *)Rsrc2 = Rsrcl -
ST Rsrcl,@-Rsrc2 Rsrc2 -= 4, *(s *)Rsrc2 = Rsrcl -
ST Rsrcl,@Rsrc2 *(s *)Rsrc2 = Rsrcl -
STB Rsrcl,@(disp16,Rsrc2) *(sb *)(Rsrc2+(sh)displ16) = Rsrcl -
STB Rsrcl,@Rsrc2 *(sb *)Rsrc2 = Rsrcl -
STH Rsrcl,@(disp16,Rsrc2) *(sh *)(Rsrc2+(sh)displ16) = Rsrcl -
STH Rsrcl,@Rsrc2 *(sh *)Rsrc2 = Rsrcl -
SUB Rdest,Rsrc Rdest = Rdest - Rsrc -
SUBV Rdest,Rsrc Rdest = Rdest - Rsrc change
SUBX Rdest,Rsrc Rdest = Rdest - Rsrc - C change
TRAP #n PSW[BSM,BIE,BC] = PSW[SM,IE,C] change

PSW[SM,IE,C] = PSW[SM,0,0]

Call trap-handler number-n
UNLOCK Rsrcl,@Rsrc2 if(LOCK) { *(s *)Rsrc2 = Rsrcl; } LOCK=0 -
XOR Rdest,Rsrc Rdest = Rdest * Rsrc -
XOR3 Rdest,Rsrc,#imm16 Rdest = Rsrc (uh)imm16 -
where:

typedef singed int
typedef unsigned int
typedef signed short

s; [* 32 bit signed integer (word)*/
u; /* 32 bit unsigned integer (word)*/
sh; /* 16 bit signed integer (halfword)*/

typedef unsigned short uh; /* 16 bit unsigned integer (halfword)*/

typedef signed char
typedef unsigned char

sb; /* 8 bit signed integer (byte)*/
ub; /* 8 bit unsigned integer (byte)*/

A-4

M32R family Software Manual

APPENDICES

Appendix B Pipeline stages

Appendix B Pipeline stages

B.1 Overview of pipeline processing
The M32R CPU has five pipeline stages.

(1) IF stage (instruction fetch stage)
The instruction fetch (IF) is processed in this stage. There is an instruction queue and instructions
are fetched until the queue is full regardless of the completion of decoding in the D stage.

(2) D stage (decode stage)
Instruction decoding is processed in the first half of the D stage (DEC1).
The subsequent instruction decoding (DEC2) and a register fetch (RF) is processed in the second
half of the stage.

(3) E stage (execution stage)
Operations and address calculations (OP) are processed in the E stage.

(4) MEM stage (memory access stage)
Operand accesses (OA) are processed in the MEM stage. This stage is used only when the load/
store instruction is executed.

(5) WB stage (write back stage)
The operation results and fetched data are written to the registers in the WB stage.

1 cycle
pipeline MEM
stage IF stage D stage E stage stage WB stage
DEC2
execution IF DEC1 oP wB
process RF OA

Fig. B.1 Pipeline structure and processing

M32R family Software Manual A-5

APPENDICES

Appendix B Pipeline stages

B.2 Instructions and pipeline processing
The M32R pipeline has five stages. However, the MEM stage is used only when the load/store instruction
is executed, other instructions are processed in a 4-stage pipeline.

<load/store instructions>

5 stages

A
Yy

pipeline stage IF D E | MEM| WB

« If the cache is hit, the MEM stage is executed in one cycle.
If missed, the MEM stage is executed in multiple cycles.

pipeline stage IF D E MEM coccee MEM | WB

<other instructions>

4 stages

pipeline stage IF D E WB

» The E-stage is executed for multiple cycles in multi-cycle
instructions such as multiplication or division.

pipeline stage IF D E ccccce E WB

Fig. B.2 Instructions and pipeline processing

A-6 M32R family Software Manual

APPENDICES

Appendix B Pipeline stages

B.3 Pipeline processing

In perfect pipeline processing, each stage is executed in one cycle. However, the pipeline stall may be
caused at each stage of processing or by the execution of a branch instruction. Each case is described
in Figure B.3 and B.4.

