MicroBlaze
Processor Reference

Guide

2014.3

UG984 (v2014.3) October 1, 2014

& XILINX

AAAAAAAAAAAAAAA .

& XILINX

ALL PROGRAMMABLE.

Revision History

The following table shows the revision history for this document.

Date Version Revision

03/20/2013 2013.1 Initial Xilinx release. This User Guide is derived from UG081.

06/19/2013 2013.2 Updated for Vivado 2013.2 release.

10/02/2013 2013.3 Updated for Vivado 2013.3 release.

12/18/2013 20134 Updated for Vivado 2013.4 release.

04/02/2014 2014.1 Updated for Vivado 2014.1 release:

+ Added v9.3 to MicroBlaze release version code in PVR.

» Clarified availability and behavior of stack protection registers.

» Corrected description of LMB instruction and data bus exception.

* Included description of extended debug features, new in version 9.3:
performance monitoring, program trace and non-intrusive profiling.

+ Included definition of Reset Mode signals, new in version 9.3.

« Clarified how the AXI4-Stream TLAST signal is handled.

» Added UltraScale and updated performance and resource utilization for 2014.1.

10/01/2014 20143 Updated for Vivado 2014.3 release:

» Corrected semantic description for PCMPEQ and PCMPNE in Table 2.1.
* Added version 9.4 to MicroBlaze release version code in PVR.
» Included description of external program trace, new in version 9.4

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=2

& XILINX

ALL PROGRAMMABLE.

Table of Contents

Chapter 1: Introduction
LU To T 0o T =T | £ 5

Chapter 2: MicroBlaze Architecture

OV VI BW & ittt ittt ten et ansesoneansonsansssssssasonsonsssssssassnsenssssnnsess 6
DataTypes and ENdianness.o ciiiiiiintne e ereeiereneeesnenneansansansananns 10
L ot 1 T 4T 11
== 1] =] 22
Pipeline Architecture.ottt i i it ettt tieteereennenasansasnananns 45
Memory ArchitectUrettt ittt i ettt teneeenaeeeaesennsennsennsannnnns 48
Privileged INStructions. oottt it i i i i i e e et e e e 50
Virtual-Memory Managementitiitiiiintneteernrenenneaneaneneaneaneannas 52
Reset, Interrupts, Exceptions,and Breakottt iineieneennnennaeenns 65
Instruction Cache.ttt i ittt ieiiateateenasansanssssossasannanss 74
[0 T | - T 6 T TP 78
Floating Point Unit (FPU) ittt ittt ittt ittt teeteetneeneeneeneeasenennanns 82
Stream Link Interfaces. ittt ittt i ittt ittt 87
Debug and Traceciiiiiii ittt ettt iieeeraeaasansaesasansansansasansnnnanns 88
o T I (=T - ' o= 107
Lockstep Operationciviiiiiiiitiiiiiiinteeteeensantantossesensanssnsosensans 114
00 0 T=1 T xS 117

Chapter 3: MicroBlaze Signal Interface Description

OV VI BW L ittt ittt ittt enssnsnsansonsossnssnssnsansossnssnssnsonsossnssnsas 120
IMiICrOBlaze 1/O OVeIVIEW . v vt vttt ittt ttetenteeenosnesensenennsossnsensensansnsans 121
AXI4 and ACE Interface Description viiiiiiiiiiniiniintneenenaesnsensnssaanans 131
Local Memory Bus (LMB) Interface Descriptionccoiiiiiitinrnnrnnrnnnnnnns 136
Lockstep Interface Descriptioncciiiiiiiiiin e tienerenereneeennsennsennnnns 145
Debug Interface Descriptionciiiiiiii ittt ittt ietentantanressnsanssnsans 150
Trace Interface Description. ittt ittt e tieieernenaransnnsnnnnns 151
MicroBlaze Core Configurabilityciiiiiiiiii it ittt it tennennnenennnns 154

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 3
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=3

& XILINX

ALL PROGRAMMABLE

Chapter 4: MicroBlaze Application Binary Interface

Data TYPeS « i v ittt it iiiinnetteenenastossnossssossssnsssosssssssossssssssssosanns 165
Register Usage Conventionsciiiitiineiieetnentonnsonnsennsssnssonsssnnssns 166
Stack ConVeNtioNo i ittt i i i i it i ittt e e e 168
Memory Modeli ittt ittt it iieeteentenasenassanssansssassannnans 170
Interrupt, Break and Exception Handling. i it ittt i iieinnnnn 171

Chapter 5: MicroBlaze Instruction Set Architecture

[\ o] = 1 o] o XS 173
20T 0 4 - 1 e 175
113 o 0 ot 4 o 3 175

Appendix A: Performance and Resource Utilization

oY Y1 7= 11 oL = 274
ResoUrce Utilization. v v ii ittt ittt ittt it ettt nnnenereennnnsessennnnsnnnnnns 274

Appendix B: Additional Resources and Legal Notices

XiliNX RESOUICES « o v vttt ittt ititenasnsesasasasesessnsasasasasossssssssssnsnsass 279
LYo 17 4o T T =T =T 279
3= =] =T P 279
Please Read: ImportantLegal Noticesciiiiiiiiiiitntenrnnrnerneennnnnnns 280

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 4
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=4

& XILINX

ALL PROGRAMMABLE.

Chapter 1

Introduction

The MicroBlaze™ Processor Reference Guide provides information about the 32-bit soft
processor, MicroBlaze, which is included in the Vivado release. The document is intended as
a guide to the MicroBlaze hardware architecture.

Guide Contents

This guide contains the following chapters:

Chapter 2, MicroBlaze Architecture, contains an overview of MicroBlaze features as well
as information on Big-Endian and Little-Endian bit-reversed format, 32-bit general
purpose registers, cache software support, and Fast Simplex Link interfaces.

Chapter 3, MicroBlaze Signal Interface Description, describes the types of signal
interfaces that can be used to connect MicroBlaze.

Chapter 4, MicroBlaze Application Binary Interface, describes the Application Binary
Interface important for developing software in assembly language for the soft
processor.

Chapter 5, MicroBlaze Instruction Set Architecture, provides notation, formats, and
instructions for the Instruction Set Architecture of MicroBlaze.

Appendix A, Performance and Resource Utilization, contains maximum frequencies and
resource utilization numbers for different configurations.

Appendix B, Additional Resources and Legal Notices, provides links to documentation
and additional resources.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 5

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=5

& XILINX

ALL PROGRAMMABLE.

Chapter 2

MicroBlaze Architecture

This chapter contains an overview of MicroBlaze™ features and detailed information on
MicroBlaze architecture including Big-Endian or Little-Endian bit-reversed format, 32-bit
general purpose registers, virtual-memory management, cache software support, and
AXI4-Stream interfaces.

Overview

The MicroBlaze™ embedded processor soft core is a reduced instruction set computer
(RISC) optimized for implementation in Xilinx® Field Programmable Gate Arrays (FPGAs).
Figure 2-1 shows a functional block diagram of the MicroBlaze core.

Instruction-side Data-side
bus interface bus interface
Memory Management Unit (MMU)
- N
M_AXI_IC [e Je—] UTLB —— ons ||/ M_AXI_DC
M_ACE_IC |::> /‘\/::> M_ACE_DC
— o
5| T It
a | a
gl N 3
Program v ALU
Counter A)
Special |\ Shift
@ I'E:grigggg N Barrel Shift
Branch v Multiplier
Target A
Cache Divider
N
Bus — FPU Bus
IF -\] Instruction N IF
B R D &
Instruction
Decode -
N— MO_AXIS..
=\ Register File M15_AXIS
—/ 32X32b <,|:|SO_AXIS..
) S15_AXIS
Optional MicroBlaze feature v

Figure 2-1: MicroBlaze Core Block Diagram

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 6
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=6

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Features

The MicroBlaze soft core processor is highly configurable, allowing you to select a specific
set of features required by your design.

The fixed feature set of the processor includes:

« Thirty-two 32-bit general purpose registers

« 32-bit instruction word with three operands and two addressing modes
» 32-bit address bus

» Single issue pipeline

In addition to these fixed features, the MicroBlaze processor is parameterized to allow
selective enabling of additional functionality. Older (deprecated) versions of MicroBlaze
support a subset of the optional features described in this manual. Only the latest
(preferred) version of MicroBlaze (v9.4) supports all options.

Xilinx recommends that all new designs use the latest preferred version of the MicroBlaze
processor.

Table 2-1, page 7 provides an overview of the configurable features by MicroBlaze versions.

Table 2-1: Configurable Feature Overview by MicroBlaze Version

MicroBlaze Versions
Feature

v9.0 vo.1 v9.2 v9.3 v9.4
Version Status deprecated | deprecated | deprecated | deprecated | preferred
Processor pipeline depth 3/5 3/5 3/5 3/5 3/5
Local Memory Bus (LMB) data side interface option option option option option
Local Memory Bus (LMB) instruction side option option option option option
interface
Hardware barrel shifter option option option option option
Hardware divider option option option option option
Hardware debug logic option option option option option
Stream link interfaces 0-15 AXI 0-15 AXI 0-15 AXI 0-15 AXI 0-15 AXI
Machine status set and clear instructions option option option option option
4 or 8-word cache line option option option option option
Hardware exception support option option option option option
Pattern compare instructions option option option option option
Floating point unit (FPU) option option option option option
Disable hardware multiplierl option option option option option
Hardware debug readable ESR and EAR Yes Yes Yes Yes Yes
Processor Version Register (PVR) option option option option option

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 7
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=7

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-1: Configurable Feature Overview by MicroBlaze Version

Feature MicroBlaze Versions

v9.0 vI.1 v9.2 v9.3 v9.4
Area or speed optimized option option option option option
Hardware multiplier 64-bit result option option option option option
LUT cache memory option option option option option
Floating point conversion and square root option option option option option
instructions
Memory Management Unit (MMU) option option option option option
Extended stream instructions option option option option option
Use Cache Interface for All I-Cache Memory option option option option option
Accesses
Use Cache Interface for All D-Cache Memory option option option option option
Accesses
Use Write-back Caching Policy for D-Cache option option option option option
Branch Target Cache (BTC) option option option option option
Streams for I-Cache option option option option option
Victim handling for I-Cache option option option option option
Victim handling for D-Cache option option option option option
AXI4 (M_AXI_DP) data side interface option option option option option
AXI4 (M_AXI_IP) instruction side interface option option option option option
AXI4 (M_AXI_DC) protocol for D-Cache option option option option option
AXI4 (M_AXI_IC) protocol for I-Cache option option option option option
AXI4 protocol for stream accesses option option option option option
Fault tolerant features option option option option option
Tool selectable endianness option option option option option
Force distributed RAM for cache tags option option option option option
Configurable cache data widths option option option option option
Count Leading Zeros instruction option option option option option
Memory Barrier instruction Yes Yes Yes Yes Yes
Stack overflow and underflow detection option option option option option
Allow stream instructions in user mode option option option option option
Lockstep support option option option option option
Configurable use of FPGA primitives option option option option option
Low-latency interrupt mode option option option option option
Swap instructions option option option option option
Sleep mode and sleep instruction Yes Yes Yes Yes Yes
Relocatable base vectors option option option option option
ACE (M_ACE_DC) protocol for D-Cache option option option option option
ACE (M_ACE_IC) protocol for I-Cache option option option option option

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 8
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=8

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE-

Table 2-1: Configurable Feature Overview by MicroBlaze Version

MicroBlaze Versions
Feature
v9.0 vo.1 v9.2 v9.3 v9.4
Extended debug: performance monitoring, option option
program trace, non-intrusive profiling
Reset mode: enter sleep or debug halt at reset option option
Extended debug: external program trace option

1. Used for saving DSP48E primitives.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 9
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=9

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE-

Data Types and Endianness

MicroBlaze uses Big-Endian or Little-Endian format to represent data, depending on the
parameter C_ENDIANNESS. The hardware supported data types for MicroBlaze are word,
half word, and byte. When using the reversed load and store instructions LHUR, LWR, SHR
and SWR, the bytes in the data are reversed, as indicated by the byte-reversed order.

The bit and byte organization for each type is shown in the following tables.

Table 2-2: Word Data Type

Big-Endian Byte Address n n+1 n+2 n+3
Big-Endian Byte Significance MSByte LSByte
Big-Endian Byte Order n n+1 n+2 n+3
Big-Endian Byte-Reversed Order | n+3 n+2 n+1 n
Little-Endian Byte Address n+3 n+2 n+1 n
Little-Endian Byte Significance MSByte LSByte
Little-Endian Byte Order n+3 n+2 n+1l n
Little-Endian Byte-Reversed Order | n n+1 n+2 n+3
Bit Label 0 31

Bit Significance MSBit LSBit

Table 2-3: Half Word Data Type

Big-Endian Byte Address n n+1
Big-Endian Byte Significance MSByte | LSByte
Big-Endian Byte Order n n+1
Big-Endian Byte-Reversed Order | n+1 n
Little-Endian Byte Address n+1 n
Little-Endian Byte Significance MSByte | LSByte
Little-Endian Byte Order n+1 n
Little-Endian Byte-Reversed Order | n n+1
Bit Label 0 15

Bit Significance MSBit LSBit

Table 2-4: Byte Data Type

Byte Address n
Bit Label 0 7
Bit Significance MSBit LSBit

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 10
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=10

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE-

Instructions

Instruction Summary

All MicroBlaze instructions are 32 bits and are defined as either Type A or Type B. Type A
instructions have up to two source register operands and one destination register operand.
Type B instructions have one source register and a 16-bit immediate operand (which can be
extended to 32 bits by preceding the Type B instruction with an imm instruction). Type B
instructions have a single destination register operand. Instructions are provided in the
following functional categories: arithmetic, logical, branch, load/store, and special.

Table 2-6 lists the MicroBlaze instruction set. Refer to Chapter 5, MicroBlaze Instruction Set
Architecturefor more information on these instructions. Table 2-5 describes the instruction
set nomenclature used in the semantics of each instruction.

Table 2-5: Instruction Set Nomenclature

Symbol Description
Ra RO - R31, General Purpose Register, source operand a
Rb RO - R31, General Purpose Register, source operand b
Rd RO - R31, General Purpose Register, destination operand
SPRI[x] Special Purpose Register number x
MSR Machine Status Register = SPR[1]
ESR Exception Status Register = SPR[5]
EAR Exception Address Register = SPR[3]
FSR Floating Point Unit Status Register = SPR[7]
PVRx Processor Version Register, where x is the register number = SPR[8192 + x]
BTR Branch Target Register = SPR[11]
PC Execute stage Program Counter = SPR[0]
x[y] Bit y of register x
x[y:z] Bit range y to z of register x
X Bit inverted value of register x
Imm 16 bit immediate value
Immx x bit immediate value
FSLx 4 bit AXI4-Stream port designator, where x is the port number
C Carry flag, MSR[29]
Sa Special Purpose Register, source operand
Sd Special Purpose Register, destination operand
s(x) Sign extend argument x to 32-bit value
*Addr Memory contents at location Addr (data-size aligned)

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 11

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=11

& XILINX

ALL PROGRAMMABLE-

Chapter 2:

MicroBlaze Architecture

Table 2-5: Instruction Set Nomenclature (Cont’d)
Symbol Description

= Assignment operator

= Equality comparison

= Inequality comparison

> Greater than comparison

>= Greater than or equal comparison
< Less than comparison

<= Less than or equal comparison

+ Arithmetic add

* Arithmetic multiply

/ Arithmetic divide

>> x Bit shift right x bits

<< x Bit shift left x bits

and Logic AND

or Logic OR

xor Logic exclusive OR

opl if cond else op2

Perform op1 if condition cond is true, else perform op2

&

Concatenate. E.g. “0000100 & Imm7" is the concatenation of the fixed field “0000100" and

a 7 bit immediate value.

signed Operation performed on signed integer data type. All arithmetic operations are performed
on signed word operands, unless otherwise specified
unsigned Operation performed on unsigned integer data type
float Operation performed on floating point data type
clz(r) Count leading zeros
Table 2-6: MicroBlaze Instruction Set Summary
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
ADD Rd,Ra,Rb 000000 Rd Ra Rb 00000000000 | Rd := Rb + Ra
RSUB Rd,Ra,Rb 000001 Rd Ra Rb | 00000000000 | Rd:=Rb + Ra + 1
ADDC Rd,Ra,Rb 000010 Rd Ra Rb | 00000000000 | Rd := Rb + Ra + C
RSUBC Rd,Ra,Rb 000011 Rd Ra Rb | 00000000000 | Rd := Rb + Ra + C
ADDK Rd,Ra,Rb 000100 Rd Ra Rb | 00000000000 | Rd := Rb + Ra
RSUBK Rd,Ra,Rb 000101 Rd Ra Rb | 00000000000 | Rd := Rb + Ra + 1
CMP Rd,Ra,Rb 000101 Rd Ra Rb | 00000000001 | Rd:= Rb + Ra + 1
Rd[0] := 0 if (Rb >= Ra) else
Rd[0]:= 1

MicroBlaze Processor Reference Guide

www.Xilinx.com

UG984 (v2014.3) October 1, 2014

l Send Feedback I

12

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=12

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE-

Table 2-6: MicroBlaze Instruction Set Summary (Cont’d)

Type A 0-5 6-10 | 11-15|16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
CMPU Rd,Ra,Rb 000101 Rd Ra Rb | 00000000011 | Rd:= Rb + Ra + 1 (unsigned)
Rd[0] := O if (Rb >= Ra, unsigned) else
Rd[0]:=1
ADDKC Rd,Ra,Rb 000110 Rd Ra Rb | 00000000000 | Rd := Rb + Ra + C
RSUBKC Rd,Ra,Rb 000111 Rd Ra Rb | 00000000000 | Rd := Rb + Ra + C
ADDI Rd,Ra,Imm 001000 Rd Ra Imm Rd := s(Imm) + Ra
RSUBI Rd,Ra,Imm 001001 Rd Ra Imm Rd := s(Imm) + Ra+1
ADDIC Rd,Ra,Imm 001010 Rd Ra Imm Rd := s(Imm) + Ra + C
RSUBIC Rd,Ra,Imm 001011 Rd Ra Imm Rd := s(Imm) + Ra+ C
ADDIK Rd,Ra,Imm 001100 Rd Ra Imm Rd := s(Imm) + Ra
RSUBIK Rd,Ra,Imm 001101 Rd Ra Imm Rd := s(Imm) + Ra+1
ADDIKC Rd,Ra,Imm 001110 Rd Ra Imm Rd := s(Imm) + Ra + C
RSUBIKC Rd,Ra,Imm 001111 Rd Ra Imm Rd := s(Imm) + Ra+ C
MUL Rd,Ra,Rb 010000 Rd Ra Rb | 00000000000 | Rd := Ra * Rb
MULH Rd,Ra,Rb 010000 Rd Ra Rb 00000000001 | Rd := (Ra * Rb) >> 32 (signed)
MULHU Rd,Ra,Rb 010000 Rd Ra Rb 00000000011 | Rd := (Ra * Rb) >> 32 (unsigned)
MULHSU Rd,Ra,Rb 010000 Rd Ra Rb 00000000010 | Rd := (Ra, signed * Rb, unsigned) >> 32
(signed)
BSRL Rd,Ra,Rb 010001 Rd Ra Rb 00000000000 | Rd := 0 & (Ra >> Rb)
BSRA Rd,Ra,Rb 010001 Rd Ra Rb 01000000000 | Rd := s(Ra >> Rb)
BSLL Rd,Ra,Rb 010001 Rd Ra Rb 10000000000 | Rd := (Ra << Rb) & 0
IDIV Rd,Ra,Rb 010010 Rd Ra Rb 00000000000 | Rd := Rb/Ra
IDIVU Rd,Ra,Rb 010010 Rd Ra Rb | 00000000010 | Rd := Rb/Ra, unsigned
TNEAGETD Rd,Rb 010011 Rd 00000 Rb ONOTAE Rd := FSL Rb[28:31] (data read)
00000 MSRI[FSL] := 1 if (FSL_S_Control = 1)
MSR[C] := not FSL_S_Exists if N = 1
TNAPUTD Ra,Rb 010011 | 00000 Ra Rb ONOTAO FSL Rb[28:31] := Ra (data write)
00000 MSR[C] := FSLLM_Full if N = 1
TNECAGETD Rd,Rb 010011 Rd 00000 Rb ON1TAE Rd := FSL Rb[28:31] (control read)
00000 MSR[FSL] := 1 if (FSL_S_Control = 0)
MSR[C] := not FSL_S_Exists if N = 1
TNCAPUTD Ra,Rb 010011 | 00000 Ra Rb ON1TAO FSL Rb[28:31] := Ra (control write)
00000 MSR[C] := FSL_LM_Full if N = 1
FADD Rd,Ra,Rb 010110 Rd Ra Rb 00000000000 | Rd := Rb+Ra, float!
FRSUB Rd,Ra,Rb 010110 Rd Ra Rb | 00010000000 | Rd := Rb-Ra, float!
FMUL Rd,Ra,Rb 010110 Rd Ra Rb | 00100000000 | Rd := Rb*Ra, float!
FDIV Rd,Ra,Rb 010110 Rd Ra Rb | 00110000000 | Rd := Rb/Ra, float!

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 13
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=13

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-6: MicroBlaze Instruction Set Summary (Cont’d)
Type A 0-5 6-10 | 11-15|16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31

FCMP.UN Rd,Ra,Rb 010110 Rd Ra Rb | 01000000000 | Rd:=1if (Rb = NaN or Ra = NaN, float?)
else
Rd:=0

FCMP.LT Rd,Ra,Rb 010110 Rd Ra Rb 01000010000 | Rd := 1 if (Rb < Ra, floatl) else
Rd:=0

FCMP.EQ Rd,Ra,Rb 010110 Rd Ra Rb 01000100000 | Rd := 1 if (Rb = Ra, floatl) else
Rd:=0

FCMP.LE Rd,Ra,Rb 010110 Rd Ra Rb 01000110000 | Rd := 1 if (Rb <= Ra, floatl) else
Rd:=0

FCMP.GT Rd,Ra,Rb 010110 Rd Ra Rb | 01001000000 | Rd := 1 if (Rb > Ra, floatl) else
Rd:=0

FCMP.NE Rd,Ra,Rb 010110 Rd Ra Rb | 01001010000 | Rd := 1 if (Rb != Ra, floatl) else
Rd:=0

FCMP.GE Rd,Ra,Rb 010110 Rd Ra Rb | 01001100000 | Rd := 1 if (Rb >= Ra, floatl) else
Rd:=0

FLT Rd,Ra 010110 Rd Ra 0 01010000000 | Rd := float (Ra)?

FINT Rd,Ra 010110 Rd Ra 0 01100000000 | Rd := int (Ra)?l

FSQRT Rd,Ra 010110 Rd Ra 0 01110000000 | Rd := sqgrt (Ra)?!

MULI Rd,Ra,Imm 011000 Rd Ra Imm Rd := Ra * s(Imm)

BSRLI Rd,Ra,Imm 011001 Rd Ra 00000000000 & Imm5 | Rd : = 0 & (Ra >> Imm5)

BSRAI Rd,Ra,Imm 011001 Rd Ra 00000010000 & Imm5 | Rd := s(Ra >> Imm5)

BSLLI Rd,Ra,Imm 011001 Rd Ra 00000100000 & Imm5 | Rd := (Ra << Imm5) & 0

TNEAGET Rd,FSLx 011011 Rd 00000 | ONOTAEO00000 & FSLx | Rd := FSLx (data read, blocking if N = 0)
MSR[FSL] := 1 if (FSLx_S_Control = 1)
MSRI[C] := not FSLx_S_Exists if N = 1

TNAPUT Ra,FSLx 011011 | 00000 Ra 1NOTA0000000 & FSLx | FSLx := Ra (data write, blocking if N = 0)
MSRI[C] := FSLx_M_Full if N = 1

TNECAGET Rd,FSLx 011011 Rd 00000 | ON1TAEO00000 & FSLx | Rd := FSLx (control read, blocking if N =
0)
MSR[FSL] := 1 if (FSLx_S_Control = 0)
MSR[C] := not FSLx_S_Exists if N = 1

TNCAPUT Ra,FSLx 011011 | 00000 Ra 1N1TA0000000 & FSLx | FSLx := Ra (control write, blocking if N
=0)
MSRI[C] := FSLx_M_Full if N = 1

OR Rd,Ra,Rb 100000 Rd Ra Rb | 00000000000 | Rd := Ra or Rb

PCMPBF Rd,Ra,Rb 100000 Rd Ra Rb 10000000000 | Rd := 1 if (Rb[0:7] = Ra[0:7]) else
Rd := 2 if (Rb[8:15] = Ra[8:15]) else

Rd = 3 if (Rb[16:23] = Ra[16:23]) else
Rd := 4 if (Rb[24:31] = Ra[24:31]) else
Rd:=0

MicroBlaze Processor Reference Guide

UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 14

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=14

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-6: MicroBlaze Instruction Set Summary (Cont’d)
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31

AND Rd,Ra,Rb 100001 Rd Ra Rb 00000000000 | Rd := Ra and Rb

XOR Rd,Ra,Rb 100010 Rd Ra Rb 00000000000 | Rd := Ra xor Rb

PCMPEQ Rd,Ra,Rb 100010 Rd Ra Rb 10000000000 | Rd := 1 if (Rb = Ra) else
Rd:=0

ANDN Rd,Ra,Rb 100011 Rd Ra Rb | 00000000000 | Rd := Ra and Rb

PCMPNE Rd,Ra,Rb 100011 Rd Ra Rb 10000000000 | Rd := 1 if (Rb '= Ra) else
Rd:=0

SRA Rd,Ra 100100 Rd Ra 0000000000000001 Rd := s(Ra >> 1)
C:=Ra[31]

SRC Rd,Ra 100100 Rd Ra 0000000000100001 Rd:=C& (Ra>>1)
C:= Ra[31]

SRL Rd,Ra 100100 Rd Ra 0000000001000001 Rd:=0& (Ra>>1)
C:= Ra[31]

SEXT8 Rd,Ra 100100 Rd Ra 0000000001100000 Rd := s(Ra[24:31])

SEXT16 Rd,Ra 100100 | Rd Ra 0000000001100001 | Rd := s(Ra[16:31])

CLZ Rd, Ra 100100 Rd Ra 0000000011100000 Rd = clz(Ra)

SWAPB Rd, Ra 100100 Rd Ra 0000000111100000 Rd = (Ra)[24:31, 16:23, 8:15, 0:7]

SWAPH Rd, Ra 100100 | Rd Ra 0000000111100010 | Rd = (Ra)[16:31, 0:15]

WIC Ra,Rb 100100 | 00000 Ra Rb 00001101000 | ICache_Line[Ra >> 4].Tag := O if
(C_ICACHE_LINE_LEN = 4)
ICache_Line[Ra >> 5].Tag := 0 if
(C_ICACHE_LINE_LEN = 8)

WDC Ra,Rb 100100 | 00000 Ra Rb 00001100100 | Cache line is cleared, discarding stored
data.
DCache_Line[Ra >> 4].Tag := 0 if
(C_DCACHE_LINE_LEN = 4)
DCache_Line[Ra >> 5].Tag := 0 if
(C_DCACHE_LINE_LEN = 8)

WDC.FLUSH Ra,Rb 100100 | 00000 Ra Rb 00001110100 | Cache line is flushed, writing stored
data to memory, and then cleared. Used
when C_DCACHE_USE_WRITEBACK = 1.

WDC.CLEAR Ra,Rb 100100 | 00000 Ra Rb 00001110110 | Cache line with matching address is

cleared, discarding stored data. Used
when C_DCACHE_USE_WRITEBACK = 1.

MicroBlaze Processor Reference Guide

UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 15

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=15

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE-

Table 2-6: MicroBlaze Instruction Set Summary (Cont’d)

Type A 0-5 | 6-10 |11-15 | 16-20 21-31
Type B 0-5 | 6-10 |11-15 16-31

Semantics

MTS Sd,Ra 100101 | 00000 Ra 11 & Sd SPR[Sd] := Ra, where:

- SPR[0x0001] is MSR
SPR[0x0007] is FSR
SPR[0x0800] is SLR
SPR[0x0802] is SHR
SPR[0x1000] is PID
SPR[0x1001] is ZPR
SPR[0x1002] is TLBX
SPR[0x1003] is TLBLO
SPR[0x1004] is TLBHI
SPR[0x1005] is TLBSX

MES Rd,Sa 100101 Rd | 00000 10 & Sa Rd := SPR[Sa], where:
- SPR[0x0000] is PC

SPR[0x0001] is MSR
SPR[0x0003] is EAR
SPR[0x0005] is ESR
SPR[0x0007] is FSR
SPR[0x000B] is BTR
SPR[0x000D] is EDR
SPR[0x0800] is SLR
SPR[0x0802] is SHR
SPR[0x1000] is PID
SPR[0x1001] is ZPR
SPR[0x1002] is TLBX
SPR[0x1003] is TLBLO
SPR[0x1004] is TLBHI

SPR[0x2000 to 0x200B] is PVRI[O to
12]

MSRCLR Rd,Imm 100101 Rd 00001 00 & Imm14 Rd := MSR
MSR := MSR and Imm14

MSRSET Rd,Imm 100101 Rd 00000 00 & Imm14 Rd := MSR
MSR := MSR or Imm14

BR Rb 100110 | 00000 | 00000 | Rb | 00000000000 | PC:= PC + Rb

BRD Rb 100110 | 00000 | 10000 | Rb | 00000000000 | PC:= PC + Rb

BRLD Rd,Rb 100110 Rd 10100 Rb 00000000000 | PC:= PC + Rb
Rd := PC

BRA Rb 100110 | 00000 | 01000 | Rb | 00000000000 | PC:= Rb

BRAD Rb 100110 | 00000 | 11000 | Rb | 00000000000 | PC:= Rb

BRALD Rd,Rb 100110 Rd | 11100 | Rb | 00000000000 | PC:=Rb
Rd := PC

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 16
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=16

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-6: MicroBlaze Instruction Set Summary (Cont’d)
Type A 0-5 6-10 | 11-15|16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
BRK Rd,Rb 100110 Rd | 01100 | Rb | 00000000000 | PC := Rb
Rd := PC
MSRI[BIP] := 1
BEQ Ra,Rb 100111 | 00000 | Ra Rb | 00000000000 | PC:=PC + RbifRa =0
BNE Ra,Rb 100111 | 00001 | Ra Rb | 00000000000 | PC:=PC + RbifRa!=0
BLT Ra,Rb 100111 | 00010 Ra Rb 00000000000 | PC:=PC+ RbifRa <0
BLE Ra,Rb 100111 | 00011 Ra Rb 00000000000 | PC:=PC + RbifRa <=0
BGT Ra,Rb 100111 | 00100 | Ra Rb | 00000000000 | PC:= PC + RbifRa >0
BGE Ra,Rb 100111 | 00101 Ra Rb 00000000000 | PC:=PC + RbifRa>=0
BEQD Ra,Rb 100111 | 10000 | Ra Rb | 00000000000 | PC:=PC + RbifRa=0
BNED Ra,Rb 100111 | 10001 | Ra Rb | 00000000000 | PC:= PC + RbifRa!=0
BLTD Ra,Rb 100111 | 10010 | Ra Rb | 00000000000 | PC:=PC + RbifRa <0
BLED Ra,Rb 100111 | 10011 | Ra Rb | 00000000000 | PC:= PC + RbifRa <=0
BGTD Ra,Rb 100111 | 10100 Ra Rb 00000000000 | PC:=PC + RbifRa>0
BGED Ra,Rb 100111 | 10101 | Ra Rb | 00000000000 | PC:=PC + RbifRa>=0
ORI Rd,Ra,Imm 101000 Rd Ra Imm Rd := Ra or s(Imm)
ANDI Rd,Ra,Imm 101001 Rd Ra Imm Rd := Ra and s(Imm)
XORI Rd,Ra,Imm 101010 Rd Ra Imm Rd := Ra xor s(Imm)
ANDNI Rd,Ra,Imm 101011 | Rd Ra Imm Rd := Ra and s(Imm)
IMM Imm 101100 | 00000 | 00000 Imm ImmI[0:15] := Imm
RTSD Ra,Imm 101101 | 10000 Ra Imm PC:= Ra + s(Imm)
RTID Ra,Imm 101101 | 10001 Ra Imm PC:= Ra + s(Imm)
MSRIIE] := 1
RTBD Ra,Imm 101101 | 10010 Ra Imm PC := Ra + s(Imm)
MSRI[BIP] := 0
RTED Ra,Imm 101101 | 10100 Ra Imm PC:= Ra + s(Imm)
MSRIEE] := 1, MSR[EIP] := 0
ESR:=0
BRI Imm 101110 | 00000 | 00000 Imm PC:= PC + s(Imm)
MBAR Imm 101110 | Imm | 00010 | 0000000000000100 | PC:= PC + 4; Wait for memory accesses.
BRID Imm 101110 | 00000 | 10000 Imm PC := PC + s(Imm)
BRLID Rd,Imm 101110 Rd 10100 Imm PC := PC + s(Imm)
Rd := PC
BRAI Imm 101110 | 00000 | 01000 Imm PC := s(Imm)
BRAID Imm 101110 | 00000 | 11000 Imm PC := s(Imm)

MicroBlaze Processor Reference Guide

UG984 (v2014.3) October 1, 2014

www.Xilinx.com

| Send Feedback I

17

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=17

& XILINX

ALL PROGRAMMABLE-

Table 2-6: MicroBlaze Instruction Set Summary (Cont’d)

Chapter 2: MicroBlaze Architecture

Type A 0-5 6-10 | 11-15|16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31

BRALID Rd,Imm 101110 Rd 11100 Imm PC := s(Imm)

Rd := PC
BRKI Rd,Imm 101110 Rd 01100 Imm PC := s(Imm)

Rd := PC

MSR[BIP] := 1
BEQI Ra,Imm 101111 | 00000 Ra Imm PC := PC + s(Imm) if Ra =
BNEI Ra,Imm 101111 | 00001 Ra Imm PC:=PC + sImm) ifRa!=0
BLTI Ra,Imm 101111 | 00010 Ra Imm PC := PC + s(Imm) if Ra < 0
BLEI Ra,Imm 101111 | 00011 Ra Imm PC := PC + s(Imm) if Ra <=0
BGTI Ra,Imm 101111 | 00100 Ra Imm PC := PC + s(Imm) if Ra > 0
BGEI Ra,Imm 101111 | 00101 Ra Imm PC:= PC + s(Imm) if Ra>=10
BEQID Ra,Imm 101111 | 10000 Ra Imm PC := PC + s(Imm) if Ra =
BNEID Ra,Imm 101111 | 10001 Ra Imm PC:= PC + sdmm) ifRa!=0
BLTID Ra,Imm 101111 | 10010 Ra Imm PC := PC + s(Imm) if Ra < 0
BLEID Ra,Imm 101111 | 10011 Ra Imm PC := PC + s(Imm) if Ra <=0
BGTID Ra,Imm 101111 | 10100 Ra Imm PC := PC + s(Imm) if Ra > 0
BGEID Ra,Imm 101111 | 10101 Ra Imm PC := PC + s(Imm) if Ra >=0
LBU Rd,Ra,Rb 110000 Rd Ra Rb | 00000000000 | Addr := Ra + Rb
LBUR Rd,Ra,Rb 01000000000 | Rd[0:23] := O

Rd[24:31] := *Addr[0:7]
LHU Rd,Ra,Rb 110001 Rd Ra Rb 00000000000 | Addr:= Ra + Rb
LHUR Rd,Ra,Rb 01000000000 | Rd[0:15] := 0

Rd[16:31] := *Addr[0:15]
LW Rd,Ra,Rb 110010 Rd Ra Rb | 00000000000 | Addr := Ra + Rb
LWR Rd,Ra,Rb 01000000000 | Rd := *Addr
LWX Rd,Ra,Rb 110010 Rd Ra Rb | 10000000000 | Addr := Ra + Rb

Rd := *Addr

Reservation := 1
SB Rd,Ra,Rb 110100 Rd Ra Rb | 00000000000 | Addr := Ra + Rb
SBR Rd,Ra,Rb 01000000000 | *Addr[0:8] := Rd[24:31]
SH Rd,Ra,Rb 110101 Rd Ra Rb | 00000000000 | Addr := Ra + Rb
SHR Rd,Ra,Rb 01000000000 | *Addr[0:16] := Rd[16:31]
SW Rd,Ra,Rb 110110 Rd Ra Rb | 00000000000 | Addr := Ra + Rb
SWR Rd,Ra,Rb 01000000000 | *Addr := Rd
SWX Rd,Ra,Rb 110110 Rd Ra Rb | 10000000000 | Addr := Ra + Rb

*Addr := Rd if Reservation = 1

Reservation := 0

MicroBlaze Processor Reference Guide

UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I

18

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=18

& XILINX

ALL PROGRAMMABLE

Table 2-6: MicroBlaze Instruction Set Summary (Cont’d)

Chapter 2: MicroBlaze Architecture

Type A 0-5 6-10 | 11-15|16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
LBUI Rd,Ra,Imm 111000 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:23]:= 0
Rd[24:31] := *Addr[0:7]
LHUI Rd,Ra,Imm 111001 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:15]:= 0
Rd[16:31] := *Addr[0:15]
LWI Rd,Ra,Imm 111010 Rd Ra Imm Addr := Ra + s(Imm)
Rd := *Addr
SBI Rd,Ra,Imm 111100 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:7] := Rd[24:31]
SHI Rd,Ra,Imm 111101 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:15] := Rd[16:31]
SWI Rd,Ra,Imm 111110 Rd Ra Imm Addr := Ra + s(Imm)
*Addr := Rd

1. Due to the many different corner cases involved in floating point arithmetic, only the normal behavior is described. A full
description of the behavior can be found in Chapter 5, “MicroBlaze Instruction Set Architecture.”

Semaphore Synchronization

The LWX and SWX. instructions are used to implement common semaphore operations,

including test and set, compare and swap, exchange memory, and fetch and add. They are
also used to implement spinlocks.

These instructions are typically used by system programs and are called by application
programs as needed. Generally, a program uses LWX to load a semaphore from memory,
causing the reservation to be set (the processor maintains the reservation internally). The
program can compute a result based on the semaphore value and conditionally store the
result back to the same memory location using the SWX instruction. The conditional store
is performed based on the existence of the reservation established by the preceding LWX
instruction. If the reservation exists when the store is executed, the store is performed and
MSRI[C] is cleared to 0. If the reservation does not exist when the store is executed, the
target memory location is not modified and MSR[C] is set to 1.

If the store is successful, the sequence of instructions from the semaphore load to the
semaphore store appear to be executed atomically—no other device modified the
semaphore location between the read and the update. Other devices can read from the
semaphore location during the operation. For a semaphore operation to work properly, the
LWX instruction must be paired with an SWX instruction, and both must specify identical
addresses. The reservation granularity in MicroBlaze is a word. For both instructions, the
address must be word aligned. No unaligned exceptions are generated for these
instructions.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 19

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=19

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

The conditional store is always performed when a reservation exists, even if the store
address does not match the load address that set the reservation.

Only one reservation can be maintained at a time. The address associated with the
reservation can be changed by executing a subsequent LWX instruction. The conditional
store is performed based upon the reservation established by the last LWX instruction
executed. Executing an SWX instruction always clears a reservation held by the processor,
whether the address matches that established by the LWX or not.

Reset, interrupts, exceptions, and breaks (including the BRK and BRKI instructions) all clear
the reservation.

The following provides general guidelines for using the LWX and SWX instructions:

« The LWX and SWX instructions should be paired and use the same address.

» An unpaired SWX instruction to an arbitrary address can be used to clear any
reservation held by the processor.

« A conditional sequence begins with an LWX instruction. It can be followed by memory
accesses and/or computations on the loaded value. The sequence ends with an SWX
instruction. In most cases, failure of the SWX instruction should cause a branch back to
the LWX for a repeated attempt.

« An LWX instruction can be left unpaired when executing certain synchronization
primitives if the value loaded by the LWX is not zero. An implementation of Test and Set
exemplifies this:

loop: 1lwx r5,r3,r0 ; load and reserve
bnei r5,next ; branch if not equal to zero

SwWX r5,r3,r0 ; try to store non-zero value
addic r5,r0,0 ; check reservation

j
addik r5,r5,1 ; increment wvalue

;
bnei r5, loop ; loop if reservation lost

next:

» Performance can be improved by minimizing looping on an LWX instruction that fails to
return a desired value. Performance can also be improved by using an ordinary load
instruction to do the initial value check. An implementation of a spinlock exemplifies

this:

loop: 1w r5,r3,xr0 load the word
bnei r5, loop loop back if word not equal to 0
lwx r5,r3,xr0 try reserving again

bnei r5, loop ; likely that no branch is needed
addik r5,r5,1 ; lncrement value

SWX r5,r3,r0 ; try to store non-zero value
addic r5,r0,0 ; check reservation

bnei r5, loop ; loop if reservation lost

« Minimizing the looping on an LWX/SWX instruction pair increases the likelihood that
forward progress is made. The old value should be tested before attempting the store.
If the order is reversed (store before load), more SWX instructions are executed and
reservations are more likely to be lost between the LWX and SWX instructions.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 20
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=20

& XILINX

ALL PROGRAMMABLE

Chapter 2: MicroBlaze Architecture

Self-modifying Code

When using self-modifying code software must ensure that the modified instructions have
been written to memory prior to fetching them for execution. There are several aspects to

consider:

« The instructions to be modified may already have been fetched prior to modification:
into the instruction prefetch buffer,

into the instruction cache, if it is enabled,
into a stream buffer, if instruction cache stream buffers are used,

into the instruction cache, and then saved in a victim buffer, if victim buffers are

used.

To ensure that the modified code is always executed instead of the old unmodified
code, software must handle all these cases.

« If one or more of the instructions to be modified is a branch, and the branch target
cache is used, the branch target address may have been cached.

To avoid using the cached branch target address, software must ensure that the branch
target cache is cleared prior to executing the modified code.

« The modified instructions may not have been written to memory prior to execution:

they may be en route to memory, in temporary storage in the interconnect or the

memory controller,

they may be stored in the data cache, if write-back cache is used,
they may be saved in a victim buffer, if write-back cache and victim buffers are used.

Software must ensure that the modified instructions have been written to memory
before being fetched by the processor.

The annotated code below shows how each of the above issues can be addressed. This code
assumes that both instruction cache and write-back data cache is used. If not, the
corresponding instructions can be omitted.

The following code exemplifies storing a modified instruction:

swi r5,r6,0

wdc.flush ré6,r0 H
mbar 1 i

wic r7,r0
mbar 2

r5 = new instruction

r6 = physical instruction address

flush write-back data cache line

ensure new instruction is written to memory
invalidate line, empty stream & victim buffers
r7 = virtual instruction address

empty prefetch buffer, clear branch target cache

The physical and virtual addresses above are identical, unless MMU virtual mode is used. If
the MMU is enabled, the code sequences must be executed in real mode, since WIC and
WDC are privileged instructions. The first instruction after the code sequences above must
not be modified, since it may have been prefetched.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 21
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=21

& XILINX

ALL PROGRAMMABLE

Chapter 2: MicroBlaze Architecture

Registers

MicroBlaze has an orthogonal instruction set architecture. It has thirty-two 32-bit general
purpose registers and up to eighteen 32-bit special purpose registers, depending on
configured options.

General Purpose Registers

The thirty-two 32-bit General Purpose Registers are numbered RO through R31. The register
file is reset on bit stream download (reset value is 0x00000000). Figure 2-2 is a

representation of a General Purpose Register and Table 2-7 provides a description of each
register and the register reset value (if existing).

Note: The register file is not reset by the external reset inputs: Reset and Debug_ Rst.

0 31
T
R0O-R31
Figure 2-2: R0O-R31
Table 2-7: General Purpose Registers (R0-R31)
Bits Name Description Reset Value
0:31 |RO Always has a value of zero. Anything written to RO is | 0x00000000
discarded
0:31 R1 through R13 | 32-bit general purpose registers -
0:31 R14 32-bit register used to store return addresses for -
interrupts.
0:31 R15 32-bit general purpose register. Recommended for storing -
return addresses for user vectors.
0:31 R16 32-bit register used to store return addresses for breaks. -
0:31 R17 If MicroBlaze is configured to support hardware -
exceptions, this register is loaded with the address of the
instruction following the instruction causing the HW
exception, except for exceptions in delay slots that use BTR
instead (see "Branch Target Register (BTR)"); if not, it is a
general purpose register.
0:31 R18 through R31 | R18 through R31 are 32-bit general purpose registers. -
Refer to Table 4-2 for software conventions on general purpose register usage.
MicroBlaze Processor Reference Guide www.xilinx.com 22

UG984 (v2014.3) October 1, 2014

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=22

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Special Purpose Registers

Program Counter (PC)

The Program Counter (PC) is the 32-bit address of the execution instruction. It can be read
with an MFS instruction, but it cannot be written with an MTS instruction. When used with
the MFS instruction the PC register is specified by setting Sa = 0x0000. Figure 2-3 illustrates
the PC and Table 2-8 provides a description and reset value.

T
PC

Figure 2-3: PC

Table 2-8: Program Counter (PC)

Bits Name Description Reset Value

0:31 PC Program Counter 0x00000000

Address of executing instruction, that is, “mfs r2 0" stores the
address of the mfs instruction itself in R2.

Machine Status Register (MSR)

The Machine Status Register contains control and status bits for the processor. It can be
read with an MFS instruction. When reading the MSR, bit 29 is replicated in bit 0 as the carry
copy. MSR can be written using either an MTS instruction or the dedicated MSRSET and
MSRCLR instructions.

When writing to the MSR using MSRSET or MSRCLR, the Carry bit takes effect immediately
and the remaining bits take effect one clock cycle later. When writing using MTS, all bits
take effect one clock cycle later. Any value written to bit O is discarded.

When used with an MTS or MFS instruction, the MSR is specified by setting Sx = 0x0001.
Figure 2-4 illustrates the MSR register and Table 2-9 provides the bit description and reset
values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 23
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=23

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

|o\ |17‘18|19‘20‘21‘22‘23‘24‘25‘26‘27|28‘29‘30‘31|
T T T T T TT T T T1T7T
CcC RESERVED VMS VM UMS UM PVR EIP EE DCE DZO ICE FSL BIP C IE RES

Figure 2-4: MSR

Table 2-9: Machine Status Register (MSR)

Bits Name Description Reset Value

0 cC Arithmetic Carry Copy 0
Copy of the Arithmetic Carry (bit 29). CC is always the same as bit C.

1:16 Reserved

17 VMS Virtual Protected Mode Save 0

Only available when configured with an MMU
(if c USE MMU > 1 and C_ AREA OPTIMIZED = 0)

Read/Write

18 VM Virtual Protected Mode 0

0 = MMU address translation and access protection disabled, with
C_USE_MMU = 3 (Virtual). Access protection disabled with
C_USE_MMU = 2 (Protection)

1 = MMU address translation and access protection enabled, with
C_USE_MMU = 3 (Virtual). Access protection enabled, with
C_USE_MMU = 2 (Protection).

Only available when configured with an MMU

(if c USE MMU > 1 and C_AREA OPTIMIZED = 0)

Read/Write

19 UMsS User Mode Save 0

Only available when configured with an MMU
(if c USE MMU > 0 and C_AREA OPTIMIZED = 0)

Read/Write

20 UM User Mode 0
0 = Privileged Mode, all instructions are allowed
1 = User Mode, certain instructions are not allowed

Only available when configured with an MMU
(if c USE MMU > 0 and C_AREA OPTIMIZED = 0)

Read/Write

21 PVR Processor Version Register exists Based on
0 = No Processor Version Register parameter
1 = Processor Version Register exists C_PVR
Read only

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 24
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=24

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-9: Machine Status Register (MSR) (Cont’d)

Bits

Name

Description

Reset Value

22

EIP

Exception In Progress

0 = No hardware exception in progress

1 = Hardware exception in progress

Only available if configured with exception support
(C_* EXCEPTION or C_USE MMU > 0)
Read/Write

0

23

EE

Exception Enable

0 = Hardware exceptions disabled?!
1 = Hardware exceptions enabled

Only available if configured with exception support
(C_* EXCEPTION Of C_USE MMU > 0)

Read/Write

24

DCE

Data Cache Enable

0 = Data Cache disabled
1 = Data Cache enabled

Only available if configured to use data cache
(c_UsE _DcacHE = 1)

Read/Write

25

DzO

Division by Zero or Division Overflow?

0 = No division by zero or division overflow has occurred
1 = Division by zero or division overflow has occurred

Only available if configured to use hardware divider
(c_use p1v =1)

Read/Write

26

ICE

Instruction Cache Enable

0 = Instruction Cache disabled
1 = Instruction Cache enabled

Only available if configured to use instruction cache
(C_USE_ICACHE = 1)

Read/Write

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 25

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=25

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-9: Machine Status Register (MSR) (Cont’d)

Bits Name Description Reset Value

27 FSL AXI4-Stream Error 0
0 = get or getd had no error

1 = get or getd control type mismatch

This bit is sticky, i.e. it is set by a get or getd instruction when a control
bit mismatch occurs. To clear it an mts or msrclr instruction must be
used.

Only available if configured to use stream links
(C_FSL_LINKS > 0)

Read/Write

28 BIP Break in Progress 0

0 = No Break in Progress
1 = Break in Progress

Break Sources can be software break instruction or hardware break
from Ext Brk or Ext NM_Brk pin.

Read/Write

29 C Arithmetic Carry 0

0 = No Carry (Borrow)
1 = Carry (No Borrow)

Read/Write

30 IE Interrupt Enable 0

0 = Interrupts disabled
1 = Interrupts enabled

Read/Write
31 - Reserved 0

1. The MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data TLB Miss Exception, Instruction
TLB Miss Exception) cannot be disabled, and are not affected by this bit.

2. This bit is only used for integer divide-by-zero or divide overflow signaling. There is a floating point equivalent in
the FSR. The DZO-bit flags divide by zero or divide overflow conditions regardless if the processor is configured
with exception handling or not.

Exception Address Register (EAR)

The Exception Address Register stores the full load/store address that caused the exception
for the following:

* An unaligned access exception that means the unaligned access address

» An M_AXI_DP exception that specifies the failing AXI4 data access address

« A data storage exception that specifies the (virtual) effective address accessed

« Aninstruction storage exception that specifies the (virtual) effective address read
« A data TLB miss exception that specifies the (virtual) effective address accessed

« Aninstruction TLB miss exception that specifies the (virtual) effective address read

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 26
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=26

& XILINX

ALL PROGRAMMABLE

Chapter 2: MicroBlaze Architecture

The contents of this register is undefined for all other exceptions. When read with the MFS
instruction, the EAR is specified by setting Sa = 0x0003. The EAR register is illustrated in
Figure 2-5 and Table 2-10 provides bit descriptions and reset values.

0 31
T
EAR
Figure 2-5: EAR
Table 2-10: Exception Address Register (EAR)
Bits | Name Description Reset Value
0:31 | EAR Exception Address Register 0x00000000

Exception Status Register (ESR)

The Exception Status Register contains status bits for the processor. When read with the
MES instruction, the ESR is specified by setting Sa = 0x0005. The ESR register is illustrated

in Figure 2-6, Table 2-11 provides bit descriptions and reset values, and Table 2-12 provides
the Exception Specific Status (ESS).

\19\20 26|27 31|
T T T
RESERVED BN ESS EC
Figure 2-6: ESR
Table 2-11: Exception Status Register (ESR)
Bits Name Description Reset Value
0:18 Reserved
19 DS Delay Slot Exception. 0
0 = not caused by delay slot instruction
1 = caused by delay slot instruction
Read-only
MicroBlaze Processor Reference Guide www.xilinx.com

UG984 (v2014.3) October 1, 2014

l Send Feedback I 27

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=27

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE-

Table 2-11: Exception Status Register (ESR) (Cont’d)

Bits Name Description Reset Value
20:26 ESS Exception Specific Status See Table 2-12
For details refer to Table 2-12.
Read-only
27:31 EC Exception Cause 0

00000 = Stream exception

00001 = Unaligned data access exception
00010 = Illegal op-code exception

00011 = Instruction bus error exception
00100 = Data bus error exception

00101 = Divide exception

00110 = Floating point unit exception
00111 = Privileged instruction exception
00111 = Stack protection violation exception
10000 = Data storage exception

10001 = Instruction storage exception
10010 = Data TLB miss exception

10011 = Instruction TLB miss exception

Read-only

Table 2-12: Exception Specific Status (ESS)

Exception . -

Cause Bits Name Description Reset Value
Unaligned 20 w Word Access Exception 0
Data Access 0 = unaligned halfword access

1 = unaligned word access

21 S Store Access Exception 0
0 = unaligned load access
1 = unaligned store access

22:26 Rx Source/Destination Register 0
General purpose register used as source (Store) or
destination (Load) in unaligned access

Illegal 20:26 Reserved 0
Instruction

Instruction | 20 ECC Exception caused by ILMB correctable or 0
bus error uncorrectable error

21:26 Reserved 0
Data bus 20 ECC Exception caused by DLMB correctable or
error uncorrectable error

21:26 Reserved
Divide 20 DEC Divide - Division exception cause

0 = Divide-By-Zero
1 = Division Overflow

21:26 Reserved

Floating 20:26 Reserved 0
point unit

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 28
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=28

& XILINX

Chapter 2: MicroBlaze Architecture
ALL PROGRAMMABLE
Table 2-12: Exception Specific Status (ESS) (Cont’d)
Exception . L.

