MicroBlaze
Processor
Reference Guide

Embedded Development Kit
EDK 8.2i

UGO081 (v6.0) June 1, 2006

SUXILINX®

© 2006 Xilinx, Inc. All Rights Reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one
possible implementation of this feature, application, or standard, Xilinx makes no representation that this implementation is free from any
claims of infringement. You are responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any
warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties or representations that
this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

MicroBlaze Processor Reference Guide www.xilinx.com UG081 (v6.0) June 1, 2006
1-800-255-7778

http://www.xilinx.com

MicroBlaze Processor Reference Guide
UGO081 (v6.0) June 1, 2006

The following table shows the revision history for this document.

Date Version Revision
10701702 1.0 Xilinx EDK 3.1 release
03/11/03 2.0 Xilinx EDK 3.2 release
09/24/03 3.0 Xilinx EDK 6.1 release
02/20/04 3.1 Xilinx EDK 6.2 release
08/24/04 4.0 Xilinx EDK 6.3 release
09/21/04 4.1 Minor corrections for EDK 6.3 SP1 release
11718704 4.2 Minor corrections for EDK 6.3 SP2 release
01/20/05 5.0 Xilinx EDK 7.1 release
04702705 5.1 Minor corrections for EDK 7.1 SP1 release
05709705 5.2 Minor corrections for EDK 7.1 SP2 release
10/05/05 5.3 Minor corrections for EDK 8.1 release
02/21/06 5.4 Corrections for EDK 8.1 SP2 release
06701706 6.0 Xilinx EDK 8.2 release

UGO081 (v6.0) June 1, 2006

www.Xilinx.com

1-800-255-7778

MicroBlaze Processor Reference Guide

http://www.xilinx.com

MicroBlaze Processor Reference Guide www.xilinx.com UG081 (v6.0) June 1, 2006
1-800-255-7778

http://www.xilinx.com

Preface: About This Guide

Manual CoNteNtS. 7
Additional RESOUICES 7
CONVENTIONS . . ot 8
Typographical. 8
ONliNE DOCUMIEBNTottt e e e e e e e e 9

Chapter 1: MicroBlaze Architecture

OV IV BW . oo e 11
FEatUIES . . 11
Data Types and ENAIannessttt e 13
INStrUCHIONS . . . 13
REOISIEIS . .o 20
General PUrpose Registers e e e 21
Special PUrpose Registers 21
Pipeline Architecture. e 31
BranChes. . ..o 32
Memory Architecture. 32
Reset, Interrupts, Exceptions,and Break 33
RESBL . . 34
Hardware EXCEPLiONS 34
BreaKS . . .o 35
I U . 36
User Vector (EXCeption) i e 36
Instruction Cache 37
OV IV W . . ot 37
General Instruction Cache Functionality 37
Instruction Cache Operationo ittt e e 38
Instruction Cache Software SUPPOIt i e 38
Data Cache. 38
OV IV W . o it e e 38
General Data Cache Functionality i 39
Data Cache Operationt 39
Data Cache Software SUPPOIt e 40
Floating PointUnit (FPU) 40
OV IV W . . ot e 40
FOrmat . .. e e 41
ROUNING . ..o 41
P ALIONS . . oottt 41
EXCEPtIONS . . ot 42
Fast Simplex LiNK (FSL) oo 42
Hardware Acceleration using FSL. 42
Debug and Trace. 43
DebUg OVEIVIEW . .o 43
TraCe OVEIVIBW oottt e e e 43

Chapter 2: MicroBlaze Signal Interface Description
OV IV W L . 45

UGO081 (v6.0) June 1, 2006 www.Xxilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778

http://www.xilinx.com

FatUNES . . oo 45

MicroBlaze 1/O OVEIVIEW i 45
On-Chip Peripheral Bus (OPB) Interface Description 48
Local Memory Bus (LMB) Interface Description 49
LMB Signal Interface 49
LIMB TransaCtionsot e 51
Read and Write Data StEEriNgot e 53
Fast Simplex Link (FSL) Interface Descriptioncovvinn... 54
Master FSL Signal Interface i 54
Slave FSL Signal Interface. i 54
FSL TransacCtionsttt et e e e 55
Xilinx CacheLink (XCL) Interface Descriptioncooou.. 55
CacheLink Signal Interface i 56
CacheLink TransaCtions it e e 57
Debug Interface Description 59
Trace Interface DesCription.t e 59
MicroBlaze Core Configurability 61

Chapter 3: MicroBlaze Application Binary Interface

SO I . oottt 65
Data TY P . . oottt 65
Register Usage CONVENTIONS. i i 66
Stack CoNVENTION 67
Calling ConveNtioN o 69
Memory Model 69
Small dataareat 69
Data Ao 69
Common un-initialized area. 69
Literals Or CONStaNTSottt e 69
Interrupt and Exception Handling................ ... o i i 70

Chapter 4: MicroBlaze Instruction Set Architecture

SUMIMIAY oo 71
NOTAION . .. 71
FOrmMaLS . . . 72
INSErUCTIONS . . . 72

UGO081 (v6.0) June 1, 2006 www.Xxilinx.com MicroBlaze Processor Reference Guide

1-800-255-7778

http://www.xilinx.com

27 XILINX®
Preface

About This Guide

Welcome to the MicroBlaze Processor Reference Guide. This document provides
information about the 32-bit soft processor MicroBlaze, which is part of the Embedded
Processor Development Kit (EDK). The document is intended as a guide to the MicroBlaze
hardware architecture.

Manual Contents

This manual discusses the following topics specific to MicroBlaze soft processor:
» Core Architecture

* Bus Interfaces and Endianness

* Application Binary Interface

* Instruction Set Architecture

Additional Resources

For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this web-site. You can also directly access these
resources using the provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records
http://support.xilinx.com/xInx/xil ans_browser.jsp

Application Notes | Descriptions of device-specific design techniques and approaches

http://www.xilinx.com/xInx/xweb/xil _publications_index.jsp?c
ategory=Application+Notes

Data Book Pages from The Programmable Logic Data Book, which contains
device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

http://support.xilinx.com/xInx/xweb/xil_publications_index.jsp

MicroBlaze Processor Reference Guide www.Xilinx.com 7
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/xlnx/xil_ans_browser.jsp
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp?category=Application+Notes
http://support.xilinx.com/xlnx/xweb/xil_publications_index.jsp

SUXILINX®

Preface: About This Guide

Resource

Description/URL

Problem Solvers

Interactive tools that allow you to troubleshoot your design issues
http://support.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx
design environment
http://www.support.xilinx.com/xInx/xil_tt_ home.jsp

GNU Manuals The entire set of GNU manuals

http://www.gnu.org/manual

Conventions

This document uses the following conventions. An example illustrates each convention.

Typographical

The following typographical conventions are used in this document:

Convention

Meaning or Use

Example

Couri er font

Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold

Literal commands that you
enter in a syntactical statement

ngdbui | d desi gn_nane

Helvetica bold

Commands that you select
from a menu

File — Open

Keyboard shortcuts

Ctrl+C

Italic font

Variables in a syntax
statement for which you must
supply values

ngdbui | d desi gn_nane

References to other manuals

See the Development System
Reference Guide for more
information.

Emphasis in text

If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets

[]

An optional entry or
parameter. However, in bus
specifications, such as

bus[7: 0], they are required.

ngdbui | d [opti on_nane]
desi gn_nane

Braces {}

A list of items from which you
must choose one or more

| owpwr ={on|of f}

Vertical bar |

Separates items in a list of
choices

| owpwr ={on| of f}

www.Xilinx.com
1-800-255-7778

MicroBlaze Processor Reference Guide

UGO081 (v6.0) June 1, 2006

http://www.xilinx.com
http://www.support.xilinx.com/support/troubleshoot/psolvers.htm
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp
http://www.gnu.org/manual

Conventions

SXILINX®

Convention Meaning or Use Example
. A | OB #1: Name = QOUT
Vertical ellipsis | OB #2° Nanme = OLKI N

Repetitive material that has
been omitted

Horizontal ellipsis . ..

Repetitive material that has

al | ow bl ock bl ock_nane

Online Document

been omitted locl loc2 ... locn;
The following conventions are used in this document:

Convention Meaning or Use Example
Cross-reference link to a See the section “Additional
location in the current file or | Resources” for details.

Blue text - L .)
in another file in the current Refer to “Title Formats” in
document Chapter 1 for details.
Cross-reference link to a See Figure 2-5 in the Virtex-II
Red text

location in another document

Handbook.

Blue, underlined text

Hyperlink to a web-site (URL)

Go to http://www.xilinx.com
for the latest speed files.

MicroBlaze Processor Reference Guide

UG081 (v6.0) June 1, 2006

www.Xilinx.com
1-800-255-7778

http://www.xilinx.com

S XILINX® Preface: About This Guide

10 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

$7 XILINX®

MicroBlaze Architecture

Chapter 1

Overview

The MicroBlaze embedded processor soft core is a reduced instruction set computer (RISC)
optimized for implementation in Xilinx field programmable gate arrays (FPGAS).
Figure 1-1 shows a functional block diagram of the MicroBlaze core.

Instruction-side
bus interface

ayoeD-|

Bus
IF

Data-side
bus interface

Features

%
N\ ALU
| { Program |1 Shift
N\—{ Counter Special N :
Purpose Barrel Shift
Registers [N il Sin =N\
{} {} nd Multiplier nd
Divider
$ FPU
$ Instruction |\
Buffer |/ {} {}
Instruction
Decode =
L N] Register File N
L1 32x320
SN
—]

Optional MicroBlaze feature

ayoed-q

Bus
IF

Figure 1-1:

MicroBlaze Core Block Diagram

The MicroBlaze soft core processor is highly configurable, allowing users to select a
specific set of features required by their design.

The processor’s fixed feature set includes:

Thirty-two 32-bit general purpose registers

32-bit instruction word with three operands and two addressing modes
32-bit address bus
Single issue pipeline

MicroBlaze Processor Reference Guide
UGO081 (v6.0) June 1, 2006

www.Xxilinx.com
1-800-255-7778

11

http://www.xilinx.com

SUXILINX®

Chapter 1: MicroBlaze Architecture

In addition to these fixed features the MicroBlaze processor is parametrized to allow
selective enabling of additional functionality. Older (deprecated) versions of MicroBlaze
support a subset of the optional features described in this manual. Only the latest (active)
version of MicroBlaze (v5.00a) supports all options.

Xilinx recommends that all new designs use the latest active version of the MicroBlaze
processor.

Table 1-1: Configurable Feature Overview by MicroBlaze Version

MicroBlaze Versions
Feature

v2.10a v3.00a v4.00a v5.00a
Version Status deprecated | deprecated | deprecated active
Processor pipeline depth 3 3 3 5
On-chip Peripheral Bus (OPB) data side interface option option option option
On-chip Peripheral Bus (OPB) instruction side interface option option option option
Local Memory Bus (LMB) data side interface option option option option
Local Memory Bus (LMB) instruction side interface option option option option
Hardware barrel shifter option option option option
Hardware divider option option option option
Hardware debug logic option option option option
Fast Simplex Link (FSL) interfaces 0-7 0-7 0-7 0-7
Machine status set and clear instructions option option option Yes
Instruction cache over IOPB interface option option option No
Data cache over IOPB interface option option option No
Instruction cache over CacheLink (IXCL) interface - option option option
Data cache over CacheLink (DXCL) interface - option option option
4 or 8-word cache line on XCL - 4 4 option
Hardware exception support - option option option
Pattern compare instructions - - option Yes
Floating point unit (FPU) - - option option
Disable hardware multiplierl - - option option
Hardware debug readable ESR and EAR - - Yes Yes
Processor Version Register (PVR) - - - option

1. Used in Virtex-11 and subsequent families, for saving MUL18 and DSP48 primitives

12

MicroBlaze Processor Reference Guide
UGO081 (v6.0) June 1, 2006

www.Xxilinx.com
1-800-255-7778

http://www.xilinx.com

Data Types and Endianness S XILINX®

Data Types and Endianness

MicroBlaze uses Big-Endian, bit-reversed format to represent data. The hardware
supported data types for MicroBlaze are word, half word, and byte. The bit and byte
organization for each type is shown in the following tables.

Table 1-2: Word Data Type

Byte address n n+1 n+2 n+3
Byte label 0 1 2 3

Byte MSByte LSByte
significance

Bit label 0 3

Bit significance | MSBit LSBit

Table 1-3: Half Word Data Type

Byte address n n+1
Byte label 0 1

Byte MSByte | LSByte
significance

Bit label 0 15

Bit significance | MSBit LSBit

Table 1-4: Byte Data Type

Byte address n

Bit label 0 7

Bit significance | MSBit LSBit

Instructions

All MicroBlaze instructions are 32 bits and are defined as either Type A or Type B. Type A
instructions have up to two source register operands and one destination register operand.
Type B instructions have one source register and a 16-bit immediate operand (which can be
extended to 32 bits by preceding the Type B instruction with an IMM instruction). Type B
instructions have a single destination register operand. Instructions are provided in the
following functional categories: arithmetic, logical, branch, load/store, and special.

Table 1-6 lists the MicroBlaze instruction set. Refer to Chapter 4, “MicroBlaze Instruction
Set Architecture”, for more information on these instructions. Table 1-5 describes the
instruction set nomenclature used in the semantics of each instruction.

MicroBlaze Processor Reference Guide www.Xxilinx.com 13
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 1: MicroBlaze Architecture

Table 1-5: Instruction Set Nomenclature

Symbol Description
Ra RO - R31, General Purpose Register, source operand a
Rb RO - R31, General Purpose Register, source operand b
Rd RO - R31, General Purpose Register, destination operand
SPR[X] Special Purpose Register number x
MSR Machine Status Register = SPR[1]
ESR Exception Status Register = SPR[5]
EAR Exception Address Register = SPR[3]
FSR Floating Point Unit Status Register = SPR[7]
PVRx Processor Version Register, where x is the register number = SPR[8192 + X]
BTR Branch Target Register = SPR[11]
PC Execute stage Program Counter = SPRJ[0]
X[yl Bit y of register x
x[y:z] Bit range y to z of register x
X Bit inverted value of register x
Imm 16 bit immediate value
Immx x bit immediate value
FSLx 3 bit Fast Simplex Link (FSL) port designator where x is the port number
C Carry flag, MSR[29]
Sa Special Purpose Register, source operand
Sd Special Purpose Register, destination operand
S(x) Sign extend argument x to 32-bit value
*Addr Memory contents at location Addr (data-size aligned)
= Assignment operator
= Equality comparison
I= Inequality comparison
> Greater than comparison
>= Greater than or equal comparison
< Less than comparison
<= Less than or equal comparison
+ Arithmetic add
* Arithmetic multiply
/ Arithmetic divide
>> X Bit shift right x bits
14 www.xilinx.com MicroBlaze Processor Reference Guide

1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions

SXILINX®

Table 1-5: Instruction Set Nomenclature
Symbol Description
<< X Bit shift left x bits
and Logic AND
or Logic OR
Xor Logic exclusive OR

opl if cond else op2

Perform opl if condition cond is true, else perform op2

&

Concatenate. E.g. “0000100 & Imm7” is the concatenation of the fixed field “0000100” and
a 7 bit immediate value.

signed Operation performed on signed integer data type. All arithmetic operations are performed
on signed word operands, unless otherwise specified

unsigned Operation performed on unsigned integer data type

float Operation performed on floating point data type

Table 1-6: MicroBlaze Instruction Set Summary

Type A 0-5 6-10 | 11-15|16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
ADD Rd,Ra,Rb 000000 Rd Ra Rb | 00000000000 | Rd :=Rb + Ra

RSUB Rd,Ra,Rb

000001 | Rd Ra Rb | 00000000000 | Rd :=Rb +Ra +1

ADDC Rd,Ra,Rb

000010 | Rd Ra Rb | 00000000000 | Rd:=Rb+Ra+C

RSUBC Rd,Ra,Rb

000011 | Rd Ra Rb | 00000000000 | Rd:=Rb+Ra+C

ADDK Rd,Ra,Rb

000100 | Rd Ra Rb | 00000000000 | Rd := Rb + Ra

RSUBK Rd,Ra,Rb

000101 | Rd Ra Rb | 00000000000 | Rd :=Rb +Ra +1

ADDKC Rd,Ra,Rb

000110 | Rd Ra Rb | 00000000000 | Rd:=Rb+Ra+C

RSUBKC Rd,Ra,Rb

000111 | Rd Ra Rb | 00000000000 | Rd:=Rb+Ra+C

CMP Rd,Ra,Rb

00000000001 | Rd:=Rb+Ra+1

Rd[0] := 0 if (Rb >=Ra) else
Rd[0] =1

000101 | Rd Ra Rb

CMPU Rd,Ra,Rb

000101 | Rd Ra Rb | 00000000011 | Rd :=Rb + Ra + 1 (unsigned)
Rd[0] := 0 if (Rb >= Ra, unsigned) else

Rd[0] = 1

ADDI Rd,Ra,Imm 001000 | Rd Ra Imm Rd := s(lmm) + Ra
RSUBI Rd,Ra,Imm 001001 | Rd Ra Imm Rd :=s(Imm) +Ra + 1
ADDIC Rd,Ra,Imm 001010 | Rd Ra Imm Rd :=s(lmm) + Ra+ C
RSUBIC Rd,Ra,Imm 001011 | Rd Ra Imm Rd :=s(Imm)+Ra+C
ADDIK Rd,Ra,Imm 001100 | Rd Ra Imm Rd := s(lmm) + Ra
RSUBIK Rd,Ra,Imm 001101 | Rd Ra Imm Rd :=s(Imm) +Ra + 1
MicroBlaze Processor Reference Guide www.xilinx.com 15

UG081 (v6.0) June 1, 2006

1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 1: MicroBlaze Architecture

Table 1-6: MicroBlaze Instruction Set Summary (Continued)
Type A 0-5 6-10 | 11-15 | 16-20 21-31 _
Semantics
Type B 0-5 6-10 | 11-15 16-31
ADDIKC Rd,Ra,Imm | 001110 | Rd Ra Imm Rd :=s(lmm)+Ra+C
RSUBIKC Rd,Ra,Imm | 001111 Rd Ra Imm Rd:=s(Imm)+Ra+C
MUL Rd,Ra,Rb 010000 | Rd Ra Rb | 00000000000 | Rd:=Ra*Rb
BSRL Rd,Ra,Rb 010001 | Rd Ra Rb | 00000000000 | Rd : =0 & (Ra >> Rb)
BSRA Rd,Ra,Rb 010001 | Rd Ra Rb | 01000000000 | Rd :=s(Ra >> Rb)
BSLL Rd,Ra,Rb 010001 | Rd Ra Rb | 10000000000 | Rd := (Ra<<Rb) &0
MULI Rd,Ra,Imm 011000 | Rd Ra Imm Rd := Ra* s(Imm)
BSRLI Rd,Ra,Imm 011001 | Rd Ra 00000000000 & Rd:=0 & (Ra>>Immb)
Imm5
BSRAI Rd,Ra,Imm 011001 | Rd Ra 00000010000 & Rd := s(Ra >> Immb5)
Imm5
BSLLI Rd,Ra,Imm 011001 | Rd Ra 00000100000 & Rd := (Ra << Immb5) & 0
Imm5
IDIV Rd,Ra,Rb 010010 | Rd Ra Rb | 00000000000 | Rd := Rb/Ra
IDIVU Rd,Ra,Rb 010010 | Rd Ra Rb | 00000000010 | Rd := Rb/Ra, unsigned
FADD Rd,Ra,Rb 010110 | Rd Ra Rb | 00000000000 | Rd := Rb+Ra, float!
FRSUB Rd,Ra,Rb 010110 | Rd Ra Rb | 00010000000 | Rd := Rb-Ra, float!
FMUL Rd,Ra,Rb 010110 | Rd Ra Rb | 00100000000 | Rd := Rb*Ra, float!
FDIV Rd,Ra,Rb 010110 | Rd Ra Rb | 00110000000 | Rd := Rb/Ra, float!
FCMP.UN Rd,Ra,Rb 010110 | Rd Ra Rb | 01000000000 | Rd:=1if (Rb=NaN or Ra= NaN, float?)
else
Rd:=0
FCMP.LT Rd,Ra,Rb 010110 | Rd Ra Rb | 01000010000 | Rd :=1 if (Rb < Ra, floatl) else
Rd:=0
FCMP.EQ Rd,Ra,Rb 010110 | Rd Ra Rb | 01000100000 | Rd := 1 if (Rb = Ra, floatl) else
Rd:=0
FCMP.LE Rd,Ra,Rb 010110 | Rd Ra Rb | 01000110000 | Rd :=1 if (Rb <= Ra, float) else
Rd:=0
FCMP.GT Rd,Ra,Rb 010110 | Rd Ra Rb | 01001000000 | Rd := 1 if (Rb > Ra, floatl) else
Rd:=0
FCMP.NE Rd,Ra,Rb 010110 | Rd Ra Rb | 01001010000 | Rd :=1if (Rb != Ra, float?) else
Rd:=0
FCMP.GE Rd,Ra,Rb 010110 | Rd Ra Rb | 01001100000 | Rd :=1 if (Rb >= Ra, float) else
Rd:=0
GET Rd,FSLx 011011 Rd | 00000 | 0000000000000 & | Rd:=FSLx (blocking data read)
FSLx MSR[FSL] := 1 if (FSLx_S_Control = 1)
16 www.xilinx.com MicroBlaze Processor Reference Guide

1-800-255-7778

UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions

SXILINX®

Table 1-6: MicroBlaze Instruction Set Summary (Continued)
Type A 0-5 6-10 | 11-15 | 16-20 21-31 _
Semantics
Type B 0-5 6-10 | 11-15 16-31
PUT Ra,FSLx 011011 | 00000 | Ra 1000000000000 & | FSLx := Ra (blocking data write)
FSLx
NGET Rd,FSLx 011011 Rd | 00000 | 0100000000000 & | Rd :=FSLx (non-blocking data read)
FSLx MSR[FSL] := 1 if (FSLx_S_Control = 1)
MSR[C] := not FSLx_S_EXxists
NPUT Ra,FSLx 011011 | 00000 | Ra 1100000000000 & | FSLx := Ra (non-blocking data write)
FSLx MSR[C] := FSLx_M_Full
CGET Rd,FSLx 011011 Rd | 00000 | 0010000000000 & | Rd :=FSLx (blocking control read)
FSLx MSR[FSL] := 1 if (FSLx_S_Control = 0)
CPUT Ra,FSLx 011011 | 00000 | Ra 1010000000000 & | FSLx := Ra (blocking control write)
FSLx
NCGET Rd,FSLx 011011 Rd | 00000 | 0110000000000 & | Rd :=FSLx (non-blocking control read)
FSLx MSR[FSL] := 1 if (FSLx_S_Control = 0)
MSR[C] := not FSLx_S_EXxists
NCPUT Ra,FSLx 011011 | 00000 | Ra 1110000000000 & | FSLx := Ra (non-blocking control write)
FSLx MSR[C] := FSLx_M_Full
OR Rd,Ra,Rb 100000 | Rd Ra Rb | 00000000000 | Rd := Raor Rb
AND Rd,Ra,Rb 100001 | Rd Ra Rb | 00000000000 | Rd := Raand Rb
XOR Rd,Ra,Rb 100010 | Rd Ra Rb | 00000000000 | Rd := Ra xor Rb
ANDN Rd,Ra,Rb 100011 | Rd Ra Rb | 00000000000 | Rd := Ra and Rb
PCMPBF Rd,Ra,Rb 100000 | Rd Ra Rb | 10000000000 | Rd :=1 if (Rb[0:7] = Ra[0:7]) else
Rd := 2 if (Rb[8:15] = Ra[8:15]) else
Rd := 3 if (Rb[16:23] = Ra[16:23]) else
Rd := 4 if (Rb[24:31] = Ra[24:31]) else
Rd:=0
PCMPEQ Rd,Ra,Rb 100010 | Rd Ra Rb | 10000000000 | Rd :=1if (Rd = Ra) else
Rd:=0
PCMPNE Rd,Ra,Rb 100011 | Rd Ra Rb | 10000000000 | Rd :=1if (Rd !=Ra) else
Rd:=0
SRA Rd,Ra 100100 | Rd Ra 0000000000000001 | Rd :=s(Ra>>1)
C :=Ra[31]
SRC Rd,Ra 100100 | Rd Ra 0000000000100001 | Rd:=C & (Ra>>1)
C :=Ra[31]
SRL Rd,Ra 100100 | Rd Ra 0000000001000001 | Rd:=0 & (Ra>>1)
C :=Ra[31]
SEXT8 Rd,Ra 100100 | Rd Ra 0000000001100000 | Rd :=s(Ra[24:31])
SEXT16 Rd,Ra 100100 | Rd Ra 0000000001100001 | Rd :=s(Ra[16:31])
WIC Ra,Rb 100100 | 00000 | Ra Rb 01101000 ICache_Tag := Ra
WDC Ra,Rb 100100 | 00000 | Ra Rb 01100100 DCache_Tag :=Ra

