
 Public Imagination Technologies

META HTP 1 Revision 2.1.314

META HTP

GP Technical Reference Manual - Architecture

Overview

Copyright © Imagination Technologies Limited. All Rights Reserved.

This publication contains proprietary information which is subject to change without notice and is
supplied 'as is' without warranty of any kind. Imagination Technologies and the Imagination

Technologies logo are trademarks or registered trademarks of Imagination Technologies Limited. All
other logos, products, trademarks and registered trademarks are the property of their respective

owners.

Filename : Meta HTP.GP Technical Reference Manual - Architecture Overview.doc

Version : 2.1.314 External Issue HTP.

Issue Date : 30 Apr 2013

Author : Imagination Technologies Limited

Imagination Technologies Public

Revision 2.1.314 2 GP TRM - Architecture Overview

Contents
1. Introduction ... 7

1.1. Meta core architecture highlights.. 7
2. Meta core architecture overview ... 9

2.1. Managing resources for multiple threads ... 10
2.1.1. Inter-thread communications .. 10
2.1.2. Instruction scheduler .. 10
2.1.3. AMA™ .. 11
2.1.4. Memory reads .. 11
2.1.5. Privilege/Lock ... 12

2.2. Interfaces to the Meta core ... 13
2.2.1. Coprocessor interface module ... 13
2.2.2. Reset .. 13
2.2.3. External triggers ... 14
2.2.4. Slave interface .. 14
2.2.5. System bus master ... 14
2.2.6. Debug interface .. 15
2.2.7. Core memory ports ... 15

2.3. Execution units ... 15
2.3.1. Data unit ... 17
2.3.2. Address unit ... 18
2.3.3. PC unit .. 20
2.3.4. Control unit ... 20
2.3.5. Trigger unit ... 20
2.3.6. Input/output ports ... 20

2.4. Exceptions, Triggers and Kicks .. 22
2.4.1. Advanced Trigger Processing .. 23
2.4.2. Trigger allocation .. 24
2.4.3. Trigger matrixing .. 25
2.4.4. Interrupt triggers ... 26
2.4.5. Exceptions .. 27
2.4.6. Deferred triggers .. 27

2.5. Hardware response to Interrupts and exceptions ... 28
2.5.1. Low-level interrupt handling ... 28
2.5.2. HALTS versus interrupts .. 29
2.5.3. HALT/Interrupt sequence ... 29

2.6. Instruction and data caches .. 30
2.6.1. Cache organisation .. 31
2.6.2. Cache manipulation .. 32
2.6.3. Cache WIN Modes ... 33

2.7. MMU ... 33
2.7.1. Meta ATP MMU page table layout ... 35
2.7.2. Meta HTP MMU page table layout ... 35
2.7.3. TLB Invalidation .. 38
2.7.4. Linear to physical address translation instruction CACHERL 38
2.7.5. MMU modes ... 39

2.8. Write combiner .. 40
2.9. Bus errors and Test/Set memory operations .. 40

3. Memory map .. 42
3.1. Overview ... 42

3.1.1. MMU active mode .. 42
3.1.2. MMU enhanced bypass mode ... 42
3.1.3. MMU bypass mode .. 43
3.1.4. Invalid region 1 and 0 ... 44
3.1.5. System region .. 44
3.1.6. Local range ... 44

 Public Imagination Technologies

META HTP 3 Revision 2.1.314

3.1.7. Core code memory region .. 44
3.1.8. Core data memory region... 44
3.1.9. Global range ... 45

3.2. System region ... 45
3.2.1. Custom area ... 45
3.2.2. Expansion area .. 45
3.2.3. System event .. 45
3.2.4. Cache / TLB invalidate ... 47
3.2.5. Core register region .. 48
3.2.6. MMU table region ... 48
3.2.7. Direct mapped .. 48

4. Core registers .. 50
4.1. Control unit internal registers .. 50

4.1.1. Thread enable - TXENABLE .. 51
4.1.2. Thread mode bits - TXMODE ... 52
4.1.3. Thread status bits - TXSTATUS ... 52
4.1.4. Repeat count - TXRPT ... 54
4.1.5. Background timer - TXTIMER .. 54
4.1.6. Interrupt timer - TXTIMERI ... 55
4.1.7. Catch state register 0 - TXCATCH0 ... 55
4.1.8. Catch state register 1 - TXCATCH1 ... 57
4.1.9. Catch state register 2 - TXCATCH2 ... 57
4.1.10. Catch state register 3 - TXCATCH3 ... 57
4.1.11. Deferred interrupt control - TXDEFR .. 57
4.1.12. Timer/catch state control - TXDIVTIME ... 58
4.1.13. Privilege extensions/step - TXPRIVEXT .. 59
4.1.14. Thread issue cycles - TXTACTCYC ... 62
4.1.15. Core idle cycles - TXIDLECYC .. 62

4.2. Per-thread kicks and privilege control registers ... 62
4.2.1. Thread 0 background kick - T0KICK .. 63
4.2.2. Thread 0 interrupt kick - T0KICKI ... 63
4.2.3. Thread 0 AMA register 4 - T0AMAREG4 ... 63
4.2.4. Thread 0 AMA register 5 - T0AMAREG5 ... 64
4.2.5. Thread 0 AMA register 6 - T0AMAREG6 ... 64
4.2.6. Thread 0 memory mapped privilege - T0PRIVCORE .. 64

4.3. Global code breakpoint and data watchpoint setup ... 65
4.3.1. Any thread code breakpoint 0 address - CODEB0ADDR 65
4.3.2. Any thread code breakpoint 0 control - CODEB0CTRL ... 65
4.3.3. Any thread code breakpoint 1 address - CODEB1ADDR 66
4.3.4. Any thread code breakpoint 1 control - CODEB1CTRL ... 66
4.3.5. Any thread code breakpoint 2 address - CODEB2ADDR 66
4.3.6. Any thread code breakpoint 2 control - CODEB2CTRL ... 66
4.3.7. Any thread code breakpoint 3 address - CODEB3ADDR 66
4.3.8. Any thread code breakpoint 3 control - CODEB3CTRL ... 66
4.3.9. Any thread data watchpoint 0 address - DATAW0ADDR 66
4.3.10. Any thread data watchpoint 0 control - DATAW0CTRL ... 66
4.3.11. Any thread data watchpoint 0 DataL - DATAW0DMATCH0 67
4.3.12. Any thread data watchpoint 0 DataH - DATAW0DMATCH1 68
4.3.13. Any thread data watchpoint 0 MaskL - DATAW0DMASK0 68
4.3.14. Any thread data watchpoint 0 MaskH - DATAW0DMASK1 68
4.3.15. Any thread data watchpoint 1 address - DATAW1ADDR 68
4.3.16. Any thread data watchpoint 1 control - DATAW1CTRL ... 68
4.3.17. Any thread data watchpoint 1 DataL - DATAW1DMATCH0 68
4.3.18. Any thread data watchpoint 1 DataH - DATAW1DMATCH1 68
4.3.19. Any thread data watchpoint 1 MaskL - DATAW1DMASK0 68
4.3.20. Any thread data watchpoint 1 MaskH - DATAW1DMASK1 69
4.3.21. Internal core events 0 - PERF_ICORE0 .. 69
4.3.22. Internal core events 1 - PERF_ICORE1 .. 69
4.3.23. Performance counter 0 - PERF_COUNT0 ... 70

Imagination Technologies Public

Revision 2.1.314 4 GP TRM - Architecture Overview

4.3.24. Performance counter 1 - PERF_COUNT1 ... 70
4.3.25. Performance channel 0 - PERF_CHAN0 ... 71
4.3.26. Performance channel 1 - PERF_CHAN1 ... 71

4.4. Write combiner configuration registers ... 72
4.4.1. Write combiner config register 0 - WRCOMBCONFIG0 .. 72
4.4.2. Write combiner config register 1 - WRCOMBCONFIG1 .. 72
4.4.3. Write combiner config register 2 - WRCOMBCONFIG2 .. 72
4.4.4. Write combiner config register 3 - WRCOMBCONFIG3 .. 72

4.5. Privilege registers ... 72
4.5.1. System region privilege for Thread 0 - T0PRIVSYSR ... 73
4.5.2. System region privilege for Thread 1 - T1PRIVSYSR ... 73
4.5.3. System region privilege for Thread 2 - T2PRIVSYSR ... 73
4.5.4. System region privilege for Thread 3 - T3PRIVSYSR ... 73
4.5.5. Core and expansion privilege for Thread 0 - T0PIOREG 73
4.5.6. Core and expansion privilege for Thread 1 - T1PIOREG 74
4.5.7. Core and expansion privilege for Thread 2 - T2PIOREG 74
4.5.8. Core and expansion privilege for Thread 3 - T3PIOREG 74
4.5.9. System event privilege control for Thread 0 - T0PSYREG 74
4.5.10. System event privilege control for Thread 1 - T1PSYREG 74
4.5.11. System event privilege control for Thread 2 - T2PSYREG 74
4.5.12. System event privilege control for Thread 3 - T2PSYREG 74

4.6. Trigger control registers .. 75
4.6.1. Hardware trigger status META - HWSTATMETA .. 75
4.6.2. Hardware trigger status 0-31 - HWSTATEXT .. 77
4.6.3. Hardware trigger status 32-63 - HWSTATEXT2 .. 77
4.6.4. Hardware trigger status 64-95 - HWSTATEXT4 .. 77
4.6.5. Hardware trigger status 96-128 - HWSTATEXT6 .. 77
4.6.6. Hardware trigger edge/level configuration - HWLEVELEXT 77
4.6.7. Hardware trigger edge/level configuration 2 - HWLEVELEXT2 78
4.6.8. Hardware trigger edge/level configuration 4 - HWLEVELEXT4 78
4.6.9. Hardware trigger edge/level configuration 6 - HWLEVELEXT6 78
4.6.10. Hardware trigger mask - HWMASKEXT .. 78
4.6.11. Hardware trigger mask 2 - HWMASKEXT2 ... 78
4.6.12. Hardware trigger mask 4 - HWMASKEXT4 ... 79
4.6.13. Hardware trigger mask 6 - HWMASKEXT6 ... 79
4.6.14. Thread0 background trigger vector - T0VECINT_BHALT 79
4.6.15. Thread0 interrupt trigger vector - T0VECINT_IHALT ... 79
4.6.16. Thread0 memory fault trigger vector - T0VECINT_PHALT 80
4.6.17. Thread1 background trigger vector - T1VECINT_BHALT 80
4.6.18. Thread1 interrupt trigger vector - T1VECINT_IHALT ... 80
4.6.19. Thread1 memory fault trigger vector - T1VECINT_PHALT 80
4.6.20. Thread2 background trigger vector - T2VECINT_BHALT 81
4.6.21. Thread2 interrupt trigger vector - T2VECINT_IHALT ... 81
4.6.22. Thread2 memory fault trigger vector - T2VECINT_PHALT 81
4.6.23. Thread3 background trigger vector - T3VECINT_BHALT 81
4.6.24. Thread3 interrupt trigger vector - T3VECINT_IHALT ... 81
4.6.25. Thread3 memory fault trigger vector - T3VECINT_PHALT 82
4.6.26. PERF0 trigger vector – PERF0VECINT ... 82
4.6.27. PERF1 trigger vector – PERF1VECINT ... 82
4.6.28. External hardware trigger vector table 0 - HWVEC0EXT 82
4.6.29. External hardware trigger vector table 2 - HWVEC20EXT 83
4.6.30. External hardware trigger vector table 4 - HWVEC40EXT 83
4.6.31. External hardware trigger vector table 6 - HWVEC60EXT 83

4.7. General Meta control registers ... 83
4.7.1. META core ID - METAC_ID ... 83
4.7.2. Meta core configuration ID - CORE_ID .. 84
4.7.3. Meta core revision - CORE_REV ... 84
4.7.4. Meta core configuration ID 2 - CORE_CONFIG2 .. 85
4.7.5. MMU table base - MMCU_TABLE_PHYS ... 87
4.7.6. Tn local range root table 0 - MMCU_TnLOCAL_TABLE_PHYS0 87

 Public Imagination Technologies

META HTP 5 Revision 2.1.314

4.7.7. Tn local range root table 1 - MMCU_TnLOCAL_TABLE_PHYS1 88
4.7.8. Tn global range root table 0 - MMCU_TnGLOBAL_TABLE_PHYS0 88
4.7.9. Tn global range root table 1 - MMCU_TnGLOBAL_TABLE_PHYS1 89
4.7.10. Data Cache Enable - MMCU_DCACHE_CTRL ... 89
4.7.11. Instruction Cache Enable - MMCU_ICACHE_CTRL ... 90
4.7.12. Local region MMU enhanced bypass - MMCU_LOCAL_EBCTRL 90
4.7.13. Global region MMU enhanced bypass - MMCU_GLOBAL_EBCTRL 90
4.7.14. Enhanced bypass/wr combiner control - MMCU_TxEBWCCTRL 91
4.7.15. Cache/MMU bypass control - SYSC_CACHE_MMU_CONFIG............................. 92
4.7.16. JTAG debug control - SYSC_JTAG_THREAD .. 92
4.7.17. Data cache flush control - SYSC_DCACHE_FLUSH .. 93
4.7.18. Instruction cache flush control - SYSC_ICACHE_FLUSH 93
4.7.19. Direct map addresses 0 - MMCU_DIRECTMAP0_ADDR 94
4.7.20. Direct map addresses 1 - MMCU_DIRECTMAP1_ADDR 94
4.7.21. Direct map addresses 2 - MMCU_DIRECTMAP2_ADDR 95
4.7.22. Direct map addresses 3 - MMCU_DIRECTMAP3_ADDR 95
4.7.23. Data cache partitioning thread 0 - SYSC_DCPART0 .. 96
4.7.24. Data cache partitioning thread 1 - SYSC_DCPART1 .. 97
4.7.25. Data cache partitioning thread 2 - SYSC_DCPART2 .. 97
4.7.26. Data cache partitioning thread 3 - SYSC_DCPART3 .. 97
4.7.27. Instruction cache partitioning thread 0 - SYSC_ICPART0 98
4.7.28. Instruction cache partitioning thread 1 - SYSC_ICPART1 98
4.7.29. Instruction cache partitioning thread 2 - SYSC_ICPART2 98
4.7.30. Instruction cache partitioning thread 3 - SYSC_ICPART3 98

Imagination Technologies Public

Revision 2.1.314 6 GP TRM - Architecture Overview

 Public Imagination Technologies

META HTP 7 Revision 2.1.314

1. Introduction
This document provides an overview of the main features and detailed reference information for the
Meta HTP hardware multi-threaded processor core.
A growing number of variants of the Meta core exist with differing sets of features. Some sections of
this document describe the Meta processor core in general terms. It should be noted that not all
features described are included on every variant. A configuration specification document is supplied
with each core to clarify the exact feature set of that core.
The general purpose Meta instruction set is described fully in the 'Meta GP Technical Reference
Manual - Instruction Set' document which should be read in conjunction with this document. For
further information about DSP and FPU architectural features and instruction sets please refer to the
relevant DSP or FPU Technical Reference Manual supplied.

1.1. Meta core architecture highlights
The Meta core is a multi-threaded core with digital signal processing (DSP) and floating point (FPU)
capabilities for use in systems such as audio signal processing, digital wireless, mobile, set-top box,
automotive and other applications. The Meta’s real-time, Linux-capable architecture can execute
multiple general purpose and DSP tasks on the same core without any cross-task interference.
It is a high-performance, low-power, modular device enabling extensive customisation. The major
functional units such as the number of threads, caches, DSP and FPU resources are variable, which
has allowed a wide range of cores in the family to be produced at various levels of performance,
power and die size, which enables the development of optimum solutions in silicon.

Item Features

CPU RISC, Load/Store architecture.

Three-operand register based.

One to four independent hardware threads.

Threads share resources such as register execution units and coprocessor
ports and have some separate resources such as program counters and
other 'local' registers.

Instructions per cycle:
Mostly single cycle operations and register-to-register operations.
Simultaneous multi-threading - allows instructions from more than one
thread to be issued on the same clock cycle.

One memory read or write per clock.

8-13 stage pipeline.

Branch prediction and speculative execution.

Data types and
registers

Data Unit - variable number of per-thread and global execution registers.

Address Unit - variable number of per-thread and global execution registers.

Instruction Set RISC 32-bit instructions.

Some single instruction/multiple data (SIMD) instructions.

MiniM 16-bit instructions for reduced code size.

Floating point support IEEE compliant single-precision and double-precision floating-point
arithmetic.

Some non-IEEE compliant operations suited to DSP applications.

Caches Separate instruction and data caches.

Imagination Technologies Public

Revision 2.1.314 8 GP TRM - Architecture Overview

Item Features

2x64-bit wide interface for parallel code and data accesses per cycle .

Instruction cache - non-blocking, 4-way set associative or 2-way skewed
associative cache up to 64Kbytes size.

Data cache - non-blocking, 4-way set associative or 2-way skewed
associative cache up to 64Kbytes size.

Flexible Partitioning between threads.

Memory subsystem External Bus master interface width 32, 64 or 128-bit IMGBUS 3.0
compliant.

Write combining and burst gathering for optimised SDRAM/DDR utilisation.

FIFO pipelined memory read queue.

Bandwidths Main Caches
64-bit instruction cache instruction fetch per clock with per thread pre-fetch
buffering.
64-bit core code memory fetch per clock.
64-bit data cache read per clock.
64-bit data cache write per clock.
.

Internal register files
Address unit - 2x32 bit reads, 1x32 bit write per clock.
Data unit - 2x32 bit reads, 1x32 bit write per clock.

Up to eight read or write 64-bit coprocessor ports.

Memory Management
Unit

Variable 4K to 1Mbyte page-based address mapping, access, and cache
control.

Optimised for Linux

4GByte Virtual Memory Space
~2GByte per-thread and
~2GByte global address spaces.

Space for an extensible set of memory system bus transactions.

Internal support for cache flush, cache on/off, and bus lock/unlock.

 Public Imagination Technologies

META HTP 9 Revision 2.1.314

2. Meta core architecture overview
The Meta core supports one to four independent hardware threads which typically work in parallel on
independent activities. A typical implementation might have four threads, two DSP and two general
purpose. A lightweight implementation might have two threads, one general purpose and one DSP.
The Meta core can perform a number of real-time and non-real-time, GP, FPU and DSP processing
tasks concurrently in a single core where traditional solutions would require a multi-processor system
to achieve similar performance.
Tasks may also be automatically split between threads in an SMP operating system environment.

Thread 0 (DSP) Thread 1 (DSP or GP) Thread 2 (DSP) Thread 3 (GP)

DSP application Management of HW
coprocessor activity DSP application OS or general purpose

application

Figure 1 Example of thread employment on a Meta SoC

Unlike traditional processors that are underused due to multi-cycle memory latencies or waste time
performing context switches in software, the Meta core supports multiple threads in hardware, with
each thread being an instantiation of the processor.

AMA Control System

Thread 0
(Virtual Processor 0)

Local
Registers 0

Global
Registers 0

Local
Registers 1

Global
Registers 1

Local
Registers 2

Global
Registers 2

Local
Registers 3

Global
Registers 3

Real-time Cycle-by-Cycle Instruction Scheduler

Multithreaded Cache and MMU

Scalable Computing Resources

32-bit
DSP RAM

32-bit
DSP RAM

Multiple Data Execution Units

Local Registers
Sets 0 to 3

Global
Registers

Multiple Address Execution Units

Local Registers
Sets 0 to 3

Global
Registers

Thread 1
(Virtual Processor 1)

Thread 2
(Virtual Processor 2)

Thread 3
(Virtual Processor 3)

Floating Point
Unit

Local
Registers

Sets 0 to 3

Figure 2 Basic architecture and operation

Imagination Technologies Public

Revision 2.1.314 10 GP TRM - Architecture Overview

Threads are effectively separate processors that share the processor’s core resources such as
register execution units (ALUs, multiplier, accumulator etc.) and coprocessor ports, but have some
separate resources such as read/write ports.
Although the processing resources are shared, to accommodate multiple thread contexts, each
execution unit holds a local register state, an execution pipeline and a program counter (PC) for each
thread. A separate control unit holds mode bits and control registers for each thread.
DSP RAM is an optional global resource shared between threads specifically for use in the extended
DSP instruction set. For more information see the Meta DSP Technical Reference Manual.
A fine-grained instruction scheduler switches between the thread contexts on a cycle-by-cycle basis.
This scheduler requires that all instructions are atomic and will complete inside a known number of
cycles).

2.1. Managing resources for multiple threads
With Meta multi-threading, all threads operate in a parallel/overlapped manner and can switch
contexts in response to real-time events without software overhead. In the event of a condition that
can potentially cause a stall cycle (e.g. a cache miss), the Meta core automatically starts executing
the next thread. When a specific thread must run, the Meta core provides a number of features
including cache line locking, cache pre-fetching to control memory stalls, and data address pre-issue
to avoid pipeline delays.
Unlike multi-processor systems, where care must be taken early on to partition tasks between
processors, the Meta core allows developers to regard the code on each thread as if it is the only
code present. They can develop real-time applications in isolation, and later run them in parallel on
separate threads. The intricacies of multi-threading are automatically handled by the Meta hardware
and software development tools.

2.1.1. Inter-thread communications
A thread encompasses all the features that a conventional processor provides for the execution of a
task, including independent support for interrupt handling, software scheduling and privilege
protection. Threads are equivalent to multiple independent processors operating together.
There are times when threads are required to interact. The Meta core provides several ways of
achieving this:
• Hardware events; (triggers) generated by one thread and sent to another.
• Kick hardware; where software-generated events are stored for later processing by a thread.
• Signals; a software extension of the hardware kick system. Up to 32 independent events with

corresponding handlers may be established for each thread by setting a bit and then sending a
kick.

• Shared memory areas into which threads may read/write via an agreed protocol.
• Thread synchronization; using memory bus interlocks that allow atomic updates to key shared

memory locations to be used for synchronization
• Cyclic command buffer; a shared memory cyclic buffer exploiting the kick system, in which

command descriptions are placed and then corresponding kicks are delivered to the server
thread.

By combining the methods described above, a unified system of multi-level thread interaction can be
created, using the hardware scheduler and simple run-time code, without the need for an operating
system.

2.1.2. Instruction scheduler
The instruction scheduler manages multiple threads by extracting a list of required resources from the
next pending instruction for each thread. Resource requirements are matched to resource availability
via an interlocking process that yields a set of instructions that can be issued. Over fifty internal
resources are considered by the scheduler to determine whether a thread can run on the next cycle.
From this set of possible instructions, one instruction is chosen to issue according a variable priority
scheduler.

 Public Imagination Technologies

META HTP 11 Revision 2.1.314

Resources

Cycles

a b c d e

o o o o o

o o o o o

o o o o o

o o o o o

o o o o o

o o o o o

o o o o o

Thread 0

Thread 1

Thread 2

Figure 3 Thread resource scheduling

Each thread can use different processor resources at the same time, or one thread can use all of the
processors resources as shown above. This means key algorithms such as Fast Fourier Transforms
are performed extremely quickly and mundane actions such as data movement are done with
maximum efficiency.
To obtain instructions to present to the instruction scheduler each thread includes an independent
instruction fetch engine that can obtain instruction data from a core memory or via the instruction
cache.
To provide enhanced performance the threads' fetch engines may make predictions regarding the
program flow (dynamic branch prediction) and may fetch and/or execute instructions based upon
those predictions (speculative execution).
Notably, sections of memory where code and data are intermingled the fetch prediction is blind to the
distinction and may make predictions based upon data items instead of regular instructions.

2.1.3. AMA™
Meta’s patented AMA (Automatic MIPS Allocation) provides automatic resource management in
hardware, ensuring that each thread of execution gets the MIPS it needs and has the required
response time.

2.1.4. Memory reads
The Meta core manages memory reads in the same way as a typical RISC CPU. Interlocks exist so
that if a load from memory request is missed, the affected thread is descheduled until the missed data
returns. All other threads continue to operate as normal.

Imagination Technologies Public

Revision 2.1.314 12 GP TRM - Architecture Overview

2.1.5. Privilege/Lock

Privilege
At times threads may need to be protected from external interference, for example to implement
operating system protection. In the Meta core all shared resources have a privilege mode flag to
indicate their availability. The memory sub-system also supports the concept of privilege.
For core registers, privilege violations are evaluated before the instruction is scheduled and violations
may invoke background or interrupt triggers.
A thread may optionally change privilege when it enters an interrupt handler. At all other times threads
remain at their original privilege level.

Lock - thread exclusion
Similarly, it is necessary to support mutual exclusion between threads for some critical operations to
be implemented.
There are three levels of thread exclusion currently supported by a special lockinstruction:

Level 0 - no exclusion
All threads are free to execute all instructions. This is the default state for all threads.

Level 1 - voluntary exclusion
This only affects threads that attempt to execute the voluntary lock instruction, LOCK1. Once
executed on a particular thread, all other threads that attempt to execute LOCK1 will be
prevented from acquiring the voluntary lock and will not be allowed to execute beyond that
point until the retaining thread executes the voluntary unlock instruction.

Level 2 - global exclusion
Requests the global exclusion level and prevents all other threads from executing any other
instructions until the retaining thread executes the global unlock instruction.
Use of this feature must be limited to a sequence of a few instructions if the real time
performance of the other threads is not to be adversely effected. Generally the only reason why
this sort of exclusion is required is because some state that would effect the execution of the
other threads is being modified and may become temporarily invalid for the other threads to use
during the update concerned.

 Public Imagination Technologies

META HTP 13 Revision 2.1.314

Global Exclusion

Voluntary Exclusion

No Exclusion

LOCK2

LOCK1 LOCK0

LOCK2 LOCK1

LOCK0

Figure 4 Movement between thread exclusion levels

2.2. Interfaces to the Meta core
The block diagram below shows the interfaces to a Meta core when implemented in a typical Meta
SoC device. Brief descriptions are given in this section of the various interfaces. More detailed
descriptions are given later in the document.

