MicroBlaze
Processor Reference
Guide

2016.3

UG984 (v2016.4) November 30, 2016

& XILINX

AAAAAAAAAAAAAAA .

& XILINX

ALL PROGRAMMABLE..

Revision History
11/30/2016: Released with Vivado® Design Suite 2016.4 without changes from 2016.3.

Date

Version

Revision

03/20/2013

2013.1

Initial Xilinx release. This User Guide is derived from UG081.

06/19/2013

2013.2

Updated for Vivado 2013.2 release.

10/02/2013

20133

Updated for Vivado 2013.3 release.

12/18/2013

20134

Updated for Vivado 2013.4 release.

04/02/2014

2014.1

Updated for Vivado 2014.1 release:

Added v9.3 to MicroBlaze release version code in PVR.

Clarified availability and behavior of stack protection registers.

Corrected description of LMB instruction and data bus exception.

Included description of extended debug features, new in version 9.3:
performance monitoring, program trace and non-intrusive profiling.

Included definition of Reset Mode signals, new in version 9.3.

Clarified how the AXI4-Stream TLAST signal is handled.

Added UltraScale and updated performance and resource utilization for 2014.1.

10/01/2014

2014.3

Updated for Vivado 2014.3 release:

Corrected semantic description for PCMPEQ and PCMPNE in Table 2.1.
Added version 9.4 to MicroBlaze release version code in PVR.
Included description of external program trace, new in version 9.4

04/15/2015

2015.1

Updated for Vivado 2015.1 release:

Included description of 16 word cache line length, new in version 9.5.

Added version 9.5 to MicroBlaze release version code in PVR.

Corrected description of supported endianness and parameter C_ENDIANNESS.
Corrected description of outstanding reads for instruction and data cache.
Updated FPGA configuration memory protection document reference [Ref 10].
Corrected Bus Index Range definitions for Lockstep Comparison in Table 3-14.
Clarified registers altered for IDIV instruction.

Corrected PVR assembler mnemonics for MFS instruction.

Updated performance and resource utilization for 2015.1.

Added references to training resources.

04/06/2016

2016.1

Updated for Vivado 2016.1 release:

Included description of address extension, new in version 9.6.

Included description of pipeline pause functionality, new in version 9.6
Included description of non-secure AXI access support, new in version 9.6.
Included description of hibernate and suspend instructions, new in version 9.6.
Added version 9.6 to MicroBlaze release version code in PVR.

Corrected references to Table 2-45 and Table 2-46.

Replaced references to the deprecated Xilinx Microprocessor Debugger (XMD)
with Xilinx System Debugger (XSDB).

Removed C code function attributes svc_handler and svc_table_handler.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback]

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=2

& XILINX

ALL PROGRAMMABLE.

Date Version Revision

05/10/2016 2016.3 Updated for Vivado 2016.3 release:

« Added description of frequency optimized 8-stage pipeline, new in version 10.0.
« Describe bit field instructions, new in version 10.0.

* Include information on parallel debug interface, new in version 10.0.

» Added version 10.0 to MicroBlaze release version code in PVR.

» Included Spartan-7 target architecture in PVR.

« Updated description of MSR reset value.

+ Updated Xilinx automotive applications disclaimer.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 3
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=3

& XILINX

ALL PROGRAMMABLE.

Table of Contents

Chapter 1: Introduction
LU To T 0o T =T | £ 6

Chapter 2: MicroBlaze Architecture

OV VI BW & ittt ittt ten et ansesoneansonsansssssssasonsonsssssssassnsenssssnnsess 7
DataTypes and ENdianness.o ciiiiiiintne e ereeiereneeesnenneansansansananns 11
L ot 1 T 4T 12
== 1] =] 23
Pipeline Architecture.ottt i i it ettt tieteereennenasansasnananns 47
Memory ArchitectUrettt ittt i ettt teneeenaeeeaesennsennsennsannnnns 50
Privileged INStructions. oottt it i i i i i e e et e e e 52
Virtual-Memory Managementitiitiiiintneteernrenenneaneaneneaneaneannas 54
Reset, Interrupts, Exceptions,and Breakottt iineieneennnennaeenns 67
Instruction Cache.ttt i ittt ieiiateateenasansanssssossasannanss 76
[0 T | - T 6 T TP 80
Floating Point Unit (FPU) ittt ittt ittt ittt teeteetneeneeneeneeasenennanns 84
Stream Link Interfaces. ittt ittt i ittt ittt 89
Debug and Traceciiiiiii ittt ettt iieeeraeaasansaesasansansansasansnnnanns 90
o T I (=T - ' o= 109
Lockstep Operationciviiiiiiiitiiiiiiinteeteeensantantossesensanssnsosensans 116
00 0 T=1 T xS 119
Data Address EXteNSiON. . ..o v it iiiii ittt ittt it etetasasasatarnsssnsanansnsannnns 122

Chapter 3: MicroBlaze Signal Interface Description

OV VI W L ittt ittt tte et e tsaeensansassnssnsensansossnssnsansansassnssnsas 123
MICroBlaze [/O OVeIVIEW ..o vttt ittt it ittt teeeeeaeaeneneeseseseaeaensasasnennns 124
AXI4 and ACE Interface Descriptionttt iiiin it iieiiienennenanenennnnannns 136
Local Memory Bus (LMB) Interface Descriptionuiuiiiiirnennennrnerneenenns 142
Lockstep Interface Descriptioncciiiiiiiiiiiiiiiinientnereeenrensanssssnnans 151
Debug Interface Descriptionc.iiiiiiiiiiii ittt tietenrnnraenncannnnnnns 156
Trace Interface Description. ... c.i ittt ittt it iineteneeenaeenaesenesennsennnens 158
MicroBlaze Core Configurabilitycciiiiiiiiii ittt it iieiiitnrenrannnnans 161

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 4
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=4

& XILINX

ALL PROGRAMMABLE

Chapter 4: MicroBlaze Application Binary Interface

Data TYPeS « i v ittt it iiiinnetteenenastossnossssossssnsssosssssssossssssssssosanns 172
Register Usage Conventionsciiiitiineiieetnentonnsonnsennsssnssonsssnnssns 173
Stack ConVeNtioNo i ittt i i i i it i ittt e e e 175
Memory Modeli ittt ittt it iieeteentenasenassanssansssassannnans 177
Interrupt, Break and Exception Handling. i it ittt i iieinnnnn 178

Chapter 5: MicroBlaze Instruction Set Architecture

[\ o] = 1 o] o XS 180
20T 0 4 - 1 e 182
113 o 0 ot 4 o 3 182

Appendix A: Performance and Resource Utilization

oY Y1 7= 11 oL = 289
ResoUrce Utilization. v v ii ittt ittt ittt it ettt nnnenereennnnsessennnnsnnnnnns 290
IP Characterization and fMAX Margin System Methodologycciiiiiiennan.. 295

Appendix B: Additional Resources and Legal Notices

XiliNX RESOUICES . v vttt ittt ittt iteiete e teessasannnsasasasasnssnssnsnsassnsnsass 296
SOIUtION CeNEErS. . o vttt ittt ittt ittt tettneansaatassosssssasansossssnssnasanns 296
3 TS =T =T 4T T 296
TrainNiNg RESOUINCES. . o v vt i ittt iiieeeteennaneesesnsnanessesnsnssssessanassesnnanans 297
Please Read: Important Legal Noticesciitiiiiiiiiiniiiienrenrnnnnosnsennans 298

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 5
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=5

& XILINX

ALL PROGRAMMABLE.

Chapter 1

Introduction

The MicroBlaze™ Processor Reference Guide provides information about the 32-bit soft
processor, MicroBlaze, which is included in the Vivado® release. The document is intended
as a guide to the MicroBlaze hardware architecture.

Guide Contents

This guide contains the following chapters:

Chapter 2, MicroBlaze Architecture, contains an overview of MicroBlaze features as well
as information on Big-Endian and Little-Endian bit-reversed format, 32-bit general
purpose registers, cache software support, and AXI4-Stream interfaces.

Chapter 3, MicroBlaze Signal Interface Description, describes the types of signal
interfaces that can be used to connect MicroBlaze.

Chapter 4, MicroBlaze Application Binary Interface, describes the Application Binary
Interface important for developing software in assembly language for the processor.

Chapter 5, MicroBlaze Instruction Set Architecture, provides notation, formats, and
instructions for the Instruction Set Architecture (ISA) of MicroBlaze.

Appendix A, Performance and Resource Utilization, contains maximum frequencies and
resource utilization numbers for different configurations and devices.

Appendix B, Additional Resources and Legal Notices, provides links to documentation
and additional resources.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 6

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=6

& XILINX

ALL PROGRAMMABLE.

MicroBlaze Architecture

This chapter contains an overview of MicroBlaze™ features and detailed information on
MicroBlaze architecture including Big-Endian or Little-Endian bit-reversed format, 32-bit

Chapter 2

general purpose registers, virtual-memory management, cache software support, and

AXI4-Stream interfaces.

Overview

The MicroBlaze embedded processor soft core is a reduced instruction set computer (RISC)

optimized for implementation in Xilinx® Field Programmable Gate Arrays (FPGAs).
Figure 2-1 shows a functional block diagram of the MicroBlaze core.

bus interface

M_AXI_DC
M_ACE_DC

MO_AXIS..
M15_AXIS

SO_AXIS..
<::|515_AXIS

Instruction-side Data-side
bus interface
Memory Management Unit (MMU)
N
v ACE I ﬁ> | ms |
2 =t r o |
(@] O
a | a
3 N 3
Program v ALU
Counter A)
Special |\ Shift
@ I'E:grigggg N Barrel Shift
Branch v Multiplier
Target 7N
Cache Divider
N
Bus — FPU Bus
IF Instruction F
CE— > [M [| 2
Instruction
Decode |
=\ Register File
—/ 32X32b
N
Optional MicroBlaze feature —
Figure 2-1: MicroBlaze Core Block Diagram

MicroBlaze Processor Reference Guide

www.Xilinx.com

UG984 (v2016.4) November 30, 2016

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=7

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Features

The MicroBlaze soft core processor is highly configurable, allowing you to select a specific
set of features required by your design.

The fixed feature set of the processor includes:

« Thirty-two 32-bit general purpose registers

« 32-bit instruction word with three operands and two addressing modes

« Default 32-bit address bus, extensible to 64 bits on the data side

» Single issue pipeline

In addition to these fixed features, the MicroBlaze processor is parameterized to allow
selective enabling of additional functionality. Older (deprecated) versions of MicroBlaze

support a subset of the optional features described in this manual. Only the latest
(preferred) version of MicroBlaze (v10.0) supports all options.

Xilinx recommends that all new designs use the latest preferred version of the MicroBlaze
processor.

Table 2-1, page 8 provides an overview of the configurable features by MicroBlaze versions.

Table 2-1: Configurable Feature Overview by MicroBlaze Version

MicroBlaze versions
Feature

v9.2 v9.3 v9.4 v9.5 v9.6 v10.0
Version Status deprecated | deprecated | deprecated | deprecated | deprecated | preferred
Processor pipeline depth 3/5 3/5 3/5 3/5 3/5 3/5/8
Local Memory Bus (LMB) data side option option option option option option
interface
Local Memory Bus (LMB) instruction option option option option option option
side interface
Hardware barrel shifter option option option option option option
Hardware divider option option option option option option
Hardware debug logic option option option option option option
Stream link interfaces 0-16 AXI 0-16 AXI 0-16 AXI 0-16 AXI 0-16 AXI 0-16 AXI
Machine status set and clear option option option option option option
instructions
Cache line word length 4,8 4,8 4,8 4, 8,16 4, 8,16 4, 8,16
Hardware exception support option option option option option option
Pattern compare instructions option option option option option option
Floating point unit (FPU) option option option option option option
Disable hardware multiplier! option option option option option option

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 8
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=8

& XILINX

ALL PROGRAMMABLE

Chapter 2: MicroBlaze Architecture

Table 2-1: Configurable Feature Overview by MicroBlaze Version
MicroBlaze versions
Feature
v9.2 v9.3 v9.4 v9.5 v9.6 v10.0

Hardware debug readable ESR and Yes Yes Yes Yes Yes Yes
EAR

Processor Version Register (PVR) option option option option option option
Area or speed optimized option option option option option option
Hardware multiplier 64-bit result option option option option option option
LUT cache memory option option option option option option
Floating point conversion and square option option option option option option
root instructions

Memory Management Unit (MMU) option option option option option option
Extended stream instructions option option option option option option
Use Cache Interface for All I-Cache option option option option option option
Memory Accesses

Use Cache Interface for All D-Cache option option option option option option
Memory Accesses

Use Write-back Caching Policy for D- option option option option option option
Cache

Branch Target Cache (BTC) option option option option option option
Streams for I-Cache option option option option option option
Victim handling for I-Cache option option option option option option
Victim handling for D-Cache option option option option option option
AXI4 (M_AXI_DP) data side interface option option option option option option
AXI4 (M_AXI_IP) instruction side option option option option option option
interface

AXI4 (M_AXI_DC) protocol for D- option option option option option option
Cache

AXI4 (M_AXI_IC) protocol for I-Cache option option option option option option
AXI4 protocol for stream accesses option option option option option option
Fault tolerant features option option option option option option
Force distributed RAM for cache tags option option option option option option
Configurable cache data widths option option option option option option
Count Leading Zeros instruction option option option option option option
Memory Barrier instruction Yes Yes Yes Yes Yes Yes
Stack overflow and underflow option option option option option option
detection

Allow stream instructions in user option option option option option option
mode

Lockstep support option option option option option option
Configurable use of FPGA primitives option option option option option option

MicroBlaze Processor Reference Guide

UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 9

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=9

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-1: Configurable Feature Overview by MicroBlaze Version
MicroBlaze versions
Feature

v9.2 v9.3 v9.4 v9.5 v9.6 v10.0
Low-latency interrupt mode option option option option option option
Swap instructions option option option option option option
Sleep mode and sleep instruction Yes Yes Yes Yes Yes Yes
Relocatable base vectors option option option option option option
ACE (M_ACE_DC) protocol for D- option option option option option option
Cache
ACE (M_ACE_IC) protocol for I-Cache option option option option option option
Extended debug: performance option option option option option
monitoring, program trace, non-
intrusive profiling
Reset mode: enter sleep or debug option option option option option
halt at reset
Extended debug: external program option option option option
trace
Extended data addressing option option
Pipeline pause functionality Yes Yes
Hibernate and suspend instructions Yes Yes
Non-secure mode Yes Yes
Bit field instructions? option
Parallel debug interface option

1. Used for saving DSP48E primitives.

2. Bit field instructions are available when C_USE_BARREL = 1.

MicroBlaze Processor Reference Guide

UG984 (v2016.4) November 30, 2016

www.Xilinx.com

10

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=10

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Data Types and Endianness

MicroBlaze uses Big-Endian or Little-Endian format to represent data, depending on the
selected endianness. The parameter C_ENDIANNESS is fixed to 1 (little-endian).

The hardware supported data types for MicroBlaze are word, half word, and byte. When
using the reversed load and store instructions LHUR, LWR, SHR and SWR, the bytes in the
data are reversed, as indicated by the byte-reversed order.

The bit and byte organization for each type is shown in the following tables.

Table 2-2: Word Data Type

Big-Endian Byte Address n n+1 n+2 n+3
Big-Endian Byte Significance MSByte LSByte
Big-Endian Byte Order n n+1 n+2 n+3
Big-Endian Byte-Reversed Order | n+3 n+2 n+1 n
Little-Endian Byte Address n+3 n+2 n+1 n
Little-Endian Byte Significance MSByte LSByte
Little-Endian Byte Order n+3 n+2 n+1 n
Little-Endian Byte-Reversed Order | n n+1 n+2 n+3
Bit Label 0 31

Bit Significance MSBit LSBit

Table 2-3: Half Word Data Type

Big-Endian Byte Address n n+1
Big-Endian Byte Significance MSByte | LSByte
Big-Endian Byte Order n n+1
Big-Endian Byte-Reversed Order | n+1 n
Little-Endian Byte Address n+1 n

Little-Endian Byte Significance MSByte | LSByte

Little-Endian Byte Order n+1 n
Little-Endian Byte-Reversed Order | n n+1
Bit Label 0 15
Bit Significance MSBit LSBit

Table 2-4: Byte Data Type

Byte Address n
Bit Label 0 7
Bit Significance MSBit LSBit

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 11
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=11

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE-

Instructions

Instruction Summary

All MicroBlaze instructions are 32 bits and are defined as either Type A or Type B. Type A
instructions have up to two source register operands and one destination register operand.
Type B instructions have one source register and a 16-bit immediate operand (which can be
extended to 32 bits by preceding the Type B instruction with an imm instruction). Type B
instructions have a single destination register operand. Instructions are provided in the
following functional categories: arithmetic, logical, branch, load/store, and special.

Table 2-6 lists the MicroBlaze instruction set. Refer to Chapter 5, MicroBlaze Instruction Set
Architecturefor more information on these instructions. Table 2-5 describes the instruction
set nomenclature used in the semantics of each instruction.

Table 2-5: Instruction Set Nomenclature

Symbol Description
Ra RO - R31, General Purpose Register, source operand a
Rb RO - R31, General Purpose Register, source operand b
Rd RO - R31, General Purpose Register, destination operand
SPRI[x] Special Purpose Register number x
MSR Machine Status Register = SPR[1]
ESR Exception Status Register = SPR[5]
EAR Exception Address Register = SPR[3]
FSR Floating Point Unit Status Register = SPR[7]
PVRx Processor Version Register, where x is the register number = SPR[8192 + x]
BTR Branch Target Register = SPR[11]
PC Execute stage Program Counter = SPR[0]
x[y] Bit y of register x
x[y:z] Bit range y to z of register x
X Bit inverted value of register x
Imm 16 bit immediate value
Immx x bit immediate value
FSLx 4 bit AXI4-Stream port designator, where x is the port number
C Carry flag, MSR[29]
Sa Special Purpose Register, source operand
Sd Special Purpose Register, destination operand
s(x) Sign extend argument x to 32-bit value
*Addr Memory contents at location Addr (data-size aligned)

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 12

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=12

& XILINX

ALL PROGRAMMABLE-

Chapter 2:

MicroBlaze Architecture

Table 2-5: Instruction Set Nomenclature (Cont’d)
Symbol Description

= Assignment operator

= Equality comparison

= Inequality comparison

> Greater than comparison

>= Greater than or equal comparison
< Less than comparison

<= Less than or equal comparison

+ Arithmetic add

* Arithmetic multiply

/ Arithmetic divide

>> x Bit shift right x bits

<< x Bit shift left x bits

and Logic AND

or Logic OR

xor Logic exclusive OR

opl if cond else op2

Perform op1 if condition cond is true, else perform op2

&

Concatenate. For example “0000100 & Imm7” is the concatenation of the fixed field

“0000100" and a 7 bit immediate value.

signed Operation performed on signed integer data type. All arithmetic operations are performed
on signed word operands, unless otherwise specified
unsigned Operation performed on unsigned integer data type
float Operation performed on floating point data type
clz(r) Count leading zeros
Table 2-6: MicroBlaze Instruction Set Summary
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
ADD Rd,Ra,Rb 000000 Rd Ra Rb 00000000000 | Rd := Rb + Ra
RSUB Rd,Ra,Rb 000001 Rd Ra Rb | 00000000000 | Rd:=Rb + Ra + 1
ADDC Rd,Ra,Rb 000010 Rd Ra Rb | 00000000000 | Rd := Rb + Ra + C
RSUBC Rd,Ra,Rb 000011 Rd Ra Rb | 00000000000 | Rd := Rb + Ra + C
ADDK Rd,Ra,Rb 000100 Rd Ra Rb | 00000000000 | Rd := Rb + Ra
RSUBK Rd,Ra,Rb 000101 Rd Ra Rb | 00000000000 | Rd := Rb + Ra + 1
CMP Rd,Ra,Rb 000101 Rd Ra Rb | 00000000001 | Rd:= Rb + Ra + 1
Rd[0] := 0 if (Rb >= Ra) else
Rd[0]:= 1

MicroBlaze Processor Reference Guide

www.Xilinx.com

UG984 (v2016.4) November 30, 2016

l Send Feedback I

13

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=13

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE-

Table 2-6: MicroBlaze Instruction Set Summary (Cont’d)

Type A 0-5 6-10 | 11-15|16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
CMPU Rd,Ra,Rb 000101 Rd Ra Rb | 00000000011 | Rd:= Rb + Ra + 1 (unsigned)
Rd[0] := O if (Rb >= Ra, unsigned) else
Rd[0]:=1
ADDKC Rd,Ra,Rb 000110 Rd Ra Rb | 00000000000 | Rd := Rb + Ra + C
RSUBKC Rd,Ra,Rb 000111 Rd Ra Rb | 00000000000 | Rd := Rb + Ra + C
ADDI Rd,Ra,Imm 001000 Rd Ra Imm Rd := s(Imm) + Ra
RSUBI Rd,Ra,Imm 001001 Rd Ra Imm Rd := s(Imm) + Ra+1
ADDIC Rd,Ra,Imm 001010 Rd Ra Imm Rd := s(Imm) + Ra + C
RSUBIC Rd,Ra,Imm 001011 Rd Ra Imm Rd := s(Imm) + Ra+ C
ADDIK Rd,Ra,Imm 001100 Rd Ra Imm Rd := s(Imm) + Ra
RSUBIK Rd,Ra,Imm 001101 Rd Ra Imm Rd := s(Imm) + Ra+1
ADDIKC Rd,Ra,Imm 001110 Rd Ra Imm Rd := s(Imm) + Ra + C
RSUBIKC Rd,Ra,Imm 001111 Rd Ra Imm Rd := s(Imm) + Ra+ C
MUL Rd,Ra,Rb 010000 Rd Ra Rb | 00000000000 | Rd := Ra * Rb
MULH Rd,Ra,Rb 010000 Rd Ra Rb 00000000001 | Rd := (Ra * Rb) >> 32 (signed)
MULHU Rd,Ra,Rb 010000 Rd Ra Rb 00000000011 | Rd := (Ra * Rb) >> 32 (unsigned)
MULHSU Rd,Ra,Rb 010000 Rd Ra Rb 00000000010 | Rd := (Ra, signed * Rb, unsigned) >> 32
(signed)
BSRL Rd,Ra,Rb 010001 Rd Ra Rb 00000000000 | Rd := 0 & (Ra >> Rb)
BSRA Rd,Ra,Rb 010001 Rd Ra Rb 01000000000 | Rd := s(Ra >> Rb)
BSLL Rd,Ra,Rb 010001 Rd Ra Rb 10000000000 | Rd := (Ra << Rb) & 0
IDIV Rd,Ra,Rb 010010 Rd Ra Rb 00000000000 | Rd := Rb/Ra
IDIVU Rd,Ra,Rb 010010 Rd Ra Rb | 00000000010 | Rd := Rb/Ra, unsigned
TNEAGETD Rd,Rb 010011 Rd 00000 Rb ONOTAE Rd := FSL Rb[28:31] (data read)
00000 MSRI[FSL] := 1 if (FSL_S_Control = 1)
MSR[C] := not FSL_S_Exists if N = 1
TNAPUTD Ra,Rb 010011 | 00000 Ra Rb ONOTAO FSL Rb[28:31] := Ra (data write)
00000 MSR[C] := FSLLM_Full if N = 1
TNECAGETD Rd,Rb 010011 Rd 00000 Rb ON1TAE Rd := FSL Rb[28:31] (control read)
00000 MSR[FSL] := 1 if (FSL_S_Control = 0)
MSR[C] := not FSL_S_Exists if N = 1
TNCAPUTD Ra,Rb 010011 | 00000 Ra Rb ON1TAO FSL Rb[28:31] := Ra (control write)
00000 MSR[C] := FSL_LM_Full if N = 1
FADD Rd,Ra,Rb 010110 Rd Ra Rb 00000000000 | Rd := Rb+Ra, float!
FRSUB Rd,Ra,Rb 010110 Rd Ra Rb | 00010000000 | Rd := Rb-Ra, float!
FMUL Rd,Ra,Rb 010110 Rd Ra Rb | 00100000000 | Rd := Rb*Ra, float!
FDIV Rd,Ra,Rb 010110 Rd Ra Rb | 00110000000 | Rd := Rb/Ra, float!