MicroBlaze Processor Reference Guide

UG081 (v6.0) June 1, 2006

www.Xxilinx.com
1-800-255-7778

17

http://www.xilinx.com

SUXILINX®

Chapter 1: MicroBlaze Architecture

Table 1-6: MicroBlaze Instruction Set Summary (Continued)
Type A 0-5 6-10 | 11-15 | 16-20 21-31 _
Semantics
Type B 0-5 6-10 | 11-15 16-31
MTS Sd,Ra 100101 | 00000 Ra 11 & Sd SPR[Sd] := Ra, where:
» SPR[0x0001] is MSR
e SPR[0x0007] is FSR
MFS Rd,Sa 100101 | Rd | 00000 10 & Sa Rd := SPR[Sa], where:
» SPR[0x0000] is PC
e SPR[0x0001] is MSR
» SPR[0x0003] is EAR
» SPR[0x0005] is ESR
e SPR[0x0007] is FSR
» SPR[0x000B] is BTR
» SPR[0x2000:0x200B] is PVR[0] to
PVR[11]
MSRCLR Rd,Imm 100101 Rd | 00001 00 & Imm14 Rd := MSR
MSR := MSR and Imm14
MSRSET Rd,Imm 100101 Rd | 00000 00 & Imm14 Rd := MSR
MSR := MSR or Imm14
BR Rb 100110 | 00000 | 00000 | Rb | 00000000000 | PC:=PC+Rb
BRD Rb 100110 | 00000 | 10000 | Rb | 00000000000 | PC:=PC+Rb
BRLD Rd,Rb 100110 Rd | 10100 | Rb | 00000000000 | PC:=PC+Rb
Rd :=PC
BRA Rb 100110 | 00000 | 01000 | Rb | 00000000000 | PC :=Rb
BRAD Rb 100110 | 00000 | 11000 | Rb | 00000000000 | PC :=Rb
BRALD Rd,Rb 100110 Rd 11100 | Rb | 00000000000 | PC :=Rb
Rd :=PC
BRK Rd,Rb 100110 Rd | 01100 | Rb | 00000000000 | PC:=Rb
Rd :=PC
MSR[BIP] :=1
BEQ Ra,Rb 100111 | 00000 Ra Rb | 00000000000 | PC:=PC+RbifRa=0
BNE Ra,Rb 100111 | 00001 Ra Rb | 00000000000 | PC:=PC+RbifRa!=0
BLT Ra,Rb 100111 | 00010 Ra Rb | 00000000000 | PC:=PC+RbifRa<0
BLE Ra,Rb 100111 | 00011 Ra Rb | 00000000000 | PC:=PC+RbifRa<=0
BGT Ra,Rb 100111 | 00100 Ra Rb | 00000000000 | PC:=PC+RbifRa>0
BGE Ra,Rb 100111 | 00101 Ra Rb | 00000000000 | PC:=PC+RbifRa>=0
BEQD Ra,Rb 100111 | 10000 Ra Rb | 00000000000 | PC:=PC+RbifRa=0
BNED Ra,Rb 100111 | 10001 Ra Rb | 00000000000 | PC:=PC+RbifRa!=0
BLTD Ra,Rb 100111 | 10010 Ra Rb | 00000000000 | PC:=PC+RbifRa<0
BLED Ra,Rb 100111 | 10011 Ra Rb | 00000000000 | PC:=PC+RbifRa<=0
18 www.Xxilinx.com MicroBlaze Processor Reference Guide

1-800-255-7778

UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions

SXILINX®

Table 1-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 | 11-15 | 16-20 21-31 _
Semantics
Type B 0-5 6-10 | 11-15 16-31
BGTD Ra,Rb 100111 | 10100 | Ra Rb | 00000000000 | PC:=PC+RbifRa>0
BGED Ra,Rb 100111 | 10101 | Ra Rb | 00000000000 | PC:=PC+RbifRa>=0
ORI Rd,Ra,Imm 101000 | Rd Ra Imm Rd := Ra or s(Imm)
ANDI Rd,Ra,Imm 101001 | Rd Ra Imm Rd := Ra and s(Imm)
XORI Rd,Ra,Imm 101010 | Rd Ra Imm Rd := Ra xor s(Imm)
ANDNI Rd,Ra,Imm 101011 | Rd Ra Imm Rd := Ra and s(Imm)
IMM Imm 101100 | 00000 | 00000 Imm Imm[0:15] := Imm
RTSD Ra,Imm 101101 | 10000 | Ra Imm PC :=Ra + s(Imm)
RTID Ra,Imm 101101 | 10001 | Ra Imm PC :=Ra + s(Imm)
MSRIIE] =1
RTBD Ra,Imm 101101 | 10010 | Ra Imm PC :=Ra + s(Imm)
MSRI[BIP] :=0
RTED Ra,Imm 101101 | 10100 | Ra Imm PC :=Ra + s(Imm)
MSRI[EE] =1
MSRI[EIP] :=0
ESR:=0
BRI Imm 101110 | 00000 | 00000 Imm PC :=PC + s(Imm)
BRID Imm 101110 | 00000 | 10000 Imm PC :=PC + s(Imm)
BRLID Rd,Imm 101110 | Rd | 10100 Imm PC :=PC + s(Imm)
Rd :=PC
BRAI Imm 101110 | 00000 | 01000 Imm PC :=s(Imm)
BRAID Imm 101110 | 00000 | 11000 Imm PC :=s(Imm)
BRALID Rd,Imm 101110 | Rd | 11100 Imm PC :=s(Imm)
Rd :=PC
BRKI Rd,Imm 101110 | Rd | 01100 Imm PC :=s(Imm)
Rd :=PC
MSR[BIP] :=1
BEQI Ra,Imm 101111 | 00000 | Ra Imm PC:=PC+s(lmm)ifRa=0
BNEI Ra,Imm 101111 | 00001 | Ra Imm PC:=PC+s(lmm)ifRa!=0
BLTI Ra,Imm 101111 | 00010 | Ra Imm PC:=PC+s(lmm)ifRa<0
BLEI Ra,Imm 101111 | 00011 | Ra Imm PC:=PC +s(lmm)ifRa<=0
BGTI Ra,Imm 101111 | 00100 | Ra Imm PC:=PC+s(lmm)ifRa>0
BGEI Ra,Imm 101111 | 00101 | Ra Imm PC:=PC +s(lmm)ifRa>=0
BEQID Ra,Imm 101111 | 10000 | Ra Imm PC:=PC+s(lmm)ifRa=0
BNEID Ra,Imm 101111 | 10001 | Ra Imm PC:=PC+s(lmm)ifRa!=0
BLTID Ra,Imm 101111 | 10010 | Ra Imm PC:=PC +s(lmm)ifRa<0

MicroBlaze Processor Reference Guide

UG081 (v6.0) June 1, 2006

www.Xxilinx.com
1-800-255-7778

19

http://www.xilinx.com

SUXILINX®

Chapter 1: MicroBlaze Architecture

Table 1-6: MicroBlaze Instruction Set Summary (Continued)
Type A 0-5 6-10 | 11-15 | 16-20 21-31 _
Semantics
Type B 0-5 6-10 | 11-15 16-31
BLEID Ra,Imm 101111 | 10011 | Ra Imm PC:=PC +s(lImm)ifRa<=0
BGTID Ra,Imm 101111 | 10100 | Ra Imm PC:=PC +s(lmm)ifRa>0
BGEID Ra,Imm 101111 | 10101 | Ra Imm PC:=PC +s(lmm)ifRa>=0
LBU Rd,Ra,Rb 110000 | Rd Ra Rb | 00000000000 | Addr:=Ra+Rb
Rd[0:23]:=0
Rd[24:31] := *Addr[0:7]
LHU Rd,Ra,Rb 110001 | Rd Ra Rb | 00000000000 | Addr:=Ra+Rb
Rd[0:15]:=0
Rd[16:31] := *Addr[0:15]
LW Rd,Ra,Rb 110010 | Rd Ra Rb | 00000000000 | Addr:=Ra+Rb
Rd :=*Addr
SB Rd,Ra,Rb 110100 | Rd Ra Rb | 00000000000 | Addr:=Ra+Rb
*Addr[0:8] := Rd[24:31]
SH Rd,Ra,Rb 110101 | Rd Ra Rb | 00000000000 | Addr:=Ra+Rb
*Addr[0:16] := Rd[16:31]
SW Rd,Ra,Rb 110110 | Rd Ra Rb | 00000000000 | Addr:=Ra+Rb
*Addr :=Rd
LBUI Rd,Ra,Imm 111000 | Rd Ra Imm Addr ;= Ra + s(Imm)
Rd[0:23]:=0
Rd[24:31] := *Addr[0:7]
LHUI Rd,Ra,Imm 111001 Rd Ra Imm Addr ;= Ra + s(Imm)
Rd[0:15]:=0
Rd[16:31] := *Addr[0:15]
LWI Rd,Ra,Imm 111010 | Rd Ra Imm Addr ;= Ra + s(Imm)
Rd :=*Addr
SBI Rd,Ra,Imm 111100 Rd Ra Imm Addr ;= Ra + s(Imm)
*Addr[0:7] := Rd[24:31]
SHI Rd,Ra,Imm 111101 Rd Ra Imm Addr ;= Ra + s(Imm)
*Addr[0:15] := Rd[16:31]
SWI Rd,Ra,Imm 111110 Rd Ra Imm Addr ;= Ra + s(Imm)
*Addr :=Rd

1. Due to the many different corner cases involved in floating point arithmetic, only the normal behavior is described. A full description
of the behavior can be found in: Chapter 4, “MicroBlaze Instruction Set Architecture,”

Registers

MicroBlaze has an orthogonal instruction set architecture. It has thirty-two 32-bit general
purpose registers and up to seven 32-bit special purpose registers, depending on

configured options.

20

www.Xxilinx.com
1-800-255-7778

MicroBlaze Processor Reference Guide
UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Registers

SXILINX®

General Purpose Registers

The thirty-two 32-bit General Purpose Registers are numbered RO through R31. The

register file is reset on bit stream download (reset value is 0x00000000).

Note: The register file is not reset by the external reset inputs: reset and debug_rst.

E 31
1
RO-R31
Figure 1-2: RO-R31
Table 1-7: General Purpose Registers (R0-R31)
Bits Name Description Reset Value
0:31 RO RO is defined to always have the value | 0x00000000
of zero. Anything written to RO is
discarded.
0:31 R1 through R13 R1 through R13 are 32-bit general -
purpose registers
0:31 R14 32-bit used to store return addresses -
for interrupts
0:31 R15 32-bit general purpose register -
0:31 R16 32-bit used to store return addresses -
for breaks
0:31 R17 If MicroBlaze is configured to support -
hardware exceptions, this register is
loaded with HW exception return
address (see also “Branch Target
Register (BTR)”); if not it is a general
purpose register
0:31 R18 through R31 R18 through R31 are 32-bit general -
purpose registers.
Please refer to Table 3-2 for software conventions on general purpose register usage.
Special Purpose Registers
Program Counter (PC)
The Program Counter is the 32-bit address of the execution instruction. It can be read with
an MFS instruction, but it can not be written to using an MTS instruction. When used with
the MFS instruction the PC register is specified by setting Sa = 0x0000.
MicroBlaze Processor Reference Guide www.xilinx.com 21

UG081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 1: MicroBlaze Architecture

PC

Figure 1-3: PC

Table 1-8: Program Counter (PC)
Bits Name Description Reset Value
0:31 PC Program Counter 0x00000000

Address of executing instruction,
i.e. “mfsr2 0” will store the address
of the mfs instruction itself in R2

Machine Status Register (MSR)

The Machine Status Register contains control and status bits for the processor. It can be
read with an MFS instruction. When reading the MSR, bit 29 is replicated in bit 0 as the
carry copy. MSR can be written using either an MTS instruction or the dedicated MSRSET
and MSRCLR instructions.

When writing to the MSR, some of the bits will takes effectimmediately (e.g Carry) and the
remaining bits take effect one clock cycle later. Any value written to bit 0 is discarded.
When used with an MTS or MFS instruction the MSR is specified by setting Sx = 0x0001.

|o\ ‘21‘22‘23‘24‘25‘26‘27‘28‘29‘30‘31'
D 1 1ttt
cc RESERVED PVREIP EE DCE DZ ICEFSLBIP C IE BE

Figure 1-4: MSR

Table 1-9: Machine Status Register (MSR)
Bits Name Description Reset Value

0 CcC Arithmetic Carry Copy 0

Copy of the Arithmetic Carry (bit 29).
CC is always the same as bit C.

1:20 Reserved
21 PVR Processor Version Register exists Based on
0 No Processor Version Register option
1 Processor Version Register exists C_PVR
Read only
22 www.xilinx.com MicroBlaze Processor Reference Guide

1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Registers

SXILINX®

Table 1-9:

Machine Status Register (MSR) (Continued)

Bits

Name

Description

Reset Value

22

EIP

Exception In Progress

0 No hardware exception in progress
1 Hardware exception in progress

Read/Write

0

23

EE

Exception Enable

0 Hardware exceptions disabled
1 Hardware exceptions enabled

Read/Write

24

DCE

Data Cache Enable

0 Data Cache is Disabled
1 Data Cache is Enabled

Read/Write

25

Dz

Division by Zero!

0 No division by zero has occurred
1 Division by zero has occurred

Read/Write

26

ICE

Instruction Cache Enable

0 Instruction Cache is Disabled
1 Instruction Cache is Enabled

Read/Write

27

FSL

FSL Error

0 FSL get/put had no error
1 FSL get/put had mismatch in
control type

Read/Write

28

BIP

Break in Progress

0 No Break in Progress
1 Break in Progress

Source of break can be software break

instruction or hardware break from
Ext_Brk or Ext NM_Brk pin.

Read/Write

MicroBlaze Processor Reference Guide

UG081 (v6.0) June 1, 2006

www.Xxilinx.com
1-800-255-7778

23

http://www.xilinx.com

S XILINX® Chapter 1: MicroBlaze Architecture

Table 1-9: Machine Status Register (MSR) (Continued)

Bits Name Description Reset Value

29 C Arithmetic Carry 0

0 No Carry (Borrow)
1 Carry (No Borrow)

Read/Write
30 IE Interrupt Enable 0

0 Interrupts disabled
1 Interrupts enabled

Read/Write
31 BE Buslock Enable? 0

0 Buslock disabled on data-side OPB
1 Buslock enabled on data-side OPB

Buslock Enable does not affect
operation of IXCL, DXCL, ILMB,
DLMB, or IOPB.

Read/Write

1. This bitis only used for integer divide-by-zero signaling. There is a floating point equivalent
in the FSR. The DZ-bit will flag divide by zero conditions regardless if the processor is
configured with exception handling or not.

2. For a details on the OPB protocol, please refer to the IBM CoreConnect specification: 64-Bit
On-Chip Peripheral Bus, Architectural Specifications, Version 2.0.

Exception Address Register (EAR)

The Exception Address Register stores the full load/store address that caused the
exception. For an unaligned access exception that means the unaligned access address, and
for an DOPB exception, the failing OPB data access address. The contents of this register is
undefined for all other exceptions. When read with the MFS instruction the EAR is
specified by setting Sa = 0x0003.

B 31

EAR

Figure 1-5: EAR

Table 1-10: Exception Address Register (EAR)

Bits Name Description Reset Value
0:31 EAR Exception Address Register 0x00000000
24 www.xilinx.com MicroBlaze Processor Reference Guide

1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Registers S XILINX®

Exception Status Register (ESR)

The Exception Status Register contains status bits for the processor. When read with the
MFS instruction the ESR is specified by setting Sa = 0x0005.

| ‘ 19 ‘20 26 | 27 31|
1 1 1 D
RESERVED DS ESS EC

Figure 1-6: ESR

Table 1-11: Exception Status Register (ESR)
Bits Name Description Reset Value
0:18 Reserved

19 DS Exception in delay slot. 0

0 not caused by delay slot instruction
1 caused by delay slot instruction

Read-only

20:26 ESS Exception Specific Status See Table 1-12
For details refer to Table 1-12.
Read-only

27:31 EC Exception Cause 0

00001 = Unaligned data access exception
00010 = Illegal op-code exception

00011 = Instruction bus error exception
00100 = Data bus error exception

00101 = Divide by zero exception

00110 = Floating point unit exception

Read-only

MicroBlaze Processor Reference Guide www.Xxilinx.com 25
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 1: MicroBlaze Architecture

Table 1-12: Exception Specific Status (ESS)

Exception Bits Name Description Reset Value
Cause
Unaligned | 20 W Word Access Exception 0
Data Access 0 unaligned halfword access
1 unaligned word access
21 S Store Access Exception 0
0 unaligned load access
1 unaligned store access
22:26 Rx Source/Destination Register 0
General purpose register used
as source (Store) or destination
(Load) in unaligned access
Illegal 20:26 Reserved 0
Instruction
Instruction | 20:26 Reserved 0
bus error
Data bus 20:26 Reserved 0
error
Divide by 20:26 Reserved 0
zero
Floating 20:26 Reserved 0
point unit

Branch Target Register (BTR)

The Branch Target Register only exists if the MicroBlaze processor is configured to use
exceptions. The register stores the branch target address for all delay slot branch
instructions executed while MSR[EIP] = 0. If an exception is caused by an instruction in a
delay slot (i.e. ESR[DS]=1) then the exception handler should return execution to the
address stored in BTR instead of the normal exception return address stored in r17. When
read with the MFS instruction the BTR is specified by setting Sa = 0x000B.

1
BTR

Figure 1-7: BTR

26 www.Xxilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Registers S XILINX®

Table 1-13: Branch Target Register (BTR)
Bits Name Description Reset Value
0:31 BTR Branch target address used by handler | 0x00000000

when returning from an exception
caused by an instruction in a delay slot

Read-only

Floating Point Status Register (FSR)

The Floating Point Status Register contains status bits for the floating point unit. It can be
read with an MFS, and written with an MTS instruction. When read or written, the register
is specified by setting Sa = 0x0007.

| 27 28 29 30 31|
1 ot
RESERVED I0 DZ OF UF DO

Figure 1-8: FSR

Table 1-14: Floating Point Status Register (FSR)

Bits Name Description Reset Value
0:26 Reserved undefined
27 10 Invalid operation 0
28 DZ Divide-by-zero 0
29 OF Overflow 0
30 UF Underflow 0
31 DO Denormalized operand error 0

Processor Version Register (PVR)

The Processor Version Register is controlled by the C_PVR configuration option on
MicroBlaze. When C_PVR is set to 0 the processor does not implement any PVR and
MSR[PVR]=0. If C_PVR is set to 1 then MicroBlaze implements only the first register:
PVRO, and if set to 2 all 12 PVR registers (PVRO to PVR11) are implemented.

When read with the MFS instruction the PVR is specified by setting Sa = 0x200x, with x
being the register number between 0x0 and 0xB.