Cause Bits Name Description Reset Value
Privileged 20:26 Reserved 0
instruction
Stack 20:26 Reserved 0
protection
violation
Stream 20:22 Reserved

23:26 FSL AXl14-Stream index that caused the exception
Data 20 DIZ Data storage - Zone protection 0
storage 0 = Did not occur
1 = Occurred
21 S Data storage - Store instruction 0
0 = Did not occur
1 = Occurred
22:26 Reserved
Instruction | 20 DIZ Instruction storage - Zone protection 0
storage 0 = Did not occur
1 = Occurred
21:26 Reserved
Data TLB 20 Reserved
miss 21 S Data TLB miss - Store instruction
0 = Did not occur
1 = Occurred
22:26 Reserved
Instruction | 20:26 Reserved

TLB miss

Branch Target Register (BTR)

The Branch Target Register only exists if the MicroBlaze processor is configured to use
exceptions. The register stores the branch target address for all delay slot branch
instructions executed while MSR[EIP] = 0. If an exception is caused by an instruction in a
delay slot (that is, ESR[DS]=1), the exception handler should return execution to the address
stored in BTR instead of the normal exception return address stored in R17. When read with
the MFS instruction, the BTR is specified by setting Sa = 0x000B. The BTR register is
illustrated in Figure 2-7 and Table 2-13 provides bit descriptions and reset values.

31

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

T
BTR

Figure 2-7: BTR

www.Xilinx.com

l Send Feedback I 29

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=29

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-13: Branch Target Register (BTR)

Bits Name Description Reset Value
0:31 BTR Branch target address used by handler when returning from | 0x00000000
an exception caused by an instruction in a delay slot.
Read-only

Floating Point Status Register (FSR)

The Floating Point Status Register contains status bits for the floating point unit. It can be
read with an MFS, and written with an MTS instruction. When read or written, the register is
specified by setting Sa = 0x0007. The bits in this register are sticky — floating point
instructions can only set bits in the register, and the only way to clear the register is by
using the MTS instruction. Figure 2-8 illustrates the FSR register and Table 2-14 provides bit
descriptions and reset values.

| |27 28 29 30 31|
i T T T 1
RESERVED I0 DZ OF UF DO

Figure 2-8: FSR

Table 2-14: Floating Point Status Register (FSR)

Bits Name Description Reset Value
0:26 Reserved undefined
27 IO Invalid operation 0
28 Dz Divide-by-zero 0
29 OF Overflow 0
30 UF Underflow 0
31 DO Denormalized operand error 0

Exception Data Register (EDR)

The Exception Data Register stores data read on an AXI4-Stream link that caused a stream
exception.

The contents of this register is undefined for all other exceptions. When read with the MFS
instruction, the EDR is specified by setting Sa = 0x000D. Figure 2-9 illustrates the EDR
register and Table 2-15 provides bit descriptions and reset values.

Note: The register is only implemented if ¢_FSL_LINKS is greater than 0 and C_FSL_EXCEPTION is
setto 1.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 30
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=30

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

T
EDR

Figure 2-9: EDR

Table 2-15: Exception Data Register (EDR)

Bits | Name Description Reset Value

0:31 | EDR Exception Data Register 0x00000000

Stack Low Register (SLR)

The Stack Low Register stores the stack low limit use to detect stack overflow. When the
address of a load or store instruction using the stack pointer (register R1) as rA is less than
the Stack Low Register, a stack overflow occurs, causing a Stack Protection Violation
exception if exceptions are enabled in MSR.

When read with the MFS instruction, the SLR is specified by setting Sa = 0x0800.
Figure 2-10 illustrates the SLR register and Table 2-16 provides bit descriptions and reset
values.

Note: The register is only implemented if stack protection is enabled by setting the parameter
C_USE_STACK PROTECTION to 1. If stack protection is not implemented, writing to the register has
no effect.

Note: Stack protection is not available when the MMU is enabled (C_USE_MMU > 0). With the MMU
page-based memory protection is provided through the UTLB instead.

T
SLR

Figure 2-10: SLR

Table 2-16: Stack Low Register (SLR)

Bits | Name Description Reset Value

0:31 | SLR Stack Low Register 0x00000000

Stack High Register (SHR)

The Stack High Register stores the stack high limit use to detect stack underflow. When the
address of a load or store instruction using the stack pointer (register R1) as rA is greater
than the Stack High Register, a stack underflow occurs, causing a Stack Protection Violation
exception if exceptions are enabled in MSR.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 31
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=31

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

When read with the MFS instruction, the SHR is specified by setting Sa = 0x0802.

Figure 2-11 illustrates the SHR register and Table 2-17 provides bit descriptions and reset
values.

Note: The register is only implemented if stack protection is enabled by setting the parameter

C_USE_STACK PROTECTION to 1.If stack protection is not implemented, writing to the register has
no effect.

Note: Stack protection is not available when the MMU is enabled (C_USE_MMU > 0). With the MMU
page-based memory protection is provided through the UTLB instead.

T
SHR

Figure 2-11: SHR

Table 2-17: Stack High Register (SHR)

Bits | Name Description Reset Value

0:31 |SHR Stack High Register OxFFFFFFFF

Process Identifier Register (PID)

The Process Identifier Register is used to uniquely identify a software process during MMU
address translation. It is controlled by the c_use_mmu configuration option on MicroBlaze.
The register is only implemented if c_use_mmu is greater than 1 (User Mode) and

c_AREA OPTIMIZED is set to 0. When accessed with the MFS and MTS instructions, the PID is
specified by setting Sa = 0x1000. The register is accessible according to the memory
management special registers parameter c_MMU_TLB ACCESS.

PID is also used when accessing a TLB entry:

« When writing Translation Look-Aside Buffer High (TLBHI) the value of PID is stored in
the TID field of the TLB entry

« When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID

Figure 2-12 illustrates the PID register and Table 2-18 provides bit descriptions and reset
values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 32
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=32

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

24 31
T T
RESERVED PID
Figure 2-12: PID
Table 2-18: Process Identifier Register (PID)
Bits Name Description Reset Value
0:23 Reserved
24:31 | PID Used to uniquely identify a software process during MMU 0x00
address translation.
Read/Write

Zone Protection Register (ZPR)

The Zone Protection Register is used to override MMU memory protection defined in TLB
entries. It is controlled by the ¢_use mmu configuration option on MicroBlaze. The register
is only implemented if c_use_mmu is greater than 1 (User Mode), c_AREA OPTIMIZED is set to
0, and if the number of specified memory protection zones is greater than zero
(c_mMu_zoNES > 0). The implemented register bits depend on the number of specified
memory protection zones (c_mMMU_zoNES). When accessed with the MFS and MTS
instructions, the ZPR is specified by setting Sa = 0x1001. The register is accessible
according to the memory management special registers parameter ¢c_MMU TLB_ACCESS.

Figure 2-13 illustrates the ZPR register and Table 2-19 provides bit descriptions and reset
values.

[0 2 E E E [10 J12 [1&4 16 [18 20 [22 [2& 26 [28 [30 |
T T T T T T T T T T T T T T T T
ZPO zZP1 ZP2 ZP3 ZP4 ZP5 ZP6 ZP7 ZP8 ZP9 ZP10 ZP11 ZP12 ZP13 ZPl4 ZP15

Figure 2-13: ZPR

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 33
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=33

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-19: Zone Protection Register (ZPR)

Bits | Name Description Reset Value
0:1 ZP0 Zone Protect 0x00000000
2:3 ZP1 User mode (MSR[UM] = 1):

00 = Override V in TLB entry. No access to the page is allowed
30:31 | ZP15 01 = No override. Use V, WR and EX from TLB entry

10 = No override. Use V, WR and EX from TLB entry

11 = Override WR and EX in TLB entry. Access the page as writable
and executable

Privileged mode (MSR[UM] = 0):

00 = No override. Use V, WR and EX from TLB entry

01 = No override. Use V, WR and EX from TLB entry

10 = Override WR and EX in TLB entry. Access the page as writable
and executable

11 = Override WR and EX in TLB entry. Access the page as writable
and executable

Read/Write

Translation Look-Aside Buffer Low Register (TLBLO)

The Translation Look-Aside Buffer Low Register is used to access MMU Unified Translation
Look-Aside Buffer (UTLB) entries. It is controlled by the ¢c_use mmu configuration option on
MicroBlaze. The register is only implemented if c_ use_mmu is greater than 1 (User Mode),
and ¢ AREA OPTIMIZED is set to 0. When accessed with the MFS and MTS instructions, the
TLBLO is specified by setting Sa = 0x1003. When reading or writing TLBLO, the UTLB entry
indexed by the TLBX register is accessed. The register is readable according to the memory
management special registers parameter ¢ MMU TLB_ ACCESS.

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBLO entries).

Note: The UTLB is not reset by the external reset inputs: Reset and Debug Rst. This means that
the entire UTLB must be initialized after reset, to avoid any stale data.

Figure 2-14 illustrates the TLBLO register and Table 2-20 provides bit descriptions and reset
values.

0 [22]23]24 [28]29730731]
T T T 1T 1T 7
RPN EX WR ZSEL W I M G

Figure 2-14: TLBLO

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 34

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=34

& XILINX

ALL PROGRAMMABLE

Chapter 2: MicroBlaze Architecture

Table 2-20: Translation Look-Aside Buffer Low Register (TLBLO)

Bits

Name

Description

Reset Value

0:21

RPN

Real Page Number or Physical Page Number

When a TLB hit occurs, this field is read from the TLB entry and is
used to form the physical address. Depending on the value of the
SIZE field, some of the RPN bits are not used in the physical address.
Software must clear unused bits in this field to zero.

Only defined when ¢_USE_MMU=3 (Virtual).

Read/Write

0x000000

22

EX

Executable

When bit is set to 1, the page contains executable code, and
instructions can be fetched from the page. When bit is cleared to 0,
instructions cannot be fetched from the page. Attempts to fetch
instructions from a page with a clear EX bit cause an instruction-
storage exception.

Read/Write

23

WR

Writable

When bit is set to 1, the page is writable and store instructions can
be used to store data at addresses within the page.

When bit is cleared to O, the page is read-only (not writable).
Attempts to store data into a page with a clear WR bit cause a data
storage exception.

Read/Write

24:27

ZSEL

Zone Select

This field selects one of 16 zone fields (Z0-Z15) from the zone-
protection register (ZPR).

For example, if ZSEL 0x5, zone field Z5 is selected. The selected ZPR
field is used to modify the access protection specified by the TLB
entry EX and WR fields. It is also used to prevent access to a page by
overriding the TLB V (valid) field.

Read/Write

0x0

28

Write Through

When the parameter C_DCACHE_USE_WRITEBACK is set to 1, this
bit controls caching policy. A write-through policy is selected when
set to 1, and a write-back policy is selected otherwise.

This bit is fixed to 1, and write-through is always used, when
C_DCACHE_USE_WRITEBACK is cleared to 0.

Read/Write

0/1

29

Inhibit Caching

When bit is set to 1, accesses to the page are not cached (caching is
inhibited).

When cleared to 0, accesses to the page are cacheable.

Read/Write

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback]

UG984 (v2014.3) October 1, 2014

35

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=35

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-20: Translation Look-Aside Buffer Low Register (TLBLO) (Cont’d)

Bits | Name Description Reset Value

30 M Memory Coherent 0
This bit is fixed to 0, because memory coherence is not implemented
on MicroBlaze.

Read Only

31 G Guarded 0
When bit is set to 1, speculative page accesses are not allowed
(memory is guarded).

When cleared to 0, speculative page accesses are allowed.

The G attribute can be used to protect memory-mapped I/O devices
from inappropriate instruction accesses.

Read/Write

Translation Look-Aside Buffer High Register (TLBHI)

The Translation Look-Aside Buffer High Register is used to access MMU Unified Translation
Look-Aside Buffer (UTLB) entries. It is controlled by the c_use_mmu configuration option on
MicroBlaze. The register is only implemented if c_usg_mmuU is greater than 1 (User Mode),

and ¢_AREA OPTIMIZED is set to 0. When accessed with the MFS and MTS instructions, the
TLBHI is specified by setting Sa = 0x1004. When reading or writing TLBHI, the UTLB entry

indexed by the TLBX register is accessed. The register is readable according to the memory
management special registers parameter C_ MMU_TLB_ACCESS.

PID is also used when accessing a TLB entry:

» When writing TLBHI the value of PID is stored in the TID field of the TLB entry
« When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBHI entries).

Note: The UTLB is not reset by the external reset inputs: Reset and Debug_Rst.

Figure 2-15 illustrates the TLBHI register and Table 2-21 provides bit descriptions and reset

values.
0 |22 |25|26|27|28 31|
T T T 7T
TAG SIZE V E U0 Reserved

Figure 2-15: TLBHI

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 36
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=36

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-21: Translation Look-Aside Buffer High Register (TLBHI)

Bits Name Description Reset Value

0:21 | TAG TLB-entry tag 0x000000

Is compared with the page number portion of the virtual memory
address under the control of the SIZE field.

Read/Write

22:24 | SIZE Size 000

Specifies the page size. The SIZE field controls the bit range used in
comparing the TAG field with the page number portion of the virtual
memory address. The page sizes defined by this field are listed in
Table 2-37.

Read/Write

25 \Y Valid 0
When this bit is set to 1, the TLB entry is valid and contains a page-
translation entry.

When cleared to 0, the TLB entry is invalid.

Read/Write

26 E Endian 0
When this bit is set to 1, a the page is accessed as a little endian
page if C_ENDIANNESS is 0 (Big Endian), or as a big endian page
otherwise.

When cleared to 0, the page is accessed as a big endian page if
C_ENDIANNESS is 0 (Big Endian), or as a little endian page
otherwise.

The E bit only affects data read or data write accesses. Instruction
accesses are not affected.

The E bit is only implemented when the parameter
C_USE_REORDER_INSTR is set to 1, otherwise it is fixed to 0.
Read/Write

27 uo User Defined 0

This bit is fixed to 0, since there are no user defined storage
attributes on MicroBlaze.

Read Only

28:31 | Reserved

Translation Look-Aside Buffer Index Register (TLBX)

The Translation Look-Aside Buffer Index Register is used as an index to the Unified
Translation Look-Aside Buffer (UTLB) when accessing the TLBLO and TLBHI registers. It is
controlled by the c_use mmu configuration option on MicroBlaze. The register is only
implemented if ¢ use_mmMuU is greater than 1 (User Mode), and ¢ AREA OPTIMIZED is set to 0.
When accessed with the MFS and MTS instructions, the TLBX is specified by setting Sa =
0x1002. Figure 2-16 illustrates the TLBX register and Table 2-22 provides bit descriptions
and reset values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 37
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=37

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

T T
MISS Reserved INDEX

Figure 2-16: TLBX

Table 2-22: Translation Look-Aside Buffer Index Register (TLBX)

Bits Name Description Reset Value

0 MISS TLB Miss 0

This bit is cleared to 0 when the TLBSX register is written with a
virtual address, and the virtual address is found in a TLB entry.
The bit is set to 1 if the virtual address is not found. It is also cleared
when the TLBX register itself is written.

Read Only

Can be read if the memory management special registers
parameter C_MMU TLB_ACCESS > 0 (MINIMAL).

1:25 Reserved

26:31 | INDEX TLB Index 000000

This field is used to index the Translation Look-Aside Buffer entry
accessed by the TLBLO and TLBHI registers. The field is updated
with a TLB index when the TLBSX register is written with a virtual
address, and the virtual address is found in the corresponding TLB
entry.

Read/Write

Can be read and written if the memory management special
registers parameter C_ MMU TLB_ACCESS > 0 (MINIMAL).

Translation Look-Aside Buffer Search Index Register (TLBSX)

The Translation Look-Aside Buffer Search Index Register is used to search for a virtual page
number in the Unified Translation Look-Aside Buffer (UTLB). It is controlled by the
c_use_mMU configuration option on MicroBlaze. The register is only implemented if
C_USE_MMU is greater than 1 (User Mode), and ¢_AREA OPTIMIZED is set to 0. When written
with the MTS instruction, the TLBSX is specified by setting Sa = 0x1005. Figure 2-17
illustrates the TLBSX register and Table 2-23 provides bit descriptions and reset values.

0 22 31
T T
VPN Reserved

Figure 2-17: TLBSX

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 38
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=38

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-23: Translation Look-Aside Buffer Index Search Register (TLBSX)

Bits

Name

Description

Reset Value

0:21

VPN

Virtual Page Number

This field represents the page number portion of the virtual memory
address. It is compared with the page number portion of the virtual
memory address under the control of the SIZE field, in each of the
Translation Look-Aside Buffer entries that have the V bit set to 1.

If the virtual page number is found, the TLBX register is written with
the index of the TLB entry and the MISS bit in TLBX is cleared to 0. If
the virtual page number is not found in any of the TLB entries, the
MISS bit in the TLBX register is set to 1.

Write Only

22:31

Reserved

Processor Version Register (PVR)

The Processor Version Register is controlled by the C_PVR configuration option on
MicroBlaze.

* When c_pvr is set to 0 (None) the processor does not implement any PVR and

MSR[PVR]=0.

« When c_pvris set to 1 (Basic), MicroBlaze implements only the first register: PVRO, and
if set to 2 (Full), all 13 PVR registers (PVRO to PVR12) are implemented.

When read with the MFS instruction the PVR is specified by setting Sa = 0x200x, with x
being the register number between 0x0 and 0xB.

Table 2-24 through Table 2-35 provide bit descriptions and values.

Table 2-24: Processor Version Register 0 (PVRO)
Bits Name Description Value

0 CFG PVR implementation: Based on C_PVR

0 = Basic, 1 = Full
1 BS Use barrel shifter C_USE_BARREL
2 DIV Use divider C_USE_DIV
3 MUL Use hardware multiplier C_USE_HW_ MUL > 0 (None)
4 FPU Use FPU C_USE_FPU > 0 (None)
5 EXC Use any type of exceptions Based on C_* EXCEPTION

Also set if ¢ USE_MMU > 0 (None)

6 ICU Use instruction cache C USE_ICACHE
7 DCU Use data cache C_USE_DCACHE
8 MMU Use MMU C_USE_MMU > 0 (None)
9 BTC Use branch target cache C_USE_BRANCH TARGET CACHE
10 ENDI Selected endianness: C_ENDIANNESS

0 = Big endian, 1 = Little endian

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 39

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=39

& XILINX

ALL PROGRAMMABLE-

Table 2-24: Processor Version Register 0 (PVRO) (Cont’d)

Chapter 2: MicroBlaze Architecture

Bits Name Description Value
11 FT Implement fault tolerant features C_FAULT TOLERANT
12 SPROT Use stack protection C_USE_STACK PROTECTION
13 REORD Implement reorder instructions C_USE REORDER_ INSTR
14:15 | Reserved 0
16:23 | MBV MicroBlaze release version code Release Specific
0x19 = v8.40.b Ox1F = v9.2
0x1B = v9.0 0x20 = v9.3
0x1D =v9.1 0x21 = v9.4
24:31 | USR1 User configured value 1 C_PVR_USER1

Table 2-25: Processor Version Register 1 (PVR1)

Bits Name Description

Value

0:31 | USR2 User configured value 2

C_PVR_USER2

Table 2-26: Processor Version Register 2 (PVR2)

Bits Name Description Value
0 DAXI Data side AXI4 or ACE in use C D AXI
1 DLMB Data side LMB in use C D LMB
2 IAXI Instruction side AX14 or ACE in use C I AXI
3 ILMB Instruction side LMB in use C I LMB
4 IRQEDGE Interrupt is edge triggered C_INTERRUPT IS EDGE
5 IRQPOS Interrupt edge is positive C_EDGE IS POSITIVE
6:8 Reserved 0
9 Reserved 1
10 ACE Use ACE interconnect C_INTERCONNECT = 3 (ACE)
11 AXI4ADP Data Peripheral AXI interface uses AXI4 C_M AXI DP EXCLUSIVE ACCESS
protocol, with support for exclusive access
12 FSL Use extended AXI4-Stream instructions C _USE EXTENDED FSL INSTR
13 FSLEXC Generate exception for AXI4-Stream C_FSL_EXCEPTION
control bit mismatch
14 MSR Use msrset and msrclr instructions C_USE_MSR_INSTR
15 PCMP Use pattern compare and CLZ instructions | C_ USE_PCMP_INSTR
16 AREA Select implementation to optimize area C_AREA OPTIMIZED
with lower instruction throughput
17 BS Use barrel shifter C USE BARREL
18 DIV Use divider C USE DIV
MicroBlaze Processor Reference Guide www.xilinx.com

UG984 (v2014.3) October 1, 2014

| Send Feedback I 40

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=40

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-26: Processor Version Register 2 (PVR2) (Cont’d)
Bits Name Description Value
19 MUL Use hardware multiplier C_USE_HW_MUL > 0 (None)
20 FPU Use FPU C_USE_FPU > 0 (None)
21 MUL64 Use 64-bit hardware multiplier C_USE_HW_MUL = 2 (Mul64)
22 FPU2 Use floating point conversion and square | C_USE_FPU = 2 (Extended)
root instructions
23:24 | Reserved 0
25 OPOEXC Generate exception for 0x0 illegal opcode | C_ OPCODE 0x0 ILLEGAL
26 UNEXC Generate exception for unaligned data C _UNALIGNED EXCEPTIONS
access
27 OPEXC Generate exception for any illegal opcode | ¢ ILL OPCODE EXCEPTION
28 AXIIEXC Generate exception for M_AXIL_I error C M AXI I BUS EXCEPTION
29 AXIDEXC Generate exception for M_AXI_D error C M AXI D BUS_ EXCEPTION
30 DIVEXC Generate exception for division by zero or | C_ DIV_ZERO_EXCEPTION
division overflow
31 FPUEXC Generate exceptions from FPU C_FPU_EXCEPTION
Table 2-27: Processor Version Register 3 (PVR3)
Bits Name Description Value
0 DEBUG Use debug logic C_DEBUG_ENABLED > 0
1 EXT_DEBUG | Use extended debug logic C_DEBUG_ENABLED = 2 (Extended)
2 Reserved
3:6 PCBRK Number of PC breakpoints C_NUMBER_OF_ PC BRK
7:9 Reserved
10:12 | RDADDR Number of read address breakpoints C_NUMBER OF RD ADDR BRK
13:15 | Reserved
16:18 | WRADDR Number of write address breakpoints C_NUMBER_OF WR_ADDR BRK
19 Reserved 0
20:24 | FSL Number of AXI4-Stream links C_FSL_LINKS
25:28 | Reserved
29:31 | BTC_SIZE Branch Target Cache size C_BRANCH TARGET CACHE SIZE
MicroBlaze Processor Reference Guide www.xilinx.com

UG984 (v2014.3) October 1, 2014

| Send Feedback I a1

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=41

& XILINX

ALL PROGRAMMABLE-

Table 2-28: Processor Version Register 4 (PVR4)

Chapter 2: MicroBlaze Architecture

cache line length

Bits Name Description Value

0 ICU Use instruction cache C_USE_ICACHE

1:5 ICTS Instruction cache tag size C_ADDR TAG BITS

6 Reserved 1

7 ICW Allow instruction cache write C_ALLOW_ICACHE WR

8:10 |ICLL The base two logarithm of the instruction log2 (C_ICACHE LINE LEN)

11:15 | ICBS The base two logarithm of the instruction
cache byte size

log2 (C_CACHE BYTE SIZE)

16 IAU The instruction cache is used for all memory
accesses within the cacheable range

C_ICACHE ALWAYS USED

17:18 | Reserved

0

19:21 | ICV Instruction cache victims 0-3: C_ICACHE VICTIMS =0,2,4,8
22:23 | ICS Instruction cache streams C_ICACHE STREAMS
24 IFTL Instruction cache tag uses distributed RAM C_ICACHE FORCE TAG LUTRAM

25 ICDW Instruction cache data width

C_ICACHE DATA WIDTH > O

26:31 | Reserved

0

Table 2-29: Processor Version Register 5 (PVR5)

accesses within the cacheable range

Bits Name Description Value

0 DCU Use data cache C_USE_DCACHE

1:5 DCTS Data cache tag size C_DCACHE_ADDR_TAG

6 Reserved 1

7 DCW Allow data cache write C_ALLOW_DCACHE WR

8:10 | DCLL The base two logarithm of the data cache line | 1og2 (C_DCACHE LINE LEN)
length

11:15 | DCBS The base two logarithm of the data cache log2 (C_DCACHE BYTE SIZE)
byte size

16 DAU The data cache is used for all memory C DCACHE ALWAYS USED

17 DWB Data cache policy is write-back C_DCACHE_USE WRITEBACK

18 Reserved 0

19:21 | DCV Data cache victims 0-3: C_DCACHE_VICTIMS = 0,2,4,8

22:23 | Reserved 0

24 DFTL Data cache tag uses distributed RAM C_DCACHE FORCE TAG LUTRAM
MicroBlaze Processor Reference Guide www.xilinx.com 42

UG984 (v2014.3) October 1, 2014

| Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=42

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-29: Processor Version Register 5 (PVR5) (Cont’d)
Bits Name Description Value
25 DCDW Data cache data width C_DCACHE DATA WIDTH > 0
26 AXI4DC | Data Cache AXI interface uses AXI4 protocol, | ¢ M _AXI DC EXCLUSIVE ACCESS
with support for exclusive access
27:31 | Reserved 0
Table 2-30: Processor Version Register 6 (PVR6)
Bits | Name Description Value
0:31 | ICBA Instruction Cache Base Address C_ICACHE BASEADDR
Table 2-31: Processor Version Register 7 (PVR7)
Bits | Name Description Value
0:31 |ICHA Instruction Cache High Address C_ICACHE HIGHADDR
Table 2-32: Processor Version Register 8 (PVR8)
Bits | Name Description Value
0:31 | DCBA Data Cache Base Address C DCACHE BASEADDR
Table 2-33: Processor Version Register 9 (PVR9)
Bits Name Description Value
0:31 | DCHA Data Cache High Address C_DCACHE HIGHADDR
Table 2-34: Processor Version Register 10 (PVR10)
Bits Name Description Value
0:7 ARCH Target architecture: Defined by parameter C_FAMILY
OxF = Virtex-7, Defence Grade Virtex-7 Q
0x10 = Kintex™-7, Defence Grade Kintex-7 Q
0x11 = Artix™-7, Automotive Artix-7,
Defence Grade Artix-7 Q
0x12 = Zyng™-7000, Automotive Zynqg-7000,
Defence Grade Zyng-7000 Q
0x13 = UltraScale™ Virtex
0x14 = UltraScale Kintex
8:31 | Reserved 0

MicroBlaze Processor Reference Guide

www.Xilinx.com

UG984 (v2014.3) October 1, 2014

43

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=43

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-35: Processor Version Register 11 (PVR11)
Bits Name Description Value
01 | MMU Use MMU: C_USE_MMU
0 = None 2 = Protection
1 = User Mode 3 = Virtual
2:4 ITLB Instruction Shadow TLB size log2 (C_MMU ITLB SIZE)
5.7 DTLB Data Shadow TLB size log2 (C_MMU DTLB_SIZE)
8:9 TLBACC | TLB register access: C_MMU_TLB_ACCESS
0 = Minimal 2 = Write
1 = Read 3 =Full
10:14 | ZONES Number of memory protection zones C_MMU_ZONES
15 PRIVINS | Privileged instructions: C_MMU PRIVILEGED INSTR
0 = Full protection
1 = Allow stream instructions
16:16 | Reserved | Reserved for future use 0
17:31 | RSTMSR | Reset value for MSR C_RESET MSR
Table 2-36: Processor Version Register 12 (PVR12)
Bits Name Description Value
0:31 | VECTORS | Location of MicroBlaze vectors C_BASE VECTORS

MicroBlaze Processor Reference Guide

www.Xilinx.com

UG984 (v2014.3) October 1, 2014

l Send Feedback I 44

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=44

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Pipeline Architecture

MicroBlaze instruction execution is pipelined. For most instructions, each stage takes one
clock cycle to complete. Consequently, the number of clock cycles necessary for a specific
instruction to complete is equal to the number of pipeline stages, and one instruction is
completed on every cycle. A few instructions require multiple clock cycles in the execute
stage to complete. This is achieved by stalling the pipeline.

When executing from slower memory, instruction fetches may take multiple cycles. This
additional latency directly affects the efficiency of the pipeline. MicroBlaze implements an
instruction prefetch buffer that reduces the impact of such multi-cycle instruction memory
latency. While the pipeline is stalled by a multi-cycle instruction in the execution stage, the
prefetch buffer continues to load sequential instructions. When the pipeline resumes
execution, the fetch stage can load new instructions directly from the prefetch buffer
instead of waiting for the instruction memory access to complete. If instructions are
modified during execution (e.g. with self-modifying code), the prefetch buffer should be
emptied before executing the modified instructions, to ensure that it does not contain the
old unmodified instructions. The recommended way to do this is using an MBAR
instruction, although it is also possible to use a synchronizing branch instruction, for
example BRI 4.

Three Stage Pipeline

With c_ArReEA oprTIMIZED set to 1, the pipeline is divided into three stages to minimize
hardware cost: Fetch, Decode, and Execute.

cyclel cycle2 cycle3 cycled cycle5 cycle6 cycle7

instruction 1 Fetch Decode | Execute
instruction 2 Fetch Decode | Execute | Execute | Execute
instruction 3 Fetch Decode Stall Stall Execute

Five Stage Pipeline

With c¢_arRea oprTiMIZED set to O, the pipeline is divided into five stages to maximize
performance: Fetch (IF), Decode (OF), Execute (EX), Access Memory (MEM), and Writeback

(WB).
cyclel cycle2 «cycle3 «cycle4 «cycle5 «cycle6 cycle7 cycle8 cycle9
instruction 1 | IF OF | EX | MEM | ws
instruction 2 IF OF EX MEM | MEM | MEM WB
instruction 3 IF OF EX Stall Stall | MEM WB

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 45
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=45

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Branches

Normally the instructions in the fetch and decode stages (as well as prefetch buffer) are
flushed when executing a taken branch. The fetch pipeline stage is then reloaded with a new
instruction from the calculated branch address. A taken branch in MicroBlaze takes three
clock cycles to execute, two of which are required for refilling the pipeline. To reduce this
latency overhead, MicroBlaze supports branches with delay slots.

Delay Slots

When executing a taken branch with delay slot, only the fetch pipeline stage in MicroBlaze
is flushed. The instruction in the decode stage (branch delay slot) is allowed to complete.
This technique effectively reduces the branch penalty from two clock cycles to one. Branch
instructions with delay slots have a D appended to the instruction mnemonic. For example,
the BNE instruction does not execute the subsequent instruction (does not have a delay
slot), whereas BNED executes the next instruction before control is transferred to the
branch location.

A delay slot must not contain the following instructions: IMM, branch, or break. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been
completed.

Instructions that could cause recoverable exceptions (e.g. unaligned word or halfword load
and store) are allowed in the delay slot. If an exception is caused in a delay slot the ESR[DS]
bit is set, and the exception handler is responsible for returning the execution to the branch
target (stored in the special purpose register BTR). If the ESR[DS] bit is set, register R17 is

not valid (otherwise it contains the address following the instruction causing the exception).

Branch Target Cache

To improve branch performance, MicroBlaze provides a Branch Target Cache (BTC) coupled
with a branch prediction scheme. With the BTC enabled, a correctly predicted immediate
branch or return instruction incurs no overhead.

The BTC operates by saving the target address of each immediate branch and return
instruction the first time the instruction is encountered. The next time it is encountered, it
is usually found in the Branch Target Cache, and the Instruction Fetch Program Counter is
then simply changed to the saved target address, in case the branch should be taken.
Unconditional branches and return instructions are always taken, whereas conditional
branches use branch prediction, to avoid taking a branch that should not have been taken
and vice versa.

The BTC is cleared when a memory barrier (MBAR 0) or synchronizing branch (BRI 4) is
executed. This also occurs when the memory barrier or synchronizing branch follows
immediately after a branch instruction, even if that branch is taken. To avoid inadvertently
clearing the BTC, the memory barrier or synchronizing branch should not be placed
immediately after a branch instruction.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 46
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=46

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE
There are three cases where the branch prediction can cause a mispredict, namely:

» A conditional branch that should not have been taken, is actually taken,
« A conditional branch that should actually have been taken, is not taken,

« The target address of a return instruction is incorrect, which may occur when returning
from a function called from different places in the code.

All of these cases are detected and corrected when the branch or return instruction reaches
the execute stage, and the branch prediction bits or target address are updated in the BTC,
to reflect the actual instruction behavior. This correction incurs a penalty of two clock
cycles.

The size of the BTC can be selected with ¢ BRANCH TARGET CACHE_ sIzE. The default
recommended setting uses one block RAM, and provides 512 entries. When selecting 64
entries or below, distributed RAM is used to implement the BTC, otherwise block RAM is
used.

When the BTC uses block RAM, and ¢_FAULT TOLERANT is set to 1, block RAMs are protected
by parity. In case of a parity error, the branch is not predicted. To avoid accumulating errors
in this case, the BTC should be cleared periodically by a synchronizing branch.

The Branch Target Cache is available when ¢ USE_BRANCH TARGET CACHE is setto 1 and
C_AREA OPTIMIZED is set to 0.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 47
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=47

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Memory Architecture

MicroBlaze is implemented with a Harvard memory architecture; instruction and data
accesses are done in separate address spaces. Each address space has a 32-bit range (that
is, handles up to 4-GB of instructions and data memory respectively). The instruction and
data memory ranges can be made to overlap by mapping them both to the same physical
memory. The latter is useful for software debugging.

Both instruction and data interfaces of MicroBlaze are default 32 bits wide and use big
endian or little endian, bit-reversed format, depending on the parameter c_ENDIANNESS.
MicroBlaze supports word, halfword, and byte accesses to data memory.

Data accesses must be aligned (word accesses must be on word boundaries, halfword on
halfword boundaries), unless the processor is configured to support unaligned exceptions.
All instruction accesses must be word aligned.

MicroBlaze prefetches instructions to improve performance, using the instruction prefetch
buffer and (if enabled) instruction cache streams. To avoid attempts to prefetch instructions
beyond the end of physical memory, which may cause an instruction bus error or a
processor stall, instructions must not be located too close to the end of physical memory.
The instruction prefetch buffer requires 16 bytes margin, and using instruction cache
streams adds two additional cache lines (32 or 64 bytes).

MicroBlaze does not separate data accesses to I/O and memory (it uses memory mapped
I/O). The processor has up to three interfaces for memory accesses:

* Local Memory Bus (LMB)
« Advanced eXtensible Interface (AXI4) for peripheral access

« Advanced eXtensible Interface (AXI4) or AXI Coherency Extension (ACE) for cache
access

The LMB memory address range must not overlap with AXI4 ranges.

The c_ENDIANNESS parameter is automatically set to little endian when using AXI4, but can
be overridden by the user.

MicroBlaze has a single cycle latency for accesses to local memory (LMB) and for cache read
hits, except with ¢ AREA oPTIMIZED set to 1, when data side accesses and data cache read
hits require two clock cycles, and with c_FAULT TOLERANT set to 1, when byte writes and
halfword writes to LMB normally require two clock cycles.

The data cache write latency depends on ¢_DCACHE USE WRITEBACK. When
C_DCACHE _USE_WRITEBACK is set to 1, the write latency normally is one cycle (more if the
cache needs to do memory accesses). When ¢_DCACHE USE_WRITEBACK is cleared to 0, the

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 48
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=48

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

write latency normally is two cycles (more if the posted-write buffer in the memory
controller is full).

The MicroBlaze instruction and data caches can be configured to use 4 or 8 word cache
lines. When using a longer cache line, more bytes are prefetched, which generally improves
performance for software with sequential access patterns. However, for software with a
more random access pattern the performance can instead decrease for a given cache size.
This is caused by a reduced cache hit rate due to fewer available cache lines.

For details on the different memory interfaces refer to Chapter 3, MicroBlaze Signal
Interface Description.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 49
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=49

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Privileged Instructions

The following MicroBlaze instructions are privileged:

e GET, GETD, PUT, PUTD (except when explicitly allowed)

e WIC, WDC

s MTS

e MSRCLR, MSRSET (except when only the C bit is affected)
s BRK

¢ RTID, RTBD, RTED

* BRKI (except when jumping to physical address ¢c_Base_vEcToRrs + 0x8 or
C_BASE_VECTORS + 0x18)

e SLEEP

Attempted use of these instructions when running in user mode causes a privileged
instruction exception.

When setting the parameter ¢_MMU PRIVILEGED INSTR to 1, the instructions GET, GETD,
PUT, and PUTD are not considered privileged, and can be executed when running in user
mode. It is strongly discouraged to do this, unless absolutely necessary for performance
reasons, since it allows application programs to interfere with each other.

There are six ways to leave user mode and virtual mode:

Hardware generated reset (including debug reset)
Hardware exception

Non-maskable break or hardware break

1
2
3
4. Interrupt
5. Executing "BRALID Re,C BASE_VECTORS + 0x8" to perform a user vector exception
6

Executing the software break instructions “Brx1” jumping to physical address
C_BASE_VECTORS + Ox8 or ¢_BASE_VECTORS + 0x18

In all of these cases, except hardware generated reset, the user mode and virtual mode
status is saved in the MSR UMS and VMS bits.

Application (user-mode) programs transfer control to system-service routines (privileged
mode programs) using the BRALID or BRKI instruction, jumping to physical address
C_BASE VECTORS + 0x8. Executing this instruction causes a system-call exception to occur.
The exception handler determines which system-service routine to call and whether the
calling application has permission to call that service. If permission is granted, the

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 50
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=50

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

exception handler performs the actual procedure call to the system-service routine on
behalf of the application program.

The execution environment expected by the system-service routine requires the execution
of prologue instructions to set up that environment. Those instructions usually create the
block of storage that holds procedural information (the activation record), update and
initialize pointers, and save volatile registers (registers the system-service routine uses).
Prologue code can be inserted by the linker when creating an executable module, or it can
be included as stub code in either the system-call interrupt handler or the system-library
routines.

Returns from the system-service routine reverse the process described above. Epilog code
is executed to unwind and deallocate the activation record, restore pointers, and restore
volatile registers. The interrupt handler executes a return from exception instruction (RTED)
to return to the application.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 51
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=51

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Virtual-Memory Management

Programs running on MicroBlaze use effective addresses to access a flat 4 GB address
space. The processor can interpret this address space in one of two ways, depending on the
translation mode:

« Inreal mode, effective addresses are used to directly access physical memory

« Invirtual mode, effective addresses are translated into physical addresses by the
virtual-memory management hardware in the processor

Virtual mode provides system software with the ability to relocate programs and data
anywhere in the physical address space. System software can move inactive programs and
data out of physical memory when space is required by active programs and data.

Relocation can make it appear to a program that more memory exists than is actually
implemented by the system. This frees the programmer from working within the limits
imposed by the amount of physical memory present in a system. Programmers do not need
to know which physical-memory addresses are assigned to other software processes and
hardware devices. The addresses visible to programs are translated into the appropriate
physical addresses by the processor.

Virtual mode provides greater control over memory protection. Blocks of memory as small
as 1 KB can be individually protected from unauthorized access. Protection and relocation
enable system software to support multitasking. This capability gives the appearance of
simultaneous or near-simultaneous execution of multiple programs.

In MicroBlaze, virtual mode is implemented by the memory-management unit (MMU),
available when c_use_mmu is set to 3 (Virtual) and c¢c_aArREA opTIMIZED is set to 0. The MMU
controls effective-address to physical-address mapping and supports memory protection.
Using these capabilities, system software can implement demand-paged virtual memory
and other memory management schemes.

The MicroBlaze MMU implementation is based upon PowerPC™ 405. For details, see the
PowerPC Processor Reference Guide (UG011) document.

The MMU features are summarized as follows:

« Translates effective addresses into physical addresses
« Controls page-level access during address translation
« Provides additional virtual-mode protection control through the use of zones

« Provides independent control over instruction-address and data-address translation
and protection

« Supports eight page sizes: 1 kB, 4 kB, 16 kB, 64 kB, 256 kB, 1 MB, 4 MB, and 16 MB. Any
combination of page sizes can be used by system software

« Software controls the page-replacement strategy

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 52
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug011.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=52

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Real Mode

The processor references memory when it fetches an instruction and when it accesses data
with a load or store instruction. Programs reference memory locations using a 32-bit
effective address calculated by the processor. When real mode is enabled, the physical
address is identical to the effective address and the processor uses it to access physical
memory. After a processor reset, the processor operates in real mode. Real mode can also
be enabled by clearing the VM bit in the MSR.

Physical-memory data accesses (loads and stores) are performed in real mode using the
effective address. Real mode does not provide system software with virtual address
translation, but the full memory access-protection is available, implemented when

c use mMU > 1 (User Mode) and c_area opTimMIzED = 0. Implementation of a real-mode
memory manager is more straightforward than a virtual-mode memory manager. Real
mode is often an appropriate solution for memory management in simple embedded
environments, when access-protection is necessary, but virtual address translation is not
required.

Virtual Mode

0 24 31
| PD | Process ID Register
0 n 31
Effective Page Number Offset 32-Bit Effective Address
0 8 n+8 39
[pD | Effective Page Number Offset 40-Bit Virtual Address

Translation Look-Aside
Buffer (TLB) Look-Up

Real Page Number Offset 32-Bit Physical Address

UG011_37_021302
Figure 2-18: Virtual-Mode Address Translation

Each address shown in Figure 2-18 contains a page-number field and an offset field. The
page number represents the portion of the address translated by the MMU. The offset

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 53
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=53

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

represents the byte offset into a page and is not translated by the MMU. The virtual address
consists of an additional field, called the process ID (PID), which is taken from the PID
register (see Process-ID Register, page 33). The combination of PID and effective page
number (EPN) is referred to as the virtual page number (VPN). The value n is determined by
the page size, as shown in Table 2-37.

System software maintains a page-translation table that contains entries used to translate
each virtual page into a physical page. The page size defined by a page translation entry

determines the size of the page number and offset fields. For example, when a 4 kB page

size is used, the page-number field is 20 bits and the offset field is 12 bits. The VPN in this
case is 28 bits.

Then the most frequently used page translations are stored in the translation look-aside
buffer (TLB). When translating a virtual address, the MMU examines the page-translation
entries for a matching VPN (PID and EPN). Rather than examining all entries in the table,
only entries contained in the processor TLB are examined. When a page-translation entry is
found with a matching VPN, the corresponding physical-page number is read from the
entry and combined with the offset to form the 32-bit physical address. This physical
address is used by the processor to reference memory.

System software can use the PID to uniquely identify software processes (tasks, subroutines,
threads) running on the processor. Independently compiled processes can operate in
effective-address regions that overlap each other. This overlap must be resolved by system
software if multitasking is supported. Assigning a PID to each process enables system
software to resolve the overlap by relocating each process into a unique region of virtual-
address space. The virtual-address space mappings enable independent translation of each
process into the physical-address space.

Page-Translation Table

The page-translation table is a software-defined and software-managed data structure
containing page translations. The requirement for software-managed page translation
represents an architectural trade-off targeted at embedded-system applications.
Embedded systems tend to have a tightly controlled operating environment and a well-
defined set of application software. That environment enables virtual-memory
management to be optimized for each embedded system in the following ways:

« The page-translation table can be organized to maximize page-table search
performance (also called table walking) so that a given page-translation entry is
located quickly. Most general-purpose processors implement either an indexed page
table (simple search method, large page-table size) or a hashed page table (complex
search method, small page-table size). With software table walking, any hybrid
organization can be employed that suits the particular embedded system. Both the
page-table size and access time can be optimized.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 54
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=54

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

« Independent page sizes can be used for application modules, device drivers, system
service routines, and data. Independent page-size selection enables system software to
more efficiently use memory by reducing fragmentation (unused memory). For
example, a large data structure can be allocated to a 16 MB page and a small I/O
device-driver can be allocated to a 1 KB page.

« Page replacement can be tuned to minimize the occurrence of missing page
translations. As described in the following section, the most-frequently used page
translations are stored in the translation look-aside buffer (TLB). Software is responsible
for deciding which translations are stored in the TLB and which translations are
replaced when a new translation is required. The replacement strategy can be tuned to
avoid thrashing, whereby page-translation entries are constantly being moved in and
out of the TLB. The replacement strategy can also be tuned to prevent replacement of
critical-page translations, a process sometimes referred to as page locking.

The unified 64-entry TLB, managed by software, caches a subset of instruction and data
page-translation entries accessible by the MMU. Software is responsible for reading entries
from the page-translation table in system memory and storing them in the TLB. The
following section describes the unified TLB in more detail. Internally, the MMU also contains
shadow TLBs for instructions and data, with sizes configurable by ¢ MmMu_1TLB S1ZE and
C_MMU DTLB_SIZE respectively.

These shadow TLBs are managed entirely by the processor (transparent to software) and are
used to minimize access conflicts with the unified TLB.

Translation Look-Aside Buffer

The translation look-aside buffer (TLB) is used by the MicroBlaze MMU for address
translation when the processor is running in virtual mode, memory protection, and storage
control. Each entry within the TLB contains the information necessary to identify a virtual
page (PID and effective page number), specify its translation into a physical page,
determine the protection characteristics of the page, and specify the storage attributes
associated with the page.

The MicroBlaze TLB is physically implemented as three separate TLBs:

« Unified TLB—The UTLB contains 64 entries and is pseudo-associative. Instruction-page
and data-page translation can be stored in any UTLB entry. The initialization and
management of the UTLB is controlled completely by software.

« Instruction Shadow TLB—The ITLB contains instruction page-translation entries and is
fully associative. The page-translation entries stored in the ITLB represent the most-
recently accessed instruction-page translations from the UTLB. The ITLB is used to
minimize contention between instruction translation and UTLB-update operations. The
initialization and management of the ITLB is controlled completely by hardware and is
transparent to software.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 55
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=55

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

« Data Shadow TLB—The DTLB contains data page-translation entries and is fully
associative. The page-translation entries stored in the DTLB represent the most-recently
accessed data-page translations from the UTLB. The DTLB is used to minimize
contention between data translation and UTLB-update operations. The initialization
and management of the DTLB is controlled completely by hardware and is transparent

to software.

Figure 2-19 provides the translation flow for TLB.

Generate |-side Generate D-side
Effective Address Effective Address
Translation Disabled Translation Enabled Translation Enabled Translation Disabled
(MSR[VM]=0) (MSR[VM]=1) (MSR[VM]=1) (MSR[VM]=0)

Perform ITLB Perform DTLB (NoTranslation)
Look-Up Look-Up

No Translation

ITLB Hit i ITLB Miss DTLB Miss ¢ DTLB Hit
Extract Real Perform UTLB Extract Real
Address from ITLB Look-Up Address from DTLB

v UTLB Hit l UTLB Miss

Continue I-cache Continue I-cache
Access or D-cache

Access

Extract Real I-Side TLB Miss
Address from UTLB

or
‘ D-Side TLB Miss

Exception
Route Address
to DTLB

Figure 2-19: TLB Address Translation Flow

Route Address
to ITLB

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 56
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=56

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

TLB Entry Format

Figure 2-20 shows the format of a TLB entry. Each TLB entry is 68 bits and is composed of
two portions: TLBLO (also referred to as the data entry), and TLBHI (also referred to as the

tag entry).

TLBLO:

0 [22]23]24 [28 12973031
| r I I
RPN EX WR ZSEL W I M G

TLBHI:

0 [22 (2526727128 35
T T T 7T
TAG SIZE V. E U0 TID

Figure 2-20: TLB Entry Format

The TLB entry contents are described in Table 2-20, page 35 and Table 2-21, page 37.
The fields within a TLB entry are categorized as follows:

« Virtual-page identification (TAG, SIZE, V, TID)—These fields identify the page-
translation entry. They are compared with the virtual-page number during the
translation process.

« Physical-page identification (RPN, SIZE)—These fields identify the translated page in
physical memory.

« Access control (EX, WR, ZSEL)—These fields specify the type of access allowed in the
page and are used to protect pages from improper accesses.

« Storage attributes (W, I, M, G, E, U0)—These fields specify the storage-control
attributes, such as caching policy for the data cache (write-back or write-through),
whether a page is cacheable, and how bytes are ordered (endianness).

Table 2-37 shows the relationship between the TLB-entry s1zk field and the translated page
size. This table also shows how the page size determines which address bits are involved in
a tag comparison, which address bits are used as a page offset, and which bits in the
physical page number are used in the physical address.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 57
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=57

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-37: Page-Translation Bit Ranges by Page Size

Sme |(TLBHIField) it Range | Page Offset PP orE | Chartoo

1 KB 000 TAG[0:21] - Address[0:21] Address[22:31] RPN[0:21] -

4 KB 001 TAG[0:19] - Address[0:19] Address[20:31] RPN[0:19] 20:21
16 KB 010 TAG[0:17] - Address[0:17] Address[18:31] RPNI[0:17] 18:21
64 KB 011 TAG[0:15] - Address[0:15] Address[16:31] RPNJ[0:15] 16:21
256 KB 100 TAG[0:13] - Address[0:13] Address[14:31] RPNJ[0:13] 14:21

1 MB 101 TAG[0:11] - Address[0:11] Address[12:31] RPN[0:11] 12:21
4 MB 110 TAGI[0:9] - Address[0:9] Address[10:31] RPNI0:9] 10:21
16 MB 111 TAGI[0:7] - Address[0:7] Address[8:31] RPNI0:7] 8:21
TLB Access

When the MMU translates a virtual address (the combination of PID and effective address)
into a physical address, it first examines the appropriate shadow TLB for the page
translation entry. If an entry is found, it is used to access physical memory. If an entry is not
found, the MMU examines the UTLB for the entry. A delay occurs each time the UTLB must
be accessed due to a shadow TLB miss. The miss latency ranges from 2-32 cycles. The DTLB
has priority over the ITLB if both simultaneously access the UTLB.

Figure 2-21, page 60 shows the logical process the MMU follows when examining a page-
translation entry in one of the shadow TLBs or the UTLB. All valid entries in the TLB are
checked.

A TLB hit occurs when all of the following conditions are met by a TLB entry:

» The entry is valid

« The TAG field in the entry matches the effective address EPN under the control of the
SIZE field in the entry

« The TID field in the entry matches the PID

If any of the above conditions are not met, a TLB miss occurs. A TLB miss causes an
exception, described as follows:

A TID value of 0x00 causes the MMU to ignore the comparison between the TID and PID.
Only the TAG and EA[EPN] are compared. A TLB entry with TID=0x00 represents a process-
independent translation. Pages that are accessed globally by all processes should be
assigned a TID value of 0x00. A PID value of 0x00 does not identify a process that can access
any page. When PID=0x00, a page-translation hit only occurs when TID=0x00. It is possible
for software to load the TLB with multiple entries that match an EA[EPN] and PID
combination. However, this is considered a programming error and results in undefined
behavior.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 58
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=58

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

When a hit occurs, the MMU reads the RPN field from the corresponding TLB entry. Some
or all of the bits in this field are used, depending on the value of the SIZE field (see

Table 2-37). For example, if the s1zE field specifies a 256 kB page size, RPN[0:13] represents
the physical page number and is used to form the physical address. RPN[14:21] is not used,
and software must clear those bits to 0 when initializing the TLB entry. The remainder of the
physical address is taken from the page-offset portion of the EA. If the page size is 256 kB,
the 32-bit physical address is formed by concatenating RPN[0:13] with bits14:31 of the
effective address.

Prior to accessing physical memory, the MMU examines the TLB-entry access-control fields.
These fields indicate whether the currently executing program is allowed to perform the
requested memory access.

If access is allowed, the MMU checks the storage-attribute fields to determine how to
access the page. The storage-attribute fields specify the caching policy for memory
accesses.

TLB Access Failures

A TLB-access failure causes an exception to occur. This interrupts execution of the
instruction that caused the failure and transfers control to an interrupt handler to resolve
the failure. A TLB access can fail for two reasons:

* A matching TLB entry was not found, resulting in a TLB miss

« A matching TLB entry was found, but access to the page was prevented by either the
storage attributes or zone protection

When an interrupt occurs, the processor enters real mode by clearing MSR[VM] to 0. In real
mode, all address translation and memory-protection checks performed by the MMU are
disabled. After system software initializes the UTLB with page-translation entries,
management of the MicroBlaze UTLB is usually performed using interrupt handlers running
in real mode.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 59
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=59

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Figure 2-21 diagrams the general process for examining a TLB entry.