2.2.1. Coprocessor interface module
Up to eight read and/or write coprocessor interfaces can be implemented.
The coprocessor interface module lets data be transferred to and from any application specific
hardware modules, for example real-time data feeds such as digital audio.
Coprocessor ports are usually synchronous interfaces carrying up to 64-bits of data. How that data is
interpreted depends entirely on the coprocessor. In general there is no rule for what provokes the
arrival of data on a coprocessor read port. It may be the result of a previous coprocessor write
operation or the occurrence of an external event, but it is totally specific to the coprocessor
concerned.
A coprocessor read or write operation will only be executed when it can immediately complete, until
this state is reached, the thread concerned is descheduled. In a multi-threaded core another thread
can be scheduled to execute during this time, in a single-threaded core the thread is blocked until the
operation can complete.

2.2.2. Reset
After the rising edge of a reset the Meta core can boot from a fixed internal location or externally via
the Slave or Debug interfaces.

Imagination Technologies Public

Revision 2.1.314 14 GP TRM - Architecture Overview

META core

Trigger/Interrupt

Data Unit
(32x32 bit
registers)

DSP RAM

Memory Mapped
Registers

Debug PortM M U

Instruction Cache
+

Instruction Fetch Engine

Data Cache
+

Write buffer

Debug Interface

Other DMA

System Bus

DRAM I/FSRAM/ROM I/F

Coprocessor
Interfaces

Instruction
Decoders

+
Thread Instruction

Scheduler
32x32 bit registers

Multiple
Data Units

16x32 bit registers

Multiple
Address Units

DSP RAM

External Triggers

Reset

Memory
Mapped

Registers

Data Unit
(32x32 bit
registers)16x32 bit registers

Floating
Point Unit

Core Code
Memory

Slave Interface

Core Data
Memory

Figure 5 Core interfaces in a typical Meta device

Note: The number of registers shown is for a typical implementation and is variable, please refer to
the Core.Configuration Specification document supplied for details.

2.2.3. External triggers
Triggers provide a method of interlocking with, or interrupting, the execution of threads in the Meta
core. Up to 128 external system triggers may be input from outside the core and configured in the
core as edge sensitive or level sensitive signals.

2.2.4. Slave interface
The Slave interface allows the Meta core to be booted, configured and controlled by a Host
processor.
This slave interface allows “Kicks” to be addressed externally to individual counters that are specific to
interrupt or background processing levels of each thread.

2.2.5. System bus master
The physical memory map is implemented for the Meta core via the System Bus port. This port can
carry a number of simultaneous transactions for each thread, allowing independent operation of
threads from memory mapped hardware which might have different response times. Requests to the
system bus are made via the caches and MMU:

 Public Imagination Technologies

META HTP 15 Revision 2.1.314

Caches
The Meta core interfaces directly to code and data caches that support its full read/write code/data
operating bandwidth. Using this interface the core can issue both a data read/write operation and a
code read operation in a single cycle with the intention of moving data into and out of the
corresponding caches as fast as possible in parallel.

MMU
This interface allows the data and code caches to obtain access to external memory in a common
unified memory map controlled by the MMU. The MMU is responsible for translating the virtual
addresses used by Meta threads and coprocessor hardware into physical memory addresses
implemented via the System Bus.

2.2.6. Debug interface
This interface allows an external debug host to indirectly issue reads or writes to the logical address
space of any thread. This allows all features of the core to be controlled or monitored. This interface is
accessed via a JTAG TAP controller positioned at the top level of the customer SoC.

2.2.7. Core memory ports
These interfaces allow arbitrarily sized closely coupled instruction memory and data memory to be
attached to the Meta core. These memories would typically be used for key DSP algorithms
depending on the application.

2.3. Execution units
The Meta core's logic is built around execution units which help to support multiple thread contexts
and to improve the load balancing of those contexts. Execution units hold a local register state and an
execution pipeline for each thread. Different types of execution unit have different pipeline logic and a
different set of registers. A separate control unit holds mode bits and control registers for each thread,
and a separate unit holds a program counter (PC) for each thread.

Address Unit 0

Registers

A0.0 - A0.3

A0.4 - A0.7*

Data Unit 1

Registers

D1.0 – D1.7

D1.8 – D1.15*

Address Unit 1

Registers

A1.0 – A1.3

A1.4 – A1.7*

TR.0 – TR.5

Trigger Unit

Registers

PC
PCX

PC Unit

Registers

Data Unit 0

Registers

D0.0 - D0.7

D0.8 - D0.15*

Control Unit

Registers

Output Ports

Read address

Input Ports

RA RAPF
RABX RABZ
RAWX RAWZ
RADX RADZ
RAM8X
RAM16X
RAM8X32

Write Queue

RD

Read data

META core

*Note: The higher bank of
registers is only present in a
DSP-specified core, but when
present, the extra registers
are available to both GP and
DSP instructions.

CT.0 - CT.30

Figure 6 Per-thread resources

Note: The number of registers shown is for a typical implementation and is variable, please refer to
the Core.Configuration Specification document supplied for details.

Imagination Technologies Public

Revision 2.1.314 16 GP TRM - Architecture Overview

Register execution units
• Data unit
• Address unit
• PC unit

Non-execution units
• Trigger unit
• Control unit
• Input/output ports
• Coprocessor ports
The use of units allows a large total number of registers to be incorporated into the design. It is
possible for instructions to make use of more than one unit at a time to enable parallel execution and
improve performance.
The number of arithmetic execution units is two address units and two data units. A DSP enabled
arithmetic unit has extra registers, but when these registers are present they are available to both
DSP and GP instructions. This does not apply to accumulator registers which are DSP only.

Address Unit 0

Registers

A0.8 - A0.15

Data Unit 1

D1.16 – D1.31

Address Unit 1

A1.8 – A1.15

Data Unit 0

D0.16 - D0.31 CT.31

Control Unit

Registers

Output Ports

Coprocessors

CP.0 – CP.7

META core

Input Ports

Coprocessors

CP.0 – CP.7

Registers

RegistersRegisters

Figure 7 Global resources

Notes:
 1 The number of registers shown is for a typical implementation and is variable, please refer to

the Core.Configuration Specification document supplied for details.
2 For single-threaded cores, resources shown as global above may not be present.
Internal control registers can be referred to by their register number or their alias (e.g. CT.0
=TXENABLE) as defined in metag.inc in the Meta toolkit. The registers shown below are for a four-
threaded core, not all registers may be available depending on the specific implementation.

 Public Imagination Technologies

META HTP 17 Revision 2.1.314

GP control unit registers Trigger unit registers
TXENABLE
TXSTATUS
TXRPT
TXTIMER
Reserved
TXTIMERI
TXCATCH0-3
TXDEFR*
Reserved
Reserved
Reserved
TXDIVTIME
TXPRIVEXT
TXTACTCYC
TXIDLECYC

*HTP onwards

CT.0
CT.2
CT.3
CT.4
CT.11
CT.13
CT.16-19
CT.20
CT.22
CT.23
CT.24-27
CT.28
CT.29
CT.30
CT.31

TXSTAT
TXMASK
TXSTATI
TXMASKI
TXPOLL
TXPOLLI

TR.0
TR.1
TR.2
TR.3
TR.4
TR.6

2.3.1. Data unit
The data units contain a 32-bit register file with a maximum of 16 registers (0-15) per thread and 16
global registers (16-31). These registers are internally linked to an ALU, which can perform signed
add/sub, logical-arithmetic-left/right shifts, logical and/or/xor, address operations, and 16/32-bit
multiplies. The data unit’s ALU can generate conditions that affect the future execution of the
instruction stream.
The block diagram in Figure 8 shows, at the top of the diagram, the register file that contains the main
register storage for the unit. This has two read ports (rop1 and rop2) and two write ports (int and ext).
The read ports allow two register operands to be read from the register file per cycle, while the two
write ports allow writes from two separate pipeline phases to be committed to the register file per
cycle.
This is followed by a number of multiplexed data paths that select which parameters will be loaded
into the Op1 and Op2 registers in each of the three sub-pipelines (logicals, add/sub and multiply).
There are various circumstances under which more than one sub-pipeline may be active at the same
time - for example the add/sub pipeline may take two cycles to obtain the two results of an FFT
butterfly add/sub during which other instructions can use a different sub-pipeline.
The pipelined data path includes some pipeline re-circulation capabilities which can enable
continuous throughput for unit-internal (UI) operations.

Imagination Technologies Public

Revision 2.1.314 18 GP TRM - Architecture Overview

n*32-bit per thread

Int

Immediate
or O2R

Rop2 Rop1

Op2 Op1

LSL/LSR/ASL/ASR/
AND/OR/XOR/

QUICKRoT/FFB/
NORM/NORM-MIN

Logical out

MIN/MAX/ABS

M1 M0 ADDSUB out

MAS
(MUL ADDSUB OUT)

Ext

Op2 Op1Op1Op2

n*nn*n

+/-

masop op

mulop

pipeline
feedback

Register File

n*32-bit shared globally

Cycle-by-cycle hardware
scheduled pipeline registers

Cycle-by-cycle hardware
scheduled ALU resourcePer-thread storage resource Global register resource

allocated statically in software

Key

0

“n” - number of registers/multiplier widths is implementation dependent

Figure 8 Data unit detailed architecture

2.3.2. Address unit
Address units consist of a smaller group of registers with simpler functionality specifically targeted
towards memory address generation. Each address unit holds eight registers that are private to each
thread (0-7) and eight global registers (8-15).

 Public Imagination Technologies

META HTP 19 Revision 2.1.314

As shown in Figure 9, the register files in each address unit have two read ports (rop1 and rop2)
along with two write ports (int and ext). The two read ports allow two register operands to be read
from the register file per cycle, while the two write ports allow writes from two separate pipeline
phases to be committed to the register file per cycle.

(up to) 8x32-bit per
thread

Int

Immediate
or O2R

Rop2 Rop1

Op2 Op1

ADD/SUB
Modulo addressing

Bit-reversed
addressing

ALU out

Ext

Register File

8x32-bit shared globally

Cycle-by-cycle hardware
scheduled pipeline registers

Cycle-by-cycle hardware
scheduled ALU resourcePer-thread storage resource Global register resource

allocated statically in software

Key

0PC PC

Figure 9 Address unit detailed architecture

The value of the current PC address can be used as either of the source parameters. This allows
calculations relative to the address of the current instruction to be initiated quickly without the need to
explicitly transfer a value from the PC unit. The value of the PC cannot be derived directly in this way
in other units, however the value derived from registers in the address units may be delivered into any
other unit.
To support the requirements for DSP-style functionality, address units enable the issue of a load or
store in parallel with the operation of the main DSP execution units.

Addressing modes
As well as normal addressing, the address units have some extra DSP specific functionality; modulo
addressing and bit reversed addressing these are described further in the DSP Technical Reference
Manual.

Imagination Technologies Public

Revision 2.1.314 20 GP TRM - Architecture Overview

2.3.3. PC unit
The PC unit holds two program counter registers per thread, along with a simple functional unit that is
used for the majority of the system's program flow manipulations such as branches and hardware
loops.
During the execution of normal background code, PC holds the execution address for the current
thread, and PCX holds the address from which the next interrupt on this thread will execute. When an
interrupt occurs, the contents of PC and PCX swap. PC holds the execution address for the executing
interrupt handler, while PCX holds the address from which code execution will resume when the
interrupt completes. The swapping of PC and PCX happens transparently when interrupt level is
entered or exited.
Branches, jumps and calls must use the address for the first instruction to be executed, as no further
processing is applied to this value before it is copied into a thread's PC register.

2.3.4. Control unit
The control unit is a simple unit that only contains a register file and has no associated ALU.
The registers hold all of the control state that cannot be put into memory mapped I/O space, i.e. all
the control registers that are needed in the core itself such as individual thread on/off controls, DSP
mode switches, hardware loop controls and repeat counters.
Internally, each thread has a direct access to its own block of registers (CT.0 to CT.31). Some of
these registers require the thread to be privileged before it can write to them (unprivileged reads are
always allowed).
To access a register in another thread's block of registers, a memory-mapped access must be
performed, so all control unit registers of all threads can be globally accessed via a memory-mapped
region allocated to these registers.

2.3.5. Trigger unit
The trigger unit provides a mechanism for detecting and synchronizing with various types of system
event. It holds six registers which control routing of internally generated and externally supplied
triggers, and which allow the original source of a processor trigger to be located.
The trigger unit provides independent systems for two levels of event handling; background and
interrupt. Background control provides voluntary synchronization with zero overheads, whilst interrupt
control is based on a conventional model with overheads.
See section 2.4 Exceptions, Triggers and Kicks for more details of triggers.

2.3.6. Input/output ports
The Meta core has several memory ports that connect to internal and external data sources. DSP
performance is assisted by using separate instruction and data caches, or on-chip RAMs, to reduce
the work of the memory interface. For example, when a program is operating in a tight core loop, all
requests can be serviced by the instruction cache or on-chip RAMs so there is no instruction fetch
activity on the memory bus.

Interaction of memory ports
Data can be retrieved via the load port or read port to suit the application.

Loads
Loads get data from memory and put it in the register concerned.

Reads
Reads target the read pipeline, having separate read and return instruction issues as described
below. Read ports are most useful in DSP applications.

Memory load ports, read ports, and write ports are linked to provide coherency and efficient
implementation. Loads, reads and writes may be combined in any order.

 Public Imagination Technologies

META HTP 21 Revision 2.1.314

Pipelined memory
To enable high throughput of data, a read pipeline is implemented. This operates as a FIFO (first-in-
first-out) of requests in which there is no final destination specified when the request is made.
Requests are pre-issued into the FIFO and then removed for use by a subsequent instruction. This
instruction may then issue a new request of its own, thus keeping the FIFO full at all times.
In practical terms, using the read pipeline is equivalent to splitting a load into two operations; issue
and completion, allowing the Meta core's pipeline to execute instructions while a memory read is in
progress. In the first phase, the address to be read from is issued to a read address port (RA*). In the
second phase, the returned data may be read from the read data port (RD).
This increases performance for many applications because there is a buffer of requests waiting. The
capacity to handle six reads is typical to support portable code, but the number read operations varies
according to the specification of the Meta core and the software's requirements.

Memory read ports
Each thread has its own set of read ports, which consist of both output (e.g. read address issue) and
input (e.g. read data fetch ports). Memory read pipelines are private to each thread and other threads
cannot change the state contained in them.
To obtain pipelined read data from memory a thread issues a 32-bit read address then the data
associated with that address is read back into the Meta core. All read ports support word-sized
accesses to 8, 16, 32 or 64-bit word boundaries.

Input Output

Read Data (RD). Read Address (RA).

Reserved for future. Read Address Prefetch (RAPF).

Reserved for future. Read Address Byte Zero Extend (RABZ).

Reserved for future. Read Address Word Zero Extend (RAWZ).

Reserved for future. Read Address Dword Zero Extend (RADZ).

Reserved for future. Read Address Byte Sign Extend (RABX).

Reserved for future. Read Address Word Sign Extend (RAWX).

Reserved for future. Read Address Dword Sign Extend (RADX).

Reserved for future. Read Address MX Extend 8-bit (RAM8X).

Reserved for future. Read Address MX Extend 16-bit (RAM16X).

Reserved for future. Read Address MX Extend 8x32 (RAM8X32).

Under most conditions only the read data input port and read address output port need to be used.
The read address prefetch output port allows speculative and predictive pre-loading of the data
cache. The read port's zero and sign extension variants allow byte, word or dword reads to be zero or
sign extended before use. Specifying this with the read address issue makes it possible to apply zero
or sign extension to instructions that would otherwise not support it. To use these extensions the read
address is issued to one of the special read ports and the data fetched from the RD port is modified
accordingly.

DSP memory read ports
A number of DSP instructions support an additional memory port feature, the MX flag, which indicates
that the memory operation (load or store) is targeted towards 16-bit or 8-bit operations. See the Meta
DSP TRM for details.

Memory load ports
Each thread has its own load port that can queue and complete a sequence of reads from memory
into specified registers in the background while the processor continues to operate and execute other
instructions. If any of the data values requested are required by a thread, then the scheduler will delay

Imagination Technologies Public

Revision 2.1.314 22 GP TRM - Architecture Overview

its execution until the data required arrives into the related register. Load operation can deliver zero
extended 8, 16, 32, or 64-bit word data from corresponding word boundaries into a register in any
unit.

Memory write port
The single memory write-port is driven from the write buffer and shared between all threads. It
supports writes of 8, 16, 32, or 64-bit words aligned to word boundaries. Write addresses are
generated as 32-bits.

Coprocessor write ports
The Meta core supports up to eight coprocessor write ports.
A coprocessor write port is a uni-directional channel from the Meta core into a coprocessor hardware
module. This channel may have an arbitrary width up to 64-bits. The instruction set includes encoding
that is suited to operating with both full 64-bit ports and reduced width ports (e.g. 48-bit).
Coprocessors may optionally support full flow control on these types of ports, with buffering commonly
being added to flow controlled ports to improve throughput.

Coprocessor read ports
The Meta core supports up to eight coprocessor read ports, these ports usually have a relationship to
the corresponding coprocessor write ports.
Coprocessor read ports are typically 64-bit or 32-bit wide uni-directional channels from a coprocessor
into the Meta core. Flow control is supported by these ports (except in exceptional circumstances), as
these ports are emptied only when demanded by the software running on one of the Meta core's
threads.

2.4. Exceptions, Triggers and Kicks
During code execution a number of events can occur both externally and internally that can be
observed and acted on in multiple ways by the Meta core. This section overviews the events that the
Meta core can generate itself or observe whilst is operates and the techniques that can then be
deployed to respond to specific sub-sets of these events. Conventional processors respond to events
by running interrupt service routines and Meta cores support these standard methods as well as other
advanced methods of event handling.

Terminology
The term trigger is used both to refer to general purpose interrupt signals fed into the core and
specialised internal events that the core generates such as exceptions and kicks. The Meta core
responds similarly via a number of common mechanisms to events of all types so the term trigger is
used as an encompassing term for all events which are relevant to the context concerned rather than
enumerating all the types of event that could be involved at each point in the text.
The terms exception and interrupt are used for events that alter the normal program flow to handle
odd conditions or triggers that disturb the normal execution flow or actually prevent instructions
completing normally. Interrupts are normally used to handle asynchronous events, while exceptions
handle conditions detected by the processor itself in the course of executing instructions. However,
exceptions and interrupts are often used inter-changeably, and the term exception is often used to
refer both to exceptions and interrupts.
Some instructions are designed to always provoke specific exceptions, these instructions are
commonly called traps and in the Meta architecture such operations are implemented by SWITCH
instructions.
Both interrupts and exceptions can cause the thread to alter the program flow to execute an interrupt
handler or exception handler to manage such events in a fresh execution context described as
interrupt level processing. The original background level execution of the thread is usually unaffected
by the presence of interrupt level processing events and lower priority interrupt execution is
unaffected by any higher priority interrupt level processing events that interrupt it. Each interrupt
processing level is hence a clean and independent execution context that can restore all state related
to the previous execution level when it completes.

 Public Imagination Technologies

META HTP 23 Revision 2.1.314

The system responds to an exception (i.e. exception or interrupt) event by automatically saving critical
execution state onto a stack. The stack on which state is stored is referred to as the interrupt stack.
The execution state saved onto the interrupt stack forms the interrupt frame. The process of saving
the execution state is called the entry sequence. When the thread completes the interrupt level code,
the process of restoring execution state is called the exit sequence. When an exception pre-empts an
instruction stream, the thread automatically saves execution state into the interrupt frame, and
execution branches to the corresponding exception handler. Exception priorities determine the order
in which the thread handles exceptions. Exceptions of higher priority can pre-empt the instruction
stream of a currently executing exception handler via nested interrupt processing. Exceptions of lower
priority are pending exceptions which will be automatically handled after the current exception handler
is completed.

2.4.1. Advanced Trigger Processing
Interrupt handling can have a large overhead involving a save of the current context, execution of the
interrupt service routine, and a restore.
With advanced trigger processing, threads can poll or wait for events and respond immediately.
For multi-threaded versions of the Meta core, code previously invoked via interrupt handlers may be
placed on a different thread. In this case, no context save is required, so there is a true one-cycle
response without overheads. Simple code on one thread can respond to multiple events
synchronously.
Trigger masks are used to select the trigger sources that the thread wishes to respond to and status
registers indicate pending events that a thread has yet to acknowledge.
The action of a thread is to either block or poll on one or more trigger sources. Blocking effectively
deschedules the thread until the block is released and no processor load is used on that thread until
the blocking condition is met.
An example of a trigger source is the internal timer that stalls a thread’s instruction stream until a
timeout occurs. The Meta core supports advanced trigger processing of two distinct types of trigger
source via the trigger unit - hardware triggers and kicks.

Hardware triggers
Hardware triggers are sourced from hardware outside of the Meta core (e.g. coprocessors and
external peripherals). Each hardware trigger provides a simple event flag.
A set of registers in the Trigger Control Register region are used to control the routing of
internally generated and externally supplied triggers.

Kicks
Kicks are caused by a software action such as writing to a memory mapped register called a
kick counter such as T0KICK (see section 4.2). Kicks differ from hardware triggers in that a
count of kicks received is accumulated with time and automatically decremented (by one) when
the thread responds. This counter can be used to implement simple software or hardware
request queues, using shared memory or a coprocessor interface FIFO as the storage area. All
software inter-thread events must be communicated using kicks.
A separate kick counter is supported for background use by each thread. Background
processing allows zero-overhead, voluntary processing of kicks.

Timer Trigger
Timer triggers are generated by the timer register inside Meta core. A TXTIMER register is provided
for independent use within background level code on each thread generating timer trigger events. For
each thread the trigger unit holds two background trigger handling registers - namely the status/clear
and mask register. The trigger mask is used to select the trigger sources that the thread wishes to
respond to (for each interesting trigger source a '1' must be set in the relevant mask register bit),
these sources include both hardware and kick type events (1-bit per source). All threads can address
their background trigger mask register as TXMASK and the status/clear register TXSTAT is then used
to receive and acknowledge triggers. To support polling accesses read-only access via the TXPOLL
registers return the same status information as TXSTAT, but via a non-blocking read.
The background trigger status/clear registers allows both a blocking and non-blocking method for
detecting fired triggers. The more common use is the blocking form where the thread's instruction
stream will block until any of the trigger sources specified in the trigger mask TXMASK has a change

Imagination Technologies Public

Revision 2.1.314 24 GP TRM - Architecture Overview

of state (i.e. an event is sent from that trigger source to the Meta core). All threads can address their
background trigger status/clear register as TXSTAT (although this can only support the blocking form
for reads from the background trigger status register).
TXSTAT only contains '1' bits that are selected via similar '1' bits in TXMASK. Triggers on the bits
currently ignored are still detected and recorded within hardware common to all the threads so that
when further '1' bits are enabled in a thread’s TXMASK register the TXSTAT value reported for that
thread may immediately change.
The blocking instruction will typically be of the form of a unit-to-unit move with the trigger unit as
source and one of the address or data units as destination. In this case, after the blocking instruction
is passed the move's destination register will contain both kick and trigger status (kick status being in
the top half word, and trigger status being in the low half word). A threads kick count will be
automatically decremented by one at the point at which it is read provided that the relevant bit was set
in the trigger mask, one or more kicks have been accumulated and the kick event is the highest
priority trigger source visible at the time.
To clear background triggers that are no longer needed the TXSTAT register is written to with a bit
pattern that reflects the acknowledged triggers (exactly the same form as per the trigger mask).
Writing a '1' will clear the relevant trigger, while a '0' will leave the trigger state unchanged. Attempting
to write to the kick status bit or accumulator bits will not change the kick count in any way
(accumulated kicks can only be removed by a blocking trigger status read instruction when they are
the highest priority event visible at the time).
To successfully acknowledge TXSTAT bits the corresponding TXMASK bits must be set. TXMASK
defines which trigger bits the thread concerned is currently interested in and has influence over at
background processing level.
To poll on background trigger state an additional pseudo-register TXPOLL is provided. Requesting a
transfer from this register to another core register, for example in D0, D1, A0 or A1, results in a non-
blocking read being performed. The state information returned for this request is in the same form as
that retrieved from a blocking read. When polling the kick count is not decremented.

2.4.2. Trigger allocation
The bits within the trigger mask and status/clear registers are allocated/used as follows:

TXSTAT/TXSTATI, TXPOLL/TXPOLLI

Bits Associated Trigger/State Scope

31:24 Deferred Bus Error State (read only) Independent

23 Deferred Bus Errors / linked test & set. Independent

22 0 Reserved

21 Floating Point denormal trigger. Independent

20 Floating Point invalid operation trigger. Independent

19 Floating Point divide by zero trigger. Independent

18 Floating Point overflow trigger. Independent

17 Floating Point underflow trigger. Independent

16 Floating Point inexact trigger. Independent

15:4 Hardware trigger 15 to Hardware trigger 4 Global common

3 Deferred Exception trigger (not edge sensitive) Independent

2* Internal Background HALT trigger
(* TXSTATI / TXPOLLI only)

Local common

1 Internal kick non-zero trigger (not edge sensitive) Independent

0 Internal timer trigger Independent

 Public Imagination Technologies

META HTP 25 Revision 2.1.314

TXMASK/TXMASKI

Bits Associated Trigger/State Scope

31 This bit is always set to '0'. Reserved

30:16 These bits are always set to '0'. Reserved

15:4 Hardware trigger 15 to Hardware trigger 4 Global common

3 Deferred Exception trigger (not edge sensitive) Independent

2* Internal Background HALT trigger
(* TXMASKI only)

Local common

1 Internal kick non-zero trigger (not edge sensitive) Independent

0 Internal timer trigger Independent

Global common triggers may only be enabled in one of the interrupt or background trigger masks of
one of the threads in the system at any time.
Local common triggers may only be enabled in one of the interrupt or background trigger masks for
each thread in the system at any time. The HALT trigger in this category can only be usefully enabled
in the interrupt trigger mask; enabling this event for background trigger processing is pointless as the
occurrence of this trigger signifies that the background processing level of the thread has been
stopped. If a HALT condition arises during interrupt level processing then the HALT trigger state can
only be usefully detected externally to the Meta core or by an independent thread.
Independent triggers may be enabled in all the trigger masks of all the threads in the system. These
bits support trigger hardware local to both each thread and each processing level of a thread.
Interrupt Only fields only exist in the TXMASKI register and hence may only be set in the interrupt
trigger masks of all the threads in the system. These bits support trigger related hardware state local
to each thread which only effect interrupt level processing.

