
MicroBlaze
Processor Reference
Guide
Vivado 2013.3

UG984 (v2013.3)

MicroBlaze Processor Reference Guide www.xilinx.com UG984 (v2013.3)

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any
other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your
use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits,
goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials
or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the
Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed
at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx
products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and
liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Automotive Applications Disclaimer
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-
SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY)
AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER
ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.
© 2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, Kintex, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners. AMBA, AMBA Designer, ARM, ARM1176JZ-S,
CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries.

Revision History
The following table shows the revision history for this document.

Date Version Revision

03/20/13 2013.1 Initial Xilinx release. This User Guide is derived from UG081.

06/19/13 2013.2 Updated for Vivado 2013.2 release.

10/02/13 2013.3 Updated for Vivado 2013.3 release.

http://www.xilinx.com/warranty.htm
http://www.xilinx.com
http://www.xilinx.com/warranty.htm#critapps

Chapter 1: Introduction
Guide Contents . 5

Chapter 2: MicroBlaze Architecture
Overview . 7
Data Types and Endianness. 11
Instructions . 12
Registers . 23
Pipeline Architecture . 48
Memory Architecture. 51
Privileged Instructions . 53
Virtual-Memory Management . 55
Reset, Interrupts, Exceptions, and Break. 68
Instruction Cache . 77
Data Cache . 80
Floating Point Unit (FPU) . 84
Stream Link Interfaces . 89
Debug and Trace . 90
Fault Tolerance . 91
Lockstep Operation . 98
Coherency . 101

Chapter 3: MicroBlaze Signal Interface Description
Overview . 105
MicroBlaze I/O Overview . 106
AXI4 and ACE Interface Description . 116
Local Memory Bus (LMB) Interface Description . 121
Lockstep Interface Description . 130
Debug Interface Description . 136
Trace Interface Description . 137
MicroBlaze Core Configurability . 140

Chapter 4: MicroBlaze Application Binary Interface
Data Types. 151
Register Usage Conventions . 152
Stack Convention . 154
Table of Contents
MicroBlaze Processor Reference Guide www.xilinx.com 3
UG984 (v2013.3)

http://www.xilinx.com

Memory Model . 156
Interrupt and Exception Handling . 157

Chapter 5: MicroBlaze Instruction Set Architecture
Notation. 159
Formats . 161
Instructions . 161

Appendix A: Additional Resources
Documentation . 261
Additional Resources . 261
MicroBlaze Processor Reference Guide www.xilinx.com 4
UG984 (v2013.3)

http://www.xilinx.com

Chapter 1

Introduction

The MicroBlaze™ Processor Reference Guide provides information about the 32-bit
soft processor, MicroBlaze, which is included in the Vivado release. The document
is intended as a guide to the MicroBlaze hardware architecture.

Guide Contents
This guide contains the following chapters:

• Chapter 2, MicroBlaze Architecture, contains an overview of MicroBlaze
features as well as information on Big-Endian and Little-Endian bit-reversed
format, 32-bit general purpose registers, cache software support, and Fast
Simplex Link interfaces.

• Chapter 3, MicroBlaze Signal Interface Description, describes the types of
signal interfaces that can be used to connect MicroBlaze.

• Chapter 4, MicroBlaze Application Binary Interface, describes the Application
Binary Interface important for developing software in assembly language for
the soft processor.

• Chapter 5, MicroBlaze Instruction Set Architecture, provides notation, formats,
and instructions for the Instruction Set Architecture of MicroBlaze.

• Appendix A, Additional Resources, provides links to documentation and
additional resources.
MicroBlaze Processor Reference Guide www.xilinx.com 5
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=5

Chapter 1: Introduction
6 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=6

Chapter 2

MicroBlaze Architecture

This chapter contains an overview of MicroBlaze™ features and detailed
information on MicroBlaze architecture including Big-Endian or Little-Endian bit-
reversed format, 32-bit general purpose registers, virtual-memory management,
cache software support, and AXI4-Stream interfaces.

Overview
The MicroBlaze™ embedded processor soft core is a reduced instruction set
computer (RISC) optimized for implementation in Xilinx® Field Programmable Gate
Arrays (FPGAs). Figure 2-1 shows a functional block diagram of the MicroBlaze
core.

Figure 2-1: MicroBlaze Core Block Diagram

Data-sideInstruction-side

ILMB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

ALU

Instruction
Decode

Bus
IF

Bus
IF

I-Cache

D-Cache

Shift

Barrel Shift

Multiplier

Divider

FPU

Special
Purpose

Registers

Optional MicroBlaze feature

M_AXI_IP

UTLBITLB DTLB

Memory Management Unit (MMU)

M_AXI_IC M_AXI_DC

Branch
Target
Cache

M0_AXIS..

S0_AXIS..
M15_AXIS

S15_AXIS

M_ACE_DCM_ACE_IC

M_AXI_DP

DLMB
MicroBlaze Processor Reference Guide www.xilinx.com 7
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=7

Chapter 2: MicroBlaze Architecture
Features
The MicroBlaze soft core processor is highly configurable, allowing you to select a
specific set of features required by your design.

The fixed feature set of the processor includes:

• Thirty-two 32-bit general purpose registers
• 32-bit instruction word with three operands and two addressing modes
• 32-bit address bus
• Single issue pipeline

In addition to these fixed features, the MicroBlaze processor is parameterized to
allow selective enabling of additional functionality. Older (deprecated) versions of
MicroBlaze support a subset of the optional features described in this manual. Only
the latest (preferred) version of MicroBlaze (v9.2) supports all options.

Xilinx recommends that all new designs use the latest preferred version of the
MicroBlaze processor.

Table 2-1, page 8 provides an overview of the configurable features by MicroBlaze
versions.

Table 2-1: Configurable Feature Overview by MicroBlaze Version

Feature
MicroBlaze Versions

v8.40 v9.0 v9.1 v9.2

Version Status deprecated deprecated deprecated preferred

Processor pipeline depth 3/5 3/5 3/5 3/5

On-chip Peripheral Bus (OPB) data side interface No No No No

On-chip Peripheral Bus (OPB) instruction side interface No No No No

Local Memory Bus (LMB) data side interface option option option option

Local Memory Bus (LMB) instruction side interface option option option option

Hardware barrel shifter option option option option

Hardware divider option option option option

Hardware debug logic option option option option

Stream link interfaces 0-15 AXI 0-15 AXI 0-15 AXI 0-15 AXI

Machine status set and clear instructions option option option option

Instruction cache over IOPB interface No No No No

Data cache over DOPB interface No No No No

Instruction cache over Cache Link (IXCL) interface option No No No

Data cache over Cache Link (DXCL) interface option No No No

4 or 8-word cache line option option option option

Hardware exception support option option option option
8 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=8

Overview
Pattern compare instructions option option option option

Floating point unit (FPU) option option option option

Disable hardware multiplier1 option option option option

Hardware debug readable ESR and EAR Yes Yes Yes Yes

Processor Version Register (PVR) option option option option

Area or speed optimized option option option option

Hardware multiplier 64-bit result option option option option

LUT cache memory option option option option

Floating point conversion and square root instructions option option option option

Memory Management Unit (MMU) option option option option

Extended stream instructions option option option option

Use Cache Interface for All I-Cache Memory Accesses option option option option

Use Cache Interface for All D-Cache Memory Accesses option option option option

Use Write-back Caching Policy for D-Cache option option option option

Cache Link (DXCL) protocol for D-Cache option No No No

Cache Link (IXCL) protocol for I-Cache option No No No

Branch Target Cache (BTC) option option option option

Streams for I-Cache option option option option

Victim handling for I-Cache option option option option

Victim handling for D-Cache option option option option

AXI4 (M_AXI_DP) data side interface option option option option

AXI4 (M_AXI_IP) instruction side interface option option option option

AXI4 (M_AXI_DC) protocol for D-Cache option option option option

AXI4 (M_AXI_IC) protocol for I-Cache option option option option

AXI4 protocol for stream accesses option option option option

Fault tolerant features option option option option

Tool selectable endianness option option option option

Force distributed RAM for cache tags option option option option

Configurable cache data widths option option option option

Count Leading Zeros instruction option option option option

Memory Barrier instruction Yes Yes Yes Yes

Stack overflow and underflow detection option option option option

Allow stream instructions in user mode option option option option

Lockstep support option option option option

Table 2-1: Configurable Feature Overview by MicroBlaze Version

Feature
MicroBlaze Versions

v8.40 v9.0 v9.1 v9.2
MicroBlaze Processor Reference Guide www.xilinx.com 9
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=9

Chapter 2: MicroBlaze Architecture
Configurable use of FPGA primitives option option option option

Low-latency interrupt mode option option option option

Swap instructions option option option option

Sleep mode and sleep instruction Yes Yes Yes Yes

Relocatable base vectors option option option option

ACE (M_ACE_DC) protocol for D-Cache option option option

ACE (M_ACE_IC) protocol for I-Cache option option option

1. Used for saving DSP48E primitives.

Table 2-1: Configurable Feature Overview by MicroBlaze Version

Feature
MicroBlaze Versions

v8.40 v9.0 v9.1 v9.2
10 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=10

Data Types and Endianness
Data Types and Endianness
MicroBlaze uses Big-Endian or Little-Endian format to represent data, depending
on the parameter C_ENDIANNESS. The hardware supported data types for
MicroBlaze are word, half word, and byte. When using the reversed load and store
instructions LHUR, LWR, SHR and SWR, the bytes in the data are reversed, as
indicated by the byte-reversed order.

The bit and byte organization for each type is shown in the following tables.

Table 2-2: Word Data Type

Big-Endian Byte Address n n+1 n+2 n+3

Big-Endian Byte Significance MSByte LSByte

Big-Endian Byte Order n n+1 n+2 n+3

Big-Endian Byte-Reversed Order n+3 n+2 n+1 n

Little-Endian Byte Address n+3 n+2 n+1 n

Little-Endian Byte Significance MSByte LSByte

Little-Endian Byte Order n+3 n+2 n+1 n

Little-Endian Byte-Reversed Order n n+1 n+2 n+3

Bit Label 0 31

Bit Significance MSBit LSBit

Table 2-3: Half Word Data Type

Big-Endian Byte Address n n+1

Big-Endian Byte Significance MSByte LSByte

Big-Endian Byte Order n n+1

Big-Endian Byte-Reversed Order n+1 n

Little-Endian Byte Address n+1 n

Little-Endian Byte Significance MSByte LSByte

Little-Endian Byte Order n+1 n

Little-Endian Byte-Reversed Order n n+1

Bit Label 0 15

Bit Significance MSBit LSBit

Table 2-4: Byte Data Type

Byte Address n

Bit Label 0 7

Bit Significance MSBit LSBit
MicroBlaze Processor Reference Guide www.xilinx.com 11
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=11

Chapter 2: MicroBlaze Architecture
Instructions

Instruction Summary
All MicroBlaze instructions are 32 bits and are defined as either Type A or Type B.
Type A instructions have up to two source register operands and one destination
register operand. Type B instructions have one source register and a 16-bit
immediate operand (which can be extended to 32 bits by preceding the Type B
instruction with an imm instruction). Type B instructions have a single destination
register operand. Instructions are provided in the following functional categories:
arithmetic, logical, branch, load/store, and special. Table 2-6 lists the MicroBlaze
instruction set. Refer to Chapter 5, MicroBlaze Instruction Set Architecturefor more
information on these instructions. Table 2-5 describes the instruction set
nomenclature used in the semantics of each instruction.

Table 2-5: Instruction Set Nomenclature

Symbol Description

Ra R0 - R31, General Purpose Register, source operand a

Rb R0 - R31, General Purpose Register, source operand b

Rd R0 - R31, General Purpose Register, destination operand

SPR[x] Special Purpose Register number x

MSR Machine Status Register = SPR[1]

ESR Exception Status Register = SPR[5]

EAR Exception Address Register = SPR[3]

FSR Floating Point Unit Status Register = SPR[7]

PVRx Processor Version Register, where x is the register number = SPR[8192 + x]

BTR Branch Target Register = SPR[11]

PC Execute stage Program Counter = SPR[0]

x[y] Bit y of register x

x[y:z] Bit range y to z of register x

x Bit inverted value of register x

Imm 16 bit immediate value

Immx x bit immediate value

FSLx 4 bit AXI4-Stream port designator, where x is the port number

C Carry flag, MSR[29]

Sa Special Purpose Register, source operand

Sd Special Purpose Register, destination operand

s(x) Sign extend argument x to 32-bit value

*Addr Memory contents at location Addr (data-size aligned)
12 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=12

Instructions
:= Assignment operator

= Equality comparison

!= Inequality comparison

> Greater than comparison

>= Greater than or equal comparison

< Less than comparison

<= Less than or equal comparison

+ Arithmetic add

* Arithmetic multiply

/ Arithmetic divide

>> x Bit shift right x bits

<< x Bit shift left x bits

and Logic AND

or Logic OR

xor Logic exclusive OR

op1 if cond else op2 Perform op1 if condition cond is true, else perform op2

& Concatenate. E.g. “0000100 & Imm7” is the concatenation of the fixed field “0000100” and a 7
bit immediate value.

signed Operation performed on signed integer data type. All arithmetic operations are performed on
signed word operands, unless otherwise specified

unsigned Operation performed on unsigned integer data type

float Operation performed on floating point data type

clz(r) Count leading zeros

Table 2-5: Instruction Set Nomenclature (Continued)

Symbol Description

Table 2-6: MicroBlaze Instruction Set Summary

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31

ADD Rd,Ra,Rb 000000 Rd Ra Rb 00000000000 Rd := Rb + Ra

RSUB Rd,Ra,Rb 000001 Rd Ra Rb 00000000000 Rd := Rb + Ra + 1

ADDC Rd,Ra,Rb 000010 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

RSUBC Rd,Ra,Rb 000011 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

ADDK Rd,Ra,Rb 000100 Rd Ra Rb 00000000000 Rd := Rb + Ra

RSUBK Rd,Ra,Rb 000101 Rd Ra Rb 00000000000 Rd := Rb + Ra + 1

ADDKC Rd,Ra,Rb 000110 Rd Ra Rb 00000000000 Rd := Rb + Ra + C
MicroBlaze Processor Reference Guide www.xilinx.com 13
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=13

Chapter 2: MicroBlaze Architecture
RSUBKC Rd,Ra,Rb 000111 Rd Ra Rb 00000000000 Rd := Rb + Ra + C

CMP Rd,Ra,Rb 000101 Rd Ra Rb 00000000001 Rd := Rb + Ra + 1
Rd[0] := 0 if (Rb >= Ra) else
Rd[0] := 1

CMPU Rd,Ra,Rb 000101 Rd Ra Rb 00000000011 Rd := Rb + Ra + 1 (unsigned)
Rd[0] := 0 if (Rb >= Ra, unsigned) else
Rd[0] := 1

ADDI Rd,Ra,Imm 001000 Rd Ra Imm Rd := s(Imm) + Ra

RSUBI Rd,Ra,Imm 001001 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIC Rd,Ra,Imm 001010 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIC Rd,Ra,Imm 001011 Rd Ra Imm Rd := s(Imm) + Ra + C

ADDIK Rd,Ra,Imm 001100 Rd Ra Imm Rd := s(Imm) + Ra

RSUBIK Rd,Ra,Imm 001101 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIKC Rd,Ra,Imm 001110 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIKC Rd,Ra,Imm 001111 Rd Ra Imm Rd := s(Imm) + Ra + C

MUL Rd,Ra,Rb 010000 Rd Ra Rb 00000000000 Rd := Ra * Rb

MULH Rd,Ra,Rb 010000 Rd Ra Rb 00000000001 Rd := (Ra * Rb) >> 32 (signed)

MULHU Rd,Ra,Rb 010000 Rd Ra Rb 00000000011 Rd := (Ra * Rb) >> 32 (unsigned)

MULHSU Rd,Ra,Rb 010000 Rd Ra Rb 00000000010 Rd := (Ra, signed * Rb, unsigned) >> 32
(signed)

BSRA Rd,Ra,Rb 010001 Rd Ra Rb 01000000000 Rd := s(Ra >> Rb)

BSLL Rd,Ra,Rb 010001 Rd Ra Rb 10000000000 Rd := (Ra << Rb) & 0

MULI Rd,Ra,Imm 011000 Rd Ra Imm Rd := Ra * s(Imm)

BSRLI Rd,Ra,Imm 011001 Rd Ra 00000000000 &
Imm5

Rd : = 0 & (Ra >> Imm5)

BSRAI Rd,Ra,Imm 011001 Rd Ra 00000010000 &
Imm5

Rd := s(Ra >> Imm5)

BSLLI Rd,Ra,Imm 011001 Rd Ra 00000100000 &
Imm5

Rd := (Ra << Imm5) & 0

IDIV Rd,Ra,Rb 010010 Rd Ra Rb 00000000000 Rd := Rb/Ra

IDIVU Rd,Ra,Rb 010010 Rd Ra Rb 00000000010 Rd := Rb/Ra, unsigned

TNEAGETD Rd,Rb 010011 Rd 00000 Rb 0N0TAE
00000

Rd := FSL Rb[28:31] (data read)
MSR[FSL] := 1 if (FSL_S_Control = 1)
MSR[C] := not FSL_S_Exists if N = 1

TNAPUTD Ra,Rb 010011 00000 Ra Rb 0N0TA0
00000

FSL Rb[28:31] := Ra (data write)
MSR[C] := FSL_M_Full if N = 1

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
14 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=14

Instructions
TNECAGETD Rd,Rb 010011 Rd 00000 Rb 0N1TAE
00000

Rd := FSL Rb[28:31] (control read)
MSR[FSL] := 1 if (FSL_S_Control = 0)
MSR[C] := not FSL_S_Exists if N = 1

TNCAPUTD Ra,Rb 010011 00000 Ra Rb 0N1TA0
00000

FSL Rb[28:31] := Ra (control write)
MSR[C] := FSL_M_Full if N = 1

FADD Rd,Ra,Rb 010110 Rd Ra Rb 00000000000 Rd := Rb+Ra, float1

FRSUB Rd,Ra,Rb 010110 Rd Ra Rb 00010000000 Rd := Rb-Ra, float1

FMUL Rd,Ra,Rb 010110 Rd Ra Rb 00100000000 Rd := Rb*Ra, float1

FDIV Rd,Ra,Rb 010110 Rd Ra Rb 00110000000 Rd := Rb/Ra, float1

FCMP.UN Rd,Ra,Rb 010110 Rd Ra Rb 01000000000 Rd := 1 if (Rb = NaN or Ra = NaN, float1)
else
Rd := 0

FCMP.LT Rd,Ra,Rb 010110 Rd Ra Rb 01000010000 Rd := 1 if (Rb < Ra, float1) else
Rd := 0

FCMP.EQ Rd,Ra,Rb 010110 Rd Ra Rb 01000100000 Rd := 1 if (Rb = Ra, float1) else
Rd := 0

FCMP.LE Rd,Ra,Rb 010110 Rd Ra Rb 01000110000 Rd := 1 if (Rb <= Ra, float1) else
Rd := 0

FCMP.GT Rd,Ra,Rb 010110 Rd Ra Rb 01001000000 Rd := 1 if (Rb > Ra, float1) else
Rd := 0

FCMP.NE Rd,Ra,Rb 010110 Rd Ra Rb 01001010000 Rd := 1 if (Rb != Ra, float1) else
Rd := 0

FCMP.GE Rd,Ra,Rb 010110 Rd Ra Rb 01001100000 Rd := 1 if (Rb >= Ra, float1) else
Rd := 0

FLT Rd,Ra 010110 Rd Ra 0 01010000000 Rd := float (Ra)1

FINT Rd,Ra 010110 Rd Ra 0 01100000000 Rd := int (Ra)1

FSQRT Rd,Ra 010110 Rd Ra 0 01110000000 Rd := sqrt (Ra)1

TNEAGET Rd,FSLx 011011 Rd 00000 0N0TAE000000 &
FSLx

Rd := FSLx (data read, blocking if N = 0)
MSR[FSL] := 1 if (FSLx_S_Control = 1)
MSR[C] := not FSLx_S_Exists if N = 1

TNAPUT Ra,FSLx 011011 00000 Ra 1N0TA0000000 &
FSLx

FSLx := Ra (data write, blocking if N = 0)
MSR[C] := FSLx_M_Full if N = 1

TNECAGET Rd,FSLx 011011 Rd 00000 0N1TAE000000 &
FSLx

Rd := FSLx (control read, blocking if N = 0)
MSR[FSL] := 1 if (FSLx_S_Control = 0)
MSR[C] := not FSLx_S_Exists if N = 1

TNCAPUT Ra,FSLx 011011 00000 Ra 1N1TA0000000 &
FSLx

FSLx := Ra (control write, blocking if N = 0)
MSR[C] := FSLx_M_Full if N = 1

OR Rd,Ra,Rb 100000 Rd Ra Rb 00000000000 Rd := Ra or Rb

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide www.xilinx.com 15
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=15

Chapter 2: MicroBlaze Architecture
AND Rd,Ra,Rb 100001 Rd Ra Rb 00000000000 Rd := Ra and Rb

XOR Rd,Ra,Rb 100010 Rd Ra Rb 00000000000 Rd := Ra xor Rb

ANDN Rd,Ra,Rb 100011 Rd Ra Rb 00000000000 Rd := Ra and Rb

PCMPBF Rd,Ra,Rb 100000 Rd Ra Rb 10000000000 Rd := 1 if (Rb[0:7] = Ra[0:7]) else
Rd := 2 if (Rb[8:15] = Ra[8:15]) else
Rd := 3 if (Rb[16:23] = Ra[16:23]) else
Rd := 4 if (Rb[24:31] = Ra[24:31]) else
Rd := 0

PCMPEQ Rd,Ra,Rb 100010 Rd Ra Rb 10000000000 Rd := 1 if (Rd = Ra) else
Rd := 0

PCMPNE Rd,Ra,Rb 100011 Rd Ra Rb 10000000000 Rd := 1 if (Rd != Ra) else
Rd := 0

SRA Rd,Ra 100100 Rd Ra 0000000000000001 Rd := s(Ra >> 1)
C := Ra[31]

SRC Rd,Ra 100100 Rd Ra 0000000000100001 Rd := C & (Ra >> 1)
C := Ra[31]

SRL Rd,Ra 100100 Rd Ra 0000000001000001 Rd := 0 & (Ra >> 1)
C := Ra[31]

SEXT8 Rd,Ra 100100 Rd Ra 0000000001100000 Rd := s(Ra[24:31])

SEXT16 Rd,Ra 100100 Rd Ra 0000000001100001 Rd := s(Ra[16:31])

CLZ Rd, Ra 100100 Rd Ra 0000000011100000 Rd = clz(Ra)

SWAPB Rd, Ra 100100 Rd Ra 0000000111100000 Rd = (Ra)[24:31, 16:23, 8:15, 0:7]

SWAPH Rd, Ra 100100 Rd Ra 0000000111100010 Rd = (Ra)[16:31, 0:15]

WIC Ra,Rb 100100 00000 Ra Rb 00001101000 ICache_Line[Ra >> 4].Tag := 0 if
(C_ICACHE_LINE_LEN = 4)
ICache_Line[Ra >> 5].Tag := 0 if
(C_ICACHE_LINE_LEN = 8)

WDC Ra,Rb 100100 00000 Ra Rb 00001100100 Cache line is cleared, discarding stored
data.
DCache_Line[Ra >> 4].Tag := 0 if
(C_DCACHE_LINE_LEN = 4)
DCache_Line[Ra >> 5].Tag := 0 if
(C_DCACHE_LINE_LEN = 8)

WDC.FLUSH Ra,Rb 100100 00000 Ra Rb 00001110100 Cache line is flushed, writing stored data to
memory, and then cleared. Used when
C_DCACHE_USE_WRITEBACK = 1.

WDC.CLEAR Ra,Rb 100100 00000 Ra Rb 00001110110 Cache line with matching address is
cleared, discarding stored data. Used when
C_DCACHE_USE_WRITEBACK = 1.

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
16 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=16

Instructions
MBAR Imm 101110 Imm 00010 0000000000000100 PC := PC + 4; Wait for memory accesses.

MTS Sd,Ra 100101 00000 Ra 11 & Sd SPR[Sd] := Ra, where:
• SPR[0x0001] is MSR
• SPR[0x0007] is FSR
• SPR[0x0800] is SLR
• SPR[0x0802] is SHR
• SPR[0x1000] is PID
• SPR[0x1001] is ZPR
• SPR[0x1002] is TLBX
• SPR[0x1003] is TLBLO
• SPR[0x1004] is TLBHI
• SPR[0x1005] is TLBSX

MFS Rd,Sa 100101 Rd 00000 10 & Sa Rd := SPR[Sa], where:
• SPR[0x0000] is PC
• SPR[0x0001] is MSR
• SPR[0x0003] is EAR
• SPR[0x0005] is ESR
• SPR[0x0007] is FSR
• SPR[0x000B] is BTR
• SPR[0x000D] is EDR
• SPR[0x0800] is SLR
• SPR[0x0802] is SHR
• SPR[0x1000] is PID
• SPR[0x1001] is ZPR
• SPR[0x1002] is TLBX
• SPR[0x1003] is TLBLO
• SPR[0x1004] is TLBHI
• SPR[0x2000 to 0x200B] is PVR[0 to 12]

MSRCLR Rd,Imm 100101 Rd 00001 00 & Imm14 Rd := MSR
MSR := MSR and Imm14

MSRSET Rd,Imm 100101 Rd 00000 00 & Imm14 Rd := MSR
MSR := MSR or Imm14

BR Rb 100110 00000 00000 Rb 00000000000 PC := PC + Rb

BRD Rb 100110 00000 10000 Rb 00000000000 PC := PC + Rb

BRLD Rd,Rb 100110 Rd 10100 Rb 00000000000 PC := PC + Rb
Rd := PC

BRA Rb 100110 00000 01000 Rb 00000000000 PC := Rb

BRAD Rb 100110 00000 11000 Rb 00000000000 PC := Rb

BRALD Rd,Rb 100110 Rd 11100 Rb 00000000000 PC := Rb
Rd := PC

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide www.xilinx.com 17
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=17

Chapter 2: MicroBlaze Architecture
BRK Rd,Rb 100110 Rd 01100 Rb 00000000000 PC := Rb
Rd := PC
MSR[BIP] := 1

BEQ Ra,Rb 100111 00000 Ra Rb 00000000000 PC := PC + Rb if Ra = 0

BNE Ra,Rb 100111 00001 Ra Rb 00000000000 PC := PC + Rb if Ra != 0

BLT Ra,Rb 100111 00010 Ra Rb 00000000000 PC := PC + Rb if Ra < 0

BLE Ra,Rb 100111 00011 Ra Rb 00000000000 PC := PC + Rb if Ra <= 0

BGT Ra,Rb 100111 00100 Ra Rb 00000000000 PC := PC + Rb if Ra > 0

BGE Ra,Rb 100111 00101 Ra Rb 00000000000 PC := PC + Rb if Ra >= 0

BEQD Ra,Rb 100111 10000 Ra Rb 00000000000 PC := PC + Rb if Ra = 0

BNED Ra,Rb 100111 10001 Ra Rb 00000000000 PC := PC + Rb if Ra != 0

BLTD Ra,Rb 100111 10010 Ra Rb 00000000000 PC := PC + Rb if Ra < 0

BLED Ra,Rb 100111 10011 Ra Rb 00000000000 PC := PC + Rb if Ra <= 0

BGTD Ra,Rb 100111 10100 Ra Rb 00000000000 PC := PC + Rb if Ra > 0

BGED Ra,Rb 100111 10101 Ra Rb 00000000000 PC := PC + Rb if Ra >= 0

ORI Rd,Ra,Imm 101000 Rd Ra Imm Rd := Ra or s(Imm)

ANDI Rd,Ra,Imm 101001 Rd Ra Imm Rd := Ra and s(Imm)

XORI Rd,Ra,Imm 101010 Rd Ra Imm Rd := Ra xor s(Imm)

ANDNI Rd,Ra,Imm 101011 Rd Ra Imm Rd := Ra and s(Imm)

IMM Imm 101100 00000 00000 Imm Imm[0:15] := Imm

RTSD Ra,Imm 101101 10000 Ra Imm PC := Ra + s(Imm)

RTID Ra,Imm 101101 10001 Ra Imm PC := Ra + s(Imm)
MSR[IE] := 1

RTBD Ra,Imm 101101 10010 Ra Imm PC := Ra + s(Imm)
MSR[BIP] := 0

RTED Ra,Imm 101101 10100 Ra Imm PC := Ra + s(Imm)
MSR[EE] := 1, MSR[EIP] := 0
ESR := 0

BRI Imm 101110 00000 00000 Imm PC := PC + s(Imm)

BRID Imm 101110 00000 10000 Imm PC := PC + s(Imm)

BRLID Rd,Imm 101110 Rd 10100 Imm PC := PC + s(Imm)
Rd := PC

BRAI Imm 101110 00000 01000 Imm PC := s(Imm)

BRAID Imm 101110 00000 11000 Imm PC := s(Imm)

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
18 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=18

Instructions
BRALID Rd,Imm 101110 Rd 11100 Imm PC := s(Imm)
Rd := PC

BRKI Rd,Imm 101110 Rd 01100 Imm PC := s(Imm)
Rd := PC
MSR[BIP] := 1

BEQI Ra,Imm 101111 00000 Ra Imm PC := PC + s(Imm) if Ra = 0

BNEI Ra,Imm 101111 00001 Ra Imm PC := PC + s(Imm) if Ra != 0

BLTI Ra,Imm 101111 00010 Ra Imm PC := PC + s(Imm) if Ra < 0

BLEI Ra,Imm 101111 00011 Ra Imm PC := PC + s(Imm) if Ra <= 0

BGTI Ra,Imm 101111 00100 Ra Imm PC := PC + s(Imm) if Ra > 0

BGEI Ra,Imm 101111 00101 Ra Imm PC := PC + s(Imm) if Ra >= 0

BEQID Ra,Imm 101111 10000 Ra Imm PC := PC + s(Imm) if Ra = 0

BNEID Ra,Imm 101111 10001 Ra Imm PC := PC + s(Imm) if Ra != 0

BLTID Ra,Imm 101111 10010 Ra Imm PC := PC + s(Imm) if Ra < 0

BLEID Ra,Imm 101111 10011 Ra Imm PC := PC + s(Imm) if Ra <= 0

BGTID Ra,Imm 101111 10100 Ra Imm PC := PC + s(Imm) if Ra > 0

BGEID Ra,Imm 101111 10101 Ra Imm PC := PC + s(Imm) if Ra >= 0

LBU Rd,Ra,Rb
LBUR Rd,Ra,Rb

110000 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LHU Rd,Ra,Rb
LHUR Rd,Ra,Rb

110001 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LW Rd,Ra,Rb
LWR Rd,Ra,Rb

110010 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
Rd := *Addr

LWX Rd,Ra,Rb 110010 Rd Ra Rb 10000000000 Addr := Ra + Rb
Rd := *Addr
Reservation := 1

SB Rd,Ra,Rb
SBR Rd,Ra,Rb

110100 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
*Addr[0:8] := Rd[24:31]

SH Rd,Ra,Rb
SHR Rd,Ra,Rb

110101 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
*Addr[0:16] := Rd[16:31]

SW Rd,Ra,Rb
SWR Rd,Ra,Rb

110110 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
*Addr := Rd

SWX Rd,Ra,Rb 110110 Rd Ra Rb 10000000000 Addr := Ra + Rb
*Addr := Rd if Reservation = 1
Reservation := 0

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MicroBlaze Processor Reference Guide www.xilinx.com 19
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=19

Chapter 2: MicroBlaze Architecture
Semaphore Synchronization
The LWX and SWX. instructions are used to implement common semaphore
operations, including test and set, compare and swap, exchange memory, and
fetch and add. They are also used to implement spinlocks.

These instructions are typically used by system programs and are called by
application programs as needed. Generally, a program uses LWX to load a
semaphore from memory, causing the reservation to be set (the processor
maintains the reservation internally). The program can compute a result based on
the semaphore value and conditionally store the result back to the same memory
location using the SWX instruction. The conditional store is performed based on
the existence of the reservation established by the preceding LWX instruction. If
the reservation exists when the store is executed, the store is performed and
MSR[C] is cleared to 0. If the reservation does not exist when the store is executed,
the target memory location is not modified and MSR[C] is set to 1.

If the store is successful, the sequence of instructions from the semaphore load to
the semaphore store appear to be executed atomically—no other device modified
the semaphore location between the read and the update. Other devices can read
from the semaphore location during the operation. For a semaphore operation to
work properly, the LWX instruction must be paired with an SWX instruction, and
both must specify identical addresses. The reservation granularity in MicroBlaze is
a word. For both instructions, the address must be word aligned. No unaligned
exceptions are generated for these instructions.

LBUI Rd,Ra,Imm 111000 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LHUI Rd,Ra,Imm 111001 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LWI Rd,Ra,Imm 111010 Rd Ra Imm Addr := Ra + s(Imm)
Rd := *Addr

SBI Rd,Ra,Imm 111100 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:7] := Rd[24:31]

SHI Rd,Ra,Imm 111101 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:15] := Rd[16:31]

SWI Rd,Ra,Imm 111110 Rd Ra Imm Addr := Ra + s(Imm)
*Addr := Rd

1. Due to the many different corner cases involved in floating point arithmetic, only the normal behavior is described. A full description
of the behavior can be found in Chapter 5, “MicroBlaze Instruction Set Architecture.”

Table 2-6: MicroBlaze Instruction Set Summary (Continued)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
20 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=20

Instructions
The conditional store is always performed when a reservation exists, even if the
store address does not match the load address that set the reservation.

Only one reservation can be maintained at a time. The address associated with the
reservation can be changed by executing a subsequent LWX instruction. The
conditional store is performed based upon the reservation established by the last
LWX instruction executed. Executing an SWX instruction always clears a reservation
held by the processor, whether the address matches that established by the LWX or
not.

Reset, interrupts, exceptions, and breaks (including the BRK and BRKI instructions)
all clear the reservation.

The following provides general guidelines for using the LWX and SWX instructions:

• The LWX and SWX instructions should be paired and use the same address.
• An unpaired SWX instruction to an arbitrary address can be used to clear any

reservation held by the processor.
• A conditional sequence begins with an LWX instruction. It can be followed by

memory accesses and/or computations on the loaded value. The sequence
ends with an SWX instruction. In most cases, failure of the SWX instruction
should cause a branch back to the LWX for a repeated attempt.

• An LWX instruction can be left unpaired when executing certain
synchronization primitives if the value loaded by the LWX is not zero. An
implementation of Test and Set exemplifies this:
loop: lwx r5,r3,r0 ; load and reserve

bnei r5,next ; branch if not equal to zero
addik r5,r5,1 ; increment value
swx r5,r3,r0 ; try to store non-zero value
addic r5,r0,0 ; check reservation
bnei r5,loop ; loop if reservation lost

next:

• Performance can be improved by minimizing looping on an LWX instruction
that fails to return a desired value. Performance can also be improved by using
an ordinary load instruction to do the initial value check. An implementation of
a spinlock exemplifies this:
loop: lw r5,r3,r0 ; load the word

bnei r5,loop ; loop back if word not equal to 0
lwx r5,r3,r0 ; try reserving again
bnei r5,loop ; likely that no branch is needed
addik r5,r5,1 ; increment value
swx r5,r3,r0 ; try to store non-zero value
addic r5,r0,0 ; check reservation
bnei r5,loop ; loop if reservation lost

• Minimizing the looping on an LWX/SWX instruction pair increases the
likelihood that forward progress is made. The old value should be tested
before attempting the store. If the order is reversed (store before load), more
SWX instructions are executed and reservations are more likely to be lost
between the LWX and SWX instructions.
MicroBlaze Processor Reference Guide www.xilinx.com 21
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=21

Chapter 2: MicroBlaze Architecture
Self-modifying Code
When using self-modifying code software must ensure that the modified
instructions have been written to memory prior to fetching them for execution.
There are several aspects to consider:

• The instructions to be modified may already have been fetched prior to
modification:
♦ into the instruction prefetch buffer,
♦ into the instruction cache, if it is enabled,
♦ into a stream buffer, if instruction cache stream buffers are used,
♦ into the instruction cache, and then saved in a victim buffer, if victim buffers are

used.

To ensure that the modified code is always executed instead of the old
unmodified code, software must handle all these cases.

• If one or more of the instructions to be modified is a branch, and the branch
target cache is used, the branch target address may have been cached.
To avoid using the cached branch target address, software must ensure that the
branch target cache is cleared prior to executing the modified code.

• The modified instructions may not have been written to memory prior to
execution:
♦ they may be en route to memory, in temporary storage in the interconnect or the

memory controller,
♦ they may be stored in the data cache, if write-back cache is used,
♦ they may be saved in a victim buffer, if write-back cache and victim buffers are

used.

Software must ensure that the modified instructions have been written to
memory before being fetched by the processor.

The annotated code below shows how each of the above issues can be addressed.
This code assumes that both instruction cache and write-back data cache is used. If
not, the corresponding instructions can be omitted.

The following code exemplifies storing a modified instruction:
swi r5,r6,0 ; r5 = new instruction

; r6 = physical instruction address
wdc.flush r6,r0 ; flush write-back data cache line
mbar 1 ; ensure new instruction is written to memory
wic r7,r0 ; invalidate line, empty stream & victim buffers

; r7 = virtual instruction address
mbar 2 ; empty prefetch buffer, clear branch target cache

The physical and virtual addresses above are identical, unless MMU virtual mode is
used. If the MMU is enabled, the code sequences must be executed in real mode,
since WIC and WDC are privileged instructions.

The first instruction after the code sequences above must not be modified, since it
may have been prefetched.
22 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=22

Registers
Registers
MicroBlaze has an orthogonal instruction set architecture. It has thirty-two 32-bit
general purpose registers and up to eighteen 32-bit special purpose registers,
depending on configured options.

General Purpose Registers
The thirty-two 32-bit General Purpose Registers are numbered R0 through R31. The
register file is reset on bit stream download (reset value is 0x00000000). Figure 2-2
is a representation of a General Purpose Register and Table 2-7 provides a
description of each register and the register reset value (if existing).
Note: The register file is not reset by the external reset inputs: Reset, MB_Reset and Debug_Rst.

Refer to Table 4-2 for software conventions on general purpose register usage.

0 31

↑
R0-R31

Figure 2-2: R0-R31

Table 2-7: General Purpose Registers (R0-R31)

Bits Name Description Reset Value

0:31 R0 Always has a value of zero. Anything
written to R0 is discarded

0x00000000

0:31 R1 through R13 32-bit general purpose registers -

0:31 R14 32-bit register used to store return addresses
for interrupts.

-

0:31 R15 32-bit general purpose register.
Recommended for storing return addresses
for user vectors.

-

0:31 R16 32-bit register used to store return addresses
for breaks.

-

0:31 R17 If MicroBlaze is configured to support
hardware exceptions, this register is loaded
with the address of the instruction following
the instruction causing the HW exception,
except for exceptions in delay slots that use
BTR instead (see “Branch Target Register
(BTR)”); if not, it is a general purpose register.

-

0:31 R18 through R31 R18 through R31 are 32-bit general purpose
registers.

-

MicroBlaze Processor Reference Guide www.xilinx.com 23
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=23

Chapter 2: MicroBlaze Architecture
Special Purpose Registers

Program Counter (PC)

The Program Counter (PC) is the 32-bit address of the execution instruction. It can
be read with an MFS instruction, but it cannot be written with an MTS instruction.
When used with the MFS instruction the PC register is specified by setting Sa =
0x0000. Figure 2-3 illustrates the PC and Table 2-8 provides a description and reset
value.

Machine Status Register (MSR)

The Machine Status Register contains control and status bits for the processor. It
can be read with an MFS instruction. When reading the MSR, bit 29 is replicated in
bit 0 as the carry copy. MSR can be written using either an MTS instruction or the
dedicated MSRSET and MSRCLR instructions.

When writing to the MSR using MSRSET or MSRCLR, the Carry bit takes effect
immediately and the remaining bits take effect one clock cycle later. When writing
using MTS, all bits take effect one clock cycle later. Any value written to bit 0 is
discarded.

When used with an MTS or MFS instruction, the MSR is specified by setting Sx =
0x0001. Figure 2-4 illustrates the MSR register and Table 2-9 provides the bit
description and reset values.

0 31

↑
PC

Figure 2-3: PC

Table 2-8: Program Counter (PC)

Bits Name Description Reset Value

0:31 PC Program Counter
Address of executing instruction, that is, “mfs r2 0”
stores the address of the mfs instruction itself in R2.

0x00000000
24 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=24

Registers
0 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
CC RESERVED VMS VM UMS UM PVR EIP EE DCE DZO ICE FSL BIP C IE RES

Figure 2-4: MSR

Table 2-9: Machine Status Register (MSR)

Bits Name Description Reset Value

0 CC Arithmetic Carry Copy
Copy of the Arithmetic Carry (bit 29). CC is always the
same as bit C.

0

1:16 Reserved

17 VMS Virtual Protected Mode Save
Only available when configured with an MMU
(if C_USE_MMU > 1 and C_AREA_OPTIMIZED = 0)
Read/Write

0

18 VM Virtual Protected Mode
0 = MMU address translation and access protection
disabled, with C_USE_MMU = 3 (Virtual). Access protection
disabled with C_USE_MMU = 2 (Protection)
1 = MMU address translation and access protection
enabled, with C_USE_MMU = 3 (Virtual). Access protection
enabled, with C_USE_MMU = 2 (Protection).
Only available when configured with an MMU
(if C_USE_MMU > 1 and C_AREA_OPTIMIZED = 0)
Read/Write

0

19 UMS User Mode Save
Only available when configured with an MMU
(if C_USE_MMU > 0 and C_AREA_OPTIMIZED = 0)
Read/Write

0

20 UM User Mode
0 = Privileged Mode, all instructions are allowed
1 = User Mode, certain instructions are not allowed
Only available when configured with an MMU
(if C_USE_MMU > 0 and C_AREA_OPTIMIZED = 0)
Read/Write

0

21 PVR Processor Version Register exists
0 = No Processor Version Register
1 = Processor Version Register exists
Read only

Based on
parameter

C_PVR
MicroBlaze Processor Reference Guide www.xilinx.com 25
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=25

Chapter 2: MicroBlaze Architecture
22 EIP Exception In Progress
0 = No hardware exception in progress
1 = Hardware exception in progress
Only available if configured with exception support
(C_*_EXCEPTION or C_USE_MMU > 0)
Read/Write

0

23 EE Exception Enable
0 = Hardware exceptions disabled1
1 = Hardware exceptions enabled

Only available if configured with exception
support (C_*_EXCEPTION or C_USE_MMU > 0)

Read/Write

0

24 DCE Data Cache Enable
0 = Data Cache disabled
1 = Data Cache enabled

Only available if configured to use data cache
(C_USE_DCACHE = 1)

Read/Write

0

25 DZO Division by Zero or Division Overflow2

0 = No division by zero or division overflow has occurred
1 = Division by zero or division overflow has occurred

Only available if configured to use hardware
divider (C_USE_DIV = 1)

Read/Write

0

26 ICE Instruction Cache Enable
0 = Instruction Cache disabled
1 = Instruction Cache enabled

Only available if configured to use instruction
cache (C_USE_ICACHE = 1)

Read/Write

0

27 FSL AXI4-Stream Error
0 = get or getd had no error
1 = get or getd control type mismatch
This bit is sticky, i.e. it is set by a get or getd instruction
when a control bit mismatch occurs. To clear it an mts or
msrclr instruction must be used.

Only available if configured to use stream links
(C_FSL_LINKS > 0)

Read/Write

0

Table 2-9: Machine Status Register (MSR) (Continued)

Bits Name Description Reset Value
26 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=26

Registers
28 BIP Break in Progress
0 = No Break in Progress
1 = Break in Progress
Break Sources can be software break instruction or
hardware break from Ext_Brk or Ext_NM_Brk pin.
Read/Write

0

29 C Arithmetic Carry
0 = No Carry (Borrow)
1 = Carry (No Borrow)
Read/Write

0

30 IE Interrupt Enable
0 = Interrupts disabled
1 = Interrupts enabled
Read/Write

0

31 - Reserved 0

1. The MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data TLB Miss Exception,
Instruction TLB Miss Exception) cannot be disabled, and are not affected by this bit.

2. This bit is only used for integer divide-by-zero or divide overflow signaling. There is a floating point
equivalent in the FSR. The DZO-bit flags divide by zero or divide overflow conditions regardless if the
processor is configured with exception handling or not.

Table 2-9: Machine Status Register (MSR) (Continued)

Bits Name Description Reset Value
MicroBlaze Processor Reference Guide www.xilinx.com 27
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=27

Chapter 2: MicroBlaze Architecture
Exception Address Register (EAR)

The Exception Address Register stores the full load/store address that caused the
exception for the following:

• An unaligned access exception that means the unaligned access address
• An M_AXI_DP exception that specifies the failing AXI4 data access address
• A data storage exception that specifies the (virtual) effective address accessed
• An instruction storage exception that specifies the (virtual) effective address

read
• A data TLB miss exception that specifies the (virtual) effective address

accessed
• An instruction TLB miss exception that specifies the (virtual) effective address

read

The contents of this register is undefined for all other exceptions. When read with
the MFS instruction, the EAR is specified by setting Sa = 0x0003. The EAR register
is illustrated in Figure 2-5 and Table 2-10 provides bit descriptions and reset values.

0 31

↑
EAR

Figure 2-5: EAR

Table 2-10: Exception Address Register (EAR)

Bits Name Description Reset Value

0:31 EAR Exception Address Register 0x00000000
28 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=28

Registers
Exception Status Register (ESR)

The Exception Status Register contains status bits for the processor. When read
with the MFS instruction, the ESR is specified by setting Sa = 0x0005. The ESR
register is illustrated in Figure 2-6, Table 2-11 provides bit descriptions and reset
values, and Table 2-12 provides the Exception Specific Status (ESS).