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 14
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=14

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-6: MicroBlaze Instruction Set Summary (Cont’d)
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
FCMP.UN Rd,Ra,Rb 010110 Rd Ra Rb | 01000000000 | Rd:= 1if (Rb = NaN or Ra = NaN, floatl)
else
Rd:=0
FCMP.LT Rd,Ra,Rb 010110 Rd Ra Rb 01000010000 | Rd := 1 if (Rb < Ra, floatl) else
Rd:=0
FCMP.EQ Rd,Ra,Rb 010110 Rd Ra Rb 01000100000 | Rd := 1 if (Rb = Ra, floatl) else
Rd:=0
FCMP.LE Rd,Ra,Rb 010110 Rd Ra Rb 01000110000 | Rd := 1 if (Rb <= Ra, floatl) else
Rd:=0
FCMP.GT Rd,Ra,Rb 010110 Rd Ra Rb | 01001000000 | Rd := 1 if (Rb > Ra, floatl) else
Rd:=0
FCMP.NE Rd,Ra,Rb 010110 Rd Ra Rb | 01001010000 | Rd := 1 if (Rb != Ra, floatl) else
Rd:=0
FCMP.GE Rd,Ra,Rb 010110 Rd Ra Rb | 01001100000 | Rd := 1 if (Rb >= Ra, floatl) else
Rd:=0
FLT Rd,Ra 010110 Rd Ra 0 01010000000 | Rd := float (Ra)?
FINT Rd,Ra 010110 Rd Ra 0 01100000000 | Rd := int (Ra)l
FSQRT Rd,Ra 010110 Rd Ra 0 01110000000 | Rd := sqgrt (Ra)?!
MULI Rd,Ra,Imm 011000 Rd Ra Imm Rd := Ra * s(Imm)
BSRLI Rd,Ra,Imm 011001 Rd Ra 00000000000 & Imm5 | Rd : = 0 & (Ra >> Imm5)
BSRAI Rd,Ra,Imm 011001 Rd Ra 00000010000 & Imm5 | Rd := s(Ra >> Imm5)
BSLLI Rd,Ra,Imm 011001 Rd Ra 00000100000 & Imm5 | Rd := (Ra << Imm5) & 0
BSEFI Rd,Ra, 011001 Rd Ra 01000 & Rd[0:31-Immy] := 0
Immyy,Immg Immy & 0 & Immg | Rd[32-Immyy:31] := (Ra >> Immy)
BSIFI Rd,Ra, 011001 Rd Ra 10000 & M := (Oxffffffff << (Immyy, + 1)) xor
Width,Immg Immy & 0 & Immg | (Oxffffffff << Immg)
Rd := ((Ra << Immyg) and M) xor
(Rd and M)
Immyy := Immg + Width - 1
TNEAGET Rd,FSLx 011011 Rd 00000 | ONOTAEO00000 & FSLx | Rd := FSLx (data read, blocking if N = 0)
MSR[FSL] := 1 if (FSLx_S_Control = 1)
MSR[C] := not FSLx_S_Exists if N = 1
TNAPUT Ra,FSLx 011011 | 00000 Ra 1NOTA0000000 & FSLx | FSLx := Ra (data write, block if N = 0)
MSRI[C] := FSLx_M_Full if N = 1
TNECAGET Rd,FSLx 011011 Rd 00000 | ON1TAEO00000 & FSLx | Rd := FSLx (control read, block if N = 0)
MSRI[FSL] := 1 if (FSLx_S_Control = 0)
MSRI[C] := not FSLx_S_Exists if N = 1
TNCAPUT Ra,FSLx 011011 | 00000 Ra 1N1TA0000000 & FSLx | FSLx := Ra (control write, block if N = 0)
MSRI[C] := FSLx_M_Full if N = 1
OR Rd,Ra,Rb 100000 Rd Ra Rb | 00000000000 | Rd := Ra or Rb

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

15

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=15

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-6: MicroBlaze Instruction Set Summary (Cont’d)
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31

PCMPBF Rd,Ra,Rb 100000 Rd Ra Rb 10000000000 | Rd := 1 if (Rb[0:7] = Ra[0:7]) else
Rd := 2 if (Rb[8:15] = Ra[8:15]) else
Rd := 3 if (Rb[16:23] = Ra[16:23]) else
Rd := 4 if (Rb[24:31] = Ra[24:31]) else
Rd:=0

AND Rd,Ra,Rb 100001 Rd Ra Rb 00000000000 | Rd := Ra and Rb

XOR Rd,Ra,Rb 100010 Rd Ra Rb | 00000000000 | Rd := Ra xor Rb

PCMPEQ Rd,Ra,Rb 100010 Rd Ra Rb 10000000000 | Rd := 1 if (Rb = Ra) else
Rd:=0

ANDN Rd,Ra,Rb 100011 Rd Ra Rb | 00000000000 | Rd := Ra and Rb

PCMPNE Rd,Ra,Rb 100011 Rd Ra Rb | 10000000000 | Rd := 1 if (Rb != Ra) else
Rd:=0

SRA Rd,Ra 100100 Rd Ra 0000000000000001 Rd := s(Ra >> 1)
C:= Ra[31]

SRC Rd,Ra 100100 Rd Ra 0000000000100001 Rd:=C& (Ra>>1)
C:= Ra[31]

SRL Rd,Ra 100100 Rd Ra 0000000001000001 Rd:=0& (Ra>>1)
C:=Ra[31]

SEXT8 Rd,Ra 100100 | Rd Ra 0000000001100000 | Rd := s(Ra[24:31])

SEXT16 Rd,Ra 100100 Rd Ra 0000000001100001 Rd := s(Ra[16:31])

CLZ Rd, Ra 100100 Rd Ra 0000000011100000 Rd = clz(Ra)

SWAPB Rd, Ra 100100 Rd Ra 0000000111100000 Rd = (Ra)[24:31, 16:23, 8:15, 0:7]

SWAPH Rd, Ra 100100 | Rd Ra 0000000111100010 | Rd = (Ra)[16:31, 0:15]

WIC Ra,Rb 100100 | 00000 Ra Rb 00001101000 | ICache_Line[Ra >> 4].Tag := O if
(C_ICACHE_LINE_LEN = 4)
ICache_Line[Ra >> 5].Tag := 0 if
(C_ICACHE_LINE_LEN = 8)
ICache_Line[Ra >> 6].Tag := 0 if
(C_ICACHE_LINE_LEN = 16)

WDC Ra,Rb 100100 | 00000 | Ra Rb | 00001100100 | Cache line is cleared, discarding stored
data.
DCache_Line[Ra >> 4].Tag := O if
(C_DCACHE_LINE_LEN = 4)
DCache_Line[Ra >> 5].Tag := 0 if
(C_DCACHE_LINE_LEN = 8)
DCache_Line[Ra >> 6].Tag := 0 if
(C_DCACHE_LINE_LEN = 16)

WDC.FLUSH Ra,Rb 100100 | 00000 Ra Rb 00001110100 | Cache line is flushed, writing stored
data to memory, and then cleared. Used
when C_DCACHE_USE_WRITEBACK = 1.

MicroBlaze Processor Reference Guide

UG984 (v2016.4) November 30, 2016

www.Xilinx.com

16

| Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=16

& XILINX

ALL PROGRAMMABLE

Table 2-6:

MicroBlaze Instruction Set Summary (Cont’d)

Chapter 2: MicroBlaze Architecture

Type A 0-5 6-10

11-15

16-20

21-31

Type B 0-5 6-10

11-15

16-31

Semantics

WDC.CLEAR Ra,Rb 100100 | 00000

Ra

Rb

00001100110

Cache line with matching address is
cleared, discarding stored data. Used
when C_DCACHE_USE_WRITEBACK = 1.

WDC.CLEAR.EA Ra,Rb | 100100 | 00000

Ra

Rb

00011100110

Cache line with matching extended
address Ra & Rb is cleared. Used when
C_DCACHE_USE_WRITEBACK = 1.

MTS Sd,Ra 100101 | 00000

Ra

11 & Sd

SPR[Sd] := Ra, where:

- SPR[0x0001] is MSR
SPR[0x0007] is FSR
SPR[0x0800] is SLR
SPR[0x0802] is SHR
SPR[0x1000] is PID
SPR[0x1001] is ZPR
SPR[0x1002] is TLBX
SPR[0x1003] is TLBLO
SPR[0x1004] is TLBHI
SPR[0x1005] is TLBSX

MFS Rd,Sa 100101 Rd

00000

10 & Sa

Rd := SPR[Sa], where:

- SPR[0x0000] is PC
SPR[0x0001] is MSR
SPR[0x0003] is EAR[31:0]
SPR[0x0005] is ESR
SPR[0x0007] is FSR
SPR[0x000B] is BTR
SPR[0x000D] is EDR
SPR[0x0800] is SLR
SPR[0x0802] is SHR
SPR[0x1000] is PID
SPR[0x1001] is ZPR
SPR[0x1002] is TLBX
SPR[0x1003] is TLBLO
SPR[0x1004] is TLBHI
SPR[0x2000 to 200B] is PVR[0 to 12]

MFSE Rd,Sa 100101 Rd

01000

10 & Sa

Rd := SPR[Sa][63:32], where:
SPR[0x0003] is EAR[63:32]
SPR[0x2008] is PVR[8][63:32]
SPR[0x2009] is PVR[9][63:32]

MSRCLR Rd,Imm 100101 Rd

00001

00 & Imm14

Rd := MSR
MSR := MSR and Imm14

MSRSET Rd,Imm 100101 Rd

00000

00 & Imm14

Rd := MSR
MSR := MSR or Imm14

BR Rb 100110 | 00000

00000

Rb

00000000000

PC:=PC +Rb

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

17

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=17

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-6: MicroBlaze Instruction Set Summary (Cont’d)
Type A 0-5 6-10 | 11-15|16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
BRD Rb 100110 | 00000 | 10000 Rb 00000000000 | PC:= PC + Rb
BRLD Rd,Rb 100110 Rd 10100 Rb | 00000000000 | PC := PC + Rb
Rd := PC
BRA Rb 100110 | 00000 | 01000 Rb 00000000000 | PC:= Rb
BRAD Rb 100110 | 00000 | 11000 Rb 00000000000 | PC:= Rb
BRALD Rd,Rb 100110 Rd 11100 Rb | 00000000000 | PC := Rb
Rd := PC
BRK Rd,Rb 100110 Rd 01100 Rb 00000000000 | PC:= Rb
Rd := PC
MSR[BIP] := 1
BEQ Ra,Rb 100111 | 00000 Ra Rb | 00000000000 | PC:=PC + RbifRa=0
BNE Ra,Rb 100111 | 00001 Ra Rb | 00000000000 | PC:=PC + RbifRa!=0
BLT Ra,Rb 100111 | 00010 Ra Rb 00000000000 | PC:=PC + RbifRa <0
BLE Ra,Rb 100111 | 00011 Ra Rb 00000000000 | PC:=PC + RbifRa <=0
BGT Ra,Rb 100111 | 00100 Ra Rb | 00000000000 | PC:=PC + RbifRa >0
BGE Ra,Rb 100111 | 00101 Ra Rb | 00000000000 | PC:=PC +RbifRa>=0
BEQD Ra,Rb 100111 | 10000 Ra Rb | 00000000000 | PC:=PC +RbifRa=0
BNED Ra,Rb 100111 | 10001 Ra Rb 00000000000 | PC:=PC + RbifRa!=0
BLTD Ra,Rb 100111 | 10010 Ra Rb 00000000000 | PC:=PC + RbifRa <0
BLED Ra,Rb 100111 | 10011 Ra Rb 00000000000 | PC:=PC + RbifRa <=0
BGTD Ra,Rb 100111 | 10100 Ra Rb 00000000000 | PC:=PC +RbifRa>0
BGED Ra,Rb 100111 | 10101 Ra Rb 00000000000 | PC:=PC + RbifRa>=0
ORI Rd,Ra,Imm 101000 Rd Ra Imm Rd := Ra or s(Imm)
ANDI Rd,Ra,Imm 101001 Rd Ra Imm Rd := Ra and s(Imm)
XORI Rd,Ra,Imm 101010 Rd Ra Imm Rd := Ra xor s(Imm)
ANDNI Rd,Ra,Imm 101011 Rd Ra Imm Rd := Ra and s(Imm)
IMM Imm 101100 | 00000 | 00000 Imm Imm[0:15] := Imm
RTSD Ra,Imm 101101 | 10000 Ra Imm PC := Ra + s(Imm)
RTID Ra,Imm 101101 | 10001 Ra Imm PC := Ra + s(Imm)
MSR[IE] := 1
RTBD Ra,Imm 101101 | 10010 Ra Imm PC := Ra + s(Imm)
MSRI[BIP] := 0
RTED Ra,Imm 101101 | 10100 Ra Imm PC:= Ra + s(Imm)
MSRI[EE] := 1, MSR[EIP] := 0
ESR:=0
BRI Imm 101110 | 00000 | 00000 Imm PC:= PC + s(Imm)

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

18

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=18

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-6: MicroBlaze Instruction Set Summary (Cont’d)
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31

MBAR Imm 101110 | Imm | 00010 | 0000000000000100 | PC:= PC + 4; Wait for memory accesses.
BRID Imm 101110 | 00000 | 10000 Imm PC := PC + s(Imm)
BRLID Rd,Imm 101110 Rd 10100 Imm PC := PC + s(Imm)

Rd := PC
BRAI Imm 101110 | 00000 | 01000 Imm PC := s(Imm)
BRAID Imm 101110 | 00000 | 11000 Imm PC := s(Imm)
BRALID Rd,Imm 101110 Rd 11100 Imm PC := s(Imm)

Rd := PC
BRKI Rd,Imm 101110 Rd 01100 Imm PC := s(Imm)

Rd := PC

MSRI[BIP] := 1
BEQI Ra,Imm 101111 | 00000 Ra Imm PC := PC + s(Imm) if Ra =
BNEI Ra,Imm 101111 | 00001 Ra Imm PC:= PC + sImm) ifRa!=0
BLTI Ra,Imm 101111 | 00010 Ra Imm PC := PC + s(Imm) if Ra < 0
BLEI Ra,Imm 101111 | 00011 Ra Imm PC := PC + s(Imm) if Ra <=0
BGTI Ra,Imm 101111 | 00100 Ra Imm PC := PC + s(Imm) if Ra > 0
BGEI Ra,Imm 101111 | 00101 Ra Imm PC := PC + s(Imm) if Ra >=0
BEQID Ra,Imm 101111 | 10000 Ra Imm PC := PC + s(Imm) if Ra =
BNEID Ra,Imm 101111 | 10001 Ra Imm PC:= PC + s(Imm) if Ra!=0
BLTID Ra,Imm 101111 | 10010 Ra Imm PC := PC + s(Imm) if Ra < 0
BLEID Ra,Imm 101111 | 10011 Ra Imm PC := PC + s(Imm) if Ra <=0
BGTID Ra,Imm 101111 | 10100 Ra Imm PC := PC + s(Imm) if Ra > 0
BGEID Ra,Imm 101111 | 10101 Ra Imm PC:= PC + s(Imm) if Ra>=10
LBU Rd,Ra,Rb 110000 Rd Ra Rb | 00000000000 | Addr := Ra + Rb
LBUR Rd,Ra,Rb 01000000000 | Rd[0:23] := 0

Rd[24:31] := *Addr[0:7]
LBUEA Rd,Ra,Rb 110000 Rd Ra Rb | 00010000000 | Addr := Ra & Rb

Rd[0:23]:=0

Rd[24:31] := *Addr[0:7]
LHU Rd,Ra,Rb 110001 Rd Ra Rb | 00000000000 | Addr := Ra + Rb
LHUR Rd,Ra,Rb 01000000000 | Rd[0:15] := 0

Rd[16:31] := *Addr[0:15]
LHUEA Rd,Ra,Rb 110001 Rd Ra Rb 00010000000 | Addr := Ra & Rb

Rd[0:15]:= 0

Rd[16:31] := *Addr[0:15]
LW Rd,Ra,Rb 110010 Rd Ra Rb | 00000000000 | Addr := Ra + Rb
LWR Rd,Ra,Rb 01000000000 | Rd := *Addr

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

19

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=19

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-6: MicroBlaze Instruction Set Summary (Cont’d)
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
LWX Rd,Ra,Rb 110010 Rd Ra Rb 10000000000 | Addr := Ra + Rb
Rd := *Addr
Reservation := 1
LWEA Rd,Ra,Rb 110010 Rd Ra Rb | 00010000000 | Addr := Ra & Rb
Rd := *Addr
SB Rd,Ra,Rb 110100 Rd Ra Rb 00000000000 | Addr:= Ra + Rb
SBR Rd,Ra,Rb 01000000000 | *Addr[0:8] := Rd[24:31]
SBEA Rd,Ra,Rb 110100 Rd Ra Rb | 00010000000 | Addr := Ra & Rb
*Addr[0:8] := Rd[24:31]
SH Rd,Ra,Rb 110101 Rd Ra Rb 00000000000 | Addr:= Ra + Rb
SHR Rd,Ra,Rb 01000000000 | *Addr[0:16] := Rd[16:31]
SHEA Rd,Ra,Rb 110101 Rd Ra Rb | 00010000000 | Addr := Ra & Rb
*Addr[0:16] := Rd[16:31]
SW Rd,Ra,Rb 110110 Rd Ra Rb | 00000000000 | Addr := Ra + Rb
SWR Rd,Ra,Rb 01000000000 | *Addr := Rd
SWX Rd,Ra,Rb 110110 Rd Ra Rb | 10000000000 | Addr := Ra + Rb
*Addr := Rd if Reservation = 1
Reservation := 0
SWEA Rd,Ra,Rb 110110 Rd Ra Rb | 00010000000 | Addr := Ra & Rb
*Addr := Rd
LBUI Rd,Ra,Imm 111000 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:23]:= 0
Rd[24:31] := *Addr[0:7]
LHUI Rd,Ra,Imm 111001 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:15]:= 0
Rd[16:31] := *Addr[0:15]
LWI Rd,Ra,Imm 111010 Rd Ra Imm Addr := Ra + s(Imm)
Rd := *Addr
SBI Rd,Ra,Imm 111100 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:7] := Rd[24:31]
SHI Rd,Ra,Imm 111101 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:15] := Rd[16:31]
SWI Rd,Ra,Imm 111110 Rd Ra Imm Addr := Ra + s(Imm)
*Addr := Rd

1. Due to the many different corner cases involved in floating point arithmetic, only the normal behavior is described. A full
description of the behavior can be found in Chapter 5, “MicroBlaze Instruction Set Architecture.”

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

20

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=20

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Semaphore Synchronization

The LWX and SWX. instructions are used to implement common semaphore operations,
including test and set, compare and swap, exchange memory, and fetch and add. They are
also used to implement spinlocks.

These instructions are typically used by system programs and are called by application
programs as needed. Generally, a program uses LWX to load a semaphore from memory,
causing the reservation to be set (the processor maintains the reservation internally). The
program can compute a result based on the semaphore value and conditionally store the
result back to the same memory location using the SWX instruction. The conditional store
is performed based on the existence of the reservation established by the preceding LWX
instruction. If the reservation exists when the store is executed, the store is performed and
MSR[C] is cleared to 0. If the reservation does not exist when the store is executed, the
target memory location is not modified and MSR[C] is set to 1.

If the store is successful, the sequence of instructions from the semaphore load to the
semaphore store appear to be executed atomically—no other device modified the
semaphore location between the read and the update. Other devices can read from the
semaphore location during the operation. For a semaphore operation to work properly, the
LWX instruction must be paired with an SWX instruction, and both must specify identical
addresses. The reservation granularity in MicroBlaze is a word. For both instructions, the
address must be word aligned. No unaligned exceptions are generated for these
instructions.

The conditional store is always attempted when a reservation exists, even if the store
address does not match the load address that set the reservation.

Only one reservation can be maintained at a time. The address associated with the
reservation can be changed by executing a subsequent LWX instruction. The conditional
store is performed based upon the reservation established by the last LWX instruction
executed. Executing an SWX instruction always clears a reservation held by the processor,
whether the address matches that established by the LWX or not.

Reset, interrupts, exceptions, and breaks (including the BRK and BRKI instructions) all clear
the reservation.

The following provides general guidelines for using the LWX and SWX instructions:

« The LWX and SWX instructions should be paired and use the same address.

* An unpaired SWX instruction to an arbitrary address can be used to clear any
reservation held by the processor.