2.4.3. Trigger matrixing
To allow some fault conditions on one thread to be handled via an interrupt on another thread, a set of
triggers may be matrixed to any thread.
These triggers are:
Background HALT Only issued once pipeline and memory state has stabilised.
Interrupt HALT Only issued once pipeline and memory state has stabilised.
Background or Interrupt HALT Which was caused by a page fault or read only fault on code or data

access. Only issued once pipeline and memory state has stabilised.
AMA trigger This trigger indicates that certain conditions within the AMA

rate/priority control mechanism have occurred (see AMA register 0 -
TXAMAREG0).

Classing the above triggers as B, I, and P the Meta core outputs a set of triggers to be matrixed as
shown below:

Thread n

A P I B

. . . .

A P I B

Thread 1

A P I B

Thread 0

LSB

Figure 10 Trigger matrixing

Note: The thread trigger slot labelled A in the diagram is reserved.
These triggers can be vectored in a way similar to triggers completely external to the processor to
effect any one of the twelve trigger lines 4 to 15 fed into the threads trigger mechanisms.

Imagination Technologies Public

Revision 2.1.314 26 GP TRM - Architecture Overview

Thread 0 Triggers

Thread n Triggers

n x 4 32

Debug
Interface

Theads
Triggers
Vector

Decode
TnVECINT

32*4
(vector 1)

Hardware
Triggers
Vector
Table

HWVECEXT

Hardware Trigger 0

Hardware Trigger 127

128 128

128*4

12

(vectors
4:15)

Trigger State

HWSTATMETA

Trigger State &
Conditioning

HWSTATEXT
HWLEVELEXT
HWMASKEXT

Trigger
Vector

Decode

META Core

TRIGGER
UNIT

REGISTERS

Slave
Interface

2

(vectors 2:3)

Null
(vector 0)

Figure 11 Trigger flow

2.4.4. Interrupt triggers
Meta interrupts include hardware triggers from outside the core, events triggered by the internal timer
and KICK events accumulated for interrupt level handling by that thread.

Hardware triggers
Hardware triggers are sourced both from hardware outside of the Meta core itself (e.g.
coprocessors) and internal sources (e.g. timer). Each hardware trigger provides a simple event
flag.
A set of registers in the Trigger Control Register region are used to control the routing of
internally generated and externally supplied triggers.

Kicks
Kicks are caused by a software action such as writing to a memory mapped register called a
kick counter such as T0KICKI (see section 4.2). Kicks differ from hardware triggers in that a
count of kicks received is accumulated with time and automatically decremented (by one) when
the thread responds. This counter can be used to implement simple software or hardware
request queues, using shared memory or a coprocessor interface FIFO as the storage area. All
software inter-thread events must be communicated using kicks.
A separate kick counter is supported for interrupt use by each thread. Interrupt processing of
kicks allows operating system or interrupt handling code on one thread to communicate
transparently with similar interrupt handling software on any other thread.

For each thread to operate independently at interrupt level the trigger unit holds two registers -
namely the status/clear and mask registers for interrupt triggers. The trigger masks select the trigger
sources that the thread wishes to respond to at interrupt level (for each interesting trigger source a '1'
must be set in the relevant mask register bit), these sources include both hardware and kick type
events (1-bit per source). All threads can address their interrupt trigger mask register as TXMASKI.
The interrupt status/clear register TXSTATI is used to receive and acknowledge interrupts. To support
polling accesses a read-only TXPOLLI pseudo register is provided that return the current status
information via a non-blocking read.
The interrupt trigger mask register specifies the trigger sources that can cause the normal execution
of the thread concerned to be interrupted. The basic interrupt mechanism solely involves switching PC
and PCX for the affected thread.
The interrupt trigger status/clear registers allow interrupt triggers to be detected and then selectively
acknowledged in a way similar to background trigger states. If significant interrupt trigger states still
exist when the exit sequence is invoked then the interrupt handling process is immediately re-
triggered. All threads can address their interrupt trigger status/clear register as TXSTATI in the trigger
unit. As with the background trigger registers it is possible to perform either a blocking or a polling
operation upon the status/clear register. For blocking access, register TXSTATI may be read directly.

 Public Imagination Technologies

META HTP 27 Revision 2.1.314

To poll on interrupt trigger state an additional pseudo-register TXPOLLI is provided. Requesting a
transfer from this register to another processor register (e.g. in D0, D1, A0 or A1) results in a non-
blocking read being performed. The state information returned for this request is in the same form as
that retrieved from a blocking read.

2.4.5. Exceptions
Exceptions cause execution to halt and are then matrixed to allow the interrupt for one thread to be
handled by another thread. This means that an exception may be handled by the thread on which it
occurs, or on any other thread, depending on how the originating thread is set up.
Possible causes for an exception can be:
• Memory fault on data memory port, instruction memory port or hardware breakpoint.
• Unknown instruction or bad instruction pattern.
• Software traps (SWITCH instructions).
• Privilege violation.
• Instruction violations – instructions can become invalid in certain circumstance.
• Read pipeline overflow or underflow.
• Trigger blocking read that cannot be passed – reading from TXSTAT when TXMASK is zero.
• Deferred floating point exception.
• Memory bus error.
For writes to control (CT) registers from inside the core (register transfer or load from memory), if a
CT register requires privilege to be written to, and the thread does not possess the requisite privilege,
an exception is raised instead of the write being performed. In general, privilege controls for CT
registers are either controlled by bits in TXPRIVEXT or have a static required/not required rule.
SWAPs between any of units CT/PC/TR/TT and similar CT/PC/TR/TT units also cause an exception
as normal address and data unit registers must be used instead as intermediaries in any such
specialist unit transfers.

2.4.6. Deferred triggers
The Meta core trigger and exception model has been augmented to include the concept of deferred
exceptions. This applies to two particular areas – supporting memory bus errors (including test and
set style functions) and floating point (e.g. for divide by zero). The possible reasons for a deferred
trigger are as follows:
• Deferred bus error – this typically relates to a read or write to memory that generates an error

state. A sub-set of bus errors are called bus warnings and the most common cause of this type
of bus error state is linked test and set where both the success and failure states are 'expected'
conditions during normal operation .

• Floating point inexact exception.
• Floating point underflow exception.
• Floating point overflow exception.
• Floating point divide by zero exception.
• Floating point invalid operation exception.
• Floating point denormal exception.
For more details of floating point deferred exception handling refer to the Meta FPU TRM

Direction into Interrupt or Background Level
Deferred triggers may be handled at background level or via interrupts. A single control (per reason)
is provided that allocates whether an exception causes an interrupt or not, with the default setting for
this being that deferred triggers are assigned to background level and will not cause an interrupt to be
raised. The background/interrupt selection is controlled via the TXDEFR register.

Trigger Masking and Status
In the trigger unit two trigger controls exist in bit 3 of TXMASK/TXMASKI as shown in section 2.4.2.

Imagination Technologies Public

Revision 2.1.314 28 GP TRM - Architecture Overview

This trigger mask bit is by default in the off (masked) state and may be set to enable the deferred
triggers (as routed to interrupt or background level by TXDEFR) to then lead to the raising of an
interrupt (TXMASKI) or background trigger (TXMASK). This trigger control works in the same way as
the existing bits.
For interrupt level triggers the extra trigger actually feeds into a thread's HALT mechanisms. It
therefore slots into the IRQ priority encoding scheme so that software can make simple choices about
what to deal with in cases where multiple triggers have triggered at the same time (see description of
IRQEnc field of register TXDIVTIME, section 4.1.12).

Timer/catch state control
To determine which of the deferred trigger sources have caused a particular deferred trigger event a
new set of status data has been multiplexed with the kick data when reading
TXSTAT/TXPOLL/TXSTATI/TXPOLLI. Kick data has precedence so that this deferred error status
will only appear when deferred errors are the highest priority active trigger at a specific level, and bit 3
of TXMASK* is set (note that DEFR instructions are run as if bit 3 of TXMASK* is set). The deferred
error bits that may be reported back via reads of TXSTAT*/TXPOLL* are bits 16 to 31 as shown in
section 2.4.2.
Within the set of deferred exceptions deferred bus errors have precedence over deferred floating
point exceptions. What this means is that when doing a DEFR, that DEFR will only read and clear out
the deferred bus error if it has one and leave the FPU exceptions untouched. Only if there is no bus
error will the FPU exceptions be read and cleared by the DEFR instruction.
Reads of TXSTAT*/TXPOLL* can return all the deferred error status for the appropriate interrupt or
background processing level dependent on the ICtrl routing bits in TXDEFR bits 7 and 5 to 0. The
value of bit 3 remains ‘1’ whilst any of the deferred error triggers remain unacknowledged.
Writes to TXSTAT* can be used to clear deferred error status as per the rest of the bits in TXSTAT.
Each of the 7 reasons can be cleared individually by setting just that one bit; however, bit 3 will also
need to be written at the same time. Writes to the upper bits (and bit 3) to clear deferred state are
expected and allowed when TXMASK* bit 3 is zero. So, to clear the deferred bus error status in
TXSTATI it is necessary to write a ‘1’ to bit 3 and a ‘1’ to bit 23 (at the same time) and this is allowed
when TXMASKI is set to zero within an interrupt level exception handler. Note that writing just bit 3 will
have no significant effect.
The DEFR instruction provides a way to read TXSTAT* and clear deferred error states in a single
operation. Care must be taken in an exception system to act on ALL the bits which are collected and
cleared via a single DEFR instruction. The DEFR instruction can also be used with TXPOLL*,
however, in this case the operation is a non-blocking read only (no deferred error state is cleared for
DEFR against TXPOLL*). The more manual/selective mechanism of masked writes to TXSTAT* is
used where appropriate, so, for example, state could be read using a DEFR on TXPOLL* and then a
write to TXSTAT* using that data can be used to clear states. As noted above for TXSTAT*/TXPOLL*
reads, the DEFR instruction will only read the set of deferred errors that apply to the selected
processing level (background or interrupt) and this is determined from the register being read from
(e.g. TXSTAT or TXSTATI). Also, DEFR will only clear the deferred errors that apply to the selected
processing level – it will only clear those triggers it read.
TXMASK* means both TXMASK and TXMASKI etc.

2.5. Hardware response to Interrupts and exceptions
By default each thread within the Meta core will stop itself executing in response to an exception (i.e.
HALT) and by default ignore any outstanding interrupts. Alternatively each thread can be enabled to
execute an arbitrary interrupt level code in response to suitable sub-sets of exceptions, interrupts or
both.

2.5.1. Low-level interrupt handling
If internal handling of triggers is enabled the code specified via the PCX register is run in a critical
execution state indicated by the ISTAT bit of the TXSTATUS register being set to 1. Further pending
interrupts are ignored whilst in this state so the code concerned is written to transfer control to a more
normal execution state with PCX restored and ISTAT set back to 0 as soon as possible forming a loop
terminated for each event by the execution of the special purpose return-from-interrupt RTI

 Public Imagination Technologies

META HTP 29 Revision 2.1.314

instruction. This then allows the execution of arbitrary exception handling code in a state that enables
nested handling of any further higher priority events, the enabling of nested handling within this
context is optional as it is often just as efficient to complete the handling of the current event before
responding to the next.

2.5.2. HALTS versus interrupts
All exceptions provoke a specific trigger private to each thread which may lead to the execution of the
low-level interrupt handling code or provoke a HALT sequence.
HALTs occur when an instruction provokes a problem and it is not possible for this issue to be
handled by the thread itself. This is either because it occurs at interrupt processing level (ISTAT=1) or
because the trigger generated by the exception is not setup as an interrupt to be handled internally by
the thread concerned.
Most of the logic associated with handling interrupts or HALTs is common because they both need to
deal with saving the state of the currently executing code on the thread concerned. Once this state is
saved, the two sequences diverge to either HALT and signal hardware external to the thread or
alternatively start execution of the critical PCX addressed handling code inside the thread.

2.5.3. HALT/Interrupt sequence
When a HALT condition occurs a series of actions may be carried out for the affected thread.
A table showing the possible state changes is shown below:

Current State (num) New State Cause Changes

OFF (0) RUN Thread turned on TXENABLE CT reg.

RUN (1) CBRESTORE RTI with catch state to replay. -

RUN (1) TIDYOFF Thread turned off -

RUN (1) TIDYIRQ Interrupt occurred. TXSTAT CT reg.

RUN (1) TIDYHALT Exception occurred. -

CBRESTORE (2) RUN - TXSTAT CT reg
(CBMarker).

TIDYOFF (3) OFF Catch state is tidy. External trigger(s)
issued.

TIDYHALT (4) HALTED Catch state is tidy; thread will
handle its own exceptions.

Internal HALT trigger
issued.

TIDYHALT (4) OFF Catch state is tidy; thread will
not handle its own exceptions.

TXENABLE CT reg,
External trigger(s)
issued.

TIDYIRQ (5) RUN Catch state is tidy. -

HALTED (6) OFF Thread turned off. TXENABLE CT reg,
external trigger(s)
issued.

HALTED (6) RUN Interrupt occurred. TXSTAT CT reg.

When a HALT or interrupt occurs a series of actions are performed for the affected thread to preserve
its current state.
Each thread may have a long-term memory state, for example pipelined read, and a transient memory
state such as loads or writes. Each thread has a catch register that holds this current state. When a
HALT occurs all execution pipelines must become stable and catch states must be saved after all
memory activity has ceased.

Imagination Technologies Public

Revision 2.1.314 30 GP TRM - Architecture Overview

When execution pipelines are stable and the catch state saved, a HALT trigger is raised which may
either cause an interrupt on the affected thread or be matrixed, causing an interrupt on another thread
or the debugger or another external processor. The thread remains HALTed until such time as the
thread is restarted by another thread or debugger etc.
Interrupts must also be managed. If an interrupt occurs when a thread's catch state holds a non-
transient state it must be saved before switching the thread's context.
Once an interrupt has been serviced, background catch state will be replayed if the thread's catch
saved marker (CBMarker) is set when the return from interrupt (RTI) instruction is executed. When a
thread's interrupt is actually handled by another thread (via HALT trigger matrixing) the thread's state
may be replayed by the action of re-enabling the thread (again when the catch state saved marker is
set).
For details of the catch state registers see section 4.1.7 Catch state register 0 - TXCATCH0.

OFF
(0)

RUN
(1)

CBRESTORE
(2)

HALTED
(6)

TIDYHALT
(4)

TIDYOFF
(3)

TIDYIRQ
(5)

Catch state tidy

Interrupt occurred

Thread
turned off

Replays RTI
catch state

RTI catch state
needs replay Thread turned off

Interrupt occurred

Exception occurred

Catch state tidy

Thread
turned on

Figure 12 Catch state changes: OFF, RUN, CBRESTORE and HALTED

Note: TIDYOFF, TIDYHALT, and, TIDYIRQ are intermediate states only.

2.6. Instruction and data caches
The Meta core interfaces directly to code and data caches that support its full read and write
operating bandwidth. Using this interface the core may issue both a data read/write operation and a
code read operation in a single cycle, with the intention of moving data into and out of the
corresponding caches as fast as possible in parallel.

 Public Imagination Technologies

META HTP 31 Revision 2.1.314

Read/
Write

data port

Read
code
port

META mapped
registers

META
Core

Per-thread
arbiters

Multithreaded
Memory

subsystem
Interface

Return
data path

Data Cache

Code Cache

Data
MMU

Code
MMU

Slave /
Debug
MMU

Slave Port

Debug Port

Non-Blocking
Thread

arbitration

Figure 13 HTP Cache/MMU overview

Following a read request, information stored in MMU control registers and associated page tables
indicates if the data cache or instruction cache should subsequently allocate space to retain the data
returned.
The MMU responds to the cache indicating whether or not the address specified in a read or write
request is valid. This allows hardware such as the data cache to operate in a way that is synchronised
with each memory transaction on the MMU, allowing invalid writes to be detected before thread
execution is allowed to continue. Various sorts of invalid transaction can be detected by the MMU, so
additional data is provided by the MMU to describe why each transaction failed.

2.6.1. Cache organisation
The Meta HTP core has separate instruction and data caches that are virtually indexed, physically
tagged (VIPT). Requests from the core have their linear address translated to a physical address
before checking whether it is a cache hit or miss by comparing the physical address from the tag RAM
with the translated address. The caches are both 4-way set associative. The cache line size is 64-
bytes with a maximum of 512 lines in total.
The size of each cache is fixed at 4kbytes, 8kbytes, 16kbytes, 32kbytes or 64kbytes depending on the
particular implementation of the core.
The caches may be partitioned at run-time into halves, quarters, eighths, sixteenths and allocated per
thread. A thread has exclusive use of a local cache partition and all threads share a global cache
partition.
The global data cache partition remains coherent for interleaved accesses by multiple threads without
the use of cache invalidation.
The VIPT structure imposes a per-thread cache partition size in the physical cache of 16kbytes
maximum when 4k pages are used or 32kbytes when 8k pages are used.
The caches are non-blocking on a thread basis, i.e. if one thread misses, requests by other threads
will still be accepted.

Imagination Technologies Public

Revision 2.1.314 32 GP TRM - Architecture Overview

The data cache operates with a write-through policy for all regions except for writes in the core-
cached memory region. Locking of cache lines in this region is possible so that such cache lines
operate effectively the same as core memories.
Data caches do not write-allocate. So if a cache write misses, a cache line is not allocated for the data
written.

2.6.2. Cache manipulation
The Meta core provides features to allow the state of caches to be manipulated to improve
performance or maintain coherency. If all memory update operations are performed to unique regions
of the memory map then no cache manipulation is needed other than for performance enhancement.
In general cache manipulation operations need to be performed separately for each cache line sized
region concerned; i.e. for each 64-byte sized and aligned region of the memory space.

Instruction cache prefetch
The instruction ICACHE allows for preloading the instruction cache in advance of when the code is
required to be executed. Significant performance enhancements may be realised by making use of
this instruction, in particular for systems with high memory latency. In general prefetches are only
useful if code currently in cache can be executed at the same time as new code is being fetched.

Data cache prefetch
Prefetching of data into the data cache is supported to optimize data-read performance when
necessary. Like the Icache prefetch, Dcache prefetches are only useful if data currently in cache can
be processed while the prefetch completes. This creates a chain of related prefetches, so that new
data is always being read into the cache while the previously prefetched data is processed.
Prefetches can be preceded by an invalidate operation (see next) if the most recent data needs to be
read for processing.
Each new prefetch interlocks with its predecessor so that only one prefetch is outstanding at any one
moment for each thread.
This interlock is used as a barrier so that reads to an area that are being prefetched are delayed until
the prefetch actually completes. This stops data being read more than once from external memory.
Prefetches to the same address as the previous one can be used at the end of a chain of prefetches
to interlock with the last real prefetch prior to input data processing.

Instruction cache invalidation
A number of mechanisms exist for instruction cache and TLB invalidation. For all types of instruction
cache invalidations (i.e. physical/linear/TLB), to ensure an invalidation is complete, the invalidate must
be followed by a CACHERL instruction to the instruction cache. By the time the CACHERL instruction
completes, the invalidation is guaranteed to be complete.
Lines in the instruction cache can be invalidated by writing a zero to the memory location,
LINSYSCFLUSH_ICACHE_LINE + offset. The offset must be a multiple of the cache line size (64
bytes).
The entire instruction cache can be invalidated by writing a one to the memory location
SYSC_ICACHE_FLUSH.
The CACHEW instruction may be used to perform Icache line linear invalidation. (It also invalidates
the Dcache and the instruction and data TLB)

Data cache invalidation
Shared modifiable regions that support data exchanges with external hardware or other threads
require cache invalidation to be applied in order to access the most up to date information.
If an invalidate operation follows a prefetch operation for the same cache line, the result may be that
the prefetch operation completes after the invalidate operation. Prefetched data must therefore be
accessed before it is invalidated. Issuing another prefetch between the overlapping prefetch and
invalidate operation also ensures that the latest data is accessed.
A number of mechanisms exist for data cache invalidation.

 Public Imagination Technologies

META HTP 33 Revision 2.1.314

Lines in the data cache can be invalidated by writing a zero to memory location
LINSYSCFLUSH_DCACHE_LINE + offset. The offset must be a multiple of the cache line size (64
bytes).

The entire data cache can be invalidated by writing a one to the memory location
SYSC_DCACHE_FLUSH. This is only used for start of day (or post reset) cache initialisation
and must be performed before the cache is enabled. See section 4.7.17.

The instruction DCACHE performs a linear data cache line invalidation.
The CACHEW instruction may be used to perform Dcache line linear invalidation. (It also invalidates
the Icache and the instruction and data TLB)

Data cache coherence
Data cache prefetches allow a thread to perform reads and writes to external memory in parallel, this
state is normally prevented by the cache logic to maintain a coherent state between the cache and
real memory. Once data that has been prefetched has been read, it can be invalidated to remove any
possible incoherent cache state.
If areas of memory that are prefetched lie in separate cache line sized areas of the memory map to
those written to by the thread then no incoherent state will appear in the cache.

2.6.3. Cache WIN Modes
The caches have a number of caching modes, which may be controlled in three ways:
Cores which contain an MMU, may be controlled on a page by page basis by the page table entry.
When Enhanced bypass mode is being used (which is usually the case for cores configured with no
MMU or during boot), the caching mode is controlled by the MMCU_LOCAL_EBCTRL and
MMCU_GLOBAL_EBCTRL registers.
The caching mode may be independently controlled for each direct mapped region using the
MMCU_DIRECTMAP0_ADDR - MMCU_DIRECTMAP3_ADDR_registers.
The available modes are listed below:

Name Cache operation

00 WIN-0 No caching is performed.
The Core will only make a single read request on the bus. In all other WIN
Modes, reads are expanded into bursts.

01 WIN-1 Cache lines are allocated normally but can be immediately re-used for
another location. It is possible to access large areas of memory of this type
without losing the bulk of the more permanent cache content.

10 WIN-2 In this case only one 'way' of the cache resource is allocated for caching
data read by each thread. The cache way used is the same as the thread
number. For a four threaded core with 2 way cache, thread 2 and 3 would
use cache way 0 and 1 respectively.
If that particular cache line happens to be locked the operation continues
uncached.

11 WIN-3 Full normal cache operation. If a miss requires the use of a set where all
lines are locked, the operation will continue uncached.

2.7. MMU
The Memory Management Unit is responsible for translating linear addresses used by Meta threads
into physical memory addresses recognised by the memory subsystem.
The threads on the Meta core each can access a different (local) version of the lower half of the
address range 0x08000000-0x7FFFFFFF. There is a globally accessible address range at

Imagination Technologies Public

Revision 2.1.314 34 GP TRM - Architecture Overview

0x88000000-0xFFFFFFFF. In Meta core implementations which utilise an MMU, these linear address
ranges can be considered analogous to "virtual" memory often referred to on other architectures.

08000000:

2Gbytes
Local Linear Range

per Thread
7FFFFFFF:

Virtual

2Gbytes
Global Linear Range

88000000:

FFFFFFFF:

Pool of physical
SDRAM

8/16/32... Mbytes

Physical

Figure 14 Linear and physical memory

The MMU page table region may be accessed using linear addresses in the region 0x05000000-
0x05FFFFFF (LINSYSMTABLE_BASE - LINSYSMTABLE_LIMIT). These addresses are fixed in
linear memory space.
Reads from the MMU page table region return a 32-bit page table entry that describes a valid MMU
address, or error information in response to an invalid address to facilitate address checking and
demand paging. An 'invalid' read is not treated as an error by the MMU so it is safe for any thread to
read from any address within the MMU table region.

1st level page table index

1st level – 512 entries

2nd level page table index

2nd level – 1024 entries

Offset

Physical page frame

Figure 15 MMU page table layout

Linear addresses are decoded in the MMU as shown below:

Offset in page
12-bits

2nd page table index
10-bits

1st page table index
9-bitsLocal/global bit

012 1122 2131

Figure 16 MMU page table indexing

 Public Imagination Technologies

META HTP 35 Revision 2.1.314

The local/global bit specifies whether the 1st page table index bits should index the thread-local 1st-
level page table or the global 1st-level page table.

0 = local page table
1 = global page table

2.7.1. Meta ATP MMU page table layout
HTP and MTP cores with an MMU support the page table structure used in the ATP core. Clearing bit-
0 of MMCU_TABLE_PHYS_ADDR configures the MMU in ATP compatibility mode and the following
structure applies.
The Meta ATP core has a single memory-mapped register named MMCU_TABLE_PHYS_ADDR,
visible to all hardware threads. That register points to the base of a contiguous 12kbyte block of
memory, 2kbytes for each 1st-level page table (512 entries x 4 bytes per-entry). Each table entry is
associated with one 4kbyte page of physical memory and the table operates like a two-dimensional
array.
Each 1st level entry contains the physical base address of the 2nd level entries.
Each 2nd level entry contains the physical address of the 2nd physical page frame.
1st-level page tables are 2kbytes in size with 512 entries. 2nd-level page tables are 4kbytes in size
with 1024 entries. So, each 1st-level table entry address maps up to 4Mbytes of linear memory, and
because physical page size in the Meta ATP core is 4kbytes, each first-level page table can map 2GB
of virtual address space.
Each thread has a 2GB local region, and one 2GB global region, for a total of 4GB.
To assign a 4kbyte page of physical memory, first initialise the page table by entering the physical
base table address in MMCU_TABLE_PHYS_ADDR.
Then fill in the 1st-level table entry with the physical base address of the 4kbyte page you want to
assign. This activates 1024 2nd-level table entries, each of which is mapped to a 4kbyte page of
physical memory.
The hierarchical nature of the table allows swapping of ‘address map data’ associated with a thread to
be achieved via modification of only a few 32-bit entries.

