

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

M32R-FPU
Software Manual

32

Rev.1.01 2003.10

RENESAS 32-BIT RISC SINGLE-CHIP
MICROCOMPUTER

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

U
ser’s M

anual

Keep safety first in your circuit designs!

Notes regarding these materials

• Renesas Technology Corporation puts the maximum effort into making semiconductor prod-
ucts better and more reliable, but there is always the possibility that trouble may occur with
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with ap-
propriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-
flammable material or (iii) prevention against any malfunction or mishap.

• These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corporation product best suited to the customer's application; they do
not convey any license under any intellectual property rights, or any other rights, belonging
to Renesas Technology Corporation or a third party.

• Renesas Technology Corporation assumes no responsibility for any damage, or infringe-
ment of any third-party's rights, originating in the use of any product data, diagrams, charts,
programs, algorithms, or circuit application examples contained in these materials.

• All information contained in these materials, including product data, diagrams, charts, pro-
grams and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corporation without notice
due to product improvements or other reasons. It is therefore recommended that custom-
ers contact Renesas Technology Corporation or an authorized Renesas Technology Cor-
poration product distributor for the latest product information before purchasing a product
listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or
other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by
various means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

• When using any or all of the information contained in these materials, including product
data, diagrams, charts, programs, and algorithms, please be sure to evaluate all informa-
tion as a total system before making a final decision on the applicability of the information
and products. Renesas Technology Corporation assumes no responsibility for any dam-
age, liability or other loss resulting from the information contained herein.

• Renesas Technology Corporation semiconductors are not designed or manufactured for
use in a device or system that is used under circumstances in which human life is poten-
tially at stake. Please contact Renesas Technology Corporation or an authorized Renesas
Technology Corporation product distributor when considering the use of a product con-
tained herein for any specific purposes, such as apparatus or systems for transportation,
vehicular, medical, aerospace, nuclear, or undersea repeater use.

• The prior written approval of Renesas Technology Corporation is necessary to reprint or
reproduce in whole or in part these materials.

• If these products or technologies are subject to the Japanese export control restrictions,
they must be exported under a license from the Japanese government and cannot be im-
ported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/
or the country of destination is prohibited.

• Please contact Renesas Technology Corporation for further details on these materials or
the products contained therein.

REVISION HISTORY

Rev. Date Description

Page Summary

M32R-FPU Software Manual

1.00 Jan 08, 2003 First edition issued –

1.01 Oct 31, 2003 Hexadecimal Instruction Code Table corrected (BTST instruction)APPENDICES-3

Appendix Figure 3.1.1 corrected
 Incorrect) *The E1 stage of the FDIV instruction requires 13 cycles.
 Correct) *The E1 stage of the FDIV instruction requires 14 cycles.

Appendix Figure 3.2.4 corrected
 Incorrect) ADD R1,R6,R7 Correct) FMADD R1,R6,R7

APPENDICES-8

APPENDICES-13

Appendix Figure 3.2.1 corrected
 Incorrect) LD1 Correct) LDI

APPENDICES-10

M32R-FPU Software Manual (Rev.1.01)

(1)

Table of contents

CHAPTER 1 CPU PROGRAMMING MODEL

1.1 CPU register .. 1-2

1.2 General-purpose registers .. 1-2

1.3 Control registers ... 1-3

1.3.1 Processor status word register: PSW (CR0) 1-4

1.3.2 Condition bit register: CBR (CR1) .. 1-5

1.3.3 Interrupt stack pointer: SPI (CR2)

 User stack pointer: SPU (CR3) .. 1-5

1.3.4 Backup PC: BPC (CR6) ... 1-5

1.3.5 Floating-Point Status Register: FPSR (CR7) 1-6

1.3.6 Floating-Point Exceptions (FPE) .. 1-8

1.4 Accumulator .. 1-11

1.5 Program counter ... 1-11

1.6 Data format ... 1-12

1.6.1 Data type .. 1-12

1.6.2 Data format ... 1-13

1.7 Addressing mode .. 1-15

CHAPTER 2 INSTRUCTION SET

2.1 Instruction set overview ... 2-2

2.1.1 Load/store instructions ... 2-2

2.1.2 Transfer instructions ... 2-4

2.1.3 Operation instructions .. 2-4

2.1.4 Branch instructions ... 2-6

2.1.5 EIT-related instructions .. 2-8

2.1.6 DSP function instructions ... 2-8

2.1.7 Floating-point Instructions .. 2-11

2.1.8 Bit Operation Instructions ... 2-11

2.2 Instruction format ... 2-12

M32R-FPU Software Manual (Rev.1.01)

CHAPTER 3 INSTRUCTIONS

3.1 Conventions for instruction description ... 3-2

3.2 Instruction description ... 3-5

APPENDIX

Appendix 1 Hexadecimal Instraction Code .. Appendix-2

Appendix 2 Instruction List ... Appendix-4

Appendix 3 Pipeline Processing .. Appendix-8

Appendix 3.1 Instructions and Pipeline Processing Appendix-8

Appendix 3.2 Pipeline Basic Operation ... Appendix-10

Appendix 4 Instruction Execution Time ... Appendix-17

Appendix 5 IEEE754 Specification Overview .. Appendix-18

Appendix 5.1 Floating Point Formats .. Appendix-18

Appendix 5.2 Rounding ... Appendix-20

Appendix 5.3 Exceptions ... Appendix-20

Appendix 6 M32R-FPU Specification Supplemental Explanation Appendix-23

Appendix 6.1 Operation Comparision: Using 1 instruction (FMADD or FMSBU)

 vs. two instructions (FMUL and FADD) Appendix-23

Appendix 6.1.1 Rounding Mode .. Appendix-23

Appendix 6.1.2 Exception occurring in Step 1 Appendix-23

Appendix 6.2 Rules concerning Generation of QNaN in M32R-FPU Appendix-28

Appendix 7 Precautions ... Appendix-29

Appendix 7.1 Precautions to be taken when aligning data Appendix-29

INDEX

(2)

M32R-FPU Software Manual (Rev.1.01)

This page left blank intentionally.

CHAPTER 1

CPU PROGRAMMIING MODEL

1.1 CPU Register

1.2 General-purpose Registers

1.3 Control Registers

1.4 Accumulator

1.5 Program Counter

1.6 Data Format

1.7 Addressing Mode

1

1-2 M32R-FPU Software Manual (Rev.1.01)

b0b0

CPU PROGRAMMING MODEL
1.1 CPU Register

1.1 CPU Register

The M32R family CPU, with a built-in FPU (herein referred to as M32R-FPU) has 16

general-purpose registers, 6 control registers, an accumulator and a program

counter. The accumulator is of 56-bit configuration, and all other registers are a 32-

bit configuration.

1.2 General-purpose Registers

The 16 general-purpose registers (R0 – R15) are of 32-bit width and are used to

retain data and base addresses, as well as for integer calculations, floating-point

operations, etc. R14 is used as the link register and R15 as the stack pointer. The link

register is used to store the return address when executing a subroutine cal l

instruction. The Interrupt Stack Pointer (SPI) and the User Stack Pointer (SPU) are

alternately represented by R15 depending on the value of the Stack Mode (SM) bit in

the Processor Status Word Register (PSW).

At reset release, the value of the general-purpose registers is undefined.

b31 b31

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14 (Link register)

R15 (Stack pointer)

Note 1: The stack pointer functions as either the SPI or the SPU depending on the value of the SM bit in the PSW.

Figure 1.2.1 General-purpose Registers

(Note 1)

1

1-3 M32R-FPU Software Manual (Rev.1.01)

CRn
b31b0

CPU PROGRAMMING MODEL
1.3 Control Registers

1.3 Control Registers

There are 6 control registers which are the Processor Status Word Register (PSW),

the Condition Bit Register (CBR), the Interrupt Stack Pointer (SPI), the User Stack

Pointer (SPU), the Backup PC (BPC) and the Floating-point Status Register (FPSR).

The dedicated MVTC and MVFC instructions are used for writing and reading these

control registers.

In addition, the SM bit, IE bit and C bit of the PSW can also be set by the SETPSW

instruction or the CLRPSW instruction.

Figure 1.3.1 Control Registers

Backup PC

Floating-point Status Register
BPCCR6

CR0

CR1

CR2

CR3

Processor Status Register

Condition Bit Register

Interrupt Stack Pointer

User Stack Pointer

Notes: • CRn (n = 0 - 3, 6 and 7) denotes the control register number.

 • The dedicated MVTC and MVFC instructions are used for writing and reading these control registers.

 • The SM bit, IE bit and C bit of the PSW can also be set by the SETPSW instruction or the CLRPSW

instruction.

PSW

CBR

SPI

SPU

FPSRCR7

1

1-4 M32R-FPU Software Manual (Rev.1.01)

CPU PROGRAMMING MODEL
1.3 Control Registers

The Processor Status Word Register (PSW) indicates the M32R-FPU status. It

consists of the current PSW field which is regularly used, and the BPSW field where

a copy of the PSW field is saved when EIT occurs.

The PSW field consists of the Stack Mode (SM) bit, the Interrupt Enable (IE) bit and

the Condition (C) bit.

The BPSW field consists of the Backup Stack Mode (BSM) bit, the Backup Interrupt

Enable (BIE) bit and the Backup Condition (BC) bit.

At reset release, BSM, BIE and BC are undefined. All other bits are "0".

0 0 0 0 00 0 0 0 0 0 0 0 0

7654321 8 9 10 11 12 13 14 b15b0

?? 0 0 0 0 0 ? 0 0 0 0 0 0 0 0
BC SM IE C

23 24 25 26 27 28 29 30 b3117 18 19 20 21 22b16

BIEBSM

BPSW field

0 0

PSW field

< At reset release: "B'0000 0000 0000 0000 ??00 000? 0000 0000 >

b Bit Name Function R W

0-15 No function assigned. Fix to "0". 0 0

16 BSM Saves value of SM bit when EIT occurs R W

Backup SM Bit

17 BIE Saves value of IE bit when EIT occurs R W

Backup IE Bit

18-22 No function assigned. Fix to "0". 0 0

23 BC Saves value of C bit when EIT occurs R W

Backup C Bit

24 SM 0: Uses R15 as the interrupt stack pointer R W

Stack Mode Bit 1: Uses R15 as the user stack pointer

25 IE 0: Does not accept interrupt R W

Interrupt Enable Bit 1: Accepts interrupt

26-30 No function assigned. Fix to "0". 0 0

31 C Indicates carry, borrow and overflow resulting R W

Condition Bit from operations (instruction dependent)

1.3.1 Processor Status Word Register: PSW (CR0)

1

1-5 M32R-FPU Software Manual (Rev.1.01)

b0

CPU PROGRAMMING MODEL
1.3 Control Registers

1.3.2 Condition Bit Register: CBR (CR1)

The Condition Bit Register (CBR) is derived from the PSW register by extracting its

Condition (C) bit. The value written to the PSW register's C bit is reflected in this

register. The register can only be read. (Writing to the register with the MVTC

instruction is ignored.)

At reset release, the value of CBR is "H'0000 0000".

CBR

b0 b31

0 C

1.3.3 Interrupt Stack Pointer: SPI (CR2)

User Stack Pointer: SPU (CR3)

The Interrupt Stack Pointer (SPI) and the User Stack Pointer (SPU) retain the

address of the current stack pointer. These registers can be accessed as the

general-purpose register R15. R15 switches between representing the SPI and

SPU depending on the value of the Stack Mode (SM) bit in the PSW.

At reset release, the value of the SPI and SPU are undefined.

SPI SPI

SPU SPU

b0

b0

b31

b31

1.3.4 Backup PC: BPC (CR6)

The Backup PC (BPC) is used to save the value of the Program Counter (PC) when

an EIT occurs. Bit 31 is fixed to "0".

When an EIT occurs, the register sets either the PC value when the EIT occurred or

the PC value for the next instruction depending on the type of EIT. The BPC value

is loaded to the PC when the RTE instruction is executed. However, the values of

the lower 2 bits of the PC are always "00" when returned (PC always returns to the

word-aligned address).

At reset release, the value of the BPC is undefined.

BPC BPC 0

b31

1

1-6 M32R-FPU Software Manual (Rev.1.01)

CPU PROGRAMMING MODEL
1.3 Control Registers

<At reset release: H0000 0100>

b Bit Name Function R W

0 FS Reflects the logical sum of FU, FZ, FO and FV. R –

Floating-point Exception

Summary Bit

1 FX Set to "1" when an inexact exception occurs R W

Inexact Exception Flag (if EIT processing is unexecuted (Note 1)).

Once set, the flag retains the value "1" until

it is cleared to "0" in software.

2 FU Set to "1" when an underflow exception occurs R W

Underflow Exception Flag (if EIT processing is unexecuted (Note 1)).

Once set, the flag retains the value "1" until

it is cleared to "0" in software.

3 FZ Set to "1" when a zero divide exception occurs R W

Zero Divide Exception Flag (if EIT processing is unexecuted (Note 1)).

Once set, the flag retains the value "1" until

it is cleared to "0" in software.

4 FO Set to "1" when an overflow exception occurs R W

Overflow Exception Flag (if EIT processing is unexecuted (Note 1)).

Once set, the flag retains the value "1" until

it is cleared to "0" in software.

5 FV Set to "1" when an invalid operation exception R W

Invalid Operation Exception occurs (if EIT processing is unexecuted (Note 1)).

Flag Once set, the flag retains the value "1" until

it is cleared to "0" in software.

6–16 No function assigned. Fix to "0". 0 0

17 EX 0: Mask EIT processing to be executed when an R W

Inexact Exception Enable inexact exception occurs

Bit 1: Execute EIT processing when an inexact

 exception occurs

18 EU 0: Mask EIT processing to be executed when an R W

Underflow Exception Enable underflow exception occurs

Bit 1: Execute EIT processing when an underflow

 exception occurs

19 EZ 0: Mask EIT processing to be executed when a R W

Zero Divide Exception zero divide exception occurs

Enable Bit 1: Execute EIT processing when a zero divide

 exception occurs

20 EO 0: Mask EIT processing to be executed when an R W

Overflow Exception overflow exception occurs

Enable Bit 1: Execute EIT processing when an overflow

 exception occurs

1.3.5 Floating-point Status Register: FPSR (CR7)

0 0 0 0 00 0 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9 10 11 12 13 14 b151b0

00 0 0 0 0 0 1 0 0 0 0 0 0 0 0
EV DN CE CX CU CZ CO CV RM

18 19 20 21 22 23 24 25 26 27 28 29 30 b3117b16

EUEX

FS FX FU FZ
0

FO
0

FV

EZ EO

1

1-7 M32R-FPU Software Manual (Rev.1.01)

CPU PROGRAMMING MODEL
1.3 Control Registers

21 EV 0: Mask EIT processing to be executed when an R W

Invalid Operation Exception invalid operation exception occurs

Enable Bit 1: Execute EIT processing when an invalid

 operation exception occurs

22 No function assigned. Fix to "0". 0 0

23 DN 0: Handle the denormalized number as a R W

Denormalized Number Zero denormalized number

Flash Bit (Note 2) 1: Handle the denormalized number as zero

24 CE 0: No unimplemented operation exception occurred . R (Note 3)

Unimplemented Operation 1: An unimplemented operation exception occurred.

Exception Cause Bit When the bit is set to "1", the execution of an

 FPU operation instruction will clear it to "0".

25 CX 0: No inexact exception occurred. R (Note 3)

Inexact Exception Cause 1: An inexact exception occurred.

Bit When the bit is set to "1", the execution of an

 FPU operation instruction will clear it to "0".

26 CU 0: No underflow exception occurred. R (Note 3)

Underflow Exception Cause 1: An underflow exception occurred.

Bit When the bit is set to "1", the execution of an

 FPU operation instruction will clear it to "0".

27 CZ 0: No zero divide exception occurred. R (Note 3)

Zero Divide Exception 1: A zero divide exception occurred.

Cause Bit When the bit is set to "1", the execution of an

 FPU operation instruction will clear it to "0".

28 CO 0: No overflow exception occurred. R (Note 3)

Overflow Exception 1: An overflow exception occurred.

Cause Bit When the bit is set to "1", the execution of an

 FPU operation instruction will clear it to "0".

29 CV 0: No invalid operation exception occurred. R (Note 3)

Invalid Operation Exception 1: An invalid operation exception occurred.

Cause Bit When the bit is set to "1", the execution of an

 FPU operation instruction will clear it to "0".

30, 31 RM 00: Round to Nearest R W

Rounding Mode Selection Bit 01: Round toward Zero

10: Round toward +Infinity

11: Round toward -Infinity

Note 1: ‘If EIT processing is unexecuted’ means whenever one of the exceptions occurs, enable bits

17 to 21 are set to "0" which masks the EIT processing so that it cannot be executed. If two

exceptions occur at the same time and their corresponding exception enable bits are

set differently (one enabled, and the other masked), EIT processing is executed. In this

case, these two flags do not change state regardless of the enable bit settings.

Note 2: If a denormalized number is given to the operand when DN = "0", an unimplemented

exception occurs.

Note 3: This bit is cleared by writing "0". Writing "1" has no effect (the bit retains the value it had

before the write).

1

1-8 M32R-FPU Software Manual (Rev.1.01)

CPU PROGRAMMING MODEL
1.3 Control Registers

1.3.6 Floating-point Exceptions (FPE)

Floating-point Exception (FPE) occurs when Unimplemented Exception (UIPL) or

one of the five exceptions specified in the IEEE754 standard (OVF/UDF/IXCT/

DIV0/IVLD) is detected. Each exception processing is outlined below.

(1) Overflow Exception (OVF)

The exception occurs when the absolute value of the operation result exceeds the

largest describable precision in the floating-point format. The following table shows

the operation results when an OVF occurs.

Operation Result (Content of the Destination Register)

Rounding Mode Sign of the Result When the OVF EIT processing When the OVF EIT processing

is masked (Note 1) is executed (Note 2)

–infinity + +MAX

– –infinity

+infinity + +infinity

– –MAX No change

0 + +MAX

– –MAX

Nearest + +infinity

– –infinity

Note 1: When the Overflow Exception Enable (EO) bit (FPSR register bit 20) = "0"

Note 2: When the Overflow Exception Enable (EO) bit (FPSR register bit 20) = "1"

Note: • If an OVF occurs while EIT processing for OVF is masked, an IXCT occurs at the same time.

 • +MAX = H'7F7F FFFF, –MAX = H'FF7F FFFF

(2) Underflow Exception (UDF)

The exception occurs when the absolute value of the operation result is less than

the largest describable precision in the floating-point format. The following table

shows the operation results when a UDF occurs.

Operation Result (Content of the Destination Register)

When UDF EIT processing is masked (Note 1) When UDF EIT processing is executed (Note 2)

DN = 0: An unimplemented exception occurs No change

 DN = 1: 0 is returned

Note 1: When the Underflow Exception Enable (EU) bit (FPSR register bit 18) = "0"

Note 2: When the Underflow Exception Enable (EU) bit (FPSR register bit 18) = "1"

1

1-9 M32R-FPU Software Manual (Rev.1.01)

CPU PROGRAMMING MODEL
1.3 Control Registers

(3) Inexact Exception (IXCT)

The exception occurs when the operation result differs from a result led out with an

infinite range of precision. The following table shows the operation results and the

respective conditions in which each IXCT occurs.

Operation Result (Content of the Destination Register)

Occurrence Condition When the IXCT EIT processing is When the IXCT EIT processing is

masked (Note 1) executed (Note 2)

Overflow occurs in OVF Reference OVF operation results No change

masked condition

Rounding occurs Rounded value No change

Note 1: When the Inexact Exception Enable (EX) bit (FPSR register bit 17) = "0"

Note 2: When the Inexact Exception Enable (EX) bit (FPSR register bit 17) = "1"

(4) Zero Division Exception (DIV0)

The exception occurs when a finite nonzero value is divided by zero. The following

table shows the operation results when a DIV0 occurs.

Operation Result (Content of the Destination Register)

Dividend When the DIV0 EIT processing is When the DIV0 EIT processing is

masked (Note 1) executed (Note 2)

Nonzero finite value ±infinity (Sign is derived by exclusive- No change

ORing the signs of divisor and dividend)

Note 1: When the Zero Division Exception Enable (EZ) bit (FPSR register bit 19) = "0"

Note 2: When the Zero Division Exception Enable (EZ) bit (FPSR register bit 19) = "1"

Please note that the DIV0 EIT processing does not occur in the following conditions.

Dividend Behavior

0 An invalid operation exception occurs

infinity No exception occur (with the result "infinity")

1

1-10 M32R-FPU Software Manual (Rev.1.01)

CPU PROGRAMMING MODEL
1.3 Control Registers

(5) Invalid Operation Exception (IVLD)

The exception occurs when an invalid operation is executed. The following table shows

the operation results and the respective conditions in which each IVLD occurs.

Occurrence Condition Operation Result (Content of the Destination Register)

When the IVLD EIT processing When the IVLD EIT

is masked (Note 1) processing is executed

(Note 2)

Operation for SNaN operand

+infinity -(+infinity), -infinity -(-infinity) QNaN

0 ✕ infinity

0 ÷ 0, infinity ÷ infinity

When FTOI Return value when

instruction pre-conversion signed bit is:

When an integer conversion was executed "0" = H’7FFF FFFF No change

overflowed "1" = H’8000 0000

When NaN or Infinity was When FTOS Return value when

converted into an integer instruction pre-conversion signed bit is:

was executed "0" = H’0000 7FFF

"1" = H’FFF 8000

When < or > comparison was Comparison results

performed on NaN (comparison invalid)

Note 1: When the Invalid Operation Exception Enable (EV) bit (FPSR register bit 21) = "0"

Note 2: When the Invalid Operation Exception Enable (EV) bit (FPSR register bit 21) = "1"
Notes: • NaN (Not a Number)

SNaN (Signaling NaN): a NaN in which the MSB of the decimal fraction is “0”. When

SNaN is used as the source operand in an operation, an IVLD occurs. SNaNs are useful
in identifying program bugs when used as the initial value in a variable. However,
SNaNs cannot be generated by hardware.

QNaN (Quiet NaN): a NaN in which the MSB of the decimal fraction is "1". Even when
QNaN is used as the source operand in an operation, an IVLD will not occur (excluding
comparison and format conversion). Because a result can be checked by the arithmetic

operations, QNaN allows the user to debug without executing an EIT processing.
QNaNs are created by hardware.

(6) Unimplemented Exception (UIPL)

The exception occurs when the Denormalized Number Zero Flash (DN) bit (FPSR
register bit 23) = "0" and a denormalized number is given as an operation operand
(Note 1).

Because the UIPL has no enable bits available, it cannot be masked when they
occur. The destination register remains unchanged.

Note: • A UDF occurs when the intermediate result of an operation is a denormalized

number, in which case if the DN bit (FPSR register bit 23) = "0", an UIPL occurs.

1

1-11 M32R-FPU Software Manual (Rev.1.01)

CPU PROGRAMMING MODEL
1.4 Accumulator

1.4 Accumulator

The Accumulator (ACC) is a 56-bit register used for DSP function instructions.

The accumulator is handled as a 64-bit register when accessed for read or write.

When reading data from the accumulator, the value of bit 8 is sign-extended. When

writing data to the accumulator, bits 0 to 7 are ignored. The accumulator is also used

for the multiply instruction "MUL", in which case the accumulator value is destroyed

by instruction execution.

Use the MVTACHI and MVTACLO instructions for writing to the accumulator. The

MVTACHI and MVTACLO instructions write data to the high-order 32 bits (bits 0-31)

and the low-order 32 bits (bits 32-63), respectively.

Use the MVFACHI, MVFACLO, and MVFACMI instructions for reading data from the

accumulator. The MVFACHI, MVFACLO and MVFACMI instructions read data from

the high-order 32 bits (bits 0-31), the low-order 32 bits (bits 32-63) and the middle 32

bits (bits 16-47), respectively.

At reset release, the value of accumulator is undefined.

32 48 b63311615b0 477 8

ACC

 (Note 1)

read/write range with
MVTACLO or MVFACLO instruction

read/write range with
MVTACHI or MVFACHI instruction

read range with MVFACMI instruction

1.5 Program Counter

The Program Counter (PC) is a 32-bit counter that retains the address of the

instruction being executed. Since the M32R CPU instruction starts with even-

numbered addresses, the LSB (bit 31) is always "0".

At reset release, the value of the PC is "H’0000 0000."

PC PC 0

b31b0

Note 1: When read, bits 0 to 7 always show the sign-extended value of bit 8. Writing to this bit field is
ignored.

1

1-12 M32R-FPU Software Manual (Rev.1.01)

1.6 Data Format

1.6.1 Data Type

The data types that can be handled by the M32R-FPU instruction set are signed or

unsigned 8, 16, and 32-bit integers and single-precision floating-point numbers.

The signed integers are represented by 2's complements.

CPU PROGRAMMING MODEL
1.6 Data Format

b7b0

signed byte (8-bit) integer

unsigned byte (8-bit) integer

signed halfword (16-bit) integer

b0

b0

b0

b0

b0

b7

b15

b15

b31

b31

S

S

S

S: Sign bit E: Exponent field F: Fraction field

unsigned halfword (16-bit) integer

signed word (32-bit) integer

b0 8 9 b31

S E Ffloating-point single precision values

unsigned word (32-bit) integer

Figure 1.6.1 Data Type

1

1-13 M32R-FPU Software Manual (Rev.1.01)

1.6.2 Data Format

(1) Data format in a register

The data sizes in the M32R-FPU registers are always words (32 bits).