« A conditional sequence begins with an LWX instruction. It can be followed by memory
accesses and/or computations on the loaded value. The sequence ends with an SWX
instruction. In most cases, failure of the SWX instruction should cause a branch back to
the LWX for a repeated attempt.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 21
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=21

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

« An LWX instruction can be left unpaired when executing certain synchronization
primitives if the value loaded by the LWX is not zero. An implementation of Test and Set
exemplifies this:

loop: 1lwx r5,r3,r0 ; load and reserve
bnei r5,next ; branch if not equal to zero
addik r5,r5,1 ; ilncrement value
SWX r5,r3,r0 ; try to store non-zero value
addic r5,r0,0 ; check reservation
bnei r5, loop ; loop if reservation lost
next:

« Performance can be improved by minimizing looping on an LWX instruction that fails to
return a desired value. Performance can also be improved by using an ordinary load
instruction to do the initial value check. An implementation of a spinlock exemplifies

this:

loop: 1w r5,r3,r0 ; load the word
bnei r5, loop ; loop back if word not equal to 0
1wx r5,r3,r0 ; try reserving again
bnei r5, loop ; likely that no branch is needed
addik r5,r5,1 ; increment value
SWX r5,r3,r0 ; try to store non-zero value
addic r5,r0,0 ; check reservation
bnei r5, loop ; loop if reservation lost

« Minimizing the looping on an LWX/SWX instruction pair increases the likelihood that
forward progress is made. The old value should be tested before attempting the store.
If the order is reversed (store before load), more SWX instructions are executed and
reservations are more likely to be lost between the LWX and SWX instructions.

Self-modifying Code

When using self-modifying code software must ensure that the modified instructions have
been written to memory prior to fetching them for execution. There are several aspects to
consider:

« The instructions to be modified may already have been fetched prior to modification:
into the instruction prefetch buffer,

into the instruction cache, if it is enabled,
into a stream buffer, if instruction cache stream buffers are used,

into the instruction cache, and then saved in a victim buffer, if victim buffers are
used.

To ensure that the modified code is always executed instead of the old unmodified
code, software must handle all these cases.

« If one or more of the instructions to be modified is a branch, and the branch target
cache is used, the branch target address may have been cached.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 22
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=22

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

To avoid using the cached branch target address, software must ensure that the branch
target cache is cleared prior to executing the modified code.

« The modified instructions may not have been written to memory prior to execution:

they may be en route to memory, in temporary storage in the interconnect or the
memory controller,

they may be stored in the data cache, if write-back cache is used,
they may be saved in a victim buffer, if write-back cache and victim buffers are used.

Software must ensure that the modified instructions have been written to memory
before being fetched by the processor.

The annotated code below shows how each of the above issues can be addressed. This code
assumes that both instruction cache and write-back data cache is used. If not, the
corresponding instructions can be omitted.

The following code exemplifies storing a modified instruction:

swi r5,r6,0 ; r5 = new instruction
; ¥6 = physical instruction address
wdc.flush r6,r0 ; flush write-back data cache line
mbar 1 ; ensure new instruction is written to memory
wic r7,r0 ; invalidate line, empty stream & victim buffers
; r7 = virtual instruction address
mbar 2 ; empty prefetch buffer, clear branch target cache

The physical and virtual addresses above are identical, unless MMU virtual mode is used. If
the MMU is enabled, the code sequences must be executed in real mode, since WIC and
WDC are privileged instructions. The first instruction after the code sequences above must
not be modified, since it may have been prefetched.

Registers

MicroBlaze has an orthogonal instruction set architecture. It has thirty-two 32-bit general
purpose registers and up to eighteen 32-bit special purpose registers, depending on
configured options.

General Purpose Registers

The thirty-two 32-bit General Purpose Registers are numbered RO through R31. The register
file is reset on bit stream download (reset value is 0x00000000). Figure 2-2 is a
representation of a General Purpose Register and Table 2-7 provides a description of each
register and the register reset value (if existing).

Note: The register file is not reset by the external reset inputs: Reset and Debug_Rst.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 23
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=23

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

T
RO-R31

Figure 2-2: R0O-R31

Table 2-7: General Purpose Registers (R0-R31)

Bits Name Description Reset Value

0:31 RO Always has a value of zero. Anything written to RO is 0x00000000
discarded

0:31 R1 through R13 | 32-bit general purpose registers -

0:31 R14 32-bit register used to store return addresses for -
interrupts.

0:31 R15 32-bit general purpose register. Recommended for storing -
return addresses for user vectors.

0:31 R16 32-bit register used to store return addresses for breaks. -

0:31 R17 If MicroBlaze is configured to support hardware -

exceptions, this register is loaded with the address of the
instruction following the instruction causing the HW
exception, except for exceptions in delay slots that use BTR
instead (see "Branch Target Register (BTR)"); if not, it is a
general purpose register.

0:31 R18 through R31 | R18 through R31 are 32-bit general purpose registers. -

Refer to Table 4-2 for software conventions on general purpose register usage.

Special Purpose Registers

Program Counter (PC)

The Program Counter (PC) is the 32-bit address of the execution instruction. It can be read
with an MFS instruction, but it cannot be written with an MTS instruction. When used with
the MFS instruction the PC register is specified by setting Sa = 0x0000. Figure 2-3 illustrates
the PC and Table 2-8 provides a description and reset value.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 24
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=24

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

T
PC

Figure 2-3: PC

Table 2-8: Program Counter (PC)

Bits Name Description Reset Value

0:31 PC Program Counter 0x00000000

Address of executing instruction, that is, “mfs r2 0" stores the
address of the mfs instruction itself in R2.

Machine Status Register (MSR)

The Machine Status Register contains control and status bits for the processor. It can be
read with an MFS instruction. When reading the MSR, bit 29 is replicated in bit 0 as the carry

copy. MSR can be written using either an MTS instruction or the dedicated MSRSET and
MSRCLR instructions.

When writing to the MSR using MSRSET or MSRCLR, the Carry bit takes effect immediately
and the remaining bits take effect one clock cycle later. When writing using MTS, all bits
take effect one clock cycle later. Any value written to bit 0 is discarded.

When used with an MTS or MFS instruction, the MSR is specified by setting Sx = 0x0001.
Figure 2-4 illustrates the MSR register and Table 2-9 provides the bit description and reset

values.
| 0 \ |17‘18|19‘20‘21‘22‘23‘ 24 ‘25‘26‘27|28‘29‘30‘31|
| | T 1
CcC RESERVED VMS VM UMS UM PVR EIP EE DCE DZO ICE FSL BIP C IE RES

Figure 2-4: MSR

Table 2-9: Machine Status Register (MSR)

Bits Name Description Reset Value

0 cC Arithmetic Carry Copy 0
Copy of the Arithmetic Carry (bit 29). CC is always the same as bit C.

1:16 Reserved

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 25
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=25

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-9: Machine Status Register (MSR) (Cont’d)

Bits Name Description Reset Value

17 VMS Virtual Protected Mode Save 0

Only available when configured with an MMU
(if C_USE_MMU > 1 and C_AREA_OPTIMIZED = 0 or 2)

Read/Write

18 VM Virtual Protected Mode 0

0 = MMU address translation and access protection disabled, with
C_USE_MMU = 3 (Virtual). Access protection disabled with
C_USE_MMU = 2 (Protection)

1 = MMU address translation and access protection enabled, with
C_USE_MMU = 3 (Virtual). Access protection enabled, with
C_USE_MMU = 2 (Protection).

Only available when configured with an MMU
(if c_usE_MMU > 1 and C_AREA_OPTIMIZED = 0 or 2)

Read/Write

19 UMS User Mode Save 0

Only available when configured with an MMU
(if C_USE_MMU > 0 and C_AREA_OPTIMIZED = 0 or 2)

Read/Write

20 UM User Mode 0
0 = Privileged Mode, all instructions are allowed
1 = User Mode, certain instructions are not allowed

Only available when configured with an MMU
(if C_USE_MMU > 0 and C_AREA_OPTIMIZED = 0 or 2)

Read/Write

21 PVR Processor Version Register exists Based on
0 = No Processor Version Register parameter
1 = Processor Version Register exists C_PVR
Read only

22 EIP Exception In Progress 0

0 = No hardware exception in progress
1 = Hardware exception in progress

Only available if configured with exception support
(C_*_EXCEPTION or C_USE_MMU > 0)

Read/Write

23 EE Exception Enable 0

0 = Hardware exceptions disabled!
1 = Hardware exceptions enabled

Only available if configured with exception support
(c_*_EXCEPTION Or C_USE_MMU > 0)

Read/Write

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 26
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=26

& XILINX

ALL PROGRAMMABLE

Chapter 2: MicroBlaze Architecture

Table 2-9: Machine Status Register (MSR) (Cont’d)

Bits

Name

Description

Reset Value

24

DCE

Data Cache Enable

0 = Data Cache disabled
1 = Data Cache enabled

Only available if configured to use data cache
(c_usE_DCACHE = 1)

Read/Write

0

25

DzO

Division by Zero or Division Overflow?

0 = No division by zero or division overflow has occurred
1 = Division by zero or division overflow has occurred

Only available if configured to use hardware divider
(c_use_p1v = 1)

Read/Write

26

ICE

Instruction Cache Enable

0 = Instruction Cache disabled
1 = Instruction Cache enabled

Only available if configured to use instruction cache
(C_USE_ICACHE = 1)

Read/Write

27

FSL

AXI4-Stream Error

0 = get or getd had no error
1 = get or getd control type mismatch

This bit is sticky, that is it is set by a get or getd instruction when a
control bit mismatch occurs. To clear it an MTS or MSRCLR instruction
must be used.

Only available if configured to use stream links
(C_FSL_LINKS > 0)

Read/Write

28

BIP

Break in Progress

0 = No Break in Progress

1 = Break in Progress

Break Sources can be software break instruction or hardware break
from Ext_Brk or Ext_NM_Brk pin.

Read/Write

29

Arithmetic Carry

0 = No Carry (Borrow)
1 = Carry (No Borrow)

Read/Write

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 27

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=27

& XILINX

ALL PROGRAMMABLE

Table 2-9: Machine Status Register (MSR) (Cont’d)

Chapter 2: MicroBlaze Architecture

Bits Name Description Reset Value
30 IE Interrupt Enable 0
0 = Interrupts disabled
1 = Interrupts enabled
Read/Write
31 - Reserved 0

1. The MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data TLB Miss Exception, Instruction
TLB Miss Exception) cannot be disabled, and are not affected by this bit.

2. This bit is only used for integer divide-by-zero or divide overflow signaling. There is a floating point equivalent in
the FSR. The DZO-bit flags divide by zero or divide overflow conditions regardless if the processor is configured
with exception handling or not.

Exception Address Register (EAR)

The Exception Address Register stores the full load/store address that caused the exception
for the following:

An unaligned access exception that specifies the unaligned access data address

An M_AXI_DP exception that specifies the failing AXI4 data access address

A data storage exception that specifies the (virtual) effective address accessed

An instruction storage exception that specifies the (virtual) effective address read

A data TLB miss exception that specifies the (virtual) effective address accessed

An instruction TLB miss exception that specifies the (virtual) effective address read

The contents of this register is undefined for all other exceptions. When read with the MFS
or MFSE instruction, the EAR is specified by setting Sa = 0x0003. The EAR register is
illustrated in Figure 2-5 and Table 2-10 provides bit descriptions and reset values.

With extended data addressing is enabled (parameter c_appr_s1zE > 32), the 32 least
significant bits of the register are read with the MFS instruction, and the most significant
bits with the MFSE instruction.

0 C_ADDR SIZE - 1 |
T
EAR
Figure 2-5: EAR
Table 2-10: Exception Address Register (EAR)
Bits Name Description Reset Value
0:C_ADDR_SIZE-1 | EAR Exception Address Register 0
MicroBlaze Processor Reference Guide www.xilinx.com

UG984 (v2016.4) November 30, 2016

l Send Feedback I 28

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=28

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Exception Status Register (ESR)

The Exception Status Register contains status bits for the processor. When read with the
MES instruction, the ESR is specified by setting Sa = 0x0005. The ESR register is illustrated
in Figure 2-6, Table 2-11 provides bit descriptions and reset values, and Table 2-12 provides
the Exception Specific Status (ESS).

119 /20 2627 31|
T T T T
RESERVED DS ESS EC
Figure 2-6: ESR
Table 2-11: Exception Status Register (ESR)
Bits Name Description Reset Value
0:18 Reserved
19 DS Delay Slot Exception. 0
0 = not caused by delay slot instruction
1 = caused by delay slot instruction
Read-only
20:26 ESS Exception Specific Status See Table 2-12
For details refer to Table 2-12.
Read-only
27:31 EC Exception Cause 0

00000 = Stream exception

00001 = Unaligned data access exception
00010 = Illegal op-code exception

00011 = Instruction bus error exception
00100 = Data bus error exception

00101 = Divide exception

00110 = Floating point unit exception
00111 = Privileged instruction exception
00111 = Stack protection violation exception
10000 = Data storage exception

10001 = Instruction storage exception
10010 = Data TLB miss exception

10011 = Instruction TLB miss exception

Read-only

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 29
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=29

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE-

Table 2-12: Exception Specific Status (ESS)

Ex(c:eptlon Bits Name Description Reset Value
ause

Unaligned 20 W Word Access Exception 0

Data Access 0 = unaligned halfword access

1 = unaligned word access

21 S Store Access Exception 0
0 = unaligned load access
1 = unaligned store access

22:26 Rx Source/Destination Register 0
General purpose register used as source (Store) or
destination (Load) in unaligned access

Illegal 20:26 Reserved 0
Instruction

Instruction | 20 ECC Exception caused by ILMB correctable or 0
bus error uncorrectable error
21:26 Reserved
Data bus 20 ECC Exception caused by DLMB correctable or
error uncorrectable error
21:26 Reserved
Divide 20 DEC Divide - Division exception cause

0 = Divide-By-Zero
1 = Division Overflow

21:26 Reserved

Floating 20:26 Reserved
point unit
Privileged 20:26 Reserved 0
instruction
Stack 20:26 Reserved 0
protection
violation
Stream 20:22 Reserved
23:26 FSL AXI4-Stream index that caused the exception
Data 20 DIZ Data storage - Zone protection
storage 0 = Did not occur
1 = Occurred
21 S Data storage - Store instruction 0
0 = Did not occur
1 = Occurred
22:26 Reserved
Instruction | 20 DIz Instruction storage - Zone protection
storage 0 = Did not occur
1 = Occurred
21:26 Reserved 0

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 30
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=30

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-12: Exception Specific Status (ESS) (Cont’d)

Exception . L.
Cause Bits Name Description Reset Value
Data TLB 20 Reserved
miss 21 S Data TLB miss - Store instruction
0 = Did not occur
1 = Occurred
22:26 Reserved 0
Instruction | 20:26 Reserved
TLB miss

Branch Target Register (BTR)

The Branch Target Register only exists if the MicroBlaze processor is configured to use
exceptions. The register stores the branch target address for all delay slot branch
instructions executed while MSR[EIP] = 0. If an exception is caused by an instruction in a
delay slot (that is, ESR[DS]=1), the exception handler should return execution to the address
stored in BTR instead of the normal exception return address stored in R17. When read with
the MFS instruction, the BTR is specified by setting Sa = 0x000B. The BTR register is
illustrated in Figure 2-7 and Table 2-13 provides bit descriptions and reset values.

[o 31

T
BTR

Figure 2-7: BTR

Table 2-13: Branch Target Register (BTR)

Bits Name Description Reset Value
0:31 BTR Branch target address used by handler when returning from | 0x00000000
an exception caused by an instruction in a delay slot.
Read-only

Floating Point Status Register (FSR)

The Floating Point Status Register contains status bits for the floating point unit. It can be
read with an MFS, and written with an MTS instruction. When read or written, the register is
specified by setting Sa = 0x0007. The bits in this register are sticky — floating point
instructions can only set bits in the register, and the only way to clear the register is by

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 31
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=31

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

using the MTS instruction. Figure 2-8 illustrates the FSR register and Table 2-14 provides bit
descriptions and reset values.

| |27 28 29 30 31|
T T T T 7T
RESERVED I0 DZ OF UF DO

Figure 2-8: FSR

Table 2-14: Floating Point Status Register (FSR)

Bits Name Description Reset Value
0:26 Reserved undefined
27 IO Invalid operation 0
28 Dz Divide-by-zero 0
29 OF Overflow 0
30 UF Underflow 0
31 DO Denormalized operand error 0

Exception Data Register (EDR)

The Exception Data Register stores data read on an AXI4-Stream link that caused a stream
exception.

The contents of this register is undefined for all other exceptions. When read with the MFS
instruction, the EDR is specified by setting Sa = 0x000D. Figure 2-9 illustrates the EDR
register and Table 2-15 provides bit descriptions and reset values.

Note: The register is only implemented if C_FSL_LINKS is greater than 0 and C_FSL_EXCEPTION is
setto 1.

T
EDR

Figure 2-9: EDR

Table 2-15: Exception Data Register (EDR)

Bits | Name Description Reset Value

0:31 | EDR Exception Data Register 0x00000000

Stack Low Register (SLR)

The Stack Low Register stores the stack low limit use to detect stack overflow. When the
address of a load or store instruction using the stack pointer (register R1) as rA is less than

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 32
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=32

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

the Stack Low Register, a stack overflow occurs, causing a Stack Protection Violation
exception if exceptions are enabled in MSR.

When read with the MFS instruction, the SLR is specified by setting Sa = 0x0800.
Figure 2-10 illustrates the SLR register and Table 2-16 provides bit descriptions and reset
values.

Note: The register is only implemented if stack protection is enabled by setting the parameter
C_USE_STACK_PROTECTION to 1. If stack protection is not implemented, writing to the register has
no effect.

Note: Stack protection is not available when the MMU is enabled (C_useE_MMU > 0). With the MMU
page-based memory protection is provided through the UTLB instead.

T
SLR

Figure 2-10: SLR

Table 2-16: Stack Low Register (SLR)

Bits | Name Description Reset Value
0:31 | SLR Stack Low Register 0x00000000

Stack High Register (SHR)

The Stack High Register stores the stack high limit use to detect stack underflow. When the
address of a load or store instruction using the stack pointer (register R1) as rA is greater
than the Stack High Register, a stack underflow occurs, causing a Stack Protection Violation
exception if exceptions are enabled in MSR.

When read with the MFS instruction, the SHR is specified by setting Sa = 0x0802.
Figure 2-11 illustrates the SHR register and Table 2-17 provides bit descriptions and reset
values.

Note: The register is only implemented if stack protection is enabled by setting the parameter
C_USE_STACK_PROTECTION to 1. If stack protection is not implemented, writing to the register has
no effect.

Note: Stack protection is not available when the MMU is enabled (C_USE_MMU > 0). With the MMU
page-based memory protection is provided through the UTLB instead.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 33
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=33

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

T
SHR

Figure 2-11: SHR

Table 2-17: Stack High Register (SHR)

Bits | Name Description Reset Value

0:31 |SHR Stack High Register OxFFFFFFFF

Process Identifier Register (PID)

The Process Identifier Register is used to uniquely identify a software process during MMU
address translation. It is controlled by the c_use_mmu configuration option on MicroBlaze.
The register is only implemented if c_use_mmu is greater than 1 (User Mode) and
c_aREA_OPTIMIZED is set to O (Performance) or 2 (Frequency). When accessed with the MFS
and MTS instructions, the PID is specified by setting Sa = 0x1000. The register is accessible
according to the memory management special registers parameter c_MMU_TLB_ACCESS.

PID is also used when accessing a TLB entry:

« When writing Translation Look-Aside Buffer High (TLBHI) the value of PID is stored in
the TID field of the TLB entry

« When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID

Figure 2-12 illustrates the PID register and Table 2-18 provides bit descriptions and reset
values.

24 31
T T
RESERVED PID
Figure 2-12: PID
Table 2-18: Process Identifier Register (PID)
Bits Name Description Reset Value
0:23 Reserved
24:31 | PID Used to uniquely identify a software process during MMU 0x00
address translation.
Read/Write

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 34
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=34

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Zone Protection Register (ZPR)

The Zone Protection Register is used to override MMU memory protection defined in TLB
entries. It is controlled by the c_use_wmmu configuration option on MicroBlaze. The register
is only implemented if c_use_mmu is greater than 1 (User Mode), c_AREA_OPTIMIZED is set to
0 (Performance) or 2 (Frequency), and if the number of specified memory protection zones
is greater than zero (c_mMMU_zoNES > 0). The implemented register bits depend on the
number of specified memory protection zones (c_mvu_zones). When accessed with the MFS
and MTS instructions, the ZPR is specified by setting Sa = 0x1001. The register is accessible
according to the memory management special registers parameter c_MMU_TLB_ACCESS.

Figure 2-13 illustrates the ZPR register and Table 2-19 provides bit descriptions and reset
values.

[0 2 E E E [10J12 [1& 16 [18 20 [22 [2& 26 [28 [30 |
T T T T T T T T T T T T T T T T
ZPO zZP1 ZP2 ZP3 ZP4 ZP5 ZP6 ZP7 ZP8 ZP9 ZP10 ZP11 ZP12 ZP13 ZP14 ZP15

Figure 2-13: ZPR

Table 2-19: Zone Protection Register (ZPR)

Bits | Name Description Reset Value
0:1 ZP0 Zone Protect 0x00000000
2:3 ZP1 User mode (MSR[UM] = 1):

00 = Override V in TLB entry. No access to the page is allowed
30:31 | ZP15 01 = No override. Use V, WR and EX from TLB entry

10 = No override. Use V, WR and EX from TLB entry

11 = Override WR and EX in TLB entry. Access the page as writable
and executable

Privileged mode (MSR[UM] = 0):

00 = No override. Use V, WR and EX from TLB entry

01 = No override. Use V, WR and EX from TLB entry

10 = Override WR and EX in TLB entry. Access the page as writable
and executable

11 = Override WR and EX in TLB entry. Access the page as writable
and executable

Read/Write

Translation Look-Aside Buffer Low Register (TLBLO)

The Translation Look-Aside Buffer Low Register is used to access MMU Unified Translation
Look-Aside Buffer (UTLB) entries. It is controlled by the c_use_mmMu configuration option on
MicroBlaze. The register is only implemented if c_use_mmu is greater than 1 (User Mode),
and c_area_opTIMIZED is set to 0 (Performance) or 2 (Frequency). When accessed with the
MEFES and MTS instructions, the TLBLO is specified by setting Sa = 0x1003. When reading or
writing TLBLO, the UTLB entry indexed by the TLBX register is accessed. The register is

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 35
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=35

& XILINX

ALL PROGRAMMABLE

readable according to the memory management special registers parameter

Chapter 2: MicroBlaze Architecture

C_MMU_TLB_ACCESS.