MicroBlaze Processor Reference Guide www.Xxilinx.com 27
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 1: MicroBlaze Architecture

Table 1-17:

Table 1-15: Processor Version Register 0 (PVRO)

Bits Name

Description

Value

0 CFG PVR implementation: O=basic, | Based on C_PVR
1=full
1 BS Use barrel shifter C_USE_BARREL
2 DIV Use divider C_USE_DIV
3 MUL Use hardware multiplier C_USE_HW_MUL
4 FPU Use FPU C_USE_FPU
5 EXC Use any type of exceptions Based on C_* EXCEPTION
6 ICU Use instruction cache C_USE_ICACHE
7 DCU Use data cache C_USE_DCACHE

8:15 Reserved

0

16:23 | MBV MicroBlaze release version code | Release Specific
0x1 =v5.00.a
24:31 | USR1 User configured value 1 C_PVR_USER1
Table 1-16: Processor Version Register 1 (PVR1)
Bits Name Description Value
0:31 | USR2 User configured value 2 C_PVR_USER2
Processor Version Register 2 (PVR2)

Bits Name Description Value
0 DOPB Data side OPB in use C_D _OPB
1 DLMB Data side LMB in use C_D LMB
2 I0PB Instruction side OPB in use C_| OPB
3 I0PB Instruction side OPB in use C_ | LMB
4 IRQEDGE Interrupt is edge triggered C_INTERRUPT_IS EDGE
5 IRQPOS Interrupt edge is positive C_EDGE_IS_POSITIVE
6:16 | Reserved
17 BS Use barrel shifter C_USE BARREL
18 DIV Use divider C_USE DIV
19 MUL Use hardware multiplier C_USE_HW_MUL
20 FPU Use FPU C_USE_FPU
21:24 | Reserved

28

www.Xxilinx.com
1-800-255-7778

MicroBlaze Processor Reference Guide
UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Registers

SXILINX®

Table 1-17:

Processor Version Register 2 (PVR2) (Continued)

Bits Name Description Value

25 OPOEXEC Generate exception for 0x0 C_OPCODE_0x0_ILLEGAL
illegal opcode

26 UNEXEC Generate exception for C_UNALIGNED_EXCEPTION
unaligned data access

27 OPEXEC Generate exception for any C_ILL_OPCODE_EXCEPTION
illegal opcode

28 IOPBEXEC Generate exception for IOPB C_IOPB_BUS EXCEPTION
error

29 DOPBEXEC Generate exception for DOPB C_DOPB _BUS EXCEPTION
error

30 DIVEXEC Generate exception for division | C_DIV_ZERO _EXCEPTION
by zero

31 FPUEXEC Generate exceptions from FPU | C_FPU_EXCEPTION

Table 1-18: Processor Version Register 3 (PVR3)

Bits Name Description Value
0 DEBUG Use debug logic C_DEBUG_ENABLED
1:2 Reserved
3:6 PCBRK Number of PC breakpoints C_NUMBER_OF_PC_BRK
7:9 Reserved
10:12 | RDADDR | Number of read address C_NUMBER_OF_RD_ADDR_B
breakpoints RK
13:15 | Reserved
16:18 | WRADDR | Number of write address C_NUMBER_OF_WR_ADDR_B
breakpoints RK
19:21 | Reserved
22:24 | FSL Number of FSLs C_FSL_LINKS
25:31 | Reserved
Table 1-19: Processor Version Register 4 (PVR4)
Bits Name Description Value
0 ICU Use instruction cache C_USE_ICACHE
1.5 ICTS Instruction cache tag size C_ADDR_TAG_BITS
6 Reserved 1
7 ICW Allow instruction cache write C_ALLOW_ICACHE_WR

MicroBlaze Processor Reference Guide
UGO081 (v6.0) June 1, 2006

www.Xxilinx.com
1-800-255-7778

29

http://www.xilinx.com

SUXILINX®

Chapter 1: MicroBlaze Architecture

Table 1-19:

Processor Version Register 4 (PVR4) (Continued)

Bits

Name

Description

Value

8:10

ICLL

Instruction cache line length
27n

C_ICACHE_LINE_LEN

11:15

ICBS

Instruction cache byte size 2”*n

C_CACHE_BYTE_SIZE

16:31

Reserved

0

Table 1-20: Processor Version Register 5 (PVR5)

Description

Value

Use data cache

C_USE_DCACHE

Data cache tag size

C_DCACHE_ADDR_TAG

1

Allow data cache write

C_ALLOW_DCACHE_WR

Data cache line length 2*n

C_DCACHE_LINE_LEN

Data cache byte size 2*n

C_DCACHE_BYTE_SIZE

0

Processor Version Register 6 (PVR6)

Description

Value

Bits Name
0 DCU
15 DCTS
6 Reserved
7 DCW
8:10 DCLL
11:15 | DCBS
16:31 | Reserved
Table 1-21:

Bits Name
0:31 ICBA

Instruction Cache Base Address

C_ICACHE_BASEADDR

Table 1-22: Processor Version Register 7 (PVR7)

Bits

Name

Description

Value

0:31

ICHA

Instruction Cache High
Address

C_ICACHE_HIGHADDR

Table 1-23: Processor Version Register 8 (PVR8)

Bits

Name

Description

Value

0:31

DCBA

Data Cache Base Address

C_DCACHE_BASEADDR

Table 1-24: Processor Version Register 9 (PVR9)

Bits

Name

Description

Value

0:31

DCHA

Data Cache High Address

C_DCACHE_HIGHADDR

30

www.Xxilinx.com
1-800-255-7778

MicroBlaze Processor Reference Guide

UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Pipeline Architecture S XILINX®

Table 1-25: Processor Version Register 10 (PVR10)

Bits Name Description Value
0:7 ARCH Target architecture: Defined by option C_TARGET
0x4 = Virtex2

0x5 = Virtex2Pro
0x6 = Spartan3

0x7 = Virtex4
0x8 = Virtex5
0x9 = Spartan3E
8:31 | Reserved 0

Table 1-26: Processor Version Register 11 (PVR11)

Bits Name Description Value
0:20 | DO Reset value for MSR 0
21:31 | RSTMSR | Reset value for MSR C_RESET_MSR

Pipeline Architecture

MicroBlaze instruction execution is pipelined. The pipeline is divided into five stages:
Fetch (IF), Decode (OF), Execute (EX), Access Memory (MEM), and Writeback (WB).

For most instructions, each stage takes one clock cycle to complete. Consequently, it takes
five clock cycles for a specific instruction to complete, and one instruction is completed on
every cycle. A few instructions require multiple clock cycles in the execute stage to
complete. This is achieved by stalling the pipeline.

cycle cycle cycle cycle cycle cycle cycle cycle cycle

1 2 3 4 5 6 7 8 9
instruction 1 IF OF EX | MEM | WB
instruction 2 IF OF EX | MEM | MEM | MEM | WB
instruction 3 IF OF EX Stall | Stall | MEM | WB

When executing from slower memory;, instruction fetches may take multiple cycles. This
additional latency will directly affect the efficiency of the pipeline. MicroBlaze implements
an instruction prefetch buffer that reduces the impact of such multi-cycle instruction
memory latency. While the pipeline is stalled by a multi-cycle instruction in the execution
stage the prefetch buffer continues to load sequential instructions. Once the pipeline
resumes execution the fetch stage can load new instructions directly from the prefetch
buffer rather than having to wait for the instruction memory access to complete.

MicroBlaze Processor Reference Guide www.Xxilinx.com 31
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 1: MicroBlaze Architecture

Branches

Normally the instructions in the fetch and decode stages (as well as prefetch buffer) are
flushed when executing a taken branch. The fetch pipeline stage is then reloaded with a
new instruction from the calculated branch address. A taken branch in MicroBlaze takes
three clock cycles to execute, two of which are required for refilling the pipeline. To reduce
this latency overhead, MicroBlaze supports branches with delay slots.

Delay Slots

When executing a taken branch with delay slot, only the fetch pipeline stage in MicroBlaze
is flushed. The instruction in the decode stage (branch delay slot) is allowed to complete.
This technique effectively reduces the branch penalty from two clock cycles to one. Branch
instructions with delay slots have a D appended to the instruction mnemonic. For
example, the BNE instruction will not execute the subsequent instruction (does not have a
delay slot), whereas BNED will execute the next instruction before control is transferred to
the branch location.

A delay slot must not contain the following instructions: IMM, branch, or break. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been
completed.

Instructions that could cause recoverable exceptions (e.g. unaligned word or halfword
load and store) are allowed in the delay slot. If an exception is caused in a delay slot the
ESR[DS] bit will be set, and the exception handler is responsible for returning the
execution to the branch target (stored in the special purpose register BTR) rather than the
sequential return address stored in R17.

Memory Architecture

MicroBlaze is implemented with a Harvard memory architecture, i.e. instruction and data
accesses are done in separate address spaces. Each address space has a 32 bit range (i.e.
handles up to 4 GByte of instructions and data memory respectively). The instruction and
data memory ranges can be made to overlap by mapping them both to the same physical
memory. The latter is useful e.g. for software debugging.

Both instruction and data interfaces of MicroBlaze are 32 bit wide and use big endian, bit-
reversed format. MicroBlaze supports word, halfword, and byte accesses to data memory.

Data accesses must be aligned (i.e. word accesses must be on word boundaries, halfword
on halfword bounders), unless the processor is configured to support unaligned
exceptions. All instruction accesses must be word aligned.

MicroBlaze does not separate between data accesses to 1/0 and memory (i.e. it uses
memory mapped 1/0). The processor has up to three interfaces for memory accesses: Local
Memory Bus (LMB), On-Chip Peripheral Bus (OPB), and Xilinx CacheLink (XCL). The
LMB memory address range must not overlap with OPB or XCL ranges.

MicroBlaze has a single cycle latency for accesses to local memory (LMB) and for cache
read hits. A data cache write normally has two cycles of latency (more if the posted-write
buffer in the memory controller is full).

For details on the different memory interfaces please refer to Chapter 2, “MicroBlaze
Signal Interface Description”.

32

www.Xxilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Reset, Interrupts, Exce

ptions, and Break

SXILINX®

Reset, Interrupts, Exceptions, and Break

MicroBlaze supports reset, interrupt, user exception, break, and hardware exceptions. The
following section describes the execution flow associated with each of these events.

The relative priority starting with the highest is:

Reset

Break
Interrupt

o ok~ b E

Hardware Exception
Non-maskable Break

User Vector (Exception)

Table 1-27 defines the memory address locations of the associated vectors and the
hardware enforced register file locations for return address. Each vector allocates two
addresses to allow full address range branching (requires an IMM followed by a BRAI
instruction). The address range 0x28 to 0x4F is reserved for future software support by
Xilinx. Allocating these addresses for user applications is likely to conflict with future
releases of EDK support software.

Table 1-27: Vectors and Return Address Register File Location

Register File
Event Vector Address| Return Address
Reset 0x00000000 - i
0x00000004
User Vector (Exception) 0x00000008 - i
0x0000000C
Interrupt 0x00000010 - R14
0x00000014
Break: Non-maskable
hardware 0x00000018 - ~16
Break: Hardware 0x0000001C
Break: Software
Hardware Exception 0x00000020 -
0x00000024 R170rBTR
Reserved by Xilinx for 0x00000028 - i
future use 0x0000004F

MicroBlaze Processor Reference Guide

UG081 (v6.0) June 1, 2006

www.Xxilinx.com
1-800-255-7778

33

http://www.xilinx.com

S XILINX® Chapter 1: MicroBlaze Architecture

Reset

When a Reset or Debug_Rst(l) occurs, MicroBlaze will flush the pipeline and start fetching
instructions from the reset vector (address 0x0). Both external reset signals are active high, and
should be asserted for a minimum of 16 cycles.

Equivalent Pseudocode

PC — 0x00000000

MSR — C RESET_MSR (see “M croBl aze Core Configurability” in Chapter 2)
EAR ~ 0

ESR ~ 0

FSR <~ 0

Hardware Exceptions

MicroBlaze can be configured to trap the following internal error conditions: illegal
instruction, instruction and data bus error, and unaligned access. The divide by zero
exception can only be enabled if the processor is configured with a hardware divider
(C_USE_DIV=1). When configured with a hardware floating point unit (C_USE_FPU=1), it
can also trap the following floating point specific exceptions: underflow, overflow, float
division-by-zero, invalid operation, and denormalized operand error.

A hardware exception will cause MicroBlaze to flush the pipeline and branch to the
hardware exception vector (address 0x20). The exception will also load the decode stage
program counter value into the general purpose register R17. The execution stage
instruction in the exception cycle is not executed. If the exception is caused by an
instruction in a branch delay slot, then the ESR[DS] bit will be set. In this case the exception
handler should resume execution from the branch target address, stored in BTR.

The EE and EIP bits in MSR are automatically reverted when executing the RTED
instruction.

Exception Causes

* Instruction Bus Exception

The instruction On-chip Peripheral Bus exception is caused by an active error signal
from the slave (IOPB_errAck) or timeout signal from the arbiter (IOPB_timeout). The
instructions side local memory (ILMB) and CacheLink (IXCL) interfaces can not cause
instruction bus exceptions.

» lllegal Opcode Exception

The illegal opcode exception is caused by an instruction with an invalid major opcode
(bits 0 through 5 of instruction). Bits 6 through 31 of the instruction are not checked.
Optional processor instructions are detected as illegal if not enabled.

» Data Bus Exception

The data On-chip Peripheral Bus exception is caused by an active error signal from the
slave (DOPB_errAck) or timeout signal from the arbiter (DOPB_timeout). The data
side local memory (DLMB) and CacheLink (DXCL) interfaces can not cause data bus
exceptions.

1. Reset input controlled by the XMD debugger via MDM

34 www.Xxilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Reset, Interrupts, Exceptions, and Break XX"JNX@

* Unaligned Exception

The unaligned exception is caused by a word access where the address to the data bus
has bits 30 or 31 set, or a half-word access with bit 31 set.

» Divide by Zero Exception

The divide-by-zero exception is causes by an integer division (idiv or idivu) where the
divisor is zero.

* FPU Exception

An FPU exception is caused by an underflow, overflow, divide-by-zero, illegal
operation, or denormalized operand occurring with a floating point instruction.

+ Underflow occurs when the result is denormalized.
¢ Overflow occurs when the result is not-a-number (NaN).

¢+ The divide-by-zero FPU exception is caused by the rA operand to fdiv being zero
when rB is not infinite.

+ lllegal operation is caused by a signaling NaN operand or by illegal infinite or
zero operand combinations.

Equivalent Pseudocode

rl7 « PC

PC « 0x00000020

MSR[EE] « O

MSRIEIP] < 1

ESR[DS] ~ exception in delay slot
ESR[EC] « exception specific value
ESR] ESS] ~ exception specific val ue
EAR — exception specific value

FSR — exception specific value

Breaks
There are two kinds of breaks:

» Hardware (external) breaks
» Software (internal) breaks

Hardware Breaks

Hardware breaks are performed by asserting the external break signal (i.e. the Ext _BRK
and Ext _NM BRK input ports). On a break the instruction in the execution stage will
complete, while the instruction in the decode stage is replaced by a branch to the break
vector (address 0x18). The break return address (the PC associated with the instruction in
the decode stage at the time of the break) is automatically loaded into general purpose
register R16. MicroBlaze also sets the Break In Progress (BIP) flag in the Machine Status
Register (MSR).

A normal hardware break (i.e the Ext _BRK input port) is only handled when there is no
break in progress (i.e MSR[BIP] is set to 0). The Break In Progress flag disables interrupts.
A non-maskable break (i.e the Ext _NM BRK input port) will always be handled
immediately.

The BIP bit in the MSR is automatically cleared when executing the RTBD instruction.

MicroBlaze Processor Reference Guide www.Xxilinx.com 35
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 1: MicroBlaze Architecture

Software Breaks

To perform a software break, use the br k and br ki instructions. Refer to Chapter 4,
“MicroBlaze Instruction Set Architecture” for detailed information on software breaks.

Latency

The time it will take MicroBlaze to enter a break service routine from the time the break
occurs, depends on the instruction currently in the execution stage and the latency to the
memory storing the break vector.

Equivalent Pseudocode

ri6 — PC
PC — 0x00000018
MSR[BIP] — 1

Interrupt

MicroBlaze supports one external interrupt source (connecting to the | nt er r upt input
port). The processor will only react to interrupts if the Interrupt Enable (IE) bit in the
Machine Status Register (MSR) is set to 1. On an interrupt the instruction in the execution
stage will complete, while the instruction in the decode stage is replaced by a branch to the
interrupt vector (address 0x10). The interrupt return address (the PC associated with the
instruction in the decode stage at the time of the interrupt) is automatically loaded into
general purpose register R14. In addition, the processor also disables future interrupts by
clearing the IE bit in the MSR. The IE bit is automatically set again when executing the
RTID instruction.

Interrupts are ignored by the processor if either of the break in progress (BIP) or exception
in progress (EIP) bits in the MSR are set to 1.

Latency

The time it will take MicroBlaze to enter an Interrupt Service Routine (ISR) from the time
an interrupt occurs depends on the configuration of the processor and the latency of the
memory controller storing the interrupt vectors. If MicroBlaze is configured to have a
hardware divider, the largest latency will happen when an interrupt occurs during the
execution of a division instruction.

Equivalent Pseudocode

ri4 « PC
PC « 0x00000010
MSR[I E] « O

User Vector (Exception)

The user exception vector is located at address 0x8. A user exception is caused by inserting
a ‘BRALI D Rx, 0x8’ instruction in the software flow. Although Rx could be any general
purpose register Xilinx recommends using R15 for storing the user exception return
address, and to use the RTSD instruction to return from the user exception handler.

Pseudocode

rx < PC

36 www.Xxilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instruction Cache S XILINX®

PC — 0x00000008
Instruction Cache

Overview

MicroBlaze may be used with an optional instruction cache for improved performance
when executing code that resides outside the LMB address range.

The instruction cache has the following features:

» Direct mapped (1-way associative)

e User selectable cacheable memory address range

» Configurable cache and tag size

» Caching over CacheLink (XCL) interface

e Option to use 4 or 8 word cache-line

» Cache on and off controlled using a bit in the MSR

» Optional WIC instruction to invalidate instruction cache lines

General Instruction Cache Functionality

When the instruction cache is used, the memory address space in split into two segments:
a cacheable segment and a non-cacheable segment. The cacheable segment is determined
by two parameters: C_ICACHE_BASEADDR and C_ICACHE_HIGHADDR. All
addresses within this range correspond to the cacheable address segment. All other
addresses are non-cacheable.

Instruction Address Bits

| Tag Address Cache Address [-]-]

. Tag .
Line Addr Tag _ he Hit
BRAM . = . Cache_Hi

Valid (word and line)

Word Addr Instruction Cache instruction data
—— ®| BRAM >

Figure 1-9: Instruction Cache Organization

The cacheable instruction address consists of two parts: the cache address, and the tag
address. The MicroBlaze instruction cache can be configured from 2kB to 64 kB. This
corresponds to a cache address of between 11 and 16 bits. The tag address together with the
cache address should match the full address of cacheable memory.

MicroBlaze Processor Reference Guide www.Xxilinx.com 37
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 1: MicroBlaze Architecture

For example: in a MicroBlaze configured with C_ICACHE_BASEADDR= 0x00300000,
C_ICACHE_HIGHADDR=0x0030ffff, C_ CACHE_BYTE_SIZE=4096, and
C_ICACHE_LINELEN=8; the cacheable memory of 64 kB uses 16 bits of byte address, and
the 4 kB cache uses 12 bits of byte address, thus the required address tag width is: 16-12=4
bits. The total number of block RAM primitives required in this configuration is: 2
RAMB16 for storing the 1024 instruction words, and 1 RAMB16 for 128 cache line entries,
each consisting of: 4 bits of tag, 8 word-valid bits, 1 line-valid bit. In total 3 RAMB16
primitives.

Instruction Cache Operation

For every instruction fetched, the instruction cache detects if the instruction address
belongs to the cacheable segment. If the address is non-cacheable, the cache controller
ignores the instruction and lets the OPB or LMB complete the request. If the address is
cacheable, a lookup is performed on the tag memory to check if the requested address is
currently cached. The lookup is successful if: the word and line valid bits are set, and the
tag address matches the instruction address tag segment. On a cache miss, the cache
controller will request the new instruction over the instruction CacheLink (IXCL) interface,
and wait for the memory controller to return the associated cache line.

Instruction Cache Software Support

MSR Bit

The ICE bit in the MSR provides software control to enable and disable caches.

The contents of the cache are preserved by default when the cache is disabled. The user can
invalidate cache lines using the WIC instruction or using the hardware debug logic of
MicroBlaze.

WIC Instruction

The optional WIC instruction (C_ALLOW_ICACHE_WR=1) is used to invalidate cache
lines in the instruction cache from an application. For a detailed description, please refer to
Chapter 4, “MicroBlaze Instruction Set Architecture”. The cache must be disabled
(MSR[ICE]=0) when the instruction is executed.

Data Cache
Overview

MicroBlaze may be used with an optional data cache for improved performance. The
cached memory range must not include addresses in the LMB address range.
The data cache has the following features
» Direct mapped (1-way associative)
e Write-through
» User selectable cacheable memory address range
» Configurable cache size and tag size
e Caching over CacheLink (XCL) interface
» Option to use 4 or 8 word cache-lines

38 www.xilinx.com MicroBlaze Processor Reference Guide

1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Data Cache S XILINX®

e Cache on and off controlled using a bit in the MSR
e Optional WDC instruction to invalidate data cache lines

General Data Cache Functionality

When the data cache is used, the memory address space in split into two segments: a
cacheable segment and a non-cacheable segment. The cacheable area is determined by two
parameters: C_DCACHE_BASEADDR and C_DCACHE_HIGHADDR. All addresses
within this range correspond to the cacheable address space. All other addresses are non-
cacheable.

Data Address Bits
0 3031

| Tag Address | Cache Word Address | -|-|

Addr Tag [Tad g

—®| BRAM . Cache_Hit
Valid
Load Instruction
Addr Data Cache data
— 1 BRAM -

Figure 1-10: Data Cache Organization

The cacheable data address consists of two parts: the cache address, and the tag address.
The MicroBlaze data cache can be configured from 2kB to 64 kB. This corresponds to a
cache address of between 11 and 16 bits. The tag address together with the cache address
should match the full address of cacheable memory.

For example: in a MicroBlaze configured with C_ICACHE_BASEADDR= 0x00400000,
C_ICACHE_HIGHADDR=0x00403fff, C_ CACHE_BYTE_SIZE=2048, and
C_ICACHE_LINELEN=4; the cacheable memory of 16 kB uses 14 bits of byte address, and
the 2 kB cache uses 11 bits of byte address, thus the required address tag width is: 14-11=3
bits. The total number of block RAM primitives required in this configuration is: 1
RAMB16 for storing the 512 instruction words, and 1 RAMB16 for 128 cache line entries,
each consisting of; 3 bits of tag, 4 word-valid bits, 1 line-valid bit. In total 2 RAMB16
primitives.

Data Cache Operation

The MicroBlaze data cache implements a write-through protocol. A store to an address
within the cacheable range will, provided that the cache is enabled, generate an equivalent
byte, halfword, or word write over the data CacheLink (DXCL) to external memory. The
write will also update the cached data if the target address word is in the cache (i.e. the
write is a cache-hit). A write cache-miss does not load the associated cache line into the
cache.

MicroBlaze Processor Reference Guide www.Xxilinx.com 39
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 1: MicroBlaze Architecture

A load from an address within the cacheable range will, provided that the cache is enabled,
trigger a check to determine if the requested data is currently cached. If it is (i.e. on a cache-
hit) the requested data is retrieved from the cache. If not (i.e. on a cache-miss) the address
is requested over data CacheLink (DXCL), and the processor pipeline will stall until the
cache line associated to the requested address is returned from the external memory
controller.

Data Cache Software Support

MSR Bit

The DCE bit in the MSR controls whether or not the cache is enabled. When disabling
caches the user must ensure that all the prior writes within the cacheable range has been
completed in external memory before reading back over OPB. This can be done by writing
to a semaphore immediately before turning off caches, and then in a loop poll the
semaphore until it has been written.

The contents of the cache is preserved when the cache is disabled.

WDC Instruction

The optional WDC instruction (C_ALLOW_DCACHE_WR=1) is used to invalidate cache
lines in the data cache from an application. For a detailed description, please refer to
Chapter 4, “MicroBlaze Instruction Set Architecture”.

Floating Point Unit (FPU)

Overview

The MicroBlaze floating point unit is based on the IEEE 754 standard:

e Uses IEEE 754 single precision floating point format, including definitions for infinity,
not-a-number (NaN), and zero

» Supports addition, subtraction, multiplication, division, and comparison instructions
* Implements round-to-nearest mode
e Generates sticky status bits for: underflow, overflow, and invalid operation

For improved performance, the following non-standard simplifications are made:

« Denormalized) operands are not supported. A hardware floating point operation on
a denormalized number will return a quiet NaN and set the denormalized operand
error bit in FSR; see "Floating Point Status Register (FSR)" on page 27

» Adenormalized result is stored as a signed 0 with the underflow bit set in FSR. This
method is commonly referred to as Flush-to-Zero (FTZ)

» An operation on a quiet NaN will return the fixed NaN: 0xFFC00000, rather than one
of the NaN operands

» Overflow as a result of a floating point operation will always return signed o, even
when the exception is trapped.

1. Numbers that are so close to 0, that they cannot be represented with full precision, i.e. any number n that falls
in the following ranges: (1.17549*1038 >n>0), or (0>n>-1.17549 * 1038

40

www.Xxilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=1316&page=0

Floating Point Unit (FPU) XX"JNX@

Format

An IEEE 754 single precision floating point number is composed of the following three
fields:

1. 1-bitsign
2. 8-bit biased exponent
3. 23-bit fraction (a.k.a. mantissa or significand)

The fields are stored in a 32 bit word as defined in Figure 1-11:

HE 9 31
1 1 1
sign exponent fraction

Figure 1-11: IEEE 754 Single Precision format

The value of a floating point number v in MicroBlaze has the following interpretation:
1. Ifexponent = 255 and fraction <> 0, then v= NaN, regardless of the sign bit

2. If exponent = 255 and fraction = 0, then v= (-1)819" * o

3. If 0 <exponent < 255, then v = (-1)sign * 2(exponent-127) * (1 fraction)

4. If exponent = 0 and fraction <> 0, then v = (-1)sign * 2-126 * (0 fraction)

5. If exponent = 0 and fraction = 0, then v = (-1)Si9n * 0

For practical purposes only 3 and 5 are really useful, while the others all represent either an
error or numbers that can no longer be represented with full precision in a 32 bit format.