When loading byte (8-bit) or halfword (16-bit) data from memory into a register, the

data is sign-extended (LDB, LDH instructions) or zero-extended (LDUB, LDUH

instructions) to a word (32-bit) quantity before being loaded into the register.

When storing data from a register into a memory, the 32-bit data, the 16-bit data on

the LSB side and the 8-bit data on the LSB side of the register are stored into

memory by the ST, STH and STB instructions, respectively.

Rn

b0 b31

< load >

byte

Rn

b0 b31

halfword

Rn

b0 b31

word

sign-extention (LDB instruction) or
zero-extention (LDUB instruction)

from memory
(LDB, LDUB instruction)

< store >

Rn

b0 b31

byte

Rn

b0 b31

halfword

Rn

b0 b31

word

to memory (STB instruction)

to memory (STH instruction)

to memory (ST instruction)

from memory (LDH, LDUH instruction)

from memory (LD instruction)

24

16

24

16

sign-extention (LDH instruction) or
zero-extention (LDUH instruction)

Figure 1.6.2 Data Format in a Register

CPU PROGRAMMING MODEL
1.6 Data Format

1

1-14 M32R-FPU Software Manual (Rev.1.01)

(2) Data format in memory

The data sizes in memory can be byte (8 bits), halfword (16 bits) or word (32 bits).

Although byte data can be located at any address, halfword and word data must be

located at the addresses al igned with a halfword boundary (least signif icant

address bi t = "0") or a word boundary (two low-order address bi ts = "00"),

respectively. If an attempt is made to access memory data that overlaps the

halfword or word boundary, an address exception occurs.

Address

byte

half
word

word

+0 address +1 address +2 address +3 address

b0 b31

byte

byte

byte

byte

halfword

halfword

word

7 8 15 16 23 24

Figure 1.6.3 Data Format in Memory

CPU PROGRAMMING MODEL
1.6 Data Format

1

1-15 M32R-FPU Software Manual (Rev.1.01)

1.7 Addressing Mode

M32R-FPU supports the following addressing modes.

(1) Register direct [R or CR]

The general-purpose register or the control register to be processed is
specified.

(2) Register indirect [@R]

The contents of the register specify the address of the memory. This mode
can be used by all load/store instructions.

(3) Register relative indirect [@(disp, R)]

(The contents of the register) + (16-bit immediate value which is sign-
extended to 32 bits) specify the address of the memory.

(4) Register indirect and register update

• Adds 4 to register contents [@R+]
The contents of the register specify the memory address, then 4 is added to
the register contents.
(Can only be specified with LD instruction).

• Add 2 to register contents [@R+] [M32R-FPU extended addressing mode]
The contents of the register specify the memory address, then 2 is added to
the register contents.
(Can only be specified with STH instruction).

• Add 4 to register contents [@+R]
The contents of the register is added by 4, the register contents specify the
memory address.
(Can only be specified with ST instruction).

• Subtract 4 to register contents [@–R]
The content of the register is decreased by 4, then the register contents
specify the memory address.
(Can only be specified with ST instruction).

(5) immediate [#imm]

The 4-, 5-, 8-, 16- or 24-bit immediate value.

(6) PC relative [pcdisp]

(The contents of PC) + (8, 16, or 24-bit displacement which is sign-extended

to 32 bits and 2 bits left-shifted) specify the address of memory.

CPU PROGRAMMING MODEL
1.7 Addressing Mode

1

1-16 M32R-FPU Software Manual (Rev.1.01)

CPU PROGRAMMING MODEL
1.7 Addressing Mode

This page left blank intentionally.

CHAPTER 2

INSTRUCTION SET

2.1 Instruction set overview

2.2 Instruction format

2

2-2 M32R-FPU Software Manual (Rev.1.01)

2.1 Instruction set overview

The M32R-FPU has a total of 100 instructions. The M32R-FPU has a RISC architecture.

Memory is accessed by using the load/store instructions and other operations are

executed by using register-to-register operation instructions.

M32R CPU supports compound instructions such as " load & address update" and "store

& address update" which are useful for high-speed data transfer.

2.1.1 Load/store instructions

The load/store instructions carry out data transfers between a register and a memory.

LD Load

LDB Load byte

LDUB Load unsigned byte

LDH Load halfword

LDUH Load unsigned halfword

LOCK Load locked

ST Store

STB Store byte

STH Store halfword

UNLOCK Store unlocked

INSTRUCTION SET
2.1 Instruction set overview

2

2-3 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTION SET
2.1 Instruction set overview

Three types of addressing modes can be specified for load/store instructions.

(1) Register indirect

The contents of the register specify the address. This mode can be used by all load/

store instructions.

(2) Register relative indirect

(The contents of the register) + (32-bit sign-extended 16-bit immediate value)

specifies the address. This mode can be used by all except LOCK and UNLOCK

instructions.

(3) Register indirect and register update

• Adds 4 to register contents [@R+]
The contents of the register specify the memory address, then 4 is added to the
register contents.
(Can only be specified with LD instruction).

• Add 2 to register contents [@R+] [M32R-FPU extended addressing mode]
The contents of the register specify the memory address, then 2 is added to the
register contents.
(Can only be specified with STH instruction).

• Add 4 to register contents [@+R]
The contents of the register is added by 4, the register contents specity the
memory address.
(Can only be specified with ST instruction).

• Subtract 4 to register contents [@–R]
The content of the register is decreased by 4, then the register contents specify
the memory address.

(Can only be specified with ST instruction).

When accessing halfword and word size data, it is necessary to specify the address on

the halfword boundary or the word boundary (Halfword size should be such that the low-

order 2 bits of the address are "00" or "10", and word size should be such that the low

order 2 bits of the address are "00"). If an unaligned address is specified, an address

exception occurs.

When accessing byte data or halfword data with load instructions, the high-order bits are

sign-extended or zero-extended to 32 bits, and loaded to a register.

2

2-4 M32R-FPU Software Manual (Rev.1.01)

2.1.2 Transfer instructions

The transfer instructions carry out data transfers between registers or a register and an

immediate value.

LD24 Load 24-bit immediate
LDI Load immediate
MV Move register
MVFC Move from control register
MVTC Move to control register
SETH Set high-order 16-bit

2.1.3 Operation instructions

Compare, arithmetic/logic operation, multiply and divide, and shift are carried out

between registers.

• compare instructions
CMP Compare
CMPI Compare immediate
CMPU Compare unsigned
CMPUI Compare unsigned immediate

• arithmetic operation instructions
ADD Add
ADD3 Add 3-operand
ADDI Add immediate
ADDV Add with overflow checking
ADDV3 Add 3-operand with overflow checking
ADDX Add with carry
NEG Negate
SUB Subtract
SUBV Subtract with overflow checking
SUBX Subtract with borrow

INSTRUCTION SET
2.1 Instruction set overview

2

2-5 M32R-FPU Software Manual (Rev.1.01)

• logic operation instructions
AND AND
AND3 AND 3-operand
NOT Logical NOT
OR OR
OR3 OR 3-operand
XOR Exclusive OR
XOR3 Exclusive OR 3-operand

• multiply/divide instructions
DIV Divide
DIVU Divide unsigned
MUL Multiply
REM Remainder
REMU Remainder unsigned

• shift instructions
SLL Shift left logical
SLL3 Shift left logical 3-operand
SLLI Shift left logical immediate
SRA Shift right arithmetic
SRA3 Shift right arithmetic 3-operand
SRAI Shift right arithmetic immediate
SRL Shift right logical
SRL3 Shift right logical 3-operand
SRLI Shift right logical immediate

INSTRUCTION SET
2.1 Instruction set overview

2

2-6 M32R-FPU Software Manual (Rev.1.01)

2.1.4 Branch instructions

The branch instructions are used to change the program flow.

BC Branch on C-bit
BEQ Branch on equal to
BEQZ Branch on equal to zero
BGEZ Branch on greater than or equal to zero
BGTZ Branch on greater than zero
BL Branch and link
BLEZ Branch on less than or equal to zero
BLTZ Branch on less than zero
BNC Branch on not C-bit
BNE Branch on not equal to
BNEZ Branch on not equal to zero
BRA Branch
JL Jump and link
JMP Jump
NOP No operation

Only a word-aligned (word boundary) address can be specified for the branch address.

INSTRUCTION SET
2.1 Instruction set overview

2

2-7 M32R-FPU Software Manual (Rev.1.01)

The addressing mode of the BRA, BL, BC and BNC instructions can specify an 8-bit or

24-bit immediate value. The addressing mode of the BEQ, BNE, BEQZ, BNEZ, BLTZ,

BGEZ, BLEZ, and BGTZ instructions can specify a 16-bit immediate value.

In the JMP and JL instructions, the register value becomes the branch address.

However, the low-order 2-b i t va lue of the register is ignored. In other branch

instructions, (PC value of branch instruction) + (sign-extended and 2 bits left-shifted

immediate value) becomes the branch address. However, the low order 2-bit value of the

address becomes "00" when addition is carried out. For example, refer to Figure 2.1.1.

When instruct ion A or B is a branch instruct ion, branching to instruct ion G, the

immediate value of either instruction A or B becomes 4.

Simultaneous with execution of branching by the JL or BL instructions for subroutine

calls, the PC value of the return address is stored in R14. The low-order 2-bit value of

the address stored in R14 (PC value of the branch instruction + 4) is always cleared to

"0". For example, refer to Figure 2.1.1. If an instruction A or B is a JL or BL instruction,

the return address becomes that of the instruction C.

Fig. 2.1.1 Branch addresses of branch instruction

H'00

H'04

H'08

H'0C

H'10

instruction A instruction B

instruction C instruction D

instruction E

instruction F

instruction G instruction H

address +0 +1 +2 +3

1 word (32 bits)

branch instruction

INSTRUCTION SET
2.1 Instruction set overview

2

2-8 M32R-FPU Software Manual (Rev.1.01)

2.1.5 EIT-related instructions

The EIT-related instructions carry out the EIT events (Exception, Interrupt and Trap).

Trap initiation and return from EIT are EIT-related instructions.

TRAP Trap
RTE Return from EIT

2.1.6 DSP function instructions

The DSP function instructions carry out multiplication of 32 bits x 16 bits and 16 bits x 16

bits or multiply and add operation; there are also instructions to round off data in the

accumulator and carry out transfer of data between the accumulator and a general-

purpose register.

MACHI Multiply-accumulate high-order halfwords
MACLO Multiply-accumulate low-order halfwords
MACWHI Multiply-accumulate word and high-order halfword
MACWLO Multiply-accumulate word and low-order halfword
MULHI Multiply high-order halfwords
MULLO Multiply low-order halfwords
MULWHI Multiply word and high-order halfword
MULWLO Multiply word and low-order halfword
MVFACHI Move high-order word from accumulator
MVFACLO Move low-order word from accumulator
MVFACMI Move middle-order word from accumulator
MVTACHI Move high-order word to accumulator
MVTACLO Move low-order word to accumulator
RAC Round accumulator
RACH Round accumulator halfword

INSTRUCTION SET
2.1 Instruction set overview

2

2-9 M32R-FPU Software Manual (Rev.1.01)

Fig. 2.1.2 DSP function instruction operation 1 (multiply, multiply and accumulate)

Rsrc1
0 15 16 31

H

ACC

0 63

L

0 15 16 31

H L

x

x

MULLO instructionMULHI instruction

Rsrc2

Rsrc1
0 31

ACC

0 63

0 15 16 31

H L

x

x
MULWLO instructionMULWHI instruction

Rsrc2

32 bits

Rsrc1
0 15 16 31

H L

0 15 16 31

H L

x

x

MACLO instructionMACHI instruction

Rsrc2

ACC

0 63

+

+

0 63

Rsrc1
0 31

32 bits

0 15 16 31

H L

x

x

MACWLO instructionMACWHI instruction

Rsrc2

ACC

0 63

+

+

0 63

ACC

ACC

Note: The location in the accumulator of the result and the appropriate sign extension are performed
 in the execution of the DSP function instruction. Refer to Chapter 3 for details.

INSTRUCTION SET
2.1 Instruction set overview

2

2-10 M32R-FPU Software Manual (Rev.1.01)

ACC

0 63

sign 0

RAC instruction

ACC

0 63

sign 0

RACH instruction

< word size round off > < halfword size round off >

datadata

0 63 0 63

Note: The actual operation is processed in two steps.
 Refer to Chapter 3 for details.

Fig. 2.1.4 DSP function instruction operation 3 (transfer between accumulator and register)

Rdest

0 31

ACC

0 6315 16 31 32 47 48

MVFACHI
 instruction

Rsrc

0 31

ACC

0 6331 32

MVFACLO
instruction

MVFACMI instruction

MVTACLO
instruction

MVTACHI
instruction

Fig. 2.1.3 DSP function instruction operation 2 (round off)

INSTRUCTION SET
2.1 Instruction set overview

2

2-11 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTION SET
2.1 Instruction set overview

2.1.7 Floating-point Instructions

The following instructions execute floating-point operations.

FADD Floating-point add
FSUB Floating-point subtract
FMUL Floating-point multiply
FDIV Floating-point divede
FMADD Floating-point multiply and add
FMSUB Floating-point multiply and subtract
ITOF Integer to float
UTOF Unsigned integer to float
FTOI Float to integer
FTOS Float to short
FCMP Floating-point compare
FCMPE Floating-point compare with exeption if unordered

2.1.8 Bit Operation Instructions

These instructions determine the operation of the bit specif ied by the register or

memory.

BSET Bit set
BCLR Bit clear
BTST Bit test
SETPSW Set PSW
CLRPSW Clear PSW

2

2-12 M32R-FPU Software Manual (Rev.1.01)

2.2 Instruction format

There are two major instruction formats: two 16-bit instructions packed together within a

word boundary, and a single 32-bit instruction (see Figure 2.2.1). Figure 2.2.2 shows

the instruction format of M32R CPU.

Fig. 2.2.2 Instruction format of M32R CPU

Fig. 2.2.1 16-bit instruction and 32-bit instruction

< 16-bit instruction >

op1 R1 R2op2

op1 R1 c

op1 cond c

op1 R1 R2op2 c

op1 R1 R2op2 c

op1 R1 c

op1 cond c

< 32-bit instruction >

R1 = R1 op R2

R1 = R1 op c

Branch (Short Displacement)

R1 = R1 op c

Branch

Compare and Branch

R1 = R2 op c

op1 Rs 0000op2 op3 Rd 0000op4

op1 Rs1 Rs2op2

Floating-point 2-operand
(Rd=op(Rs))

Floating-point 3-operand
(Rd=Rs1 op Rs2)

op3 Rd 0000op4

 16-bit instruction A

+ 0 + 1 + 2 + 3

1 word

32-bit instruction

address

1 word

+ 0 + 1 + 2 + 3address

 16-bit instruction B

INSTRUCTION SET
2.2 Instruction format

2

2-13 M32R-FPU Software Manual (Rev.1.01)

The MSB (Most Significant Bit) of a 32-bit instruction is always "1". The MSB of a 16-bit

instruction in the high-order halfword is always "0" (instruction A in Figure 2.2.3),

however the processing of the following 16-bit instruction depends on the MSB of the

instruction.

In Figure 2.2.3, if the MSB of the instruction B is "0", instructions A and B are executed

sequentially; B is executed after A. If the MSB of the instruction B is "1", instructions A

and B are executed in parallel.

The current implementation allows only the NOP instruction as instruction B for parallel

execution. The MSB of the NOP instruction used for word arraignment adjustment is

changed to "1" automatically by a standard Mitsubishi assembler, then the M32R-FPU

can execute this instruction without requiring any clock cycles.

16-bit instruction A 16-bit instruction B

32-bit instruction

0

16-bit instruction A 16-bit instruction B0 1

0 [instruction A] --> [instruction B] sequential

< instruction execution sequence >MSB

1

1111 0000 0000 000016-bit instruction A0

0111 0000 0000 0000
inserted by assembler

32-bit instruction1

MSB

NOP instruction whose MSB is changed to "1"

NOP instruction

[instruction A] & [instruction B] parallel

[instruction A] & [NOP] parallel

Fig. 2.2.3 Processing of 16-bit instructions

INSTRUCTION SET
2.2 Instruction format

2

2-14 M32R-FPU Software Manual (Rev.1.01)

This page left blank intentionally.

INSTRUCTION SET
2.2 Instruction format

CHAPTER 3

INSTRUCTIONS

3.1 Conventions for instruction

description

3.2 Instruction description

3

3-2 M32R-FPU Software Manual (Rev.1.01)

3.1 Conventions for instruction description

Conventions for instruction description are summarized below.

[Mnemonic]

Shows the mnemonic and possible operands (operat ion target) using assembly
language notation.

Table 3.1.1 Operand list

symbol(see note) addressing mode operation target

R register direct general-purpose registers (R0 - R15)

CR control register Mcontrol registers (CR0 = PSW, CR1 = CBR, CR2 = SPI,

CR3 = SPU, CR6 = BPC, CR7 = FPSR)

@R register indirect memory specified by register contents as address

@(disp,R) register relative memory specified by (register contents) + (sign-extended value of

indirect 16-bit displacement) as address

@R+ register indirect and Add 4 to register contents. (Register contents specify the memory

register update address, then 4 is added to the contents.)

@+R register indirect and Add 4 to register contents. (4 is added to the register contents,

register update then the register contents specify the memory address.)

@-R register indirect and Subtract 4 to register contents. (4 is subtract to the register

register update contents, hen the register contents specify the memory address.)

#imm immediate immediate value (refer to each instruction description)

#bitpos Bit position Contents of byte data bit position

pcdisp PC relative memory specified by (PC contents) + (8, 16, or 24-bit displacement

which is sign-extended to 32 bits and 2 bits left-shifted) as address

Note: When expressing Rsrc or Rdest as an operand, a general-purpose register numbers (0 - 15) should be
substituted for src or dest. When expressing CRsrc or CRdest, control register numbers (0 - 3, 6, 7)
should be substituted for src or dest.

[Function]

Indicates the operation performed by one instruction. Notation is in accordance with C

language notation.

Table 3.1.2 Operation expression (operator)

operator meaning

+ addition (binomial operator)

- subtraction (binomial operator)

✽ multiplication (binomial operator)

/ division (binomial operator)

% remainder operation (binomial operator)

++ increment (monomial operator)

-- decrement (monomial operator)

INSTRUCTIONS
3.1 Conventions for instruction description

3

3-3 M32R-FPU Software Manual (Rev.1.01)

Table 3.1.3 Operation expression (operator) (cont.)

operator meaning

- sign invert (monomial operator)

= substitute right side into left side (substitute operator)

+= adds right and left variables and substitute into left side (substitute operator)

-= subtract right variable from left variable and substitute into left side (substitute operator)

> greater than (relational operator)

< less than (relational operator)

>= greater than or equal to (relational operator)

<= less than or equal to (relational operator)

== equal (relational operator)

!= not equal (relational operator)

&& AND (logical operator)

| | OR (logical operator)

! NOT (logical operator)

?: execute a conditional expression (conditional operator)

Table 3.1.4 Operation expression (bit operator)

operator meaning

<< bits are left-shifted

>> bits are right-shifted

& bit product (AND)

| bit sum (OR)

^ bit exclusive or (EXOR)

~ bit invert

Table 3.1.5 Data type

expression sign bit length range

signed char yes 8 –128 to +127

signed short yes 16 –32,768 to +32,767

signed int yes 32 –2,147,483,648 to +2,147,483,647

unsigned char no 8 0 to 255

unsigned short no 16 0 to 655,535

unsigned int no 32 0 to 4,294,967,295

signed64bit yes 64 signed 64-bit integer (with accumulator)

INSTRUCTIONS
3.1 Conventions for instruction description

Table 3.1.6 Data type (floating-point)

expression floating-point format

float single precision values format

3

3-4 M32R-FPU Software Manual (Rev.1.01)

[Description]

Describes the operation performed by the instruction and any condition bit change.

[EIT occurrence]

Shows possible EIT events (Exception, Interrupt, Trap) which may occur as the result of

the instruction's execution. Only address exception (AE), floating-point exception (FPE)

and trap (TRAP) may result from an instruction execution.

[Instruction format]

Shows the bit level instruction pattern (16 bits or 32 bits). Source and/or destination

register numbers are put in the src and dest fields as appropriate. Any immediate or

displacement value is put in the imm or disp field, its maximum size being determined by

the width of the field provided for the particular instruction. Refer to 2.2 Instruction

format for detail.

INSTRUCTIONS
3.1 Conventions for instruction description

3

3-5 M32R-FPU Software Manual (Rev.1.01)

3.2 Instruction description

This section lists M32R-FPU instructions in alphabetical order. Each page is laid out

as shown below.

3

ADD arithmetic oper

Add

[Mnemonic]

[Function]

[Description]

[EIT occurrence]

[Instruction format]

Add Rdest,Rsrc

Add
 Rdest = Rdest + Rsrc;

None

Add Rde0000 dest 1010 src

instruction function
(expression corresponds to
 C language method)

instruction description
and effect on condition bit (C)

EIT events which may
occur when this
instruction is executed

16- or 32-bit instruction format

instruction mnemonic

instruction name
(instruction type and
 full name are in center)

ADD adds Rsrc to Rdest and puts the result in

The condition bit (C) is unchanged.

INSTRUCTIONS
3.2 Instruction description

3

3-6 M32R-FPU Software Manual (Rev.1.01)

ADD

dest0000 ADD Rdest,Rsrc

ADD

1010

arithmetic/logic operation

Add

src

[Mnemonic]

ADD Rdest,Rsrc

[Function]

Add

Rdest = Rdest + Rsrc;

[Description]

ADD adds Rsrc to Rdest and puts the result in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

INSTRUCTIONS
3.2 Instruction description

3

3-7 M32R-FPU Software Manual (Rev.1.01)

ADD3

[Mnemonic]

ADD3 Rdest,Rsrc,#imm16

[Function]

Add

Rdest = Rsrc + (signed short) imm16;

[Description]

ADD3 adds the 16-bit immediate value to Rsrc and puts the result in Rdest. The immediate

value is sign-extended to 32 bits before the operation.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

ADD3 arithmetic operation instruction

Add 3-operand

1010dest1000

ADD3 Rdest,Rsrc,#imm16

src imm16

INSTRUCTIONS
3.2 Instruction description

3

3-8 M32R-FPU Software Manual (Rev.1.01)

ADDI

[Mnemonic]

ADDI Rdest,#imm8

[Function]

Add

 Rdest = Rdest + (signed char) imm8;

[Description]

ADDI adds the 8-bit immediate value to Rdest and puts the result in Rdest.

The immediate value is sign-extended to 32 bits before the operation.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

ADDI

imm8dest0100 ADDI Rdest,#imm8

arithmetic operation instruction

Add immediate

INSTRUCTIONS
3.2 Instruction description

3

3-9 M32R-FPU Software Manual (Rev.1.01)

ADDV

[Mnemonic]

ADDV Rdest,Rsrc

[Function]

Add

Rdest = (signed) Rdest + (signed) Rsrc;

C = overflow ? 1 : 0;

[Description]

ADDV adds Rsrc to Rdest and puts the result in Rdest.

The condition bit (C) is set when the addition results in overflow; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

ADDV

dest0000 ADDV Rdest,Rsrc1000

arithmetic operation instruction

Add with overflow checking

src

INSTRUCTIONS
3.2 Instruction description

3

3-10 M32R-FPU Software Manual (Rev.1.01)

ADDV3

[Mnemonic]

ADDV3 Rdest,Rsrc,#imm16

[Function]

Add

Rdest = (signed) Rsrc + (signed) ((signed short) imm16);

C = overflow ? 1 : 0;

[Description]

ADDV3 adds the 16-bit immediate value to Rsrc and puts the result in Rdest. The immediate

value is sign-extended to 32 bits before it is added to Rsrc.

The condition bit (C) is set when the addition results in overflow; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

ADDV3

dest1000 imm16

arithmetic operation instruction

Add 3-operand with overflow checking

ADDV3 Rdest,Rsrc,#imm16

src1000

INSTRUCTIONS
3.2 Instruction description

3

3-11 M32R-FPU Software Manual (Rev.1.01)

ADDX

[Mnemonic]

ADDX Rdest,Rsrc

[Function]

Add

Rdest = (unsigned) Rdest + (unsigned) Rsrc + C;

C = carry_out ? 1 : 0;

[Description]

ADDX adds Rsrc and C to Rdest, and puts the result in Rdest.

The condition bit (C) is set when the addition result cannot be represented by a 32-bit unsigned

integer; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

ADDX arithmetic operation instruction

Add with carry

1001dest0000 ADDX Rdest,Rsrcsrc

INSTRUCTIONS
3.2 Instruction description

3

3-12 M32R-FPU Software Manual (Rev.1.01)

ANDAND

11000000 AND Rdest,Rsrc

logic operation instruction

AND

srcdest

[Mnemonic]

AND Rdest,Rsrc

[Function]

Logical AND

Rdest = Rdest & Rsrc;

[Description]

AND computes the logical AND of the corresponding bits of Rdest and Rsrc and puts the result

in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

INSTRUCTIONS
3.2 Instruction description

3

3-13 M32R-FPU Software Manual (Rev.1.01)

AND3

[Mnemonic]

AND3 Rdest,Rsrc,#imm16

[Function]

Logical AND

Rdest = Rsrc & (unsigned short) imm16;

[Description]

AND3 computes the logical AND of the corresponding bits of Rsrc and the 16-bit immediate

value, which is zero-extended to 32 bits, and puts the result in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

AND3

dest1000

AND3 Rdest,Rsrc,#imm16

logic operation instruction

AND 3-operand

src1100 imm16

INSTRUCTIONS
3.2 Instruction description

3

3-14 M32R-FPU Software Manual (Rev.1.01)

BCBC

[Mnemonic]

(1) BC pcdisp8

(2) BC pcdisp24

[Function]

Branch

(1) if (C==1) PC = (PC & 0xfffffffc) + (((signed char) pcdisp8) << 2);

(2) if (C==1) PC = (PC & 0xfffffffc) + (sign_extend (pcdisp24) << 2);

where

#define sign_extend(x) (((signed) ((x)<< 8)) >>8)

[Description]

BC causes a branch to the specified label when the condition bit (C) is 1.