19 20 26 27 31

↑ ↑ ↑ ↑
RESERVED DS ESS EC

Figure 2-6: ESR

Table 2-11: Exception Status Register (ESR)

Bits Name Description Reset Value

0:18 Reserved

19 DS Delay Slot Exception.
0 = not caused by delay slot instruction
1 = caused by delay slot instruction
Read-only

0

20:26 ESS Exception Specific Status
For details refer to Table 2-12.
Read-only

See Table 2-12

27:31 EC Exception Cause
00000 = Stream exception
00001 = Unaligned data access exception
00010 = Illegal op-code exception
00011 = Instruction bus error exception
00100 = Data bus error exception
00101 = Divide exception
00110 = Floating point unit exception
00111 = Privileged instruction exception
00111 = Stack protection violation exception
10000 = Data storage exception
10001 = Instruction storage exception
10010 = Data TLB miss exception
10011 = Instruction TLB miss exception
Read-only

0

MicroBlaze Processor Reference Guide www.xilinx.com 29
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=29

Chapter 2: MicroBlaze Architecture
Table 2-12: Exception Specific Status (ESS)
Exception

Cause Bits Name Description Reset Value

Unaligned
Data Access

20 W Word Access Exception
0 = unaligned halfword access
1 = unaligned word access

0

21 S Store Access Exception
0 = unaligned load access
1 = unaligned store access

0

22:26 Rx Source/Destination Register
General purpose register used as
source (Store) or destination (Load)
in unaligned access

0

Illegal
Instruction

20:26 Reserved 0

Instruction
bus error

20 ECC Exception caused by ILMB
correctable or uncorrectable error

0

21:26 Reserved 0

Data bus
error

20 ECC Exception caused by DLMB
correctable or uncorrectable error

0

21:26 Reserved 0

Divide 20 DEC Divide - Division exception cause
0 = Divide-By-Zero
1 = Division Overflow

0

21:26 Reserved 0

Floating
point unit

20:26 Reserved 0

Privileged
instruction

20:26 Reserved 0

Stack
protection
violation

20:26 Reserved 0

Stream 20:22 Reserved 0

23:26 FSL AXI4-Stream index that caused the
exception

0

Data storage 20 DIZ Data storage - Zone protection
0 = Did not occur
1 = Occurred

0

21 S Data storage - Store instruction
0 = Did not occur
1 = Occurred

0

22:26 Reserved 0
30 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=30

Registers
Branch Target Register (BTR)

The Branch Target Register only exists if the MicroBlaze processor is configured to
use exceptions. The register stores the branch target address for all delay slot
branch instructions executed while MSR[EIP] = 0. If an exception is caused by an
instruction in a delay slot (that is, ESR[DS]=1), the exception handler should return
execution to the address stored in BTR instead of the normal exception return
address stored in R17. When read with the MFS instruction, the BTR is specified by
setting Sa = 0x000B. The BTR register is illustrated in Figure 2-7 and Table 2-13
provides bit descriptions and reset values.

Instruction
storage

20 DIZ Instruction storage - Zone
protection
0 = Did not occur
1 = Occurred

0

21:26 Reserved 0

Data TLB
miss

20 Reserved 0

21 S Data TLB miss - Store instruction
0 = Did not occur
1 = Occurred

0

22:26 Reserved 0

Instruction
TLB miss

20:26 Reserved 0

Table 2-12: Exception Specific Status (ESS) (Continued)
Exception

Cause Bits Name Description Reset Value

0 31

↑
BTR

Figure 2-7: BTR

Table 2-13: Branch Target Register (BTR)

Bits Name Description Reset Value

0:31 BTR Branch target address used by handler when
returning from an exception caused by an
instruction in a delay slot.
Read-only

0x00000000
MicroBlaze Processor Reference Guide www.xilinx.com 31
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=31

Chapter 2: MicroBlaze Architecture
Floating Point Status Register (FSR)

The Floating Point Status Register contains status bits for the floating point unit. It
can be read with an MFS, and written with an MTS instruction. When read or
written, the register is specified by setting Sa = 0x0007. The bits in this register are
sticky − floating point instructions can only set bits in the register, and the only way
to clear the register is by using the MTS instruction. Figure 2-8 illustrates the FSR
register and Table 2-14 provides bit descriptions and reset values.

Exception Data Register (EDR)

The Exception Data Register stores data read on an AXI4-Stream link that caused a
stream exception.

The contents of this register is undefined for all other exceptions. When read with
the MFS instruction, the EDR is specified by setting Sa = 0x000D. Figure 2-9
illustrates the EDR register and Table 2-15 provides bit descriptions and reset
values.
Note: The register is only implemented if C_FSL_LINKS is greater than 0 and C_FSL_EXCEPTION is set
to 1.

27 28 29 30 31

↑ ↑ ↑ ↑ ↑ ↑
RESERVED IO DZ OF UF DO

Figure 2-8: FSR

Table 2-14: Floating Point Status Register (FSR)

Bits Name Description Reset Value

0:26 Reserved undefined

27 IO Invalid operation 0

28 DZ Divide-by-zero 0

29 OF Overflow 0

30 UF Underflow 0

31 DO Denormalized operand error 0

0 31

↑
EDR

Figure 2-9: EDR

Table 2-15: Exception Data Register (EDR)

Bits Name Description Reset Value

0:31 EDR Exception Data Register 0x00000000
32 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=32

Registers
Stack Low Register (SLR)

The Stack Low Register stores the stack low limit use to detect stack overflow.
When the address of a load or store instruction using the stack pointer (register R1)
as rA is less than the Stack Low Register, a stack overflow occurs, causing a Stack
Protection Violation exception if exceptions are enabled in MSR.

When read with the MFS instruction, the SLR is specified by setting Sa = 0x0800.
Figure 2-10 illustrates the SLR register and Table 2-16 provides bit descriptions and
reset values.
Note: The register is only implemented if C_USE_STACK_PROTECTION is set to 1.

Stack High Register (SHR)

The Stack High Register stores the stack high limit use to detect stack underflow.
When the address of a load or store instruction using the stack pointer (register R1)
as rA is greater than the Stack High Register, a stack underflow occurs, causing a
Stack Protection Violation exception if exceptions are enabled in MSR.

When read with the MFS instruction, the SHR is specified by setting Sa = 0x0802.
Figure 2-11 illustrates the SHR register and Table 2-17 provides bit descriptions
and reset values.
Note: The register is only implemented if C_USE_STACK_PROTECTION is set to 1.

0 31

↑
SLR

Figure 2-10: SLR

Table 2-16: Stack Low Register (SLR)

Bits Name Description Reset Value

0:31 SLR Stack Low Register 0x00000000

0 31

↑
SHR

Figure 2-11: SHR

Table 2-17: Stack High Register (SHR)

Bits Name Description Reset Value

0:31 SHR Stack High Register 0xFFFFFFFF
MicroBlaze Processor Reference Guide www.xilinx.com 33
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=33

Chapter 2: MicroBlaze Architecture
Process Identifier Register (PID)

The Process Identifier Register is used to uniquely identify a software process
during MMU address translation. It is controlled by the C_USE_MMU configuration
option on MicroBlaze. The register is only implemented if C_USE_MMU is greater
than 1 (User Mode) and C_AREA_OPTIMIZED is set to 0. When accessed with the
MFS and MTS instructions, the PID is specified by setting Sa = 0x1000. The register
is accessible according to the memory management special registers parameter
C_MMU_TLB_ACCESS.

PID is also used when accessing a TLB entry:

• When writing Translation Look-Aside Buffer High (TLBHI) the value of PID is
stored in the TID field of the TLB entry

• When reading TLBHI and MSR[UM] is not set, the value in the TID field is
stored in PID

Figure 2-12 illustrates the PID register and Table 2-18 provides bit descriptions and
reset values.

24 31

↑ ↑
RESERVED PID

Figure 2-12: PID

Table 2-18: Process Identifier Register (PID)

Bits Name Description Reset Value

0:23 Reserved

24:31 PID Used to uniquely identify a software process
during MMU address translation.
Read/Write

0x00
34 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=34

Registers
Zone Protection Register (ZPR)

The Zone Protection Register is used to override MMU memory protection defined
in TLB entries. It is controlled by the C_USE_MMU configuration option on
MicroBlaze. The register is only implemented if C_USE_MMU is greater than 1 (User
Mode), C_AREA_OPTIMIZED is set to 0, and if the number of specified memory
protection zones is greater than zero (C_MMU_ZONES > 0). The implemented
register bits depend on the number of specified memory protection zones
(C_MMU_ZONES). When accessed with the MFS and MTS instructions, the ZPR is
specified by setting Sa = 0x1001. The register is accessible according to the
memory management special registers parameter C_MMU_TLB_ACCESS.
Figure 2-13 illustrates the ZPR register and Table 2-19 provides bit descriptions
and reset values.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
ZP0 ZP1 ZP2 ZP3 ZP4 ZP5 ZP6 ZP7 ZP8 ZP9 ZP10 ZP11 ZP12 ZP13 ZP14 ZP15

Figure 2-13: ZPR

Table 2-19: Zone Protection Register (ZPR)

Bits Name Description Reset Value

0:1
2:3
...
30:31

ZP0
ZP1
...
ZP15

Zone Protect
User mode (MSR[UM] = 1):
00 = Override V in TLB entry. No access to the page is
allowed
01 = No override. Use V, WR and EX from TLB entry
10 = No override. Use V, WR and EX from TLB entry
11 = Override WR and EX in TLB entry. Access the page
as writable and executable
Privileged mode (MSR[UM] = 0):
00 = No override. Use V, WR and EX from TLB entry
01 = No override. Use V, WR and EX from TLB entry
10 = Override WR and EX in TLB entry. Access the page
as writable and executable
11 = Override WR and EX in TLB entry. Access the page
as writable and executable
Read/Write

0x00000000
MicroBlaze Processor Reference Guide www.xilinx.com 35
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=35

Chapter 2: MicroBlaze Architecture
Translation Look-Aside Buffer Low Register (TLBLO)

The Translation Look-Aside Buffer Low Register is used to access MMU Unified
Translation Look-Aside Buffer (UTLB) entries. It is controlled by the C_USE_MMU
configuration option on MicroBlaze. The register is only implemented if
C_USE_MMU is greater than 1 (User Mode), and C_AREA_OPTIMIZED is set to 0.
When accessed with the MFS and MTS instructions, the TLBLO is specified by
setting Sa = 0x1003. When reading or writing TLBLO, the UTLB entry indexed by the
TLBX register is accessed. The register is readable according to the memory
management special registers parameter C_MMU_TLB_ACCESS.

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBLO
entries).
Note: The UTLB is not reset by the external reset inputs: Reset, MB_Reset and Debug_Rst.

Figure 2-14 illustrates the TLBLO register and Table 2-20 provides bit descriptions
and reset values.

0 22 23 24 28 29 30 31

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
RPN EX WR ZSEL W I M G

Figure 2-14: TLBLO

Table 2-20: Translation Look-Aside Buffer Low Register (TLBLO)

Bits Name Description Reset Value

0:21 RPN Real Page Number or Physical Page Number
When a TLB hit occurs, this field is read from the TLB
entry and is used to form the physical address.
Depending on the value of the SIZE field, some of the
RPN bits are not used in the physical address. Software
must clear unused bits in this field to zero.
Only defined when C_USE_MMU=3 (Virtual).
Read/Write

0x000000

22 EX Executable
When bit is set to 1, the page contains executable code,
and instructions can be fetched from the page. When bit
is cleared to 0, instructions cannot be fetched from the
page. Attempts to fetch instructions from a page with a
clear EX bit cause an instruction-storage exception.
Read/Write

0

36 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=36

Registers
23 WR Writable
When bit is set to 1, the page is writable and store
instructions can be used to store data at addresses
within the page.
When bit is cleared to 0, the page is read-only (not
writable). Attempts to store data into a page with a clear
WR bit cause a data storage exception.
Read/Write

0

24:27 ZSEL Zone Select
This field selects one of 16 zone fields (Z0-Z15) from the
zone-protection register (ZPR).
For example, if ZSEL 0x5, zone field Z5 is selected. The
selected ZPR field is used to modify the access
protection specified by the TLB entry EX and WR fields.
It is also used to prevent access to a page by overriding
the TLB V (valid) field.
Read/Write

0x0

28 W Write Through
When the parameter C_DCACHE_USE_WRITEBACK is
set to 1, this bit controls caching policy. A write-through
policy is selected when set to 1, and a write-back policy
is selected otherwise.
This bit is fixed to 1, and write-through is always used,
when C_DCACHE_USE_WRITEBACK is cleared to 0.
Read/Write

0/1

29 I Inhibit Caching
When bit is set to 1, accesses to the page are not cached
(caching is inhibited).
When cleared to 0, accesses to the page are cacheable.
Read/Write

0

30 M Memory Coherent
This bit is fixed to 0, because memory coherence is not
implemented on MicroBlaze.
Read Only

0

31 G Guarded
When bit is set to 1, speculative page accesses are not
allowed (memory is guarded).
When cleared to 0, speculative page accesses are
allowed.
The G attribute can be used to protect memory-
mapped I/O devices from inappropriate instruction
accesses.
Read/Write

0

Table 2-20: Translation Look-Aside Buffer Low Register (TLBLO) (Continued)

Bits Name Description Reset Value
MicroBlaze Processor Reference Guide www.xilinx.com 37
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=37

Chapter 2: MicroBlaze Architecture
Translation Look-Aside Buffer High Register (TLBHI)

The Translation Look-Aside Buffer High Register is used to access MMU Unified
Translation Look-Aside Buffer (UTLB) entries. It is controlled by the C_USE_MMU
configuration option on MicroBlaze. The register is only implemented if
C_USE_MMU is greater than 1 (User Mode), and C_AREA_OPTIMIZED is set to 0.
When accessed with the MFS and MTS instructions, the TLBHI is specified by
setting Sa = 0x1004. When reading or writing TLBHI, the UTLB entry indexed by the
TLBX register is accessed. The register is readable according to the memory
management special registers parameter C_MMU_TLB_ACCESS.

PID is also used when accessing a TLB entry:

• When writing TLBHI the value of PID is stored in the TID field of the TLB entry
• When reading TLBHI and MSR[UM] is not set, the value in the TID field is

stored in PID

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBHI
entries).
Note: The UTLB is not reset by the external reset inputs: Reset, MB_Reset and Debug_Rst.

Figure 2-15 illustrates the TLBHI register and Table 2-21 provides bit descriptions
and reset values.

0 22 25 26 27 28 31

↑ ↑ ↑ ↑ ↑ ↑
TAG SIZE V E U0 Reserved

Figure 2-15: TLBHI

Table 2-21: Translation Look-Aside Buffer High Register (TLBHI)

Bits Name Description Reset Value

0:21 TAG TLB-entry tag
Is compared with the page number portion of the
virtual memory address under the control of the SIZE
field.
Read/Write

0x000000

22:24 SIZE Size
Specifies the page size. The SIZE field controls the bit
range used in comparing the TAG field with the page
number portion of the virtual memory address. The
page sizes defined by this field are listed in Table 2-37.
Read/Write

000
38 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=38

Registers
25 V Valid
When this bit is set to 1, the TLB entry is valid and
contains a page-translation entry.
When cleared to 0, the TLB entry is invalid.
Read/Write

0

26 E Endian
When this bit is set to 1, a the page is accessed as a
little endian page if C_ENDIANNESS is 0 (Big Endian),
or as a big endian page otherwise.
When cleared to 0, the page is accessed as a big endian
page if C_ENDIANNESS is 0 (Big Endian), or as a little
endian page otherwise.
The E bit only affects data read or data write accesses.
Instruction accesses are not affected.
The E bit is only implemented when the parameter
C_USE_REORDER_INSTR is set to 1, otherwise it is
fixed to 0.
Read/Write

0

27 U0 User Defined
This bit is fixed to 0, since there are no user defined
storage attributes on MicroBlaze.
Read Only

0

28:31 Reserved

Table 2-21: Translation Look-Aside Buffer High Register (TLBHI) (Continued)

Bits Name Description Reset Value
MicroBlaze Processor Reference Guide www.xilinx.com 39
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=39

Chapter 2: MicroBlaze Architecture
Translation Look-Aside Buffer Index Register (TLBX)

The Translation Look-Aside Buffer Index Register is used as an index to the Unified
Translation Look-Aside Buffer (UTLB) when accessing the TLBLO and TLBHI
registers. It is controlled by the C_USE_MMU configuration option on MicroBlaze.
The register is only implemented if C_USE_MMU is greater than 1 (User Mode), and
C_AREA_OPTIMIZED is set to 0. When accessed with the MFS and MTS
instructions, the TLBX is specified by setting Sa = 0x1002. Figure 2-16 illustrates
the TLBX register and Table 2-22 provides bit descriptions and reset values.

0 26 31

↑ ↑ ↑
MISS Reserved INDEX

Figure 2-16: TLBX

Table 2-22: Translation Look-Aside Buffer Index Register (TLBX)

Bits Name Description Reset Value

0 MISS TLB Miss
This bit is cleared to 0 when the TLBSX register is
written with a virtual address, and the virtual address is
found in a TLB entry.
The bit is set to 1 if the virtual address is not found. It
is also cleared when the TLBX register itself is written.
Read Only
Can be read if the memory management special
registers parameter C_MMU_TLB_ACCESS > 0
(MINIMAL).

0

1:25 Reserved

26:31 INDEX TLB Index
This field is used to index the Translation Look-Aside
Buffer entry accessed by the TLBLO and TLBHI
registers. The field is updated with a TLB index when
the TLBSX register is written with a virtual address, and
the virtual address is found in the corresponding TLB
entry.
Read/Write
Can be read and written if the memory management
special registers parameter C_MMU_TLB_ACCESS > 0
(MINIMAL).

000000
40 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=40

Registers
Translation Look-Aside Buffer Search Index Register (TLBSX)

The Translation Look-Aside Buffer Search Index Register is used to search for a
virtual page number in the Unified Translation Look-Aside Buffer (UTLB). It is
controlled by the C_USE_MMU configuration option on MicroBlaze. The register is
only implemented if C_USE_MMU is greater than 1 (User Mode), and
C_AREA_OPTIMIZED is set to 0. When written with the MTS instruction, the TLBSX
is specified by setting Sa = 0x1005. Figure 2-17 illustrates the TLBSX register and
Table 2-23 provides bit descriptions and reset values.

0 22 31

↑ ↑
VPN Reserved

Figure 2-17: TLBSX

Table 2-23: Translation Look-Aside Buffer Index Search Register (TLBSX)

Bits Name Description Reset Value

0:21 VPN Virtual Page Number
This field represents the page number portion of the
virtual memory address. It is compared with the page
number portion of the virtual memory address under
the control of the SIZE field, in each of the Translation
Look-Aside Buffer entries that have the V bit set to 1.
If the virtual page number is found, the TLBX register is
written with the index of the TLB entry and the MISS bit
in TLBX is cleared to 0. If the virtual page number is not
found in any of the TLB entries, the MISS bit in the TLBX
register is set to 1.
Write Only

22:31 Reserved
MicroBlaze Processor Reference Guide www.xilinx.com 41
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=41

Chapter 2: MicroBlaze Architecture
Processor Version Register (PVR)

The Processor Version Register is controlled by the C_PVR configuration option on
MicroBlaze.

• When C_PVR is set to 0 (None) the processor does not implement any PVR
and MSR[PVR]=0.

• When C_PVR is set to 1 (Basic), MicroBlaze implements only the first register:
PVR0, and if set to 2 (Full), all 13 PVR registers (PVR0 to PVR12) are
implemented.

When read with the MFS instruction the PVR is specified by setting Sa = 0x200x,
with x being the register number between 0x0 and 0xB.

Table 2-24 through Table 2-35 provide bit descriptions and values.
Table 2-24: Processor Version Register 0 (PVR0)

Bits Name Description Value

0 CFG PVR implementation:
0 = Basic, 1 = Full

Based on C_PVR

1 BS Use barrel shifter C_USE_BARREL

2 DIV Use divider C_USE_DIV

3 MUL Use hardware multiplier C_USE_HW_MUL > 0 (None)

4 FPU Use FPU C_USE_FPU > 0 (None)

5 EXC Use any type of exceptions Based on C_*_EXCEPTION
Also set if C_USE_MMU > 0 (None)

6 ICU Use instruction cache C_USE_ICACHE

7 DCU Use data cache C_USE_DCACHE

8 MMU Use MMU C_USE_MMU > 0 (None)

9 BTC Use branch target cache C_USE_BRANCH_TARGET_CACHE

10 ENDI Selected endianness:
0 = Big endian, 1 = Little endian

C_ENDIANNESS

11 FT Implement fault tolerant
features

C_FAULT_TOLERANT

12 SPROT Use stack protection C_USE_STACK_PROTECTION

13 REORD Implement reorder instructions C_USE_REORDER_INSTR

14:15 Reserved 0

16:23 MBV MicroBlaze release version code Release Specific
0x19 = v8.40.b
0x1B = v9.0

0x1D = v9.1
0x1F = v9.2

24:31 USR1 User configured value 1 C_PVR_USER1

Table 2-25: Processor Version Register 1 (PVR1)

Bits Name Description Value

0:31 USR2 User configured value 2 C_PVR_USER2
42 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=42

Registers
Table 2-26: Processor Version Register 2 (PVR2)

Bits Name Description Value

0 DAXI Data side AXI4 or ACE in use C_D_AXI

1 DLMB Data side LMB in use C_D_LMB

2 IAXI Instruction side AXI4 or ACE
in use

C_I_AXI

3 ILMB Instruction side LMB in use C_I_LMB

4 IRQEDGE Interrupt is edge triggered C_INTERRUPT_IS_EDGE

5 IRQPOS Interrupt edge is positive C_EDGE_IS_POSITIVE

6:8 Reserved 0

9 Reserved 1

10 ACE Use ACE interconnect C_INTERCONNECT = 3 (ACE)

11 AXI4DP Data Peripheral AXI interface
uses AXI4 protocol, with
support for exclusive access

C_M_AXI_DP_EXCLUSIVE_ACCESS

12 FSL Use extended AXI4-Stream
instructions

C_USE_EXTENDED_FSL_INSTR

13 FSLEXC Generate exception for AXI4-
Stream control bit mismatch

C_FSL_EXCEPTION

14 MSR Use msrset and msrclr
instructions

C_USE_MSR_INSTR

15 PCMP Use pattern compare and
CLZ instructions

C_USE_PCMP_INSTR

16 AREA Select implementation to
optimize area with lower
instruction throughput

C_AREA_OPTIMIZED

17 BS Use barrel shifter C_USE_BARREL

18 DIV Use divider C_USE_DIV

19 MUL Use hardware multiplier C_USE_HW_MUL > 0 (None)

20 FPU Use FPU C_USE_FPU > 0 (None)

21 MUL64 Use 64-bit hardware
multiplier

C_USE_HW_MUL = 2 (Mul64)

22 FPU2 Use floating point
conversion and square root
instructions

C_USE_FPU = 2 (Extended)

23:24 Reserved 0

25 OP0EXC Generate exception for 0x0
illegal opcode

C_OPCODE_0x0_ILLEGAL
MicroBlaze Processor Reference Guide www.xilinx.com 43
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=43

Chapter 2: MicroBlaze Architecture
26 UNEXC Generate exception for
unaligned data access

C_UNALIGNED_EXCEPTIONS

27 OPEXC Generate exception for any
illegal opcode

C_ILL_OPCODE_EXCEPTION

28 AXIIEXC Generate exception for
M_AXI_I error

C_M_AXI_I_BUS_EXCEPTION

29 AXIDEXC Generate exception for
M_AXI_D error

C_M_AXI_D_BUS_EXCEPTION

30 DIVEXC Generate exception for
division by zero or division
overflow

C_DIV_ZERO_EXCEPTION

31 FPUEXC Generate exceptions from
FPU

C_FPU_EXCEPTION

Table 2-27: Processor Version Register 3 (PVR3)

Bits Name Description Value

0 DEBUG Use debug logic C_DEBUG_ENABLED

1:2 Reserved

3:6 PCBRK Number of PC breakpoints C_NUMBER_OF_PC_BRK

7:9 Reserved

10:12 RDADDR Number of read address
breakpoints

C_NUMBER_OF_RD_ADDR_BRK

13:15 Reserved

16:18 WRADDR Number of write address
breakpoints

C_NUMBER_OF_WR_ADDR_BRK

19 Reserved 0

20:24 FSL Number of AXI4-Stream
links

C_FSL_LINKS

25:28 Reserved

29:31 BTC_SIZE Branch Target Cache size C_BRANCH_TARGET_CACHE_SIZE

Table 2-26: Processor Version Register 2 (PVR2) (Continued)

Bits Name Description Value
44 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=44

Registers
Table 2-28: Processor Version Register 4 (PVR4)

Bits Name Description Value

0 ICU Use instruction cache C_USE_ICACHE

1:5 ICTS Instruction cache tag size C_ADDR_TAG_BITS

6 Reserved 1

7 ICW Allow instruction cache write C_ALLOW_ICACHE_WR

8:10 ICLL The base two logarithm of the
instruction cache line length

log2(C_ICACHE_LINE_LEN)

11:15 ICBS The base two logarithm of the
instruction cache byte size

log2(C_CACHE_BYTE_SIZE)

16 IAU The instruction cache is used for
all memory accesses within the
cacheable range

C_ICACHE_ALWAYS_USED

17:18 Reserved 0

19:21 ICV Instruction cache victims 0-3: C_ICACHE_VICTIMS = 0,2,4,8

22:23 ICS Instruction cache streams C_ICACHE_STREAMS

24 IFTL Instruction cache tag uses
distributed RAM

C_ICACHE_FORCE_TAG_LUTRAM

25 ICDW Instruction cache data width C_ICACHE_DATA_WIDTH > 0

26:31 Reserved 0

Table 2-29: Processor Version Register 5 (PVR5)

Bits Name Description Value

0 DCU Use data cache C_USE_DCACHE

1:5 DCTS Data cache tag size C_DCACHE_ADDR_TAG

6 Reserved 1

7 DCW Allow data cache write C_ALLOW_DCACHE_WR

8:10 DCLL The base two logarithm of the
data cache line length

log2(C_DCACHE_LINE_LEN)

11:15 DCBS The base two logarithm of the
data cache byte size

log2(C_DCACHE_BYTE_SIZE)

16 DAU The data cache is used for all
memory accesses within the
cacheable range

C_DCACHE_ALWAYS_USED

17 DWB Data cache policy is write-back C_DCACHE_USE_WRITEBACK

18 Reserved 0

19:21 DCV Data cache victims 0-3: C_DCACHE_VICTIMS = 0,2,4,8
MicroBlaze Processor Reference Guide www.xilinx.com 45
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=45

Chapter 2: MicroBlaze Architecture
22:23 Reserved 0

24 DFTL Data cache tag uses distributed
RAM

C_DCACHE_FORCE_TAG_LUTRAM

25 DCDW Data cache data width C_DCACHE_DATA_WIDTH > 0

26 AXI4DC Data Cache AXI interface uses
AXI4 protocol, with support for
exclusive access

C_M_AXI_DC_EXCLUSIVE_ACCESS

27:31 Reserved 0

Table 2-30: Processor Version Register 6 (PVR6)

Bits Name Description Value

0:31 ICBA Instruction Cache Base Address C_ICACHE_BASEADDR

Table 2-31: Processor Version Register 7 (PVR7)

Bits Name Description Value

0:31 ICHA Instruction Cache High Address C_ICACHE_HIGHADDR

Table 2-32: Processor Version Register 8 (PVR8)

Bits Name Description Value

0:31 DCBA Data Cache Base Address C_DCACHE_BASEADDR

Table 2-33: Processor Version Register 9 (PVR9)

Bits Name Description Value

0:31 DCHA Data Cache High Address C_DCACHE_HIGHADDR

Table 2-34: Processor Version Register 10 (PVR10)

Bits Name Description Value

0:7 ARCH Target architecture: Defined by parameter
C_FAMILY

0xF
0x10
0x11

0x12

=
=
=

=

Virtex-7, Defence Grade Virtex-7 Q
Kintex™-7, Defence Grade Kintex-7 Q
Artix™-7, Automotive Artix-7,
Defence Grade Artix-7 Q
Zynq™-7000, Automotive Zynq-7000,
Defence Grade Zynq-7000 Q

8:31 Reserved 0

Table 2-29: Processor Version Register 5 (PVR5) (Continued)

Bits Name Description Value
46 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=46

Registers
Table 2-35: Processor Version Register 11 (PVR11)
Bits Name Description Value

0:1 MMU Use MMU: C_USE_MMU

0 = None
1 = User Mode

2 = Protection
3 = Virtual

2:4 ITLB Instruction Shadow TLB size log2(C_MMU_ITLB_SIZE)

5:7 DTLB Data Shadow TLB size log2(C_MMU_DTLB_SIZE)

8:9 TLBACC TLB register access: C_MMU_TLB_ACCESS

0 = Minimal
1 = Read

2 = Write
3 = Full

10:14 ZONES Number of memory protection zones C_MMU_ZONES

15 PRIVINS Privileged instructions:
0 = Full protection
1 = Allow stream instructions

C_MMU_PRIVILEGED_INSTR

16:16 Reserved Reserved for future use 0

17:31 RSTMSR Reset value for MSR C_RESET_MSR

Table 2-36: Processor Version Register 12 (PVR12)
Bits Name Description Value

0:31 VECTORS Location of MicroBlaze vectors C_BASE_VECTORS
MicroBlaze Processor Reference Guide www.xilinx.com 47
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=47

Chapter 2: MicroBlaze Architecture
Pipeline Architecture
MicroBlaze instruction execution is pipelined. For most instructions, each stage
takes one clock cycle to complete. Consequently, the number of clock cycles
necessary for a specific instruction to complete is equal to the number of pipeline
stages, and one instruction is completed on every cycle. A few instructions require
multiple clock cycles in the execute stage to complete. This is achieved by stalling
the pipeline.

When executing from slower memory, instruction fetches may take multiple cycles.
This additional latency directly affects the efficiency of the pipeline. MicroBlaze
implements an instruction prefetch buffer that reduces the impact of such multi-
cycle instruction memory latency. While the pipeline is stalled by a multi-cycle
instruction in the execution stage, the prefetch buffer continues to load sequential
instructions. When the pipeline resumes execution, the fetch stage can load new
instructions directly from the prefetch buffer instead of waiting for the instruction
memory access to complete. If instructions are modified during execution (e.g.
with self-modifying code), the prefetch buffer should be emptied before executing
the modified instructions, to ensure that it does not contain the old unmodified
instructions. The recommended way to do this is using an MBAR instruction,
although it is also possible to use a synchronizing branch instruction, for example
BRI 4.

Three Stage Pipeline
With C_AREA_OPTIMIZED set to 1, the pipeline is divided into three stages to
minimize hardware cost: Fetch, Decode, and Execute.

Five Stage Pipeline
With C_AREA_OPTIMIZED set to 0, the pipeline is divided into five stages to
maximize performance: Fetch (IF), Decode (OF), Execute (EX), Access Memory
(MEM), and Writeback (WB).

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7

instruction 1 Fetch Decode Execute

instruction 2 Fetch Decode Execute Execute Execute

instruction 3 Fetch Decode Stall Stall Execute

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8 cycle9

instruction 1 IF OF EX MEM WB

instruction 2 IF OF EX MEM MEM MEM WB

instruction 3 IF OF EX Stall Stall MEM WB
48 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=48

Pipeline Architecture
Branches
Normally the instructions in the fetch and decode stages (as well as prefetch buffer)
are flushed when executing a taken branch. The fetch pipeline stage is then
reloaded with a new instruction from the calculated branch address. A taken
branch in MicroBlaze takes three clock cycles to execute, two of which are required
for refilling the pipeline. To reduce this latency overhead, MicroBlaze supports
branches with delay slots.

Delay Slots

When executing a taken branch with delay slot, only the fetch pipeline stage in
MicroBlaze is flushed. The instruction in the decode stage (branch delay slot) is
allowed to complete. This technique effectively reduces the branch penalty from
two clock cycles to one. Branch instructions with delay slots have a D appended to
the instruction mnemonic. For example, the BNE instruction does not execute the
subsequent instruction (does not have a delay slot), whereas BNED executes the
next instruction before control is transferred to the branch location.

A delay slot must not contain the following instructions: IMM, branch, or break.
Interrupts and external hardware breaks are deferred until after the delay slot
branch has been completed.

Instructions that could cause recoverable exceptions (e.g. unaligned word or
halfword load and store) are allowed in the delay slot. If an exception is caused in
a delay slot the ESR[DS] bit is set, and the exception handler is responsible for
returning the execution to the branch target (stored in the special purpose register
BTR). If the ESR[DS] bit is set, register R17 is not valid (otherwise it contains the
address following the instruction causing the exception).

Branch Target Cache

To improve branch performance, MicroBlaze provides a Branch Target Cache (BTC)
coupled with a branch prediction scheme. With the BTC enabled, a correctly
predicted immediate branch or return instruction incurs no overhead.

The BTC operates by saving the target address of each immediate branch and
return instruction the first time the instruction is encountered. The next time it is
encountered, it is usually found in the Branch Target Cache, and the Instruction
Fetch Program Counter is then simply changed to the saved target address, in case
the branch should be taken. Unconditional branches and return instructions are
always taken, whereas conditional branches use branch prediction, to avoid taking
a branch that should not have been taken and vice versa.

The BTC is cleared when a memory barrier (MBAR 0) or synchronizing branch (BRI
4) is executed. This also occurs when the memory barrier or synchronizing branch
follows immediately after a branch instruction, even if that branch is taken. To avoid
inadvertently clearing the BTC, the memory barrier or synchronizing branch should
not be placed immediately after a branch instruction.
MicroBlaze Processor Reference Guide www.xilinx.com 49
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=49

Chapter 2: MicroBlaze Architecture
There are three cases where the branch prediction can cause a mispredict, namely:

• A conditional branch that should not have been taken, is actually taken,
• A conditional branch that should actually have been taken, is not taken,
• The target address of a return instruction is incorrect, which may occur when

returning from a function called from different places in the code.

All of these cases are detected and corrected when the branch or return instruction
reaches the execute stage, and the branch prediction bits or target address are
updated in the BTC, to reflect the actual instruction behavior. This correction incurs
a penalty of two clock cycles.

The size of the BTC can be selected with C_BRANCH_TARGET_CACHE_SIZE. The
default recommended setting uses one block RAM, and provides 512 entries.
When selecting 64 entries or below, distributed RAM is used to implement the BTC,
otherwise block RAM is used.

When the BTC uses block RAM, and C_FAULT_TOLERANT is set to 1, block RAMs
are protected by parity. In case of a parity error, the branch is not predicted. To
avoid accumulating errors in this case, the BTC should be cleared periodically by a
synchronizing branch.

The Branch Target Cache is available when C_USE_BRANCH_TARGET_CACHE is set
to 1 and C_AREA_OPTIMIZED is set to 0.
50 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=50

Memory Architecture
Memory Architecture
MicroBlaze is implemented with a Harvard memory architecture; instruction and
data accesses are done in separate address spaces. Each address space has a 32-bit
range (that is, handles up to 4-GB of instructions and data memory respectively).
The instruction and data memory ranges can be made to overlap by mapping them
both to the same physical memory. The latter is useful for software debugging.

Both instruction and data interfaces of MicroBlaze are default 32 bits wide and use
big endian or little endian, bit-reversed format, depending on the parameter
C_ENDIANNESS. MicroBlaze supports word, halfword, and byte accesses to data
memory.

Data accesses must be aligned (word accesses must be on word boundaries,
halfword on halfword boundaries), unless the processor is configured to support
unaligned exceptions. All instruction accesses must be word aligned.

MicroBlaze prefetches instructions to improve performance, using the instruction
prefetch buffer and (if enabled) instruction cache streams. To avoid attempts to
prefetch instructions beyond the end of physical memory, which may cause an
instruction bus error or a processor stall, instructions must not be located too close
to the end of physical memory. The instruction prefetch buffer requires 16 bytes
margin, and using instruction cache streams adds two additional cache lines (32 or
64 bytes).

MicroBlaze does not separate data accesses to I/O and memory (it uses memory
mapped I/O). The processor has up to three interfaces for memory accesses:

• Local Memory Bus (LMB)
• Advanced eXtensible Interface (AXI4) for peripheral access
• Advanced eXtensible Interface (AXI4) or AXI Coherency Extension (ACE) for

cache access

The LMB memory address range must not overlap with AXI4 ranges.

The C_ENDIANNESS parameter is automatically set to little endian when using
AXI4, but can be overridden by the user.

MicroBlaze has a single cycle latency for accesses to local memory (LMB) and for
cache read hits, except with C_AREA_OPTIMIZED set to 1, when data side accesses
and data cache read hits require two clock cycles, and with C_FAULT_TOLERANT
set to 1, when byte writes and halfword writes to LMB normally require two clock
cycles.

The data cache write latency depends on C_DCACHE_USE_WRITEBACK. When
C_DCACHE_USE_WRITEBACK is set to 1, the write latency normally is one cycle
(more if the cache needs to do memory accesses). When
C_DCACHE_USE_WRITEBACK is cleared to 0, the write latency normally is two
cycles (more if the posted-write buffer in the memory controller is full).

The MicroBlaze instruction and data caches can be configured to use 4 or 8 word
cache lines. When using a longer cache line, more bytes are prefetched, which
generally improves performance for software with sequential access patterns.
However, for software with a more random access pattern the performance can
MicroBlaze Processor Reference Guide www.xilinx.com 51
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=51

Chapter 2: MicroBlaze Architecture
instead decrease for a given cache size. This is caused by a reduced cache hit rate
due to fewer available cache lines.

For details on the different memory interfaces refer to Chapter 3, MicroBlaze Signal
Interface Description.
52 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=52

Privileged Instructions
Privileged Instructions
The following MicroBlaze instructions are privileged:

• GET, GETD,PUT,PUTD (except when explicitly allowed)
• WIC, WDC
• MTS

• MSRCLR, MSRSET (except when only the C bit is affected)
• BRK

• RTID, RTBD, RTED
• BRKI (except when jumping to physical address C_BASE_VECTORS + 0x8 or

C_BASE_VECTORS + 0x18)
• SLEEP

Attempted use of these instructions when running in user mode causes a
privileged instruction exception.

When setting the parameter C_MMU_PRIVILEGED_INSTR to 1, the instructions
GET, GETD, PUT, and PUTD are not considered privileged, and can be executed
when running in user mode. It is strongly discouraged to do this, unless absolutely
necessary for performance reasons, since it allows application programs to
interfere with each other.

There are six ways to leave user mode and virtual mode:

1. Hardware generated reset (including debug reset)
2. Hardware exception
3. Non-maskable break or hardware break
4. Interrupt
5. Executing "BRALID Re,C_BASE_VECTORS + 0x8” to perform a user vector

exception
6. Executing the software break instructions “BRKI” jumping to physical address

C_BASE_VECTORS + 0x8 or C_BASE_VECTORS + 0x18

In all of these cases, except hardware generated reset, the user mode and virtual
mode status is saved in the MSR UMS and VMS bits.

Application (user-mode) programs transfer control to system-service routines
(privileged mode programs) using the BRALID or BRKI instruction, jumping to
physical address C_BASE_VECTORS + 0x8. Executing this instruction causes a
system-call exception to occur. The exception handler determines which system-
service routine to call and whether the calling application has permission to call
that service. If permission is granted, the exception handler performs the actual
procedure call to the system-service routine on behalf of the application program.

The execution environment expected by the system-service routine requires the
execution of prologue instructions to set up that environment. Those instructions
usually create the block of storage that holds procedural information (the
activation record), update and initialize pointers, and save volatile registers
(registers the system-service routine uses). Prologue code can be inserted by the
MicroBlaze Processor Reference Guide www.xilinx.com 53
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=53

Chapter 2: MicroBlaze Architecture
linker when creating an executable module, or it can be included as stub code in
either the system-call interrupt handler or the system-library routines.

Returns from the system-service routine reverse the process described above.
Epilog code is executed to unwind and deallocate the activation record, restore
pointers, and restore volatile registers. The interrupt handler executes a return from
exception instruction (RTED) to return to the application.
54 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=54

Virtual-Memory Management
Virtual-Memory Management
Programs running on MicroBlaze use effective addresses to access a flat 4 GB
address space. The processor can interpret this address space in one of two ways,
depending on the translation mode:

• In real mode, effective addresses are used to directly access physical memory
• In virtual mode, effective addresses are translated into physical addresses by

the virtual-memory management hardware in the processor

Virtual mode provides system software with the ability to relocate programs and
data anywhere in the physical address space. System software can move inactive
programs and data out of physical memory when space is required by active
programs and data.

Relocation can make it appear to a program that more memory exists than is
actually implemented by the system. This frees the programmer from working
within the limits imposed by the amount of physical memory present in a system.
Programmers do not need to know which physical-memory addresses are assigned
to other software processes and hardware devices. The addresses visible to
programs are translated into the appropriate physical addresses by the processor.

Virtual mode provides greater control over memory protection. Blocks of memory
as small as 1 KB can be individually protected from unauthorized access. Protection
and relocation enable system software to support multitasking. This capability
gives the appearance of simultaneous or near-simultaneous execution of multiple
programs.

In MicroBlaze, virtual mode is implemented by the memory-management unit
(MMU), available when C_USE_MMU is set to 3 (Virtual) and C_AREA_OPTIMIZED
is set to 0. The MMU controls effective-address to physical-address mapping and
supports memory protection. Using these capabilities, system software can
implement demand-paged virtual memory and other memory management
schemes.

The MicroBlaze MMU implementation is based upon PowerPC™ 405. For details,
see the PowerPC Processor Reference Guide (UG011) document.

The MMU features are summarized as follows:

• Translates effective addresses into physical addresses
• Controls page-level access during address translation
• Provides additional virtual-mode protection control through the use of zones
• Provides independent control over instruction-address and data-address

translation and protection
• Supports eight page sizes: 1 kB, 4 kB, 16 kB, 64 kB, 256 kB, 1 MB, 4 MB, and 16

MB. Any combination of page sizes can be used by system software
• Software controls the page-replacement strategy
MicroBlaze Processor Reference Guide www.xilinx.com 55
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug011.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=55

Chapter 2: MicroBlaze Architecture
Real Mode
The processor references memory when it fetches an instruction and when it
accesses data with a load or store instruction. Programs reference memory
locations using a 32-bit effective address calculated by the processor. When real
mode is enabled, the physical address is identical to the effective address and the
processor uses it to access physical memory. After a processor reset, the processor
operates in real mode. Real mode can also be enabled by clearing the VM bit in the
MSR.

Physical-memory data accesses (loads and stores) are performed in real mode
using the effective address. Real mode does not provide system software with
virtual address translation, but the full memory access-protection is available,
implemented when C_USE_MMU > 1 (User Mode) and C_AREA_OPTIMIZED = 0.
Implementation of a real-mode memory manager is more straightforward than a
virtual-mode memory manager. Real mode is often an appropriate solution for
memory management in simple embedded environments, when access-protection
is necessary, but virtual address translation is not required.

Virtual Mode
In virtual mode, the processor translates an effective address into a physical
address using the process shown in Figure 2-18. Virtual mode can be enabled by
setting the VM bit in the MSR..

Figure 2-18: Virtual-Mode Address Translation

UG011_37_021302

32-Bit Effective Address
0

Effective Page Number Offset

n 31

0

PID

24 31

Translation Look-Aside
Buffer (TLB) Look-Up

0

Effective Page Number Offset

n+8 39

PID

8

40-Bit Virtual Address

0

Real Page Number Offset

n 31

32-Bit Physical Address

Process ID Register
56 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=56

Virtual-Memory Management
Each address shown in Figure 2-18 contains a page-number field and an offset
field. The page number represents the portion of the address translated by the
MMU. The offset represents the byte offset into a page and is not translated by the
MMU. The virtual address consists of an additional field, called the process ID (PID),
which is taken from the PID register (see Process-ID Register, page 34). The
combination of PID and effective page number (EPN) is referred to as the virtual
page number (VPN). The value n is determined by the page size, as shown in
Table 2-37.

System software maintains a page-translation table that contains entries used to
translate each virtual page into a physical page. The page size defined by a page
translation entry determines the size of the page number and offset fields. For
example, when a 4 kB page size is used, the page-number field is 20 bits and the
offset field is 12 bits. The VPN in this case is 28 bits.

Then the most frequently used page translations are stored in the translation look-
aside buffer (TLB). When translating a virtual address, the MMU examines the
page-translation entries for a matching VPN (PID and EPN). Rather than examining
all entries in the table, only entries contained in the processor TLB are examined.
When a page-translation entry is found with a matching VPN, the corresponding
physical-page number is read from the entry and combined with the offset to form
the 32-bit physical address. This physical address is used by the processor to
reference memory.

System software can use the PID to uniquely identify software processes (tasks,
subroutines, threads) running on the processor. Independently compiled processes
can operate in effective-address regions that overlap each other. This overlap must
be resolved by system software if multitasking is supported. Assigning a PID to
each process enables system software to resolve the overlap by relocating each
process into a unique region of virtual-address space. The virtual-address space
mappings enable independent translation of each process into the physical-
address space.