2.7.2. Meta HTP MMU page table layout
The Meta HTP MMU is backward compatible with Meta ATP in that HTP can use an identical page
table structure in physical memory. Setting a bit in MMCU_TABLE_PHYS MMU turns on an enhanced
page table structure as described below which provides more flexibility between threads which allows
for a more compressed page table in physical memory than was possible with ATP and page sizes
other than 4k.
Note that the structure of the linear region 0x05XXXXXXXX for accessing the page table is different
between the ATP and HTP cores, but the structure of that region as described below must be used
when the MMU is in ATP compatibility mode.
In the HTP page table structure, each hardware thread has four memory-mapped registers that are
used to access that hardware thread's page tables: MMCU_TnLOCAL_TABLE_PHYS0,
MMCU_TnLOCAL_TABLE_PHYS1, MMCU_TnGLOBAL_TABLE_PHYS0 and
MMCU_TnGLOBAL_TABLE_PHYS1.These registers are the root of the page table structure.
The page table structure consists of three parts:
• A root table entry for each thread, for each of global and local region, which describes the base

and the range of the linear address to be used and the physical base address of the first level
entries which each describe a 4mbyte space This is held in the registers (above).

• 1st-level entry which contains the physical base address of the 2nd-level entries and the
resolution of the 2nd-level entries (4kbyte to 4mbytes).

• 2nd-level entry which contains the physical base address of the linear address.
1st-level page tables are 2kbytes in size with 512 entries, so for each thread there are two 1st-level
tables (local and global) mapping a 2mbyte region each. 2nd-level page table entries are 1024 lines
and the resolution can be user configured from 4kbyte up to 4mbytes, but keeping the first level
entries of 4mbytes resolution.
Note: If the MiniM bit is set, 2nd-level entries will be fewer than 1024.

Imagination Technologies Public

Revision 2.1.314 36 GP TRM - Architecture Overview

The MMU's page table hierarchy can be accessed via the MMU Table region at addresses specified
below. Each of the linear regions in the table below represents a 2Mbyte window to physical memory
which may be arbitrarily placed but is 512kbyte aligned:

Linear Address Name Comment

0x05000000-
0x051FFFFF

MMU Table Local Thread 0 A 2Mbyte memory region controlled by the
value in MMCU_T0LOCAL_TABLE_PHYSx.

0x05200000-
0x053FFFFF

MMU Table Local Thread 1 A 2Mbyte memory region controlled by the
value in MMCU_T1LOCAL_TABLE_PHYSx.

0x05400000-
0x055FFFFF

MMU Table Local Thread 2 A 2Mbyte memory region controlled by the
value in MMCU_T2LOCAL_TABLE_PHYSx.

0x05600000-
0x057FFFFF

MMU Table Local Thread 3 A 2Mbyte memory region controlled by the
value in MMCU_T3LOCAL_TABLE_PHYSx.

0x05800000-
0x059FFFFF

MMU Table Global Thread 0 A 2Mbyte memory region controlled by the
value in MMCU_T0GLOBAL_TABLE_PHYSx.

0x05A00000-
0x05BFFFFF

MMU Table Global Thread 1 A 2Mbyte memory region controlled by the
value in MMCU_T1GLOBAL_TABLE_PHYSx.

0x05C00000-
0x05DFFFFF

MMU Table Global Thread 2 A 2Mbyte memory region controlled by the
value in MMCU_T2GLOBAL_TABLE_PHYSx.

0x05E00000-
0x05FFFFFF

MMU Table Global Thread 3 A 2Mbyte memory region controlled by the
value in MMCU_T3GLOBAL_TABLE_PHYSx.

Note: The physical address accessed via each region is a 512kbyte aligned address defined by bits
31:19 of the corresponding MMCU_Tn[LOCAL|GLOBAL]_TABLE_PHYS1 register.

 The structure of this 0x05XXXXXX remains the same even when the MMU is configured in ATP
compatible mode.

 Manipulation of the MMU page table must always be accompanied by TLB flush for the affected
threads whether or not it is accessed through the 0x05XXXXXX region.

The hardware checks whether the linear address issued is inside the lower and upper limit deduced
from the range and base field of the MMCU_TnGLOBAL/LOCAL_TABLE_PHYS* registers. If it is out
of the range, it reports a page fault to the core. The number of 1st-level entries at an offset to the
physical base is determined by RANGE/4M.
When attempting to access a 1st-level table entry for an arbitrary linear address in either the local or
global area:
• The linear base address and range values in the corresponding PHYS0 register must be

consulted first as these define the range of linear addresses for which there is a valid mapping.
• Bits 18:2 of the MMCU_TnLOCAL_TABLE_PHYS1 register must be used as an offset to the

start of the 1st-level MMU table within the linear range concerned.
• Data is then provided on the basis of one 32-bit entry for each 4MB region.
To avoid inter-thread dependencies, software running on each thread must only use the local or
global region associated with that thread to access page table data. It is normal, but not prescribed by
hardware, that all the global regions will refer to the same physical table in memory. If software wants
to create or modify a global region mapping without affecting other threads, it must make a copy of
the affected areas of 1st-level or 2nd-level table data during this process.
It is intended that when a 1st-level table data item is retrieved and decoded, that the physical address
of the 2nd-level table data falls within the same 2mbyte window otherwise it will be inaccessible via
the appropriate 0x05XXXXXX region. Tools that generate MMU page tables take this into account in
their allocation policies. If an area that a thread needs to access falls outside both the local and global
windows available then other means such as direct mapped areas must be used.
The regions may be protected and accessed in a cache-optimized mode as specified by bits 7:0 of
the corresponding PHYS0 register as for other MMU table entries.

 Public Imagination Technologies

META HTP 37 Revision 2.1.314

As direct read access of 2nd-level page table data can be achieved in an optimal fashion via use of
the CACHERL instruction. Only software that wants to modify page table mapping changes or
discover higher-level features of the page tables should use these regions.

Page table entry format

1st-level entries
The page table entry is 32-bits wide and the format is:

31:6 5 4:1 0

Physical Address Base of the 2nd-level
entries. (Each block of 2nd level entries
is 64-byte aligned)

MiniM
0 = off(default)
1 = on

2nd-level entry page size:
0 = 4k
…
10 = 4M
Others = Reserved

Valid

The number of 2nd-level entries at an offset to the physical base is determined by
4M/Page_Size.
In ATP MMU compatibility Mode bits 11:1 must be zero.

2nd-level entries
The page table entry is 32-bits wide and the format is:

31:12 11:8 7:6 5 4:0

Physical base
address

Undefined - for
software use

Cache control Undefined - for
software use

MMU control

Bits 31:12 of the entry specify the 4kbyte physical address base of the linear address.
The actual 32 bit physical address = (2nd-level entry & 0xFFFFF000) + (Linear_Addr & Mask)
where Mask = “00000FFF” if the entry is of 4kbyte resolution and Mask = “003FFFFF” if the
entry is of 4M resolution etc.

MMU control bits

Bit Name Effects

0 MMCU_ENTRY_VAL_BIT VALID Always set for a valid MMU Table entry

1 MMCU_ENTRY_WR_BIT WRITE If set write operations to the region are
enabled otherwise they are invalid.

2 MMCU_ENTRY_PRIV_BIT PRIV Set if only privileged requests are
permitted within the region concerned.

3 MMCU_ENTRY_WRC_BIT WR-COMBINE Set if writes in this address region can be
optimised as if targeted at external
memory. Multiple small write
transactions to adjacent of overlapping
addresses can be optimised into larger
transactions. If not set all writes must be
performed in an unmodified sequence.

4 MMCU_ENTRY_EXM_BIT EX-MODE If not set exclusive reads and writes will
only work amongst the threads of the
Meta core. If set exclusive reads and
writes will also work amongst the various
devices in a system.

Imagination Technologies Public

Revision 2.1.314 38 GP TRM - Architecture Overview

Cache control bits
These bits control the behaviour of the MMU and the related behaviour of the data or code cache.

Value Name Cache operation

00 MMCU_CWIN_UNCACHED WIN-0 No caching is performed.
The MMU only performs a read transaction in direct
response to each read request made via the
caches. In all other cases the MMU expands read
operations into bursts.

01 MMCU_CWIN_BURST WIN-1 Cache lines are allocated normally but can be
immediately re-used for another location. It is
possible to access large areas of memory of this
type without losing the bulk of the more permanent
cache content.

10 MMCU_CWIN_C1SET WIN-2 In this case only one 'way' of the cache resource is
allocated for caching data read by each thread. The
cache way used is the same as the thread number.
If that particular cache line happens to be locked
the operation continues uncached.

11 MMCU_CWIN_CACHED WIN-3 Full normal cache operation. If a miss requires the
use of a set where all lines are locked, the
operation will continue uncached.

2.7.3. TLB Invalidation
The TLB is effectively a cache of the MMU page table state within the Meta core. At times it
becomes necessary to flush the TLB. This may be achieved by a write to the TLB flush region.
See section 3.2.4 Cache / TLB invalidate for details.

2.7.4. Linear to physical address translation instruction CACHERL
The instruction, CACHERL returns the physical address page along with other flags for a given linear
address.
If the linear address has no valid mapping (i.e. the 1st-level entry or the 2nd-level entry is invalid), the
following data is returned:

Bit Field Comment

0 VALID ‘0’ – to indicate result is not valid

1 Undefined Any value may be returned and should be ignored.

2 FIRST ‘1’ = First Level Entry Invalid, ‘0’ = First Level Entry Valid
(hence second level must be invalid)

63:3 Undefined Any value may be returned and should be ignored.

If the linear address has a valid mapping, the return data is as follows:

Bit Name Comment

0 VALID Always set for a valid MMU Table entry – 1

1 WRITE If set write operations to the region are enabled otherwise they are
invalid.

2 PRIV Set if only privileged requests are permitted within the region
concerned.

 Public Imagination Technologies

META HTP 39 Revision 2.1.314

Bit Name Comment

3 WR-COMBINE Set if writes in this address region can be optimised as if targeted at
external memory. Multiple small write transactions to adjacent
overlapping addresses can be optimised into larger transactions. If
not set all writes must be performed in an unmodified sequence.

4 SYS-
COHERENT

Set if read or write operations must only be performed to the region
once the WR-ATOMIC event has been issued to claim global
access to the region concerned.

5 Undefined Will reflect the contents of the 2nd level table entry (for S/W use)

7:6 Win Mode Controls the cache win mode; e.g. 00 – uncached, 11 – fully
cached.

11:8 Undefined Will reflect the contents of the 2nd level table entry (for S/W use)

31:12 Phys Addr The physical base address equivalent to the linear address
specified to a 4kbyte resolution; physical address bits below this
resolution come directly from the linear address.

32 Readable 1 = Readable, 0 = Write-Only

33 Reserved Always returns 0.

34 Single-Use 1 = Entry to be deleted from the TLB after the first TLB entry hit, 0 =
Retain Entry

35 Reserved Always returns 0.

47:36 Page Size Mask The entry page size(range from 4K=all1s, to 16M=all 0s)

63:48 Reserved Always returns 0.

One use of this instruction is to deal with a memory fault/violation by issuing a CACHERL instruction
to determine the type of fault/violation and its physical mapping. Then the new mapping data could be
written to the physical location. A TLB linear invalidation will be needed if the previous mapping data
had its VALID bit set to ensure the new mapping is fetched when the offending request is reissued;
the TLB does not cache entries with the VALID bit not set.

2.7.5. MMU modes
The Meta MMU has three modes, bypass mode, enhanced bypass mode and active mode. The mode
is controlled by the SYSC_CACHE_MMU_CONFIG register.

Bypass mode
On reset, the MMU starts in bypass mode. In this mode many of the features of the MMU are disabled
and the MMU does not perform address translation. During system bootstrap in bypass mode the
initial MMU Table must be created using physical memory accesses via the uncommitted physical
address region. This allows the boot thread to initialise and arbitrarily define the content of memory
subsequently used by all threads.
The memory map in section 3.1.3 shows the areas of the Meta core linear address space that are
implemented while in bypass mode.

Enhanced-bypass mode
Enhanced bypass mode provides a simple method of enabling caches without requiring an MMU
page table to be constructed. Enhanced bypass mode is enabled by setting the
SYS_CACHE_MMU_CONFIG register to 0x6. The registers used to control enhanced bypass mode
are MMCU_LOCAL_EBCTRL and MMCU_GLOBAL_EBCTRL.
The memory map in section 3.1.2 shows the areas of the Meta core linear address space that are
implemented while in enhanced bypass mode.

Imagination Technologies Public

Revision 2.1.314 40 GP TRM - Architecture Overview

Active mode
In active mode, the caches are enabled and the MMU performs address translation for code and data
requests which have addresses in the Local and Global ranges. Active mode is enabled by setting the
SYS_CACHE_MMU_CONFIG register to 0x7

2.8. Write combiner
The write combiner improves memory bus efficiency by amalgamating adjacent writes (which may be
byte, word, dword or qword writes) into an appropriate burst format suitable for SDRAM and DDR type
memory devices.
Note: Not all cores are fitted with write combiners.

2.9. Bus errors and Test/Set memory operations
The Meta HTP core memory interface is able to support features of IMGBUS 3.0 or other compatible
buses to generate bus error information or perform linked test/set memory operations. These bus
features are outlined below:
Bus Errors A data stream of tokens that indicate the success or failure of each

memory operation in an asynchronous but in-sequence manner.
Normal memory operations that succeed may or may not return a
confirmation according to the system concerned.

Linked Test/Set A single read followed by a single write operation to the same critical
address that implements an interruptible Test/Set S/W semaphore
and returns an error if the write does not occur atomically with respect
to the read; this operation may be used as an alternative to
WR_ATOMIC to avoid real-time problems associated with stopping all
memory operations.

The former bus error data stream is either permanently enabled or not as a function of the system
infrastructure and has no run-time control. The latter linked read and write operation is identified by a
side-band tag signal sent in parallel with the otherwise normal memory operation concerned.
To perform linked memory operations the processor provides a pair of instructions that can operate on
32-bit or 64-bit memory locations:

 LNKGETD Reg,[BB.x] or LNKGETL RegA,RegB,[BB.x]

 …

 LNKSETDcc [BB.x],Reg or LNKSETLcc [BB.x],RegA,RegB

These instructions perform a linked-read and linked-write operation that can target external memory
via the data cache. Both the read and write operations bypass the current data cache state neither
hitting, flushing, or modifying the current cache state related to the address concerned. Use of these
instructions to core data memory is not supported.
If the LNKSET operations condition code is not met then the operation will have no side-effects and
no linked-write operation to the address concerned will occur. This NOOP behaviour will also occur if
the thread concerned has been interrupted;
If issued the LNKSET operation provokes delivery of a single bus response token indicating
success/failure of the overall sequence, if the sequence does fail then the write operation generated
must not be committed to memory.
The following instruction is used to collect the deferred error data expected for this thread and sets
the destination register appropriately:

 DEFR Reg,TXSTAT or DEFR Reg,TXPOLL

Reading from TXSTAT or TXPOLL controls whether the operation waits for all outstanding
LNKGET/LNKSET response data to be received before providing a result. The TXPOLL case hence

 Public Imagination Technologies

META HTP 41 Revision 2.1.314

checks transactions already completed without waiting for those still in flight whereas the TXSTAT
case provides a complete result.

Note: that if no deferred error data is expected for the thread then the TXSTAT case operates
in the same way as the TXPOLL case. It is hence safe for this unconditional instruction to
follow a conditional LNKSET operation. If the LNKSET operation did not issue a linked
memory write and trigger a deferred response then DEFR will not wait as no deferred
response is outstanding.

Note: Bus error state for LNKSET success is a non-zero warning-level bus error code; whereas
zero will be seen as the bus status if LNKSET was not issued. Once a significant
pass/fail LNKSET bus error state is recovered with DEFR then the default zero state will
be restored to underpin future LNKGET and LNKSET attempts.

Note: LNKSETs that fail the condition test (i.e. do not issue outside the core) return bus error
state of 4.

Access to TXSTAT and TXPOLL by the DEFR instructions is allowed from a background execution
environment when access to other interrupt-related logic is prohibited by privilege protection. Incorrect
use of these instructions could permit an unprivileged program to delay its own execution, but that is
not seen as a threat to normal system behaviour.
Only one item of deferred bus error data item is retained by the system for each thread and any
LNKGET/LNKSET data outstanding at the time of an interrupt will first be waited for and then
discarded. Interrupts can be prevented by the S/W if required. HALTing a thread similarly waits for
any outstanding deferred state to be resolved before the HALT proceeds to completion.
The deferred bus error system will only report the last significant item, if transactions succeed after a
failure then the previous failure data will be retained until cleared.
To perform an interruptible 32-bit ‘test and set’ operation using the above features the code would be:

; D1Ar1 is an address to perform Test/Set logic on using the mask in D0Ar2.

TestAndSet: LNKGETD D0Re0,[D1Ar1] ; Perform a linked read
 TST D0Re0,D0Ar2 ; Wait for the result and check the mask
 ORZ D0Re0,D0Re0,D0Ar2 ; Set the mask if currently clear
 LNKSETDZ [D1Ar1],D0Re0 ; Perform a linked write if previously clear
 DEFR D1Re0,TXSTAT ; Wait for and get deferred error response
 LSRZ D1Re0, D1Re0, #24 ; Get bus error summary
 ANDZ D1Re0, D1Re0, #0x3f
 CMPZ D1Re0, #2 ; 0x2 indicates LNKSET success
 BNZ TestAndSet ; Go back if Z flag is lost at any point
 ;
; Note local/global cache state must be flushed/updated before accessing related
; data items after the critical access required is won.
;

To support linked test and set the LNKGETD instruction combines the issue of a load from memory
with the setting of some thread specific state that marks the progress of the linked test and set. This
state will be cleared when a LNKSET instruction is run or if the thread is interrupted or otherwise
changes state (e.g. is turned off by setting TXENABLE to 0).
The LNKSETD instruction combines the issue of a conditional write to memory with the testing of the
thread specific state that marks the progress of the linked test and set. If the state associated with the
linked test and set has been cleared, this conditional write will effectively fail the condition test (i.e. not
happen).The DEFR instruction waits for any known pending operations (floating point or linked test
and set) to complete before pulling out the current status of all the deferred errors. This instruction is
nearly equivalent to a read of TXPOLL (i.e. background level only) for just the deferred error parts,
however any read of significant state implicitly clears that state from the deferred error system so that
acknowledgement of such state via a write to TXSTAT is unnecessary. Collection of multiple deferred
errors (LNKSET and floating point) can be achieved via a single use of DEFR and this can also be
used to purge outstanding errors from previous floating point or uncollected LNKSET operations, only
errors selected for delivery to background code will be seen and acknowledged via a DEFR on
TXSTAT/TXPOLL.

Imagination Technologies Public

Revision 2.1.314 42 GP TRM - Architecture Overview

3. Memory map

3.1. Overview
The memory map of the Meta core is presented in a linear address space, which, when an MMU is
present, can be flexibly mapped onto a corresponding physical address space. All system and
peripheral registers in the Meta core have memory-mapped access. The memory map varies
depending on the mode in which the MMU is operating.

3.1.1. MMU active mode
In this mode, the MMU is enabled and offers its full feature set including address translation, cache
control and memory protection. For cores which include an MMU, this is the main mode of operation.
For some Meta cores that do not include an MMU, this mode is not available.

Linear Address Space Physical Address Space (System Bus)
00000000-001FFFFF Invalid Region 0 00000000-01FFFFFF Reserved

00200000-07FFFFFF System Region

 00200000-01FFFFFF Reserved (Invalid)

 02000000-02FFFFFF Custom Area 02000000-02FFFFFF Custom area

 03000000-03FFFFFF Expansion Area 03000000-07FFFFFF

Reserved

 04000000-043FFFFF System Event

 04400000-046FFFFF Physical Cache Flush

 04700000-047FFFFF Physical TLB Flush

 04800000-04FFFFFF Core Register Area

 05000000-05FFFFFF MMU Table Region

 06000000-07FFFFFF † Direct Mapped (0-3)

08000000-7FFFFFFF † Local Range 08000000-FFFFFFFF Uncommitted

80000000-81FFFFFF Core Code Memory

82000000-83FFFFFF Core Data Memory

84000000-87FFFFFF † Reserved

88000000-FFFDFFFF † Global Range

FFFE0000-FFFFFFFF Invalid Region 1

† These linear address regions may be mapped into the uncommitted physical address range
can be cached in instruction cache or data cache under MMU control

3.1.2. MMU enhanced bypass mode
In this mode, the MMU does not perform linear to physical address translation or the cache control
features of the page table, but a number of regions in the linear address space are active and the
caches are available for use. For cores which include an MMU, this mode provides a method of faster
boot whereby the caches may be enabled without first configuring an MMU page table in memory. For
cores which do not include an MMU, this is the main mode of operation.

 Public Imagination Technologies

META HTP 43 Revision 2.1.314

Linear Address Space Physical Address Space (System Bus)
00000000-001FFFFF Invalid Region 0 00000000-01FFFFFF Reserved

00200000-07FFFFFF System Region

 00200000-01FFFFFF Reserved (Invalid)

 02000000-02FFFFFF Custom Area 02000000-02FFFFFF Custom area

 03000000-03FFFFFF Expansion Area 03000000-07FFFFFF Reserved

 04000000-043FFFFF System Event

 04400000-046FFFFF Physical Cache Flush

 04700000-047FFFFF Physical TLB Flush *

 04800000-04FFFFFF Core Register Area

 05000000-05FFFFFF Reserved (Invalid)

 06000000-07FFFFFF Direct Mapped (0-3)

08000000-7FFFFFFF Local Range ** 08000000-7FFFFFFF Local Uncommitted

80000000-81FFFFFF Core Code Memory 80000000-87FFFFFF Reserved

82000000-83FFFFFF Core Data Memory

84000000-87FFFFFF Reserved (Invalid)

88000000-FFFDFFFF Global Range *** 88000000-FFFDFFFF Global Uncommitted

FFFE0000-FFFFFFFF Invalid Region 1 FFFE0000-FFFFFFFF Reserved

* If no MMU is present, this region is invalid.
** Controlled by MMCU_LOCAL_EBCTRL register
*** Controlled by MMCU_GLOBAL_EBCTRL register
Requests to invalid regions cause a general exception.
Enhanced bypass mode operates the same for cores with or without an MMU except in that cores
with an MMU can perform privilege checks on the various regions.

3.1.3. MMU bypass mode
This is the default mode in which all Meta cores start up following reset. In this mode, the main
features of the MMU and caches are disabled.

Imagination Technologies Public

Revision 2.1.314 44 GP TRM - Architecture Overview

Linear Address Space Physical Address Space (System Bus)
00000000-001FFFFF Reserved 00000000-01FFFFFF Reserved

00200000-07FFFFFF System Region

 00200000-01FFFFFF Reserved

 02000000-02FFFFFF Custom Area 02000000-02FFFFFF Custom area

 03000000-03FFFFFF Expansion Area 03000000-07FFFFFF Reserved

 04000000-043FFFFF System Event

 04400000-046FFFFF Reserved

 04700000-047FFFFF Physical TLB Flush *

 04800000-04FFFFFF Core Register Area

 05000000-07FFFFFF Reserved

08000000-7FFFFFFF Local Range** 08000000-7FFFFFFF Local Uncommitted

80000000-81FFFFFF Core Code Memory 80000000-87FFFFFF Reserved

82000000-83FFFFFF Core Data Memory

84000000-87FFFFFF Reserved

88000000-FFFDFFFF Global Range** 88000000-FFFDFFFF Global Uncommitted

FFFE0000-FFFFFFFF Reserved FFFE0000-FFFFFFFF Reserved

* If no MMU is present, this region is invalid.
** For cores with no cache these regions have the same behaviour.
In bypass mode, memory requests to the reserved regions do not necessarily cause an exception.

3.1.4. Invalid region 1 and 0
00000000-001FFFFF and FFFE0000-FFFFFFFF
These regions protect the system to some degree from invalid addresses generated by incorrect
software. These addresses are detected as invalid addresses.

3.1.5. System region
00200000-07FFFFFF
The System Region is used to control and address all internal states of Meta core. This region is
described in more detail in
Note: In MMU bypass mode, some areas in this region are not active.

3.1.6. Local range
08000000-7FFFFFFF
Addresses in this range are mapped via the MMU using data local to each thread. Locations in this
region can be cached separately for each thread and are not directly accessible by other threads. In
MMU active mode, this region is controlled by the MMU page table. In enhanced bypass mode the
region is controlled by the MMCU_LOCAL_EBCTRL register. In bypass mode, requests are passed
straight through to the system memory bus port.

3.1.7. Core code memory region
80000000-81FFFFFF
Both Code and Data requests to this region are routed to the closely coupled core code memory port
of the Meta core. Note Data requests to this region are not closely coupled. Hence it is recommended
to only use this region for code.

3.1.8. Core data memory region
82000000-83FFFFFF

 Public Imagination Technologies

META HTP 45 Revision 2.1.314

Data requests to this region are routed to the closely coupled core data memory port of the Meta core.
Code requests to this region will cause a general exception.

3.1.9. Global range
88000000-FFFDFFFF
Addresses in this range are mapped via the MMU using data global to all threads. Locations in this
region may be cached in a global part of the cache and used by all threads. In MMU active mode, this
region is controlled by the MMU page table. In enhanced bypass mode the region is controlled by the
MMCU_GLOBAL_EBCTRL register. In bypass mode, requests are passed straight through to the
system memory bus port.

3.2. System region

3.2.1. Custom area
02000000-02FFFFFFF
LINSYSCUSTOM_BASE - LINSYSCUSTOM_LIMIT
This region can be used as the interface for an SoC register or memory bus outside the Meta core
attached to the core’s physical memory interface. Requests made through this memory region are not
cacheable or write-combinable.

3.2.2. Expansion area
03000000-03FFFFFFF
LINSYSEXPAND_BASE - LINSYSEXPAND_LIMIT
In previous versions of the Meta core, this region was used to control hardware at the periphery of the
core. It is anticipated that the expansion area region will be used for a different purpose in future.
Software should no longer access any registers through this region and should instead access them
through the core registers area (0x04800000 - 0x04FFFFFF) where there are now duplicates.