Rounding

The MicroBlaze FPU only implements the default rounding mode, “Round-to-nearest”,
specified in IEEE 754. By definition, the result of any floating point operation should return
the nearest single precision value to the infinitely precise result. If the two nearest
representable values are equally near, then the one with its least significant bit zero is
returned.

Operations

All MicroBlaze FPU operations use the processors general purpose registers rather than a
dedicated floating point register file, see “General Purpose Registers”.

Arithmetic

The FPU implements the following floating point operations:
* addition, fadd

* subtraction, fsub

e multiplication, fmul

e division, fdiv

MicroBlaze Processor Reference Guide www.Xxilinx.com 41
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 1: MicroBlaze Architecture

Comparison

The FPU implements the following floating point comparisons:

» compare less-than, fcmp.It

e compare equal, fcmp.eq

e compare less-or-equal, fcmp.le

* compare greater-than, fcmp.gt

e compare not-equal, fcmp.ne

* compare greater-or-equal, fcmp.ge

» compare unordered, fcmp.un (used for NaN)

Exceptions

The floating point unit uses the regular hardware exception mechanism in MicroBlaze.
When enabled, exceptions are thrown for all the IEEE standard conditions: underflow,
overflow, divide-by-zero, and illegal operation, as well as for the MicroBlaze specific
exception: denormalized operand error.

A floating point exception will inhibit the write to the destination register (Rd). This allows
a floating point exception handler to operate on the uncorrupted register file.

Fast Simplex Link (FSL)

MicroBlaze can be configured with up to eight Fast Simplex Link (FSL) interfaces, each
consisting of one input and one output port. The FSL channels are dedicated uni-
directional point-to-point data streaming interfaces. For detailed information on the FSL
interface, please refer to the FSL Bus data sheet (DS449).

The FSL interfaces on MicroBlaze are 32 bits wide. A separate bit indicates whether the
sent/received word is of control or data type. The get instruction in the MicroBlaze ISA is
used to transfer information from an FSL port to a general purpose register. The put
instruction is used to transfer data in the opposite direction. Both instructions come in 4
flavours: blocking data, non-blocking data, blocking control, and non-blocking control. For
a detailed description of the get and put instructions please refer to Chapter 4,
“MicroBlaze Instruction Set Architecture”.

Hardware Acceleration using FSL

Each FSL provides a low latency dedicated interface to the processor pipeline. Thus they
are ideal for extending the processors execution unit with custom hardware accelerators. A
simple example is illustrated in Figure 1-12.

42

www.Xxilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Debug and Trace S XILINX®

Example code: +
Il Configure f, FSLx
Custom HW Accelerator

cput Rc, RFSLx
/1 Store operands MicroBlaze | Op1Reg | | Op2Req |
put Ra, RFSLx // op 1 Reg_ister
put Rb, RFSLx // op 2 File f

X
/1 Load result

get R, RFSLx T
, FSLx |

Figure 1-12: FSL used with HW accelerated function fx

This method is similar to extending the ISA with custom instructions, but has the benefit of
not making the overall speed of the processor pipeline dependent on the custom function.
Also, there are no additional requirements on the software tool chain associated with this
type of functional extension.

Debug and Trace

Debug Overview

MicroBlaze features a debug interface to support JTAG based software debugging tools
(commonly known as BDM or Background Debug Mode debuggers) like the Xilinx
Microprocessor Debug (XMD) tool. The debug interface is designed to be connected to the
Xilinx Microprocessor Debug Module (MDM) core, which interfaces with the JTAG port of
Xilinx FPGAs. Multiple MicroBlaze instances can be interfaced with a single MDM to
enable multiprocessor debugging. The debugging features include:

e Configurable number of hardware breakpoints and watchpoints and unlimited
software breakpoints

» External processor control enables debug tools to stop, reset, and single step
MicroBlaze

« Read from and write to: memory, general purpose registers, and special purpose
register, except ESR and EAR which can only be read

» Support for multiple processors
» Wirite to instruction and data caches

Trace Overview

The MicroBlaze trace interface exports a number of internal state signals for performance
monitoring and analysis. Xilinx recommends that users only use the trace interface
through Xilinx developed analysis cores. This interface is not guaranteed to be backward
compatible in future releases of MicroBlaze.

MicroBlaze Processor Reference Guide www.Xxilinx.com 43
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 1: MicroBlaze Architecture

44 www.Xxilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

S XILINX®
Chapter 2

MicroBlaze Signal Interface Description

Overview

The MicroBlaze core is organized as a Harvard architecture with separate bus interface
units for data accesses and instruction accesses. The following three memory interfaces are
supported: Local Memory Bus (LMB), IBM’s On-chip Peripheral Bus (OPB), and Xilinx
CacheLink (XCL). The LMB provides single-cycle access to on-chip dual-port block RAM.
The OPB interface provides a connection to both on-chip and off-chip peripherals and
memory. The CacheLink interface is intended for use with specialized external memory
controllers. MicroBlaze also supports up to 8 Fast Simplex Link (FSL) ports, each with one
master and one slave FSL interface.

Features

The MicroBlaze can be configured with the following bus interfaces:

* A 32-bit version of the OPB V2.0 bus interface (see IBM’s 64-Bit On-Chip Peripheral
Bus, Architectural Specifications, Version 2.0)

* LMB provides simple synchronous protocol for efficient block RAM transfers
» FSL provides a fast non-arbitrated streaming communication mechanism

» XCL provides a fast slave-side arbitrated streaming interface between caches and
external memory controllers

» Debug interface for use with the Microprocessor Debug Module (MDM) core
» Trace interface for performance analysis

MicroBlaze 1/0O Overview

The core interfaces shown in Figure 2-1 and the following Table 2-1 are defined as follows:

DOPB: Data interface, On-chip Peripheral Bus
DLMB: Data interface, Local Memory Bus (BRAM only)
IOPB: Instruction interface, On-chip Peripheral Bus
ILMB: Instruction interface, Local Memory Bus (BRAM only)
MFSL 0..7: FSL master interfaces
SFSL 0..7: FSL slave interfaces
IXCL: Instruction side Xilinx CacheLink interface (FSL master/slave pair)
DXCL: Data side Xilinx CacheLink interface (FSL master/slave pair)
Core: Miscellaneous signals for: clock, reset, debug, and trace
MicroBlaze Processor Reference Guide www.xilinx.com 45

uUGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 2: MicroBlaze Signal Interface Description

Instruction-side Data-side
bus interface bus interface
%
: A ALU
& |N—{ Counter Special [N\ Shift Q
IXCL_S |::> S Purpose . g K DXCL_S
@ Registers N Barrel Shift Nl @
{} {} v Multiplier V
Divider
IOPB_) —\ FPU K DOPB >
Bus . —/ Bus
IF —N] Instruction N IE
ERD V| Buffer v {} {} (' DLMB >
Instruction
Decode |1
L N\] Register File ::> MFSL 0..7
v 32 X32b N <::I SFSL 0.7
Optional MicroBlaze feature V

Figure 2-1: MicroBlaze Core Block Diagram

Table 2-1: Summary of MicroBlaze Core I/O

Signal Interface le] Description
DM_ABus[0:31] DOPB 0] Data interface OPB address bus
DM_BE[0:3] DOPB 0] Data interface OPB byte enables
DM_busLock DOPB O Data interface OPB bus lock
DM_DBus[0:31] DOPB 0] Data interface OPB write data bus
DM_request DOPB 0] Data interface OPB bus request
DM_RNW DOPB O Data interface OPB read, not write
DM _select DOPB O Data interface OPB select
DM_seqgAddr DOPB 0] Data interface OPB sequential address
DOPB_DBus[0:31] DOPB | Data interface OPB read data bus
DOPB_errAck DOPB | Data interface OPB error acknowledge
DOPB_MGrant DOPB | Data interface OPB bus grant
DOPB_retry DOPB | Data interface OPB bus cycle retry
DOPB_timeout DOPB | Data interface OPB timeout error
DOPB_xferAck DOPB | Data interface OPB transfer

acknowledge
IM_ABus[0:31] 10PB 0] Instruction interface OPB address bus
46 www.xilinx.com MicroBlaze Processor Reference Guide

1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

MicroBlaze I/O Overview XX"JNX@

Table 2-1: Summary of MicroBlaze Core 1/0O (Continued)

Signal Interface I/0 Description

IM_BE[0:3] IOPB (0] Instruction interface OPB byte enables

IM_busLock IOPB (0] Instruction interface OPB bus lock

IM_DBus[0:31] IOPB (@) Instruction interface OPB write data bus
(always 0x00000000)

IM_request IOPB (@) Instruction interface OPB bus request

IM_RNW IOPB (@) Instruction interface OPB read, not write
(tied to IM_select)

IM_select IOPB (@) Instruction interface OPB select

IM_segAddr IOPB (@) Instruction interface OPB sequential
address

IOPB_DBus[0:31] IOPB | Instruction interface OPB read data bus

IOPB_errAck IOPB | Instruction interface OPB error
acknowledge

IOPB_MGrant IOPB | Instruction interface OPB bus grant

IOPB _retry IOPB | Instruction interface OPB bus cycle retry

IOPB_timeout IOPB | Instruction interface OPB timeout error

IOPB_xferAck IOPB | Instruction interface OPB transfer

acknowledge

Data_Addr[0:31] DLMB (@) Data interface LMB address bus

Byte Enable[0:3] DLMB (@) Data interface LMB byte enables

Data_Write[0:31] DLMB (@) Data interface LMB write data bus

D _AS DLMB (@) Data interface LMB address strobe

Read_Strobe DLMB (@) Data interface LMB read strobe

Write_Strobe DLMB (@) Data interface LMB write strobe

Data_Read[0:31] DLMB | Data interface LMB read data bus

DReady DLMB | Data interface LMB data ready

Instr_Addr[0:31] ILMB (@) Instruction interface LMB address bus

I_AS ILMB (@) Instruction interface LMB address
strobe

IFetch ILMB @) Instruction interface LMB instruction
fetch

Instr[0:31] ILMB | Instruction interface LMB read data bus

IReady ILMB | Instruction interface LMB data ready

FSLO M ..FSL7_M MFSL (@) Master interface to output FSL channels

FSLO S..FSL7_S SFSL | Slave interface to input FSL channels

ICache_FSL in... IXCL_S 10 Instruction side CacheLink FSL slave
interface

MicroBlaze Processor Reference Guide www.xilinx.com 47

uUGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 2: MicroBlaze Signal Interface Description

Table 2-1: Summary of MicroBlaze Core 1/0O (Continued)

Signal Interface I/0 Description

ICache_FSL out... IXCL_M 10 Instruction side CacheLink FSL master
interface

DCache_FSL in... DXCL_S 10 Data side CacheLink FSL slave interface

DCache_FSL _out... DXCL_M 10 Data side CacheLink FSL master
interface

Interrupt Core | Interrupt

Reset Core | Core reset, active high. Should be held
for at least 16 cycles

Clk Core | Clock

Debug_Rst Core | Reset signal from OPB JTAG UART,
active high. Should be held for at least 16
cycles

Ext BRK Core | Break signal from OPB JTAG UART

Ext NM_BRK Core | Non-maskable break signal from OPB
JTAG UART

Dbg_... Core 10 Debug signals from OPB MDM

Valid_Instr Core (@) Trace: Valid instruction in EX stage

PC_Ex Core (@) Trace: Address for EX stage instruction

Reg_Write Core (@) Trace: EX stage instruction writes to the
register file

Reg_Addr Core (@) Trace: Destination register

MSR_Reg Core (@) Trace: Current MSR register value

New_Reg Value Core (@) Trace: Destination register write data

Pipe_Running Core (@) Trace: Processor pipeline to advance

Interrup_Taken Core (@) Trace: Unmasked interrupt has occurred

Jump_Taken Core (@) Trace: Branch instruction evaluated true

Prefetch_Addr Core (@) Trace: OF stage pointer into prefetch
buffer

MB_Halted Core (@) Trace: Pipeline is halted

Trace_... Core (@) Trace signals for real time HW analysis

On-Chip Peripheral Bus (OPB) Interface Description

The MicroBlaze OPB interfaces are implemented as byte-enable capable masters. Please
refer to the Xilinx OPB design document: “OPB Usage in Xilinx FPGA” for details.

48

www.Xilinx.com

1-800-255-7778

MicroBlaze Processor Reference Guide
UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Local Memory Bus (LMB) Interface Description XX"JNX@

Local Memory Bus (LMB) Interface Description

The LMB is a synchronous bus used primarily to access on-chip block RAM. It uses a
minimum number of control signals and a simple protocol to ensure that local block RAM
are accessed in asingle clock cycle. LMB signals and definitions are shown in the following
table. All LMB signals are active high.

LMB Signal Interface

Table 2-2: LMB Bus Signals

. Instruction o
Signal Data Interface Interface Type Description
Addr[0:31] Data_Addr[0:31] | Instr_Addr[0:31] | O Address bus

Byte Enable[0:3] | Byte Enable[0:3] | not used @] Byte enables

Data_Write[0:31] | Data_Write[0:31] | not used @] Write data bus

AS D_AS I_AS @] Address strobe

Read_Strobe Read_Strobe IFetch @] Read in progress

Write_Strobe Write_Strobe not used @] Write in progress

Data_Read[0:31] | Data_Read[0:31] | Instr[0:31] | Read data bus

Ready DReady IReady | Ready for next transfer

Clk Clk Clk | Bus clock
Addr[0:31]

The address bus is an output from the core and indicates the memory address that is being
accessed by the current transfer. It is valid only when AS is high. In multicycle accesses
(accesses requiring more than one clock cycle to complete), Addr[0:31] is valid only in the
first clock cycle of the transfer.

Byte Enable[0:3]

The byte enable signals are outputs from the core and indicate which byte lanes of the data
bus contain valid data. Byte_Enable[0:3] is valid only when AS is high. In multicycle
accesses (accesses requiring more than one clock cycle to complete), Byte Enable[0:3] is
valid only in the first clock cycle of the transfer. Valid values for Byte_Enable[0:3] are
shown in the following table:

Table 2-3: Valid Values for Byte_Enable[0:3]

Byte Lanes Used
Byte_Enable[0:3] Data[0:7] Data[8:15] Data[16:23] Data[24:31]
0000
0001 X
0010 X
0100 X
MicroBlaze Processor Reference Guide www.xilinx.com 49

uUGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 2: MicroBlaze Signal Interface Description

Table 2-3: Valid Values for Byte_Enable[0:3]

Byte Lanes Used
Byte_Enable[0:3] Data[0:7] Data[8:15] Data[16:23] Data[24:31]
1000 X
0011 X X
1100 X X
1111 X X X X

Data_Write[0:31]

The write data bus is an output from the core and contains the data that is written to
memory. It becomes valid when AS is high and goes invalid in the clock cycle after Ready
is sampled high. Only the byte lanes specified by Byte Enable[0:3] contain valid data.

AS

The address strobe is an output from the core and indicates the start of a transfer and
gualifies the address bus and the byte enables. It is high only in the first clock cycle of the
transfer, after which it goes low and remains low until the start of the next transfer.

Read_Strobe

The read strobe is an output from the core and indicates that a read transfer is in progress.
This signal goes high in the first clock cycle of the transfer, and remains high until the clock
cycle after Ready is sampled high. If a new read transfer is started in the clock cycle after
Ready is high, then Read_Strobe remains high.

Write_Strobe

The write strobe is an output from the core and indicates that a write transfer is in progress.
This signal goes high in the first clock cycle of the transfer, and remains high until the clock
cycle after Ready is sampled high. If a new write transfer is started in the clock cycle after
Ready is high, then Write_Strobe remains high.

Data Read[0:31]

The read data bus is an input to the core and contains data read from memory.
Data_Read[0:31] is valid on the rising edge of the clock when Ready is high.

Ready

The Ready signal is an input to the core and indicates completion of the current transfer
and that the next transfer can begin in the following clock cycle. It is sampled on the rising
edge of the clock. For reads, this signal indicates the Data_Read[0:31] bus is valid, and for
writes it indicates that the Data_Write[0:31] bus has been written to local memory.

Clk

All operations on the LMB are synchronous to the MicroBlaze core clock.

50 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Local Memory Bus (LMB) Interface Description

SXILINX®

LMB Transactions

The following diagrams provide examples of LMB bus operations.

Generic Write Operation

Clk L
Addr N AQ —Y 1 1 1
Byte Enable : X 1111 : X : : :
Data_Write X DO X

AS

Read_Strobe

Write_Strobe ___ |/~ T\

Data_Read

Ready

|
! !
| |
| |
| I
|

Figure 2-2: LMB Generic Write Operation

Generic Read Operation

Clk 0
Addr 1 AQ 1 X } l l
Byte Enable ‘ 1111 X l ‘ ‘
Data_Write

AS

Read_Strobe
Write_Strobe

Data_Read

X DO

Ready

Figure 2-3: LMB Generic Read Operation

MicroBlaze Processor Reference Guide
UGO081 (v6.0) June 1, 2006

www.Xilinx.com
1-800-255-7778

51

http://www.xilinx.com

S XILINX® Chapter 2: MicroBlaze Signal Interface Description

Back-to-Back Write Operation

Clk I O e I R N B B
Addr : X____A0 : X Al : X A2 : X : X
Byte Enable X__BEQ . X BEL | X_ BE2 . X X
Data_Write

Read_Strobe
Write_Strobe /

Data_Read

;
|
AS 1
|
|
T
|

]
Ready :

Figure 2-4: LMB Back-to-Back Write Operation

Single Cycle Back-to-Back Read Operation

Clk [N e U I IR e I B IR
Addr 1 X___AQ 1 XAl 1 X A2 1 X } X
Byte_Enable X__BE0D X BE1L . X___BE2 . X ~ X
Data_Write ‘ ‘ ‘ \ \
T S | S
Read_Strobe '/ | | M\ |
Write_Strobe ‘ ‘ ‘ ‘ ‘
Data_Read X X Do X__ DI X__Dpr X
awy | 1 1 1
Figure 2-5: LMB Single Cycle Back-to-Back Read Operation
Back-to-Back Mixed Read/Write Operation
Clk S e IR p IR ps IR pen A B
Addr DA AL X L X
Byte Enable X BEO | X_ BEL X X
Data_Write X Do X X
AS | i i | |
Read_Strobe : : / : : :
Write_Strobe ﬁ : : :
Data_Read ‘ ‘ X__ DI, X X
awy — -~
Figure 2-6: Back-to-Back Mixed Read/Write Operation
52 www.Xxilinx.com MicroBlaze Processor Reference Guide

1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Local Memory Bus (LMB) Interface Description

SXILINX®

Read and Write Data Steering

The MicroBlaze data-side bus interface performs the read steering and write steering
required to support the following transfers:

» hbyte, halfword, and word transfers to word devices

» byte and halfword transfers to halfword devices

* byte transfers to byte devices

MicroBlaze does not support transfers that are larger than the addressed device. These
types of transfers require dynamic bus sizing and conversion cycles that are not supported
by the MicroBlaze bus interface. Data steering for read cycles is shown in Table 2-4, and
data steering for write cycles is shown in Table 2-5

Table 2-4: Read Data Steering (load to Register rD)

Register rD Data

Aigg:rsels]s Byte[B:E;]ab'e Trgri‘zsger (D[0:7] | rD[8:15] | rD[16:23] | rD[24:31]
1 0001 byte Byte3
10 0010 byte Byte2
01 0100 byte Bytel
00 1000 byte ByteO
10 0011 halfword Byte2 Byte3
00 1100 halfword Byte0 Bytel
00 1111 word ByteO Bytel Byte?2 Byte3

Table 2-5: Write Data Steering (store from Register rD)
Write Data Bus Bytes
Address |Byte Enable| Transfer
[30:31] [0:3] Size ByteO Bytel Byte2 Byte3

1 0001 byte rD[24:31]
10 0010 byte rD[24:31]
01 0100 byte rD[24:31]
00 1000 byte rD[24:31]
10 0011 halfword rD[16:23] | rD[24:31]
00 1100 halfword | rD[16:23] | rD[24:31]
00 1111 word rD[0:7] rD[8:15] | rD[16:23] | rD[24:31]

Note that other OPB masters may have more restrictive requirements for byte lane
placement than those allowed by MicroBlaze. OPB slave devices are typically attached
“left-justified” with byte devices attached to the most-significant byte lane, and halfword
devices attached to the most significant halfword lane. The MicroBlaze steering logic fully
supports this attachment method.

MicroBlaze Processor Reference Guide

uUGO081 (v6.0) June 1, 2006

www.Xilinx.com
1-800-255-7778

53

http://www.xilinx.com

SUXILINX®

Chapter 2: MicroBlaze Signal Interface Description

Fast Simplex Link (FSL) Interface Description

The Fast Simplex Link bus provides a point-to-point communication channel between an
output FIFO and an input FIFO. For details on the generic FSL protocol please refer to the
“Fast Simplex Link (FSL) bus” data sheet (DS449).

Master FSL Signal Interface

MicroBlaze may contain up to 8 master FSL interfaces. The master signals are depicted in

Table 2-6.
Table 2-6: Master FSL signals
Signal Name Description VHDL Type Direction
FSLn_M_Clk Clock std_logic input
FSLn_M_Write Write enable signal std_logic output
indicating that data is being
written to the output FSL
FSLn_M_Data Data value written to the std_logic_vector | output
output FSL
FSLn_M_Control Control bit value written to | std_logic output
the output FSL
FSLn_M_Full Full Bit indicating output std_logic input
FSL FIFO is full when set

Slave FSL Signal Interface

MicroBlaze may contain up to 8 slave FSL interfaces. The slave FSL interface signals are
depicted in Table 2-7.

Table 2-7: Slave FSL signals
Signal Name Description VHDL Type Direction

FSLn_S Clk Clock std_logic input

FSLn_S Read Read acknowledge signal std_logic output
indicating that data has been
read from the input FSL

FSLn_S Data Data value currently std_logic_vector | input
available at the top of the
input FSL

FSLn_S_Control Control Bit value currently std_logic input
available at the top of the
input FSL

FSLn_S_Exists Flag indicating that data std_logic input
exists in the input FSL

MicroBlaze Processor Reference Guide
UGO081 (v6.0) June 1, 2006

54 www.Xilinx.com
1-800-255-7778

http://www.xilinx.com

Xilinx CacheLink (XCL) Interface Description XX"JNX@

FSL Transactions

FSL BUS Write Operation

A write to the FSL bus is performed by MicroBlaze using one of the flavors of the put
instruction. A write operations transfers the register contents to an output FSL bus. The
transfer is completed in a single clock cycle for blocking mode writes to the FSL (put and
cput instructions) as long as the FSL FIFO does not become full. If the FSL FIFO is full, the
processor stalls until the FSL full flag is lowered. The non-blocking instructions: nput and
ncput, will always complete in a single clock cycle even if the FSL was full. If the FSL was
full, the write is inhibited and the carry bit is set in the MSR.