< case 1 multiple cycles are required for the E-stage execution >

DV RL, R2 IF D E E cese E WB

ADD R3, R4 IF D | stall | e | stall E | WB

ADD R5, R6 IF | stall | e | stall D E | WB

ADD R7, R8 stall | «ees | stall IF D E WB

< case 2 operand access is not complete in one cycle >

except cache hit

LD R1, @R2 IF D E | MEM|MEM]| eeee | MEM| WB

LD R3, @4 IF D E | stall | eeee | stall | MEM| WB

ADD R5, R6 IF D | stall | ee | stall | E WB

ADD R7, R8 IF | stall | eeee | stall | D E WB

stall: pipeline stall

Fig. B.3 Pipeline stall 1

M32R family Software Manual A-7

APPENDICES

Appendix B Pipeline stages

< case 3 branch instruction is executed >
(except for the case where no branch occurs at a conditional branch instruction)

branch instruction is executed

v

branch instruction‘ IF ‘ D E WB‘

‘IF‘DIF D‘E‘WB‘

‘IF‘stall‘ IF‘ D‘ E‘WB‘

‘stall‘stall‘ IF‘ D ‘ E ‘WB‘

< case 4 the subsequent instruction uses an operand read from memory >

LDRl,@QZ‘ IF ‘ D ‘ E ‘MEM WB

ADD R3, Rl ‘ F | o | stan ‘ stal ‘ E ‘ WB ‘

< case 5 R15 is read after the SM bit in the PSW is written by an MVTC instruction
and the subsequent instruction reads R15 >

M/TCRl,PSW‘ IF ‘ D ‘ E [we

SUB R3, R15 ‘ IF D stall ‘ E ‘ WB ‘

stall: pipleline stall

Fig. B.4 Pipeline stall 2

A-8 M32R family Software Manual

APPENDICES

Appendix B Pipeline stages

The cases shown in Figure B.5 are special and pipeline stall does not occur.

<when the WB stages of load and another instruction occur simultaneously>
(pipeline processing is not stalled because the values can be written simultaneously)

LD Rl@zz‘ IF ‘ D ‘ E ‘MEM WB
can be written
simultaneously
ADD R5, R6 ‘ IF ‘ D ‘ E wB

ADD R7, R8 ‘IF‘D‘E‘WB‘

<when the register written by the one instruction is used by the subsequent instruction>
(the pipeline processing is not stalled because of the bypass process due to operation between registers)

ADDRl,RZ‘IF‘D‘E WB

bypass process

SUB R3, R1 ‘ IF ‘ D E WB

<a subsequent instruction writes to a register before a load instruction is completed>
(the WB stage of the load instruction is canceled)

LDRl,@RZ‘ IF ‘ D ‘ E ‘MEM‘‘MEM e

WB stage is canceled
if either is the same

—

‘IF‘D‘E wB

‘IF‘D‘E wB

Fig. B.5 Special case (pipeline stall does not occur)

M32R family Software Manual

A-9

APPENDICES

Appendix C Instruction execution time

Appendix C Instruction execution time

Normally, the E stage is considered as representing as the instruction execution time, however, because of
the pipeline processing the execution time for other stages may effect the total instruction execution time.
In particular, the IF, D, and E stages of the subsequent instruction must be considered after a branch has
occurred.

The following shows the number of the instruction execution cycles for each pipeline stage.

The execution time of the IF and MEM stages depends on the implementation of each product of the M32R
family.

Refer to the user's manual of each product for the execution time of these stages.

Table C.1 Instruction execution cycles in each stage

the number of execution cycles in each stage

instruction IF D E MEM WB
load instruction (LD, LDB, LDUB, LDH, LDUH, LOCK) R (note 1) 1 1 R (note 1) 1
store instruction (ST, STB, STH, UNLOCK) R (note 1) 1 1 W (note 1) (1) (note 2)
multiply instruction (MUL) R (note 1) 1 3 - 1
divide/reminder instruction (DIV, DIVU, REM, REMU) R (note 1) 1 37 — 1
other instructions R (note 1) 1 1 - 1

Notes 1 R, W: Refer to the user's manual prepared for each product.
2 If the addressing mode of the store instructions is register indirect and register update, 1 cycle needs for WB stage.