Page-Translation Table

The page-translation table is a software-defined and software-managed data
structure containing page translations. The requirement for software-managed
page translation represents an architectural trade-off targeted at embedded-
system applications. Embedded systems tend to have a tightly controlled
operating environment and a well-defined set of application software. That
environment enables virtual-memory management to be optimized for each
embedded system in the following ways:

• The page-translation table can be organized to maximize page-table search
performance (also called table walking) so that a given page-translation entry
is located quickly. Most general-purpose processors implement either an
indexed page table (simple search method, large page-table size) or a hashed
page table (complex search method, small page-table size). With software
table walking, any hybrid organization can be employed that suits the
particular embedded system. Both the page-table size and access time can be
optimized.
MicroBlaze Processor Reference Guide www.xilinx.com 57
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=57

Chapter 2: MicroBlaze Architecture
• Independent page sizes can be used for application modules, device drivers,
system service routines, and data. Independent page-size selection enables
system software to more efficiently use memory by reducing fragmentation
(unused memory). For example, a large data structure can be allocated to a 16
MB page and a small I/O device-driver can be allocated to a 1 KB page.

• Page replacement can be tuned to minimize the occurrence of missing page
translations. As described in the following section, the most-frequently used
page translations are stored in the translation look-aside buffer (TLB). Software
is responsible for deciding which translations are stored in the TLB and which
translations are replaced when a new translation is required. The replacement
strategy can be tuned to avoid thrashing, whereby page-translation entries are
constantly being moved in and out of the TLB. The replacement strategy can
also be tuned to prevent replacement of critical-page translations, a process
sometimes referred to as page locking.

The unified 64-entry TLB, managed by software, caches a subset of instruction and
data page-translation entries accessible by the MMU. Software is responsible for
reading entries from the page-translation table in system memory and storing
them in the TLB. The following section describes the unified TLB in more detail.
Internally, the MMU also contains shadow TLBs for instructions and data, with sizes
configurable by C_MMU_ITLB_SIZE and C_MMU_DTLB_SIZE respectively.

These shadow TLBs are managed entirely by the processor (transparent to
software) and are used to minimize access conflicts with the unified TLB.

Translation Look-Aside Buffer
The translation look-aside buffer (TLB) is used by the MicroBlaze MMU for address
translation when the processor is running in virtual mode, memory protection, and
storage control. Each entry within the TLB contains the information necessary to
identify a virtual page (PID and effective page number), specify its translation into
a physical page, determine the protection characteristics of the page, and specify
the storage attributes associated with the page.

The MicroBlaze TLB is physically implemented as three separate TLBs:

• Unified TLB—The UTLB contains 64 entries and is pseudo-associative.
Instruction-page and data-page translation can be stored in any UTLB entry.
The initialization and management of the UTLB is controlled completely by
software.

• Instruction Shadow TLB—The ITLB contains instruction page-translation
entries and is fully associative. The page-translation entries stored in the ITLB
represent the most-recently accessed instruction-page translations from the
UTLB. The ITLB is used to minimize contention between instruction translation
and UTLB-update operations. The initialization and management of the ITLB is
controlled completely by hardware and is transparent to software.
58 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=58

Virtual-Memory Management
• Data Shadow TLB—The DTLB contains data page-translation entries and is fully
associative. The page-translation entries stored in the DTLB represent the
most-recently accessed data-page translations from the UTLB. The DTLB is
used to minimize contention between data translation and UTLB-update
operations. The initialization and management of the DTLB is controlled
completely by hardware and is transparent to software.

Figure 2-19 provides the translation flow for TLB.

Figure 2-19: TLB Address Translation Flow

Generate I-side
Effective Address

Generate D-side
Effective Address

No Translation Perform ITLB
Look-Up

Perform DTLB
Look-Up

No Translation

Translation Disabled
(MSR[VM]=0)

Translation Enabled
(MSR[VM]=1)

Translation Enabled
(MSR[VM]=1)

Translation Disabled
(MSR[VM]=0)

Perform UTLB
Look-Up

Extract Real
Address from ITLB

Extract Real
Address from DTLB

ITLB Hit ITLB Miss DTLB Miss DTLB Hit

UTLB Hit UTLB Miss

I-Side TLB Miss
or

D-Side TLB Miss
Exception

Extract Real
Address from UTLB

Route Address
to ITLB

Route Address
to DTLB

Continue I-cache
Access

Continue I-cache
or D-cache
Access
MicroBlaze Processor Reference Guide www.xilinx.com 59
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=59

Chapter 2: MicroBlaze Architecture
TLB Entry Format

Figure 2-20 shows the format of a TLB entry. Each TLB entry is 68 bits and is
composed of two portions: TLBLO (also referred to as the data entry), and TLBHI
(also referred to as the tag entry).

Figure 2-20: TLB Entry Format

The TLB entry contents are described in Table 2-20, page 36 and Table 2-21,
page 38.

The fields within a TLB entry are categorized as follows:

• Virtual-page identification (TAG, SIZE, V, TID)—These fields identify the page-
translation entry. They are compared with the virtual-page number during the
translation process.

• Physical-page identification (RPN, SIZE)—These fields identify the translated
page in physical memory.

• Access control (EX, WR, ZSEL)—These fields specify the type of access allowed
in the page and are used to protect pages from improper accesses.

• Storage attributes (W, I, M, G, E, U0)—These fields specify the storage-control
attributes, such as caching policy for the data cache (write-back or write-
through), whether a page is cacheable, and how bytes are ordered
(endianness).

Table 2-37 shows the relationship between the TLB-entry SIZE field and the
translated page size. This table also shows how the page size determines which
address bits are involved in a tag comparison, which address bits are used as a page
offset, and which bits in the physical page number are used in the physical address.

TLBLO:
0 22 23 24 28 29 30 31

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
RPN EX WR ZSEL W I M G

TLBHI:
0 22 25 26 27 28 35

↑ ↑ ↑ ↑ ↑ ↑
TAG SIZE V E U0 TID
60 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=60

Virtual-Memory Management
TLB Access

When the MMU translates a virtual address (the combination of PID and effective
address) into a physical address, it first examines the appropriate shadow TLB for
the page translation entry. If an entry is found, it is used to access physical memory.
If an entry is not found, the MMU examines the UTLB for the entry. A delay occurs
each time the UTLB must be accessed due to a shadow TLB miss. The miss latency
ranges from 2-32 cycles. The DTLB has priority over the ITLB if both simultaneously
access the UTLB.

Figure 2-21, page 63 shows the logical process the MMU follows when examining
a page-translation entry in one of the shadow TLBs or the UTLB. All valid entries in
the TLB are checked.

A TLB hit occurs when all of the following conditions are met by a TLB entry:

• The entry is valid
• The TAG field in the entry matches the effective address EPN under the control

of the SIZE field in the entry
• The TID field in the entry matches the PID

If any of the above conditions are not met, a TLB miss occurs. A TLB miss causes an
exception, described as follows:

A TID value of 0x00 causes the MMU to ignore the comparison between the TID
and PID. Only the TAG and EA[EPN] are compared. A TLB entry with TID=0x00
represents a process-independent translation. Pages that are accessed globally by
all processes should be assigned a TID value of 0x00. A PID value of 0x00 does not
identify a process that can access any page. When PID=0x00, a page-translation hit
only occurs when TID=0x00. It is possible for software to load the TLB with multiple
entries that match an EA[EPN] and PID combination. However, this is considered a
programming error and results in undefined behavior.

Table 2-37: Page-Translation Bit Ranges by Page Size

Page
Size

SIZE
(TLBHI
Field)

Tag Comparison
Bit Range Page Offset Physical Page

Number
RPN Bits
Clear to 0

1 KB 000 TAG[0:21] - Address[0:21] Address[22:31] RPN[0:21] -

4 KB 001 TAG[0:19] - Address[0:19] Address[20:31] RPN[0:19] 20:21

16 KB 010 TAG[0:17] - Address[0:17] Address[18:31] RPN[0:17] 18:21

64 KB 011 TAG[0:15] - Address[0:15] Address[16:31] RPN[0:15] 16:21

256 KB 100 TAG[0:13] - Address[0:13] Address[14:31] RPN[0:13] 14:21

1 MB 101 TAG[0:11] - Address[0:11] Address[12:31] RPN[0:11] 12:21

4 MB 110 TAG[0:9] - Address[0:9] Address[10:31] RPN[0:9] 10:21

16 MB 111 TAG[0:7] - Address[0:7] Address[8:31] RPN[0:7] 8:21
MicroBlaze Processor Reference Guide www.xilinx.com 61
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=61

Chapter 2: MicroBlaze Architecture
When a hit occurs, the MMU reads the RPN field from the corresponding TLB entry.
Some or all of the bits in this field are used, depending on the value of the SIZE
field (see Table 2-37). For example, if the SIZE field specifies a 256 kB page size,
RPN[0:13] represents the physical page number and is used to form the physical
address. RPN[14:21] is not used, and software must clear those bits to 0 when
initializing the TLB entry. The remainder of the physical address is taken from the
page-offset portion of the EA. If the page size is 256 kB, the 32-bit physical address
is formed by concatenating RPN[0:13] with bits14:31 of the effective address.

Prior to accessing physical memory, the MMU examines the TLB-entry access-
control fields. These fields indicate whether the currently executing program is
allowed to perform the requested memory access.

If access is allowed, the MMU checks the storage-attribute fields to determine how
to access the page. The storage-attribute fields specify the caching policy for
memory accesses.

TLB Access Failures

A TLB-access failure causes an exception to occur. This interrupts execution of the
instruction that caused the failure and transfers control to an interrupt handler to
resolve the failure. A TLB access can fail for two reasons:

• A matching TLB entry was not found, resulting in a TLB miss
• A matching TLB entry was found, but access to the page was prevented by

either the storage attributes or zone protection

When an interrupt occurs, the processor enters real mode by clearing MSR[VM] to
0. In real mode, all address translation and memory-protection checks performed
by the MMU are disabled. After system software initializes the UTLB with page-
translation entries, management of the MicroBlaze UTLB is usually performed
using interrupt handlers running in real mode.
62 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=62

Virtual-Memory Management
Figure 2-21 diagrams the general process for examining a TLB entry.

The following sections describe the conditions under which exceptions occur due
to TLB access failures.

Data-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), a data-storage exception occurs
when access to a page is not permitted for any of the following reasons:

• From user mode:
♦ The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00).

This applies to load and store instructions.
♦ The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise

overridden by the zone field (ZPR[Zn]‚ 11). This applies to store instructions.

Figure 2-21: General Process for Examining a TLB Entry

UG011_41_033101

Check Access

Read TLBLO[RPN]
using TLBHI[SIZE]

TLBHI[V]=1

TLBHI[TID]=0x00

Compare
TLBHI[TID] with PID

Compare
TLBHI[TAG] with EA[EPN]

using TLBHI[SIZE]

Yes

NoYes

Match

Match (TLB Hit)

Check for
Guarded Storage

Instruction FetchData Reference

Allowed

Not Guarded

Extract Offset from EA
using TLBHI[SIZE]

Generate Physical Address
from TLBLO[RPN] and Offset

TLB-Entry MissNo Match

Storage ViolationGuarded

Access ViolationNot Allowed

No TLB-Entry Miss

TLB-Entry MissNo Match
MicroBlaze Processor Reference Guide www.xilinx.com 63
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=63

Chapter 2: MicroBlaze Architecture
• From privileged mode:
♦ The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise

overridden by the zone field (ZPR[Zn]‚ 10 and ZPR[Zn]‚ 11). This applies to store
instructions.

Instruction-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), an instruction-storage exception
occurs when access to a page is not permitted for any of the following reasons:

• From user mode:
♦ The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00).
♦ The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not

otherwise overridden by the zone field (ZPR[Zn]‚ 11).
♦ The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

• From privileged mode:
♦ The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not

otherwise overridden by the zone field (ZPR[Zn]‚ 10 and ZPR[Zn]‚ 11).
♦ The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

Data TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) a data TLB-miss exception occurs if a
valid, matching TLB entry was not found in the TLB (shadow and UTLB). Any load or
store instruction can cause a data TLB-miss exception.

Instruction TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) an instruction TLB-miss exception
occurs if a valid, matching TLB entry was not found in the TLB (shadow and UTLB).
Any instruction fetch can cause an instruction TLB-miss exception.

Access Protection
System software uses access protection to protect sensitive memory locations from
improper access. System software can restrict memory accesses for both user-
mode and privileged-mode software. Restrictions can be placed on reads, writes,
and instruction fetches. Access protection is available when virtual protected mode
is enabled.

Access control applies to instruction fetches, data loads, and data stores. The TLB
entry for a virtual page specifies the type of access allowed to the page. The TLB
entry also specifies a zone-protection field in the zone-protection register that is
used to override the access controls specified by the TLB entry.

TLB Access-Protection Controls

Each TLB entry controls three types of access:
64 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=64

Virtual-Memory Management
• Process—Processes are protected from unauthorized access by assigning a
unique process ID (PID) to each process. When system software starts a user-
mode application, it loads the PID for that application into the PID register. As
the application executes, memory addresses are translated using only TLB
entries with a TID field in Translation Look-Aside Buffer High (TLBHI) that
matches the PID. This enables system software to restrict accesses for an
application to a specific area in virtual memory.
A TLB entry with TID=0x00 represents a process-independent translation.
Pages that are accessed globally by all processes should be assigned a TID
value of 0x00.

• Execution—The processor executes instructions only if they are fetched from a
virtual page marked as executable (TLBLO[EX]=1). Clearing TLBLO[EX] to 0
prevents execution of instructions fetched from a page, instead causing an
instruction-storage interrupt (ISI) to occur. The ISI does not occur when the
instruction is fetched, but instead occurs when the instruction is executed. This
prevents speculatively fetched instructions that are later discarded (rather than
executed) from causing an ISI.

The zone-protection register can override execution protection.

• Read/Write—Data is written only to virtual pages marked as writable
(TLBLO[WR]=1). Clearing TLBLO[WR] to 0 marks a page as read-only. An
attempt to write to a read-only page causes a data-storage interrupt (DSI) to
occur.

The zone-protection register can override write protection.

TLB entries cannot be used to prevent programs from reading pages. In virtual
mode, zone protection is used to read-protect pages. This is done by defining a
no-access-allowed zone (ZPR[Zn] = 00) and using it to override the TLB-entry
access protection. Only programs running in user mode can be prevented from
reading a page. Privileged programs always have read access to a page.

Zone Protection

Zone protection is used to override the access protection specified in a TLB entry.
Zones are an arbitrary grouping of virtual pages with common access protection.
Zones can contain any number of pages specifying any combination of page sizes.
There is no requirement for a zone to contain adjacent pages.

The zone-protection register (ZPR) is a 32-bit register used to specify the type of
protection override applied to each of 16 possible zones. The protection override
for a zone is encoded in the ZPR as a 2-bit field. The 4-bit zone-select field in a TLB
entry (TLBLO[ZSEL]) selects one of the 16 zone fields from the ZPR (Z0–Z15). For
example, zone Z5 is selected when ZSEL = 0101.

Changing a zone field in the ZPR applies a protection override across all pages in
that zone. Without the ZPR, protection changes require individual alterations to
each page translation entry within the zone.
MicroBlaze Processor Reference Guide www.xilinx.com 65
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=65

Chapter 2: MicroBlaze Architecture
Unimplemented zones (when C_MMU_ZONES < 16) are treated as if they contained
11.

UTLB Management
The UTLB serves as the interface between the processor MMU and memory-
management software. System software manages the UTLB to tell the MMU how to
translate virtual addresses into physical addresses. When a problem occurs due to
a missing translation or an access violation, the MMU communicates the problem
to system software using the exception mechanism. System software is responsible
for providing interrupt handlers to correct these problems so that the MMU can
proceed with memory translation.

Software reads and writes UTLB entries using the MFS and MTS instructions,
respectively. These instructions use the TLBX register index (numbered 0 to 63)
corresponding to one of the 64 entries in the UTLB. The tag and data portions are
read and written separately, so software must execute two MFS or MTS instructions
to completely access an entry. The UTLB is searched for a specific translation using
the TLBSX register. TLBSX locates a translation using an effective address and loads
the corresponding UTLB index into the TLBX register.

Individual UTLB entries are invalidated using the MTS instruction to clear the valid
bit in the tag portion of a TLB entry (TLBHI[V]).

When C_FAULT_TOLERANT is set to 1, the UTLB block RAM is protected by parity.
In case of a parity error, a TLB miss exception occurs. To avoid accumulating errors
in this case, each entry in the UTLB should be periodically invalidated.

Recording Page Access and Page Modification
Software management of virtual-memory poses several challenges:

• In a virtual-memory environment, software and data often consume more
memory than is physically available. Some of the software and data pages
must be stored outside physical memory, such as on a hard drive, when they
are not used. Ideally, the most-frequently used pages stay in physical memory
and infrequently used pages are stored elsewhere.

• When pages in physical-memory are replaced to make room for new pages, it
is important to know whether the replaced (old) pages were modified. If they
were modified, they must be saved prior to loading the replacement (new)
pages. If the old pages were not modified, the new pages can be loaded
without saving the old pages.

• A limited number of page translations are kept in the UTLB. The remaining
translations must be stored in the page-translation table. When a translation is
not found in the UTLB (due to a miss), system software must decide which
UTLB entry to discard so that the missing translation can be loaded. It is
desirable for system software to replace infrequently used translations rather
than frequently used translations.

Solving the above problems in an efficient manner requires keeping track of page
accesses and page modifications. MicroBlaze does not track page access and page
66 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=66

Virtual-Memory Management
modification in hardware. Instead, system software can use the TLB-miss
exceptions and the data-storage exception to collect this information. As the
information is collected, it can be stored in a data structure associated with the
page-translation table.

Page-access information is used to determine which pages should be kept in
physical memory and which are replaced when physical-memory space is required.
System software can use the valid bit in the TLB entry (TLBHI[V]) to monitor page
accesses. This requires page translations be initialized as not valid (TLBHI[V]=0) to
indicate they have not been accessed. The first attempt to access a page causes a
TLB-miss exception, either because the UTLB entry is marked not valid or because
the page translation is not present in the UTLB. The TLB-miss handler updates the
UTLB with a valid translation (TLBHI[V]=1). The set valid bit serves as a record that
the page and its translation have been accessed. The TLB-miss handler can also
record the information in a separate data structure associated with the page-
translation entry.

Page-modification information is used to indicate whether an old page can be
overwritten with a new page or the old page must first be stored to a hard disk.
System software can use the write-protection bit in the TLB entry (TLBLO[WR]) to
monitor page modification. This requires page translations be initialized as read-
only (TLBLO[WR]=0) to indicate they have not been modified. The first attempt to
write data into a page causes a data-storage exception, assuming the page has
already been accessed and marked valid as described above. If software has
permission to write into the page, the data-storage handler marks the page as
writable (TLBLO[WR]=1) and returns. The set write-protection bit serves as a record
that a page has been modified. The data-storage handler can also record this
information in a separate data structure associated with the page-translation entry.

Tracking page modification is useful when virtual mode is first entered and when a
new process is started.
MicroBlaze Processor Reference Guide www.xilinx.com 67
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=67

Chapter 2: MicroBlaze Architecture
Reset, Interrupts, Exceptions, and Break
MicroBlaze supports reset, interrupt, user exception, break, and hardware
exceptions. The following section describes the execution flow associated with
each of these events.

The relative priority starting with the highest is:

1. Reset
2. Hardware Exception
3. Non-maskable Break
4. Break
5. Interrupt
6. User Vector (Exception)

Table 2-38 defines the memory address locations of the associated vectors and the
hardware enforced register file locations for return addresses. Each vector allocates
two addresses to allow full address range branching (requires an IMM followed by
a BRAI instruction). Normally the vectors start at address 0x00000000, but the
parameter C_BASE_VECTORS can be used to locate them anywhere in memory.

The address range 0x28 to 0x4F is reserved for future software support by Xilinx.
Allocating these addresses for user applications is likely to conflict with future
releases of SDK support software.

All of these events will clear the reservation bit, used together with the LWX and
SWX instructions to implement mutual exclusion, such as semaphores and
spinlocks.

Table 2-38: Vectors and Return Address Register File Location

Event Vector Address Register File Return
Address

Reset C_BASE_VECTORS + 0x00000000 -
C_BASE_VECTORS + 0x00000004 -

User Vector (Exception) C_BASE_VECTORS + 0x00000008 -
C_BASE_VECTORS + 0x0000000C Rx

Interrupt1

1. With low-latency interrupt mode, the vector address is supplied by the Interrupt Controller.

C_BASE_VECTORS + 0x00000010 -
C_BASE_VECTORS + 0x00000014 R14

Break: Non-maskable hardware
C_BASE_VECTORS + 0x00000018 -
C_BASE_VECTORS + 0x0000001C R16Break: Hardware

Break: Software

Hardware Exception C_BASE_VECTORS + 0x00000020 -
C_BASE_VECTORS + 0x00000024 R17 or BTR

Reserved by Xilinx for future use C_BASE_VECTORS + 0x00000028 -
C_BASE_VECTORS + 0x0000004F -
68 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=68

Reset, Interrupts, Exceptions, and Break
Reset
When a Reset, MB_Reset or Debug_Rst (1) occurs, MicroBlaze flushes the
pipeline and starts fetching instructions from the reset vector (address 0x0). Both
external reset signals are active high and should be asserted for a minimum of 16
cycles.

Equivalent Pseudocode

PC ← C_BASE_VECTORS + 0x00000000
MSR ← C_RESET_MSR (see “MicroBlaze Core Configurability” in Chapter 3)
EAR ← 0; ESR ← 0; FSR ← 0
PID ← 0; ZPR ← 0; TLBX ← 0
Reservation ← 0

Hardware Exceptions
MicroBlaze can be configured to trap the following internal error conditions: illegal
instruction, instruction and data bus error, and unaligned access. The divide
exception can only be enabled if the processor is configured with a hardware
divider (C_USE_DIV=1). When configured with a hardware floating point unit
(C_USE_FPU>0), it can also trap the following floating point specific exceptions:
underflow, overflow, float division-by-zero, invalid operation, and denormalized
operand error.

When configured with a hardware Memory Management Unit, it can also trap the
following memory management specific exceptions: Illegal Instruction Exception,
Data Storage Exception, Instruction Storage Exception, Data TLB Miss Exception,
and Instruction TLB Miss Exception.

A hardware exception causes MicroBlaze to flush the pipeline and branch to the
hardware exception vector (address C_BASE_VECTORS + 0x20). The execution
stage instruction in the exception cycle is not executed.

The exception also updates the general purpose register R17 in the following
manner:

• For the MMU exceptions (Data Storage Exception, Instruction Storage
Exception, Data TLB Miss Exception, Instruction TLB Miss Exception) the
register R17 is loaded with the appropriate program counter value to re-
execute the instruction causing the exception upon return. The value is
adjusted to return to a preceding IMM instruction, if any. If the exception is
caused by an instruction in a branch delay slot, the value is adjusted to return
to the branch instruction, including adjustment for a preceding IMM
instruction, if any.

• For all other exceptions the register R17 is loaded with the program counter
value of the subsequent instruction, unless the exception is caused by an
instruction in a branch delay slot. If the exception is caused by an instruction in

1. Reset input controlled by the XMD debugger via MDM.
MicroBlaze Processor Reference Guide www.xilinx.com 69
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=69

Chapter 2: MicroBlaze Architecture
a branch delay slot, the ESR[DS] bit is set. In this case the exception handler
should resume execution from the branch target address stored in BTR.

The EE and EIP bits in MSR are automatically reverted when executing the RTED
instruction.

The VM and UM bits in MSR are automatically reverted from VMS and UMS when
executing the RTED, RTBD, and RTID instructions.

Exception Priority

When two or more exceptions occur simultaneously, they are handled in the
following order, from the highest priority to the lowest:

• Instruction Bus Exception
• Instruction TLB Miss Exception
• Instruction Storage Exception
• Illegal Opcode Exception
• Privileged Instruction Exception or Stack Protection Violation Exception
• Data TLB Miss Exception
• Data Storage Exception
• Unaligned Exception
• Data Bus Exception
• Divide Exception
• FPU Exception
• Stream Exception

Exception Causes

• Stream Exception
The AXI4-Stream exception is caused by executing a get or getd instruction with the
‘e’ bit set to ‘1’ when there is a control bit mismatch.

• Instruction Bus Exception
The instruction bus exception is caused by errors when reading data from memory.

♦ The instruction peripheral AXI4 interface (M_AXI_IP) exception is caused by an
error response on M_AXI_IP_RRESP.

♦ The instruction cache AXI4 interface (M_AXI_IC) is caused by an error response on
M_AXI_IC_RRESP. The exception can only occur when
C_ICACHE_ALWAYS_USED is set to 1 and the cache is turned off, or if the MMU
Inhibit Caching bit is set for the address. In all other cases the response is ignored.

♦ The instructions side local memory (ILMB) can only cause instruction bus
exception when C_FAULT_TOLERANT is set to 1, and either an uncorrectable
error occurs in the LMB memory, as indicated by the IUE signal, or
C_ECC_USE_CE_EXCEPTION is set to 1 and a correctable error occurs in the LMB
memory, as indicated by the ICE signal.
70 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=70

Reset, Interrupts, Exceptions, and Break
• Illegal Opcode Exception
The illegal opcode exception is caused by an instruction with an invalid major opcode
(bits 0 through 5 of instruction). Bits 6 through 31 of the instruction are not checked.
Optional processor instructions are detected as illegal if not enabled. If the optional
feature C_OPCODE_0x0_ILLEGAL is enabled, an illegal opcode exception is also
caused if the instruction is equal to 0x00000000.

• Data Bus Exception
The data bus exception is caused by errors when reading data from memory or writing
data to memory.

♦ The data peripheral AXI4 interface (M_AXI_DP) exception is caused by an error
response on M_AXI_DP_RRESP or M_AXI_DP_BRESP.

♦ The data cache AXI4 interface (M_AXI_DC) exception is caused by:
- An error response on M_AXI_DC_RRESP or M_AXI_DC_BRESP,
- OKAY response on M_AXI_DC_RRESP in case of an exclusive access using

LWX.
The exception can only occur when C_DCACHE_ALWAYS_USED is set to 1 and the
cache is turned off, when an exclusive access using LWX or SWX is performed, or if
the MMU Inhibit Caching bit is set for the address. In all other cases the response
is ignored.

♦ The data side local memory (DLMB) can only cause instruction bus exception
when C_FAULT_TOLERANT is set to 1, and either an uncorrectable error occurs in
the LMB memory, as indicated by the DUE signal, or C_ECC_USE_CE_EXCEPTION
is set to 1 and a correctable error occurs in the LMB memory, as indicated by the
DCE signal. An error can occur for all read accesses, and for byte and halfword
write accesses.

• Unaligned Exception
The unaligned exception is caused by a word access where the address to the data bus
has bits 30 or 31 set, or a half-word access with bit 31 set.

• Divide Exception
The divide exception is caused by an integer division (idiv or idivu) where the divisor is
zero, or by a signed integer division (idiv) where overflow occurs (-2147483648 / -1).

• FPU Exception
An FPU exception is caused by an underflow, overflow, divide-by-zero, illegal
operation, or denormalized operand occurring with a floating point instruction.

♦ Underflow occurs when the result is denormalized.
♦ Overflow occurs when the result is not-a-number (NaN).
♦ The divide-by-zero FPU exception is caused by the rA operand to fdiv being zero

when rB is not infinite.
♦ Illegal operation is caused by a signaling NaN operand or by illegal infinite or zero

operand combinations.

• Privileged Instruction Exception
The Privileged Instruction exception is caused by an attempt to execute a privileged
instruction in User Mode.
MicroBlaze Processor Reference Guide www.xilinx.com 71
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=71

Chapter 2: MicroBlaze Architecture
• Stack Protection Violation Exception
A Stack Protection Violation exception is caused by executing a load or store
instruction using the stack pointer (register R1) as rA with an address outside the stack
boundaries defined by the special Stack Low and Stack High registers, causing a stack
overflow or a stack underflow.

• Data Storage Exception
The Data Storage exception is caused by an attempt to access data in memory that
results in a memory-protection violation.

• Instruction Storage Exception
The Instruction Storage exception is caused by an attempt to access instructions in
memory that results in a memory-protection violation.

• Data TLB Miss Exception
The Data TLB Miss exception is caused by an attempt to access data in memory, when
a valid Translation Look-Aside Buffer entry is not present, and virtual protected mode is
enabled.

• Instruction TLB Miss Exception
The Instruction TLB Miss exception is caused by an attempt to access instructions in
memory, when a valid Translation Look-Aside Buffer entry is not present, and virtual
protected mode is enabled.

Should an Instruction Bus Exception, Illegal Opcode Exception or Data Bus
Exception occur when C_FAULT_TOLERANT is set to 1, and an exception is in
progress (i.e. MSR[EIP] set and MSR[EE] cleared), the pipeline is halted, and the
external signal MB_Error is set.
72 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=72

Reset, Interrupts, Exceptions, and Break
Equivalent Pseudocode

ESR[DS] ← exception in delay slot
if ESR[DS] then

BTR ← branch target PC
if MMU exception then

if branch preceded by IMM then
r17 ← PC - 8

else
r17 ← PC - 4

else
r17 ← invalid value

else if MMU exception then
if instruction preceded by IMM then

r17 ← PC - 4
else

r17 ← PC
else

r17 ← PC + 4
PC ← C_BASE_VECTORS + 0x00000020
MSR[EE] ← 0, MSR[EIP]← 1
MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0
ESR[EC] ← exception specific value
ESR[ESS]← exception specific value
EAR ← exception specific value
FSR ← exception specific value
Reservation ← 0

Breaks
There are two kinds of breaks:

• Hardware (external) breaks
• Software (internal) breaks

Hardware Breaks

Hardware breaks are performed by asserting the external break signal (that is, the
Ext_BRK and Ext_NM_BRK input ports). On a break, the instruction in the
execution stage completes while the instruction in the decode stage is replaced by
a branch to the break vector (address C_BASE_VECTORS + 0x18). The break return
address (the PC associated with the instruction in the decode stage at the time of
the break) is automatically loaded into general purpose register R16. MicroBlaze
also sets the Break In Progress (BIP) flag in the Machine Status Register (MSR).

A normal hardware break (that is, the Ext_BRK input port) is only handled when
MSR[BIP] and MSR[EIP] are set to 0 (that is, there is no break or exception in
progress). The Break In Progress flag disables interrupts. A non-maskable break
(that is, the Ext_NM_BRK input port) is always handled immediately.

The BIP bit in the MSR is automatically cleared when executing the RTBD
instruction.
MicroBlaze Processor Reference Guide www.xilinx.com 73
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=73

Chapter 2: MicroBlaze Architecture
The Ext_BRK signal must be kept asserted until the break has occurred, and
deasserted before the RTBD instruction is executed. The Ext_NM_BRK signal must
only be asserted one clock cycle.

Software Breaks

To perform a software break, use the brk and brki instructions. Refer to Chapter 5,
MicroBlaze Instruction Set Architecture for detailed information on software
breaks.

As a special case, when C_USE_DEBUG is set, and “brki rD, 0x18” is executed, a
software breakpoint is signaled to the Xilinx Microprocesor Debugger (XMD) tool,
irrespective of the value of C_BASE_VECTORS.

Latency

The time it takes MicroBlaze to enter a break service routine from the time the
break occurs depends on the instruction currently in the execution stage and the
latency to the memory storing the break vector.

Equivalent Pseudocode

r16 ← PC
PC ← C_BASE_VECTORS + 0x00000018
MSR[BIP] ← 1
MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0
Reservation ← 0

Interrupt
MicroBlaze supports one external interrupt source (connected to the Interrupt
input port). The processor only reacts to interrupts if the Interrupt Enable (IE) bit in
the Machine Status Register (MSR) is set to 1. On an interrupt, the instruction in the
execution stage completes while the instruction in the decode stage is replaced by
a branch to the interrupt vector. This is either address C_BASE_VECTORS + 0x10,
or with low-latency interrupt mode, the address supplied by the Interrupt
Controller.

The interrupt return address (the PC associated with the instruction in the decode
stage at the time of the interrupt) is automatically loaded into general purpose
register R14. In addition, the processor also disables future interrupts by clearing
the IE bit in the MSR. The IE bit is automatically set again when executing the RTID
instruction.

Interrupts are ignored by the processor if either of the break in progress (BIP) or
exception in progress (EIP) bits in the MSR are set to 1.

By using the parameter C_INTERRUPT_IS_EDGE, the external interrupt can either
be set to level-sensitive or edge-sensitive:
74 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=74

Reset, Interrupts, Exceptions, and Break
• When using level-sensitive interrupts, the Interrupt input must remain set
until MicroBlaze has taken the interrupt, and jumped to the interrupt vector.
Software must clear the interrupt before returning from the interrupt handler.
If not, the interrupt is taken again, as soon as interrupts are enabled when
returning from the interrupt handler.

• When using edge-sensitive interrupts, MicroBlaze detects and latches the
Interrupt input edge, which means that the input only needs to be asserted
one clock cycle. The interrupt input can remain asserted, but must be
deasserted at least one clock cycle before a new interrupt can be detected. The
latching of an edge sensitive interrupt is independent of the IE bit in MSR.
Should an interrupt occur while the IE bit is 0, it will immediately be serviced
when the IE bit is set to 1.

Low-latency Interrupt Mode

A low-latency interrupt mode is available, which allows the Interrupt Controller to
directly supply the interrupt vector for each individual interrupt (via the
Interrupt_Address input port).

The address of each fast interrupt handler must be passed to the Interrupt
Controller when initializing the interrupt system. When a particular interrupt
occurs, this address is supplied by the Interrupt Controller, which allows MicroBlaze
to directly jump to the handler code.

With this mode, MicroBlaze also directly sends the appropriate interrupt
acknowledge to the Interrupt Controller (via the Interrupt_Ack output port),
although it is still the responsibility of the Interrupt Service Routine to
acknowledge level sensitive interrupts at the source.

To inform the Interrupt Controller of the interrupt handling events, Interrupt_Ack
is set to:

• 01 - when MicroBlaze jumps to the interrupt handler code,
• 10 - when the RTID instruction is executed to return from interrupt,
• 11 - when MSR[IE] is changed from 0 to 1, which enables interrupts again.

The Interrupt_Ack output port is active during one clock cycle, and is then reset to
00.

This information allows the Interrupt Controller to acknowledge interrupts
appropriately, both for level-sensitive and edge-triggered interrupt.

Latency

The time it takes MicroBlaze to enter an Interrupt Service Routine (ISR) from the
time an interrupt occurs, depends on the configuration of the processor and the
latency of the memory controller storing the interrupt vectors. If MicroBlaze is
configured to have a hardware divider, the largest latency happens when an
interrupt occurs during the execution of a division instruction.
MicroBlaze Processor Reference Guide www.xilinx.com 75
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=75

Chapter 2: MicroBlaze Architecture
With low-latency interrupt mode, the time to enter the ISR is significantly reduced,
since the interrupt vector for each individual interrupt is directly supplied by the
Interrupt Controller. With compiler support for fast interrupts, there is no need for
a common ISR at all. Instead, the ISR for each individual interrupt will be directly
called, and the compiler takes care of saving and restoring registers used by the
ISR.

Equivalent Pseudocode
r14 ← PC
if C_USE_INTERRUPT = 2
PC ← Interrupt_Address
Interrupt_Ack ← 01

else
PC ← C_BASE_VECTORS + 0x00000010

MSR[IE] ← 0
MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0
Reservation ← 0

User Vector (Exception)
The user exception vector is located at address 0x8. A user exception is caused by
inserting a ‘BRALID Rx,0x8’ instruction in the software flow. Although Rx could
be any general purpose register, Xilinx recommends using R15 for storing the user
exception return address, and to use the RTSD instruction to return from the user
exception handler.

Pseudocode

rx ← PC
PC ← C_BASE_VECTORS + 0x00000008
MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0
Reservation ← 0
76 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=76

Instruction Cache
Instruction Cache

Overview
MicroBlaze can be used with an optional instruction cache for improved
performance when executing code that resides outside the LMB address range.

The instruction cache has the following features:

• Direct mapped (1-way associative)
• User selectable cacheable memory address range
• Configurable cache and tag size
• Caching over AXI4 interface (M_AXI_IC)
• Option to use 4 or 8 word cache-line
• Cache on and off controlled using a bit in the MSR
• Optional WIC instruction to invalidate instruction cache lines
• Optional stream buffers to improve performance by speculatively prefetching

instructions
• Optional victim cache to improve performance by saving evicted cache lines
• Optional parity protection that invalidates cache lines if a Block RAM bit error

is detected
• Optional data width selection to either use 32 bits, an entire cache line, or 512

bits

General Instruction Cache Functionality
When the instruction cache is used, the memory address space is split into two
segments: a cacheable segment and a non-cacheable segment. The cacheable
segment is determined by two parameters: C_ICACHE_BASEADDR and
C_ICACHE_HIGHADDR. All addresses within this range correspond to the
cacheable address segment. All other addresses are non-cacheable.

The cacheable segment size must be 2N, where N is a positive integer. The range
specified by C_ICACHE_BASEADDR and C_ICACHE_HIGHADDR must comprise a
complete power-of-two range, such that range = 2N and the N least significant bits
of C_ICACHE_BASEADDR must be zero.

The cacheable instruction address consists of two parts: the cache address, and the
tag address. The MicroBlaze instruction cache can be configured from 64 bytes to
64 kB. This corresponds to a cache address of between 6 and 16 bits. The tag
address together with the cache address should match the full address of
cacheable memory. When selecting cache sizes below 2 kB, distributed RAM is
used to implement the Tag RAM and Instruction RAM. Distributed RAM is always
used to implement the Tag RAM, when setting the parameter
C_ICACHE_FORCE_TAG_LUTRAM to 1. This parameter is only available with cache
sizes 8 kB or 16 kB and less, for 4 or 8 word cache-lines, respectively.
MicroBlaze Processor Reference Guide www.xilinx.com 77
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=77

Chapter 2: MicroBlaze Architecture
For example: in a MicroBlaze configured with C_ICACHE_BASEADDR=
0x00300000, C_ICACHE_HIGHADDR=0x0030ffff,
C_CACHE_BYTE_SIZE=4096, C_ICACHE_LINE_LEN=8, and
C_ICACHE_FORCE_TAG_LUTRAM=0; the cacheable memory of 64 kB uses 16 bits
of byte address, and the 4 kB cache uses 12 bits of byte address, thus the required
address tag width is: 16-12=4 bits. The total number of block RAM primitives
required in this configuration is: 2 RAMB16 for storing the 1024 instruction words,
and 1 RAMB16 for 128 cache line entries, each consisting of: 4 bits of tag, 8 word-
valid bits, 1 line-valid bit. In total 3 RAMB16 primitives.

Figure 2-22, page 78 shows the organization of Instruction Cache.

Instruction Cache Operation
For every instruction fetched, the instruction cache detects if the instruction
address belongs to the cacheable segment. If the address is non-cacheable, the
cache controller ignores the instruction and lets the M_AXI_IP or LMB complete the
request. If the address is cacheable, a lookup is performed on the tag memory to
check if the requested address is currently cached. The lookup is successful if: the
word and line valid bits are set, and the tag address matches the instruction
address tag segment. On a cache miss, the cache controller requests the new
instruction over the instruction AXI4 interface (M_AXI_IC), and waits for the
memory controller to return the associated cache line.

C_ICACHE_DATA_WIDTH determines the bus data width, either 32 bits, an entire
cache line (128 bits or 256 bits), or 512 bits.

When C_FAULT_TOLERANT is set to 1, a cache miss also occurs if a parity error is
detected in a tag or instruction Block RAM.

The instruction cache issues burst accesses for the AXI4 interface when 32-bit data
width is used, otherwise single accesses are used.

Figure 2-22: Instruction Cache Organization

Instruction Address Bits
0 3031

Cache AddressTag Address --

Tag

Instruction
 RAM

RAM
Line Addr

Word Addr

=
Tag

Valid (word and line)
Cache_Hit

Cache_instruction_data
78 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=78

Instruction Cache
Stream Buffers

When stream buffers are enabled, by setting the parameter C_ICACHE_STREAMS
to 1, the cache will speculatively fetch cache lines in advance in sequence following
the last requested address, until the stream buffer is full. The stream buffer can
hold up to two cache lines. Should the processor subsequently request instructions
from a cache line prefetched by the stream buffer, which occurs in linear code, they
are immediately available.

The stream buffer often improves performance, since the processor generally has
to spend less time waiting for instructions to be fetched from memory.

C_ICACHE_DATA_WIDTH determines the amount of data transferred from the
stream buffer each clock cycle, either 32 bits or an entire cache line.

To be able to use instruction cache stream buffers, area optimization must not be
enabled.

Victim Cache

The victim cache is enabled by setting the parameter C_ICACHE_VICTIMS to 2, 4
or 8. This defines the number of cache lines that can be stored in the victim cache.
Whenever a cache line is evicted from the cache, it is saved in the victim cache. By
saving the most recent lines they can be fetched much faster, should the processor
request them, thereby improving performance. If the victim cache is not used, all
evicted cache lines must be read from memory again when they are needed.

C_ICACHE_DATA_WIDTH determines the amount of data transferred from/to the
victim cache each clock cycle, either 32 bits or an entire cache line.

Note that to be able to use the victim cache, area optimization must not be
enabled.

Instruction Cache Software Support

MSR Bit

The ICE bit in the MSR provides software control to enable and disable caches.

The contents of the cache are preserved by default when the cache is disabled. You
can invalidate cache lines using the WIC instruction or using the hardware debug
logic of MicroBlaze.

WIC Instruction

The optional WIC instruction (C_ALLOW_ICACHE_WR=1) is used to invalidate
cache lines in the instruction cache from an application. For a detailed description,
refer to Chapter 5, MicroBlaze Instruction Set Architecture.

The WIC instruction can also be used together with parity protection to periodically
invalidate entries the cache, to avoid accumulating errors.
MicroBlaze Processor Reference Guide www.xilinx.com 79
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=79

Chapter 2: MicroBlaze Architecture
Data Cache

Overview
MicroBlaze can be used with an optional data cache for improved performance.
The cached memory range must not include addresses in the LMB address range.
The data cache has the following features:

• Direct mapped (1-way associative)
• Write-through or Write-back
• User selectable cacheable memory address range
• Configurable cache size and tag size
• Caching over AXI4 interface (M_AXI_DC)
• Option to use 4 or 8 word cache-lines
• Cache on and off controlled using a bit in the MSR
• Optional WDC instruction to invalidate or flush data cache lines
• Optional victim cache with write-back to improve performance by saving

evicted cache lines
• Optional parity protection for write-through cache that invalidates cache lines

if a Block RAM bit error is detected
• Optional data width selection to either use 32 bits, an entire cache line, or 512

bits

General Data Cache Functionality
When the data cache is used, the memory address space is split into two segments:
a cacheable segment and a non-cacheable segment. The cacheable area is
determined by two parameters: C_DCACHE_BASEADDR and
C_DCACHE_HIGHADDR. All addresses within this range correspond to the
cacheable address space. All other addresses are non-cacheable.

The cacheable segment size must be 2N, where N is a positive integer. The range
specified by C_DCACHE_BASEADDR and C_DCACHE_HIGHADDR must comprise a
complete power-of-two range, such that range = 2N and the N least significant bits
of C_DCACHE_BASEADDR must be zero.

Figure 2-23 shows the Data Cache Organization.
80 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=80

Data Cache

The cacheable data address consists of two parts: the cache address, and the tag
address. The MicroBlaze data cache can be configured from 64 bytes to 64 kB. This
corresponds to a cache address of between 6 and 16 bits. The tag address together
with the cache address should match the full address of cacheable memory. When
selecting cache sizes below 2 kB, distributed RAM is used to implement the Tag
RAM and Data RAM, except that block RAM is always used for the Data RAM when
C_AREA_OPTIMIZED is set and C_DCACHE_USE_WRITEBACK is not set.
Distributed RAM is always used to implement the Tag RAM, when setting the
parameter C_DCACHE_FORCE_TAG_LUTRAM to 1. This parameter is only available
with cache sizes 8 kB or 16 kB and less, for 4 or 8 word cache-lines, respectively.

For example, in a MicroBlaze configured with
C_DCACHE_BASEADDR=0x00400000, C_DCACHE_HIGHADDR=0x00403fff,
C_DCACHE_BYTE_SIZE=2048, C_DCACHE_LINE_LEN=4, and
C_DCACHE_FORCE_TAG_LUTRAM=0; the cacheable memory of 16 kB uses 14 bits
of byte address, and the 2 kB cache uses 11 bits of byte address, thus the required
address tag width is 14-11=3 bits. The total number of block RAM primitives
required in this configuration is 1 RAMB16 for storing the 512 data words, and 1
RAMB16 for 128 cache line entries, each consisting of 3 bits of tag, 4 word-valid
bits, 1 line-valid bit. In total, 2 RAMB16 primitives.

Data Cache Operation
The caching policy used by the MicroBlaze data cache, write-back or write-through,
is determined by the parameter C_DCACHE_USE_WRITEBACK. When this
parameter is set, a write-back protocol is implemented, otherwise write-through is
implemented. However, when configured with an MMU (C_USE_MMU > 1,
C_AREA_OPTIMIZED = 0, C_DCACHE_USE_WRITEBACK = 1), the caching policy
in virtual mode is determined by the W storage attribute in the TLB entry, whereas
write-back is used in real mode.

Figure 2-23: Data Cache Organization

Data Address Bits
0 3031

Cache Word AddressTag Address --

Tag

Data
 RAM

RAM
Addr

Addr

=Tag

Valid Cache_Hit

Cache_data

Load_Instruction
MicroBlaze Processor Reference Guide www.xilinx.com 81
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=81

Chapter 2: MicroBlaze Architecture
With the write-back protocol, a store to an address within the cacheable range
always updates the cached data. If the target address word is not in the cache (that
is, the access is a cache miss), and the location in the cache contains data that has
not yet been written to memory (the cache location is dirty), the old data is written
over the data AXI4 interface (M_AXI_DC) to external memory before updating the
cache with the new data. If only a single word needs to be written, a single word
write is used, otherwise a burst write is used. For byte or halfword stores, in case of
a cache miss, the address is first requested over the data AXI4 interface, while a
word store only updates the cache.