FSL BUS Read Operation

A read from the FSL bus is performed by MicroBlaze using one of the flavors of the get
instruction. A read operations transfers the contents of an input FSL to a general purpose
register. The transfer is typically completed in 2 clock cycles for blocking mode reads from
the FSL (get and cget instructions) as long as data exists in the FSL FIFO. If the FSL FIFO is
empty, the processor stalls at this instruction until the FSL exists flag is set. In the non-
blocking mode (nget and ncget instructions), the transfer is completed in two clock cycles
irrespective of whether or not the FSL was empty. In the case the FSL was empty, the
transfer of data does not take place and the carry bit is set in the MSR.

Xilinx CacheLink (XCL) Interface Description

Xilinx CacheLink (XCL) is a high performance solution for external memory accesses. The
MicroBlaze CacheLink interface is designed to connect directly to a memory controller
with integrated FSL buffers, e.g. the MCH_OPB_SDRAM. This method has the lowest
latency and minimal number of instantiations (see Figure 2-7).

Schematic Example MHS code
BEGIN microblaze
Memory BUS_INTERFACE IXCL = myIXCL
Controller
END
_ | BEGIN mch_opb_sdram
[9p] [7p]
L L
BUS_INTERFACE MCHO = myIXCL
END
MicroBlaze

Figure 2-7: CacheLink connection with integrated FSL buffers (only Instruction
cache used in this example)

MicroBlaze Processor Reference Guide www.Xilinx.com 55
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 2: MicroBlaze Signal Interface Description

The MicroBlaze CacheLink interface can also connect to an Fast Simplex Link (FSL)
interfaced memory controller via explicitly instantiated FSL master/slave pair, however
this topology is considered deprecated and is not recommended for new designs.

The interface is only available on MicroBlaze when caches are enabled. It is legal to use a
CacheLink cache on the instruction side or the data side without caching the other.
Memory locations outside the cacheable range are accessed over OPB or LMB. Cached
memory range is accessed over OPB whenever the caches are software disabled (i.e.
MSR[DCE]=0 or MSR[ICE]=0).

The CacheLink cache controllers handle 4 or 8-word cache lines with critical word first. At
the same time the separation from the OPB bus reduces contention for non-cached
Memory accesses.

CacheLink Signal Interface

The CacheLink signals on MicroBlaze are listed in Table 2-8

Table 2-8: MicroBlaze Cache Link signals

Signal Name Description VHDL Type |Direction

ICACHE_FSL_IN_CIk Clock output to I-side std_logic output
return read data FSL

ICACHE_FSL_IN_Read Read signal to I-side std_logic output
return read data FSL.

ICACHE_FSL_IN_Data Read data from I-side std_logic_vector | input
return read data FSL (0to 31)

ICACHE_FSL_IN_Control FSL control-bit from I- std_logic input

side return read data FSL.
Reserved for future use

ICACHE_FSL_IN_Exists More read data exists in |- | std_logic input
side return FSL

ICACHE_FSL_OUT_CIk Clock output to I-side std_logic output
read access FSL

ICACHE_FSL_OUT_Write Write new cache miss std_logic output
access request to I-side
read access FSL

ICACHE_FSL _OUT Data Cache miss access std_logic_vector | output
(=address) to I-side read | (0to 31)
access FSL

ICACHE_FSL_OUT_Control | FSL control-bit to I-side std_logic output

read access FSL. Reserved
for future use

ICACHE_FSL_OUT _Full FSL access buffer for I- std_logic input
side read accesses is full
DCACHE_FSL_IN_ClIk Clock output to D-side std_logic output

return read data FSL

56 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Xilinx CacheLink (XCL) Interface Description

SXILINX®

Table 2-8:

MicroBlaze Cache Link signals

Signal Name Description VHDL Type |Direction
DCACHE_FSL_IN_Read Read signal to D-side std_logic output
return read data FSL

DCACHE_FSL_IN_Data Read data from D-side std_logic_vector | input
return read data FSL (0to 31)

DCACHE_FSL_IN_Control FSL control bit from D- std_logic input
side return read data FSL

DCACHE_FSL_IN_EXxists More read data exists in std_logic input
D-side return FSL

DCACHE_FSL_OUT ClIk Clock output to D-side std_logic; output
read access FSL

DCACHE_FSL_OUT_Write Write new cache miss std_logic; output
access request to D-side
read access FSL

DCACHE_FSL_OUT_ Data Cache miss access (read std_logic_vector | output
address or write address | (0 to 31)
+ write data + byte write
enable) to D-side read
access FSL

DCACHE_FSL_OUT_Control | FSL control-bit to D-side | std_logic; output
read access FSL. Used
with address bits [30 to
31] for read/write and
byte enable encoding.

DCACHE_FSL_OUT_Full FSL access buffer for D- std_logic; input
side read accesses is full

CacheLink Transactions

All individual CacheLink accesses follow the FSL FIFO based transaction protocol:

Access information is encoded over the FSL data and control signals (e.g.
DCACHE_FSL_OUT_Data, DCACHE_FSL_OUT_Control, ICACHE_FSL_IN_Data,
and ICACHE_FSL_IN_Control)

Information is sent (stored) by raising the write enable signal (e.g.
DCACHE_FSL_OUT_Write).

The sender is only allowed to write if the full signal from the receiver is inactive (e.g.
DCACHE_FSL_OUT_Full = 0). The full signal is not used by the instruction cache
controller.

Information is received (loaded) by raising the read signal (e.g.
ICACHE_FSL_IN_Read)

The receiver is only allowed to read as long as the sender signals that new data exists
(e.g. ICACHE_FSL_IN_Exists = 1).

For details on the generic FSL protocol please refer to the “Fast Simplex Link (FSL) bus”
data sheet (DS449).

MicroBlaze Processor Reference Guide

uUGO081 (v6.0) June 1, 2006

www.Xilinx.com 57
1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 2: MicroBlaze Signal Interface Description

The CacheLink solution uses one incoming (slave) and one outgoing (master) FSL per
cache controller. The outgoing FSL is used to send access requests, while the incoming FSL
is used for receiving the requested cache lines. CacheLink also uses a specific encoding of
the transaction information over the FSL data and control signals.

The cache lines used for reads in the CacheLink protocol are 4 words long. Each cache line
is expected to start with the critical word first. l.e. if an access to address 0x348 is a miss,
then the returned cache line should have the following address sequence: 0x348, 0x34c,
0x340, 0x344. The cache controller will forward the first word to the execution unit as well
as store it in the cache memory. This allows execution to resume as soon as the first word is
back. The cache controller then follows through by filling up the cache line with the
remaining 3 words as they are received.

All write operations to the data cache are single-word write-through.

Instruction Cache Read Miss

On a read miss the cache controller will perform the following sequence:

1. Write the word aligned(®) missed address to ICACHE_FSL_OUT _Data, with the
control bit set low (ICACHE_FSL_OUT_Control = 0) to indicate a read access

2. Wait until ICACHE_FSL_IN_Exists goes high to indicate that data is available
3. Store the word from ICACHE_FSL_IN_Data to the cache

4. Forward the critical word to the execution unit in order to resume execution

5. Repeat 3 and 4 for the subsequent 3 words in the cache line

Data Cache Read Miss

On a read miss the cache controller will perform the following sequence:

1. IfDCACHE_FSL_OUT Full =1 then stall until it goes low

2. Write the word aligned! missed address to DCACHE_FSL_OUT_Data, with the
control bit set low (DCACHE_FSL_OUT_Control = 0) to indicate a read access

3. Wait until DCACHE_FSL_IN_Exists goes high to indicate that data is available
4. Store the word from DCACHE_FSL_IN_Data to the cache

5. Forward the critical word to the execution unit in order to resume execution

6. Repeat 3 and 4 for the subsequent 3 words in the cache line

Data Cache Write

Note that writes to the data cache always are write-through, and thus there will be a write
over the CacheLink regardless of whether there was a hit or miss in the cache. On a write
the cache controller will perform the following sequence:

1. IfDCACHE_FSL_OUT_Full =1 then stall until it goes low

2. Write the missed address to DCACHE_FSL_OUT_Data, with the control bit set high
(DCACHE_FSL_OUT_Control = 1) to indicate a write access. The two least-significant
bits (30:31) of the address are used to encode byte and half-word enables: 0b00=byte0,

1. Byte and halfword read misses are naturally expected to return complete words, the cache controller then
provides the execution unit with the correct bytes.

58

www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Debug Interface Descri

ption

SXILINX®

Debug Interface Description

0b01=bytel or halfword0, 0x10=byte2, and 0x11=byte3 or halfwordl. The selection of
half-word or byte access is based on the control bit for the data word in step 4.

If DCACHE_FSL_OUT_Full =1 then stall until it goes low

4. Write the data to be stored to DCACHE_FSL_OUT_Data. For byte and halfword
accesses the data is mirrored accordingly onto byte-lanes. The control bit should be
low (DCACHE_FSL_OUT_Control = 0) for a word or halfword access, and high for a

byte access.

The debug interface on MicroBlaze is designed to work with the Xilinx Microprocessor
Debug Module (MDM) IP core. The MDM is controlled by the Xilinx Microprocessor
Debugger (XMD) through the JTAG port of the FPGA. The MDM can control multiple
MicroBlaze processors at the same time. The debug signals on MicroBlaze are listed in

Table 2-9.
Table 2-9: MicroBlaze Debug signals
Signal Name Description VHDL Type Direction
Dbg_Clk JTAG clock from MDM std_logic input
Dbg_TDI JTAG TDI from MDM std_logic input
Dbg_TDO JTAG TDO to MDM std_logic output
Dbg Reg_En Debug register enable from | std_logic input
MDM
Dbg_Capture JTAG BSCAN capture signal | std_logic input
from MDM
Dbg_Update JTAG BSCAN update signal | std_logic input
from MDM

Trace Interface Description

The MicroBlaze core exports a number of internal signals for trace purposes. This signal
interface is not standardized and new revisions of the processor may not be backward
compatible for signal selection or functionality. Users are recommended not to design
custom logic for these signals, but rather to use them via Xilinx provided analysis IP. The
current set of trace signals were last updated for MicroBlaze v5.00.a and are listed in

Table 2-10.
Table 2-10: MicroBlaze Trace signals
Signal Name Description VHDL Type Direction
Trace_Valid_Instr Valid instruction on trace | std_logic output
port.
Trace_Instruction ! Instruction code std_logic_vector | output
(0to 31)
Trace_PC! Program counter std_logic_vector | output
(0to 31)
MicroBlaze Processor Reference Guide www.xilinx.com 59

uUGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 2: MicroBlaze Signal Interface Description

Table 2-10: MicroBlaze Trace signals

Signal Name Description VHDL Type Direction

Trace_Reg_Writel Instruction writes to the std_logic output
register file

Trace_Reg_Addr! Destination register std_logic_vector | output
address (0to 4)

Trace_MSR_Reg! Machine status register std_logic_vector | output

(0 to10)

Trace_New_Reg_Valuel Destination register std_logic_vector | output
update value (0to 31)

Trace_Exception_Taken! Instruction result in taken | std_logic output
exception.

Trace_Exception_Kind?! Exception type. The std_logic_vector | output
description for the (0to 3)
exception type is
documented in Table 2-11

Trace_Jump_Taken! Branch instruction std_logic output
evaluated true i.e taken

Trace_Delay_Slot! Instruction is in delay slot | std_logic output

Trace_Data_Access! Valid D-side memory std_logic output
access

Trace_Data_Address! Address for D-side std_logic_vector | output
memory access (0to 31)

Trace_Data_Write_Value! | Value for D-side memory | std_logic_vector | output
write access (0 to 31)

Trace_Data_Byte Enablel | Byte enables for D-side std_logic_vector | output
memaory access (0to 3)

Trace_Data_Read! D-side memory accessisa | std_logic output
read

Trace_Data_Writel D-side memory accessisa | std_logic output
write

Trace_DCache_Req Data memory address is std_logic output
within D-Cache range

Trace_DCache_Hit Data memory address is std_logic output
present in D-Cache

Trace_ICache_Req Instruction memory std_logic output
address is in I-Cache
range

Trace_ICache_Hit Instruction memory std_logic output

address is present in I-
Cache

60

www.Xilinx.com

1-800-255-7778

MicroBlaze Processor Reference Guide

UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

MicroBlaze Core Configurability XX"JNX@

Table 2-10: MicroBlaze Trace signals

Signal Name Description VHDL Type Direction

Trace_OF_PipeRun Pipeline advance for std_logic output
Decode stage

Trace_EX _PipeRun Pipeline advance for std_logic output
Execution stage

Trace_MEM_PipeRun Pipeline advance for std_logic output
Memory stage

1. Valid only when Trace_Valid_Instr =1

Table 2-11: Type of Trace Exception

Trace_ Exception_Kind [0:3] Description
0001 Unaligned execption
0010 Illegal Opcode exception
0011 Instruction Bus exception
0100 Data Bus exception
0101 Div by Zero exception
0110 FPU exception
1001 Debug exception
1010 Interrupt
1011 External non maskable break
1100 External maskable break

MicroBlaze Core Configurability

The MicroBlaze core has been developed to support a high degree of user configurability.
This allows tailoring of the processor to meet specific cost/performance requirements.

Configuration is done via parameters that typically: enable, size, or select certain processor
features. E.g. the instruction cache is enabled by setting the C_USE_ICACHE parameter.
The size of the instruction cache, and the cacheable memory range, are all configurable
using: C_CACHE_BYTE_SIZE, C_ICACHE_BASEADDR, and C_ICACHE_HIGHADDR
respectively.

MicroBlaze Processor Reference Guide www.Xilinx.com 61
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 2: MicroBlaze Signal Interface Description

Parameters valid for MicroBlaze v5.00a are listed in Table 2-12. Note that not all of these
are recognized by older versions of MicroBlaze, however the configurability is fully
backward compatibility.

Table 2-12: MPD Parameters

L Allowable | Default |EDK Tool | VHDL
Parameter Name Feature/Description .
Values Value |Assigned| Type
C_FAMILY Target Family grvirtex2 virtex2 | yes string
gvirtex2
spartan3
spartan3e
virtex2
virtex2p
virtex4
virtex5
C_DATA SIZE Data Size 32 32 NA integer
C_DYNAMIC _BUS SIZING Legacy 1 1 NA integer
C_SCO Xilinx internal 0 0 NA integer
C_PVR Processor version register | 0,1, 2 0 integer
mode selection
C_PVR_USER1 Processor version register | 0x00-0xff 0x00 std_logi
USERL1 constant c_vector
(0to7)
C_PVR_USER2 Processor version register | 0x00000000- | 0x0000 std_logi
USER2 constant OxfFfffff 0000 c_vector
(0to 31)
C_RESET_MSR Reset value for MSR 0x00, 0x20, 0x00 std_logi
register 0x80, 0xal c_vector
C_INSTANCE Instance Name Any microb | yes string
instance laze
name
C_D_OPB Data side OPB interface 0,1 1 yes integer
C_D_LMB Data side LMB interface 0,1 1 yes integer
C_| OPB Instruction side OPB 0,1 1 yes integer
interface
C_|I LMB Instruction side LMB 0,1 1 yes integer
interface
C_USE_BARREL Include barrel shifter 0,1 0 integer
C_USE DIV Include hardware divider | 0,1 0 integer
C _USE_ HW_MUL Include hardware 0,1 1 integer

multiplier (Virtex2 and
later)

62

www.Xilinx.com
1-800-255-7778

MicroBlaze Processor Reference Guide
UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

MicroBlaze Core Configurability XX"JNX@

Table 2-12: MPD Parameters

Allowable | Default |EDK Tool | VHDL

Parameter Name Feature/Description Values Value |Assigned| Type

C_USE_FPU Include hardware floating | 0, 1 0 integer
point unit (Virtex2 and
later)

C_USE_MSR_INSTR Enable use of instructions: | 1 1 integer
MSRSET and MSRCLR

C_USE_PCMP_INSTR Enable use of instructions: | 1 1 integer
PCMPBF, PCMPEQ, and
PCMPNE

C_UNALIGNED_EXCEPTION Enable exception handling | 0, 1 0 integer
for unaligned data
accesses

C_ILL_OPCODE_EXCEPTION Enable exception handling | 0, 1 0 integer
for illegal op-code

C_IOPB_BUS_EXCEPTION Enable exception handling | 0, 1 0 integer

for IOPB bus error

C_DOPB_BUS EXCEPTION Enable exception handling | 0, 1 0 integer
for DOPB bus error

C_DIV_ZERO_EXCEPTION Enable exception handling | 0, 1 0 integer
for division by zero

C_FPU_EXCEPTION Enable exception handling | 0, 1 0 integer
for hardware floating
point unit exceptions

C_OPCODE_0x0_ILLEGAL Detect opcode 0x0 as an 0,1 0 integer
illegal instruction

C_DEBUG_ENABLED MDM Debug interface 0,1 0 integer

C_NUMBER_OF_PC BRK Number of hardware 0-8 1 integer
breakpoints

C_NUMBER_OF RD_ADDR_BRK | Number of read address 0-4 0 integer
watchpoints

C_NUMBER_OF WR_ADDR_BRK | Number of write address | 0-4 0 integer
watchpoints

C_INTERRUPT_IS_EDGE Level/Edge Interrupt 0,1 0 integer

C_EDGE_IS POSITIVE Negative/Positive Edge 0,1 1 integer
Interrupt

C_FSL_LINKS Number of FSL interfaces | 0-8 0 yes integer

C_FSL_DATA SIZE FSL data bus size 32 32 NA integer

C_ICACHE_BASEADDR Instruction cache base 0x00000000- | 0x0000 std_logi
address OXFFFFFFFF | 0000 c_vector

MicroBlaze Processor Reference Guide www.xilinx.com 63

uUGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 2: MicroBlaze Signal Interface Description

instead of OPB for data

Table 2-12: MPD Parameters
I Allowable | Default |[EDK Tool | VHDL
Parameter Name Feature/Description :
Values Value |Assigned| Type
C_ICACHE_HIGHADDR Instruction cache high 0x00000000 - | Ox3FFF std_logi
address OXFFFFFFFF | FFFF c_vector
C _USE_ICACHE Instruction cache 0,1 0 integer
C_ALLOW_ICACHE_WR Instruction cache write 0,1 1 integer
enable
C_ICACHE_LINELEN Instruction cache line 4,8 4 integer
length
C_ADDR_TAG BITS Instruction cache address | 0-21 17 yes integer
tags
C_CACHE_BYTE_SIZE Instruction cache size 2048, 4096, 8192 integer
8192, 16384,
32768,
655361
C_ICACHE_USE_FSL Cache over CacheLink 1 1 integer
instead of OPB for
instructions
C_DCACHE BASEADDR Data cache base address 0x00000000- | 0x0000 std_logi
OXFFFFFFFF | 0000 C_vector
C_DCACHE_HIGHADDR Data cache high address 0x00000000 - | Ox3FFF std_logi
OXFFFFFFFF | FFFF c_vector
C_USE_DCACHE Data cache 0,1 0 integer
C_ALLOW _DCACHE_WR Data cache write enable 0,1 1 integer
C_DCACHE_LINELEN Data cache line length 4,8 4 integer
C_DCACHE_ADDR_TAG Data cache address tags 0-20 17 yes integer
C_DCACHE_BYTE_SIZE Data cache size 2048, 4096, 8192 integer
8192, 16384,
32768,
655362
C_DCACHE_USE_FSL Cache over CacheLink 1 1 integer

1. Not all sizes are permitted in all architectures. The cache will use between 1 and 32 RAMB primitives.
2. Not all sizes are permitted in all architectures. The cache will use between 1 and 32 RAMB primitives.

64

www.Xilinx.com

1-800-255-7778

MicroBlaze Processor Reference Guide
UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

S XILINX®
Chapter 3

MicroBlaze Application Binary
Interface

Scope
This document describes MicroBlaze Application Binary Interface (ABI), which is
important for developing software in assembly language for the soft processor. The
MicroBlaze GNU compiler follows the conventions described in this document. Hence any
code written by assembly programmers should also follow the same conventions to be
compatible with the compiler generated code. Interrupt and Exception handling is also
explained briefly in the document.
Data Types
The data types used by MicroBlaze assembly programs are shown in Table 3-1. Data types
such as data8, datal6, and data32 are used in place of the usual byte, half-word, and
word. egister
Table 3-1: Data types in MicroBlaze assembly programs
MicroBlaze data types Corresponding .
(for assembly programs) | ANSI C data types Size (bytes)
data8 char 1
datal6 short 2
data3?2 int 4
data32 long int 4
data32 float 4
data32 enum 4
datal6/data32 pointer2 2/4
a.Pointers to small data areas, which can be accessed by global pointers are
datals6.
MicroBlaze Processor Reference Guide www.xilinx.com 65

uUGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 3: MicroBlaze Application Binary Interface

Register Usage Conventions

The register usage convention for MicroBlaze is given in Table 3-2.

Table 3-2: Register usage conventions

Register Type Enforcement Purpose
RO Dedicated HW Value 0
R1 Dedicated SW Stack Pointer
R2 Dedicated SW Read-only small data area anchor
R3-R4 Volatile SW Return Values/Temporaries
R5-R10 Volatile SW Passing parameters/Temporaries
R11-R12 | Volatile SW Temporaries
R13 Dedicated SW Read-write small data area anchor
R14 Dedicated HW Return address for Interrupt
R15 Dedicated SW Return address for Sub-routine
R16 Dedicated HW Return address for Trap (Debugger)
R17 Dedicated HW, if configured | Return Address for Exceptions

to support HW

exceptions, else

SW
R18 Dedicated SW Reserved for Assembler
R19-R31 | Non-volatile | SW Must be saved across function calls.

Callee-save

RPC Special HW Program counter
RMSR Special HW Machine Status Register
REAR Special HW Exception Address Register
RESR Special HW Exception Status Register
RFSR Special HW Floating Point Status Register
RBTR Special HW Branch Target Register
RPVRO- Special HW Processor Version Register 0 thru 11
RPVR11

The architecture for MicroBlaze defines 32 general purpose registers (GPRs). These
registers are classified as volatile, non-volatile, and dedicated.

The volatile registers (a.k.a caller-save) are used as temporaries and do not retain
values across the function calls. Registers R3 through R12 are volatile, of which R3
and R4 are used for returning values to the caller function, if any. Registers R5
through R10 are used for passing parameters between sub-routines.

Registers R19 through R31 retain their contents across function calls and are hence

termed as non-volatile registers (a.k.a callee-save). The callee function is expected to
save those non-volatile registers, which are being used. These are typically saved to
the stack during the prologue and then reloaded during the epilogue.

66

MicroBlaze Processor Reference Guide
UGO081 (v6.0) June 1, 2006

www.Xilinx.com
1-800-255-7778

http://www.xilinx.com

Stack Convention

SXILINX®

Stack Convention

Certain registers are used as dedicated registers and programmers are not expected to
use them for any other purpose.

L4

L4

Registers R14 through R17 are used for storing the return address from interrupts,
sub-routines, traps, and exceptions in that order. Sub-routines are called using the
branch and link instruction, which saves the current Program Counter (PC) onto
register R15.

Small data area pointers are used for accessing certain memory locations with 16
bit immediate value. These areas are discussed in the memory model section of
this document. The read only small data area (SDA) anchor R2 (Read-Only) is
used to access the constants such as literals. The other SDA anchor R13 (Read-
Write) is used for accessing the values in the small data read-write section.

Register R1 stores the value of the stack pointer and is updated on entry and exit
from functions.

Register R18 is used as a temporary register for assembler operations.