3.2.3. System event
04000000-043FFFFF
LINSYSEVENT_BASE - LINSYSEVENT_LIMIT
These addresses are used to implement system control events using the following encoding:

Bits 31-22 21-12 11-6 5-0

 0000 0100 00 00 0000 0000 Command Xxxxxx

The operation command codes can be used via simple 32-bit write operations:

Event Command Function

WR-ATOMIC
Address:
LINSYSEVENT_WR_ATOMIC_UNLOCK
LINSYSEVENT_WR_ATOMIC_LOCK

0-Unlock
1-Lock

Implements an interthread fence for use
within a LOCK2-held state that gives the
thread control of the memory sub-system.
This only provides exclusivity from other
threads within the core, not other cores in
the system.
This event gets used internally and then
automatically translated to ‘Fence Port
Requests’ (system even 33) to ensure
appropriate ordering is maintained
outside the core.

Imagination Technologies Public

Revision 2.1.314 46 GP TRM - Architecture Overview

Event Command Function

WR-CACHE
Address:
LINSYSEVENT_WR_CACHE_DISABLE
LINSYSEVENT_WR_CACHE_ENABLE

2-Disable
3-Enable

Allows cache line fill behaviour to be
disabled and enabled for the thread
concerned via the MMU. After reset,
cache line fills are enabled by default as
soon as the cache is enabled. Disabling
line fills later causes the MMU and hence
the cache to operate as if every cache
read or write miss is from an un-cached
(WIN0) region. This prevents any
changes to the current cache line
allocation. Handling of hits for the
addresses already in the cache is
unaffected. No disruption of previously
issued transactions still being processed
by the cache is required.
This system event gets used internally
and then filtered (no corresponding
external event).

Flush 4 Flush write-combiners lines owned by the
thread issuing the system event.
This system event gets used internally
and then converted to ‘Flush Writes’
(system event 32) event for external use.
The intention of this system event is to
ensure that requests find their way to
their destinations in a timely manner in
particular for the case where an external
buffer would otherwise store write
requests indefinitely. There are no
guarantees as to the ordering of the
completion of the flush with respect
to traffic from other requesters.

Fence Writes 5 This system event gets used internally
and then converted to ‘Fence System
Requests’ (system event 34) event for
external use.
The intention of this system event is to
provide some control on the ordering of
writes from the Meta core to various slave
devices in a system.
A typical usage example is software
(such as a Linux driver) running on a
Meta thread performing a sequence of
writes to memory would issue this fence
command before issuing a write to, say, a
‘start’ register in a DMA controller that
subsequently attempts to read the data
previously written by the Meta core.

Reserved 6-31 Reserved for future ‘internal’ events.

Flush Writes 32
(See note 1)

External write combiners, buffers, or
caches containing write requests for the
thread that issues this system event will
be flushed.

 Public Imagination Technologies

META HTP 47 Revision 2.1.314

Event Command Function

Fence Port Requests 33
(See note 1)

Fence port requests – If this system event
is issued, all previously issued writes
across all of the Meta threads are
serviced before any further requests from
Meta after the event are allowed to
continue. This system event is used by
the global cache functionality within Meta
to ensure coherency. It is also used by
the atomic lock/unlock functions to ensure
appropriate ordering between Meta
threads outside of the core.

Fence System Requests 34
(See note 1)

Fence system requests - If this system
event is issued, all previously issued
writes by the thread issuing the fence
must be serviced before any further
requests from that thread are allowed to
proceed.

Reserved 35-47
(See note 1)

For future use

Uncommitted 48-63
(See note 2)

These commands may be allocated
externally in a system specific way to gain
access to any specific System Bus
features defined.

Notes:
1 32-47 are system events that directly translate to external hardware system events on the bus.

These should not be used by software running on the core as they will generally not have the
desired effect within the core. When exposed on the bus only bus address bits 10:6 are used
for decoding system events. Bit 11 should be treated as don't care.

2 48-63 are system events that directly translate to external hardware system events on the bus.
These may be used for customer specific purposes or bus translation wrappers. When
exposed on the bus only bus address bits 10:6 are used for decoding system events. Bit 11
should be treated as don't care.

3 Reads in this region will always fail with a general protection error.

3.2.4. Cache / TLB invalidate
04400000-047FFFFF
LINSYSCFLUSH_BASE - LINSYSCFLUSH_LIMIT
Writes to this address region can cause the direct invalidation of physical cache lines held in Meta
core caches. Writes to this address region will be consumed by the MMU and not passed on further to
the memory interface sub-system.
Single 32-bit writes with zero data content are used to cause invalidation.
Any read transactions performed in this region will always fail reporting a general protection error.

Cache Invalidate
The following sub-regions in the physical Cache Flush area are allocated:

Base Addr Description

04400000
LINSYSCFLUSH_DCACHE_LINE

Meta core data cache; minimum 64-byte stride.

Imagination Technologies Public

Revision 2.1.314 48 GP TRM - Architecture Overview

Base Addr Description

04500000
LINSYSCFLUSH_ICACHE_LINE

Meta core code cache; minimum 64-byte stride.

04600000-046FFFFF Reserved

Writes to the Cache Flush area must generally be performed at a stride corresponding to the size of
the physical cache lines of the cache concerned. . The cache lines are addressed as lines 0..n-1 from
set 0, then lines n.. 2*n-1 from set 1, then lines 2*n.. 3*n-1 from set 2, then lines 3*n.. 4*n-1 from set
3. Example:
To invalidate a Meta core data cache of size 8 KB and with a cache line size of 64 bytes:

offset = 0
while (offset < cache size)
{
flush address = LINSYSCFLUSH_DCACHE_LINE + offset
write 0 to flush address
offset += 64 cache line size
}

TLB Invalidate

The TLB is partitioned and hard allocated per thread and thread-specific invalidation may be
performed by using the following addresses:

Name Base Addr Description

SYSC_TLBFLUSH 0x04700000 All threads TLB invalidate

SYSC_T0TLBFLUSH 0x04700020 Thread 0 TLB invalidate

SYSC_T1TLBFLUSH 0x04700028 Thread 1 TLB invalidate

SYSC_T2TLBFLUSH 0x04700030 Thread 2 TLB invalidate

SYSC_T3TLBFLUSH 0x04700038 Thread 3 TLB invalidate

Both 1st-level and 2nd-level TLB entries are flushed in each case.

3.2.5. Core register region
The registers used to control the Meta core are located in this region. Full details are in section 0.

3.2.6. MMU table region
The MMU page table may be accessed through this region.

3.2.7. Direct mapped
This address range is used for simple allocation to memory-mapped hardware.
All memory-mapped hardware may be accessed at arbitrary linear addresses as described to the
MMU. However, the MMU also provides direct mapped access to critical physical address regions via
these addresses, so that physical devices can be accessed in a way independent of the MMU set-up.
This region is also supported by cores that do not include an MMU.
Addresses in this region are translated using a simple base + offset scheme. The region is divided in
to four 8 Mbyte sub-regions. Each sub-region maps directly to an area with a physical base address
supplied from the appropriate MMCU_DIRECTMAPn_ADDR register.
The lower order bits of the address are added to this base to form the physical address:

 Public Imagination Technologies

META HTP 49 Revision 2.1.314

Linear address Physical address

06000000-067FFFFF DirectMap0[31:23] + lin_addr[22:0]

06800000-06FFFFFF DirectMap1[31:23] + lin_addr[22:0]

07000000-077FFFFF DirectMap2[31:23] + lin_addr[22:0]

07800000-07FFFFFF DirectMap3[31:23] + lin_addr[22:0]

When the direct map is configured as cacheable, the local partition of the cache is used for all
accesses through this region.

Imagination Technologies Public

Revision 2.1.314 50 GP TRM - Architecture Overview

4. Core registers

4.1. Control unit internal registers
These are 32 control registers which reside in the control unit’s register file for direct access. In
assembler these registers can be referred as CT.0 to CT.31 or their aliases such as TXSTATUS and
TXENABLE. All control unit registers of all threads can be globally accessed via the memory-mapped
region allocated to these registers.
This table is a summary of the registers that the control unit contains for each thread. Addresses
given in this section are for thread 0. This block of registers is repeated at intervals of 0x1000 for
each thread.

Register Write Privilege Name Default (reset) value

CT.0 - TXENABLE Variable Thread ID/Enable Thread 0 =
0xXXXXXX01
Threads 1-3 =
0xXXXXXX02

CT.1 - TXMODE

CT.2 - TXSTATUS Variable Thread Status bits Thread 0 = 0x00020000
Threads 1-3 =
0x00000000

CT.3 - TXRPT None Repeat Count 0x00000000

CT.4 - TXTIMER None Background Timer 0x00000000

CT.5 - CT.12- Reserved

CT.13 - TXTIMERI Variable Interrupt Timer 0x00000000

CT.14 - Reserved

CT.15 - Reserved

CT.16-19 - TXCATCH0 Privileged write Catch state
registers.

0x00000000

CT.20 - TXDEFR Variable Deferred interrupt
control.

0x00000000

CT.21 - Resevered

CT.22 - Reserved

CT.23 - Reserved

CT.24 - Reserved

CT.25 - Reserved

CT.26 - Reserved

CT.27 - Reserved

CT.28 - TXDIVTIME Variable Timer Divider 0x00000001

CT.29 - TXPRIVEXT Privileged write Privilege
Extensions/Step

0x00000000

 Public Imagination Technologies

META HTP 51 Revision 2.1.314

Register Write Privilege Name Default (reset) value

CT.30 - TXTACTCYC Variable Thread Active
Cycles

0x00000000

CT.31 - TXIDLECYC Variable Core Idle Cycles 0x00000000

4.1.1. Thread enable - TXENABLE
Address: 04800000
Reset Value: 0xXXXXXX01 (thread 0), 0xXXXXXX02 (other threads)
Write Privilege: Variable

Bit Symbol Description

31:24 [READ ONLY] MetaMajRev Meta core major revision number.

23:16 [READ ONLY] MetaMinRev Meta core minor revision number.

15:12 [READ ONLY] MetaTCaps Meta core thread capabilities. See thread capabilities
table below for values.

11:10 [READ ONLY] Reserved These bits are always '0'.

9:8 [READ ONLY] MetaThreadID Meta core thread number.

7:4 [READ ONLY] MetaStepRev Meta core step revision number.

3 [READ ONLY] Reserved This bit is always '0'.

2 [READ ONLY] TStopped This bit is set to 1 if the thread was stopped by clearing
the threads ThreadEnable bit. If the thread is running
or stopped due to a HALT this bit will be '0'

1 [READ ONLY] TOff This bit will be 1 when a thread's master state machine
is in the off state. Seeing a 0 when a thread is known to
have stopped indicates that the thread is still dumping
state.

0 ThreadEnable 0 Thread is disabled.
1 Thread is enabled.
In cases when buffer state has been saved by a thread
it will caused to be reloaded when the thread is
restarted (enable switched from 0 to 1). Conversely, if a
thread is stopped (enable switched from 1 to 0) when
there is long-term state held in the thread's catch (e.g.
pipelined reads) the catch state will be written to
memory and the “catch state” marker will be set.

Thread capabilities field of TXENABLE expanded

CAPS DSP/FPU DU Registers AU Regs FPU Regs

Threads with ‘Standard DSP’ features. Actual DSP configuration determined from DSP_TYPE field in
CORE_ID register along with the BASELINE_DSP field in CORE_CONFIG2 register.

0x8 DSP 9+9 (*) 4+4

0xA DSP+LFPU 9+9 (*) 4+4 16

0xB DSP+LFPU 9+9 (*) 4+4 8

Threads with No DSP

Imagination Technologies Public

Revision 2.1.314 52 GP TRM - Architecture Overview

CAPS DSP/FPU DU Registers AU Regs FPU Regs

0xC [FPU] 8+8 4+4 [16]

0xD FPU 8+8 4+4 [8]

0xE LFPU 8+8 4+4 16

0xF LFPU 8+8 4+4 8

Threads with Extended DSP

0x0 EDSP [+FPU] 16+16 8+8 [16]

0x1 EDSP+FPU 16+16 8+8 8

(*) For DSP_TYPEs specified that do not included the extended feature set (e.g. DSP_TYPE = 1
indicated in CORE_ID register) the DSP register set is 8+8 if BASELINE_DSP is 0 in
CORE_CONFIG2 register or 9+9 if BASELINE_DSP is 1 in CORE_CONFIG2 register.

4.1.2. Thread mode bits - TXMODE
Address: 04800008
Reset Value: 0x00000000
Write Privilege: none

Bit Symbol Description

31:24 Reserved These bits are DSP specific.

23 RCoProEn This bit must be set before related transfer
operations are performed (see XFR instruction).
When set the data source for the XFR
instruction is a coprocessor port.

22:0 Reserved These bits are DSP specific.

Notes:
1 All thread mode option bits are ignored during interrupt state (i.e. after entering an interrupt

service routine and before issuing a 'Return from Interrupt' instruction).

4.1.3. Thread status bits - TXSTATUS
Address: 04800010
Reset Value: 0x00020000 (thread 0), 0x00000000 (other threads)
Write Privilege: Variable
Note: For details of TXSTATUS in an FPU enabled core see the Meta FPU TRM.

Bit Symbol Description

31:24 Reserved These bits are always 0.

23 CB1Marker This bit is set to 1 when the catch state is caused to
store data for interrupt level (ISTAT=1) and is otherwise
similar to the CBMarker bit.

22 CBMarker This bit is set to 1 when the catch state is caused to
store data (at any ISTAT level). See the description of
control unit registers 4.1.7 Catch state register 0 -
TXCATCH0.

 Public Imagination Technologies

META HTP 53 Revision 2.1.314

Bit Symbol Description

21:20 FReason Memory fault reason:
00 - No error,
01 - General or Privilege violation,
10 - Page fault,
11 - Read Only Protection violation.
This field will be set in conjunction with an instruction or
data fetch memory fault in HReason

19:18 HReason HALT trigger reason:
00 - SWITCH instruction,
01 - Instruction fetch memory fault or unknown
instruction.
10 - Privilege violation *
11 - Data fetch memory fault.
For code breakpoints HReason will be 01” and
FReason will be 11.
For data watchpoints HReason will be 11 and FReason
will be 00.
* Except for privilege violations due to accessing a
region of memory without the required privilege which
are shown as an Instruction or Data fetch memory fault.

17 [WRITE
RESTRICTED]

PSTAT This bit is set to 1 when the thread is in privileged
mode.
Writes to this bit will only affect the thread’s PSTAT
register if the thread is turned off and the access has
the necessary privilege (see below).

16 [WRITE
RESTRICTED]

ISTAT Indicates if the thread in an interrupt state. If this field is
0 we are in normal (background) mode, otherwise when
1 we are in an interrupt handler state.
Writes to this bit will only affect the thread’s ISTAT
register if the thread is turned off and the access has
the necessary privilege (see below).

15:11 [READ ONLY] Reserved These bits are always '0'.

10:8 LSM_STEP Indicates the current step of a load/store multiple
instruction or pipelined memory-to-memory transfer
instruction. This is required so that multi-issue
load/store multiple instructions or the memory transfer
instruction can be interrupted and then resumed.

7:5 [READ ONLY] Reserved These bits are always '0'.

4 SCC Identifies if the captured condition flags were captured
in a split 16x16 pipeline. This bit is 1 if the condition
flags are derived from split arithmetic (therefore using
the split arithmetic condition code table).

3 CF_Z/SCF_LZ The state of this thread’s zero (Z) condition flag.
If the flags were captured in split arithmetic mode this
bit holds the zero flag from the low half word (LZ).

2 CF_N/SCF_HZ The state of this thread’s negative (N) condition flag.
If the flags were captured in split arithmetic mode this
bit holds the zero flag from the high half word (HZ).

Imagination Technologies Public

Revision 2.1.314 54 GP TRM - Architecture Overview

Bit Symbol Description

1 CF_V/SCF_HC The state of this thread’s overflow (V) condition flag.
If the flags were captured in split arithmetic mode this
bit holds the carry flag from the high half word (HC).

0 CF_C/SCF_LC The state of this thread’s carry (C) condition flag.
If the flags were captured in split arithmetic mode this
bit holds the carry flag from the low half word (LC).

The bottom 5-bits of the writeable portion of the thread status register will be updated internally
whenever condition code capture occurs (e.g. by executing a compare instruction). It is also possible
to write to this register directly. If writes from external sources (e.g. JTAG) occur at the same time as
an internal write is completing, the internal access will be the one that completes.

4.1.4. Repeat count - TXRPT
Address: 04800018
Reset Value: 0x00000000
Write Privilege: None

Bit Symbol Description

31:0 RptCount Repeat counter used for repeating instructions.
As any repeating instruction must run for at least one
cycle this value has an implied pre-decrement by 1,
which means that 0x00000000 indicates a repeat value
of 1 while 0xFFFFFFFF indicates a repeat value of 232.

4.1.5. Background timer - TXTIMER
Address: 04800020
Reset Value: 0x00000000
Write Privilege: None

Bit Symbol Description

31:0 BTimer The current background timer value. This is auto-
incremented at the timer clock frequency.
If the value rolls over (from 0xFFFFFFFF to
0x00000000) a timer trigger will be caused.
This trigger can be used as a source of interlock (via
the trigger unit). Each thread has its own background
and interrupt timers.

To allow an accurate real time clock to be maintained it is essential that no timer increments are
effectively lost due to an update to the timer being made very soon after a timer tick. To achieve this,
it is recommended that the timer is updated via a SWAP instruction whenever the timer is to be used
for a real time clock.

 Public Imagination Technologies

META HTP 55 Revision 2.1.314

4.1.6. Interrupt timer - TXTIMERI
Address: 04800068
Reset Value: 0x00000000
Write Privilege: Variable

Bit Symbol Description

31:0 ITimer The current interrupt timer value. This is auto-
incremented at the timer clock frequency. If the value
rolls over (from 0xFFFFFFFF to 0x00000000) a timer
trigger will be caused that feeds the appropriate
interrupt trigger. This trigger can be used to cause an
interrupt (via the trigger unit). Each thread has its own
interrupt and background timers.

To allow an accurate real time clock to be maintained it is essential that no timer increments are
effectively lost due to an update to the timer being made very soon after a timer tick. To achieve this,
it is recommended that the timer is updated via a SWAP instruction whenever the timer is to be used
for a real time clock.

4.1.7. Catch state register 0 - TXCATCH0
Address: 04800080
Reset Value: 0x00000000
Write Privilege: Variable
Note: For details of data capture for FPU exceptions see the Meta FPU TRM.

Bit Symbol Description

31:27 ReqLdReg For Loads this field records the destination target
register, for pipelined reads or writes this field will be
zero.

26:16 ReqLdDest For Loads this field records the destination target units:
 bit 26: DU1DSP
 bit 25: DU0DSP
 bit 24: DaOpPaMe template table
 bit 23: Trigger
 bit 22: FPU
 bit 21: PC
 bit 20: AU1
 bit 19: AU0
 bit 18: DU1
 bit 17: DU0
 bit 16: CTRB
For pipelined reads or writes this field will be zero.

15 WPStop Watchpoint stop bit.

14 WPSet Watchpoint match set, indicates if a data watchpoint
match with a count of 255 has occurred. This bit will
also be set if a fault for an unaligned memory access
occurs.

Imagination Technologies Public

Revision 2.1.314 56 GP TRM - Architecture Overview

Bit Symbol Description

13:12 WPState Watchpoint state (1-bit per watchpoint). These bits will
always be zero when a fault for an unaligned memory
access has occurred.
 00 – unaligned memory access
 01 – Watchpoint 0 is active
 10 – Watchpoint 1 is active
 11 – Both watchpoint are active

11:10 ReqState Memory fault reason:
 00 - No error,
 01 - General violation,
 10 - Page fault,
 11 - Protection violation.
Note: If bits 14:10 of this register are zero then any

other state in this register can be ignored.

9 ReqPriv Keeps a copy of the requests privilege level. If a
request is reissued the appropriate current privilege
level will be used and ReqPriv is discarded.

8 ReqRnW Was the request a read (RnW=’1’) or a write (RnW=’0’).

7:0 ReqSB For writes this contains the write mask.
For loads the bottom five bits of this field are:
 bit 4: 0
 bit 3: LNKGET marker (set to 1 to replay load as
LNKGET)
 bit 2: Pro-processing (set to 1 if du1/au1 is first load
dest)
 bit 1: Transfer width bit 1
 bit 0: Transfer width bit 0
Transfer width decoding are:
"00" - 8-bits ('B')
"01" - 16-bits ('W')
"10" - 32-bits ('D')
"11" - 64-bits ('L')
For reads the bottom five bits contain the destination
port (RA, RABX, etc.).

When the watchpoint features are employed bits 12, 13 and 14 may be set depending upon
watchpoint state. WPState bits are set on any requests that matched the watchpoint criteria and were
either issued when the watchpoint counter was 255 or were not issued at all. In addition, the WPSet
bit will be set if a watchpoint was matched with a count of 255. When a catch state dump is restored
where an entry has this WPSet bit set to 1 that request will be treated as a watchpoint match with a
watchpoint count of 255. In this state the value of the watchpoint count(s) will not be incremented (as
would be normally done by watchpoint matches). Any exceptions raised in response to a watchpoint
as the primary reason will be recorded as a memory fault with a fault reason on "00".
Any other reason for a memory operation to be stored in the catch registers will be indicated by a non-
zero state in the memory fault reason bits. If both these bits and the watchpoint related bits are zero
then no transaction is currently stored and the only reason for the CBMarker bit to be set in the status
register is that the read pipeline was not empty.

 Public Imagination Technologies

META HTP 57 Revision 2.1.314

4.1.8. Catch state register 1 - TXCATCH1
Address: 04800088
Reset Value: 0x00000000
Write Privilege: Variable
Note: For details of data capture for FPU exceptions see the Meta FPU TRM.

Bit Symbol Description

31:0 ReqAddr The captured address for a transaction that required
state to be saved. State is saved in response to a
memory fault being returned from the MMU or in
response to a data watchpoint.

4.1.9. Catch state register 2 - TXCATCH2
Address: 04800090
Reset Value: 0x00000000
Write Privilege: Variable

Bit Symbol Description

31:0 ReqDataL The captured bottom 32-bits of data for a transaction
that required state to be saved. State is saved in
response to a memory fault being returned from the
MMU or in response to a data watchpoint.

4.1.10. Catch state register 3 - TXCATCH3
Address: 04800098
Reset Value: 0x00000000
Write Privilege: Variable

Bit Symbol Description

31:0 ReqDataH The captured top 32-bits of data for a transaction that
required state to be saved. State is saved in response
to a memory fault being returned from the MMU or in
response to a data watchpoint

4.1.11. Deferred interrupt control - TXDEFR
Address: 048000A0
Reset Value: 0x00000000
Write Privilege: Variable
Note: For details of data for FPU deferred interrupts see the Meta FPU TRM.

Imagination Technologies Public

Revision 2.1.314 58 GP TRM - Architecture Overview

Bit Symbol Description

31 Deferred Bus
Error State (Flag)

This bit replicates the bottom bit of the deferred bus
error state so that any odd-numbered error states can
be easily determined from the sign of data read from
TXDEFR.

30 Deferred Bus
Error State
(Source)

This bit indicates whether it was a data memory request
or an instruction memory request that caused the bus
error to be returned. This bit will be ‘0’ for errors
reported for data memory requests, and ‘1’ for errors
reported for instruction memory requests.

29:24 Deferred Bus
Error State

These bits hold the data returned from the external
memory subsystem associated with deferred bus errors
(or linked get and set).
0x01 Bus decode Error
0x02 Linked set succeeded

0x04 Linked set failed
Other values are reserved or system specific. Bit 0 set
implies an error. Bit 0 clear implies a notification or
warning.

23 BusErr Trigger
Statel

A '1' indicates that a bus response has been received

22 [READ ONLY] Reserved This bit is always '0'.

21:8 [READ ONLY] Reserved These bits are always '0'.

7 BusErr ICtrl Bus error interrupt control. Set this to ‘1’ for bus errors
to affect interrupt deferred trigger, ‘0’ for background.

6:0 [READ ONLY] Reserved These bits are always '0'.

Note: The top 16-bits of this register mirror those available for reads of the TXSTAT*/TXPOLL*
registers. These bits in this register may be written (subject to privilege requirements) to set or
clear deferred error states.

4.1.12. Timer/catch state control - TXDIVTIME
Address: 048000E0
Reset Value: 0x00000001
Write Privilege: Variable

Bit Symbol Description

31 RPDirty This bit is set to 1 when a thread is interrupted or halted
with a read pipeline that contains data. Further pipeline
read addresses cannot be issued until it is cleared
either explicitly or implicitly by a return from interrupt or
resumption of the halted thread. In the dirty state
pipeline read data can be extracted from the read
pipeline without interlocks with zero being delivered if
an empty pipeline is read.

30:29 [READ ONLY] Reserved These bits are always '0'.

 Public Imagination Technologies

META HTP 59 Revision 2.1.314

Bit Symbol Description

28 Reserved This bit is always '0'.

27:24 [READ ONLY] IRQEnc Encoding of highest priority interrupt. This field is
updated whenever a blocking read of TXSTATI is
performed. The encoding represents the bit position of
the highest priority interrupt trigger bit, with bit 15
encoded as “1111” and bit 0 encoded as “0000” and so
on. Trigger bits 15 to 4 (external triggers) have the
highest precedence with 15 the highest priority out of
this set and 4 the lowest priority out of this set. Trigger
bit 1 (kicks) is the next most important, with trigger bit 0
(timer) having a lower priority than kicks . Next comes
trigger bit 3 (deferred), followed last of all by bit 2 (halt)
which has the lowest priority out of all of the triggers.

23:22 [READ ONLY] Reserved These bits are always '0'.

21:16 [READ ONLY] RPMask These bits indicate the number of data entries currently
stored in the read pipeline. Each active slot is indicated
by a bit set to 1 starting at the least significant end of
this field.

15:8 [READ ONLY] Reserved These bits are always '0'.

7:0 TFCtrl This register provides a control for this thread over the
frequency of the background and interrupt timer
frequency. The Meta core base timer frequency is
nominally 1MHz, but may be altered under software
control.
This register allows each thread to further divide the
common Meta timer clock before application to each
thread's timers. Values of 1 to 255 divide the clock by
that amount, while a value of 0 divides the clock by 256.