There are two instruction formats; which allows software, such as an assembler, to decide on

the better format.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

11001111

11000111

BC pcdisp24

BC pcdisp8pcdisp8

pcdisp24

INSTRUCTIONS
3.2 Instruction description

branch instruction

Bit clear

M32R-FPU Extended Instruction

3

3-15 M32R-FPU Software Manual (Rev.1.01)

bit operation

Bit clear

[M32R-FPU Extended Instruction]

INSTRUCTIONS
3.2 Instruction description

BCLRBCLR

[Mnemonic]

BCLR #bitpos,@(disp16,Rsrc)

[Function]

Bit operation for memory contents Set 0 to specified bit.

* (signed char*) (Rsrc + (signed short) disp16) & = ~ (1<< (7-bitpos)) ;

[Description]

BCLR reads the byte data in the memory at the address specified by the Rsrc combined with

the 16-bit displacement, and then stores the value of the bit that was specified by bitpos to be set

to “0”. The displacement is sign-extended before the address calculation. bitpos becomes 0 to 7;

MSB becomes 0 and LSB becomes 7. The memory is accessed in bytes. The LOCK bit is on

while the BCLR instruction is executed, and is cleared when the execution is completed. The

LOCK bit is internal to the CPU and cannot be directly read or written to by the user.

Condition bit C remains unchanged.

The LOCK bit is internal to the CPU and is the control bit for receiving all bus right requests

from circuits other than the CPU.

Refer to the Users Manual for non-CPU bus right requests, as the handling differs according to

the type of MCU.

[EIT occurrence]

None

[Encoding]

bitpos1010

BCLR #bitpos,@(disp16,Rsrc)

src0111 disp160

3

3-16 M32R-FPU Software Manual (Rev.1.01)

BEQBEQ branch instruction

Branch on equal to

[Mnemonic]

BEQ Rsrc1,Rsrc2,pcdisp16

[Function]

Branch

if (Rsrc1 == Rsrc2) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BEQ causes a branch to the specified label when Rsrc1 is equal to Rsrc2.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

BEQ Rsrc1,Rsrc2,pcdisp16

1011 src1 0000 src2 pcdisp16

INSTRUCTIONS
3.2 Instruction description

3

3-17 M32R-FPU Software Manual (Rev.1.01)

BEQZBEQZ branch instruction

Branch on equal to zero

[Mnemonic]

BEQZ Rsrc,pcdisp16

[Function]

Branch

if (Rsrc == 0) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BEQZ causes a branch to the specified label when Rsrc is equal to zero.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

BEQZ Rsrc,pcdisp16

1011 0000 1000 src pcdisp16

INSTRUCTIONS
3.2 Instruction description

3

3-18 M32R-FPU Software Manual (Rev.1.01)

BGEZBGEZ branch instruction

Branch on greater than or equal to zero

[Mnemonic]

BGEZ Rsrc,pcdisp16

[Function]

Branch

if ((signed) Rsrc >= 0) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BGEZ causes a branch to the specified label when Rsrc treated as a signed 32-bit value is

greater than or equal to zero.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

BGEZ Rsrc,pcdisp16

1011 0000 1011 src pcdisp16

INSTRUCTIONS
3.2 Instruction description

3

3-19 M32R-FPU Software Manual (Rev.1.01)

BGTZBGTZ branch instruction

Branch on greater than zero

[Mnemonic]

BGTZ Rsrc,pcdisp16

[Function]

Branch

if ((signed) Rsrc > 0) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BGTZ causes a branch to the specified label when Rsrc treated as a signed 32-bit value is

greater than zero.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

BGTZ Rsrc,pcdisp16

1011 0000 1101 src pcdisp16

INSTRUCTIONS
3.2 Instruction description

3

3-20 M32R-FPU Software Manual (Rev.1.01)

BLBL branch instruction

Branch and link

[Mnemonic]

(1) BL pcdisp8

(2) BL pcdisp24

[Function]

Subroutine call (PC relative)

(1) R14 = (PC & 0xfffffffc) + 4;

 PC = (PC & 0xfffffffc) + (((signed char) pcdisp8) << 2);

(2) R14 = (PC & 0xfffffffc) + 4;

 PC = (PC & 0xfffffffc) + (sign_extend (pcdisp24) << 2);

where

#define sign_extend(x) (((signed) ((x)<< 8)) >>8)

[Description]

BL causes an unconditional branch to the address specified by the label and puts the return

address in R14.

There are two instruction formats; this allows software, such as an assembler, to decide on the

better format.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

11101111

11100111

BL pcdisp24

BL pcdisp8pcdisp8

pcdisp24

INSTRUCTIONS
3.2 Instruction description

3

3-21 M32R-FPU Software Manual (Rev.1.01)

BLEZBLEZ branch instruction

Branch on less than or equal to zero

[Mnemonic]

BLEZ Rsrc,pcdisp16

[Function]

Branch

if ((signed) Rsrc <= 0) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BLEZ causes a branch to the specified label when the contents of Rsrc treated as a signed 32-

bit value, is less than or equal to zero.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

BLEZ Rsrc,pcdisp16

1011 0000 1100 src pcdisp16

INSTRUCTIONS
3.2 Instruction description

3

3-22 M32R-FPU Software Manual (Rev.1.01)

BLTZBLTZ branch instruction

Branch on less than zero

[Mnemonic]

BLTZ Rsrc,pcdisp16

[Function]

Branch

if ((signed) Rsrc < 0) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BLTZ causes a branch to the specified label when Rsrc treated as a signed 32-bit value is less

than zero.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

BLTZ Rsrc,pcdisp16

1011 0000 1010 src pcdisp16

INSTRUCTIONS
3.2 Instruction description

3

3-23 M32R-FPU Software Manual (Rev.1.01)

BNCBNC branch instruction

Branch on not C-bit

[Mnemonic]

(1) BNC pcdisp8

(2) BNC pcdisp24

[Function]

Branch

(1) if (C==0) PC = (PC & 0xfffffffc) + (((signed char) pcdisp8) << 2);

(2) if (C==0) PC = (PC & 0xfffffffc) + (sign_extend (pcdisp24) << 2);

where

#define sign_extend(x) (((signed) ((x)<< 8)) >>8)

[Description]

BNC branches to the specified label when the condition bit (C) is 0.

There are two instruction formats; this allows software, such as an assembler, to decide on the

better format.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

11011111

11010111

BNC pcdisp24

BNC pcdisp8pcdisp8

pcdisp24

INSTRUCTIONS
3.2 Instruction description

3

3-24 M32R-FPU Software Manual (Rev.1.01)

BNEBNE branch instruction

Branch on not equal to

[Mnemonic]

BNE Rsrc1,Rsrc2,pcdisp16

[Function]

Branch

if (Rsrc1 != Rsrc2) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BNE causes a branch to the specified label when Rsrc1 is not equal to Rsrc2.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

BNE Rsrc1,Rsrc2,pcdisp16

1011 src1 0001 src2 pcdisp16

INSTRUCTIONS
3.2 Instruction description

3

3-25 M32R-FPU Software Manual (Rev.1.01)

BNEZBNEZ branch instruction

Branch on not equal to zero

[Mnemonic]

BNEZ Rsrc,pcdisp16

[Function]

Branch

if (Rsrc != 0) PC = (PC & 0xfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BNEZ causes a branch to the specified label when Rsrc is not equal to zero.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

BNEZ Rsrc,pcdisp16

1011 0000 1001 src pcdisp16

INSTRUCTIONS
3.2 Instruction description

3

3-26 M32R-FPU Software Manual (Rev.1.01)

BRABRA branch instruction

Branch

[Mnemonic]

(1) BRA pcdisp8

(2) BRA pcdisp24

[Function]

Branch

(1) PC = (PC & 0xfffffffc) + (((signed char) pcdisp8) << 2);

(2) PC = (PC & 0xfffffffc) + (sign_extend (pcdisp24) << 2);

where

#define sign_extend(x) (((signed) ((x)<< 8)) >>8)

[Description]

BRA causes an unconditional branch to the address specified by the label.

There are two instruction formats; this allows software, such as an assembler, to decide on the

better format.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

11111111

11110111

BRA pcdisp24

BRA pcdisp8pcdisp8

pcdisp24

INSTRUCTIONS
3.2 Instruction description

3

3-27 M32R-FPU Software Manual (Rev.1.01)

BSETBSET

INSTRUCTIONS
3.2 Instruction description

bit operation Instructions

Bit set

[M32R-FPU Extended Instruction]

[Mnemonic]

BSET #bitpos,@(disp16,Rsrc)

[Function]

Bit operation for memory contents Set 0 to specified bit.

* (signed char*) (Rsrc + (signed short) disp16) : = (1<< (7-bitpos)) ;

[Description]

BSET reads the byte data in the memory at the address specified by the Rsrc combined with

the 16-bit displacement, and then stores the value of the bit that was specified by bitpos to be set

to “1”. The displacement is sign-extended before the address calculation. bitpos becomes 0 to 7;

MSB becomes 0 and LSB becomes 7. The memory is accessed in bytes. The LOCK bit is on

while the BSET instruction is executed, and is cleared when the execution is completed. The

LOCK bit is internal to the CPU and cannot be directly read or written to by the user.

Condition bit C remains unchanged.

The LOCK bit is internal to the CPU and is the control bit for receiving all bus right requests

from circuits other than the CPU.

Refer to the Users Manual for non-CPU bus right requests, as the handling differs according to

the type of MCU.

[EIT occurrence]

None

[Encoding]

bitpos1010

BSET #bitpos,@(disp16,Rsrc)

src0110 disp160

3

3-28 M32R-FPU Software Manual (Rev.1.01)

BTSTBTST

INSTRUCTIONS
3.2 Instruction description

bit operation Instructions

Bit test

[M32R-FPU Extended Instruction]

[Mnemonic]

BTST #bitpos,Rsrc

[Function]

Remove the bit specified by the register.

C = Rsrc >> (7-bitpos)) &1;

[Description]

Take out the bit specified as bitpos within the Rsrc lower eight bits and sets it in the condition

bit (C). bitpos becomes 0 to 7, MSB becomes 0 and LSB becomes 7.

[EIT occurrence]

None

[Encoding]

bitpos0000 BTST #bitpos,Rsrcsrc11110

3

3-29 M32R-FPU Software Manual (Rev.1.01)

CLRPSWCLRPSW

INSTRUCTIONS
3.2 Instruction description

bit operation Instructions

Clear PSW

[M32R-FPU Extended Instruction]

[Mnemonic]

CLRPSW #imm8

[Function]

Set the undefined SM, IE, and C bits of PSW to 0.

PSW& = ~imm8 : 0xffffff00

[Description]

Set the AND result s of the reverse value of b0 (MSB), b1, and b7 (LSB) of the 8-bit immediate

value and bits SM, IE, and C of PSW to the corresponding SM, IE, and C bits. When b7 (LSB) or

#imm8 is 1, the condition bit (C) goes to 0. All other bits remain unchanged.

[EIT occurrence]

None

[Encoding]

00100111 CLRPSW #imm8imm8

3

3-30 M32R-FPU Software Manual (Rev.1.01)

CMP

[Mnemonic]

CMP Rsrc1,Rsrc2

[Function]

Compare

C = ((signed) Rsrc1 < (signed) Rsrc2) ? 1:0;

[Description]

The condition bit (C) is set to 1 when Rsrc1 is less than Rsrc2. The operands are treated as

signed 32-bit values.

[EIT occurrence]

None

[Encoding]

src10000 CMP Rsrc1,Rsrc2

CMP

0100

compare instruction

Compare

src2

INSTRUCTIONS
3.2 Instruction description

3

3-31 M32R-FPU Software Manual (Rev.1.01)

CMPI

[Mnemonic]

CMPI Rsrc,#imm16

[Function]

Compare

C = ((signed) Rsrc < (signed short) imm16) ? 1:0;

[Description]

The condition bit (C) is set when Rsrc is less than 16-bit immediate value. The operands are

treated as signed 32-bit values. The immediate value is sign-extended to 32-bit before the opera-

tion.

[EIT occurrence]

None

[Encoding]

CMPI compare instruction

Compare immediate

1000 0000 0100 src imm16

CMPI Rsrc,#imm16

INSTRUCTIONS
3.2 Instruction description

3

3-32 M32R-FPU Software Manual (Rev.1.01)

CMPU

[Mnemonic]

CMPU Rsrc1,Rsrc2

[Function]

Compare

C = ((unsigned) Rsrc1 < (unsigned) Rsrc2) ? 1:0;

[Description]

The condition bit (C) is set when Rsrc1 is less than Rsrc2. The operands are treated as un-

signed 32-bit values.

[EIT occurrence]

None

[Encoding]

src10000 CMPU Rsrc1,Rsrc2

CMPU

0101

compare instruction

Compare unsigned

src2

INSTRUCTIONS
3.2 Instruction description

3

3-33 M32R-FPU Software Manual (Rev.1.01)

CMPUI

[Mnemonic]

CMPUI Rsrc,#imm16

[Function]

Compare

C = ((unsigned) Rsrc < (unsigned) ((signed short) imm16)) ? 1:0;

[Description]

The condition bit (C) is set when Rsrc is less than the 16-bit immediate value. The operands

are treated as unsigned 32-bit values. The immediate value is sign-extended to 32-bit before the

operation.

[EIT occurrence]

None

[Encoding]

CMPUI compare instruction

Compare unsigned immediate

1000 0000 0101 src imm16

CMPUI Rsrc,#imm16

INSTRUCTIONS
3.2 Instruction description

3

3-34 M32R-FPU Software Manual (Rev.1.01)

dest1001 src0000 00000000 00000000

DIV Rdest,Rsrc

DIV

[Mnemonic]

DIV Rdest,Rsrc

[Function]

Signed division

Rdest = (signed) Rdest / (signed) Rsrc;

[Description]

DIV divides Rdest by Rsrc and puts the quotient in Rdest.

The operands are treated as signed 32-bit values and the result is rounded toward zero.

The condition bit (C) is unchanged.

When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None

[Encoding]

DIV multiply and divide instruction

Divide

INSTRUCTIONS
3.2 Instruction description

3

3-35 M32R-FPU Software Manual (Rev.1.01)

DIVU

[Mnemonic]

DIVU Rdest,Rsrc

[Function]

Unsigned division

Rdest = (unsigned) Rdest / (unsigned) Rsrc;

[Description]

DIVU divides Rdest by Rsrc and puts the quotient in Rdest.

The operands are treated as unsigned 32-bit values and the result is rounded toward zero.

The condition bit (C) is unchanged.

When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None

[Encoding]

DIVU multiply and divide instruction

Divide unsigned

dest1001 src0001 00000000 00000000

DIVU Rdest,Rsrc

INSTRUCTIONS
3.2 Instruction description

3

3-36 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

FADDFADD

[Mnemonic]

FADD Rdest,Rsrc1,Rsrc2

[Function]

Floating-point add

Rdest = Rsrc1 + Rsrc2 ;

[Description]

Add the floating-point single precision values stored in Rsrc1 and Rsrc2 and store the result in

Rdest. The result is rounded according to the RM field of FPSR. The DN bit of FPSR handles the

modification of denormalized numbers. The condition bit (C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)

• Unimplemented Operation Exception (UIPL)

• Invalid Operation Exception (IVLD)

• Overflow (OVF)

• Underflow (UDF)

• Inexact Exception (IXCT)

[Encoding]

floating-point Instructions

Floating-point add

[M32R-FPU Extended Instruction]

src11101 src20000 dest0000 00000000

FADD Rdest,Rsrc1,Rsrc2

3

3-37 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

[Supplemental Operation Description]

The following shows the values of Rsrc1 and Rsrc2 and the operation results when DN = 0 and

DN = 1.

DN = 0

Rsrc2

add

UIPL

QNaN

QNaN

SNaN

QNaN

SNaN

+0

+0

+0

(Note)

(Note)

+Infinity

+Infinity

IVLD

IVLD

IVLD

-Infinity

-Infinity

-Infinity-Infinity

-0

-0

+Infinity

-Infinity
Denormalized

Number

Denormalized
Number

Normalized
Number

Normalized
Number

-0

Rsrc1

Rsrc2

add

QNaN

QNaN

SNaN

QNaN

SNaN

+0

(Note)

(Note)

+Infinity

+Infinity

IVLD

IVLD

IVLD

-Infinity

-Infinity

-Infinity-Infinity

-0

+Infinity

-Infinity

Rsrc1

Normalized Number

Normalized
Number

Normalized
Number

Normalized
Number

 +0, +

 -0, -

 -0, -

Denormalized
Number +0, +Denormalized

Number

Denormalized
Number

Denormalized
Number

DN = 1

IVLD: Invalid Operation Exception

UIPL: Unimplemented Exception

NaN: Not a Number

SNaN: Signaling NaN

QNaN: Quiet NaN

Note: The rounding mode is “-0” when rounding toward “-Infinity”, and “+0” when rounding

toward any other direction.

FADDFADD floating point Instructions

Floating-point addd

[M32R-FPU Extended Instruction]

3

3-38 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

FCMPFCMP

src11101 src20000 dest0000 00001100

FCMP Rdest,Rsrc1,Rsrc2

[Mnemonic]

FCMP Rdest,Rsrc1,Rsrc2

[Function]

Floating-point compare

Rdest = (comparison results of Rsrc1 and Rsrc2);

When at least one value, either Rsrc1 or Rsrc2, is SNaN, a floating-point exception (other than

Invalid Operation Exception) occurs.

[Description]

Compare the floating-point single precision values stored in Rsrc1 and Rsrc2 and store the

result in Rdest. The results of the comparison can be determined y the following methods.

The DN bit of FPSR handles the conversion of denormalized numbers. The condition bit (C)

remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)

• Unimplemented Operation Exception (UIPL)

• Invalid Operation Exception (IVLD)

[Encoding]

floating point Instructions

Floating-point compare

[M32R-FPU Extended Instruction]

Rdest Comparison Results
Typical instructions used to

determine comparison results

b0=0 All bits, b1 to b31, are 0. Rsrc1=Rsrc2 beqz Rdest, LABEL

 bgtz Rdest, LABEL

 bltz Rdest, LABEL

 Rsrc1>Rsrc2

 Rsrc1<Rsrc2

 Comparison invalid

 Bits b1 to b31 are an undefined.

 All others

 b1 to b9=111 1111 11,

 Bits b10 to b31 are an undefined.

b0=1

3

3-39 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

[Supplemental Operation Description]

The following shows the values of Rsrc1 and Rsrc2 and the operation results when DN = 0 and

DN = 1.

DN = 0

DN = 1

IVLD: Invalid Operation Exception

UIPL: Unimplemented Exception

NaN: Not a Number

SNaN: Signaling NaN

QNaN: Quiet NaN

Rsrc2

UIPL

QNaN SNaN

QNaN

SNaN

+0

+0 +Infinity

+Infinity

IVLD

comparison
invalid

-Infinity

-Infinity

00000000

00000000

00000000

-0

+Infinity +Infinity

-Infinity -Infinity

-0

Rsrc1

Normalized
Number

Normalized
Number

comparison

Denormalized
Number

Denormalized
Number

Rsrc2

QNaN SNaN

QNaN

SNaN

 +0, +

 +0, + -0, -

 -0, -

+Infinity

+Infinity

IVLD

-Infinity

-Infinity

00000000

00000000

00000000

+Infinity +Infinity

-Infinity -Infinity

Rsrc1

Normalized Number

Normalized
Number

comparison

Denormalized
Number

Denormalized
Number

Denormalized
Number

Denormalized
Number

comparison
invalid

FCMPFCMP floating point Instructions

Floating-point compare

[M32R-FPU Extended Instruction]

3

3-40 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

FCMPEFCMPE

src11101 src20000 dest0000 00001101

FCMPE Rdest,Rsrc1,Rsrc2

[Mnemonic]

FCMPE Rdest,Rsrc1,Rsrc2

[Function]

Floating-point compare

Rdest = (comparison results of Rsrc1 and Rsrc2);

When at least one value, either Rsrc1 or Rsrc2, is QNaN or SNaN, a floating-point exception

(other than Invalid Operation Exception) occurs.

[Description]

Compare the floating-point single precision values stored in Rsrc1 and Rsrc2 and store the

result in Rdest. The results of the comparison can be determined y the following methods.

Note: Only when EV bit (b21 of FPSR Register) = “0”.

The DN bit of FPSR handles the conversion of denormalized numbers. The condition bit (C)

remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)

• Unimplemented Operation Exception (UIPL)

• Invalid Operation Exception (IVLD)

[Encoding]

floating-point Instructions

Floating-point compare with exception

if unordered

[M32R-FPU Extended Instruction]

Rdest Comparison Results
Typical instructions used to

determine comparison results

b0=0 All bits, b1 to b31, are 0. Rsrc1=Rsrc2 beqz Rdest, LABEL

 bgtz Rdest, LABEL

 bltz Rdest, LABEL

 Rsrc1>Rsrc2

 Rsrc1<Rsrc2

 Comparison invalid

 Bits b1 to b31 are an undefined.

 All others

 b1 to b9=111 1111 11,

 Bits b10 to b31 are an undefined.
 (Note)

b0=1

3

3-41 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

[Supplemental Operation Description]

The following shows the values of Rsrc1 and Rsrc2 and the operation results when DN = 0 and

DN = 1.

DN = 0

DN = 1

IVLD: Invalid Operation Exception

UIPL: Unimplemented Exception

NaN: Not a Number

SNaN: Signaling NaN

QNaN: Quiet NaN

Rsrc2

UIPL

QNaN SNaN

QNaN

SNaN

+0

+0 +Infinity

+Infinity

IVLD

-Infinity

-Infinity

00000000

00000000

00000000

-0

+Infinity +Infinity

-Infinity -Infinity

-0

Rsrc1

Normalized
Number

Normalized
Number

Denormalized
Number

Denormalized
Number

comparison

Rsrc2

QNaN SNaN

QNaN

SNaN

 +0, +

 +0, + -0, -

 -0, -

+Infinity

+Infinity

IVLD

-Infinity

-Infinity

00000000

00000000

00000000

+Infinity +Infinity

-Infinity -Infinity

Rsrc1

Normalized Number

Normalized
Number

Denormalized
Number

Denormalized
Number

Denormalized
Number

Denormalized
Number

comparison

FCMPEFCMPE floating point Instructions

Floating-point compare with exception

if unordered

[M32R-FPU Extended Instruction]

3

3-42 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

FDIVFDIV

[Mnemonic]

FDIV Rdest,Rsrc1,Rsrc2

[Function]

Floating-point divide

Rdest = Rsrc1 / Rsrc2 ;

[Description]

Divide the floating-point single precision value stored in Rsrc1 by the floating-point single pre-

cision value stored in Rsrc1 and store the result in Rdest. The result is rounded according to the

RM field of FPSR. The DN bit of FPSR handles the modification of denormalized numbers. The

condition bit (C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)

• Unimplemented Operation Exception (UIPL)

• Invalid Operation Exception (IVLD)

• Overflow (OVF)

• Underflow (UDF)

• Inexact Exception (IXCT)

• Zero Divide Exception (DIV0)

[Encoding]

floating-point Instructions

Floating-point divide

[M32R-FPU Extended Instruction]

src11101 src20000 dest0010 00000000

FDIV Rdest,Rsrc1,Rsrc2

3

3-43 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

[Supplemental Operation Description]

The following shows the values of Rsrc1 and Rsrc2 and the operation results when DN = 0 and

DN = 1.

DN = 0

DN = 1

IVLD: Invalid Operation Exception

UIPL: Unimplemented Exception

DIV0: Zero Divide Exception

NaN: Not a Number

SNaN: Signaling NaN

QNaN: Quiet NaN

Rsrc2

divide

UIPL

QNaN

QNaN

SNaN

 QNaN

 SNaN

+0

+0

0

0

+0

+0

+Infinity

+Infinity

+Infinity

IVLD

DIV0

IVLD

IVLD

-Infinity

-Infinity

-Infinity
Infinity

-0

-0

-0

 +Infinity

 -Infinity

-0

Rsrc1

Normalized
Number

Normalized
Number

Denormalized
Number

Denormalized
Number

Rsrc2

QNaN

QNaN

SNaN

QNaN

SNaN

 +0, +

 +0, + -0, -

 -0, -

+0

+0

+Infinity

+Infinity

+Infinity
Infinity

IVLD

DIV0

IVLD

IVLD

-Infinity

-Infinity

-Infinity

-0

-0
0

0

+Infinity

-Infinity

Rsrc1

Normalized Number

Normalized
Number

divide
Denormalized

Number

Denormalized
Number

Denormalized
Number

Denormalized
Number

FDIVFDIV floating point Instructions

Floating-point divide

[M32R-FPU Extended Instruction]

3

3-44 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

FMADDFMADD

[Mnemonic]

FMADD Rdest,Rsrc1,Rsrc2

[Function]

Floating-point multiply and add

Rdest = Rdest + Rsrc1 * Rsrc2 ;

[Description]

This instruction is executed in the following 2 steps.