TLBHI[V]=1 No | TLB-Entry Miss

Yes
(TLBHIITIDI=0x00)
— Yes | No l
Compare -
No Match -

[TLBHI[TID] with PID]7 o Match —=| TLB-Entry Miss |

Match |

Compare
TLBHI[TAG] with EA[EPN] No Match I TLB-Entry Miss |
using TLBHI[SIZE]

[
Match (TLB Hit)

Check Access Not Allowed I Access Violation

Allowed

Data Reference 4(%7 Instruction Fetch

Check for [o
Guarded
Guarded Storage | Storage Violation
Not Guarded
|
Read TLBLO[RPN]
using TLBHI[SIZE]
l Generate Physical Address
from TLBLO[RPN] and Offset

Extract Offset from EA
using TLBHI[SIZE] G011 41038101

Figure 2-21: General Process for Examining a TLB Entry

The following sections describe the conditions under which exceptions occur due to TLB
access failures.

Data-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), a data-storage exception occurs when access
to a page is not permitted for any of the following reasons:

« From user mode:

The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00).
This applies to load and store instructions.

The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 11). This applies to store instructions.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 60
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=60

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

« From privileged mode:

The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 10 and ZPR[Zn], 11). This applies to store
instructions.

Instruction-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), an instruction-storage exception occurs when
access to a page is not permitted for any of the following reasons:

* From user mode:
The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00).

The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 11).

The TLB entry specifies a guarded-storage page (TLBLO[G]=1).
« From privileged mode:

The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 10 and ZPR[Zn], 11).

The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

Data TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) a data TLB-miss exception occurs if a valid,
matching TLB entry was not found in the TLB (shadow and UTLB). Any load or store
instruction can cause a data TLB-miss exception.

Instruction TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) an instruction TLB-miss exception occurs if a
valid, matching TLB entry was not found in the TLB (shadow and UTLB). Any instruction
fetch can cause an instruction TLB-miss exception.

Access Protection

System software uses access protection to protect sensitive memory locations from
improper access. System software can restrict memory accesses for both user-mode and
privileged-mode software. Restrictions can be placed on reads, writes, and instruction
fetches. Access protection is available when virtual protected mode is enabled.

Access control applies to instruction fetches, data loads, and data stores. The TLB entry for
a virtual page specifies the type of access allowed to the page. The TLB entry also specifies
a zone-protection field in the zone-protection register that is used to override the access
controls specified by the TLB entry.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 61
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=61

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

TLB Access-Protection Controls

Each TLB entry controls three types of access:

« Process—Processes are protected from unauthorized access by assigning a unique
process ID (PID) to each process. When system software starts a user-mode application,
it loads the PID for that application into the PID register. As the application executes,
memory addresses are translated using only TLB entries with a TID field in Translation
Look-Aside Buffer High (TLBHI) that matches the PID. This enables system software to
restrict accesses for an application to a specific area in virtual memory.

A TLB entry with TID=0x00 represents a process-independent translation. Pages that
are accessed globally by all processes should be assigned a TID value of 0x00.

« Execution—The processor executes instructions only if they are fetched from a virtual
page marked as executable (TLBLO[EX]=1). Clearing TLBLO[EX] to O prevents execution
of instructions fetched from a page, instead causing an instruction-storage interrupt
(ISI) to occur. The ISI does not occur when the instruction is fetched, but instead occurs
when the instruction is executed. This prevents speculatively fetched instructions that
are later discarded (rather than executed) from causing an ISI.

The zone-protection register can override execution protection.

« Read/Write—Data is written only to virtual pages marked as writable (TLBLO[WR]=1).
Clearing TLBLO[WR] to 0 marks a page as read-only. An attempt to write to a read-only
page causes a data-storage interrupt (DSI) to occur.

The zone-protection register can override write protection.

TLB entries cannot be used to prevent programs from reading pages. In virtual mode, zone
protection is used to read-protect pages. This is done by defining a no-access-allowed zone
(ZPR[Zn] = 00) and using it to override the TLB-entry access protection. Only programs
running in user mode can be prevented from reading a page. Privileged programs always
have read access to a page.

Zone Protection

Zone protection is used to override the access protection specified in a TLB entry. Zones are
an arbitrary grouping of virtual pages with common access protection. Zones can contain
any number of pages specifying any combination of page sizes. There is no requirement for
a zone to contain adjacent pages.

The zone-protection register (ZPR) is a 32-bit register used to specify the type of protection
override applied to each of 16 possible zones. The protection override for a zone is encoded
in the ZPR as a 2-bit field. The 4-bit zone-select field in a TLB entry (TLBLO[ZSEL]) selects
one of the 16 zone fields from the ZPR (Z0-Z15). For example, zone Z5 is selected when
ZSEL = 0101.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 62
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=62

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Changing a zone field in the ZPR applies a protection override across all pages in that zone.
Without the ZPR, protection changes require individual alterations to each page translation
entry within the zone.

Unimplemented zones (when ¢_MMU_zONES < 16) are treated as if they contained 11.

UTLB Management

The UTLB serves as the interface between the processor MMU and memory-management
software. System software manages the UTLB to tell the MMU how to translate virtual
addresses into physical addresses. When a problem occurs due to a missing translation or
an access violation, the MMU communicates the problem to system software using the
exception mechanism. System software is responsible for providing interrupt handlers to
correct these problems so that the MMU can proceed with memory translation.

Software reads and writes UTLB entries using the MFS and MTS instructions, respectively.
These instructions use the TLBX register index (numbered 0 to 63) corresponding to one of
the 64 entries in the UTLB. The tag and data portions are read and written separately, so
software must execute two MFS or MTS instructions to completely access an entry. The
UTLB is searched for a specific translation using the TLBSX register. TLBSX locates a
translation using an effective address and loads the corresponding UTLB index into the
TLBX register.

Individual UTLB entries are invalidated using the MTS instruction to clear the valid bit in the
tag portion of a TLB entry (TLBHI[V]).

When c¢_FAULT TOLERANT is set to 1, the UTLB block RAM is protected by parity. In case of a
parity error, a TLB miss exception occurs. To avoid accumulating errors in this case, each
entry in the UTLB should be periodically invalidated.

Recording Page Access and Page Modification
Software management of virtual-memory poses several challenges:

« Inavirtual-memory environment, software and data often consume more memory than
is physically available. Some of the software and data pages must be stored outside
physical memory, such as on a hard drive, when they are not used. Ideally, the most-
frequently used pages stay in physical memory and infrequently used pages are stored
elsewhere.

« When pages in physical-memory are replaced to make room for new pages, it is
important to know whether the replaced (old) pages were modified. If they were
modified, they must be saved prior to loading the replacement (new) pages. If the old
pages were not modified, the new pages can be loaded without saving the old pages.

« Alimited number of page translations are kept in the UTLB. The remaining translations
must be stored in the page-translation table. When a translation is not found in the
UTLB (due to a miss), system software must decide which UTLB entry to discard so that

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 63
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=63

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

the missing translation can be loaded. It is desirable for system software to replace
infrequently used translations rather than frequently used translations.

Solving the above problems in an efficient manner requires keeping track of page accesses
and page modifications. MicroBlaze does not track page access and page modification in
hardware. Instead, system software can use the TLB-miss exceptions and the data-storage
exception to collect this information. As the information is collected, it can be stored in a
data structure associated with the page-translation table.

Page-access information is used to determine which pages should be kept in physical
memory and which are replaced when physical-memory space is required. System software
can use the valid bit in the TLB entry (TLBHI[V]) to monitor page accesses. This requires
page translations be initialized as not valid (TLBHI[V]=0) to indicate they have not been
accessed. The first attempt to access a page causes a TLB-miss exception, either because
the UTLB entry is marked not valid or because the page translation is not present in the
UTLB. The TLB-miss handler updates the UTLB with a valid translation (TLBHI[V]=1). The set
valid bit serves as a record that the page and its translation have been accessed. The TLB-
miss handler can also record the information in a separate data structure associated with
the page-translation entry.

Page-modification information is used to indicate whether an old page can be overwritten
with a new page or the old page must first be stored to a hard disk. System software can use
the write-protection bit in the TLB entry (TLBLO[WR]) to monitor page modification. This
requires page translations be initialized as read-only (TLBLO[WR]=0) to indicate they have
not been modified. The first attempt to write data into a page causes a data-storage
exception, assuming the page has already been accessed and marked valid as described
above. If software has permission to write into the page, the data-storage handler marks the
page as writable (TLBLO[WR]=1) and returns. The set write-protection bit serves as a record
that a page has been modified. The data-storage handler can also record this information
in a separate data structure associated with the page-translation entry.

Tracking page modification is useful when virtual mode is first entered and when a new
process is started.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 64
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=64

& XILINX

ALL PROGRAMMABLE

Chapter 2: MicroBlaze Architecture

Reset, Interrupts, Exceptions, and Break

MicroBlaze supports reset, interrupt, user exception, break, and hardware exceptions. The
following section describes the execution flow associated with each of these events.

The relative priority starting with the highest is:

1. Reset

2. Hardware Exception
3. Non-maskable Break
4. Break

5. Interrupt

6.

User Vector (Exception)

Table 2-38 defines the memory address locations of the associated vectors and the
hardware enforced register file locations for return addresses. Each vector allocates two
addresses to allow full address range branching (requires an 1Mm followed by a BraI
instruction). Normally the vectors start at address 0x00000000, but the parameter
C_BASE_VECTORS can be used to locate them anywhere in memory.

The address range 0x28 to 0x4F is reserved for future software support by Xilinx. Allocating
these addresses for user applications is likely to conflict with future releases of SDK support

software.

Table 2-38: Vectors and Return Address Register File Location

Event

Vector Address

Register File
Return Address

Reset

C_BASE_VECTORS + 0x00000000 -
C_BASE_VECTORS + 0x00000004

User Vector (Exception)

C_BASE_VECTORS + 0x00000008 -

C_BASE_VECTORS + 0x0000000C Rx
Interrupt! C_BASE_VECTORS + 0x00000010 - R14
C_BASE_VECTORS + 0x00000014
Break: Non-maskable
hardware C_BASE_VECTORS + 0x00000018 - R16
Break: Hardware C_BASE_VECTORS + 0x0000001C
Break: Software
Hardware Exception C_BASE_VECTORS + 0x00000020 - R17 or BTR

C_BASE_VECTORS + 0x00000024

Reserved by Xilinx for future
use

C_BASE_VECTORS + 0x00000028 -
C_BASE_VECTORS + 0x0000004F

1. With low-latency interrupt mode, the vector address is supplied by the Interrupt Controller.

All of these events will clear the reservation bit, used together with the LWX and SWX
instructions to implement mutual exclusion, such as semaphores and spinlocks.

MicroBlaze Processor Reference Guide

UG984 (v2014.3) October 1, 2014

www.Xilinx.com

65

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=65

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Reset

When a reset or Debug Rrst (1) occurs, MicroBlaze flushes the pipeline and starts fetching
instructions from the reset vector (address 0x0). Both external reset signals are active high
and should be asserted for a minimum of 16 cycles.

Equivalent Pseudocode

PC < C_BASE VECTORS + 0x00000000

MSR ¢— C_RESET MSR (see “MicroBlaze Core Configurability” in Chapter 3)
EAR ¢ 0; ESR ¢ 0; FSR < 0

PID ¢ 0; ZPR ¢ 0; TLBX < 0

Reservation < 0

Hardware Exceptions

MicroBlaze can be configured to trap the following internal error conditions: illegal
instruction, instruction and data bus error, and unaligned access. The divide exception can
only be enabled if the processor is configured with a hardware divider (c_use p1v=1). When
configured with a hardware floating point unit (c_use_rprus>0), it can also trap the following
floating point specific exceptions: underflow, overflow, float division-by-zero, invalid
operation, and denormalized operand error.

When configured with a hardware Memory Management Unit, it can also trap the following
memory management specific exceptions: Illegal Instruction Exception, Data Storage
Exception, Instruction Storage Exception, Data TLB Miss Exception, and Instruction TLB Miss
Exception.

A hardware exception causes MicroBlaze to flush the pipeline and branch to the hardware
exception vector (address ¢c_Base VECTORS + 0x20). The execution stage instruction in the
exception cycle is not executed.

The exception also updates the general purpose register R17 in the following manner:

« For the MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data
TLB Miss Exception, Instruction TLB Miss Exception) the register R17 is loaded with the
appropriate program counter value to re-execute the instruction causing the exception
upon return. The value is adjusted to return to a preceding 1Mm instruction, if any. If the
exception is caused by an instruction in a branch delay slot, the value is adjusted to
return to the branch instruction, including adjustment for a preceding 1Mm instruction,
if any.

« For all other exceptions the register R17 is loaded with the program counter value of
the subsequent instruction, unless the exception is caused by an instruction in a branch
delay slot. If the exception is caused by an instruction in a branch delay slot, the

1. Reset input controlled by the debugger via MDM.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 66
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=66

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

ESR[DS] bit is set. In this case the exception handler should resume execution from the
branch target address stored in BTR.

The EE and EIP bits in MSR are automatically reverted when executing the RTED instruction.

The VM and UM bits in MSR are automatically reverted from VMS and UMS when executing
the RTED, RTBD, and RTID instructions.

Exception Priority

When two or more exceptions occur simultaneously, they are handled in the following
order, from the highest priority to the lowest:

« Instruction Bus Exception

» Instruction TLB Miss Exception
« Instruction Storage Exception
« Illegal Opcode Exception

« Privileged Instruction Exception or Stack Protection Violation Exception
« Data TLB Miss Exception

« Data Storage Exception

« Unaligned Exception

« Data Bus Exception

« Divide Exception

» FPU Exception

+ Stream Exception

Exception Causes
« Stream Exception

The AXI4-Stream exception is caused by executing a get or getd instruction with the ‘e’
bit set to ‘1" when there is a control bit mismatch.

» Instruction Bus Exception
The instruction bus exception is caused by errors when reading data from memory.

The instruction peripheral AXI4 interface (M_AXI_IP) exception is caused by an error
response on M _AXI IP RRESP

The instruction cache AXI4 interface (M_AXI_IC) is caused by an error response on
M _AXI IC RRESP The exception can only occur when c_ICACHE ALWAYS USED is set

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 67
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=67

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

to 1 and the cache is turned off, or if the MMU Inhibit Caching bit is set for the
address. In all other cases the response is ignored.

The instructions side local memory (ILMB) can only cause instruction bus exception
when either an uncorrectable error occurs in the LMB memory, as indicated by the
IUE signal, or c_ECC_USE_CE_EXCEPTION is set to 1 and a correctable error occurs in
the LMB memory, as indicated by the 1cE signal.

Illegal Opcode Exception

The illegal opcode exception is caused by an instruction with an invalid major opcode
(bits 0 through 5 of instruction). Bits 6 through 31 of the instruction are not checked.
Optional processor instructions are detected as illegal if not enabled. If the optional

feature c_oprcoDE 0x0 ILLEGAL is enabled, an illegal opcode exception is also caused if
the instruction is equal to 0x00000000.

Data Bus Exception

The data bus exception is caused by errors when reading data from memory or writing
data to memory.

The data peripheral AXI4 interface (M_AXI_DP) exception is caused by an error
response on M_AXI DP RRESP Of M_AXI DP BRESP

The data cache AX14 interface (M_AXI_DC) exception is caused by:
- An error response on M_AXI DC_RRESP Or M_AXI DC_BRESPH

- OKAY response on M_AXI DC RRESP in case of an exclusive access using Lux.

The exception can only occur when c¢_DCACHE ALWAYS USED is set to 1 and the cache
is turned off, when an exclusive access using Lwx or swx is performed, or if the MMU
Inhibit Caching bit is set for the address. In all other cases the response is ignored.

The data side local memory (DLMB) can only cause instruction bus exception when
either an uncorrectable error occurs in the LMB memory, as indicated by the pue
signal, or c_EcC_USE_CE_EXCEPTION is set to 1 and a correctable error occurs in the
LMB memory, as indicated by the pck signal. An error can occur for all read
accesses, and for byte and halfword write accesses.

Unaligned Exception

The unaligned exception is caused by a word access where the address to the data bus
has bits 30 or 31 set, or a half-word access with bit 31 set.

Divide Exception

The divide exception is caused by an integer division (idiv or idivu) where the divisor is
zero, or by a signed integer division (idiv) where overflow occurs (-2147483648 / -1).

FPU Exception

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 68

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=68

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

An FPU exception is caused by an underflow, overflow, divide-by-zero, illegal operation,
or denormalized operand occurring with a floating point instruction.

Underflow occurs when the result is denormalized.
Overflow occurs when the result is not-a-number (NaN).

The divide-by-zero FPU exception is caused by the rA operand to fdiv being zero
when rB is not infinite.

Illegal operation is caused by a signaling NaN operand or by illegal infinite or zero
operand combinations.

» Privileged Instruction Exception

The Privileged Instruction exception is caused by an attempt to execute a privileged
instruction in User Mode.

» Stack Protection Violation Exception

A Stack Protection Violation exception is caused by executing a load or store instruction
using the stack pointer (register R1) as rA with an address outside the stack boundaries
defined by the special Stack Low and Stack High registers, causing a stack overflow or a
stack underflow.

« Data Storage Exception

The Data Storage exception is caused by an attempt to access data in memory that
results in a memory-protection violation.

« Instruction Storage Exception

The Instruction Storage exception is caused by an attempt to access instructions in
memory that results in a memory-protection violation.

« Data TLB Miss Exception

The Data TLB Miss exception is caused by an attempt to access data in memory, when a
valid Translation Look-Aside Buffer entry is not present, and virtual protected mode is
enabled.

» Instruction TLB Miss Exception

The Instruction TLB Miss exception is caused by an attempt to access instructions in
memory, when a valid Translation Look-Aside Buffer entry is not present, and virtual
protected mode is enabled.

Should an Instruction Bus Exception, Illegal Opcode Exception or Data Bus Exception occur
when c_FAULT TOLERANT is set to 1, and an exception is in progress (i.e. MSR[EIP] set and
MSR[EE] cleared), the pipeline is halted, and the external signal MB_Error is set.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 69
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=69

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Equivalent Pseudocode

ESR[DS] ¢ exception in delay slot
if ESR[DS] then
BTR ¢— branch target PC
if MMU exception then
if branch preceded by IMM then
rl7 < PC - 8
else
rl7 ¢ PC - 4
else
rl7 ¢ invalid value
else if MMU exception then
if instruction preceded by IMM then
rl7 <~ PC - 4
else
rl7 ¢« PC
else
rl7 <~ PC + 4
PC < C_BASE VECTORS + 0x00000020
MSR[EE] < 0, MSR[EIP]<« 1
MSR [UMS] <¢— MSR[UM], MSR[UM] ¢ 0, MSR[VMS] ¢ MSR[VM], MSR[VM] ¢« 0
ESR[EC] ¢ exception specific value
ESR[ESS] ¢~ exception specific value
EAR ¢ exception specific value
FSR ¢« exception specific value
Reservation <« 0

Breaks
There are two kinds of breaks:

« Hardware (external) breaks

» Software (internal) breaks

Hardware Breaks

Hardware breaks are performed by asserting the external break signal (that is, the Ext Brx
and Ext NM_BRK input ports). On a break, the instruction in the execution stage completes
while the instruction in the decode stage is replaced by a branch to the break vector
(address ¢c_Base_vEcTORS + 0x18). The break return address (the PC associated with the
instruction in the decode stage at the time of the break) is automatically loaded into
general purpose register R16. MicroBlaze also sets the Break In Progress (81p) flag in the
Machine Status Register (MSR).

A normal hardware break (that is, the Ext_BRK input port) is only handled when MSR[BIP]
and MSRI[EIP] are set to O (that is, there is no break or exception in progress). The Break In
Progress flag disables interrupts. A non-maskable break (that is, the Ext _NM_BRK input port)
is always handled immediately.

The BIP bit in the MSR is automatically cleared when executing the RTBD instruction.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 70
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=70

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

The Ext_BRK signal must be kept asserted until the break has occurred, and deasserted
before the rRTBD instruction is executed. The Ext NM_BRk signal must only be asserted one
clock cycle.

Software Breaks

To perform a software break, use the brk and brki instructions. Refer to Chapter 5,
MicroBlaze Instruction Set Architecture for detailed information on software breaks.

As a special case, when C_USE_DEBUG is set, and "brki rD, ox1s” is executed, a software
breakpoint is signaled to the debugger, e.g. the Xilinx Microprocessor Debugger (XMD)
tool, irrespective of the value of c_BASE VECTORS.

Latency

The time it takes MicroBlaze to enter a break service routine from the time the break occurs
depends on the instruction currently in the execution stage and the latency to the memory
storing the break vector.

Equivalent Pseudocode

rle < PC

PC < C_BASE VECTORS + 0x00000018

MSR[BIP] « 1

MSR [UMS] ¢— MSR[UM], MSR[UM] ¢ 0, MSR[VMS] ¢— MSR[VM], MSR[VM] ¢« O
Reservation <« 0

Interrupt

MicroBlaze supports one external interrupt source (connected to the interrupt input port).
The processor only reacts to interrupts if the Interrupt Enable (IE) bit in the Machine Status
Register (MSR) is set to 1. On an interrupt, the instruction in the execution stage completes
while the instruction in the decode stage is replaced by a branch to the interrupt vector.
This is either address ¢_Base _vecTors + 0x10, or with low-latency interrupt mode, the
address supplied by the Interrupt Controller.

The interrupt return address (the PC associated with the instruction in the decode stage at
the time of the interrupt) is automatically loaded into general purpose register R14. In
addition, the processor also disables future interrupts by clearing the IE bit in the MSR. The
IE bit is automatically set again when executing the RTID instruction.

Interrupts are ignored by the processor if either of the break in progress (B1p) or exception
in progress (E1P) bits in the MSR are set to 1.

By using the parameter c_INTERRUPT IS EDGE, the external interrupt can either be set to
level-sensitive or edge-sensitive:

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 71
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=71

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

« When using level-sensitive interrupts, the interrupt input must remain set until
MicroBlaze has taken the interrupt, and jumped to the interrupt vector. Software must
clear the interrupt before returning from the interrupt handler. If not, the interrupt is
taken again, as soon as interrupts are enabled when returning from the interrupt
handler.

« When using edge-sensitive interrupts, MicroBlaze detects and latches the 1nterrupt
input edge, which means that the input only needs to be asserted one clock cycle. The
interrupt input can remain asserted, but must be deasserted at least one clock cycle
before a new interrupt can be detected. The latching of an edge sensitive interrupt is
independent of the IE bit in MSR. Should an interrupt occur while the IE bit is 0, it will
immediately be serviced when the IE bit is set to 1.

Low-latency Interrupt Mode

A low-latency interrupt mode is available, which allows the Interrupt Controller to directly
supply the interrupt vector for each individual interrupt (via the Interrupt Address input
port).

The address of each fast interrupt handler must be passed to the Interrupt Controller when
initializing the interrupt system. When a particular interrupt occurs, this address is supplied
by the Interrupt Controller, which allows MicroBlaze to directly jump to the handler code.

With this mode, MicroBlaze also directly sends the appropriate interrupt acknowledge to
the Interrupt Controller (via the Interrupt ack output port), although it is still the
responsibility of the Interrupt Service Routine to acknowledge level sensitive interrupts at
the source.

To inform the Interrupt Controller of the interrupt handling events, interrupt ack is set to:

« 01 - when MicroBlaze jumps to the interrupt handler code,
« 10 - when the RTID instruction is executed to return from interrupt,

« 11 - when MSRIIE] is changed from 0 to 1, which enables interrupts again.
The 1nterrupt_ack output port is active during one clock cycle, and is then reset to 00.

This information allows the Interrupt Controller to acknowledge interrupts appropriately,
both for level-sensitive and edge-triggered interrupt.

Latency

The time it takes MicroBlaze to enter an Interrupt Service Routine (ISR) from the time an
interrupt occurs, depends on the configuration of the processor and the latency of the
memory controller storing the interrupt vectors. If MicroBlaze is configured to have a
hardware divider, the largest latency happens when an interrupt occurs during the
execution of a division instruction.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 72
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=72

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

With low-latency interrupt mode, the time to enter the ISR is significantly reduced, since
the interrupt vector for each individual interrupt is directly supplied by the Interrupt
Controller. With compiler support for fast interrupts, there is no need for a common ISR at
all. Instead, the ISR for each individual interrupt will be directly called, and the compiler
takes care of saving and restoring registers used by the ISR.

Equivalent Pseudocode

rl4 < PC
if C USE INTERRUPT = 2
PC < Interrupt Address
Interrupt_Ack < 01
else
PC <~ C_BASE VECTORS + 0x00000010
MSR[IE] ¢ 0
MSR [UMS] <= MSR[UM], MSR[UM] ¢ 0, MSR[VMS] ¢ MSR[VM], MSR[VM] <« 0
Reservation ¢ 0

User Vector (Exception)

The user exception vector is located at address 0x8. A user exception is caused by inserting
a '‘BrRaLID Rx,0x8" instruction in the software flow. Although Rx could be any general
purpose register, Xilinx recommends using R15 for storing the user exception return
address, and to use the RTSD instruction to return from the user exception handler.

Pseudocode

rx ¢« PC

PC <~ C_BASE VECTORS + 0x00000008

MSR [UMS] ¢— MSR[UM], MSR[UM] ¢ 0, MSR[VMS] ¢ MSR[VM], MSR[VM] & 0
Reservation ¢ 0

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 73
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=73

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Instruction Cache

Overview

MicroBlaze can be used with an optional instruction cache for improved performance when
executing code that resides outside the LMB address range.

The instruction cache has the following features:

« Direct mapped (1-way associative)

» User selectable cacheable memory address range

« Configurable cache and tag size

« Caching over AXI14 interface (M_AXI_IC)

« Option to use 4 or 8 word cache-line

« Cache on and off controlled using a bit in the MSR

« Optional WIC instruction to invalidate instruction cache lines

« Optional stream buffers to improve performance by speculatively prefetching
instructions

« Optional victim cache to improve performance by saving evicted cache lines

« Optional parity protection that invalidates cache lines if a Block RAM bit error is
detected

« Optional data width selection to either use 32 bits, an entire cache line, or 512 bits

General Instruction Cache Functionality

When the instruction cache is used, the memory address space is split into two segments:
a cacheable segment and a non-cacheable segment. The cacheable segment is determined
by two parameters: ¢_ICACHE BASEADDR and c_ICACHE HIGHADDR. All addresses within this
range correspond to the cacheable address segment. All other addresses are non-
cacheable.

The cacheable segment size must be 2N, where N is a positive integer. The range specified
by c_ICACHE BASEADDR and C_ICACHE HIGHADDR must comprise a complete power-of-two
range, such that range = 2N and the N least significant bits of ¢_tcacue BASEADDR must be
zero.

The cacheable instruction address consists of two parts: the cache address, and the tag

address. The MicroBlaze instruction cache can be configured from 64 bytes to 64 kB. This
corresponds to a cache address of between 6 and 16 bits. The tag address together with the
cache address should match the full address of cacheable memory. When selecting cache

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 74
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=74

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

sizes below 2 kB, distributed RAM is used to implement the Tag RAM and Instruction RAM.
Distributed RAM is always used to implement the Tag RAM, when setting the parameter
C_ICACHE FORCE_TAG LUTRAM to 1. This parameter is only available with cache sizes 8 kB or
16 kB and less, for 4 or 8 word cache-lines, respectively.

For example: in a MicroBlaze configured with ¢ ICACHE BASEADDR= 0x00300000,
C_ICACHE HIGHADDR=0x0030ffff, C_ CACHE BYTE SIZE=4096, C_ICACHE LINE LEN=8, and
C_ICACHE FORCE_TAG LUTRAM=0; the cacheable memory of 64 kB uses 16 bits of byte
address, and the 4 kB cache uses 12 bits of byte address, thus the required address tag
width is: 16-12=4 bits. The total number of block RAM primitives required in this
configuration is: 2 RAMB16 for storing the 1024 instruction words, and 1 RAMB16 for 128
cache line entries, each consisting of: 4 bits of tag, 8 word-valid bits, 1 line-valid bit. In total
3 RAMB16 primitives.

Figure 2-22, page 75 shows the organization of Instruction Cache.

Instruction Address Bits

| Tag Address | Cache Address EE

Line Addr RTa Tag »é Cache_Hit
F————P A
Valid (word and line) o |

Word Addr Instruction Cache_instruction_data
— | RAM >

Figure 2-22: Instruction Cache Organization

Instruction Cache Operation

For every instruction fetched, the instruction cache detects if the instruction address
belongs to the cacheable segment. If the address is non-cacheable, the cache controller
ignores the instruction and lets the M_AXI_IP or LMB complete the request. If the address is
cacheable, a lookup is performed on the tag memory to check if the requested address is
currently cached. The lookup is successful if: the word and line valid bits are set, and the tag
address matches the instruction address tag segment. On a cache miss, the cache controller
requests the new instruction over the instruction AXI4 interface (M_AXI_IC), and waits for
the memory controller to return the associated cache line.

C_ICACHE DATA WIDTH determines the bus data width, either 32 bits, an entire cache line
(128 bits or 256 bits), or 512 bits.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 75
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=75

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

When c_FAULT TOLERANT is set to 1, a cache miss also occurs if a parity error is detected in
a tag or instruction Block RAM.

The instruction cache issues burst accesses for the AXI4 interface when 32-bit data width is
used, otherwise single accesses are used.

Stream Buffers

When stream buffers are enabled, by setting the parameter ¢_1cacue sTrREaMS to 1, the
cache will speculatively fetch cache lines in advance in sequence following the last
requested address, until the stream buffer is full. The stream buffer can hold up to two
cache lines. Should the processor subsequently request instructions from a cache line
prefetched by the stream buffer, which occurs in linear code, they are immediately available.

The stream buffer often improves performance, since the processor generally has to spend
less time waiting for instructions to be fetched from memory.

C_ICACHE DATA WIDTH determines the amount of data transferred from the stream buffer
each clock cycle, either 32 bits or an entire cache line.

To be able to use instruction cache stream buffers, area optimization must not be enabled.

Victim Cache

The victim cache is enabled by setting the parameter c_1cacue vicTtims to 2, 4 or 8. This
defines the number of cache lines that can be stored in the victim cache. Whenever a cache
line is evicted from the cache, it is saved in the victim cache. By saving the most recent lines
they can be fetched much faster, should the processor request them, thereby improving
performance. If the victim cache is not used, all evicted cache lines must be read from
memory again when they are needed.

C_ICACHE DATA WIDTH determines the amount of data transferred from/to the victim cache
each clock cycle, either 32 bits or an entire cache line.

Note that to be able to use the victim cache, area optimization must not be enabled.

Instruction Cache Software Support

MSR Bit
The ICE bit in the MSR provides software control to enable and disable caches.

The contents of the cache are preserved by default when the cache is disabled. You can
invalidate cache lines using the WIC instruction or using the hardware debug logic of
MicroBlaze.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 76
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=76

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

WIC Instruction

The optional WIC instruction (c_aArLow ICACHE WR=1) is used to invalidate cache lines in the

instruction cache from an application. For a detailed description, refer to Chapter 5,
MicroBlaze Instruction Set Architecture.

The WIC instruction can also be used together with parity protection to periodically
invalidate entries the cache, to avoid accumulating errors.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 77
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=77

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Data Cache

Overview

MicroBlaze can be used with an optional data cache for improved performance. The cached
memory range must not include addresses in the LMB address range. The data cache has
the following features:

« Direct mapped (1-way associative)

» Write-through or Write-back

« User selectable cacheable memory address range

« Configurable cache size and tag size

« Caching over AXI4 interface (M_AXI_DC)

« Option to use 4 or 8 word cache-lines

« Cache on and off controlled using a bit in the MSR

« Optional WDC instruction to invalidate or flush data cache lines

« Optional victim cache with write-back to improve performance by saving evicted cache
lines

« Optional parity protection for write-through cache that invalidates cache lines if a Block
RAM bit error is detected

« Optional data width selection to either use 32 bits, an entire cache line, or 512 bits

General Data Cache Functionality

When the data cache is used, the memory address space is split into two segments: a
cacheable segment and a non-cacheable segment. The cacheable area is determined by
two parameters: C_DCACHE_BASEADDR and C¢_DCACHE HIGHADDR. All addresses within this
range correspond to the cacheable address space. All other addresses are non-cacheable.

The cacheable segment size must be 2N, where N is a positive integer. The range specified
by ¢ DCACHE BASEADDR and C_DCACHE HIGHADDR must comprise a complete power-of-two
range, such that range = 2N and the N least significant bits of c_DcacHE BASEADDR must be
zero.

Figure 2-23 shows the Data Cache Organization.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 78
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=78

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Data Address Bits
0 3031

| Tag Address | Cache Word Address | -|-|

Addr Ta Tag o

> RA) Cache_Hit
Valid >
Load_Instruction
Addr Data Cache_data
> RAM >

Figure 2-23: Data Cache Organization

The cacheable data address consists of two parts: the cache address, and the tag address.
The MicroBlaze data cache can be configured from 64 bytes to 64 kB. This corresponds to
a cache address of between 6 and 16 bits. The tag address together with the cache address
should match the full address of cacheable memory. When selecting cache sizes below 2 kB,
distributed RAM is used to implement the Tag RAM and Data RAM, except that block RAM
is always used for the Data RAM when ¢ _AREA OPTIMIZED is set and

C_DCACHE_USE_WRITEBACK is not set. Distributed RAM is always used to implement the Tag
RAM, when setting the parameter c_DcACHE FORCE TAG LUTRAM to 1. This parameter is only
available with cache sizes 8 kB or 16 kB and less, for 4 or 8 word cache-lines, respectively.

For example, in a MicroBlaze configured with ¢_DCACHE BASEADDR=0x00400000,

C_DCACHE HIGHADDR=0x00403fff, C DCACHE BYTE SIZE=2048, C DCACHE LINE LEN=4, and
C_DCACHE_FORCE_TAG LUTRAM=0; the cacheable memory of 16 kB uses 14 bits of byte
address, and the 2 kB cache uses 11 bits of byte address, thus the required address tag
width is 14-11=3 bits. The total number of block RAM primitives required in this
configuration is 1 RAMBL16 for storing the 512 data words, and 1 RAMB16 for 128 cache line
entries, each consisting of 3 bits of tag, 4 word-valid bits, 1 line-valid bit. In total, 2 RAMB16
primitives.

Data Cache Operation

The caching policy used by the MicroBlaze data cache, write-back or write-through, is
determined by the parameter ¢ pcacHeE use wrITEBACK. When this parameter is set, a
write-back protocol is implemented, otherwise write-through is implemented. However,
when configured with an MMU (c_use_mMMU > 1, ¢ AREA OPTIMIZED = O,
C_DCACHE_USE_WRITEBACK = 1), the caching policy in virtual mode is determined by the W
storage attribute in the TLB entry, whereas write-back is used in real mode.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 79
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=79

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

With the write-back protocol, a store to an address within the cacheable range always
updates the cached data. If the target address word is not in the cache (that is, the access
is a cache miss), and the location in the cache contains data that has not yet been written
to memory (the cache location is dirty), the old data is written over the data AXI4 interface
(M_AXI_DC) to external memory before updating the cache with the new data. If only a
single word needs to be written, a single word write is used, otherwise a burst write is used.
For byte or halfword stores, in case of a cache miss, the address is first requested over the
data AXI4 interface, while a word store only updates the cache.

With the write-through protocol, a store to an address within the cacheable range
generates an equivalent byte, halfword, or word write over the data AXI4 interface to
external memory. The write also updates the cached data if the target address word is in the
cache (that is, the write is a cache hit). A write cache-miss does not load the associated
cache line into the cache.

Provided that the cache is enabled a load from an address within the cacheable range
triggers a check to determine if the requested data is currently cached. If it is (that is, on a
cache hit) the requested data is retrieved from the cache. If not (that is, on a cache miss) the
address is requested over the data AXI4 interface using a burst read, and the processor
pipeline stalls until the cache line associated to the requested address is returned from the
external memory controller.

The parameter ¢c_pcacHE DATA WIDTH determines the bus data width, either 32 bits, an
entire cache line (128 bits or 256 bits), or 512 bits.

When c_FAULT TOLERANT is set to 1 and write-through protocol is used, a cache miss also
occurs if a parity error is detected in the tag or data Block RAM.

All types of accesses issued by the data cache AXI4 interface are summarized in Table 2-39.

Table 2-39: Data Cache Interface Accesses

Policy State | Direction Access Type
Write- Cache Read Burst for 32-bit interface non-exclusive access
through Enabled and exclusive access with ACE enabled, single ac-

cess otherwise

Write Single access

Cache Read Burst for 32-bit interface exclusive access with
Disabled ACE enabled, single access otherwise

Write Single access

Write-back Cache Read Burst for 32-bit interface, single access otherwise
Enabled

Write Burst for 32-bit interface cache lines with more
than one valid word, a single access otherwise

Cache Read Burst for 32-bit interface non-exclusive access,
Disabled discarding all but the desired data, a single ac-
cess otherwise

Write Single access

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 80
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=80

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE
Victim Cache

The victim cache is enabled by setting the parameter ¢c_pcacue vicTtims to 2, 4 or 8. This
defines the number of cache lines that can be stored in the victim cache. Whenever a
complete cache line is evicted from the cache, it is saved in the victim cache. By saving the
most recent lines they can be fetched much faster, should the processor request them,
thereby improving performance. If the victim cache is not used, all evicted cache lines must
be read from memory again when they are needed.

With the AXI4 interface, c bcacHE DATA WIDTH determines the amount of data transferred
from/to the victim cache each clock cycle, either 32 bits or an entire cache line.

Note that to be able to use the victim cache, write-back must be enabled and area
optimization must not be enabled.

Data Cache Software Support

MSR Bit

The DCE bit in the MSR controls whether or not the cache is enabled. When disabling
caches the user must ensure that all the prior writes within the cacheable range have been
completed in external memory before reading back over M_AXI_DP. This can be done by
writing to a semaphore immediately before turning off caches, and then in a loop poll until
it has been written.

The contents of the cache are preserved when the cache is disabled.

WDC Instruction

The optional WDC instruction (c_ALLow DCACHE WR=1) is used to invalidate or flush cache
lines in the data cache from an application. For a detailed description, please refer to
Chapter 5, MicroBlaze Instruction Set Architecture.

The WDC instruction can also be used together with parity protection to periodically
invalidate entries the cache, to avoid accumulating errors.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 81
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=81

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Floating Point Unit (FPU)

Overview

The MicroBlaze floating point unit is based on the IEEE 754-1985 standard:

Uses IEEE 754 single precision floating point format, including definitions for infinity,
not-a-number (NaN), and zero

Supports addition, subtraction, multiplication, division, comparison, conversion and
square root instructions

Implements round-to-nearest mode

Generates sticky status bits for: underflow, overflow, divide-by-zero and invalid
operation

For improved performance, the following non-standard simplifications are made:

Denormalized (1) operands are not supported. A hardware floating point operation on a
denormalized number returns a quiet NaN and sets the sticky denormalized operand
error bit in FSR; see "Floating Point Status Register (FSR)" on page 30

A denormalized result is stored as a signed 0 with the underflow bit set in FSR. This
method is commonly referred to as Flush-to-Zero (FTZ)

An operation on a quiet NaN returns the fixed NaN: 0xFFC00000, rather than one of the
NaN operands

Overflow as a result of a floating point operation always returns signed oo

Format

An IEEE 754 single precision floating point number is composed of the following three
fields:

1. 1-bit sign

2. 8-bit biased exponent

3. 23-bit fraction (a.k.a. mantissa or significand)

1. Numbers that are so close to O, that they cannot be represented with full precision, that is, any number n that falls in the

following ranges: (1.17549*10°38 > n > 0), or (0 > n > -1.17549 * 10-38)

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 82

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://en.wikipedia.org/wiki/IEEE_754-1985
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=82

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

The fields are stored in a 32 bit word as defined in Figure 2-24:

[0 B 31
T

sign exponent fraction

Figure 2-24: |EEE 754 Single Precision Format

The value of a floating point number v in MicroBlaze has the following interpretation:
1. If exponent = 255 and fraction <> 0, then v= NaN, regardless of the sign bit

If exponent = 255 and fraction = 0, then v= (-1)S9" * oo

If 0 < exponent < 255, then v = (-1)sign * 2(exponent-127) x (1 fraction)

If exponent = 0 and fraction <> 0, then v = (-1)si9n * 2-126 * (0 fraction)

If exponent = 0 and fraction = 0, then v = (-1)sign *

v h W

For practical purposes only 3 and 5 are useful, while the others all represent either an error
or numbers that can no longer be represented with full precision in a 32 bit format.

Rounding

The MicroBlaze FPU only implements the default rounding mode, “Round-to-nearest”,
specified in IEEE 754. By definition, the result of any floating point operation should return
the nearest single precision value to the infinitely precise result. If the two nearest
representable values are equally near, then the one with its least significant bit zero is
returned.

Operations

All MicroBlaze FPU operations use the processors general purpose registers rather than a
dedicated floating point register file, see “General Purpose Registers”.

Arithmetic

The FPU implements the following floating point operations:

« addition, fadd

« subtraction, fsub

« multiplication, fmul
« division, fdiv

« square root, fsqrt (available if c USE FPU = 2, EXTENDED)

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 83
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=83

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Comparison
The FPU implements the following floating point comparisons:

« compare less-than, fcmp.It

« compare equal, fcmp.eq

« compare less-or-equal, fcmp.le

« compare greater-than, fcmp.gt

« compare not-equal, fcmp.ne

« compare greater-or-equal, fcmp.ge

« compare unordered, fcmp.un (used for NaN)
Conversion
The FPU implements the following conversions (available if c_ UsE_FPU = 2, EXTENDED):

« convert from signed integer to floating point, flt

« convert from floating point to signed integer, fint

Exceptions

The floating point unit uses the regular hardware exception mechanism in MicroBlaze.
When enabled, exceptions are thrown for all the IEEE standard conditions: underflow,
overflow, divide-by-zero, and illegal operation, as well as for the MicroBlaze specific
exception: denormalized operand error.

A floating point exception inhibits the write to the destination register (Rd). This allows a
floating point exception handler to operate on the uncorrupted register file.

Software Support

The SDK compiler system, based on GCC, provides support for the Floating Point Unit
compliant with the MicroBlaze APIL. Compiler flags are automatically added to the GCC
command line based on the type of FPU present in the system, when using SDK.

All double-precision operations are emulated in software. Be aware that the xil_printf()
function does not support floating-point output. The standard C library printf() and related
functions do support floating-point output, but will increase the program code size.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 84
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=84

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Libraries and Binary Compatibility

The SDK compiler system only includes software floating point C runtime libraries. To take
advantage of the hardware FPU, the libraries must be recompiled with the appropriate
compiler switches.

For all cases where separate compilation is used, it is very important that you ensure the
consistency of FPU compiler flags throughout the build.

Operator Latencies

The latencies of the various operations supported by the FPU are listed in Chapter 5,
“MicroBlaze Instruction Set Architecture.” The FPU instructions are not pipelined, so only
one operation can be ongoing at any time.

C Language Programming

To gain maximum benefit from the FPU without low-level assembly-language
programming, it is important to consider how the C compiler will interpret your source
code. Very often the same algorithm can be expressed in many different ways, and some are
more efficient than others.

Immediate Constants

Floating-point constants in C are double-precision by default. When using a single-
precision FPU, careless coding may result in double-precision software emulation routines
being used instead of the native single-precision instructions. To avoid this, explicitly
specify (by cast or suffix) that immediate constants in your arithmetic expressions are
single-precision values.

For example:
float x = 0.0;

x += (float)1.0; /* float addition */
X += 1.0F; /* alternative to above */
X += 1.0; /* warning - uses double addition! */

Note that the GNU C compiler can be instructed to treat all floating-point constants as
single-precision (contrary to the ANSI C standard) by supplying the compiler flag -fsingle-
precision-constants.

Avoid unnecessary casting

While conversions between floating-point and integer formats are supported in hardware
by the FPU, when c_use_rpu is set to 2 (Extended), it is still best to avoid them when
possible.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 85
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=85

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

The following “bad” example calculates the sum of squares of the integers from 1 to 10
using floating-point representation:

float sum, t;

int i;

sum = 0.0f;

for (i = 1; i <= 10; i++) {
t = (float)i;

sum += t * t;

}

The above code requires a cast from an integer to a float on each loop iteration. This can be
rewritten as:

float sum, t;

int 1i;

t = sum = 0.0f;

for(i = 1; 1 <= 10; i++) {
t += 1.0f;

sum += t * t;

}

Note that the compiler is not at liberty to perform this optimization in general, as the two
code fragments above may give different results in some cases (for example, very large t).

Square root runtime library function

The standard C runtime math library functions operate using double-precision arithmetic.
When using a single-precision FPU, calls to the square root functions (sqrt()) result in
inefficient emulation routines being used instead of FPU instructions:

#include <math.h>
float x=-1.0F;
X = sgrt(x); /* uses double precision */

Here the math.h header is included to avoid a warning message from the compiler.

When used with single-precision data types, the result is a cast to double, a runtime library
call is made (which does not use the FPU) and then a truncation back to float is performed.

The solution is to use the non-ANSI function sqrtf() instead, which operates using single
precision and can be carried out using the FPU. For example:

#include <math.h>
float x=-1.0F;

%.; sqrtf (x); /* uses single precision */
Note that when compiling this code, the compiler flag -fno-math-errno (in addition to -

mhard-float and -mxI-float-sqrt) must be used, to ensure that the compiler does not
generate unnecessary code to handle error conditions by updating the errno variable.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 86

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=86

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Stream Link Interfaces

MicroBlaze can be configured with up to 16 AXI4-Stream interfaces, each consisting of one
input and one output port. The channels are dedicated uni-directional point-to-point data
streaming interfaces.

For detailed information on the AXI4-Stream interface, please refer to the AMBA 4 AXI4-
Stream Protocol Specification, Version 1.0 (ARM IHI 0051A) document.

The interfaces on MicroBlaze are 32 bits wide. A separate bit indicates whether the
sent/received word is of control or data type. The get instruction in the MicroBlaze ISA is
used to transfer information from a port to a general purpose register. The put instruction
is used to transfer data in the opposite direction. Both instructions come in 4 flavors:
blocking data, non-blocking data, blocking control, and non-blocking control. For a
detailed description of the get and put instructions, please refer to Chapter 5, MicroBlaze
Instruction Set Architecture.

Hardware Acceleration

Each link provides a low latency dedicated interface to the processor pipeline. Thus they are
ideal for extending the processors execution unit with custom hardware accelerators. A
simple example is illustrated in Figure 2-25. The code uses RFSLx to indicate the used link.

Example code: *
// Configure f, Link x

Custom HW Accelerator

cput Rc,RFSLx

MicroBlaze | OplReg | | Op2Reg |

Register
Fil
put Ra, RFSLx // op 1 ne .

X

put Rb, RFSLx // op 2
Link x |

// Store operands

// Load result

Figure 2-25: Stream Link Used with HW Accelerated Function fx

This method is similar to extending the ISA with custom instructions, but has the benefit of
not making the overall speed of the processor pipeline dependent on the custom function.
Also, there are no additional requirements on the software tool chain associated with this
type of functional extension.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 87
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=87

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Debug and Trace

Debug Overview

MicroBlaze features a debug interface to support JTAG based software debugging tools
(commonly known as BDM or Background Debug Mode debuggers) like the Xilinx
Microprocessor Debug (XMD) tool. The debug interface is designed to be connected to the
Xilinx Microprocessor Debug Module (MDM) core, which interfaces with the JTAG port of
Xilinx FPGAs. Multiple MicroBlaze instances can be interfaced with a single MDM to enable
multiprocessor debugging.

Debug registers are accessed via the JTAG debug interface, and are not directly visible to
software running on the processor, unless the MDM is configured to enable software access
to user-accessible debug registers.

See the MicroBlaze Debug Module (MDM) Product Guide (PG115) for a detailed description
of the MDM features.

The basic debugging features enabled by setting C_ DEBUG ENABLED to 1 (Basic) include:

« Configurable number of hardware breakpoints and watchpoints and unlimited software
breakpoints

« External processor control enables debug tools to stop, reset, and single step
MicroBlaze

« Read from and write to: memory, general purpose registers, and special purpose
register, except EAR, EDR, ESR, BTR and PVRO - PVR12, which can only be read

« Support for multiple processors

The extended debugging features enabled by setting C_ DEBUG_ENABLED to 2 (Extended)
include:

« Configurable number of performance monitoring event and latency counters
* Program Trace:

- Embedded program trace with configurable trace buffer size

- External program trace for multiple processors, provided by the MDM
« Non-intrusive profiling support with configurable profiling buffer size

« Cross trigger support between multiple processors, and external cross trigger inputs
and outputs, provided by the MDM

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 88
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=88

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Performance Monitoring

With extended debugging, MicroBlaze provides performance monitoring counters to count
various events and to measure latency during program execution. The number of event
counters and latency counters can be configured with C DEBUG EVENT COUNTERS and
C_DEBUG_LATENCY COUNTERS respectively, and the counter width can be set to 32, 48 or
64 bits with C_ DEBUG_COUNTER_WIDTH. With the default configuration, the counter width
is set to 32 bits and there are five event counters and one latency counter.

An event counter simply counts the number of times a certain event has occurred, whereas
a latency counter provides the following information:

« Number of times the event has occurred (N)

« The sum of each event latency measured by counting clock cycles from the event starts
until it finishes (L), used to calculate the mean latency

« The sum of each event latency squared (XL9), used to calculate the latency standard
deviation

« The minimum, shortest, measured latency for all events (L,,;n)

« The maximum, longest, measured latency for all events (L,,4y)

The mean latency (W) is calculated by the formula:

P
N

The standard deviation (o) of the latency is calculated by the formula:

JNZL2 - (2L)?

N

Counting can be started or stopped via the Performance Counter Command Register or by
cross trigger events (see Table 2-61).

When configuring, reading or writing counters, they are accessed sequentially through the
performance counter registers. After every access the selected counter item is incremented.

All counters are sampled simultaneously for reading via the Performance Counter
Command Register. This can be done while counting, or after counting has been stopped.

When an event counter reaches its maximum value, the overflow status bit is set, and the
external interrupt signal Dbg_Intr is set to one. The interrupt signal is reset to zero by
clearing the counters via the Performance Counter Command Register.

By using one of the event counters to count number of clock cycles, and initializing this
counter to overflow after a predetermined sampling interval, the external interrupt can be
used to periodically sample the performance counters.

The available events are described in Table 2-40, listed in numerical order.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 89
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=89

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

A typical procedure to follow when initializing and using the performance monitoring
counters is delineated in the steps below.

» Initialize the events to be monitored:

o

Use the Performance Command Register (Table 2-43) to reset the selected counter
to the first counter, by setting the Reset bit.

Write the desired event numbers for all counters in order, using the Performance
Control Register (Table 2-42). With the default configuration this means writing the
register five times for the event counters and then once for the latency counter.

« Clear all counters and start monitoring using the Performance Command Register, by
setting the Clear and Start bits.

* Run the program or function to be monitored.

« Sample counters and stop monitoring using the Performance Command Register, by
setting the Sample and Stop bits.

« Read the results from all counters:

o

Use the Performance Command Register to reset the selected counter to the first
counter, by setting the Reset bit.

Read the status for all counters in order, using the Performance Counter Status
Register (Table 2-44). With the default configuration this means reading the register
five times for the event counters and then once for the latency counter. Ensure that
the result is valid by checking that the overflow and full bits are not set.

Use the Performance Command Register to reset the selected counter to the first
counter, by setting the Reset bit.

Read the counter items for all counters in order, using the Performance Counter
Data Read Register (Table 2-52). With the default configuration this means reading
the register five times for the event counters and then four times for the latency
counter as described in Table 2-53.

« Calculate the final results, depending on the measured events, for example:

o

Use the formulas above to determine the mean latency and standard deviation for
any measured latency.

The clock cycles per instruction (CPI) can be calculated by E3q / Eg.
The instruction and data cache hit rates can be calculated by E1; / E1g and E47 / Ege.

The instruction cache miss latency is determined by (Ego(XL) - Ego(N)) / (E1g - E11),
and equivalent formulas can be used to determine the data cache read and write
miss latencies.