With the write-through protocol, a store to an address within the cacheable range
generates an equivalent byte, halfword, or word write over the data AXI4 interface
to external memory. The write also updates the cached data if the target address
word is in the cache (that is, the write is a cache hit). A write cache-miss does not
load the associated cache line into the cache.

Provided that the cache is enabled a load from an address within the cacheable
range triggers a check to determine if the requested data is currently cached. If it is
(that is, on a cache hit) the requested data is retrieved from the cache. If not (that
is, on a cache miss) the address is requested over the data AXI4 interface using a
burst read, and the processor pipeline stalls until the cache line associated to the
requested address is returned from the external memory controller.

The parameter C_DCACHE_DATA_WIDTH determines the bus data width, either 32
bits, an entire cache line (128 bits or 256 bits), or 512 bits.

When C_FAULT_TOLERANT is set to 1 and write-through protocol is used, a cache
miss also occurs if a parity error is detected in the tag or data Block RAM.

All types of accesses issued by the data cache AXI4 interface are summarized in
Table 2-39.

Table 2-39: Data Cache Interface Accesses

Policy State Direction Access Type

Write-through Cache
Enabled

Read Burst for 32-bit interface non-exclusive access and
exclusive access with ACE enabled, single access
otherwise

Write Single access

Cache
Disabled

Read Burst for 32-bit interface exclusive access with ACE
enabled, single access otherwise

Write Single access

Write-back Cache
Enabled

Read Burst for 32-bit interface, single access otherwise

Write Burst for 32-bit interface cache lines with more than
one valid word, a single access otherwise

Cache
Disabled

Read Burst for 32-bit interface non-exclusive access, dis-
carding all but the desired data, a single access oth-
erwise

Write Single access
82 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=82

Data Cache
Victim Cache

The victim cache is enabled by setting the parameter C_DCACHE_VICTIMS to 2, 4
or 8. This defines the number of cache lines that can be stored in the victim cache.
Whenever a complete cache line is evicted from the cache, it is saved in the victim
cache. By saving the most recent lines they can be fetched much faster, should the
processor request them, thereby improving performance. If the victim cache is not
used, all evicted cache lines must be read from memory again when they are
needed.

With the AXI4 interface, C_DCACHE_DATA_WIDTH determines the amount of data
transferred from/to the victim cache each clock cycle, either 32 bits or an entire
cache line.

Note that to be able to use the victim cache, write-back must be enabled and area
optimization must not be enabled.

Data Cache Software Support

MSR Bit

The DCE bit in the MSR controls whether or not the cache is enabled. When
disabling caches the user must ensure that all the prior writes within the cacheable
range have been completed in external memory before reading back over
M_AXI_DP. This can be done by writing to a semaphore immediately before turning
off caches, and then in a loop poll until it has been written.

The contents of the cache are preserved when the cache is disabled.

WDC Instruction

The optional WDC instruction (C_ALLOW_DCACHE_WR=1) is used to invalidate or
flush cache lines in the data cache from an application. For a detailed description,
please refer to Chapter 5, MicroBlaze Instruction Set Architecture.

The WDC instruction can also be used together with parity protection to
periodically invalidate entries the cache, to avoid accumulating errors.
MicroBlaze Processor Reference Guide www.xilinx.com 83
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=83

Chapter 2: MicroBlaze Architecture
Floating Point Unit (FPU)

Overview
The MicroBlaze floating point unit is based on the IEEE 754-1985 standard:

• Uses IEEE 754 single precision floating point format, including definitions for
infinity, not-a-number (NaN), and zero

• Supports addition, subtraction, multiplication, division, comparison,
conversion and square root instructions

• Implements round-to-nearest mode
• Generates sticky status bits for: underflow, overflow, divide-by-zero and invalid

operation
For improved performance, the following non-standard simplifications are made:
• Denormalized (1) operands are not supported. A hardware floating point

operation on a denormalized number returns a quiet NaN and sets the sticky
denormalized operand error bit in FSR; see "Floating Point Status Register
(FSR)" on page 32

• A denormalized result is stored as a signed 0 with the underflow bit set in FSR.
This method is commonly referred to as Flush-to-Zero (FTZ)

• An operation on a quiet NaN returns the fixed NaN: 0xFFC00000, rather than
one of the NaN operands

• Overflow as a result of a floating point operation always returns signed ∞

Format
An IEEE 754 single precision floating point number is composed of the following
three fields:
1. 1-bit sign
2. 8-bit biased exponent
3. 23-bit fraction (a.k.a. mantissa or significand)

The fields are stored in a 32 bit word as defined in Figure 2-24:

1. Numbers that are so close to 0, that they cannot be represented with full precision, that is, any number n that
falls in the following ranges: (1.17549*10-38 > n > 0), or (0 > n > -1.17549 * 10-38)

0 1 9 31

↑ ↑ ↑
sign exponent fraction

Figure 2-24: IEEE 754 Single Precision Format
84 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://en.wikipedia.org/wiki/IEEE_754-1985
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=84

Floating Point Unit (FPU)
The value of a floating point number v in MicroBlaze has the following
interpretation:
1. If exponent = 255 and fraction <> 0, then v= NaN, regardless of the sign bit
2. If exponent = 255 and fraction = 0, then v= (-1)sign * ∞
3. If 0 < exponent < 255, then v = (-1)sign * 2(exponent-127) * (1.fraction)
4. If exponent = 0 and fraction <> 0, then v = (-1)sign * 2-126 * (0.fraction)
5. If exponent = 0 and fraction = 0, then v = (-1)sign * 0

For practical purposes only 3 and 5 are useful, while the others all represent either
an error or numbers that can no longer be represented with full precision in a 32 bit
format.

Rounding
The MicroBlaze FPU only implements the default rounding mode, “Round-to-
nearest”, specified in IEEE 754. By definition, the result of any floating point
operation should return the nearest single precision value to the infinitely precise
result. If the two nearest representable values are equally near, then the one with its
least significant bit zero is returned.

Operations
All MicroBlaze FPU operations use the processors general purpose registers rather
than a dedicated floating point register file, see “General Purpose Registers”.

Arithmetic

The FPU implements the following floating point operations:

• addition, fadd
• subtraction, fsub
• multiplication, fmul
• division, fdiv
• square root, fsqrt (available if C_USE_FPU = 2, EXTENDED)

Comparison

The FPU implements the following floating point comparisons:

• compare less-than, fcmp.lt
• compare equal, fcmp.eq
• compare less-or-equal, fcmp.le
• compare greater-than, fcmp.gt
• compare not-equal, fcmp.ne
• compare greater-or-equal, fcmp.ge
• compare unordered, fcmp.un (used for NaN)
MicroBlaze Processor Reference Guide www.xilinx.com 85
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=85

Chapter 2: MicroBlaze Architecture
Conversion

The FPU implements the following conversions (available if C_USE_FPU = 2,
EXTENDED):

• convert from signed integer to floating point, flt
• convert from floating point to signed integer, fint

Exceptions
The floating point unit uses the regular hardware exception mechanism in
MicroBlaze. When enabled, exceptions are thrown for all the IEEE standard
conditions: underflow, overflow, divide-by-zero, and illegal operation, as well as for
the MicroBlaze specific exception: denormalized operand error.

A floating point exception inhibits the write to the destination register (Rd). This
allows a floating point exception handler to operate on the uncorrupted register
file.

Software Support
The SDK compiler system, based on GCC, provides support for the Floating Point
Unit compliant with the MicroBlaze API. Compiler flags are automatically added to
the GCC command line based on the type of FPU present in the system, when using
SDK.

All double-precision operations are emulated in software. Be aware that the
xil_printf() function does not support floating-point output. The standard C library
printf() and related functions do support floating-point output, but will increase
the program code size.

Libraries and Binary Compatibility

The SDK compiler system only includes software floating point C runtime libraries.
To take advantage of the hardware FPU, the libraries must be recompiled with the
appropriate compiler switches.

For all cases where separate compilation is used, it is very important that you
ensure the consistency of FPU compiler flags throughout the build.

Operator Latencies

The latencies of the various operations supported by the FPU are listed in
Chapter 5, “MicroBlaze Instruction Set Architecture.” The FPU instructions are not
pipelined, so only one operation can be ongoing at any time.
86 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=86

Floating Point Unit (FPU)
C Language Programming

To gain maximum benefit from the FPU without low-level assembly-language
programming, it is important to consider how the C compiler will interpret your
source code. Very often the same algorithm can be expressed in many different
ways, and some are more efficient than others.

Immediate Constants

Floating-point constants in C are double-precision by default. When using a single-
precision FPU, careless coding may result in double-precision software emulation
routines being used instead of the native single-precision instructions. To avoid
this, explicitly specify (by cast or suffix) that immediate constants in your arithmetic
expressions are single-precision values.

For example:
float x = 0.0;
...
x += (float)1.0; /* float addition */
x += 1.0F; /* alternative to above */
x += 1.0; /* warning - uses double addition! */

Note that the GNU C compiler can be instructed to treat all floating-point
constants as single-precision (contrary to the ANSI C standard) by supplying the
compiler flag -fsingle-precision-constants.

Avoid unnecessary casting

While conversions between floating-point and integer formats are supported in
hardware by the FPU, when C_USE_FPU is set to 2 (Extended), it is still best to
avoid them when possible.

The following “bad” example calculates the sum of squares of the integers from 1 to
10 using floating-point representation:

float sum, t;
int i;
sum = 0.0f;
for (i = 1; i <= 10; i++) {
t = (float)i;
sum += t * t;

}

The above code requires a cast from an integer to a float on each loop iteration.
This can be rewritten as:

float sum, t;
int i;
t = sum = 0.0f;
for(i = 1; i <= 10; i++) {
t += 1.0f;
sum += t * t;

}

MicroBlaze Processor Reference Guide www.xilinx.com 87
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=87

Chapter 2: MicroBlaze Architecture
Note that the compiler is not at liberty to perform this optimization in general, as
the two code fragments above may give different results in some cases (for
example, very large t).

Square root runtime library function

The standard C runtime math library functions operate using double-precision
arithmetic. When using a single-precision FPU, calls to the square root functions
(sqrt()) result in inefficient emulation routines being used instead of FPU
instructions:

#include <math.h>
...
float x=-1.0F;
...
x = sqrt(x); /* uses double precision */

Here the math.h header is included to avoid a warning message from the compiler.

When used with single-precision data types, the result is a cast to double, a runtime
library call is made (which does not use the FPU) and then a truncation back to float
is performed.

The solution is to use the non-ANSI function sqrtf() instead, which operates using
single precision and can be carried out using the FPU. For example:

#include <math.h>
...
float x=-1.0F;
...
x = sqrtf(x); /* uses single precision */

Note that when compiling this code, the compiler flag -fno-math-errno (in
addition to -mhard-float and -mxl-float-sqrt) must be used, to ensure that the
compiler does not generate unnecessary code to handle error conditions by
updating the errno variable.
88 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=88

Stream Link Interfaces
Stream Link Interfaces
MicroBlaze can be configured with up to 16 AXI4-Stream interfaces, each
consisting of one input and one output port. The channels are dedicated uni-
directional point-to-point data streaming interfaces.

For detailed information on the AXI4-Stream interface, please refer to the AMBA®4
AXI4-Stream Protocol Specification, Version 1.0 document.

The interfaces on MicroBlaze are 32 bits wide. A separate bit indicates whether the
sent/received word is of control or data type. The get instruction in the MicroBlaze
ISA is used to transfer information from a port to a general purpose register. The
put instruction is used to transfer data in the opposite direction. Both instructions
come in 4 flavors: blocking data, non-blocking data, blocking control, and non-
blocking control. For a detailed description of the get and put instructions, please
refer to Chapter 5, MicroBlaze Instruction Set Architecture.

Hardware Acceleration
Each link provides a low latency dedicated interface to the processor pipeline. Thus
they are ideal for extending the processors execution unit with custom hardware
accelerators. A simple example is illustrated in Figure 2-25. The code uses RFSLx to
indicate the used link.

Figure 2-25: Stream Link Used with HW Accelerated Function fx

This method is similar to extending the ISA with custom instructions, but has the
benefit of not making the overall speed of the processor pipeline dependent on
the custom function. Also, there are no additional requirements on the software
tool chain associated with this type of functional extension.

MicroBlaze

Custom HW Accelerator
Link x// Configure fx

cput Rc,RFSLx

// Store operands

put Ra, RFSLx // op 1

put Rb, RFSLx // op 2

// Load result

get Rt, RFSLx

Example code:

Register
File

ConfigReg

Op1Reg Op2Reg

fx

ResultReg

Link x
MicroBlaze Processor Reference Guide www.xilinx.com 89
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=89

Chapter 2: MicroBlaze Architecture
Debug and Trace

Debug Overview
MicroBlaze features a debug interface to support JTAG based software debugging
tools (commonly known as BDM or Background Debug Mode debuggers) like the
Xilinx Microprocessor Debug (XMD) tool. The debug interface is designed to be
connected to the Xilinx Microprocessor Debug Module (MDM) core, which
interfaces with the JTAG port of Xilinx FPGAs. Multiple MicroBlaze instances can be
interfaced with a single MDM to enable multiprocessor debugging. The debugging
features include:

• Configurable number of hardware breakpoints and watchpoints and unlimited
software breakpoints

• External processor control enables debug tools to stop, reset, and single step
MicroBlaze

• Read from and write to: memory, general purpose registers, and special
purpose register, except EAR, EDR, ESR, BTR and PVR0 - PVR12, which can only
be read

• Support for multiple processors

Whenever Microblaze is halted the MB_Halted output signal is set to 1, for
example after a breakpoint or watchpoint is hit, after a stop XMD command, or
when the DBG_STOP input is set. The output is cleared when MicroBlaze execution
is resumed by an XMD command.

When the DBG_STOP input is set to 1, MicroBlaze will halt after a few instructions.
XMD will detect that MicroBlaze has halted, and indicate where the halt occured.
The signal can be used to halt MicroBlaze at any external event, for example when
a ChipScope™ logic analyzer is triggered.

The MB_Halted signal may be used to trigger a ChipScope logic analyzer, or halt
other MicroBlaze cores in a multiprocessor system by connecting the signal to their
DBG_STOP inputs.

Trace Overview
The MicroBlaze trace interface exports a number of internal state signals for
performance monitoring and analysis. Xilinx recommends that users only use the
trace interface through Xilinx developed analysis cores. This interface is not
guaranteed to be backward compatible in future releases of MicroBlaze.
90 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=90

Fault Tolerance
Fault Tolerance
The fault tolerance features included in MicroBlaze, enabled with
C_FAULT_TOLERANT, provide Error Detection for internal block RAMs, and
support for Error Detection and Correction (ECC) in LMB block RAMs. When fault
tolerance is enabled, all soft errors in block RAMs are detected and corrected,
which significantly reduces overall failure intensity.

In addition to protecting block RAM, the FPGA configuration memory also
generally needs to be protected. A detailed explanation of this topic, and further
references, can be found in the document SEU Strategies for Virtex-5 Devices
(XAPP864).

Configuration

Using MicroBlaze Configuration

Fault tolerance can be enabled in the MicroBlaze configuration dialog, on the
General page.

After enabling fault tolerance in MicroBlaze, ECC is automatically enabled in the
connected LMB BRAM Interface Controllers by the tools, when the system is
generated. This means that nothing else needs to be configured to enable fault
tolerance and minimal ECC support.

It is possible (albeit not recommended) to manually override ECC support, leaving
the LMB BRAM unprotected, by disabling C_ECC in the configuration dialogs of all
connected LMB BRAM Interface Controllers. In this case, the internal MicroBlaze
block RAM protection is still enabled, since fault tolerance is enabled.

Using LMB BRAM Interface Controller Configuration

As an alternative to the method described above, it is also possible to enable ECC
in the configuration dialogs of all connected LMB BRAM Interface Controllers. In
this case, fault tolerance is automatically enabled in MicroBlaze by the tools, when
the system is generated. This means that nothing else needs to be configured to
enable ECC support and MicroBlaze fault tolerance.

ECC must either be enabled or disabled in all Controllers, which is enforced by a
DRC.

It is possible to manually override fault tolerance support in MicroBlaze, by
explicitly disabling C_FAULT_TOLERANT in the MicroBlaze configuration dialog.
This is not recommended, unless no block RAM is used in MicroBlaze, and there is
no need to handle bus exceptions from uncorrectable ECC errors.
MicroBlaze Processor Reference Guide www.xilinx.com 91
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=application+note;d=xapp864.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=application+note;d=xapp864.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=91

Chapter 2: MicroBlaze Architecture
Features
An overview of all MicroBlaze fault tolerance features is given here. Further details
on each feature can be found in the following sections:

• “Instruction Cache Operation”
• “Data Cache Operation”
• “UTLB Management”
• “Branch Target Cache”
• “Instruction Bus Exception”
• “Data Bus Exception”
• “Exception Causes”

The LMB BRAM Interface Controller v4.0 or later provides the LMB ECC
implementation. For details, including performance and resource utilization, see
the LogiCORE IP LMB BRAM Interface Controller (PG112) product guide, in the Xilinx
IP Documentation.

Instruction and Data Cache Protection

To protect the block RAM in the Instruction and Data Cache, parity is used. When a
parity error is detected, the corresponding cache line is invalidated. This forces the
cache to reload the correct value from external memory. Parity is checked whenever
a cache hit occurs.

Note that this scheme only works for write-through, and thus write-back data
cache is not available when fault tolerance is enabled. This is enforced by a DRC.

When new values are written to a block RAM in the cache, parity is also calculated
and written. One parity bit is used for the tag, one parity bit for the instruction
cache data, and one parity bit for each word in a data cache line.

In many cases, enabling fault tolerance does not increase the required number of
cache block RAMs, since spare bits can be used for the parity. Any increase in
resource utilization, in particular number of block RAMs, can easily be seen in the
MicroBlaze configuration dialog, when enabling fault tolerance.

Memory Management Unit Protection

To protect the block RAM in the MMU Unified Translation Look-Aside Buffer
(UTLB), parity is used. When a parity error is detected during an address translation,
a TLB miss exception occurs, forcing software to reload the entry.

When a new TLB entry is written using the TLBHI and TLBLO registers, parity is
calculated. One parity bit is used for each entry.

Parity is also checked when a UTLB entry is read using the TLBHI and TLBLO
registers. When a parity error is detected in this case, the entry is marked invalid by
clearing the valid bit.
92 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=92

Fault Tolerance
Enabling fault tolerance does not increase the MMU block RAM size, since a spare
bit is available for the parity.

Branch Target Cache Protection

To protect block RAM in the Branch Target Cache, parity is used. When a parity
error is detected when looking up a branch target address, the address is ignored,
forcing a normal branch.

When a new branch address is written to the Branch Target Cache, parity is
calculated. One parity bit is used for each address.

Enabling fault tolerance does not increase the Branch Target Cache block RAM size,
since a spare bit is available for the parity.

Exception Handling

With fault tolerance enabled, if an error occurs in LMB block RAM, the LMB BRAM
Interface Controller generates error signals on the LMB interface.

If exceptions are enabled in MicroBlaze, by setting the EE bit in the Machine Status
Register, the uncorrectable error signal either generates an instruction bus
exception or a data bus exception, depending on the affected interface.

Should a bus exception occur when an exception is in progress, MicroBlaze is
halted, and the external error signal MB_Error is set. This behavior ensures that it
is impossible to execute an instruction corrupted by an uncorrectable error.

Software Support

Scrubbing

To ensure that bit errors are not accumulated in block RAMs, they must be
periodically scrubbed.

The standalone BSP provides the function microblaze_scrub() to perform
scrubbing of the entire LMB block RAM and all MicroBlaze internal block RAMs
used in a particular configuration. This function is intended to be called
periodically from a timer interrupt routine.

The following example code illustrates how this can be done.
#include "xparameters.h"
#include "xtmrctr.h"
#include "xintc.h"
#include "mb_interface.h"

#define SCRUB_PERIOD ...

XIntc InterruptController; /* The Interrupt Controller instance */
XTmrCtr TimerCounterInst;/* The Timer Counter instance */
MicroBlaze Processor Reference Guide www.xilinx.com 93
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=93

Chapter 2: MicroBlaze Architecture
void MicroBlazeScrubHandler(void *CallBackRef, u8 TmrCtrNumber)
{
/* Perform other timer interrupt processing here */
microblaze_scrub();

}

int main (void)
{
int Status;

/*
 * Initialize the timer counter so that it's ready to use,
 * specify the device ID that is generated in xparameters.h
 */
Status = XTmrCtr_Initialize(&TimerCounterInst, TMRCTR_DEVICE_ID);
if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Connect the timer counter to the interrupt subsystem such that
 * interrupts can occur.
 */
Status = XIntc_Initialize(&InterruptController, INTC_DEVICE_ID);
if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Connect a device driver handler that will be called when an
 * interrupt for the device occurs, the device driver handler performs
 * the specific interrupt processing for the device
 */
Status = XIntc_Connect(&InterruptController, TMRCTR_DEVICE_ID,

(XInterruptHandler)XTmrCtr_InterruptHandler,
(void *) &TimerCounterInst);

if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Start the interrupt controller such that interrupts are enabled for
 * all devices that cause interrupts, specifying real mode so that the
 * timer counter can cause interrupts thru the interrupt controller.
 */
Status = XIntc_Start(&InterruptController, XIN_REAL_MODE);
if (Status != XST_SUCCESS) {
return XST_FAILURE;

}

/*
 * Setup the handler for the timer counter that will be called from the
 * interrupt context when the timer expires, specify a pointer to the
 * timer counter driver instance as the callback reference so the
 * handler is able to access the instance data
 */
XTmrCtr_SetHandler(&TimerCounterInst, MicroBlazeScrubHandler,

 &TimerCounterInst);
94 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=94

Fault Tolerance
/*
 * Enable the interrupt of the timer counter so interrupts will occur
 * and use auto reload mode such that the timer counter will reload
 * itself automatically and continue repeatedly, without this option
 * it would expire once only
 */
XTmrCtr_SetOptions(&TimerCounterInst, TIMER_CNTR_0,

XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION);

/*
 * Set a reset value for the timer counter such that it will expire
 * earlier than letting it roll over from 0, the reset value is loaded
 * into the timer counter when it is started
 */
XTmrCtr_SetResetValue(TmrCtrInstancePtr,TmrCtrNumber,SCRUB_PERIOD);

/*
 * Start the timer counter such that it's incrementing by default,
 * then wait for it to timeout a number of times
 */
XTmrCtr_Start(&TimerCounterInst, TIMER_CNTR_0);

...
}

See the section “Scrubbing” below for further details on how scrubbing is
implemented, including how to calculate the scrubbing rate.

BRAM Driver

The standalone BSP BRAM driver is used to access the ECC registers in the LMB
BRAM Interface Controller, and also provides a comprehensive self test.

By implementing the SDK Xilinx C Project "Peripheral Tests", a self-test example
including the BRAM self test for each LMB BRAM Interface Controller in the system
is generated. Depending on the ECC features enabled in the LMB BRAM Interface
Controller, this code will perform all possible tests of the ECC function.

The self-test example can be found in the standalone BSP BRAM driver source
code, typically in the subdirectory
microblaze_0/libsrc/bram_v3_00_a/src/xbram_selftest.c.

Scrubbing

Scrubbing Methods

Scrubbing is performed using specific methods for the different block RAMs:

• Instruction and data caches: All lines in the caches are cyclically invalidated
using the WIC and WDC instructions respectively. This forces the cache to
reload the cache line from external memory.
MicroBlaze Processor Reference Guide www.xilinx.com 95
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=95

Chapter 2: MicroBlaze Architecture
• Memory Management Unit UTLB: All entries in the UTLB are cyclically
invalidated by writing the TLBHI register with the valid bit cleared.

• Branch Target Cache: The entire BTC is invalided by doing a synchronizing
branch, BRI 4.

• LMB block RAM: All addresses in the memory are cyclically read and written,
thus correcting any single bit errors on each address.

It is also possible to add interrupts for correctable errors from the LMB BRAM
Interface Controllers, and immediately scrub this address in the interrupt handler,
although in most cases it only improves reliability slightly.

The failing address can be determined by reading the Correctable Error First Failing
Address Register in each of the LMB BRAM Interface Controllers. To be able to
generate an interrupt C_ECC_STATUS_REGISTERS must be set to 1 in the
connected LMB BRAM Interface Controllers, and to read the failing address
C_CE_FAILING_REGISTERS must be set to 1.

Calculating Scrubbing Rate

The scrubbing rate depends on failure intensity and desired reliability.

The approximate equation to determine the LMB memory scrubbing rate is in our
case given by

where PW is the probability of an uncorrectable error in a memory word, BER is the
soft error rate for a single memory bit, and SR is the Scrubbing Rate.

The soft error rates affecting block RAM for each product family can be found in
Device Reliability Report (UG116).

Use Cases
Several common use cases are described here. These use cases are derived from
the LogiCore IP Processor LMB BRAM Interface Controller (PG112) product guide.

Minimal

This system is obtained when enabling fault tolerance in MicroBlaze, without doing
any other configuration.

The system is suitable when area constraints are high, and there is no need for
testing of the ECC function, or analysis of error frequency and location. No ECC
registers are implemented. Single bit errors are corrected by the ECC logic before
being passed to MicroBlaze. Uncorrectable errors set an error signal, which
generates an exception in MicroBlaze.

PW 760
2BER

SR2

 
 
 

≈

96 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug116.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=lmb_bram_if_cntlr;v=v4_0;d=pg112-lmb-bram-if-cntlr.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=lmb_bram_if_cntlr;v=v4_0;d=pg112-lmb-bram-if-cntlr.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=96

Fault Tolerance
Small

This system should be used when it is necessary to monitor error frequency, but
there is no need for testing of the ECC function. It is a minimal system with
Correctable Error Counter Register added to monitor single bit error rates. If the
error rate is too high, the scrubbing rate should be increased to minimize the risk of
a single bit error becoming an uncorrectable double bit error. Parameters set are
C_ECC = 1 and C_CE_COUNTER_WIDTH = 10.

Typical

This system represents a typical use case, where it is required to monitor error
frequency, as well as generating an interrupt to immediately correct a single bit
error through software. It does not provide support for testing of the ECC function.
It is a small system with Correctable Error First Failing registers and Status register
added. A single bit error will latch the address for the access into the Correctable
Error First Failing Address Register and set the CE_STATUS bit in the ECC Status
Register. An interrupt will be generated triggering MicroBlaze to read the failing
address and then perform a read followed by a write on the failing address. This will
remove the single bit error from the BRAM, thus reducing the risk of the single bit
error becoming a uncorrectable double bit error. Parameters set are C_ECC = 1,
C_CE_COUNTER_WIDTH = 10, C_ECC_STATUS_REGISTER = 1 and
C_CE_FAILING_REGISTERS = 1.

Full

This system uses all of the features provided by the LMB BRAM Interface Controller,
to enable full error injection capability, as well as error monitoring and interrupt
generation. It is a typical system with Uncorrectable Error First Failing registers and
Fault Injection registers added. All features are switched on for full control of ECC
functionality for system debug or systems with high fault tolerance requirements.
Parameters set are C_ECC = 1, C_CE_COUNTER_WIDTH = 10,
C_ECC_STATUS_REGISTER = 1 and C_CE_FAILING_REGISTERS = 1,
C_UE_FAILING_REGISTERS = 1 and C_FAULT_INJECT = 1.
MicroBlaze Processor Reference Guide www.xilinx.com 97
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=97

Chapter 2: MicroBlaze Architecture
Lockstep Operation
MicroBlaze is able to operate in a lockstep configuration, where two or more
identical MicroBlaze cores execute the same program. By comparing the outputs of
the cores, any tampering attempts, transient faults or permanent hardware faults
can be detected.

System Configuration
The parameter C_LOCKSTEP_SLAVE is set to one on all slave MicroBlaze cores in
the system, except the master (or primary) core. The master core drives all the
output signals, and handles the debug functionality. The port
Lockstep_Master_Out on the master is connected to the port
Lockstep_Slave_In on the slaves, in order to handle debugging.

The slave cores should not drive any output signals, only receive input signals. This
must be ensured by only connecting signals to the input ports of the slaves. For
buses this means that each individual input port must be explicitly connected.

The port Lockstep_Out on the master and slave cores provide all output signals
for comparison. Unless an error occurs, individual signals from each of the cores
are identical every clock cycle.

To ensure that lockstep operation works properly, all input signals to the cores
must be synchronous. Input signals that may require external synchronization are
Interrupt, Reset, Mb_Reset, Ext_Brk, and Ext_Nm_Brk.

Use Cases
Two common use cases are described here. In addition, lockstep operation
provides the basis for implementing triple modular redundancy on MicroBlaze core
level.

Tamper Protection

This application represents a high assurance use case, where it is required that the
system is tamper-proof. A typically example is a cryptographic application.

The approach involves having two redundant MicroBlaze processors with
dedicated local memory and redundant comparators, each in a protected area. The
outputs from each processor feed two comparators and each processor receive
copies of every input signal.

The redundant MicroBlaze processors are functionally identical and completely
independent of each other, without any connecting signals. The only exception is
debug logic and associated signals, since it is assumed that debugging is disabled
before any productization and certification of the system.

The outputs from the master MicroBlaze core drive the peripherals in the system.
All data leaving the protected area pass through inhibitors. Each inhibitor is
controlled from its associated comparator.
98 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=98

Lockstep Operation
Each protected area of the design must be implemented in its own partition, using
a hierarchical Single Chip Cryptography (SCC) flow. A detailed explanation of this
flow, and further references, can be found in the document Hierarchical Design
Methodology Guide (UG748).

A block diagram of the system is shown in Figure 2-26.

Error Detection

The error detection use case requires that all transient and permanent faults are
detected. This is essential in fail safe and fault tolerant applications, where
redundancy is utilized to improve system availability.

In this system two redundant MicroBlaze processors run in lockstep. A comparator
is used to signal an error when a mis-match is detected on the outputs of the two
processors. Any error immediately causes both processors to halt, preventing
further error propagation.

The redundant MicroBlaze processors are functionally identical, except for debug
logic and associated signals.The outputs from the master MicroBlaze core drive the
peripherals in the system. The slave MicroBlaze core only has inputs connected; all
outputs are left open.

Figure 2-26: Lockstep Tamper Protection Application

Debug Interface - Removed for Production

MicroBlaze Partition

BRAM

MicroBlaze
Debug Module

MicroBlaze Partition

MicroBlaze
Slave

Debug

C_LOCKSTEP_SLAVE = 1

Comparator Partition

Comparator

Inhibit

MicroBlaze
Master

Debug

C_LOCKSTEP_SLAVE = 0

BRAM

Comparator Partition

Comparator

Lockstep_Master_Out

Lockstep_Slave_In

Lockstep_Out

Lockstep_Out

Inputs

Outputs
Inhibit

InputsBRAM Controller
DLMB

BRAM Controller
ILMB

BRAM Controller
DLMB

BRAM Controller
ILMB

I/O Interfaces

External Memory
Interfaces

Peripheral
Partition
MicroBlaze Processor Reference Guide www.xilinx.com 99
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=14.5&topic=sw+manuals&sub=Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=14.5&topic=sw+manuals&sub=Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=99

Chapter 2: MicroBlaze Architecture
The system contains the basic building block for designing a complete fault
tolerant application, where one or more additional blocks must be added to
provide redundancy.

This use case is illustrated in Figure 2-27.

Figure 2-27: Lockstep Error Detection Application

BRAM Controller

BRAM Controller
ILMB

DLMB

BRAM

MicroBlaze
Debug Module

MicroBlaze
Slave

Debug

C_LOCKSTEP_SLAVE = 1

MicroBlaze
Master

Debug

C_LOCKSTEP_SLAVE = 0 Error Reset

Comparator

Lockstep_Out

Lockstep_Out

Outputs

Inputs

Inputs

I/O Interfaces

External Memory
Interfaces

Inputs

Inputs
100 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=100

Coherency
Coherency
MicroBlaze supports cache coherency, as well as invalidation of caches and
translation look-aside buffers, using the AXI Coherency Extension (ACE) defined in
AMBA® AXI and ACE Protocol Specification, ARM IHI 0022E. The coherency support
is enabled when the parameter C_INTERCONNECT is set to 3 (ACE).

Using ACE ensures coherency between the caches of all MicroBlaze processors in
the coherency domain. The peripheral ports (AXI_IP, AXI_DP) and local memory
(ILMB, DLMB) are outside the coherency domain.

Coherency is not supported with write-back data cache, wide cache interfaces
(more than 32-bit data), instruction cache streams, instruction cache victims or
when area optimization is enabled. In addition both C_ICACHE_ALWAYS_USED
and C_DCACHE_ALWAYS_USED must be set to 1.

Invalidation
The coherency hardware handles invalidation in the following cases:

• Data Cache invalidation:
When a MicroBlaze core in the coherency domain invalidates a data cache line
with an external cache invalidation instruction (WDC.EXT.CLEAR or
WDC.EXT.FLUSH), hardware messages ensure that all other cores in the
coherency domain will do the same. The physical address is always used.

• Instruction Cache invalidation:
When a MicroBlaze core in the coherency domain invalidates an instruction
cache line, hardware messages ensure that all other cores in the coherency
domain will do the same. When the MMU is in virtual mode the virtual address
is used, otherwise the physical address is used.

• MMU TLB invalidation:
When a MicroBlaze core in the coherency domain invalidates an entry in the
UTLB (i.e. writes TLBHI with a zero Valid flag), hardware messages ensure that
all other cores in the coherency domain will invalidate all entries in their
unified TLBs having a TAG matching the invalidated virtual address, as well as
empty their shadow TLBs.
The TID is not taken into account when matching the entries, which can result in
invalidation of entries belonging to other processes. Subsequent accesses to these
entries will generate TLB miss exceptions, which must be handled by software.

Before invalidating an MMU page, it must first be loaded into the UTLB to ensure that
the hardware invalidation is propagated within the coherency domain. It is not
sufficient to simply invalidate the page in memory, since other processors in the
coherency domain may have this particular entry stored in their TLBs.

After a MicroBlaze core has invalidated one or more entries, it must execute a memory
barrier instruction (MBAR), to ensure that all peer processors have completed their TLB
invalidation.
MicroBlaze Processor Reference Guide www.xilinx.com 101
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=101

Chapter 2: MicroBlaze Architecture
• Branch Target Cache invalidation:
When a MicroBlaze core in the coherency domain invalidates the Branch
Target Cache, either with a memory barrier instruction or with a synchronizing
branch, hardware messages ensure that all other cores in the coherency
domain will do the same.

In particular, this means that self-modifying code can be used transparently within
the coherency domain in a multi-processor system, provided that the guidelines
in“Self-modifying Code” are followed.

Protocol Compliance
The MicroBlaze instruction cache interface issues the following subset of the
possible ACE transactions:

• ReadClean
Issued when a cache line is allocated.

• ReadOnce
Issued when the cache is off, or if the MMU Inhibit Caching bit is set for the
cache line.

The MicroBlaze data cache interface issues the following subset of the possible ACE
transactions:

• ReadClean
Issued when a cache line is allocated.

• CleanUnique
Issued when an SWX instruction is executed as part of an exclusive access
sequence.

• ReadOnce
Issued when the cache is off, or if the MMU Inhibit Caching bit is set for the
cache line.

• WriteUnique
Issued whenever a store instruction performs a write.

• CleanInvalid
Issued when a WDC.EXT.FLUSH instruction is executed.

• MakeInvalid
Issued when a WDC.EXT.CLEAR instruction is executed.

Both interfaces issue the following subset of the possible Distributed Virtual
Memory (DVM) transactions:

• DVM Operation
♦ TLB Invalidate – Hypervisor TLB Invalidate by VA
♦ Branch Predictor Invalidate – Branch Predictor Invalidate all
♦ Physical Instruction Cache Invalidate – Non-secure Physical Instruction

Cache Invalidate by PA without Virtual Index
♦ Virtual Instruction Cache Invalidate – Hypervisor Invalidate by VA
102 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=102

Coherency
• DVM Sync
♦ Synchronization

• DVM Complete
♦ In addition to the DVM transactions above, the interfaces only accept the

CleanInvalid and MakeInvalid transactions. These transactions have no
effect in the instruction cache, and invalidate the indicated data cache
lines. If any other transactions are received, the behavior is undefined.

♦ Only a subset of AXI4 transactions are utilized by the interfaces, as
described in “Cache Interfaces”.
MicroBlaze Processor Reference Guide www.xilinx.com 103
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=103

Chapter 2: MicroBlaze Architecture
104 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=104

Chapter 3

MicroBlaze Signal Interface Description

This chapter describes the types of signal interfaces that can be used to connect
MicroBlaze™.

Overview
The MicroBlaze core is organized as a Harvard architecture with separate bus
interface units for data and instruction accesses. The following two memory
interfaces are supported: Local Memory Bus (LMB), and the AMBA® AXI4 interface
(AXI4) and ACE interface (ACE). The LMB provides single-cycle access to on-chip
dual-port block RAM. The AXI4 interfaces provide a connection to both on-chip
and off-chip peripherals and memory. The ACE interfaces provide cache coherent
connections to memory. MicroBlaze also supports up to 16 AXI4-Stream interface
ports, each with one master and one slave interface.

Features
MicroBlaze can be configured with the following bus interfaces:

• The AMBA AXI4 Interface for peripheral interfaces, and the AMBA AXI4 or AXI
Coherency Extension (ACE) Interface for cache interfaces (see ARM® AMBA®
AXI and ACE Protocol Specification, ARM IHI 0022E).

• LMB provides simple synchronous protocol for efficient block RAM transfers
• AXI4-Stream provides a fast non-arbitrated streaming communication

mechanism
• Debug interface for use with the Microprocessor Debug Module (MDM) core
• Trace interface for performance analysis
MicroBlaze Processor Reference Guide www.xilinx.com 105
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=105

Chapter 3: MicroBlaze Signal Interface Description
MicroBlaze I/O Overview
The core interfaces shown in Figure 3-1 and the following Table 3-1 are defined as
follows:

M_AXI_DP: Peripheral Data Interface, AXI4-Lite or AXI4 interface
DLMB: Data interface, Local Memory Bus (BRAM only)

M_AXI_IP: Peripheral Instruction interface, AXI4-Lite interface
ILMB: Instruction interface, Local Memory Bus (BRAM only)

M0_AXIS..M15_AXIS: AXI4-Stream interface master direct connection interfaces
S0_AXIS..S15_AXIS: AXI4-Stream interface slave direct connection interfaces

M_AXI_DC: Data side cache AXI4 interface
M_ACE_DC: Data side cache AXI Coherency Extension (ACE) interface

M_AXI_IC: Instruction side cache AXI4 interface
M_ACE_IC: Instruction side cache AXI Coherency Extension (ACE) interface

Core: Miscellaneous signals for: clock, reset, interrupt, debug, trace

Figure 3-1: MicroBlaze Core Block Diagram

Data-sideInstruction-side

ILMB

bus interface bus interface

Instruction
Buffer

Program
Counter

Register File
32 X 32b

ALU

Instruction
Decode

Bus
IF

Bus
IF

I-Cache

D-Cache

Shift

Barrel Shift

Multiplier

Divider

FPU

Special
Purpose

Registers

Optional MicroBlaze feature

M_AXI_IP

UTLBITLB DTLB

Memory Management Unit (MMU)

DLMB

M_AXI_DP

M_ACE_IC M_ACE_DC

Branch
Target
Cache

M0_AXIS..