● Step 1

Multiply the floating-point single precision value stored in Rsrc1 by the floating-point single

precision value stored in Rsrc2.

The multiplication result is rounded toward 0 regardless of the value in the RM field of FPSR.

● Step 2

Add the result of Step 1 (the rounded value) and the floating-point single precision value stored

in Rdest. The result is rounded according to the RM field of FPSR.

The result of this operation is stored in Rdest. Exceptions are determined in both Step 1 and

Step 2. The DN bit of FPSR handles the conversion of denormalized numbers. The condition bit

(C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)

• Unimplemented Operation Exception (UIPL)

• Invalid Operation Exception (IVLD)

• Overflow (OVF)

• Underflow (UDF)

• Inexact Exception (IXCT)

[Encoding]

floating-point Instructions

Floating-point multiply and add

[M32R-FPU Extended Instruction]

src11101 src20000 dest0011 00000000

FMADD Rdest,Rsrc1,Rsrc2

3

3-45 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

[Supplemental Operation Description]

The following shows the values of Rsrc1, Rsrc2 and Rdest and the operation results when DN

= 0 and DN = 1.

DN=0

Value after Multiplication Operation

Value after Addition Operation

IVLD: Invalid Operation Exception

UIPL: Unimplemented Exception

NaN: Not a Number

SNaN: Signaling NaN

QNaN: Quiet NaN

Note: The rounding mode is “-0” when rounding toward “-Infinity”, and “+0” when rounding

toward any other direction.

Rsrc2

Multiplication

UIPL

QNaN

QNaN

SNaN

QNaN

SNaN

+0

+0

+0

+0

+Infinity

+Infinity

Infinity

IVLD
-Infinity

-Infinity

IVLD

IVLD

-Infinity

+Infinity
Infinity

-0

-0

-0

+Infinity

-Infinity

-0

Rsrc1

Normalized
Number

Normalized
Number

Denormalized
Number

Denormalized
Number

Value after Multiplication Operation

add

(Note)

(Note)

QNaN

QNaNQNaN

SNaN

+0

+0

-0

-0

+0

+Infinity

+Infinity

IVLD

UIPL

IVLD

IVLD

-Infinity

-Infinity

-Infinity-Infinity

-0

+Infinity

-Infinity
Rdest

Normalized
Number

Normalized
Number

Denormalized
Number

FMADDFMADD floating point Instructions

Floating-point multiply and add

[M32R-FPU Extended Instruction]

3

3-46 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

DN=1

Value after Multiplication Operation

Value after Addition Operation

IVLD: Invalid Operation Exception

UIPL: Unimplemented Exception

NaN: Not a Number

SNaN: Signaling NaN

QNaN: Quiet NaN

Note: The rounding mode is “-0” when rounding toward “-Infinity”, and “+0” when rounding

toward any other direction.

Rsrc1

Rsrc2

QNaN

QNaN

SNaN

QNaN

SNaN

 +0, +

 +0, + -0, -

 -0, -

+0

+0

+Infinity

+Infinity

Infinity

IVLD
-Infinity

-Infinity

IVLD

IVLD

-Infinity

+Infinity
Infinity

-0

-0

+Infinity

-Infinity

Normalized
Number

Normalized
Number

Multiplication
Denormalized

Number

Denormalized
Number

Denormalized
Number

Denormalized
Number

Value after Multiplication Operation

(Note)

(Note)

QNaN

QNaNQNaN

SNaN

+0

+0 -0

-0

+0

+Infinity

+Infinity

IVLD

IVLD

IVLD

-Infinity

-Infinity

-Infinity-Infinity

-0

+Infinity

-Infinity

Rdest

Normalized
Number

Normalized
Number

Multiplication

FMADDFMADD floating point Instructions

Floating-point multiply and add

[M32R-FPU Extended Instruction]

3

3-47 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

FMSUBFMSUB

[Mnemonic]

FMSUB Rdest,Rsrc1,Rsrc2

[Function]

Floating-point multiply and subtract

Rdest = Rdest - Rsrc1 * Rsrc2 ;

[Description]

This instruction is executed in the following 2 steps.

● Step 1

Multiply the floating-point single precision value stored in Rsrc1 by the floating-point single

precision value stored in Rsrc2.

The multiplication result is rounded toward 0 regardless of the value in the RM field of FPSR.

● Step 2

Subtract the result (rounded value) of Step 1 from the floating-point single precision value

stored in Rdest.

The subtraction result is rounded according to the RM field of FPSR.

The result of this operation is stored in Rdest. Exceptions are determined in both Step 1 and

Step 2. The DN bit of FPSR handles the conversion of denormalized numbers. The condition bit

(C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)

• Unimplemented Operation Exception (UIPL)

• Invalid Operation Exception (IVLD)

• Overflow (OVF)

• Underflow (UDF)

• Inexact Exception (IXCT)

[Encoding]

floating-point Instructions

Floating-point multiply and subtract

[M32R-FPU Extended Instruction]

src11101 src20000 dest0011 00000100

FMSUB Rdest,Rsrc1,Rsrc2

3

3-48 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

[Supplemental Operation Description]

The following shows the values of Rsrc1, Rsrc2 and Rdest and the operation results when DN

= 0 and DN = 1.

DN=0

Value after Multiplication Operation

Value after Subtraction Operation

IVLD: Invalid Operation Exception

UIPL: Unimplemented Exception

NaN: Not a Number

SNaN: Signaling NaN

QNaN: Quiet NaN

Note: The rounding mode is “-0” when rounding toward “-Infinity”, and “+0” when rounding

toward any other direction.

Rsrc2

Multiplication

UIPL

QNaN

QNaN

SNaN

QNaN

SNaN

+0

+0

+0

+0

+Infinity

+Infinity

Infinity

IVLD
-Infinity

-Infinity

IVLD

IVLD

-Infinity

+Infinity
Infinity

-0

-0

-0

+Infinity

-Infinity

-0

Rsrc1

Normalized
Number

Normalized
Number

Denormalized
Number

Denormalized
Number

Value after Multiplication Operation

Subtraction

(Note)

(Note)

QNaN

QNaNQNaN

SNaN

+0

+0

-0

-0

+0

+Infinity

+Infinity

IVLD

UIPL

IVLD

IVLD

-Infinity

-Infinity

-Infinity-Infinity

-0

+Infinity

-Infinity
Rdest

Normalized
Number

Normalized
Number

Denormalized
Number

FMSUBFMSUB floating point Instructions

Floating-point multiply and subtract

[M32R-FPU Extended Instruction]

3

3-49 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

DN=1

Value after Multiplication Operation

Value after Subtraction Operation

IVLD: Invalid Operation Exception

UIPL: Unimplemented Exception

NaN: Not a Number

SNaN: Signaling NaN

QNaN: Quiet NaN

Note: The rounding mode is “-0” when rounding toward “-Infinity”, and “+0” when rounding

toward any other direction.

Rsrc1

Rsrc2

QNaN

QNaN

SNaN

QNaN

SNaN

 +0, +

 +0, + -0, -

 -0, -

+0

+0

+Infinity

+Infinity

Infinity

IVLD
-Infinity

-Infinity

IVLD

IVLD

-Infinity

+Infinity
Infinity

-0

-0

+Infinity

-Infinity

Normalized
Number

Normalized
Number

Multiplication
Denormalized

Number

Denormalized
Number

Denormalized
Number

Denormalized
Number

Value after Multiplication Operation

(Note)

(Note)

QNaN

QNaNQNaN

SNaN

+0

+0 -0

-0

+0

+Infinity

-Infinity

IVLD

IVLD

IVLD

-Infinity

+Infinity

-Infinity

+Infinity

-0

+Infinity

-Infinity

Rdest

Normalized
Number

Normalized
Number

Subtraction

FMSUBFMSUB floating point Instructions

Floating-point multiply and subtract

[M32R-FPU Extended Instruction]

3

3-50 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

FMULFMUL

[Mnemonic]

FMUL Rdest,Rsrc1,Rsrc2

[Function]

Floating-point multiply

Rdest = Rsrc1 * Rsrc2 ;

[Description]

Multiply the floating-point single precision value stored in Rsrc1 by the floating-point single

precision value stored in Rsrc2 and store the results in Rdest. The result is rounded according to

the RM field of FPSR. The DN bit of FPSR handles the modification of denormalized numbers.

The condition bit (C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)

• Unimplemented Operation Exception (UIPL)

• Invalid Operation Exception (IVLD)

• Overflow (OVF)

• Underflow (UDF)

• Inexact Exception (IXCT)

[Encoding]

floating-point Instructions

Floating-point multiply

[M32R-FPU Extended Instruction]

src11101 src20000 dest0001 00000000

FMUL Rdest,Rsrc1,Rsrc2

3

3-51 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

[Supplemental Operation Description]

The following shows the values of Rsrc1 and Rsrc2 and the operation results when DN = 0 and

DN = 1.

DN=0

DN=1

IVLD: Invalid Operation Exception

UIPL: Unimplemented Exception

NaN: Not a Number

SNaN: Signaling NaN

QNaN: Quiet NaN

Rsrc2

Multiplication

UIPL

QNaN

QNaN

SNaN

QNaN

SNaN

+0

+0

+0

+0

+Infinity

+Infinity

Infinity

IVLD
-Infinity

-Infinity

IVLD

IVLD

-Infinity

+Infinity
Infinity

-0

-0

-0

+Infinity

-Infinity

-0

Rsrc1

Normalized
Number

Normalized
Number

Denormalized
Number

Denormalized
Number

Rsrc1

Rsrc2

QNaN

QNaN

SNaN

QNaN

SNaN

 +0, +

 +0, + -0, -

 -0, -

+0

+0

+Infinity

+Infinity

Infinity

IVLD
-Infinity

-Infinity

IVLD

IVLD

-Infinity

+Infinity
Infinity

-0

-0

+Infinity

-Infinity

Normalized
Number

Normalized
Number

Multiplication
Denormalized

Number

Denormalized
Number

Denormalized
Number

Denormalized
Number

FMULFMUL floating point Instructions

Floating-point multiply

[M32R-FPU Extended Instruction]

3

3-52 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

FSUBFSUB

[Mnemonic]

FSUB Rdest,Rsrc1,Rsrc2

[Function]

Floating-point subtract

Rdest = Rsrc1 - Rsrc2 ;

[Description]

Subtract the floating-point single precision value stored in Rsrc2 from the floating-point single

precision value stored in Rsrc1 and store the results in Rdest. The result is rounded according to

the RM field of FPSR. The DN bit of FPSR handles the modification of denormalized numbers.

The condition bit (C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)

• Unimplemented Operation Exception (UIPL)

• Invalid Operation Exception (IVLD)

• Overflow (OVF)

• Underflow (UDF)

• Inexact Exception (IXCT)

[Encoding]

floating-point Instructions

Floating-point subtract

[M32R-FPU Extended Instruction]

src11101 src20000 dest0000 00000100

FSUB Rdest,Rsrc1,Rsrc2

3

3-53 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

Rsrc2

Subtraction

UIPL

QNaN

QNaN

SNaN

QNaN

SNaN

+0

+0

+0

(Note)

(Note)

+Infinity

+Infinity

IVLD

IVLD

IVLD

-Infinity

-Infinity

-Infinity

+Infinity

-0

-0

+Infinity

-Infinity
Denormalized

Number

Denormalized
Number

Normalized
Number

Normalized
Number

-0

Rsrc1

Rsrc2

QNaN

QNaN

SNaN

QNaN

SNaN

+0

(Note)

(Note)

+Infinity

+Infinity

IVLD

IVLD

IVLD

-Infinity

-Infinity
+Infinity

-Infinity

-0

+Infinity

-Infinity

Rsrc1

Normalized Number

Normalized
Number

Subtraction

 +0, + -0, -Denormalized
Number

Denormalized
Number

 +0, +

 -0, -

Denormalized
Number

Denormalized
Number

[Supplemental Operation Description]

The following shows the values of Rsrc1 and Rsrc2 and the operation results when DN = 0 and

DN = 1.

DN = 0

DN = 1

IVLD: Invalid Operation Exception

UIPL: Unimplemented Exception

NaN: Not a Number

SNaN: Signaling NaN

QNaN: Quiet NaN

Note: The rounding mode is “-0” when rounding toward “-Infinity”, and “+0” when rounding

toward any other direction.

FSUBFSUB floating point Instructions

Floating-point subtract

[M32R-FPU Extended Instruction]

3

3-54 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

FTOIFTOI

[Mnemonic]

FTOI Rdest,Rsrc

[Function]

Convert the floating-point single precision value to 32-bit integer.

Rdest = (signed int) Rsrc ;

[Description]

Convert the floating-point single precision value stored in Rsrc to a 32-bit integer and store the

result in Rdest.

The result is rounded toward 0 regardless of the value in the RM field of FPSR. The condition

bit (C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)

• Unimplemented Operation Exception (UIPL)

• Invalid Operation Exception (IVLD)

• Inexact Exception (IXCT)

[Encoding]

floating-point Instructions

Float to Integer

[M32R-FPU Extended Instruction]

src1101 00000000 dest0100 00001000

FTOI Rdest,Rsrc

3

3-55 M32R-FPU Software Manual (Rev.1.01)

[Supplemental Operation Description]

The results of the FTOI instruction executed based on the Rsrc value, both when DN = 0 and DN = 1,
are shown in below.

DN = 0

Rsrc Value (exponent with no bias) Rdest Exception

Rsrc ≥ 0 +Infinity When EIT occurs: no change Invalid Operation Exception

127 ≥ exp ≥ 31 Other EIT: H'7FFF FFFF

30 ≥ exp ≥ -126 H'0000 0000 to H'7FFF FF80 No change (Note 1)

+Denormalized value No change Unimplemented Exception

+0 H'0000 0000 No change

Rsrc < 0 -0

-Denormalized value No change Unimplemented Exception

30 ≥ exp ≥ -126 H'0000 0000 to H'8000 0080 No change (Note 1)

127 ≥ exp ≥ 31 When EIT occurs: no change Invalid Operation Exception

-Infinity Other EIT: H'8000 0080 (Note 2)

NaN QNaN When EIT occurs: no change Invalid Operation Exception
Other EIT:

SNaN Signed bit = 0:H’7FFF FFFF

Signed bit = 1:H’8000 0000

Note 1: Inexact Exception occurs when rounding is performed.
2: Inexact Exception does not occur when Rsrc = H’CF00 0000.

DN = 1

Rsrc Value (exponent with no bias) Rdest Exception

Rsrc ≥ 0 +Infinity When EIT occurs: no change Invalid Operation Exception

127 ≥ exp ≥ 31 Other EIT: H'7FFF FFFF

30 ≥ exp ≥ -126 H'0000 0000 to H'7FFF FF80 No change (Note 1)

+0, +Denormalized value H'0000 0000 No change

Rsrc < 0 -0, -Denormalized value

30 ≥ exp ≥ -126 H'0000 0000 to H'8000 0080 No change (Note 1)

127 ≥ exp ≥ 31 When EIT occurs: no change Invalid Operation Exception

-Infinity Other EIT: H'8000 0000 (Note 2)

NaN QNaN When EIT occurs: no change Invalid Operation Exception
Other EIT:

SNaN Signed bit = 0:H’7FFF FFFF

Signed bit = 1:H’8000 0000

Note 1: Inexact Exception occurs when rounding is performed.
2: Inexact Exception does not occur when Rsrc = H’CF00 0000.

INSTRUCTIONS
3.2 Instruction description

FTOIFTOI floating point Instructions

Float to Integer

[M32R-FPU Extended Instruction]

3

3-56 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

FTOSFTOS

[Mnemonic]

FTOS Rdest,Rsrc

[Function]

Convert the floating-point single precision value to 16-bit integer.

Rdest = (signed int) Rsrc ;

[Description]

Convert the floating-point single precision value stored in Rsrc to a 16-bit integer and store the

result in Rdest.

The result is rounded toward 0 regardless of the value in the RM field of FPSR. The condition

bit (C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)

• Unimplemented Operation Exception (UIPL)

• Invalid Operation Exception (IVLD)

• Inexact Exception (IXCT)

[Encoding]

floating-point Instructions

Float to short

[M32R-FPU Extended Instruction]

src1101 00000000 dest0100 00001100

FTOS Rdest,Rsrc

3

3-57 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

[Supplemental Operation Description]

The results of the FTOS instruction executed based on the Rsrc value, both when DN = 0 and DN = 1,
are shown in below.

DN = 0

Rsrc Value (exponent with no bias) Rdest Exception

Rsrc ≥ 0 +Infinity When EIT occurs: no change Invalid Operation Exception

127 ≥ exp ≥ 15 Other EIT: H'0000 7FFFF

14 ≥ exp ≥ -126 H'0000 0000 to H'0000 7FFF No change (Note 1)

+Denormalized value No change Unimplemented Exception

+0 H'0000 0000 No change

Rsrc < 0 -0

-Denormalized value No change Unimplemented Exception

14 ≥ exp ≥ -126 H'0000 0000 to H'FFFF 8001 No change (Note 1)

127 ≥ exp ≥ 15 When EIT occurs: no change Invalid Operation Exception

-Infinity Other EIT: H’FFFF 8000 (Note 2)

NaN QNaN When EIT occurs: no change Invalid Operation Exception
Other EIT:

SNaN Signed bit = 0:H’0000 7FFF

Signed bit = 1:H’FFFF 8000

Note 1: Inexact Exception occurs when rounding is performed.
2: Inexact Exception does not occur when Rsrc = H’CF00 0000.

DN = 1

Rsrc Value (exponent with no bias) Rdest Exception

Rsrc ≥ 0 +Infinity When EIT occurs: no change Invalid Operation Exception

127 ≥ exp ≥ 15 Other EIT: H'0000 7FFF

14 ≥ exp ≥ -126 H'0000 0000 to H'0000 7FFF No change (Note 1)

+0, +Denormalized value H'0000 0000 No change

Rsrc < 0 -0, -Denormalized value

14 ≥ exp ≥ -126 H'0000 0000 to H'FFFF 8001 No change (Note 1)

127 ≥ exp ≥ 15 When EIT occurs: no change Invalid Operation Exception

-Infinity Other EIT: H'FFFF 8000 (Note 2)

NaN QNaN When EIT occurs: no change Invalid Operation Exception
Other EIT:

SNaN Signed bit = 0:H’0000 7FFF

Signed bit = 1:H’FFFF 8000

Note 1: Inexact Exception occurs when rounding is performed.
2: No Exceptions occur when Rsrc = H’C700 0000. When Rsrc = H’C700 0001 to H’C700 00FF,

the Inexact Exception occurs and the Invalid Operation Exception does not occur.

FTOSFTOS floating point Instructions

Float to short

[M32R-FPU Extended Instruction]

3

3-58 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

ITOFITOF

[Mnemonic]

ITOF Rdest,Rsrc

[Function]

Convert the integer to a floating-point single precision value.

Rdes = (float) Rsrc ;

[Description]

Converts the 32-bit integer stored in Rsrc to a floating-point single precision value and stores

the result in Rdest. The result is rounded according to the RM field of FPSR. The condition bit (C)

remains unchanged. H’0000 0000 is handled as “+0” regardless of the Rounding Mode.

[EIT occurrence]

Floating-Point Exceptions (FPE)

• Inexact Exception (IXCT)

[Encoding]

floating-point Instructions

Integer to float

[M32R-FPU Extended Instruction]

src1101 00000000 dest0100 00000000

ITOF Rdest,Rsrc

3

3-59 M32R-FPU Software Manual (Rev.1.01)

JLJL branch instruction

Jump and link

[Mnemonic]

JL Rsrc

[Function]

Subroutine call (register direct)

R14 = (PC & 0xfffffffc) + 4;

PC = Rsrc & 0xfffffffc;

[Description]

JL causes an unconditional jump to the address specified by Rsrc and puts the return address

in R14.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

11100001 JL Rsrcsrc1100

INSTRUCTIONS
3.2 Instruction description

3

3-60 M32R-FPU Software Manual (Rev.1.01)

JMPJMP branch instruction

Jump

[Mnemonic]

JMP Rsrc

[Function]

Jump

PC = Rsrc & 0xfffffffc;

[Description]

JMP causes an unconditional jump to the address specified by Rsrc.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

JMP Rsrc11110001 1100 src

INSTRUCTIONS
3.2 Instruction description

3

3-61 M32R-FPU Software Manual (Rev.1.01)

LDLD load/store instruction

Load

[Mnemonic]

(1) LD Rdest,@Rsrc

(2) LD Rdest,@Rsrc+

(3) LD Rdest,@(disp16,Rsrc)

[Function]

Load to register from the contents of the memory.

(1) Rdest = *(int *) Rsrc;

(2) Rdest = *(int *) Rsrc, Rsrc += 4;

(3) Rdest = *(int *) (Rsrc + (signed short) disp16);

[Description]

(1) The contents of the memory at the address specified by Rsrc are loaded into Rdest.

(2) The contents of the memory at the address specified by Rsrc are loaded into Rdest.

 Rsrc is post incremented by 4.

(3) The contents of the memory at the address specified by Rsrc combined with the 16-

 bit displacement are loaded into Rdest.

 The displacement value is sign-extended to 32 bits before the address calculation.

 The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

[Encoding]

dest0010 LD Rdest,@Rsrc

dest1010

dest0010 LD Rdest,@Rsrc+

LD Rdest,@(disp16,Rsrc)

1100 src

1110 src

1100 src disp16

INSTRUCTIONS
3.2 Instruction description

3

3-62 M32R-FPU Software Manual (Rev.1.01)

LD24LD24 load/store instruction

Load 24-bit immediate

[Mnemonic]

LD24 Rdest,#imm24

[Function]

Load the 24-bit immediate value into register.

Rdest = imm24 & 0x00ffffff;

[Description]

LD24 loads the 24-bit immediate value into Rdest. The immediate value is zero-extended to 32

bits.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1110 imm24

LD24 Rdest,#imm24

INSTRUCTIONS
3.2 Instruction description

3

3-63 M32R-FPU Software Manual (Rev.1.01)

LDBLDB load/store instruction

Load byte

[Mnemonic]

(1) LDB Rdest,@Rsrc

(2) LDB Rdest,@(disp16,Rsrc)

[Function]

Load to register from the contents of the memory.

(1) Rdest = *(signed char *) Rsrc;

(2) Rdest = *(signed char *) (Rsrc + (signed short) disp16);

[Description]

(1) LDB sign-extends the byte data of the memory at the address specified by Rsrc and loads

 it into Rdest.

(2) LDB sign-extends the byte data of the memory at the address specified by Rsrc combined

 with the 16-bit displacement, and loads it into Rdest.

 The displacement value is sign-extended to 32 bits before the address calculation.

 The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1010

dest0010 1000 src

1000 src disp16

LDB Rdest,@Rsrc

LDB Rdest,@(disp16,Rsrc)

INSTRUCTIONS
3.2 Instruction description

3

3-64 M32R-FPU Software Manual (Rev.1.01)

LDHLDH load/store instruction

Load halfword

[Mnemonic]

(1) LDH Rdest,@Rsrc

(2) LDH Rdest,@(disp16,Rsrc)

[Function]

Load to register from the contents of the memory.

(1) Rdest = *(signed short *) Rsrc;

(2) Rdest = *(signed short *) (Rsrc + (signed short) disp16);

[Description]

(1) LDH sign-extends the halfword data of the memory at the address specified by Rsrc and

 loads it into Rdest.

(2) LDH sign-extends the halfword data of the memory at the address specified by Rsrc

 combined with the 16-bit displacement, and loads it into Rdest.

 The displacement value is sign-extended to 32 bits before the address calculation.

 The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

[Encoding]

dest1010

dest0010 1010 src

1010 src disp16

LDH Rdest,@Rsrc

LDH Rdest,@(disp16,Rsrc)

INSTRUCTIONS
3.2 Instruction description

3

3-65 M32R-FPU Software Manual (Rev.1.01)

LDILDI transfer instruction

Load immediate

[Mnemonic]

(1) LDI Rdest,#imm8

(2) LDI Rdest,#imm16

[Function]

Load the immediate value into register.

(1) Rdest = (signed char) imm8;

(2) Rdest = (signed short) imm16;

[Description]

(1) LDI loads the 8-bit immediate value into Rdest.

 The immediate value is sign-extended to 32 bits.

(2) LDI loads the 16-bit immediate value into Rdest.

 The immediate value is sign-extended to 32 bits.

 The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1001

dest0110

1111 0000

LDI Rdest,#imm16

imm8

imm16

LDI Rdest,#imm8

INSTRUCTIONS
3.2 Instruction description

3

3-66 M32R-FPU Software Manual (Rev.1.01)

LDUBLDUB load/store instruction

Load unsigned byte

[Mnemonic]

(1) LDUB Rdest,@Rsrc

(2) LDUB Rdest,@(disp16,Rsrc)

[Function]

Load to register from the contents of the memory.

(1) Rdest = *(unsigned char *) Rsrc;

(2) Rdest = *(unsigned char *) (Rsrc + (signed short) disp16);

[Description]

(1) LDUB zero-extends the byte data from the memory at the address specified by Rsrc and

 loads it into Rdest.