MicroBlaze includes special purpose registers such as: program counter (rpc),
machine status register (rmsr), exception status register (resr), exception address
register (rear), and floating point status register (rfsr). These registers are not mapped
directly to the register file and hence the usage of these registers is different from the
general purpose registers. The value of a special purpose registers can be transferred
to a general purpose register by using nt s and nf s instructions (For more details
refer to the “MicroBlaze Application Binary Interface” chapter).

The stack conventions used by MicroBlaze are detailed in Figure 3-1

The shaded area in Figure 3-1 denotes a part of the caller function’s stack frame, while the
unshaded area indicates the callee function’s frame. The ABI conventions of the stack
frame define the protocol for passing parameters, preserving non-volatile register values
and allocating space for the local variables in a function. Functions which contain calls to
other sub-routines are called as non-leaf functions, These non-leaf functions have to create
a new stack frame area for its own use. When the program starts executing, the stack
pointer will have the maximum value. As functions are called, the stack pointer is
decremented by the number of words required by every function for its stack frame. The
stack pointer of a caller function will always have a higher value as compared to the callee
function.

MicroBlaze Processor Reference Guide www.Xilinx.com 67

uUGO081 (v6.0) June 1, 2006

1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 3: MicroBlaze Application Binary Interface

Figure 3-1: Stack Convention

High Address

Function Parameters for called sub-routine
(Arg n ..Argl)
(Optional: Maximum number of arguments

required for any called procedure from the
current procedure.)

Old Stack Pointer | Link Register (R15)

Callee Saved Register (R31....R19)

(Optional: Only those registers which are used
by the current procedure are saved)

Local Variables for Current Procedure

(Optional: Present only if Locals defined in the
procedure)

Functional Parameters (Arg n .. Arg 1)

(Optional: Maximum number of arguments
required for any called procedure from the
current procedure)

New Stack
Pointer

Link Register

Low Address

Consider an example where Funcl calls Func2, which in turn calls Func3. The stack
representation at different instances is depicted in Figure 3-2. After the call from Func 1 to
Func 2, the value of the stack pointer (SP) is decremented. This value of SP is again
decremented to accommodate the stack frame for Func3. On return from Func 3 the value
of the stack pointer is increased to its original value in the function, Func 2.

Details of how the stack is maintained are shown in Figure 3-2.

High Memory
Func 1 Func 1 Func 1 Func 1
—>
SP
Func 2 Func 2 Func 2
—> —
SP SP
Func 3
y
—>
Low Memory SP X9584
68 www.Xilinx.com MicroBlaze Processor Reference Guide

1-800-255-7778

UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Memory Model XX"JNX@

Figure 3-2: Stack Frame

Calling Convention

The caller function passes parameters to the callee function using either the registers (R5
through R10) or on its own stack frame. The callee uses the caller’s stack area to store the
parameters passed to the callee.

Refer to Figure 3-2. The parameters for Func 2 are stored either in the registers R5 through
R10 or on the stack frame allocated for Func 1.

Memory Model

The memory model for MicroBlaze classifies the data into four different parts:

Small data area

Global initialized variables which are small in size are stored in this area. The threshold for
deciding the size of the variable to be stored in the small data area is set to 8 bytes in the
MicroBlaze C compiler (mb-gcc), but this can be changed by giving acommand line option
to the compiler. Details about this option are discussed in the GNU Compiler Tools chapter.
64K bytes of memory is allocated for the small data areas. The small data area is accessed
using the read-write small data area anchor (R13) and a 16-bit offset. Allocating small
variables to this area reduces the requirement of adding Imm instructions to the code for
accessing global variables. Any variable in the small data area can also be accessed using
an absolute address.

Data area

Comparatively large initialized variables are allocated to the data area, which can either be
accessed using the read-write SDA anchor R13 or using the absolute address, depending
on the command line option given to the compiler.

Common un-initialized area

Un-initialized global variables are allocated in the common area and can be accessed either
using the absolute address or using the read-write small data area anchor R13.

Literals or constants

Constants are placed into the read-only small data area and are accessed using the read-
only small data area anchor R2.

The compiler generates appropriate global pointers to act as base pointers. The actual
values of the SDA anchors are decided by the linker, in the final linking stages. For more
information on the various sections of the memory please refer to the Address Management
chapter. The compiler generates appropriate sections, depending on the command line
options. Please refer to the GNU Compiler Tools chapter for more information about these
options.

MicroBlaze Processor Reference Guide www.Xilinx.com 69
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 3: MicroBlaze Application Binary Interface

Interrupt and Exception Handling

MicroBlaze assumes certain address locations for handling interrupts and exceptions as
indicated in Table 3-3. At these locations, code is written to jump to the appropriate
handlers.

Table 3-3: Interrupt and Exception Handling

On Hardware jumps to Software Labels
Start / Reset 0x0 _start
User exception 0x8 _exception_handler
Interrupt 0x10 _interrupt_handler
Break (HW/SW) 0x18 -
Hardware exception 0x20 _hw_exception_handler
Reserved by Xilinx for 0x28 - Ox4F i
future use

The code expected at these locations is as shown in Figure 3-3. For programs compiled
without the -xI-mode-xmdstub compiler option, the crt0.0 initialization file is passed by
the mb-gcc compiler to the mb-Id linker for linking. This file sets the appropriate addresses
of the exception handlers.

For programs compiled with the -xI-mode-xmdstub compiler option, the crtl.o
initialization file is linked to the output program. This program has to be run with the
xmdstub already loaded in the memory at address location 0x0. Hence at run-time, the
initialization code in crtl.0 writes the appropriate instructions to location 0x8 through 0x14
depending on the address of the exception and interrupt handlers.

Figure 3-3: Code for passing control to exception and interrupt handlers

0x00: bri _startl

0x04: nop

0x08: i mm hi gh bits of address (user exception handl er)
0xOc: bri _exception_handl er

0x10: i mm hi gh bits of address (interrupt handler)
0x14: bri _interrupt_handl er

0x20: i mm hi gh bits of address (HWexception handl er)
0x24: bri _hw_exception_handl er

MicroBlaze allows exception and interrupt handler routines to be located at any address
location addressable using 32 bits. The user exception handler code starts with the label
_exception_handler, the hardware exception handler starts with _hw_exception_handler,
while the interrupt handler code starts with the label _interrupt_handler.

In the current MicroBlaze system, there are dummy routines for interrupt and exception
handling, which you can change. In order to override these routines and link your
interrupt and exception handlers, you must define the interrupt handler code with an
attribute interrupt_handler. For more details about the use and syntax of the interrupt
handler attribute, please refer to the GNU Compiler Tools chapter in the document: UG111
Embedded System Tools Reference Manual.

70 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

$7 XILINX®

Chapter 4

MicroBlaze Instruction Set Architecture

Summary

Notation

This chapter provides a detailed guide to the Instruction Set Architecture of MicroBlaze™.

The symbols used throughout this document are defined in Table 4-1.

Table 4-1: Symbol notation

Symbol

Meaning

+

Add

Subtract

X

Multiply

Bitwise logical AND

Bitwise logical OR

O|lo| O

Bitwise logical XOR

x|

Bitwise logical complement of x

Assignment

Right shift

Left shift

Register x

Bit i in register x

Bits i through j in register x

Equal comparison

Not equal comparison

Greater than comparison

Greater than or equal comparison

Less than comparison

Less than or equal comparison

sext(x)

Sign-extend x

MicroBlaze Processor Reference Guide

uUGO081 (v6.0) June 1, 2006

www.Xilinx.com
1-800-255-7778

71

http://www.xilinx.com

SUXILINX®

Chapter 4: MicroBlaze Instruction Set Architecture

Table 4-1: Symbol notation

Symbol Meaning
Mem(x) Memory location at address x
FSLx FSL interface x
LSW(x) Least Significant Word of x
isDnz(x) Floating point: true if x is denormalized
isInfinite(x) Floating point: true if X is +co Or -0

isPoslInfinite(x)

Floating point: true if X is +co

isNeglnfinite(x)

Floating point: true if x -oo

isNaN(x) Floating point: true if x is a quiet or signalling NaN
isZero(x) Floating point: true if x is +0 or -0
isQuietNaN(x) | Floating point: true if x is a quiet NaN
isSigNaN(x) | Floating point: true if x is a signaling NaN

signZero(x)

Floating point: return +0 for x > 0,and -0 if x <0

signinfinite(x)

Floating point: return +oo for x >0, and -o if x <0

Formats
MicroBlaze uses two instruction formats: Type A and Type B.
Type A
Type A is used for register-register instructions. It contains the opcode, one destination and
two source registers.
Opcode Destination Reg| Source Reg A | SourceRegB |0 |0|(0|0|0|0|0O|0O|0|0]|O
0 6 11 16 21 31
Type B
Type B is used for register-immediate instructions. It contains the opcode, one destination
and one source registers, and a source 16-bit immediate value.
Opcode Destination Reg| Source Reg A Immediate Value
0 6 11 16 31

Instructions

MicroBlaze instructions are described next. Instructions are listed in alphabetical order. For
each instruction Xilinx provides the mnemonic, encoding, a description of it, pseudocode
of its semantics, and a list of registers that it modifies.

MicroBlaze Processor Reference Guide
UGO081 (v6.0) June 1, 2006

72 www.Xilinx.com
1-800-255-7778

http://www.xilinx.com

Instructions XX"JNX@

add Arithmetic Add
add D, rA, B Add
addc D, rA, B Add with Carry
addk rD, rA, 1B Add and Keep Carry
addkc rD, rA, 1B Add with Carry and Keep Carry
0 0 0K CO rD rA rB 0O 0 0OOOOOOOTOTDO
0 6 11 16 21 31
Description

The sum of the contents of registers rA and rB, is placed into register rD.

Bit 3 of the instruction (labeled as K in the figure) is set to a one for the mnemonic addk. Bit
4 of the instruction (labeled as C in the figure) is set to a one for the mnemonic addc. Both
bits are set to a one for the mnemonic addke.

When an add instruction has bit 3 set (addk, addkc), the carry flag will Keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 is cleared (add,
addc), then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to a one (addc, addkc), the content of the carry flag
(MSR][C]) affects the execution of the instruction. When bit 4 is cleared (add, addk), the
content of the carry flag does not affect the execution of the instruction (providing a normal
addition).

Pseudocode

if C=0 then

(rD) « (rA + (rB)

el se

(rD) < (rA) + (rB) + MBR (]
if K=0 then

MSR[C] < CarryQut

Registers Altered
« 1D
« MSR[C]
Latency
1cycle
Note

The C bit in the instruction opcode is not the same as the carry bit in the MSR.

The “add r0, r0, r0” (= 0x00000000) instruction is never used by the compiler and usually
indicates uninitialized memory. If you are using illegal instruction exceptions you can trap
these instructions by setting the MicroBlaze option C_OPCODE_0x0_ILLEGAL=1

MicroBlaze Processor Reference Guide www.Xilinx.com 73
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

addi Arithmetic Add Immediate

addi D, rA, IMM Add Immediate
addic rD, rA, IMM Add Immediate with Carry
addik D, rA, IMM Add Immediate and Keep Carry
addikc D, rA, IMM Add Immediate with Carry and Keep Carry

0 01 KCO rD rA IMM

0 6 11 16 31

Description

The sum of the contents of registers rA and the value in the IMM field, sign-extended to 32
bits, is placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to a
one for the mnemonic addik. Bit 4 of the instruction (labeled as C in the figure) is set to a

one for the mnemonic addic. Both bits are set to a one for the mnemonic addike.

When an addi instruction has bit 3 set (addik, addikc), the carry flag will Keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addi,
addic), then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to a one (addic, addikc), the content of the carry flag
(MSR][C]) affects the execution of the instruction. When bit 4 is cleared (addi, addik), the
content of the carry flag does not affect the execution of the instruction (providing a normal
addition).

Pseudocode

if C=0 then
(rD) « (rA) + sext(IMV
el se

(rD) < (rA) + sext(IMV) + MSR[C]
if K=0 then
MSR[C] < CarryQut
Registers Altered
« 1D
MSR[C]
Latency
1cycle

Notes

The C bit in the instruction opcode is not the same as the carry bit in the MSR.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

74 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

and Logical AND
and rD, rA, 1B
10000 1 rD rA rB 000O0O0OOOT OO OO
0 6 11 16 21 31
Description

The contents of register rA are ANDed with the contents of register rB; the result is placed
into register rD.

Pseudocode
(rb) « (rA) U (1B)
Registers Altered
« D
Latency

1 cycle

MicroBlaze Processor Reference Guide www.Xilinx.com 75
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

andi Logial AND with Immediate
andi rD, rA, IMM
1 01 0 0 1 rD rA IMM
0 6 11 16 31
Description

The contents of register rA are ANDed with the value of the IMM field, sign-extended to 32
bits; the result is placed into register rD.

Pseudocode
(rD) < (rA) Osext(1M)
Registers Altered
« D
Latency
1cycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an IMM instruction. See the imm instruction for details on using
32-bit immediate values.

76 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

andn Logical AND NOT
andn rD, rA, rB
1000 1 1 rD rA rB 000O0OOOOOT 0O
0 6 11 16 21 31
Description

The contents of register rA are ANDed with the logical complement of the contents of
register rB; the result is placed into register rD.

Pseudocode
(rD) « (rA) 0(TB)
Registers Altered
« D
Latency
1cycle

MicroBlaze Processor Reference Guide www.Xilinx.com 77
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

an d ni Logical AND NOT with Immediate
andni rD, rA, IMM
101011 D A MM
0 6 1 16 31
Description

The IMM field is sign-extended to 32 bits. The contents of register rA are ANDed with the
logical complement of the extended IMM field; the result is placed into register rD.

Pseudocode
(rD) < (rA) O(sext(TvW)
Registers Altered
« D
Latency
1cycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

78 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

beq Branch if Equal
beq rA, rB Branch if Equal
beqd rA, rB Branch if Equal with Delay
1 0011 1/DO0OO0GO0DO rA rB 0 00OO0OOOOOOTG OO
0 6 11 16 21 31
Description

Branch if rA is equal to 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic beqd will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA=20then
PC —« PC + rB
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
« PC

Latency
1 cycle (if branch is not taken)
2 cycles (if branch is taken and the D bit is set)
3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com 79
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

beq| Branch Immediate if Equal
beqi rA, IMM Branch Immediate if Equal
beqid rA, IMM Branch Immediate if Equal with Delay
10111 1/DO0OOUO0O rA IMM
0 6 11 16 31
Description

Branch if rA is equal to 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic beqid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA=20then
PC « PC + sext(I MY
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
« PC

Latency

1 cycle (if branch is not taken)
2 cycles (if branch is taken and the D bit is set)
3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

80 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions

SXILINX®

bge

Branch if Greater or Equal

bge rA, rB Branch if Greater or Equal
bged rA, rB Branch if Greater or Equal with Delay

10011 1/DO01TVO0O1 rA rB 0 000 OOOOTODODO

0

6 11 16 21 31

Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of rB. The
target of the branch will be the instruction at address PC + rB.

The mnemonic bged will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA>=0 then
PC « PC + rB
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
« PC

Latency
1 cycle (if branch is not taken)
2 cycles (if branch is taken and the D bit is set)
3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com 81
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

bg el Branch Immediate if Greater or Equal
bgei rA, IMM Branch Immediate if Greater or Equal
bgeid rA, IMM Branch Immediate if Greater or Equal with Delay
1 0111 1/DO01TO01 rA IMM
0 6 11 16 31
Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of IMM.
The target of the branch will be the instruction at address PC + IMM.

The mnemonic bgeid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA>=0 then
PC « PC + sext(I MY
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
« PC

Latency

1 cycle (if branch is not taken)
2 cycles (if branch is taken and the D bit is set)
3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

82 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

bgt Branch if Greater Than
bgt rA, rB Branch if Greater Than
bgtd rA, rB Branch if Greater Than with Delay
10011 1/DO0O1O0TO rA rB 0O 0 0OOOOOOTOGODO
0 6 11 16 21 31
Description

Branch if rA is greater than 0, to the instruction located in the offset value of rB. The target
of the branch will be the instruction at address PC + rB.

The mnemonic bgtd will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (i.e. in the branch delay slot) is allowed to complete execution before executing
the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

If rA>0 then
PC —« PC + rB
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
« PC

Latency
1 cycle (if branch is not taken)
2 cycles (if branch is taken and the D bit is set)
3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com 83
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

bg“ Branch Immediate if Greater Than
bgti rA, IMM Branch Immediate if Greater Than
bgtid rA, IMM Branch Immediate if Greater Than with Delay
10111 1/DO01O0UO rA IMM
0 6 11 16 31
Description

Branch if rA is greater than 0, to the instruction located in the offset value of IMM. The
target of the branch will be the instruction at address PC + IMM.

The mnemonic bgtid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA>0 then
PC « PC + sext(I MY
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
« PC

Latency

1 cycle (if branch is not taken)
2 cycles (if branch is taken and the D bit is set)
3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

84 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

ble Branch if Less or Equal
ble rA, rB Branch if Less or Equal
bled rA, rB Branch if Less or Equal with Delay
1 0011 1 DOGO0Z11 rA rB 0 00OO0OOOOOOTG OO
0 6 11 16 21 31
Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of rB. The
target of the branch will be the instruction at address PC + rB.

The mnemonic bled will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (i.e. in the branch delay slot) is allowed to complete execution before executing
the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

If rA<=0 then
PC « PC + rB
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
« PC
Latency
1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)
3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com 85
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

blei Branch Immediate if Less or Equal
blei rA, IMM Branch Immediate if Less or Equal
bleid rA, IMM Branch Immediate if Less or Equal with Delay
10111 1/DO0O0OT11 rA IMM
0 6 11 16 31
Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of IMM. The
target of the branch will be the instruction at address PC + IMM.

The mnemonic bleid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA<=0 then
PC « PC + sext(I MY
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
« PC

Latency

1 cycle (if branch is not taken)
2 cycles (if branch is taken and the D bit is set)
3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

86 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

blt Branch if Less Than
blt rA, rB Branch if Less Than
bltd rA, rB Branch if Less Than with Delay
1 0011 1/Db0O0OTZ10O0 rA rB 00 00 OO O0OOO0OTUOTPO
0 6 11 16 21 31
Description

Branch if rA is less than 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bltd will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (i.e. in the branch delay slot) is allowed to complete execution before executing
the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

If rA<O0then
PC —« PC + rB
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
« PC

Latency
1 cycle (if branch is not taken)
2 cycles (if branch is taken and the D bit is set)
3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com 87
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

blti Branch Immediate if Less Than
blti rA, IMM Branch Immediate if Less Than
bltid rA, IMM Branch Immediate if Less Than with Delay
101 11 1/DO0O0U1TO0 rA IMM
0 6 11 16 31
Description

Branch if rA is less than 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bltid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (i.e. in the branch delay slot) is allowed to complete execution before executing
the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

If rA<O0then
PC « PC + sext(I MY
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
« PC

Latency

1 cycle (if branch is not taken)
2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

88 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

bne Branch if Not Equal
bne rA, rB Branch if Not Equal
bned rA, rB Branch if Not Equal with Delay
1 0011 1/ DOGO0O01 rA rB 0 00OO0OOOOOOTG OO
0 6 11 16 21 31
Description

Branch if rA not equal to 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bned will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA# 0 then
PC —« PC + rB
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
« PC

Latency
1 cycle (if branch is not taken)
2 cycles (if branch is taken and the D bit is set)
3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com 89
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

bnei Branch Immediate if Not Equal
bnei rA, IMM Branch Immediate if Not Equal
bneid rA, IMM Branch Immediate if Not Equal with Delay
1 0111 1|DO0O0O0O1 rA IMM
0 6 11 16 31
Description

Branch if rA not equal to 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bneid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (i.e. in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so
the instruction to be executed after the branch is the target instruction.

Pseudocode

If rA# 0 then
PC « PC + sext(I MY
el se
PC « PC + 4
if D=1 then
allow following instruction to conplete execution

Registers Altered
« PC

Latency

1 cycle (if branch is not taken)
2 cycles (if branch is taken and the D bit is set)
3 cycles (if branch is taken and the D bit is not set)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

90 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

br Unconditional Branch
br rB Branch
bra rB Branch Absolute
brd B Branch with Delay
brad B Branch Absolute with Delay
brid rD, rB Branch and Link with Delay
brald D, rB Branch Absolute and Link with Delay
1 001 1 0 rD DAL 0O rB 0O 0O OO0 0O O0OOOOTU OO
0 6 11 16 21 31
Description

Branch to the instruction located at address determined by rB.

The mnemonics brld and brald will set the L bit. If the L bit is set, linking will be
performed. The current value of PC will be stored in rD.

The mnemonics bra, brad and brald will set the A bit. If the A bit is set, it means that the
branch is to an absolute value and the target is the value in rB, otherwise, it is a relative
branch and the target will be PC + rB.

The mnemonics brd, brad, brld and brald will set the D bit. The D bit determines whether
there is a branch delay slot or not. If the D bit is set, it means that there is a delay slot and
the instruction following the branch (i.e. in the branch delay slot) is allowed to complete

execution before executing the target instruction. If the D bit is not set, it means that there
is no delay slot, so the instruction to be executed after the branch is the target instruction.

Pseudocode

if L=1then

(rD) « PC

if A=1then

PC — (rB)

el se

PC « PC + (rB)

if D=1 then

allow following instruction to conplete execution

Registers Altered

« D
« PC

Latency

2 cycles (if the D bit is set)
3 cycles (if the D bit is not set)

MicroBlaze Processor Reference Guide www.Xilinx.com 91
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

Note

The instructions brl and bral are not available.

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

92 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

bri Unconditional Branch Immediate
bri IMM Branch Immediate
brai IMM Branch Absolute Immediate
brid IMM Branch Immediate with Delay
braid IMM Branch Absolute Immediate with Delay
brlid rD, IMM Branch and Link Immediate with Delay
bralid rD, IMM Branch Absolute and Link Immediate with Delay
101 1 10 rD DAL 0O IMM
0 6 11 16 31
Description

Branch to the instruction located at address determined by IMM, sign-extended to 32 bits.

The mnemonics brlid and bralid will set the L bit. If the L bit is set, linking will be
performed. The current value of PC will be stored in rD.

The mnemonics brai, braid and bralid will set the A bit. If the A bit is set, it means that the
branch is to an absolute value and the target is the value in IMM, otherwise, it is a relative
branch and the target will be PC + IMM.

The mnemonics brid, braid, brlid and bralid will set the D bit. The D bit determines
whether there is a branch delay slot or not. If the D bit is set, it means that there is a delay
slot and the instruction following the branch (i.e. in the branch delay slot) is allowed to
complete execution before executing the target instruction. If the D bit is not set, it means
that there is no delay slot, so the instruction to be executed after the branch is the target
instruction.

Pseudocode

if L=1then

(rD) « PC

if A=1then

PC — (1M

el se

PC —« PC + (IMV

if D=1 then

allow following instruction to conplete execution

Registers Altered

« D
« PC

Latency

2 cycles (if the D bit is set)
3 cycles (if the D bit is not set)

MicroBlaze Processor Reference Guide www.Xilinx.com 93
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

Notes

The instructions brli and brali are not available.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

94 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

brk Break

brk rD, rB
1 00 1 1 0 rD 01 1 00 rB 0 0O OO0 OO OOTOTU OO
0 6 11 16 21 31
Description

Branch and link to the instruction located at address value in rB. The current value of PC
will be stored in rD. The BIP flag in the MSR will be set.