A-10 M32R family Software Manual

REVISION DESCRIPTION LIST M32R family software manual

Rev. Revision Description Rev.
No. date
1.0 | First edition 970331

1.1 | « "Only a word-aligned (word boundary) address can be specified for the branch address. If an| 971031
unaligned address is specified, an address exception occurs." an underlined part eliminated.
(line 18, page 2-6)

« [Encoding]
"OR3 Rdest,Rsrc,#imm16" revised. (line 13, page 3-63)

1.2 | « "ADDV3 Add 3-operand with overflow checking" revised (line 21, page 2-4) 980701
« "ADDV3 Add 3-operand with overflow checking" revised (line 2, page 3-10)

« Logical right shift
"Rdest = (unsigned) Rsrc >> (imm16 & 31);" revised (line 7, page 3-79)

« "Trap occurrence

BPC = PC + 4;
BSM = SM;
BIE = IE;
BC =C ;
IE = 0;
C=0;
call_trap_handler(imm4);" revised (line 7, page 3-88)
* "BL pcdisp24 R14=PC+4,PC=PC+((s24)pcdisp24<<2) "revised (line 19, page A-2)
*"BNC pcdisp24 if(!\C) PC=PC+((s24)pcdisp24<<2) "revised (line 23, page A-2)
*"TRAP #n PSW[BSM,BIE,BC] = PSW[SM,IE,C] change
PSWI[SM,IE,C] = PSW[SM,0,0]
Call trap-handler number-n " revised (line 23, page A-4)

(1/2)

MITSUBISHI 32-BIT SINGLE-CHIP MICROCOMPUTER
M32R Family Software Manual

July 1998 : Revised edition

Copyright (C) 1998 MITSUBISHI ELECTRIC CORPORATION

Notice:
This book, or parts thereof, may not be reproduced in any form
without permission of MITSUBISHI ELECTRIC CORPORATION.

M32R family
Software Manual

RENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

	REVISION DESCRIPTION LIST
	Table of contents
	1 CPU PROGRAMMING MODEL
	1.1 CPU register
	1.2 General-purpose registers
	1.3 Control registers
	1.3.1 Processor status word register: PSW (CR0)
	1.3.2 Condition bit register: CBR (CR1)
	1.3.3 Interrupt stack pointer: SPI (CR2) User stack pointer: SPU (CR3)
	1.3.4 Backup PC: BPC (CR6)

	1.4 Accumulator
	1.5 Program counter
	1.6 Data format
	1.6.1 Data types
	1.6.2 Data formats

	1.7 Addressing mode

	2 INSTRUCTION SET
	2.1 Instruction set overview
	2.1.1 Load/store instructions
	2.1.2 Transfer instructions
	2.1.3 Operation instructions
	2.1.4 Branch instructions
	2.1.5 EIT-related instructions
	2.1.6 DSP function instructions

	2.2 Instruction format

	3 INSTRUCTIONS
	3.1 Conventions for instruction description
	3.2 Instruction description
	ADD
	ADD3
	ADDI
	ADDV
	ADDV3
	ADDX
	AND
	AND3
	BC
	BEQ
	BEQZ
	BGEZ
	BGTZ
	BL
	BLEZ
	BLTZ
	BNC
	BNE
	BNEZ
	BRA
	CMP
	CMPI
	CMPU
	CMPUI
	DIV
	DIVU
	JL
	JMP
	LD
	LD24
	LDB
	LDH
	LDI
	LDUB
	LDUH
	LOCK
	MACHI
	MACLO
	MACWHI
	MACWLO
	MUL
	MULHI
	MULLO
	MULWHI
	MULWLO
	MV
	MVFACHI
	MVFACLO
	MVFACMI
	MVFC
	MVTACHI
	MVTACLO
	MVTC
	NEG
	NOP
	NOT
	OR
	OR3
	RAC
	RACH
	REM
	REMU
	RTE
	SETH
	SLL
	SLL3
	SLLI
	SRA
	SRA3
	SRAI
	SRL
	SRL3
	SRLI
	ST
	STB
	STH
	SUB
	SUBV
	SUBX
	TRAP
	UNLOCK
	XOR
	XOR3

	APPENDICES
	Appendix A Instruction list
	Appendix B Pipeline stages
	B.1 Overview of pipeline processing
	B.2 Instructions and pipeline processing
	B.3 Pipeline processing

	Appendix C Instruction execution time