The ratio of floating point instructions in a program is E;q/E.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] a0

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=90

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-40: MicroBlaze Performance Monitoring Events
Event Description Event Description
Event Counter events
0 Any valid instruction executed 29 Floating point (fadd, ..., fsqrt)
1 Load word (lw, lwi, lwx) executed 30 Number of clock cycles
2 Load halfword (lhu, lhui) executed 31 Immediate (imm) executed
3 Load byte (lbu, lbui) executed 32 Pattern compare (pcmpbf, pcmpeq, pcmpne)
4 Store word (sw, swi, swx) executed 33 Sign extend instructions (sext8, sext16) executed
5 Store halfword (sh, shi) executed 34 Instruction cache invalidate (wic) executed
6 Store byte (sb, sbi) executed 35 Data cache invalidate or flush (wdc) executed
7 Unconditional branch (br, bri, brk, brki) executed 36 Machine status instructions (msrset, msrclr)
8 Taken conditional branch (beg, ..., bnei) executed 37 Unconditional branch with delay slot executed
9 Not taken conditional branch (beg, ..., bnei) executed 38 Taken conditional branch with delay slot executed
10 Data request from instruction cache 39 Not taken conditional branch with delay slot
11 Hit in instruction cache 40 Delay slot with no operation instruction executed
12 Read data requested from data cache 41 Load instruction (lbu, ..., lwx) executed
13 Read data hit in data cache 42 Store instruction (sb, ..., swx) executed
14 Write data request to data cache 43 MMU data access request
15 Write data hit in data cache 44 Conditional branch (beg, ..., bnei) executed
16 Load (lbu, ..., lwx) with rl as operand executed 45 Branch (br, bri, brk, brki, beq, ..., bnei) executed
17 Store (sb, ..., swx) with rl as operand executed 46 Read or write data request from/to data cache
18 Logical operation (and, andn, or, xor) executed 47 Read or write data cache hit
19 Arithmetic operation (add, idiv, mul, rsub) executed 48 MMU exception taken
20 Multiply operation (mul, mulh, mulhu, mulhsu, muli) 49 MMU instruction side exception taken
21 Barrel shifter operation (bsrl, bsra, bsll) executed 50 MMU data side exception taken
22 Shift operation (sra, src, srl) executed 51 Pipeline stalled
23 Exception taken 52 Branch target cache hit for a branch or return
24 Interrupt occurred 53 MMU instruction side access request
25 Pipeline stalled due to operand fetch stage (OF) 54 MMU instruction TLB (ITLB) hit
26 Pipeline stalled due to execute stage (EX) 55 MMU data TLB (DTLB) hit
27 Pipeline stalled due to memory stage (MEM) 56 MMU unified TLB (UTLB) hit
28 Integer divide (idiv, idivu) executed
Latency and Event Counter events
57 Interrupt latency from input to interrupt vector 61 MMU address lookup latency
58 Data cache latency for memory read 62 Peripheral AXI interface data read latency
59 Data cache latency for memory write 63 Peripheral AXI interface data write latency
60 Instruction cache latency for memory read

MicroBlaze Processor Reference Guide

www.Xilinx.com

UG984 (v2014.3) October 1, 2014

91

| Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=91

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

The debug registers used to configure and control performance monitoring, and to read or
write the event and latency counters, are listed in Table 2-41. All of these registers except
the Performance Counter Command register are accessed repeatedly to read or write
information, first for all of the event counters followed by all of the latency counters.

The DBG_CTRL Value indicates the value to use in the MDM Debug Register Access Control
Register to access the register, used with MDM software access to debug registers.

Table 2-41: MicroBlaze Performance Monitoring Debug Registers

. . . MDM DBG_CTRL _—_—

Register Name |Size (bits) Command Value R/W Description
Performance Select event for each configured
Counter Control 8 0101 0001 4A207 W counter, according to Table 2-40
Performance 5 0101 0010 4A404 W Command fco clear counters, start or
Counter Command stop counting, or sample counters
Performance 2 0101 0011 4601 R Read. the sampled status for each
Counter Status configured performance counter
Performance 32 0101 0110 AACTE R Read_ the sampled values for each
Counter Data Read configured performance counter
Performance Write initial values for each
Counter Data Write 32 01010111 AAELF w configured performance counter

Performance Counter Control Register

The Performance Counter Control Register (PCCTRLR) is used to define the events that are
counted by the configured performance counters. To define the events for all configured
counters, the register should be written repeatedly for each of the counters. This register is
a write-only register. Issuing a read request has no effect, and undefined data is read.

Every time the register is written, the selected counter is incremented. By using the
Performance Counter Command Register, the selected counter can be reset to the first
counter again.

T T

Reserved Event

Figure 2-26: Performance Counter Control Register

Table 2-42: Performance Counter Control Register (PCCTRLR)

Bits Name Description Reset Value

7:0 Event Performance counter event, according to Table 2-40. 0

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 92
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=92

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Performance Counter Command Register

The Performance Counter Command Register (PCCMDR) is used to issue commands to
clear, start, stop, or sample all counters. This register is a write-only register. Issuing a read
request has no effect, and undefined data is read.

31 5|4|3|2|1|0|
| T T T 1

Reserved CLR STA STOPSAM RES

Figure 2-27: Performance Counter Command Register

Table 2-43: Performance Counter Command Register (PCCMDR)

Bits Name Description Reset Value
4 Clear Clear all counters to zero 0
Start Start counting configured events for all counters simultaneously 0
2 Stop Stop counting all counters simultaneously 0
1 Sample | Sample status and values in all counters simultaneously for reading 0
0 Reset Reset accessed counter to the first event counter for access using the 0
Performance Counter Command, Status, Read Data and Write Data

Performance Counter Status Register

The Performance Counter Status Register (PCSR) reads the sampled status of the counters.
To read the status for all configured counters, the register should be read repeatedly for
each of the counters. This register is a read-only register. Issuing a write request to the register
does nothing.

Every time the register is read, the selected counter is incremented. By using the
Performance Counter Command Register, the selected counter can be reset to the first
counter again.

31 2|1|o|
T

Reserved OF FULL

Figure 2-28: Performance Counter Status Register

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 93
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=93

& XILINX

ALL PROGRAMMABLE

Chapter 2: MicroBlaze Architecture

Table 2-44: Performance Counter Status Register (PCSR)

previous event has finished. This indicates that the accuracy of the
measured values is reduced.

Bits Name Description Reset Value
1 Overflow | This bit is set when the counter has counted past its maximum value 0
0 Full This bit is set when a new latency counter event is started before the 0

Performance Counter Data Read Register

The Performance Counter Data Read Register (PCDRR) reads the sampled values of the
counters. To read the values of all configured counters, the register should be read
repeatedly. This register is a read-only register. Issuing a write request to the register does

nothing.

Since a counter can have more than 32 bits, depending on the configuration, the register
may need to be read repeatedly to retrieve all information for a particular counter. This is
detailed in Table 2-46.

Figure 2-29:

T

Item

Performance Counter Data Read Register

Table 2-45: Performance Counter Data Read Register (PCDRR)

Bits Name

Description

Reset Value

31:0 Item

Sampled counter value item

0

Table 2-46: Performance Counter Data Items

Counter Type

Item

Description

C_DEBUG_COUNTER WIDTH = 32

Event Counter

The number of times the event occurred

Latency Counter

The number of times the event occurred

The sum of each event latency

The sum of each event latency squared

Rl wWIN| PR

31:16
15:0

Minimum measured latency, 16 bits
Maximum measured latency, 16 bits

C_DEBUG_COUNTER_WIDTH = 48

Event Counter

31:16
15:0

0x0000

The number of times the event occurred, 16 most significant bits

The number of times the event occurred, 32 least significant bits

MicroBlaze Processor Reference Guide

UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 94

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=94

& XILINX

ALL PROGRAMMABLE

Chapter 2: MicroBlaze Architecture

Table 2-46: Performance Counter Data Items (Cont’d)

Counter Type Item Description
Latency Counter 1 The number of times the event occurred
2 31:16 | 0x0000
15:0 | The sum of each event latency, 16 most significant bits
3 The sum of each event latency, 32 least significant bits
4 31:16 | 0x0000
15:0 | The sum of each event latency squared, 16 most significant bits
5 The sum of each event latency squared, 32 least significant bits
6 Minimum measured latency, 32 bits
7 Maximum measured latency, 32 bits

C_DEBUG_COUNTER WIDTH = 64

Event Counter

The number of times the event occurred, 32 most significant bits

The number of times the event occurred, 32 least significant bits

Latency Counter

The number of times the event occurred, 32 bits

The sum of each event latency, 32 most significant bits

The sum of each event latency, 32 least significant bits

The sum of each event latency squared, 32 most significant bits

The sum of each event latency squared, 32 least significant bits

Minimum measured latency, 32 bits

N o|lu| A WIN| RN

Maximum measured latency, 32 bits

Performance Counter Data Write Register

The Performance Counter Data Read Register (PCDWR) writes initial values to the counters.
To write all configured counters, the register should be written repeatedly. This register is a
write-only register. Issuing a read request has no effect, and undefined data is read.

Since a counter can have more than 32 bits, depending on the configuration, the register
may need to be written repeatedly to update all information for a particular counter, as

described in Table 2-46.

T

Item

Figure 2-30: Performance Counter Data Write Register

Table 2-47: Performance Counter Data Write Register (PCDWR)

Bits Name

Description Reset Value

31:0 Item Counter value item to write into a counter 0

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 95
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=95

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Program Trace

With extended debugging, MicroBlaze provides program trace, either storing information
in the Embedded Trace Buffer or transmitting it to the MDM, to enable program execution
tracing. The MDM is used when the parameter C DEBUG_EXTERNAL TRACE is set, allowing
output of program trace from multiple processors via external interfaces.

The size of the Embedded Trace Buffer can be configured from 8KB to 128KB using the
parameter C_ DEBUG TRACE SIZE. By setting C_ DEBUG TRACE SIZE to 0 (None),
program trace is disabled.

Program trace uses compression to reduce the amount of trace data, while still allowing
reconstruction of the program execution flow or the entire processor software state. There
are three main compression levels:

« Complete trace

Stores complete trace information including cycle count for each executed instruction
using 144 bits, ranging from 512 to 8192 items depending on the configured Embedded
Trace Buffer size. Complete trace is not available when C_ DEBUG_EXTERNAL_ TRACE is
set.

« Program flow

Stores program flow changes, i.e. the sequence of branches taken or not taken, and the
new program counter for indirect branches, interrupts, exceptions and hardware breaks.

The program counter may also optionally be stored for return instructions to simplify
program flow reconstruction, or for all taken branches to handle self-modifying code.

Data read from memory or fetched from AXI4-Stream interfaces may optionally be
stored to allow reconstructing the entire processor software state, enabling reverse
single step functionality.

« Program flow and cycle count

Stores the cycle count between instructions along with the same information as
program flow alone, to also allow reconstruction of the program execution time.

Tracing can be started via the Trace Command Register, by hitting a program breakpoint or
watchpoint configured as a tracepoint in the Trace Control Register, or by a cross trigger
event (see Table 2-61).

Tracing is automatically stopped when the trace buffer becomes full, and can be stopped
via the Trace Command Register or by a cross trigger event (see Table 2-61).

The cycle count can measure up to 32768 clock cycles when using complete trace, and up
to 8192 cycles between instructions when using program flow and cycle count. If the cycle
count exceeds this value, the Trace Status Register overflow bit is set to one.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 926
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=96

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

It is possible to configure trace to halt the processor when the trace buffer becomes full or
when the cycle count overflows. This allows continuous trace of the entire program flow,
albeit not in real time due to the time required to read the trace buffer.

The debug registers used to configure and control tracing, and to read the Embedded Trace
Buffer, are listed in Table 2-48.

The DBG_CTRL Value indicates the value to use in the MDM Debug Register Access Control
Register to access the register, used with MDM software access to debug registers.

Table 2-48: MicroBlaze Program Trace Debug Registers

. . . MDM DBG_CTRL A

Register Name |Size (bits) Command | Value R/W Description

Trace Control 22 0110 0001 | 4c215 | w | etiracepoints, trace compression level
and optionally stored trace information
Command to clear trace buffer, start or

Trace Command 4 0110 0010 4C403 W | stop trace, and sample number of
current buffer items

Trace Status 18 0110 0011 4C611 R | Read the sampled trace buffer status
Read the oldest item from the

1
Trace Data Read 18 01100110 4CC11 R Embedded Trace Buffer

1. This register is not available when C_ DEBUG_EXTERNAL_TRACE is set

Trace Control Register

The Trace Control Register (TCTRLR) is used to define the trace behavior. This register is a
write-only register. Issuing a read request has no effect, and undefined data is read.

31 2221 6|5 4|3|2|1|0|
T T T T T 7TT7
Reserved Tracepoint Level FH SPC SL SR

Figure 2-31: Trace Control Register

Table 2-49: Trace Control Register (TCTRLR)

Bits Name Description Reset Value
21:6 | Tracepoint | Change corresponding breakpoint or watchpoint to a tracepoint 0
5:4 Level Trace compression level: 00

00 = Complete trace, not available with ¢ DEBUG EXTERNAL TRACE
01 = Program flow

10 = Program flow and cycle count

11 = Reserved

3 Full Halt | Debug Halt on full trace buffer or cycle count overflow 0

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 97
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=97

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-49: Trace Control Register (TCTRLR) (Cont’d)

Bits Name Description Reset Value
2 Save PC | Save new program counter for all taken branches 0
1 Save Load | Save load and get instruction new data value 0
0 Save Return | Save new program counter for return instructions 0

Trace Command Register

The Trace Command Register (TCMDR) is used to issue commands to clear, start, or stop
trace, as well as sample the number of trace items. This register is a write-only register.
Issuing a read request has no effect, and undefined data is read.

31 4 | 3 | 2 | 1 | 0 |
T T T 7
Reserved CLR STA STOP SAM

Figure 2-32: Trace Command Register

Table 2-50: Trace Command Register (TCMDR)

Bits Name Description Reset Value
3 Clear Clear trace status and empty the trace buffer 0
2 Start Start trace immediately 0
1 Stop Stop trace immediately 0
0 Sample | Sample the number of current items in the trace buffer 0

Trace Status Register

The Trace Status Register (TSR) can be used to determine if trace has been started or not, to
check for cycle count overflow and to read the sampled number of items in the Embedded
Trace Buffer. This register is a read-only register. Issuing a write request to the register does

nothing.
31 18]17]16]15 0|
T T T
Reserved STA OF Item Count

Figure 2-33: Trace Status Register

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 98
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=98

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-51: Trace Status Register (TSR)

Bits Name Description Reset Value

17 Started Trace started, set to one when trace is started and cleared to zero 0
when it is stopped

16 Overflow | Cycle count overflow, set to one when the cycle count overflows, and 0
cleared to zero by the Clear command

15:0 | Item Count | Sampled trace buffer item count 0x0000

Trace Data Read Register

The Trace Data Read Register (TDRR) contains the oldest item read from the Embedded
Trace Buffer. When the register has been read, the next item is read from the trace buffer. It
is an error to read more items than are available in the trace buffer, as indicated by the item
count in the Trace Status Register. This register is a read-only register. Issuing a write request to
the register does nothing.

Since a trace data entity can consist of more than 18 bits, depending on the compression
level and stored data, the register may need to be read repeatedly to retrieve all
information for a particular data entity. This is detailed in Table 2-53.

31 18|17 0|
T T

Reserved Buffer Value

Figure 2-34: Trace Data Read Register

Table 2-52: Trace Data Read Register (TDRR)

Bits Name Description Reset Value

17:0 | Buffer Value | Embedded Trace Buffer item 0x00000

Table 2-53: Trace Counter Data Entities

Entity Item | Bits Description

Complete Trace 1 17:3 | Cycle count for the executed instruction
2:0 Machine Status Register [17:19]

2 17:6 | Machine Status Register [20:31]
5:1 Destination register address (r0 - r31), valid if written
0 Destination register written if set to one

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 929
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=99

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-53: Trace Counter Data Entities (Cont’d)

Entity Item | Bits Description
3 17:13 | Exception Kind, valid if exception taken
12 Exception taken if set to one
11 Load instruction reading data if set to one
10 Store instruction writing data if set to one
9:6 Byte enable, valid for store instruction
5:0 Write data [0:5] for store instructions, or Destination
register data [0:5] for other instructions
4 17:0 | Write data [6:23] or Destination register data [6:23]
17:10 | Write data [24:31] or Destination register data [24:31]
9:0 Data address [0:9] for load and store instructions, or
Executed instruction [0:9] for other instruction
6 17:0 | Data address [10:27] or Executed instruction [10:27]
7 17:14 | Data address [28:31] or Executed instruction [28:31]
13:0 | Program Counter [0:13]
8 17:0 | Program Counter [14:31]
Program Flow: Branches 1 17:16 | 00 - The item contains program flow branches
15:12 | Number of branches (N) counted in the item (1 - 12)
11:0 | The N leftmost bits represent branches in the
program flow. If the bit is set to one the branch is
taken, otherwise it is not taken.
Program Flow: Program Counter 1 17:16 | 01 - The item contains a Program Counter value
15:0 | Program Counter [0:15]
2 17:16 | 01 - The item contains a Program Counter value
15:0 | Program Counter [16:31]
Program Flow: Read Data 1 17:16 | 10 - The item contains read data
15:0 | Data read by load and get instructions [0:15]
2 17:16 | 10 - The item contains read data
15:0 | Data read by load and get instructions [15:31]
Program Flow with Cycle Count: 1 17:16 | 00 - The item contains program flow branches
Branches and short cycle count 15:14 | 01, 10 - Number of branches (N) counted (1 - 2)
13:8 | Cycle count for previously executed instructions
7 Branch is taken if set to one, otherwise it is not taken
6:1 Cycle count for previously executed instructions
0 Branch is taken if set to one, otherwise it is not taken
Program Flow with Cycle Count: 1 17:16 | 00 - The item contains program flow branches
Branch and long cycle count 15:14 | 11 - The item contains branch and long cycle count
13:1 | Cycle count for previously executed instructions
0 Branch is taken if set to one, otherwise it is not taken

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com l Send Feedback I 100

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=100

& XILINX

Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Non-Intrusive Profiling

With extended debugging, non-intrusive profiling is provided, which uses a Profiling Buffer
to store program execution statistics. The size of the profiling buffer can be configured
from 4KB to 128KB using the parameter C_ DEBUG PROFILE SIZE. By setting
C_DEBUG_PROFILE SIZE to 0 (None), non-intrusive profiling is disabled.

The Profiling Buffer is divided into a number of bins, each counting the number of executed
instructions or clock cycles within a certain address range. Each bin counts up to 236 - 1 =
68719476735 instructions or cycles.

The address range of each bin is determined by the buffer size and the profiled address
range defined via the Profiling Low Address Register and Profiling High Address Register.

Profiling can be started or stopped via the Profiling Control Register or by cross trigger
events (see Table 2-61).

The debug registers used to configure and control profiling, and to read or write the
Profiling Buffer, are listed in Table 2-54.

The DBG_CTRL Value indicates the value to use in the MDM Debug Register Access Control
Register to access the register, used with MDM software access to debug registers.

Table 2-54: MicroBlaze Profiling Debug Registers
. . . MDM DBG_CTRL _——
Register Name | Size (bits) Command Value R/W Description
Profiling Control 8 01110001 | 4E207 w | Enable ordisable profiling, configure
counting method and bin usage
Profiling Low 30 0111 0010 4E41D W Deflr\es the low address of the
Address profiled address range
Profiling High 30 0111 0011 4E61D W Deflnes the high address of the
Address profiled address range
9: 4E808
Profiling Buffer 9-14 0111 0100 10: 4E809 w | Sets the address (blp) in the Profiling
Address Buffer to read or write
14: 4E80D
profiing bata 36 | 01110110 | 4EC23 | R | Read data from the Profiling Buffer
Profiling Data . s
Write 36 0111 0111 4EE23 W | Write data to the Profiling Buffer

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 101

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=101

g: X”_INX Chapter 2: MicroBlaze Architecture

Profiling Control Register

The Profiling Control Register (PCTRLR) is used to enable (start) profiling and disable (stop)
profiling. It is also used to configure whether to count the number of executed instructions
or the number of executed clock cycles, as well as define the Profiling Buffer bin usage. This
register is a write-only register. Issuing a read request has no effect, and undefined data is
read.

The Bin Control value (B) can be calculated by the formula

H-L+S-4
B = ’([092#—‘

where L is the Profiling Low Register, H is the Profiling High Register, and S is the parameter
C_DEBUG_PROFILE SIZE.

31 8 | 7 | 6 | 5 | 4 0 |
T T 7
Reserved ENA DIS CC Bin Control

Figure 2-35: Profiling Control Register

Table 2-55: Profiling Control Register (PCTRLR)

Bits Name Description Reset Value
7 Enable Enable and start profiling 0
6 Disable Disable and stop profiling 0
5 Enable Enable cycle count to count clock cycles of executed instruction 0

Cycle Count | 0 = Disabled, number of executed instructions counted
1 = Enabled, clock cycles of executed instructions counted

4:0 | Bin Control | The number of addresses counted by each bin in the Profiling Buffer 00000

Profiling Low Address Register

The Profiling Low Address Register (PLAR) is used to define the low word address of the
profiled area. This register is a write-only register. Issuing a read request has no effect, and
undefined data is read.

[31 30] 2 0]
T

Reserved Low word address

Figure 2-36: Profiling Low Address Register

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 102
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=102

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-56: Profiling Low Address Register (PLAR)

Bits Name Description Reset Value

29:0 | Low word | Low word address of the profiled area 0

Profiling High Address Register

The Profiling High Address Register (PLAR) is used to define the high word address of the
profiled area. This register is a write-only register. Issuing a read request has no effect, and
undefined data is read.

|31 30|29 |0|
T

Reserved High word address

Figure 2-37: Profiling High Address Register

Table 2-57: Profiling High Address Register (PHAR)

Bits Name Description Reset Value

29:0 | High word | High word address of the profiled area 0

Profiling Buffer Address Register

The Profiling Buffer Address Register (PBAR) is used to define the bin in the Profiling Buffer
to be read or written. This register has variable number of bits, depending on the parameter
C_DEBUG PROFILE SIZE. This register is a write-only register. Issuing a read request has
no effect, and undefined data is read.

) T

Reserved Buffer Address
Figure 2-38: Profiling Buffer Address Register

Table 2-58: Profiling Buffer Address Register (PBAR)

Bits Name Description Reset Value

n-1:0 Buffer Bin in the Profiling Buffer to read or write. The number of bits (n) is 9 0
Address | for a 4KB buffer, 10 for a 8KB buffer, ..., 14 for a 128KB buffer.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 103
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=103

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Profiling Data Read Register

The Profiling Data Read Register (PDRR) reads the bin value indicated by the Profiling Buffer
Address Register and increments the Profiling Buffer Address Register. This register is a read-
only register. Issuing a write request to the register does nothing.

When reading this register with MDM software access to debug registers, data is read with
two consecutive accesses.

|35

o]

|
Read Data

Figure 2-39: Profiling Data Read Register

Table 2-59: Profiling Data Read Register (PDRR)

Bits Name Description Reset Value

35:0 | Read Data | Number of executed instructions or executed clock cycles in the bin 0

Profiling Data Write Register

The Profiling Data Write Register (PDWR) writes a new value to the bin indicated by the
Profiling Buffer Address Register and increments the Profiling Buffer Address Register. This
register is a write-only register. Issuing a read request has no effect, and undefined data is
read.

This register can be used to clear the Profiling Buffer before enabling profiling.

When writing this register with MDM software access to debug registers, data is written
with two consecutive accesses.

35

o]

|
Write Data

Figure 2-40: Profiling Data Write Register

Table 2-60: Profiling Data Write Register (PDWR)

Bits Name Description Reset Value

35:0 | Write Data | Data to write to a bin 0

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 104

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=104

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Cross Trigger Support

With basic debugging, cross trigger support is provided by two signals, pec_sTor and
MB Halted.

« When the pec_sTop input is set to 1, MicroBlaze will halt after a few instructions. XMD
will detect that MicroBlaze has halted, and indicate where the halt occurred. The signal
can be used to halt MicroBlaze at any external event, for example when a ChipScope™
integrated logic analyzer is triggered.

« Whenever Microblaze is halted the MB Halted output signal is set to 1, for example
after a breakpoint or watchpoint is hit, after a stop XMD command, or when the
DBG_STOP input is set. The output is cleared when MicroBlaze execution is resumed by
an XMD command.

The MB_Halted signal may be used to trigger a ChipScope integrated logic analyzer, or
halt other MicroBlaze cores in a multiprocessor system by connecting the signal to their
DBG_STOP inputs.

With extended debugging, cross trigger support is available in conjunction with the MDM.
The MDM provides programmable cross triggering between all connected processors, as
well as external trigger inputs and outputs. For details, see the MicroBlaze Debug Module
(MDM) Product Guide (PG115).

MicroBlaze can handle up to eight cross trigger actions. Cross trigger actions are generated
by the corresponding MDM cross trigger outputs, connected via the Debug bus. The effect
of each of the cross trigger actions is listed in Table 2-61.

MicroBlaze can generate up to eight cross trigger events. Cross trigger events affect the
corresponding MDM cross trigger inputs, connected via the Debug bus. The cross trigger
events are described in Table 2-62.

Table 2-61: MicroBlaze Cross Trigger Actions

Number Action Description
0 Debug stop Stop MicroBlaze if the processor is executing, and set the MB_Halted output.
The same effect is achieved by setting the Dbg_Stop input.
1 Continue execution | Continue execution if the processor is stopped, and clear the MB_Halted
output.
2 Stop program trace | Stop program trace if tracing is in progress.
3 Start program trace | Start program trace if trace is stopped.
4 Stop performance | Stop performance monitoring if it is in progress.
monitoring
5 Start performance | Start performance monitoring if it is stopped.
monitoring
6 Disable profiling | Disable profiling if it is in progress.
7 Enable profiling Enable profiling if it is disabled.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 105
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=105

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-62: MicroBlaze Cross Trigger Events

Number Event Description
0 MicroBlaze halted | Generate an event when MicroBlaze is halted. The same event is signalled
when the MB_Halted output is set.
1 Execution resumed | Generate an event when the processor resumes execution from debug halt.
The same event is signalled when the MB_Halted output is cleared.
2 Program trace Generate an event when program trace is stopped by writing a command to
stopped the Program Trace Command Register, when the trace buffer is full, or by a
cross trigger action.
3 Program trace Generate an event when program trace is started by writing a command to
started the Program Trace Command Register, by hitting a tracepoint, or by a cross

trigger action.

4 Performance Generate an event when performance monitoring is stopped by writing a
monitoring stopped | command to the Performance Counter Command Register or by a cross
trigger action.

5 Performance Generate an event when performance monitoring is started by writing a
monitoring started | command to the Performance Counter Command Register, or by a cross
trigger action.

6 Profiling disabled | Generate an event when profiling is enabled by writing a command to the
Profiling Control Register or by a cross trigger action.

7 Profiling enabled | Generate an event when profiling is disabled by writing a command to the
Profiling Control Register or by a cross trigger action.

Trace Interface Overview

The MicroBlaze trace interface exports a number of internal state signals for performance
monitoring and analysis. Xilinx recommends that users only use the trace interface through
Xilinx developed analysis cores. This interface is not guaranteed to be backward compatible
in future releases of MicroBlaze.

See Table 3-14 for a list of exported signals.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 106
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=106

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Fault Tolerance

The fault tolerance features included in MicroBlaze, enabled with ¢c_FAULT TOLERANT,
provide Error Detection for internal block RAMs, and support for Error Detection and
Correction (ECC) in LMB block RAMs. When fault tolerance is enabled, all soft errors in block
RAMs are detected and corrected, which significantly reduces overall failure intensity.

In addition to protecting block RAM, the FPGA configuration memory also generally needs
to be protected. A detailed explanation of this topic, and further references, can be found in
the document SEU Strategies for Virtex-5 Devices (XAPP864).

Configuration

Using MicroBlaze Configuration
Fault tolerance can be enabled in the MicroBlaze configuration dialog, on the General page.

After enabling fault tolerance in MicroBlaze, ECC is automatically enabled in the connected
LMB BRAM Interface Controllers by the tools, when the system is generated. This means
that nothing else needs to be configured to enable fault tolerance and minimal ECC
support.

It is possible (albeit not recommended) to manually override ECC support, leaving the LMB
BRAM unprotected, by disabling c¢_ecc in the configuration dialogs of all connected LMB
BRAM Interface Controllers. In this case, the internal MicroBlaze block RAM protection is
still enabled, since fault tolerance is enabled.

Using LMB BRAM Interface Controller Configuration

As an alternative to the method described above, it is also possible to enable ECC in the
configuration dialogs of all connected LMB BRAM Interface Controllers. In this case, fault
tolerance is automatically enabled in MicroBlaze by the tools, when the system is
generated. This means that nothing else needs to be configured to enable ECC support and
MicroBlaze fault tolerance.

ECC must either be enabled or disabled in all Controllers, which is enforced by a DRC.

It is possible to manually override fault tolerance support in MicroBlaze, by explicitly
disabling ¢c_rauLT TOLERANT in the MicroBlaze configuration dialog. This is not
recommended, unless no block RAM is used in MicroBlaze, and there is no need to handle
bus exceptions from uncorrectable ECC errors.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 107
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=application+note;d=xapp864.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=107

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Features

An overview of all MicroBlaze fault tolerance features is given here. Further details on each
feature can be found in the following sections:

« "Instruction Cache Operation”
« "Data Cache Operation”

+ "UTLB Management”

« "Branch Target Cache”

« "Instruction Bus Exception”

+ "“Data Bus Exception”

« "Exception Causes”

The LMB BRAM Interface Controller v4.0 or later provides the LMB ECC implementation. For
details, including performance and resource utilization, see the LogiCORE IP LMB BRAM
Interface Controller (PG112) product guide, in the Xilinx IP Documentation.

Instruction and Data Cache Protection

To protect the block RAM in the Instruction and Data Cache, parity is used. When a parity
error is detected, the corresponding cache line is invalidated. This forces the cache to reload
the correct value from external memory. Parity is checked whenever a cache hit occurs.

Note that this scheme only works for write-through, and thus write-back data cache is not
available when fault tolerance is enabled. This is enforced by a DRC.

When new values are written to a block RAM in the cache, parity is also calculated and
written. One parity bit is used for the tag, one parity bit for the instruction cache data, and
one parity bit for each word in a data cache line.

In many cases, enabling fault tolerance does not increase the required number of cache
block RAMs, since spare bits can be used for the parity. Any increase in resource utilization,
in particular number of block RAMs, can easily be seen in the MicroBlaze configuration
dialog, when enabling fault tolerance.

Memory Management Unit Protection

To protect the block RAM in the MMU Unified Translation Look-Aside Buffer (UTLB), parity
is used. When a parity error is detected during an address translation, a TLB miss exception
occurs, forcing software to reload the entry.

When a new TLB entry is written using the TLBHI and TLBLO registers, parity is calculated.
One parity bit is used for each entry.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 108
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=108

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Parity is also checked when a UTLB entry is read using the TLBHI and TLBLO registers. When
a parity error is detected in this case, the entry is marked invalid by clearing the valid bit.

Enabling fault tolerance does not increase the MMU block RAM size, since a spare bit is
available for the parity.

Branch Target Cache Protection

To protect block RAM in the Branch Target Cache, parity is used. When a parity error is
detected when looking up a branch target address, the address is ignored, forcing a normal
branch.

When a new branch address is written to the Branch Target Cache, parity is calculated. One
parity bit is used for each address.

Enabling fault tolerance does not increase the Branch Target Cache block RAM size, since a
spare bit is available for the parity.

Exception Handling

With fault tolerance enabled, if an error occurs in LMB block RAM, the LMB BRAM Interface
Controller generates error signals on the LMB interface.

If exceptions are enabled in MicroBlaze, by setting the EE bit in the Machine Status Register,
the uncorrectable error signal either generates an instruction bus exception or a data bus
exception, depending on the affected interface.

Should a bus exception occur when an exception is in progress, MicroBlaze is halted, and
the external error signal MB_Error is set. This behavior ensures that it is impossible to
execute an instruction corrupted by an uncorrectable error.

Software Support

Scrubbing

To ensure that bit errors are not accumulated in block RAMs, they must be periodically
scrubbed.

The standalone BSP provides the function microblaze scrub() to perform scrubbing of the
entire LMB block RAM and all MicroBlaze internal block RAMs used in a particular
configuration. This function is intended to be called periodically from a timer interrupt
routine.

The following example code illustrates how this can be done.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 109
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=109

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE-

#include "xparameters.h"
#include "xtmrctr.h"
#include "xintc.h"
#include "mb_interface.h"

#define SCRUB_PERIOD

XIntc InterruptController; /* The Interrupt Controller instance */
XTmrCtr TimerCounterInst;/* The Timer Counter instance */

void MicroBlazeScrubHandler (void *CallBackRef, u8 TmrCtrNumber)
{
/* Perform other timer interrupt processing here */
microblaze scrub() ;

}

int main (void)

{

int Status;

/*

* Initialize the timer counter so that it's ready to use,

* specify the device ID that is generated in xparameters.h

*/
Status = XTmrCtr_Initialize (&TimerCounterInst, TMRCTR_DEVICE_ID) ;
if (Status != XST SUCCESS) {

return XST FAILURE;

}
/*

* Connect the timer counter to the interrupt subsystem such that
* interrupts can occur.

*/
Status = XIntc Initialize(&InterruptController, INTC DEVICE ID);
if (Status != XST SUCCESS) {

return XST FAILURE;

}
/*

* Connect a device driver handler that will be called when an
* interrupt for the device occurs, the device driver handler performs
* the specific interrupt processing for the device
*/
Status = XIntc Connect (&InterruptController, TMRCTR DEVICE ID,
(XInterruptHandler)XTmrCtr InterruptHandler,
(void *) &TimerCounterInst) ;
if (Status != XST SUCCESS) {
return XST FAILURE;
}

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 110
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=110

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

/*

* Start the interrupt controller such that interrupts are enabled for
* all devices that cause interrupts, specifying real mode so that the
* timer counter can cause interrupts thru the interrupt controller.

*/
Status = XIntc_Start (&InterruptController, XIN_ REAL MODE) ;
if (Status != XST SUCCESS) {

return XST FAILURE;
/*

* Setup the handler for the timer counter that will be called from the
* interrupt context when the timer expires, specify a pointer to the

* timer counter driver instance as the callback reference so the

* handler is able to access the instance data

*/
XTmrCtr_SetHandler (&TimerCounterInst, MicroBlazeScrubHandler,
&TimerCounterInst) ;
/*

* Enable the interrupt of the timer counter so interrupts will occur
* and use auto reload mode such that the timer counter will reload
* itself automatically and continue repeatedly, without this option
* it would expire once only
*/
XTmrCtr SetOptions (&TimerCounterInst, TIMER _CNTR O,
XTC_INT MODE_OPTION | XTC_AUTO RELOAD OPTION) ;

/*
* Set a reset value for the timer counter such that it will expire
* earlier than letting it roll over from 0, the reset value is loaded
* into the timer counter when it is started
*/
XTertr_SetResetValue(TertrInstancePtr,TertrNumber,SCRUB_PERIOD);
/*
* Start the timer counter such that it's incrementing by default,
* then wait for it to timeout a number of times
*/
XTmrCtr Start (&TimerCounterInst, TIMER CNTR O) ;

}

See the section “Scrubbing” below for further details on how scrubbing is implemented,
including how to calculate the scrubbing rate.

BRAM Driver

The standalone BSP BRAM driver is used to access the ECC registers in the LMB BRAM
Interface Controller, and also provides a comprehensive self test.

By implementing the SDK Xilinx C Project "Peripheral Tests", a self-test example including
the BRAM self test for each LMB BRAM Interface Controller in the system is generated.
Depending on the ECC features enabled in the LMB BRAM Interface Controller, this code will
perform all possible tests of the ECC function.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 111
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=111

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

The self-test example can be found in the standalone BSP BRAM driver source code,
typically in the subdirectory microblaze 0/libsrc/bram v3_03_a/src/xbram selftest.c.

Scrubbing

Scrubbing Methods
Scrubbing is performed using specific methods for the different block RAMs:

« Instruction and data caches: All lines in the caches are cyclically invalidated using the
WIC and WDC instructions respectively. This forces the cache to reload the cache line
from external memory.

« Memory Management Unit UTLB: All entries in the UTLB are cyclically invalidated by
writing the TLBHI register with the valid bit cleared.

« Branch Target Cache: The entire BTC is invalided by doing a synchronizing branch, BRI 4.

« LMB block RAM: All addresses in the memory are cyclically read and written, thus
correcting any single bit errors on each address.

It is also possible to add interrupts for correctable errors from the LMB BRAM Interface
Controllers, and immediately scrub this address in the interrupt handler, although in most
cases it only improves reliability slightly.

The failing address can be determined by reading the Correctable Error First Failing Address
Register in each of the LMB BRAM Interface Controllers. To be able to generate an interrupt
C_ECC_STATUS REGISTERS must be set to 1 in the connected LMB BRAM Interface
Controllers, and to read the failing address c_cE FAILING REGISTERS must be set to 1.

Calculating Scrubbing Rate
The scrubbing rate depends on failure intensity and desired reliability.

The approximate equation to determine the LMB memory scrubbing rate is in our case
given by

2
Py = 760(ﬁ]
SR?

where Py is the probability of an uncorrectable error in a memory word, BER is the soft error
rate for a single memory bit, and SR is the Scrubbing Rate.

The soft error rates affecting block RAM for each product family can be found in the Device
Reliability Report (UG116).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 112
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug116.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=112

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Use Cases

Several common use cases are described here. These use cases are derived from the
LogiCore IP Processor LMB BRAM Interface Controller (PG112) product guide.

Minimal

This system is obtained when enabling fault tolerance in MicroBlaze, without doing any
other configuration.

The system is suitable when area constraints are high, and there is no need for testing of the
ECC function, or analysis of error frequency and location. No ECC registers are
implemented. Single bit errors are corrected by the ECC logic before being passed to
MicroBlaze. Uncorrectable errors set an error signal, which generates an exception in
MicroBlaze.

Small

This system should be used when it is necessary to monitor error frequency, but there is no
need for testing of the ECC function. It is a minimal system with Correctable Error Counter
Register added to monitor single bit error rates. If the error rate is too high, the scrubbing
rate should be increased to minimize the risk of a single bit error becoming an

uncorrectable double bit error. Parameters set are ¢ ecc = 1 and ¢_CE_COUNTER _WIDTH = 10.

Typical

This system represents a typical use case, where it is required to monitor error frequency, as
well as generating an interrupt to immediately correct a single bit error through software. It
does not provide support for testing of the ECC function. It is a small system with
Correctable Error First Failing registers and Status register added. A single bit error will latch
the address for the access into the Correctable Error First Failing Address Register and set
the CE_STATUS bit in the ECC Status Register. An interrupt will be generated triggering
MicroBlaze to read the failing address and then perform a read followed by a write on the
failing address. This will remove the single bit error from the BRAM, thus reducing the risk
of the single bit error becoming a uncorrectable double bit error. Parameters set are c_tcc
=1,¢c CE COUNTER WIDTH = 10, C_ECC_STATUS REGISTER = 1l and ¢ CE FAILING REGISTERS
=1

Full

This system uses all of the features provided by the LMB BRAM Interface Controller, to
enable full error injection capability, as well as error monitoring and interrupt generation. It
is a typical system with Uncorrectable Error First Failing registers and Fault Injection
registers added. All features are switched on for full control of ECC functionality for system
debug or systems with high fault tolerance requirements. Parameters set are ¢_ecc = 1,
C_CE_COUNTER WIDTH = 10, C_ECC STATUS REGISTER = 1l and Cc_CE FAILING REGISTERS =1,
C_UE_FAILING REGISTERS = 1l and c_FAULT_INJECT = L.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 113
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=113

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Lockstep Operation

MicroBlaze is able to operate in a lockstep configuration, where two or more identical
MicroBlaze cores execute the same program. By comparing the outputs of the cores, any
tampering attempts, transient faults or permanent hardware faults can be detected.

System Configuration

The parameter ¢c_LOCKSTEP_SLAVE is set to one on all slave MicroBlaze cores in the system,
except the master (or primary) core. The master core drives all the output signals, and
handles the debug functionality. The port Lockstep Master out on the master is
connected to the port Lockstep Slave In on the slaves, in order to handle debugging.

The slave cores should not drive any output signals, only receive input signals. This must be
ensured by only connecting signals to the input ports of the slaves. For buses this means
that each individual input port must be explicitly connected.

The port Lockstep out on the master and slave cores provide all output signals for
comparison. Unless an error occurs, individual signals from each of the cores are identical
every clock cycle.

To ensure that lockstep operation works properly, all input signals to the cores must be
synchronous. Input signals that may require external synchronization are Interrupt, Reset,
Ext Brk, and Ext Nm Brk.

Use Cases

Two common use cases are described here. In addition, lockstep operation provides the
basis for implementing triple modular redundancy on MicroBlaze core level.

Tamper Protection

This application represents a high assurance use case, where it is required that the system
is tamper-proof. A typically example is a cryptographic application.

The approach involves having two redundant MicroBlaze processors with dedicated local
memory and redundant comparators, each in a protected area. The outputs from each
processor feed two comparators and each processor receive copies of every input signal.

The redundant MicroBlaze processors are functionally identical and completely
independent of each other, without any connecting signals. The only exception is debug
logic and associated signals, since it is assumed that debugging is disabled before any
productization and certification of the system.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 114
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=114

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

The outputs from the master MicroBlaze core drive the peripherals in the system. All data
leaving the protected area pass through inhibitors. Each inhibitor is controlled from its
associated comparator.

Each protected area of the design must be implemented in its own partition, using a
hierarchical Single Chip Cryptography (SCC) flow. A detailed explanation of this flow, and
further references, can be found in the document Hierarchical Design Methodology Guide

(UG748).

A block diagram of the system is shown in Figure 2-41.

MicroBlaze Partition 515 Ny Peripheral
C_LOCKSTEP_SLAVE = 0 Outputs > 5> Partition
g Ho
I 1TV S— = 5
BRAM Controller . 4 1 Y
MicroBlaze Inputs |
BRAM —
Master Comparator Partition

ILMB
BRAM Controller [~

Lockstep_Out > Comparator

MicroBlaze Debug | I/O Interfaces
Ecbopibiodule Lockstep_Master_Out I

MicroBlaze Partition VLockstep_Slave_ln External Memory
o p Interfaces
Inputs
N
— DLMB Compatrator Partition
BRAM Controller M icrOBIaze
BRAM Slave Lockstep_Out Comparator

ILMB
BRAM C:

C_LOCKSTEP_SLAVE =1

Debug Interface - Removed for Production

Figure 2-41: Lockstep Tamper Protection Application

Error Detection

The error detection use case requires that all transient and permanent faults are detected.
This is essential in fail safe and fault tolerant applications, where redundancy is utilized to

improve system availability.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 115
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=14.5&topic=sw+manuals&sub=Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=115

& XILINX

ALL PROGRAMMABLE

Chapter 2:

MicroBlaze Architecture

In this system two redundant MicroBlaze processors run in lockstep. A comparator is used
to signal an error when a mis-match is detected on the outputs of the two processors. Any
error immediately causes both processors to halt, preventing further error propagation.

The redundant MicroBlaze processors are functionally identical, except for debug logic and
associated signals.The outputs from the master MicroBlaze core drive the peripherals in the
system. The slave MicroBlaze core only has inputs connected; all outputs are left open.

The system contains the basic building block for designing a complete fault tolerant
application, where one or more additional blocks must be added to provide redundancy.

This use case is illustrated in Figure 2-42.

BRAM

(— DLMB
BRAM Controller

ILMB

BRAM C:

MicroBlaze
Debug Module

Figure 2-42: Lockstep Error Detection Application

MicroBlaze Processor Reference Guide www.Xilinx.com
UG984 (v2014.3) October 1, 2014

C_LOCKSTEP_SLAVE = 0 Error Reset

- >

. Outputs >
MicroBlaze ;
Master < Inputs '
! Lockstep_Out !
T Debug |
: Comparator :
! Debug :
: Lockstep_Out :
| ® MicroBlaze :
' | Inputs Slave < Inputs :
P Inputs '
1 4 1
: C_LOCKSTEP_SLAVE = 1 :

I/O Interfaces

External Memory
Interfaces

l Send Feedback I 116

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=116

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Coherency

MicroBlaze supports cache coherency, as well as invalidation of caches and translation look-
aside buffers, using the AXI Coherency Extension (ACE) defined in AMBA® AXI and ACE
Protocol Specification (ARM IHI 0022E). The coherency support is enabled when the
parameter c_INTERCONNECT is set to 3 (ACE).

Using ACE ensures coherency between the caches of all MicroBlaze processors in the
coherency domain. The peripheral ports (AXI_IP, AXI_DP) and local memory (ILMB, DLMB)
are outside the coherency domain.

Coherency is not supported with write-back data cache, wide cache interfaces (more than
32-bit data), instruction cache streams, instruction cache victims or when area optimization
is enabled. In addition both ¢ _1cACHE ALWAYS USED and C_DCACHE ALWAYS USED must be
set to 1.

Invalidation
The coherency hardware handles invalidation in the following cases:

« Data Cache invalidation:
When a MicroBlaze core in the coherency domain invalidates a data cache line with an
external cache invalidation instruction (WDC.EXT.CLEAR or WDC.EXT.FLUSH), hardware
messages ensure that all other cores in the coherency domain will do the same. The
physical address is always used.

« Instruction Cache invalidation:
When a MicroBlaze core in the coherency domain invalidates an instruction cache line,
hardware messages ensure that all other cores in the coherency domain will do the
same. When the MMU is in virtual mode the virtual address is used, otherwise the
physical address is used.

« MMU TLB invalidation:
When a MicroBlaze core in the coherency domain invalidates an entry in the UTLB (i.e.
writes TLBHI with a zero Valid flag), hardware messages ensure that all other cores in
the coherency domain will invalidate all entries in their unified TLBs having a TAG
matching the invalidated virtual address, as well as empty their shadow TLBs.

The TID is not taken into account when matching the entries, which can result in
invalidation of entries belonging to other processes. Subsequent accesses to these
entries will generate TLB miss exceptions, which must be handled by software.

Before invalidating an MMU page, it must first be loaded into the UTLB to ensure that
the hardware invalidation is propagated within the coherency domain. It is not sufficient
to simply invalidate the page in memory, since other processors in the coherency
domain may have this particular entry stored in their TLBs.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 117
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=117

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

After a MicroBlaze core has invalidated one or more entries, it must execute a memory
barrier instruction (MBAR), to ensure that all peer processors have completed their TLB
invalidation.

« Branch Target Cache invalidation:
When a MicroBlaze core in the coherency domain invalidates the Branch Target Cache,
either with a memory barrier instruction or with a synchronizing branch, hardware
messages ensure that all other cores in the coherency domain will do the same.

In particular, this means that self-modifying code can be used transparently within the
coherency domain in a multi-processor system, provided that the guidelines in"Self-
modifying Code” are followed.

Protocol Compliance

The MicroBlaze instruction cache interface issues the following subset of the possible ACE
transactions:

« ReadClean
Issued when a cache line is allocated.

« ReadOnce
Issued when the cache is off, or if the MMU Inhibit Caching bit is set for the cache line.

The MicroBlaze data cache interface issues the following subset of the possible ACE
transactions:

« ReadClean

Issued when a cache line is allocated.

« CleanUnique
Issued when an SWX instruction is executed as part of an exclusive access sequence.

« ReadOnce
Issued when the cache is off, or if the MMU Inhibit Caching bit is set for the cache line.

+ WriteUnique
Issued whenever a store instruction performs a write.

+ C(Cleanlnvalid
Issued when a WDC.EXT.FLUSH instruction is executed.

Makelnvalid
Issued when a WDC.EXT.CLEAR instruction is executed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 118
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=118

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Both interfaces issue the following subset of the possible Distributed Virtual Memory
(DVM) transactions:

+ DVM Operation
TLB Invalidate — Hypervisor TLB Invalidate by VA
Branch Predictor Invalidate — Branch Predictor Invalidate all

Physical Instruction Cache Invalidate — Non-secure Physical Instruction Cache
Invalidate by PA without Virtual Index

Virtual Instruction Cache Invalidate — Hypervisor Invalidate by VA
« DVM Sync

Synchronization
« DVM Complete

In addition to the DVM transactions above, the interfaces only accept the
CleanInvalid and Makelnvalid transactions. These transactions have no effect in the
instruction cache, and invalidate the indicated data cache lines. If any other
transactions are received, the behavior is undefined.

Only a subset of AXI4 transactions are utilized by the interfaces, as described in
“Cache Interfaces”.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 119
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=119

& XILINX

ALL PROGRAMMABLE.

Chapter 3

MicroBlaze Signal Interface Description

This chapter describes the types of signal interfaces that can be used to connect
MicroBlaze™.

Overview

The MicroBlaze core is organized as a Harvard architecture with separate bus interface units
for data and instruction accesses. The following two memory interfaces are supported:
Local Memory Bus (LMB), and the AMBA® AXI4 interface (AXI4) and ACE interface (ACE).
The LMB provides single-cycle access to on-chip dual-port block RAM. The AXI4 interfaces
provide a connection to both on-chip and off-chip peripherals and memory. The ACE
interfaces provide cache coherent connections to memory. MicroBlaze also supports up to
16 AXI4-Stream interface ports, each with one master and one slave interface.

Features
MicroBlaze can be configured with the following bus interfaces:

« The AMBA AXI4 Interface for peripheral interfaces, and the AMBA AXI4 or AXI
Coherency Extension (ACE) Interface for cache interfaces (see ARM® AMBA® AXI and
ACE Protocol Specification, ARM IHI 0022E).