4.1.13. Privilege extensions/step - TXPRIVEXT
Address: 048000E8
Reset Value: 0x00000000
Write Privilege: Always

Bit Symbol Description

31 CP7Priv This bit indicates if privilege is required to interact
with coprocessor 7 (in either direction).
A '0' indicates that the coprocessor can be
read/written at any time, while a setting of '1'
indicates that only privileged users will be allowed.

30 CP6Priv Similar to CP7Priv but for coprocessor 6

29 CP5Priv Similar to CP7Priv but for coprocessor 5

28 CP4Priv Similar to CP7Priv but for coprocessor 4

27 CP3Priv Similar to CP7Priv but for coprocessor 3

26 CP2Priv Similar to CP7Priv but for coprocessor 2

Imagination Technologies Public

Revision 2.1.314 60 GP TRM - Architecture Overview

Bit Symbol Description

25 CP1Priv Similar to CP7Priv but for coprocessor 1

24 CP0Priv Similar to CP7Priv but for coprocessor 0

23:20 [READ ONLY] Reserved These bits are always '0'.

19 BTimerPriv This bit indicates if privilege is required to write the
TXTIMER control register (CT.4).
A '0' indicates that the register can be written at any
time, while a setting of '1' indicates that only
privileged accesses will be allowed and
unprivileged writes will raise an exception.

18 TracePriv This bit indicates if privilege is required to write to
the trace system control registers TTEXEC,
TTCTRL or GTEXEC.
This bit must be set to '1' if a thread may only write
to these registers when privileged (otherwise '0').

17 TrigPriv This bit indicates if privilege is required to make use
of the thread's trigger mechanism (either in
background or interrupt level).
This bit must be set to '1' if a thread may only
read/write its trigger registers when it is privileged
(otherwise '0').

16 GCRPriv This bit indicates if privilege is required to make use
of any of the global common registers (i.e. registers
that are shared between threads).
Unprivileged accesses by a thread when its
GCRPriv bit is set will cause a HALT condition to be
raised (for a privilege violation).

15 Reserved This bit is always '0'.

14 ILockPriv This bit indicates if privilege is required to use the
lock instruction (op-code 0xA8).
A '0' indicates that the instruction can be used at
any time, while a setting of '1' indicates that only
privileged users will be allowed.

13 TICICycPriv This bit indicates if privilege is required to write the
TXTACTCYC or TXIDLECYC control registers
(CT.30 and CT.31).
A '0' indicates that these registers can be written at
any time, while a setting of '1' indicates that only
privileged accesses will be allowed.

12 TCBPriv This bit indicates if privilege is required to write to
the TXDIVTIME (CT.28) control register.
Setting this to '1' allows a thread to read the
registers but will deny it the ability to write anything
to it unless it is in a privileged state.

11 Reserved

 Public Imagination Technologies

META HTP 61 Revision 2.1.314

Bit Symbol Description

10 ITimerPriv This bit indicates if privilege is required to write the
TXTIMERI control register (CT.13).
A '0' indicates that the register can be written at any
time, while a setting of '1' indicates that only
privileged accesses will be allowed.

9 TStatusPriv This bit indicates if privilege is required to write the
top 24-bits of the TXSTATUS control register (CT.2)
or any of the TXCATCH0, TXCATCH1, TXCATCH2
or TXCATCH3 registers (CT.16–CT.19).
A '0' indicates that the register can be written at any
time, while a setting of '1' indicates that only
privileged accesses will be allowed.

8 TEnWPriv This bit indicates if privilege is required to write to
the TXENABLE control register CT.0.
Setting this to '1' allows a thread to read this
register but will deny it the ability to write anything
to it unless it is in a privileged state.

7 [WRITE
RESTRICTED]

MinimEnable Setting this bit to ‘1’ enables the support for the
MiniM instruction set.
Writes to this bit will only affect the thread’s
MinimEnable state if the thread is turned off and the
access has the necessary privilege.

6 [READ ONLY] Reserved These bits are always ‘0’.

5 StaticBccPred Setting this bit to ‘1’ disables dynamic branch
prediction and uses a static branch prediction rule
instead. The static branch prediction rule is that
backwards conditional branches are always taken,
whereas forwards conditional branches are never
taken. Unconditional branches and CALLR
instructions are not affected by this control as
unconditional branches are always predicted as
taken.

4 UnalignedFault Setting this bit to ‘1’ enables the faulting of
unaligned memory accesses. Once set if an
unaligned memory access is seen it will be turned
into a watchpoint which triggers and stops but does
not actually use either of the watchpoints.
Unaligned faults have priority over watchpoints in
cases where both features would be activated for
one specific memory access.

3 Reserved

2 Step Setting this bit to '1' enables a thread's instruction
stream to be single stepped (including running
single steps of a repeating instruction).
Single stepping works in conjunction with the thread
enable for a thread. In effect, setting this bit and the
thread enable bit will allow one instruction execution
(of any type - background/interrupt/etc.) to occur
before the thread enable bit is set back to '0'.

Imagination Technologies Public

Revision 2.1.314 62 GP TRM - Architecture Overview

Bit Symbol Description

1 Reserved

0 PToggle Setting this bit to '1' will cause privilege level to be
toggled as interrupt state is entered or exited.
Setting this to '0' when running interrupt code will
allow normal background code to acquire privilege
following the return from interrupt.
If this bit is set to '1' a thread must be privileged to
read or write its interrupt PCX and trigger registers
TXSTATI and TXMASKI.
Lastly, if this bit is set to a ‘1’ a thread must be
privileged to write its TXDEFR register (principally
to protect the setting of the ICtrl bits).

4.1.14. Thread issue cycles - TXTACTCYC
Address: 048000F0
Reset Value: 0x00000000
Write Privilege: Variable

Bit Symbol Description

31:24 [READ ONLY] Reserved These bits are always '0'.

23:0 [READ ONLY] TActive This counter increments once for every instruction
issued on this thread.

Writing to this register will clear its contents.

4.1.15. Core idle cycles - TXIDLECYC
Address: 048000F8
Reset Value: 0x00000000
Write Privilege: Variable

Bit Symbol Description

31:24 [READ ONLY] Reserved These bits are always '0'.

23:0 [READ ONLY] CIdle This counter increments once for every cycle on which
no instruction was issued for any thread.
Writing to this register will clear its contents.

Note: This register is common to all threads (i.e. occupies the same slot in every thread’s register

block).

4.2. Per-thread kicks and privilege control registers
These registers control various functions in the Meta core but they do not have direct access via the
control unit. Addresses given in this section are for thread0. This block of registers is repeated at
intervals of 0x1000 for each thread in multi-threaded cores.

 Public Imagination Technologies

META HTP 63 Revision 2.1.314

4.2.1. Thread 0 background kick - T0KICK
Address: 04800800
Reset Value: 0x00000000
Write Privilege: Variable
A write to this register causes a background level kick event to be sent to thread 0.

Bit Symbol Description

31:16 [READ ONLY] Reserved These bits are always '0'.

15:0 [WRITE ONLY] T0BK Writing the unsigned integer value n to the bottom 16-bits
of this register will cause n kicks to be accumulated by
thread 0's 16-bit background kick accumulator.
For read these bits are always read as 0 as this register is
merely a conduit and has no associated store

4.2.2. Thread 0 interrupt kick - T0KICKI
Address: 04800808
Reset Value: 0x00000000
Write Privilege: Variable
A write to this register will cause an interrupt level kick event to be sent to thread 0.

Bit Symbol Description

31:16 [READ ONLY] Reserved These bits are always '0'.

15:0 [WRITE ONLY] T0IK Writing the unsigned integer value n to the bottom 16-bits
of this register will cause n kicks to be accumulated by
thread 0's 16-bit interrupt kick accumulator.
For read these bits are always read as 0 as this register is
merely a conduit and has no associated store.

4.2.3. Thread 0 AMA register 4 - T0AMAREG4
Address: 04800810
Reset Value: 0x000000FF
Write Privilege: Variable

Bit Symbol Description

31:30 [READ ONLY] Reserved These bits are always '0'.

29:8 AMA_PSize0 This is the maximum number of instructions that may be
outstanding in thread 0's AMA pool.

7:0 AMA_PInc0 This is the average issue rate that is used by the
instruction rate control mechanism. This value is added
to thread 0's current pool count once every sixteen
cycles. This value is in effect a fractional number (with
the lower 4-bits being fraction bits) as the bottom 4-bits of
the delay count are not used when evaluating the number
of instruction issues a thread wants to make.

Imagination Technologies Public

Revision 2.1.314 64 GP TRM - Architecture Overview

4.2.4. Thread 0 AMA register 5 - T0AMAREG5
Address: 04800818
Reset Value: 0x00000000
Write Privilege: Variable

Bit Symbol Description

31:27 PARB_AMA_DeCnt0 Starting bit position of the 4-bit slice from the 26-bit
AMA delay count T0AMAREG1, used for thread
memory request arbitration. Allowable range 0x0 to
0x17.

26:0 [READ ONLY] AMA_PCnt0 This counter holds the average number of instruction
issues that thread 0 would like to make. The bottom
four bits are all fraction bits. This quantity is a signed
number.

4.2.5. Thread 0 AMA register 6 - T0AMAREG6
Address: 04800820
Reset Value: 0x00000000
Write Privilege: Variable

Bit Symbol Description

31:29 [READ
ONLY]

Reserved These bits are always '0'.

28:24 PARB_AMA_DLineCnt0 Starting bit position of the 4-bit slice from the 22-bit
AMA deadline count T0AMAREG6, used for thread
memory request arbitration. Allowable range 0x0 to
0x10.

23:4 AMA_DLineDt0 This holds the DEADLINE_DEFAULT value that will
be loaded into thread 0's DEADLINE_COUNT
(AMA_DLineCnt) when thread 0 leaves a waiting
state.

3:0 [READ ONLY] Reserved These bits are always '0'.

4.2.6. Thread 0 memory mapped privilege - T0PRIVCORE
Address: 04800828
Reset Value: 0x00000000
Write Privilege: Always
This register is a set of single bits that control the privilege required to access the following registers:
T0KICK, T0KICK, T0AMAREG4, T0AMAREG5 and T0AMAREG6.
When a bit is set, the appropriate register may only be accessed in the privileged mode.

Bit Symbol Description

31:3 [READ ONLY] Reserved These bits are always '0'.

2 T0AMAPriv This bit indicates the privilege required to access any of
the thread 0 memory mapped AMA registers. If set to 1
only privileged accesses will be able to read/write thread
0's AMA register 4, 5 or 6.

 Public Imagination Technologies

META HTP 65 Revision 2.1.314

Bit Symbol Description

1 T0IKPriv This bit indicates the privilege required to access the
Thread 0 Interrupt Kick register. If set to 1 only privileged
accesses will be able to write to the interrupt-level kicker.

0 T0BKPriv This bit indicates the privilege required to access the
Thread 0 Background Kick register. If set to 1 only
privileged accesses will be able to write to the
background kicker.

4.3. Global code breakpoint and data watchpoint setup

4.3.1. Any thread code breakpoint 0 address - CODEB0ADDR
Address: 0480FF00
Reset Value: 0x00000000
Write Privilege: Always

Bit Symbol Description

31:2 IBK0Addr Comparison address for match.

1:0 [READ ONLY] Reserved These bits are always '0'.

4.3.2. Any thread code breakpoint 0 control - CODEB0CTRL
Address: 0480FF08
Reset Value: 0x00000000
Write Privilege: Always

Bit Symbol Description

31 IBK0En Enable breakpoint.

30:29 [READ ONLY] Reserved These bits are always '0'.

28 IBK0TOnly Match against requests from the given thread only if this
bit is set to 1 otherwise match against requests from any
thread (if 0).

27:24 [READ ONLY] Reserved These bits are always '0'.

23:16 IBK0Count Hit counter; increments each time there is a hit up until it
reaches 255 at which point an exception or trigger will be
caused.

15:2 IBK0Mask This allows a range of addresses to be used for the
breakpoint. The allowed range is from 4 bytes to 64Kb.
To ignore a given address bit the relevant mask bit should
be set to 1 - so, for example, to breakpoint in any given
64-bit memory word just bit 2 should be 1.

1:0 IBK0Thread Indicates which thread must issue the address to obtain a
match.

Imagination Technologies Public

Revision 2.1.314 66 GP TRM - Architecture Overview

4.3.3. Any thread code breakpoint 1 address - CODEB1ADDR
Address: 0480FF10
As above for Any thread code breakpoint 1.

4.3.4. Any thread code breakpoint 1 control - CODEB1CTRL
Address: 0480FF18
As above for Any thread code breakpoint 1.

4.3.5. Any thread code breakpoint 2 address - CODEB2ADDR
Address: 0480FF20
As above for Any thread code breakpoint 2.

4.3.6. Any thread code breakpoint 2 control - CODEB2CTRL
Address: 0480FF28
As above for Any thread code breakpoint 2.

4.3.7. Any thread code breakpoint 3 address - CODEB3ADDR
Address: 0480FF30
As above for Any thread code breakpoint 3.

4.3.8. Any thread code breakpoint 3 control - CODEB3CTRL
Address: 0480FF38
As above for Any thread code breakpoint 3.

4.3.9. Any thread data watchpoint 0 address - DATAW0ADDR
Address: 0480FF40
Reset Value: 0x00000000
Write Privilege: Always

Bit Symbol Description

31:0 DWP0Addr Comparison address for address match.
The bottom three bits are only used for writes.

4.3.10. Any thread data watchpoint 0 control - DATAW0CTRL
Address: 0480FF48
Reset Value: 0x00000000
Write Privilege: Always

Bit Symbol Description

31 DWP0REn Enable watchpoint for reads.

30 DWP0WEn Enable watchpoint for writes.

29 DWP0NotT If DWP0TOnly (see next) is set this bit can be used to
invert the rule so that any thread other than DWP0Thread
causes the watchpoint to trigger.
If DWP0TOnly is not set this bit does nothing.

 Public Imagination Technologies

META HTP 67 Revision 2.1.314

Bit Symbol Description

28 DWP0TOnly Match against requests from the given thread only if this
bit is set to 1, otherwise match against requests from any
thread (if 0).

27:24 DWP0Size Write size specifier:
 0000 - any
 0001 - byte only
 0010 - 16-bit word only
 0011 - 32-bit dword only
 0100 - 64-bit lword only.
If a byte, word, dword or lword write size is specified it is
possible to employ the data masking and matching logic
to test for specific write patterns.

23:16 DWP0Count Hit counter; increments each time there is a hit. If a hit
occurs when the count is 255 a memory fault will be
reported for that access and no further reads or writes will
be issued by the thread until the exception that may result
has been handled.

15:3 DWP0Mask This allows a range of addresses to be used for the
watchpoint. The allowed range is from 8 bytes to
64Kb.To ignore a given address bit the relevant mask bit
should be set to 1 - so, for example, to breakpoint in any
given pair of 64-bit memory words just bit 3 should be 1.

2 [READ ONLY] Reserved This bit is always '0'.

1:0 DWP0Thread Indicates which thread must issue the address to obtain a
match.

4.3.11. Any thread data watchpoint 0 DataL - DATAW0DMATCH0
Address: 0480FF50
Reset Value: 0x00000000
Write Privilege: Always

Bit Symbol Description

31:0 DWP0DataL Comparison data for write data match (low word).

Watchpoints allow matching of writes against specific patterns. When this facility is used DataL and
DataH should contain the reference data to compare against, while MaskL and MaskH contain a
bitwise mask to be applied to the write data before matching against the reference data.
Therefore, the test that is applied is effectively:
If ((WriteData AND Mask) == ReferenceData)
 WatchpointValid = TRUE;

If bytes, words or dwords are being matched against it will be necessary to set MaskH/DataH and
potentially some of MaskL/DataL to zero to allow the unused byte lanes to be ignored. To disable
data matching altogether MaskL, DataL, MaskH and DataH must all be set to zero.
The write data used for watchpoint comparison is always the unaligned form (i.e. the write data before
manipulation to put the data in the right byte lanes based upon the address). In practical terms this
means that byte transactions use the bottom 8-bits, words use the bottom 16-bits and so on.
DATAW0DMATCH0, DATAW0DMATCH1, DATAW0DMASK0 and DATAW0DMASK1 are not used
for read watchpoints.

Imagination Technologies Public

Revision 2.1.314 68 GP TRM - Architecture Overview

4.3.12. Any thread data watchpoint 0 DataH - DATAW0DMATCH1
Address: 0480FF58
Reset Value: 0x00000000
Write Privilege: Always

Bit Symbol Description

31:0 DWP0DataH Comparison data for write data match (high word).

4.3.13. Any thread data watchpoint 0 MaskL - DATAW0DMASK0
Address: 0480FF60
Reset Value: 0x00000000
Write Privilege: Always

Bit Symbol Description

31:0 DWP0MaskL Comparison mask for write data match (low word).

4.3.14. Any thread data watchpoint 0 MaskH - DATAW0DMASK1
Address: 0480FF68
Reset Value: 0x00000000
Write Privilege: Always

Bit Symbol Description

31:0 DWP0MaskH Comparison mask for write data match (high word).

4.3.15. Any thread data watchpoint 1 address - DATAW1ADDR
Address: 0480FF80
As above for Any thread data watchpoint 0.

4.3.16. Any thread data watchpoint 1 control - DATAW1CTRL
Address: 0480FF88
As above for Any thread data watchpoint 0.

4.3.17. Any thread data watchpoint 1 DataL - DATAW1DMATCH0
Address: 0480FF90
As above for Any thread data watchpoint 0.

4.3.18. Any thread data watchpoint 1 DataH - DATAW1DMATCH1
Address: 0480FF98
As above for Any thread data watchpoint 0.

4.3.19. Any thread data watchpoint 1 MaskL - DATAW1DMASK0
Address: 0480FFA0

 Public Imagination Technologies

META HTP 69 Revision 2.1.314

As above for Any thread data watchpoint 0.

4.3.20. Any thread data watchpoint 1 MaskH - DATAW1DMASK1
Address: 0480FFA8
As above for Any thread data watchpoint 0.

4.3.21. Internal core events 0 - PERF_ICORE0
Address Offset: 0x0480FFD0
Reset Value: 0x00000000
Write Privilege: Always
This control allows additional performance metrics to be captured in the Meta HTP core (via
performance counter 0).

Bit Symbol Description

31:10 [READ
ONLY]

Reserved These bits are always '0'.

9:8 PerfICore0PrivFilter Privilege Filter. If set to:
00 - all relevant performance counter events are
counted in PERF_COUNT0
01 - reserved
10 - only materials for events caused in
unprivileged state are counted in
PERF_COUNT0.
11 - only materials for events caused in
privileged state are counted in PERF_COUNT0

7:4 [READ ONLY] Reserved These bits are always '0'.

3:0 ICoreCtrl Internal core event counter control specifier:
 0000 - Count Dcache read TLB hit and cache
misses
 0001 - Count Icache TLB hit and cache
misses
 0010 - Count Dcache TLB misses
 0011 - Count Icache TLB misses
 0100 – Count Dcache write TLB hits
 0101 – Count Dcache write TLB misses
 0110 - reserved (no operation)
 0111 - reserved (no operation)
 1000 - Count Dcache read cache line fetch
 1001 - Count Icache read cache line fetch
 1010 - Count Dcache read single word fetch
 1011 - Count Icache read single word fetch
 1100 - reserved (no operation)
 1101 - reserved (no operation)
 1110 - Count memory writes stalled at point of
core issue
 1111 – reserved (no operation)

4.3.22. Internal core events 1 - PERF_ICORE1
Address Offset: 0x0480FFD8
As above for PERF_ICORE0

Imagination Technologies Public

Revision 2.1.314 70 GP TRM - Architecture Overview

4.3.23. Performance counter 0 - PERF_COUNT0
Address Offset: 0x0480FFE0
Reset Value: 0x0F000000
Write Privilege: Always
The performance counters allow the occurrence of certain types of performance-related events to be
monitored for one or more threads as code executes.

Bit Symbol Description

31:28 Ctrl Counter control specifier:
 0000 - Count cycles with superthreads
 0001 - Count instruction issue rewinds caused by
dcache misses
 0010 - Count cycles with rewinds and superthreads
 (for all threads, mask ignored)
 0011 - Count cycles since execution start
 (for all threads, mask ignored)
 0100 - count all predicted conditional branches
 0101 - count all miss-predicted conditional branches
 0110 - count all predicted function returns
 0111 - count all miss-predicted function returns
 1000 - Count Dcache hits
 1001 - Count Icache hits
 1010 - Count Icache misses
 1011 - Count Dcache_MMU request stalled
 1100 - Count Icache_MMU request stalled
 1101 - Internal Core Events (selected by the
PERF_ICORE0 register)
 1110 – reserved (no operation)
 1111 – Count external events selected by
 performance channel 0 register.(extended, see
below)

27:24 ThreadMask Enables/disables performance counting for each thread. If
a bit is set to 1, events will be counted for corresponding
thread. Bit 24 for T0 etc.

23:0 Count Event counter; increments each time an event of type
specified by Ctrl field occurs for any of the threads
specified in thread mask

The conditional branch and function return prediction counting provides two options: firstly it is
possible to form a count of all predictions (where the predictions are predicted to be taken or not
taken), secondly it is possible to count the number of times such predictions are made in error. With
one counter tracking the first of these metrics and the other counter tracking the second it is possible
to determine an overall picture of the efficacy of the Meta HTP prediction and speculative execution
changes.
Note: Ctrl settings 0010 and 0011 are not masked on a per-thread basis and are therefore also not

filtered for privilege when PerfICore0PrivFilter is set. Otherwise, PerfICore0PrivFilter is used
for all Ctrl settings except 1111 for which PerfChan0PrivFilter is used instead.

4.3.24. Performance counter 1 - PERF_COUNT1
Address Offset: 0480FFE8
Reset Value: 0x1F000000
As above for PERF_COUNT0

 Public Imagination Technologies

META HTP 71 Revision 2.1.314

4.3.25. Performance channel 0 - PERF_CHAN0
Address Offset: 0x04830150 (0x03000050)
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG
Note: Support of this register at location of 0x03000050 will become obsolete in a future version.
The performance counters allow the occurrence of certain types of performance-related events to be
monitored for one or more threads as code executes. This register provides the routing for further
events to be channelled into the PERF_COUNT0 register. For monitoring write combiner, pre-arbiter
and system port events, the numbers recorded in the PERF_COUNT0 register may be inaccurate if
the core clock is slower than the system clock. When the core clock is faster than the system clock,
the number in the PERF_COUNT0 register should be divided by their frequency ratio.

Bit Symbol Description

31:10 Reserved These bits are always '0'.

9:8 PerfICore0PrivFilter Privilege Filter. If set to:
00 - all relevant performance counter events
are counted in PERF_COUNT0.
01 - reserved.
10 - only materials for events caused in
unprivileged state are counted in
PERF_COUNT0.
11 - only materials for events caused in
privileged state are counted in
PERF_COUNT0.

7:4 [READ ONLY] Reserved These bits are always '0'.

3:0 Channel 0000 - write combiner output write bursts
0001 - write combiner output writes
0010 - write combiner output read bursts
0011 - write combiner output reads
0100 - pre-arbiter port stalls
0101 - core memory request stalls at cross bar
input
0110 - Reserved
0111 - Reserved
1000 - Reserved
1001 - Meta core register request stalls at
cross-bar input
1010 - Reserved
1011 - Meta core register port stalls
1100 - Core memory port stalls
1101 - write combiner port stalls (all reasons)
1110 - write combiner stalls due to flushes
1111 - Master system port stalls

4.3.26. Performance channel 1 - PERF_CHAN1
Address Offset: 0x04830158 (0x03000058)
As above for PERF_CHAN0

Imagination Technologies Public

Revision 2.1.314 72 GP TRM - Architecture Overview

4.4. Write combiner configuration registers
Note: Not all cores are fitted with write combiners, refer to the relevant Core.Configuration

Specification document supplied for details.

4.4.1. Write combiner config register 0 - WRCOMBCONFIG0

Address Offset: 0x04830100 (0x03000000)
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG
Note: Support of this register at location of 0x03000000 will become obsolete in a future version.

Bit Symbol Description

31:14 Reserved

13 TxWrCombEn Set to 1 to enable combining/bursting. Note MMU must
also be switched on and the write combine bit in the
appropriate MMU table entry for the current write address
must also be set.

12 TxWrCombTO Set to 1 to enable write combiner timeout. With timeout
enabled the write combiner will automatically flush after
TxWrCombTOCnt clock cycles after the write combiner
starts to fill.

9:0 TxWrCombTOCnt Timeout count value in core clock cycles.

4.4.2. Write combiner config register 1 - WRCOMBCONFIG1
Address Offset: 0x04830108 (0x03000008)
This register has the same contents as WRCOMBCONFIG0 but for thread1

4.4.3. Write combiner config register 2 - WRCOMBCONFIG2
Address Offset: 0x04830110 (0x03000010)
This register has the same contents as WRCOMBCONFIG0 but for thread2

4.4.4. Write combiner config register 3 - WRCOMBCONFIG3
Address Offset: 0x04830118 (0x03000018)
This register has the same contents as WRCOMBCONFIG0 but for thread3

4.5. Privilege registers
The Meta core's global privilege registers consist of a set of bit-masks that restrict access to parts of
the memory map to threads executing at privileged level.
Initially the processor executes its first thread in a privileged mode with a minimal level of privilege
protection enabled. This initial boot task may remove any restriction before becoming unprivileged, or

 Public Imagination Technologies

META HTP 73 Revision 2.1.314

may force a much higher level of protection, therefore retaining privileged access to selected parts of
the system.
These following registers each specify privilege related behaviour delivered to the corresponding
thread when it accesses the corresponding part of the system region:

4.5.1. System region privilege for Thread 0 - T0PRIVSYSR
Address: 04810000
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:5 Reserved

4 Core Code
Memory
80000000-
81FFFFFF

0 - No restriction
1 - No unprivileged operation allowed

3 Core Cached
Memory
84000000-
87FFFFFF

0 - No restriction
1 - No unprivileged operation allowed

2 Direct mapped
06000000-
07FFFFFF

0 - Writes unrestricted. Reads fail.
1 - No unprivileged writes. Reads fail.