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBLO entries).

Note: The UTLB is not reset by the external reset inputs: Reset and Debug_Rst. This means that
the entire UTLB must be initialized after reset, to avoid any stale data.

Figure 2-14 illustrates the TLBLO register and Table 2-20 provides bit descriptions and reset

values.

0

|22|23|24

|28|29|30|31|

T T T T
RPN EX WR ZSEL

Figure 2-14: TLBLO

Table 2-20: Translation Look-Aside Buffer Low Register (TLBLO)

T 1T 7

W I M G

Bits

Name

Description

Reset Value

0:21

RPN

Real Page Number or Physical Page Number

When a TLB hit occurs, this field is read from the TLB entry and is
used to form the physical address. Depending on the value of the
SIZE field, some of the RPN bits are not used in the physical address.
Software must clear unused bits in this field to zero.

Only defined when C_USE_MMU=3 (Virtual).

Read/Write

0x000000

22

EX

Executable

When bit is set to 1, the page contains executable code, and
instructions can be fetched from the page. When bit is cleared to 0,
instructions cannot be fetched from the page. Attempts to fetch
instructions from a page with a clear EX bit cause an instruction-
storage exception.

Read/Write

23

WR

Writable

When bit is set to 1, the page is writable and store instructions can
be used to store data at addresses within the page.

When bit is cleared to 0, the page is read-only (not writable).
Attempts to store data into a page with a clear WR bit cause a data
storage exception.

Read/Write

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback]

UG984 (v2016.4) November 30, 2016

36

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=36

& XILINX

ALL PROGRAMMABLE

Chapter 2: MicroBlaze Architecture

Table 2-20: Translation Look-Aside Buffer Low Register (TLBLO) (Cont’d)

Bits | Name Description Reset Value

24:27 | ZSEL Zone Select 0x0
This field selects one of 16 zone fields (Z0-Z15) from the zone-
protection register (ZPR).
For example, if ZSEL 0x5, zone field Z5 is selected. The selected ZPR
field is used to modify the access protection specified by the TLB
entry EX and WR fields. It is also used to prevent access to a page by
overriding the TLB V (valid) field.
Read/Write

28 W Write Through 0/1
When the parameter C_DCACHE_USE_WRITEBACK is set to 1, this
bit controls caching policy. A write-through policy is selected when
set to 1, and a write-back policy is selected otherwise.
This bit is fixed to 1, and write-through is always used, when
C_DCACHE_USE_WRITEBACK is cleared to 0.
Read/Write

29 I Inhibit Caching 0
When bit is set to 1, accesses to the page are not cached (caching is
inhibited).
When cleared to 0, accesses to the page are cacheable.
Read/Write

30 M Memory Coherent 0
This bit is fixed to 0, because memory coherence is not implemented
on MicroBlaze.
Read Only

31 G Guarded 0
When bit is set to 1, speculative page accesses are not allowed
(memory is guarded).
When cleared to 0, speculative page accesses are allowed.
The G attribute can be used to protect memory-mapped I/O devices
from inappropriate instruction accesses.
Read/Write

Translation Look-Aside Buffer High Register (TLBHI)

The Translation Look-Aside Buffer High Register is used to access MMU Unified Translation
Look-Aside Buffer (UTLB) entries. It is controlled by the c_use_wmwmu configuration option on
MicroBlaze. The register is only implemented if c_use_mmu is greater than 1 (User Mode),

and c_AREA_OPTIMIZED is set to O (Performance) or 2 (Frequency). When accessed with the
MEFS and MTS instructions, the TLBHI is specified by setting Sa = 0x1004. When reading or
writing TLBHI, the UTLB entry indexed by the TLBX register is accessed. The register is

readable according to the memory management special registers parameter

C_MMU_TLB_ACCESS.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 37

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=37

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE
PID is also used when accessing a TLB entry:

« When writing TLBHI the value of PID is stored in the TID field of the TLB entry
« When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBHI entries).
Note: The UTLB is not reset by the external reset inputs: Reset and Debug_Rst.

Figure 2-15 illustrates the TLBHI register and Table 2-21 provides bit descriptions and reset

values.
0 |22 |25|26|27|28 31|
I I T |
TAG SIZE V E U0 Reserved

Figure 2-15: TLBHI

Table 2-21: Translation Look-Aside Buffer High Register (TLBHI)

Bits Name Description Reset Value

0:21 | TAG TLB-entry tag 0x000000

Is compared with the page number portion of the virtual memory
address under the control of the SIZE field.

Read/Write

22:24 | SIZE Size 000

Specifies the page size. The SIZE field controls the bit range used in
comparing the TAG field with the page number portion of the virtual
memory address. The page sizes defined by this field are listed in
Table 2-37.

Read/Write

25 \Y Valid 0

When this bit is set to 1, the TLB entry is valid and contains a page-
translation entry.

When cleared to 0, the TLB entry is invalid.
Read/Write

26 E Endian 0
When this bit is set to 1, the page is accessed as a big endian page.
When cleared to 0, the page is accessed as a little endian page.
The E bit only affects data read or data write accesses. Instruction
accesses are not affected.

The E bit is only implemented when the parameter
C_USE_REORDER_INSTR is set to 1, otherwise it is fixed to 0.
Read/Write

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 38
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=38

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-21: Translation Look-Aside Buffer High Register (TLBHI) (Cont’d) (Cont’d)

Bits Name Description Reset Value

27 uo User Defined 0

This bit is fixed to 0, since there are no user defined storage
attributes on MicroBlaze.

Read Only

28:31 | Reserved

Translation Look-Aside Buffer Index Register (TLBX)

The Translation Look-Aside Buffer Index Register is used as an index to the Unified
Translation Look-Aside Buffer (UTLB) when accessing the TLBLO and TLBHI registers. It is
controlled by the c_use_mmu configuration option on MicroBlaze. The register is only
implemented if c_use_mwmu is greater than 1 (User Mode), and c_arREa_oPTIMIZED is set to 0
(Performance) or 2 (Frequency). When accessed with the MFS and MTS instructions, the
TLBX is specified by setting Sa = 0x1002. Figure 2-16 illustrates the TLBX register and
Table 2-22 provides bit descriptions and reset values.

T T
MISS Reserved INDEX

Figure 2-16: TLBX

Table 2-22: Translation Look-Aside Buffer Index Register (TLBX)

Bits Name Description Reset Value

0 MISS TLB Miss 0

This bit is cleared to 0 when the TLBSX register is written with a
virtual address, and the virtual address is found in a TLB entry.
The bitis set to 1 if the virtual address is not found. It is also cleared
when the TLBX register itself is written.

Read Only

Can be read if the memory management special registers
parameter C_MMU_TLB_ACCESS > 0 (MINIMAL).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 39
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=39

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-22: Translation Look-Aside Buffer Index Register (TLBX) (Cont’d)

Bits Name Description Reset Value

1:25 Reserved

26:31 | INDEX TLB Index 000000
This field is used to index the Translation Look-Aside Buffer entry
accessed by the TLBLO and TLBHI registers. The field is updated
with a TLB index when the TLBSX register is written with a virtual
address, and the virtual address is found in the corresponding TLB
entry.

Read/Write

Can be read and written if the memory management special
registers parameter C_MMU_TLB_ACCESS > 0 (MINIMAL).

Translation Look-Aside Buffer Search Index Register (TLBSX)

The Translation Look-Aside Buffer Search Index Register is used to search for a virtual page
number in the Unified Translation Look-Aside Buffer (UTLB). It is controlled by the
c_use_mmu configuration option on MicroBlaze. The register is only implemented if
c_useE_MwmU is greater than 1 (User Mode), and c_aArReEA_opTIMIZED is set to O (Performance)
or 2 (Frequency). When written with the MTS instruction, the TLBSX is specified by setting
Sa = 0x1005. Figure 2-17 illustrates the TLBSX register and Table 2-23 provides bit
descriptions and reset values.

T T
VPN Reserved

Figure 2-17: TLBSX

Table 2-23: Translation Look-Aside Buffer Index Search Register (TLBSX)

Bits Name Description Reset Value

0:21 | VPN Virtual Page Number

This field represents the page number portion of the virtual memory
address. It is compared with the page number portion of the virtual
memory address under the control of the SIZE field, in each of the
Translation Look-Aside Buffer entries that have the V bit set to 1.

If the virtual page number is found, the TLBX register is written with
the index of the TLB entry and the MISS bit in TLBX is cleared to 0. If
the virtual page number is not found in any of the TLB entries, the
MISS bit in the TLBX register is set to 1.

Write Only

22:31 | Reserved

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 40
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=40

& XILINX

ALL PROGRAMMABLE

Processor Version Register (PVR)

Chapter 2: MicroBlaze Architecture

The Processor Version Register is controlled by the C_PVR configuration option on
MicroBlaze.

* When c_pvr is set to 0 (None) the processor does not implement any PVR and

MSR[PVR]=0.

« When c_prvris set to 1 (Basic), MicroBlaze implements only the first register: PVRO, and
if set to 2 (Full), all 13 PVR registers (PVRO to PVR12) are implemented.

When read with the MFS or MFSE instruction the PVR is specified by setting Sa = 0x200x,

with x being the register number between 0x0 and 0xB.

With extended data addressing is enabled (parameter c_appr_s1zE > 32), the 32 least
significant bits of PVR8 and PVR9 are read with the MFS instruction, and the most
significant bits with the MFSE instruction.

Table 2-24 through Table 2-35 provide bit descriptions and values.

Table 2-24: Processor Version Register 0 (PVRO)
Bits Name Description Value
0 CFG PVR implementation: Based on C_PVR
0 = Basic, 1 = Full
1 BS Use barrel shifter C_USE_BARREL
2 D1V Use divider C_USE_DIV
3 MUL Use hardware multiplier C_USE_HW_MUL > 0 (None)
4 FPU Use FPU C_USE_FPU > 0 (None)
5 EXC Use any type of exceptions Based on C_*_EXCEPTION
Also set if C_USE_MMU > 0 (None)
6 ICU Use instruction cache C_USE_ICACHE
7 DCU Use data cache C_USE_DCACHE
8 MMU Use MMU C_USE_MMU > 0 (None)
9 BTC Use branch target cache C_USE_BRANCH_TARGET_CACHE
10 ENDI Selected endianness: C_ENDIANNESS
Always 1 = Little endian
11 FT Implement fault tolerant features C_FAULT_TOLERANT
12 SPROT Use stack protection C_USE_STACK_PROTECTION
13 REORD Implement reorder instructions C_USE_REORDER_INSTR
14:15 | Reserved 0
16:23 | MBV MicroBlaze release version code Release Specific
0x19 = v8.40.b 0x21 =v9.4
0x1B =v9.0 0x22 = v9.5
0x1D =v9.1 0x23 = v9.6
O0x1F = v9.2 0x24 = v10.0
0x20 = v9.3
24:31 | USR1 User configured value 1 C_PVR_USER1

MicroBlaze Processor Reference Guide

www.Xilinx.com

UG984 (v2016.4) November 30, 2016

l Send Feedback I a1

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=41

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-25: Processor Version Register 1 (PVR1)
Bits Name Description Value
0:31 | USR2 User configured value 2 C_PVR_USER2
Table 2-26: Processor Version Register 2 (PVR2)
Bits Name Description Value
0 DAXI Data side AXI4 or ACE in use C_D_AXI
1 DLMB Data side LMB in use C_D_LMB
2 IAXI Instruction side AXI4 or ACE in use C_I_AXI
3 ILMB Instruction side LMB in use C_I_LMB
4 IRQEDGE Interrupt is edge triggered C_INTERRUPT_IS_EDGE
5 IRQPOS Interrupt edge is positive C_EDGE_IS_POSITIVE
6 CEEXC Generate bus exceptions for ECC C_ECC_USE_CE_EXCEPTION
correctable errors in LMB memory
7 FREQ Select implementation to optimize C_AREA_OPTIMIZED=2 (Frequency)
processor frequency
8 Reserved 0
9 Reserved 1
10 ACE Use ACE interconnect C_INTERCONNECT = 3 (ACE)
11 AXI4ADP Data Peripheral AXI interface uses AXI4 C_M_AXI_DP_EXCLUSIVE_ACCESS
protocol, with support for exclusive access
12 FSL Use extended AXI4-Stream instructions C_USE_EXTENDED_FSL_INSTR
13 FSLEXC Generate exception for AXI4-Stream C_FSL_EXCEPTION
control bit mismatch
14 MSR Use msrset and msrclr instructions C_USE_MSR_INSTR
15 PCMP Use pattern compare and CLZ instructions | C_USE_PCMP_INSTR
16 AREA Select implementation to optimize area C_AREA_OPTIMIZED = 1 (Area)
with lower instruction throughput
17 BS Use barrel shifter C_USE_BARREL
18 DIV Use divider C_USE_DIV
19 MUL Use hardware multiplier C_USE_HW_MUL > 0 (None)
20 FPU Use FPU C_USE_FPU > 0 (None)
21 MUL64 Use 64-bit hardware multiplier C_USE_HW_MUL = 2 (Mul64)
22 FPU2 Use floating point conversion and square | C_USE_FPU = 2 (Extended)
root instructions
23 IMPEXC Allow imprecise exceptions for ECC errors | C_IMPRECISE_EXCEPTIONS
in LMB memory

MicroBlaze Processor Reference Guide

www.Xilinx.com

UG984 (v2016.4) November 30, 2016

| Send Feedback I 42

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=42

& XILINX

ALL PROGRAMMABLE-

Table 2-26: Processor Version Register 2 (PVR2) (Cont’d)

Chapter 2: MicroBlaze Architecture

Bits Name

Description

Value

24 Reserved

0

25 OPOEXC Generate exception for 0x0 illegal opcode | C_OPCODE_0x0_ILLEGAL

26 UNEXC Generate exception for unaligned data C_UNALIGNED_EXCEPTIONS
access

27 OPEXC Generate exception for any illegal opcode | C_ILL_OPCODE_EXCEPTION

28 AXIDEXC

Generate exception for M_AXI_D error

C_M_AXI_D_BUS_EXCEPTION

29 AXIIEXC

Generate exception for M_AXL_I error

C_M_AXI_TI_BUS_EXCEPTION

30 DIVEXC Generate exception for division by zero or | C_DIV_ZERO_EXCEPTION
division overflow
31 FPUEXC Generate exceptions from FPU C_FPU_EXCEPTION

Table 2-27: Processor Version Register 3 (PVR3)

Bits Name Description Value

0 DEBUG Use debug logic C_DEBUG_ENABLED > 0

1 EXT_DEBUG | Use extended debug logic C_DEBUG_ENABLED = 2 (Extended)
2 Reserved

3:6 PCBRK Number of PC breakpoints C_NUMBER_OF_PC_BRK

7:9 Reserved

10:12 | RDADDR

Number of read address breakpoints

C_NUMBER_OF_RD_ADDR_BRK

13:15 | Reserved

16:18 | WRADDR

Number of write address breakpoints

C_NUMBER_OF_WR_ADDR_BRK

19 Reserved

0

20:24 | FSL

Number of AXI4-Stream links

C_FSL_LINKS

25:28 | Reserved

29:31 | BTC_SIZE

Branch Target Cache size

C_BRANCH_TARGET_CACHE_SIZE

MicroBlaze Processor Reference Guide www.Xilinx.com
UG984 (v2016.4) November 30, 2016

| Send Feedback I

43

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=43

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-28: Processor Version Register 4 (PVR4)
Bits Name Description Value
0 ICU Use instruction cache C_USE_ICACHE
1.5 ICTS Instruction cache tag size C_ADDR_TAG_BITS
6 Reserved 1
7 ICW Allow instruction cache write C_ALLOW_ICACHE_WR
8:10 | ICLL The base two logarithm of the instruction log2 (C_ICACHE_LINE_LEN)
cache line length
11:15 | ICBS The base two logarithm of the instruction log2 (C_CACHE_BYTE_SIZE)
cache byte size
16 IAU The instruction cache is used for all memory | C_ICACHE_ALWAYS_USED
accesses within the cacheable range
17:18 | Reserved 0
19:21 | ICV Instruction cache victims 0-3: C_ICACHE_vICTIMS =0,2,4,8
22:23 | ICS Instruction cache streams C_ICACHE_STREAMS
24 IFTL Instruction cache tag uses distributed RAM C_ICACHE_FORCE_TAG_LUTRAM
25 ICDW Instruction cache data width C_ICACHE_DATA_WIDTH > 0
26:31 | Reserved 0
Table 2-29: Processor Version Register 5 (PVR5)
Bits Name Description Value
0 DCU Use data cache C_USE_DCACHE
1:5 DCTS Data cache tag size C_DCACHE_ADDR_TAG
6 Reserved 1
7 DCW Allow data cache write C_ALLOW_DCACHE_WR
8:10 | DCLL The base two logarithm of the data cache line | 1og2 (C_DCACHE_LINE_LEN)
length
11:15 | DCBS The base two logarithm of the data cache log2 (C_DCACHE_BYTE_SIZE)
byte size
16 DAU The data cache is used for all memory C_DCACHE_ALWAYS_USED
accesses within the cacheable range
17 DWB Data cache policy is write-back C_DCACHE_USE_WRITEBACK
18 Reserved 0
19:21 | DCV Data cache victims 0-3: C_DCACHE_VICTIMS = 0,2,4,8
22:23 | Reserved 0
24 DFTL Data cache tag uses distributed RAM C_DCACHE_FORCE_TAG_LUTRAM

MicroBlaze Processor Reference Guide

www.Xilinx.com

UG984 (v2016.4) November 30, 2016

| Send Feedback I

44

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=44

& XILINX

ALL PROGRAMMABLE-

Table 2-29: Processor Version Register 5 (PVR5) (Cont’d)

Chapter 2: MicroBlaze Architecture

Bits Name Description

Value

25 DCDW Data cache data width

C_DCACHE_DATA_WIDTH > 0

26 AX14DC Data Cache AXI interface uses AX14 protocol,
with support for exclusive access

C_M_AXI_DC_EXCLUSIVE_ACCESS

27:31 | Reserved

Table 2-30: Processor Version Register 6 (PVR6)
Bits | Name Description Value
0:31 |ICBA Instruction Cache Base Address C_ICACHE_BASEADDR

Table 2-31: Processor Version Register 7 (PVR7)

Bits | Name Description

Value

0:31 |ICHA Instruction Cache High Address

C_ICACHE_HIGHADDR

Table 2-32: Processor Version Register 8 (PVR8)

Bits Name Description

Value

0:C_ADDR_SIZE-1 | DCBA Data Cache Base Address

C_DCACHE_BASEADDR

Table 2-33: Processor Version Register 9 (PVR9)

Bits Name Description

Value

0:C_ADDR_SIZE-1 | DCHA Data Cache High Address

C_DCACHE_HIGHADDR

Table 2-34: Processor Version Register 10 (PVR10)

Bits Name Description

Value

0:7 ARCH Target architecture:

OxF = Virtex®-7, Defence Grade Virtex-7 Q

0x10 = Kintex®-7, Defence Grade Kintex-7 Q

0x11 = Artix®-7, Automotive Artix-7,
Defence Grade Artix-7 Q

0x12 = Zynq®-7000, Automotive Zynq-7000,
Defence Grade Zyng-7000 Q

0x13 = UltraScale™ Virtex

0x14 = UltraScale Kintex

0x15 = UltraScale+™ Zynq

0x16 = UltraScale+ Virtex

0x17 = UltraScale+ Kintex

0x18 = Spartan®-7

Defined by parameter C_FAMILY

8:13 | ASIZE Number of extended address bits

C_ADDR_SIZE - 32

14:31 | Reserved

0

MicroBlaze Processor Reference Guide www.Xilinx.com
UG984 (v2016.4) November 30, 2016

l Send Feedback I 45

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=45

& XILINX

ALL PROGRAMMABLE-

Table 2-35: Processor Version Register 11 (PVR11)

Chapter 2: MicroBlaze Architecture

Bits Name Description Value
0:1 MMU Use MMU: C_USE_MMU

0 = None 2 = Protection

1 = User Mode 3 = Virtual
2:4 ITLB Instruction Shadow TLB size log2 (C_MMU_ITLB_SIZE)
5:7 DTLB Data Shadow TLB size log2 (C_MMU_DTLB_SIZE)
8:9 TLBACC | TLB register access: C_MMU_TLB_ACCESS

0 = Minimal 2 = Write

1 = Read 3 = Full

10:14 | ZONES Number of memory protection zones

C_MMU_ZONES

15 PRIVINS | Privileged instructions:

0 = Full protection
1 = Allow stream instructions

C_MMU_PRIVILEGED_INSTR

16:16 | Reserved | Reserved for future use

0

17:31 | RSTMSR | Reset value for MSR

C_RESET_MSR_IE <<
C_RESET_MSR_BIP <<
C_RESET_MSR_ICE <<
C_RESET_MSR_DCE <<
C_RESET_MSR_EE <<
C_RESET_MSR_ETIP <<

P WO 0 o N

Table 2-36: Processor Version Register 12 (PVR12)

Bits Name

Description

Value

0:31 | VECTORS | Location of MicroBlaze vectors

C_BASE_VECTORS

MicroBlaze Processor Reference Guide

UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 46

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=46

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Pipeline Architecture

MicroBlaze instruction execution is pipelined. For most instructions, each stage takes one
clock cycle to complete. Consequently, the number of clock cycles necessary for a specific
instruction to complete is equal to the number of pipeline stages, and one instruction is
completed on every cycle. A few instructions require multiple clock cycles in the execute
stage to complete. This is achieved by stalling the pipeline.

When executing from slower memory, instruction fetches may take multiple cycles. This
additional latency directly affects the efficiency of the pipeline. MicroBlaze implements an
instruction prefetch buffer that reduces the impact of such multi-cycle instruction memory
latency. While the pipeline is stalled by a multi-cycle instruction in the execution stage, the
prefetch buffer continues to load sequential instructions. When the pipeline resumes
execution, the fetch stage can load new instructions directly from the prefetch buffer
instead of waiting for the instruction memory access to complete. If instructions are
modified during execution (for example with self-modifying code), the prefetch buffer
should be emptied before executing the modified instructions, to ensure that it does not
contain the old unmodified instructions. The recommended way to do this is using an
MBAR instruction, although it is also possible to use a synchronizing branch instruction, for
example BRI 4.