(2) LDUB zero-extends the byte data of the memory at the address specified by Rsrc com-

bined

 with the 16-bit displacement, and loads it into Rdest.

 The displacement value is sign-extended to 32 bits before address calculation.

 The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1010

dest0010 1001 src

1001 src

LDUB Rdest,@Rsrc

LDUB Rdest,@(disp16,Rsrc)

disp16

INSTRUCTIONS
3.2 Instruction description

3

3-67 M32R-FPU Software Manual (Rev.1.01)

LDUHLDUH load/store instruction

Load unsigned halfword

[Mnemonic]

(1) LDUH Rdest,@Rsrc

(2) LDUH Rdest,@(disp16,Rsrc)

[Function]

Load to register from the contents of the memory.

(1) Rdest = *(unsigned short *) Rsrc;

(2) Rdest = *(unsigned short *) (Rsrc + (signed short) disp16);

[Description]

(1) LDUH zero-extends the halfword data from the memory at the address specified by Rsrc

 and loads it into Rdest.

(2) LDUH zero-extends the halfword data in memory at the address specified by Rsrc com-

bined

 with the 16-bit displacement, and loads it into Rdest.

 The displacement value is sign-extended to 32 bits before the address calculation.

 The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

[Encoding]

LDUH Rdest,@Rsrc

dest1010

dest0010 1011 src

1011 src disp16

LDUH Rdest,@(disp16,Rsrc)

INSTRUCTIONS
3.2 Instruction description

3

3-68 M32R-FPU Software Manual (Rev.1.01)

LOCKLOCK load/store instruction

Load locked

[Mnemonic]

LOCK Rdest,@Rsrc

[Function]

Load locked

LOCK = 1, Rdest = *(int *) Rsrc;

[Description]

The contents of the word at the memory location specified by Rsrc are loaded into Rdest. The

condition bit (C) is unchanged.

This instruction sets the LOCK bit in addition to simple loading.

When the LOCK bit is 1, external bus master access is not accepted.

The LOCK bit is cleared by executing the UNLOCK instruction.

The LOCK bit is located in the CPU and operates based on the LOCK and UNLOCK instruc-

tions. The user cannot directly read or write to this bit.

The LOCK bit is internal to the CPU and is the control bit for receiving all bus right requests

from circuits other than the CPU.

Refer to the Users Manual for non-CPU bus right requests, as the handling differs according to

the type of MCU.

[EIT occurrence]

Address exception (AE)

[Encoding]

dest0010 LOCK Rdest,@Rsrcsrc1101

INSTRUCTIONS
3.2 Instruction description

3

3-69 M32R-FPU Software Manual (Rev.1.01)

MACHIMACHI DSP function instruction

Multiply-accumulate high-order halfwords

[Mnemonic]

MACHI Rsrc1,Rsrc2

[Function]

Multiply and add

accumulator += ((signed) (Rsrc1 & 0xffff0000) * (signed short) (Rsrc2 >> 16));

[Description]

MACHI multiplies the high-order 16 bits of Rsrc1 and the high-order 16 bits of Rsrc2, then adds

the result to the low-order 56 bits in the accumulator.

The LSB of the multiplication result is aligned with bit 47 in the accumulator, and the portion

corresponding to bits 8 through 15 of the accumulator is sign-extended before addition. The

result of the addition is stored in the accumulator. The high-order 16 bits of Rsrc1 and Rsrc2 are

treated as signed values.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

src10011 MACHI Rsrc1,Rsrc2src20100

Rsrc1high-order 16 bits

Rsrc2high-order 16 bitsx

0 15 16 31

0 Result of the multiplication

Value in accumulator before the
execution of the MACHI instruction

Value in accumulator after the
execution of the MACHI instruction

Sign extension

Sign extension

+

0 15 16 31 32 47 48 637 8

INSTRUCTIONS
3.2 Instruction description

3

3-70 M32R-FPU Software Manual (Rev.1.01)

MACLOMACLO DSP function instruction

Multiply-accumulate low-order halfwords

[Mnemonic]

MACLO Rsrc1,Rsrc2

[Function]

Multiply and add

accumulator += ((signed) (Rsrc1 << 16) * (signed short) Rsrc2) ;

[Description]

MACLO multiplies the low-order 16 bits of Rsrc1 and the low-order 16 bits of Rsrc2, then adds

the result to the low order 56 bits in the accumulator.

The LSB of the multiplication result is aligned with bit 47 in the accumulator, and the portion

corresponding to bits 8 through 15 of the accumulator is sign-extended before addition. The

result of the addition is stored in the accumulator. The low-order 16 bits of Rsrc1 and Rsrc2 are

treated as signed values.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

Rsrc1low-order 16 bits

Rsrc2low-order 16 bitsx

0 15 16 31

0

+

0 15 16 31 32 47 48 637 8

Result of the multiplication

Value in accumulator before the
execution of the MACLO instruction

Value in accumulator after the
execution of the MACLO instruction

Sign extension

Sign extension

src10011 MACLO Rsrc1,Rsrc2src20101

INSTRUCTIONS
3.2 Instruction description

3

3-71 M32R-FPU Software Manual (Rev.1.01)

MACWHIMACWHI DSP function instruction

Multiply-accumulate

word and high-order halfword

[Mnemonic]

MACWHI Rsrc1,Rsrc2

[Function]

Multiply and add

accumulator += ((signed) Rsrc1 * (signed short) (Rsrc2 >> 16));

[Description]

MACWHI multiplies the 32 bits of Rsrc1 and the high-order 16 bits of Rsrc2, then adds the

result to the low-order 56 bits in the accumulator.

The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion

corresponding to bits 8 through 15 of the accumulator is sign extended before addition. The

result of addition is stored in the accumulator. The 32 bits of Rsrc1 and the high-order 16 bits of

Rsrc2 are treated as signed values.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

high-order 16 bits

Rsrc132 bits

Rsrc2x

0 15 16 31

+

0 15 16 31 32 47 48 637 8

Result of the multiplication

Value in accumulator before the
execution of the MACWHI instruction

Value in accumulator after the
execution of the MACWHI instruction

Sign extension

Sign extension

src10011 MACWHI Rsrc1,Rsrc2src20110

INSTRUCTIONS
3.2 Instruction description

3

3-72 M32R-FPU Software Manual (Rev.1.01)

MACWLOMACWLO DSP function instruction

Multiply-accumulate

word and low-order halfword

[Mnemonic]

MACWLO Rsrc1,Rsrc2

[Function]

Multiply and add

accumulator += ((signed) Rsrc1 * (signed short) Rsrc2) ;

[Description]

MACWLO multiplies the 32 bits of Rsrc1 and the low-order 16 bits of Rsrc2, then adds the

result to the low-order 56 bits in the accumulator.

The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion

corresponding to bits 8 through 15 of the accumulator is sign-extended before the addition. The

result of the addition is stored in the accumulator. The 32 bits Rsrc1 and the low-order 16 bits of

Rsrc2 are treated as signed values.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

Rsrc132 bits

Rsrc2low-order 16 bitsx

0 15 16 31

+

0 15 16 31 32 47 48 637 8

Result of the multiplication

Value in accumulator before the
execution of the MACWLO instruction

Value in accumulator after the
execution of the MACWLO instruction

Sign extension

Sign extension

src10011 MACWLO Rsrc1,Rsrc2src20111

INSTRUCTIONS
3.2 Instruction description

3

3-73 M32R-FPU Software Manual (Rev.1.01)

MULMUL multiply and divide instruction

Multiply

[Mnemonic]

MUL Rdest,Rsrc

[Function]

Multiply

{ signed64bit tmp;

tmp = (signed64bit) Rdest * (signed64bit) Rsrc;

Rdest = (int) tmp;}

[Description]

MUL multiplies Rdest by Rsrc and puts the result in Rdest.

The operands are treated as signed values.

The contents of the accumulator are destroyed by this instruction. The condition bit (C) is

unchanged.

[EIT occurrence]

None

[Encoding]

dest0001 MUL Rdest,Rsrcsrc0110

INSTRUCTIONS
3.2 Instruction description

3

3-74 M32R-FPU Software Manual (Rev.1.01)

MULHIMULHI DSP function instruction

Multiply high-order halfwords

[Mnemonic]

MULHI Rsrc1,Rsrc2

[Function]

Multiply

accumulator = ((signed) (Rsrc1 & 0xffff000) * (signed short) (Rsrc2 >> 16));

[Description]

MULHI multiplies the high-order 16 bits of Rsrc1 and the high-order 16 bits of Rsrc2, and

stores the result in the accumulator.

However, the LSB of the multiplication result is aligned with bit 47 in the accumulator, and the

portion corresponding to bits 0 through 15 of the accumulator is sign-extended. Bits 48 through

63 of the accumulator are cleared to 0. The high-order 16 bits of Rsrc1 and Rsrc2 are treated as

signed values.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

MULHI Rsrc1,Rsrc2src10011 src20000

Rsrc1high-order 16 bits

Rsrc2high-order 16 bitsx

0 15 16 31

0

0 15 16 31 32 47 48 63

Value in accumulator after the
execution of the MALHI instruction

Sign extension

INSTRUCTIONS
3.2 Instruction description

3

3-75 M32R-FPU Software Manual (Rev.1.01)

MULLOMULLO DSP function instruction

Multiply low-order halfwords

[Mnemonic]

MULLO Rsrc1,Rsrc2

[Function]

Multiply

accumulator = ((signed) (Rsrc1 << 16) * (signed short) Rsrc2);

[Description]

MULLO multiplies the low-order 16 bits of Rsrc1 and the low-order 16 bits of Rsrc2, and stores

the result in the accumulator.

The LSB of the multiplication result is aligned with bit 47 in the accumulator, and the portion

corresponding to bits 0 through 15 of the accumulator is sign extended. Bits 48 through 63 of the

accumulator are cleared to 0. The low-order 16 bits of Rsrc1 and Rsrc2 are treated as signed

values.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

Rsrc1

Rsrc2x

0 15 16 31

low-order 16 bits

0

0 15 16 31 32 47 48 63

low-order 16 bits

Value in accumulator after the
execution of the MULLO instruction

Sign extension

src10011 MULLO Rsrc1,Rsrc2src20001

INSTRUCTIONS
3.2 Instruction description

3

3-76 M32R-FPU Software Manual (Rev.1.01)

MULWHIMULWHI DSP function instruction

Multiply

word and high-order halfword

[Mnemonic]

MULWHI Rsrc1,Rsrc2

[Function]

Multiply

accumulator = ((signed) Rsrc1 * (signed short) (Rsrc2 >> 16));

[Description]

MULWHI multiplies the 32 bits of Rsrc1 and the high-order 16 bits of Rsrc2, and stores the

result in the accumulator.

The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion

corresponding to bits 0 through 15 of the accumulator is sign-extended. The 32 bits of Rsrc1 and

high-order 16 bits of Rsrc2 are treated as signed values.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

Rsrc132 bits

Rsrc2x

0 15 16 31

0 15 16 31 32 47 48 63

high-order 16 bits

Value in accumulator after the
execution of the MULWHI instruction

Sign extension

src10011 MULWHI Rsrc1,Rsrc2src20010

INSTRUCTIONS
3.2 Instruction description

3

3-77 M32R-FPU Software Manual (Rev.1.01)

MULWLOMULWLO DSP fucntion instruction

Multiply

word and low-order halfword

[Mnemonic]

MULWLO Rsrc1,Rsrc2

[Function]

Multiply

accumulator = ((signed) Rsrc1 * (signed short) Rsrc2);

[Description]

MULWLO multiplies the 32 bits of Rsrc1 and the low-order 16 bits of Rsrc2, and stores the

result in the accumulator.

The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion

corresponding to bits 0 through 15 of the accumulator is sign extended. The 32 bits of Rsrc1 and

low-order 16 bits of Rsrc2 are treated as signed values.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

Rsrc1

Rsrc2x

0 15 16 31

0 15 16 31 32 47 48 63

Value in accumulator after the
execution of the MULWLO instruction

Sign extension

low-order 16 bits

32 bits

src10011 MULWLO Rsrc1,Rsrc2src20011

INSTRUCTIONS
3.2 Instruction description

3

3-78 M32R-FPU Software Manual (Rev.1.01)

MVMV transfer instruction

Move register

[Mnemonic]

MV Rdest,Rsrc

[Function]

Transfer

Rdest = Rsrc;

[Description]

MV moves Rsrc to Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0001 MV Rdest,Rsrcsrc1000

INSTRUCTIONS
3.2 Instruction description

3

3-79 M32R-FPU Software Manual (Rev.1.01)

MVFACHIMVFACHI DSP function instruction

Move high-order word

from accumulator

[Mnemonic]

MVFACHI Rdest

[Function]

Transfer from accumulator to register

Rdest = (int) (accumulator >> 32) ;

[Description]

MVFACHI moves the high-order 32 bits of the accumulator to Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0101 MVFACHI Rdest00001111

INSTRUCTIONS
3.2 Instruction description

3

3-80 M32R-FPU Software Manual (Rev.1.01)

MVFACLOMVFACLO DSP function instruction

Move low-order word

from accumulator

[Mnemonic]

MVFACLO Rdest

[Function]

Transfer from accumulator to register

Rdest = (int) accumulator

[Description]

MVFACLO moves the low-order 32 bits of the accumulator to Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0101 MVFACLO Rdest00011111

INSTRUCTIONS
3.2 Instruction description

3

3-81 M32R-FPU Software Manual (Rev.1.01)

MVFACMIMVFACMI DSP function instruction

Move middle-order word

from accumulator

[Mnemonic]

MVFACMI Rdest

[Function]

Transfer from accumulator to register

Rdest = (int) (accumulator >> 16) ;

[Description]

MVFACMI moves bits16 through 47 of the accumulator to Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0101 MVFACMI Rdest00101111

INSTRUCTIONS
3.2 Instruction description

3

3-82 M32R-FPU Software Manual (Rev.1.01)

MVFCMVFC transfer instruction

Move from control register

[Mnemonic]

MVFC Rdest,CRsrc

[Function]

Transfer from control register to register

Rdest = CRsrc ;

[Description]

MVFC moves CRsrc to Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0001 MVFC Rdest,CRsrcsrc1001

INSTRUCTIONS
3.2 Instruction description

3

3-83 M32R-FPU Software Manual (Rev.1.01)

MVTACHIMVTACHI DSP function instruction

Move high-order word

to accumulator

[Mnemonic]

MVTACHI Rsrc

[Function]

Transfer from register to accumulator

accumulator [0 : 31] = Rsrc ;

[Description]

MVTACHI moves Rsrc to the high-order 32 bits of the accumulator.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

src0101 MVTACHI Rsrc00000111

INSTRUCTIONS
3.2 Instruction description

3

3-84 M32R-FPU Software Manual (Rev.1.01)

MVTACLOMVTACLO DSP function instruction

Move low-order word

to accumulator

[Mnemonic]

MVTACLO Rsrc

[Function]

Transfer from register to accumulator

accumulator [32 : 63] = Rsrc ;

[Description]

MVTACLO moves Rsrc to the low-order 32 bits of the accumulator.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

src0101 MVTACLO Rsrc00010111

INSTRUCTIONS
3.2 Instruction description

3

3-85 M32R-FPU Software Manual (Rev.1.01)

MVTCMVTC transfer instruction

Move to control register

[Mnemonic]

MVTC Rsrc,CRdest

[Function]

Transfer from register to control register

CRdest = Rsrc ;

[Description]

MVTC moves Rsrc to CRdest.

If PSW(CR0) is specified as CRdest, the condition bit (C) is changed; otherwise it is un-

changed.

[EIT occurrence]

None

[Encoding]

dest0001 MVTC Rsrc,CRdestsrc1010

INSTRUCTIONS
3.2 Instruction description

3

3-86 M32R-FPU Software Manual (Rev.1.01)

NEGNEG arithmetic operation instruction

Negate

[Mnemonic]

NEG Rdest,Rsrc

[Function]

Negate

Rdest = 0 – Rsrc ;

[Description]

NEG negates (changes the sign of) Rsrc treated as a signed 32-bit value, and puts the result

in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0000 NEG Rdest,Rsrcsrc0011

INSTRUCTIONS
3.2 Instruction description

3

3-87 M32R-FPU Software Manual (Rev.1.01)

NOPNOP branch instruction

No operation

[Mnemonic]

NOP

[Function]

No operation

/* */

[Description]

NOP performs no operation. The subsequent instruction then processed.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

NOP00000111 00000000

INSTRUCTIONS
3.2 Instruction description

3

3-88 M32R-FPU Software Manual (Rev.1.01)

NOTNOT logic operation instruction

Logical NOT

[Mnemonic]

NOT Rdest,Rsrc

[Function]

Logical NOT

Rdest = ~ Rsrc ;

[Description]

NOT inverts each of the bits of Rsrc and puts the result in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0000 NOT Rdest,Rsrcsrc1011

INSTRUCTIONS
3.2 Instruction description

3

3-89 M32R-FPU Software Manual (Rev.1.01)

OROR logic operation instruction

OR

[Mnemonic]

OR Rdest,Rsrc

[Function]

Logical OR

Rdest = Rdest | Rsrc ;

[Description]

OR computes the logical OR of the corresponding bits of Rdest and Rsrc, and puts the result

in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0000 OR Rdest,Rsrcsrc1110

INSTRUCTIONS
3.2 Instruction description

3

3-90 M32R-FPU Software Manual (Rev.1.01)

OR3OR3 logic operation instruction

OR 3-operand

[Mnemonic]

OR3 Rdest,Rsrc,#imm16

[Function]

Logical OR

Rdest = Rsrc | (unsigned short) imm16 ;

[Description]

OR3 computes the logical OR of the corresponding bits of Rsrc and the 16-bit immediate

value, which is zero-extended to 32 bits, and puts the result in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1000 src1110 imm16

OR3 Rdest,Rsrc,#imm16

INSTRUCTIONS
3.2 Instruction description

3

3-91 M32R-FPU Software Manual (Rev.1.01)

RACRAC DSP function instruction

Round accumulator

[Mnemonic]

RAC

[Function]

Saturation Process

{ signed64bit tmp;

tmp = (signed64bit) accumulator << 1;

tmp = tmp + 0x0000 0000 0000 8000;

if(0x0000 7fff ffff 0000 < tmp)

 accumulator = 0x0000 7fff ffff 0000;

else if(tmp < 0xffff 8000 0000 0000)

 accumulator = 0xffff 8000 0000 0000;

else

 accumulator = tmp & 0xffff ffff ffff 0000; }

[Description]

RAC rounds the contents in the accumulator to word size and stores the result in the accumu-

lator.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

RAC00000101 00001001

INSTRUCTIONS
3.2 Instruction description

3

3-92 M32R-FPU Software Manual (Rev.1.01)

[Supplement]

This instruction is executed in two steps as shown below:

<step 1>

<step 2>

The value in the accumulator is altered depending on the supposed bit 80 through 7 after
left-shift operation and bit 8 through bit 63 after shift operation.

if bit 48 is 0 , there is no carry.
if bit 48 is 1 , the bit is carried.
Bits 48 to 63 are cleared to zero.

0000 7FFF FFFF 8000positive
value

negative
value

0000 7FFF FFFF 7FFF

0000 0000 0000 0000

FFFF 8000 0000 8000
FFFF 8000 0000 7FFF

supposed sign
extended bit0-bit7

1-bit shift to the left

Value in Adest after the
execution of the RAC instruction

8 6316 32 48

00 7FFF FFFF 0000
0 8 63

00

FF 8000 0000 0000
0 8 63

FF

47 48
8 63

0

488 63
0

••••••

••••••

••••

••••

16 32 4880

0

63

16 32 488 6347

0

INSTRUCTIONS
3.2 Instruction description

RACRAC DSP function instruction

Round accumulator

3

3-93 M32R-FPU Software Manual (Rev.1.01)

RACHRACH DSP function instruction

Round accumulator halfword

[Mnemonic]

RACH

[Function]

Saturation Process

{ signed64bit tmp;

tmp = (signed64bit) accumulator << 1;

tmp = tmp + 0x0000 0000 8000 0000;

if(0x0000 7fff 0000 0000 < tmp)

 accumulator = 0x0000 7fff 0000 0000;

else if(tmp < 0xffff 8000 0000 0000)

 accumulator = 0xffff 8000 0000 0000;

else

 accumulator = tmp & 0xffff ffff 0000 0000; }

[Description]

RACH rounds the contents in the accumulator to halfword size and stores the result in the

accumulator.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

RACH00000101 00001000

INSTRUCTIONS
3.2 Instruction description

3

3-94 M32R-FPU Software Manual (Rev.1.01)

[Supplement]

This instruction is executed in two steps, as shown below.

<proccess 1>

<proccess 2>

The value in the accumulator is altered depending on the supposed bit 80 through 7 after
left-shift operation and bit 8 through bit 63 after shift operation.

if bit 32 is 0 , there is no carry.
if bit 32 is 1 , the bit is carried.
Bits 32 to 63 are cleared to zero.

0000 7FFE 8000 0000positive
value

negative
value

0000 7FFE 7FFF 7FFF

0000 0000 0000 0000

FFFF 8000 8000 0000
FFFF 8000 7FFF FFFF

supposed sign
extended bit0-bit7

1-bit shift to the left

Value in Adest after the
execution of the RAC instruction

8 6316 32 48

00 7FFF FFFF 0000
0 8 63

00

FF 8000 0000 0000
0 8 63

FF

31 32
8 63

00

4880 63
00

••••••

••••••

••••

••••

16 32 4880

0

63

16 32 488 6347

0

sign extension

INSTRUCTIONS
3.2 Instruction description

RACHRACH DSP function instruction

Round accumulator halfword

3

3-95 M32R-FPU Software Manual (Rev.1.01)

REMREM multiply and divide instruction

Remainder

[Mnemonic]

REM Rdest,Rsrc

[Function]

Signed remainder

Rdest = (signed) Rdest % (signed) Rsrc ;

[Description]

REM divides Rdest by Rsrc and puts the quotient in Rdest. The operands are treated as

signed 32-bit values.

The quotient is rounded toward zero and the quotient takes the same sign as the dividend.

The condition bit (C) is unchanged.

When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None

[Encoding]

dest1001 src0010 00000000 00000000

REM Rdest,Rsrc

INSTRUCTIONS
3.2 Instruction description

3

3-96 M32R-FPU Software Manual (Rev.1.01)

REMUREMU multiply and divide instruction

Remainder unsigned

[Mnemonic]

REMU Rdest,Rsrc

[Function]

Unsigned remainder

Rdest = (unsigned) Rdest % (unsigned) Rsrc ;

[Description]

REMU divides Rdest by Rsrc and puts the quotient in Rdest.

The operands are treated as unsigned 32-bit values.

The condition bit (C) is unchanged.

When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None

[Encoding]

dest1001 src0011 00000000 00000000

REMU Rdest,Rsrc

INSTRUCTIONS
3.2 Instruction description

3

3-97 M32R-FPU Software Manual (Rev.1.01)

RTERTE EIT-related instruction

Return from EIT

[Mnemonic]

RTE

[Function]

Return from EIT

SM = BSM ;

IE = BIE ;

C = BC ;

PC = BPC & 0xfffffffc ;

[Description]

RTE restores the SM, IE and C bits of the PSW from the BSM, BIE and BC bits, and jumps to

the address specified by BPC.

At this time, because the BSM, BIE, and BC bits in the PSW register are undefined, the BPC is

also undefined.

[EIT occurrence]

None

[Encoding]

RTE00000001 01101101

INSTRUCTIONS
3.2 Instruction description

3

3-98 M32R-FPU Software Manual (Rev.1.01)

SETHSETH Transfer instructions

Set high-order 16-bit

[Mnemonic]

SETH Rdest,#imm16

[Function]

Transfer instructions

Rdest = (signed short) imm16 << 16 ;

[Description]

SETH load the immediate value into the 16 most significant bits of Rdest.

The 16 least significant bits become zero.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1101 00001100

SETH Rdest,#imm16

imm16

INSTRUCTIONS
3.2 Instruction description

3

3-99 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

SETPSWSETPSW Bit Operation Instructions

Set PSW

[M32R-FPU Extended Instruction]

[Mnemonic]

SETPSW #imm8

[Function]

Set the undefined SM, IE, anc C bits of PSW to 1.

PSW : = imm8&0x000000ff

[Description]

Set the AND result of the value of b0 (MSB), b1, and b7 (LSB) of the 8-bit immediate value and

bits SM, IE, and C of PSW to the corresponding SM, IE, and C bits. When b7 (LSB) or #imm8 is

1, the condition bit (C) goes to 0. All other bits remain unchanged.

[EIT occurrence]

None

[Encoding]

[Note]

Set the 8-bit immediate values of b2 to b6 to “0”.

00010111 imm8 SETPSW #imm8

3

3-100 M32R-FPU Software Manual (Rev.1.01)

SLLSLL shift instruction

Shift left logical

[Mnemonic]

SLL Rdest,Rsrc

[Function]

Logical left shift

Rdest = Rdest << (Rsrc & 31) ;

[Description]

SLL left logical-shifts the contents of Rdest by the number specified by Rsrc, shifting zeroes

into the least significant bits.