S0_AXIS..
M15_AXIS

S15_AXIS

M_AXI_DCM_AXI_IC
106 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=106

MicroBlaze I/O Overview
Table 3-1: Summary of MicroBlaze Core I/O

Signal Interface I/O Description
M_AXI_DP_AWID M_AXI_DP O Master Write address ID
M_AXI_DP_AWADDR M_AXI_DP O Master Write address
M_AXI_DP_AWLEN M_AXI_DP O Master Burst length
M_AXI_DP_AWSIZE M_AXI_DP O Master Burst size
M_AXI_DP_AWBURST M_AXI_DP O Master Burst type
M_AXI_DP_AWLOCK M_AXI_DP O Master Lock type
M_AXI_DP_AWCACHE M_AXI_DP O Master Cache type
M_AXI_DP_AWPROT M_AXI_DP O Master Protection type
M_AXI_DP_AWQOS M_AXI_DP O Master Quality of Service
M_AXI_DP_AWVALID M_AXI_DP O Master Write address valid
M_AXI_DP_AWREADY M_AXI_DP I Slave Write address ready
M_AXI_DP_WDATA M_AXI_DP O Master Write data
M_AXI_DP_WSTRB M_AXI_DP O Master Write strobes
M_AXI_DP_WLAST M_AXI_DP O Master Write last
M_AXI_DP_WVALID M_AXI_DP O Master Write valid
M_AXI_DP_WREADY M_AXI_DP I Slave Write ready
M_AXI_DP_BID M_AXI_DP I Slave Response ID
M_AXI_DP_BRESP M_AXI_DP I Slave Write response
M_AXI_DP_BVALID M_AXI_DP I Slave Write response valid
M_AXI_DP_BREADY M_AXI_DP O Master Response ready
M_AXI_DP_ARID M_AXI_DP O Master Read address ID
M_AXI_DP_ARADDR M_AXI_DP O Master Read address
M_AXI_DP_ARLEN M_AXI_DP O Master Burst length
M_AXI_DP_ARSIZE M_AXI_DP O Master Burst size
M_AXI_DP_ARBURST M_AXI_DP O Master Burst type
M_AXI_DP_ARLOCK M_AXI_DP O Master Lock type
M_AXI_DP_ARCACHE M_AXI_DP O Master Cache type
M_AXI_DP_ARPROT M_AXI_DP O Master Protection type
M_AXI_DP_ARQOS M_AXI_DP O Master Quality of Service
MicroBlaze Processor Reference Guide www.xilinx.com 107
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=107

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_DP_ARVALID M_AXI_DP O Master Read address valid
M_AXI_DP_ARREADY M_AXI_DP I Slave Read address ready
M_AXI_DP_RID M_AXI_DP I Slave Read ID tag
M_AXI_DP_RDATA M_AXI_DP I Slave Read data
M_AXI_DP_RRESP M_AXI_DP I Slave Read response
M_AXI_DP_RLAST M_AXI_DP I Slave Read last
M_AXI_DP_RVALID M_AXI_DP I Slave Read valid
M_AXI_DP_RREADY M_AXI_DP O Master Read ready
M_AXI_IP_AWID M_AXI_IP O Master Write address ID
M_AXI_IP_AWADDR M_AXI_IP O Master Write address
M_AXI_IP_AWLEN M_AXI_IP O Master Burst length
M_AXI_IP_AWSIZE M_AXI_IP O Master Burst size
M_AXI_IP_AWBURST M_AXI_IP O Master Burst type
M_AXI_IP_AWLOCK M_AXI_IP O Master Lock type
M_AXI_IP_AWCACHE M_AXI_IP O Master Cache type
M_AXI_IP_AWPROT M_AXI_IP O Master Protection type
M_AXI_IP_AWQOS M_AXI_IP O Master Quality of Service
M_AXI_IP_AWVALID M_AXI_IP O Master Write address valid
M_AXI_IP_AWREADY M_AXI_IP I Slave Write address ready
M_AXI_IP_WDATA M_AXI_IP O Master Write data
M_AXI_IP_WSTRB M_AXI_IP O Master Write strobes
M_AXI_IP_WLAST M_AXI_IP O Master Write last
M_AXI_IP_WVALID M_AXI_IP O Master Write valid
M_AXI_IP_WREADY M_AXI_IP I Slave Write ready
M_AXI_IP_BID M_AXI_IP I Slave Response ID
M_AXI_IP_BRESP M_AXI_IP I Slave Write response
M_AXI_IP_BVALID M_AXI_IP I Slave Write response valid
M_AXI_IP_BREADY M_AXI_IP O Master Response ready
M_AXI_IP_ARID M_AXI_IP O Master Read address ID
M_AXI_IP_ARADDR M_AXI_IP O Master Read address

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
108 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=108

MicroBlaze I/O Overview
M_AXI_IP_ARLEN M_AXI_IP O Master Burst length
M_AXI_IP_ARSIZE M_AXI_IP O Master Burst size
M_AXI_IP_ARBURST M_AXI_IP O Master Burst type
M_AXI_IP_ARLOCK M_AXI_IP O Master Lock type
M_AXI_IP_ARCACHE M_AXI_IP O Master Cache type
M_AXI_IP_ARPROT M_AXI_IP O Master Protection type
M_AXI_IP_ARQOS M_AXI_IP O Master Quality of Service
M_AXI_IP_ARVALID M_AXI_IP O Master Read address valid
M_AXI_IP_ARREADY M_AXI_IP I Slave Read address ready
M_AXI_IP_RID M_AXI_IP I Slave Read ID tag
M_AXI_IP_RDATA M_AXI_IP I Slave Read data
M_AXI_IP_RRESP M_AXI_IP I Slave Read response
M_AXI_IP_RLAST M_AXI_IP I Slave Read last
M_AXI_IP_RVALID M_AXI_IP I Slave Read valid
M_AXI_IP_RREADY M_AXI_IP O Master Read ready
M_AXI_DC_AWADDR M_AXI_DC O Master Write address
M_AXI_DC_AWLEN M_AXI_DC O Master Burst length
M_AXI_DC_AWSIZE M_AXI_DC O Master Burst size
M_AXI_DC_AWBURST M_AXI_DC O Master Burst type
M_AXI_DC_AWLOCK M_AXI_DC O Master Lock type
M_AXI_DC_AWCACHE M_AXI_DC O Master Cache type
M_AXI_DC_AWPROT M_AXI_DC O Master Protection type
M_AXI_DC_AWQOS M_AXI_DC O Master Quality of Service
M_AXI_DC_AWVALID M_AXI_DC O Master Write address valid
M_AXI_DC_AWREADY M_AXI_DC I Slave Write address ready
M_AXI_DC_AWUSER M_AXI_DC O Master Write address user signals
M_AXI_DC_AWDOMAIN M_ACE_DC O Master Write address domain
M_AXI_DC_AWSNOOP M_ACE_DC O Master Write address snoop
M_AXI_DC_AWBAR M_ACE_DC O Master Write address barrier
M_AXI_DC_WDATA M_AXI_DC O Master Write data

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide www.xilinx.com 109
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=109

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_DC_WSTRB M_AXI_DC O Master Write strobes
M_AXI_DC_WLAST M_AXI_DC O Master Write last
M_AXI_DC_WVALID M_AXI_DC O Master Write valid
M_AXI_DC_WREADY M_AXI_DC I Slave Write ready
M_AXI_DC_WUSER M_AXI_DC O Master Write user signals
M_AXI_DC_BRESP M_AXI_DC I Slave Write response
M_AXI_DC_BID M_AXI_DC I Slave Response ID
M_AXI_DC_BVALID M_AXI_DC I Slave Write response valid
M_AXI_DC_BREADY M_AXI_DC O Master Response ready
M_AXI_DC_BUSER M_AXI_DC I Slave Write response user signals
M_AXI_DC_WACK M_ACE_DC O Slave Write acknowledge
M_AXI_DC_ARID M_AXI_DC O Master Read address ID
M_AXI_DC_ARADDR M_AXI_DC O Master Read address
M_AXI_DC_ARLEN M_AXI_DC O Master Burst length
M_AXI_DC_ARSIZE M_AXI_DC O Master Burst size
M_AXI_DC_ARBURST M_AXI_DC O Master Burst type
M_AXI_DC_ARLOCK M_AXI_DC O Master Lock type
M_AXI_DC_ARCACHE M_AXI_DC O Master Cache type
M_AXI_DC_ARPROT M_AXI_DC O Master Protection type
M_AXI_DC_ARQOS M_AXI_DC O Master Quality of Service
M_AXI_DC_ARVALID M_AXI_DC O Master Read address valid
M_AXI_DC_ARREADY M_AXI_DC I Slave Read address ready
M_AXI_DC_ARUSER M_AXI_DC O Master Read address user signals
M_AXI_DC_ARDOMAIN M_ACE_DC O Master Read address domain
M_AXI_DC_ARSNOOP M_ACE_DC O Master Read address snoop
M_AXI_DC_ARBAR M_ACE_DC O Master Read address barrier
M_AXI_DC_RID M_AXI_DC I Slave Read ID tag
M_AXI_DC_RDATA M_AXI_DC I Slave Read data
M_AXI_DC_RRESP M_AXI_DC I Slave Read response
M_AXI_DC_RLAST M_AXI_DC I Slave Read last

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
110 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=110

MicroBlaze I/O Overview
M_AXI_DC_RVALID M_AXI_DC I Slave Read valid
M_AXI_DC_RREADY M_AXI_DC O Master Read ready
M_AXI_DC_RUSER M_AXI_DC I Slave Read user signals
M_AXI_DC_RACK M_ACE_DC O Master Read acknowledge
M_AXI_DC_ACVALID M_ACE_DC I Slave Snoop address valid
M_AXI_DC_ACADDR M_ACE_DC I Slave Snoop address
M_AXI_DC_ACSNOOP M_ACE_DC I Slave Snoop address snoop
M_AXI_DC_ACPROT M_ACE_DC I Slave Snoop address protection type
M_AXI_DC_ACREADY M_ACE_DC O Master Snoop ready
M_AXI_DC_CRREADY M_ACE_DC I Slave Snoop response ready
M_AXI_DC_CRVALID M_ACE_DC O Master Snoop response valid
M_AXI_DC_CRRESP M_ACE_DC O Master Snoop response
M_AXI_DC_CDVALID M_ACE_DC O Master Snoop data valid
M_AXI_DC_CDREADY M_ACE_DC I Slave Snoop data ready
M_AXI_DC_CDDATA M_ACE_DC O Master Snoop data
M_AXI_DC_CDLAST M_ACE_DC O Master Snoop data last
M_AXI_IC_AWID M_AXI_IC O Master Write address ID
M_AXI_IC_AWADDR M_AXI_IC O Master Write address
M_AXI_IC_AWLEN M_AXI_IC O Master Burst length
M_AXI_IC_AWSIZE M_AXI_IC O Master Burst size
M_AXI_IC_AWBURST M_AXI_IC O Master Burst type
M_AXI_IC_AWLOCK M_AXI_IC O Master Lock type
M_AXI_IC_AWCACHE M_AXI_IC O Master Cache type
M_AXI_IC_AWPROT M_AXI_IC O Master Protection type
M_AXI_IC_AWQOS M_AXI_IC O Master Quality of Service
M_AXI_IC_AWVALID M_AXI_IC O Master Write address valid
M_AXI_IC_AWREADY M_AXI_IC I Slave Write address ready
M_AXI_IC_AWUSER M_AXI_IC O Master Write address user signals
M_AXI_IC_AWDOMAIN M_ACE_IC O Master Write address domain
M_AXI_IC_AWSNOOP M_ACE_IC O Master Write address snoop

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide www.xilinx.com 111
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=111

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_IC_AWBAR M_ACE_IC O Master Write address barrier
M_AXI_IC_WDATA M_AXI_IC O Master Write data
M_AXI_IC_WSTRB M_AXI_IC O Master Write strobes
M_AXI_IC_WLAST M_AXI_IC O Master Write last
M_AXI_IC_WVALID M_AXI_IC O Master Write valid
M_AXI_IC_WREADY M_AXI_IC I Slave Write ready
M_AXI_IC_WUSER M_AXI_IC O Master Write user signals
M_AXI_IC_BID M_AXI_IC I Slave Response ID
M_AXI_IC_BRESP M_AXI_IC I Slave Write response
M_AXI_IC_BVALID M_AXI_IC I Slave Write response valid
M_AXI_IC_BREADY M_AXI_IC O Master Response ready
M_AXI_IC_BUSER M_AXI_IC I Slave Write response user signals
M_AXI_IC_WACK M_ACE_IC O Slave Write acknowledge
M_AXI_IC_ARID M_AXI_IC O Master Read address ID
M_AXI_IC_ARADDR M_AXI_IC O Master Read address
M_AXI_IC_ARLEN M_AXI_IC O Master Burst length
M_AXI_IC_ARSIZE M_AXI_IC O Master Burst size
M_AXI_IC_ARBURST M_AXI_IC O Master Burst type
M_AXI_IC_ARLOCK M_AXI_IC O Master Lock type
M_AXI_IC_ARCACHE M_AXI_IC O Master Cache type
M_AXI_IC_ARPROT M_AXI_IC O Master Protection type
M_AXI_IC_ARQOS M_AXI_IC O Master Quality of Service
M_AXI_IC_ARVALID M_AXI_IC O Master Read address valid
M_AXI_IC_ARREADY M_AXI_IC I Slave Read address ready
M_AXI_IC_ARUSER M_AXI_IC O Master Read address user signals
M_AXI_IC_ARDOMAIN M_ACE_IC O Master Read address domain
M_AXI_IC_ARSNOOP M_ACE_IC O Master Read address snoop
M_AXI_IC_ARBAR M_ACE_IC O Master Read address barrier
M_AXI_IC_RID M_AXI_IC I Slave Read ID tag
M_AXI_IC_RDATA M_AXI_IC I Slave Read data

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
112 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=112

MicroBlaze I/O Overview
M_AXI_IC_RRESP M_AXI_IC I Slave Read response
M_AXI_IC_RLAST M_AXI_IC I Slave Read last
M_AXI_IC_RVALID M_AXI_IC I Slave Read valid
M_AXI_IC_RREADY M_AXI_IC O Master Read ready
M_AXI_IC_RUSER M_AXI_IC I Slave Read user signals
M_AXI_IC_RACK M_ACE_IC O Master Read acknowledge
M_AXI_IC_ACVALID M_ACE_IC I Slave Snoop address valid
M_AXI_IC_ACADDR M_ACE_IC I Slave Snoop address
M_AXI_IC_ACSNOOP M_ACE_IC I Slave Snoop address snoop
M_AXI_IC_ACPROT M_ACE_IC I Slave Snoop address protection type
M_AXI_IC_ACREADY M_ACE_IC O Master Snoop ready
M_AXI_IC_CRREADY M_ACE_IC I Slave Snoop response ready
M_AXI_IC_CRVALID M_ACE_IC O Master Snoop response valid
M_AXI_IC_CRRESP M_ACE_IC O Master Snoop response
M_AXI_IC_CDVALID M_ACE_IC O Master Snoop data valid
M_AXI_IC_CDREADY M_ACE_IC I Slave Snoop data ready
M_AXI_IC_CDDATA M_ACE_IC O Master Snoop data
M_AXI_IC_CDLAST M_ACE_IC O Master Snoop data last
Data_Addr[0:31] DLMB O Data interface LMB address bus
Byte_Enable[0:3] DLMB O Data interface LMB byte enables
Data_Write[0:31] DLMB O Data interface LMB write data bus
D_AS DLMB O Data interface LMB address strobe
Read_Strobe DLMB O Data interface LMB read strobe
Write_Strobe DLMB O Data interface LMB write strobe
Data_Read[0:31] DLMB I Data interface LMB read data bus
DReady DLMB I Data interface LMB data ready
DWait DLMB I Data interface LMB data wait
DCE DLMB I Data interface LMB correctable error
DUE DLMB I Data interface LMB uncorrectable

error

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide www.xilinx.com 113
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=113

Chapter 3: MicroBlaze Signal Interface Description
Instr_Addr[0:31] ILMB O Instruction interface LMB address
bus

I_AS ILMB O Instruction interface LMB address
strobe

IFetch ILMB O Instruction interface LMB instruction
fetch

Instr[0:31] ILMB I Instruction interface LMB read data
bus

IReady ILMB I Instruction interface LMB data ready
IWait ILMB I Instruction interface LMB data wait
ICE ILMB I Instruction interface LMB correctable

error
IUE ILMB I Instruction interface LMB

uncorrectable error
Mn_AXIS_TLAST M0_AXIS..

M15_AXIS
O Master interface output AXI4

channels
write last

Mn_AXIS_TDATA M0_AXIS..
M15_AXIS

O Master interface output AXI4
channels
write data

Mn_AXIS_TVALID M0_AXIS..
M15_AXIS

O Master interface output AXI4
channels
write valid

Mn_AXIS_TREADY M0_AXIS..
M15_AXIS

I Master interface input AXI4 channels
write ready

Sn_AXIS_TLAST S0_AXIS..
S15_AXIS

I Slave interface input AXI4 channels
write last

Sn_AXIS_TDATA S0_AXIS..
S15_AXIS

I Slave interface input AXI4 channels
write data

Sn_AXIS_TVALID S0_AXIS..
S15_AXIS

I Slave interface input AXI4 channels
write valid

Sn_AXIS_TREADY S0_AXIS..
S15_AXIS

O Slave interface output AXI4 channels
write ready

Interrupt Core I Interrupt

Interrupt_Address1 Core I Interrupt vector address

Interrupt_Ack1 Core O Interrupt acknowledge

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
114 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=114

MicroBlaze I/O Overview
Reset Core I Core reset, active high. Should be
held for at least 1 Clk clock cycle.

Clk Core I Clock2

Ext_BRK Core I Break signal from MDM
Ext_NM_BRK Core I Non-maskable break signal from

MDM
MB_Halted Core O Pipeline is halted, either via the

Debug Interface or by setting
Dbg_Stop

Dbg_Stop Core I Unconditionally force pipeline to halt
as soon as possible. Rising-edge
detected pulse that should be held
for at least 1 Clk clock cycle. The
signal only has any effect when
C_DEBUG_ENABLED is set to 1.

MB_Error Core O Pipeline is halted due to a missed
exception, when C_FAULT_TOLERANT
is set to 1.

Sleep Core O MicroBlaze is in sleep mode after
executing a SLEEP instruction, all
external accesses are completed, and
the pipeline is halted.

Wakeup[0:1] Core I Wake MicroBlaze from sleep mode
when either or both bits are set to 1.
Ignored if MicroBlaze is not in sleep
mode.

Dbg_Wakeup Core O Debug request that external logic
should wake MicroBlaze from sleep
mode with the Wakeup signal.

Lockstep_... Core IO Lockstep signals for high integrity
applications. See Table 3-10 for
details.

Dbg_... Core IO Debug signals from MDM. See
Table 3-12 for details.

Trace_... Core O Trace signals for real time HW
analysis. See Table 3-13 for details.

1. Only used with C_USE_INTERRUPT = 2, for low-latency interrupt support.
2. MicroBlaze is a synchronous design clocked with the Clk signal, except for hardware debug logic, which

is clocked with the Dbg_Clk signal. If hardware debug logic is not used, there is no minimum frequency
limit for Clk. However, if hardware debug logic is used, there are signals transferred between the two
clock regions. In this case Clk must have a higher frequency than Dbg_Clk.

Table 3-1: Summary of MicroBlaze Core I/O (Continued)

Signal Interface I/O Description
MicroBlaze Processor Reference Guide www.xilinx.com 115
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=115

Chapter 3: MicroBlaze Signal Interface Description
AXI4 and ACE Interface Description

Memory Mapped Interfaces

Peripheral Interfaces

The MicroBlaze AXI4 memory mapped peripheral interfaces are implemented as
32-bit masters. Each of these interfaces only have a single outstanding transaction
at any time, and all transactions are completed in order.

• The instruction peripheral interface (M_AXI_IP) only performs single word read
accesses, and is always set to use the AXI4-Lite subset.

• The data peripheral interface (M_AXI_DP) performs single word accesses, and
is set to use the AXI4-Lite subset as default, but is set to use AXI4 when
enabling exclusive access for LWX and SWX instructions. Halfword and byte
writes are performed by setting the appropriate byte strobes.

Cache Interfaces

The AXI4 memory mapped cache interfaces are implemented either as 32-bit, 128-
bit, 256-bit, or 512-bit masters, depending on cache line length and data width
parameters, whereas the AXI Coherency Extension (ACE) interfaces are
implemented as 32-bit masters.

• With a 32-bit master, the instruction cache interface (M_AXI_IC or M_ACE_IC)
performs 4 word or 8 word burst read accesses, depending on cache line
length. With 128-bit, 256-bit, or 512-bit masters, only single read accesses are
performed.
This interface can have multiple outstanding transactions, issuing up to 2 transactions
or up to 5 transactions when stream cache is enabled. The stream cache can request
two cache lines in advance, which means that in some cases 5 outstanding transactions
can occur. When stream cache is enabled,
C_INTERCONNECT_M_AXI_IC_READ_ISSUING is set to 8, since it must be a power
of two.

How memory locations are accessed depend on the parameter
C_ICACHE_ALWAYS_USED. If the parameter is 1, the cached memory range is always
accessed via the AXI4 or ACE cache interface. If the parameter is 0, the cached memory
range is accessed over the AXI4 peripheral interface when the caches are software
disabled (that is, MSR[ICE]=0).

• With a 32-bit master, the data cache interface (M_AXI_DC or M_ACE_DC)
performs single word accesses, as well as 4 word or 8 word burst accesses,
depending on cache line length. Burst write accesses are only performed when
using write-back cache with AXI4. With 128-bit, 256-bit, or 512-bit AXI4
masters, only single accesses are performed.
This interface can have multiple outstanding transactions, either issuing up to 2
transactions when reading, or up to 32 transactions when writing. MicroBlaze ensures
that all outstanding writes are completed before a read is issued, since the processor
116 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=116

AXI4 and ACE Interface Description
must maintain an ordered memory model but AXI4 or ACE has separate read/write
channels without any ordering. Using up to 32 outstanding write transactions improves
performance, since it allows multiple writes to proceed without stalling the pipeline.

Word, halfword and byte writes are performed by setting the appropriate byte strobes.

Exclusive accesses can be enabled for LWX and SWX instructions.

How memory locations are accessed depend on the parameter
C_DCACHE_ALWAYS_USED. If the parameter is 1, the cached memory range is always
accessed via the AXI4 or ACE cache interface. If the parameter is 0, the cached memory
range is accessed over the AXI4 peripheral interface when the caches are software
disabled (that is, MSR[DCE]=0).

Interface Parameters and Signals

The relationship between MicroBlaze parameter settings and AXI4 interface
behavior for tool-assigned parameters is summarized in Table 3-2.
Table 3-2: AXI Memory Mapped Interface Parameters

Interface Parameter Description

M_AXI_DP C_M_AXI_DP_PROTOCOL AXI4-Lite: Default.
AXI4: Used to allow exclusive access when
C_M_AXI_DP_EXCLUSIVE_ACCESS is 1.

M_AXI_IC
M_ACE_IC

C_M_AXI_IC_DATA_WIDTH 32: Default, single word accesses and burst
accesses with C_ICACHE_LINE_LEN word
busts used with AXI4 and ACE.
128: Used when C_ICACHE_DATA_WIDTH is
set to 1 and C_ICACHE_LINE_LEN is set to 4
with AXI4. Only single accesses can occur.
256: Used when C_ICACHE_DATA_WIDTH is
set to 1 and C_ICACHE_LINE_LEN is set to 8
with AXI4. Only single accesses can occur.
512: Used when C_ICACHE_DATA_WIDTH is
set to 2 with AXI4. Only single accesses can
occur.

M_AXI_DC
M_ACE_DC

C_M_AXI_DC_DATA_WIDTH 32: Default, single word accesses and burst
accesses with C_DCACHE_LINE_LEN word
busts used with AXI4 and ACE.
Write bursts are only used with AXI4 when
C_DCACHE_USE_WRITEBACK is set to 1.
128: Used when C_DCACHE_DATA_WIDTH is
set to 1 and C_DCACHE_LINE_LEN is set to 4
with AXI4. Only single accesses can occur.
256: Used when C_DCACHE_DATA_WIDTH is
set to 1 and C_DCACHE_LINE_LEN is set to 8
with AXI4. Only single accesses can occur.
512: Used when C_DCACHE_DATA_WIDTH is
set to 2 with AXI4. Only single accesses can
occur.
MicroBlaze Processor Reference Guide www.xilinx.com 117
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=117

Chapter 3: MicroBlaze Signal Interface Description
Values for access permissions, memory types, quality of service and shareability
domain are defined in Table 3-3.

M_AXI_IC
M_ACE_IC

C_INTERCONNECT_M_AXI_I
C_READ_ISSUING1

2: Default, 2 simultaneous outstanding reads.
8: Used when C_ICACHE_STREAMS is set to 1,
allowing 8 simultaneous outstanding reads.
Can be set to 1, 2, 4, 8.

M_AXI_DC
M_ACE_DC

C_INTERCONNECT_M_AXI_D
C_READ_ISSUING1

2: Default, 2 simultaneous outstanding reads.
Can be set to 1 or 2.

M_AXI_DC
M_ACE_DC

C_INTERCONNECT_M_AXI_D
C_WRITE_ISSUING1

32: Default, 32 simultaneous outstanding
writes.
Can be set to 1, 2, 4, 8, 16, or 32.

1. This value can be explicitly set by the user to limit the number of simultaneous accesses
accepted by the interconnect, which may lower performance but can reduce the
interconnect size.

Table 3-3: AXI Interface Signal Definitions

Interface Signal Description

M_AXI_IP C_M_AXI_IP_ARPROT Access Permission:
• Unprivileged, secure instruction access (100)

M_AXI_DP C_M_AXI_DP_ARCACHE
C_M_AXI_DP_AWCACHE

Memory Type, AXI4 protocol:
• Normal Non-cacheable Bufferable (0011)

C_M_AXI_DP_ARPROT
C_M_AXI_DP_AWPROT

Access Permission, AXI4 and AXI4-Lite protocol:
• Unprivileged, secure data access (000)

C_M_AXI_DP_ARQOS
C_M_AXI_DP_AWQOS

Quality of Service, AXI4 protocol:
• Priority 8 (1000)

M_AXI_IC C_M_AXI_IC_ARCACHE Memory Type:
• Write-back Read and Write-allocate (1111)

M_ACE_IC C_M_AXI_IC_ARCACHE Memory Type, normal access:
• Write-back Read and Write-allocate (1111)
Memory Type, DVM access:
• Normal Non-cacheable Non-bufferable (0010)

C_M_AXI_IC_ARDOMAIN Shareability Domain:
• Inner shareable (01)

M_AXI_IC

M_ACE_IC

C_M_AXI_IC_ARPROT Access Permission:
• Unprivileged, secure instruction access (100)

C_M_AXI_IC_ARQOS Quality of Service:
• Priority 7 (0111)

Table 3-2: AXI Memory Mapped Interface Parameters (Continued)

Interface Parameter Description
118 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=118

AXI4 and ACE Interface Description
Please refer to the AMBA® AXI and ACE Protocol Specification, ARM IHI 0022E
document for details.

M_AXI_DC C_M_AXI_DC_ARCACHE Memory Type, normal access:
• Write-back Read and Write-allocate (1111)
Memory Type, exclusive access:
• Normal Non-cacheable Non-bufferable (0010)

M_ACE_DC C_M_AXI_DC_ARCACHE Memory Type, normal and exclusive access:
• Write-back Read and Write-allocate (1111)
Memory Type, DVM access:
• Normal Non-cacheable Non-bufferable (0010)

C_M_AXI_DC_ARDOMAIN

C_M_AXI_DC_AWDOMAIN

Shareability Domain:
• Inner shareable (01)

M_AXI_DC
M_ACE_DC

C_M_AXI_DC_AWCACHE Memory Type, normal access:
• Write-back Read and Write-allocate (1111)
Memory Type, exclusive access:
• Normal Non-cacheable Non-bufferable (0010)

C_M_AXI_DC_ARPROT

C_M_AXI_DC_AWPROT

Access Permission:
• Unprivileged, secure data access (000)

C_M_AXI_DC_ARQOS Quality of Service, read access:
• Priority 12 ((1100)

C_M_AXI_DC_AWQOS Quality of Service, write access:
• Priority 8 (1000)

Table 3-3: AXI Interface Signal Definitions

Interface Signal Description
MicroBlaze Processor Reference Guide www.xilinx.com 119
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=119

Chapter 3: MicroBlaze Signal Interface Description
Stream Interfaces
The MicroBlaze AXI4-Stream interfaces (M0_AXIS..M15_AXIS, S0_AXIS..S15_AXIS)
are implemented as 32-bit masters and slaves. Please refer to the AMBA®4 AXI4-
Stream Protocol Specification, Version 1.0, ARM IHI 0051A document for further
details.

Write Operation

A write to the stream interface is performed by MicroBlaze using one of the put or
putd instructions. A write operation transfers the register contents to an output
AXI4 interface. The transfer is completed in a single clock cycle for blocking mode
writes (put and cput instructions) as long as the interface is not busy. If the interface
is busy, the processor stalls until it becomes available. The non-blocking
instructions (with prefix n), always complete in a single clock cycle even if the
interface is busy. If the interface was busy, the write is inhibited and the carry bit is
set in the MSR.

Read Operation

A read from the stream interface is performed by MicroBlaze using one of the get
or getd instructions. A read operations transfers the contents of an input AXI4
interface to a general purpose register. The transfer is typically completed in 2 clock
cycles for blocking mode reads as long as data is available. If data is not available,
the processor stalls at this instruction until it becomes available. In the non-
blocking mode (instructions with prefix n), the transfer is completed in one or two
clock cycles irrespective of whether or not data was available. In case data was not
available, the transfer of data does not take place and the carry bit is set in the MSR.
120 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=120

Local Memory Bus (LMB) Interface Description
Local Memory Bus (LMB) Interface Description
The LMB is a synchronous bus used primarily to access on-chip block RAM. It uses
a minimum number of control signals and a simple protocol to ensure that local
block RAM are accessed in a single clock cycle. LMB signals and definitions are
shown in the following table. All LMB signals are active high.

LMB Signal Interface

Addr[0:31]

The address bus is an output from the core and indicates the memory address that
is being accessed by the current transfer. It is valid only when AS is high. In
multicycle accesses (accesses requiring more than one clock cycle to complete),
Addr[0:31] is valid only in the first clock cycle of the transfer.

Table 3-4: LMB Bus Signals

Signal Data Interface Instruction
Interface Type Description

Addr[0:31] Data_Addr[0:31] Instr_Addr[0:31] O Address bus

Byte_Enable[0:3] Byte_Enable[0:3] not used O Byte enables

Data_Write[0:31] Data_Write[0:31] not used O Write data bus

AS D_AS I_AS O Address strobe

Read_Strobe Read_Strobe IFetch O Read in progress

Write_Strobe Write_Strobe not used O Write in progress

Data_Read[0:31] Data_Read[0:31] Instr[0:31] I Read data bus

Ready DReady IReady I Ready for next
transfer

Wait1

1. Added in LMB for MicroBlaze v8.00

DWait IWait
I Wait until

accepted transfer
is ready

CE1 DCE ICE I Correctable error

UE1 DUE IUE I Uncorrectable
error

Clk Clk Clk I Bus clock
MicroBlaze Processor Reference Guide www.xilinx.com 121
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=121

Chapter 3: MicroBlaze Signal Interface Description
Byte_Enable[0:3]

The byte enable signals are outputs from the core and indicate which byte lanes of
the data bus contain valid data. Byte_Enable[0:3] is valid only when AS is high.
In multicycle accesses (accesses requiring more than one clock cycle to complete),
Byte_Enable[0:3] is valid only in the first clock cycle of the transfer. Valid
values for Byte_Enable[0:3] are shown in the following table:

:

Data_Write[0:31]

The write data bus is an output from the core and contains the data that is written
to memory. It is valid only when AS is high. Only the byte lanes specified by
Byte_Enable[0:3] contain valid data.

AS

The address strobe is an output from the core and indicates the start of a transfer
and qualifies the address bus and the byte enables. It is high only in the first clock
cycle of the transfer, after which it goes low and remains low until the start of the
next transfer.

Read_Strobe

The read strobe is an output from the core and indicates that a read transfer is in
progress. This signal goes high in the first clock cycle of the transfer, and may
remain high until the clock cycle after Ready is sampled high. If a new read transfer
is directly started in the next clock cycle, then Read_Strobe remains high.

Write_Strobe

The write strobe is an output from the core and indicates that a write transfer is in
progress. This signal goes high in the first clock cycle of the transfer, and may

Table 3-5: Valid Values for Byte_Enable[0:3]
Byte Lanes Used

Byte_Enable[0:3] Data[0:7] Data[8:15] Data[16:23] Data[24:31]
0001 •
0010 •
0100 •
1000 •
0011 • •
1100 • •
1111 • • • •
122 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=122

Local Memory Bus (LMB) Interface Description
remain high until the clock cycle after Ready is sampled high. If a new write transfer
is directly started in the next clock cycle, then Write_Strobe remains high.

Data_Read[0:31]

The read data bus is an input to the core and contains data read from memory.
Data_Read[0:31] is valid on the rising edge of the clock when Ready is high.

Ready

The Ready signal is an input to the core and indicates completion of the current
transfer and that the next transfer can begin in the following clock cycle. It is
sampled on the rising edge of the clock. For reads, this signal indicates the
Data_Read[0:31] bus is valid, and for writes it indicates that the
Data_Write[0:31] bus has been written to local memory.

Wait

The Wait signal is an input to the core and indicates that the current transfer has
been accepted, but not yet completed. It is sampled on the rising edge of the clock.

CE

The CE signal is an input to the core and indicates that the current transfer had a
correctable error. It is valid on the rising edge of the clock when Ready is high. For
reads, this signal indicates that an error has been corrected on the
Data_Read[0:31] bus, and for byte and halfword writes it indicates that the
corresponding data word in local memory has been corrected before writing the
new data.

UE

The UE signal is an input to the core and indicates that the current transfer had an
uncorrectable error. It is valid on the rising edge of the clock when Ready is high.
For reads, this signal indicates that the value of the Data_Read[0:31] bus is
erroneous, and for byte and halfword writes it indicates that the corresponding
data word in local memory was erroneous before writing the new data.

Clk

All operations on the LMB are synchronous to the MicroBlaze core clock.
MicroBlaze Processor Reference Guide www.xilinx.com 123
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=123

Chapter 3: MicroBlaze Signal Interface Description
LMB Transactions
The following diagrams provide examples of LMB bus operations.

Generic Write Operations

Figure 3-2: LMB Generic Write Operation, 0 Wait States

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0

BE0

D0

Don’t Care

Figure 3-3: LMB Generic Write Operation, N Wait States

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0

BE0

D0

Don’t Care
124 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=124

Local Memory Bus (LMB) Interface Description
Generic Read Operations

Figure 3-4: LMB Generic Read Operation, 0 Wait States

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0

D0

Don’t Care

Figure 3-5: LMB Generic Read Operation, N Wait States

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0

D0

Don’t Care
MicroBlaze Processor Reference Guide www.xilinx.com 125
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=125

Chapter 3: MicroBlaze Signal Interface Description
Back-to-Back Write Operation

Back-to-Back Read Operation

Figure 3-6: LMB Back-to-Back Write Operation

Figure 3-7: LMB Back-to-Back Read Operation

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0

Don’t Care

A1 A2 A3 A4

Don’t Care Don’t Care

D0

BE0 BE1 BE2 BE3 BE4

D1 D2 D3 D4

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0

Don’t Care

A1 A2 A3 A4

Don’t Care Don’t Care

D0 D1 D2 D3 D4
126 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=126

Local Memory Bus (LMB) Interface Description
Back-to-Back Mixed Write/Read Operation

Figure 3-8: Back-to-Back Mixed Write/Read Operation, 0 Wait States

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0

BE0

D0

Don’t Care

A1 A2

BE2

D2

D1

Figure 3-9: Back-to-Back Mixed Write/Read Operation, N Wait States

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Write_Strobe

Data_Read

Ready

Wait

CE

UE

A0 A1 A2

Don’t Care

D0

BE0 BE2

D1

D2

Don’t Care Don’t Care
MicroBlaze Processor Reference Guide www.xilinx.com 127
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=127

Chapter 3: MicroBlaze Signal Interface Description
Read and Write Data Steering
The MicroBlaze data-side bus interface performs the read steering and write
steering required to support the following transfers:

• byte, halfword, and word transfers to word devices
• byte and halfword transfers to halfword devices
• byte transfers to byte devices

MicroBlaze does not support transfers that are larger than the addressed device.
These types of transfers require dynamic bus sizing and conversion cycles that are
not supported by the MicroBlaze bus interface. Data steering for read cycles are
shown in Table 3-6 and Table 3-7, and data steering for write cycles are shown in
Table 3-8 and Table 3-9.

Table 3-6: Big Endian Read Data Steering (Load to Register rD)

Address
[30:31]

Byte_Enable
[0:3]

Transfer
Size

Register rD Data

rD[0:7] rD[8:15] rD[16:23] rD[24:31]

11 0001 byte Byte3

10 0010 byte Byte2

01 0100 byte Byte1

00 1000 byte Byte0

10 0011 halfword Byte2 Byte3

00 1100 halfword Byte0 Byte1

00 1111 word Byte0 Byte1 Byte2 Byte3

Table 3-7: Little Endian Read Data Steering (Load to Register rD)

Address
[30:31]

Byte_Enable
[0:3]

Transfer
Size

Register rD Data

rD[0:7] rD[8:15] rD[16:23] rD[24:31]

11 1000 byte Byte0

10 0100 byte Byte1

01 0010 byte Byte2

00 0001 byte Byte3

10 1100 halfword Byte0 Byte1

00 0011 halfword Byte2 Byte3

00 1111 word Byte0 Byte1 Byte2 Byte3
128 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=128

Local Memory Bus (LMB) Interface Description
Note: Other masters may have more restrictive requirements for byte lane placement than those allowed by
MicroBlaze. Slave devices are typically attached “left-justified” with byte devices attached to the most-
significant byte lane, and halfword devices attached to the most significant halfword lane. The MicroBlaze
steering logic fully supports this attachment method.

Table 3-8: Big Endian Write Data Steering (Store from Register rD)

Address
[30:31]

Byte_Enable
[0:3]

Transfer
Size

Write Data Bus Bytes

Byte0 Byte1 Byte2 Byte3

11 0001 byte rD[24:31]

10 0010 byte rD[24:31]

01 0100 byte rD[24:31]

00 1000 byte rD[24:31]

10 0011 halfword rD[16:23] rD[24:31]

00 1100 halfword rD[16:23] rD[24:31]

00 1111 word rD[0:7] rD[8:15] rD[16:23] rD[24:31]

Table 3-9: Little Endian Write Data Steering (Store from Register rD)

Address
[30:31]

Byte_Enable
[0:3]

Transfer
Size

Write Data Bus Bytes

Byte3 Byte2 Byte1 Byte0

11 1000 byte rD[24:31]

10 0100 byte rD[24:31]

01 0010 byte rD[24:31]

00 0001 byte rD[24:31]

10 1100 halfword rD[16:23] rD[24:31]

00 0011 halfword rD[16:23] rD[24:31]

00 1111 word rD[0:7] rD[8:15] rD[16:23] rD[24:31]
MicroBlaze Processor Reference Guide www.xilinx.com 129
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=129

Chapter 3: MicroBlaze Signal Interface Description
Lockstep Interface Description
The lockstep interface on MicroBlaze is designed to connect a master and one or
more slave MicroBlaze instances. The lockstep signals on MicroBlaze are listed in
Table 3-10.

The comparison signals provided by Lockstep_Out are listed in Table 3-11.

Table 3-10: MicroBlaze Lockstep Signals

Signal Name Description VHDL Type Direction

Lockstep_Master_Out Output with signals going
from master to slave
MicroBlaze. Not connected
on slaves.

std_logic output

Lockstep_Slave_In Input with signals coming
from master to slave
MicroBlaze. Not connected
on master.

std_logic input

Lockstep_Out Output with all comparison
signals from both master and
slaves.

std_logic output

Table 3-11: MicroBlaze Lockstep Comparison Signals
Signal Name Bus Index Range VHDL Type

MB_Halted 0 std_logic

MB_Error 1 std_logic

IFetch_POS 2 std_logic

I_AS_POS 3 std_logic

Instr_Addr 4 to 35 std_logic_vector

Data_Addr 36 to 67 std_logic_vector

Data_Write 68 to 99 std_logic_vector

D_AS 100 std_logic

Read_Strobe 101 std_logic

Write_Strobe 102 std_logic

Byte_Enable 103 to 106 std_logic_vector

Reserved 104 to 664

M_AXI_IP_AWID 665 std_logic

M_AXI_IP_AWADDR 666 to 697 std_logic_vector

M_AXI_IP_AWLEN 698 to 705 std_logic_vector

M_AXI_IP_AWSIZE 706 to 708 std_logic_vector

M_AXI_IP_AWBURST 709 to 710 std_logic_vector

M_AXI_IP_AWLOCK 711 std_logic

M_AXI_IP_AWCACHE 712 to 715 std_logic_vector

M_AXI_IP_AWPROT 716 to 718 std_logic_vector
130 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=130

Lockstep Interface Description
M_AXI_IP_AWQOS 719 to 722 std_logic_vector

M_AXI_IP_AWVALID 723 std_logic

M_AXI_IP_WDATA 724 to 755 std_logic_vector

M_AXI_IP_WSTRB 756 to 759 std_logic_vector

M_AXI_IP_WLAST 760 std_logic

M_AXI_IP_WVALID 761 std_logic

M_AXI_IP_BREADY 762 std_logic

M_AXI_IP_ARID 763 std_logic

M_AXI_IP_ARADDR 764 to 795 std_logic_vector

M_AXI_IP_ARLEN 796 to 803 std_logic_vector

M_AXI_IP_ARSIZE 804 to 806 std_logic_vector

M_AXI_IP_ARBURST 807 to 808 std_logic_vector

M_AXI_IP_ARLOCK 809 std_logic

M_AXI_IP_ARCACHE 810 to 813 std_logic_vector

M_AXI_IP_ARPROT 814 to 816 std_logic_vector

M_AXI_IP_ARQOS 817 to 820 std_logic_vector

M_AXI_IP_ARVALID 821 std_logic

M_AXI_IP_RREADY 822 std_logic

M_AXI_DP_AWID 823 std_logic

M_AXI_DP_AWADDR 824 to 855 std_logic_vector

M_AXI_DP_AWLEN 856 to 863 std_logic_vector

M_AXI_DP_AWSIZE 864 to 866 std_logic_vector

M_AXI_DP_AWBURST 867 to 868 std_logic_vector

M_AXI_DP_AWLOCK 869 std_logic

M_AXI_DP_AWCACHE 870 to 873 std_logic_vector

M_AXI_DP_AWPROT 874 to 876 std_logic_vector

M_AXI_DP_AWQOS 877 to 880 std_logic_vector

M_AXI_DP_AWVALID 881 std_logic

M_AXI_DP_WDATA 882 to 913 std_logic_vector

M_AXI_DP_WSTRB 914 to 917 std_logic_vector

M_AXI_DP_WLAST 918 std_logic

M_AXI_DP_WVALID 919 std_logic

M_AXI_DP_BREADY 920 std_logic

M_AXI_DP_ARID 921 std_logic

M_AXI_DP_ARADDR 922 to 953 std_logic_vector

M_AXI_DP_ARLEN 954 to 961 std_logic_vector

M_AXI_DP_ARSIZE 962 to 964 std_logic_vector

M_AXI_DP_ARBURST 965 to 966 std_logic_vector

M_AXI_DP_ARLOCK 967 std_logic

Table 3-11: MicroBlaze Lockstep Comparison Signals (Continued)
Signal Name Bus Index Range VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 131
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=131

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_DP_ARCACHE 968 to 971 std_logic_vector

M_AXI_DP_ARPROT 972 to 974 std_logic_vector

M_AXI_DP_ARQOS 975 to 978 std_logic_vector

M_AXI_DP_ARVALID 979 std_logic

M_AXI_DP_RREADY 980 std_logic

Reserved 981 to 1572

Mn_AXIS_TLAST 1573 + n * 35 std_logic

Mn_AXIS_TDATA 1574 + n * 35 to 1606 + n * 35 std_logic_vector

Mn_AXIS_TVALID 1607 + n * 35 std_logic

Sn_AXIS_TREADY 1608 + n * 35 std_logic

M_AXI_IC_AWID 2133 std_logic

M_AXI_IC_AWADDR 2134 to 2165 std_logic_vector

M_AXI_IC_AWLEN 2166 to 2173 std_logic_vector

M_AXI_IC_AWSIZE 2174 to 2176 std_logic_vector

M_AXI_IC_AWBURST 2177 to 2178 std_logic_vector

M_AXI_IC_AWLOCK 2179 std_logic

M_AXI_IC_AWCACHE 2180 to 2183 std_logic_vector

M_AXI_IC_AWPROT 2184 to 2186 std_logic_vector

M_AXI_IC_AWQOS 2187 to 2190 std_logic_vector

M_AXI_IC_AWVALID 2191 std_logic

M_AXI_IC_AWUSER 2192 to 2196 std_logic_vector

M_AXI_IC_AWDOMAIN1 2197 to 2198 std_logic_vector

M_AXI_IC_AWSNOOP1 2199 to 2201 std_logic_vector

M_AXI_IC_AWBAR1 2202 to 2203 std_logic_vector

M_AXI_IC_WDATA 2204 to 2715 std_logic_vector

M_AXI_IC_WSTRB 2716 to 2779 std_logic_vector

M_AXI_IC_WLAST 2780 std_logic

M_AXI_IC_WVALID 2781 std_logic

M_AXI_IC_WUSER 2782 std_logic

M_AXI_IC_BREADY 2783 std_logic

M_AXI_IC_WACK 2784 std_logic

M_AXI_IC_ARID 2785 std_logic_vector

M_AXI_IC_ARADDR 2786 to 2907 std_logic_vector

M_AXI_IC_ARLEN 2818 to 2825 std_logic_vector

M_AXI_IC_ARSIZE 2826 to 2828 std_logic_vector

M_AXI_IC_ARBURST 2829 to 2830 std_logic_vector

M_AXI_IC_ARLOCK 2831 std_logic

M_AXI_IC_ARCACHE 2832 to 2835 std_logic_vector

M_AXI_IC_ARPROT 2836 to 2838 std_logic_vector

Table 3-11: MicroBlaze Lockstep Comparison Signals (Continued)
Signal Name Bus Index Range VHDL Type
132 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=132

Lockstep Interface Description
M_AXI_IC_ARQOS 2839 to 2842 std_logic_vector

M_AXI_IC_ARVALID 2843 std_logic

M_AXI_IC_ARUSER 2844 to 2848 std_logic_vector

M_AXI_IC_ARDOMAIN1 2849 to 2850 std_logic_vector

M_AXI_IC_ARSNOOP1 2851 to 2854 std_logic_vector

M_AXI_IC_ARBAR1 2855 to 2856 std_logic_vector

M_AXI_IC_RREADY 2857 std_logic

M_AXI_IC_RACK1 2858 std_logic

M_AXI_IC_ACREADY1 2859 std_logic

M_AXI_IC_CRVALID1 2860 std_logic

M_AXI_IC_CRRESP1 2861 to 2865 std_logic_vector

M_AXI_IC_CDVALID1 2866 std_logic

M_AXI_IC_CDLAST1 2867 std_logic

M_AXI_DC_AWID 2868 std_logic

M_AXI_DC_AWADDR 2869 to 2900 std_logic_vector

M_AXI_DC_AWLEN 2901 to 2908 std_logic_vector

M_AXI_DC_AWSIZE 2909 to 2911 std_logic_vector

M_AXI_DC_AWBURST 2912 to 2913 std_logic_vector

M_AXI_DC_AWLOCK 2914 std_logic

M_AXI_DC_AWCACHE 2915 to 2918 std_logic_vector

M_AXI_DC_AWPROT 2919 to 2921 std_logic_vector

M_AXI_DC_AWQOS 2922 to 2925 std_logic_vector

M_AXI_DC_AWVALID 2926 std_logic

M_AXI_DC_AWUSER 2927 to 2931 std_logic_vector

M_AXI_DC_AWDOMAIN1 2932 to 2933 std_logic_vector

M_AXI_DC_AWSNOOP1 2934 to 2936 std_logic_vector

M_AXI_DC_AWBAR1 2937 to 2938 std_logic_vector

M_AXI_DC_WDATA 2939 to 3450 std_logic_vector

M_AXI_DC_WSTRB1 3451 to 3514 std_logic_vector

M_AXI_DC_WLAST 3515 std_logic

M_AXI_DC_WVALID 3516 std_logic

M_AXI_DC_WUSER 3517 std_logic

M_AXI_DC_BREADY 3518 std_logic

M_AXI_DC_WACK1 3519 std_logic

M_AXI_DC_ARID 3520 std_logic

M_AXI_DC_ARADDR 3521 to 3552 std_logic_vector

M_AXI_DC_ARLEN 3553 to 3560 std_logic_vector

M_AXI_DC_ARSIZE 3561 to 3563 std_logic_vector

M_AXI_DC_ARBURST 3564 to 3565 std_logic_vector

Table 3-11: MicroBlaze Lockstep Comparison Signals (Continued)
Signal Name Bus Index Range VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 133
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=133

Chapter 3: MicroBlaze Signal Interface Description
M_AXI_DC_ARLOCK 3566 std_logic

M_AXI_DC_ARCACHE 3567 to 3570 std_logic_vector

M_AXI_DC_ARPROT 3571 to 3573 std_logic_vector

M_AXI_DC_ARQOS 3574 to 3577 std_logic_vector

M_AXI_DC_ARVALID 3578 std_logic

M_AXI_DC_ARUSER 3579 to 3583 std_logic_vector

M_AXI_DC_ARDOMAIN1 3584 to 3585 std_logic_vector

M_AXI_DC_ARSNOOP1 3586 to 3589 std_logic_vector

M_AXI_DC_ARBAR1 3590 to 3591 std_logic_vector

M_AXI_DC_RREADY 3592 std_logic

M_AXI_DC_RACK1 3593 std_logic

M_AXI_DC_ACREADY1 3594 std_logic

M_AXI_DC_CRVALID1 3595 std_logic

M_AXI_DC_CRRESP1 3596 to 3600 std_logic_vector

M_AXI_DC_CDVALID1 3601 std_logic

M_AXI_DC_CDLAST1 3602 std_logic

Trace_Instruction 3603 to 3634 std_logic_vector

Trace_Valid_Instr 3635 std_logic

Trace_PC 3636 to 3667 std_logic_vector

Trace_Reg_Write 3668 std_logic

Trace_Reg_Addr 3669 to 3673 std_logic_vector

Trace_MSR_Reg 3674 to 3688 std_logic_vector

Trace_PID_Reg 3689 to 3696 std_logic_vector

Trace_New_Reg_Value 3697 to 3728 std_logic_vector

Trace_Exception_Taken 3729 std_logic

Trace_Exception_Kind 3730 to 3734 std_logic_vector

Trace_Jump_Taken 3735 std_logic

Trace_Delay_Slot 3736 std_logic

Trace_Data_Address 3737 to 3768 std_logic_vector

Trace_Data_Write_Value 3769 to 3800 std_logic_vector

Trace_Data_Byte_Enable 3801 to 3804 std_logic_vector

Trace_Data_Access 3805 std_logic

Trace_Data_Read 3806 std_logic

Trace_Data_Write 3807 std_logic

Trace_DCache_Req 3808 std_logic

Trace_DCache_Hit 3809 std_logic

Trace_DCache_Rdy 3810 std_logic

Trace_DCache_Read 3811 std_logic

Trace_ICache_Req 3812 std_logic

Table 3-11: MicroBlaze Lockstep Comparison Signals (Continued)
Signal Name Bus Index Range VHDL Type
134 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=134

Lockstep Interface Description
Trace_ICache_Hit 3813 std_logic

Trace_ICache_Rdy 3814 std_logic

Trace_OF_PipeRun 3815 std_logic

Trace_EX_PipeRun 3816 std_logic

Trace_MEM_PipeRun 3817 std_logic

Trace_MB_Halted 3818 std_logic

Trace_Jump_Hit 3819 std_logic

Reserved for future use 3820 to 4095

1. This signal is only used when C_INTERCONNECT = 3 (ACE).

Table 3-11: MicroBlaze Lockstep Comparison Signals (Continued)
Signal Name Bus Index Range VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 135
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=135

Chapter 3: MicroBlaze Signal Interface Description
Debug Interface Description
The debug interface on MicroBlaze is designed to work with the Xilinx
Microprocessor Debug Module (MDM) IP core. The MDM is controlled by the Xilinx
Microprocessor Debugger (XMD) through the JTAG port of the FPGA. The MDM
can control multiple MicroBlaze processors at the same time. The debug signals are
grouped in the DEBUG bus. The debug signals on MicroBlaze are listed in
Table 3-12.
Table 3-12: MicroBlaze Debug Signals

Signal Name Description VHDL Type Direction

Dbg_Clk JTAG clock from MDM std_logic input

Dbg_TDI JTAG TDI from MDM std_logic input

Dbg_TDO JTAG TDO to MDM std_logic output

Dbg_Reg_En Debug register enable from
MDM

std_logic input

Dbg_Shift1

1. Updated for MicroBlaze v7.00: Dbg_Shift added and Debug_Rst included in DEBUG bus

JTAG BSCAN shift signal from
MDM

std_logic input

Dbg_Capture JTAG BSCAN capture signal
from MDM

std_logic input

Dbg_Update JTAG BSCAN update signal
from MDM

std_logic input

Debug_Rst1 Reset signal from MDM,
active high. Should be held
for at least 1 Clk clock cycle.

std_logic input
136 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=136

Trace Interface Description
Trace Interface Description
The MicroBlaze core exports a number of internal signals for trace purposes. This
signal interface is not standardized and new revisions of the processor may not be
backward compatible for signal selection or functionality. It is recommended that
you not design custom logic for these signals, but rather to use them via Xilinx
provided analysis IP. The trace signals are grouped in the TRACE bus. The current
set of trace signals were last updated for MicroBlaze v7.30 and are listed in
Table 3-13.