Pseudocode
(rD « PC
PC « (rB)
MBR[BIP] « 1
Registers Altered

« D
« PC
 MSR[BIP]

Latency

3 cycles

MicroBlaze Processor Reference Guide www.Xilinx.com 95
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 4: MicroBlaze Instruction Set Architecture

brki

Break Immediate

brki D, IMM
1 01 1 10 rD 01 1 00 IMM
6 11 16 31
Description

Branch and link to the instruction located at address value in IMM, sign-extended to 32
bits. The current value of PC will be stored in rD. The BIP flag in the MSR will be set.

Pseudocode

(rD « PC
PC — sext(IMV)
MBRIBIP] < 1

Registers Altered

« D
« PC
 MSR[BIP]

Latency
3 cycles
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

96

www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

bs Barrel Shift
bsrl rD, rA, 1B Barrel Shift Right Logical
bsra rD, rA, B Barrel Shift Right Arithmetical
bsll rD, rA, 1B Barrel Shift Left Logical
01 0 0 01 rD rA rB S T OOOOUOO OO OO OO
0 6 11 16 21 31
Description

Shifts the contents of register rA by the amount specified in register rB and puts the result
in register rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the
left. The mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed
is Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is
Logical.

Pseudocode

if S=1 then
(rD) « (rA) << (rB)[27:31]
el se
if T=1then
if ((rB)[27:31]) # 0 then
(rD)[0:(rB)[27:31]-1] < (rA)[0]
(rD)[(rB)[27:31]:31] « (rA) >>(rB)[27:31]
el se
(rD < (rA
el se
(rD) « (rA) >>(rB)[27:31]

Registers Altered
« D
Latency
1 cycle.
Note

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel
shift instructions (C_USE_BARREL=1).

MicroBlaze Processor Reference Guide www.Xilinx.com 97
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

bsi Barrel Shift Immediate
bsrli rD, rA, IMM Barrel Shift Right Logical Immediate
bsrai rD, rA, IMM Barrel Shift Right Arithmetical Immediate
bslli D, rA, IMM Barrel Shift Left Logical Immediate
011 001 rD rA 0O 00O O OIS TOOG ODO IMM
0 6 11 16 21 27 31
Description

Shifts the contents of register rA by the amount specified by IMM and puts the result in
register rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the
left. The mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed
is Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is
Logical.

Pseudocode

if S=1 then

(rD) « (rA) <<IW

el se

if T=1 then
if IMM# 0 then
(rD[0:IMH1] « (rA]0]
(rD[IMM31] « (rA >1W
el se
(rD <« (rA)

el se
(rD <« (rA) >>1W

Registers Altered
« D
Latency
1cycle

Notes

These are not Type B Instructions. There is no effect from a preceding imm instruction.

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel
shift instructions (C_USE_BARREL=1).

98 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions

SXILINX®

cm p Integer Compare
cmp rD, rA, 1B compare rB with rA (signed)
cmpu D, rA, B compare rB with rA (unsigned)
0 0 01 0 1 rD rA rB 0 0 0OOOOO0OO0OO0OUI12
0 6 11 16 21 31
Description

The contents of register rA is subtracted from the contents of register rB and the result is

placed into register rD.

The MSB bit of rD is adjusted to shown true relation between rA and rB. If the U bit is set,
rA and rB is considered unsigned values. If the U bit is clear, rA and rB is considered

signed values.

Pseudocode

(rD) « (rB) + (rA)+1
(rD(MSB) < (rA) > (rB)

Registers Altered
« 1D
Latency

1 cycle.

MicroBlaze Processor Reference Guide www.Xilinx.com 99
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

fadd Floating Point Arithmetic Add
fadd rD, rA, 1B Add
01 01 10 rD rA rB 0 0O OO0 OO OOTOTU OO
0 6 11 16 21 31
Description

The floating point sum of registers rA and rB, is placed into register rD.

Pseudocode

if isDnz(rA) or isDnz(rB) then
(rb) ~ OxFFCO0000
FSRIDOQ ~ 1
ESR[EC] ~ 00110
el se
if isSigNaN(rA) or isSigNaN(rB)or
(isPosinfinite(rA) and isNeginfinite(rB)) or
(isNeginfinite(rA) and isPosinfinite(rB))) then
(rD) ~ OxFFCO0000
FSRIIQ «~ 1
ESR[EC] ~ 00110
el se
if isQuietNaN(rA) or isQuietNaN(rB) then
(rb) ~ OxFFCO0000
el se
if isDnz((rA)+(rB)) then
(rD) « signZero((rA) +(rB))
FSRIUF] ~ 1
ESR[EC] ~ 00110
el se
if isNaN((rA)+(rB)) and then
(rD) ~ signinfinite((rA)+(rB))
FSRIOF] ~ 1
ESR[EC] ~ 00110
el se
(rD) «(rA) + (rB)

Registers Altered

e D, unless an FP exception is generated, in which case the register is unchanged
+ ESR[EC]
e FSR[IO,UF,OFDO]

Latency
4 cycles

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 1.

100 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

frsub Reverse Floating Point Arithmetic Subtraction
frsub rD, rA, 1B Reverse subtract
01 0 1 10 rD rA rB 0 0 0O1 00 O OO0OTUOOTPO
0 6 11 16 21 31
Description

The floating point value in rA is subtracted from the floating point value in rB and the
result is placed into register rD.

Pseudocode

if isDnz(rA) or isDnz(rB) then
(rb) ~ OxFFCO0000
FSRIDOQ ~ 1
ESR[EC] ~ 00110
el se
if (isSigNaN(rA) or isSigNaN(rB) or
(isPosinfinite(rA) and isPosinfinite(rB)) or
(isNeginfinite(rA) and isNeglnfinite(rB))) then
(rD) ~ OxFFCO0000
FSRIIQ «~ 1
ESR[EC] ~ 00110
el se
if isQuietNaN(rA) or isQuietNaN(rB) then
(rb) ~ OxFFCO0000
el se
if isDnz((rB)-(rA)) then
(rD) « signZero((rB)-(rA))
FSRIUF] ~ 1
ESR[EC] ~ 00110
el se
if isNaN((rB)-(rA)) and then
(rD) ~ signinfinite((rB)-(rA))
FSRIOF] ~ 1
ESR[EC] ~ 00110
el se
(rD <~ (rB) - (rA)

Registers Altered

e D, unless an FP exception is generated, in which case the register is unchanged
+ ESR[EC]
e FSR[IO,UF,OFDO]

Latency
4 cycles

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 1.

MicroBlaze Processor Reference Guide www.Xilinx.com 101
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

fmul Floating Point Arithmetic Multiplication
fmul rD, rA, 1B Multiply
01 0 1 10 rD rA rB 0 01 000 OOO0OTGOTPO O
0 6 11 16 21 31
Description

The floating point value in rA is multiplied with the floating point value in rB and the
result is placed into register rD.

Pseudocode

if isDnz(rA) or isDnz(rB) then
(rD) ~ OxFFC00000
FSRIDOQ ~ 1
ESR[EC] ~ 00110
el se
if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isIinfinite(rB)) or
(iszZero(rB) and isInfinite(rA)) then
(rD) ~ OxFFCO0000
FSRIIQ «~ 1
ESR[EC] ~ 00110
el se
if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) ~ OxFFC00000
el se
if isDnz((rB)*(rA)) then
(rD «~ signZero((rA)*(rB))
FSRIUF] ~ 1
ESR[EC] ~ 00110
el se
if isNaN((rB)*(rA)) and then
(rD) ~ signinfinite((rB)*(rA))
FSRIOF] ~ 1
ESR[EC] ~ 00110
el se
(rD < (rB) * (rA)

Registers Altered

* D, unless an FP exception is generated, in which case the register is unchanged
* ESR[EC]
* FSR[IO,UF,OFDO]

Latency
4 cycles

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 1.

102 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

fdiv Floating Point Arithmetic Division
fdiv rD, rA, 1B Divide
01 0 1 10 rD rA rB 0 01 1 00O0O0OO0O0TO
0 6 11 16 21 31
Description

The floating point value in rB is divided by the floating point value in rA and the result is
placed into register rD.

Pseudocode

if isDnz(rA) or isDnz(rB) then
(rD ~ OxFFCO0000
FSRIDQ - 1
ESR[EC] ~ 00110
el se
if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isZero(rB)) or
(islnfinite(rA) and islnfinite(rB)) then
(rD ~ OxFFCO0000
FSRI1O ~1
ESR[EC] ~ 00110
el se
if isQuietNaN(rA) or isQuietNaN(rB) then
(rD ~ OxFFC00000
el se
if iszZzero(rA) and not isIinfinite(rB) then
(rD) « signinfinite((rB)/(rA))
FSRIDzZ] ~ 1
ESR[EC] ~ 00110
el se
if isDnz((rB)/(rA)) then
(rD ~ signZero((rA)/(rB))
FSRIUF] ~ 1
ESR[EC] ~ 00110
el se
if isNaN((rB)/(rA)) and then
(rD) « signinfinite((rB)/(rA))
FSRIOF] ~ 1
ESR[EC] ~ 00110
el se
(rD) < (rB) /I (rA

Registers Altered

» D, unless an FP exception is generated, in which case the register is unchanged
* ESR[EC]
* FSR[IO,UF,OF,DO,DZ]

Latency
28 cycles
Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 1.

MicroBlaze Processor Reference Guide www.Xilinx.com 103
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 4: MicroBlaze Instruction Set Architecture

fC m p Floating Point Number Comparison

fcmp.un rD, rA, 1B Unordered floating point comparison

femp.It D, rA, 1B Less-than floating point comparison

fcmp.eq rD, rA, 1B Equal floating point comparison

fcmp.le rD, rA, 1B Less-or-Equal floating point comparison

fcmp.gt rD, rA, 1B Greater-than floating point comparison

fcmp.ne D, rA, B Not-Equal floating point comparison

fcmp.ge rD, rA, 1B Greater-or-Equal floating point comparison
010110 rD rA rB OlOO‘OpSeI‘OOOO
0 6 11 16 21 25 28 31

Description

The floating point value in rB is compared with the floating point value in rA and the

comparison result is placed into register rD. The OpSel
determines the type of comparison performed.

Pseudocode
if isDnz(rA) or isDnz(rB) then
(rD) < 0
FSRIDOQ ~ 1
ESR[EC] ~ 00110
el se

{read out behavior from Table 4-2}

field in the instruction code

Table 4-2: Floating Point Comparison Operation
Comparison Type Operand Relationship
Description OpSel] (rB) > (rA) (rB) < (rA) (rB) = (rA) isNaN(rA) or isNaN(rB)
Unordered 000 |(rD) ~ O (rD < 0 (rD <« 0 (rD « 1
Less-than 001 |(rD) ~ O (rD « 1 (rD) « 0 (rD) « 0
FSRIIG ~ 1
ESR[EC] ~ 00110
Equal 010 | (rD) « O (rD ~ 0 (rD « 1 (rD - 0
Less-or-equal 011 |(rD) < O (rD ~ 1 (rD « 1 (rD - 0
FSRIIG « 1
ESR[EC] ~ 00110

104

www.Xilinx.com

1-800-255-7778

MicroBlaze Processor Reference Guide
UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions

SXILINX®

Table 4-2: Floating Point Comparison Operation
Comparison Type Operand Relationship
Description OpSel] (rB) > (rA) (rB) < (rA) (rB) = (rA) isNaN(rA) or isNaN(rB)
Greater-than 100 | (rD ~ 1 (rD < 0 (rD <« 0 (rD) « 0
FSRIIG < 1
ESR[EC] ~ 00110
Greater-or-equal 110 | (rD «~ 1 (rD ~ 0 (rD « 1 (rD «~ 0
FSRIIG « 1
ESR[EC] ~ 00110
Registers Altered
e D, unless an FP exception is generated, in which case the register is unchanged
+ ESR[EC]
* FSR[10,DO]
Latency
1 cycle

Note

These instructions are only available when the MicroBlaze parameter C_USE_FPU is set to

1.

MicroBlaze Processor Reference Guide

uUGO081 (v6.0) June 1, 2006

www.Xilinx.com

1-800-255-7778

105

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

g et get from fsl interface

get rD, FSLx get data from FSL x (blocking)

nget rD, FSLx get data from FSL x (non-blocking)

cget rD, FSLx get control from FSL x (blocking)

ncget rD, FSLx get control from FSL x (non-blocking)
011011 rD OOOOOOncOOOOOOOOOO‘FSLx‘
0 6 11 16 29 31

Description

MicroBlaze will read from the FSLx interface and place the result in register rD.

The get instruction has four variants.

The blocking versions (when ‘n’ bit is ‘0’) will stall microblaze until the data from the FSL
interface is valid. The non-blocking versions will not stall microblaze and will set carry to
‘0’ if the data was valid and to ‘1’ if the data was invalid. In case of an invalid access the
destination register contents is undefined.

The get and nget instructions expect the control bit from the FSL interface to be ‘0’. If this
is not the case, the instruction will set MSR[FSL_Error] to ‘1’. The cget and ncget
instructions expect the control bit from the FSL interface to be ‘1’. If this is not the case, the
instruction will set MSR[FSL_Error] to ‘1.

Pseudocode

(rD « FSLx

if (n=1) then

MBR[Carry] « not (FSLx Exists bhit)
if (FSLx Control bit # c) then

MSR[FSL_Error] < 1

Registers Altered

« 1D
* MSR[FSL_Error]
* MSR[Carry]

Latency

2 cycles. For blocking instructions, MicroBlaze will first stall until valid data is available.
Note

For nget and ncget, a rsubc instruction can be used for counting down a index variable

106 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions

SXILINX®

Integer Divide

idiv rD, rA, 1B divide rB by rA (signed)
idivu D, rA, B divide rB by rA (unsigned)
01 0010 rD rA rB 0O 0 0OOOOOOOUDO
6 11 16 21 31
Description

The contents of register rB is divided by the contents of register rA and the result is placed
into register rD.

If the U bit is set, rA and rB is considered unsigned values. If the U bit is clear, rA and rB is
considered signed values

If the value of rA is 0, the divide_by_zero bit in MSR will be set and the value in rD will be
0.

Pseudocode
if (rA) = Othen
(I'D) ~ 0
el se
(rD) < (rB) I (rA
Registers Altered

* rD, unless “Divide by zero” exception is generated, in which case the register is
unchanged

 MSR[Divide_By Zero]
Latency

1 cycle if (rA) = 0, otherwise 32 cycles
Note

This instruction is only valid if MicroBlaze is configured to use a hardware divider
(C_USE_DIV =1).

MicroBlaze Processor Reference Guide www.Xilinx.com 107
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

imm Immediate
imm IMM
1011 00/00O0O0TO0(0O0O0TU OO0 IMM
0 6 11 16 31
Description

The instruction imm loads the IMM value into a temporary register. It also locks this value
so it can be used by the following instruction and form a 32-bit immediate value.

The instruction imm is used in conjunction with Type B instructions. Since Type B
instructions have only a 16-bit immediate value field, a 32-bit immediate value cannot be
used directly. However, 32-bit immediate values can be used in MicroBlaze. By default,
Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. The imm instruction locks the 16-bit IMM value
temporarily for the next instruction. A Type B instruction that immediately follows the
imm instruction will then form a 32-bit immediate value from the 16-bit IMM value of the
imm instruction (upper 16 bits) and its own 16-bit immediate value field (lower 16 bits). If
no Type B instruction follows the IMM instruction, the locked value gets unlocked and
becomes useless.

Latency
1cycle
Notes

The imm instruction and the Type B instruction following it are atomic, hence no interrupts
are allowed between them.

The assembler provided by Xilinx automatically detects the need for imm instructions.
When a 32-bit IMM value is specified in a Type B instruction, the assembler converts the
IMM value to a 16-bit one to assemble the instruction and inserts an imm instruction before
it in the executable file.

108 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions

SXILINX®

|bu Load Byte Unsigned
lbu D, rA, B
110000 rD rA rB 00000000000
0 6 11 16 21 31
Description

Loads a byte (8 bits) from the memory location that results from adding the contents of
registers rA and rB. The data is placed in the least significant byte of register rD and the
other three bytes in rD are cleared.

Pseudocode

Addr « (rA) + (rB)

(rD)[24:31] — Men(Addr)

(rD)[0:23] « O
Registers Altered

« D
Latency

1cycle

MicroBlaze Processor Reference Guide www.Xilinx.com 109
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 4: MicroBlaze Instruction Set Architecture

Ibui

Load Byte Unsigned Immediate

Ibui rD, rA, IMM

111000 rb rA IMM

Description

Loads a byte (8 bits) from the memory location that results from adding the contents of
register rA with the value in IMM, sign-extended to 32 bits. The data is placed in the least
significant byte of register rD and the other three bytes in rD are cleared.

Pseudocode
Addr « (rA) + sext(IMV
(rD)[24:31] < Men(Addr)
(rD[0:23] ~ O
Registers Altered
D
Latency
1 cycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

110

www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions

SXILINX®

lhu Load Halfword Unsigned
lhu rD, rA, 1B
11 0 0 0 1 rD rA rB 0 0 OO0 OO O0OO0ODTUO0OTPO©
0 6 11 16 21 31
Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from
adding the contents of registers rA and rB. The data is placed in the least significant
halfword of register rD and the most significant halfword in rD is cleared.

Pseudocode

Addr « (rA) + (rB)
Addr[31] < O

(rD)[16:31] Men(Addr)

(rD[0:15] « O

Registers Altered

» D, unless unaligned data access exception is generated, in which case the register is

unchanged.
 ESR[W]
Latency
1 cycle

MicroBlaze Processor Reference Guide www.Xilinx.com 111
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

lhui Load Halfword Unsigned Immediate
lhui rD, rA, IMM
111 0 0 1 rD rA IMM
0 6 11 16 31
Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from
adding the contents of register rA and the value in IMM, sign-extended to 32 bits. The data
is placed in the least significant halfword of register rD and the most significant halfword
in rD is cleared.

Pseudocode

Addr « (rA) + sext(IMVY
Addr[31] « O
(rD[16:31] « Men(Addr)
(rD[0:15] « O

Registers Altered

» D, unless unaligned data access exception is generated, in which case the register is
unchanged.

« ESR[W]
Latency
1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

112 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

lw Load Word
lw D, rA, 1B
1 1 0 0 1 O rD rA rB 0O 0O OO 0O O O O0OO0OTO0OTO
0 6 11 16 21 31
Description

Loads a word (32 bits) from the word aligned memory location that results from adding
the contents of registers rA and rB. The data is placed in register rD.

Pseudocode
Addr « (rA) + (rB)
Addr[30:31] « 00
(rD) « Men(Addr)
Registers Altered

« D, unless unaligned data access exception is generated, in which case the register is
unchanged.

- ESR[W]
Latency

1cycle

MicroBlaze Processor Reference Guide www.Xilinx.com 113
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 4: MicroBlaze Instruction Set Architecture

|W| Load Word Immediate
lwi rD, rA, IMM
111010 D A MM
6 1 16 31
Description

Loads a word (32 bits) from the word aligned memory location that results from adding
the contents of register rA and the value IMM, sign-extended to 32 bits. The data is placed
in register rD.

Pseudocode

Addr « (rA) + sext(IMVY
Addr[30:31] < 00
(rD) « Men(Addr)

Registers Altered

« D, unless unaligned data access exception is generated, in which case the register is
unchanged.

- ESR[W]
Latency

1cycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

114

www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

me Move From Special Purpose Register
mfs rD, rS
1 00 1 0 1 rD 0 0 000|212 O rsS
0 6 11 16 18 31
Description

Copies the contents of the special purpose register rS into register rD.

Pseudocode

switch (rS):
case 0x0000 :
(rD ~ PC
case 0x0001 :
(rD <« MR
case 0x0003 :
(rD < EAR
case 0x0005 :
(rD ~ ESR
case 0x0007 :
(rD <« FSR
case 0x000B :
(rD ~ BTR
case 0x200x :
(rD < PVRX] (where x = 0 to 11)
def aul t
(rD « Undefined

Registers Altered
« D

Latency
1 cycle

Note

To refer to special purpose registers in assembly language, use rpc for PC, rmsr for MSR,
rear for EAR, resr for ESR, and rfsr for FSR.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). A NOP should be inserted before the MFS
instruction to guarantee correct MSR value.

EAR and ESR are only valid as operands when at least one of the MicroBlaze
C_* EXCEPTION parameters are set to 1.

FSR is only valid as an operand when the C_USE_FPU and C_FPU_EXCEPTION
parameters are set to 1.

MicroBlaze Processor Reference Guide www.Xilinx.com 115
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

msrCIr Read MSR and clear bits in MSR
msrclr rD, Imm
100101 rD 00001|00‘ Imm14
0 6 11 16 17 18 a1
Description

Copies the contents of the special purpose register MSR into register rD.
Bit positions in the IMM value that are 1 are cleared in the MSR. Bit positions that are 0 in
the IMM value are left untouched.

Pseudocode

(rD ~ (MSR)
(MBR) « (MSR) O T™MW))

Registers Altered

e D
e MSR

Latency
1cycle
Note

MSRCLR will affect some MSR bits immediately (e.g. Carry) while the remaining bits will
take effect one cycle after the instruction has been executed.

The immediate values has to be less than 214. Only bits 18 to 31 of the MSR can be cleared.

116 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

msrset Read MSR and set bits in MSR
msrset rD, Imm
100101 D 000 0 0[0 0] Imm14
0 6 11 16 18 ”
Description

Copies the contents of the special purpose register MSR into register rD.
Bit positions in the IMM value that are 1 are set in the MSR. Bit positions that are 0 in the
IMM value are left untouched.

Pseudocode

(rb < (MR
(MSR) « (MBR) O (1 MV

Registers Altered

e D
e MSR

Latency
1cycle
Note

MSRSET will affect some MSR bits immediately (e.g. Carry) while the remaining bits will
take effect one cycle after the instruction has been executed.

The immediate values has to be less than 214. Only bits 18 to 31 of the MSR can be set.

MicroBlaze Processor Reference Guide www.Xilinx.com 117
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

mts Move To Special Purpose Register
mts rS, rA
1 0010 100 0 0O rA 1100000000000‘ rS‘
0 6 11 16 29 31
Description

Copies the contents of register rD into the MSR or FSR.

Pseudocode
(rS) < (rA

Registers Altered

* 1S
Latency

1cycle
Notes

When writing MSR using MTS, some bits take effect immediately (e.g. Carry) while the
remaining bits takes effect one cycle after the instruction has been executed.

To refer to special purpose registers in assembly language, use rmsr for MSR and rfsr for
FSR.

The PC, ESR and EAR cannot be written by the MTS instruction.
The FSR is only valid as a destination if the MicroBlaze parameter C_USE_FPU is set to 1.

118 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

mul Multiply
mul rD, rA, 1B
01 00 0O rD rA rB 0 0 00O 0O OOTOTU OO
0 6 11 16 21 31
Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-
bit by 32-bit multiplication that will produce a 64-bit result. The least significant word of
this value is placed in rD. The most significant word is discarded.

Pseudocode
(rD « LSW (rA) x(rB))
Registers Altered
« D
Latency
1cycle
Note

This instruction is only valid if the target architecture has multiplier primitives, and if
present, the MicroBlaze parameter C_ USE_ HW_MUL is set to 1.