Only the five least significant bits of Rsrc are used.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0001 src0100 SLL Rdest,Rsrc

INSTRUCTIONS
3.2 Instruction description

3

3-101 M32R-FPU Software Manual (Rev.1.01)

SLL3SLL3 shift instruction

Shift left logical 3-operand

[Mnemonic]

SLL3 Rdest,Rsrc,#imm16

[Function]

Logical left shift

Rdest = Rsrc << (imm16 & 31) ;

[Description]

SLL3 left logical-shifts the contents of Rsrc into Rdest by the number specified by the 16-bit

immediate value, shifting zeroes into the least significant bits.

Only the five least significant bits of the 16-bit immediate value are used.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1001 src1100

SLL3 Rdest,Rsrc,#imm16

imm16

INSTRUCTIONS
3.2 Instruction description

3

3-102 M32R-FPU Software Manual (Rev.1.01)

SLLISLLI shift instruction

Shift left logical immediate

[Mnemonic]

SLLI Rdest,#imm5

[Function]

Logical left shift

Rdest = Rdest << imm5 ;

[Description]

SLLI left logical-shifts the contents of Rdest by the number specified by the 5-bit immediate

value, shifting zeroes into the least significant bits.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0101 imm5010 SLLI Rdest,#imm5

INSTRUCTIONS
3.2 Instruction description

3

3-103 M32R-FPU Software Manual (Rev.1.01)

SRASRA shift instruction

Shift right arithmetic

[Mnemonic]

SRA Rdest,Rsrc

[Function]

Arithmetic right shift

Rdest = (signed) Rdest >> (Rsrc & 31) ;

[Description]

SRA right arithmetic-shifts the contents of Rdest by the number specified by Rsrc, replicates

the sign bit in the MSB of Rdest and puts the result in Rdest.

Only the five least significant bits are used.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0001 src0010 SRA Rdest,Rsrc

INSTRUCTIONS
3.2 Instruction description

3

3-104 M32R-FPU Software Manual (Rev.1.01)

SRA3SRA3 shift instruction

Shift right arithmetic 3-operand

[Mnemonic]

SRA3 Rdest,Rsrc,#imm16

[Function]

Arithmetic right shift

Rdest = (signed) Rsrc >> (imm16 & 31) ;

[Description]

SRA3 right arithmetic-shifts the contents of Rsrc into Rdest by the number specified by the 16-

bit immediate value, replicates the sign bit in Rsrc and puts the result in Rdest.

Only the five least significant bits are used.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1001 src1010

SRA3 Rdest,Rsrc,#imm16

imm16

INSTRUCTIONS
3.2 Instruction description

3

3-105 M32R-FPU Software Manual (Rev.1.01)

SRAISRAI shift instruction

Shift right arithmetic immediate

[Mnemonic]

SRAI Rdest,#imm5

[Function]

Arithmetic right shift

Rdest = (signed) Rdest >> imm5 ;

[Description]

SRAI right arithmetic-shifts the contents of Rdest by the number specified by the 5-bit immedi-

ate value, replicates the sign bit in MSB of Rdest and puts the result in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0101 imm5001 SRAI Rdest,#imm5

INSTRUCTIONS
3.2 Instruction description

3

3-106 M32R-FPU Software Manual (Rev.1.01)

SRLSRL shift instruction

Shift right logical

[Mnemonic]

SRL Rdest,Rsrc

[Function]

Logical right shift

Rdest = (unsigned) Rdest >> (Rsrc & 31) ;

[Description]

SRL right logical-shifts the contents of Rdest by the number specified by Rsrc, shifts zeroes

into the most significant bits and puts the result in Rdest.

Only the five least significant bits of Rsrc are used.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0001 src0000 SRL Rdest,Rsrc

INSTRUCTIONS
3.2 Instruction description

3

3-107 M32R-FPU Software Manual (Rev.1.01)

SRL3SRL3 shift instruction

Shift right logical 3-operand

[Mnemonic]

SRL3 Rdest,Rsrc,#imm16

[Function]

Logical right shift

Rdest = (unsigned) Rsrc >> (imm16 & 31) ;

[Description]

SRL3 right logical-shifts the contents of Rsrc into Rdest by the number specified by the 16-bit

immediate value, shifts zeroes into the most significant bits. Only the five least significant bits of

the immediate value are valid.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1001 src1000

SRL3 Rdest,Rsrc,#imm16

imm16

INSTRUCTIONS
3.2 Instruction description

3

3-108 M32R-FPU Software Manual (Rev.1.01)

SRLISRLI shift instruction

Shift right logical immediate

[Mnemonic]

SRLI Rdest,#imm5

[Function]

Logical right shift

Rdest = (unsigned) Rdest >> (imm5 & 31) ;

[Description]

SRLI right arithmetic-shifts Rdest by the number specified by the 5-bit immediate value, shift-

ing zeroes into the most significant bits.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0101 imm5000 SRLI Rdest,#imm5

INSTRUCTIONS
3.2 Instruction description

3

3-109 M32R-FPU Software Manual (Rev.1.01)

STST load/store instruction

Store

[Mnemonic]

(1) ST Rsrc1,@Rsrc2

(2) ST Rsrc1,@+Rsrc2

(3) ST Rsrc1,@-Rsrc2

(4) ST Rsrc1,@(disp16,Rsrc2)

[Function]

Store

(1) * (int *) Rsrc2 = Rsrc1;

(2) Rsrc2 += 4, * (int *) Rsrc2 = Rsrc1;

(3) Rsrc2 -= 4, * (int *) Rsrc2 = Rsrc1;

(4) * (int *) (Rsrc2 + (signed short) disp16) = Rsrc1;

[Description]

(1) ST stores Rsrc1 in the memory at the address specified by Rsrc2.

(2) ST increments Rsrc2 by 4 and stores Rsrc1 in the memory at the address specified by the

 resultant Rsrc2.

(3) ST decrements Rsrc2 by 4 and stores the contents of Rsrc1 in the memory at the address

 specified by the resultant Rsrc2.

(4) ST stores Rsrc1 in the memory at the address specified by Rsrc combined with the 16-bit

 displacement. The displacement value is sign-extended before the address calculation.

 The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

INSTRUCTIONS
3.2 Instruction description

3

3-110 M32R-FPU Software Manual (Rev.1.01)

[Encoding]

src11010

src10010 0111 src2

0100 src2 disp16

src10010 0110 src2

src10010 0100 src2 ST Rsrc1,@Rsrc2

ST Rsrc1,@+Rsrc2

ST Rsrc1,@-Rsrc2

ST Rsrc1,@(disp16,Rsrc2)

INSTRUCTIONS
3.2 Instruction description

STST load/store instruction

Store

3

3-111 M32R-FPU Software Manual (Rev.1.01)

STBSTB load/store instruction

Store byte

[Mnemonic]

(1) STB Rsrc1,@Rsrc2

(2) STB Rsrc1,@(disp16,Rsrc2)

[Function]

Store

(1) * (char *) Rsrc2 = Rsrc1;

(2) * (char *) (Rsrc2 + (signed short) disp16) = Rsrc1;

[Description]

(1) STB stores the least significant byte of Rsrc1 in the memory at the address specified by

 Rsrc2.

(2) STB stores the least significant byte of Rsrc1 in the memory at the address specified by

Rsrc

 combined with the 16-bit displacement.

 The displacement value is sign-extended to 32 bits before the address calculation.

 The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

src11010

src10010 0000 src2

0000 src2 disp16

STB Rsrc1,@Rsrc2

STB Rsrc1,@(disp16,Rsrc2)

INSTRUCTIONS
3.2 Instruction description

3

3-112 M32R-FPU Software Manual (Rev.1.01)

STHSTH load/store instruction

Store halfword

[M32R-FPU Extended Mnemonic]

[Mnemonic]

(1) STH Rsrc1,@Rsrc2

(2) STH Rsrc1,@Rsrc2+ [M32R-FPU Extended Mnemonic]

(3) STH Rsrc1,@(disp16,Rsrc2)

[Function]

Store

(1) * (signed short *) Rsrc2 = Rsrc1;

(2) * (signed short *) Rsrc2 = Rsrc1, Rsrc2 + = 2 ;

(3) * (signed short *) (Rsrc2 + (signed short) disp16) = Rsrc1;

[Description]

(1) STH stores the least significant halfword of Rsrc1 in the memory at the address specified

by Rsrc2.

(2) STH stores the LSB halfword of Rsrc1 to the memory of the address specified by Rsrc2,

and then increments Rsrc2 by 2.

(3) STH stores the least significant halfword of Rsrc1 in the memory at the address specified

by Rsrc combined with the 16-bit displacement. The displacement value is sign-ex-

tended to 32 bits before the address calculation.

The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

[Encoding]

src11010

src10010 0010 src2

0010 src2 disp16

STH Rsrc1,@Rsrc2

STH Rsrc1,@(disp16,Rsrc2)

INSTRUCTIONS
3.2 Instruction description

src10010 0011 src2 STH Rsrc1,@Rsrc2+

3

3-113 M32R-FPU Software Manual (Rev.1.01)

SUBSUB arithmetic operation instruction

Subtract

[Mnemonic]

SUB Rdest,Rsrc

[Function]

Subtract

Rdest = Rdest - Rsrc;

[Description]

SUB subtracts Rsrc from Rdest and puts the result in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0000 0010 src SUB Rdest,Rsrc

INSTRUCTIONS
3.2 Instruction description

3

3-114 M32R-FPU Software Manual (Rev.1.01)

SUBVSUBV arithmetic operation instruction

Subtract with overflow checking

[Mnemonic]

SUBV Rdest,Rsrc

[Function]

Subtract

Rdest = Rdest - Rsrc;

C = overflow ? 1 : 0;

[Description]

SUBV subtracts Rsrc from Rdest and puts the result in Rdest.

The condition bit (C) is set when the subtraction results in overflow; otherwise, it is cleared.

[EIT occurrence]

None

[Encoding]

dest0000 0000 src SUBV Rdest,Rsrc

INSTRUCTIONS
3.2 Instruction description

3

3-115 M32R-FPU Software Manual (Rev.1.01)

SUBXSUBX arithmetic operation instruction

Subtract with borrow

[Mnemonic]

SUBX Rdest,Rsrc

[Function]

Subtract

Rdest = (unsigned) Rdest - (unsigned) Rsrc - C;

C = borrow ? 1 : 0;

[Description]

SUBX subtracts Rsrc and C from Rdest and puts the result in Rdest.

The condition bit (C) is set when the subtraction result cannot be represented by a 32-bit

unsigned integer; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

dest0000 0001 src SUBX Rdest,Rsrc

INSTRUCTIONS
3.2 Instruction description

3

3-116 M32R-FPU Software Manual (Rev.1.01)

TRAPTRAP EIT-related instruction

Trap

[Mnemonic]

TRAP #imm4

[Function]

Trap occurrence

BPC = PC + 4;

BSM = SM;

BIE = IE;

BC = C ;

IE = 0;

C = 0;

call_trap_handler(imm4);

[Description]

TRAP generates a trap with the trap number specified by the 4-bit immediate value.

IE and C bits are cleared to "0".

[EIT occurrence]

Trap (TRAP)

[Encoding]

0001 0000 1111 imm4 TRAP #imm4;

INSTRUCTIONS
3.2 Instruction description

3

3-117 M32R-FPU Software Manual (Rev.1.01)

UNLOCKUNLOCK load/store instruction

Store unlocked

[Mnemonic]

UNLOCK Rsrc1,@Rsrc2

[Function]

Store unlocked

if (LOCK == 1) { * (int *) Rsrc2 = Rsrc1; }

LOCK = 0;

[Description]

When the LOCK bit is 1, the contents of Rsrc1 are stored at the memory location specified by

Rsrc2. When the LOCK bit is 0, store operation is not executed. The condition bit (C) is un-

changed.

This instruction clears the LOCK bit to 0 in addition to the simple storage operation.

The LOCK bit is internal to the CPU and cannot be accessed except by using the LOCK and

UNLOCK instructions.

The user cannot directly read or write to this bit.

The LOCK bit is internal to the CPU and is the control bit for receiving all bus right requests

from circuits other than the CPU.

Refer to the Users Manual for non-CPU bus right requests, as the handling differs according to

the type of M

[EIT occurrence]

Address exception (AE)

[Encoding]

src10010 UNLOCK Rsrc1,@Rsrc2src20101

INSTRUCTIONS
3.2 Instruction description

3

3-118 M32R-FPU Software Manual (Rev.1.01)

INSTRUCTIONS
3.2 Instruction description

UTOFUTOF Floating Point Instructions

Unsigned integer to float

[M32R-FPU Extended Instruction]

[Mnemonic]

UTOF Rdest,Rsrc

[Function]

Convert from unsigned integer to floating-point single precision value.

Rdest = (float) (unsigned int) Rsrc ;

[Description]

UTOF converts the 32-bit unsigned integer stored in Rsrc to a floating-point single precision

value, and the result is stored in Rdest. The result is rounded according to the RM field in FPSR.

The condition bit (C) remains unchanged.

H’0000 0000 is treated as “+0” regardless of the Rounding Mode.

[EIT occurrence]

Floating-Point Exceptions (FPE)

• Inexact Exception (IXCT)

[Encoding]

src1101 00000000 dest0100 00000100

UTOF Rdest,Rsrc

3

3-119 M32R-FPU Software Manual (Rev.1.01)

XORXOR logic operation instruction

Exclusive OR

[Mnemonic]

XOR Rdest,Rsrc

[Function]

Exclusive OR

Rdest = (unsigned) Rdest ^ (unsigned) Rsrc;

[Description]

XOR computes the logical XOR of the corresponding bits of Rdest and Rsrc, and puts the

result in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest0000 XOR Rdest,Rsrcsrc1101

INSTRUCTIONS
3.2 Instruction description

3

3-120 M32R-FPU Software Manual (Rev.1.01)

XOR3XOR3 logic operation instruction

Exclusive OR 3-operand

[Mnemonic]

XOR3 Rdest,Rsrc,#imm16

[Function]

Exclusive OR

Rdest = (unsigned) Rsrc ^ (unsigned short) imm16;

[Description]

XOR3 computes the logical XOR of the corresponding bits of Rsrc and the 16-bit immediate

value, which is zero-extended to 32 bits, and puts the result in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

dest1000 1101 src imm16

XOR3 Rdest,Rsrc,#imm16

INSTRUCTIONS
3.2 Instruction description

APPENDICES

APPENDIX 1 Hexadecimal Instraction Code

APPENDIX 2 Instruction List

APPENDIX 3 Pipeline Processing

APPENDIX 4 Instruction Execution Time

APPENDIX 5 IEEE754 Specification Overview

APPENDIX 6 M32R-FPU Specification Supplemental

Explanation

APPENDICES

APPENDICES-2 M32R-FPU Software Manual (Rev.1.01)

Appendix1 Hexadecimal Instraction Code

The bit pattern of each instruction and correspondence of mnemonic are shown below.

The instructions enclosed in the bold lines are M32R-FPU extended instructions.

Appendix Table 1.1.1 Instruction Code Table

b0 3 4 7 8 11 12 b15

16-bit instruction

b0-b3 b8-b11

b0 3 4 7 8 11 12 b15

b0-b3 b8-b11

b16 19 20 23 24 27 28 b31

32-bit instruction

b0 3 4 7 8 11 12 b15

1101 0000 b16-b19 b24-b27

b16 19 20 23 24 27 28 b31

32-bit instruction

b8-b11

b0-b3

0000 0001 0010 0011 0100 0101 0110 0111

0 1 2 3 4 5 6 7
hexadecimal
numeral

SUBV SUBX SUB NEG CMP CMPU
Rdest,Rsrc Rdest,Rsrc Rdest,Rsrc Rdest,Rsrc Rsrc1,Rsrc2 Rsrc1,Rsrc2

SRL SRA SLL MUL
Rdest,Rsrc Rdest,Rsrc Rdest,Rsrc Rdest,Rsrc

STB STH ST UNLOCK ST ST
Rsrc1,@Rsrc2 Rsrc1,@Rsrc2 Rsrc1,@Rsrc2 Rsrc1,@Rsrc2 Rsrc1,@+Rsrc2 Rsrc1,@-Rsrc2

MULHI MULLO MULWHI MULWLO MACHI MACLO MACWHI MACWLO
Rsrc1,Rsrc2 Rsrc1,Rsrc2 Rsrc1,Rsrc2 Rsrc1,Rsrc2 Rsrc1,Rsrc2 Rsrc1,Rsrc2 Rsrc1,Rsrc2 Rsrc1,Rsrc2

ADDI
Rdest,#imm8

Rdest,#imm5 Rdest,#imm5 Rdest,#imm5
SRLI SRAI SLLI MVTACHI,

MVTACLO (✽ 2)

(✽ 1)

CMPI CMPUI
Rsrc,#imm16 Rsrc,#imm16

STB STH ST
Rsrc1,@(disp16,Rsrc2) Rsrc1,@(disp16,Rsrc2) Rsrc1,@(disp16,Rsrc2)

BEQ BNE
Rsrc1,Rsrc2,pcdisp16 Rsrc1,Rsrc2,pcdisp16

LD24
Rdest,#imm24

BC, BNC, BL, BRA (✽ 1)

16
-b

it
in

st
ru

ct
io

n
32

-b
it

in
st

ru
ct

io
n

DIVU REM REMUDIV
Rdest,Rsrc Rdest,Rsrc Rdest,RsrcRdest,Rsrc

NOP (✽ 1)

LDI
Rdest,#imm8

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

STH
Rsrc1,@Rsrc2+

BC, BNC, BL, BRA, SETPSW, CLRPSW

BSET
#bitpos,@(disp16,Rsrc)

BCLR
#bitpos,@(disp16,Rsrc)

FPU
externded instruction

APPENDIX 1
Appendix 1 Hexadecimal Instraction Code

b24-b27

b16-b19
hexadecimal
numeral

0000

0001

0010

0011

0100

0101

0110

0111

FADD

FMUL

FDIV

FMADO

ITOF

FSUB

FMSUB

UTOF

0000 0001 0010 0011 0100 0101 0110 0111

0 1 2 3 4 5 6 7

32
-b

it
in

st
ru

ct
io

n

1

2

3

4

5

6

7

0

FPU extended instruction (b0-b3 = 1101, b8-b11 = 0000)

APPENDICES

APPENDICES-3 M32R-FPU Software Manual (Rev.1.01)

1000 1001 1010 1011 1100 1101 1110 1111

8 9 B C D E FA

b 8-b11

b 0-b 3
hexadecimal
numeral

16
-b

it
in

st
ru

ct
io

n
32

-b
it

in
st

ru
ct

io
n

ADDV
Rdest,Rsrc

ADDX
Rdest,Rsrc

ADD
Rdest,Rsrc

NOT
Rdest,Rsrc

AND
Rdest,Rsrc

XOR
Rdest,Rsrc

OR
Rdest,Rsrc

MV
Rdest,Rsrc

MVFC
Rdest,CRsrc

MVTC
Rsrc,CRdest

RTE TRAP
#imm4

JL, JMP
(✽ 1)

LDB
Rdest,@Rsrc

LDUB
Rdest,@Rsrc

LDH
Rdest,@Rsrc

LDUH
Rdest,@Rsrc

LD
Rdest,@Rsrc

LOCK
Rdest,@Rsrc

LD
Rdest,@Rsrc+

ADDI
Rdest,#imm8

RACH RAC MVFACHI,
MVFACLO,
MVFACMI (✽ 2)

LDI
Rdest,#imm8

BC, BNC, BL, BRA (✽ 1)

ADDV3
Rdest,Rsrc,#imm16

ADD3
Rdest,Rsrc,#imm16

AND3
Rdest,Rsrc,#imm16

XOR3
Rdest,Rsrc,#imm16

OR3
Rdest,Rsrc,#imm16

SRL3
Rdest,Rsrc,#imm16

SRA3
Rdest,Rsrc,#imm16

SLL3
Rdest,Rsrc,#imm16

LDI
Rdest,#imm16

LDB
Rdest,@(disp16,Rsrc)

LDUB
Rdest,@(disp16,Rsrc)

LDH
Rdest,@(disp16,Rsrc)

LDUH
Rdest,@(disp16,Rsrc)

LD
Rdest,@(disp16,Rsrc)

BEQZ
Rsrc,pcdisp16

BNEZ
Rsrc,pcdisp16

BLTZ
Rsrc,pcdisp16

BGEZ
Rsrc,pcdisp16

BLEZ
Rsrc,pcdisp16

BGTZ
Rsrc,pcdisp16

SETH
Rdest,#imm16

LD24
Rdest,#imm24

BC, BNC, BL, BRA (✽ 1)

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

BTST
#bitpos,Rsrc

Note. In addition to b0-b3, b8-b11, instructions shown the above ✽ 1, ✽ 2 in the table are

decided by the following bit patterns.

As for details of bit patterns of each instruction, refer to "3.2 Instruction description."

✽ 1: b4-b7, ✽ 2: b12-b15

APPENDIX 1
Appendix 1 Hexadecimal Instraction Code

b24-b27

b16-b19

32
-b

it
in

st
ru

ct
io

n

hexadecimal
numeral

0000

0001

0010

0011

0100

0101

0110

0111

1000 1001 1010 1011 1100 1101 1110 1111

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

0FCMPE

FTOI

FCMP

FTOS

APPENDICES

APPENDICES-4 M32R-FPU Software Manual (Rev.1.01)

mnemonic function condition bit (C)

ADD Rdest,Rsrc Rdest = Rdest + Rsrc –

ADD3 Rdest,Rsrc,#imm16 Rdest = Rsrc + (sh)imm16 –

ADDI Rdest,#imm8 Rdest = Rdest + (sb)imm8 –

ADDV Rdest,Rsrc Rdest = Rdest + Rsrc change

ADDV3 Rdest,Rsrc,#imm16 Rdest = Rsrc + (sh)imm16 change

ADDX Rdest,Rsrc Rdest = Rdest + Rsrc + C change

AND Rdest,Rsrc Rdest = Rdest & Rsrc –

AND3 Rdest,Rsrc,#imm16 Rdest = Rsrc & (uh)imm16 –

BC pcdisp8 if(C) PC=PC+((sb)pcdisp8<<2) –

BC pcdisp24 if(C) PC=PC+((s24)pcdisp24<<2) –

BCLR #bitpos,@(disp16,Rsrc) *(sb *)(Rsrc + (sh)disp16) & = ~(1<<(7-bitpos)) –

BEQ Rsrc1,Rsrc2,pcdisp16 if(Rsrc1 == Rsrc2) PC=PC+((sh)pcdisp16<<2) –

BEQZ Rsrc,pcdisp16 if(Rsrc == 0) PC=PC+((sh)pcdisp16<<2) –

BGEZ Rsrc,pcdisp16 if(Rsrc >= 0) PC=PC+((sh)pcdisp16<<2) –

BGTZ Rsrc,pcdisp16 if(Rsrc > 0) PC=PC+((sh)pcdisp16<<2) –

BL pcdisp8 R14=PC+4,PC=PC+((sb)pcdisp8<<2) –

BL pcdisp24 R14=PC+4,PC=PC+((s24)pcdisp24<<2) –

BLEZ Rsrc,pcdisp16 if(Rsrc <= 0) PC=PC+((sh)pcdisp16<<2) –

BLTZ Rsrc,pcdisp16 if(Rsrc < 0) PC=PC+((sh)pcdisp16<<2) –

BNC pcdisp8 if(!C) PC=PC+((sb)pcdisp8<<2) –

BNC pcdisp24 if(!C) PC=PC+((s24)pcdisp24<<2) –

BNE Rsrc1,Rsrc2,pcdisp16 if(Rsrc1 != Rsrc2) PC=PC+((sh)pcdisp16<<2) –

BNEZ Rsrc,pcdisp16 if(Rsrc != 0) PC=PC+((sh)pcdisp16<<2) –

BRA pcdisp8 PC=PC+((sb)pcdisp8<<2) –

BRA pcdisp24 PC=PC+((s24)pcdisp24<<2) –

BSET #bitpos,@(disp16,Rsrc) *(sb *)(Rsrc + (sh)disp16) | = (1<<(7-bitpos)) –

BTST #bitpos,Rsrc (Rsrc>>(7-bitpos))&1 change

CLRPSW #imm8 PSW & = ~imm8 | 0xffffff00 change

CMP Rsrc1,Rsrc2 (s)Rsrc1 < (s)Rsrc2 change

CMPI Rsrc,#imm16 (s)Rsrc < (sh)imm16 change

CMPU Rsrc1,Rsrc2 (u)Rsrc1 < (u)Rsrc2 change

CMPUI Rsrc,#imm16 (u)Rsrc < (u)((sh)imm16) change

DIV Rdest,Rsrc Rdest = (s)Rdest / (s)Rsrc –

DIVU Rdest,Rsrc Rdest = (u)Rdest / (u)Rsrc –

FADD Rdest,Rsrc1,Rsrc2 Rdest = Rsrc1 + Rsrc2 –

FCMP Rdest,Rsrc1,Rsrc2 Rdest = (Rsrc1 == Rsrc2)?32'h00000000:((Rsrc1< –

Rsrc2)?{1.31'bx}:{0.31'bx}

FCMPE Rdest,Rsrc1,Rsrc2 FCMP with Exception when unordered –

FDIV Rdest,Rsrc1,Rsrc2 Rdest = Rsrc1 / Rsrc2 –

Appendix 2 Instruction List

The M32R-FPU instruction list is shown below (in alphabetical order).