« LMB provides simple synchronous protocol for efficient block RAM transfers

» AXI4-Stream provides a fast non-arbitrated streaming communication mechanism
« Debug interface for use with the Microprocessor Debug Module (MDM) core

« Trace interface for performance analysis

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 120
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=120

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

MicroBlaze 1/O Overview

The core interfaces shown in Figure 3-1 and the following Table 3-1 are defined as follows:

M_AXI_DP:

DLMB:

M_AXILIP:

ILMB:
MO_AXIS..M15_AXIS:
SO_AXIS..S15_AXIS:

Peripheral Data Interface, AXI4-Lite or AX14 interface

Data interface, Local Memory Bus (BRAM only)

Peripheral Instruction interface, AXI4-Lite interface
Instruction interface, Local Memory Bus (BRAM only)
AXI4-Stream interface master direct connection interfaces
AXI4-Stream interface slave direct connection interfaces

M_AXI_DC: Data side cache AXI4 interface
M_ACE_DC: Data side cache AXI Coherency Extension (ACE) interface
M_AXI_IC: Instruction side cache AXI4 interface
M_ACE_IC: Instruction side cache AXI Coherency Extension (ACE) interface
Core: Miscellaneous signals for: clock, reset, interrupt, debug, trace
Instruction-side Data-side
bus interface bus interface
Memory Management Unit (MMU)
M_AXI_IC < “<_ UTLB m A M_AXI_DC
M_ACE_IC |::> _ M_ACE_DC
Sy 2
5 i 3 1t 3
(o] (o]
g :
Program v ALU
Counter A -
Special [N\ Shift
@ ;:grig?gres N Barrel Shift
Branch v Multiplier
Target S < VP >
Cache Divider
SN
Bus —/ FPU Bus
IF N Instruction —NJ IF
cwE > e e | 4y 1P
Instruction
Decode K |:> MO_AXIS..
=\ Register File M15_AXIS
—/ 32X 32b <jso_AX|s..
—N S15_AXIS
Optional MicroBlaze feature v
Figure 3-1: MicroBlaze Core Block Diagram

MicroBlaze Processor Reference Guide www.Xilinx.com

UG984 (v2014.3) October 1, 2014

l Send Feedback I 121

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=121

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-1: Summary of MicroBlaze Core I/O

Signal Interface | 1/0 Description
M_AXI_DP_AWID M_AXI_DP | O | Master Write address ID
M_AXI_DP_AWADDR M_AXI_DP | O | Master Write address
M_AXI_DP_AWLEN M_AXI_DP | O | Master Burst length
M_AXI_DP_AWSIZE M_AXI_DP | O | Master Burst size
M AXI DP AWBURST M_AXI DP = O | Master Burst type
M_AXI_DP_AWLOCK M_AXI _DP | O | Master Lock type
M _AXI DP_ AWCACHE M_AXI_DP | O | Master Cache type
M_AXI_DP_AWPROT M_AXI DP | O | Master Protection type
M_AXI_DP_AWQOS M_AXI_DP | O | Master Quality of Service
M_AXI_DP_AWVALID M_AXI_DP | O | Master Write address valid
M_AXI_DP_AWREADY M_AXI_DP | I |Slave Write address ready
M_AXI_DP_WDATA M_AXI_DP | O | Master Write data
M_AXI_DP_WSTRB M_AXI_DP | O | Master Write strobes
M_AXI_DP_WLAST M_AXI_DP | O | Master Write last
M_AXI_DP_WVALID M_AXI DP | O | Master Write valid
M_AXI_DP_WREADY M_AXI_DP | I |Slave Write ready
M_AXI DP BID M_AXI DP | I | Slave Response ID
M_AXI_DP_BRESP M_AXI_DP I | Slave Write response
M_AXI DP_BVALID M_axI_DP | I | Slave Write response valid
M_AXI_DP_BREADY M_AXI_DP 0 | Master Response ready
M_AXI DP ARID M_AXI_DP | O | Master Read address ID
M_AXI_DP_ARADDR M_AXI_DP | O | Master Read address
M_AXI_DP_ARLEN M_AXI DP | O | Master Burst length
M_AXI_DP_ARSIZE M_AXI_DP | O | Master Burst size
M _AXI DP_ARBURST M_AXI_DP = O | Master Burst type
M_AXI_DP_ARLOCK M_AXI_DP | O | Master Lock type
M AXI DP_ ARCACHE M_AXI_DP | O | Master Cache type
M_AXI_DP_ARPROT M_AXI_DP | O | Master Protection type
M_AXI_DP_ARQOS M_AXI DP | O | Master Quality of Service
M_AXI_DP_ARVALID M_AXI_DP | O | Master Read address valid
M_AXI_DP_ARREADY M_2aXI_DP | I |Slave Read address ready

MicroBlaze Processor Reference Guide

UG984 (v2014.3) October 1, 2014

www.Xilinx.com

| Send Feedback I 122

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=122

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)

Signal Interface | 1/0 Description
M _AXI DP RID M_AXI_DP | I |Slave Read ID tag
M_AXI_DP_RDATA M _AXI_DP | I |Slave Read data
M_AXI_DP_RRESP M_AXI DP | I |Slave Read response
M_AXI_DP_RLAST M_AXI DP | I |Slave Read last
M_AXI_DP_RVALID M_axI_DP | I | Slave Read valid
M_AXI_DP_RREADY M_AXI_DP | O | Master Read ready
M_AXI_IP_AWID M_AXI_IP | O | Master Write address ID
M_AXI_IP_AWADDR M _AXI_IP | O | Master Write address
M_AXI_IP_AWLEN M_AXI_IP | O | Master Burst length
M_AXI_IP_AWSIZE M_AXI_IP | O | Master Burst size
M AXI IP AWBURST M_AXI_IP = O | Master Burst type
M_AXI_IP_AWLOCK M_AXI_IP | O | Master Lock type
M AXI IP AWCACHE M_AXI_IP | O | Master Cache type
M_AXI_IP_AWPROT M_AXI_IP | O | Master Protection type
M_AXI_IP_AWQOS M_AXI_IP | O | Master Quality of Service
M_AXI_IP_AWVALID M_AXI_IP | O | Master Write address valid
M_AXI IP_ AWREADY M_axI_I1P | I | Slave Write address ready
M_AXI_IP_WDATA M_AXI_IP | O | Master Write data
M _AXI IP WSTRB M_AXI_IP | O | Master Write strobes
M_AXI_IP_WLAST M_AXI_IP | O | Master Write last
M_AXI_IP_WVALID M_AXI_IP | O | Master Write valid
M_AXI_IP_WREADY M_axI_IP | I | Slave Write ready
M AXI IP BID M_AXI_IP | I |Slave Response ID
M_AXI_IP_BRESP M_AXI_IP I | Slave Write response
M_AXI_IP_BVALID M_AXI_IP | I |Slave Write response valid
M_AXI_IP_BREADY M_AXI_IP | O | Master Response ready
M_AXI_IP_ARID M_AXI_IP | O | Master Read address ID
M_AXI_IP_ARADDR M AXI IP | O | Master Read address
M_AXI_IP_ARLEN M_AXI_IP | O | Master Burst length
M_AXI_IP_ARSIZE M_AXI_IP | O | Master Burst size
M AXI IP ARBURST M _AXI IP 0 Master Burst type
M_AXI_IP_ ARLOCK M_AXI_IP | O | Master Lock type

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

| Send Feedback I 123

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=123

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)

Signal Interface | 1/0 Description
M_AXI_IP_ ARCACHE M_AXI_IP | O | Master Cache type
M_AXI_IP_ARPROT M_AXI_IP | O | Master Protection type
M_AXI_IP_ARQOS M_AXI_IP | O | Master Quality of Service
M_AXI_IP_ARVALID M_AXI_IP | O | Master Read address valid
M_AXI IP_ARREADY M_axI_IP | I |Slave Read address ready
M _AXI IP RID M_axI_IP | I |Slave Read ID tag
M_AXI_TIP_RDATA M_AXI_IP | I | Slave Read data
M_AXI_IP_RRESP M_AXI_IP | I |Slave Read response
M_AXI_IP_RLAST M_AXI_IP | I |Slave Read last
M_AXI IP RVALID M AXI IP I | Slave Read valid
M_AXI_IP_RREADY M_AXI_IP | O | Master Read ready
M_AXI_DC_AWADDR M_AXI_DC | O | Master Write address
M _AXI DC_AWLEN M_AXI_DC | O | Master Burst length
M_AXI_DC_AWSIZE M_AXI_DC | O | Master Burst size
M AXI DC_AWBURST M_AXI DC = O | Master Burst type
M_AXI DC_AWLOCK M_AXI_DC | O | Master Lock type
M_AXI_DC_AWCACHE M_AXI DC | O | Master Cache type
M_AXI_DC_AWPROT M_AXI_DC | O | Master Protection type
M_AXI DC_AWQOS M_AXI_DC | O | Master Quality of Service
M_AXI_DC_AWVALID M_AXI_DC | O | Master Write address valid
M_AXI_DC_AWREADY M_AXI_DC | I |Slave Write address ready
M_AXI_DC_AWUSER M_AXI_DC | O | Master Write address user signals
M_AXI_DC_AWDOMAIN M_ACE_DC | O | Master Write address domain
M_AXI_DC_AWSNOOP M_ACE_DC | O | Master Write address snoop
M _AXI DC_AWBAR M_ACE_DC | O | Master Write address barrier
M_AXI_DC_WDATA M_AXI_DC | O | Master Write data
M_AXI_DC_WSTRB M_AXI_DC | O | Master Write strobes
M_AXI_DC_WLAST M_AXI_DC | O | Master Write last
M_AXI_DC_WVALID M_AXI_DC | O | Master Write valid
M _AXI DC_WREADY M_AXI_DC | I |Slave Write ready
M_AXI_DC_WUSER M_AXI_DC | O | Master Write user signals
M_AXI_DC_BRESP M_AXI_DC | I |Slave Write response

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

| Send Feedback I 124

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=124

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)

Signal Interface | 1/0 Description
M_AXI_DC_BID M_AXI DC | I |Slave Response ID
M_AXI_DC_BVALID M_AXI_DC | I |Slave Write response valid
M_AXI_DC_BREADY M_AXI_DC | O | Master Response ready
M_AXI_DC_BUSER M_AXI_DC | I | Slave Write response user signals
M_AXI DC_WACK M_ACE_DC | O | Slave Write acknowledge
M_AXI_DC_ARID M_AXI_DC | O | Master Read address ID
M_AXI_DC_ARADDR M_AXI_DC | O | Master Read address
M_AXI_DC_ARLEN M_AXI_DC | O | Master Burst length
M_AXI_DC_ARSIZE M_AXI_DC | O | Master Burst size
M AXI DC_ARBURST M_AXI_DC = O | Master Burst type
M_AXI_DC_ARLOCK M_AXI DC | O | Master Lock type
M_AXI_DC_ARCACHE M_AXI_DC | O | Master Cache type
M_AXI DC_ARPROT M_AXI_DC | O | Master Protection type
M_AXI_DC_ARQOS M_AXI_DC | O | Master Quality of Service
M_AXI_DC_ARVALID M_AXI_DC | O | Master Read address valid
M_AXI DC_ARREADY M_AXI_DC | I | Slave Read address ready
M_AXI_DC_ARUSER M_AXI_DC | O | Master Read address user signals
M_AXI_DC_ARDOMAIN M_ACE_DC | O | Master Read address domain
M_AXI_DC_ARSNOOP M_ACE_DC | O | Master Read address snoop
M_AXI_DC_ARBAR M_ACE_DC | O | Master Read address barrier
M_AXI_DC_RID M_AXI_DC | I |Slave Read ID tag
M_AXI_DC_RDATA M _AXI_DC | I |Slave Read data
M_AXI_DC_RRESP M_AXI_DC I | Slave Read response
M _AXI DC_RLAST M_aXI_DC | I |Slave Read last
M_AXI DC_RVALID M _AXI DC I | Slave Read valid
M_AXI_DC_RREADY M_AXI_DC | O | Master Read ready
M_AXI_DC_RUSER M_AXI_DC | I |Slave Read user signals
M_AXI_DC_RACK M_ACE_DC | O | Master Read acknowledge
M_AXI_DC_ACVALID M_ACE DC | I |Slave Snoop address valid
M_AXI_DC_ACADDR M_ACE_DC | I |Slave Snoop address
M_AXI_DC_ACSNOOP M_ACE_DC | I |Slave Snoop address snoop
M_AXI DC_ACPROT M_ACE_DC | I |Slave Snoop address protection type

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 125
UG984 (v2014.3) October 1, 2014 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=125

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)

Signal Interface | 1/0 Description
M_AXI_DC_ACREADY M_ACE_DC | O | Master Snoop ready
M_AXI_DC_CRREADY M_ACE_DC | I |Slave Snoop response ready
M_AXI_DC_CRVALID M_ACE_DC | O | Master Snoop response valid
M_AXI DC_CRRESP M_ACE_DC | O | Master Snoop response
M_AXI_DC_CDVALID M_ACE DC | O | Master Snoop data valid
M_AXI_DC_CDREADY M_ACE_DC | I | Slave Snoop data ready
M_AXI_DC_CDDATA M_ACE DC | O | Master Snoop data
M_AXI_DC_CDLAST M_ACE_DC | O | Master Snoop data last
M_AXI_IC_AWID M _AXI_IC | O | Master Write address ID
M_AXI_IC_AWADDR M_AXI_IC | O | Master Write address
M_AXI_IC_AWLEN M_AXI_IC | O | Master Burst length
M_AXI_IC_AWSIZE M_AXI_IC | O | Master Burst size
M_AXI IC AWBURST M_AXI IC 0 | Master Burst type
M_AXI_IC_AWLOCK M_AXI_IC | O | Master Lock type
M_AXI_IC_AWCACHE M_AXI_IC | O | Master Cache type
M_AXI_TIC_AWPROT M_AXI_IC 0 | Master Protection type
M_AXI_IC_AWQOS M_AXI_IC | O | Master Quality of Service
M_AXI_IC_AWVALID M_AXI_IC | O | Master Write address valid
M_AXI_IC_AWREADY M_AXI_IC | I |Slave Write address ready
M_AXI_IC_AWUSER M_AXI_IC | O | Master Write address user signals
M_AXI_IC_AWDOMAIN M_ACE_IC | O | Master Write address domain
M_AXI_IC_AWSNOOP M_ACE_IC | O | Master Write address snoop
M_AXI_IC_AWBAR M_ACE_IC | O | Master Write address barrier
M _AXI IC_WDATA M_AXI_IC | O | Master Write data
M _AXI IC WSTRB M_AXI_IC | O | Master Write strobes
M_AXI_IC_WLAST M_AXI_IC | O | Master Write last
M_AXI_IC_WVALID M_AXI_IC | O | Master Write valid
M_AXI_IC_WREADY M_AXI_IC | I |Slave Write ready
M_AXI_ IC_WUSER M_AXI_IC | O | Master Write user signals
M_AXI_IC BID M_AXI_IC | I |Slave Response ID
M_AXI_IC_BRESP M_AXI_IC | I |Slave Write response
M_AXI_IC_BVALID M_AXI_IC | I |Slave Write response valid

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 126
UG984 (v2014.3) October 1, 2014 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=126

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)

Signal Interface | 1/0 Description
M_AXI_IC_BREADY M_AXI_IC | O | Master Response ready
M_AXI_IC_BUSER M_AXI_IC | I |Slave Write response user signals
M_AXI_IC_WACK M_ACE_IC | O |Slave Write acknowledge
M_AXI_IC_ARID M_AXI_IC | O | Master Read address ID
M_AXI_IC_ARADDR M_AXI_IC | O | Master Read address
M_AXI_IC_ARLEN M_AXI_IC | O | Master Burst length
M_AXI_IC_ARSIZE M_AXI_IC | O | Master Burst size
M AXI IC ARBURST M _AXI IC 0 Master Burst type
M_AXI_IC_ARLOCK M_AXI_IC | O | Master Lock type
M_AXI_IC_ARCACHE M_AXI_IC | O | Master Cache type
M_AXI_IC_ARPROT M_AXI_IC | O | Master Protection type
M_AXI_IC_ARQOS M_AXI_IC | O | Master Quality of Service
M_AXI_IC_ARVALID M_AXI_IC | O | Master Read address valid
M_AXI_IC_ARREADY M_AXI_IC | I |Slave Read address ready
M_AXI_IC_ARUSER M_AXI_IC | O | Master Read address user signals
M_AXI_IC_ARDOMAIN M_ACE_IC | O | Master Read address domain
M_AXI_IC_ARSNOOP M_ACE_IC | O | Master Read address snoop
M_AXI_IC_ARBAR M_ACE_IC | O | Master Read address barrier
M_AXI IC RID M _AXI_IC I |Slave Read ID tag
M_AXI_IC_RDATA M _AXI_ICc | I |Slave Read data
M_AXI_IC_RRESP M_AXI_IC | I |Slave Read response
M_AXI_IC_RLAST M AxI_1Cc | I | Slave Read last
M_AXI_IC_RVALID M_Ax1_1c | I | Slave Read valid
M_AXI_IC_RREADY M_AXI_IC | O | Master Read ready
M_AXI_IC_RUSER M_AXI_IC | I |Slave Read user signals
M_AXI_IC_RACK M_ACE_IC | O | Master Read acknowledge
M_AXI_IC_ACVALID M_ACE_IC | I |Slave Snoop address valid
M_AXI_IC_ACADDR M_ACE_IC | I | Slave Snoop address
M_AXI_IC_ACSNOOP M_ACE_IC | I |Slave Snoop address snoop
M_AXI IC_ACPROT M_ACE_IC | I |Slave Snoop address protection type
M_AXI_IC_ACREADY M_ACE_IC | O | Master Snoop ready
M_AXI_IC_CRREADY M_ACE_IC | I |Slave Snoop response ready

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 127
UG984 (v2014.3) October 1, 2014 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=127

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)

Signal Interface | 1/0 Description
M_AXI_IC_CRVALID M_ACE_IC | O | Master Snoop response valid
M_AXI_IC_CRRESP M_ACE_IC | O | Master Snoop response
M_AXI_IC_CDVALID M_ACE_IC | O | Master Snoop data valid
M_AXI_IC_CDREADY M_ACE_IC | I | Slave Snoop data ready
M_AXI_IC_CDDATA M_ACE_IC | O | Master Snoop data
M_AXI_IC_CDLAST M_ACE_IC | O | Master Snoop data last
Data Addr[0:31] DLMB O | Data interface LMB address bus
Byte_Enable[0:3] DLMB O | Data interface LMB byte enables
Data_Write[0:31] DLMB O | Data interface LMB write data bus
D_AS DLMB O | Data interface LMB address strobe
Read_Strobe DLMB O | Data interface LMB read strobe
Write Strobe DLMB O | Data interface LMB write strobe
Data_Read[0:31] DLMB I | Data interface LMB read data bus
DReady DLMB I | Data interface LMB data ready
DWait DLMB I | Data interface LMB data wait
DCE DLMB I | Data interface LMB correctable error
DUE DLMB I | Data interface LMB uncorrectable error
Instr Addr[0:31] ILMB O | Instruction interface LMB address bus
I_as ILMB O | Instruction interface LMB address strobe
IFetch ILMB O | Instruction interface LMB instruction fetch
Instr[0:31] ILMB I | Instruction interface LMB read data bus
IReady ILMB I | Instruction interface LMB data ready
IWait ILMB I |Instruction interface LMB data wait
ICE ILMB I |Instruction interface LMB correctable error
IUE ILMB I |Instruction interface LMB uncorrectable error
Mn AXIS TLAST MO_AXIS.. O | Master interface output AXI4 channels
M15_AXIS write last

Mn_AXIS_TDATA MO_AXIS.. O | Master interface output AXI4 channels
M15_AXIS write data

Mn_AXIS_TVALID MO_AXIS.. O | Master interface output AXI4 channels
M15_AXIS write valid

Mn_AXIS_TREADY MO_AXIS.. I | Master interface input AXI4 channels
M15_AXIS write ready

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 128
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=128

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)

Signal Interface | 1/0 Description
Sn_AXIS_TLAST SO_AXIS.. I | Slave interface input AXI4 channels
S15_AXIS write last
Sn_AXIS_TDATA SO_AXIS.. I | Slave interface input AXI4 channels
S15_AXIS write data
Sn_AXIS_TVALID SO_AXIS.. I | Slave interface input AXI4 channels
S15_AXIS write valid
Sn_AXIS_ TREADY SO_AXIS.. O | Slave interface output AXI4 channels
S15_AXIS write ready
Interrupt Core I Interrupt
Interrupt Address?! Core I | Interrupt vector address
Interrupt_Ack?! Core O | Interrupt acknowledge
Reset Core I | Core reset, active high. Should be held for at
least 1 c1k clock cycle.
Reset Mode[0:1] Core I | Reset mode. Sampled when Reset is active.
SeeTable 3-2 for details.
Clk Core I | Clock?
Ext_ BRK Core I | Break signal from MDM
Ext_NM_BRK Core I | Non-maskable break signal from MDM
MB_Halted Core O | Pipelineis halted, either via the Debug Interface,

by setting pbg stop, or by setting
Reset Mode[0:1] to 10.

Dbg_Stop Core I | Unconditionally force pipeline to halt as soon as
possible. Rising-edge detected pulse that should
be held for at least 1 Clk clock cycle. The signal
only has any effect when C_DEBUG_ENABLED is
greater than 0.

Dbg_Intr Core O | Debug interrupt output, set when a Performance
Monitor counter overflows, available when
C_DEBUG_ENABLED is set to 2 (Extended).

MB_Error Core O | Pipeline is halted due to a missed exception,
when C_FAULT TOLERANT is set to 1.

Sleep Core O | MicroBlaze is in sleep mode after executing a
SLEEP instruction or by setting Reset Mode [0:1]
to 10, all external accesses are completed, and
the pipeline is halted.

Wakeup [0:1] Core I | Wake MicroBlaze from sleep mode when either
or both bits are set to 1. Ignored if MicroBlaze is
not in sleep mode.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 129
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=129

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)
Signal Interface | 1/0 Description

Dbg_Wakeup Core O | Debug request that external logic should wake
MicroBlaze from sleep mode with the Wakeup
signal.

Lockstep_. .. Core I0 | Lockstep signals for high integrity applications.
See Table 3-11 for details.

Dbg_ Core I0 | Debug signals from MDM. See Table 3-13 for
details.

Trace_... Core O | Trace signals for real time HW analysis. See
Table 3-14 for details.

1. Only used with C_USE_INTERRUPT = 2, for low-latency interrupt support.

2. MicroBlaze is a synchronous design clocked with the Clk signal, except for hardware debug logic, which is clocked
with the Dbg_Clk signal. If hardware debug logic is not used, there is no minimum frequency limit for Clk. However,
if hardware debug logic is used, there are signals transferred between the two clock regions. In this case Clk must
have a higher frequency than Dbg_Clk.

Table 3-2:

Effect of Reset Mode inputs

Reset_Mode[0:1]

Description

00

MicroBlaze starts executing at the reset vector, defined by ¢ BASE VECTORS. This
is the nominal default behavior.

01

MicroBlaze immediately enters sleep mode without performing any bus access,
just as if a SLEEP instruction had been executed. The Sleep output is set to 1.
When any of the Wakeup [0: 1] signals is set, MicroBlaze starts executing at the
reset vector, defined by C_ BASE_VECTORS.

This functionality can be useful in a multiprocessor configuration, allowing
secondary processors to be configured without LMB memory.

10

If C DEBUG_ENABLED is O, the behavior is the same as if Reset Mode [0:1] = 00.

If C DEBUG_ENABLED is greater than 0, MicroBlaze immediately enters debug halt
without performing any bus access, and the MB_Halted output is set to 1. When
execution is continued via the debug interface, MicroBlaze starts executing at the
reset vector, defined by C_BASE VECTORS.

11

Reserved

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 130

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=130

{: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

AXI4 and ACE Interface Description

Memory Mapped Interfaces

Peripheral Interfaces

The MicroBlaze AXI4 memory mapped peripheral interfaces are implemented as 32-bit
masters. Each of these interfaces only have a single outstanding transaction at any time,
and all transactions are completed in order.

« The instruction peripheral interface (M_AXI_IP) only performs single word read
accesses, and is always set to use the AXI4-Lite subset.

« The data peripheral interface (M_AXI_DP) performs single word accesses, and is set to
use the AXI4-Lite subset as default, but is set to use AXI4 when enabling exclusive
access for LWX and SWX instructions. Halfword and byte writes are performed by
setting the appropriate byte strobes.

Cache Interfaces

The AXI4 memory mapped cache interfaces are implemented either as 32-bit, 128-bit, 256-
bit, or 512-bit masters, depending on cache line length and data width parameters, whereas
the AXI Coherency Extension (ACE) interfaces are implemented as 32-bit masters.

« With a 32-bit master, the instruction cache interface (M_AXI_IC or M_ACE_IC) performs
4 word or 8 word burst read accesses, depending on cache line length. With 128-bit,
256-bit, or 512-bit masters, only single read accesses are performed.

This interface can have multiple outstanding transactions, issuing up to 2 transactions
or up to 5 transactions when stream cache is enabled. The stream cache can request two
cache lines in advance, which means that in some cases 5 outstanding transactions can
occur. When stream cache is enabled, C_ INTERCONNECT M AXI IC READ ISSUING
is set to 8, since it must be a power of two.

How memory locations are accessed depend on the parameter

C_ICACHE ALWAYS USED. If the parameter is 1, the cached memory range is always
accessed via the AXI4 or ACE cache interface. If the parameter is 0, the cached memory
range is accessed over the AXI4 peripheral interface when the caches are software
disabled (that is, MSR[ICE]=0).

« With a 32-bit master, the data cache interface (M_AXI_DC or M_ACE_DC) performs
single word accesses, as well as 4 word or 8 word burst accesses, depending on cache
line length. Burst write accesses are only performed when using write-back cache with
AXI4. With 128-bit, 256-bit, or 512-bit AXI4 masters, only single accesses are
performed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 131
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=131

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

This interface can have multiple outstanding transactions, either issuing up to 2
transactions when reading, or up to 32 transactions when writing. MicroBlaze ensures
that all outstanding writes are completed before a read is issued, since the processor
must maintain an ordered memory model but AXI4 or ACE has separate read/write
channels without any ordering. Using up to 32 outstanding write transactions improves
performance, since it allows multiple writes to proceed without stalling the pipeline.

Word, halfword and byte writes are performed by setting the appropriate byte strobes.

Exclusive accesses can be enabled for LWX and SWX instructions.

How memory locations are accessed depend on the parameter
C_DCACHE_ALWAYS USED. If the parameter is 1, the cached memory range is always
accessed via the AXI4 or ACE cache interface. If the parameter is 0, the cached memory
range is accessed over the AXI4 peripheral interface when the caches are software
disabled (that is, MSR[DCE]=0).

Interface Parameters and Signals

The relationship between MicroBlaze parameter settings and AXI4 interface behavior for
tool-assigned parameters is summarized in Table 3-3.

Table 3-3: AXI Memory Mapped Interface Parameters
Interface Parameter Description

M_AXI DP |C_M AXI DP_ PROTOCOL AXI4-Lite: Default.
AXI4: Used to allow exclusive access when
C M AXI DP EXCLUSIVE ACCESSis 1.

M_AXI IC |C_M AXI IC DATA WIDTH | 32: Default, single word accesses and burst accesses with

M_ACE_IC C_ICACHE LINE LEN word busts used with AXI4 and ACE.
128: Used when C_ICACHE DATA WIDTH is setto 1l and
C ICACHE LINE LEN is set to 4 with AXI4. Only single
accesses can occur.
256: Used when C_ICACHE DATA WIDTH is set to 1 and
C ICACHE LINE LEN is set to 8 with AXI4. Only single
accesses can occur.
512: Used when C_ICACHE DATA WIDTH is set to 2 with
AXI4. Only single accesses can occur.

M _AXI DC |C_M AXI DC DATA WIDTH | 32: Default, single word accesses and burst accesses with

M_ACE_DC C DCACHE LINE LEN word busts used with AXI4 and ACE.
Write bursts are only used with AXI4 when
C_DCACHE USE_WRITEBACK is set to 1.
128: Used when C_DCACHE DATA WIDTH is setto 1 and
C DCACHE LINE LEN is set to 4 with AXI4. Only single
accesses can occur.
256: Used when C_DCACHE DATA WIDTH is set to 1 and
C DCACHE LINE LEN is set to 8 with AXI4. Only single
accesses can occur.
512: Used when C_DCACHE DATA WIDTH is set to 2 with
AXI4. Only single accesses can occur.

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com l Send Feedback I 132

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=132

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-3: AXI Memory Mapped Interface Parameters (Cont’d)
Interface Parameter Description

M_AXI IC |C_INTERCONNECT M AXI | 2: Default, 2 simultaneous outstanding reads.

M_ACE_IC | IC_READ_ISSUING! 8: Used when C_ICACHE STREAMS is set to 1, allowing 8
simultaneous outstanding reads.
Can besettol, 2, 4, 8.

M _AXI DC | C_INTERCONNECT M AXI | 2: Default, 2 simultaneous outstanding reads.

M _ACE DC DC_READ_ISSUING]‘ Can besetto 1 or 2.

M _AXI DC | C_INTERCONNECT M AXI | 32: Default, 32 simultaneous outstanding writes.

M_ACE_DC | DC_WRITE_ISSUING?! Can be setto 1, 2, 4, 8, 16, or 32.

1. This value can be explicitly set by the user to limit the number of simultaneous accesses accepted
by the interconnect, which may lower performance but can reduce the interconnect size.

Values for access permissions, memory types, quality of service and shareability domain are
defined in Table 3-4.

Table 3-4: AXI Interface Signal Definitions
Interface Signal Description
M _AXI IP |C_M AXI IP ARPROT Access Permission:
« Unprivileged, secure instruction access (100)
M_AXI DP |C M AXI DP ARCACHE | Memory Type, AXI4 protocol:
C_M_AXI DP_AWCACHE |. Normal Non-cacheable Bufferable (0011)
C_ M AXI DP ARPROT Access Permission, AXI4 and AXI4-Lite protocol:
C_M_AXI DP_AWPROT + Unprivileged, secure data access (000)
C_M AXI DP_ARQOS Quality of Service, AXI4 protocol:
C_ M _AXI DP AWQOS * Priority 8 (1000)
M AXI IC |C_M AXI IC ARCACHE | Memory Type:
* Write-back Read and Write-allocate (1111)
M_ACE _IC |C_M AXI IC ARCACHE | Memory Type, normal access:
» Write-back Read and Write-allocate (1111)
Memory Type, DVM access:
» Normal Non-cacheable Non-bufferable (0010)
C_ M AXI IC ARDOMAI | Shareability Domain:
N * Inner shareable (01)
M_AXI IC |C M AXI IC ARPROT Access Permission:
M _ACE_IC « Unprivileged, secure instruction access (100)
C_ M AXI IC_ARQOS Quality of Service:
 Priority 7 (0111)
M _AXI DC | C_M AXI DC ARCACHE | Memory Type, normal access:
* Write-back Read and Write-allocate (1111)
Memory Type, exclusive access:
* Normal Non-cacheable Non-bufferable (0010)

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com l Send Feedback I 133

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=133

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

Table 3-4: AXI Interface Signal Definitions

Interface Signal Description

M_ACE DC | C_M AXI DC_ARCACHE | Memory Type, normal and exclusive access:
» Write-back Read and Write-allocate (1111)
Memory Type, DVM access:

* Normal Non-cacheable Non-bufferable (0010)

C_M AXI DC_ARDOMAI | Shareability Domain:
N Inner shareable (01)
C_ M _AXI DC AWDOMAI
N

M _AXI DC |C_M AXI DC AWCACHE | Memory Type, normal access:

M_ACE_DC » Write-back Read and Write-allocate (1111)
Memory Type, exclusive access:

» Normal Non-cacheable Non-bufferable (0010)

C_M AXI DC_ARPROT Access Permission:
C_ M AXI DC_AWPROT » Unprivileged, secure data access (000)

C_M_AXI DC_ARQOS Quality of Service, read access:
« Priority 12 ((1100)

C M _AXI DC AWQOS Quality of Service, write access:
« Priority 8 (1000)

Please refer to the AMBA AXI and ACE Protocol Specification (ARM IHI 0022E) document for
details.

Stream Interfaces

The MicroBlaze AXI4-Stream interfaces (MO_AXIS..M15_AXIS, SO_AXIS..S15_AXIS) are
implemented as 32-bit masters and slaves. Please refer to the AMBA 4 AXI4-Stream Protocol
Specification, Version 1.0 (ARM IHI 0051A) document for further details.

Write Operation

A write to the stream interface is performed by MicroBlaze using one of the put or putd
instructions. A write operation transfers the register contents to an output AXI4 interface.
The transfer is completed in a single clock cycle for blocking mode writes (put and cput
instructions) as long as the interface is not busy. If the interface is busy, the processor stalls
until it becomes available. The non-blocking instructions (with prefix n), always complete in
a single clock cycle even if the interface is busy. If the interface was busy, the write is
inhibited and the carry bit is set in the MSR.

The control instructions (with prefix c) set the AXI4-Stream TLAST output, to '1’, which is
used to indicate the boundary of a packet.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 134
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=134

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

Read Operation

A read from the stream interface is performed by MicroBlaze using one of the get or getd
instructions. A read operations transfers the contents of an input AX14 interface to a general
purpose register. The transfer is typically completed in 2 clock cycles for blocking mode
reads as long as data is available. If data is not available, the processor stalls at this
instruction until it becomes available. In the non-blocking mode (instructions with prefix n),
the transfer is completed in one or two clock cycles irrespective of whether or not data was
available. In case data was not available, the transfer of data does not take place and the
carry bit is set in the MSR.

The data get instructions (without prefix c) expect the AXI4-Stream TLAST input to be
cleared to '0’, otherwise the instructions will set MSR[FSL] to '1". Conversely, the control get
instructions (with prefix c) expect the TLAST input to be set to '1’, otherwise the instructions
will set MSR[FSL] to '1". This can be used to check for the boundary of a packet.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 135
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=135

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

Local Memory Bus (LMB) Interface Description

The LMB is a synchronous bus used primarily to access on-chip block RAM. It uses a
minimum number of control signals and a simple protocol to ensure that local block RAM
are accessed in a single clock cycle. LMB signals and definitions are shown in the following
table. All LMB signals are active high.

LMB Signal Interface

Table 3-5: LMB Bus Signals
Signal Data Interface IT;:;?:;LZ" Type Description

Addr[0:31] Data_Addr[0:31] | Instr_Addr[0:31] O | Address bus

Byte Enable[0:3] Byte_Enable[0:3] not used O | Byte enables

Data Write[0:31] Data_Write[0:31] not used O | Write data bus

AS D_AS I_AS O | Address strobe
Read_Strobe Read_Strobe IFetch O | Read in progress
Write Strobe Write_Strobe not used O | Write in progress
Data Read[0:31] Data_Read[0:31] Instr[0:31] I Read data bus

Ready DReady IReady I | Ready for next transfer
Waitl DWait IWait I \r/(\e/:z[yuntil accepted transfer is
CE?! DCE ICE I | Correctable error

UE! DUE IUE I | Uncorrectable error
Clk Clk Clk I | Bus clock

1. Added in LMB for MicroBlaze v8.00

Addr[0:31]

The address bus is an output from the core and indicates the memory address that is being
accessed by the current transfer. It is valid only when AS is high. In multicycle accesses
(accesses requiring more than one clock cycle to complete), 2Addr [0:31] is valid only in
the first clock cycle of the transfer.

Byte _Enable[0:3]

The byte enable signals are outputs from the core and indicate which byte lanes of the data
bus contain valid data. Byte Enable [0:3] is valid only when AS is high. In multicycle
accesses (accesses requiring more than one clock cycle to complete), Byte Enable[0:3]
is valid only in the first clock cycle of the transfer. Valid values for Byte Enable[0:3] are
shown in the following table:

MicroBlaze Processor Reference Guide www.Xilinx.com

UG984 (v2014.3) October 1, 2014

l Send Feedback I 136

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=136

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

Table 3-6: Valid Values for Byte_Enable[0:3]

Byte Lanes Used
Byte_Enable[0:3]
Data[0:7] Data[8:15] Data[16:23] | Data[24:31]

0001 (]
0010 (]
0100 °
1000 °
0011 ° °
1100 ° °
1111 ° ° ° °

Data_Write[0:31]

The write data bus is an output from the core and contains the data that is written to
memory. It is valid only when AS is high. Only the byte lanes specified by
Byte Enable[0:3] contain valid data.

AS

The address strobe is an output from the core and indicates the start of a transfer and
qualifies the address bus and the byte enables. It is high only in the first clock cycle of the
transfer, after which it goes low and remains low until the start of the next transfer.

Read_Strobe

The read strobe is an output from the core and indicates that a read transfer is in progress.
This signal goes high in the first clock cycle of the transfer, and may remain high until the
clock cycle after Ready is sampled high. If a new read transfer is directly started in the next
clock cycle, then Read Strobe remains high.

Write_Strobe

The write strobe is an output from the core and indicates that a write transfer is in progress.
This signal goes high in the first clock cycle of the transfer, and may remain high until the
clock cycle after Ready is sampled high. If a new write transfer is directly started in the next
clock cycle, then Write Strobe remains high.

Data_Read[0:31]

The read data bus is an input to the core and contains data read from memory. Data Read
is valid on the rising edge of the clock when Ready is high.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 137

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=137

{: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

Ready

The Ready signal is an input to the core and indicates completion of the current transfer

and that the next transfer can begin in the following clock cycle. It is sampled on the rising
edge of the clock. For reads, this signal indicates the Data Read [0:31] bus is valid, and
for writes it indicates that the Data_Write[0:31] bus has been written to local memory.

Wait

The wait signal is an input to the core and indicates that the current transfer has been
accepted, but not yet completed. It is sampled on the rising edge of the clock.

CE

The CE signal is an input to the core and indicates that the current transfer had a
correctable error. It is valid on the rising edge of the clock when Ready is high. For reads,
this signal indicates that an error has been corrected on the Data Read[0:31] bus, and
for byte and halfword writes it indicates that the corresponding data word in local memory
has been corrected before writing the new data.

UE

The UE signal is an input to the core and indicates that the current transfer had an
uncorrectable error. It is valid on the rising edge of the clock when Ready is high. For reads,
this signal indicates that the value of the Data Read [0:31] bus is erroneous, and for byte
and halfword writes it indicates that the corresponding data word in local memory was
erroneous before writing the new data.

Clk

All operations on the LMB are synchronous to the MicroBlaze core clock.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 138
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=138

& XILINX

ALL PROGRAMMABLE

LMB Transactions

The following diagrams provide examples of LMB bus operations.

Generic Write Operations

Chapter 3: MicroBlaze Signal Interface Description

Clk 707 7 7 7 7"
Addr i X A0 i X | |

Byte_Enable : X BEO : X

Data_Write X DO X

AS 4:/—'\

|
Read_Strobe :

Write_Strobe '/

Data_Read

Ready

Wait

Don't Care

CE

UE

e S

Figure 3-2:

|

|

|

|
-__.-_______-__)___________.

LMB Generic Write Operation, 0 Wait States

Clk S e I e IR e I e I e N

|
Addr | X A0 | X //
Byte_Enable X BEO X ///
Data_Write X DO X ///

AS _:/—'W

Data_Read

Ready

Wait

CE

_Don't Care

UE

L - -

Figure 3-3:

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

LMB Generic Write Operation, N Wait States

l Send Feedback I 139

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=139

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Generic Read Operations

Clk 7 7 7 "7 1"
Addr : X0 : X ; ;

Byte_Enable : :

Data_Write I

AS 4I/—'W

Read_Strobe '/

Write_Strobe

X DO

Ready

I
|
|
Data_Read]
|
|
T
|

Don't Care

Wait

1
I
I
I
I
F+ A -l---Ft+td4--|->+-14-=|-FFf

CE

i N > -

UE

Figure 3-4: LMB Generic Read Operation, 0 Wait States

Clk S e I e I e I e I R R

Addr

Byte_Enable

Data_Write
|

AS 1/ 1\
I Y—

Read_Strobe !

Write_Strobe

X DO

Ready

| |
| |
| |
| |
Data_Read | | //
| |
| |
T T
| |

Wait _Don't Care

i N > -

CE

UE

Figure 3-5: LMB Generic Read Operation, N Wait States

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 140
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=140

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

Back-to-Back Write Operation

Clk | | | | | | | | | | | | | | | | | |
Addr : X a0 : X a1 : Xq/// : X a2 : /// : X a3 : X na : X :
Byte_Enable : X BEO : X BE1 : Xq/// | X BE2 : Xq/// : X BE3 : X BE4 : X :
Data_Write [Do | X__ b1 | Xoy/minX_ o2 | X/ o5 X pa X :
I e e VR e U e N
Read_Strobe : : : : : : : : :
Write_Strobe ___ / | Ay N/ : O\ .
Data_Read : : : //// : : //// : : : :
A A A e e
Wait ' , [Don't Card / ! \Don't Card / N | Don't Care N\
I T P s
ue | /A 7/ S— R S— | |
Figure 3-6: LMB Back-to-Back Write Operation
Back-to-Back Read Operation
Clk | | | | | | | | | | | | | | | | | |
Addr : X__ a0 : X a1 : Xj/ : X A2 : Xj/ : S : X aa : X :
Byte Enable [} : : : B/ : : :
Data_Write [, | N/ 7 | | |
e e
Read_Strobe 4: | | _//_:/—:_//_:/ ! ! \—:
Write_Strobe : : : ; : : : : :
Data_Read i i X Do i)q/// i X b1 i)q/// i X D2 i X__ D3 i X__ D4 E X
Ready —+ /Ny /N /] | N
Wait ' ' /[Don't Cark / | \Don't Cark / N | Don't Care, N\
CE /— A L/ \
|

|

UE

Figure 3-7: LMB Back-to-Back Read Operation

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 141
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=141

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Back-to-Back Mixed Write/Read Operation

I
i
|
Byte_Enable 'X__BEO :Xj : ' :X BEZ
|
|
1
|

Clk 75 r o r 7 LT
Addr : X A0 : X Al X A2 X ;
Byte_Enable X BEO : X : X BE2 i X i
Data_Write X DO X : X D2 : X :
AS L | ; N\ :
Read_Strobe i i /—i\ i i
Write_Strobe m '
Data_Read : : X D1 X :
Ready i i i i i \
Wait ' ' : Don't Care : : \
CE : : : : i\
UE : : : : A\
Figure 3-8: Back-to-Back Mixed Write/Read Operation, 0 Wait States
Clk S I B L L1 1 [I I
- =/ -
7,

Data_Write X DO : N/
| |

AS 1/ \ //_/—L_//_J—:__/
| |

Read_Strobe :

Write_Strobe o, .

|
|
i
I
I
I ;
I I I I
Data_Read i
- l l i D&
T
Ready : : \ _//_I/—:_//_I/—\—
Wait ! . ; Don't Cal:'e ; \Don't CarE= / , \Don't Carg \
CE : : : A\ L/ A .
I I I I | I | I I
UE I | I 1\ L/ 1\ L/ 1\ I

Figure 3-9: Back-to-Back Mixed Write/Read Operation, N Wait States

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 142
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=142

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

Read and Write Data Steering

The MicroBlaze data-side bus interface performs the read steering and write steering
required to support the following transfers:

« byte, halfword, and word transfers to word devices
« byte and halfword transfers to halfword devices

« byte transfers to byte devices

MicroBlaze does not support transfers that are larger than the addressed device. These
types of transfers require dynamic bus sizing and conversion cycles that are not supported
by the MicroBlaze bus interface. Data steering for read cycles are shown in Table 3-7 and
Table 3-8, and data steering for write cycles are shown in Table 3-9 and Table 3-10.

Table 3-7: Big Endian Read Data Steering (Load to Register rD)

Address Byte_Enable Transfer Size Register rD Data

[30:31] [0:3] rD[0:7] | rD[8:15] | rD[16:23] rD[24:31]
11 0001 byte Byte3
10 0010 byte Byte2
01 0100 byte Bytel
00 1000 byte ByteO
10 0011 halfword Byte2 Byte3
00 1100 halfword ByteO Bytel
00 1111 word ByteO Bytel Byte2 Byte3

Table 3-8: Little Endian Read Data Steering (Load to Register rD)

Add-ress Byte_Fnable Transfer Size Register rD Data

[30:31] [0:3] rD[0:7] | rD[8:15] | rD[16:23] rD[24:31]
11 1000 byte ByteO
10 0100 byte Bytel
01 0010 byte Byte2
00 0001 byte Bytes3
10 1100 halfword ByteO Bytel
00 0011 halfword Byte2 Byte3
00 1111 word ByteO Bytel Byte2 Byte3

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 143
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=143

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

Table 3-9: Big Endian Write Data Steering (Store from Register rD)

Add.ress Byte_FnabIe Transfer Size Write Data Bus Bytes

[30:31] [0:3] ByteO Bytel Byte2 Byte3
11 0001 byte rD[24:31]
10 0010 byte rD[24:31]
01 0100 byte rD[24:31]
00 1000 byte rD[24:31]
10 0011 halfword rD[16:23] | rD[24:31]
00 1100 halfword rD[16:23] | rD[24:31]
00 1111 word rD[0:7] | rD[8:15] | rD[16:23] | rD[24:31]

Table 3-10: Little Endian Write Data Steering (Store from Register rD)

Add.ress Byte_I.EnabIe Transfer Size Write Data Bus Bytes

[30:31] [0:3] Byte3 Byte2 Bytel ByteO
11 1000 byte rD[24:31]
10 0100 byte rD[24:31]
01 0010 byte rD[24:31]
00 0001 byte rD[24:31]
10 1100 halfword rD[16:23] | rD[24:31]
00 0011 halfword rD[16:23] | rD[24:31]
00 1111 word rD[0:7] | rD[8:15] | rD[16:23] | rD[24:31]

Note: Other masters may have more restrictive requirements for byte lane placement than those
allowed by MicroBlaze. Slave devices are typically attached “left-justified” with byte devices attached
to the most-significant byte lane, and halfword devices attached to the most significant halfword
lane. The MicroBlaze steering logic fully supports this attachment method.

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 144

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=144

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

Lockstep Interface Description

The lockstep interface on MicroBlaze is designed to connect a master and one or more slave
MicroBlaze instances. The lockstep signals on MicroBlaze are listed in Table 3-11.

Table 3-11: MicroBlaze Lockstep Signals
Signal Name Description VHDL Type Direction
Lockstep Master Out | Output with signals going from master to | std_logic output
slave MicroBlaze. Not connected on slaves.
Lockstep Slave In Input with signals coming from master to | std_logic input
slave MicroBlaze. Not connected on
master.
Lockstep Out Output with all comparison signals from std_logic output
both master and slaves.
The comparison signals provided by Lockstep Out are listed in Table 3-12.
Table 3-12: MicroBlaze Lockstep Comparison Signals
Signal Name Bus Index Range VHDL Type
MB_Halted 0 std_logic
MB_Error 1 std_logic
IFetch POS 2 std_logic
I _AS POS 3 std_logic
Instr Addr 4 to 35 std_logic_vector
Data_ Addr 36 to 67 std_logic_vector
Data Write 68 to 99 std_logic_vector
D AS 100 std_logic
Read_Strobe 101 std_logic
Write Strobe 102 std_logic
Byte Enable 103 to 106 std_logic_vector
Reserved 104 to 664
M _AXI IP AWID 665 std_logic
M_AXI IP AWADDR 666 to 697 std_logic_vector
M_AXI IP AWLEN 698 to 705 std_logic_vector
M _AXI IP AWSIZE 706 to 708 std_logic_vector
M _AXI IP AWBURST 709 to 710 std_logic_vector
M _AXI IP AWLOCK 711 std_logic
M _AXI IP AWCACHE 712 to 715 std_logic_vector
M_AXI IP AWPROT 716 to 718 std_logic_vector
M_AXI IP AWQOS 719 to 722 std_logic_vector
M_AXI IP AWVALID 723 std_logic
M_AXI IP WDATA 724 to 755 std_logic_vector

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 145

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=145

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-12: MicroBlaze Lockstep Comparison Signals (Cont’d)

Signal Name Bus Index Range VHDL Type
M _AXI IP WSTRB 756 to 759 std_logic_vector
M _AXI IP WLAST 760 std_logic
M_AXI IP WVALID 761 std_logic
M_AXI IP BREADY 762 std_logic
M_AXI IP ARID 763 std_logic
M_AXI IP ARADDR 764 to 795 std_logic_vector
M _AXI IP ARLEN 796 to 803 std_logic_vector
M _AXI IP ARSIZE 804 to 806 std_logic_vector
M_AXI IP ARBURST 807 to 808 std_logic_vector
M _AXI IP ARLOCK 809 std_logic
M_AXI IP ARCACHE 810 to 813 std_logic_vector
M _AXI IP ARPROT 814 to 816 std_logic_vector
M _AXI IP ARQOS 817 to 820 std_logic_vector
M_AXI IP ARVALID 821 std_logic
M_AXI IP RREADY 822 std_logic
M_AXI DP AWID 823 std_logic
M _AXI DP AWADDR 824 to 855 std_logic_vector
M_AXI DP AWLEN 856 to 863 std_logic_vector
M _AXI DP AWSIZE 864 to 866 std_logic_vector
M_AXI DP AWBURST 867 to 868 std_logic_vector
M_AXI DP AWLOCK 869 std_logic
M_AXI DP AWCACHE 870 to 873 std_logic_vector
M_AXI DP AWPROT 874 to 876 std_logic_vector
M _AXI DP AWQOS 877 to 880 std_logic_vector
M_AXI DP AWVALID 881 std_logic
M_AXI DP_ WDATA 882 to 913 std_logic_vector
M_AXI DP WSTRB 914 to 917 std_logic_vector
M_AXI DP WLAST 918 std_logic
M _AXI DP WVALID 919 std_logic
M_AXI DP BREADY 920 std_logic
M _AXI DP ARID 921 std_logic
M_AXI DP ARADDR 922 to 953 std_logic_vector
M_AXI DP ARLEN 954 to 961 std_logic_vector
M_AXI DP ARSIZE 962 to 964 std_logic_vector
M_AXI DP ARBURST 965 to 966 std_logic_vector
M_AXI DP ARLOCK 967 std_logic
M _AXI DP ARCACHE 968 to 971 std_logic_vector
M_AXI DP ARPROT 972 to 974 std_logic_vector
M_AXI DP ARQOS 975 to 978 std_logic_vector

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com l Send Feedback I 146

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=146

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-12: MicroBlaze Lockstep Comparison Signals (Cont’d)

Signal Name Bus Index Range VHDL Type
M_AXI DP ARVALID 979 std_logic
M _AXI DP RREADY 980 std_logic
Reserved 981 to 1572
Mn AXIS TLAST 1573 + n* 35 std_logic

Mn_ AXIS TDATA

1574 + n*35to 1606 +
n*35

std_logic_vector

Mn_ AXIS TVALID 1607 + n * 35 std_logic
Sn AXIS TREADY 1608 + n * 35 std_logic
M _AXI IC AWID 2133 std_logic

M AXI IC_ AWADDR

2134 to 2165

std_logic_vector

M AXI IC_ AWLEN

2166 to 2173

std_logic_vector

M AXI IC AWSIZE

2174 to 2176

std_logic_vector

M AXI IC_AWBURST

2177 to 2178

std_logic_vector

M AXI IC_ AWLOCK

2179

std_logic

M AXI IC AWCACHE

2180 to 2183

std_logic_vector

M AXI IC_AWPROT

2184 to 2186

std_logic_vector

M _AXI IC_AWQOS

2187 to 2190

std_logic_vector

M AXI IC_AWVALID

2191

std_logic

M AXI IC_AWUSER

2192 to 2196

std_logic_vector

M_AXI IC AWDOMAIN?

2197 to 2198

std_logic_vector

M AXI IC_ AWSNOOP!

2199 to 2201

std_logic_vector

M_AXI IC AWBAR?

2202 to 2203

std_logic_vector

M _AXI IC_WDATA

2204 to 2715

std_logic_vector

M AXI IC WSTRB

2716 to 2779

std_logic_vector

M _AXI IC WLAST 2780 std_logic
M _AXI IC WVALID 2781 std_logic
M _AXI IC WUSER 2782 std_logic
M_AXI IC BREADY 2783 std_logic
M_AXI IC WACK 2784 std_logic
M_AXI IC ARID 2785 std_logic_vector

M _AXI IC_ARADDR

2786 to 2907

std_logic_vector

M AXI IC_ ARLEN

2818 to 2825

std_logic_vector

M AXI IC ARSIZE

2826 to 2828

std_logic_vector

M AXI IC_ ARBURST

2829 to 2830

std_logic_vector

M AXI IC ARLOCK

2831

std_logic

M AXI IC ARCACHE

2832 to 2835

std_logic_vector

M AXI IC_ARPROT

2836 to 2838

std_logic_vector

M _AXI IC_ARQOS

2839 to 2842

std_logic_vector

M AXI IC_ARVALID

2843

std_logic

M AXI IC_ARUSER

2844 to 2848

std_logic_vector

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 147

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=147

& XILINX

ALL PROGRAMMABLE-

Table 3-12:

Chapter 3: MicroBlaze Signal Interface Description

MicroBlaze Lockstep Comparison Signals (Cont’d)

Signal Name

Bus Index Range

VHDL Type

M _AXI IC_ARDOMAIN?!

2849 to 2850

std_logic_vector

M_AXI IC ARSNOOP?!

2851 to 2854

std_logic_vector

M_AXI IC ARBAR?

2855 to 2856

std_logic_vector

M_AXI IC RREADY 2857 std_logic
M_AXI IC RACK! 2858 std_logic
M_AXI IC ACREADY! 2859 std_logic
M_AXI IC CRVALID? 2860 std_logic

M _AXI IC CRRESP!

2861 to 2865

std_logic_vector

M_AXI IC CDVALID! 2866 std_logic
M_AXI IC CDLAST! 2867 std_logic
M_AXI DC_AWID 2868 std_logic

M _AXI DC_AWADDR

2869 to 2900

std_logic_vector

M _AXI DC_AWLEN

2901 to 2908

std_logic_vector

M AXI DC AWSIZE

2909 to 2911

std_logic_vector

M _AXI DC_AWBURST

2912 to 2913

std_logic_vector

M _AXI DC_AWLOCK

2914

std_logic

M _AXI DC_AWCACHE

2915 to 2918

std_logic_vector

M _AXI DC_AWPROT

2919 to 2921

std_logic_vector

M _AXI DC_AWQOS

2922 to 2925

std_logic_vector

M AXI DC_AWVALID

2926

std_logic

M _AXI DC_AWUSER

2927 to 2931

std_logic_vector

M_AXI DC AWDOMAIN?

2932 to 2933

std_logic_vector

M _AXI DC_AWSNOOP!

2934 to 2936

std_logic_vector

M_AXI DC AWBAR?

2937 to 2938

std_logic_vector

M _AXI DC_WDATA

2939 to 3450

std_logic_vector

M_AXI DC_WSTRB?

3451 to 3514

std_logic_vector

M_AXI DC WLAST 3515 std_logic
M_AXI DC_WVALID 3516 std_logic
M _AXI DC WUSER 3517 std_logic
M_AXI DC BREADY 3518 std_logic
M_AXI DC WACK! 3519 std_logic
M_AXI DC ARID 3520 std_logic

M _AXI DC_ARADDR

3521 to 3552

std_logic_vector

M _AXI DC_ARLEN

3553 to 3560

std_logic_vector

M _AXI DC_ARSIZE

3561 to 3563

std_logic_vector

M _AXI DC_ARBURST

3564 to 3565

std_logic_vector

M _AXI DC_ARLOCK

3566

std_logic

M _AXI DC_ARCACHE

3567 to 3570

std_logic_vector

M _AXI DC_ARPROT

3571 to 3573

std_logic_vector

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 148

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=148

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-12: MicroBlaze Lockstep Comparison Signals (Cont’d)

Signal Name

Bus Index Range

VHDL Type

M_AXI DC_ARQOS

3574 to 3577

std_logic_vector

M _AXI DC_ARVALID

3578

std_logic

M _AXI DC_ARUSER

3579 to 3583

std_logic_vector

M _AXI DC_ARDOMAIN?!

3584 to 3585

std_logic_vector

M_AXI DC ARSNOOP!

3586 to 3589

std_logic_vector

M_AXI DC ARBAR?