Three Stage Pipeline

With c_area_opTiMIZED set to 1 (Area), the pipeline is divided into three stages to minimize
hardware cost: Fetch, Decode, and Execute.

cyclel cycle2 cycle3 cycled cycle5 cycle6 cycle7

instruction 1 Fetch Decode | Execute
instruction 2 Fetch Decode | Execute | Execute | Execute
instruction 3 Fetch Decode Stall Stall Execute

Five Stage Pipeline

With c_area_oprTimMIzZED set to O (Performance), the pipeline is divided into five stages to
maximize performance: Fetch (IF), Decode (OF), Execute (EX), Access Memory (MEM), and
Writeback (WB).

cyclel cycle2 «cycle3 «cycle4 «cycle5 «cycle6 cycle7 cycle8 cycle9

instruction 1 IF OF EX MEM WB
instruction 2 IF OF EX MEM | MEM | MEM WB
instruction 3 IF OF EX Stall Stall MEM WB

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 47
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=47

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Eight Stage Pipeline

With c_area_oprTIMIZED set to 2 (Frequency), the pipeline is divided into eight stages to
maximize possible frequency: Fetch (IF), Decode (OF), Execute (EX), Access Memory 0 (MO0),
Access Memory 1 (M1), Access Memory 2 (M2), Access Memory 3 (M3) and Writeback (WB).

cyclel cycle2 «cycle3 «cycled «cycle5 cycle6 cycle7 cycle8 cycle9 cyclel0 cyclell

instruction 1 IF OF EX MO M1 M2 M3 WB

instruction 2 IF OF EX MO MO M1 M2 M3 WB
instruction 3 IF OF EX Stall MO M1 M2 M3 WB
Branches

Normally the instructions in the fetch and decode stages (as well as prefetch buffer) are
flushed when executing a taken branch. The fetch pipeline stage is then reloaded with a new
instruction from the calculated branch address. A taken branch in MicroBlaze takes three
clock cycles to execute, two of which are required for refilling the pipeline. To reduce this
latency overhead, MicroBlaze supports branches with delay slots.

Delay Slots

When executing a taken branch with delay slot, only the fetch pipeline stage in MicroBlaze
is flushed. The instruction in the decode stage (branch delay slot) is allowed to complete.
This technique effectively reduces the branch penalty from two clock cycles to one. Branch
instructions with delay slots have a D appended to the instruction mnemonic. For example,
the BNE instruction does not execute the subsequent instruction (does not have a delay
slot), whereas BNED executes the next instruction before control is transferred to the
branch location.

A delay slot must not contain the following instructions: IMM, branch, or break. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been
completed.

Instructions that could cause recoverable exceptions (for example unaligned word or
halfword load and store) are allowed in the delay slot. If an exception is caused in a delay
slot the ESR[DS] bit is set, and the exception handler is responsible for returning the
execution to the branch target (stored in the special purpose register BTR). If the ESR[DS] bit
is set, register R17 is not valid (otherwise it contains the address following the instruction
causing the exception).

Branch Target Cache

To improve branch performance, MicroBlaze provides a Branch Target Cache (BTC) coupled
with a branch prediction scheme. With the BTC enabled, a correctly predicted immediate
branch or return instruction incurs no overhead.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 48
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=48

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

The BTC operates by saving the target address of each immediate branch and return
instruction the first time the instruction is encountered. The next time it is encountered, it
is usually found in the Branch Target Cache, and the Instruction Fetch Program Counter is
then simply changed to the saved target address, in case the branch should be taken.
Unconditional branches and return instructions are always taken, whereas conditional
branches use branch prediction, to avoid taking a branch that should not have been taken
and vice versa.

The BTC is cleared when a memory barrier (MBAR 0) or synchronizing branch (BRI 4) is
executed. This also occurs when the memory barrier or synchronizing branch follows
immediately after a branch instruction, even if that branch is taken. To avoid inadvertently
clearing the BTC, the memory barrier or synchronizing branch should not be placed
immediately after a branch instruction.

There are three cases where the branch prediction can cause a mispredict, namely:

« A conditional branch that should not have been taken, is actually taken,
» A conditional branch that should actually have been taken, is not taken,

« The target address of a return instruction is incorrect, which may occur when returning
from a function called from different places in the code.

All of these cases are detected and corrected when the branch or return instruction reaches
the execute stage, and the branch prediction bits or target address are updated in the BTC,
to reflect the actual instruction behavior. This correction incurs a penalty of 2 clock cycles
for the 5-stage pipeline and 7-9 clock cycles for the 8-stage pipeline.

The size of the BTC can be selected with ¢_BRANCH_TARGET_CACHE_SIZE. The default
recommended setting uses one block RAM, and provides 512 entries. When selecting 64
entries or below, distributed RAM is used to implement the BTC, otherwise block RAM is
used.

When the BTC uses block RAM, and c¢_raurLT_TOLERANT is set to 1, block RAMs are protected
by parity. In case of a parity error, the branch is not predicted. To avoid accumulating errors
in this case, the BTC should be cleared periodically by a synchronizing branch.

The Branch Target Cache is available when c_UsE_BRANCH_TARGET_CACHE is set to 1 and
C_AREA_OPTIMIZED is set to O (Performance) or 2 (Frequency).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 49
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=49

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Memory Architecture

MicroBlaze is implemented with a Harvard memory architecture; instruction and data
accesses are done in separate address spaces. The instruction address space has a 32-bit
range (that is, handles up to 4GB of instructions). The data address space has a default 32-
bit range, and can be extended up to a 64-bit range (that is, handles from 4GB to 16EB of
data). The instruction and data memory ranges can be made to overlap by mapping them
both to the same physical memory. The latter is necessary for software debugging.

Both instruction and data interfaces of MicroBlaze are default 32 bits wide and use big
endian or little endian, bit-reversed format, depending on the selected endianness.
MicroBlaze supports word, halfword, and byte accesses to data memory.

Big endian format is only available when using the MMU in virtual or protected mode
(c_use_mmu > 1) or when reorder instructions are enabled (c_USE_REORDER_INSTR = 1).

Data accesses must be aligned (word accesses must be on word boundaries, halfword on
halfword boundaries), unless the processor is configured to support unaligned exceptions.
All instruction accesses must be word aligned.

MicroBlaze prefetches instructions to improve performance, using the instruction prefetch
buffer and (if enabled) instruction cache streams. To avoid attempts to prefetch instructions
beyond the end of physical memory, which may cause an instruction bus error or a
processor stall, instructions must not be located too close to the end of physical memory.
The instruction prefetch buffer requires 16 bytes margin, and using instruction cache
streams adds two additional cache lines (32, 64 or 128 bytes).

MicroBlaze does not separate data accesses to I/O and memory (it uses memory mapped
I[/O). The processor has up to three interfaces for memory accesses:

« Local Memory Bus (LMB)
« Advanced eXtensible Interface (AXI4) for peripheral access

« Advanced eXtensible Interface (AXI4) or AXI Coherency Extension (ACE) for cache
access

The LMB memory address range must not overlap with AXI4 ranges.
The c_ENDIANNESS parameter is always set to little endian.

MicroBlaze has a single cycle latency for accesses to local memory (LMB) and for cache read
hits, except with c_area_opTiMIZED set to 1 (Area), when data side accesses and data cache
read hits require two clock cycles, and with c_raurLT_TOLERANT set to 1, when byte writes
and halfword writes to LMB normally require two clock cycles.

The data cache write latency depends on c_pcacHE_USE_WRITEBACK. When
C_DCACHE_USE_WRITEBACK is set to 1, the write latency normally is one cycle (more if the

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 50
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=50

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

cache needs to do memory accesses). When c_DCACHE_USE_WRITEBACK is cleared to 0, the

write latency normally is two cycles (more if the posted-write buffer in the memory
controller is full).

The MicroBlaze instruction and data caches can be configured to use 4, 8 or 16 word cache
lines. When using a longer cache line, more bytes are prefetched, which generally improves
performance for software with sequential access patterns. However, for software with a
more random access pattern the performance can instead decrease for a given cache size.
This is caused by a reduced cache hit rate due to fewer available cache lines.

For details on the different memory interfaces refer to Chapter 3, MicroBlaze Signal
Interface Description.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 51
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=51

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Privileged Instructions

The following MicroBlaze instructions are privileged:

e GET, GETD, PUT, PUTD (except when explicitly allowed)

¢ WIC, WDC

s MTS

e MSRCLR, MSRSET (except when only the C bit is affected)
s BRK

¢ RTID, RTBD, RTED

* BRKI (except when jumping to physical address c_Base_vEcTors + 0x8 or
C_BASE_VECTORS + 0x18)

e SLEEP HIBERNATE, SUSPEND

Attempted use of these instructions when running in user mode causes a privileged
instruction exception.

When setting the parameter c_vMMu_PRIVILEGED_INSTR to 1, the instructions GET, GETD,
PUT, and PUTD are not considered privileged, and can be executed when running in user
mode. It is strongly discouraged to do this, unless absolutely necessary for performance
reasons, since it allows application programs to interfere with each other.

There are six ways to leave user mode and virtual mode:

Hardware generated reset (including debug reset)
Hardware exception

Non-maskable break or hardware break

1
2
3
4. Interrupt
5. Executing "BRALID Re,C_BASE_VECTORS + 0x8" to perform a user vector exception
6

Executing the software break instructions “Brk1” jumping to physical address
C_BASE_VECTORS + 0x8 or c_BASE_VECTORS + 0x18

In all of these cases, except hardware generated reset, the user mode and virtual mode
status is saved in the MSR UMS and VMS bits.

Application (user-mode) programs transfer control to system-service routines (privileged
mode programs) using the BRALID or BRKI instruction, jumping to physical address
Cc_BASE_VECTORS + 0x8. Executing this instruction causes a system-call exception to occur.
The exception handler determines which system-service routine to call and whether the
calling application has permission to call that service. If permission is granted, the

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 52
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=52

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

exception handler performs the actual procedure call to the system-service routine on
behalf of the application program.

The execution environment expected by the system-service routine requires the execution
of prologue instructions to set up that environment. Those instructions usually create the
block of storage that holds procedural information (the activation record), update and
initialize pointers, and save volatile registers (registers the system-service routine uses).
Prologue code can be inserted by the linker when creating an executable module, or it can
be included as stub code in either the system-call interrupt handler or the system-library
routines.

Returns from the system-service routine reverse the process described above. Epilog code
is executed to unwind and deallocate the activation record, restore pointers, and restore
volatile registers. The interrupt handler executes a return from exception instruction (RTED)
to return to the application.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 53
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=53

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Virtual-Memory Management

Programs running on MicroBlaze use effective addresses to access a flat 4 GB address
space. The processor can interpret this address space in one of two ways, depending on the
translation mode:

« Inreal mode, effective addresses are used to directly access physical memory

« Invirtual mode, effective addresses are translated into physical addresses by the
virtual-memory management hardware in the processor

Virtual mode provides system software with the ability to relocate programs and data
anywhere in the physical address space. System software can move inactive programs and
data out of physical memory when space is required by active programs and data.

Relocation can make it appear to a program that more memory exists than is actually
implemented by the system. This frees the programmer from working within the limits
imposed by the amount of physical memory present in a system. Programmers do not need
to know which physical-memory addresses are assigned to other software processes and
hardware devices. The addresses visible to programs are translated into the appropriate
physical addresses by the processor.

Virtual mode provides greater control over memory protection. Blocks of memory as small
as 1 KB can be individually protected from unauthorized access. Protection and relocation
enable system software to support multitasking. This capability gives the appearance of
simultaneous or near-simultaneous execution of multiple programs.

In MicroBlaze, virtual mode is implemented by the memory-management unit (MMU),
available when c_use_mmu is set to 3 (Virtual) and c_area_opTIMIZED is set to O
(Performance) or 2 (Frequency). The MMU controls effective-address to physical-address
mapping and supports memory protection. Using these capabilities, system software can
implement demand-paged virtual memory and other memory management schemes.

The MicroBlaze MMU implementation is based upon PowerPC™ 405. For details, see the
PowerPC Processor Reference Guide (UG011) document.

The MMU features are summarized as follows:

« Translates effective addresses into physical addresses
« Controls page-level access during address translation
« Provides additional virtual-mode protection control through the use of zones

« Provides independent control over instruction-address and data-address translation
and protection

« Supports eight page sizes: 1 kB, 4 kB, 16 kB, 64 kB, 256 kB, 1 MB, 4 MB, and 16 MB. Any
combination of page sizes can be used by system software

« Software controls the page-replacement strategy

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 54
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug011.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=54

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Real Mode

The processor references memory when it fetches an instruction and when it accesses data
with a load or store instruction. Programs reference memory locations using a 32-bit
effective address calculated by the processor. When real mode is enabled, the physical
address is identical to the effective address and the processor uses it to access physical
memory. After a processor reset, the processor operates in real mode. Real mode can also
be enabled by clearing the VM bit in the MSR.

Physical-memory data accesses (loads and stores) are performed in real mode using the
effective address. Real mode does not provide system software with virtual address
translation, but the full memory access-protection is available, implemented when

c_use Mmu > 1 (User Mode) and c_area_opriMIzZED = 0 (Performance) or 2 (Frequency).
Implementation of a real-mode memory manager is more straightforward than a virtual-
mode memory manager. Real mode is often an appropriate solution for memory
management in simple embedded environments, when access-protection is necessary, but
virtual address translation is not required.

Virtual Mode

In virtual mode, the processor translates an effective address into a physical address using
the process shown in Figure 2-18. Virtual mode can be enabled by setting the VM bit in the

MSR.

0 24 31

| | PD | Process ID Register

0 n 31

Effective Page Number Offset 32-Bit Effective Address

0 8 n+8 39
| PID | Effective Page Number Offset 40-Bit Virtual Address
I |

Translation Look-Aside
Buffer (TLB) Look-Up

Real Page Number Offset 32-Bit Physical Address

UG011_87_021302

Figure 2-18: Virtual-Mode Address Translation

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 55
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=55

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Each address shown in Figure 2-18 contains a page-number field and an offset field. The
page number represents the portion of the address translated by the MMU. The offset
represents the byte offset into a page and is not translated by the MMU. The virtual address
consists of an additional field, called the process ID (PID), which is taken from the PID
register (see Process-ID Register, page 34). The combination of PID and effective page
number (EPN) is referred to as the virtual page number (VPN). The value n is determined by
the page size, as shown in Table 2-37.

System software maintains a page-translation table that contains entries used to translate
each virtual page into a physical page. The page size defined by a page translation entry

determines the size of the page number and offset fields. For example, when a 4 kB page

size is used, the page-number field is 20 bits and the offset field is 12 bits. The VPN in this
case is 28 bits.

Then the most frequently used page translations are stored in the translation look-aside
buffer (TLB). When translating a virtual address, the MMU examines the page-translation
entries for a matching VPN (PID and EPN). Rather than examining all entries in the table,
only entries contained in the processor TLB are examined. When a page-translation entry is
found with a matching VPN, the corresponding physical-page number is read from the
entry and combined with the offset to form the 32-bit physical address. This physical
address is used by the processor to reference memory.

System software can use the PID to uniquely identify software processes (tasks, subroutines,
threads) running on the processor. Independently compiled processes can operate in
effective-address regions that overlap each other. This overlap must be resolved by system
software if multitasking is supported. Assigning a PID to each process enables system
software to resolve the overlap by relocating each process into a unique region of virtual-
address space. The virtual-address space mappings enable independent translation of each
process into the physical-address space.

Page-Translation Table

The page-translation table is a software-defined and software-managed data structure
containing page translations. The requirement for software-managed page translation
represents an architectural trade-off targeted at embedded-system applications.
Embedded systems tend to have a tightly controlled operating environment and a well-
defined set of application software. That environment enables virtual-memory
management to be optimized for each embedded system in the following ways:

« The page-translation table can be organized to maximize page-table search
performance (also called table walking) so that a given page-translation entry is
located quickly. Most general-purpose processors implement either an indexed page
table (simple search method, large page-table size) or a hashed page table (complex
search method, small page-table size). With software table walking, any hybrid
organization can be employed that suits the particular embedded system. Both the
page-table size and access time can be optimized.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 56
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=56

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

« Independent page sizes can be used for application modules, device drivers, system
service routines, and data. Independent page-size selection enables system software to
more efficiently use memory by reducing fragmentation (unused memory). For
example, a large data structure can be allocated to a 16 MB page and a small I/O
device-driver can be allocated to a 1 KB page.

« Page replacement can be tuned to minimize the occurrence of missing page
translations. As described in the following section, the most-frequently used page
translations are stored in the translation look-aside buffer (TLB). Software is responsible
for deciding which translations are stored in the TLB and which translations are
replaced when a new translation is required. The replacement strategy can be tuned to
avoid thrashing, whereby page-translation entries are constantly being moved in and
out of the TLB. The replacement strategy can also be tuned to prevent replacement of
critical-page translations, a process sometimes referred to as page locking.

The unified 64-entry TLB, managed by software, caches a subset of instruction and data
page-translation entries accessible by the MMU. Software is responsible for reading entries
from the page-translation table in system memory and storing them in the TLB. The
following section describes the unified TLB in more detail. Internally, the MMU also contains
shadow TLBs for instructions and data, with sizes configurable by c_mvu_1T1LB_SIzE and
C_MMU_DTLB_SIZE respectively.

These shadow TLBs are managed entirely by the processor (transparent to software) and are
used to minimize access conflicts with the unified TLB.

Translation Look-Aside Buffer

The translation look-aside buffer (TLB) is used by the MicroBlaze MMU for address
translation when the processor is running in virtual mode, memory protection, and storage
control. Each entry within the TLB contains the information necessary to identify a virtual
page (PID and effective page number), specify its translation into a physical page,
determine the protection characteristics of the page, and specify the storage attributes
associated with the page.

The MicroBlaze TLB is physically implemented as three separate TLBs:

« Unified TLB—The UTLB contains 64 entries and is pseudo-associative. Instruction-page
and data-page translation can be stored in any UTLB entry. The initialization and
management of the UTLB is controlled completely by software.

« Instruction Shadow TLB—The ITLB contains instruction page-translation entries and is
fully associative. The page-translation entries stored in the ITLB represent the most-
recently accessed instruction-page translations from the UTLB. The ITLB is used to
minimize contention between instruction translation and UTLB-update operations. The
initialization and management of the ITLB is controlled completely by hardware and is
transparent to software.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 57
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=57

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

« Data Shadow TLB—The DTLB contains data page-translation entries and is fully
associative. The page-translation entries stored in the DTLB represent the most-recently
accessed data-page translations from the UTLB. The DTLB is used to minimize
contention between data translation and UTLB-update operations. The initialization
and management of the DTLB is controlled completely by hardware and is transparent

to software.

Figure 2-19 provides the translation flow for TLB.

Generate |-side Generate D-side
Effective Address Effective Address
Translation Disabled Translation Enabled Translation Enabled Translation Disabled
(MSR[VM]=0) (MSR[VM]=1) (MSR[VM]=1) (MSR[VM]=0)

Perform ITLB Perform DTLB (NoTranslation)
Look-Up Look-Up

No Translation

ITLB Hit i ITLB Miss DTLB Miss ¢ DTLB Hit
Extract Real Perform UTLB Extract Real
Address from ITLB Look-Up Address from DTLB

v UTLB Hit l UTLB Miss

Continue I-cache Continue I-cache
Access or D-cache

Access

Extract Real I-Side TLB Miss
Address from UTLB

or
‘ D-Side TLB Miss

Exception
Route Address
to DTLB

Figure 2-19: TLB Address Translation Flow

Route Address
to ITLB

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 58
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=58

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

TLB Entry Format

Figure 2-20 shows the format of a TLB entry. Each TLB entry is 68 bits and is composed of
two portions: TLBLO (also referred to as the data entry), and TLBHI (also referred to as the

tag entry).

TLBLO:

0 [22]23]24 [28 12973031
| r I I
RPN EX WR ZSEL W I M G

TLBHI:

0 [22 (2526727128 35
T T T 7T
TAG SIZE V. E U0 TID

Figure 2-20: TLB Entry Format

The TLB entry contents are described in Table 2-20, page 36 and Table 2-21, page 38.
The fields within a TLB entry are categorized as follows:

« Virtual-page identification (TAG, SIZE, V, TID)—These fields identify the page-
translation entry. They are compared with the virtual-page number during the
translation process.

« Physical-page identification (RPN, SIZE)—These fields identify the translated page in
physical memory.

« Access control (EX, WR, ZSEL)—These fields specify the type of access allowed in the
page and are used to protect pages from improper accesses.

« Storage attributes (W, I, M, G, E, U0)—These fields specify the storage-control
attributes, such as caching policy for the data cache (write-back or write-through),
whether a page is cacheable, and how bytes are ordered (endianness).

Table 2-37 shows the relationship between the TLB-entry s1zk field and the translated page
size. This table also shows how the page size determines which address bits are involved in
a tag comparison, which address bits are used as a page offset, and which bits in the
physical page number are used in the physical address.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 59
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=59

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-37: Page-Translation Bit Ranges by Page Size

Sme |(TLBHIField) it Range | Page Offset PP orE | Chartoo

1 KB 000 TAG[0:21] - Address[0:21] Address[22:31] RPN[0:21] -

4 KB 001 TAG[0:19] - Address[0:19] Address[20:31] RPN[0:19] 20:21
16 KB 010 TAG[0:17] - Address[0:17] Address[18:31] RPNI[0:17] 18:21
64 KB 011 TAG[0:15] - Address[0:15] Address[16:31] RPNJ[0:15] 16:21
256 KB 100 TAG[0:13] - Address[0:13] Address[14:31] RPNJ[0:13] 14:21

1 MB 101 TAG[0:11] - Address[0:11] Address[12:31] RPN[0:11] 12:21
4 MB 110 TAGI[0:9] - Address[0:9] Address[10:31] RPNI0:9] 10:21
16 MB 111 TAGI[0:7] - Address[0:7] Address[8:31] RPNI0:7] 8:21
TLB Access

When the MMU translates a virtual address (the combination of PID and effective address)
into a physical address, it first examines the appropriate shadow TLB for the page
translation entry. If an entry is found, it is used to access physical memory. If an entry is not
found, the MMU examines the UTLB for the entry. A delay occurs each time the UTLB must
be accessed due to a shadow TLB miss. The miss latency ranges from 2-32 cycles. The DTLB
has priority over the ITLB if both simultaneously access the UTLB.