1 Reserved

0 Cache Flush
04400000-
047FFFFF

0 - No restriction.
1 - No unprivileged operation allowed.

4.5.2. System region privilege for Thread 1 - T1PRIVSYSR
Address: 04810008
Reset Value: 0x00000000
This register has the same contents as T0PRIVSYSR but for thread1

4.5.3. System region privilege for Thread 2 - T2PRIVSYSR
Address: 04810010
Reset Value: 0x00000000
This register has the same contents as T0PRIVSYSR but for thread2

4.5.4. System region privilege for Thread 3 - T3PRIVSYSR
Address: 04810018
Reset Value: 0x00000000
This register has the same contents as T0PRIVSYSR but for thread3

4.5.5. Core and expansion privilege for Thread 0 - T0PIOREG
Address: 04810100
Reset Value: 0x0000000B
Write Privilege: Controlled by TxPIOREG

Imagination Technologies Public

Revision 2.1.314 74 GP TRM - Architecture Overview

Bit Symbol Description

31:16 Priv_EXP A bit set prevents non-privileged threads from
accessing the corresponding region in the Custom
area 02000000-02FFFFFF.

15:0 Priv_META_Core_Registers A bit set prevents non-privileged threads from
accessing the corresponding 64kbyte region in
the register region 04800000-048FFFFF.

4.5.6. Core and expansion privilege for Thread 1 - T1PIOREG
Address: 04810108
Reset Value: 0x0000000B
This register has the same contents as T0PIOREG but for thread1

4.5.7. Core and expansion privilege for Thread 2 - T2PIOREG
Address: 04810110
Reset Value: 0x0000000B
This register has the same contents as T0PIOREG but for thread2

4.5.8. Core and expansion privilege for Thread 3 - T3PIOREG
Address: 04810118
Reset Value: 0x0000000B
This register has the same contents as T0PIOREG but for thread3

4.5.9. System event privilege control for Thread 0 - T0PSYREG
Address: 04810180
Reset Value: 0xFFFFFFE0
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:0 T0PSYREG A bit set prevents non-privileged thread from
generating the corresponding pair of System
Events via addresses in each 128-byte region in
the range 04000000-04000FFF

4.5.10. System event privilege control for Thread 1 - T1PSYREG
Address: 04810188
Reset Value: 0xFFFFFFE0
This register has the same contents as T0PSYSREG but for thread1

4.5.11. System event privilege control for Thread 2 - T2PSYREG
Address: 04810190
Reset Value: 0xFFFFFFE0
This register has the same contents as T0PSYSREG but for thread2

4.5.12. System event privilege control for Thread 3 - T2PSYREG
Address: 04810198
Reset Value: 0xFFFFFFE0
This register has the same contents as T0PSYSREG but for thread3

 Public Imagination Technologies

META HTP 75 Revision 2.1.314

4.6. Trigger control registers
See section 2.4 for a detailed description of Meta triggers.

HWSTATMETA, HWSTATEXT, HWSTATEXT* - edge-triggered model
A hardware trigger edge causes the corresponding status/clear register bit to be set to one and a
corresponding trigger edge is sent to the Meta core. Multiple triggers leave the bit set at one.
Writing a one to any bit in the status/clear register at any time causes the bit concerned to toggle from
either one to zero or zero to one. If this software event is combined exactly with the occurrence of a
significant hardware trigger edge then the resulting state of the status/clear bit will always be one.
If one is written to a status/clear register bit which is previously zero a software generated trigger edge
will be sent to the Meta core if the corresponding trigger vector is set.

HWSTATEXT, HWSTATEXT*- level-sensitive model
The status read from the status/clear register will indicate directly the state of the trigger signal
produced by the hardware source. Each time the hardware trigger signal changes from zero to one an
event will be generated for the Meta core provided the corresponding trigger vector is set.
If software writes a one to a status/clear register bit a corresponding trigger will be sent to be Meta
core provided the corresponding trigger vector is set.

TnVECINT_*, TnVECEXT2, and TnVECEXT - trigger vectors
A zero in any of the 4-bit fields within these registers disables delivery of the trigger concerned. The
values 4 to 15 'vectors' the triggers to the corresponding H/W trigger bits of the trigger status registers
within the Meta core.
By convention H/W trigger 15 is the highest priority trigger. Normally fewer trigger priority levels than
the maximum of twelve supported are required. Conventionally H/W triggers 4 to 7 are used for trigger
level 1 triggers handled separately on each of four threads by background level handlers. Also H/W
triggers 8 to 11 can be used as level 2 triggers for these threads via interrupt level handlers. The
remaining H/W triggers 12 to 15 can be used to implement global trigger levels 3 to 6 respectively
within nestable interrupt level handlers on any chosen thread.
Placing the value 1 in any trigger vector allows the trigger to be detected by the Debug Port, this
allows an external debugger to detect threads that breakpoint or HALT.
Placing the value 2 or 3 in any trigger vector allows the trigger to be detected by the Slave Port. This
allows an external Host to detect threads that breakpoint or HALT.

4.6.1. Hardware trigger status META - HWSTATMETA
Address: 04820000
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:18 Reserved

17 PERF1TRIG A status/clear bit describing
the occurrence of a roll-over
event in the PERF_COUNT1
register (where a roll-over is a
transition from 0xFFFFFF to
0x000000).

Imagination Technologies Public

Revision 2.1.314 76 GP TRM - Architecture Overview

Bit Symbol Description

16 PERF0TRIG A status/clear bit describing
the occurrence of a roll-over
event in the PERF_COUNT0
register (where a roll-over is a
transition from 0xFFFFFF to
0x000000).

15 Reserved

14 T3PTRIG A status/clear bit describing
the occurrence of memory
page fault from Meta thread 3

13 T3ITRIG A status/clear bit describing
the occurrence of interrupt
trigger from Meta thread 3

12 T3BTRIG A status/clear bit describing
the occurrence of background
trigger from Meta thread 3

11 Reserved

10 T2PTRIG A status/clear bit describing
the occurrence of memory
page fault from Meta thread 2

9 T2ITRIG A status/clear bit describing
the occurrence of interrupt
trigger from Meta thread 2

8 T2BTRIG A status/clear bit describing
the occurrence of background
trigger from Meta thread 2

7 Reserved

6 T1PTRIG A status/clear bit describing
the occurrence of memory
page fault from Meta thread 1

5 T1ITRIG A status/clear bit describing
the occurrence of interrupt
trigger from Meta thread 1

4 T1BTRIG A status/clear bit describing
the occurrence of background
trigger from Meta thread 1

3 Reserved

2 T0PTRIG A status/clear bit describing
the occurrence of memory
page fault from Meta thread 0

1 T0ITRIG A status/clear bit describing
the occurrence of interrupt
trigger from Meta thread 0

0 T0BTRIG A status/clear bit describing
the occurrence of background
trigger from Meta thread 0

All of these triggers use the edge-triggered model.

 Public Imagination Technologies

META HTP 77 Revision 2.1.314

4.6.2. Hardware trigger status 0-31 - HWSTATEXT
Address: 04820010
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:0 HWSTATEXT A status/clear register describing the occurrence
of external triggers 0-31.

4.6.3. Hardware trigger status 32-63 - HWSTATEXT2
Address: 04820018
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:0 HWSTATEXT2 A status/clear register describing the occurrence
of external triggers 32-63.

4.6.4. Hardware trigger status 64-95 - HWSTATEXT4
Address: 04820020
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:0 HWSTATEXT4 A status/clear register describing the occurrence
of external triggers 64-95.

4.6.5. Hardware trigger status 96-128 - HWSTATEXT6
Address: 04820028
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:0 HWSTATEXT6 A status/clear register describing the occurrence
of external triggers 96-128.

4.6.6. Hardware trigger edge/level configuration - HWLEVELEXT
Address: 04820030
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:0 HWLEVELEXT A read/write register which defines the edge/level
behaviour of HWSTATEXT. If a bit in this register
is 1, the related trigger obeys the level-sensitive
trigger model, and if 0 the edge-triggered model.

Imagination Technologies Public

Revision 2.1.314 78 GP TRM - Architecture Overview

4.6.7. Hardware trigger edge/level configuration 2 - HWLEVELEXT2
Address: 04820038
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:0 HWLEVELEXT2 A read/write register which defines the edge/level
behaviour of HWSTATEXT2. If a bit in this
register is 1, the related trigger obeys the level-
sensitive trigger model, and if 0 the edge-
triggered model.

4.6.8. Hardware trigger edge/level configuration 4 - HWLEVELEXT4
Address: 04820040
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:0 HWLEVELEXT4 A read/write register which defines the edge/level
behaviour of HWSTATEXT4. If a bit in this
register is 1, the related trigger obeys the level-
sensitive trigger model, and if 0 the edge-
triggered model.

4.6.9. Hardware trigger edge/level configuration 6 - HWLEVELEXT6
Address: 04820048
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:0 HWLEVELEXT6 A read/write register which defines the edge/level
behaviour of HWSTATEXT6. If a bit in this
register is 1, the related trigger obeys the level-
sensitive trigger model, and if 0 the edge-
triggered model.

4.6.10. Hardware trigger mask - HWMASKEXT
Address: 04820050
Reset Value: 0xFFFFFFFF
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:0 HWMASKEXT A register to enable/disable external triggers 0-31.
If a bit in this register is 1, the related trigger is
enabled.

4.6.11. Hardware trigger mask 2 - HWMASKEXT2
Address: 04820058

 Public Imagination Technologies

META HTP 79 Revision 2.1.314

Reset Value: 0xFFFFFFFF
Write Privilege: Controlled by TxPIOREG . If external triggers 32-63 does not exist, this
register would be removed and returns 0x0.

Bit Symbol Description

31:0 HWMASKEXT2 A register to enable/disable external triggers 32-
63. If a bit in this register is 1, the related trigger is
enabled.

4.6.12. Hardware trigger mask 4 - HWMASKEXT4
Address: 04820060
Reset Value: 0xFFFFFFFF
Write Privilege: Controlled by TxPIOREG . If external triggers 64 - 95 does not exist, this
register would be removed and returns 0x0.

Bit Symbol Description

31:0 HWMASKEXT4 A register to enable/disable external triggers 64-
95. If a bit in this register is 1, the related trigger is
enabled.

4.6.13. Hardware trigger mask 6 - HWMASKEXT6
Address: 04820068
Reset Value: 0xFFFFFFFF
Write Privilege: Controlled by TxPIOREG . If external triggers 96 - 127 does not exist, this
register would be removed and returns 0x0.

Bit Symbol Description

31:0 HWMASKEXT6 A register to enable/disable external triggers 96-
127. If a bit in this register is 1, the related trigger
is enabled.

4.6.14. Thread0 background trigger vector - T0VECINT_BHALT
Address: 04820500
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

3:0 BHALT A read/write register containing a 4-bit trigger
vector value for the background trigger generated
by the Meta core related to the state of thread 0.

4.6.15. Thread0 interrupt trigger vector - T0VECINT_IHALT
Address: 04820508
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

Imagination Technologies Public

Revision 2.1.314 80 GP TRM - Architecture Overview

Bit Symbol Description

3:0 IHALT A read/write register containing a 4-bit trigger
vector value for the interrupt trigger generated by
the Meta core related to the state of thread 0.

4.6.16. Thread0 memory fault trigger vector - T0VECINT_PHALT
Address: 04820510
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

3:0 PHALT A read/write register containing a 4-bit trigger
vector value for the memory read fault trigger
generated by the Meta core related to the state of
thread 0.

4.6.17. Thread1 background trigger vector - T1VECINT_BHALT
Address: 04820520
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

3:0 BHALT A read/write register containing a 4-bit trigger
vector value for the background trigger generated
by the Meta core related to the state of thread 1.

4.6.18. Thread1 interrupt trigger vector - T1VECINT_IHALT
Address: 04820528
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

3:0 IHALT A read/write register containing a 4-bit trigger
vector value for the interrupt trigger generated by
the Meta core related to the state of thread 1.

4.6.19. Thread1 memory fault trigger vector - T1VECINT_PHALT
Address: 04820530
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

3:0 PHALT A read/write register containing a 4-bit trigger
vector value for the memory read fault trigger
generated by the Meta core related to the state of
thread 1.

 Public Imagination Technologies

META HTP 81 Revision 2.1.314

4.6.20. Thread2 background trigger vector - T2VECINT_BHALT
Address: 04820540
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

3:0 BHALT A read/write register containing a 4-bit trigger
vector value for the background trigger generated
by the Meta core related to the state of thread 2.

4.6.21. Thread2 interrupt trigger vector - T2VECINT_IHALT
Address: 04820548
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

3:0 IHALT A read/write register containing a 4-bit trigger
vector value for the interrupt trigger generated by
the Meta core related to the state of thread 2.

4.6.22. Thread2 memory fault trigger vector - T2VECINT_PHALT
Address: 04820550
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

3:0 PHALT A read/write register containing a 4-bit trigger
vector value for the memory read fault trigger
generated by the Meta core related to the state of
thread .

4.6.23. Thread3 background trigger vector - T3VECINT_BHALT
Address: 04820560
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

3:0 BHALT A read/write register containing a 4-bit trigger
vector value for the background trigger generated
by the Meta core related to the state of thread 3.

4.6.24. Thread3 interrupt trigger vector - T3VECINT_IHALT
Address: 04820568
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Imagination Technologies Public

Revision 2.1.314 82 GP TRM - Architecture Overview

Bit Symbol Description

3:0 IHALT A read/write register containing a 4-bit trigger
vector value for the interrupt trigger generated by
the Meta core related to the state of thread 3.

4.6.25. Thread3 memory fault trigger vector - T3VECINT_PHALT
Address: 04820570
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

3:0 PHALT A read/write register containing a 4-bit trigger
vector value for the memory read fault trigger
generated by the Meta core related to the state of
thread 3.

4.6.26. PERF0 trigger vector – PERF0VECINT
Address: 04820580
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:0 PERF0TR A read/write register containing a 4-bit trigger
vector value for the PERF0TRIG generated by the
Meta core.

4.6.27. PERF1 trigger vector – PERF1VECINT
Address: 04820588
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:0 PERF1TR A read/write register containing a 4-bit trigger
vector value for the PERF1TRIG generated by the
Meta core.

4.6.28. External hardware trigger vector table 0 - HWVEC0EXT
Address: 04820700-048207F8
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

3:0 HWVEC0EXT A table of up to 32 4-bit read/write trigger vector
values - one in each 64-bit location. These are
related to each co-processor or external hardware
trigger source in a system dependent fashion.

 Public Imagination Technologies

META HTP 83 Revision 2.1.314

4.6.29. External hardware trigger vector table 2 - HWVEC20EXT
Address: 04821700-048217F8
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

3:0 HWVEC20EXT A table of up to 32 4-bit read/write trigger vector
values - one in each 64-bit location. These are
related to each co-processor or external hardware
trigger source in a system dependent fashion.

4.6.30. External hardware trigger vector table 4 - HWVEC40EXT
Address: 04822700-048227F8
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

3:0 HWVEC04EXT A table of up to 32 4-bit read/write trigger vector
values - one in each 64-bit location. These are
related to each co-processor or external hardware
trigger source in a system dependent fashion.

4.6.31. External hardware trigger vector table 6 - HWVEC60EXT
Address: 04823700-048237F8
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

3:0 HWVEC60EXT A table of up to 32 4-bit read/write trigger vector
values - one in each 64-bit location. These are
related to each co-processor or external hardware
trigger source in a system dependent fashion.

4.7. General Meta control registers
This region contains registers that have many independent purposes.

4.7.1. META core ID - METAC_ID
Address: 04830000
Reset Value: Depends on core revision
Write Privilege: Read only
This register is read-only and contains a predefined value to identify the Meta core used.

Bit Symbol Description

31:24 METAC_ID_MAJOR_BITS Meta core Major identifier (02)

23:16 METAC_ID_MINOR_BITS Meta core Minor identifier (01)

15:8 METAC_ID_REV_BITS Meta core Revision identifier (03/04)

Imagination Technologies Public

Revision 2.1.314 84 GP TRM - Architecture Overview

Bit Symbol Description

7:0 METAC_ID_MAINT_BITS Meta core Maintenance revision identifier (XX)

Current versions of Meta HTP have major, minor and rev bits set to 2.1.3 or 2.1.4. The 3rd digit
(METAC_ID_REV_BITS) is actually used to indicate the instruction set present. The 4 vs. 3 indicates
the presence or not of a floating point unit (FPU).

4.7.2. Meta core configuration ID - CORE_ID
Address: 0x04831000
Reset Value: 0x140X0000
Write Privilege: Read only
This register is read-only and contains a predefined value to identify the type and configuration of
Meta core used.

Bit Symbol Description

31:24 IMG_META_GROUP_ID Set to 0x14 to indicate that it is a Meta CPU/DSP
core.

23:16 IMG_META_CORE_ID This field is set to 0x0X for Meta HTP core
configurations and 0x1X for Meta MTP and LTP
cores.

15:0 IMG_META_CONFIG 2:0 CACHE_TYPE (0=FULLMMU, 1=NOMMU,
2=NOCACHE, 3=PRIVNOMMU, 4:7=reserved)
5:3 DSP_TYPE (0=Extended, 1=Standard,
2:7=reserved)
6 Reserved
8:7 FPU_TYPE (0=None, 1=single precision,
2=double precision, 3=reserved)

10 GLOB_CACHE_COH (0=Included, 1=not
present)
15:11 Reserved

4.7.3. Meta core revision - CORE_REV
Address: 0x04831008
Reset Value: 0x000201XX

Bit Symbol Description

31:24 IMG_META_DESIGNER Designer Code

23:16 IMG_META_MAJOR_REV IMG Core Major Revision

15:8 IMG_META_MINOR_REV IMG Core Minor Revision

7:0 IMG_META_MAINT_REV IMG Core Maintenance Revision

IMG_META_MAJOR_REV, IMG_META_MINOR_REV and IMG_META_MAINT_REV are identical to
corresponding fields in METAC_ID Register. The METAC_ID register is kept in place to maintain
backwards compatibility with software and tools but may be obsoleted in future.
The DESIGNER field will normally be set to 0x00. In some circumstances it may be changed to a
different value for a customer specific release.

 Public Imagination Technologies

META HTP 85 Revision 2.1.314

4.7.4. Meta core configuration ID 2 - CORE_CONFIG2
Address 0x04831020
Reset Value: Depends on Meta core type
Write Privilege: Read only
A 32-bit read only register identifying core specific configuration details

Bit Symbol Description

31

BASELINE_DSP When set indicates that the DSP per-thread
register set of 9 registers per data unit (D0.0-
D0.8+D1.0-D1.8) is used (as opposed to 8
registers per data unit for general purpose
threads and 16 registers per data unit for
extended DSP threads). See the thread
capabilities table in Section 4.1.1 for details.

30:29

CORE_DEBUG_TYPE Indicates the features available to the debug
port: when set to "0" debug can be routed
through the core or cache backend and the
MCM* registers are supported; when set to "1"
debug can only be routed through the cache
backend and the MCM* registers are supported
(principally to allow access to core memories);
lastly when set to "2" debug is routed as if it
always goes through core and the MCM*
registers are not required (or available) for
access to core memories.

28

SEG_MMU When set indicates that Segment MMU is
included. When unset indicates that Segment
MMU is not included.

27 DCACHE_WB When set indicates that the DCACHE operates
in write back-mode. When unset indicates that
the DCACHE operates in write-through mode.

26 DCACHE_SMALL When set indicates that the DCACHE is small
(2k or less)

25 ICACHE_SMALL When set indicates that the ICACHE is small (2k
or less)

24:22 DCACHE_SIZE_NP This field is the difference between data cache
size as described by field DCACHE_SIZE and
the actual data cache size. It is in units of 1/16th
of data cache size as described by field
DCACHE_SIZE.
0 – no difference
1:7 - Reserved

21:19 ICACHE_SIZE_NP This field is the difference between instruction
cache size as described by field ICACHE_SIZE
and the actual instruction cache size. It is in units
of 1/16th of instruction cache size as described
by field ICACHE_SIZE.
0 – no difference
1:5 - Reserved
6 – difference of 6/16th
7 - Reserved

Imagination Technologies Public

Revision 2.1.314 86 GP TRM - Architecture Overview

Bit Symbol Description

18:16 DCACHE_SIZE This field describes the data cache size rounded
up to the nearest power of 2. N.B. use in
conjunction with the DCACHE_SMALL bit
(above)
0 – 4k / 64bytes
1 – 8k / 128 bytes
2 – 16k / 256 bytes
3 – 32k / 512 bytes
4 – 64k /1024 bytes
5 – 128k /2048 bytes
6:7 - Reserved

15:13 ICACHE_SIZE This field describes the instruction cache size
rounded up to the nearest power of 2. N.B. use
in conjunction with the DCACHE_SMALL bit
(above)
0 – 4k / 64 bytes
1 – 8k / 128 bytes
2 – 16k / 256 bytes
3 – 32k / 512 bytes
4 – 64k /1024 bytes
5 – 128k /2048 bytes
6:7 - Reserved

12:11 GLOBAL_ACCUMULATORS 0 – No accumulators
1 – 1 global accumulator per data unit
2 – 2 global accumulators per data unit
3 – 3 global accumulators per data unit

10:8 GLOBAL_DU_REGISTERS 0 – No Global registers per data unit
1 – 1 Global registers per data unit
2 – 2 Global registers per data unit
3 – 4 Global registers per data unit
4 – 8 Global registers per data unit
5 – 16 Global registers per data unit
6:7 Reserved

7:5 GLOBAL_AU_REGISTERS 0 – No Global registers per addr unit
1 – 1 Global registers per addr unit
2 – 2 Global registers per addr unit
3 – 4 Global registers per addr unit
4 – 8 Global registers per addr unit
5:7 Reserved

4 REAL_TIME_TRACE 0 – Real time trace present
1 – Real time trace not present

3:2 WATCHPOINTS 0 – No Data Watchpoints available
1 – 2 Data Watchpoints available
2,3 – Reserved

 Public Imagination Technologies

META HTP 87 Revision 2.1.314

Bit Symbol Description

1:0 BREAKPOINTS 0 – No Breakpoints available
1 – 2 Breakpoints available
2 – 4 Breakpoints available
3 – Reserved

4.7.5. MMU table base - MMCU_TABLE_PHYS
Address: 04830010
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG
The TABLE_PHYS registers must be set before exiting MMU bypass mode. DCACHE_FLUSH and
ICACHE FLUSH registers can then be used to initiate and wait for the caches to be flushed. Then the
DCACHE_CTRL and ICACHE_CTRL registers can be set to enable normal cache operation. The
MMU cache must be explicitly flushed after reset before it is first actually used (see section 3.2.4
Cache / TLB invalidate).

Bit Symbol Description

31:2 Base Physical base address of “root” table
N.B. This is not used for the Meta HTP enhanced
MMU table structure

1 Reserved

0 Mode 0 = Meta ATP MMU table structure(default)
1 = Meta HTP enhanced MMU table structure

Note: Compatibility with Meta ATP can be achieved by setting bit 0 to ‘0’ or by setting up the new
MMCU_TnLOCAL_TABLE_PHYS* registers to appropriate values.

4.7.6. Tn local range root table 0 - MMCU_TnLOCAL_TABLE_PHYS0
Address: 0x04830700 + 0x20*n
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG
Tn Local Range Root Table Register0 (see also section 2.7)

Bit Symbol Description

31:22 Base Bit 31 to 22 of the Linear Base Address for thread
n. The top bit must always be set to zero.

21:12 Reserved

Imagination Technologies Public

Revision 2.1.314 88 GP TRM - Architecture Overview

Bit Symbol Description

11:8 Range Range of Linear Address
0 = 4M
1 = 8M
2 = 16M
3 = 32M
4 = 64M
5 = 128M
6 = 256M
7 = 512M
8 = 1G
9 = 2G
Others = Reserved

7:6 Win Win Mode for data cache*

5 SingleUse Reserved - set to '0' *

4 ExclusiveMode

EX-MODE

3 WrComb WR-COMBINE*

2 Privilege PRIV*

1 Writeable WRITE*

0 Valid 1 register values valid
0 register values not valid (default)

* for MMU table region 0x05000000-0x05FFFFFF only

4.7.7. Tn local range root table 1 - MMCU_TnLOCAL_TABLE_PHYS1
Address: 0x04830708 + 0x20*n
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG
Tn Local Range Root Table Register1 (see also section 2.7)

Bit Symbol Description

31:2 Base Physical Base 32-bit Word Address of MMU table
first level for thread n

1:0 Reserved

4.7.8. Tn global range root table 0 - MMCU_TnGLOBAL_TABLE_PHYS0
Address: 0x04830710 + 0x20*n
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG
Tn Global Range Root Table Register0 (see also section 2.7)

Bit Symbol Description

31:22 Base Bit 31 to 22 of the Linear Base Address for thread
n. The top bit must always be set to one.

 Public Imagination Technologies

META HTP 89 Revision 2.1.314

Bit Symbol Description

21:12 Reserved

11:8 Range Range of Linear Address
0 = 4M
1 = 8M
2 = 16M
3 = 32M
4 = 64M
5 = 128M
6 = 256M
7 = 512M
8 = 1G
9 = 2G
Others = Reserved

7:6 Win Win Mode for data cache*

5 SingleUse Reserved - set to '0' *

4 ExclusiveMode

EX-MODE

3 WrComb WR-COMBINE*

2 Privilege PRIV*

1 Writeable WRITE*

0 Valid 1 register values valid
0 register values not valid(default)

* for MMU table region 0x05000000-0x05FFFFFF only

4.7.9. Tn global range root table 1 - MMCU_TnGLOBAL_TABLE_PHYS1
Address: 0x04830718 + 0x20*n
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG
Tn Global Range Root Table Register1 (see also section 2.7)

Bit Symbol Description

31:2 Base Physical Base 32-bit Word Address of MMU table
first level for thread n

1:0 Reserved

4.7.10. Data Cache Enable - MMCU_DCACHE_CTRL
Address: 0x04830018
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:1 Reserved

Imagination Technologies Public

Revision 2.1.314 90 GP TRM - Architecture Overview

Bit Symbol Description

0 MMCU_DCACHE_CTRL When set to 1, after the Dcache has been taken
out of MMU bypass mode, this will enable data
cache hits. The Dcache must first be flushed
using the DCACHE_FLUSH register before
enabling data cache hits.