3590 to 3591

std_logic_vector

M _AXI DC RREADY 3592 std_logic
M_AXI DC RACK! 3593 std_logic
M_AXI DC ACREADY! 3594 std_logic
M_AXI DC CRVALID! 3595 std_logic
M_AXI DC_CRRESP! 3596 to 3600 std_logic_vector
M_AXI DC CDVALID? 3601 std_logic
M_AXI DC CDLAST! 3602 std_logic
Trace Instruction 3603 to 3634 std_logic_vector
Trace Valid Instr 3635 std_logic
Trace PC 3636 to 3667 std_logic_vector
Trace Reg Write 3668 std_logic

Trace Reg Addr

3669 to 3673

std_logic_vector

Trace MSR Reg

3674 to 3688

std_logic_vector

Trace_PID_Reg

3689 to 3696

std_logic_vector

Trace_ New_Reg Value

3697 to 3728

std_logic_vector

Trace_ Exception_ Taken

3729

std_logic

Trace_Exception_ Kind

3730 to 3734

std_logic_vector

Trace Jump Taken

3735

std_logic

Trace_Delay_ Slot

3736

std_logic

Trace_Data_Address

3737 to 3768

std_logic_vector

Trace_Data Write Value

3769 to 3800

std_logic_vector

Trace_Data_ Byte Enable

3801 to 3804

std_logic_vector

Trace Data Access 3805 std_logic
Trace Data Read 3806 std_logic
Trace Data Write 3807 std_logic
Trace DCache Reg 3808 std_logic
Trace DCache Hit 3809 std_logic
Trace DCache Rdy 3810 std_logic
Trace DCache Read 3811 std_logic
Trace ICache Reg 3812 std_logic
Trace ICache Hit 3813 std_logic
Trace_ ICache Rdy 3814 std_logic
Trace OF PipeRun 3815 std_logic

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 149

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=149

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Table 3-12: MicroBlaze Lockstep Comparison Signals (Cont’d)

Signal Name Bus Index Range VHDL Type
Trace EX PipeRun 3816 std_logic
Trace MEM PipeRun 3817 std_logic
Trace MB Halted 3818 std_logic
Trace Jump Hit 3819 std_logic
Reserved for future use 3820 to 4095

1. This signal is only used when C_INTERCONNECT = 3 (ACE).

Debug Interface Description

The debug interface on MicroBlaze is designed to work with the Xilinx Microprocessor
Debug Module (MDM) IP core. The MDM is controlled by the Xilinx Microprocessor
Debugger (XMD) through the JTAG port of the FPGA. The MDM can control multiple
MicroBlaze processors at the same time. The debug signals are grouped in the DEBUG bus.
The debug signals on MicroBlaze are listed in Table 3-13.

Table 3-13: MicroBlaze Debug Signals

Signal Name Description VHDL Type Direction
Dbg Clk JTAG clock from MDM std_logic input
Dbg_ TDI JTAG TDI from MDM std_logic input
Dbg TDO JTAG TDO to MDM std_logic output
Dbg Reg En Debug register enable from MDM std_logic_vector | input
Dbg Shift! JTAG BSCAN shift signal from MDM std_logic input
Dbg Capture JTAG BSCAN capture signal from MDM std_logic input
Dbg Update JTAG BSCAN update signal from MDM std_logic input
Debug Rst! Reset signal from MDM, active high. Should | std_logic input

be held for at least 1 C1k clock cycle.
Dbg Trig In? Cross trigger event input to MDM std_logic_vector | output
Dbg Trig Ack_In? | Cross trigger eventinput acknowledge from | std_logic_vector | input
MDM
Dbg Trig Out? Cross trigger action output from MDM std_logic_vector | input
Dbg Trig Ack_out? | Cross trigger action output acknowledge to | std_logic_vector | output
MDM
Dbg Trace Data? External Program Trace data output to MDM | std_logic_vector | output
Dbg_Trace_Valid® | External Program Trace valid to MDM std_logic output
Dbg_Trace_Ready?® | External Program Trace ready from MDM std_logic input
Dbg Trace Clk3 External Program Trace clock from MDM std_logic input

1. Updated for MicroBlaze v7.00: Dbg_Shift added and Debug_Rst included in DEBUG bus
2. Updated for MicroBlaze v9.3: Dbg_Trig signals added to DEBUG bus
3. Updated for MicroBlaze v9.4: External Program Trace signal added to DEBUG bus

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 150
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=150

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Trace Interface Description

The MicroBlaze core exports a number of internal signals for trace purposes. This signal
interface is not standardized and new revisions of the processor may not be backward
compatible for signal selection or functionality. It is recommended that you not design
custom logic for these signals, but rather to use them via Xilinx provided analysis IP. The
trace signals are grouped in the TRACE bus. The current set of trace signals were last

updated for MicroBlaze v7.30 and are listed in Table 3-14.

The mapping of the MSR bits is shown in Table 3-15. For a complete description of the
Machine Status Register, see “Special Purpose Registers”.

The Trace exception types are listed in Table 3-16. All unused Trace exception types are

reserved.
Table 3-14: MicroBlaze Trace Signals
Signal Name Description VHDL Type Direction
Trace Valid Instr Valid instruction on trace port. std_logic output
Trace Instruction! Instruction code std_logic_vector (0 to 31) | output
Trace PC! Program counter std_logic_vector (0 to 31) | output
Trace Reg Writel Instruction writes to the register file std_logic output
Trace Reg Addr 1 Destination register address std_logic_vector (0 to 4) | output
Trace MSR_Reg!l Machine status register. The mapping | std_logic_vector (0 to 14)2 | output
of the register bits is documented
below.
Trace PID Reg! Process identifier register std_logic_vector (0 to 7) | output
Trace New Reg Valuel Destination register update value std_logic_vector (0 to 31) | output
Trace Exception Takenl? | Instruction result in taken exception std_logic output
Trace_Exception_Kindl Exception type. The description for the | std_logic_vector (0 to 4)2 | output
exception type is documented below.
Trace Jump Takenl Branch instruction evaluated true, i.e std_logic output
taken
Trace Jump Hitl3 Branch Target Cache hit std_logic output
Trace Delay Slotl Instruction is in delay slot of a taken std_logic output
branch
Trace Data Access! Valid D-side memory access std_logic output
Trace Data Address! Address for D-side memory access std_logic_vector (0 to 31) | output
Trace Data Write Valuel Value for D-side memory write access | std_logic_vector (0 to 31) | output
Trace Data Byte Enablel Byte enables for D-side memory access | std_logic_vector (0 to 3) | output
Trace Data Readl D-side memory access is a read std_logic output
Trace Data Writel D-side memory access is a write std_logic output

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 151

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=151

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-14: MicroBlaze Trace Signals (Cont’d)

Signal Name Description VHDL Type Direction
Trace_ DCache Reg Data memory address is within D- std_logic output
Cache range
Trace DCache Hit Data memory address is present in D- std_logic output
Cache
Trace DCache Rdy Data memory address is within D- std_logic output
Cache range and the access is
completed
Trace DCache Read?* The D-Cache request is a read std_logic output
Trace ICache Reg Instruction memory address is within std_logic output
[-Cache range
Trace_ ICache Hit Instruction memory address is present std_logic output
in
I-Cache
Trace ICache Rdy Instruction memory address is within std_logic output
I-Cache range and the access is
completed
Trace OF PipeRun Pipeline advance for Decode stage std_logic output
Trace EX_PipeRun3 Pipeline advance for Execution stage std_logic output
Trace MEM_PipeRun3 Pipeline advance for Memory stage std_logic output
Trace MB Halted Pipeline is halted by debug std_logic output

1. Valid only when Trace_Valid_Instr = 1

2. Valid only when Trace_Exception_Taken = 1
3. Not used with area optimization feature
4. Valid only when Trace_DCache_Req =1

Table 3-15: Mapping of Trace MSR

Trace_MSR_Reg Machine Status Register
Bit Bit Name Description
0 17 VMS Virtual Protected Mode Save
1 18 VM Virtual Protected Mode
2 19 UMS User Mode Save
3 20 UM User Mode
4 21 PVR Processor Version Register exists
5 22 EIP Exception In Progress
6 23 EE Exception Enable
7 24 DCE Data Cache Enable
8 25 DzO Division by Zero or Division Overflow
9 26 ICE Instruction Cache Enable

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 152

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=152

& XILINX

ALL PROGRAMMABLE

Table 3-15: Mapping of Trace MSR

Chapter 3: MicroBlaze Signal Interface Description

Trace_MSR_Reg Machine Status Register
Bit Bit Name Description
10 27 FSL AXI4-Stream Error
11 28 BIP Break in Progress
12 29 C Arithmetic Carry
13 30 IE Interrupt Enable
14 31 Reserved Reserved
Table 3-16: Type of Trace Exception
Trace_Exception_Kind [0:4] Description

00000 Stream exception

00001 Unaligned exception

00010 Illegal Opcode exception

00011 Instruction Bus exception

00100 Data Bus exception

00101 Divide exception

00110 FPU exception

00111 Privileged instruction exception

01010 Interrupt

01011 External non maskable break

01100 External maskable break

10000 Data storage exception

10001 Instruction storage exception

10010 Data TLB miss exception

10011 Instruction TLB miss exception

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 153

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=153

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

MicroBlaze Core Configurability

The MicroBlaze core has been developed to support a high degree of user configurability.
This allows tailoring of the processor to meet specific cost/performance requirements.

Configuration is done via parameters that typically enable, size, or select certain processor
features. For example, the instruction cache is enabled by setting the C_ USE ICACHE
parameter. The size of the instruction cache, and the cacheable memory range, are all
configurable using: C_CACHE BYTE SIZE, C_ICACHE BASEADDR, and
C_ICACHE HIGHADDR respectively.

Parameters valid for MicroBlaze v9.2 are listed in Table 3-17. Not all of these are recognized
by older versions of MicroBlaze; however, the configurability is fully backward compatibility.

Note: Shaded rows indicate that the parameter has a fixed value and cannot be modified.

Table 3-17: MPD Parameters
Tool
Parameter Name Feature/Description Allowable | Default Assign| VHDL Type
Values Value ed
C_FAMILY Target Family Listed in virtex7 | yes string
Table 3-18
C_DATA SIZE Data Size 32 32 NA integer
C_DYNAMIC BUS SIZING Legacy 1 1 NA integer
C_Sco Xilinx internal 0 0 NA integer
C_AREA OPTIMIZED Select implementation
to opt!mlze area with 0,1 0 integer
lower instruction
throughput
C_OPTIMIZATION Reserved for future use 0 0 NA integer
C_INTERCONNECT Select interconnect
2 = AXI4 only 2,3 2 integer
3 = AXI4 and ACE
C_ENDIANNESS Select endianness
0 = Big Endian 0,1 1 yes integer
1 = Little Endian
C_BASE VECTORS!?! Configurable base 0x00000000- | 0x0000 std loic vector
vectors Oxffffff80 0000 -ogie
C_FAULT_ TOLERANT Implement fault 01 0 yes integer

tolerance

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 154

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=154

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

Table 3-17: MPD Parameters (Cont’d)
Tool
_— Allowable |Default .
Parameter Name Feature/Description Values Value As:(ljgn VHDL Type
C_ECC_USE_CE_EXCEPTION Generate exception for _
- - - = 0,1 0 integer
correctable ECC error
C_LOCKSTEP_ SLAVE Lockstep Slave 0,1 0 integer
C_AVOID PRIMITIVES Disallow FPGA
primitives
0 = None .
1 = SRL 0,123 0 integer
2 = LUTRAM
3 = Both
C_PVR Processor version integer
register mode selection
0 = None 0,12 0
1 = Basic
2 = Full
C_PVR_USER1 Processor version std_logic_vector
register USER1 constant 0x00-0xff 0x00 0to7)
C_PVR_USER2 Processor version 0x00000000- | 0x0000 std_logic_vector
register USER2 constant OxFFFFFFF 0000 (0 to31)
C RESET MSR Reset value for MSR 0x00, 0x20, std_logic_vector
- - . 0x00
register 0x80, 0xa0
C_INSTANCE Instance Name Anyinstance | micro yes string
name blaze
C D AXI Data side AXI interface 0,1 0 integer
C D LMB Data side LMB interface 01 1 integer
C I AXI Instruction side AXI integer
— = . 0,1 0
interface
C I _LMB Instruction side LMB integer
- = . 0,1 1
interface
C_USE_BARREL Include barrel shifter 0,1 0 integer
C_USE DIV Include hardware integer
— T L 0,1 0
divider
C_USE_HW MUL Include hardware integer
multiplier
0 = None 0,12 1
1 = Mul32
2 = Mul64

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 155

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=155

& XILINX

ALL PROGRAMMABLE-

Table 3-17:

Chapter 3: MicroBlaze Signal Interface Description

MPD Parameters (Cont’d)

Parameter Name

Feature/Description

Allowable
Values

Default
Value

Tool
Assign
ed

VHDL Type

C_USE_FPU

Include hardware
floating point unit
0 = None

1 = Basic

2 = Extended

0,12

integer

C_USE_MSR_INSTR

Enable use of
instructions: MSRSET
and MSRCLR

01

integer

C_USE_PCMP_INSTR

Enable use of
instructions: CLZ,
PCMPBF, PCMPEQ, and
PCMPNE

01

integer

C_USE_REORDER INSTR

Enable use of
instructions: Reverse
load, reverse store, and
swap

0,1

integer

C_UNALIGNED EXCEPTIONS

Enable exception
handling for unaligned
data accesses

0,1

integer

C ILL OPCODE EXCEPTION

Enable exception
handling for illegal op-
code

0,1

integer

C_M AXI I BUS EXCEPTION

Enable exception
handling for M_AXI_I
bus error

01

integer

C_ M AXI D BUS EXCEPTION

Enable exception
handling for M_AXI_D
bus error

01

integer

C DIV_ZERO_ EXCEPTION

Enable exception
handling for division by
zero or division
overflow

0,1

integer

C_FPU_EXCEPTION

Enable exception
handling for hardware
floating point unit
exceptions

0,1

integer

C_OPCODE_0x0_ ILLEGAL

Detect opcode 0x0 as an
illegal instruction

01

integer

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 156

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=156

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-17: MPD Parameters (Cont’d)
Tool
. Allowable |Default .
Parameter Name Feature/Description Values Value As:(;gn VHDL Type
C FSL_EXCEPTION Enable exception integer
handling for Stream 0,1 0
Links
C_ECC_USE_CE_EXCEPTION Generate Bus Error integer
Exceptions for 0,1 0
correctable errors
C_USE_STACK PROTECTION Generate exception for integer
stack overflow or stack 0,1 0
underflow
C_DEBUG_ENABLED MDM Debug interface integer
0 = None
1 = Basic 012 1
2 = Extended
C_NUMBER OF PC BRK Number of hardware .
- - = = . 0-8 1 integer
breakpoints
C_NUMBER OF RD ADDR BRK Number of read address)
_ PR — . 0-4 0 integer
watchpoints
C_NUMBER OF WR ADDR BRK Number of write .
- - == — . 0-4 0 integer
address watchpoints
C_DEBUG_EVENT COUNTERS Number of Performance i
_ _ — X 0-48 5 integer
Monitor event counters
C_DEBUG_LATENCY COUNTERS Number of Performance
Monitor latency 0-7 1 integer
counters
C_DEBUG_COUNTER_WIDTH Performan.ce Monitor 324864 32 integer
counter width
C_DEBUG_TRACE_SIZE Trace Buffer size 0, 8192,
16384,
32768, 8192 integer
65536,
131072
C DEBUG_PROFILE SIZE Profile Buffer size 0, 4096,
8192,16384,
32768, 0 integer
65536,
131072
C DEBUG_EXTERNAL TRACE External Program Trace 01 0 yes integer

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 157

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=157

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

address tags

Table 3-17: MPD Parameters (Cont’d)
Tool
- Allowable | Default .

Parameter Name Feature/Description Values Value As:(;gn VHDL Type
C_INTERRUPT IS EDGE Level/Edge Interrupt 01 0 yes integer
C_EDGE_IS POSITIVE Negative/Positive Edge 0,1 1 yes integer

Interrupt
C FSL LINKS Number of AXI-Stream integer
— — . 0-16 0
interfaces
C_USE_EXTENDED FSL_INSTR Enable use of extended 01 0 integer
stream instructions !
C_ICACHE BASEADDR Instruction cache base 0x00000000 | 0x0000 std_logic_vector
address - OxFFFFFFFF | 0000
C_ICACHE HIGHADDR Instruction cache high 0x00000000 | Ox3FFF std_logic_vector
address - OxFFFFFFFF FFFF
C_USE_ICACHE Instruction cache 0,1 0 integer
C_ALLOW_ICACHE WR Instruction cache write 01 1 integer
enable !
C_ICACHE LINE LEN Instruction cache line 48 4 integer
length !
C_ICACHE ALWAYS USED Instruction cache integer
interface used for all
. 0,1 1
memory accesses in the
cacheable range
C_ICACHE FORCE TAG LUTRAM Instruction cache tag integer
always implemented 0,1 0
with distributed RAM
C_ICACHE STREAMS Instruction cache 01 0 integer
streams !
C _ICACHE VICTIMS Ir)st.ruction cache 0,2, 4 8 0 integer
victims
C_ICACHE DATA WIDTH Instruction cache data integer
width
0 = 32 bits 0,12 0
1 = Full cache line
2 = 512 bits
C_ADDR_TAG BITS Instruction cache 0-25 17 yes integer

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 158

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=158

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-17: MPD Parameters (Cont’d)
Tool
_— Allowable |Default :
Parameter Name Feature/Description Values Value As:(;gn VHDL Type
C CACHE BYTE SIZE Instruction cache size 64, 128, 256, integer
512, 1024,
2048, 4096,
8192, 16384, 8192
32768,
655362
C_DCACHE BASEADDR Data cache base address | 0x00000000 | 0x0000 std_logic_vector
- OXFFFFFFFF 0000
C_DCACHE HIGHADDR Data cache high address | 0x00000000 | Ox3FFF std_logic_vector
- OxFFFFFFFF | FFFF
C_USE_DCACHE Data cache 0,1 0 integer
C ALLOW DCACHE WR Data cache write enable 0,1 1 integer
C_DCACHE LINE LEN Data cache line length 4,8 4 integer
C DCACHE ALWAYS USED Data cache interface integer
used for all accesses in 0,1 1
the cacheable range
C_DCACHE FORCE TAG LUTRAM Data cache tag always integer
implemented with 0,1 0
distributed RAM
C_DCACHE USE_WRITEBACK Data cache write-back 01 0 integer
storage policy used !
C_DCACHE VICTIMS Data cache victims 024,38 0 integer
C_DCACHE DATA WIDTH Data cache data width integer
0 = 32 bits
1,2
1 = Full cache line 0.1 0
2 = 512 bits
C_DCACHE_ADDR_TAG Data cache address tags 0-25 17 yes integer
C DCACHE BYTE SIZE Data cache size 64, 128, 256, integer
512, 1024,
2048, 4096,
8192, 16384, 8192
32768,
655362
C_USE_MMU? Memory Management:
0 = None
1 = User Mode 0,123 0 integer
2 = Protection
3 = Virtual

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 159

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=159

& XILINX

ALL PROGRAMMABLE

Table 3-17:

Chapter 3: MicroBlaze Signal Interface Description

MPD Parameters (Cont’d)

Parameter Name

Feature/Description

Allowable
Values

Default
Value

Tool
Assign
ed

VHDL Type

C_MMU DTLB_ SIZE3

Data shadow Translation
Look-Aside Buffer size

1,2,438

integer

C_MMU_ITLB_SIZE3

Instruction shadow
Translation Look-Aside
Buffer size

1,248

integer

C_MMU TLB ACCESS3

Access to memory
management special
registers:

0 = Minimal

1 = Read

2 = Write

3 = Full

0,123

integer

C_MMU_ ZONES?3

Number of memory
protection zones

0-16

16

integer

C_MMU_PRIVILEGED_INSTR3

Privileged instructions

0 = Full protection
1 = Allow stream instrs

0,1

integer

C_USE_INTERRUPT

Enable interrupt
handling

0 = No interrupt

1 = Standard interrupt
2 = Low-latency
interrupt

0,12

yes

integer

C_USE_EXT_BRK

Enable external break
handling

01

yes

integer

C_USE_EXT_NM_BRK

Enable external non-
maskable break
handling

0,1

yes

integer

C_USE_BRANCH_TARGET_CACHE3

Enable Branch Target
Cache

01

integer

C_BRANCH TARGET CACHE SIZE3

Branch Target Cache
size:

0 = Default

1 = 8 entries

2 = 16 entries

3 = 32 entries

4 = 64 entries

5 =512 entries

6 = 1024 entries

7 = 2048 entries

0-7

integer

MicroBlaze Processor Reference Guide

UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 160

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=160

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-17: MPD Parameters (Cont’d)
Tool
A Allowable |Default :
Parameter Name Feature/Description Values Value As:(;gn VHDL Type
C M _AXI DP Data side AXI thread ID 1 1 integer
THREAD ID WIDTH width
C_M_AXI DP DATA WIDTH Data side AXI data width 32 32 integer
C_M AXI DP ADDR WIDTH Data side AXI address integer
- =T - ; 32 32
width
C_ M _AXI DP_ Data side AXI uses 0 0 integer
SUPPORTS_THREADS threads
C M _AXI DP SUPPORTS_ READ Data side AXI support 1 1 integer
for read accesses
C_M_AXI DP_SUPPORTS WRITE Data side AXI support 1 1 integer
for write accesses
C M _AXI DP SUPPORTS Data side AXI narrow 0 0 integer
NARROW_ BURST burst support
C_M_AXI DP PROTOCOL Data side AXI protocol AXI4, AXI4 yes string
AXIALITE LITE
C M _AXI DP Data side AXI exclusive 01 0 integer
EXCLUSIVE ACCESS access support '
C_INTERCONNECT Data side AXI read 1 1 integer
M_AXI DP READ ISSUING accesses issued
C_INTERCONNECT Data side AXI write 1 1 integer
M _AXI DP WRITE ISSUING accesses issued
C M AXI IP_ Instruction side AXI 1 1 integer
THREAD ID WIDTH thread ID width
C M AXI IP DATA WIDTH Instruction side AXI data integer
- =T - ; 32 32
width
C M AXI IP ADDR WIDTH Instruction side AXI integer
- == - . 32 32
address width
C M AXI IP Instruction side AXI uses 0 0 integer
SUPPORTS THREADS threads
C M AXI IP SUPPORTS_ READ Instruction side AXI integer
support for read 1 1
accesses
C M AXI IP SUPPORTS WRITE Instruction side AXI integer
support for write 0 0
accesses

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 161

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=161

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-17: MPD Parameters (Cont’d)
Tool
A Allowable |Default :
Parameter Name Feature/Description Values Value As:(;gn VHDL Type
C M AXI IP SUPPORTS Instruction side AXI 0 0 integer
NARROW_BURST narrow burst support
. . i
C_ M _AXI IP PROTOCOL Instruction side AXI AXIALITE AXI4 string
protocol LITE
C_INTERCONNECT Instruction side AXIread 1 1 integer
M _AXI IP READ ISSUING accesses issued
C_M_AXI DC_ Data cache AXI ID width 1 1 integer
THREAD ID WIDTH
C_M AXI DC DATA WIDTH Data cache AXI data 32, 64, 128, 32 integer
width 256, 512
C_M_AXI DC_ADDR_WIDTH Data cache AXI address integer
- == - ; 32 32
width
C_ M AXI DC_ Data cache AXI uses 0 0 integer
SUPPORTS_ THREADS threads
C_M_AXI DC_SUPPORTS_READ Data cache AXI support 1 1 integer
for read accesses
C_M_AXI DC_SUPPORTS WRITE Data cache AXI support 1 1 integer
for write accesses
C_M _AXI DC_SUPPORTS Data cache AXI narrow 0 0 integer
NARROW BURST burst support
C_M AXI DC_SUPPORTS Data cache AXI user 1 1 integer
USER_SIGNALS signal support
C_M _AXI DC_PROTOCOL Data cache AXI protocol AX14 AX14 string
C_ M _AXI DC AWUSER WIDTH Data cache AXI user 5 5 integer
width
C_ M _AXI DC_ARUSER _WIDTH Data cache AXI user 5 5 integer
width
C_M _AXI DC WUSER WIDTH Data cache AXI user 1 1 integer
width
C_M _AXI DC_RUSER WIDTH Data cache AXI user 1 1 integer
width
C_M _AXI DC BUSER WIDTH Data cache AXI user 1 1 integer
width
C_M_AXI DC_ Data cache AXI exclusive 01 0 integer

EXCLUSIVE ACCESS

access support

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 162

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=162

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-17: MPD Parameters (Cont’d)
Tool
Parameter Name Feature/Description Allowable | Default Assign| VHDL Type
Values Value ed
C_M AXI DC_USER_VALUE Data cache AXI user 0-31 31 integer
value
C_INTERCONNECT Data cache AXI read .
- - . 1,2 2 integer
M_AXI DC_READ ISSUING accesses issued
INTERCONNECT D he AXI wri
c_ CONNECT_ ata cache te 1,2,4,81632 | 32 integer
M_AXI DC WRITE ISSUING accesses issued
C M AXI IC_ Instruction cache AXIID 1 1 integer
THREAD ID WIDTH width
C_ M AXI IC DATA WIDTH Instruction cache AXI 32, 64, 128, 32 integer
data width 256, 512
C M AXI IC ADDR WIDTH Instruction cache AXI integer
- == - . 32 32
address width
C M AXI IC_ Instruction cache AXI 0 0 integer
SUPPORTS_ THREADS uses threads
C_ M _AXI IC_SUPPORTS_READ Instruction cache AXI integer
support for read 1 1
accesses
C M AXI IC_SUPPORTS WRITE Instruction cache AXI integer
support for write 0 0
accesses
C M AXI IC_SUPPORTS Instruction cache AXI 0 0 integer
NARROW BURST narrow burst support
C_ M AXI IC_SUPPORTS Instruction cache AXI 1 1 integer
USER_SIGNALS user signal support
i strin
C M AXI IC_PROTOCOL Instruction cache AXI AXI4 AXI4 g9
protocol
C M AXI IC AWUSER WIDTH Instruction cache AXI 5 5 integer
user width
C M AXI IC ARUSER WIDTH Instruction cache AXI 5 5 integer
user width
C M AXI IC_WUSER WIDTH Instruction cache AXI 1 1 integer
user width
C_ M _AXI IC RUSER WIDTH Instruction cache AXI 1 1 integer
user width
C_ M AXI IC_BUSER WIDTH Instruction cache AXI 1 1 integer

user width

MicroBlaze Processor Reference Guide

UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 163

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=163

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

Table 3-17: MPD Parameters (Cont’d)

_— Allowable |Default TOPI
Parameter Name Feature/Description Assign| VHDL Type
Values Value ed
C_ M AXI IC USER _VALUE Instruction cache AXI 0-31 31 integer
user value
C_INTERCONNECT Instruction cache AXI 1248 2 yes integer
M_AXI IC READ ISSUING read accesses issued e
C_STREAM INTERCONNECT Select AXI4-Stream 01 0 integer
interconnect '
C_Mn_AXIS PROTOCOL AXI4-Stream protocol GENERIC GENERIC string
C_Sn AXIS PROTOCOL AXI14-Stream protocol GENERIC GENERIC string
C Mn AXIS DATA WIDTH AXI4-Stream master NA integer
- = - — . 32 32
data width
C_Sn AXIS DATA WIDTH AXI14-Stream slave data NA integer
- T width 32 32

1. The 7 least significant bits must all be 0.
2. Not all sizes are permitted in all architectures. The cache uses between 0 and 32 RAMB primitives (0 if cache size is less than
2048).

3. Not available when ¢_AREA OPTIMIZED is set to 1.

Table 3-18: Parameter C_FAMILY Allowable Values

Allowable Values
Artix aartix7 artix7 artix7| qartix7 qartix7|
Kintex kintex7 kintex7! gkintex7 gkintex7| kintexu
Virtex qvirtex7 virtex7 virtexu
Zynq azynq zynq qzynq

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 164
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=164

& XILINX

ALL PROGRAMMABLE.

Chapter 4

MicroBlaze Application Binary Interface

This chapter describes MicroBlaze™ Application Binary Interface (ABI), which is important
for developing software in assembly language for the soft processor. The MicroBlaze GNU
compiler follows the conventions described in this document. Any code written by assembly
programmers should also follow the same conventions to be compatible with the compiler
generated code. Interrupt and Exception handling is also explained briefly.

Data Types

The data types used by MicroBlaze assembly programs are shown in Table 4-1. Data types
such as data8, datal6, and data32 are used in place of the usual byte, half-word, and
word.register.

Table 4-1: Data Types in MicroBlaze Assembly Programs

(flxl:ca":szl:qz;:::zg:;i) Corresponding ANSI C data types Size (bytes)
data8 char 1
datal6 short 2
data32 int 4
data32 long int 4
data32 float 4
data32 enum 4
datal6/data32 pointer! 2/4

1. Pointers to small data areas, which can be accessed by global pointers are datal6.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 165
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=165

i: X”_INX Chapter 4: MicroBlaze Application Binary Interface

ALL PROGRAMMABLE-

Register Usage Conventions

The register usage convention for MicroBlaze is given in Table 4-2.

Table 4-2: Register Usage Conventions

Register Type Enforcement Purpose
RO Dedicated HW Value 0
R1 Dedicated SW Stack Pointer
R2 Dedicated SW Read-only small data area anchor
R3-R4 Volatile SW Return Values/Temporaries
R5-R10 | Volatile SW Passing parameters/Temporaries
R11-R12 | Volatile SW Temporaries
R13 Dedicated SW Read-write small data area anchor
R14 Dedicated HW Return address for Interrupt
R15 Dedicated SW Return address for Sub-routine
R16 Dedicated HW Return address for Trap (Debugger)
R17 Dedicated HW/SW Return address for Exceptions
HW, if configured to support hardware exceptions, else SW
R18 Dedicated SW Reserved for Assembler/Compiler Temporaries
Used for Service ID with attribute svc_table_handler
R19 Non-volatile SW Must be saved across function calls. Callee-save
R20 Dedicated SW Reserved for storing a pointer to the Global Offset Table (GOT) in
or Position Independent Code (PIC). Non-volatile in non-PIC code.

Non-volatile Must be saved across function calls. Callee-save

R21-R31 | Non-volatile SW Must be saved across function calls. Callee-save
RPC Special HW Program counter

RMSR Special HW Machine Status Register

REAR Special HW Exception Address Register

RESR Special HW Exception Status Register

RFSR Special HW Floating Point Status Register

RBTR Special HW Branch Target Register

REDR Special HW Exception Data Register

RPID Special HW Process Identifier Register

RZPR Special HW Zone Protection Register

RTLBLO | Special HW Translation Look-Aside Buffer Low Register
RTLBHI | Special HW Translation Look-Aside Buffer High Register
RTLBX Special HW Translation Look-Aside Buffer Index Register
RTLBSX | Special HW Translation Look-Aside Buffer Search Index
PVRO-12 | Special HW Processor Version Register 0 through 12

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 166
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=166

{: X”_INX Chapter 4: MicroBlaze Application Binary Interface

ALL PROGRAMMABLE

The architecture for MicroBlaze defines 32 general purpose registers (GPRs). These registers
are classified as volatile, non-volatile, and dedicated.

« The volatile registers (also known as caller-save) are used as temporaries and do not
retain values across the function calls. Registers R3 through R12 are volatile, of which
R3 and R4 are used for returning values to the caller function, if any. Registers R5
through R10 are used for passing parameters between subroutines.

« Registers R19 through R31 retain their contents across function calls and are hence
termed as non-volatile registers (a.k.a callee-save). The callee function is expected to
save those non-volatile registers, which are being used. These are typically saved to the
stack during the prologue and then reloaded during the epilogue.

« Certain registers are used as dedicated registers and programmers are not expected to
use them for any other purpose.

Registers R14 through R17 are used for storing the return address from interrupts,
sub-routines, traps, and exceptions in that order. Subroutines are called using the
branch and link instruction, which saves the current Program Counter (PC) onto
register R15.

Small data area pointers are used for accessing certain memory locations with 16-
bit immediate value. These areas are discussed in the memory model section of this
document. The read only small data area (SDA) anchor R2 (Read-Only) is used to
access the constants such as literals. The other SDA anchor R13 (Read-Write) is used
for accessing the values in the small data read-write section.

Register R1 stores the value of the stack pointer and is updated on entry and exit
from functions.

Register R18 is used as a temporary register for assembler operations.

* MicroBlaze includes special purpose registers such as: program counter (rpc), machine
status register (rmsr), exception status register (resr), exception address register (rear),
floating point status register (rfsr), branch target register (rbtr), exception data register
(redr), memory management registers (rpid, rzpr, rtlblo, rtlbhi, rtlbx, rtlbsx), and
processor version registers (0-12). These registers are not mapped directly to the
register file and hence the usage of these registers is different from the general
purpose registers. The value of a special purpose registers can be transferred to or
from a general purpose register by using mts and mfs instructions respectively.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 167
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=167

i: X”_INX Chapter 4: MicroBlaze Application Binary Interface

ALL PROGRAMMABLE

Stack Convention

The stack conventions used by MicroBlaze are detailed in Table 4-3.

The shaded area in Table 4-3 denotes a part of the stack frame for a caller function, while
the unshaded area indicates the callee frame function. The ABI conventions of the stack
frame define the protocol for passing parameters, preserving non-volatile register values,
and allocating space for the local variables in a function.

Functions that contain calls to other subroutines are called as non-leaf functions. These
non-leaf functions have to create a new stack frame area for its own use. When the program
starts executing, the stack pointer has the maximum value. As functions are called, the stack
pointer is decremented by the number of words required by every function for its stack
frame. The stack pointer of a caller function always has a higher value as compared to the
callee function.

Table 4-3: Stack Convention
High Address

Function Parameters for called sub-routine (Arg n .. Argl)
(Optional: Maximum number of arguments required for any
called procedure from the current procedure).

Old Stack Link Register (R15)
Pointer

Callee Saved Register (R31...R19)

(Optional: Only those registers which are used by the
current procedure are saved)

Local Variables for Current Procedure
(Optional: Present only if Locals defined in the procedure)

Functional Parameters (Arg n .. Arg 1)

(Optional: Maximum number of arguments required for any
called procedure from the current procedure)

New Stack Link Register
Pointer

Low Address

Consider an example where Funcl calls Func2, which in turn calls Func3. The stack
representation at different instances is depicted in Figure 4-1. After the call from Func 1 to
Func 2, the value of the stack pointer (SP) is decremented. This value of SP is again
decremented to accommodate the stack frame for Func3. On return from Func 3 the value
of the stack pointer is increased to its original value in the function, Func 2.

Details of how the stack is maintained are shown in Figure 4-1.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 168
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=168

%: X”_INX Chapter 4: MicroBlaze Application Binary Interface

ALL PROGRAMMABLE

ngh Memory —— ——
Func 1 \ Func1 Func1 Func1
? e—— —
Func 2 Func 2 Func 2
? S — | ? ——
Func 3
v ST> ——

Low Memory

Figure 4-1: Stack Frame

Calling Convention

The caller function passes parameters to the callee function using either the registers (R5
through R10) or on its own stack frame. The callee uses the stack area of the caller to store
the parameters passed to the callee.

Refer to Figure 4-1. The parameters for Func 2 are stored either in the registers R5 through
R10 or on the stack frame allocated for Func 1.

If Func 2 has more than six integer parameters, the first six parameters can be passed in
registers R5 through R10, whereas all subsequent parameters must be passed on the stack
frame allocated for Func 1, starting at offset SP + 28.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 169
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=169

{: X”_INX Chapter 4: MicroBlaze Application Binary Interface

ALL PROGRAMMABLE

Memory Model

The memory model for MicroBlaze classifies the data into four different parts: Small Data
Area, Data Area, Common Un-Initialized Area, and Literals or Constants.

Small Data Area

Global initialized variables which are small in size are stored in this area. The threshold for
deciding the size of the variable to be stored in the small data area is set to 8 bytes in the
MicroBlaze C compiler (mb-gcc), but this can be changed by giving a command line option
to the compiler. Details about this option are discussed in the GNU Compiler Tools chapter.
64 kilobytes of memory is allocated for the small data areas. The small data area is accessed
using the read-write small data area anchor (R13) and a 16-bit offset. Allocating small
variables to this area reduces the requirement of adding IMM instructions to the code for
accessing global variables. Any variable in the small data area can also be accessed using an
absolute address.

Data Area

Comparatively large initialized variables are allocated to the data area, which can either be
accessed using the read-write SDA anchor R13 or using the absolute address, depending on
the command line option given to the compiler.

Common Un-Initialized Area

Un-initialized global variables are allocated in the common area and can be accessed either
using the absolute address or using the read-write small data area anchor R13.

Literals or Constants

Constants are placed into the read-only small data area and are accessed using the read-
only small data area anchor R2.

The compiler generates appropriate global pointers to act as base pointers. The actual
values of the SDA anchors are decided by the linker, in the final linking stages. For more
information on the various sections of the memory please refer to MicroBlaze Linker Script
Sections in the Embedded System Tools Reference Manual.The compiler generates
appropriate sections, depending on the command line options. Please refer to the GNU
Compiler Tools chapter in the Embedded System Tools Reference Manual for more
information about these options.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 170
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=170

i: X”_INX Chapter 4: MicroBlaze Application Binary Interface

ALL PROGRAMMABLE

Interrupt, Break and Exception Handling

MicroBlaze assumes certain address locations for handling interrupts and exceptions as
indicated in Table 4-4. At these locations, code is written to jump to the appropriate
handlers.

Table 4-4: Interrupt and Exception Handling

On Hardware jumps to Software Labels
Start / Reset C_BASE_VECTORS + 0x0 _start
User exception C_BASE_VECTORS + 0x8 _exception_handler
Interrupt C_BASE_VECTORS + 0x101 _interrupt_handler
Break (HW/SW) C_BASE_VECTORS + 0x18 -
Hardware exception C_BASE_VECTORS + 0x20 _hw_exception_handler
Reserved by Xilinx for future use C_BASE_VECTORS + 0x28 -)

C_BASE VECTORS + Ox4F

1. With low-latency interrupt mode, the vector address is supplied by the Interrupt Controller.

The code expected at these locations is as shown below. The crt0. o initialization file is
passed by the mb-gcc compiler to the mb-14d linker for linking. This file sets the
appropriate addresses of the exception handlers.

The following is code for passing control to Exception, Break and Interrupt handlers,
assuming the default ¢_Base vecTors value of 0x00000000:

0x00: bri _startl

0x04: nop

0x08: imm high bits of address (user exception handler)
0x0c: bri __exception handler

0x10: imm high bits of address (interrupt handler)
0x14: bri _interrupt handler

0x18: imm high bits of address (break handler)

Oxlc: bri low bits of address (break handler)

0x20: imm high bits of address (HW exception handler
0x24: bri _hw exception handler

With low-latency interrupt mode, control is directly passed to the interrupt handler for each
individual interrupt utilizing this mode. In this case, it is the responsibility of each handler
to save and restore used registers. The MicroBlaze C compiler (mb-gcc) attribute
fast_interrupt is available to allow this task to be performed by the compiler:

void interrupt handler name() _ attribute ((fast interrupt));

MicroBlaze allows exception and interrupt handler routines to be located at any address
location addressable using 32 bits.

The user exception handler code starts with the label exception handler, the
hardware exception handler starts with _hw exception handler, while the interrupt

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 171
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=171

i: X”_INX Chapter 4: MicroBlaze Application Binary Interface

ALL PROGRAMMABLE

handler code starts with the label interrupt handler for interrupts that do not use
low-latency handlers.

In the current MicroBlaze system, there are dummy routines for interrupt, break and user
exception handling, which you can change. In order to override these routines and link your
own interrupt and exception handlers, you must define the handler code with specific
attributes.

The interrupt handler code must be defined with attribute interrupt handler to ensure
that the compiler will generate code to save and restore used registers and emit an rtid
instruction to return from the handler:

void function name() _ attribute ((interrupt handler)) ;

The break handler code must be defined with attribute break handler to ensure that the
compiler will generate code to save and restore used registers and emit an rtbd instruction to
return from the handler:

void function name() _ attribute ((break handler)) ;

The user exception handler code must either be defined with either attribute
svc_handler or attribute sve_table handler:

void function name (
void function name (

__attribute ((svc_handler)) ;
__attribute ((svc_table handler (ID)));

)
)
The first attribute ensures that the compiler will emit an indirect call to the handler with a
brki rD, 0x8 instruction, and emit an rtbd instruction to return from the handler. This

means that when the MMU is enabled the handler function is executed in privileged mode.

The second attribute is declared with a Service ID. In this case the compiler will emit code
to store this ID in register R18 followed by an indirect call to _exception handler using
abrki rD, 0x8 instruction, and emit an rtbd instruction to return from the handler. It is
necessary to override the exception handler function to call the appropriate handler
based on the ID provided in R18.

For more details about the use and syntax of the interrupt handler attribute, please refer to
the GNU Compiler Tools chapter in the Embedded System Tools Reference Manual.

When software breakpoints are used in the Xilinx Microprocessor Debug (XMD) tool or the
Software Development Kit (SDK) tool, the Break (HW/SW) address location is reserved for
handling the software breakpoint.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 172
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=172

& XILINX

ALL PROGRAMMABLE.

Chapter 5

MicroBlaze Instruction Set Architecture

This chapter provides a detailed guide to the Instruction Set Architecture of MicroBlaze™.

Notation

The symbols used throughout this chapter are defined in Table 5-1.

Table 5-1: Symbol Notation

Symbol Meaning

+ Add
- Subtract
X Multiply
/ Divide
A Bitwise logical AND
v Bitwise logical OR

® Bitwise logical XOR
X Bitwise logical complement of x
«— Assignment

>> Right shift

<< Left shift

rx Register x

x[i] Bit { in register x

x[iyf] Bits { through j in register x

= Equal comparison

Not equal comparison

> Greater than comparison

>= Greater than or equal comparison
< Less than comparison

<= Less than or equal comparison

Signal choice

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 173
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=173

& XILINX

ALL PROGRAMMABLE

Chapter 5: MicroBlaze Instruction Set Architecture

Table 5-1: Symbol Notation (Cont’d)
Symbol Meaning
sext(x) Sign-extend x
Mem(x) Memory location at address x
FSLx AXI4-Stream interface x
LSW(x) Least Significant Word of x
isDnz(x) Floating point: true if x is denormalized

isInfinite(x)

Floating point:

true if X is +o0 OF -o0

isPosInfinite(x)

Floating point:

true if x is +oo

isNegInfinite(x)

Floating point:

true if x -0

isNaN(x)

Floating point:

true if x is a quiet or signalling NaN

isZero(x)

Floating point:

true if x is +0 or -0

isQuietNaN(x)

Floating point:

true if x is a quiet NaN

isSigNaN(x)

Floating point:

true if x is a signaling NaN

signZero(x)

Floating point:

return +0 forx > 0, and -0 ifx < 0

signInfinite(x)

Floating point:

return +o for x > 0, and -~ if x < 0

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 174

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=174

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Formats

MicroBlaze uses two instruction formats: Type A and Type B.

Type A

Type A is used for register-register instructions. It contains the opcode, one destination and two
source registers.

Opcode Destination Reg| Source Reg A | SourceRegB [0 /0000|000 0|0|0|O0

0 6 11 16 21 31

Type B

Type B is used for register-immediate instructions. It contains the opcode, one destination and one
source registers, and a source 16-bit immediate value.

Opcode Destination Reg| Source Reg A Immediate Value
0 6 11 16 31
Instructions

This section provides descriptions of MicroBlaze instructions. Instructions are listed in alphabetical
order. For each instruction Xilinx provides the mnemonic, encoding, a description, pseudocode of its
semantics, and a list of registers that it modifies.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 175
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=175

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

add Arithmetic Add

add rD, rA, rB Add
addc rD, rA, rB Add with Carry
addk rD, rA, rB Add and Keep Carry
addkc rD, rA, rB Add with Carry and Keep Carry
000KCO rD rA rB 000O0OO0OOOOOODO
0 6 1 1 2 3
1 6 1 1
Description

The sum of the contents of registers rA and rB, is placed into register rD.

Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic addk. Bit 4 of the
instruction (labeled as C in the figure) is set to one for the mnemonic addc. Both bits are set to one
for the mnemonic addkc.

When an add instruction has bit 3 set (addk, addkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (add, addc), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addc, addkc), the content of the carry flag (MSR[C]) affects
the execution of the instruction. When bit 4 is cleared (add, addk), the content of the carry flag does
not affect the execution of the instruction (providing a normal addition).

Pseudocode

if C = 0 then

(rD) « (rA) + (rB)
else

(rD) <« (rA) + (rB) + MSRI[C]
if K = 0 then

MSR[C] ¢ CarryOut

Registers Altered
« D
« MSRI[C]

Latency
1 cycle

Note
The C bit in the instruction opcode is not the same as the carry bit in the MSR.

The "add r0, r0, r0” (= 0x00000000) instruction is never used by the compiler and usually indicates
uninitialized memory. If you are using illegal instruction exceptions you can trap these instructions
by setting the MicroBlaze parameter C_OPCODE_0OxO_ILLEGAL=1.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 176
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=176

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

add| Arithmetic Add Immediate

addi rD, rA, IMM Add Immediate
addic rD, rA, IMM Add Immediate with Carry
addik rD, rA, IMM Add Immediate and Keep Carry
addikc rD, rA, IMM Add Immediate with Carry and Keep Carry
001KCO rD rA MM
0 6 1 1 3
1 6 1
Description

The sum of the contents of registers rA and the value in the IMM field, sign-extended to 32 bits, is
placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the
mnemonic addik. Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic
addic. Both bits are set to one for the mnemonic addikc.

When an addi instruction has bit 3 set (addik, addikc), the carry flag will keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addi, addic), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addic, addikc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (addi, addik), the content of the carry
flag does not affect the execution of the instruction (providing a normal addition).

Pseudocode

if C = 0 then

(rD) <« (rA) + sext (IMM)
else

(rD) ¢ (rA) + sext (IMM) + MSRI[C]
if K = 0 then

MSR[C] ¢ CarryOut

Registers Altered
« D
« MSRI[C]

Latency
1 cycle

Notes
The C bit in the instruction opcode is not the same as the carry bit in the MSR.
By default, Type B Instructions take the 16-bit IMM field value and sign extend it to 32 bits to use as

the immediate operand. This behavior can be overridden by preceding the Type B instruction with an
imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 177
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=177

& XILINX

Chapter 5: MicroBlaze Instruction Set Architecture
ALL PROGRAMMABLE.-
and Losical AND
and rD, rA, rB
100001 rD rA rB 000O0O0O0OOOOODO
0 6 1 2 3
6 1 1
Description
The contents of register rA are ANDed with the contents of register rB; the result is placed into
register rD.
Pseudocode
(rD) < (rA) A (rB)
Registers Altered
« D
Latency
1 cycle

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 178

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=178

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

andi Losial AND with Immediate

andi rD, rA, IMM
101001 rD rA IMM
0 6 1 1 3
1 6 1
Description

The contents of register rA are ANDed with the value of the IMM field, sign-extended to 32 bits; the
result is placed into register rD.

Pseudocode
(rD) ¢« (rA) A sext (IMM)
Registers Altered
« D
Latency
1 cycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 179
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=179

& XILINX

Chapter 5: MicroBlaze Instruction Set Architecture
ALL PROGRAMMABLE
andnLlosical AND NOT
andn rD, rA, rB
1 00011 rD rA rB 0 000O0O0OOOOOTDO
0 6 1 2 3
6 1 1
Description

The contents of register rA are ANDed with the logical complement of the contents of register rB; the

result is placed into register rD.

Pseudocode
(rD) « (rA) A (T¥B)
Registers Altered
« D
Latency
1 cycle

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 180

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=180

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

andni Losical AND NOT with Immediate

andni rD, rA, IMM
101011 rD rA IMM
0 6 1 1 3
1 6 1
Description

The IMM field is sign-extended to 32 bits. The contents of register rA are ANDed with the logical
complement of the extended IMM field; the result is placed into register rD.

Pseudocode
(rD) <« (rA) A (sext (IMM))

Registers Altered
« D

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See the instruction "imm,” page 218 for details on using 32-
bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 181
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=181

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

beq Branch if Equal

beq rA, rB Branch if Equal
beqd rA, rB Branch if Equal with Delay
100111DOO0O0O0 rA rB 000O0OOOOOOD O
0 6 1 1 2 3
1 6 1 1
Description

Branch if rA is equal to 0, to the instruction located in the offset value of rB. The target of the branch
will be the instruction at address PC + rB.

The mnemonic beqd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA = 0 then
PC < PC + rB
else
PC ¢ PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency

« 1 cycle (if branch is not taken)

» 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 182
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=182

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

beq| Branch Immediate if Equal

beqi rA, IMM Branch Immediate if Equal
beqid rA, IMM Branch Immediate if Equal with Delay
101111DOO0O0O0 rA MM
0 6 1 1 3
1 6 1
Description

Branch if rA is equal to 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic beqid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA = 0 then
PC < PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict
occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 183
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=183

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

bge Branch if Greater or Equal

bge rA, rB Branch if Greater or Equal
bged rA, rB Branch if Greater or Equal with Delay
100111 DO0101 rA rB 000O0OO0OOOOODO
0 6 1 1 2 3
1 6 1 1
Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bged will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA >= 0 then
PC < PC + rB
else
PC ¢ PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency

« 1 cycle (if branch is not taken)

» 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 184
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=184

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

ngl Branch Immediate if Greater or Equal

bgei rA, IMM Branch Immediate if Greater or Equal
bgeid rA, IMM Branch Immediate if Greater or Equal with Delay
101111DO0101 rA IMM
0 6 1 1 3
1 6 1
Description

Branch if rA is greater or equal to O, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bgeid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA >= 0 then
PC < PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency

« 1 cycle (if branch is not taken, or successful branch prediction occurs)

» 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict
occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 185
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=185

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

bgt Branch if Greater Than

bgt rA, rB Branch if Greater Than
bgtd rA, rB Branch if Greater Than with Delay
100111 DO0O1O00O0 rA rB 000O0OO0OOOOODO
0 6 1 1 2 3
1 6 1 1
Description

Branch if rA is greater than 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bgtd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA > 0 then
PC < PC + rB
else
PC ¢ PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency

« 1 cycle (if branch is not taken)

» 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 186
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=186

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

bgt| Branch Immediate if Greater Than

bgti rA, IMM Branch Immediate if Greater Than
bgtid rA, IMM Branch Immediate if Greater Than with Delay
101111 DO0O1O00O0 rA IMM
0 6 1 1 3
1 6 1
Description

Branch if rA is greater than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bgtid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA > 0 then
PC < PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict
occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 187
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=187

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

ble Branchif Less or Equal

ble rA, rB Branch if Less or Equal
bled rA, rB Branch if Less or Equal with Delay
100111 DO0O0OTI1T1 rA rB 000O0OO0OOOOODO
0 6 1 1 2 3
1 6 1 1
Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bled will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA <= 0 then
PC < PC + rB
else
PC ¢ PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency

« 1 cycle (if branch is not taken)

» 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 188
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=188

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

blei Branch Immediate if Less or Equal

blei rA, IMM Branch Immediate if Less or Equal
bleid rA, IMM Branch Immediate if Less or Equal with Delay
101111DO0O0OTI11 rA IMM
0 6 1 1 3
1 6 1
Description

Branch if rA is less or equal to O, to the instruction located in the offset value of IMM. The target of
the branch will be the instruction at address PC + IMM.

The mnemonic bleid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA <= 0 then
PC < PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict
occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 189
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=189

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

b|t Branch if Less Than

blt rA, rB Branch if Less Than
bltd rA, rB Branch if Less Than with Delay
100111 DO0OO0T1ID0 rA rB 000O0OO0OOOOODO
0 6 1 1 2 3
1 6 1 1
Description

Branch if rA is less than 0, to the instruction located in the offset value of rB. The target of the branch
will be the instruction at address PC + rB.