Figure 2-21, page 62 shows the logical process the MMU follows when examining a page-
translation entry in one of the shadow TLBs or the UTLB. All valid entries in the TLB are
checked.

A TLB hit occurs when all of the following conditions are met by a TLB entry:

» The entry is valid

« The TAG field in the entry matches the effective address EPN under the control of the
SIZE field in the entry

« The TID field in the entry matches the PID

If any of the above conditions are not met, a TLB miss occurs. A TLB miss causes an
exception, described as follows:

A TID value of 0x00 causes the MMU to ignore the comparison between the TID and PID.
Only the TAG and EA[EPN] are compared. A TLB entry with TID=0x00 represents a process-
independent translation. Pages that are accessed globally by all processes should be
assigned a TID value of 0x00. A PID value of 0x00 does not identify a process that can access
any page. When PID=0x00, a page-translation hit only occurs when TID=0x00. It is possible
for software to load the TLB with multiple entries that match an EA[EPN] and PID
combination. However, this is considered a programming error and results in undefined
behavior.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 60
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=60

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

When a hit occurs, the MMU reads the RPN field from the corresponding TLB entry. Some
or all of the bits in this field are used, depending on the value of the SIZE field (see

Table 2-37). For example, if the s1zE field specifies a 256 kB page size, RPN[0:13] represents
the physical page number and is used to form the physical address. RPN[14:21] is not used,
and software must clear those bits to 0 when initializing the TLB entry. The remainder of the
physical address is taken from the page-offset portion of the EA. If the page size is 256 kB,
the 32-bit physical address is formed by concatenating RPN[0:13] with bits14:31 of the
effective address.

Prior to accessing physical memory, the MMU examines the TLB-entry access-control fields.
These fields indicate whether the currently executing program is allowed to perform the
requested memory access.

If access is allowed, the MMU checks the storage-attribute fields to determine how to
access the page. The storage-attribute fields specify the caching policy for memory
accesses.

TLB Access Failures

A TLB-access failure causes an exception to occur. This interrupts execution of the
instruction that caused the failure and transfers control to an interrupt handler to resolve
the failure. A TLB access can fail for two reasons:

* A matching TLB entry was not found, resulting in a TLB miss

« A matching TLB entry was found, but access to the page was prevented by either the
storage attributes or zone protection

When an interrupt occurs, the processor enters real mode by clearing MSR[VM] to 0. In real
mode, all address translation and memory-protection checks performed by the MMU are
disabled. After system software initializes the UTLB with page-translation entries,
management of the MicroBlaze UTLB is usually performed using interrupt handlers running
in real mode.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 61
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=61

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Figure 2-21 diagrams the general process for examining a TLB entry.

TLBHI[V]=1 No | TLB-Entry Miss

Yes
(TLBHIITIDI=0x00)
— Yes | No l
Compare -
No Match -

[TLBHI[TID] with PID]7 o Match —=| TLB-Entry Miss |

Match |

Compare
TLBHI[TAG] with EA[EPN] No Match I TLB-Entry Miss |
using TLBHI[SIZE]

[
Match (TLB Hit)

Check Access Not Allowed I Access Violation

Allowed

Data Reference 4(%7 Instruction Fetch

Check for [o
Guarded
Guarded Storage | Storage Violation
Not Guarded
|
Read TLBLO[RPN]
using TLBHI[SIZE]
l Generate Physical Address
from TLBLO[RPN] and Offset

Extract Offset from EA
using TLBHI[SIZE] G011 41038101

Figure 2-21: General Process for Examining a TLB Entry

The following sections describe the conditions under which exceptions occur due to TLB
access failures.

Data-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), a data-storage exception occurs when access
to a page is not permitted for any of the following reasons:

« From user mode:

The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00).
This applies to load and store instructions.

The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 11). This applies to store instructions.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 62
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=62

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

« From privileged mode:

The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 10 and ZPR[Zn], 11). This applies to store
instructions.

Instruction-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), an instruction-storage exception occurs when
access to a page is not permitted for any of the following reasons:

* From user mode:
The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00).

The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 11).

The TLB entry specifies a guarded-storage page (TLBLO[G]=1).
« From privileged mode:

The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 10 and ZPR[Zn], 11).

The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

Data TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) a data TLB-miss exception occurs if a valid,
matching TLB entry was not found in the TLB (shadow and UTLB). Any load or store
instruction can cause a data TLB-miss exception.

Instruction TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) an instruction TLB-miss exception occurs if a
valid, matching TLB entry was not found in the TLB (shadow and UTLB). Any instruction
fetch can cause an instruction TLB-miss exception.

Access Protection

System software uses access protection to protect sensitive memory locations from
improper access. System software can restrict memory accesses for both user-mode and
privileged-mode software. Restrictions can be placed on reads, writes, and instruction
fetches. Access protection is available when virtual protected mode is enabled.

Access control applies to instruction fetches, data loads, and data stores. The TLB entry for
a virtual page specifies the type of access allowed to the page. The TLB entry also specifies
a zone-protection field in the zone-protection register that is used to override the access
controls specified by the TLB entry.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 63
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=63

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

TLB Access-Protection Controls

Each TLB entry controls three types of access:

« Process—Processes are protected from unauthorized access by assigning a unique
process ID (PID) to each process. When system software starts a user-mode application,
it loads the PID for that application into the PID register. As the application executes,
memory addresses are translated using only TLB entries with a TID field in Translation
Look-Aside Buffer High (TLBHI) that matches the PID. This enables system software to
restrict accesses for an application to a specific area in virtual memory.

A TLB entry with TID=0x00 represents a process-independent translation. Pages that
are accessed globally by all processes should be assigned a TID value of 0x00.

« Execution—The processor executes instructions only if they are fetched from a virtual
page marked as executable (TLBLO[EX]=1). Clearing TLBLO[EX] to O prevents execution
of instructions fetched from a page, instead causing an instruction-storage interrupt
(ISI) to occur. The ISI does not occur when the instruction is fetched, but instead occurs
when the instruction is executed. This prevents speculatively fetched instructions that
are later discarded (rather than executed) from causing an ISI.

The zone-protection register can override execution protection.

« Read/Write—Data is written only to virtual pages marked as writable (TLBLO[WR]=1).
Clearing TLBLO[WR] to 0 marks a page as read-only. An attempt to write to a read-only
page causes a data-storage interrupt (DSI) to occur.

The zone-protection register can override write protection.

TLB entries cannot be used to prevent programs from reading pages. In virtual mode, zone
protection is used to read-protect pages. This is done by defining a no-access-allowed zone
(ZPR[Zn] = 00) and using it to override the TLB-entry access protection. Only programs
running in user mode can be prevented from reading a page. Privileged programs always
have read access to a page.

Zone Protection

Zone protection is used to override the access protection specified in a TLB entry. Zones are
an arbitrary grouping of virtual pages with common access protection. Zones can contain
any number of pages specifying any combination of page sizes. There is no requirement for
a zone to contain adjacent pages.

The zone-protection register (ZPR) is a 32-bit register used to specify the type of protection
override applied to each of 16 possible zones. The protection override for a zone is encoded
in the ZPR as a 2-bit field. The 4-bit zone-select field in a TLB entry (TLBLO[ZSEL]) selects
one of the 16 zone fields from the ZPR (Z0-Z15). For example, zone Z5 is selected when
ZSEL = 0101.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 64
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=64

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Changing a zone field in the ZPR applies a protection override across all pages in that zone.
Without the ZPR, protection changes require individual alterations to each page translation
entry within the zone.

Unimplemented zones (when c_mvu_zoNEs < 16) are treated as if they contained 11.

UTLB Management

The UTLB serves as the interface between the processor MMU and memory-management
software. System software manages the UTLB to tell the MMU how to translate virtual
addresses into physical addresses. When a problem occurs due to a missing translation or
an access violation, the MMU communicates the problem to system software using the
exception mechanism. System software is responsible for providing interrupt handlers to
correct these problems so that the MMU can proceed with memory translation.

Software reads and writes UTLB entries using the MFS and MTS instructions, respectively.
These instructions use the TLBX register index (numbered 0 to 63) corresponding to one of
the 64 entries in the UTLB. The tag and data portions are read and written separately, so
software must execute two MFS or MTS instructions to completely access an entry. The
UTLB is searched for a specific translation using the TLBSX register. TLBSX locates a
translation using an effective address and loads the corresponding UTLB index into the
TLBX register.

Individual UTLB entries are invalidated using the MTS instruction to clear the valid bit in the
tag portion of a TLB entry (TLBHI[V]).

When c_rauLT_TOLERANT is set to 1, the UTLB block RAM is protected by parity. In case of a
parity error, a TLB miss exception occurs. To avoid accumulating errors in this case, each
entry in the UTLB should be periodically invalidated.

Recording Page Access and Page Modification
Software management of virtual-memory poses several challenges:

« Inavirtual-memory environment, software and data often consume more memory than
is physically available. Some of the software and data pages must be stored outside
physical memory, such as on a hard drive, when they are not used. Ideally, the most-
frequently used pages stay in physical memory and infrequently used pages are stored
elsewhere.

« When pages in physical-memory are replaced to make room for new pages, it is
important to know whether the replaced (old) pages were modified. If they were
modified, they must be saved prior to loading the replacement (new) pages. If the old
pages were not modified, the new pages can be loaded without saving the old pages.

« Alimited number of page translations are kept in the UTLB. The remaining translations
must be stored in the page-translation table. When a translation is not found in the
UTLB (due to a miss), system software must decide which UTLB entry to discard so that

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 65
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=65

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

the missing translation can be loaded. It is desirable for system software to replace
infrequently used translations rather than frequently used translations.

Solving the above problems in an efficient manner requires keeping track of page accesses
and page modifications. MicroBlaze does not track page access and page modification in
hardware. Instead, system software can use the TLB-miss exceptions and the data-storage
exception to collect this information. As the information is collected, it can be stored in a
data structure associated with the page-translation table.

Page-access information is used to determine which pages should be kept in physical
memory and which are replaced when physical-memory space is required. System software
can use the valid bit in the TLB entry (TLBHI[V]) to monitor page accesses. This requires
page translations be initialized as not valid (TLBHI[V]=0) to indicate they have not been
accessed. The first attempt to access a page causes a TLB-miss exception, either because
the UTLB entry is marked not valid or because the page translation is not present in the
UTLB. The TLB-miss handler updates the UTLB with a valid translation (TLBHI[V]=1). The set
valid bit serves as a record that the page and its translation have been accessed. The TLB-
miss handler can also record the information in a separate data structure associated with
the page-translation entry.

Page-modification information is used to indicate whether an old page can be overwritten
with a new page or the old page must first be stored to a hard disk. System software can use
the write-protection bit in the TLB entry (TLBLO[WR]) to monitor page modification. This
requires page translations be initialized as read-only (TLBLO[WR]=0) to indicate they have
not been modified. The first attempt to write data into a page causes a data-storage
exception, assuming the page has already been accessed and marked valid as described
above. If software has permission to write into the page, the data-storage handler marks the
page as writable (TLBLO[WR]=1) and returns. The set write-protection bit serves as a record
that a page has been modified. The data-storage handler can also record this information
in a separate data structure associated with the page-translation entry.

Tracking page modification is useful when virtual mode is first entered and when a new
process is started.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 66
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=66

& XILINX

ALL PROGRAMMABLE

Chapter 2: MicroBlaze Architecture

Reset, Interrupts, Exceptions, and Break

MicroBlaze supports reset, interrupt, user exception, break, and hardware exceptions. The
following section describes the execution flow associated with each of these events.

The relative priority starting with the highest is:

1. Reset

2. Hardware Exception
3. Non-maskable Break
4. Break

5. Interrupt

6.

User Vector (Exception)

Table 2-38 defines the memory address locations of the associated vectors and the
hardware enforced register file locations for return addresses. Each vector allocates two
addresses to allow full address range branching (requires an 1vu followed by a Braz
instruction). Normally the vectors start at address 0x00000000, but the parameter
C_BASE_VECTORS can be used to locate them anywhere in memory.

The address range 0x28 to 0x4F is reserved for future software support by Xilinx. Allocating
these addresses for user applications is likely to conflict with future releases of SDK support

software.

Table 2-38: Vectors and Return Address Register File Location

Event

Vector Address

Register File
Return Address

Reset

C_BASE_VECTORS + 0x00000000 -
C_BASE_VECTORS + 0x00000004

User Vector (Exception)

C_BASE_VECTORS + 0x00000008 -

C_BASE_VECTORS + 0x0000000C Rx
Interrupt! C_BASE_VECTORS + 0x00000010 - R14
C_BASE_VECTORS + 0x00000014
Break: Non-maskable
hardware C_BASE_VECTORS + 0x00000018 - R16
Break: Hardware C_BASE_VECTORS + 0x0000001C
Break: Software
Hardware Exception C_BASE_VECTORS + 0x00000020 - R17 or BTR

C_BASE_VECTORS + 0x00000024

Reserved by Xilinx for future
use

C_BASE_VECTORS + 0x00000028 -
C_BASE_VECTORS + 0x0000004F

1. With low-latency interrupt mode, the vector address is supplied by the Interrupt Controller.

All of these events will clear the reservation bit, used together with the LWX and SWX
instructions to implement mutual exclusion, such as semaphores and spinlocks.

MicroBlaze Processor Reference Guide

UG984 (v2016.4) November 30, 2016

www.Xilinx.com

67

l Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=67

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Reset

When a reset or pebug_rst (1) occurs, MicroBlaze flushes the pipeline and starts fetching
instructions from the reset vector (address 0x0). Both external reset signals are active high
and should be asserted for a minimum of 16 cycles. See "MicroBlaze Core Configurability” in
Chapter 3 for more information on the MSR reset value parameters.

Equivalent Pseudocode

PC ¢ C_BASE_VECTORS + 0x00000000

MSR ¢— C_RESET_MSR_IE << 2 | C_RESET _MSR_BIP << 4 | C_RESET MSR_ICE << 6 |
C_RESET_MSR_DCE << 8 | C_RESET MSR_EE << 9 | C_RESET_MSR_EIP << 10

EAR ¢ 0; ESR = 0; FSR < 0

PID ¢ 0; ZPR ¢ 0; TLBX < 0

Reservation < 0

Hardware Exceptions

MicroBlaze can be configured to trap the following internal error conditions: illegal
instruction, instruction and data bus error, and unaligned access. The divide exception can
only be enabled if the processor is configured with a hardware divider (c_use_bp1v=1). When
configured with a hardware floating point unit (c_use_rpu>0), it can also trap the following
floating point specific exceptions: underflow, overflow, float division-by-zero, invalid
operation, and denormalized operand error.

When configured with a hardware Memory Management Unit, it can also trap the following
memory management specific exceptions: Illegal Instruction Exception, Data Storage
Exception, Instruction Storage Exception, Data TLB Miss Exception, and Instruction TLB Miss
Exception.

A hardware exception causes MicroBlaze to flush the pipeline and branch to the hardware
exception vector (address c_Base_vecTors + 0x20). The execution stage instruction in the
exception cycle is not executed.

The exception also updates the general purpose register R17 in the following manner:

« For the MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data
TLB Miss Exception, Instruction TLB Miss Exception) the register R17 is loaded with the
appropriate program counter value to re-execute the instruction causing the exception
upon return. The value is adjusted to return to a preceding 1Mu instruction, if any. If the
exception is caused by an instruction in a branch delay slot, the value is adjusted to
return to the branch instruction, including adjustment for a preceding 1Mm instruction,
if any.

1. Reset input controlled by the debugger via MDM.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 68
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=68

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

For all other exceptions the register R17 is loaded with the program counter value of
the subsequent instruction, unless the exception is caused by an instruction in a branch
delay slot. If the exception is caused by an instruction in a branch delay slot, the
ESR[DS] bit is set. In this case the exception handler should resume execution from the
branch target address stored in BTR.

The EE and EIP bits in MSR are automatically reverted when executing the rRTED instruction.

The VM and UM bits in MSR are automatically reverted from VMS and UMS when executing
the RTED, RTBD, and RTID instructions.

Exception Priority

When two or more exceptions occur simultaneously, they are handled in the following
order, from the highest priority to the lowest:

Instruction Bus Exception
Instruction TLB Miss Exception
Instruction Storage Exception
Illegal Opcode Exception
Privileged Instruction Exception or Stack Protection Violation Exception
Data TLB Miss Exception

Data Storage Exception
Unaligned Exception

Data Bus Exception

Divide Exception

FPU Exception

Stream Exception

Exception Causes

Stream Exception

The AXI4-Stream exception is caused by executing a get or getd instruction with the ‘e’
bit set to ‘1’ when there is a control bit mismatch.

Instruction Bus Exception
The instruction bus exception is caused by errors when reading data from memory.

The instruction peripheral AXI4 interface (M_AXI_IP) exception is caused by an error
response on M_AXT_TP_RRESP

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 69

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=69

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

The instruction cache AXI4 interface (M_AXI_IC) is caused by an error response on
M_AXI_IC_RRESP The exception can only occur when c_ICACHE_ALWAYS_USED is set
to 1 and the cache is turned off, or if the MMU Inhibit Caching bit is set for the
address. In all other cases the response is ignored.

The instructions side local memory (ILMB) can only cause instruction bus exception
when either an uncorrectable error occurs in the LMB memory, as indicated by the
IUE signal, or C_ECC_USE_CE_EXCEPTION is set to 1 and a correctable error occurs in
the LMB memory, as indicated by the 1cE signal.

« Illegal Opcode Exception
The illegal opcode exception is caused by an instruction with an invalid major opcode
(bits 0 through 5 of instruction). Bits 6 through 31 of the instruction are not checked.
Optional processor instructions are detected as illegal if not enabled. If the optional

feature c_orcopE_0x0_ILLEGAL is enabled, an illegal opcode exception is also caused if
the instruction is equal to 0x00000000.

» Data Bus Exception

The data bus exception is caused by errors when reading data from memory or writing
data to memory.

The data peripheral AXI4 interface (M_AXI_DP) exception is caused by an error
response ONh M_AXI_DP_RRESP O M_AXI_DP_BRESP

The data cache AXI4 interface (M_AXI_DC) exception is caused by:

- An error response on M_AXI_DC_RRESP Of M_AXI_DC_BRESPH

- OKAY response on M_AXI_DC_RRESP in case of an exclusive access using Lwx.

The exception can only occur when c¢_bpcacHE_aALwaYS_USED is set to 1 and the cache

is turned off, when an exclusive access using Lwx or swx is performed, or if the MMU
Inhibit Caching bit is set for the address. In all other cases the response is ignored.

The data side local memory (DLMB) can only cause instruction bus exception when
either an uncorrectable error occurs in the LMB memory, as indicated by the pue
signal, or c_ECcC_USE_CE_EXCEPTION is set to 1 and a correctable error occurs in the
LMB memory, as indicated by the pck signal. An error can occur for all read
accesses, and for byte and halfword write accesses.

« Unaligned Exception

The unaligned exception is caused by a word access where the address to the data bus
has bits 30 or 31 set, or a half-word access with bit 31 set.

« Divide Exception

The divide exception is caused by an integer division (idiv or idivu) where the divisor is
zero, or by a signed integer division (idiv) where overflow occurs (-2147483648 / -1).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 70
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=70

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE
« FPU Exception

An FPU exception is caused by an underflow, overflow, divide-by-zero, illegal operation,
or denormalized operand occurring with a floating point instruction.

Underflow occurs when the result is denormalized.
Overflow occurs when the result is not-a-number (NaN).

The divide-by-zero FPU exception is caused by the rA operand to fdiv being zero
when rB is not infinite.

Illegal operation is caused by a signaling NaN operand or by illegal infinite or zero
operand combinations.

» Privileged Instruction Exception

The Privileged Instruction exception is caused by an attempt to execute a privileged
instruction in User Mode.

« Stack Protection Violation Exception

A Stack Protection Violation exception is caused by executing a load or store instruction
using the stack pointer (register R1) as rA with an address outside the stack boundaries
defined by the special Stack Low and Stack High registers, causing a stack overflow or a
stack underflow.

» Data Storage Exception

The Data Storage exception is caused by an attempt to access data in memory that
results in a memory-protection violation.

« Instruction Storage Exception

The Instruction Storage exception is caused by an attempt to access instructions in
memory that results in a memory-protection violation.

« Data TLB Miss Exception

The Data TLB Miss exception is caused by an attempt to access data in memory, when a
valid Translation Look-Aside Buffer entry is not present, and virtual protected mode is
enabled.

» Instruction TLB Miss Exception

The Instruction TLB Miss exception is caused by an attempt to access instructions in
memory, when a valid Translation Look-Aside Buffer entry is not present, and virtual
protected mode is enabled.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 71
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=71

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Should an Instruction Bus Exception, Illegal Opcode Exception or Data Bus Exception occur
when c_FAULT_TOLERANT is set to 1, and an exception is in progress (that is MSR[EIP] set and
MSR[EE] cleared), the pipeline is halted, and the external signal vB_trror is set.

Imprecise Exceptions

Normally all exceptions in MicroBlaze are precise, meaning that any instructions in the
pipeline after the instruction causing an exception are invalidated, and have no effect.

When c_IMPRECISE_EXCEPTIONS is set to 1 (Ecc) an Instruction Bus Exception or Data Bus
Exception caused by ECC errors in LMB memory is not precise, meaning that a subsequent
memory access instruction in the pipeline may be executed. If this behavior is acceptable,
the maximum frequency can be improved by setting this parameter to 1.

Equivalent Pseudocode

ESR[DS] ¢ exception in delay slot
if ESR[DS] then
BTR < branch target PC
if MMU exception then
if branch preceded by IMM then
rl7 <« PC - 8
else
rl7 ¢« PC - 4
else
rl7 ¢ invalid value
else if MMU exception then
if instruction preceded by IMM then
rl7 ¢« PC - 4
else
rl7 < PC
else
rl7 < PC + 4
PC ¢ C_BASE_VECTORS + 0x00000020
MSR[EE] ¢ 0, MSR[EIP]« 1
MSR[UMS] ¢ MSR[UM], MSR[UM] ¢« 0, MSR[VMS] ¢ MSR[VM], MSR[VM] <« O
ESR[EC] ¢ exception specific value
ESR[ESS] ¢~ exception specific value
EAR ¢ exception specific value
FSR ¢« exception specific value
Reservation <« 0

Breaks
There are two kinds of breaks:

« Hardware (external) breaks

« Software (internal) breaks

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 72
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=72

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Hardware Breaks

Hardware breaks are performed by asserting the external break signal (that is, the Ext_Brx
and Ext_NM_BRK input ports). On a break, the instruction in the execution stage completes
while the instruction in the decode stage is replaced by a branch to the break vector
(address c_Base_vEcTors + 0x18). The break return address (the PC associated with the
instruction in the decode stage at the time of the break) is automatically loaded into
general purpose register R16. MicroBlaze also sets the Break In Progress (81p) flag in the
Machine Status Register (MSR).