The mapping of the MSR bits is shown in Table 3-14. For a complete description of
the Machine Status Register, see “Special Purpose Registers”.

The Trace exception types are listed in Table 3-15. All unused Trace exception types
are reserved.

Table 3-13: MicroBlaze Trace Signals

Signal Name Description VHDL Type Direction

Trace_Valid_Instr Valid instruction on trace port. std_logic output

Trace_Instruction 1 Instruction code std_logic_vector (0 to 31) output

Trace_PC 1 Program counter std_logic_vector (0 to 31) output

Trace_Reg_Write 1 Instruction writes to the register file std_logic output

Trace_Reg_Addr 1 Destination register address std_logic_vector (0 to 4) output

Trace_MSR_Reg1 Machine status register. The mapping of
the register bits is documented below.

std_logic_vector (0 to 14)2 output

Trace_PID_Reg1 Process identifier register std_logic_vector (0 to 7) output

Trace_New_Reg_Value1 Destination register update value std_logic_vector (0 to 31) output

Trace_Exception_Taken1,2 Instruction result in taken exception std_logic output

Trace_Exception_Kind1 Exception type. The description for the
exception type is documented below.

std_logic_vector (0 to 4)2 output

Trace_Jump_Taken1 Branch instruction evaluated true, i.e
taken

std_logic output

Trace_Jump_Hit1,3 Branch Target Cache hit std_logic output

Trace_Delay_Slot1 Instruction is in delay slot of a taken
branch

std_logic output

Trace_Data_Access1 Valid D-side memory access std_logic output

Trace_Data_Address1 Address for D-side memory access std_logic_vector (0 to 31) output

Trace_Data_Write_Value1 Value for D-side memory write access std_logic_vector (0 to 31) output

Trace_Data_Byte_Enable1 Byte enables for D-side memory access std_logic_vector (0 to 3) output

Trace_Data_Read1 D-side memory access is a read std_logic output

Trace_Data_Write1 D-side memory access is a write std_logic output
MicroBlaze Processor Reference Guide www.xilinx.com 137
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=137

Chapter 3: MicroBlaze Signal Interface Description
Trace_DCache_Req Data memory address is within D-Cache
range

std_logic output

Trace_DCache_Hit Data memory address is present in D-
Cache

std_logic output

Trace_DCache_Rdy Data memory address is within D-Cache
range and the access is completed

std_logic output

Trace_DCache_Read,4 The D-Cache request is a read std_logic output

Trace_ICache_Req Instruction memory address is within
I-Cache range

std_logic output

Trace_ICache_Hit Instruction memory address is present in
I-Cache

std_logic output

Trace_ICache_Rdy Instruction memory address is within
I-Cache range and the access is
completed

std_logic output

Trace_OF_PipeRun Pipeline advance for Decode stage std_logic output

Trace_EX_PipeRun3 Pipeline advance for Execution stage std_logic output

Trace_MEM_PipeRun3 Pipeline advance for Memory stage std_logic output

Trace_MB_Halted Pipeline is halted by debug std_logic output

1. Valid only when Trace_Valid_Instr = 1
2. Valid only when Trace_Exception_Taken = 1
3. Not used with area optimization feature
4. Valid only when Trace_DCache_Req = 1

Table 3-13: MicroBlaze Trace Signals (Continued)

Signal Name Description VHDL Type Direction

Table 3-14: Mapping of Trace MSR

Trace_MSR_Reg Machine Status Register

Bit Bit Name Description

0 17 VMS Virtual Protected Mode Save

1 18 VM Virtual Protected Mode

2 19 UMS User Mode Save

3 20 UM User Mode

4 21 PVR Processor Version Register exists

5 22 EIP Exception In Progress

6 23 EE Exception Enable

7 24 DCE Data Cache Enable

8 25 DZO Division by Zero or Division Overflow

9 26 ICE Instruction Cache Enable

10 27 FSL AXI4-Stream Error
138 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=138

Trace Interface Description
11 28 BIP Break in Progress

12 29 C Arithmetic Carry

13 30 IE Interrupt Enable

14 31 Reserved Reserved

Table 3-15: Type of Trace Exception

Trace_Exception_Kind [0:4] Description

00000 Stream exception

00001 Unaligned exception

00010 Illegal Opcode exception

00011 Instruction Bus exception

00100 Data Bus exception

00101 Divide exception

00110 FPU exception

00111 Privileged instruction exception

01010 Interrupt

01011 External non maskable break

01100 External maskable break

10000 Data storage exception

10001 Instruction storage exception

10010 Data TLB miss exception

10011 Instruction TLB miss exception

Table 3-14: Mapping of Trace MSR

Trace_MSR_Reg Machine Status Register

Bit Bit Name Description
MicroBlaze Processor Reference Guide www.xilinx.com 139
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=139

Chapter 3: MicroBlaze Signal Interface Description
MicroBlaze Core Configurability
The MicroBlaze core has been developed to support a high degree of user
configurability. This allows tailoring of the processor to meet specific
cost/performance requirements.

Configuration is done via parameters that typically enable, size, or select certain
processor features. For example, the instruction cache is enabled by setting the
C_USE_ICACHE parameter. The size of the instruction cache, and the cacheable
memory range, are all configurable using: C_CACHE_BYTE_SIZE,
C_ICACHE_BASEADDR, and C_ICACHE_HIGHADDR respectively.

Parameters valid for MicroBlaze v9.2 are listed in Table 3-16. Not all of these are
recognized by older versions of MicroBlaze; however, the configurability is fully
backward compatibility.
Note: Shaded rows indicate that the parameter has a fixed value and cannot be modified.

Table 3-16: MPD Parameters

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assign

ed
VHDL Type

C_FAMILY Target Family Listed in
Table 3-17

virtex7 yes string

C_DATA_SIZE Data Size 32 32 NA integer

C_DYNAMIC_BUS_SIZING Legacy 1 1 NA integer

C_SCO Xilinx internal 0 0 NA integer

C_AREA_OPTIMIZED Select implementation to
optimize area with lower
instruction throughput

0, 1 0 integer

C_OPTIMIZATION Reserved for future use 0 0 NA integer

C_INTERCONNECT Select interconnect
2 = AXI4 only
3 = AXI4 and ACE

2, 3 2 integer

C_ENDIANNESS Select endianness
0 = Big Endian
1 = Little Endian

0, 1 1 yes integer

C_BASE_VECTORS1 Configurable base
vectors

0x00000000-
0xffffff80

0x0000
0000 std_logic_vector

C_FAULT_TOLERANT Implement fault tolerance 0, 1 0 yes integer

C_ECC_USE_CE_EXCEPTION Generate exception for
correctable ECC error 0,1 0 integer

C_LOCKSTEP_SLAVE Lockstep Slave 0, 1 0 integer
140 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=140

MicroBlaze Core Configurability
C_AVOID_PRIMITIVES Disallow FPGA primitives
0 = None
1 = SRL
2 = LUTRAM
3 = Both

0, 1, 2, 3 0 integer

C_PVR Processor version register
mode selection
0 = None
1 = Basic
2 = Full

0, 1, 2 0

integer

C_PVR_USER1 Processor version register
USER1 constant 0x00-0xff 0x00 std_logic_vector

(0 to 7)

C_PVR_USER2 Processor version register
USER2 constant

0x00000000-
0xffffffff

0x0000
0000

std_logic_vector
(0 to 31)

C_RESET_MSR Reset value for MSR
register

0x00, 0x20,
0x80, 0xa0 0x00 std_logic_vector

C_INSTANCE Instance Name Any instance
name

micro
blaze

yes string

C_D_AXI Data side AXI interface 0, 1 0 integer

C_D_LMB Data side LMB interface 0, 1 1 integer

C_I_AXI Instruction side AXI
interface 0, 1 0 integer

C_I_LMB Instruction side LMB
interface 0, 1 1 integer

C_USE_BARREL Include barrel shifter 0, 1 0 integer

C_USE_DIV Include hardware divider 0, 1 0 integer

C_USE_HW_MUL Include hardware
multiplier
0 = None
1 = Mul32
2 = Mul64

0, 1, 2 1

integer

C_USE_FPU Include hardware floating
point unit
0 = None
1 = Basic
2 = Extended

0, 1, 2 0

integer

Table 3-16: MPD Parameters (Continued)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assign

ed
VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 141
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=141

Chapter 3: MicroBlaze Signal Interface Description
C_USE_MSR_INSTR Enable use of instructions:
MSRSET and MSRCLR 0, 1 1 integer

C_USE_PCMP_INSTR Enable use of instructions:
CLZ, PCMPBF, PCMPEQ,
and PCMPNE

0, 1 1
integer

C_USE_REORDER_INSTR Enable use of instructions:
Reverse load, reverse
store, and swap

0, 1 1
integer

C_UNALIGNED_EXCEPTIONS Enable exception
handling for unaligned
data accesses

0, 1 0
integer

C_ILL_OPCODE_EXCEPTION Enable exception
handling for illegal op-
code

0, 1 0
integer

C_M_AXI_I_BUS_EXCEPTION Enable exception
handling for M_AXI_I bus
error

0, 1 0
integer

C_M_AXI_D_BUS_EXCEPTION Enable exception
handling for M_AXI_D bus
error

0, 1 0
integer

C_DIV_ZERO_EXCEPTION Enable exception
handling for division by
zero or division overflow

0, 1 0
integer

C_FPU_EXCEPTION Enable exception
handling for hardware
floating point unit
exceptions

0, 1 0

integer

C_OPCODE_0x0_ILLEGAL Detect opcode 0x0 as an
illegal instruction 0,1 0 integer

C_FSL_EXCEPTION Enable exception
handling for Stream Links 0,1 0 integer

C_ECC_USE_CE_EXCEPTION Generate Bus Error
Exceptions for correctable
errors

0,1 0
integer

C_USE_STACK_PROTECTION Generate exception for
stack overflow or stack
underflow

0,1 0
integer

C_DEBUG_ENABLED MDM Debug interface 0,1 1 integer

Table 3-16: MPD Parameters (Continued)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assign

ed
VHDL Type
142 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=142

MicroBlaze Core Configurability
C_NUMBER_OF_PC_BRK Number of hardware
breakpoints 0-8 1 integer

C_NUMBER_OF_RD_ADDR_BRK Number of read address
watchpoints 0-4 0 integer

C_NUMBER_OF_WR_ADDR_BRK Number of write address
watchpoints 0-4 0 integer

C_INTERRUPT_IS_EDGE Level/Edge Interrupt 0, 1 0 yes integer

C_EDGE_IS_POSITIVE Negative/Positive Edge
Interrupt 0, 1 1 yes integer

C_FSL_LINKS Number of AXI-Stream
interfaces 0-16 0 integer

C_USE_EXTENDED_FSL_INSTR Enable use of extended
stream instructions 0, 1 0 integer

C_ICACHE_BASEADDR Instruction cache base
address

0x00000000 -
0xFFFFFFFF

0x0000
0000

std_logic_vector

C_ICACHE_HIGHADDR Instruction cache high
address

0x00000000 -
0xFFFFFFFF

0x3FFFF
FFF

std_logic_vector

C_USE_ICACHE Instruction cache 0, 1 0 integer

C_ALLOW_ICACHE_WR Instruction cache write
enable 0, 1 1 integer

C_ICACHE_LINE_LEN Instruction cache line
length 4, 8 4 integer

C_ICACHE_ALWAYS_USED Instruction cache
interface used for all
memory accesses in the
cacheable range

0, 1 1

integer

C_ICACHE_FORCE_TAG_LUTRAM Instruction cache tag
always implemented with
distributed RAM

0, 1 0
integer

C_ICACHE_STREAMS Instruction cache streams 0, 1 0 integer

C_ICACHE_VICTIMS Instruction cache victims 0, 2, 4, 8 0 integer

Table 3-16: MPD Parameters (Continued)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assign

ed
VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 143
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=143

Chapter 3: MicroBlaze Signal Interface Description
C_ICACHE_DATA_WIDTH Instruction cache data
width
0 = 32 bits
1 = Full cache line
2 = 512 bits

0, 1, 2 0

integer

C_ADDR_TAG_BITS Instruction cache address
tags 0-25 17 yes integer

C_CACHE_BYTE_SIZE Instruction cache size 64, 128, 256,
512, 1024,
2048, 4096,
8192, 16384,

32768,
655362

8192

integer

C_DCACHE_BASEADDR Data cache base address 0x00000000 -
0xFFFFFFFF

0x0000
0000

std_logic_vector

C_DCACHE_HIGHADDR Data cache high address 0x00000000 -
0xFFFFFFFF

0x3FFFF
FFF

std_logic_vector

C_USE_DCACHE Data cache 0, 1 0 integer

C_ALLOW_DCACHE_WR Data cache write enable 0, 1 1 integer

C_DCACHE_LINE_LEN Data cache line length 4, 8 4 integer

C_DCACHE_ALWAYS_USED Data cache interface used
for all accesses in the
cacheable range

0, 1 1
integer

C_DCACHE_FORCE_TAG_LUTRAM Data cache tag always
implemented with
distributed RAM

0, 1 0
integer

C_DCACHE_USE_WRITEBACK Data cache write-back
storage policy used 0, 1 0 integer

C_DCACHE_VICTIMS Data cache victims 0, 2, 4, 8 0 integer

C_DCACHE_DATA_WIDTH Data cache data width
0 = 32 bits
1 = Full cache line
2 = 512 bits

0, 1, 2 0

integer

C_DCACHE_ADDR_TAG Data cache address tags 0-25 17 yes integer

Table 3-16: MPD Parameters (Continued)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assign

ed
VHDL Type
144 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=144

MicroBlaze Core Configurability
C_DCACHE_BYTE_SIZE Data cache size 64, 128, 256,
512, 1024,
2048, 4096,
8192, 16384,

32768,
655362

8192

integer

C_USE_MMU3 Memory Management:
0 = None
1 = User Mode
2 = Protection
3 = Virtual

0, 1, 2, 3 0 integer

C_MMU_DTLB_SIZE3 Data shadow Translation
Look-Aside Buffer size 1, 2, 4, 8 4 integer

C_MMU_ITLB_SIZE3 Instruction shadow
Translation Look-Aside
Buffer size

1, 2, 4, 8 2 integer

C_MMU_TLB_ACCESS3 Access to memory
management special
registers:
0 = Minimal
1 = Read
2 = Write
3 = Full

0, 1, 2, 3 3 integer

C_MMU_ZONES3 Number of memory
protection zones 0-16 16 integer

C_MMU_PRIVILEGED_INSTR3 Privileged instructions
0 = Full protection
1 = Allow stream instrs

0,1 0 integer

C_USE_INTERRUPT Enable interrupt handling
0 = No interrupt
1 = Standard interrupt
2 = Low-latency interrupt

0, 1, 2 1 yes integer

C_USE_EXT_BRK Enable external break
handling 0,1 0 yes integer

C_USE_EXT_NM_BRK Enable external non-
maskable break handling 0,1 0 yes integer

C_USE_BRANCH_TARGET_CACHE3 Enable Branch Target
Cache 0,1 0 integer

Table 3-16: MPD Parameters (Continued)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assign

ed
VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 145
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=145

Chapter 3: MicroBlaze Signal Interface Description
C_BRANCH_TARGET_CACHE_SIZE3 Branch Target Cache size:
0 = Default
1 = 8 entries
2 = 16 entries
3 = 32 entries
4 = 64 entries
5 = 512 entries
6 = 1024 entries
7 = 2048 entries

0-7 0 integer

C_M_AXI_DP_
THREAD_ID_WIDTH

Data side AXI thread ID
width 1 1 integer

C_M_AXI_DP_DATA_WIDTH Data side AXI data width 32 32 integer

C_M_AXI_DP_ADDR_WIDTH Data side AXI address
width 32 32 integer

C_M_AXI_DP_
SUPPORTS_THREADS

Data side AXI uses
threads 0 0 integer

C_M_AXI_DP_SUPPORTS_READ Data side AXI support for
read accesses 1 1 integer

C_M_AXI_DP_SUPPORTS_WRITE Data side AXI support for
write accesses 1 1 integer

C_M_AXI_DP_SUPPORTS_
NARROW_BURST

Data side AXI narrow
burst support 0 0 integer

C_M_AXI_DP_PROTOCOL Data side AXI protocol AXI4,
AXI4LITE

AXI4
LITE

yes string

C_M_AXI_DP_
EXCLUSIVE_ACCESS

Data side AXI exclusive
access support 0,1 0 integer

C_INTERCONNECT_
M_AXI_DP_READ_ISSUING

Data side AXI read
accesses issued 1 1 integer

C_INTERCONNECT_
M_AXI_DP_WRITE_ISSUING

Data side AXI write
accesses issued 1 1 integer

C_M_AXI_IP_
THREAD_ID_WIDTH

Instruction side AXI
thread ID width 1 1 integer

C_M_AXI_IP_DATA_WIDTH Instruction side AXI data
width 32 32 integer

C_M_AXI_IP_ADDR_WIDTH Instruction side AXI
address width 32 32 integer

Table 3-16: MPD Parameters (Continued)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assign

ed
VHDL Type
146 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=146

MicroBlaze Core Configurability
C_M_AXI_IP_
SUPPORTS_THREADS

Instruction side AXI uses
threads 0 0 integer

C_M_AXI_IP_SUPPORTS_READ Instruction side AXI
support for read accesses 1 1 integer

C_M_AXI_IP_SUPPORTS_WRITE Instruction side AXI
support for write accesses 0 0 integer

C_M_AXI_IP_SUPPORTS_
NARROW_BURST

Instruction side AXI
narrow burst support 0 0 integer

C_M_AXI_IP_PROTOCOL Instruction side AXI
protocol AXI4LITE AXI4

LITE
string

C_INTERCONNECT_
M_AXI_IP_READ_ISSUING

Instruction side AXI read
accesses issued 1 1 integer

C_M_AXI_DC_
THREAD_ID_WIDTH

Data cache AXI ID width 1 1 integer

C_M_AXI_DC_DATA_WIDTH Data cache AXI data width 32, 64, 128,
256, 512 32 integer

C_M_AXI_DC_ADDR_WIDTH Data cache AXI address
width 32 32 integer

C_M_AXI_DC_
SUPPORTS_THREADS

Data cache AXI uses
threads 0 0 integer

C_M_AXI_DC_SUPPORTS_READ Data cacheAXI support
for read accesses 1 1 integer

C_M_AXI_DC_SUPPORTS_WRITE Data cache AXI support
for write accesses 1 1 integer

C_M_AXI_DC_SUPPORTS_
NARROW_BURST

Data cache AXI narrow
burst support 0 0 integer

C_M_AXI_DC_SUPPORTS_
USER_SIGNALS

Data cache AXI user signal
support 1 1 integer

C_M_AXI_DC_PROTOCOL Data cache AXI protocol AXI4 AXI4 string

C_M_AXI_DC_AWUSER_WIDTH Data cache AXI user width 5 5 integer

C_M_AXI_DC_ARUSER_WIDTH Data cache AXI user width 5 5 integer

C_M_AXI_DC_WUSER_WIDTH Data cache AXI user width 1 1 integer

C_M_AXI_DC_RUSER_WIDTH Data cache AXI user width 1 1 integer

Table 3-16: MPD Parameters (Continued)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assign

ed
VHDL Type
MicroBlaze Processor Reference Guide www.xilinx.com 147
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=147

Chapter 3: MicroBlaze Signal Interface Description
C_M_AXI_DC_BUSER_WIDTH Data cache AXI user width 1 1 integer

C_M_AXI_DC_
EXCLUSIVE_ACCESS

Data cache AXI exclusive
access support 0,1 0 integer

C_M_AXI_DC_USER_VALUE Data cache AXI user value 0-31 31 integer

C_INTERCONNECT_
M_AXI_DC_READ_ISSUING

Data cache AXI read
accesses issued 1,2 2 integer

C_INTERCONNECT_
M_AXI_DC_WRITE_ISSUING

Data cache AXI write
accesses issued 1,2,4,8,16,32 32 integer

C_M_AXI_IC_
THREAD_ID_WIDTH

Instruction cache AXI ID
width 1 1 integer

C_M_AXI_IC_DATA_WIDTH Instruction cache AXI data
width

32, 64, 128,
256, 512 32 integer

C_M_AXI_IC_ADDR_WIDTH Instruction cache AXI
address width 32 32 integer

C_M_AXI_IC_
SUPPORTS_THREADS

Instruction cache AXI uses
threads 0 0 integer

C_M_AXI_IC_SUPPORTS_READ Instruction cache AXI
support for read accesses 1 1 integer

C_M_AXI_IC_SUPPORTS_WRITE Instruction cache AXI
support for write accesses 0 0 integer

C_M_AXI_IC_SUPPORTS_
NARROW_BURST

Instruction cache AXI
narrow burst support 0 0 integer

C_M_AXI_IC_SUPPORTS_
USER_SIGNALS

Instruction cache AXI user
signal support 1 1 integer

C_M_AXI_IC_PROTOCOL Instruction cache AXI
protocol AXI4 AXI4 string

C_M_AXI_IC_AWUSER_WIDTH Instruction cache AXI user
width 5 5 integer

C_M_AXI_IC_ARUSER_WIDTH Instruction cache AXI user
width 5 5 integer

C_M_AXI_IC_WUSER_WIDTH Instruction cache AXI user
width 1 1 integer

C_M_AXI_IC_RUSER_WIDTH Instruction cache AXI user
width 1 1 integer

Table 3-16: MPD Parameters (Continued)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assign

ed
VHDL Type
148 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=148

MicroBlaze Core Configurability
C_M_AXI_IC_BUSER_WIDTH Instruction cache AXI user
width 1 1 integer

C_M_AXI_IC_USER_VALUE Instruction cache AXI user
value 0-31 31 integer

C_INTERCONNECT_
M_AXI_IC_READ_ISSUING

Instruction cache AXI read
accesses issued 1,2,4,8 2 yes integer

C_STREAM_INTERCONNECT Select AXI4-Stream
interconnect 0,1 0 integer

C_Mn_AXIS_PROTOCOL AXI4-Stream protocol GENERIC GENERIC string

C_Sn_AXIS_PROTOCOL AXI4-Stream protocol GENERIC GENERIC string

C_Mn_AXIS_DATA_WIDTH AXI4-Stream master data
width 32 32 NA integer

C_Sn_AXIS_DATA_WIDTH AXI4-Stream slave data
width 32 32 NA integer

1. The 7 least significant bits must all be 0.
2. Not all sizes are permitted in all architectures. The cache uses between 0 and 32 RAMB primitives (0 if cache size is less than 2048).
3. Not available when C_AREA_OPTIMIZED is set to 1.

Table 3-16: MPD Parameters (Continued)

Parameter Name Feature/Description Allowable
Values

Default
Value

Tool
Assign

ed
VHDL Type

Table 3-17: Parameter C_FAMILY Allowable Values

Allowable Values

Artix aartix7 artix7 artix7l qartix7 qartix7l

Kintex kintex7 kintex7l qkintex7 qkintex7l

Virtex qvirtex7 virtex7

Zynq azynq zynq qzynq
MicroBlaze Processor Reference Guide www.xilinx.com 149
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=149

Chapter 3: MicroBlaze Signal Interface Description
150 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=150

Chapter 4

MicroBlaze Application Binary Interface

This chapter describes MicroBlaze™ Application Binary Interface (ABI), which is
important for developing software in assembly language for the soft processor. The
MicroBlaze GNU compiler follows the conventions described in this document. Any
code written by assembly programmers should also follow the same conventions
to be compatible with the compiler generated code. Interrupt and Exception
handling is also explained briefly.

Data Types
The data types used by MicroBlaze assembly programs are shown in Table 4-1.
Data types such as data8, data16, and data32 are used in place of the usual byte,
half-word, and word.register.

Table 4-1: Data Types in MicroBlaze Assembly Programs

MicroBlaze data types
(for assembly programs)

Corresponding ANSI
C data types Size (bytes)

data8 char 1

data16 short 2

data32 int 4

data32 long int 4

data32 float 4

data32 enum 4

data16/data32 pointer1

1. Pointers to small data areas, which can be accessed by global pointers are data16.

2/4
MicroBlaze Processor Reference Guide www.xilinx.com 151
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=151

Chapter 4: MicroBlaze Application Binary Interface
Register Usage Conventions
The register usage convention for MicroBlaze is given in Table 4-2.

Table 4-2: Register Usage Conventions

Register Type Enforcement Purpose

R0 Dedicated HW Value 0

R1 Dedicated SW Stack Pointer

R2 Dedicated SW Read-only small data area anchor

R3-R4 Volatile SW Return Values/Temporaries

R5-R10 Volatile SW Passing parameters/Temporaries

R11-R12 Volatile SW Temporaries

R13 Dedicated SW Read-write small data area anchor

R14 Dedicated HW Return address for Interrupt

R15 Dedicated SW Return address for Sub-routine

R16 Dedicated HW Return address for Trap (Debugger)

R17 Dedicated HW/SW Return address for Exceptions
HW, if configured to support hardware exceptions,
else SW

R18 Dedicated SW Reserved for Assembler/Compiler Temporaries
Used for Service ID with attribute svc_table_handler

R19 Non-volatile SW Must be saved across function calls. Callee-save

R20 Dedicated
or
Non-volatile

SW Reserved for storing a pointer to the Global Offset
Table (GOT) in Position Independent Code (PIC). Non-
volatile in non-PIC code. Must be saved across
function calls. Callee-save

R21-R31 Non-volatile SW Must be saved across function calls. Callee-save

RPC Special HW Program counter

RMSR Special HW Machine Status Register

REAR Special HW Exception Address Register

RESR Special HW Exception Status Register

RFSR Special HW Floating Point Status Register

RBTR Special HW Branch Target Register

REDR Special HW Exception Data Register

RPID Special HW Process Identifier Register

RZPR Special HW Zone Protection Register

RTLBLO Special HW Translation Look-Aside Buffer Low Register

RTLBHI Special HW Translation Look-Aside Buffer High Register

RTLBX Special HW Translation Look-Aside Buffer Index Register

RTLBSX Special HW Translation Look-Aside Buffer Search Index

0-12 Special HW Processor Version Register 0 through 12
152 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=152

Register Usage Conventions
The architecture for MicroBlaze defines 32 general purpose registers (GPRs). These
registers are classified as volatile, non-volatile, and dedicated.

• The volatile registers (also known as caller-save) are used as temporaries and
do not retain values across the function calls. Registers R3 through R12 are
volatile, of which R3 and R4 are used for returning values to the caller function,
if any. Registers R5 through R10 are used for passing parameters between
subroutines.

• Registers R19 through R31 retain their contents across function calls and are
hence termed as non-volatile registers (a.k.a callee-save). The callee function is
expected to save those non-volatile registers, which are being used. These are
typically saved to the stack during the prologue and then reloaded during the
epilogue.

• Certain registers are used as dedicated registers and programmers are not
expected to use them for any other purpose.
♦ Registers R14 through R17 are used for storing the return address from interrupts,

sub-routines, traps, and exceptions in that order. Subroutines are called using the
branch and link instruction, which saves the current Program Counter (PC) onto
register R15.

♦ Small data area pointers are used for accessing certain memory locations with 16-
bit immediate value. These areas are discussed in the memory model section of
this document. The read only small data area (SDA) anchor R2 (Read-Only) is used
to access the constants such as literals. The other SDA anchor R13 (Read-Write) is
used for accessing the values in the small data read-write section.

♦ Register R1 stores the value of the stack pointer and is updated on entry and exit
from functions.

♦ Register R18 is used as a temporary register for assembler operations.

• MicroBlaze includes special purpose registers such as: program counter (rpc),
machine status register (rmsr), exception status register (resr), exception
address register (rear), floating point status register (rfsr), branch target
register (rbtr), exception data register (redr), memory management registers
(rpid, rzpr, rtlblo, rtlbhi, rtlbx, rtlbsx), and processor version registers (0-12).
These registers are not mapped directly to the register file and hence the
usage of these registers is different from the general purpose registers. The
value of a special purpose registers can be transferred to or from a general
purpose register by using mts and mfs instructions respectively.
MicroBlaze Processor Reference Guide www.xilinx.com 153
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=153

Chapter 4: MicroBlaze Application Binary Interface
Stack Convention
The stack conventions used by MicroBlaze are detailed in Table 4-3.

The shaded area in Table 4-3 denotes a part of the stack frame for a caller function,
while the unshaded area indicates the callee frame function. The ABI conventions
of the stack frame define the protocol for passing parameters, preserving non-
volatile register values, and allocating space for the local variables in a function.

Functions that contain calls to other subroutines are called as non-leaf functions.
These non-leaf functions have to create a new stack frame area for its own use.
When the program starts executing, the stack pointer has the maximum value. As
functions are called, the stack pointer is decremented by the number of words
required by every function for its stack frame. The stack pointer of a caller function
always has a higher value as compared to the callee function.

Table 4-3: Stack Convention

Consider an example where Func1 calls Func2, which in turn calls Func3. The stack
representation at different instances is depicted in Figure 4-1. After the call from
Func 1 to Func 2, the value of the stack pointer (SP) is decremented. This value of SP
is again decremented to accommodate the stack frame for Func3. On return from
Func 3 the value of the stack pointer is increased to its original value in the function,
Func 2.

Details of how the stack is maintained are shown in Figure 4-1.

High Address

Function Parameters for called sub-routine (Arg n .. Arg1)
(Optional: Maximum number of arguments required for any
called procedure from the current procedure).

Old Stack
Pointer

Link Register (R15)

Callee Saved Register (R31....R19)
(Optional: Only those registers which are used by the current
procedure are saved)

Local Variables for Current Procedure
(Optional: Present only if Locals defined in the procedure)

Functional Parameters (Arg n .. Arg 1)
(Optional: Maximum number of arguments required for any
called procedure from the current procedure)

New Stack
Pointer

Link Register

Low Address
154 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=154

Stack Convention
Calling Convention
The caller function passes parameters to the callee function using either the
registers (R5 through R10) or on its own stack frame. The callee uses the stack area
of the caller to store the parameters passed to the callee.

Refer to Figure 4-1. The parameters for Func 2 are stored either in the registers R5
through R10 or on the stack frame allocated for Func 1.

If Func 2 has more than six integer parameters, the first six parameters can be
passed in registers R5 through R10, whereas all subsequent parameters must be
passed on the stack frame allocated for Func 1, starting at offset SP + 28.

X-Ref Target - Figure 4-1

Figure 4-1: Stack Frame

High Memory

Low Memory

SP

SP

SP

SP

Func 1 Func 1 Func 1 Func 1

Func 2 Func 2 Func 2

Func 3
MicroBlaze Processor Reference Guide www.xilinx.com 155
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=155

Chapter 4: MicroBlaze Application Binary Interface
Memory Model
The memory model for MicroBlaze classifies the data into four different parts:
Small Data Area, Data Area, Common Un-Initialized Area, and Literals or Constants.

Small Data Area
Global initialized variables which are small in size are stored in this area. The
threshold for deciding the size of the variable to be stored in the small data area is
set to 8 bytes in the MicroBlaze C compiler (mb-gcc), but this can be changed by
giving a command line option to the compiler. Details about this option are
discussed in the GNU Compiler Tools chapter. 64 kilobytes of memory is allocated
for the small data areas. The small data area is accessed using the read-write small
data area anchor (R13) and a 16-bit offset. Allocating small variables to this area
reduces the requirement of adding IMM instructions to the code for accessing
global variables. Any variable in the small data area can also be accessed using an
absolute address.

Data Area
Comparatively large initialized variables are allocated to the data area, which can
either be accessed using the read-write SDA anchor R13 or using the absolute
address, depending on the command line option given to the compiler.

Common Un-Initialized Area
Un-initialized global variables are allocated in the common area and can be
accessed either using the absolute address or using the read-write small data area
anchor R13.

Literals or Constants
Constants are placed into the read-only small data area and are accessed using the
read-only small data area anchor R2.

The compiler generates appropriate global pointers to act as base pointers. The
actual values of the SDA anchors are decided by the linker, in the final linking
stages. For more information on the various sections of the memory please refer to
MicroBlaze Linker Script Sections in the Embedded System Tools Reference
Manual.The compiler generates appropriate sections, depending on the command
line options. Please refer to the GNU Compiler Tools chapter in the Embedded
System Tools Reference Manual for more information about these options.
156 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=156

Interrupt and Exception Handling
Interrupt and Exception Handling
MicroBlaze assumes certain address locations for handling interrupts and
exceptions as indicated in Table 4-4. At these locations, code is written to jump to
the appropriate handlers.

The code expected at these locations is as shown below. For programs compiled
without the -xl-mode-xmdstub compiler option, the crt0.o initialization file is
passed by the mb-gcc compiler to the mb-ld linker for linking. This file sets the
appropriate addresses of the exception handlers.

For programs compiled with the -xl-mode-xmdstub compiler option, the
crt1.o initialization file is linked to the output program. This program has to be
run with the xmdstub already loaded in the memory at address location 0x0. Hence
at run-time, the initialization code in crt1.o writes the appropriate instructions to
location 0x8 through 0x14 depending on the address of the exception and
interrupt handlers.

The following is code for passing control to Exception and Interrupt handlers,
assuming the default C_BASE_VECTORS value of 0x00000000:

0x00: bri _start1
0x04: nop
0x08: imm high bits of address (user exception handler)
0x0c: bri _exception_handler
0x10: imm high bits of address (interrupt handler)
0x14: bri _interrupt_handler
0x20: imm high bits of address (HW exception handler
0x24: bri _hw_exception_handler

With low-latency interrupt mode, control is directly passed to the interrupt handler
for each individual interrupt utilizing this mode. In this case, it is the responsibility
of each handler to save and restore used registers. The MicroBlaze C compiler (mb-
gcc) attribute fast_interrupt is available to allow this task to be performed by the
compiler:

void interrupt_handler_name() __attribute__((fast_interrupt));

Table 4-4: Interrupt and Exception Handling

On Hardware jumps to Software Labels

Start / Reset C_BASE_VECTORS + 0x0 _start

User exception C_BASE_VECTORS + 0x8 _exception_handler

Interrupt C_BASE_VECTORS +
0x101

1. With low-latency interrupt mode, the vector address is supplied by the Interrupt Controller.

_interrupt_handler

Break (HW/SW) C_BASE_VECTORS + 0x18 -

Hardware exception C_BASE_VECTORS + 0x20 _hw_exception_handler

Reserved by Xilinx for
future use

C_BASE_VECTORS + 0x28
- C_BASE_VECTORS +
0x4F

-

MicroBlaze Processor Reference Guide www.xilinx.com 157
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=157

Chapter 4: MicroBlaze Application Binary Interface
MicroBlaze allows exception and interrupt handler routines to be located at any
address location addressable using 32 bits.

The user exception handler code starts with the label _exception_handler, the
hardware exception handler starts with _hw_exception_handler, while the
interrupt handler code starts with the label _interrupt_handler for interrupts
that do not use low-latency handlers.

In the current MicroBlaze system, there are dummy routines for interrupt and user
exception handling, which you can change. In order to override these routines and
link your own interrupt and exception handlers, you must define the handler code
with specific attributes.

The interrupt handler code must be defined with attribute interrupt_handler
to ensure that the compiler will generate code to save and restore used registers
and emit an rtid instruction to return from the handler:

void function_name() __attribute__((interrupt_handler));

The user exception handler code must either be defined with either attribute
svc_handler or attribute svc_table_handler:

void function_name() __attribute__((svc_handler));
void function_name() __attribute__((svc_table_handler (ID)));

The first attribute ensures that the compiler will emit an indirect call to the handler
with a brki rD,0x8 instruction, and emit an rtbd instruction to return from the
handler. This means that when the MMU is enabled the handler function is
executed in privileged mode.

The second attribute is declared with a Service ID. In this case the compiler will emit
code to store this ID in register R18 followed by an indirect call to
_exception_handler using a brki rD,0x8 instruction, and emit an rtbd
instruction to return from the handler. It is necessary to override the
_exception_handler function to call the appropriate handler based on the ID
provided in R18.

For more details about the use and syntax of the interrupt handler attribute, please
refer to the GNU Compiler Tools chapter in the Embedded System Tools Reference
Manual.

When software breakpoints are used in the Xilinx Microprocessor Debug (XMD)
tool or the Software Development Kit (SDK) tool, the Break (HW/SW) address
location is reserved for handling the software breakpoint.
158 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=158

Chapter 5

MicroBlaze Instruction Set Architecture

This chapter provides a detailed guide to the Instruction Set Architecture of MicroBlaze™.

Notation
The symbols used throughout this chapter are defined in Table 5-1.
Table 5-1: Symbol Notation

Symbol Meaning

+ Add

- Subtract

× Multiply

/ Divide

∧ Bitwise logical AND

∨ Bitwise logical OR

⊕ Bitwise logical XOR

x Bitwise logical complement of x

← Assignment

>> Right shift

<< Left shift

rx Register x

x[i] Bit i in register x

x[i:j] Bits i through j in register x

= Equal comparison

≠ Not equal comparison

> Greater than comparison

>= Greater than or equal comparison

< Less than comparison

<= Less than or equal comparison
MicroBlaze Processor Reference Guide www.xilinx.com 159
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=159

Chapter 5: MicroBlaze Instruction Set Architecture
| Signal choice

sext(x) Sign-extend x

Mem(x) Memory location at address x

FSLx AXI4-Stream interface x

LSW(x) Least Significant Word of x

isDnz(x) Floating point: true if x is denormalized

isInfinite(x) Floating point: true if x is +∞ or -∞

isPosInfinite(x) Floating point: true if x is +∞

isNegInfinite(x) Floating point: true if x -∞

isNaN(x) Floating point: true if x is a quiet or signalling NaN

isZero(x) Floating point: true if x is +0 or -0

isQuietNaN(x) Floating point: true if x is a quiet NaN

isSigNaN(x) Floating point: true if x is a signaling NaN

signZero(x) Floating point: return +0 for x > 0, and -0 if x < 0

signInfinite(x) Floating point: return +∞ for x > 0, and -∞ if x < 0

Table 5-1: Symbol Notation (Continued)

Symbol Meaning
160 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=160

Formats
Formats
MicroBlaze uses two instruction formats: Type A and Type B.

Type A
Type A is used for register-register instructions. It contains the opcode, one destination and
two source registers.

Type B
Type B is used for register-immediate instructions. It contains the opcode, one destination
and one source registers, and a source 16-bit immediate value.

Instructions
This section provides descriptions of MicroBlaze instructions. Instructions are listed in
alphabetical order. For each instruction Xilinx provides the mnemonic, encoding, a
description, pseudocode of its semantics, and a list of registers that it modifies.

Opcode Destination Reg Source Reg A Source Reg B 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

Opcode Destination Reg Source Reg A Immediate Value

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 161
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=161

Chapter 5: MicroBlaze Instruction Set Architecture
add Arithmetic Add

Description
The sum of the contents of registers rA and rB, is placed into register rD.

Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic addk. Bit
4 of the instruction (labeled as C in the figure) is set to one for the mnemonic addc. Both
bits are set to one for the mnemonic addkc.

When an add instruction has bit 3 set (addk, addkc), the carry flag will Keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 is cleared (add,
addc), then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addc, addkc), the content of the carry flag
(MSR[C]) affects the execution of the instruction. When bit 4 is cleared (add, addk), the
content of the carry flag does not affect the execution of the instruction (providing a
normal addition).

Pseudocode
if C = 0 then
(rD) ← (rA) + (rB)

else
(rD) ← (rA) + (rB) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered
• rD
• MSR[C]

Latency
1 cycle

Note
The C bit in the instruction opcode is not the same as the carry bit in the MSR.

The “add r0, r0, r0” (= 0x00000000) instruction is never used by the compiler and usually
indicates uninitialized memory. If you are using illegal instruction exceptions you can trap
these instructions by setting the MicroBlaze parameter C_OPCODE_0x0_ILLEGAL=1.

add rD, rA, rB Add

addc rD, rA, rB Add with Carry

addk rD, rA, rB Add and Keep Carry

addkc rD, rA, rB Add with Carry and Keep Carry

0 0 0 K C 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

162 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=162

Instructions
addi Arithmetic Add Immediate

Description
The sum of the contents of registers rA and the value in the IMM field, sign-extended to 32
bits, is placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one
for the mnemonic addik. Bit 4 of the instruction (labeled as C in the figure) is set to one for
the mnemonic addic. Both bits are set to one for the mnemonic addikc.

When an addi instruction has bit 3 set (addik, addikc), the carry flag will keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addi,
addic), then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addic, addikc), the content of the carry flag
(MSR[C]) affects the execution of the instruction. When bit 4 is cleared (addi, addik), the
content of the carry flag does not affect the execution of the instruction (providing a
normal addition).

Pseudocode
if C = 0 then
(rD) ← (rA) + sext(IMM)

else
(rD) ← (rA) + sext(IMM) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered
• rD
• MSR[C]

Latency
1 cycle

Notes
The C bit in the instruction opcode is not the same as the carry bit in the MSR.

By default, Type B Instructions take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See the instruction “imm,” page 204 for details on using
32-bit immediate values.

addi rD, rA, IMM Add Immediate

addic rD, rA, IMM Add Immediate with Carry

addik rD, rA, IMM Add Immediate and Keep Carry

addikc rD, rA, IMM Add Immediate with Carry and Keep Carry

0 0 1 K C 0 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 163
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=163

Chapter 5: MicroBlaze Instruction Set Architecture
and Logical AND

Description
The contents of register rA are ANDed with the contents of register rB; the result is placed
into register rD.

Pseudocode
(rD) ← (rA) ∧ (rB)

Registers Altered
• rD

Latency
1 cycle

and rD, rA, rB

1 0 0 0 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

164 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=164

Instructions
andi Logial AND with Immediate

Description
The contents of register rA are ANDed with the value of the IMM field, sign-extended to 32
bits; the result is placed into register rD.

Pseudocode
(rD) ← (rA) ∧ sext(IMM)

Registers Altered
• rD

Latency
1 cycle

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

andi rD, rA, IMM

1 0 1 0 0 1 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 165
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=165

Chapter 5: MicroBlaze Instruction Set Architecture
andn Logical AND NOT

Description
The contents of register rA are ANDed with the logical complement of the contents of
register rB; the result is placed into register rD.

Pseudocode
(rD) ← (rA) ∧ (rB)

Registers Altered
• rD

Latency
1 cycle

andn rD, rA, rB

1 0 0 0 1 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

166 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=166

Instructions
andni Logical AND NOT with Immediate

Description
The IMM field is sign-extended to 32 bits. The contents of register rA are ANDed with the
logical complement of the extended IMM field; the result is placed into register rD.

Pseudocode
(rD) ← (rA) ∧ (sext(IMM))

Registers Altered
• rD

Latency
1 cycle

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

andni rD, rA, IMM

1 0 1 0 1 1 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 167
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=167

Chapter 5: MicroBlaze Instruction Set Architecture
beq Branch if Equal

Description
Branch if rA is equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic beqd will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot,
so the instruction to be executed after the branch is the target instruction.

Pseudocode
If rA = 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note
A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

beq rA, rB Branch if Equal

beqd rA, rB Branch if Equal with Delay

1 0 0 1 1 1 D 0 0 0 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

168 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=168

Instructions
beqi Branch Immediate if Equal

Description
Branch if rA is equal to 0, to the instruction located in the offset value of IMM. The target of
the branch will be the instruction at address PC + IMM.

The mnemonic beqid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution
before executing the target instruction. If the D bit is not set, it means that there is no delay
slot, so the instruction to be executed after the branch is the target instruction.