APPENDIX 2
Appendix 2 Instruction List

APPENDICES

APPENDICES-5 M32R-FPU Software Manual (Rev.1.01)

mnemonic function condition bit (C)

FMADD Rdest,Rsrc1,Rsrc2 Rdest = Rdest + Rsrc1 * Rsrc2 –

FMSUB Rdest,Rsrc1,Rsrc2 Rdest = Rdest - Rsrc1 * Rsrc2 –

FMUL Rdest,Rsrc1,Rsrc2 Rdest = Rdest * Rsrc2 –

FSUB Rdest,Rsrc1,Rsrc2 Rdest = Rsrc1 - Rsrc2 –

FTOI Rdest,Rsrc Rdest = (s)Rsrc2 –

FTOS Rdest,Rsrc Rdest = (sh)Rsrc –

ITOF Rdest,Rsrc Rdest = (float)Rsrc –

JL Rsrc R14 = PC+4, PC = Rsrc –

JMP Rsrc PC = Rsrc –

LD Rdest,@(disp16,Rsrc) Rdest = *(s *)(Rsrc+(sh)disp16) –

LD Rdest,@Rsrc Rdest = *(s *)Rsrc –

LD Rdest,@Rsrc+ Rdest = *(s *)Rsrc, Rsrc += 4 –

LD24 Rdest,#imm24 Rdest = imm24 & 0x00ffffff –

LDB Rdest,@(disp16,Rsrc) Rdest = *(sb *)(Rsrc+(sh)disp16) –

LDB Rdest,@Rsrc Rdest = *(sb *)Rsrc –

LDH Rdest,@(disp16,Rsrc) Rdest = *(sh *)(Rsrc+(sh)disp16) –

LDH Rdest,@Rsrc Rdest = *(sh *)Rsrc –

LDI Rdest,#imm16 Rdest = (sh)imm16 –

LDI Rdest,#imm8 Rdest = (sb)imm8 –

LDUB Rdest,@(disp16,Rsrc) Rdest = *(ub *)(Rsrc+(sh)disp16) –

LDUB Rdest,@Rsrc Rdest = *(ub *)Rsrc –

LDUH Rdest,@(disp16,Rsrc) Rdest = *(uh *)(Rsrc+(sh)disp16) –

LDUH Rdest,@Rsrc Rdest = *(ub *)Rsrc –

LOCK Rdest,@Rsrc LOCK = 1, Rdest = *(s *)Rsrc –

MACHI Rsrc1,Rsrc2 accumulator += (s)(Rsrc1 & 0xffff0000) –

 * (s)((s)Rsrc2>>16)

MACLO Rsrc1,Rsrc2 accumulator += (s)(Rsrc1<<16) * (sh)Rsrc2 –

MACWHI Rsrc1,Rsrc2 accumulator += (s)Rsrc1 * (s)((s)Rsrc2>>16) –

MACWLO Rsrc1,Rsrc2 accumulator += (s)Rsrc1 * (sh)Rsrc2 –

MUL Rdest,Rsrc Rdest = (s)Rdest * (s)Rsrc –

MULHI Rsrc1,Rsrc2 accumulator = (s)(Rsrc1 & 0xffff0000) –

 * (s)((s)Rsrc2>>16)

MULLO Rsrc1,Rsrc2 accumulator = (s)(Rsrc1<<16) * (sh)Rsrc2 –

MULWHI Rsrc1,Rsrc2 accumulator = (s)Rsrc1 * (s)((s)Rsrc2>>16) –

MULWLO Rsrc1,Rsrc2 accumulator = (s)Rsrc1 * (sh)Rsrc2 –

MV Rdest,Rsrc Rdest = Rsrc –

MVFACHI Rdest Rdest = accumulater >> 32 –

MVFACLO Rdest Rdest = accumulator –

MVFACMI Rdest Rdest = accumulator >> 16 –

MVFC Rdest,CRsrc Rdest = CRsrc –

MVTACHI Rsrc accumulator[0:31] = Rsrc –

MVTACLO Rsrc accumulator[32:63] = Rsrc –

MVTC Rsrc,CRdest CRdest = Rsrc change

APPENDIX 2
Appendix 2 Instruction List

APPENDICES

APPENDICES-6 M32R-FPU Software Manual (Rev.1.01)

mnemonic function condition bit (C)

NEG Rdest,Rsrc Rdest = 0 - Rsrc –

NOP /*no-operation*/ –

NOT Rdest,Rsrc Rdest = ~Rsrc –

OR Rdest,Rsrc Rdest = Rdest | Rsrc –

OR3 Rdest,Rsrc,#imm16 Rdest = Rsrc | (uh)imm16 –

RAC Round the 32-bit value in the accumulator –

RACH Round the 16-bit value in the accumulator –

REM Rdest,Rsrc Rdest = (s)Rdest % (s)Rsrc –

REMU Rdest,Rsrc Rdest = (u)Rdest % (u)Rsrc –

RTE PC = BPC & 0xfffffffc, change

PSW[SM,IE,C] = PSW[BSM,BIE,BC]

SETH Rdest,#imm16 Rdest = imm16 << 16 –

SETPSW #imm8 PSW | = imm8&0x000000ff change

SLL Rdest,Rsrc Rdest = Rdest << (Rsrc & 31) –

SLL3 Rdest,Rsrc,#imm16 Rdest = Rsrc << (imm16 & 31) –

SLLI Rdest,#imm5 Rdest = Rdest << imm5 –

SRA Rdest,Rsrc Rdest = (s)Rdest >> (Rsrc & 31) –

SRA3 Rdest,Rsrc,#imm16 Rdest = (s)Rsrc >> (imm16 & 31) –

SRAI Rdest,#imm5 Rdest = (s)Rdest >> imm5 –

SRL Rdest,Rsrc Rdest = (u)Rdest >> (Rsrc & 31) –

SRL3 Rdest,Rsrc,#imm16 Rdest = (u)Rsrc >> (imm16 & 31) –

SRLI Rdest,#imm5 Rdest = (u)Rdest >> imm5 –

ST Rsrc1,@(disp16,Rsrc2) *(s *)(Rsrc2+(sh)disp16) = Rsrc1 –

ST Rsrc1,@+Rsrc2 Rsrc2 += 4, *(s *)Rsrc2 = Rsrc1 –

ST Rsrc1,@-Rsrc2 Rsrc2 -= 4, *(s *)Rsrc2 = Rsrc1 –

ST Rsrc1,@Rsrc2 *(s *)Rsrc2 = Rsrc1 –

STB Rsrc1,@(disp16,Rsrc2) *(sb *)(Rsrc2+(sh)disp16) = Rsrc1 –

STB Rsrc1,@Rsrc2 *(sb *)Rsrc2 = Rsrc1 –

STH Rsrc1,@(disp16,Rsrc2) *(sh *)(Rsrc2+(sh)disp16) = Rsrc1 –

STH Rsrc1,@Rsrc2 *(sh *)Rsrc2 = Rsrc1 –

STH Rsrc1,@Rsrc2+ *(sh *)Rsrc2 = Rsrc1, Rsrc2 += 2 –

SUB Rdest,Rsrc Rdest = Rdest - Rsrc –

SUBV Rdest,Rsrc Rdest = Rdest - Rsrc change

SUBX Rdest,Rsrc Rdest = Rdest - Rsrc - C change

TRAP #n PSW[BSM,BIE,BC] = PSW[SM,IE,C] change

PSW[SM,IE,C] = PSW[SM,0,0]

Call trap-handler number-n

UNLOCK Rsrc1,@Rsrc2 if(LOCK) { *(s *)Rsrc2 = Rsrc1; } LOCK=0 –

UTOF Rdest,Rsrc Rdest = (float)(unsigned int) Rsrc; –

XOR Rdest,Rsrc Rdest = Rdest ^ Rsrc –

XOR3 Rdest,Rsrc,#imm16 Rdest = Rsrc ^ (uh)imm16 –

APPENDIX 2
Appendix 2 Instruction List

APPENDICES

APPENDICES-7 M32R-FPU Software Manual (Rev.1.01)

where:

typedef singed int s; /* 32 bit signed integer (word)*/

typedef unsigned int u; /* 32 bit unsigned integer (word)*/

typedef signed short sh; /* 16 bit signed integer (halfword)*/

typedef unsigned short uh; /* 16 bit unsigned integer (halfword)*/

typedef signed char sb; /* 8 bit signed integer (byte)*/

typedef unsigned char ub; /* 8 bit unsigned integer (byte)*/

APPENDIX 2
Appendix 2 Instruction List

APPENDICES

APPENDICES-8 M32R-FPU Software Manual (Rev.1.01)

Appendix 3 Pipeline Processing

Appendix 3.1 Instructions and Pipeline Processing

Appendix Figure 3.1.1 shows each instruction type and the pipeline process.

APPENDIX 3
Appendix 3 Pipeline Processing

IF D E MEM2MEM1 WBPipeline Stage

Pipeline Stage

Pipeline Stage

■ Load/Store instruction

*The number of cycles required by the MEM1 stage varies according to the access,
 but the MEM2 stage is normally executed in 1 cycle.

IF D E WB

■ All other integer instructions

*Multi-cycle instructions such as the multiply instruction are executed in multiple
 cycles in the E stage.

IF D E WBE¥¥¥¥¥¥

6 stages

IF D EM E2EA WBPipeline Stage

■ FPU instruction (FMADD, FMSUB)

* The EM and EA stages cannot be executed at the same time as the E or E1 stage.

6 stages

IF D E1 E2 WBPipeline Stage

 FPU instruction (excluding FMADD, FMSUB)

*The E1 and E2 stages cannot be executed at the same time as the E stage.
*The E1 stage of the FDIV instruction requires 14 cycles.

5 stages

4 stages

*Operation stages with the same name cannot be executed at the same time. In general, stages with
 different names can be executed in parallel, but the following combinations are not acceptable.

¥ E stage executed with E1, E2, EM or EA stage.
 ¥ E1 stage executed with EM or EA stage.

*Bypass process: When using the result of one instruction in a subsequent instruction, the first result
 may bypass the register file and be sent on to the execution stage of the subsequent instruction.
 The following is an example of a bypass process:

¥ E stage continuing to WB stage → E, E1, EM stages
¥ MEM2 stage continuing to WB stage → E, E1, EM, EA stages

Appendix Figure 3.1.1 Instructions and Pipeline Process

APPENDICES

APPENDICES-9 M32R-FPU Software Manual (Rev.1.01)

The overview of each pipeline stage is shown below.

● IF stage (instruction fetch stage)

The instruction fetch (IF) is processed in this stage. There is an instruction queue

and instructions are fetched until the queue is full regardless of the completion of

decoding in the D stage.

If there is an instruction already in the instruction queue, the instruction read out

of the instruction queue is passed to the instruction decoder.

● D stage (decode stage)

Instruction decoding is processed in the first half of the D stage (DEC1).

The subsequent instruct ion decoding (DEC2) and a register fetch (RF) is

processed in the second half of the stage.

● E stage (execution stage)

Operations and address calculations (OP) are processed in the E stage.

If an operation result from the previous instruction is required, bypass process

(BYP) is performed in the first half of the E stage.

● E1, EM, EA stage (execution stage)

These are the initial stages for execution of the FPU instructions. The EM and EA

stages only use instructions FMADD and FMSUB. All other instructions are used

in the E1stage

● E2 stage (execution stage)

This is the secondary stage for the execution of FPU instructions and mainly

rounding is performed.

● MEM stage (memory access stage)

Operand accesses (OA) are processed in the MEM stage. This stage is used only

when the load/store instruction is executed.

● WB stage (write back stage)

The operation results and fetched data are written to the registers in the WB

stage.

APPENDIX 3
Appendix 3 Pipeline Processing

APPENDICES

APPENDICES-10 M32R-FPU Software Manual (Rev.1.01)

Appendix Figure 3.2.1 Pipeline Flow with no Stall (1)

Appendix 3.2 Pipeline Basic Operation

(1) Pipeline Flow with no Stall

The following diagram shows an ideal pipeline flow that has no stall and executes each

instruction in 1 clock cycle. (Since this is just an ideal case, all instructions may not be

piplined in.)

APPENDIX 3
Appendix 3 Pipeline Processing

<Case 1> Integer instructions (register-to-register) are executed continuously

IF D E WB

IF D WBE

D WBE

IF D WBE

<Case 2> Load/store instructions to destination are accessed in 1 cycle continuously

IF D E WBST R0,@-R15

ST R1,@-R15

LDI R0,#1

ADD R0,R1

OR R0,R2

CMP R0,R3

IF D WBMEM2

MEM1 MEM2

E MEM1

IF D E WBLD R2,@R15+

LD R3,@R15+ IF D WBMEM2

MEM1 MEM2

E MEM1

IF D E WBLD R0,@R2

LDI R1,#1 IF D WB

MEM1 MEM1 MEM2

E

IF D E WBADD R1,R3

OR R1,R4 IF D WBE

<Case 3> Register-register instructions are executed with no register dependency following
a load/store instruction (out-of-order-completion)

IF

* A multi-cycle instruction, such as multiply or divide, executes
 multiple cycles in the E stage.

* A multi-cycle instruction, such as multiply or divide, executes multiple
 cycles in the E stage.

APPENDICES

APPENDICES-11 M32R-FPU Software Manual (Rev.1.01)

Appendix Figure 3.2.2 Pipeline Flow with no Stall (2)

<Case 4> Three FPU instructions continue consecutively with no register dependency

IF D E1 WBFADD R0,R5,R6

FSUB R1,R6,R7 IF D

E2

E1 WBE2

E1 WBE2

E1 WBE2

IF DFMUL R2,R7,R8

FCMP R0,R0,R3 IF D

IF D EA WBFMADD R0,R5,R6

FMADD R1,R6,R7 IF D

EM E2

EA WBEM E2

EA WBEM E2

EA WBEM E2

IF DFMADD R2,R7,R8

FMADD R3,R80,R9 IF D

<Case 5> Four FMADD or FMSUB instructions continue consecutively with no register dependency

* The FDIV instruction takes 14 cycles in E1 stage.

APPENDIX 3
Appendix 3 Pipeline Processing

APPENDICES

APPENDICES-12 M32R-FPU Software Manual (Rev.1.01)

(2) Pipeline Flow with Stalls

A pipeline stage may stall due to execution of a process or branch instruction.

The following diagrams show typical stall cases.

<Case 1> An instruction which requires several cycles is executed in E

IF D E WBDIV R1,R2 E E

IF D stall WBADD R3,R4 Estall

IF D WBEstallstall

IF Dstall WBEstall

ADD R5,R6

ADD R7,R8

<Case 2> An instruction which requires more than 1 cycle for its operand access is executed

IF D E WBLD R1,@R2 MEM1

IF D WBE stall

IF D stall WBE

IF D WBEstall

ADD R5,R6

ADD R7,R8

MEM1

MEM2MEM1LD R3,@R4

MEM2MEM1••••

stall••••

stall••••

stall••••

Other than no-wait
memory access

••••

••••

••••

••••

stall: a pipeline stall

Appendix Figure 3.2.3 Pipeline Flow with Stalls (1)

APPENDIX 3
Appendix 3 Pipeline Processing

APPENDICES

APPENDICES-13 M32R-FPU Software Manual (Rev.1.01)

Appendix Figure 3.2.4 Pipeline Flow with Stalls (2)

<Case 3> A branch instruction is executed (except for the case in which no branch occurs
 at a conditional branch instruction)

IF D E WBBranch Instruction

IF D WBE

IF D WBEstall stall

stall

IF D WBEstall

IF D

Bypass process

branch instruction is executed

stall stall

<Case 4> The subsequent instruction uses an operand read from the memory

IF D E WBLD R1,@R2

IF D WB

MEM2MEM1

ADD R3,R1 stall stall

IF

Bypass process
IF D E WBLD R1,@R2

IF D WB

MEM2MEM1

IF D EADD R4,R5 WB

ADD R3,R1 stall

Bypass process
IF D E WBLD R1,@R2

IF EMD E2 WBEA

MEM2MEM1

IF D EADD R4,R5 WB

FMADD R1,R6,R7

Bypass process
IF D E WBLD R1,@R2

IF D WBE

MEM2MEM1

IF D EADD R4,R5 WB

IF D EADD R6,R7 WB

ADD R3,R1

E

E

APPENDIX 3
Appendix 3 Pipeline Processing

APPENDICES

APPENDICES-14 M32R-FPU Software Manual (Rev.1.01)

Appendix Figure 3.2.5 Pipeline Flow with Stalls (3)

<Case 6> FPSR is accessed by an MVFC instruction after the FPU instruction is executed

<Case 7> The operation result of the FPU instruction is used by the subsequent instruction

IF D E1 WBFADD R0,R1,R2

IF D WBE

E2

MVFC R3,FPSR stall stall

IF D E1 WBFADD R0,R1,R2

IF D E2 WBE1

E2

FADD R3,R0,R4 stall stall

IF D EM WBFMADD R0,R1,R2

IF D E2 WBEA

EA E2

EMFMADD R0,R3,R4 stall stall

IF D EM WBFMADD R0,R1,R2

IF D E2 WBEA

EA E2

EMFMADD R3,R0,R4 stall stall stall

<Case 5> The PSW is written by an MVTC, SETPSW, or CLRPSW instruction and
 the subsequent instruction reads R15

IF D E WBMVTC R1,PSW

IF D WBESUB R3,R15 stall

APPENDIX 3
Appendix 3 Pipeline Processing

APPENDICES

APPENDICES-15 M32R-FPU Software Manual (Rev.1.01)

Appendix Figure 3.2.6 Pipeline Flow with Stalls (4)

<Case 8> The FPU and integer instructions run consecutively (with no register dependency)

IF D E WB

IF D WBE2

D WBEstall

IF D E2 WBE1

E1

stall

IF

<Case 9> The FPU and integer instructions run consecutively (with register dependency)

IF D E WB

IF D WBE2

D Estall stall

IF D WBE2E1

E1

Bypass process

Bypass process

stall stall

IF

ADD R0,R1

ADD R5,R6

FADD R2,R3,R4

FADD R7,R8,R9

<Case 10> The FMADD/FMSUB instructions run consecutively with the integer instruction
(with no register dependency)

IF D E WB

IF D WBE2

D WBEstall stall

IF D E2 WBEM EA

EM EA

stall stall

IF

ADD R0,R1

ADD R5,R6

FMADD R2,R3,R4

FMADD R7,R8,R9

ADD R0,R1

ADD R0,R6

FADD R0,R0,R4

FADD R0,R0,R9

<Case 11> The FMADD/FMSUB instructions run consecutively with the integer instruction
(with register dependency)

IF D E WB

IF D WBE2EA

D WBEstall stall stall

IF D WBE2EM EA

EM

Bypass process

stall stall stall

IF

ADD R0,R1

ADD R0,R6

FMADD R0,R0,R4

FMADD R0,R8,R9

WB

APPENDIX 3
Appendix 3 Pipeline Processing

APPENDICES

APPENDICES-16 M32R-FPU Software Manual (Rev.1.01)

Appendix Figure 3.2.7 Pipeline Flow with Stalls (5)

<Case 12> The FPU and FMADD/FMSUB instructions run consecutively (with no register dependency)

IF D E1 E2 WB

IF D WBE2

D WBE2E1stall

IF D E2 WBEAEM

EAEM

stall

IF

<Case 13> The FPU and FMADD/FMSUB instructions run consecutively (with register dependency)

FADD R0,R1,R10

FADD R5,R6,R11

FMADD R2,R3,R4

FMADD R7,R8,R9

IF D E1 E2 WB

IF D WBE2

D WBE2E1stall

D stall

stall stall

stall stall stall stall

EAEM

stallstall

IF

FADD R0,R1,R10

FADD R0,R0,R11

FMADD R0,R0,R4

FMADD R0,R8,R9 IF WBE2EAEMstall stall stall

APPENDIX 3
Appendix 3 Pipeline Processing

APPENDICES

APPENDICES-17 M32R-FPU Software Manual (Rev.1.01)

Appendix 4 Instruction Execution Time

Normally, the E stage is considered as representing as the instruction execution time,

however, because of the pipeline processing the execution time for other stages may

effect the total instruction execution time. In particular, the IF, D, and E stages of the

subsequent instruction must be considered after a branch has occurred.

The following shows the number of the instruction execution cycles for each pipeline

stage.

The execution time of the IF and MEM stages depends on the implementation of each

product of the M32R family.

Refer to the user's manual of each product for the execution time of these stages.

Note 1: FPU instruction uses E1 and EM stages.

Appendix Table 4.1.1 Instruction Execution Cycles per Pipeline Stage [excluding FPU instructions]

the number of execution cycles in each stage

instruction IF D E MEM1 MEM2 WB

load instruction (LD, LDB, LDUB, LDH, LDUH, LOCK) R (note 1) 1 1 R (note 1) 1 1

store instruction (ST, STB, STH, UNLOCK) R (note 1) 1 1 W (note 1) 1 (1) (note 2)

BSET, BCLR instructions R (note 1) 1 R (note 1) W (note 1) 1 -

+3

multiply instruction (MUL) R (note 1) 1 3 - - 1

divide/reminder instruction (DIV, DIVU, REM, REMU) R (note 1) 1 37 - - 1

other instructions (DSP function instructions, R (note 1) 1 1 - - 1

 including BTST, SETPSW, CLRPSW)

Note 1: R, W: Refer to the user's manual prepared for each product.

Note 2: Within the store instruction, only instructions which include the register indirect and

register update addressing mode require 1 cycle in the WB stage. All other instructions

do not require extra cycles.

Appendix Table 4.1.2 Instruction Execution Cycles per Pipeline Stage [FPU instructions]

the number of execution cycles in each stage

instruction IF D E1 EM EA E2 WB

FMADD, FMSUB instructions R (note 1) 1 - 1 1 1 1

FDIV instruction R (note 1) 1 14 - - 1 1

other FPU instructions R (note 1) 1 1 - - 1 1

Note 1: R, W: Refer to the user's manual prepared for each product.

APPENDIX 4
Appendix 4 Instruction Execution Time

APPENDICES

APPENDICES-18 M32R-FPU Software Manual (Rev.1.01)

Appendix 5 IEEE754 Specification Overview

The following is a basic overview of the IEEE754 specification. M32R-FPU fulfills the

IEEE754 requirements through a combination of software and hardware features.

Appendix 5.1 Floating Point Formats

The following describes the floating-point formats.

APPENDIX 5
Appendix 5 IEEE754 Specification Overview

Appendix Figure 5.1.1 Floating-Point Formats

s: Sign bit. 0 = positive number, 1 = negative numbers

e: Exponent. This represents a value that was made positive by adding 127 to a single

 precision value or 1023 to a double precision value (biased exponent).

f : Fraction. Represents the fraction field of the value.

Using these symbols, the floating-point values (normalized numbers) can be described

by the following expressions:

Single-Precision Format: (–1) ^ s ✕ 1.f ✕ 2 ^ (e–127)

Double-Precision Format: (–1) ^ s ✕ 1.f ✕ 2 ^ (e–1023)

• Certain values do not fit into the above expressions, such as ±∞, ±0, NaN (Not a

 Number), denormalized numbers, etc.

• Other formats, such as expanded double precision, can also be used.

★ M32R-FPU only supports the single-precision format. The double precision format is

 supported in the software library.

s (1 bit)

e (8 bit)Single Precision f (23 bit)

0 1 8 9 31

s (1 bit)

e (11 bit)Double Precision f (52 bit)

0 1 11 12 63

APPENDICES

APPENDICES-19 M32R-FPU Software Manual (Rev.1.01)

APPENDIX 5
Appendix 5 IEEE754 Specification Overview

Appendix Table 5.1.1 Single Precision Floating-Point Bit Values

Exponent Expressed value

Before adding bias After adding bias

(=0111 1111)

0111 1111 (+127) 1111 1110 Normalized number

 • • • • • • (The absolute value can be described for the range

1000 0010 (-126) 0000 0001 of 1. 0…0 x 2 ^ -126 to 1. 1…1 x 2 ^ 127)

(1000 0001 (-127)) 0000 0000 Fraction field = all 0: ±0

Fraction field ≠ all 0: denormalized number

(1000 0000 (-128)) 1111 1111 Fraction field = all 0: ±∞
Fraction field ≠ all 0: NaN (the value is split into SNaN and

QNaN according to the value of high-order bit of the

fraction field)

(1) Denormalized Numbers

Denormalized numbers represent numbers (values??) that have an absolute value

less than 1. 0…0 x 2 ^ -126. Single-precision denormalized numbers are expressed as

follows:

(-1) ^ s x 0.f x 2 ^ -126

(2) NaN (Not a Number)

SNaN (Signaling NaN): a NaN in which the MSB of the decimal fraction field is "0".

When SNaN is used as the source operand in an operation, an IVLD occurs. SNaNs

are useful in identifying program bugs when used as the initial value in a variable.

However, SNaNs cannot be generated by hardware.

QNaN (Quiet NaN): a NaN in which the MSB of the decimal fraction field is "1". Even

when QNaN is used as the source operand in an operation, an IVLD will not occur

(excluding comparison and format conversion). Because a result can be checked by

the arithmetic operations, QNaN allows the user to debug without executing an EIT

processing. QNaNs are created by hardware.

APPENDICES

APPENDICES-20 M32R-FPU Software Manual (Rev.1.01)

APPENDIX 5
Appendix 5 IEEE754 Specification Overview

Appendix 5.2 Rounding

The following 4 rounding modes are specified by IEEE754.

Appendix Table 5.2.1 Four Rounding Modes

Rounding Mode Operation

Round to Nearest (default) Assuming an infinite range of precision, round to the best

approximation of the result. Round an interval arithmetic

result to an even number.