MicroBlaze Processor Reference Guide www.Xilinx.com 119
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

mu || Multiply Immediate
muli rD, rA, IMM
011000 rD A iy
0 6 11 16 a1
Description

Multiplies the contents of registers rA and the value IMM, sign-extended to 32 bits; and
puts the result in register rD. This is a 32-bit by 32-bit multiplication that will produce a 64-
bit result. The least significant word of this value is placed in rD. The most significant word
is discarded.

Pseudocode
(rD « LSW (rA) x sext(IM))
Registers Altered
« D
Latency
1cycle
Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

This instruction is only valid if the target architecture has multiplier primitives, and if
present, the MicroBlaze parameter C_ USE_ HW_MUL is set to 1.

120 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

or Logical OR
or D, rA, B
100 0 00O rD rA rB 0 00O0O0OOOOOO OO OGO O
0 6 11 16 21 31
Description

The contents of register rA are ORed with the contents of register rB; the result is placed
into register rD.

Pseudocode
(rD) < (rA) U (rB)
Registers Altered
« D
Latency
1cycle

MicroBlaze Processor Reference Guide www.Xilinx.com 121
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

ori Logical OR with Immediate
ori rD, rA, IMM
1 01 0 0O rD rA IMM
0 6 11 16 31
Description

The contents of register rA are ORed with the extended IMM field, sign-extended to 32
bits; the result is placed into register rD.

Pseudocode
(rbD < (rA O (M)
Registers Altered
« D
Latency
1cycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

122 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions

SXILINX®

pcmp bf Pattern Compare Byte Find
pcmpbf rD, rA, 1B bytewise comparison returning position of
first match
1 00 0 0O rD rA rB 1 00 0 0O O0OOOUOTODPO
0 6 11 16 21 31
Description

The contents of register rA is bytewise compared with the contents in register rB.

» rDis loaded with the position of the first matching byte pair, starting with MSB as
position 1, and comparing until LSB as position 4

» If none of the byte pairs match, rD is set to 0

Pseudocode
if rB[0:7] = rA0:7] then
(rD 1
el se
if rB[8:15] = rA 8:15] then
(rD ~ 2
el se
if rB[16:23] = rA[16: 23] then
(rD « 3
el se
if rB[24:31] = rA[24:31] then
(rD ~ 4
el se
(rD ~ O
Registers Altered
« D
Latency
1 cycle
Note
MicroBlaze Processor Reference Guide www.xilinx.com 123

uUGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 4: MicroBlaze Instruction Set Architecture

pC m peq Pattern Compare Equal
pcmpeq rD, rA, 1B equality comparison with a positive
boolean result
1 00 010 rD rA rB 1 00 0 0O O0OOOUOTODPO
0 6 11 16 21 31
Description

The contents of register rA is compared with the contents in register rB.

* rDis loaded with 1 if they match, and 0 if not

Pseudocode
if (rB) = (rA) then
(rD) ~ 1
el se
(rD) « 0
Registers Altered
« D
Latency
1cycle

Note

124 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

pC m p ne Pattern Compare Not Equal
pcmpne rD, rA, 1B equality comparison with a negative
boolean result
1 00 0 1 1 rD rA rB 1 00 0 0O O0OOOUOTODPO
0 6 11 16 21 31
Description

The contents of register rA is compared with the contents in register rB.
* rDis loaded with 0 if they match, and 1 if not
Pseudocode
if (rB) = (rA) then
(rD) < 0
el se
(rD 1
Registers Altered
« D
Latency
1cycle

Note

MicroBlaze Processor Reference Guide www.Xilinx.com 125
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

p ut put to fsl interface

put rA, FSLx put data to FSL x (blocking)

nput rA, FSLx put data to FSL x (non-blocking)

cput rA, FSLx put control to FSL x (blocking)

ncput rA, FSLx put control to FSL x (non-blocking)
0110110 0 0O0DO rA 1ncOOOOOOOOOO‘FSLX‘
0 6 11 16 29 31

Description

MicroBlaze will write the value from register rA to the FSLx interface.
The put instruction has four variants.

The blocking versions (when ‘n’ is ‘0’) will stall microblaze until there is space available in
the FSL interface. The non-blocking versions will not stall microblaze and will set carry to
‘0" if space was available and to ‘1’ if no space was available.

The put and nput instructions will set the control bit to the FSL interface to ‘0" and the cput
and ncput instruction will set the control bit to ‘1’.

Pseudocode

(FSLx) « (rA)
if (n=1) then

MSR[Carry] « (FSLx Full bit)
(FSLx Control bit) ~ C

Registers Altered
* MSR][Carry]
Latency
2 cycles. For blocking accesses, MicroBlaze will first stall until space is available on the FSL
interface.
126 www.Xxilinx.com MicroBlaze Processor Reference Guide

1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

rsub Arithmetic Reverse Subtract
rsub D, rA, B Subtract
rsubc D, rA, B Subtract with Carry
rsubk rD, rA, 1B Subtract and Keep Carry
rsubkc rD, rA, 1B Subtract with Carry and Keep Carry
0 0 0KC1 rD rA rB 00 00O O0OO0OOOOUOTU OO
0 6 11 16 21 31
Description

The contents of register rA is subtracted from the contents of register rB and the result is
placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to a one for
the mnemonic rsubk. Bit 4 of the instruction (labeled as C in the figure) is set to a one for
the mnemonic rsubc. Both bits are set to a one for the mnemonic rsubkec.

When an rsub instruction has bit 3 set (rsubk, rsubkc), the carry flag will Keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsub,
rsubc), then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to a one (rsubc, rsubkc), the content of the carry flag
(MSR][C]) affects the execution of the instruction. When bit 4 is cleared (rsub, rsubk), the
content of the carry flag does not affect the execution of the instruction (providing a normal
subtraction).

Pseudocode
if C=0 then
(rD) « (rB) + (rA)+1
el se o
(rD) < (rB) + (rA) + MSR (]
if K=0 then
MSR[C] < CarryQut
Registers Altered
« D
« MSR[C]
Latency
1cycle

Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that
there is no Borrow, and when the Carry is cleared, it means that there is a Borrow.

MicroBlaze Processor Reference Guide www.Xilinx.com 127
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 4: MicroBlaze Instruction Set Architecture

rsubi

Arithmetic Reverse Subtract Immediate
rsubi D, rA, IMM Subtract Immediate
rsubic rD, rA, IMM Subtract Immediate with Carry
rsubik D, rA, IMM Subtract Immediate and Keep Carry
rsubikc D, rA, IMM Subtract Immediate with Carry and Keep Carry
0 01 KC1 rD rA IMM
0 6 11 16 31
Description

The contents of register rA is subtracted from the value of IMM, sign-extended to 32 bits,
and the result is placed into register rD. Bit 3 of the instruction (labeled as K in the figure)
is set to a one for the mnemonic rsubik. Bit 4 of the instruction (labeled as C in the figure)
is set to a one for the mnemonic rsubic. Both bits are set to a one for the mnemonic rsubikc.

When an rsubi instruction has bit 3 set (rsubik, rsubikc), the carry flag will Keep its
previous value regardless of the outcome of the execution of the instruction. If bit 3 is
cleared (rsubi, rsubic), then the carry flag will be affected by the execution of the
instruction. When bit 4 of the instruction is set to a one (rsubic, rsubikc), the content of the
carry flag (MSR[C]) affects the execution of the instruction. When bit 4 is cleared (rsubi,
rsubik), the content of the carry flag does not affect the execution of the instruction
(providing a normal subtraction).

Pseudocode

if C=0 then

(rD) « sext(IMY) + (rA)+1

el se o

(rD) < sext(IMW) + (rA) + MSR[C]
if K=0 then

MSR[C] < CarryQut

Registers Altered

« D
« MSR[C]

Latency

1cycle

Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that
there is no Borrow, and when the Carry is cleared, it means that there is a Borrow.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

128

www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

rtbd Return from Break
rtbd rA, IMM
10110110010 rA MM
0 6 11 16 i
Description

Return from break will branch to the location specified by the contents of rA plus the IMM
field, sign-extended to 32 bits. It will also enable breaks after execution by clearing the BIP
flag in the MSR.

This instruction always has a delay slot. The instruction following the RTBD is always
executed before the branch target. That delay slot instruction has breaks disabled.

Pseudocode
PC « (rA) + sext(IMM
allow following instruction to conpl ete execution
MSR[BIP] < O
Registers Altered
« PC
 MSRI[BIP]
Latency

2 cycles
Note

Convention is to use general purpose register r16 as rA.

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com 129
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 4: MicroBlaze Instruction Set Architecture

rtid

Return from Interrupt

rtid rA, IMM
10110 1(1 0001 rA IMM
0 6 11 16 31
Description

Return from interrupt will branch to the location specified by the contents of rA plus the
IMM field, sign-extended to 32 bits. It will also enable interrupts after execution.

This instruction always has a delay slot. The instruction following the RTID is always
executed before the branch target. That delay slot instruction has interrupts disabled.

Pseudocode

PC « (rA) + sext(IMM
allow following instruction to conpl ete execution

MBR[I E] « 1
Registers Altered
« PC
« MSR[IE]
Latency

2 cycles
Note

Convention is to use general purpose register r14 as rA.

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

130

www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions

SXILINX®

rted

Return from Exception

rted rA, IMM
10110 1|/2 01 0O rA IMM
0 6 11 16 31
Description
Return from exception will branch to the location specified by the contents of rA plus the
IMM field, sign-extended to 32 bits. The instruction will also enable exceptions after
execution.
This instruction always has a delay slot. The instruction following the RTED is always
executed before the branch target.
Pseudocode
PC « (rA) + sext(IMV
allow following instruction to conpl ete execution
MBR[EE] « 1
MBRIEIP] « O
ESR «~ 0
Registers Altered
« PC
* MSR[EE]
*+ MSRIEIP]
* ESR
Latency
2 cycles
Note
Convention is to use general purpose register r17 as rA. This instruction requires that one
or more of the MicroBlaze parameters C_* EXCEPTION are set to 1.
A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide www.Xxilinx.com 131

uUGO081 (v6.0) June 1, 2006

1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

rtsd Return from Subroutine
rtsd rA, IMM
1 01 1 0 11 0 O O O rA IMM
0 6 11 16 31
Description

Return from subroutine will branch to the location specified by the contents of rA plus the
IMM field, sign-extended to 32 bits.

This instruction always has a delay slot. The instruction following the RTSD is always
executed before the branch target.

Pseudocode

PC — (rA) + sext(IMV
allow following instruction to conpl ete execution

Registers Altered
« PC
Latency
2 cycles
Note

Convention is to use general purpose register rl15 as rA.

A delay slot must not be used by the following: IMM, branch, or break instructions. This
also applies to instructions causing recoverable exceptions (e.g. unalignement), when
hardware exceptions are enabled. Interrupts and external hardware breaks are deferred
until after the delay slot branch has been completed.

132 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

sb Store Byte
sb rD, rA, 1B
110100 rD rA rB 0 0 00O 0O OOTOTU OO
0 6 11 16 21 31
Description

Stores the contents of the least significant byte of register rD, into the memory location that
results from adding the contents of registers rA and rB.

Pseudocode

Addr « (rA) + (rB)
Merm(Addr) « (rD)[24: 31]

Registers Altered
* None
Latency

1 cycle

MicroBlaze Processor Reference Guide www.Xilinx.com 133
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 4: MicroBlaze Instruction Set Architecture

sbi

Store Byte Immediate

shi D, rA, IMM
11 11 00 rD rA IMM
0 6 11 16 31
Description

Stores the contents of the least significant byte of register rD, into the memory location that
results from adding the contents of register rA and the value IMM, sign-extended to 32

bits.

Pseudocode

Addr « (rA) + sext(I MV
Merm(Addr) « (rD)[24: 31]

Registers Altered
* None
Latency
1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using

32-bit immediate values.

134

www.Xilinx.com
1-800-255-7778

MicroBlaze Processor Reference Guide
UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

SeXt16 Sign Extend Halfword
sextl6 rD, rA
1 0 01 0O rD rA 0O 0 0O 0O 0O O0OOOO0OI 211 o0O0O0TO0T1
° ® 1 16 31
Description

This instruction sign-extends a halfword (16 bits) into a word (32 bits). Bit 16 in rA will be
copied into bits 0-15 of rD. Bits 16-31 in rA will be copied into bits 16-31 of rD.

Pseudocode

(rD[0:15] <« (rA)[16]
(rD[16:31] ~ (rA)[16:31]

Registers Altered
« D
Latency

1 cycle

MicroBlaze Processor Reference Guide www.Xilinx.com 135
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

sext8 Sign Extend Byte
sext8 rD, rA
1 001 00 rD rA 00 00 O0OOOODOTI 1T10O0O0O0OTO0
0 6 11 16 a1
Description

This instruction sign-extends a byte (8 bits) into a word (32 bits). Bit 24 in rA will be copied
into bits 0-23 of rD. Bits 24-31 in rA will be copied into bits 24-31 of rD.

Pseudocode

(rD)[0:23] <« (rA)[24]
(rD)[24:31] < (rA)[24:31]

Registers Altered
« D
Latency

1 cycle

136 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

sh Store Halfword
sh D, rA, 1B
1 1 0 1 0 1 rD rA rB 0O 0O OO 0O O O O0OO0OTO0OTO
0 6 11 16 21 31
Description

Stores the contents of the least significant halfword of register rD, into the halfword
aligned memory location that results from adding the contents of registers rA and rB.

Pseudocode
Addr « (rA) + (rB)
Addr[31] < 0
Mem(Addr) < (rD)[16: 31]
Registers Altered
« ESR[S]
Latency

1 cycle

MicroBlaze Processor Reference Guide www.Xilinx.com 137
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 4: MicroBlaze Instruction Set Architecture

shi

Store Halfword Immediate

shi D, rA, IMM
1111 01 rD rA IMM
6 11 16 31
Description

Stores the contents of the least significant halfword of register rD, into the halfword
aligned memory location that results from adding the contents of register rA and the value
IMM, sign-extended to 32 bits.

Pseudocode
Addr « (rA) + sext(IMVY
Addr[31] « 0
Merm(Addr) « (rD)[16: 31]
Registers Altered
« ESR[S]
Latency
1 cycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

138

www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

Ssra Shift Right Arithmetic
sra D, rA
100100 rD rA 0 00O0OOOOOOOOO OO OO 0T 0?1
0 6 11 16 31
Description

Shifts arithmetically the contents of register rA, one bit to the right, and places the resultin
rD. The most significant bit of rA (i.e. the sign bit) placed in the most significant bit of rD.
The least significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode
(rD[0] « (rA)[0]
(rD)[1:31] « (rA)[0:30]
MBRIC] « (rA)[31]
Registers Altered
D
« MSR[C]
Latency

1cycle

MicroBlaze Processor Reference Guide www.Xilinx.com 139
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

SIrc Shift Right with Carry
src D, rA
100100 rD rA 0 00O0OOOOOOZ11O0Q0T0TG0?71
0 6 11 16 31
Description

Shifts the contents of register rA, one bit to the right, and places the result in rD. The Carry
flag is shifted in the shift chain and placed in the most significant bit of rD. The least
significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode
(rD[0] ~ MR C]
(rD)[1:31] « (rA)[0:30]
MBR[C] « (rA)[31]
Registers Altered
D
« MSR[C]
Latency

1cycle

140 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

sri shift Right Logical
srl D, rA
1 0 01 0O rD rA 0O 0 0O O0O0OOODOUOTI 1O0O0O0OTGO0OTS&O0OT1
0 6 11 16 31
Description

Shifts logically the contents of register rA, one bit to the right, and places the result in rD.
A zero is shifted in the shift chain and placed in the most significant bit of rD. The least
significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode
(rD[0] ~ O
(rD)[1:31] « (rA)[0:30]
MBRIC] « (rA)[31]
Registers Altered
D
« MSR[C]
Latency

1cycle

MicroBlaze Processor Reference Guide www.Xilinx.com 141
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

SW Store Word
S\ rD, rA, B
1 1 0 1 1 0 rD rA rB 0O 0O OO 0O O O O0OO0OTO0OTO
0 6 11 16 21 31
Description

Stores the contents of register rD, into the word aligned memory location that results from
adding the contents of registers rA and rB.

Pseudocode
Addr « (rA) + (rB)
Addr[30:31] « 00
Men(Addr) « (rD)[0: 31]
Registers Altered
« ESR[S]
Latency

1 cycle

142 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions

SXILINX®

SWi Store Word Immediate
SWi rD, rA, IMM
111110 rD A iy
0 6 11 16 a1
Description

Stores the contents of register rD, into the word aligned memory location that results from
adding the contents of registers rA and the value IMM, sign-extended to 32 bits.

Pseudocode

Reqi

Addr « (rA) + sext(IMVY
Addr[30:31] « 00
Mem(Addr) « (rD)[0: 31]

ster Altered

ESR [5]

Latency

Note

1 cycle

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

MicroBlaze Processor Reference Guide

uUGO081 (v6.0) June 1, 2006

www.Xilinx.com
1-800-255-7778

143

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

Wd C Write to Data Cache
wdc rA,rB
1 0 01 0 0|0 O O O O rA rB 0 0 0OO1 1 00O 1 00O
0 6 11 16 ”
Description

Write into the data cache tag. The register rB value is not used. Register rA contains the
instruction address. Bit 30 in rA is the new valid bit.

The WDC instruction should only be used when the data cache is disabled (i.e.
MSR[DCE]=0).

Pseudocode
(DCache Tag) < (rA)
Registers Altered

* None

Latency
1cycle

144 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

wic Write to Instruction Cache
wic rA,rB
1 0 01 0 0|0 O O O O rA rB 0 0 0OO1 1 01 00O
0 6 11 16 31
Description

Write into the instruction cache tag. The register rB value is not used. Register rA contains
the instruction address. Bit 30 in rA is the new valid bit.

The WIC instruction should only be used when the instruction cache is disabled (i.e.
MSR[ICE]=0).

Pseudocode
(I Cache Tag) < (rA)
Registers Altered
* None
Latency
1cycle

MicroBlaze Processor Reference Guide www.Xilinx.com 145
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

XOr Logical Exclusive OR
xor rD, rA, B
100 010 rD rA rB 0 00OO0OOOUOO OO OT OO O
0 6 11 16 o1 a1
Description

The contents of register rA are XORed with the contents of register rB; the result is placed
into register rD.

Pseudocode
(rD) < (rA) U (rB)
Registers Altered
« D
Latency
1cycle

146 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

Instructions XX"JNX@

XOTrlI Logical Exclusive OR with Immediate
Xori rA, rD, IMM
1 01 0 10 rD rA IMM
0 6 11 16 31
Description

The IMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of
register rA are XORed with the extended IMM field; the result is placed into register rD.

Pseudocode
(rD) < (rA) O sext(1M)
Registers Altered
« D
Latency
1cycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the imm instruction for details on using
32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com 147
UGO081 (v6.0) June 1, 2006 1-800-255-7778

http://www.xilinx.com

S XILINX® Chapter 4: MicroBlaze Instruction Set Architecture

148 www.Xilinx.com MicroBlaze Processor Reference Guide
1-800-255-7778 UGO081 (v6.0) June 1, 2006

http://www.xilinx.com

	MicroBlaze Processor Reference Guide
	About This Guide
	Manual Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	MicroBlaze Architecture
	Overview
	Features

	Data Types and Endianness
	Instructions
	Registers
	General Purpose Registers
	Special Purpose Registers

	Pipeline Architecture
	Branches

	Memory Architecture
	Reset, Interrupts, Exceptions, and Break
	Reset
	Hardware Exceptions
	Breaks
	Interrupt
	User Vector (Exception)

	Instruction Cache
	Overview
	General Instruction Cache Functionality
	Instruction Cache Operation
	Instruction Cache Software Support

	Data Cache
	Overview
	General Data Cache Functionality
	Data Cache Operation
	Data Cache Software Support

	Floating Point Unit (FPU)
	Overview
	Format
	Rounding
	Operations
	Exceptions

	Fast Simplex Link (FSL)
	Hardware Acceleration using FSL

	Debug and Trace
	Debug Overview
	Trace Overview

	MicroBlaze Signal Interface Description
	Overview
	Features

	MicroBlaze I/O Overview
	On-Chip Peripheral Bus (OPB) Interface Description
	Local Memory Bus (LMB) Interface Description
	LMB Signal Interface
	Addr[0:31]
	Byte_Enable[0:3]
	Data_Write[0:31]
	AS
	Read_Strobe
	Write_Strobe
	Data_Read[0:31]
	Ready
	Clk

	LMB Transactions
	Generic Write Operation
	Generic Read Operation
	Back-to-Back Write Operation
	Single Cycle Back-to-Back Read Operation
	Back-to-Back Mixed Read/Write Operation

	Read and Write Data Steering

	Fast Simplex Link (FSL) Interface Description
	Master FSL Signal Interface
	Slave FSL Signal Interface
	FSL Transactions
	FSL BUS Write Operation
	FSL BUS Read Operation

	Xilinx CacheLink (XCL) Interface Description
	CacheLink Signal Interface
	CacheLink Transactions
	Instruction Cache Read Miss
	Data Cache Read Miss
	Data Cache Write

	Debug Interface Description
	Trace Interface Description
	MicroBlaze Core Configurability

	MicroBlaze Application Binary Interface
	Scope
	Data Types
	Register Usage Conventions
	Stack Convention
	Calling Convention

	Memory Model
	Small data area
	Data area
	Common un-initialized area
	Literals or constants

	Interrupt and Exception Handling

	MicroBlaze Instruction Set Architecture
	Summary
	Notation
	Formats
	Type A
	Type B

	Instructions
	add
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	addi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	and
	Description
	Pseudocode
	Registers Altered
	Latency

	andi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	andn
	Description
	Pseudocode
	Registers Altered
	Latency

	andni
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beqi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bge
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgti
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	ble
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blti
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bne
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bnei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	br
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bri
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	brk
	Description
	Pseudocode
	Registers Altered
	Latency

	brki
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bs
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bsi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	cmp
	Description
	Pseudocode
	Registers Altered
	Latency

	fadd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	frsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fmul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fdiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fcmp
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	get
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	idiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	imm
	Description
	Latency
	Notes

	lbu
	Description
	Pseudocode
	Registers Altered
	Latency

	lbui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lhu
	Description
	Pseudocode
	Registers Altered
	Latency

	lhui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lw
	Description
	Pseudocode
	Registers Altered
	Latency

	lwi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mfs
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	msrclr
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	msrset
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mts
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	muli
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	or
	Description
	Pseudocode
	Registers Altered
	Latency

	ori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpbf
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpeq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpne
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	put
	Description
	Pseudocode
	Registers Altered
	Latency

	rsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rsubi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rtbd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rtid
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rted
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rtsd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sb
	Description
	Pseudocode
	Registers Altered
	Latency

	sbi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sext16
	Description
	Pseudocode
	Registers Altered
	Latency

	sext8
	Description
	Pseudocode
	Registers Altered
	Latency

	sh
	Description
	Pseudocode
	Registers Altered
	Latency

	shi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sra
	Description
	Pseudocode
	Registers Altered
	Latency

	src
	Description
	Pseudocode
	Registers Altered
	Latency

	srl
	Description
	Pseudocode
	Registers Altered
	Latency

	sw
	Description
	Pseudocode
	Registers Altered
	Latency

	swi
	Description
	Pseudocode
	Register Altered
	Latency
	Note

	wdc
	Description
	Pseudocode
	Registers Altered
	Latency

	wic
	Description
	Pseudocode
	Registers Altered
	Latency

	xor
	Description
	Pseudocode
	Registers Altered
	Latency

	xori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