Pseudocode
If rA = 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
1 cycle (if branch is not taken, or successful branch prediction occurs)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict occurs)

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

beqi rA, IMM Branch Immediate if Equal

beqid rA, IMM Branch Immediate if Equal with Delay

1 0 1 1 1 1 D 0 0 0 0 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 169
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=169

Chapter 5: MicroBlaze Instruction Set Architecture
bge Branch if Greater or Equal

Description
Branch if rA is greater or equal to 0, to the instruction located in the offset value of rB. The
target of the branch will be the instruction at address PC + rB.

The mnemonic bged will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot,
so the instruction to be executed after the branch is the target instruction.

Pseudocode
If rA >= 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)

Note
A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

bge rA, rB Branch if Greater or Equal

bged rA, rB Branch if Greater or Equal with Delay

1 0 0 1 1 1 D 0 1 0 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

170 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=170

Instructions
bgei Branch Immediate if Greater or Equal

Description
Branch if rA is greater or equal to 0, to the instruction located in the offset value of IMM.
The target of the branch will be the instruction at address PC + IMM.

The mnemonic bgeid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution
before executing the target instruction. If the D bit is not set, it means that there is no delay
slot, so the instruction to be executed after the branch is the target instruction.

Pseudocode
If rA >= 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction

mispredict occurs)

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

bgei rA, IMM Branch Immediate if Greater or Equal

bgeid rA, IMM Branch Immediate if Greater or Equal with Delay

1 0 1 1 1 1 D 0 1 0 1 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 171
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=171

Chapter 5: MicroBlaze Instruction Set Architecture
bgt Branch if Greater Than

Description
Branch if rA is greater than 0, to the instruction located in the offset value of rB. The target
of the branch will be the instruction at address PC + rB.

The mnemonic bgtd will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot,
so the instruction to be executed after the branch is the target instruction.

Pseudocode
If rA > 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)

Note
A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

bgt rA, rB Branch if Greater Than

bgtd rA, rB Branch if Greater Than with Delay

1 0 0 1 1 1 D 0 1 0 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

172 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=172

Instructions
bgti Branch Immediate if Greater Than

Description
Branch if rA is greater than 0, to the instruction located in the offset value of IMM. The
target of the branch will be the instruction at address PC + IMM.

The mnemonic bgtid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot,
so the instruction to be executed after the branch is the target instruction.

Pseudocode
If rA > 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction

mispredict occurs)

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

bgti rA, IMM Branch Immediate if Greater Than

bgtid rA, IMM Branch Immediate if Greater Than with Delay

1 0 1 1 1 1 D 0 1 0 0 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 173
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=173

Chapter 5: MicroBlaze Instruction Set Architecture
ble Branch if Less or Equal

Description
Branch if rA is less or equal to 0, to the instruction located in the offset value of rB. The
target of the branch will be the instruction at address PC + rB.

The mnemonic bled will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot,
so the instruction to be executed after the branch is the target instruction.

Pseudocode
If rA <= 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)

Note
A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

ble rA, rB Branch if Less or Equal

bled rA, rB Branch if Less or Equal with Delay

1 0 0 1 1 1 D 0 0 1 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

174 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=174

Instructions
blei Branch Immediate if Less or Equal

Description
Branch if rA is less or equal to 0, to the instruction located in the offset value of IMM. The
target of the branch will be the instruction at address PC + IMM.

The mnemonic bleid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot,
so the instruction to be executed after the branch is the target instruction.

Pseudocode
If rA <= 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction

mispredict occurs)

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

blei rA, IMM Branch Immediate if Less or Equal

bleid rA, IMM Branch Immediate if Less or Equal with Delay

1 0 1 1 1 1 D 0 0 1 1 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 175
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=175

Chapter 5: MicroBlaze Instruction Set Architecture
blt Branch if Less Than

Description
Branch if rA is less than 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bltd will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot,
so the instruction to be executed after the branch is the target instruction.

Pseudocode
If rA < 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set)

Note
A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

blt rA, rB Branch if Less Than

bltd rA, rB Branch if Less Than with Delay

1 0 0 1 1 1 D 0 0 1 0 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

176 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=176

Instructions
blti Branch Immediate if Less Than

Description
Branch if rA is less than 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bltid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot,
so the instruction to be executed after the branch is the target instruction.

Pseudocode
If rA < 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction

mispredict occurs)

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

blti rA, IMM Branch Immediate if Less Than

bltid rA, IMM Branch Immediate if Less Than with Delay

1 0 1 1 1 1 D 0 0 1 0 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 177
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=177

Chapter 5: MicroBlaze Instruction Set Architecture
bne Branch if Not Equal

Description
Branch if rA not equal to 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bned will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot,
so the instruction to be executed after the branch is the target instruction.

Pseudocode
If rA ≠ 0 then
PC ← PC + rB

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set)

3 cycles (if branch is taken and the D bit is not set)

Note
A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

bne rA, rB Branch if Not Equal

bned rA, rB Branch if Not Equal with Delay

1 0 0 1 1 1 D 0 0 0 1 rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

178 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=178

Instructions
bnei Branch Immediate if Not Equal

Description
Branch if rA not equal to 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bneid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following
the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot,
so the instruction to be executed after the branch is the target instruction.

Pseudocode
If rA ≠ 0 then
PC ← PC + sext(IMM)

else
PC ← PC + 4

if D = 1 then
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if branch is not taken, or successful branch prediction occurs)
• 2 cycles (if branch is taken and the D bit is set)
• 3 cycles (if branch is taken and the D bit is not set, or a branch prediction

mispredict occurs)

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

bnei rA, IMM Branch Immediate if Not Equal

bneid rA, IMM Branch Immediate if Not Equal with Delay

1 0 1 1 1 1 D 0 0 0 1 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 179
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=179

Chapter 5: MicroBlaze Instruction Set Architecture
br Unconditional Branch

Description
Branch to the instruction located at address determined by rB.

The mnemonics brld and brald will set the L bit. If the L bit is set, linking will be performed.
The current value of PC will be stored in rD.

The mnemonics bra, brad and brald will set the A bit. If the A bit is set, it means that the
branch is to an absolute value and the target is the value in rB, otherwise, it is a relative
branch and the target will be PC + rB.

The mnemonics brd, brad, brld and brald will set the D bit. The D bit determines whether
there is a branch delay slot or not. If the D bit is set, it means that there is a delay slot and
the instruction following the branch (that is, in the branch delay slot) is allowed to complete
execution before executing the target instruction.

If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
if L = 1 then
(rD) ← PC

if A = 1 then
PC ← (rB)

else
PC ← PC + (rB)
if D = 1 then

allow following instruction to complete execution

Registers Altered
• rD
• PC

Latency
• 2 cycles (if the D bit is set)
• 3 cycles (if the D bit is not set)

br rB Branch

bra rB Branch Absolute

brd rB Branch with Delay

brad rB Branch Absolute with Delay

brld rD, rB Branch and Link with Delay

brald rD, rB Branch Absolute and Link with Delay

1 0 0 1 1 0 rD D A L 0 0 rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

180 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=180

Instructions
Note
The instructions brl and bral are not available. A delay slot must not be used by the
following: imm, branch, or break instructions. Interrupts and external hardware breaks are
deferred until after the delay slot branch has been completed.
MicroBlaze Processor Reference Guide www.xilinx.com 181
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=181

Chapter 5: MicroBlaze Instruction Set Architecture
bri Unconditional Branch Immediate

Description
Branch to the instruction located at address determined by IMM, sign-extended to 32 bits.

The mnemonics brlid and bralid will set the L bit. If the L bit is set, linking will be performed.
The current value of PC will be stored in rD.

The mnemonics brai, braid and bralid will set the A bit. If the A bit is set, it means that the
branch is to an absolute value and the target is the value in IMM, otherwise, it is a relative
branch and the target will be PC + IMM.

The mnemonics brid, braid, brlid and bralid will set the D bit. The D bit determines whether
there is a branch delay slot or not. If the D bit is set, it means that there is a delay slot and
the instruction following the branch (that is, in the branch delay slot) is allowed to complete
execution before executing the target instruction. If the D bit is not set, it means that there
is no delay slot, so the instruction to be executed after the branch is the target instruction.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and
“bralid rD, C_BASE_VECTORS+0x8“ is used to perform a User Vector Exception, the
Machine Status Register bits User Mode and Virtual Mode are cleared.

Pseudocode
if L = 1 then
(rD) ← PC

if A = 1 then
PC ← sext(IMM)

else
PC ← PC + sext(IMM)

if D = 1 then
allow following instruction to complete execution

if D = 1 and A = 1 and L = 1 and IMM = C_BASE_VECTORS+0x8 then
MSR[UMS] ← MSR[UM]
MSR[VMS] ← MSR[VM]
MSR[UM] ← 0
MSR[VM] ← 0

bri IMM Branch Immediate

brai IMM Branch Absolute Immediate

brid IMM Branch Immediate with Delay

braid IMM Branch Absolute Immediate with Delay

brlid rD, IMM Branch and Link Immediate with Delay

bralid rD, IMM Branch Absolute and Link Immediate with Delay

1 0 1 1 1 0 rD D A L 0 0 IMM

0 6 1
1

1
6

3
1

182 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=182

Instructions
Registers Altered
• rD
• PC
• MSR[UM], MSR[VM]

Latency
• 1 cycle (if successful branch prediction occurs)
• 2 cycles (if the D bit is set)
• 3 cycles (if the D bit is not set, or a branch prediction mispredict occurs)

Notes
The instructions brli and brali are not available.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.
MicroBlaze Processor Reference Guide www.xilinx.com 183
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=183

Chapter 5: MicroBlaze Instruction Set Architecture
brk Break

Description
Branch and link to the instruction located at address value in rB. The current value of PC will
be stored in rD. The BIP flag in the MSR will be set, and the reservation bit will be cleared.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is
privileged. This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a
Privileged Instruction exception occurs.

Pseudocode
if MSR[UM] = 1 then
ESR[EC] ← 00111

else
(rD) ← PC
PC ← (rB)
MSR[BIP] ← 1
Reservation ← 0

Registers Altered
• rD
• PC
• MSR[BIP]
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 3 cycles

brk rD, rB

1 0 0 1 1 0 rD 0 1 1 0 0 rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
184 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=184

Instructions
brki Break Immediate

Description
Branch and link to the instruction located at address value in IMM, sign-extended to 32 bits.
The current value of PC will be stored in rD. The BIP flag in the MSR will be set, and the
reservation bit will be cleared.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is
privileged, except as a special case when “brki rD, C_BASE_VECTORS+0x8” or “brki
rD, C_BASE_VECTORS+0x18” is used to perform a Software Break. This means that, apart
from the special case, if the instruction is attempted in User Mode (MSR[UM] = 1) a
Privileged Instruction exception occurs.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and
“brki rD, C_BASE_VECTORS+0x8” or “brki rD, C_BASE_VECTORS+0x18” is used to
perform a Software Break, the Machine Status Register bits User Mode and Virtual Mode
are cleared.

Pseudocode
if MSR[UM] and IMM ≠ C_BASE_VECTORS+0x8 and IMM ≠ C_BASE_VECTORS+0x18 then
ESR[EC] ← 00111

else
(rD) ← PC
PC ← sext(IMM)
MSR[BIP] ← 1
Reservation ← 0
if IMM = C_BASE_VECTORS+0x8 or IMM = C_BASE_VECTORS+0x18 then
MSR[UMS] ← MSR[UM]MSR[UM] ← 0
MSR[VMS] ← MSR[VM]MSR[VM] ← 0

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• PC
• MSR[BIP], MSR[UM], MSR[VM]
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 3 cycles

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

As a special case, the imm instruction does not override a Software Break “brki rD, 0x18”
when C_USE_DEBUG. is set, irrespective of the value of C_BASE_VECTORS, to allow
Software Break after an imm instruction.

brki rD, IMM

1 0 1 1 1 0 rD 0 1 1 0 0 IMM

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 185
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=185

Chapter 5: MicroBlaze Instruction Set Architecture
bs Barrel Shift

Description
Shifts the contents of register rA by the amount specified in register rB and puts the result
in register rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the
left. The mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed
is Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is
Logical.

Pseudocode
if S = 1 then
(rD) ← (rA) << (rB)[27:31]

else
if T = 1 then
if ((rB)[27:31]) ≠ 0 then
(rD)[0:(rB)[27:31]-1] ← (rA)[0]
(rD)[(rB)[27:31]:31] ← (rA) >> (rB)[27:31]

else
(rD) ← (rA)

else
(rD) ← (rA) >> (rB)[27:31]

Registers Altered
• rD

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
These instructions are optional. To use them, MicroBlaze has to be configured to use barrel
shift instructions (C_USE_BARREL=1).

bsrl rD, rA, rB Barrel Shift Right Logical

bsra rD, rA, rB Barrel Shift Right Arithmetical

bsll rD, rA, rB Barrel Shift Left Logical

0 1 0 0 0 1 rD rA rB S T 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

186 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=186

Instructions
bsi Barrel Shift Immediate

Description
Shifts the contents of register rA by the amount specified by IMM and puts the result in
register rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the
left. The mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed
is Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is
Logical.

Pseudocode
if S = 1 then
(rD) ← (rA) << IMM

else
if T = 1 then
if IMM ≠ 0 then
(rD)[0:IMM-1] ← (rA)[0]
(rD)[IMM:31] ← (rA) >> IMM

else
(rD) ← (rA)

else
(rD) ← (rA) >> IMM

Registers Altered
• rD

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Notes
These are not Type B Instructions. There is no effect from a preceding imm instruction.

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel
shift instructions (C_USE_BARREL=1).

bsrli rD, rA, IMM Barrel Shift Right Logical Immediate

bsrai rD, rA, IMM Barrel Shift Right Arithmetical Immediate

bslli rD, rA, IMM Barrel Shift Left Logical Immediate

0 1 1 0 0 1 rD rA 0 0 0 0 0 S T 0 0 0 0 IMM

0 6 1
1

1
6

2
1

2
7

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 187
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=187

Chapter 5: MicroBlaze Instruction Set Architecture
clz Count Leading Zeros

Description
This instruction counts the number of leading zeros in register rA starting from the most
significant bit. The result is a number between 0 and 32, stored in register rD.

The result in rD is 32 when rA is 0, and it is 0 if rA is 0xFFFFFFFF.

Pseudocode
n ← 0
while (rA)[n] = 0

n ← n + 1
(rD) ← n

Registers Altered
• rD

Latency
• 1 cycle

Notes
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

clz rD, rA Count leading zeros in rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

188 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=188

Instructions
cmp Integer Compare

Description
The contents of register rA is subtracted from the contents of register rB and the result is
placed into register rD.

The MSB bit of rD is adjusted to shown true relation between rA and rB. If the U bit is set,
rA and rB is considered unsigned values. If the U bit is clear, rA and rB is considered signed
values.

Pseudocode
(rD) ← (rB) + (rA) + 1
(rD)(MSB) ← (rA) > (rB)

Registers Altered
• rD

Latency
• 1 cycle

cmp rD, rA, rB compare rB with rA (signed)

cmpu rD, rA, rB compare rB with rA (unsigned)

0 0 0 1 0 1 rD rA rB 0 0 0 0 0 0 0 0 0 U 1

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 189
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=189

Chapter 5: MicroBlaze Instruction Set Architecture
fadd Floating Point Arithmetic Add

Description
The floating point sum of registers rA and rB, is placed into register rD.

Pseudocode
if isDnz(rA) or isDnz(rB) then
(rD) ← 0xFFC00000
FSR[DO] ← 1
ESR[EC] ← 00110

else if isSigNaN(rA) or isSigNaN(rB)or
(isPosInfinite(rA) and isNegInfinite(rB)) or
(isNegInfinite(rA) and isPosInfinite(rB))) then

(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) ← 0xFFC00000

else if isDnz((rA)+(rB)) then
(rD) ← signZero((rA)+(rB))
FSR[UF] ← 1
ESR[EC] ← 00110

else if isNaN((rA)+(rB)) then
(rD) ← signInfinite((rA)+(rB))
FSR[OF] ← 1
ESR[EC] ← 00110

else
(rD) ← (rA) + (rB)

Registers Altered
• rD, unless an FP exception is generated, in which case the register is

unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO]

Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater
than 0.

fadd rD, rA, rB Add

0 1 0 1 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
190 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=190

Instructions
frsub Reverse Floating Point Arithmetic Subtraction

Description
The floating point value in rA is subtracted from the floating point value in rB and the result
is placed into register rD.

Pseudocode
if isDnz(rA) or isDnz(rB) then
(rD) ← 0xFFC00000
FSR[DO] ← 1
ESR[EC] ← 00110

else if (isSigNaN(rA) or isSigNaN(rB) or
(isPosInfinite(rA) and isPosInfinite(rB)) or
(isNegInfinite(rA) and isNegInfinite(rB))) then

(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) ← 0xFFC00000

else if isDnz((rB)-(rA)) then
(rD) ← signZero((rB)-(rA))
FSR[UF] ← 1
ESR[EC] ← 00110

else if isNaN((rB)-(rA)) then
(rD) ← signInfinite((rB)-(rA))
FSR[OF] ← 1
ESR[EC] ← 00110

else
(rD) ← (rB) - (rA)

Registers Altered
• rD, unless an FP exception is generated, in which case the register is

unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO]

Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater
than 0.

frsub rD, rA, rB Reverse subtract

0 1 0 1 1 0 rD rA rB 0 0 0 1 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 191
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=191

Chapter 5: MicroBlaze Instruction Set Architecture
fmul Floating Point Arithmetic Multiplication

Description
The floating point value in rA is multiplied with the floating point value in rB and the result
is placed into register rD.

Pseudocode
if isDnz(rA) or isDnz(rB) then
(rD) ← 0xFFC00000
FSR[DO] ← 1
ESR[EC] ← 00110

else
if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isInfinite(rB)) or

(isZero(rB) and isInfinite(rA)) then
(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) ← 0xFFC00000

else if isDnz((rB)*(rA)) then
(rD) ← signZero((rA)*(rB))
FSR[UF] ← 1
ESR[EC] ← 00110

else if isNaN((rB)*(rA)) then
(rD) ← signInfinite((rB)*(rA))
FSR[OF] ← 1
ESR[EC] ← 00110

else
(rD) ← (rB) * (rA)

Registers Altered
• rD, unless an FP exception is generated, in which case the register is

unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO]

Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater
than 0.

fmul rD, rA, rB Multiply

0 1 0 1 1 0 rD rA rB 0 0 1 0 0 0 0 0 0 0 0

0 6 11 16 21 31
192 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=192

Instructions
fdiv Floating Point Arithmetic Division

Description
The floating point value in rB is divided by the floating point value in rA and the result is
placed into register rD.

Pseudocode
if isDnz(rA) or isDnz(rB) then
(rD) ← 0xFFC00000
FSR[DO] ← 1
ESR[EC] ← 00110

else
if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isZero(rB)) or

(isInfinite(rA) and isInfinite(rB)) then
(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) ← 0xFFC00000

else if isZero(rA) and not isInfinite(rB) then
(rD) ← signInfinite((rB)/(rA))
FSR[DZ] ← 1
ESR[EC] ← 00110

else if isDnz((rB) / (rA)) then
(rD) ← signZero((rB) / (rA))
FSR[UF] ← 1
ESR[EC] ← 00110

else if isNaN((rB)/(rA)) then
(rD) ← signInfinite((rB) / (rA))
FSR[OF] ← 1
ESR[EC] ← 00110

else
(rD) ← (rB) / (rA)

Registers Altered
• rD, unless an FP exception is generated, in which case the register is

unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,UF,OF,DO,DZ]

Latency
• 28 cycles with C_AREA_OPTIMIZED=0, 30 cycles with

C_AREA_OPTIMIZED=1

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater
than 0.

fdiv rD, rA, rB Divide

0 1 0 1 1 0 rD rA rB 0 0 1 1 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 193
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=193

Chapter 5: MicroBlaze Instruction Set Architecture
fcmp Floating Point Number Comparison

Description
The floating point value in rB is compared with the floating point value in rA and the
comparison result is placed into register rD. The OpSel field in the instruction code
determines the type of comparison performed.

Pseudocode
if isDnz(rA) or isDnz(rB) then
(rD) ← 0
FSR[DO] ← 1
ESR[EC] ← 00110

else
{read out behavior from Table 5-2}

Registers Altered
• rD, unless an FP exception is generated, in which case the register is

unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,DO]

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 3 cycles with C_AREA_OPTIMIZED=1

Note
These instructions are only available when the MicroBlaze parameter C_USE_FPU is greater
than 0.

Table 5-2, page 195 lists the floating point comparison operations.

fcmp.un rD, rA, rB Unordered floating point comparison

fcmp.lt rD, rA, rB Less-than floating point comparison

fcmp.eq rD, rA, rB Equal floating point comparison

fcmp.le rD, rA, rB Less-or-Equal floating point comparison

fcmp.gt rD, rA, rB Greater-than floating point comparison

fcmp.ne rD, rA, rB Not-Equal floating point comparison

fcmp.ge rD, rA, rB Greater-or-Equal floating point comparison

0 1 0 1 1 0 rD rA rB 0 1 0 0 OpSel 0 0 0 0

0 6 11 16 21 25 28 31
194 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=194

Instructions
Table 5-2: Floating Point Comparison Operation

Comparison Type Operand Relationship

Description OpSel (rB) > (rA) (rB) < (rA) (rB) = (rA) isSigNaN(rA) or
isSigNaN(rB)

isQuietNaN(rA) or
isQuietNaN(rB)

Unordered 000 (rD) ← 0 (rD) ← 0 (rD) ← 0 (rD) ← 1
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 1

Less-than 001 (rD) ← 0 (rD) ← 1 (rD) ← 0 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Equal 010 (rD) ← 0 (rD) ← 0 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0

Less-or-equal 011 (rD) ← 0 (rD) ← 1 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Greater-than 100 (rD) ← 1 (rD) ← 0 (rD) ← 0 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Not-equal 101 (rD) ← 1 (rD) ← 1 (rD) ← 0 (rD) ← 1
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 1

Greater-or-equal 110 (rD) ← 1 (rD) ← 0 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110
MicroBlaze Processor Reference Guide www.xilinx.com 195
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=195

Chapter 5: MicroBlaze Instruction Set Architecture
flt Floating Point Convert Integer to Float

Description
Converts the signed integer in register rA to floating point and puts the result in register rD.
This is a 32-bit rounding signed conversion that will produce a 32-bit floating point result.

Pseudocode
(rD) ← float ((rA))

Registers Altered
• rD

Latency
• 4 cycles with C_AREA_OPTIMIZED=0
• 6 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2
(Extended).

flt rD, rA

0 1 0 1 1 0 rD rA 0 0 1 0 1 0 0 0 0 0 0 0

0 6 11 16 21 31
196 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=196

Instructions
fint Floating Point Convert Float to Integer

Description
Converts the floating point number in register rA to a signed integer and puts the result in
register rD. This is a 32-bit signed conversion that will produce a 32-bit integer result.

Pseudocode
if isDnz(rA) then
(rD) ← 0xFFC00000
FSR[DO] ← 1
ESR[EC] ← 00110

else if isNaN(rA) then
(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else if isInf(rA) or (rA) < -231 or (rA) > 231 - 1 then
(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else
(rD) ← int ((rA))

Registers Altered
• rD, unless an FP exception is generated, in which case the register is

unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,DO]

Latency
• 5 cycles with C_AREA_OPTIMIZED=0
• 7 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2
(Extended).

fint rD, rA

0 1 0 1 1 0 rD rA 0 0 1 1 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 197
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=197

Chapter 5: MicroBlaze Instruction Set Architecture
fsqrt Floating Point Arithmetic Square Root

Description
Performs a floating point square root on the value in rA and puts the result in register rD.

Pseudocode
if isDnz(rA) then
(rD) ← 0xFFC00000
FSR[DO] ← 1
ESR[EC] ← 00110

else if isSigNaN(rA) then
(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else if isQuietNaN(rA) then
(rD) ← 0xFFC00000

else if (rA) < 0 then
(rD) ← 0xFFC00000
FSR[IO] ← 1
ESR[EC] ← 00110

else if (rA) = -0 then
(rD) ← -0

else
(rD) ← sqrt ((rA))

Registers Altered
• rD, unless an FP exception is generated, in which case the register is

unchanged
• ESR[EC], if an FP exception is generated
• FSR[IO,DO]

Latency
• 27 cycles with C_AREA_OPTIMIZED=0
• 29 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2
(Extended).

fsqrt rD, rA Square Root

0 1 0 1 1 0 rD rA 0 0 1 1 1 0 0 0 0 0 0 0

0 6 11 16 21 31
198 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=198

Instructions
get get from stream interface

Description
MicroBlaze will read from the link x interface and place the result in register rD. If the
available number of links set by C_FSL_LINKS is less than or equal to FSLx, link 0 is used.

The get instruction has 32 variants.

The blocking versions (when ‘n’ bit is ‘0’) will stall MicroBlaze until the data from the
interface is valid. The non-blocking versions will not stall micro blaze and will set carry to ‘0’
if the data was valid and to ‘1’ if the data was invalid. In case of an invalid access the
destination register contents is undefined.

All data get instructions (when ‘c’ bit is ‘0’) expect the control bit from the interface to be ‘0’.
If this is not the case, the instruction will set MSR[FSL] to ‘1’. All control get instructions
(when ‘c’ bit is ‘1’) expect the control bit from the interface to be ‘1’. If this is not the case,
the instruction will set MSR[FSL] to ‘1’.

The exception versions (when ‘e’ bit is ‘1’) will generate an exception if there is a control bit
mismatch. In this case ESR is updated with EC set to the exception cause and ESS set to the
link index. The target register, rD, is not updated when an exception is generated, instead
the data is stored in EDR.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the read
signal to the link is not asserted.

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. This means that a sequence of
atomic instructions can be grouped together without an interrupt breaking the program
flow. However, note that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly
allowed by setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This
means that if these instructions are attempted in User Mode (MSR[UM]=1) a Privileged
Instruction exception occurs.

tneaget rD, FSLx get data from link x
t = test-only
n = non-blocking
e = exception if control bit set
a = atomic

tnecaget rD, FSLx get control from link x
t = test-only
n = non-blocking
e = exception if control bit not set
a = atomic

0 1 1 0 1 1 rD 0 0 0 0 0 0 n c t a e 0 0 0 0 0 0 FSLx

0 6 11 16 28 31
MicroBlaze Processor Reference Guide www.xilinx.com 199
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=199

Chapter 5: MicroBlaze Instruction Set Architecture
Pseudocode
if MSR[UM] = 1 then
ESR[EC] ← 00111

else
x ← FSLx
if x >= C_FSL_LINKS then
x ← 0

(rD) ← Sx_AXIS_TDATA
if (n = 1) then
MSR[Carry] ← Sx_AXIS_TVALID

if Sx_AXIS_TLAST ≠ c and Sx_AXIS_TVALID then
MSR[FSL] ← 1
if (e = 1) then
ESR[EC] ← 00000
ESR[ESS]← instruction bits [28:31]
EDR ← Sx_AXIS_TDATA

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[FSL]
• MSR[Carry]
• ESR[EC], in case a stream exception or a privileged instruction exception is

generated
• ESR[ESS], in case a stream exception is generated
• EDR, in case a stream exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1
The blocking versions of this instruction will stall the pipeline of MicroBlaze until the
instruction can be completed. Interrupts are served when the parameter
C_USE_EXTENDED_FSL_INSTR is set to 1, and the instruction is not atomic.

Note
To refer to an FSLx interface in assembly language, use rfsl0, rfsl1, ... rfsl15.

The blocking versions of this instruction should not be placed in a delay slot when the
parameter C_USE_EXTENDED_FSL_INSTR is set to 1, since this prevents interrupts from
being served.

For non-blocking versions, an rsubc instruction can be used to decrement an index variable.

The ‘e’ bit does not have any effect unless C_FSL_EXCEPTION is set to 1.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is
greater than 0.

The extended instructions (exception, test and atomic versions) are only available when the
MicroBlaze parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely
necessary for performance reasons, since that removes all hardware protection preventing
incorrect use of a link.
200 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=200

Instructions
getd get from stream interface dynamic

Description
MicroBlaze will read from the interface defined by the four least significant bits in rB and
place the result in register rD. If the available number of links set by C_FSL_LINKS is less
than or equal to the four least significant bits in rB, link 0 is used.

The getd instruction has 32 variants.

The blocking versions (when ‘n’ bit is ‘0’) will stall MicroBlaze until the data from the
interface is valid. The non-blocking versions will not stall micro blaze and will set carry to ‘0’
if the data was valid and to ‘1’ if the data was invalid. In case of an invalid access the
destination register contents is undefined.

All data get instructions (when ‘c’ bit is ‘0’) expect the control bit from the interface to be ‘0’.
If this is not the case, the instruction will set MSR[FSL] to ‘1’. All control get instructions
(when ‘c’ bit is ‘1’) expect the control bit from the interface to be ‘1’. If this is not the case,
the instruction will set MSR[FSL] to ‘1’.

The exception versions (when ‘e’ bit is ‘1’) will generate an exception if there is a control bit
mismatch. In this case ESR is updated with EC set to the exception cause and ESS set to the
link index. The target register, rD, is not updated when an exception is generated, instead
the data is stored in EDR.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the read
signal to the link is not asserted.

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. This means that a sequence of
atomic instructions can be grouped together without an interrupt breaking the program
flow. However, note that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly
allowed by setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This
means that if these instructions are attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

tneagetd rD, rB get data from link rB[28:31]
t = test-only
n = non-blocking
e = exception if control bit set
a = atomic

tnecagetd rD, rB get control from link rB[28:31]
t = test-only
n = non-blocking
e = exception if control bit not set
a = atomic

0 1 0 0 1 1 rD 0 0 0 0 0 rB 0 n c t a e 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 201
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=201

Chapter 5: MicroBlaze Instruction Set Architecture
Pseudocode
if MSR[UM] = 1 then
ESR[EC] ← 00111

else
x ← rB[28:31]
if x >= C_FSL_LINKS then
x ← 0

(rD) ← Sx_AXIS_TDATA
if (n = 1) then
MSR[Carry] ← Sx_AXIS_TVALID

if Sx_AXIS_TLAST ≠ c and Sx_AXIS_TVALID then
MSR[FSL] ← 1
if (e = 1) then
ESR[EC] ← 00000
ESR[ESS]← rB[28:31]
EDR ← Sx_AXIS_TDATA

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[FSL]
• MSR[Carry]
• ESR[EC], in case a stream exception or a privileged instruction exception is

generated
• ESR[ESS], in case a stream exception is generated
• EDR, in case a stream exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1
The blocking versions of this instruction will stall the pipeline of MicroBlaze until the
instruction can be completed. Interrupts are served unless the instruction is atomic, which
ensures that the instruction cannot be interrupted.

Note
The blocking versions of this instruction should not be placed in a delay slot, since this
prevents interrupts from being served.

For non-blocking versions, an rsubc instruction can be used to decrement an index variable.

The ‘e’ bit does not have any effect unless C_FSL_EXCEPTION is set to 1.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is
greater than 0 and the parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely
necessary for performance reasons, since that removes all hardware protection preventing
incorrect use of a link.
202 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=202

Instructions
idiv Integer Divide

Description
The contents of register rB is divided by the contents of register rA and the result is placed
into register rD.

If the U bit is set, rA and rB are considered unsigned values. If the U bit is clear, rA and rB are
considered signed values.

If the value of rA is 0, the DZO bit in MSR will be set and the value in rD will be 0, unless an
exception is generated.

If the U bit is clear, the value of rA is -1, and the value of rB is -2147483648, the DZO bit in
MSR will be set and the value in rD will be -2147483648, unless an exception is generated.

Pseudocode
if (rA) = 0 then
(rD) <- 0
MSR[DZO] <- 1
ESR[EC] <- 00101
ESR[DEC] <- 0

else if U = 0 and (rA) = -1 and (rB) = -2147483648 then
(rD) <- -2147483648
MSR[DZO] <- 1
ESR[EC] <- 00101
ESR[DEC] <- 1

else
(rD) ← (rB) / (rA)

Registers Altered
• rD, unless a divide exception is generated, in which case the register is

unchanged
• MSR[DZO], if the value in rA is zero
• ESR[EC], if the value in rA is zero

Latency
• 1 cycle if (rA) = 0, otherwise 32 cycles with C_AREA_OPTIMIZED=0
• 1 cycle if (rA) = 0, otherwise 34 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only valid if MicroBlaze is configured to use a hardware divider
(C_USE_DIV = 1).

idiv rD, rA, rB divide rB by rA (signed)

idivu rD, rA, rB divide rB by rA (unsigned)

0 1 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 U 0

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 203
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=203

Chapter 5: MicroBlaze Instruction Set Architecture
imm Immediate

Description
The instruction imm loads the IMM value into a temporary register. It also locks this value
so it can be used by the following instruction and form a 32-bit immediate value.

The instruction imm is used in conjunction with Type B instructions. Since Type B
instructions have only a 16-bit immediate value field, a 32-bit immediate value cannot be
used directly. However, 32-bit immediate values can be used in MicroBlaze. By default, Type
B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use as the
immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. The imm instruction locks the 16-bit IMM value temporarily for the
next instruction. A Type B instruction that immediately follows the imm instruction will then
form a 32-bit immediate value from the 16-bit IMM value of the imm instruction (upper 16
bits) and its own 16-bit immediate value field (lower 16 bits). If no Type B instruction follows
the imm instruction, the locked value gets unlocked and becomes useless.

Latency
• 1 cycle

Notes
The imm instruction and the Type B instruction following it are atomic; consequently, no
interrupts are allowed between them.

The assembler provided by Xilinx automatically detects the need for imm instructions.
When a 32-bit IMM value is specified in a Type B instruction, the assembler converts the
IMM value to a 16-bit one to assemble the instruction and inserts an imm instruction
before it in the executable file.

imm IMM

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 IMM

0 6 1
1

1
6

3
1

204 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=204

Instructions
lbu Load Byte Unsigned

Description
Loads a byte (8 bits) from the memory location that results from adding the contents of
registers rA and rB. The data is placed in the least significant byte of register rD and the
other three bytes in rD are cleared.

If the R bit is set, a byte reversed memory location is used, loading data with the opposite
endianness of the endianness defined by C_ENDIANNESS and the E bit (if virtual protected
mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid
translation entry corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone
protection. This only applies to accesses with user mode and virtual protected mode
enabled.

Pseudocode
Addr ← (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else
(rD)[24:31] ← Mem(Addr)
(rD)[0:23] ← 0

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
The byte reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

lbu rD, rA, rB

lbur rD, rA, rB

1 1 0 0 0 0 rD rA rB 0 R 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 205
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=205

Chapter 5: MicroBlaze Instruction Set Architecture
lbui Load Byte Unsigned Immediate

Description
Loads a byte (8 bits) from the memory location that results from adding the contents of
register rA with the value in IMM, sign-extended to 32 bits. The data is placed in the least
significant byte of register rD and the other three bytes in rD are cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid
translation entry corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone
protection. This only applies to accesses with user mode and virtual protected mode
enabled.

Pseudocode
Addr ← (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else
(rD)[24:31] ← Mem(Addr)
(rD)[0:23] ← 0

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

lbui rD, rA, IMM

1 1 1 0 0 0 rD rA IMM

0 6 11 16 31
206 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=206

Instructions
lhu Load Halfword Unsigned

Description
Loads a halfword (16 bits) from the halfword aligned memory location that results from
adding the contents of registers rA and rB. The data is placed in the least significant
halfword of register rD and the most significant halfword in rD is cleared.

If the R bit is set, a halfword reversed memory location is used and the two bytes in the
halfword are reversed, loading data with the opposite endianness of the endianness
defined by C_ENDIANNESS and the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid
translation entry corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone
protection. This only applies to accesses with user mode and virtual protected mode
enabled.

An unaligned data access exception occurs if the least significant bit in the address is not
zero.

Pseudocode
Addr ← (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 0; ESR[Rx] ← rD

else
(rD)[16:31] ← Mem(Addr); (rD)[0:15] ← 0

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
The halfword reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

lhu rD, rA, rB

lhur rD, rA, rB

1 1 0 0 0 1 rD rA rB 0 R 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 207
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=207

Chapter 5: MicroBlaze Instruction Set Architecture
lhui Load Halfword Unsigned Immediate

Description
Loads a halfword (16 bits) from the halfword aligned memory location that results from
adding the contents of register rA and the value in IMM, sign-extended to 32 bits. The data
is placed in the least significant halfword of register rD and the most significant halfword in
rD is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid
translation entry corresponding to the address is not found in the TLB. A data storage
exception occurs if access is prevented by a no-access-allowed zone protection. This only
applies to accesses with user mode and virtual protected mode enabled. An unaligned data
access exception occurs if the least significant bit in the address is not zero.

Pseudocode
Addr ← (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 0; ESR[Rx] ← rD

else
(rD)[16:31] ← Mem(Addr)
(rD)[0:15] ← 0

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data

storage exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

lhui rD, rA, IMM

1 1 1 0 0 1 rD rA IMM

0 6 11 16 31
208 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=208

Instructions
lw Load Word

Description
Loads a word (32 bits) from the word aligned memory location that results from adding the
contents of registers rA and rB. The data is placed in register rD.

If the R bit is set, the bytes in the loaded word are reversed , loading data with the opposite
endianness of the endianness defined by C_ENDIANNESS and the E bit (if virtual protected
mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid
translation entry corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone
protection. This only applies to accesses with user mode and virtual protected mode
enabled.

An unaligned data access exception occurs if the two least significant bits in the address are
not zero.

Pseudocode
Addr ← (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[30:31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 0; ESR[Rx] ← rD

else
(rD) ← Mem(Addr)

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data

storage exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
The word reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

lw rD, rA, rB

lwr rD, rA, rB

1 1 0 0 1 0 rD rA rB 0 R 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 209
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=209

Chapter 5: MicroBlaze Instruction Set Architecture
lwi Load Word Immediate

Description
Loads a word (32 bits) from the word aligned memory location that results from adding the
contents of register rA and the value IMM, sign-extended to 32 bits. The data is placed in
register rD. A data TLB miss exception occurs if virtual protected mode is enabled, and a
valid translation entry corresponding to the address is not found in the TLB.A data storage
exception occurs if access is prevented by a no-access-allowed zone protection. This only
applies to accesses with user mode and virtual protected mode enabled. An unaligned data
access exception occurs if the two least significant bits in the address are not zero.

Pseudocode
Addr ← (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[30:31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 0; ESR[Rx] ← rD

else
(rD) ← Mem(Addr)

Registers Altered
• rD, unless an exception is generated, in which case the register is unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data

storage exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

lwi rD, rA, IMM

1 1 1 0 1 0 rD rA IMM

0 6 11 16 31
210 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=210

Instructions
lwx Load Word Exclusive

Description
Loads a word (32 bits) from the word aligned memory location that results from adding the
contents of registers rA and rB. The data is placed in register rD, and the reservation bit is
set. If an AXI4 interconnect with exclusive access enabled is used, and the interconnect
response is not EXOKAY, the carry flag (MSR[C]) is set; otherwise the carry flag is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid
translation entry corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone
protection. This only applies to accesses with user mode and virtual protected mode
enabled.

An unaligned data access exception will not occur, even if the two least significant bits in
the address are not zero.

A data bus exception can occur when an AXI4 interconnect with exclusive access enabled is
used, and the interconnect response is not EXOKAY, which means that an exclusive access
cannot be handled.

Enabling AXI exclusive access ensures that the operation is protected from other bus
masters, but requires that the addressed slave supports exclusive access. When exclusive
access is not enabled, only the internal reservation bit is used. Exclusive access is enabled
using the two parameters C_M_AXI_DP_EXCLUSIVE_ACCESS and
C_M_AXI_DC_EXCLUSIVE_ACCESS for the peripheral and cache interconnect,
respectively.

Pseudocode
Addr ← (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]← 10010;ESR[S]← 0
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] ← 10000;ESR[S]← 0; ESR[DIZ] ← 1
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if AXI_Exclusive(Addr) and AXI_Response ≠ EXOKAY and MSR[EE] then
ESR[EC] ← 00100;ESR[ECC]← 0;
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else
(rD) ← Mem(Addr); Reservation ← 1;
if AXI_Exclusive(Addr) and AXI_Response ≠ EXOKAY then
MSR[C] ← 1

else
MSR[C] ← 0

lwx rD, rA, rB

1 1 0 0 1 0 rD rA rB 1 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 211
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=211

Chapter 5: MicroBlaze Instruction Set Architecture
Registers Altered
• rD and MSR[C], unless an exception is generated, in which case they are

unchanged
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data

storage exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is used together with SWX to implement exclusive access, such as
semaphores and spinlocks.

The carry flag (MSR[C]) may not be set immediately (dependent on pipeline stall behavior).
The LWX instruction should not be immediately followed by an MSRCLR, MSRSET, MTS, or
SRC instruction, to ensure the correct value of the carry flag is obtained.
212 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=212

Instructions
mbar Memory Barrier

Description
This instruction ensures that outstanding memory accesses on memory interfaces are
completed before any subsequent instructions are executed. This is necessary to guarantee
that self-modifying code is handled correctly, and that a DMA transfer can be safely started.

With self-modifying code, it is necessary to first use an MBAR instruction to wait for data
accesses, which can be done by setting IMM to 1, and then use another MBAR instruction
to clear the Branch Target Cache and empty the instruction prefetch buffer, which can be
done by setting IMM to 2.

To ensure that data to be read by a DMA unit has been written to memory, it is only
necessary to wait for data accesses, which can be done by setting IMM to 1.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is
privileged when the most significant bit in IMM is set to 1. This means that if the instruction
is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

When the most significant bit in IMM is set to 1 and no exception occurs, MicroBlaze enters
sleep mode after all outstanding accesses have been completed, and sets the Sleep output
signal to indicate this. The pipeline is halted, and MicroBlaze will not continue execution
until a bit in the Wakeup input signal is asserted.

Pseudocode
if (IMM & 1) = 0 then
wait for instruction side memory accesses

if (IMM & 2) = 0 then
wait for data side memory accesses

PC ← PC + 4
if (IMM & 16) = 16 then
enter sleep mode

Registers Altered
• PC
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 1 + N cycles, where N is the number of cycles to wait for memory accesses to

complete

Notes
This instruction must not be preceded by an imm instruction, and must not be placed in a
delay slot.

With XCL, there is no way for this instruction to know when data writes are complete. Hence
it is also necessary to read back the last written value in this case, to ensure that the access
has completed.

The assembler pseudo-instruction sleep can be used instead of “mbar 16” to enter sleep
mode.

mbar IMM Memory Barrier

1 0 1 1 1 0 IMM 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 213
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=213

Chapter 5: MicroBlaze Instruction Set Architecture
mfs Move From Special Purpose Register

Description
Copies the contents of the special purpose register rS into register rD. The special purpose
registers TLBLO and TLBHI are used to copy the contents of the Unified TLB entry indexed
by TLBX.

Pseudocode
switch (rS):
case 0x0000 : (rD) ← PC
case 0x0001 : (rD) ← MSR
case 0x0003 : (rD) ← EAR
case 0x0005 : (rD) ← ESR
case 0x0007 : (rD) ← FSR
case 0x000B : (rD) ← BTR
case 0x000D : (rD) ← EDR
case 0x0800 : (rD) ← SLR
case 0x0802 : (rD) ← SHR
case 0x1000 : (rD) ← PID
case 0x1001 : (rD) ← ZPR
case 0x1002 : (rD) ← TLBX
case 0x1003 : (rD) ← TLBLO
case 0x1004 : (rD) ← TLBHI
case 0x200x : (rD) ← PVR[x] (where x = 0 to 12)
default : (rD) ← Undefined

Registers Altered
• rD

Latency
• 1 cycle

Notes
To refer to special purpose registers in assembly language, use rpc for PC, rmsr for MSR,
rear for EAR, resr for ESR, rfsr for FSR, rbtr for BTR, redr for EDR, rslr for SLR, rshr for SHR,
rpid for PID, rzpr for ZPR, rtlblo for TLBLO, rtlbhi for TLBHI, rtlbx for TLBX, and 0 - 12 for
PVR0 - PVR12.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must
precede the MFS instruction to guarantee correct MSR value.

The value read from FSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect FSR must
precede the MFS instruction to guarantee correct FSR value.

mfs rD, rS

1 0 0 1 0 1 rD 0 0 0 0 0 1 0 rS

0 6 11 16 18 31
214 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=214

Instructions
EAR, ESR and BTR are only valid as operands when at least one of the MicroBlaze
C_*_EXCEPTION parameters are set to 1.

EDR is only valid as operand when the parameter C_FSL_EXCEPTION is set to 1 and the
parameter C_FSL_LINKS is greater than 0.

FSR is only valid as an operand when the C_USE_FPU parameter is greater than 0.

SLR and SHR are only valid as an operand when the C_USE_STACK_PROTECTION parameter
is set to 1.

PID, ZPR, TLBLO and TLBHI are only valid as operands when the parameter C_USE_MMU >
1 (User Mode) and the parameter C_MMU_TLB_ACCESS = 1 (Read) or 3 (Full).

TLBX is only valid as operand when the parameter C_USE_MMU > 1 (User Mode) and the
parameter C_MMU_TLB_ACCESS > 0 (Minimal).

PVR0 is only valid as an operand when C_PVR is 1 (Basic) or 2 (Full), and PVR1 - PVR12 are
only valid as operands when C_PVR is set to 2 (Full).
MicroBlaze Processor Reference Guide www.xilinx.com 215
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=215

Chapter 5: MicroBlaze Instruction Set Architecture
msrclr Read MSR and clear bits in MSR

Description
Copies the contents of the special purpose register MSR into register rD.
Bit positions in the IMM value that are 1 are cleared in the MSR. Bit positions that are 0 in
the IMM value are left untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is
privileged for all IMM values except those only affecting C. This means that if the
instruction is attempted in User Mode (MSR[UM] = 1) in this case a Privileged Instruction
exception occurs.