The mnemonic bltd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA < 0 then
PC < PC + rB
else
PC ¢ PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency

« 1 cycle (if branch is not taken)

» 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 190
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=190

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

b|t| Branch Immediate if Less Than

blti rA, IMM Branch Immediate if Less Than
bltid rA, IMM Branch Immediate if Less Than with Delay
101111DO0OO0T1ID0 rA IMM
0 6 1 1 3
1 6 1
Description

Branch if rA is less than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bltid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA < 0 then
PC < PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict
occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 191
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=191

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

bne Branchif Not Equal

bne rA, rB Branch if Not Equal
bned rA, rB Branch if Not Equal with Delay
100111 DO0OO0OO0T1 rA rB 000O0OO0OOOOODO
0 6 1 1 2 3
1 6 1 1
Description

Branch if rA not equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bned will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA # 0 then
PC < PC + rB
else
PC ¢ PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency

« 1 cycle (if branch is not taken)

» 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 192
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=192

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

bnei Branch Immediate if Not Equal

bnei rA, IMM Branch Immediate if Not Equal
bneid rA, IMM Branch Immediate if Not Equal with Delay
101111DO0O0OO0T1 rA IMM
0 6 1 1 3
1 6 1
Description

Branch if rA not equal to O, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bneid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA # 0 then
PC < PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict
occurs)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 193
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=193

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

br Unconditional Branch

br rB Branch

bra rB Branch Absolute

brd rB Branch with Delay

brad rB Branch Absolute with Delay

brld rD, rB Branch and Link with Delay

brald rD, rB Branch Absolute and Link with Delay
1 00110 rD DALOO rB 0 000O0O0OOOOODO O
0 6 1 1 2 3

1 6 1 1
Description

Branch to the instruction located at address determined by rB.

The mnemonics brld and brald will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics bra, brad and brald will set the A bit. If the A bit is set, it means that the branch is to
an absolute value and the target is the value in rB, otherwise, it is a relative branch and the target will
be PC + rB.

The mnemonics brd, brad, brld and brald will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction.

If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
if L = 1 then
(rD) « PC
if A = 1 then
PC < (rB)
else

PC < PC + (rB)
if D = 1 then
allow following instruction to complete execution
Registers Altered
« D
. PC

Latency
« 2 cycles (if the D bit is set)
« 3 cycles (if the D bit is not set)

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 194
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=194

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Note

The instructions brl and bral are not available. A delay slot must not be used by the following: imm,
branch, or break instructions. Interrupts and external hardware breaks are deferred until after the
delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 195
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=195

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

bri Unconditional Branch Immediate

bri IMM Branch Immediate
brai IMM Branch Absolute Immediate
brid IMM Branch Immediate with Delay
braid IMM Branch Absolute Immediate with Delay
brlid rD, IMM Branch and Link Immediate with Delay
bralid rD, IMM Branch Absolute and Link Immediate with Delay
1 01110 rD DALODO MM
0 6 1 1 3
1 6 1
Description

Branch to the instruction located at address determined by IMM, sign-extended to 32 bits.

The mnemonics brlid and bralid will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics brai, braid and bralid will set the A bit. If the A bit is set, it means that the branch is
to an absolute value and the target is the value in IMM, otherwise, it is a relative branch and the
target will be PC + IMM.

The mnemonics brid, braid, brlid and bralid will set the D bit. The D bit determines whether there is
a branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) and “bralid rD,
C_BASE_VECTORS+0x8" is used to perform a User Vector Exception, the Machine Status Register bits
User Mode and Virtual Mode are cleared.

Pseudocode

if L = 1 then
(rD) <« PC
if A = 1 then
PC ¢« sext (IMM)
else
PC ¢ PC + sext (IMM)
if D = 1 then
allow following instruction to complete execution
if D=1and A =1 and L = 1 and IMM = C_BASE_VECTORS+0x8 then
MSR [UMS] <— MSR [UM]
MSR [VMS] < MSR[VM]
MSR[UM] <« O
MSR[VM] <« O

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 196
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=196

& XILINX

ALL PROGRAMMABLE

Registers Altered
« D
. PC

« MSR[UM], MSR[VM]

Latency

Chapter 5: MicroBlaze Instruction Set Architecture

« 1 cycle (if successful branch prediction occurs)

« 2 cycles (if the D bit is set)

« 3 cycles (if the D bit is not set, or a branch prediction mispredict occurs)

Notes

The instructions brli and brali are not available.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com l Send Feedback I 197

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=197

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

brk Break

brk rD, rB
100110 rD 01100 rB 00000O0O0O0O0O0OUO
0 6 11 16 21 31
Description

Branch and link to the instruction located at address value in rB. The current value of PC will be
stored in rD. The BIP flag in the MSR will be set, and the reservation bit will be cleared.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] <« 00111
else
(rD) « PC
PC ¢« (rB)
MSR[BIP] « 1
Reservation « 0

Registers Altered

« D

« PC

« MSRI[BIP]

« ESRI[EC], in case a privileged instruction exception is generated
Latency

« 3cycles

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 198
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=198

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

brk| Break Immediate

brki rD, IMM

101110 rD 01100 IMM

0 6 11 16 31
Description

Branch and link to the instruction located at address value in IMM, sign-extended to 32 bits. The
current value of PC will be stored in rD. The BIP flag in the MSR will be set, and the reservation bit will
be cleared.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged,
except as a special case when “brki rD, C_BASE_VECTORS+0x8" or “brki rD, C_BASE_VECTORS+0x18"
is used to perform a Software Break. This means that, apart from the special case, if the instruction
is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and "brki rD,
C_BASE_VECTORS+0x8" or "brki rD, C_BASE_VECTORS+0x18" is used to perform a Software Break,
the Machine Status Register bits User Mode and Virtual Mode are cleared.

Pseudocode

if MSR[UM] and IMM # C_BASE_VECTORS+OX8 and IMM # C_BASE_VECTORS+OX18 then
ESR[EC] ¢« 00111
else
(rD) « PC
PC ¢« sext (IMM)
MSR [BIP] <« 1
Reservation < 0
if IMM = C_BASE VECTORS+0x8 or IMM = C BASE VECTORS+0x18 then
MSR [UMS] ¢ MSR[UM]MSR[UM] <« O
MSR [VMS] ¢ MSR[VM]MSR[VM] ¢ 0

Registers Altered
« rD, unless an exception is generated, in which case the register is unchanged
- PC

« MSR[BIP], MSR[UM], MSR[VM]
« ESRI[EC], in case a privileged instruction exception is generated

Latency
* 3 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
animm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

As a special case, the imm instruction does not override a Software Break “brki rD, 0x18" when
C_USE_DEBUG. is set, irrespective of the value of C_BASE_VECTORS, to allow Software Break after an
imm instruction.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 199
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=199

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

bS Barrel Shift

bsrl rD, rA, rB Barrel Shift Right Logical

bsra rD, rA, rB Barrel Shift Right Arithmetical

bsll rD, rA, rB Barrel Shift Left Logical
010001 rD rA rB S TOOOOOOOODO
0 6 1 1 2 3

1 6 1 1

Description

Shifts the contents of register rA by the amount specified in register rB and puts the result in register

rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is Logical.

Pseudocode

if S = 1 then
(rD) ¢« (rA) << (rB) [27:31]
else
if T = 1 then
if ((rB) [27:31]) # 0 then
(rD) [0: (rB) [27:31]1-1] <« (rA)[0]
(rD) [(¥xB) [27:31] :31] ¢ (rA) >> (rB) [27:31]
else
(rD) <« (rA)
else
(rD) ¢ (rA) >> (rB) [27:31]

Registers Altered
« D

Latency
« 1 cycle with ¢_AREA OPTIMIZED=0

e 2 cycles with ¢ AREA OPTIMIZED=1

Note

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 200
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=200

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

bSi Barrel Shift Immediate

bsrli rD, rA, IMM Barrel Shift Right Logical Immediate
bsrai rD, rA, IMM Barrel Shift Right Arithmetical Immediate
bslli rD, rA, IMM Barrel Shift Left Logical Immediate
011001 rD rA 00O0OOSTOOOO O MM
0 6 1 1 2 2 3
1 6 1 7 1
Description

Shifts the contents of register rA by the amount specified by IMM and puts the result in register rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is Logical.

Pseudocode
if S = 1 then
(rD) ¢« (rA) << IMM
else
if T = 1 then
if IMM # 0 then
(rD) [0:IMM-1] < (xA)[0]
(rD) [IMM:31] ¢ (rA) >> IMM
else
(rD) <« (rA)
else
(rD) ¢ (rA) >> IMM

Registers Altered
« D

Latency
e 1 cycle with ¢ AREA OPTIMIZED=0

e 2 cycles with ¢ AREA OPTIMIZED=1

Notes
These are not Type B Instructions. There is no effect from a preceding imm instruction.

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 201
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=201

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

clz CountLeading Zeros
clz rD, rA Count leading zeros in rA
1 00100 rD rA 000O0O0O0O0OO11100HO0O00
6 1 1 2 3
1 6 1 1
Description

This instruction counts the number of leading zeros in register rA starting from the most significant
bit. The result is a number between 0 and 32, stored in register rD.

The result in rD is 32 when rA is 0, and it is O if rA is OXFFFFFFFF.

Pseudocode
n < 0
while (rA) [n] = 0
n<n+1
(rD) < n

Registers Altered
« D

Latency
« 1lcycle

Notes
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 202

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=202

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

cmp Integer Compare

cmp rD, rA, rB compare rB with rA (signed)
cmpu rD, rA, rB compare rB with rA (unsigned)
000101 rD rA rB 000O0OO0OOOOUI1
0 6 1 1 2 3
1 6 1 1
Description
The contents of register rA is subtracted from the contents of register rB and the result is placed into
register rD.

The MSB bit of rD is adjusted to shown true relation between rA and rB. If the U bit is set, rA and rB
is considered unsigned values. If the U bit is clear, rA and rB is considered signed values.

Pseudocode

(rD) « (rB) + (rA)+1
(rD) (MSB) <« (rA) > (rB)

Registers Altered
« D

Latency
« 1lcycle

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 203
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=203

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

fadd Floating Point Arithmetic Add

fadd rD, rA, rB Add
010110 rD rA rB 0000O0O0OOOTO OO
0 6 11 16 21 31
Description

The floating point sum of registers rA and rB, is placed into register rD.

Pseudocode

if isDnz (rA) or isDnz (rB) then
(rD) < O0xFFC00000
FSR[DO] « 1
ESR[EC] ¢« 00110
else if isSigNaN(rA) or isSigNaN (rB)or
(isPosInfinite(rA) and isNegInfinite(rB)) or
(isNegInfinite(rA) and isPosInfinite(rB))) then
(rD) < O0xFFC00000
FSR[IO] « 1
ESR[EC] ¢« 00110
else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) <« OxXFFC00000
else if isDnz ((rA)+(rB)) then
(rD) <« signZero((rA)+ (rB))
FSR[UF] « 1
ESR[EC] ¢« 00110
else if isNaN((rA)+(rB)) then
(rD) ¢ signInfinite((rA)+(rB))
FSR[OF] « 1
ESR[EC] ¢« 00110
else
(rD) <« (rA) + (rB)

Registers Altered
« D, unless an FP exception is generated, in which case the register is unchanged

« ESR[EC], if an FP exception is generated
« FSR[IO,UF,OF,DO]

Latency
e 4 cycles with ¢ AREA OPTIMIZED=0

e 6 cycles with ¢ AREA OPTIMIZED=1

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 204
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=204

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

frsub Reverse Floating Point Arithmetic Subtraction

frsub rD, rA, rB Reverse subtract
010110 rD rA rB 0 001000O0O0OO0CTO
0 6 11 16 21 31
Description

The floating point value in rA is subtracted from the floating point value in rB and the result is

placed into register rD.

Pseudocode

if isDnz (rA) or isDnz (rB) then
(rD) < O0xFFC00000
FSR[DO] « 1
ESR[EC] « 00110
else if (isSigNaN(rA) or isSigNaN(rB) or

(isPosInfinite (rA) and isPosInfinite (rB))

or

(isNegInfinite (rA) and isNegInfinite(rB))) then

(rD) ¢« OxFFC00000
FSR[IO] ¢« 1
ESR[EC] <« 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then

(rD) <« OxXFFC00000

else if isDnz ((rB)-(rA)) then
(rD) « signZero((rB)- (rA))
FSR[UF] < 1
ESR[EC] ¢« 00110

else if isNaN((rB)-(rA)) then
(rD) ¢ sgignInfinite((rB)- (rd))
FSR[OF] « 1
ESR[EC] ¢« 00110

else
(rD) < (rB) - (rA)

Registers Altered

« D, unless an FP exception is generated, in which case the register is unchanged

« ESR[EC], if an FP exception is generated
« FSR[IO,UF,OF,DO]

Latency
* 4 cycles with ¢ AREA OPTIMIZED=0

* 6 cycles with ¢ AREA OPTIMIZED=1

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide www.Xilinx.com
UG984 (v2014.3) October 1, 2014

l Send Feedback I 205

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=205

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

fmu| Floating Point Arithmetic Multiplication

fmul rD, rA, rB Multiply
010110 rD rA rB 001000O0O0OO0OO0OTO
0 6 11 16 21 31
Description

The floating point value in rA is multiplied with the floating point value in rB and the result is placed
into register rD.

Pseudocode

if isDnz (rA) or isDnz (rB) then

(rD) < O0xFFC00000

FSR[DO] « 1

ESR[EC] ¢« 00110

else
if i1sSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isInfinite(rB)) or
(isZero(rB) and isInfinite(rA)) then

(rD) < O0xFFC00000
FSR[IO] ¢« 1
ESR[EC] ¢« 00110

else 1f isQuietNaN(rA) or isQuietNaN (rB) then
(rD) <« OXFFC00000

else if isDnz ((rB)*(rA)) then
(rD) <« signZero((xrA)* (rB))
FSR[UF] ¢« 1
ESR[EC] ¢« 00110

else if isNaN((rB)* (rA)) then
(rD) ¢ sgignInfinite((rB)* (rd))
FSR[OF] « 1
ESR[EC] ¢« 00110

else
(rD) < (rB) * (rA)

Registers Altered
« D, unless an FP exception is generated, in which case the register is unchanged

« ESR[EC], if an FP exception is generated
« FSR[IO,UF,OF,DO]

Latency
e 4 cycles with ¢ AREA OPTIMIZED=0
e 6 cycles with ¢ AREA OPTIMIZED=1

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 206
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=206

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

deV Floating Point Arithmetic Division

fdiv rD, rA, rB Divide
010110 rD rA rB 001100000O00O0
0 6 11 16 21 31
Description
The floating point value in rB is divided by the floating point value in rA and the result is placed into
register rD.
Pseudocode

if isDnz (rA) or isDnz (rB) then

(rD) <« OxXFFC00000

FSR[DO] « 1

ESR[EC] ¢« 00110

else
if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isZero(rB)) or
(isInfinite(rA) and isInfinite(rB)) then

(rD) <« OxXFFC00000
FSR[IO] « 1
ESR[EC] ¢« 00110

else if isQuietNaN (rA) or isQuietNaN (rB) then
(rD) < OxXFFC00000

else if isZero(rA) and not isInfinite(rB) then
(rD) ¢ signInfinite((xB)/(rAd))
FSR[DZ] < 1
ESR[EC] ¢« 00110

else if isDnz ((rB) / (rA)) then
(rD) <« signZero((xB) / (xA))
FSR[UF] « 1
ESR[EC] <« 00110

else 1if isNaN((rB)/(rA)) then
(rD) ¢ signInfinite((xB) / (xA))
FSR[OF] ¢« 1
ESR[EC] <« 00110

else
(rD) ¢« (rB) / (rA)

Registers Altered
« D, unless an FP exception is generated, in which case the register is unchanged

« ESR[EC], if an FP exception is generated
« FSR[IO,UF,OF,DO,DZ]

Latency
« 28 cycles with ¢_arREa opTIMIZED=0, 30 cycles with ¢ AREA OPTIMIZED=1

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 207
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=207

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

fcmpFIoating Point Number Comparison

fcmp.un rD, rA, rB Unordered floating point comparison

fcmp. It rD, rA, rB Less-than floating point comparison

fcmp.eq rD, rA, rB Equal floating point comparison

fcmp.le rD, rA, rB Less-or-Equal floating point comparison

fcmp.gt rD, rA, rB Greater-than floating point comparison

fcmp.ne rD, rA, rB Not-Equal floating point comparison

fcmp.ge rD, rA, rB Greater-or-Equal floating point

comparison

010110 rD rA rB 0 1 0 0 OpSel 0 00O
0 6 11 16 21 25 28 31

Description

The floating point value in rB is compared with the floating point value in rA and the comparison
result is placed into register rD. The OpSel field in the instruction code determines the type of
comparison performed.

Pseudocode

if isDnz (rA) or isDnz (rB) then
(rD) « 0
FSR[DO] « 1
ESR[EC] ¢« 00110
else
{read out behavior from Table 5-2}

Registers Altered

« D, unless an FP exception is generated, in which case the register is unchanged
« ESRIEC], if an FP exception is generated

« FSRI[IO,DO]

Latency
« 1 cycle with ¢ AREA OPTIMIZED=0
* 3 cycles with ¢ AREA OPTIMIZED=1

Note
These instructions are only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

Table 5-2, page 209 lists the floating point comparison operations.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 208
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=208

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE-

Table 5-2: Floating Point Comparison Operation

Comparison Type Operand Relationship
. _ isSigNaN(rA) or isQuietNaN(rA) or
Description OpSel | (rB) > (rA) | (rB) < (rA) | (rB) =(rA) isSigNaN(rB) isQuietNaN(rB)
Unordered 000 | (rD)« O (rD) « 0 (rD) « 0 (rD) « 1 (rD) « 1
FSR[IO] « 1
ESR[EC] « 00110
Less-than 001 | (rD)« 0 (rD) « 1 (rD) « 0 (rD) « 0 (rD) « 0
FSR[IO] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110
Equal 010 |(rD) « 0 (rD) « 0 (rD) « 1 (rD) « 0 (rD) « 0
FSR[IO] « 1
ESR[EC] « 00110
Less-or-equal 011 | (D)« 0 (rD) « 1 (rD) « 1 (rD) «~ 0 (rD) « 0
FSR[IO] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110
Greater-than 100 | (rD) « 1 (rD) « 0 (rD) « 0 (rD) « 0 (rD) « 0
FSR[IO] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110
Not-equal 101 | (rD) « 1 (rD) « 1 (rD) «~ 0 (rD) « 1 (rD) « 1
FSR[IO] « 1
ESR[EC] « 00110
Greater-or-equal 110 | (rD) « 1 (rD) «~ 0 (rD) « 1 (rD) « 0 (rD) « 0
FSR[IO] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 209
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=209

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

flt Floating Point Convert Integer to Float

flt rD, rA
010110 rD rA 0 01010000000
0 6 11 16 21 31
Description

Converts the signed integer in register rA to floating point and puts the result in register rD. This is
a 32-bit rounding signed conversion that will produce a 32-bit floating point result.

Pseudocode
(rD) <« float ((rA))

Registers Altered
« D

Latency
* 4 cycles with c_AREA OPTIMIZED=0

e 6 cycles with ¢ AREA OPTIMIZED=1

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 210
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=210

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

fint Floating Point Convert Float to Integer

fint rD, rA
010110 rD rA 0 01100000000
0 6 11 16 21 31
Description

Converts the floating point number in register rA to a signed integer and puts the result in register
rD. This is a 32-bit signed conversion that will produce a 32-bit integer result.

Pseudocode

if isDnz (rA) then
(rD) < O0xFFC00000
FSR[DO] « 1
ESR[EC] ¢« 00110
else if isNaN(rA) then
(rD) <« OxXFFC00000
FSR[IO] « 1
ESR[EC] ¢« 00110
else if isInf (rA) or (rA) < -231 or (rA) > 231 - 1 then
(rD) < O0xFFC00000
FSR[IO] « 1
ESR[EC] ¢« 00110
else
(rD) <« int ((xA))

Registers Altered
« rD, unless an FP exception is generated, in which case the register is unchanged

« ESR[EC], if an FP exception is generated
« FSR[IO,DO]

Latency
* 5 cycles with ¢ AREA OPTIMIZED=0

» 7 cycles with c_ AREA OPTIMIZED=1

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 211
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=211

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

fsq rt Floating Point Arithmetic Square Root

fsqrt rD, rA Square Root
010110 rD rA 0 01110000000
0 6 11 16 21 31
Description

Performs a floating point square root on the value in rA and puts the result in register rD.

Pseudocode

if isDnz (rA) then
(rD) < O0xFFC00000
FSR[DO] « 1
ESR[EC] ¢« 00110

else if isSigNaN(rA) then
(rD) <« OxXFFC00000
FSR[IO] « 1
ESR[EC] ¢« 00110

else if isQuietNaN(rA) then
(rD) < O0xFFC00000

else if (rA) < 0 then
(rD) <« OxXFFC00000
FSR[IO] « 1
ESR[EC] ¢« 00110

else if (rA) = -0 then
(rD) « -0
else

(rD) ¢ sqgrt ((rAh))

Registers Altered
« D, unless an FP exception is generated, in which case the register is unchanged

« ESRIEC], if an FP exception is generated
« FSR[IO,DO]

Latency
« 27 cycles with ¢ AREA OPTIMIZED=0
» 29 cycles with ¢ AREA OPTIMIZED=1

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 212
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=212

& XILINX

ALL PROGRAMMABLE

get get from stream interface

Chapter 5: MicroBlaze Instruction Set Architecture

tneaget rD, FSLx get data from link x
t = test-only
n = non-blocking
e = exception if control bit set
a = atomic
tnecaget rD, FSLx get control from link x
t = test-only
n = non-blocking
e = exception if control bit not set
a = atomic
011011 rD 000O0O0ONTCtaeOO0O0OOO0OTD 0 FSLx
0 6 11 16 28 31
Description

MicroBlaze will read from the link x interface and place the result in register rD. If the available
number of links set by C_FSL_LINKS is less than or equal to FSLx, link O is used.

The get instruction has 32 variants.

The blocking versions (when 'n’ bit is ‘0") will stall MicroBlaze until the data from the interface is valid.
The non-blocking versions will not stall micro blaze and will set carry to ‘0" if the data was valid and
to ‘1" if the data was invalid. In case of an invalid access the destination register contents is

undefined.

All data get instructions (when ‘c’ bit is '0') expect the control bit from the interface to be '0". If this
is not the case, the instruction will set MSR[FSL] to '1". All control get instructions (when ‘c’ bit is '1)
expect the control bit from the interface to be '1". If this is not the case, the instruction will set

MSR[FSL] to ‘1"

The exception versions (when ‘e’ bit is '1") will generate an exception if there is a control bit
mismatch. In this case ESR is updated with EC set to the exception cause and ESS set to the link index.
The target register, rD, is not updated when an exception is generated, instead the data is stored in

EDR.

The test versions (when 't' bit is '1") will be handled as the normal case, except that the read signal

to the link is not asserted.

Atomic versions (when ‘a’ bit is '1’) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However, note

that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR[UM]=1) a Privileged Instruction exception occurs.

MicroBlaze Processor Reference Guide

UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 213

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=213

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Pseudocode

if MSR[UM] = 1 then
ESR[EC] ¢ 00111
else
X < FSLx
if x >= C_FSL LINKS then
x ¢« 0
(rD) ¢ Sx AXIS TDATA
if (n = 1) then
MSR [Carry] < Sx AXIS TVALID
if Sx AXIS TLAST # c and Sx_AXIS TVALID then
MSR[FSL] « 1
if (e = 1) then
ESR[EC] <« 00000
ESR[ESS] ¢ instruction bits [28:31]

EDR < Sx_AXIS TDATA
Registers Altered
« D, unless an exception is generated, in which case the register is unchanged
+ MSRI[FSL]

+ MSR[Carry]
« ESR[EC], in case a stream exception or a privileged instruction exception is generated
« ESR[ESS], in case a stream exception is generated

« EDR, in case a stream exception is generated

Latency
« 1 cycle with ¢ AREA OPTIMIZED=0
» 2 cycles with ¢ AREA OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction
can be completed. Interrupts are served when the parameter C_USE_EXTENDED_FSL_INSTR is set
to 1, and the instruction is not atomic.

Note

To refer to an FSLx interface in assembly language, use rfslO, rfsl1, ... rfs|15.

The blocking versions of this instruction should not be placed in a delay slot when the parameter
C_USE_EXTENDED_FSL_INSTR is set to 1, since this prevents interrupts from being served.

For non-blocking versions, an rsubc instruction can be used to decrement an index variable.
The ‘e’ bit does not have any effect unless C_FSL_EXCEPTION is set to 1.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater than
0.

The extended instructions (exception, test and atomic versions) are only available when the
MicroBlaze parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a
link.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 214
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=214

& XILINX

ALL PROGRAMMABLE

getd get from stream interface dynamic

Chapter 5: MicroBlaze Instruction Set Architecture

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

tneagetd rD, rB get data from link rB[28:31]
t = test-only
n = non-blocking
e = exception if control bit set
a = atomic
tnecagetd rD, rB get control from link rB[28:31]
t = test-only
n = non-blocking
e = exception if control bit not set
a = atomic
010011 rD 0 0O0OD O rB OnctaeOO0OOTD O
6 11 16 21 31

Description

MicroBlaze will read from the interface defined by the four least significant bits in rB and place the
result in register rD. If the available number of links set by C_FSL_LINKS is less than or equal to the
four least significant bits in rB, link 0 is used.

The getd instruction has 32 variants.

The blocking versions (when 'n’ bit is ‘0") will stall MicroBlaze until the data from the interface is valid.
The non-blocking versions will not stall micro blaze and will set carry to ‘0" if the data was valid and
to ‘1" if the data was invalid. In case of an invalid access the destination register contents is
undefined.

All data get instructions (when ‘c’ bit is '0') expect the control bit from the interface to be '0". If this
is not the case, the instruction will set MSR[FSL] to '1". All control get instructions (when ‘c’ bit is '1)
expect the control bit from the interface to be '1". If this is not the case, the instruction will set
MSR[FSL] to '1".

The exception versions (when ‘e’ bit is '1") will generate an exception if there is a control bit
mismatch. In this case ESR is updated with EC set to the exception cause and ESS set to the link index.
The target register, rD, is not updated when an exception is generated, instead the data is stored in
EDR.

The test versions (when 't' bit is '1") will be handled as the normal case, except that the read signal
to the link is not asserted.

Atomic versions (when ‘a’ bit is '1’) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

www.Xilinx.com

l Send Feedback I 215

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=215

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Pseudocode

if MSR[UM] = 1 then
ESR[EC] ¢« 00111
else
X ¢ rB[28:31]
if x >= C_FSL_LINKS then
x ¢« 0
(rD) <« Sx AXIS TDATA
if (n = 1) then
MSR [Carry] < Sx AXIS TVALID
if Sx_AXIS TLAST # c and Sx_AXIS TVALID then
MSR[FSL] « 1
if (e = 1) then
ESR[EC] <« 00000
ESR[ESS] ¢« rB[28:31]

EDR < Sx_AXIS TDATA
Registers Altered
« D, unless an exception is generated, in which case the register is unchanged
* MSRJ[FSL]

+ MSR[Carry]

« ESRI[EC], in case a stream exception or a privileged instruction exception is generated
« ESR[ESS], in case a stream exception is generated

« EDR, in case a stream exception is generated

Latency
« 1 cycle with ¢ AREA OPTIMIZED=0
e 2 cycles with ¢ AREA OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction can
be completed. Interrupts are served unless the instruction is atomic, which ensures that the
instruction cannot be interrupted.

Note

The blocking versions of this instruction should not be placed in a delay slot, since this prevents
interrupts from being served.

For non-blocking versions, an rsubc instruction can be used to decrement an index variable.
The ‘e’ bit does not have any effect unless C_FSL_EXCEPTION is set to 1.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater than 0
and the parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 216
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=216

& XILINX

ALL PROGRAMMABLE

idiv !nteger Divide

Chapter 5: MicroBlaze Instruction Set Architecture

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

idiv rD, rA, rB divide rB by rA (signed)
idivu rD, rA, rB divide rB by rA (unsigned)
010010 rD rA rB 000O0O0O0OOOUDO
6 1 1 2 3
1 6 1 1
Description

The contents of register rB is divided by the contents of register rA and the result is placed into
register rD.

If the U bit is set, rA and rB are considered unsigned values. If the U bit is clear, rA and rB are
considered signed values.

If the value of rA is 0, the DZO bit in MSR will be set and the value in rD will be 0, unless an exception
is generated.

If the U bit is clear, the value of rA is -1, and the value of rB is -2147483648, the DZO bit in MSR will
be set and the value in rD will be -2147483648, unless an exception is generated.

Pseudocode
if (rA) = 0 then
(rD) <- 0
MSR [DZO] <- 1
ESR[EC] <- 00101
ESR[DEC] <- 0
else if U = 0 and (rA) = -1 and (rB) = -2147483648 then
(rD) <- -2147483648
MSR [DZO] <- 1
ESR[EC] <- 00101
ESR[DEC] <- 1
else
(rD) « (rB) / (rA)
Registers Altered

rD, unless a divide exception is generated, in which case the register is unchanged
MSR[DZO], if the value in rA is zero
ESR[EC], if the value in rA is zero

Latency
1 cycle if (rA) = 0, otherwise 32 cycles with c_AREA OPTIMIZED=0

1 cycle if (rA) = 0, otherwise 34 cycles with ¢ AREA OPTIMIZED=1

Note

This instruction is only valid if MicroBlaze is configured to use a hardware divider (C_USE_DIV = 1).

www.Xilinx.com

l Send Feedback I 217

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=217

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

imm Immediate

imm IMM
101100/00000/0000°0 IMM
0 6 1 1 3
1 6 1
Description

The instruction imm loads the IMM value into a temporary register. It also locks this value so it can
be used by the following instruction and form a 32-bit immediate value.

The instruction imm is used in conjunction with Type B instructions. Since Type B instructions have
only a 16-bit immediate value field, a 32-bit immediate value cannot be used directly. However, 32-
bit immediate values can be used in MicroBlaze. By default, Type B Instructions will take the 16-bit
IMM field value and sign extend it to 32 bits to use as the immediate operand. This behavior can be
overridden by preceding the Type B instruction with an imm instruction. The imm instruction locks
the 16-bit IMM value temporarily for the next instruction. A Type B instruction that immediately
follows the imm instruction will then form a 32-bit immediate value from the 16-bit IMM value of the
imm instruction (upper 16 bits) and its own 16-bit immediate value field (lower 16 bits). If no Type B
instruction follows the imm instruction, the locked value gets unlocked and becomes useless.

Latency
« 1cycle

Notes

The imm instruction and the Type B instruction following it are atomic; consequently, no interrupts
are allowed between them.

The assembler provided by Xilinx automatically detects the need for imm instructions. When a 32-bit
IMM value is specified in a Type B instruction, the assembler converts the IMM value to a 16-bit one
to assemble the instruction and inserts an imm instruction before it in the executable file.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 218
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=218

& XILINX

ALL PROGRAMMABLE

Ibu Load Byte Unsigned

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2014.3) October 1, 2014

lbu rD, rA, rB
lbur rD, rA, rB
110000 rD rA rB OROOOOOOOOD O
0 6 11 16 21 31
Description
Loads a byte (8 bits) from the memory location that results from adding the contents of registers rA
and rB. The data is placed in the least significant byte of register rD and the other three bytes in rD
are cleared.
If the R bit is set, a byte reversed memory location is used, loading data with the opposite endianness
of the endianness defined by C_ENDIANNESS and the E bit (if virtual protected mode is enabled).
A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.
A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.
Pseudocode
Addr < (rA) + (rB)
if TLB_Miss (Addr) and MSR[VM] = 1 then
ESR[EC] ¢ 10010;ESR[S]¢ 0
MSR[UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] ¢« 0
else if Access Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR([EC] < 10000;ESR[S]¢ 0; ESR[DIZ] ¢« 1
MSR [UMS] ¢~ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢« 0; MSR[VM] « 0
else
(rD) [24:31] <« Mem(Addr)
(rD) [0:23] « O
Registers Altered
« D, unless an exception is generated, in which case the register is unchanged
« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
« ESRI[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
Latency
« 1 cycle with ¢ AREA OPTIMIZED=0
e 2 cycles with ¢ AREA OPTIMIZED=1
Note
The byte reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).
MicroBlaze Processor Reference Guide www.xilinx.com

l Send Feedback I 219

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=219

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Ibui Load Byte Unsigned Immediate

Ibui rD, rA, IMM

111000 rD rA IMM

0 6 11 16 31
Description

Loads a byte (8 bits) from the memory location that results from adding the contents of register rA
with the value in IMM, sign-extended to 32 bits. The data is placed in the least significant byte of
register rD and the other three bytes in rD are cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

Pseudocode
Addr ¢ (rA) + sext (IMM)
if TLB Miss(Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10010;ESR[S]¢ 0
MSR [UMS] < MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] < 0; MSR[VM] <« 0
else if Access Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] < 10000;ESR[S]¢ 0; ESR[DIZ] « 1
MSR [UMS] ¢~ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] « O
else
(rD) [24:31] ¢« Mem(Addr)
(rD) [0:23] « 0
Registers Altered
« rD, unless an exception is generated, in which case the register is unchanged
« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
« ESR[EC], ESR[S], if an exception is generated

« ESR[DIZ], if a data storage exception is generated

Latency
« 1 cycle with ¢ AREA OPTIMIZED=0

e 2 cycles with ¢ AREA OPTIMIZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 220
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=220

& XILINX

ALL PROGRAMMABLE

lhu Load Halfword Unsigned

Chapter 5: MicroBlaze Instruction Set Architecture

lhu rD, rA, rB
lhur rD, rA, rB
110001 rD rA rB OROOOOOOOODO
0 6 11 16 21 31
Description
Loads a halfword (16 bits) from the halfword aligned memory location that results from adding the
contents of registers rA and rB. The data is placed in the least significant halfword of register rD and
the most significant halfword in rD is cleared.
If the R bit is set, a halfword reversed memory location is used and the two bytes in the halfword are
reversed, loading data with the opposite endianness of the endianness defined by C_ENDIANNESS
and the E bit (if virtual protected mode is enabled).
A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.
A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.
An unaligned data access exception occurs if the least significant bit in the address is not zero.
Pseudocode
Addr <« (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then
ESR[EC] ¢ 10010;ESR[S]¢ 0
MSR[UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] ¢« 0
else if Access Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] < 10000;ESR[S]« 0; ESR[DIZ] « 1
MSR [UMS] ¢~ MSR[UM]; MSR[VMS] ¢— MSR[VM]; MSR[UM] < 0; MSR[VM] ¢« 0O
else if Addr[31] # 0 then
ESR[EC] ¢ 00001; ESR[W] ¢ 0; ESR[S] ¢ 0; ESR[Rx] ¢ 1D
else
(rD) [16:31] ¢« Mem(Addr); (rD) [0:15] «< 0
Registers Altered
« D, unless an exception is generated, in which case the register is unchanged
« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
« ESR[EC], ESR[S], if an exception is generated
« ESRI[DIZ], if a data storage exception is generated
« ESR[W], ESR[Rx], if an unaligned data access exception is generated
Latency
e 1 cycle with ¢ AREA OPTIMIZED=0
» 2 cycles with ¢ AREA OPTIMIZED=1
Note
The halfword reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).
MicroBlaze Processor Reference Guide www.xilinx.com

UG984 (v2014.3) October 1, 2014

l Send Feedback I 221

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=221

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

|lhui Load Halfword Unsigned Immediate

lhui rD, rA, IMM

111001 rD rA IMM

0 6 11 16 31
Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from adding the
contents of register rA and the value in IMM, sign-extended to 32 bits. The data is placed in the least
significant halfword of register rD and the most significant halfword in rD is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB. A data storage exception occurs if access is
prevented by a no-access-allowed zone protection. This only applies to accesses with user mode and
virtual protected mode enabled. An unaligned data access exception occurs if the least significant bit
in the address is not zero.

Pseudocode
Addr ¢« (rA) + sext (IMM)
if TLB Miss(Addr) and MSR[VM] = 1 then
ESR[EC] ¢ 10010;ESR[S]« 0
MSR [UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Access Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] ¢ 10000;ESR[S]¢ 0; ESR[DIZ] <« 1
MSR [UMS] ¢~ MSR[UM]; MSR[VMS] ¢~ MSR[VM]; MSR[UM] & 0; MSR[VM] < 0
else if Addr[31] # 0 then
ESR[EC] ¢ 00001; ESR[W] ¢ 0; ESR[S] ¢« 0; ESR[Rx] ¢« rD
else
(rD) [16:31] ¢ Mem(Addr)
(rD) [0:15] <« O

Registers Altered

« D, unless an exception is generated, in which case the register is unchanged

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESRI[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

« 1 cycle with ¢ AREA OPTIMIZED=0

e 2 cycles with ¢ AREA OPTIMIZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 222
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=222

& XILINX

ALL PROGRAMMABLE

|W Load Word

Chapter 5: MicroBlaze Instruction Set Architecture

lw rD, rA, rB
lwr rD, rA, rB
110010 rD rA rB O ROOOOOOOODO
0 6 11 16 21 31
Description

Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of registers rA and rB. The data is placed in register rD.

If the R bit is set, the bytes in the loaded word are reversed , loading data with the opposite
endianness of the endianness defined by C_ENDIANNESS and the E bit (if virtual protected mode is

enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode
Addr <« (rA) + (rB)

if TLB Miss(Addr) and MSR[VM]

ESR[EC] ¢ 10010;ESR[S]« O

MSR [UMS] ¢ MSR[UM]; MSR[VMS] < MSR[VM];
else if Access_Protected(Addr) and MSR[UM]

ESR[EC] < 10000;ESR[S]<« 0

MSR [UMS] ¢~ MSR[UM]; MSR[VMS] ¢« MSR[VM] ;

else if Addr[30:31] # 0 then

ESR[EC] <« 00001; ESR[W] <« 1;

else
(rD) ¢« Mem (Addr)

Registers Altered

1 then

MSR [UM] < 0; MSR[VM] < O

; ESR[DIZ] « 1
MSR [UM] ¢ 0; MSR[VM] <« O

ESR[S] <« 0;

1 and MSR[VM] = 1 then

ESR[Rx] ¢ rD

« D, unless an exception is generated, in which case the register is unchanged
« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated

« ESR[EC], ESR[S], if an exception is generated
- ESRI[DIZ], if a data storage exception is generated

« ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

e 1 cycle with ¢ AREA OPTIMIZED=0
» 2 cycles with ¢ AREA OPTIMIZED=1

Note

The word reversed instruction is only valid if MicroBlaze is configured to use reorder instructions

(C_USE_REORDER_INSTR = 1).

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 223

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=223

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Iwi

Load Word Immediate

Iwi rD, rA, IMM

1

11010 rD rA IMM

0

Description

Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of register rA and the value IMM, sign-extended to 32 bits. The data is placed in register rD. A data
TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.A data storage exception occurs if access is
prevented by a no-access-allowed zone protection. This only applies to accesses with user mode and
virtual protected mode enabled. An unaligned data access exception occurs if the two least
significant bits in the address are not zero.

Pseudocode
Addr ¢ (rA) + sext (IMM)
if TLB Miss(Addr) and MSR[VM] = 1 then

ESR[EC] ¢~ 10010;ESR[S]<« 0

MSR [UMS] < MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] < 0; MSR[VM] <« O
else if Access_ Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] ¢ 10000;ESR[S]¢ 0; ESR[DIZ] <« 1

MSR [UMS] ¢~ MSR[UM]; MSR[VMS] ¢— MSR[VM]; MSR[UM] < 0; MSR[VM] <« 0
else if Addr[30:31] # 0 then

ESR[EC] <« 00001; ESR[W] ¢« 1; ESR[S] <« 0; ESR[Rx] <« rD
else

(rD) ¢« Mem (Addr)

Registers Altered
« D, unless an exception is generated, in which case the register is unchanged

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESRI[EC], ESR[S], if an exception is generated
« ESRI[DIZ], if a data storage exception is generated
« ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
« 1 cycle with ¢ AREA OPTIMIZED=0
« 2 cycles with ¢ AREA OPTIMIZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 224

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=224

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

|WX Load Word Exclusive

lwx rD, rA, rB
110010 rD rA rB 1 0000O0O0OO0OOOD0
0 6 11 16 21 31
Description

Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of registers rA and rB. The data is placed in register rD, and the reservation bit is set. If an AXI4
interconnect with exclusive access enabled is used, and the interconnect response is not EXOKAY, the
carry flag (MSR[C]) is set; otherwise the carry flag is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception will not occur, even if the two least significant bits in the address
are not zero.

A data bus exception can occur when an AXI4 interconnect with exclusive access enabled is used, and
the interconnect response is not EXOKAY, which means that an exclusive access cannot be handled.

Enabling AXI exclusive access ensures that the operation is protected from other bus masters, but
requires that the addressed slave supports exclusive access. When exclusive access is not enabled,
only the internal reservation bit is used. Exclusive access is enabled using the two parameters
C_M_AXI_DP_EXCLUSIVE_ACCESS and C_M_AXI_DC_EXCLUSIVE_ACCESS for the peripheral and cache
interconnect, respectively.

Pseudocode

Addr ¢« (rA) + (rB)
if TLB Miss(Addr) and MSR[VM] = 1 then
ESR[EC] ¢ 10010;ESR[S]« O
MSR [UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Access Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] ¢ 10000;ESR[S]¢ 0; ESR[DIZ] « 1
MSR [UMS] ¢~ MSR[UM]; MSR[VMS] ¢~ MSR[VM]; MSR[UM] & 0; MSR[VM] < 0
else if AXI Exclusive (Addr) and AXI Response # EXOKAY and MSR[EE] then
ESR[EC] ¢ 00100;ESR[ECC]« 0;
MSR [UMS] ¢~ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else
(rD) ¢ Mem(Addr); Reservation ¢« 1;
if AXI_Exclusive (Addr) and AXI_Response # EXOKAY then
MSR[C] « 1
else
MSR[C] « O

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 225
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=225

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Registers Altered
« rD and MSRI(C], unless an exception is generated, in which case they are unchanged

« MSR[UM], MSR[VM], MSRIUMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated

Latency
« 1 cycle with ¢ AREA OPTIMIZED=0
« 2 cycles with ¢ AREA OPTIMIZED=1

Note

This instruction is used together with SWX to implement exclusive access, such as semaphores and
spinlocks.

The carry flag (MSR[C]) may not be set immediately (dependent on pipeline stall behavior). The LWX
instruction should not be immediately followed by an MSRCLR, MSRSET, MTS, or SRC instruction, to
ensure the correct value of the carry flag is obtained.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 226
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=226

& XILINX

ALL PROGRAMMABLE

mbar Memory Barrier

Chapter 5: MicroBlaze Instruction Set Architecture

mbar IMM Memory Barrier
101110 IMM 000100O0O0O0OO0OO0OOOOOOOOTI1IO0O0
6 11 16 31

Description

This instruction ensures that outstanding memory accesses on memory interfaces are completed
before any subsequent instructions are executed. This is necessary to guarantee that self-
modifying code is handled correctly, and that a DMA transfer can be safely started.

With self-modifying code, it is necessary to first use an MBAR instruction to wait for data accesses,
which can be done by setting IMM to 1, and then use another MBAR instruction to clear the Branch
Target Cache and empty the instruction prefetch buffer, which can be done by setting IMM to 2.

To ensure that data to be read by a DMA unit has been written to memory, it is only necessary to
wait for data accesses, which can be done by setting IMM to 1.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged
when the most significant bit in IMM is set to 1. This means that if the instruction is attempted in
User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

When the most significant bit in IMM is set to 1 and no exception occurs, MicroBlaze enters sleep
mode after all outstanding accesses have been completed, and sets the Sleep output signal to
indicate this. The pipeline is halted, and MicroBlaze will not continue execution until a bit in the
Wakeup input signal is asserted.

Pseudocode
if (IMM & 1) = 0 then
wait for instruction side memory accesses
if (IMM & 2) = 0 then

wait for data side memory accesses
PC < PC + 4
if (IMM & 16) = 16 then

enter sleep mode

Registers Altered

- PC

« ESRI[EC], in case a privileged instruction exception is generated

Latency

« 1+ N cycles, where N is the number of cycles to wait for memory accesses to
complete

Notes

This instruction must not be preceded by an imm instruction, and must not be placed in a delay
slot.

The assembler pseudo-instruction sleep can be used instead of “mbar 16" to enter sleep mode.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 227

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=227

& XILINX

ALL PROGRAMMABLE

me Move From Special Purpose Register

Chapter 5: MicroBlaze Instruction Set Architecture

mfs rD, rS

100101 rD 0000O0TO0|1 rs

0 6 11 16 18 31
Description

Copies the contents of the special purpose register rS into register rD. The special purpose registers
TLBLO and TLBHI are used to copy the contents of the Unified TLB entry indexed by TLBX.

2 N Y M A Y

PC
MSR
EAR
ESR
FSR
BTR
EDR
SLR
SHR
PID
ZPR
TLBX
TLBLO
TLBHI
PVR [x] (where x

¢ Undefined

Pseudocode
switch (rS):
case 0x0000 : (xD)
case 0x0001 : (xD)
case 0x0003 : (xrD)
case 0x0005 : (D)
case 0x0007 : (xrD)
case 0x000B : (rD)
case 0x000D : (xD)
case 0x0800 : (xrD)
case 0x0802 : (xrD)
case 0x1000 : (D)
case 0x1001 : (xrD)
case 0x1002 : (rD)
case 0x1003 : (xrD)
case 0x1004 : (xD)
case 0x200x : (xrD)
default : (xD)

Registers Altered

« D

Latency

« 1lcycle

Notes

0 to 12)

To refer to special purpose registers in assembly language, use rpc for PC, rmsr for MSR, rear for EAR,
resr for ESR, rfsr for FSR, rbtr for BTR, redr for EDR, rsir for SLR, rshr for SHR, rpid for PID, rzpr for ZPR,
rtiblo for TLBLO, rtlbhi for TLBHI, rtlbx for TLBX, and 0 - 12 for PVRO - PVR12.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede the
MEFS instruction to guarantee correct MSR value.

The value read from FSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect FSR must precede the MFS
instruction to guarantee correct FSR value.

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 228

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=228

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

EAR, ESR and BTR are only valid as operands when at least one of the MicroBlaze C_*_EXCEPTION
parameters are set to 1.

EDR is only valid as operand when the parameter C_FSL_EXCEPTION is set to 1 and the parameter
C_FSL_LINKS is greater than 0.

FSR is only valid as an operand when the C_USE_FPU parameter is greater than 0.
SLR and SHR are only valid as an operand when the C_USE_STACK_PROTECTION parameter is set to 1.

PID, ZPR, TLBLO and TLBHI are only valid as operands when the parameter C_USE_MMU > 1 (User
Mode) and the parameter C_MMU_TLB_ACCESS = 1 (Read) or 3 (Full).

TLBX is only valid as operand when the parameter C_USE_MMU > 1 (User Mode) and the parameter
C_MMU_TLB_ACCESS > 0 (Minimal).

PVRO is only valid as an operand when C_PVR is 1 (Basic) or 2 (Full), and PVR1 - PVR12 are only valid
as operands when C_PVR is set to 2 (Full).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 229
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=229

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

msrc|r Read MSR and clear bits in MSR

msrclr rD, Imm

1 00101 rD 1 00010 Imm15

0 6 11 16 17 31
Description

Copies the contents of the special purpose register MSR into register rD.
Bit positions in the IMM value that are 1 are cleared in the MSR. Bit positions that are 0 in the IMM
value are left untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged
for all IMM values except those only affecting C. This means that if the instruction is attempted in
User Mode (MSR[UM] = 1) in this case a Privileged Instruction exception occurs.

Pseudocode

if MSR[UM] = 1 and IMM # 0x4 then
ESR[EC] « 00111

else
(rD) < (MSR)
(MSR) <« (MSR) A (IMM))

Registers Altered

« D

« MSR

« ESRI[EC], in case a privileged instruction exception is generated
Latency

« 1cycle

Notes

MSRCLR will affect the Carry bit immediately while the remaining bits will take effect one cycle
after the instruction has been executed. When clearing the IE bit, it is guaranteed that the
processor will not react to any interrupt for the subsequent instructions.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede the
MSRCLR instruction to guarantee correct MSR value. This applies to both the value copied to
register rD and the changed MSR value itself.

The immediate values has to be less than 215 when C_USE_MMU >= 1 (User Mode), and less than
214 otherwise. Only bits 17 to 31 of the MSR can be cleared when C_USE_MMU >= 1 (User Mode),
and.bits 18 to 31 otherwise.

This instruction is only available when the parameter C_USE_MSR_INSTR is set to 1.

When clearing MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 230
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=230

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

msrsetRead MSR and set bits in MSR

msrset rD, Imm

1 00101 rD 1 00000 IMM

0 6 11 16 17 31
Description

Copies the contents of the special purpose register MSR into register rD. Bit positions in the IMM
value that are 1 are set in the MSR. Bit positions that are 0 in the IMM value are left untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged
for all IMM values except those only affecting C. This means that if the instruction is attempted in
User Mode (MSR[UM] = 1) in this case a Privileged Instruction exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port is set to
11 if the MSR({IE] bit is set by executing this instruction.

Pseudocode

if MSR[UM] = 1 and IMM # 0x4 then
ESR[EC] « 00111
else
(rD) < (MSR)
(MSR) <& (MSR) VvV (IMM)
if (IMM) & 2
Interrupt Ack <« 11

Registers Altered

« D

« MSR

« ESRIEC], in case a privileged instruction exception is generated
Latency

« 1cycle

Notes

MSRSET will affect the Carry bit immediately while the remaining bits will take effect one cycle
after the instruction has been executed. When setting the EIP or BIP bit, it is guaranteed that the
processor will not react to any interrupt or normal hardware break for the subsequent instructions.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede the
MSRSET instruction to guarantee correct MSR value. This applies to both the value copied to
register rD and the changed MSR value itself.

The immediate values has to be less than 215 when C_USE_MMU >= 1 (User Mode), and less than
214 otherwise. Only bits 17 to 31 of the MSR can be set when C_USE_MMU >= 1 (User Mode),
and.bits 18 to 31 otherwise.

This instruction is only available when the parameter C_USE_MSR_INSTR is set to 1.

When setting MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 231
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=231

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

mts MoveTo Special Purpose Register
mts rS, rA
1 0010100000 rA 11 rS
0 6 11 16 18 31
Description

Copies the contents of register rD into the special purpose register rS. The special purpose registers
TLBLO and TLBHI are used to copy to the Unified TLB entry indexed by TLBX.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port is set to 11
if the MSR{IE] bit is set by executing this instruction.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] « 00111
else
switch (xS)

case 0x0001 : MSR <« (rA)
case 0x0007 : FSR « (rA)
case 0x0800 : SLR <« (rA)
case 0x0802 : SHR <« (rA)
case 0x1000 : PID <« (rA)
case 0x1001 : ZPR <« (rA)
case 0x1002 : TLBX <« (rA)
case 0x1003 : TLBLO « (rA)
case 0x1004 : TLBHI « (rA)
case 0x1005 : TLBSX « (rA)
if (rS) = 0x0001 and (rA) & 2

Interrupt Ack <« 11

Registers Altered
e 1S
« ESRI[EC], in case a privileged instruction exception is generated

Latency
« 1lcycle

Notes

When writing MSR using MTS, all bits take effect one cycle after the instruction has been executed.
An MTS instruction writing MSR should never be followed back-to-back by an instruction that uses
the MSR content. When clearing the IE bit, it is guaranteed that the processor will not react to any
interrupt for the subsequent instructions. When setting the EIP or BIP bit, it is guaranteed that the
processor will not react to any interrupt or normal hardware break for the subsequent instructions.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 232

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=232

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

To refer to special purpose registers in assembly language, use rmsr for MSR, rfsr for FSR, rsir for SLR,
rshr for SHR, rpid for PID, rzpr for ZPR, rtlblo for TLBLO, rtlbhi for TLBHI, rtlbx for TLBX, and rtlbsx for
TLBSX.

The PC, ESR, EAR, BTR, EDR and PVRO - PVR12 cannot be written by the MTS instruction.
The FSR is only valid as a destination if the MicroBlaze parameter C_USE_FPU is greater than 0.

The SLR and SHR are only valid as a destination if the MicroBlaze parameter
C_USE_STACK_PROTECTION is set to 1.

PID, ZPR and TLBSX are only valid as destinations when the parameter C_USE_MMU > 1 (User Mode)
and the parameter C_MMU_TLB_ACCESS > 1 (Read). TLBLO, TLBHI and TLBX are only valid as
destinations when the parameter C_USE_MMU > 1 (User Mode).

When changing MSR[VM] or PID the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

After writing to TLBHI in order to invalidate one or more UTLB entries, an MBAR 1 instruction must
be issued to ensure that coherency is preserved in a coherent multi-processor system.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 233
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=233

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

mul Multiply
mul rD, rA, rB
010000 rD rA rB 0 000O0O0OOOOOTDO
0 6 1 1 2 3
1 6 1 1
Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by 32-
bit multiplication that will produce a 64-bit result. The least significant word of this value is placed in
rD. The most significant word is discarded.

Pseudocode
(rD) « LSW((rA) X (rB))

Registers Altered
« D

Latency
« 1 cycle with ¢ AREA OPTIMIZED=0

e 3 cycles with ¢ AREA OPTIMIZED=1

Note

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is greater than 0.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 234
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=234

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

mulh Multiply High

mulh rD, rA, rB
010000 rD rA rB 00000O0CO0O0OTO0T1
0 6 1 1 2 3
1 6 1 1
Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit signed multiplication that will produce a 64-bit result. The most significant word of this
value is placed in rD. The least significant word is discarded.