4.7.11. Instruction Cache Enable - MMCU_ICACHE_CTRL
Address: 0x04830020
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:1 Reserved

0 MMCU_ICACHE_CTRL When set to 1, after the Icache has been taken
out of MMU bypass mode, this will enable
instruction cache hits. The Icache must first be
flushed using the ICACHE_FLUSH register before
enabling instruction cache hits.

4.7.12. Local region MMU enhanced bypass - MMCU_LOCAL_EBCTRL
Address: 0x04830600
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG
Local region MMU enhanced bypass mode control.

Bit Symbol Description

31:16 Reserved

15:14 ICWin Win Mode for instruction cache

13:8 Reserved

7:6 DCWin Win Mode for data cache

5:0 Reserved

Note that the ICWin and DCWin controls are only applicable when cache lines are allocated(i.e. read
miss).

4.7.13. Global region MMU enhanced bypass - MMCU_GLOBAL_EBCTRL
Address: 0x04830608
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG
Global region MMU enhanced bypass mode control.

Bit Symbol Description

31:16 Reserved

15:14 ICWin Win Mode for instruction cache

13:8 Reserved

 Public Imagination Technologies

META HTP 91 Revision 2.1.314

Bit Symbol Description

7:6 DCWin Win Mode for data cache

5:0 Reserved

Note that the ICWin and DCWin controls are only applicable when cache lines are allocated(i.e. read
miss).

4.7.14. Enhanced bypass/wr combiner control - MMCU_TxEBWCCTRL
Address: 0x04830640 + 0x8*Thead_ID
Reset Value: 0x00000007
Write Privilege: Controlled by TxPIOREG
MMU enhanced bypass mode write combiner control.

Bit Symbol Description

31:4 Reserved

7 Reserved

6:4 Writeable Control writeable flag for global/local regions in
enhanced bypass mode
0 = writeable flag is 1
1 = Use byte address bit25, writeable flag is 1
when address bit is '1'
2 = Use byte address bit26, writeable flag is 1
when address bit is '1'
3 = Use byte address bit27, writeable flag is 1
when address bit is '1'
4 = Use byte address bit28, writeable flag is 1
when address bit is '1'
5 = Use byte address bit29, writeable flag is 1
when address bit is '1'
6 = Use byte address bit30, writeable flag is 1
when address bit is '1'
7 = writeable flag is 0
When a particular byte address bit is used to
control writeable, that physical address bit would
be set to '0'

3 Reserved

Imagination Technologies Public

Revision 2.1.314 92 GP TRM - Architecture Overview

Bit Symbol Description

2:0 WrComb Control the write combine option for global/local
regions in enhanced bypass mode
0 = Disable write combining for all addresses
1 = Use byte address bit25, write combine ON
when address bit is '1'
2 = Use byte address bit26, write combine ON
when address bit is '1'
3 = Use byte address bit27, write combine ON
when address bit is '1'
4 = Use byte address bit28, write combine ON
when address bit is '1'
5 = Use byte address bit29, write combine ON
when address bit is '1'
6 = Use byte address bit30, write combine ON
when address bit is '1'
7 = Enable write combining for all addresses.
When a particular byte address bit is used to
control write combine, that physical address bit
would be set to '0'

4.7.15. Cache/MMU bypass control - SYSC_CACHE_MMU_CONFIG
Address: 04830028
Reset Value: 00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:7 Reserved

6 DCACHE_HAVE_SKEW Read only. Returns '1' if the Dcache supports
skewed associativity

5 ICACHE_HAVE_SKEW Read only. Returns '1' if the Icache supports
skewed associativity

4:3 Reserved

2:0 MMCU_DCACHE_CTRL Set to 7 to put the MMU and caches into full TLB
mode.
Set to 6 to put both the caches into enhanced
bypass mode.
Set to 4 to put the instruction cache into enhanced
bypass mode.
Set to 2 to put the data cache into enhanced
bypass mode.
Set to 0 to put the caches into bypass mode.

4.7.16. JTAG debug control - SYSC_JTAG_THREAD
Address: 04830030
Reset Value: 0x00000000 or 0x00000004 depending on boot mode

 Public Imagination Technologies

META HTP 93 Revision 2.1.314

Write Privilege: Controlled by TxPIOREG
This register determines the privilege level at which operations performed via the Meta core JTAG
debug and slave interfaces operate.
If the core boots itself, the slave/debug privilege level is set to zero. Boot code can then hand privilege
control over to the debug and slave ports by setting the bit to 1 when it is ready.
If the core is not configured to boot, the privilege bit is set automatically.

Bit Symbol Description

31:5 Reserved

5:4 SLAVE_THREAD Read only. These bits reflect the thread number
currently selected for transactions that can be
issued by the slave interface.

3 Reserved

2 PRIVILEGE 1 - debug and slave interface is privileged
0 - debug and slave interface is unprivileged

1:0 DEBUG_THREAD Read only. Thread number currently selected for
transactions that can be issued by the debug port.

4.7.17. Data cache flush control - SYSC_DCACHE_FLUSH
Address: 04830038
Reset Value: 0x00000001
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:1 Reserved

0 SYSC_DCACHE_FLUSH When set to 1 this causes the data cache
hardware to reset all cache line states to empty.
The read state of this bit only changes to 1 when
this operation is complete. This must only be used
for initialisation of the caches following a reset.

4.7.18. Instruction cache flush control - SYSC_ICACHE_FLUSH
Address: 04830040
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG

Bit Symbol Description

31:1 Reserved

0 SYSC_ICACHE_FLUSH When set to 1 this causes the instruction cache
hardware to reset all cache line states to empty.
The read state of this bit only changes to 1 when
this operation is complete. This must only be used
for initialisation of the caches following a reset.

Imagination Technologies Public

Revision 2.1.314 94 GP TRM - Architecture Overview

4.7.19. Direct map addresses 0 - MMCU_DIRECTMAP0_ADDR
Address: 04830080
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG
This read/write register allows the physical base addresses used for accesses in the Direct Mapped 0
part of the System Region to be defined. It provides the additional address bits required to complete
the physical address generated.

Bit Symbol Description

31:23 MMCU_DIRECTMAP0_ADDR Address base for 06000000-067FFFFF

22:16 Reserved

15:14 ICWin Win Mode for instruction cache

13:8 Reserved

7:6 DCWin Win Mode for data cache

5 SingleUse Reserved - set to '0'

4 ExclusiveMode

EX-MODE

3 WrComb WR-COMBINE

2 Privilege PRIV

1 Writeable WRITE

0 Mode HTP/ATP Mode, 0 = ATP, 1 = HTP. When it is
in ATP mode, only bits 31:23 are applicable

Note The ICWin and DCWin controls are only applicable when cache lines are allocated(i.e. read
miss).

4.7.20. Direct map addresses 1 - MMCU_DIRECTMAP1_ADDR
Address: 04830090
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG
This read/write register allows the physical base addresses used for accesses in the Direct Mapped 1
part of the System Region to be defined. It provides the additional address bits required to complete
the physical address generated.

Bit Symbol Description

31:23 MMCU_DIRECTMAP1_ADDR Address base for 06800000-06FFFFFF

22:16 Reserved

15:14 ICWin Win Mode for instruction cache

13:8 Reserved

7:6 DCWin Win Mode for data cache

5 SingleUse Reserved - set to '0'

 Public Imagination Technologies

META HTP 95 Revision 2.1.314

Bit Symbol Description

4 ExclusiveMode

EX-MODE

3 WrComb WR-COMBINE

2 Privilege PRIV

1 Writeable WRITE

0 Mode HTP/ATP Mode, 0 = ATP, 1 = HTP. When it is
in ATP mode, only bits 31:23 are applicable

Note The ICWin and DCWin controls are only applicable when cache lines are allocated(i.e. read
miss).

4.7.21. Direct map addresses 2 - MMCU_DIRECTMAP2_ADDR
Address: 048300A0
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG
This read/write register allows the physical base addresses used for accesses in the Direct Mapped 2
part of the System Region to be defined. It provides the additional address bits required to complete
the physical address generated.

Bit Symbol Description

31:23 MMCU_DIRECTMAP2_ADDR Address base for 07000000-077FFFFF

22:16 Reserved

15:14 ICWin Win Mode for instruction cache

13:8 Reserved

7:6 DCWin Win Mode for data cache

5 SingleUse Reserved - set to '0'

4 ExclusiveMode

EX-MODE

3 WrComb WR-COMBINE

2 Privilege PRIV

1 Writeable WRITE

0 Mode HTP/ATP Mode, 0 = ATP, 1 = HTP. When it is
in ATP mode, only bits 31:23 are applicable

Note The ICWin and DCWin controls are only applicable when cache lines are allocated(i.e. read
miss).

4.7.22. Direct map addresses 3 - MMCU_DIRECTMAP3_ADDR
Address: 048300B0
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG
This read/write register allows the physical base addresses used for accesses in the Direct Mapped 3
part of the System Region to be defined. It provides the additional address bits required to complete
the physical address generated.

Bit Symbol Description

Imagination Technologies Public

Revision 2.1.314 96 GP TRM - Architecture Overview

Bit Symbol Description

31:23 MMCU_DIRECTMAP3_ADDR Address base for 07800000-07FFFFFF

22:16 Reserved

15:14 ICWin Win Mode for instruction cache

13:8 Reserved

7:6 DCWin Win Mode for data cache

5 SingleUse Reserved - set to '0'

4 ExclusiveMode

EX-MODE

3 WrComb WR-COMBINE

2 Privilege PRIV

1 Writeable WRITE

0 Mode HTP/ATP Mode, 0 = ATP, 1 = HTP. When it is
in ATP mode, only bits 31:23 are applicable

Note The ICWin and DCWin controls are only applicable when cache lines are allocated(i.e. read
miss).

4.7.23. Data cache partitioning thread 0 - SYSC_DCPART0
Address: 04830200
Reset Value: 0x00000000
Write Privilege: Controlled by TxPIOREG
This, and the following seven registers specify how the physical data cache and instruction cache
resources are divided between threads. The global part of a thread’s address map can be configured
separately to the local part and, in theory, either part of any thread’s cache resource may be shared
with any other parts of any number of other threads. It is recommended however to use separate
regions for each thread’s local space and a common area for all threads’ global spaces. Separate
global spaces may be safely used for sub-sets of the threads provided the sub-sets are independent
in terms of global memory usage.
Sizing is achieved by masking away address lines otherwise used to address 1/16th regions of the
cache resource and adding in a fixed offset corresponding to the masked lines. It is invalid to attempt
to operate the cache with fewer than four cache lines allocated to a region (unless it is never used),
hence 1/16th partitioning of a 2k cache would not be permitted.
If the global caching regions for different threads are independent they can share read-only data or
code in complete safety.
These registers cannot be configured in MMU bypass mode. They must be programmed initially after
exiting MMU bypass mode and before enabling the caches for first use.

Bit Symbol Description

31 CachedWriteEnable Cached write enable.
When set, the MMU response for a write will be
cached. This improves the performance for
write intensive programs.

30:28 Reserved

 Public Imagination Technologies

META HTP 97 Revision 2.1.314

Bit Symbol Description

27:24 GlobalAddressOffsetT0 All values are potentially valid, for example:
 0000 - first part of cache used
 1000 - top half of cache used
 0100 - second quarter of cache used
 etc…

23:20 Reserved

19:16 LocalAddressOffsetT0 All values are potentially valid, for example:
 0000 - first part of cache used
 1000 - top half of cache used
 0100 - second quarter of cache used
 etc…

15:12 PseudoCachePartition Cache way partitioning mask for thread, Masks
cache ways available to thread on cache miss.
 0000 - No additional cache way masking
 0001 - Way 0 masked
 …
 1001 - Way 3 and Way 0 masked
 etc…

11:8 GlobalAddressMaskT0

Valid values are:
 1111 - whole cache used
 0111 - half of cache used
 0011 - quarter of cache used
 0001 - eighth of cache used
 0000 - sixteenth of cache used

7:4 Reserved

3:0 LocalAddressMaskT0 Valid values are:
 1111 - whole cache used
 0111 - half of cache used
 0011 - quarter of cache used
 0001 - eighth of cache used
 0000 - sixteenth of cache used

4.7.24. Data cache partitioning thread 1 - SYSC_DCPART1
Address: 04830208
As above for thread 1.

4.7.25. Data cache partitioning thread 2 - SYSC_DCPART2
Address: 04830210
As above for thread 2.

4.7.26. Data cache partitioning thread 3 - SYSC_DCPART3
Address: 04830218
As above for thread 3.

Imagination Technologies Public

Revision 2.1.314 98 GP TRM - Architecture Overview

4.7.27. Instruction cache partitioning thread 0 - SYSC_ICPART0
Address: 04830220

Bit Symbol Description

31:28 Reserved

27:24 GlobalAddressOffsetT0 All values are potentially valid, for example:
 0000 - first part of cache used
 1000 - top half of cache used
 0100 - second quarter of cache used
 etc…

23:20 Reserved

19:16 LocalAddressOffsetT0 All values are potentially valid, for example:
 0000 - first part of cache used
 1000 - top half of cache used
 0100 - second quarter of cache used
 etc…

15:12 Reserved

11:8 GlobalAddressMaskT0

Valid values are:
 1111 - whole cache used
 0111 - half of cache used
 0011 - quarter of cache used
 0001 - eighth of cache used
 0000 - sixteenth of cache used

7:4 Reserved

3:0 LocalAddressMaskT0 Valid values are:
 1111 - whole cache used
 0111 - half of cache used
 0011 - quarter of cache used
 0001 - eighth of cache used
 0000 - sixteenth of cache used

4.7.28. Instruction cache partitioning thread 1 - SYSC_ICPART1
Address: 04830228
As above for thread 1.

4.7.29. Instruction cache partitioning thread 2 - SYSC_ICPART2
Address: 04830230
As above for thread 2.

4.7.30. Instruction cache partitioning thread 3 - SYSC_ICPART3
Address: 04830238
As above for thread 3.

	1. Introduction
	1.1. Meta core architecture highlights

	2. Meta core architecture overview
	2.1. Managing resources for multiple threads
	2.1.1. Inter-thread communications
	2.1.2. Instruction scheduler
	2.1.3. AMA™
	2.1.4. Memory reads
	2.1.5. Privilege/Lock

	2.2. Interfaces to the Meta core
	2.2.1. Coprocessor interface module
	2.2.2. Reset
	2.2.3. External triggers
	2.2.4. Slave interface
	2.2.5. System bus master
	2.2.6. Debug interface
	2.2.7. Core memory ports

	2.3. Execution units
	2.3.1. Data unit
	2.3.2. Address unit
	2.3.3. PC unit
	2.3.4. Control unit
	2.3.5. Trigger unit
	2.3.6. Input/output ports

	2.4. Exceptions, Triggers and Kicks
	2.4.1. Advanced Trigger Processing
	2.4.2. Trigger allocation
	2.4.3. Trigger matrixing
	2.4.4. Interrupt triggers
	2.4.5. Exceptions
	2.4.6. Deferred triggers

	2.5. Hardware response to Interrupts and exceptions
	2.5.1. Low-level interrupt handling
	2.5.2. HALTS versus interrupts
	2.5.3. HALT/Interrupt sequence

	2.6. Instruction and data caches
	2.6.1. Cache organisation
	2.6.2. Cache manipulation
	2.6.3. Cache WIN Modes

	2.7. MMU
	2.7.1. Meta ATP MMU page table layout
	2.7.2. Meta HTP MMU page table layout
	2.7.3. TLB Invalidation
	2.7.4. Linear to physical address translation instruction CACHERL
	2.7.5. MMU modes

	2.8. Write combiner
	2.9. Bus errors and Test/Set memory operations

	3. Memory map
	3.1. Overview
	3.1.1. MMU active mode
	3.1.2. MMU enhanced bypass mode
	3.1.3. MMU bypass mode
	3.1.4. Invalid region 1 and 0
	3.1.5. System region
	3.1.6. Local range
	3.1.7. Core code memory region
	3.1.8. Core data memory region
	3.1.9. Global range

	3.2. System region
	3.2.1. Custom area
	3.2.2. Expansion area
	3.2.3. System event
	3.2.4. Cache / TLB invalidate
	3.2.5. Core register region
	3.2.6. MMU table region
	3.2.7. Direct mapped

	4. Core registers
	4.1. Control unit internal registers
	4.1.1. Thread enable - TXENABLE
	4.1.2. Thread mode bits - TXMODE
	4.1.3. Thread status bits - TXSTATUS
	4.1.4. Repeat count - TXRPT
	4.1.5. Background timer - TXTIMER
	4.1.6. Interrupt timer - TXTIMERI
	4.1.7. Catch state register 0 - TXCATCH0
	4.1.8. Catch state register 1 - TXCATCH1
	4.1.9. Catch state register 2 - TXCATCH2
	4.1.10. Catch state register 3 - TXCATCH3
	4.1.11. Deferred interrupt control - TXDEFR
	4.1.12. Timer/catch state control - TXDIVTIME
	4.1.13. Privilege extensions/step - TXPRIVEXT
	4.1.14. Thread issue cycles - TXTACTCYC
	4.1.15. Core idle cycles - TXIDLECYC

	4.2. Per-thread kicks and privilege control registers
	4.2.1. Thread 0 background kick - T0KICK
	4.2.2. Thread 0 interrupt kick - T0KICKI
	4.2.3. Thread 0 AMA register 4 - T0AMAREG4
	4.2.4. Thread 0 AMA register 5 - T0AMAREG5
	4.2.5. Thread 0 AMA register 6 - T0AMAREG6
	4.2.6. Thread 0 memory mapped privilege - T0PRIVCORE

	4.3. Global code breakpoint and data watchpoint setup
	4.3.1. Any thread code breakpoint 0 address - CODEB0ADDR
	4.3.2. Any thread code breakpoint 0 control - CODEB0CTRL
	4.3.3. Any thread code breakpoint 1 address - CODEB1ADDR
	4.3.4. Any thread code breakpoint 1 control - CODEB1CTRL
	4.3.5. Any thread code breakpoint 2 address - CODEB2ADDR
	4.3.6. Any thread code breakpoint 2 control - CODEB2CTRL
	4.3.7. Any thread code breakpoint 3 address - CODEB3ADDR
	4.3.8. Any thread code breakpoint 3 control - CODEB3CTRL
	4.3.9. Any thread data watchpoint 0 address - DATAW0ADDR
	4.3.10. Any thread data watchpoint 0 control - DATAW0CTRL
	4.3.11. Any thread data watchpoint 0 DataL - DATAW0DMATCH0
	4.3.12. Any thread data watchpoint 0 DataH - DATAW0DMATCH1
	4.3.13. Any thread data watchpoint 0 MaskL - DATAW0DMASK0
	4.3.14. Any thread data watchpoint 0 MaskH - DATAW0DMASK1
	4.3.15. Any thread data watchpoint 1 address - DATAW1ADDR
	4.3.16. Any thread data watchpoint 1 control - DATAW1CTRL
	4.3.17. Any thread data watchpoint 1 DataL - DATAW1DMATCH0
	4.3.18. Any thread data watchpoint 1 DataH - DATAW1DMATCH1
	4.3.19. Any thread data watchpoint 1 MaskL - DATAW1DMASK0
	4.3.20. Any thread data watchpoint 1 MaskH - DATAW1DMASK1
	4.3.21. Internal core events 0 - PERF_ICORE0
	4.3.22. Internal core events 1 - PERF_ICORE1
	4.3.23. Performance counter 0 - PERF_COUNT0
	4.3.24. Performance counter 1 - PERF_COUNT1
	4.3.25. Performance channel 0 - PERF_CHAN0
	4.3.26. Performance channel 1 - PERF_CHAN1

	4.4. Write combiner configuration registers
	4.4.1. Write combiner config register 0 - WRCOMBCONFIG0
	4.4.2. Write combiner config register 1 - WRCOMBCONFIG1
	4.4.3. Write combiner config register 2 - WRCOMBCONFIG2
	4.4.4. Write combiner config register 3 - WRCOMBCONFIG3

	4.5. Privilege registers
	4.5.1. System region privilege for Thread 0 - T0PRIVSYSR
	4.5.2. System region privilege for Thread 1 T1PRIVSYSR
	4.5.3. System region privilege for Thread 2 T2PRIVSYSR
	4.5.4. System region privilege for Thread 3 T3PRIVSYSR
	4.5.5. Core and expansion privilege for Thread 0 - T0PIOREG
	4.5.6. Core and expansion privilege for Thread 1 T1PIOREG
	4.5.7. Core and expansion privilege for Thread 2 T2PIOREG
	4.5.8. Core and expansion privilege for Thread 3 T3PIOREG
	4.5.9. System event privilege control for Thread 0 T0PSYREG
	4.5.10. System event privilege control for Thread 1 T1PSYREG
	4.5.11. System event privilege control for Thread 2 T2PSYREG
	4.5.12. System event privilege control for Thread 3 T2PSYREG

	4.6. Trigger control registers
	4.6.1. Hardware trigger status META - HWSTATMETA
	4.6.2. Hardware trigger status 0-31 - HWSTATEXT
	4.6.3. Hardware trigger status 32-63 - HWSTATEXT2
	4.6.4. Hardware trigger status 64-95 - HWSTATEXT4
	4.6.5. Hardware trigger status 96-128 - HWSTATEXT6
	4.6.6. Hardware trigger edge/level configuration - HWLEVELEXT
	4.6.7. Hardware trigger edge/level configuration 2 - HWLEVELEXT2
	4.6.8. Hardware trigger edge/level configuration 4 - HWLEVELEXT4
	4.6.9. Hardware trigger edge/level configuration 6 - HWLEVELEXT6
	4.6.10. Hardware trigger mask - HWMASKEXT
	4.6.11. Hardware trigger mask 2 - HWMASKEXT2
	4.6.12. Hardware trigger mask 4 - HWMASKEXT4
	4.6.13. Hardware trigger mask 6 - HWMASKEXT6
	4.6.14. Thread0 background trigger vector - T0VECINT_BHALT
	4.6.15. Thread0 interrupt trigger vector - T0VECINT_IHALT
	4.6.16. Thread0 memory fault trigger vector - T0VECINT_PHALT
	4.6.17. Thread1 background trigger vector - T1VECINT_BHALT
	4.6.18. Thread1 interrupt trigger vector - T1VECINT_IHALT
	4.6.19. Thread1 memory fault trigger vector - T1VECINT_PHALT
	4.6.20. Thread2 background trigger vector - T2VECINT_BHALT
	4.6.21. Thread2 interrupt trigger vector - T2VECINT_IHALT
	4.6.22. Thread2 memory fault trigger vector - T2VECINT_PHALT
	4.6.23. Thread3 background trigger vector - T3VECINT_BHALT
	4.6.24. Thread3 interrupt trigger vector - T3VECINT_IHALT
	4.6.25. Thread3 memory fault trigger vector - T3VECINT_PHALT
	4.6.26. PERF0 trigger vector – PERF0VECINT
	4.6.27. PERF1 trigger vector – PERF1VECINT
	4.6.28. External hardware trigger vector table 0 - HWVEC0EXT
	4.6.29. External hardware trigger vector table 2 - HWVEC20EXT
	4.6.30. External hardware trigger vector table 4 - HWVEC40EXT
	4.6.31. External hardware trigger vector table 6 - HWVEC60EXT

	4.7. General Meta control registers
	4.7.1. META core ID - METAC_ID
	4.7.2. Meta core configuration ID - CORE_ID
	4.7.3. Meta core revision - CORE_REV
	4.7.4. Meta core configuration ID 2 - CORE_CONFIG2
	4.7.5. MMU table base - MMCU_TABLE_PHYS
	4.7.6. Tn local range root table 0 - MMCU_TnLOCAL_TABLE_PHYS0
	4.7.7. Tn local range root table 1 - MMCU_TnLOCAL_TABLE_PHYS1
	4.7.8. Tn global range root table 0 - MMCU_TnGLOBAL_TABLE_PHYS0
	4.7.9. Tn global range root table 1 - MMCU_TnGLOBAL_TABLE_PHYS1
	4.7.10. Data Cache Enable - MMCU_DCACHE_CTRL
	4.7.11. Instruction Cache Enable - MMCU_ICACHE_CTRL
	4.7.12. Local region MMU enhanced bypass - MMCU_LOCAL_EBCTRL
	4.7.13. Global region MMU enhanced bypass - MMCU_GLOBAL_EBCTRL
	4.7.14. Enhanced bypass/wr combiner control - MMCU_TxEBWCCTRL
	4.7.15. Cache/MMU bypass control - SYSC_CACHE_MMU_CONFIG
	4.7.16. JTAG debug control - SYSC_JTAG_THREAD
	4.7.17. Data cache flush control - SYSC_DCACHE_FLUSH
	4.7.18. Instruction cache flush control - SYSC_ICACHE_FLUSH
	4.7.19. Direct map addresses 0 - MMCU_DIRECTMAP0_ADDR
	4.7.20. Direct map addresses 1 - MMCU_DIRECTMAP1_ADDR
	4.7.21. Direct map addresses 2 - MMCU_DIRECTMAP2_ADDR
	4.7.22. Direct map addresses 3 - MMCU_DIRECTMAP3_ADDR
	4.7.23. Data cache partitioning thread 0 - SYSC_DCPART0
	4.7.24. Data cache partitioning thread 1 - SYSC_DCPART1
	4.7.25. Data cache partitioning thread 2 - SYSC_DCPART2
	4.7.26. Data cache partitioning thread 3 - SYSC_DCPART3
	4.7.27. Instruction cache partitioning thread 0 - SYSC_ICPART0
	4.7.28. Instruction cache partitioning thread 1 - SYSC_ICPART1
	4.7.29. Instruction cache partitioning thread 2 - SYSC_ICPART2
	4.7.30. Instruction cache partitioning thread 3 - SYSC_ICPART3