A normal hardware break (that is, the Ext_Brx input port) is only handled when MSRI[BIP]

and MSRI[EIP] are set to O (that is, there is no break or exception in progress). The Break In
Progress flag disables interrupts. A non-maskable break (that is, the Ext_nmM_BRK input port)
is always handled immediately.

The BIP bit in the MSR is automatically cleared when executing the RTBD instruction.

The Ext_BRK signal must be kept asserted until the break has occurred, and deasserted
before the RTBD instruction is executed. The Ext_NM_BRK signal must only be asserted one
clock cycle.

Software Breaks

To perform a software break, use the pbrk and brki instructions. Refer to Chapter 5,
MicroBlaze Instruction Set Architecture for detailed information on software breaks.

As a special case, when C_USE_DEBUG is set, and "brki rD, 0x18~ is executed, a software
breakpoint is signaled to the debugger, for example the Xilinx System Debugger (XSDB)
tool, irrespective of the value of c_BaSE VECTORS.

Latency

The time it takes MicroBlaze to enter a break service routine from the time the break occurs
depends on the instruction currently in the execution stage and the latency to the memory
storing the break vector.

Equivalent Pseudocode

rlé « PC

PC ¢~ C_BASE_VECTORS + 0x00000018

MSR[BIP] « 1

MSR[UMS] ¢— MSR[UM], MSR[UM] ¢ 0, MSR[VMS] ¢ MSR[VM], MSR[VM] ¢ O
Reservation <« 0

Interrupt

MicroBlaze supports one external interrupt source (connected to the Interrupt input port).
The processor only reacts to interrupts if the Interrupt Enable (IE) bit in the Machine Status

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 73
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=73

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Register (MSR) is set to 1. On an interrupt, the instruction in the execution stage completes
while the instruction in the decode stage is replaced by a branch to the interrupt vector.
This is either address c_Base_vecTors + 0x10, or with low-latency interrupt mode, the
address supplied by the Interrupt Controller.

The interrupt return address (the PC associated with the instruction in the decode stage at
the time of the interrupt) is automatically loaded into general purpose register R14. In
addition, the processor also disables future interrupts by clearing the IE bit in the MSR. The
IE bit is automatically set again when executing the RTID instruction.

Interrupts are ignored by the processor if either of the break in progress (8B1p) or exception
in progress (E1P) bits in the MSR are set to 1.

By using the parameter c_INTERRUPT IS_EDGE, the external interrupt can either be set to
level-sensitive or edge-triggered:

* When using level-sensitive interrupts, the Interrupt input must remain set until
MicroBlaze has taken the interrupt, and jumped to the interrupt vector. Software must
acknowledge the interrupt at the source to clear it before returning from the interrupt
handler. If not, the interrupt is taken again, as soon as interrupts are enabled when
returning from the interrupt handler.

* When using edge-triggered interrupts, MicroBlaze detects and latches the Interrupt
input edge, which means that the input only needs to be asserted one clock cycle. The
interrupt input can remain asserted, but must be deasserted at least one clock cycle
before a new interrupt can be detected. The latching of an edge sensitive interrupt is
independent of the IE bit in MSR. Should an interrupt occur while the IE bit is O, it will
immediately be serviced when the IE bit is set to 1.

With periodic interrupt sources, such as the FIT Timer IP core, that do not have a method to
clear the interrupt from software, it is recommended to use edge-triggered interrupts.

Low-latency Interrupt Mode

A low-latency interrupt mode is available, which allows the Interrupt Controller to directly
supply the interrupt vector for each individual interrupt (via the Interrupt_address input
port). The address of each fast interrupt handler must be passed to the Interrupt Controller
when initializing the interrupt system. When a particular interrupt occurs, this address is
supplied by the Interrupt Controller, which allows MicroBlaze to directly jump to the
handler code.

With this mode, MicroBlaze also directly sends the appropriate interrupt acknowledge to
the Interrupt Controller (via the Interrupt_ack output port), although it is still the
responsibility of the Interrupt Service Routine to acknowledge level sensitive interrupts at
the source.

This information allows the Interrupt Controller to acknowledge interrupts appropriately,
both for level-sensitive and edge-triggered interrupt.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 74
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=74

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

To inform the Interrupt Controller of the interrupt handling events, tnterrupt_ack is set to:

* 01 - when MicroBlaze jumps to the interrupt handler code,
« 10 - when the RTID instruction is executed to return from interrupt,

« 11 - when MSRJ[IE] is changed from 0 to 1, which enables interrupts again.

The 1nterrupt_ack output port is active during one clock cycle, and is then reset to 00.

Latency

The time it takes MicroBlaze to enter an Interrupt Service Routine (ISR) from the time an
interrupt occurs, depends on the configuration of the processor and the latency of the
memory controller storing the interrupt vectors. If MicroBlaze is configured to have a
hardware divider, the largest latency happens when an interrupt occurs during the
execution of a division instruction.

With low-latency interrupt mode, the time to enter the ISR is significantly reduced, since
the interrupt vector for each individual interrupt is directly supplied by the Interrupt
Controller. With compiler support for fast interrupts, there is no need for a common ISR at
all. Instead, the ISR for each individual interrupt will be directly called, and the compiler
takes care of saving and restoring registers used by the ISR.

Equivalent Pseudocode

rld < PC
if C_USE_INTERRUPT = 2
PC ¢ Interrupt_Address
Interrupt_Ack < 01
else
PC ¢ C_BASE_VECTORS + 0x00000010
MSR[IE] < O
MSR[UMS] ¢— MSR[UM], MSR[UM] ¢ 0, MSR[VMS] ¢ MSR[VM], MSR[VM] 4 O
Reservation ¢ 0

User Vector (Exception)

The user exception vector is located at address 0x8. A user exception is caused by inserting
a '‘BRALID Rx,0x8" instruction in the software flow. Although Rx could be any general
purpose register, Xilinx recommends using R15 for storing the user exception return
address, and to use the RTSD instruction to return from the user exception handler.

Pseudocode

rx ¢ PC

PC ¢~ C_BASE_VECTORS + 0x00000008

MSR[UMS] ¢— MSR[UM], MSR[UM] ¢« 0, MSR[VMS] ¢ MSR[VM], MSR[VM] <« O
Reservation ¢ 0

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 75
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=75

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Instruction Cache

Overview

MicroBlaze can be used with an optional instruction cache for improved performance when
executing code that resides outside the LMB address range.

The instruction cache has the following features:

« Direct mapped (1-way associative)

» User selectable cacheable memory address range

« Configurable cache and tag size

« Caching over AXI14 interface (M_AXI_IC)

« Option to use 4, 8 or 16 word cache-line

« Cache on and off controlled using a bit in the MSR

« Optional WIC instruction to invalidate instruction cache lines

« Optional stream buffers to improve performance by speculatively prefetching
instructions

« Optional victim cache to improve performance by saving evicted cache lines

« Optional parity protection that invalidates cache lines if a Block RAM bit error is
detected

« Optional data width selection to either use 32 bits, an entire cache line, or 512 bits

General Instruction Cache Functionality

When the instruction cache is used, the memory address space is split into two segments:
a cacheable segment and a non-cacheable segment. The cacheable segment is determined
by two parameters: c_ICACHE_BASEADDR and c_ICACHE_HIGHADDR. All addresses within this
range correspond to the cacheable address segment. All other addresses are non-
cacheable.

The cacheable segment size must be 2N, where N is a positive integer. The range specified
by c_ICcACHE_BASEADDR and C_ICACHE_HIGHADDR must comprise a complete power-of-two
range, such that range = 2N and the N least significant bits of c_tcacue_saseappr must be
zero.

The cacheable instruction address consists of two parts: the cache address, and the tag

address. The MicroBlaze instruction cache can be configured from 64 bytes to 64 kB. This
corresponds to a cache address of between 6 and 16 bits. The tag address together with the
cache address should match the full address of cacheable memory. When selecting cache

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 76
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=76

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

sizes below 2 kB, distributed RAM is used to implement the Tag RAM and Instruction RAM.
Distributed RAM is always used to implement the Tag RAM, when setting the parameter
C_ICACHE_FORCE_TAG_LUTRAM to 1. This parameter is only available with cache size 8 kB and
less for 4 word cache-lines, with 16 kB and less for 8 word cache-lines, and with 32 kB and
less for 16 word cache-lines.

For example: in a MicroBlaze configured with c_ICACHE BASEADDR= 0x00300000,
C_ICACHE_HIGHADDR=0x0030ffff, C_CACHE BYTE_SIZE=4096, C_ICACHE_LINE_LEN=8, and
C_ICACHE_FORCE_TAG_LUTRAM=0; the cacheable memory of 64 kB uses 16 bits of byte
address, and the 4 kB cache uses 12 bits of byte address, thus the required address tag
width is: 16-12=4 bits. The total number of block RAM primitives required in this
configuration is: 2 RAMB16 for storing the 1024 instruction words, and 1 RAMB16 for 128
cache line entries, each consisting of: 4 bits of tag, 8 word-valid bits, 1 line-valid bit. In total
3 RAMB16 primitives.

Figure 2-22, page 77 shows the organization of Instruction Cache.

Instruction Address Bits
0 3031
[Tag Address | Cache Address EE

Line Addr Tag |19 ><+=> Cache_Hit
————— B RAM . .
Valid (word and line)

Word Addr Instruction Cache_instruction_data
— ®| RAM >

Figure 2-22: Instruction Cache Organization

Instruction Cache Operation

For every instruction fetched, the instruction cache detects if the instruction address
belongs to the cacheable segment. If the address is non-cacheable, the cache controller
ignores the instruction and lets the M_AXI_IP or LMB complete the request. If the address is
cacheable, a lookup is performed on the tag memory to check if the requested address is
currently cached. The lookup is successful if: the word and line valid bits are set, and the tag
address matches the instruction address tag segment. On a cache miss, the cache controller
requests the new instruction over the instruction AXI4 interface (M_AXI_IC), and waits for
the memory controller to return the associated cache line.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 77
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=77

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

c_1cacHE_DATA_WIDTH determines the bus data width, either 32 bits, an entire cache line
(128, 256 or 512 bits), or 512 bits.

When c_FAULT_TOLERANT is set to 1, a cache miss also occurs if a parity error is detected in
a tag or instruction Block RAM.

The instruction cache issues burst accesses for the AXI4 interface when 32-bit data width is
used, otherwise single accesses are used.

Stream Buffers

When stream buffers are enabled, by setting the parameter c_1cacHE_sTrEaMS to 1, the
cache will speculatively fetch cache lines in advance in sequence following the last
requested address, until the stream buffer is full. The stream buffer can hold up to two
cache lines. Should the processor subsequently request instructions from a cache line
prefetched by the stream buffer, which occurs in linear code, they are immediately available.

The stream buffer often improves performance, since the processor generally has to spend
less time waiting for instructions to be fetched from memory.

C_ICACHE_DATA_WIDTH determines the amount of data transferred from the stream buffer
each clock cycle, either 32 bits or an entire cache line.

To be able to use instruction cache stream buffers, area optimization must not be enabled.

Victim Cache

The victim cache is enabled by setting the parameter c_1cacue_victiums to 2, 4 or 8. This
defines the number of cache lines that can be stored in the victim cache. Whenever a cache
line is evicted from the cache, it is saved in the victim cache. By saving the most recent lines
they can be fetched much faster, should the processor request them, thereby improving
performance. If the victim cache is not used, all evicted cache lines must be read from
memory again when they are needed.

C_ICACHE_DATA_wWIDTH determines the amount of data transferred from/to the victim cache
each clock cycle, either 32 bits or an entire cache line.

Note that to be able to use the victim cache, area optimization must not be enabled.
Instruction Cache Software Support

MSR Bit

The ICE bit in the MSR provides software control to enable and disable caches.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 78
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=78

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

The contents of the cache are preserved by default when the cache is disabled. You can
invalidate cache lines using the WIC instruction or using the hardware debug logic of
MicroBlaze.

WIC Instruction

The optional WIC instruction (c_arrnow_TcacHE_wR=1) is used to invalidate cache lines in the
instruction cache from an application. For a detailed description, refer to Chapter 5,
MicroBlaze Instruction Set Architecture.

The WIC instruction can also be used together with parity protection to periodically
invalidate entries the cache, to avoid accumulating errors.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 79
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=79

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Data Cache

Overview

MicroBlaze can be used with an optional data cache for improved performance. The cached
memory range must not include addresses in the LMB address range. The data cache has
the following features:

« Direct mapped (1-way associative)

» Write-through or Write-back

« User selectable cacheable memory address range

« Configurable cache size and tag size

« Caching over AXI4 interface (M_AXI_DC)

+ Option to use 4, 8 or 16 word cache-lines

« Cache on and off controlled using a bit in the MSR

« Optional WDC instruction to invalidate or flush data cache lines

« Optional victim cache with write-back to improve performance by saving evicted cache
lines

« Optional parity protection for write-through cache that invalidates cache lines if a Block
RAM bit error is detected

« Optional data width selection to either use 32 bits, an entire cache line, or 512 bits

General Data Cache Functionality

When the data cache is used, the memory address space is split into two segments: a
cacheable segment and a non-cacheable segment. The cacheable area is determined by
two parameters: c_DCACHE_BASEADDR and Cc_DCACHE_HIGHADDR. All addresses within this
range correspond to the cacheable address space. All other addresses are non-cacheable.

The cacheable segment size must be 2N, where N is a positive integer. The range specified
by c_DCACHE_BASEADDR and C_DCACHE_HIGHADDR must comprise a complete power-of-two
range, such that range = 2N and the N least significant bits of c_pcacue_saseappr must be
zero.

Figure 2-23 shows the Data Cache Organization.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 80
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=80

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Data Address Bits
0 3031

| Tag Address | Cache Word Address | -|-|

Addr Ta Tag o

> RA) Cache_Hit
Valid >
Load_Instruction
Addr Data Cache_data
> RAM >

Figure 2-23: Data Cache Organization

The cacheable data address consists of two parts: the cache address, and the tag address.
The MicroBlaze data cache can be configured from 64 bytes to 64 kB. This corresponds to
a cache address of between 6 and 16 bits. The tag address together with the cache address
should match the full address of cacheable memory. When selecting cache sizes below 2 kB,
distributed RAM is used to implement the Tag RAM and Data RAM, except that block RAM
is always used for the Data RAM when c_aArREA_oPTIMIZED is set to 1 (Area) and
C_DCACHE_USE_WRITEBACK is not set. Distributed RAM is always used to implement the Tag
RAM, when setting the parameter c_bcacHE_FORCE_TAG_LUTRAM to 1. This parameter is only
available with cache size 8 kB and less for 4 word cache-lines, with 16 kB and less for 8 word
cache-lines, and with 32 kB and less for 16 word cache-lines.

For example, in a MicroBlaze configured with c_DCACHE_BASEADDR=0x00400000,
C_DCACHE_HIGHADDR=0x00403fff, C_DCACHE BYTE_SIZE=2048, C_DCACHE_LINE_LEN=4, and
C_DCACHE_FORCE_TAG_LUTRAM=0; the cacheable memory of 16 kB uses 14 bits of byte
address, and the 2 kB cache uses 11 bits of byte address, thus the required address tag
width is 14-11=3 bits. The total number of block RAM primitives required in this
configuration is 1 RAMBL16 for storing the 512 data words, and 1 RAMB16 for 128 cache line
entries, each consisting of 3 bits of tag, 4 word-valid bits, 1 line-valid bit. In total, 2 RAMB16
primitives.

Data Cache Operation

The caching policy used by the MicroBlaze data cache, write-back or write-through, is
determined by the parameter c_pcacue_use wrITEBACK. When this parameter is set, a
write-back protocol is implemented, otherwise write-through is implemented. However,
when configured with an MMU (c_use_wmmu > 1, c_area_opT1MIZED = 0 (Performance) or 2
(Frequency), c_DCACHE_USE_WRITEBACK = 1), the caching policy in virtual mode is
determined by the W storage attribute in the TLB entry, whereas write-back is used in real
mode.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 81
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=81

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

With the write-back protocol, a store to an address within the cacheable range always
updates the cached data. If the target address word is not in the cache (that is, the access
is a cache miss), and the location in the cache contains data that has not yet been written
to memory (the cache location is dirty), the old data is written over the data AXI4 interface
(M_AXI_DC) to external memory before updating the cache with the new data. If only a
single word needs to be written, a single word write is used, otherwise a burst write is used.
For byte or halfword stores, in case of a cache miss, the address is first requested over the
data AXI4 interface, while a word store only updates the cache.

With the write-through protocol, a store to an address within the cacheable range
generates an equivalent byte, halfword, or word write over the data AXI4 interface to
external memory. The write also updates the cached data if the target address word is in the
cache (that is, the write is a cache hit). A write cache-miss does not load the associated
cache line into the cache.

Provided that the cache is enabled a load from an address within the cacheable range
triggers a check to determine if the requested data is currently cached. If it is (that is, on a
cache hit) the requested data is retrieved from the cache. If not (that is, on a cache miss) the
address is requested over the data AXI4 interface using a burst read, and the processor
pipeline stalls until the cache line associated to the requested address is returned from the
external memory controller.

The parameter c_pcacHE_DATA_wIDTH determines the bus data width, either 32 bits, an
entire cache line (128, 256 or 512 bits), or 512 bits.

When c_rauLT_TOLERANT is set to 1 and write-through protocol is used, a cache miss also
occurs if a parity error is detected in the tag or data Block RAM.

All types of accesses issued by the data cache AXI4 interface are summarized in Table 2-39.

Table 2-39: Data Cache Interface Accesses

Policy State | Direction Access Type
Write- Cache Read Burst for 32-bit interface non-exclusive access
through Enabled and exclusive access with ACE enabled, single ac-

cess otherwise

Write Single access

Cache Read Burst for 32-bit interface exclusive access with
Disabled ACE enabled, single access otherwise

Write Single access

Write-back Cache Read Burst for 32-bit interface, single access otherwise
Enabled

Write Burst for 32-bit interface cache lines with more
than one valid word, a single access otherwise

Cache Read Burst for 32-bit interface non-exclusive access,
Disabled discarding all but the desired data, a single ac-
cess otherwise

Write Single access

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 82
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=82

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE
Victim Cache

The victim cache is enabled by setting the parameter c_bpcacue_vicTImMs to 2, 4 or 8. This
defines the number of cache lines that can be stored in the victim cache. Whenever a
complete cache line is evicted from the cache, it is saved in the victim cache. By saving the
most recent lines they can be fetched much faster, should the processor request them,
thereby improving performance. If the victim cache is not used, all evicted cache lines must
be read from memory again when they are needed.

With the AXI4 interface, c_bpcacHE _DATA_wiDTH determines the amount of data transferred
from/to the victim cache each clock cycle, either 32 bits or an entire cache line.

Note that to be able to use the victim cache, write-back must be enabled and area
optimization must not be enabled.

Data Cache Software Support

MSR Bit

The DCE bit in the MSR controls whether or not the cache is enabled. When disabling
caches the user must ensure that all the prior writes within the cacheable range have been
completed in external memory before reading back over M_AXI_DP. This can be done by
writing to a semaphore immediately before turning off caches, and then in a loop poll until
it has been written.

The contents of the cache are preserved when the cache is disabled.

WDC Instruction

The optional WDC instruction (c_arLrow_DCACHE_WR=1) is used to invalidate or flush cache
lines in the data cache from an application. For a detailed description, please refer to
Chapter 5, MicroBlaze Instruction Set Architecture.

The WDC instruction can also be used together with parity protection to periodically
invalidate entries the cache, to avoid accumulating errors.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 83
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=83

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Floating Point Unit (FPU)

Overview

The MicroBlaze floating point unit is based on the IEEE 754-1985 standard:

Uses IEEE 754 single precision floating point format, including definitions for infinity,
not-a-number (NaN), and zero

Supports addition, subtraction, multiplication, division, comparison, conversion and
square root instructions

Implements round-to-nearest mode

Generates sticky status bits for: underflow, overflow, divide-by-zero and invalid
operation

For improved performance, the following non-standard simplifications are made:

Denormalized (1) operands are not supported. A hardware floating point operation on a
denormalized number returns a quiet NaN and sets the sticky denormalized operand
error bit in FSR; see "Floating Point Status Register (FSR)" on page 31

A denormalized result is stored as a signed 0 with the underflow bit set in FSR. This
method is commonly referred to as Flush-to-Zero (FTZ)

An operation on a quiet NaN returns the fixed NaN: 0xFFC00000, rather than one of the
NaN operands

Overflow as a result of a floating point operation always returns signed oo

Format

An IEEE 754 single precision floating point number is composed of the following three
fields:

1. 1-bit sign

2. 8-bit biased exponent

3. 23-bit fraction (a.k.a. mantissa or significand)

1. Numbers that are so close to O, that they cannot be represented with full precision, that is, any number n that falls in the

following ranges: (1.17549*10°38 > n > 0), or (0 > n > -1.17549 * 10-38)

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 84

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://en.wikipedia.org/wiki/IEEE_754-1985
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=84

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

The fields are stored in a 32 bit word as defined in Figure 2-24:

[0 B 31
T

sign exponent fraction

Figure 2-24: |EEE 754 Single Precision Format

The value of a floating point number v in MicroBlaze has the following interpretation:
1. If exponent = 255 and fraction <> 0, then v= NaN, regardless of the sign bit

If exponent = 255 and fraction = 0, then v= (-1)S9" * oo

If 0 < exponent < 255, then v = (-1)sign * 2(exponent-127) x (1 fraction)

If exponent = 0 and fraction <> 0, then v = (-1)si9n * 2-126 * (0 fraction)

If exponent = 0 and fraction = 0, then v = (-1)sign *

v h W

For practical purposes only 3 and 5 are useful, while the others all represent either an error
or numbers that can no longer be represented with full precision in a 32 bit format.