Pseudocode
(rD) ¢ MSW((rA) X (rB)), signed
Registers Altered
« D
Latency

« 1 cycle with ¢ AREA OPTIMIZED=0
« 3 cycles with ¢ AREA OPTIMIZED=1

Note

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULH is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between the
two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the actual
values were not relevant.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 235
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=235

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

mulhu Multiply High Unsigned

mulhu rD, rA, rB
010000 rD rA rB 0 000O0O0OO0OO0OT11
0 6 1 1 2 3
1 6 1 1
Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit unsigned multiplication that will produce a 64-bit unsigned result. The most significant
word of this value is placed in rD. The least significant word is discarded.

Pseudocode
(rD) ¢ MSW((rA) X (rB)), unsigned
Registers Altered
« D
Latency

« 1 cycle with ¢ AREA OPTIMIZED=0

« 3 cycles with ¢ AREA OPTIMIZED=1

Note

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULHU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between
the two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the
actual values were not relevant.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 236
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=236

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

mulhsu Multiply High Signed Unsigned

mulhsu rD, rA, rB
010000 rD rA rB 0000O0O0O0OOO0OTILIO
0 6 1 1 2 3
1 6 1 1
Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit
signed by 32-bit unsigned multiplication that will produce a 64-bit signed result. The most
significant word of this value is placed in rD. The least significant word is discarded.

Pseudocode
(rD) ¢~ MSW((rA), signed X (rB), unsigned), signed
Registers Altered
« D
Latency

« 1 cycle with ¢ AREA OPTIMIZED=0
« 3 cycles with ¢ AREA OPTIMIZED=1

Note

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULHSU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between
the two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the
actual values were not relevant.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 237
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=237

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

muli Multiply Immediate

muli rD, rA, IMM
011000 rD rA IMM
0 6 1 1 3
1 6 1
Description

Multiplies the contents of registers rA and the value IMM, sign-extended to 32 bits; and puts the
result in register rD. This is a 32-bit by 32-bit multiplication that will produce a 64-bit result. The least
significant word of this value is placed in rD. The most significant word is discarded.

Pseudocode
(rD) ¢« LSW((rA) X sext (IMM))
Registers Altered
« D
Latency

« 1 cycle with ¢ AREA OPTIMIZED=0

e 3 cycles with ¢ AREA OPTIMIZED=1

Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is greater than 0.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 238
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=238

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

or Logical OR

or rD, rA, rB

100000 rD rA rB 0 00O0O0OOOOOTOOD O

Description

The contents of register rA are ORed with the contents of register rB; the result is placed into register
rD.

Pseudocode
(rD) ¢« (rA) Vv (rB)

Registers Altered
« D

Latency
« 1lcycle

Note

The assembler pseudo-instruction nop is implemented as “or r0, r0, r0".

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 239
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=239

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

ori Logical OR with Immediate

ori rD, rA, IMM
101000 rD rA IMM
0 6 1 1 3
1 6 1
Description

The contents of register rA are ORed with the extended IMM field, sign-extended to 32 bits; the
result is placed into register rD.

Pseudocode
(rD) ¢« (rA) VvV sext (IMM)
Registers Altered
« D
Latency
« 1lcycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 240
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=240

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

pcmpbfPattern Compare Byte Find

pcmpbf rD, rA, rB bytewise comparison returning position
of first match

100000 rD rA rB 100000000O00O
0 6 1 1 2 3
1 6 1 1

Description

The contents of register rA is bytewise compared with the contents in register rB.

« D is loaded with the position of the first matching byte pair, starting with MSB as
position 1, and comparing until LSB as position 4

« If none of the byte pairs match, rD is set to 0

Pseudocode
if rB[0:7] = rA[0:7] then
(rD) « 1
else
if rB[8:15] = rA[8:15] then
(rD) ¢« 2
else
if rB[16:23] = rA[16:23] then
(rD) < 3
else
if rB[24:31] = rA[24:31] then
(rD) <« 4
else
(rD) « O
Registers Altered
« D
Latency
« 1cycle
Note

This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 241
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=241

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

pcmpeq Pattern Compare Equal

pcmpeq rD, rA, rB equality comparison with a positive
boolean result

100010 rD rA rB 100000000O00O
0 6 1 1 2 3
1 6 1 1

Description

The contents of register rA is compared with the contents in register rB.
« rDis loaded with 1 if they match, and 0 if not

Pseudocode

if (¥rB) = (rA) then
(rD) <« 1

else
(rD) «< 0

Registers Altered
« D

Latency
« 1cycle

Note

This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 242
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=242

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

pcmpne Pattern Compare Not Equal

pcmpne rD, rA, rB equality comparison with a negative
boolean result

100011 rD rA rB 100000000O00O
0 6 1 1 2 3
1 6 1 1

Description

The contents of register rA is compared with the contents in register rB.
« rDis loaded with 0 if they match, and 1 if not

Pseudocode

if (¥rB) = (rA) then
(rD) < 0

else
(rD) « 1

Registers Altered
« D

Latency
« 1cycle

Note
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 243
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=243

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

put Put to stream interface

naput rA, FSLx put data to link x
n = non-blocking
a = atomic
tnaput FSLx put data to link x test-only
n = non-blocking
a = atomic
ncaput rA, FSLx put control to link x
n = non-blocking
a = atomic
tncaput FSLx put control to link x test-only
n = non-blocking
a = atomic
01101100000 rA 1 nctaO0O0OO0ODO0 FSLx
0 6 11 16 28 31
Description

MicroBlaze will write the value from register rA to the link x interface. If the available number of links
set by C_FSL_LINKS is less than or equal to FSLx, link O is used.

The put instruction has 16 variants.

The blocking versions (when ‘n" is '0’) will stall MicroBlaze until there is space available in the
interface. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0" if space was
available and to ‘1" if no space was available.

All data put instructions (when ‘c’ is ‘0") will set the control bit to the interface to ‘0’ and all control
put instructions (when ‘c’ is ‘1') will set the control bit to '1".

The test versions (when ‘t’ bit is ‘1") will be handled as the normal case, except that the write signal
to the link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 244
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=244

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Pseudocode

if MSR[UM] = 1 then
ESR[EC] ¢« 00111
else
X ¢ FSLx
if x »= C_FSL_LINKS then
x ¢« 0
Mx_AXIS TDATA < (rA)
if (n = 1) then
MSR [Carry] ¢ Mx AXIS TVALID A Mx AXIS TREADY
Mx_AXIS TLAST ¢ C

Registers Altered
+ MSRI[Carry]
« ESRI[EC], in case a privileged instruction exception is generated

Latency
« 1 cycle with ¢ AREA OPTIMIZED=0
e 2 cycles with ¢ AREA OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction can
be completed. Interrupts are served when the parameter C_USE_EXTENDED_FSL_INSTR is set to 1,
and the instruction is not atomic.

Note
To refer to an FSLx interface in assembly language, use rfslO, rfsll, ... rfsI15.

The blocking versions of this instruction should not be placed in a delay slot when the parameter
C_USE_EXTENDED_FSL_INSTR is set to 1, since this prevents interrupts from being served.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater than 0.

The extended instructions (test and atomic versions) are only available when the MicroBlaze
parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 245
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=245

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

putd Put to stream interface dynamic

naputd rA, rB put data to link rB[28:31]
n = non-blocking
a = atomic
tnaputd rB put data to link rB[28:31] test-only
n = non-blocking
a = atomic
ncaputd rA, rB put control to link rB[28:31]
n = non-blocking
a = atomic
tncaputd rB put control to link rB[28:31] test-only
n = non-blocking
a = atomic
01001100000 rA rB 1 nctaoOO0O0UOOD
0 6 11 16 21 31
Description

MicroBlaze will write the value from register rA to the link interface defined by the four least
significant bits in rB. If the available number of links set by C_FSL_LINKS is less than or equal to the
four least significant bits in rB, link 0 is used.

The putd instruction has 16 variants.

The blocking versions (when ‘n" is '0’) will stall MicroBlaze until there is space available in the
interface. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0" if space was
available and to ‘1" if no space was available.

All data putd instructions (when ‘c’ is ‘0') will set the control bit to the interface to ‘0" and all control
putd instructions (when ‘c’ is '1") will set the control bit to '1".

The test versions (when ‘t’ bit is ‘1) will be handled as the normal case, except that the write signal
to the link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 246
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=246

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Pseudocode

if MSR[UM] = 1 then
ESR[EC] ¢« 00111
else
X ¢ rB[28:31]
if x >= C_FSL LINKS then
x ¢« 0
Mx_ AXIS TDATA < (rA)
if (n = 1) then
MSR[Carry] < Mx AXIS TVALID A Mx_AXIS_TREADY
Mx_ AXIS TLAST ¢ C

Registers Altered
+ MSRI[Carry]

« ESRI[EC], in case a privileged instruction exception is generated

Latency

« 1 cycle with ¢ AREA OPTIMIZED=0

« 2 cycles with ¢ AREA OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction

can be completed. Interrupts are served unless the instruction is atomic, which ensures that the
instruction cannot be interrupted.

Note

The blocking versions of this instruction should not be placed in a delay slot, since this prevents
interrupts from being served.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater than
0 and the parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a
link.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 247
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=247

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

rsub Arithmetic Reverse Subtract

rsub rD, rA, rB Subtract
rsubc rD, rA, rB Subtract with Carry
rsubk rD, rA, rB Subtract and Keep Carry
rsubkc rD, rA, rB Subtract with Carry and Keep Carry
0 00 KC1 rD rA rB 000O0O0O0OOOOOD O
0 6 1 1 2 3
1 6 1 1
Description

The contents of register rA is subtracted from the contents of register rB and the result is placed into
register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic rsubk.
Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic rsubc. Both bits are
set to one for the mnemonic rsubkec.

When an rsub instruction has bit 3 set (rsubk, rsubkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsub, rsubc), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (rsubc, rsubkc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (rsub, rsubk), the content of the carry
flag does not affect the execution of the instruction (providing a normal subtraction).

Pseudocode
if C = 0 then _
(rD) < (rB) + (rA)+1
else _
(rD) ¢« (rB) + (rA) + MSRI[C]
if K = 0 then
MSR[C] < CarryOut
Registers Altered
« D

+ MSRI[C]
Latency
« 1lcycle
Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 248
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=248

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

rsubiArithmetic Reverse Subtract Immediate

rsubi rD, rA, IMM Subtract Immediate
rsubic rD, rA, IMM Subtract Immediate with Carry
rsubik rD, rA, IMM Subtract Immediate and Keep Carry
rsubikc rD, rA, IMM Subtract Immediate with Carry and Keep Carry
0 01 KC1 rD rA IMM
0 6 1 1 3
1 6 1
Description

The contents of register rA is subtracted from the value of IMM, sign-extended to 32 bits, and the
result is placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the
mnemonic rsubik. Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic
rsubic. Both bits are set to one for the mnemonic rsubikc.

When an rsubi instruction has bit 3 set (rsubik, rsubikc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsubi, rsubic), then
the carry flag will be affected by the execution of the instruction. When bit 4 of the instruction is set
to one (rsubic, rsubikc), the content of the carry flag (MSR[C]) affects the execution of the instruction.
When bit 4 is cleared (rsubi, rsubik), the content of the carry flag does not affect the execution of the
instruction (providing a normal subtraction).

Pseudocode

if C = 0 then .

(rD) « sext (IMM) + (rA)+1
else _

(rD) < sext (IMM) + (rA) + MSRIC]
if K = 0 then

MSR[C] ¢ CarryOut

Registers Altered
« D
« MSRI[C]

Latency
« 1lcycle

Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow. By default, Type B Instructions
will take the 16-bit IMM field value and sign extend it to 32 bits to use as the immediate operand.
This behavior can be overridden by preceding the Type B instruction with an imm instruction. See the
instruction “imm,” page 218 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 249
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=249

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

rtbd Return from Break

rtbd rA, IMM

10110110010 rA IMM

0 6 11 16 31
Description

Return from break will branch to the location specified by the contents of rA plus the IMM field, sign-
extended to 32 bits. It will also enable breaks after execution by clearing the BIP flag in the MSR.

This instruction always has a delay slot. The instruction following the RTBD is always executed before
the branch target. That delay slot instruction has breaks disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode
if MSR[UM] = 1 then
ESR[EC] « 00111
else
PC < (rA) + sext (IMM)
allow following instruction to complete execution
MSR [BIP] « 0
MSR [UM] <« MSR[UMS]
MSR [VM] <« MSR[VMS]
Registers Altered
- PC
e MSRI[BIP], MSR[UM], MSR[VM]

« ESRI[EC], in case a privileged instruction exception is generated

Latency
« 2cycles

Note
Convention is to use general purpose register rl6 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 250
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=250

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

rtid Return from Interrupt

rtid rA, IMM

10110110001 rA IMM

0 6 11 16 31
Description

Return from interrupt will branch to the location specified by the contents of rA plus the IMM
field, sign-extended to 32 bits. It will also enable interrupts after execution.

This instruction always has a delay slot. The instruction following the RTID is always executed
before the branch target. That delay slot instruction has interrupts disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port is set to
10 when this instruction is executed, and subsequently to 11 when the MSR{IE] bit is set.

Pseudocode
if MSR[UM] = 1 then
ESR[EC] « 00111
else

PC ¢ (rA) + sext (IMM)
Interrupt Ack <« 10
allow following instruction to complete execution

MSR[IE] <« 1
MSR [UM] ¢ MSR [UMS]
MSR [VM] ¢ MSR [VMS]
Interrupt Ack <« 11
Registers Altered
« PC
« MSR[IE], MSR[UM], MSR[VM]
« ESRIEC], in case a privileged instruction exception is generated

Latency
« 2cycles

Note
Convention is to use general purpose register r14 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 251
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=251

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

rted Returnfrom Exception

rted rA, IMM

10110110100 rA IMM

0 6 11 16 31
Description

Return from exception will branch to the location specified by the contents of rA plus the IMM field,
sign-extended to 32 bits. The instruction will also enable exceptions after execution.

This instruction always has a delay slot. The instruction following the RTED is always executed before
the branch target.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] « 00111
else
PC ¢« (rA) + sext (IMM)
allow following instruction to complete execution
MSR[EE] « 1
MSR[EIP] « O
MSR [UM] <— MSR[UMS]
MSR [VM] < MSR[VMS]

ESR <« 0
Registers Altered
- PC
» MSRIEE], MSR[EIP], MSR[UM], MSR[VM]
« ESR
Latency
« 2cycles
Note

Convention is to use general purpose register r17 as rA. This instruction requires that one or more of
the MicroBlaze parameters C_*_EXCEPTION are set to 1 or that C_USE_MMU > 0.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

The instruction should normally not be used when MSR[EE] is set, since if the instruction in the delay
slot would cause an exception, the exception handler would be entered with exceptions enabled.

Note: Code returning from an exception must first check if MSR[DS] is set, and in that case return to
the address in BTR.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 252
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=252

& XILINX

ALL PROGRAMMABLE

rtsd Return from Subroutine

Chapter 5: MicroBlaze Instruction Set Architecture

rtsd rA, IMM
10110110000 rA IMM
0 6 1 3
6 1
Description

Return from subroutine will branch to the location specified by the contents of rA plus the IMM

field, sign-extended to 32 bits.

This instruction always has a delay slot. The instruction following the RTSD is always executed
before the branch target.

Pseudocode

PC <« (rd)

Registers Altered

. PC

Latency

« 1 cycle (if successful branch prediction occurs)
« 2 cycles (with Branch Target Cache disabled)
« 3 cycles (if branch prediction mispredict occurs)

Note

Convention is to use general purpose register r15 as rA.

+ sext (IMM)
allow following instruction to complete execution

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide

UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 253

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=253

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

sb Store Byte

sb rD, rA, rB
sbr rD, rA, rB
110100 rD rA rB O ROOOOOOOODP O
0 6 11 16 21 31
Description

Stores the contents of the least significant byte of register rD, into the memory location that results
from adding the contents of registers rA and rB.

If the R bit is set, a byte reversed memory location is used, storing data with the opposite endianness
of the endianness defined by C_ENDIANNESS and the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

Pseudocode
Addr < (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10010;ESR[S]¢« 1
MSR [UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢« 0; MSR[VM] <« O
else if Access Protected(Addr) and MSR[VM] = 1 then
ESR[EC] ¢ 10000;ESR[S]¢« 1; ESR[DIZ] ¢« No-access-allowed
MSR [UMS] ¢~ MSR[UM]; MSR[VMS] ¢« MSR[VM]; MSR[UM] <« 0; MSR[VM] <« 0
else
Mem (Addr) < (rD) [24:31]
Registers Altered
« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
« ESR[EC], ESR[S], if an exception is generated

- ESRI[DIZ], if a data storage exception is generated

Latency
e 1 cycle with ¢ AREA OPTIMIZED=0

e 2 cycles with ¢ AREA OPTIMIZED=1

Note

The byte reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 254
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=254

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Store Byte Immediate

sbi rD, rA, IMM
111100 rD rA IMM
6 11 16 31
Description

Stores the contents of the least significant byte of register rD, into the memory location that results
from adding the contents of register rA and the value IMM, sign-extended to 32 bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

Pseudocode
Addr ¢ (rA) + sext (IMM)
if TLB Miss(Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10010;ESR[S]« 1
MSR[UMS] < MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Access Protected(Addr) and MSR[VM] = 1 then
ESR[EC] ¢ 10000;ESR[S]¢« 1; ESRI[DIZ] ¢« No-access-allowed
MSR [UMS] ¢~ MSR[UM]; MSR[VMS] ¢~ MSR[VM]; MSR[UM] & 0; MSR[VM] < 0
else
Mem (Addr) < (rD) [24:31]
Registers Altered
« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
« ESR[EC], ESR[S], if an exception is generated

« ESR[DIZ], if a data storage exception is generated

Latency
+ 1 cycle with ¢ AREA OPTIMIZED=0
« 2 cycles with ¢ AREA OPTIMIZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 255

UG984 (v2014.3) October 1, 2014

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=255

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

sext16 Sign Extend Halfword

sextl6 rD, rA
100100 rD rA 000000O0O0O01100001
0 6 1 1 3
1 6 1
Description

This instruction sign-extends a halfword (16 bits) into a word (32 bits). Bit 16 in rA will be copied
into bits 0-15 of rD. Bits 16-31 in rA will be copied into bits 16-31 of rD.

Pseudocode

(rD) [0:15] <« (rA) [16]
(rD) [16:31] ¢ (xA) [16:31]

Registers Altered
« D

Latency
« 1cycle

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 256
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=256

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

sext8 Sign Extend Byte

sext8 rD, rA
100100 rD rA 000000O0O0O0O1100000
0 6 1 1 3
1 6 1
Description

This instruction sign-extends a byte (8 bits) into a word (32 bits). Bit 24 in rA will be copied into
bits 0-23 of rD. Bits 24-31 in rA will be copied into bits 24-31 of rD.

Pseudocode

(rD) [0:23] « (xA) [24]
(rD) [24:31] ¢ (xA) [24:31]

Registers Altered
« D

Latency
« 1cycle

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 257
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=257

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Sh Store Halfword
sh rD, rA, rB
shr rD, rA, rB
110101 rD rA rB O ROOOOOOOOD
0 6 11 16 21 31
Description

Stores the contents of the least significant halfword of register rD, into the halfword aligned
memory location that results from adding the contents of registers rA and rB.

If the R bit is set, a halfword reversed memory location is used and the two bytes in the halfword
are reversed, storing data with the opposite endianness of the endianness defined by
C_ENDIANNESS and the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by
no-access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the least significant bit in the address is not zero.

Pseudocode
Addr < (rA) + (rB)
if TLB Miss(Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10010;ESR[S]« 1

MSR [UMS] <¢— MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Access Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10000;ESR[S]¢« 1; ESRI[DIZ] ¢« No-access-allowed

MSR [UMS] ¢~ MSR[UM]; MSR[VMS] ¢~ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] ¢« 0
else if Addr[31] # 0 then

ESR[EC] ¢ 00001; ESR[W] ¢ 0; ESR[S] ¢« 1; ESR[Rx] ¢« rD
else

Mem (Addr) ¢ (rD) [16:31]

Registers Altered

« MSR[UM], MSR[VM], MSRIUMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESR[S], if an exception is generated
« ESRI[DIZ], if a data storage exception is generated
« ESR[WI], ESR[Rx], if an unaligned data access exception is generated

Latency
« 1 cycle with ¢ AREA OPTIMIZED=0
« 2 cycles with ¢ AREA OPTIMIZED=1

Note

The halfword reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 258
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=258

& XILINX

ALL PROGRAMMABLE

Store Halfword Immediate

shi

Chapter 5: MicroBlaze Instruction Set Architecture

shi rD, rA, IMM

111101 rD rA IMM

0 6 11 16 31
Description

Stores the contents of the least significant halfword of register rD, into the halfword aligned
memory location that results from adding the contents of register rA and the value IMM, sign-

extended to 32 bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB. A data storage exception occurs if
virtual protected mode is enabled, and access is prevented by no-access-allowed or read-only

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

zone protection. No-access-allowed can only occur in user mode. An unaligned data access
exception occurs if the least significant bit in the address is not zero.

Pseudocode

Addr ¢ (rA) + sext (IMM)
if TLB_Miss(Addr) and MSR[VM] =
ESR[EC] ¢ 10010;ESR[S]« 1
MSR [UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] <« O;
else if Access Protected(Addr) and MSR[VM] = 1 then
ESR[EC] <« 10000;ESR[S]¢« 1; ESR[DIZ] ¢« No-access-allowed
MSR [UMS] ¢~ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else i1f Addr([31] # 0 then
ESR[EC] ¢ 00001; ESR[W] ¢« 0;
else
Mem (Addr) ¢ (rD) [16:31]

1 then

MSR[VM] <« O

ESR[S] ¢« 1; ESR[Rx] ¢« rD

Registers Altered

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage

exception is generated
« ESRI[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[WI], ESR[Rx], if an unaligned data access exception is generated

Latency
+ 1 cycle with ¢ AREA OPTIMIZED=0
+ 2 cycles with ¢ AREA OPTIMIZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to

use as the immediate operand. This behavior can be overridden by preceding the Type B

instruction with an imm instruction. See the instruction “imm,” page 218 for details on using 32-

bit immediate values.

www.Xilinx.com

l Send Feedback I 259

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=259

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

sra Shift Right Arithmetic
sra rD, rA
1 00100 rD rA 0 000O0O0OOOOOOOOODOT1
0 6 1 1 3
1 6 1
Description

Shifts arithmetically the contents of register rA, one bit to the right, and places the result in rD.
The most significant bit of rA (that is, the sign bit) placed in the most significant bit of rD. The
least significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD) [0] « (rA)[0]
(rD) [1:31] <« (xrA) [0:30]
MSR[C] ¢ (rA) [31]

Registers Altered
« D

« MSRI[C]
Latency

« 1cycle

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 260
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=260

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

src Shift Right with Carry

src rD, rA

100100 rD rA 000000O0O0O0O01000O0T0O0T1

0 6 1 1 3
1 6 1

Description

Shifts the contents of register rA, one bit to the right, and places the result in rD. The Carry flag is
shifted in the shift chain and placed in the most significant bit of rD. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode

(rD) [0] ¢« MSRI[C]
(rD) [1:31] « (rA) [0:30]
MSR[C] ¢ (rA) [31]

Registers Altered
« D

« MSRI[C]
Latency

« 1lcycle

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 261
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=261

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

sri Shift Right Logical

srl rD, rA

100100 rD rA 000000O0O0OO0O1000O00O0TO071

0 6 1 1 3
1 6 1

Description

Shifts logically the contents of register rA, one bit to the right, and places the result in rD. A zero is
shifted in the shift chain and placed in the most significant bit of rD. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode

(rD) [0] <« O
(rD) [1:31] ¢« (rA) [0:30]
MSR[C] ¢ (rA) [31]

Registers Altered
« D

« MSRI[C]
Latency

« 1lcycle

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 262
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=262

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

SW Store Word

sSwW rD, rA, rB
Swr rD, rA, rB
110110 rD rA rB O ROOOOOOOODO
0 6 11 16 21 31
Description

Stores the contents of register rD, into the word aligned memory location that results from adding
the contents of registers rA and rB.

If the R bit is set, the bytes in the stored word are reversed , storing data with the opposite
endianness of the endianness defined by C_ENDIANNESS and the E bit (if virtual protected mode is
enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode
Addr < (rA) + (rB)
if TLB Miss (Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10010;ESR[S]« 1

MSR [UMS] ¢— MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢« 0; MSR[VM] <« O
else if Access Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10000;ESR[S]« 1; ESRI[DIZ] ¢« No-access-allowed

MSR [UMS] ¢~ MSR[UM]; MSR[VMS] - MSR[VM]; MSR[UM] <« 0; MSR[VM] « 0
else if Addr[30:31] # 0 then

ESR[EC] ¢« 00001; ESR[W] ¢ 1; ESR[S] ¢« 1; ESR[Rx] ¢« D
else

Mem (Addr) < (rD) [0:31]

Registers Altered

¢ MSR[UM], MSR[VM], MSRIUMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESRI[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

« 1 cycle with ¢ AREA OPTIMIZED=0
« 2 cycles with ¢ AREA OPTIMIZED=1

Note

The word reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 263
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=263

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

swa pb Swap Bytes

swapb rD, rA
100100 rD rA 000000O0111100000
0 6 1 1 3
1 6 1
Description

Swaps the contents of register rA treated as four bytes, and places the result in rD. This
effectively converts the byte sequence in the register between endianness formats, either from
little-endian to big-endian or vice versa.

Pseudocode
(rD) [24:31] « (rA) [0:7]

(rD) [16:23] ¢ (rA) [8:15]
(rD) [8:15] <« (rA) [16:23]
(rD) [0:7] < (rA) [24:31]

Registers Altered

« D

Latency

« 1lcycle

Note

This instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 264
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=264

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

swaph Swap Halfwords

swaph rD, rA
100100 rD rA 000000O0111100010
0 6 1 1 3
1 6 1
Description

Swaps the contents of register rA treated as two halfwords, and places the result in rD. This
effectively converts the two halfwords in the register between endianness formats, either from
little-endian to big-endian or vice versa.

Pseudocode

(rD) [0:15] <« (rA) [16:31]
(rD) [16:31] < (rA) [0:15]

Registers Altered
« D

Latency
« 1cycle
Note

This instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 265
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=265

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

SWi Store Word Immediate
swi rD, rA, IMM
111110 rD rA IMM
0 6 11 16 31
Description

Stores the contents of register rD, into the word aligned memory location that results from
adding the contents of registers rA and the value IMM, sign-extended to 32 bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented
by no-access-allowed or read-only zone protection. No-access-allowed can only occur in user
mode.

An unaligned data access exception occurs if the two least significant bits in the address are not

zZero.
Pseudocode
Addr ¢ (rA) + sext (IMM)
if TLB Miss(Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10010;ESR[S]« 1

MSR [UMS] ¢— MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10000;ESR[S]¢« 1; ESR[DIZ] ¢« No-access-allowed

MSR [UMS] ¢~ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] &« O
else i1f Addr([30:31] # 0 then

ESR[EC] ¢ 00001; ESR[W] ¢ 1; ESR[S] ¢ 1; ESR[Rx] ¢« D
else

Mem (Addr) < (rD) [0:31]

Register Altered

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data
storage exception is generated

« ESR[EC], ESR[S], if an exception is generated

« ESR[DIZ], if a data storage exception is generated

« ESR[W], ESR[R¥], if an unaligned data access exception is generated

Latency

« 1 cycle with ¢ AREA OPTIMIZED=0
« 2 cycles with ¢ AREA OPTIMIZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See the instruction “imm,” page 218 for details on using 32-
bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 266
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=266

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

SWX Store Word Exclusive

SWX rD, rA, rB
110110 rD rA rB 1 00000O0O0OO0OO0CO0
0 6 11 16 21 31
Description

Conditionally stores the contents of register rD, into the word aligned memory location that results
from adding the contents of registers rA and rB. If an AXI4 interconnect with exclusive access enabled
is used, the store occurs if the interconnect response is EXOKAY, and the reservation bit is set;
otherwise the store occurs when the reservation bit is set. The carry flag (MSR[C]) is set if the store
does not occur, otherwise it is cleared. The reservation bit is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception will not occur even if the two least significant bits in the address
are not zero.

Enabling AXI exclusive access ensures that the operation is protected from other bus masters, but
requires that the addressed slave supports exclusive access. When exclusive access is not enabled,
only the internal reservation bit is used. Exclusive access is enabled using the two parameters
C_M_AXI_DP_EXCLUSIVE_ACCESS and C_M_AXI_DC_EXCLUSIVE_ACCESS for the peripheral and cache
interconnect, respectively.

Pseudocode

Addr ¢« (rA) + (rB)
if Reservation = 0 then
MSR[C] « 1
else
if TLB Miss(Addr) and MSR[VM] = 1 then
ESR[EC] ¢ 10010;ESR[S]¢« 1
MSR [UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] & 0; MSR[VM] < O
else if Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] ¢ 10000;ESR[S]¢« 1; ESR[DIZ] ¢« No-access-allowed
MSR [UMS] ¢~ MSR[UM]; MSR[VMS] - MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else
Reservation « 0
if AXI_Exclusive (Addr) and AXI_Response # EXOKAY then
MSR[C] « 1
else
Mem (Addr) <« (rD) [0:31]
MSRI[C] « O

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 267
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=267

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Registers Altered
« MSR[C], unless an exception is generated

« MSR[UM], MSR[VM], MSRIUMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated

Latency
« 1 cycle with ¢ AREA OPTIMIZED=0
« 2 cycles with ¢ AREA OPTIMIZED=1

Note

This instruction is used together with LWX to implement exclusive access, such as semaphores and
spinlocks.

The carry flag (MSR[C]) may not be set immediately (dependent on pipeline stall behavior). The SWX
instruction should not be immediately followed by an MSRCLR, MSRSET, MTS, or SRC instruction, to
ensure the correct value of the carry flag is obtained.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 268
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=268

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

WdC Write to Data Cache

wdc rA,rB
wdc.flush rA,rB
wdc.clear rA,rB

wdc.ext.flush rA,rB
wdc.ext.clear rA,rB

10010000000 rA rB EO0O0O011FO01TO
0 6 1 1 2 2 3

1 6 1 7 1
Description

Write into the data cache tag to invalidate or flush a cache line. The mnemonic wdc.flush is used to
set the F bit, wdc.clear is used to set the T bit, wdc.ext.flush is used to set the E, F and T bits, and
wdc.ext.clear is used to set the E and T bits.

When C_DCACHE_USE_WRITEBACK is set to 1, the instruction will flush the cache line and invalidate
it if the F bit is set, otherwise it will only invalidate the cache line and discard any data that has not
been written to memory. If the T bit is set, only a cache line with a matching address is invalidated.
Register rA added with rB is the address of the affected cache line. The E bit is not taken into account.

When C_DCACHE_USE_WRITEBACK is cleared to 0, the instruction will invalidate the cache line if the
E bit is not set. Register rA contains the address of the affected cache line, and the register rB value
is not used. If the E bit is set to 1, MicroBlaze will request that the matching address in an external
cache should be invalidated or flushed, depending on the value of the F bit. The E bit is only taken
into account when the parameter C_INTERCONNECT is set to 3 (ACE).

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) the instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] <« 00111
else
if C DCACHE USE WRITEBACK = 1 then
address < (Ra) + (Rb)
else
address <« (Ra)
if E = 0 then
if C_DCACHE LINE LEN = 4 then
cacheline mask ¢ (1 << log2(C_DCACHE BYTE SIZE) - 4) - 1
cacheline < (DCache Line) [(address >> 4) A cacheline_ mask]
cacheline addr < address & OxffffEff0
if C_DCACHE LINE LEN = 8 then
cacheline mask ¢ (1 << log2(C_DCACHE BYTE SIZE) - 5) - 1
cacheline < (DCache Line) [(address >> 5) A cacheline mask]
cacheline addr < address & Oxffffffe0

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 269
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=269

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

if F = 1 and cacheline.Dirty then
for i = 0 .. C_DCACHE_LINE LEN - 1 loop
if cacheline.Valid[i] then
Mem (cacheline addr + i * 4) ¢ cacheline.Datal[i]
if T = 0 then
cacheline.Tag ¢ 0
else if cacheline.Address = cacheline addr then
cacheline.Tag < 0
if E = 1 then
if F = 1 then
request external cache flush with address
else
request external cache invalidate with address

Registers Altered
« ESR[EC], in case a privileged instruction exception is generated

Latency

» 2 cycles for wdc.clear
« 2 cycles for wdc with ¢_AREA OPTIMIZED=1
« 3 cycles for wdc with ¢_AREA OPTIMIZED=0

« 2 + N cycles for wdc.flush, where N is the number of clock cycles required to flush the
cache line to memory when necessary

Note

The wdc, wdc.flush and wdc.clear instructions are independent of data cache enable (MSR[DCE]), and
can be used either with the data cache enabled or disabled.

The wdc.clear instruction is intended to invalidate a specific area in memory, for example a buffer to
be written by a Direct Memory Access device. Using this instruction ensures that other cache lines
are not inadvertently invalidated, erroneously discarding data that has not yet been written to
memory.

The address of the affected cache line is always the physical address, independent of the parameter
C_USE_MMU and whether the MMU is in virtual mode or real mode.

When using wdc.flush in a loop to flush the entire cache, the loop can be optimized by using Ra as
the cache base address and Rb as the loop counter:

addik r5,r0,C_DCACHE BASEADDR

addik r6,r0,C_DCACHE BYTE SIZE-C DCACHE LINE LEN*4
loop: wdc.flush r5,r6

bgtid r6, loop

addik r6,r6,-C_DCACHE LINE LEN*4

When using wdc.clear in a loop to invalidate a memory area in the cache, the loop can be optimized
by using Ra as the memory area base address and Rb as the loop counter:

addik r5,r0,memory area base address

addik r6,r0,memory area byte size-C DCACHE LINE LEN*4
loop: wdc.clear r5,r6

bgtid r6, loop

addik r6,r6,-C_DCACHE LINE LEN*4

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 270
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=270

& XILINX

ALL PROGRAMMABLE

WiC Write to Instruction Cache

wic rA,rB

Chapter 5: MicroBlaze Instruction Set Architecture

1 00100/000O0O0OTD0O

rA rB 00001101000

Description

=
w

Write into the instruction cache tag to invalidate a cache line. The register rB value is not used.
Register rA contains the address of the affected cache line.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction

exception occurs.

Pseudocode
if MSR[UM] = 1 then
ESR[EC] ¢« 00111
else
if C_ICACHE LINE LEN = 4 then
cacheline mask ¢ (1 << log2(C_CACHE BYTE SIZE) - 4) - 1

(ICache Line) [((Ra)

A cacheline mask] .Tag < 0

if C_ICACHE LINE LEN = 8 then

cacheline mask ¢« (1 << log2(C_CACHE BYTE SIZE) - 5) - 1

(ICache Line) [((Ra) A cacheline mask] .Tag < 0
Registers Altered
« ESR[EC], in case a privileged instruction exception is generated
Latency
e 2cycles
Note

The WIC instruction is independent of instruction cache enable (MSR[ICE]), and can be used either
with the instruction cache enabled or disabled.

The address of the affected cache line is the virtual address when the parameter C_USE_MMU = 3
(VIRTUAL) and the MMU is in virtual mode, otherwise it is the physical address.

MicroBlaze Processor Reference Guide

UG984 (v2014.3) October 1, 2014

www.Xilinx.com

l Send Feedback I 271

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=271

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE-

Xor Logical Exclusive OR

xor rD, rA, rB

1 00010 rD rA rB 0 00O0O0OOOOOTOOD O

Description

The contents of register rA are XORed with the contents of register rB; the result is placed into
register rD.

Pseudocode
(rD) « (rd) @ (rB)

Registers Altered
« D

Latency
« 1lcycle

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 272
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=272

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Xorj Losical Exclusive OR with Immediate

XOri rD, rA, IMM
1 01010 rD rA IMM
0 6 1 1 3
1 6 1
Description

The IMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of register
rA are XOR'ed with the extended IMM field; the result is placed into register rD.

Pseudocode
(rD) < (rA) @ sext (IMM)
Registers Altered
« D
Latency
« 1lcycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 218 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 273
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=273

& XILINX

ALL PROGRAMMABLE.

Appendix A

Performance and Resource Utilization

Performance

Performance characterization of this core has been done using the margin system
methodology. The details of the margin system characterization methodology is described
in “IP Characterization and fMAX Margin System Methodology”, in the Vivado Design Suite
User Guide: Designing With IP (UG986).

Maximum Frequencies

The maximum frequencies for the MicroBlaze core are provided in Table A-1.

Note: Zynq®-7000 results are expected to be similar to 7 series results.

Table A-1: Maximum Frequencies

Family Fmax (MHz)
Virtex®-7 369
Kintex®-7 379

Artix®-7 257
Virtex UltraScale™ 456
Kintex UltraScale 469

Resource Utilization

The MicroBlaze core resource utilization for various parameter configurations are measured
with Virtex-7 (Table A-2), Kintex-7 (Table A-3), Artix-7 (Table A-4), Virtex UltraScale
(Table A-5), and Kintex UltraScale (Table A-6) devices.

Note: Zynq®-7000 results are expected to be similar to 7 series results.

The parameter values for each of the measured configurations are shown in Table A-7. The
configurations directly correspond to the predefined templates in the MicroBlaze
Configuration Wizard.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 274
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=274

& XILINX

ALL PROGRAMMABLE

Table A-2: Device Utilization - Virtex-7 FPGAs (XC7VX485T ffg1761-3)

Appendix A: Performance and Resource Utilization

Device Resources
Configuration E
LUTs FFs ('VTI:;)
Minimum Area 589 219 346
Maximum Performance 3882 3064 217
Maximum Frequency 1038 662 346
Linux with MMU 3608 3219 215
Low-end Linux with MMU 3051 2590 220
Typical 2043 1778 241
Table A-3: Device Utilization - Kintex-7 FPGAs (XC7K325T ffg900-3)
Device Resources
Configuration E
LUTs FFs (I\;Inl-aI:)
Minimum Area 586 220 341
Maximum Performance 3894 3065 217
Maximum Frequency 1035 652 341
Linux with MMU 3593 3232 216
Low-end Linux with MMU 3051 2586 217
Typical 2045 1778 250
Table A-4: Device Utilization - Artix-7 FPGAs (XC7A200T fbg676-3)
Device Resources
Configuration E
LUTs FFs (l\;l“;:)
Minimum Area 590 223 224
Maximum Performance 3876 3064 164
Maximum Frequency 1048 650 224
Linux with MMU 3586 3206 146
Low-end Linux with MMU 3018 2566 141
Typical 2044 1778 184

MicroBlaze Processor Reference Guide www.Xilinx.com

UG984 (v2014.3) October 1, 2014

| Send Feedback I 275

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=275

8 XI I_INX Appendix A: Performance and Resource Utilization

ALL PROGRAMMABLE

Table A-5: Device Utilization - Virtex UltraScale FPGAs (XCVUO095 ffvd1924-3)

Device Resources
Configuration E

LUTs FFs (N’I“l:;)
Minimum Area 596 224 378
Maximum Performance 3917 3064 283
Maximum Frequency 1023 650 378
Linux with MMU 3589 3196 257
Low-end Linux with MMU 3020 2566 280
Typical 2056 1778 328

Table A-6: Device Utilization - Kintex UltraScale FPGAs (XCKU040 ffva1156-3)

Device Resources
Configuration E
LUTs FFs (I\;InI::)
Minimum Area 583 219 433
Maximum Performance 3917 3064 289
Maximum Frequency 1015 650 433
Linux with MMU 3579 3196 255
Low-end Linux with MMU 3027 2566 269
Typical 2051 1778 329

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 276
UG984 (v2014.3) October 1, 2014 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=276

& XILINX

ALL PROGRAMMABLE

Table A-7: Parameter Configurations

Appendix A: Performance and Resource Utilization

Configuration Parameter Values

9 3
£ ES | ED 2 B2 _
Parameter S E S ¢ xS | OS2 =
g8 EE Eg 33 33 &
£ 53¢ 5§ GE tE P
—
C_ALLOW_DCACHE_WR 1 1 1 1 1 1
C_ALLOW_ICACHE_WR 1 1 1 1 1 1
C_AREA_OPTIMIZED 1 0 0 0 0 0
C_CACHE_BYTE_SIZE 4096 32768 4096, 16384 8192 8192
C_DCACHE_BYTE_SIZE 4096/ 32768| 4096| 16384, 8192 8192

C_DCACHE_LINE_LEN

C_DCACHE_USE_WRITEBACK

C_DEBUG_ENABLED

C_DIV_ZERO_EXCEPTION

C_M_AXI_D_BUS_EXCEPTION

C_FPU_EXCEPTION

C_FSL_EXCEPTION

C_FSL_LINKS

C_ICACHE_LINE_LEN

C_ILL_OPCODE_EXCEPTION

C_M_AXI_I_BUS_EXCEPTION

C_MMU_DTLB_SIZE

C_MMU_ITLB_SIZE

C_MMU_TLB_ACCESS

C_MMU_ZONES

C_NUMBER_OF_PC_BRK

C_NUMBER_OF_RD_ADDR_BRK

C_NUMBER_OF_WR_ADDR_BRK

C_OPCODE_0x0_ILLEGAL

C_PVR

C_UNALIGNED_EXCEPTIONS

C_USE_BARREL

C_USE_DCACHE

C_USE_DIV

C_USE_EXTENDED_FSL_INSTR

OO ojlojlojo/lo|jlo/lo|OoOo/ VWKL I OO|dMO| O OjlO|lO|OC|O|bN

O | P | PP OO0 |Or N W|INdMDOOj 0| O|O|O|OO|O|FP |k
OO ojlolojo/lo|lolOoO|/Rr N W|IFL | MNMNOO|dMPL| OlOjlO|lO|OC|O|bN
O R R | kR Kk IR OO I WINIDNRFR IR |OO| O O |k |k | O |bM
o oOoRr | kRl ORr OO, IV WINIdDNEFRP IR MO OO|R | O|FRLR | O|DM

O | ORrR |k OO0 |00 IV WINdDMOOC|j0O| O O|FR|O|FRL | O|DM

MicroBlaze Processor Reference Guide
UG984 (v2014.3) October 1, 2014

www.Xilinx.com

| Send Feedback I 277

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=277

8 XI I_INX Appendix A: Performance and Resource Utilization

ALL PROGRAMMABLE

Table A-7: Parameter Configurations (Cont’d)

Configuration Parameter Values
£ £ g ET 2 E 2 -
Parameter E g E E E § E E -Té E .g
. 3
C_USE_FPU 0 2 0 0 0 0
C_USE_HW_MUL 0 2 0 2 1 1
C_USE_ICACHE 0 1 0 1 1 1
C_USE_MMU 0 0 0 3 3 0
C_USE_MSR_INSTR 0 1 0 1 1 1
C_USE_PCMP_INSTR 0 1 0 1 1 1
C_USE_REORDER_INSTR 0 1 1 1 1 1
C_USE_BRANCH_TARGET_CACHE 0 1 0 0 0 0
C_BRANCH_TARGET_CACHE_SIZE 0 0 0 0 0 0
C_ICACHE_STREAMS 0 1 0 1 0 0
C_ICACHE_VICTIMS 0 8 0 8 0 0
C_DCACHE_VICTIMS 0 8 0 8 0 0
C_ICACHE_FORCE_TAG_LUTRAM 0 0 0 0 0 0
C_DCACHE_FORCE_TAG_LUTRAM 0 0 0 0 0 0
C_ICACHE_ALWAYS_USED 0 1 0 1 1 0
C_DCACHE_ALWAYS_USED 0 1 0 1 1 0
C_D_AXI 0 1 0 1 1 0
C_USE_INTERRUPT 0 0 0 1 1 0

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 278
UG984 (v2014.3) October 1, 2014 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=278

& XILINX

ALL PROGRAMMABLE.

Appendix B

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

For a glossary of technical terms used in Xilinx documentation, see the Xilinx Glossary.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References

The following documents are available via your Vivado installation.
Relevant individual documents are linked below.

1. Vivado Design Suite User Guide: Designing With IP (UG896)

2. Vivado Design Suite User Guide:
Designing IP Subsystems Using IP Integrator (UG994)

Software Development Kit Help (SDK Help)

Embedded System Tools Reference Manual (UG111)

PowerPC Processor Reference Guide (UG011)

AMBA 4 AXI4-Stream Protocol Specification, Version 1.0 (ARM IHI 0051A)
AMBA AXI and ACE Protocol Specification (ARM IHI 0022E)

MicroBlaze Debug Module (MDM) Product Guide (PG115)

© N O U oA W

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 279
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug011.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=2014.3&topic=sw+manuals&sub=SDK_Doc/
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=14.7&topic=sw+manuals&sub=est_rm.pdf
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=279

8 XI LINX Appendix B: Additional Resources and Legal Notices

ALL PROGRAMMABLE

9. SEU Strategies for Virtex-5 Devices (XAPP864)

10. Device Reliability Report (UG116)

11. LogiCore IP Processor LMB BRAM Interface Controller (PG112)
12. Hierarchical Design Methodology Guide (UG748)

The following lists additional resources you can access directly using the provided URLs.

13. The entire set of GNU manuals:
http://www.gnu.org/manual

14.1EEE 754-1985 standard
http://en.wikipedia.org/wiki/IEEE_754-1985

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.

Automotive Applications Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS
THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO
IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD
TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN
SUCH APPLICATIONS.

© Copyright 2013-2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynqg, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of

their respective owners.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 280
UG984 (v2014.3) October 1, 2014 [—\/—]

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.gnu.org/manual
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=application+note;d=xapp864.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=14.5&topic=sw+manuals&sub=Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug116.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2014.3&docPage=280

	MicroBlaze Processor Reference Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Guide Contents

	Ch. 2: MicroBlaze Architecture
	Overview
	Features

	Data Types and Endianness
	Instructions
	Instruction Summary
	Semaphore Synchronization
	Self-modifying Code

	Registers
	General Purpose Registers
	Special Purpose Registers
	Program Counter (PC)
	Machine Status Register (MSR)
	Exception Address Register (EAR)
	Exception Status Register (ESR)
	Branch Target Register (BTR)
	Floating Point Status Register (FSR)
	Exception Data Register (EDR)
	Stack Low Register (SLR)
	Stack High Register (SHR)
	Process Identifier Register (PID)
	Zone Protection Register (ZPR)
	Translation Look-Aside Buffer Low Register (TLBLO)
	Translation Look-Aside Buffer High Register (TLBHI)
	Translation Look-Aside Buffer Index Register (TLBX)
	Translation Look-Aside Buffer Search Index Register (TLBS X)
	Processor Version Register (PVR)

	Pipeline Architecture
	Three Stage Pipeline
	Five Stage Pipeline
	Branches
	Delay Slots
	Branch Target Cache

	Memory Architecture
	Privileged Instructions
	Virtual-Memory Management
	Real Mode
	Virtual Mode
	Page-Translation Table

	Translation Look-Aside Buffer
	TLB Entry Format
	TLB Access
	TLB Access Failures

	Access Protection
	TLB Access-Protection Controls
	Zone Protection

	UTLB Management
	Recording Page Access and Page Modification

	Reset, Interrupts, Exceptions, and Break
	Reset
	Equivalent Pseudocode

	Hardware Exceptions
	Exception Priority
	Exception Causes
	Equivalent Pseudocode

	Breaks
	Hardware Breaks
	Software Breaks
	Latency
	Equivalent Pseudocode

	Interrupt
	Low-latency Interrupt Mode
	Latency
	Equivalent Pseudocode

	User Vector (Exception)
	Pseudocode

	Instruction Cache
	Overview
	General Instruction Cache Functionality
	Instruction Cache Operation
	Stream Buffers
	Victim Cache

	Instruction Cache Software Support
	MSR Bit
	WIC Instruction

	Data Cache
	Overview
	General Data Cache Functionality
	Data Cache Operation
	Victim Cache

	Data Cache Software Support
	MSR Bit
	WDC Instruction

	Floating Point Unit (FPU)
	Overview
	Format
	Rounding
	Operations
	Arithmetic
	Comparison
	Conversion

	Exceptions
	Software Support
	Libraries and Binary Compatibility
	Operator Latencies
	C Language Programming

	Stream Link Interfaces
	Hardware Acceleration

	Debug and Trace
	Debug Overview
	Performance Monitoring
	Performance Counter Control Register
	Performance Counter Command Register
	Performance Counter Status Register
	Performance Counter Data Read Register
	Performance Counter Data Write Register

	Program Trace
	Trace Control Register
	Trace Command Register
	Trace Status Register
	Trace Data Read Register

	Non-Intrusive Profiling
	Profiling Control Register
	Profiling Low Address Register
	Profiling High Address Register
	Profiling Buffer Address Register
	Profiling Data Read Register
	Profiling Data Write Register

	Cross Trigger Support
	Trace Interface Overview

	Fault Tolerance
	Configuration
	Using MicroBlaze Configuration
	Using LMB BRAM Interface Controller Configuration

	Features
	Instruction and Data Cache Protection
	Memory Management Unit Protection
	Branch Target Cache Protection
	Exception Handling

	Software Support
	Scrubbing
	BRAM Driver

	Scrubbing
	Scrubbing Methods
	Calculating Scrubbing Rate

	Use Cases
	Minimal
	Small
	Typical
	Full

	Lockstep Operation
	System Configuration
	Use Cases
	Tamper Protection
	Error Detection

	Coherency
	Invalidation
	Protocol Compliance

	Ch. 3: MicroBlaze Signal Interface Description
	Overview
	Features

	MicroBlaze I/O Overview
	AXI4 and ACE Interface Description
	Memory Mapped Interfaces
	Peripheral Interfaces
	Cache Interfaces
	Interface Parameters and Signals

	Stream Interfaces
	Write Operation
	Read Operation

	Local Memory Bus (LMB) Interface Description
	LMB Signal Interface
	Addr[0:31]
	Byte_Enable[0:3]
	Data_Write[0:31]
	AS
	Read_Strobe
	Write_Strobe
	Data_Read[0:31]
	Ready
	Wait
	CE
	UE
	Clk

	LMB Transactions
	Generic Write Operations
	Generic Read Operations
	Back-to-Back Write Operation
	Back-to-Back Read Operation
	Back-to-Back Mixed Write/Read Operation

	Read and Write Data Steering

	Lockstep Interface Description
	Debug Interface Description
	Trace Interface Description
	MicroBlaze Core Configurability

	Ch. 4: MicroBlaze Application Binary Interface
	Data Types
	Register Usage Conventions
	Stack Convention
	Calling Convention

	Memory Model
	Small Data Area
	Data Area
	Common Un-Initialized Area
	Literals or Constants

	Interrupt, Break and Exception Handling

	Ch. 5: MicroBlaze Instruction Set Architecture
	Notation
	Formats
	Type A
	Type B

	Instructions
	add
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	addi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	and
	Description
	Pseudocode
	Registers Altered
	Latency

	andi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	andn
	Description
	Pseudocode
	Registers Altered
	Latency

	andni
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beqi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bge
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgti
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	ble
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blti
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bne
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bnei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	br
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bri
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	brk
	Description
	Pseudocode
	Registers Altered
	Latency

	brki
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bs
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bsi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	clz
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	cmp
	Description
	Pseudocode
	Registers Altered
	Latency

	fadd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	frsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fmul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fdiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fcmp
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	flt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fint
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fsqrt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	get
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	getd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	idiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	imm
	Description
	Latency
	Notes

	lbu
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lbui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lhu
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lhui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lw
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lwi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lwx
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mbar
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mfs
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	msrclr
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	msrset
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mts
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mulh
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mulhu
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mulhsu
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	muli
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	or
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	ori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpbf
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpeq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpne
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	put
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	putd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rsubi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rtbd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rtid
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rted
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rtsd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sb
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sbi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sext16
	Description
	Pseudocode
	Registers Altered
	Latency

	sext8
	Description
	Pseudocode
	Registers Altered
	Latency

	sh
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	shi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sra
	Description
	Pseudocode
	Registers Altered
	Latency

	src
	Description
	Pseudocode
	Registers Altered
	Latency

	srl
	Description
	Pseudocode
	Registers Altered
	Latency

	sw
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	swapb
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	swaph
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	swi
	Description
	Pseudocode
	Register Altered
	Latency
	Note

	swx
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	wdc
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	wic
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	xor
	Description
	Pseudocode
	Registers Altered
	Latency

	xori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	Appx. A: Performance and Resource Utilization
	Performance
	Maximum Frequencies

	Resource Utilization

	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	References
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