Pseudocode
if MSR[UM] = 1 and IMM ≠ 0x4 then
ESR[EC] ← 00111

else
(rD) ← (MSR)
(MSR) ← (MSR) ∧ (IMM))

Registers Altered
• rD
• MSR
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 1 cycle

Notes
MSRCLR will affect the Carry bit immediately while the remaining bits will take effect one
cycle after the instruction has been executed. When clearing the IE bit, it is guaranteed that
the processor will not react to any interrupt for the subsequent instructions.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must
precede the MSRCLR instruction to guarantee correct MSR value. This applies to both the
value copied to register rD and the changed MSR value itself.

The immediate values has to be less than 215 when C_USE_MMU >= 1 (User Mode), and less
than 214 otherwise. Only bits 17 to 31 of the MSR can be cleared when C_USE_MMU >= 1
(User Mode), and.bits 18 to 31 otherwise.

This instruction is only available when the parameter C_USE_MSR_INSTR is set to 1.

When clearing MSR[VM] the instruction must always be followed by a synchronizing
branch instruction, for example BRI 4.

msrclr rD, Imm

1 0 0 1 0 1 rD 1 0 0 0 1 0 Imm15

0 6 11 16 17 31
216 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=216

Instructions
msrset Read MSR and set bits in MSR

Description
Copies the contents of the special purpose register MSR into register rD. Bit positions in the
IMM value that are 1 are set in the MSR. Bit positions that are 0 in the IMM value are left
untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is
privileged for all IMM values except those only affecting C. This means that if the
instruction is attempted in User Mode (MSR[UM] = 1) in this case a Privileged Instruction
exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port
is set to 11 if the MSR{IE] bit is set by executing this instruction.

Pseudocode
if MSR[UM] = 1 and IMM ≠ 0x4 then
ESR[EC] ← 00111

else
(rD) ← (MSR)
(MSR) ← (MSR) ∨ (IMM)
if (IMM) & 2
Interrupt_Ack ← 11

Registers Altered
• rD
• MSR
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 1 cycle

Notes
MSRSET will affect the Carry bit immediately while the remaining bits will take effect one
cycle after the instruction has been executed. When setting the EIP or BIP bit, it is
guaranteed that the processor will not react to any interrupt or normal hardware break for
the subsequent instructions.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must
precede the MSRSET instruction to guarantee correct MSR value. This applies to both the
value copied to register rD and the changed MSR value itself.

The immediate values has to be less than 215 when C_USE_MMU >= 1 (User Mode), and less
than 214 otherwise. Only bits 17 to 31 of the MSR can be set when C_USE_MMU >= 1 (User
Mode), and.bits 18 to 31 otherwise.

This instruction is only available when the parameter C_USE_MSR_INSTR is set to 1.

When setting MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

msrset rD, Imm

1 0 0 1 0 1 rD 1 0 0 0 0 0 IMM

0 6 11 16 17 31
MicroBlaze Processor Reference Guide www.xilinx.com 217
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=217

Chapter 5: MicroBlaze Instruction Set Architecture
mts Move To Special Purpose Register

Description
Copies the contents of register rD into the special purpose register rS. The special purpose
registers TLBLO and TLBHI are used to copy to the Unified TLB entry indexed by TLBX.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is
privileged. This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a
Privileged Instruction exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port
is set to 11 if the MSR{IE] bit is set by executing this instruction.

Pseudocode
if MSR[UM] = 1 then
ESR[EC] ← 00111

else
switch (rS)

 case 0x0001 : MSR ← (rA)
 case 0x0007 : FSR ← (rA)

case 0x0800 : SLR ← (rA)
case 0x0802 : SHR ← (rA)
case 0x1000 : PID ← (rA)

 case 0x1001 : ZPR ← (rA)
 case 0x1002 : TLBX ← (rA)
 case 0x1003 : TLBLO ← (rA)
 case 0x1004 : TLBHI ← (rA)
 case 0x1005 : TLBSX ← (rA)
if (rS) = 0x0001 and (rA) & 2
Interrupt_Ack ← 11

Registers Altered
• rS
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 1 cycle

Notes
When writing MSR using MTS, all bits take effect one cycle after the instruction has been
executed. An MTS instruction writing MSR should never be followed back-to-back by an
instruction that uses the MSR content. When clearing the IE bit, it is guaranteed that the
processor will not react to any interrupt for the subsequent instructions. When setting the
EIP or BIP bit, it is guaranteed that the processor will not react to any interrupt or normal
hardware break for the subsequent instructions.

mts rS, rA

1 0 0 1 0 1 0 0 0 0 0 rA 1 1 rS

0 6 11 16 18 31
218 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=218

Instructions
To refer to special purpose registers in assembly language, use rmsr for MSR, rfsr for FSR,
rslr for SLR, rshr for SHR, rpid for PID, rzpr for ZPR, rtlblo for TLBLO, rtlbhi for TLBHI, rtlbx for
TLBX, and rtlbsx for TLBSX.

The PC, ESR, EAR, BTR, EDR and PVR0 - PVR12 cannot be written by the MTS instruction.

The FSR is only valid as a destination if the MicroBlaze parameter C_USE_FPU is greater
than 0.

The SLR and SHR are only valid as a destination if the MicroBlaze parameter
C_USE_STACK_PROTECTION is set to 1.

PID, ZPR and TLBSX are only valid as destinations when the parameter C_USE_MMU > 1
(User Mode) and the parameter C_MMU_TLB_ACCESS > 1 (Read). TLBLO, TLBHI and TLBX
are only valid as destinations when the parameter C_USE_MMU > 1 (User Mode).

When changing MSR[VM] or PID the instruction must always be followed by a
synchronizing branch instruction, for example BRI 4.

After writing to TLBHI in order to invalidate one or more UTLB entries, an MBAR 1
instruction must be issued to ensure that coherency is preserved in a coherent multi-
processor system.
MicroBlaze Processor Reference Guide www.xilinx.com 219
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=219

Chapter 5: MicroBlaze Instruction Set Architecture
mul Multiply

Description
Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-
bit by 32-bit multiplication that will produce a 64-bit result. The least significant word of
this value is placed in rD. The most significant word is discarded.

Pseudocode
(rD) ← LSW((rA) × (rB))

Registers Altered
• rD

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 3 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only valid if the target architecture has multiplier primitives, and if
present, the MicroBlaze parameter C_USE_HW_MUL is greater than 0.

mul rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

220 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=220

Instructions
mulh Multiply High

Description
Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-
bit by 32-bit signed multiplication that will produce a 64-bit result. The most significant
word of this value is placed in rD. The least significant word is discarded.

Pseudocode
(rD) ← MSW((rA) × (rB)), signed

Registers Altered
• rD

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 3 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only valid if the target architecture has multiplier primitives, and if
present, the MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULH is used, bit 30 and 31 in the MUL instruction must be zero to distinguish
between the two instructions. In previous versions of MicroBlaze, these bits were defined as
zero, but the actual values were not relevant.

mulh rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 1

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 221
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=221

Chapter 5: MicroBlaze Instruction Set Architecture
mulhu Multiply High Unsigned

Description
Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-
bit by 32-bit unsigned multiplication that will produce a 64-bit unsigned result. The most
significant word of this value is placed in rD. The least significant word is discarded.

Pseudocode
(rD) ← MSW((rA) × (rB)), unsigned

Registers Altered
• rD

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 3 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only valid if the target architecture has multiplier primitives, and if
present, the MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULHU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish
between the two instructions. In previous versions of MicroBlaze, these bits were defined as
zero, but the actual values were not relevant.

mulhu rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 1 1

0 6 1
1

1
6

2
1

3
1

222 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=222

Instructions
mulhsu Multiply High Signed Unsigned

Description
Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-
bit signed by 32-bit unsigned multiplication that will produce a 64-bit signed result. The
most significant word of this value is placed in rD. The least significant word is discarded.

Pseudocode
(rD) ← MSW((rA), signed × (rB), unsigned), signed

Registers Altered
• rD

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 3 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is only valid if the target architecture has multiplier primitives, and if
present, the MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULHSU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish
between the two instructions. In previous versions of MicroBlaze, these bits were defined as
zero, but the actual values were not relevant.

mulhsu rD, rA, rB

0 1 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 1 0

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 223
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=223

Chapter 5: MicroBlaze Instruction Set Architecture
muli Multiply Immediate

Description
Multiplies the contents of registers rA and the value IMM, sign-extended to 32 bits; and
puts the result in register rD. This is a 32-bit by 32-bit multiplication that will produce a 64-
bit result. The least significant word of this value is placed in rD. The most significant word
is discarded.

Pseudocode
(rD) ← LSW((rA) × sext(IMM))

Registers Altered
• rD

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 3 cycles with C_AREA_OPTIMIZED=1

Notes
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

This instruction is only valid if the target architecture has multiplier primitives, and if
present, the MicroBlaze parameter C_USE_HW_MUL is greater than 0.

muli rD, rA, IMM

0 1 1 0 0 0 rD rA IMM

0 6 1
1

1
6

3
1

224 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=224

Instructions
or Logical OR

Description
The contents of register rA are ORed with the contents of register rB; the result is placed
into register rD.

Pseudocode
(rD) ← (rA) ∨ (rB)

Registers Altered
• rD

Latency
• 1 cycle

Note
The assembler pseudo-instruction nop is implemented as “or r0, r0, r0”.

or rD, rA, rB

1 0 0 0 0 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 225
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=225

Chapter 5: MicroBlaze Instruction Set Architecture
ori Logical OR with Immediate

Description
The contents of register rA are ORed with the extended IMM field, sign-extended to 32 bits;
the result is placed into register rD.

Pseudocode
(rD) ← (rA) ∨ sext(IMM)

Registers Altered
• rD

Latency
• 1 cycle

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

ori rD, rA, IMM

1 0 1 0 0 0 rD rA IMM

0 6 1
1

1
6

3
1

226 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=226

Instructions
pcmpbf Pattern Compare Byte Find

Description
The contents of register rA is bytewise compared with the contents in register rB.

• rD is loaded with the position of the first matching byte pair, starting with MSB
as position 1, and comparing until LSB as position 4

• If none of the byte pairs match, rD is set to 0

Pseudocode
if rB[0:7] = rA[0:7] then
(rD) ← 1

else
if rB[8:15] = rA[8:15] then
(rD) ← 2

else
if rB[16:23] = rA[16:23] then
(rD) ← 3

else
if rB[24:31] = rA[24:31] then
(rD) ← 4

else
(rD) ← 0

Registers Altered
• rD

Latency
• 1 cycle

Note
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

pcmpbf rD, rA, rB bytewise comparison returning position of
first match

1 0 0 0 0 0 rD rA rB 1 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 227
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=227

Chapter 5: MicroBlaze Instruction Set Architecture
pcmpeq Pattern Compare Equal

Description
The contents of register rA is compared with the contents in register rB.

• rD is loaded with 1 if they match, and 0 if not

Pseudocode
if (rB) = (rA) then
(rD) ← 1

else
(rD) ← 0

Registers Altered
• rD

Latency
• 1 cycle

Note
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

pcmpeq rD, rA, rB equality comparison with a positive boolean
result

1 0 0 0 1 0 rD rA rB 1 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

228 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=228

Instructions
pcmpne Pattern Compare Not Equal

Description
The contents of register rA is compared with the contents in register rB.

• rD is loaded with 0 if they match, and 1 if not

Pseudocode
if (rB) = (rA) then
(rD) ← 0

else
(rD) ← 1

Registers Altered
• rD

Latency
• 1 cycle

Note
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

pcmpne rD, rA, rB equality comparison with a negative
boolean result

1 0 0 0 1 1 rD rA rB 1 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 229
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=229

Chapter 5: MicroBlaze Instruction Set Architecture
put Put to stream interface

Description
MicroBlaze will write the value from register rA to the link x interface. If the available
number of links set by C_FSL_LINKS is less than or equal to FSLx, link 0 is used.

The put instruction has 16 variants.

The blocking versions (when ‘n’ is ‘0’) will stall MicroBlaze until there is space available in
the interface. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if
space was available and to ‘1’ if no space was available.

All data put instructions (when ‘c’ is ‘0’) will set the control bit to the interface to ‘0’ and all
control put instructions (when ‘c’ is ‘1’) will set the control bit to ‘1’.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the write
signal to the link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. This means that a sequence of
atomic instructions can be grouped together without an interrupt breaking the program
flow. However, note that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly
allowed by setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This
means that if these instructions are attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

naput rA, FSLx put data to link x
n = non-blocking
a = atomic

tnaput FSLx put data to link x test-only
n = non-blocking
a = atomic

ncaput rA, FSLx put control to link x
n = non-blocking
a = atomic

tncaput FSLx put control to link x test-only
n = non-blocking
a = atomic

0 1 1 0 1 1 0 0 0 0 0 rA 1 n c t a 0 0 0 0 0 0 0 FSLx

0 6 11 16 28 31
230 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=230

Instructions
Pseudocode
if MSR[UM] = 1 then
ESR[EC] ← 00111

else
x ← FSLx
if x >= C_FSL_LINKS then
x ← 0

Mx_AXIS_TDATA ← (rA)
if (n = 1) then
MSR[Carry] ← Mx_AXIS_TVALID ∧ Mx_AXIS_TREADY

Mx_AXIS_TLAST ← C

Registers Altered
• MSR[Carry]
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1
The blocking versions of this instruction will stall the pipeline of MicroBlaze until the
instruction can be completed. Interrupts are served when the parameter
C_USE_EXTENDED_FSL_INSTR is set to 1, and the instruction is not atomic.

Note
To refer to an FSLx interface in assembly language, use rfsl0, rfsl1, ... rfsl15.

The blocking versions of this instruction should not be placed in a delay slot when the
parameter C_USE_EXTENDED_FSL_INSTR is set to 1, since this prevents interrupts from
being served.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is
greater than 0.

The extended instructions (test and atomic versions) are only available when the
MicroBlaze parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely
necessary for performance reasons, since that removes all hardware protection preventing
incorrect use of a link.
MicroBlaze Processor Reference Guide www.xilinx.com 231
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=231

Chapter 5: MicroBlaze Instruction Set Architecture
putd Put to stream interface dynamic

Description
MicroBlaze will write the value from register rA to the link interface defined by the four least
significant bits in rB. If the available number of links set by C_FSL_LINKS is less than or
equal to the four least significant bits in rB, link 0 is used.

The putd instruction has 16 variants.

The blocking versions (when ‘n’ is ‘0’) will stall MicroBlaze until there is space available in
the interface. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if
space was available and to ‘1’ if no space was available.

All data putd instructions (when ‘c’ is ‘0’) will set the control bit to the interface to ‘0’ and all
control putd instructions (when ‘c’ is ‘1’) will set the control bit to ‘1’.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the write
signal to the link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. This means that a sequence of
atomic instructions can be grouped together without an interrupt breaking the program
flow. However, note that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly
allowed by setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This
means that if these instructions are attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

naputd rA, rB put data to link rB[28:31]
n = non-blocking
a = atomic

tnaputd rB put data to link rB[28:31] test-only
n = non-blocking
a = atomic

ncaputd rA, rB put control to link rB[28:31]
n = non-blocking
a = atomic

tncaputd rB put control to link rB[28:31] test-only
n = non-blocking
a = atomic

0 1 0 0 1 1 0 0 0 0 0 rA rB 1 n c t a 0 0 0 0 0 0

0 6 11 16 21 31
232 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=232

Instructions
Pseudocode
if MSR[UM] = 1 then
ESR[EC] ← 00111

else
x ← rB[28:31]
if x >= C_FSL_LINKS then
x ← 0

Mx_AXIS_TDATA ← (rA)
if (n = 1) then
MSR[Carry] ← Mx_AXIS_TVALID ∧ Mx_AXIS_TREADY

Mx_AXIS_TLAST ← C

Registers Altered
• MSR[Carry]
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1
The blocking versions of this instruction will stall the pipeline of MicroBlaze until the
instruction can be completed. Interrupts are served unless the instruction is atomic, which
ensures that the instruction cannot be interrupted.

Note
The blocking versions of this instruction should not be placed in a delay slot, since this
prevents interrupts from being served.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is
greater than 0 and the parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely
necessary for performance reasons, since that removes all hardware protection preventing
incorrect use of a link.
MicroBlaze Processor Reference Guide www.xilinx.com 233
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=233

Chapter 5: MicroBlaze Instruction Set Architecture
rsub Arithmetic Reverse Subtract

Description
The contents of register rA is subtracted from the contents of register rB and the result is
placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for
the mnemonic rsubk. Bit 4 of the instruction (labeled as C in the figure) is set to one for the
mnemonic rsubc. Both bits are set to one for the mnemonic rsubkc.

When an rsub instruction has bit 3 set (rsubk, rsubkc), the carry flag will Keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsub,
rsubc), then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (rsubc, rsubkc), the content of the carry flag
(MSR[C]) affects the execution of the instruction. When bit 4 is cleared (rsub, rsubk), the
content of the carry flag does not affect the execution of the instruction (providing a
normal subtraction).

Pseudocode
if C = 0 then
(rD) ← (rB) + (rA) + 1

else
(rD) ← (rB) + (rA) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered
• rD
• MSR[C]

Latency
• 1 cycle

Notes
In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there
is no Borrow, and when the Carry is cleared, it means that there is a Borrow.

rsub rD, rA, rB Subtract

rsubc rD, rA, rB Subtract with Carry

rsubk rD, rA, rB Subtract and Keep Carry

rsubkc rD, rA, rB Subtract with Carry and Keep Carry

0 0 0 K C 1 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

234 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=234

Instructions
rsubi Arithmetic Reverse Subtract Immediate

Description
The contents of register rA is subtracted from the value of IMM, sign-extended to 32 bits,
and the result is placed into register rD. Bit 3 of the instruction (labeled as K in the figure)
is set to one for the mnemonic rsubik. Bit 4 of the instruction (labeled as C in the figure) is
set to one for the mnemonic rsubic. Both bits are set to one for the mnemonic rsubikc.

When an rsubi instruction has bit 3 set (rsubik, rsubikc), the carry flag will Keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsubi,
rsubic), then the carry flag will be affected by the execution of the instruction. When bit 4
of the instruction is set to one (rsubic, rsubikc), the content of the carry flag (MSR[C]) affects
the execution of the instruction. When bit 4 is cleared (rsubi, rsubik), the content of the
carry flag does not affect the execution of the instruction (providing a normal subtraction).

Pseudocode
if C = 0 then
(rD) ← sext(IMM) + (rA) + 1

else
(rD) ← sext(IMM) + (rA) + MSR[C]

if K = 0 then
MSR[C] ← CarryOut

Registers Altered
• rD
• MSR[C]

Latency
• 1 cycle

Notes
In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there
is no Borrow, and when the Carry is cleared, it means that there is a Borrow. By default, Type
B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use as the
immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction “imm,” page 204 for details on using 32-bit
immediate values.

rsubi rD, rA, IMM Subtract Immediate

rsubic rD, rA, IMM Subtract Immediate with Carry

rsubik rD, rA, IMM Subtract Immediate and Keep Carry

rsubikc rD, rA, IMM Subtract Immediate with Carry and Keep Carry

0 0 1 K C 1 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 235
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=235

Chapter 5: MicroBlaze Instruction Set Architecture
rtbd Return from Break
rn from Interrupt

Description
Return from break will branch to the location specified by the contents of rA plus the IMM
field, sign-extended to 32 bits. It will also enable breaks after execution by clearing the BIP
flag in the MSR.

This instruction always has a delay slot. The instruction following the RTBD is always
executed before the branch target. That delay slot instruction has breaks disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is
privileged. This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a
Privileged Instruction exception occurs.

Pseudocode
if MSR[UM] = 1 then
ESR[EC] ← 00111

else
PC ← (rA) + sext(IMM)
allow following instruction to complete execution
MSR[BIP] ← 0
MSR[UM] ← MSR[UMS]
MSR[VM] ← MSR[VMS]

Registers Altered
• PC
• MSR[BIP], MSR[UM], MSR[VM]
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 2 cycles

Note
Convention is to use general purpose register r16 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

rtbd rA, IMM

1 0 1 1 0 1 1 0 0 1 0 rA IMM

0 6 11 16 31
236 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=236

Instructions
rtid Return from Interrupt
rn from Interrupt

Description
Return from interrupt will branch to the location specified by the contents of rA plus the
IMM field, sign-extended to 32 bits. It will also enable interrupts after execution.

This instruction always has a delay slot. The instruction following the RTID is always
executed before the branch target. That delay slot instruction has interrupts disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is
privileged. This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a
Privileged Instruction exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port
is set to 10 when this instruction is executed, and subsequently to 11 when the MSR{IE] bit
is set.

Pseudocode
if MSR[UM] = 1 then
ESR[EC] ← 00111

else
PC ← (rA) + sext(IMM)
Interrupt_Ack ← 10
allow following instruction to complete execution
MSR[IE] ← 1
MSR[UM] ← MSR[UMS]
MSR[VM] ← MSR[VMS]
Interrupt_Ack ← 11

Registers Altered
• PC
• MSR[IE], MSR[UM], MSR[VM]
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 2 cycles

Note
Convention is to use general purpose register r14 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

rtid rA, IMM

1 0 1 1 0 1 1 0 0 0 1 rA IMM

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 237
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=237

Chapter 5: MicroBlaze Instruction Set Architecture
rted Return from Exception

Description
Return from exception will branch to the location specified by the contents of rA plus the
IMM field, sign-extended to 32 bits. The instruction will also enable exceptions after
execution.

This instruction always has a delay slot. The instruction following the RTED is always
executed before the branch target.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is
privileged. This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a
Privileged Instruction exception occurs.

Pseudocode
if MSR[UM] = 1 then
ESR[EC] ← 00111

else
PC ← (rA) + sext(IMM)
allow following instruction to complete execution
MSR[EE] ← 1
MSR[EIP] ← 0
MSR[UM] ← MSR[UMS]
MSR[VM] ← MSR[VMS]
ESR ← 0

Registers Altered
• PC
• MSR[EE], MSR[EIP], MSR[UM], MSR[VM]
• ESR

Latency
• 2 cycles

Note
Convention is to use general purpose register r17 as rA. This instruction requires that one or
more of the MicroBlaze parameters C_*_EXCEPTION are set to 1 or that C_USE_MMU > 0.

A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

The instruction should normally not be used when MSR[EE] is set, since if the instruction in
the delay slot would cause an exception, the exception handler would be entered with
exceptions enabled.

Note: Code returning from an exception must first check if MSR[DS] is set, and in that case return to the
address in BTR.

rted rA, IMM

1 0 1 1 0 1 1 0 1 0 0 rA IMM

0 6 11 16 31
238 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=238

Instructions
rtsd Return from Subroutine

Description
Return from subroutine will branch to the location specified by the contents of rA plus the
IMM field, sign-extended to 32 bits.

This instruction always has a delay slot. The instruction following the RTSD is always
executed before the branch target.

Pseudocode
PC ← (rA) + sext(IMM)
allow following instruction to complete execution

Registers Altered
• PC

Latency
• 1 cycle (if successful branch prediction occurs)
• 2 cycles (with Branch Target Cache disabled)
• 3 cycles (if branch prediction mispredict occurs)

Note
Convention is to use general purpose register r15 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed.

rtsd rA, IMM

1 0 1 1 0 1 1 0 0 0 0 rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 239
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=239

Chapter 5: MicroBlaze Instruction Set Architecture
sb Store Byte

Description
Stores the contents of the least significant byte of register rD, into the memory location that
results from adding the contents of registers rA and rB.

If the R bit is set, a byte reversed memory location is used, storing data with the opposite
endianness of the endianness defined by C_ENDIANNESS and the E bit (if virtual protected
mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid
translation entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is
prevented by no-access-allowed or read-only zone protection. No-access-allowed can only
occur in user mode.

Pseudocode
Addr ← (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else
Mem(Addr) ← (rD)[24:31]

Registers Altered
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
The byte reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

sb rD, rA, rB

sbr rD, rA, rB

1 1 0 1 0 0 rD rA rB 0 R 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
240 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=240

Instructions
sbi Store Byte Immediate

Description
Stores the contents of the least significant byte of register rD, into the memory location that
results from adding the contents of register rA and the value IMM, sign-extended to 32 bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid
translation entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is
prevented by no-access-allowed or read-only zone protection. No-access-allowed can only
occur in user mode.

Pseudocode
Addr ← (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else
Mem(Addr) ← (rD)[24:31]

Registers Altered
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

sbi rD, rA, IMM

1 1 1 1 0 0 rD rA IMM

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 241
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=241

Chapter 5: MicroBlaze Instruction Set Architecture
sext16 Sign Extend Halfword

Description
This instruction sign-extends a halfword (16 bits) into a word (32 bits). Bit 16 in rA will be
copied into bits 0-15 of rD. Bits 16-31 in rA will be copied into bits 16-31 of rD.

Pseudocode
(rD)[0:15] ← (rA)[16]
(rD)[16:31] ← (rA)[16:31]

Registers Altered
• rD

Latency
• 1 cycle

sext16 rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

0 6 1
1

1
6

3
1

242 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=242

Instructions
sext8 Sign Extend Byte

Description
This instruction sign-extends a byte (8 bits) into a word (32 bits). Bit 24 in rA will be copied
into bits 0-23 of rD. Bits 24-31 in rA will be copied into bits 24-31 of rD.

Pseudocode
(rD)[0:23] ← (rA)[24]
(rD)[24:31] ← (rA)[24:31]

Registers Altered
• rD

Latency
• 1 cycle

sext8 rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 243
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=243

Chapter 5: MicroBlaze Instruction Set Architecture
sh Store Halfword

Description
Stores the contents of the least significant halfword of register rD, into the halfword aligned
memory location that results from adding the contents of registers rA and rB.

If the R bit is set, a halfword reversed memory location is used and the two bytes in the
halfword are reversed, storing data with the opposite endianness of the endianness defined
by C_ENDIANNESS and the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid
translation entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is
prevented by no-access-allowed or read-only zone protection. No-access-allowed can only
occur in user mode.

An unaligned data access exception occurs if the least significant bit in the address is not
zero.

Pseudocode
Addr ← (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 1; ESR[Rx] ← rD

else
Mem(Addr) ← (rD)[16:31]

Registers Altered
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data

storage exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
The halfword reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

sh rD, rA, rB

shr rD, rA, rB

1 1 0 1 0 1 rD rA rB 0 R 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
244 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=244

Instructions
shi Store Halfword Immediate

Description
Stores the contents of the least significant halfword of register rD, into the halfword aligned
memory location that results from adding the contents of register rA and the value IMM,
sign-extended to 32 bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid
translation entry corresponding to the address is not found in the TLB. A data storage
exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user
mode. An unaligned data access exception occurs if the least significant bit in the address
is not zero.

Pseudocode
Addr ← (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 1; ESR[Rx] ← rD

else
Mem(Addr) ← (rD)[16:31]

Registers Altered
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data

storage exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

shi rD, rA, IMM

1 1 1 1 0 1 rD rA IMM

0 6 11 16 31
MicroBlaze Processor Reference Guide www.xilinx.com 245
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=245

Chapter 5: MicroBlaze Instruction Set Architecture
sra Shift Right Arithmetic

Description
Shifts arithmetically the contents of register rA, one bit to the right, and places the result in
rD. The most significant bit of rA (that is, the sign bit) placed in the most significant bit of
rD. The least significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode
(rD)[0] ← (rA)[0]
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered
• rD
• MSR[C]

Latency
• 1 cycle

sra rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 6 1
1

1
6

3
1

246 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=246

Instructions
src Shift Right with Carry

Description
Shifts the contents of register rA, one bit to the right, and places the result in rD. The Carry
flag is shifted in the shift chain and placed in the most significant bit of rD. The least
significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode
(rD)[0] ← MSR[C]
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered
• rD
• MSR[C]

Latency
• 1 cycle

src rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 247
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=247

Chapter 5: MicroBlaze Instruction Set Architecture
srl Shift Right Logical

Description
Shifts logically the contents of register rA, one bit to the right, and places the result in rD. A
zero is shifted in the shift chain and placed in the most significant bit of rD. The least
significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode
(rD)[0] ← 0
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered
• rD
• MSR[C]

Latency
• 1 cycle

srl rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 6 1
1

1
6

3
1

248 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=248

Instructions
sw Store Word

Description
Stores the contents of register rD, into the word aligned memory location that results from
adding the contents of registers rA and rB.

If the R bit is set, the bytes in the stored word are reversed , storing data with the opposite
endianness of the endianness defined by C_ENDIANNESS and the E bit (if virtual protected
mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid
translation entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is
prevented by no-access-allowed or read-only zone protection. No-access-allowed can only
occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are
not zero.

Pseudocode
Addr ← (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[30:31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 1; ESR[Rx] ← rD

else
Mem(Addr) ← (rD)[0:31]

Registers Altered
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data

storage exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
The word reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

sw rD, rA, rB

swr rD, rA, rB

1 1 0 1 1 0 rD rA rB 0 R 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 249
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=249

Chapter 5: MicroBlaze Instruction Set Architecture
swapb Swap Bytes

Description
Swaps the contents of register rA treated as four bytes, and places the result in rD. This
effectively converts the byte sequence in the register between endianness formats, either
from little-endian to big-endian or vice versa.

Pseudocode
(rD)[24:31] ← (rA)[0:7]
(rD)[16:23] ← (rA)[8:15]
(rD)[8:15] ← (rA)[16:23]
(rD)[0:7] ← (rA)[24:31]

Registers Altered
• rD

Latency
• 1 cycle

Note
This instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

swapb rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

0 6 1
1

1
6

3
1

250 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=250

Instructions
swaph Swap Halfwords

Description
Swaps the contents of register rA treated as two halfwords, and places the result in rD. This
effectively converts the two halfwords in the register between endianness formats, either
from little-endian to big-endian or vice versa.

Pseudocode
(rD)[0:15] ← (rA)[16:31]
(rD)[16:31] ← (rA)[0:15]

Registers Altered
• rD

Latency
• 1 cycle

Note
This instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

swaph rD, rA

1 0 0 1 0 0 rD rA 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 251
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=251

Chapter 5: MicroBlaze Instruction Set Architecture
swi Store Word Immediate

Description
Stores the contents of register rD, into the word aligned memory location that results from
adding the contents of registers rA and the value IMM, sign-extended to 32 bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid
translation entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is
prevented by no-access-allowed or read-only zone protection. No-access-allowed can only
occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are
not zero.

Pseudocode
Addr ← (rA) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Addr[30:31] ≠ 0 then
ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 1; ESR[Rx] ← rD

else
Mem(Addr) ← (rD)[0:31]

Register Altered
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data

storage exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated
• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

swi rD, rA, IMM

1 1 1 1 1 0 rD rA IMM

0 6 11 16 31
252 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=252

Instructions
swx Store Word Exclusive

Description
Conditionally stores the contents of register rD, into the word aligned memory location that
results from adding the contents of registers rA and rB. If an AXI4 interconnect with
exclusive access enabled is used, the store occurs if the interconnect response is EXOKAY,
and the reservation bit is set; otherwise the store occurs when the reservation bit is set. The
carry flag (MSR[C]) is set if the store does not occur, otherwise it is cleared. The reservation
bit is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid
translation entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is
prevented by no-access-allowed or read-only zone protection. No-access-allowed can only
occur in user mode.

An unaligned data access exception will not occur even if the two least significant bits in the
address are not zero.

Enabling AXI exclusive access ensures that the operation is protected from other bus
masters, but requires that the addressed slave supports exclusive access. When exclusive
access is not enabled, only the internal reservation bit is used. Exclusive access is enabled
using the two parameters C_M_AXI_DP_EXCLUSIVE_ACCESS and
C_M_AXI_DC_EXCLUSIVE_ACCESS for the peripheral and cache interconnect,
respectively.

Pseudocode
Addr ← (rA) + (rB)
if Reservation = 0 then
MSR[C] ← 1

else
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC]← 10010;ESR[S]← 1
MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else if Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] ← 10000;ESR[S]← 1; ESR[DIZ] ← No-access-allowed
MSR[UMS]← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ← 0

else
Reservation ← 0
if AXI_Exclusive(Addr) and AXI_Response ≠ EXOKAY then
MSR[C] ← 1

else
Mem(Addr) ← (rD)[0:31]
MSR[C] ← 0

swx rD, rA, rB

1 1 0 1 1 0 rD rA rB 1 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31
MicroBlaze Processor Reference Guide www.xilinx.com 253
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=253

Chapter 5: MicroBlaze Instruction Set Architecture
Registers Altered
• MSR[C], unless an exception is generated
• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data

storage exception is generated
• ESR[EC], ESR[S], if an exception is generated
• ESR[DIZ], if a data storage exception is generated

Latency
• 1 cycle with C_AREA_OPTIMIZED=0
• 2 cycles with C_AREA_OPTIMIZED=1

Note
This instruction is used together with LWX to implement exclusive access, such as
semaphores and spinlocks.

The carry flag (MSR[C]) may not be set immediately (dependent on pipeline stall behavior).
The SWX instruction should not be immediately followed by an MSRCLR, MSRSET, MTS, or
SRC instruction, to ensure the correct value of the carry flag is obtained.
254 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=254

Instructions
wdc Write to Data Cache

Description
Write into the data cache tag to invalidate or flush a cache line. The mnemonic wdc.flush
is used to set the F bit, wdc.clear is used to set the T bit, wdc.ext.flush is used to set the E,
F and T bits, and wdc.ext.clear is used to set the E and T bits.

When C_DCACHE_USE_WRITEBACK is set to 1, the instruction will flush the cache line and
invalidate it if the F bit is set, otherwise it will only invalidate the cache line and discard any
data that has not been written to memory. If the T bit is set, only a cache line with a
matching address is invalidated. Register rA added with rB is the address of the affected
cache line. The E bit is not taken into account.

When C_DCACHE_USE_WRITEBACK is cleared to 0, the instruction will invalidate the cache
line if the E bit is not set. Register rA contains the address of the affected cache line, and the
register rB value is not used. If the E bit is set to 1, MicroBlaze will request that the matching
address in an external cache should be invalidated or flushed, depending on the value of
the F bit. The E bit is only taken into account when the parameter C_INTERCONNECT is set
to 3 (ACE).

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) the instruction is
privileged. This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a
Privileged Instruction exception occurs.

Pseudocode
if MSR[UM] = 1 then
ESR[EC] ← 00111

else
if C_DCACHE_USE_WRITEBACK = 1 then
address ← (Ra) + (Rb)

else
address ← (Ra)

if E = 0 then
if C_DCACHE_LINE_LEN = 4 then
cacheline_mask ← (1 << log2(C_DCACHE_BYTE_SIZE) - 4) - 1
cacheline ← (DCache Line)[(address >> 4) ∧ cacheline_mask]
cacheline_addr ← address & 0xfffffff0

if C_DCACHE_LINE_LEN = 8 then
cacheline_mask ← (1 << log2(C_DCACHE_BYTE_SIZE) - 5) - 1
cacheline ← (DCache Line)[(address >> 5) ∧ cacheline_mask]
cacheline_addr ← address & 0xffffffe0

wdc
wdc.flush
wdc.clear
wdc.ext.flush
wdc.ext.clear

rA,rB
rA,rB
rA,rB
rA,rB
rA,rB

1 0 0 1 0 0 0 0 0 0 0 rA rB E 0 0 0 1 1 F 0 1 T 0

0 6 1
1

1
6

2
1

2
7

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 255
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=255

Chapter 5: MicroBlaze Instruction Set Architecture

if F = 1 and cacheline.Dirty then
for i = 0 .. C_DCACHE_LINE_LEN - 1 loop
if cacheline.Valid[i] then
Mem(cacheline_addr + i * 4) ← cacheline.Data[i]

if T = 0 then
cacheline.Tag ← 0

else if cacheline.Address = cacheline_addr then
cacheline.Tag ← 0

if E = 1 then
if F = 1 then
request external cache flush with address

else
request external cache invalidate with address

Registers Altered
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 2 cycles for wdc.clear
• 2 cycles for wdc with C_AREA_OPTIMIZED=1
• 3 cycles for wdc with C_AREA_OPTIMIZED=0
• 2 + N cycles for wdc.flush, where N is the number of clock cycles required to

flush the cache line to memory when necessary

Note
The wdc, wdc.flush and wdc.clear instructions are independent of data cache enable
(MSR[DCE]), and can be used either with the data cache enabled or disabled.

The wdc.clear instruction is intended to invalidate a specific area in memory, for example
a buffer to be written by a Direct Memory Access device. Using this instruction ensures that
other cache lines are not inadvertently invalidated, erroneously discarding data that has not
yet been written to memory.

The address of the affected cache line is always the physical address, independent of the
parameter C_USE_MMU and whether the MMU is in virtual mode or real mode.

When using wdc.flush in a loop to flush the entire cache, the loop can be optimized by
using Ra as the cache base address and Rb as the loop counter:

addik r5,r0,C_DCACHE_BASEADDR
addik r6,r0,C_DCACHE_BYTE_SIZE-C_DCACHE_LINE_LEN*4

loop: wdc.flush r5,r6
bgtid r6,loop
addik r6,r6,-C_DCACHE_LINE_LEN*4

When using wdc.clear in a loop to invalidate a memory area in the cache, the loop can be
optimized by using Ra as the memory area base address and Rb as the loop counter:

addik r5,r0,memory_area_base_address
addik r6,r0,memory_area_byte_size-C_DCACHE_LINE_LEN*4

loop: wdc.clear r5,r6
bgtid r6,loop
addik r6,r6,-C_DCACHE_LINE_LEN*4
256 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=256

Instructions
wic Write to Instruction Cache

Description
Write into the instruction cache tag to invalidate a cache line. The register rB value is not
used. Register rA contains the address of the affected cache line.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is
privileged. This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a
Privileged Instruction exception occurs.

Pseudocode
if MSR[UM] = 1 then
ESR[EC] ← 00111

else
if C_ICACHE_LINE_LEN = 4 then
cacheline_mask ← (1 << log2(C_CACHE_BYTE_SIZE) - 4) - 1
(ICache Line)[((Ra) >> 4) ∧ cacheline_mask].Tag ← 0

if C_ICACHE_LINE_LEN = 8 then
cacheline_mask ← (1 << log2(C_CACHE_BYTE_SIZE) - 5) - 1
(ICache Line)[((Ra) >> 5) ∧ cacheline_mask].Tag ← 0

Registers Altered
• ESR[EC], in case a privileged instruction exception is generated

Latency
• 2 cycles

Note
The WIC instruction is independent of instruction cache enable (MSR[ICE]), and can be used
either with the instruction cache enabled or disabled.

The address of the affected cache line is the virtual address when the parameter
C_USE_MMU = 3 (VIRTUAL) and the MMU is in virtual mode, otherwise it is the physical
address.

wic rA,rB

1 0 0 1 0 0 0 0 0 0 0 rA rB 0 0 0 0 1 1 0 1 0 0 0

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 257
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=257

Chapter 5: MicroBlaze Instruction Set Architecture
xor Logical Exclusive OR

Description
The contents of register rA are XORed with the contents of register rB; the result is placed
into register rD.

Pseudocode
(rD) ← (rA) ⊕ (rB)

Registers Altered
• rD

Latency
• 1 cycle

xor rD, rA, rB

1 0 0 0 1 0 rD rA rB 0 0 0 0 0 0 0 0 0 0 0

0 6 1
1

1
6

2
1

3
1

258 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=258

Instructions
xori Logical Exclusive OR with Immediate

Description
The IMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of
register rA are XOR’ed with the extended IMM field; the result is placed into register rD.

Pseudocode
(rD) ← (rA) ⊕ sext(IMM)

Registers Altered
• rD

Latency
• 1 cycle

Note
By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the
Type B instruction with an imm instruction. See the instruction “imm,” page 204 for details
on using 32-bit immediate values.

xori rD, rA, IMM

1 0 1 0 1 0 rD rA IMM

0 6 1
1

1
6

3
1

MicroBlaze Processor Reference Guide www.xilinx.com 259
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=259

Chapter 5: MicroBlaze Instruction Set Architecture
260 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=260

Appendix A

Additional Resources

Documentation
The following documents are available via your Vivado installation.

Relevant individual documents are linked below.

• Vivado Design Suite User Guide: Designing With IP (UG896)
• Vivado Design Suite User Guide:

Designing IP Subsystems Using IP Integrator (UG994)
• Software Development Kit Help (SDK Help)
• Embedded System Tools Reference Manual (UG111)
• PowerPC 405 Processor Reference Guide (UG011)

Additional Resources
The following lists some of the resources you can access directly using the provided
URLs.

• The entire set of GNU manuals:
 http://www.gnu.org/manual

• Xilinx Data Sheets:
http://www.xilinx.com/support/documentation/data_sheets.htm

• Xilinx Problem Solvers:
http://www.xilinx.com/support/troubleshoot/psolvers.htm

• Additional Xilinx Documentation:
http://www.xilinx.com/support/library.htm

• Xilinx Glossary:
 http://www.xilinx.com/support/documentation/sw_manuals/glossary.pdf

• Xilinx Support:
 http://www.xilinx.com/support
MicroBlaze Processor Reference Guide www.xilinx.com 261
UG984 (v2013.3) Send Feedback

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=global_glossary
http://www.gnu.org/manual
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug011.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=14.7&topic=sw+manuals&sub=est_rm.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug011.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=14.7&topic=sw+manuals&sub=SDK_Doc/
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=problem+solvers
http://www.xilinx.com/support/library.htm
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=261

262 www.xilinx.com MicroBlaze Processor Reference Guide
UG984 (v2013.3)Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=ug984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2013.3&docPage=262

	MicroBlaze Processor Reference Guide
	Table of Contents
	Ch. 1: Introduction
	Guide Contents

	Ch. 2: MicroBlaze Architecture
	Overview
	Features

	Data Types and Endianness
	Instructions
	Instruction Summary
	Semaphore Synchronization
	Self-modifying Code

	Registers
	General Purpose Registers
	Special Purpose Registers
	Program Counter (PC)
	Machine Status Register (MSR)
	Exception Address Register (EAR)
	Exception Status Register (ESR)
	Branch Target Register (BTR)
	Floating Point Status Register (FSR)
	Exception Data Register (EDR)
	Stack Low Register (SLR)
	Stack High Register (SHR)
	Process Identifier Register (PID)
	Zone Protection Register (ZPR)
	Translation Look-Aside Buffer Low Register (TLBLO)
	Translation Look-Aside Buffer High Register (TLBHI)
	Translation Look-Aside Buffer Index Register (TLBX)
	Translation Look-Aside Buffer Search Index Register (TLBS X)
	Processor Version Register (PVR)

	Pipeline Architecture
	Three Stage Pipeline
	Five Stage Pipeline
	Branches

	Memory Architecture
	Privileged Instructions
	Virtual-Memory Management
	Real Mode
	Virtual Mode
	Translation Look-Aside Buffer
	Access Protection
	UTLB Management
	Recording Page Access and Page Modification

	Reset, Interrupts, Exceptions, and Break
	Reset
	Hardware Exceptions
	Breaks
	Interrupt
	User Vector (Exception)

	Instruction Cache
	Overview
	General Instruction Cache Functionality
	Instruction Cache Operation
	Instruction Cache Software Support

	Data Cache
	Overview
	General Data Cache Functionality
	Data Cache Operation
	Data Cache Software Support

	Floating Point Unit (FPU)
	Overview
	Format
	Rounding
	Operations
	Exceptions
	Software Support

	Stream Link Interfaces
	Hardware Acceleration

	Debug and Trace
	Debug Overview
	Trace Overview

	Fault Tolerance
	Configuration
	Features
	Software Support
	Scrubbing
	Use Cases

	Lockstep Operation
	System Configuration
	Use Cases

	Coherency
	Invalidation
	Protocol Compliance

	Ch. 3: MicroBlaze Signal Interface Description
	Overview
	Features

	MicroBlaze I/O Overview
	AXI4 and ACE Interface Description
	Memory Mapped Interfaces
	Stream Interfaces

	Local Memory Bus (LMB) Interface Description
	LMB Signal Interface
	LMB Transactions
	Read and Write Data Steering

	Lockstep Interface Description
	Debug Interface Description
	Trace Interface Description
	MicroBlaze Core Configurability

	Ch. 4: MicroBlaze Application Binary Interface
	Data Types
	Register Usage Conventions
	Stack Convention
	Calling Convention

	Memory Model
	Small Data Area
	Data Area
	Common Un-Initialized Area
	Literals or Constants

	Interrupt and Exception Handling

	Ch. 5: MicroBlaze Instruction Set Architecture
	Notation
	Formats
	Instructions
	add
	addi
	and
	andi
	andn
	andni
	beq
	beqi
	bge
	bgei
	bgt
	bgti
	ble
	blei
	blt
	blti
	bne
	bnei
	br
	bri
	brk
	brki
	bs
	bsi
	clz
	cmp
	fadd
	frsub
	fmul
	fdiv
	fcmp
	flt
	fint
	fsqrt
	get
	getd
	idiv
	imm
	lbu
	lbui
	lhu
	lhui
	lw
	lwi
	lwx
	mbar
	mfs
	msrclr
	msrset
	mts
	mul
	mulh
	mulhu
	mulhsu
	muli
	or
	ori
	pcmpbf
	pcmpeq
	pcmpne
	put
	putd
	rsub
	rsubi
	rtbd
	rtid
	rted
	rtsd
	sb
	sbi
	sext16
	sext8
	sh
	shi
	sra
	src
	srl
	sw
	swapb
	swaph
	swi
	swx
	wdc
	wic
	xor
	xori

	Appx. A: Additional Resources
	Documentation
	Additional Resources

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