Round toward –Infinity Round to the smaller magnitude of the result.

Round toward +Infinity Round to the larger magnitude of the result.

Round toward 0 Round to the smaller in magnitude of the absolute value

of the result.

• “Round to Nearest” is the default mode and produces the most accurate value.

• “Round toward –Infinity,” “Round toward +Infinity” and “Round toward Zero” are used

 for interval arithmetic to insure precision

Appendix 5.3 Exceptions

IEEE754 allows the following 5 exceptions. The floating-point status register is used to

determine whether the EIT process will be executed when an Exception occurs.

(1) Overflow Exception (OVF)

The exception occurs when the absolute value of the operation result exceeds the

largest describable precision in the floating-point format. Appendix Table 5.3.1 shows

the operation results when an OVF occurs.

Appendix Table 5.3.1 Operation Result due to OVF Exception

Result

Rounding Mode Sign of Result when the OVF EIT when the OVF EIT

processing is masked processing is executed

–Infinity + +MAX round (x2 ^ -a)

– –Infinity a = 192 (single-precision)

+Infinity + +Infinity a = 1536 (double-precision)

– –MAX

0 + +MAX

– –MAX

Nearest + +Infinity

– –Infinity

Note : • When the Underflow Exception Enable (EU) bit (FPSR register bit 18) = "0"

• When the Underflow Exception Enable (EU) bit (FPSR register bit 18) = "1"

APPENDICES

APPENDICES-21 M32R-FPU Software Manual (Rev.1.01)

(2) Underflow Exception (UDF)

The exception occurs when the absolute value of the operation result is less then the
largest describable precision in the floating-point format. Appendix Table 5.3.2 shows

the operation results when a UDF occurs.

Appendix Table 5.3.2 Operation Results due to UDF Exception

Result

when the UDF EIT processing is masked when the UDF EIT processing is executed

Denormalized Numbers round (x2 ^ a)

(The denomalize flag is set only when a = 192 (single-precision),

 rounding occurs.) a = 1536 (double-precision)

Note: • When the operation result is rounded, an Inexact Exception is generated simultaneously.

(3) Inexact Exception (IXCT)

The exception occurs when the operation result differs from a result led out with an
infinite range of precision. Appendix Table 5.3.3 shows operation results and the
respective conditions in which each IXCT occurs.

Appendix Table 5.3.3 Operation Results and Respective Conditions for IXCT Exception

Result

Occurrence Condition when the IXCT EIT when the IXCT EIT

processing is masked processing is executed

Overflow occurs in OVF Exception Reference OVF Exception Same as left

masked condition table

Rounding occurs Rounded value Same as left

(4) Zero Division Exception (DIV0)

The exception occurs when a finite, nonzero value is divided by zero. Appendix Table

5.3.4 shows the operation result when a DIV0 occurs.

Appendix Table 5.3.4 Operation Results for DIV0 Exception

Result

Dividend when the DIV0 EIT when the IXCT EIT

processing is masked processing is executed

Nonzero finite value ± Infinity (Sign of result is Destination unchanged

exclusive-OR (EXOR) of

signs of divider and dividend.)

Please note that the DIV0 EIT operation does not occur in the following factors.

Dividend Operation

0 Invalid Operation Exception occurs

Infinity No Exception occurs (result is “Infinity”)

APPENDIX 5
Appendix 5 IEEE754 Specification Overview

APPENDICES

APPENDICES-22 M32R-FPU Software Manual (Rev.1.01)

APPENDIX 5
Appendix 5 IEEE754 Specification Overview

(5) Invalid Operation Exception (IVLD)

The exception occurs when an invalid operation is executed. Appendix Table 5.3.5
shows operation results and the respective conditions in which each IVLD occurs.

Appendix Table 5.3.5 Operation Results due to IVLD Exception

Result

Occurrence Condition when the IVLD EIT when the IVLD EIT

processing is masked processing is executed

Operation for SNaN operand QNaN (Destination unchanged)

+Infinity– (+Infinity), –Infinity– (–Infinity)

0 ✕ Infinity

0 ÷ 0, Infinity ÷ Infinity

oute operation for values less then 0

Integer conversion overflow: Undefined

NaN and ∞ are converted to integers

When < or > comparison was performed on NaN (No change)

Important: The following operations never generate an Exception.

√ (-0): returns –0

∞/ 0: returns ∞ (Sign of result is exclusive-OR (EXOR) of signs of divider and

 dividend.)

■ Definition of Terms

• Exception

Special condi t ions generated by execut ion of f loat ing-point instruct ions. The

corresponding enable bits of the floating-point status register are used to determine

whether the EIT processing will be executed when an Exception occurs. However, the

actual generation of an exception cannot be masked.

• EIT Processing

An operation triggered by the generation of an Exception, in which the flow jumps to a

floating-point Exception vector address, or a string of related Exception operation

sequences is triggered. The corresponding enable bits of the floating-point status

register are used to determine whether the EIT processing will be executed when an

Exception occurs.

• Intermediate Result of Operation

The value resulting from calculations of infinite and unbounded exponent and mantissa

bits. In actual implementation, the number of exponent and mantissa bits is finite and

the intermediate result is rounded so that the final operation result can be determined.

APPENDICES

APPENDICES-23 M32R-FPU Software Manual (Rev.1.01)

Appendix 6 M32R-FPU Specification Supplemental Explanation

Appendix 6.1 Operation Comparision: Using 1 instruction (FMADD or FMSBU) vs. two

instructions (FMUL and FADD)

The following is an explanation of the differences between an operation using just one

instruction (FMADD or FMSUB) and an operation using 2 instructions (FMUL and

FADD).

Appendix 6.1.1 Rounding Mode

The rounding mode for an operation using both FMUL and FADD rounds both FMUL

and FADD according to the setting of the FPSR RM field. However, the result of the

FMADD or FMSUB instruction in Step 1 (multiply stage) is not rounded according to

the setting of FPSR RM field, rather it is rounded toward zero.

Appendix 6.1.2 Exception occurring in Step 1

Two instructions are compared below as examples of Exception occurring in Step 1.

● FMUL + FADD:

FMUL R3, R1, R2 (R3 = R1 * R2)

FADD R0, R3, R0 (R0 = R3 + R0)

● FMADD or FMSUB:

FMADD R0, R1, R2 (R0 = R0 +R1 * R2)

Note: If the register supports different operations than those described above, the

 operations may differ in some ways to those shown below.

APPENDIX 6
Appendix 6 M32R-FPU Specification Supplemental Explanation

APPENDICES

APPENDICES-24 M32R-FPU Software Manual (Rev.1.01)

(1) Overflow occurs in Step 1

<When EO = 0, EX = 0: OVF and IXCT occur>

Type of R0 Condition FMUL + FADD Operation FMADD Operation

Normalized – R0 = OVF immediate R0 = OVF immediate

number, 0 value (Note 1) + R0 value (Note 2)

Infinity when OVF immediate value EV=0 IVLD occurs same as left

R0=H'7FFF FFFF

is R0 and the opposite sign EV=1 IVLD occurs, EIT occurs same as left

of the infinity sign R0 = maintained

factors other than above – R0 = ∞ same as left

(same as original value)

Denormalized DN=0 UIPL occurs, EIT occurs same as left

number R0 = maintained

DN=1 R0 = OVF immediate value same as left

(Note 1)

QNaN – R0 = maintained (QNaN) same as left

SNaN EV=0 IVLD occurs same as left

R0 = R0 converted to QNaN

EV=0 IVLD occurs, EIT occurs same as left

R0 = maintained (SNaN)

Note 1: Refer to [Appendix Table 5.3.1 Operation Result due to OVF Exception] for immediate
values if an overflow occurs due to Overflow Exclusion when the EIT processing is
masked.

Note 2: In Step 1, the rounding mode is set to [Round toward 0]. However, when an overflow
occurs, the immediate value is rounded according to the rounding mode. Refer to
[Appendix Table 5.3.1 Operation Result due to OVF Exception] for these values.
However, when the rounding mode is [round toward nearest], the OVF immediate value =

infinity and the R0 value becomes the same as that of FMUL + FADD.

<When EO = 1: OVF occurs>

Type of R0 Condition FMUL + FADD Operation FMADD Operation

Normalized – EIT occurs when FMUL is EIT occurs,

number, 0, completed R0 = maintained

Infinity R0 = maintained

Denormalized DN=0 Same as above UIPL occurs,

number EIT occurs

R0 = maintained

DN=1 Same as above EIT occurs

R0 = maintained

QNaN – Same as above Same as above

SNaN EV=0 Same as above IVLD occurs,

EIT occurs

R0 = maintained

EV=1 Same as above Same as above

APPENDIX 6
Appendix 6 M32R-FPU Specification Supplemental Explanation

APPENDICES

APPENDICES-25 M32R-FPU Software Manual (Rev.1.01)

(2) When underflow occurs in Step 1

<When EU = 0, DN = 1: UDF occurs>

Type of R0 Condition FMUL + FADD Operation FMADD Operation

Normalized – R0 = R0 + 0 Same as left

number, 0,

Infinity

Denormalized – R0 = 0 Same as left

number

QNaN – R0 = maintained (QNaN) Same as left

SNaN EV=0 R0 = R0 converted to QNaN Same as left

IVLD occurs

EV=1 R0 = maintained (SNaN) Same as left

IVLD occurs, EIT occurs

<When EU = 0, DN = 0: UDF and UIPL occur>

Type of R0 Condition FMUL + FADD Operation FMADD Operation

Normalized – EIT occurs when FMUL is EIT occurs,

number, 0, completed R0 = maintained

Infinity R0 = maintained

Denormalized – Same as above Same as above

number

QNaN – Same as above Same as above

SNaN EV=0 Same as above IVLD occurs,

EIT occurs

R0 = maintained

EV=1 Same as above Same as above

<When EU = 1: UDF occurs>

Type of R0 Condition FMUL + FADD Operation FMADD Operation

Normalized – EIT occurs when FMUL is EIT occurs,

number, 0, completed R0 = maintained

Infinity R0 = maintained

Denormalized DN=0 Same as above UIPL occurs,

number EIT occurs

R0 = maintained

DN=1 Same as above EIT occurs

R0 = maintained

QNaN – Same as above Same as above

SNaN EV=0 Same as above IVLD occurs,

EIT occurs

R0 = maintained

EV=1 Same as above Same as above

APPENDIX 6
Appendix 6 M32R-FPU Specification Supplemental Explanation

APPENDICES

APPENDICES-26 M32R-FPU Software Manual (Rev.1.01)

APPENDIX 6
Appendix 6 M32R-FPU Specification Supplemental Explanation

(3) When Invalid Operation Exception occurs in Step 1

■ If at least one of [R1, R2] is an SNaN
<When EV = 0: IVLD occurs>

Type of R0 Condition FMUL + FADD Operation FMADD Operation

Normalized – R0 = R3 Same as left

(SNaN converted to QNaN)

Denormalized DN=0 R0 = R3 Same as left

number (SNaN converted to QNaN)

DN=1 R0 = R3 Same as left

(SNaN converted to QNaN)

QNaN – R0 = maintained (QNaN) Same as left

SNaN – R0 = R0 converted to QNaN Same as left

<When EV = 1: IVLD occurs>

Type of R0 Condition FMUL + FADD Operation FMADD Operation

Normalized – EIT occurs when FMUL is EIT occurs,

number, 0, completed R0 = maintained

Infinity R0 = maintained

Denormalized DN=0 Same as above UIPL occurs,

number EIT occurs

R0 = maintained

DN=1 Same as above EIT occurs,

R0 = maintained

QNaN – Same as above Same as above

SNaN – Same as above Same as above

■ If “✕ ∞” occurs in [R1, R2]
<When EV = 0: IVLD occurs>

Type of R0 Condition FMUL + FADD Operation FMADD Operation

Normalized – R0 = H'7FFF FFFF Same as left

Denormalized DN=0 R0 = H'7FFF FFFF Same as left

number DN=1 R0 = H'7FFF FFFF Same as left

QNaN – R0 = maintained (QNaN) Same as left

SNaN – R0 = R0 converted to QNaN Same as left

<When EV = 1: IVLD occurs>
Same results as when “If at least one of [R1, R2] is an SNaN.”

APPENDICES

APPENDICES-27 M32R-FPU Software Manual (Rev.1.01)

(4) When Inexact Operation Exception occurs in Step 1

■ If an Inexact Operation occurs due to rounding:
<When EX = 0: IXCT occurs>

Type of R0 Condition FMUL + FADD Operation FMADD Operation

Normalized – R0 = rounded value of Same as left

number, 0, R1*R2 + R0

Infinity

Denormalized DN=0 UIPL occurs, EIT occurs Same as left

number R0 = maintained

DN=1 R0 = rounded value of Same as left

R1*R2

QNaN – R0 = maintained (QNaN) Same as left

SNaN EV=0 IVLD occurs Same as left

R0 = R0 converted to QNaN

EV=1 IVLD occurs, EIT occurs Same as left

R0 = maintained (SNaN)

<When EX = 1: IXCT occurs>

Type of R0 Condition FMUL + FADD Operation FMADD Operation

Normalized – EIT occurs when FMUL is EIT occurs,

number, 0, completed R0 = maintained

Infinity R0 = maintained

Denormalized DN=0 Same as above UIPL occurs,

number EIT occurs

R0 = maintained

DN=0 Same as above EIT occurs

R0 = maintained

QNaN – Same as above Same as above

SNaN EV=0 Same as above IVLD occurs,

EIT occurs

R0 = maintained

EV=1 Same as above Same as above

■ When an Inexact Operation occurs due to an OVF at EO = 0:

<When EV = 0: IXCT occurs>

Refer to “(1) Overflow occurs in Step 1 <When EO = 0, EX = 0: OVF and IXCT occur>”.

<When EV = 1: IXCT occurs>
Same results as “■ If an Inexact Operation occurs due to rounding <when EX = 1: IXCT

occurs>”.

APPENDIX 6
Appendix 6 M32R-FPU Specification Supplemental Explanation

APPENDICES

APPENDICES-28 M32R-FPU Software Manual (Rev.1.01)

APPENDIX 6
Appendix 6 M32R-FPU Specification Supplemental Explanation

Appendix 6.2 Rules concerning Generation of QNaN in M32R-FPU

The fol lowing are rules concerning generat ing a QNaN as an operat ion resul t .

Instructions that generate NaNs as operation results are FADD, FSUB, FMUL, FDIV,

FMADD, and FMSUB.

[Important Note]

This rule does not apply when the data that is sent to Rdest, the results of the FCMP or

FCMPE comparison, comprise a NaN bit pattern.

<FADD, FSUB, FMUL, FDIV>

Source Operand (Rsrc1, Rsrc2) Rdest

SNaN and QNaN SNaN converted to QNaN (Note 1)

Both SNaN Rsrc2 converted to QNaN (Note 1)

Both QNaN Rscr2

SNaN and actual number SNaN converted to QNaN (Note 1)

QNaN and actual number QNaN

Neither operand is NaN; IVLD occurs H'7FFF FFFF

Note 1: SNaN b9 is set to “1” and the operand is converted to QNaN.

<FMADD, FMSUB>

Source Operand Rdest

Rdest Rsrc1, Rsrc2

Actual number SNaN and QNaN SNaN converted to QNaN (Note 1)

Both SNaN Rsrc2 converted to QNaN (Note 1)

Both QNaN Rscr2

SNaN and actual number SNaN converted to QNaN (Note 1)

QNaN and actual number QNaN

Neither operand is NaN; IVLD occurs H'7FFF FFFF

QNaN Don't care Rdest (maintained)

SNaN Don't care Rdest converted to QNaN (Note 1)

Note 1: SNaN b9 is set to “1” and the operand is converted to QNaN.

APPENDICES

APPENDICES-29 M32R-FPU Software Manual (Rev.1.01)

Appendix 7 Precautions

Appendix 7.1 Precautions to be taken when aligning data

When aligning or allocating the data area following the code area in a program, the

alignment must be done from an address that has an adjusted word alignment.

If the data area is aligned or allocated without adjusting the word alignment, a 16-bit

instruction may exist in the high-order halfword of the word, and data with MSB of “1”

may be aligned to the fol lowing halfword. In this case, the M32R family upward-

compatible CPU recognizes the 16-bit instruction and the data as a pair of parallel

executable instructions and executes the instructions as such.

In consideration of the upward compatibility of software when programming, if the high-

order halfword has a 16-bit instruction, make sure that the following data area is aligned

or allocated from an address that has an adjusted word alignment.

MSB MSB

16-bit instruction data0 1

+0 +1 +2 +3

1 word

data

APPENDIX 7
Appendix 7 Precautions

APPENDICES

APPENDICES-30 M32R-FPU Software Manual (Rev.1.01)

This page left blank intentionally.

APPENDIX 7
Appendix 7 Precautions

INDEX

INDEX

INDEX-2 M32R-FPU Software Manual (Rev.1.01)

Symbol
#imm 1-15, 3-2

@(disp,R) 1-15, 3-2

@+R 1-15, 3-2

@-R 1-15, 3-2

@R 1-15, 3-2

@R+ 1-15, 3-2

A
Accumulator(ACC) 1-11

Addressing Mode 1-15, 3-2

Arithmetic operation instructions 2-4

ADD 3-6

ADD3 3-7

ADDI 3-8

ADDV 3-9

ADDV3 3-10

ADDX 3-11

NEG 3-86

SUB 3-113

SUBV 3-114

SUBX 3-115

B
Backup PC(BPC) 1-5

Bit operation instructions 2-11

BCLR 3-15

BSET 3-27

BTST 3-28

CLRPSW 3-29

SETPSW 3-99

Branch instructions 2-6

BC 3-14

BEQ 3-16

BEQZ 3-17

BGEZ 3-18

BGTZ 3-19

BL 3-20

BLEZ 3-21

BLTZ 3-22

BNC 3-23

BNE 3-24

BNEZ 3-25

BRA 3-26

JL 3-59

JMP 3-60

NOP 3-87

C
Compare instructions 2-4

CMP 3-30

CMPI 3-31

CMPU 3-32

CMPUI 3-33

Condition Bit Register(CBR) 1-5

Control registers 1-3

CPU Programming Model 1-1

CPU Register 1-2

CR 1-3, 1-15

CR0 1-3, 1-4

CR1 1-3, 1-5

CR2 1-3, 1-5

CR3 1-3, 1-5

CR6 1-3, 1-5

CR7 1-3, 1-6

D
Data format 1-13, 1-14

Data format in a register 1-13

Data format in memory 1-14

Data type 1-12, 3-3

DSP function instructions 2-8

MACHI 3-69

MACLO 3-70

MACWHI 3-71

MACWLO 3-72

MULHI 3-74

MULLO 3-75

MULWHI 3-76

MULWLO 3-77

MVFACHI 3-79

MVFACLO 3-80

MVFACMI 3-81

MVTACHI 3-83

MVTACLO 3-84

RAC 3-91

RACH 3-93

INDEX

INDEX-3 M32R-FPU Software Manual (Rev.1.01)

L
Load/store instructions 2-2

LD 3-61

LDB 3-63

LDH 3-64

LDUB 3-66

LDUH 3-67

LOCK 3-68

ST 3-109

STB 3-111

STH 3-112

UNLOCK 3-117

Logic operation instructions 2-5

AND 3-12

AND3 3-13

NOT 3-88

OR 3-89

OR3 3-90

XOR 3-119

XOR3 3-120

M
Multiply/divide instructions 2-5

DIV 3-34

DIVU 3-35

MUL 3-73

REM 3-95

REMU 3-96

O
Operation expression 3-2, 3-3

Operation instructions 2-4

Operand List 3-2

P
PC relative(pcdisp) 1-14, 3-2

Processor Status Register(PSW) 1-3, 1-4

Program Counter(PC) 1-11

E
EIT-related instructions 2-8

RTE 3-97

TRAP 3-116

F
Floating-point instruction 2-11

FADD 3-36

FCMP 3-38

FCMPE 3-40

FDIV 3-42

FMADD 3-44

FMSUB 3-47

FMUL 3-50

FSUB 3-52

FTOI 3-54

FTOI 3-54

ITOF 3-58

UTOF 3-118

Floating-point Status Register 1-6

G
General-purpose Registers 1-2

H
Hexadecimal Instruction Code APPENDICES-2

I
immediate 1-15, 3-2

Instruction Execution Time APPENDICES-17

Instruction format 2-12

Instruction List APPENDICES-4

Instruction set overview 2-2

Interrupt Stack Pointer(SPI) 1-2, 1-3, 1-5

INDEX

INDEX-4 M32R-FPU Software Manual (Rev.1.01)

R
R 1-15, 3-2

Register direct(R or CR) 1-15, 3-2

Register indirect(@R) 1-15, 3-2

Register indirect and register update 1-15, 3-2

Register relative indirect(@(disp, R)) 1-15, 3-2

S
Shift instructions 2-5

SLL 3-100

SLL3 3-101

SLLI 3-102

SRA 3-103

SRA3 3-104

SRAI 3-105

SRL 3-106

SRL3 3-107

SRLI 3-108

Stack pointer 1-2, 1-5

T
Transfer instructions 2-4

LD24 3-62

LDI 3-65

MV 3-78

MVFC 3-82

MVTC 3-85

SETH 3-98

U
User Stack Pointer(SPU) 1-2, 1-3, 1-5

RENESAS 32-BIT RISC SINGLE-CHIP MICROCOMPUTER
SOFTWARE MANUAL
M32R-FPU

Publication Data : Rev.1.00 Jan 08, 2003
Rev.1.01 Oct 31, 2003

Published by : Sales Strategic Planning Div.
Renesas Technology Corp.

© 2003. Renesas Technology Corp., All rights reserved. Printed in Japan.

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

M32R-FPU

REJ09B0112-0101Z

Software Manual

	REVISION HISTORY
	Table of contents
	CHAPTER 1 CPU PROGRAMMIING MODEL
	1.1 CPU Register
	1.2 General-purpose Registers
	1.3 Control Registers
	1.3.1 Processor Status Word Register: PSW (CR0)
	1.3.2 Condition Bit Register: CBR (CR1)
	1.3.3 Interrupt Stack Pointer: SPI (CR2)
User Stack Pointer: SPU (CR3)
	1.3.4 Backup PC: BPC (CR6)
	1.3.5 Floating-point Status Register: FPSR (CR7)
	1.3.6 Floating-point Exceptions (FPE)

	1.4 Accumulator
	1.5 Program Counter
	1.6 Data Format
	1.6.1 Data Type
	1.6.2 Data Format

	1.7 Addressing Mode

	CHAPTER 2
INSTRUCTION SET
	2.1 Instruction set overview
	2.1.1 Load/store instructions
	2.1.2 Transfer instructions
	2.1.3 Operation instructions
	2.1.4 Branch instructions
	2.1.5 EIT-related instructions
	2.1.6 DSP function instructions
	2.1.7 Floating-point Instructions
	2.1.8 Bit Operation Instructions

	2.2 Instruction format

	CHAPTER 3
INSTRUCTIONS
	3.1 Conventions for instruction description
	3.2 Instruction description
	ADD
	ADD3
	ADDI
	ADDV
	ADDV3
	ADDX
	AND
	AND3
	BC
	BCLR
	BEQ
	BEQZ
	BGEZ
	BGTZ
	BL
	BLEZ
	BLTZ
	BNC
	BNE
	BNEZ
	BRA
	BSET
	BTST
	CLRPSW
	CMP
	CMPI
	CMPU
	CMPUI
	DIV
	DIVU
	FADD
	FCMP
	FCMPE
	FDIV
	FMADD
	FMSUB
	FMUL
	FSUB
	FTOI
	FTOS
	ITOF
	JL
	JMP
	LD
	LD24
	LDB
	LDH
	LDI
	LDUB
	LDUH
	LOCK
	MACHI
	MACLO
	MACWHI
	MACWLO
	MUL
	MULHI
	MULLO
	MULWHI
	MULWLO
	MV
	MVFACHI
	MVFACLO
	MVFACMI
	MVFC
	MVTACHI
	MVTACLO
	MVTC
	NEG
	NOP
	NOT
	OR
	OR3
	RAC
	RACH
	REM
	REMU
	RTE
	SETH
	SETPSW
	SLL
	SLL3
	SLLI
	SRA
	SRA3
	SRAI
	SRL
	SRL3
	SRLI
	ST
	STB
	STH
	SUB
	SUBV
	SUBX
	TRAP
	UNLOCK
	UTOF
	XOR
	XOR3

	APPENDICES
	Appendix1 Hexadecimal Instraction Code
	Appendix 2 Instruction List
	Appendix 3 Pipeline Processing
	Appendix 3.1 Instructions and Pipeline Processing
	Appendix 3.2 Pipeline Basic Operation

	Appendix 4 Instruction Execution Time
	Appendix 5 IEEE754 Specification Overview
	Appendix 5.1 Floating Point Formats
	Appendix 5.2 Rounding
	Appendix 5.3 Exceptions

	Appendix 6 M32R-FPU Specification Supplemental Explanation
	Appendix 6.1 Operation Comparision: Using 1 instruction (FMADD or FMSBU) vs. two
instructions (FMUL and FADD)
	Appendix 6.1.1 Rounding Mode
	Appendix 6.1.2 Exception occurring in Step 1

	Appendix 6.2 Rules concerning Generation of QNaN in M32R-FPU

	Appendix 7 Precautions
	Appendix 7.1 Precautions to be taken when aligning data

	INDEX