Rounding

The MicroBlaze FPU only implements the default rounding mode, “Round-to-nearest”,
specified in IEEE 754. By definition, the result of any floating point operation should return
the nearest single precision value to the infinitely precise result. If the two nearest
representable values are equally near, then the one with its least significant bit zero is
returned.

Operations

All MicroBlaze FPU operations use the processors general purpose registers rather than a
dedicated floating point register file, see “General Purpose Registers”.

Arithmetic

The FPU implements the following floating point operations:

« addition, fadd

« subtraction, fsub

« multiplication, fmul
« division, fdiv

« square root, fsqrt (available if c_ USE_FPU = 2, EXTENDED)

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 85
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=85

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Comparison
The FPU implements the following floating point comparisons:

« compare less-than, fcmp.It

« compare equal, fcmp.eq

« compare less-or-equal, fcmp.le

« compare greater-than, fcmp.gt

« compare not-equal, fcmp.ne

« compare greater-or-equal, fcmp.ge

« compare unordered, fcmp.un (used for NaN)
Conversion
The FPU implements the following conversions (available if c_Use_FpPU = 2, EXTENDED):

« convert from signed integer to floating point, flt

« convert from floating point to signed integer, fint

Exceptions

The floating point unit uses the regular hardware exception mechanism in MicroBlaze.
When enabled, exceptions are thrown for all the IEEE standard conditions: underflow,
overflow, divide-by-zero, and illegal operation, as well as for the MicroBlaze specific
exception: denormalized operand error.

A floating point exception inhibits the write to the destination register (Rd). This allows a
floating point exception handler to operate on the uncorrupted register file.

Software Support

The SDK compiler system, based on GCC, provides support for the Floating Point Unit
compliant with the MicroBlaze APIL. Compiler flags are automatically added to the GCC
command line based on the type of FPU present in the system, when using SDK.

All double-precision operations are emulated in software. Be aware that the xil_printf()
function does not support floating-point output. The standard C library printf() and related
functions do support floating-point output, but will increase the program code size.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 86
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=86

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Libraries and Binary Compatibility

The SDK compiler system only includes software floating point C runtime libraries. To take
advantage of the hardware FPU, the libraries must be recompiled with the appropriate
compiler switches.

For all cases where separate compilation is used, it is very important that you ensure the
consistency of FPU compiler flags throughout the build.

Operator Latencies

The latencies of the various operations supported by the FPU are listed in Chapter 5,
“MicroBlaze Instruction Set Architecture.” The FPU instructions are not pipelined, so only
one operation can be ongoing at any time.

C Language Programming

To gain maximum benefit from the FPU without low-level assembly-language
programming, it is important to consider how the C compiler will interpret your source
code. Very often the same algorithm can be expressed in many different ways, and some are
more efficient than others.

Immediate Constants

Floating-point constants in C are double-precision by default. When using a single-
precision FPU, careless coding may result in double-precision software emulation routines
being used instead of the native single-precision instructions. To avoid this, explicitly
specify (by cast or suffix) that immediate constants in your arithmetic expressions are
single-precision values.

For example:

float x = 0.0;

+ .

x += (float)l1l.0; /* float addition */
x += 1.0F; /* alternative to above */
x += 1.0; /* warning - uses double addition! */

Note that the GNU C compiler can be instructed to treat all floating-point constants as
single-precision (contrary to the ANSI C standard) by supplying the compiler flag -fsingle-
precision-constants.

Avoid unnecessary casting

While conversions between floating-point and integer formats are supported in hardware
by the FPU, when c_use_rpu is set to 2 (Extended), it is still best to avoid them when
possible.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 87
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=87

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

The following “bad” example calculates the sum of squares of the integers from 1 to 10
using floating-point representation:

float sum, t;

int i;

sum = 0.0f;

for (i = 1; i <= 10; i++) {
t = (float)i;

sum += t * t;

}

The above code requires a cast from an integer to a float on each loop iteration. This can be
rewritten as:

float sum, t;

int 1i;

t = sum = 0.0f;

for(i = 1; i <= 10; i++) {
t += 1.0f;

sum += t * t;

}

Note that the compiler is not at liberty to perform this optimization in general, as the two
code fragments above may give different results in some cases (for example, very large t).

Square root runtime library function

The standard C runtime math library functions operate using double-precision arithmetic.
When using a single-precision FPU, calls to the square root functions (sqrt()) result in
inefficient emulation routines being used instead of FPU instructions:

#include <math.h>
float x=-1.0F;
%.; sgrt(x); /* uses double precision */
Here the math.h header is included to avoid a warning message from the compiler.

When used with single-precision data types, the result is a cast to double, a runtime library
call is made (which does not use the FPU) and then a truncation back to float is performed.

The solution is to use the non-ANSI function sqrtf() instead, which operates using single
precision and can be carried out using the FPU. For example:

#include <math.h>
float x=-1.0F;

%.; sgrtf(x); /* uses single precision */
Note that when compiling this code, the compiler flag -fno-math-errno (in addition to -

mhard-float and -mxI-float-sqrt) must be used, to ensure that the compiler does not
generate unnecessary code to handle error conditions by updating the errno variable.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 88

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=88

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Stream Link Interfaces

MicroBlaze can be configured with up to 16 AXI4-Stream interfaces, each consisting of one
input and one output port. The channels are dedicated uni-directional point-to-point data
streaming interfaces.

For detailed information on the AXI4-Stream interface, please refer to the AMBA 4 AXI4-
Stream Protocol Specification, Version 1.0 (ARM IHI 0051A) document.

The interfaces on MicroBlaze are 32 bits wide. A separate bit indicates whether the
sent/received word is of control or data type. The get instruction in the MicroBlaze ISA is
used to transfer information from a port to a general purpose register. The put instruction
is used to transfer data in the opposite direction. Both instructions come in 4 flavors:
blocking data, non-blocking data, blocking control, and non-blocking control. For a
detailed description of the get and put instructions, please refer to Chapter 5, MicroBlaze
Instruction Set Architecture.

Hardware Acceleration

Each link provides a low latency dedicated interface to the processor pipeline. Thus they are
ideal for extending the processors execution unit with custom hardware accelerators. A
simple example is illustrated in Figure 2-25. The code uses RFSLx to indicate the used link.

Example code: *
// Configure f, Link x

Custom HW Accelerator

cput Rc,RFSLx

MicroBlaze | OplReg | | Op2Reg |

Register
Fil
put Ra, RFSLx // op 1 e ‘

X

put Rb, RFSLx // op 2
Link x |

// Store operands

// Load result

Figure 2-25: Stream Link Used with HW Accelerated Function fx

This method is similar to extending the ISA with custom instructions, but has the benefit of
not making the overall speed of the processor pipeline dependent on the custom function.
Also, there are no additional requirements on the software tool chain associated with this
type of functional extension.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 89
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=89

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Debug and Trace

Debug Overview

MicroBlaze features a debug interface to support JTAG based software debugging tools
(commonly known as BDM or Background Debug Mode debuggers) like the Xilinx System
Debugger (XSDB) tool. The debug interface is designed to be connected to the Xilinx
Microprocessor Debug Module (MDM) core, which interfaces with the JTAG port of Xilinx
FPGAs. Multiple MicroBlaze instances can be interfaced with a single MDM to enable
multiprocessor debugging.

To be able to download programs, set software breakpoints and disassemble code, the
instruction and data memory ranges must overlap, and use the same physical memory.

Debug registers are accessed via the debug interface, and are not directly visible to
software running on the processor, unless the MDM is configured to enable software access
to user-accessible debug registers. The debug interface can either use JTAG serial access or
AXI4-Lite parallel access, controlled by the parameter C_DEBUG_INTERFACE.

See the MicroBlaze Debug Module (MDM) Product Guide (PG115) for a detailed description
of the MDM features.

The basic debugging features enabled by setting C_DEBUG_ENABLED to 1 (Basic) include:

« Configurable number of hardware breakpoints and watchpoints and unlimited software
breakpoints

« External processor control enables debug tools to stop, reset, and single step
MicroBlaze

« Read from and write to: memory, general purpose registers, and special purpose
register, except EAR, EDR, ESR, BTR and PVRO - PVR12, which can only be read

« Support for multiple processors

The extended debugging features enabled by setting C_DEBUG_ENABLED to 2 (Extended)
include:

« Configurable number of performance monitoring event and latency counters
* Program Trace:

- Embedded program trace with configurable trace buffer size

- External program trace for multiple processors, provided by the MDM
« Non-intrusive profiling support with configurable profiling buffer size

« Cross trigger support between multiple processors, and external cross trigger inputs
and outputs, provided by the MDM

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback a0
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=mdm;v=latest;d=pg115-mdm.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=90

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Performance Monitoring

With extended debugging, MicroBlaze provides performance monitoring counters to count
various events and to measure latency during program execution. The number of event
counters and latency counters can be configured with C_DEBUG_EVENT_COUNTERS and
C_DEBUG_LATENCY_COUNTERS respectively, and the counter width can be set to 32, 48 or
64 bits with C_DEBUG_COUNTER_WIDTH. With the default configuration, the counter width
is set to 32 bits and there are five event counters and one latency counter.

An event counter simply counts the number of times a certain event has occurred, whereas
a latency counter provides the following information:

« Number of times the event has occurred (N)

« The sum of each event latency measured by counting clock cycles from the event starts
until it finishes (L), used to calculate the mean latency

« The sum of each event latency squared (XL9), used to calculate the latency standard
deviation

« The minimum, shortest, measured latency for all events (L,,;n)

« The maximum, longest, measured latency for all events (L,,4y)

The mean latency (W) is calculated by the formula:

e
"N

The standard deviation (o) of the latency is calculated by the formula:

JNZL2 - (2L)?

N

Counting can be started or stopped via the Performance Counter Command Register or by
cross trigger events (see Table 2-61).

When configuring, reading or writing counters, they are accessed sequentially through the
performance counter registers. After every access the selected counter item is incremented.

All counters are sampled simultaneously for reading via the Performance Counter
Command Register. This can be done while counting, or after counting has been stopped.

When an event counter reaches its maximum value, the overflow status bit is set, and the
external interrupt signal Dbg_Intr is set to one. The interrupt signal is reset to zero by
clearing the counters via the Performance Counter Command Register.

By using one of the event counters to count number of clock cycles, and initializing this
counter to overflow after a predetermined sampling interval, the external interrupt can be
used to periodically sample the performance counters.

The available events are described in Table 2-40, listed in numerical order.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 91
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=91

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

A typical procedure to follow when initializing and using the performance monitoring
counters is delineated in the steps below.

» Initialize the events to be monitored:

o

Use the Performance Command Register (Table 2-43) to reset the selected counter
to the first counter, by setting the Reset bit.

Write the desired event numbers for all counters in order, using the Performance
Control Register (Table 2-42). With the default configuration this means writing the
register five times for the event counters and then once for the latency counter.

« Clear all counters and start monitoring using the Performance Command Register, by
setting the Clear and Start bits.

* Run the program or function to be monitored.

« Sample counters and stop monitoring using the Performance Command Register, by
setting the Sample and Stop bits.

« Read the results from all counters:

o

Use the Performance Command Register to reset the selected counter to the first
counter, by setting the Reset bit.

Read the status for all counters in order, using the Performance Counter Status
Register (Table 2-44). With the default configuration this means reading the register
five times for the event counters and then once for the latency counter. Ensure that
the result is valid by checking that the overflow and full bits are not set.

Use the Performance Command Register to reset the selected counter to the first
counter, by setting the Reset bit.

Read the counter items for all counters in order, using the Performance Counter
Data Read Register (Table 2-45). With the default configuration this means reading
the register five times for the event counters and then four times for the latency
counter as described in Table 2-46.

« Calculate the final results, depending on the measured events, for example:

o

Use the formulas above to determine the mean latency and standard deviation for
any measured latency.

The clock cycles per instruction (CPI) can be calculated by E3q / Eg.
The instruction and data cache hit rates can be calculated by E1; / E1g and E47 / Ege.

The instruction cache miss latency is determined by (Ego(XL) - Ego(N)) / (E1g - E11),
and equivalent formulas can be used to determine the data cache read and write
miss latencies.

The ratio of floating point instructions in a program is E;q/E.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 92

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=92

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-40: MicroBlaze Performance Monitoring Events
Event Description Event Description
Event Counter events
0 Any valid instruction executed 29 Floating point (fadd, ..., fsqrt)
1 Load word (lw, lwi, lwx) executed 30 Number of clock cycles
2 Load halfword (lhu, lhui) executed 31 Immediate (imm) executed
3 Load byte (lbu, lbui) executed 32 Pattern compare (pcmpbf, pcmpeq, pcmpne)
4 Store word (sw, swi, swx) executed 33 Sign extend instructions (sext8, sext16) executed
5 Store halfword (sh, shi) executed 34 Instruction cache invalidate (wic) executed
6 Store byte (sb, sbi) executed 35 Data cache invalidate or flush (wdc) executed
7 Unconditional branch (br, bri, brk, brki) executed 36 Machine status instructions (msrset, msrclr)
8 Taken conditional branch (beg, ..., bnei) executed 37 Unconditional branch with delay slot executed
9 Not taken conditional branch (beg, ..., bnei) executed 38 Taken conditional branch with delay slot executed
10 Data request from instruction cache 39 Not taken conditional branch with delay slot
11 Hit in instruction cache 40 Delay slot with no operation instruction executed
12 Read data requested from data cache 41 Load instruction (lbu, ..., lwx) executed
13 Read data hit in data cache 42 Store instruction (sb, ..., swx) executed
14 Write data request to data cache 43 MMU data access request
15 Write data hit in data cache 44 Conditional branch (beg, ..., bnei) executed
16 Load (lbu, ..., lwx) with rl as operand executed 45 Branch (br, bri, brk, brki, beq, ..., bnei) executed
17 Store (sb, ..., swx) with rl as operand executed 46 Read or write data request from/to data cache
18 Logical operation (and, andn, or, xor) executed 47 Read or write data cache hit
19 Arithmetic operation (add, idiv, mul, rsub) executed 48 MMU exception taken
20 Multiply operation (mul, mulh, mulhu, mulhsu, muli) 49 MMU instruction side exception taken
21 Barrel shifter operation (bsrl, bsra, bsll) executed 50 MMU data side exception taken
22 Shift operation (sra, src, srl) executed 51 Pipeline stalled
23 Exception taken 52 Branch target cache hit for a branch or return
24 Interrupt occurred 53 MMU instruction side access request
25 Pipeline stalled due to operand fetch stage (OF) 54 MMU instruction TLB (ITLB) hit
26 Pipeline stalled due to execute stage (EX) 55 MMU data TLB (DTLB) hit
27 Pipeline stalled due to memory stage (MEM) 56 MMU unified TLB (UTLB) hit
28 Integer divide (idiv, idivu) executed
Latency and Event Counter events
57 Interrupt latency from input to interrupt vector 61 MMU address lookup latency
58 Data cache latency for memory read 62 Peripheral AXI interface data read latency
59 Data cache latency for memory write 63 Peripheral AXI interface data write latency
60 Instruction cache latency for memory read

MicroBlaze Processor Reference Guide

www.Xilinx.com

UG984 (v2016.4) November 30, 2016

93

| Send Feedback I

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=93

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

The debug registers used to configure and control performance monitoring, and to read or
write the event and latency counters, are listed in Table 2-41. All of these registers except
the Performance Counter Command register are accessed repeatedly to read or write
information, first for all of the event counters followed by all of the latency counters.

The DBG_CTRL Value indicates the value to use in the MDM Debug Register Access Control
Register to access the register, used with MDM software access to debug registers.

Table 2-41: MicroBlaze Performance Monitoring Debug Registers

. . . MDM DBG_CTRL _—_—

Register Name |Size (bits) Command Value R/W Description
Performance Select event for each configured
Counter Control 8 0101 0001 4A207 W counter, according to Table 2-40
Performance 5 0101 0010 4A404 W Command fco clear counters, start or
Counter Command stop counting, or sample counters
Performance 2 0101 0011 4601 R Read. the sampled status for each
Counter Status configured performance counter
Performance 32 0101 0110 AACTE R Read_ the sampled values for each
Counter Data Read configured performance counter
Performance Write initial values for each
Counter Data Write 32 01010111 AAELF w configured performance counter

Performance Counter Control Register

The Performance Counter Control Register (PCCTRLR) is used to define the events that are
counted by the configured performance counters. To define the events for all configured
counters, the register should be written repeatedly for each of the counters. This register is
a write-only register. Issuing a read request has no effect, and undefined data is read.

Every time the register is written, the selected counter is incremented. By using the
Performance Counter Command Register, the selected counter can be reset to the first
counter again.

T T

Reserved Event

Figure 2-26: Performance Counter Control Register

Table 2-42: Performance Counter Control Register (PCCTRLR)

Bits Name Description Reset Value

7:0 Event Performance counter event, according to Table 2-40. 0

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 924
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=94

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Performance Counter Command Register

The Performance Counter Command Register (PCCMDR) is used to issue commands to
clear, start, stop, or sample all counters. This register is a write-only register. Issuing a read
request has no effect, and undefined data is read.

31 5|4|3|2|1|0|
| T T T 1

Reserved CLR STA STOPSAM RES

Figure 2-27: Performance Counter Command Register

Table 2-43: Performance Counter Command Register (PCCMDR)

Bits Name Description Reset Value
4 Clear Clear all counters to zero 0
Start Start counting configured events for all counters simultaneously 0
2 Stop Stop counting all counters simultaneously 0
1 Sample | Sample status and values in all counters simultaneously for reading 0
0 Reset Reset accessed counter to the first event counter for access using the 0
Performance Counter Control, Status, Read Data and Write Data

Performance Counter Status Register

The Performance Counter Status Register (PCSR) reads the sampled status of the counters.
To read the status for all configured counters, the register should be read repeatedly for
each of the counters. This register is a read-only register. Issuing a write request to the register
does nothing.

Every time the register is read, the selected counter is incremented. By using the
Performance Counter Command Register, the selected counter can be reset to the first
counter again.

31 2|1|o|
T

Reserved OF FULL

Figure 2-28: Performance Counter Status Register

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 95
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=95

& XILINX

ALL PROGRAMMABLE

Chapter 2: MicroBlaze Architecture

Table 2-44: Performance Counter Status Register (PCSR)

previous event has finished. This indicates that the accuracy of the
measured values is reduced.

Bits Name Description Reset Value
1 Overflow | This bit is set when the counter has counted past its maximum value 0
0 Full This bit is set when a new latency counter event is started before the 0

Performance Counter Data Read Register

The Performance Counter Data Read Register (PCDRR) reads the sampled values of the
counters. To read the values of all configured counters, the register should be read
repeatedly. This register is a read-only register. Issuing a write request to the register does

nothing.

Since a counter can have more than 32 bits, depending on the configuration, the register
may need to be read repeatedly to retrieve all information for a particular counter. This is
detailed in Table 2-46.

Figure 2-29:

T

Item

Performance Counter Data Read Register

Table 2-45: Performance Counter Data Read Register (PCDRR)

Bits Name

Description

Reset Value

31:0 Item

Sampled counter value item

0

Table 2-46: Performance Counter Data Items

Counter Type

Item

Description

C_DEBUG_COUNTER_WIDTH = 32

Event Counter

The number of times the event occurred

Latency Counter

The number of times the event occurred

The sum of each event latency

The sum of each event latency squared

Rl wWIN| PR

31:16
15:0

Minimum measured latency, 16 bits
Maximum measured latency, 16 bits

C_DEBUG_COUNTER_WIDTH = 48

Event Counter

31:16
15:0

0x0000

The number of times the event occurred, 16 most significant bits

The number of times the event occurred, 32 least significant bits

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 96

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=96

& XILINX

ALL PROGRAMMABLE

Chapter 2: MicroBlaze Architecture

Table 2-46: Performance Counter Data Items (Cont’d)

Counter Type Item Description
Latency Counter 1 The number of times the event occurred
2 31:16 | 0x0000
15:0 | The sum of each event latency, 16 most significant bits
3 The sum of each event latency, 32 least significant bits
4 31:16 | 0x0000
15:0 | The sum of each event latency squared, 16 most significant bits
5 The sum of each event latency squared, 32 least significant bits
6 Minimum measured latency, 32 bits
7 Maximum measured latency, 32 bits

C_DEBUG_COUNTER_WIDTH = 64

Event Counter

The number of times the event occurred, 32 most significant bits

The number of times the event occurred, 32 least significant bits

Latency Counter

The number of times the event occurred, 32 bits

The sum of each event latency, 32 most significant bits

The sum of each event latency, 32 least significant bits

The sum of each event latency squared, 32 most significant bits

The sum of each event latency squared, 32 least significant bits

Minimum measured latency, 32 bits

N o|lu| A WIN| RN

Maximum measured latency, 32 bits

Performance Counter Data Write Register

The Performance Counter Data Write Register (PCDWR) writes initial values to the counters.
To write all configured counters, the register should be written repeatedly. This register is a
write-only register. Issuing a read request has no effect, and undefined data is read.

Since a counter can have more than 32 bits, depending on the configuration, the register
may need to be written repeatedly to update all information for a particular counter, as

described in Table 2-46.

T

Item

Figure 2-30: Performance Counter Data Write Register

Table 2-47: Performance Counter Data Write Register (PCDWR)

Bits Name

Description Reset Value

31:0 Item Counter value item to write into a counter 0

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 97

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=97

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Program Trace

With extended debugging, MicroBlaze provides program trace, either storing information
in the Embedded Trace Buffer or transmitting it to the MDM, to enable program execution
tracing. The MDM is used when the parameter C_DEBUG_EXTERNAL_TRACE is set, allowing
output of program trace from multiple processors via external interfaces.

The size of the Embedded Trace Buffer can be configured from 8KB to 128KB using the
parameter C_DEBUG_TRACE_SIZE. By setting C_DEBUG_TRACE_SIZE to 0 (None),
program trace is disabled.

Program trace uses compression to reduce the amount of trace data, while still allowing
reconstruction of the program execution flow or the entire processor software state. There
are three main compression levels:

« Complete trace

Stores complete trace information including cycle count for each executed instruction
using 144 bits, ranging from 512 to 8192 items depending on the configured Embedded
Trace Buffer size. Complete trace is not available when C_DEBUG_EXTERNAL_TRACE is
set.

« Program flow

Stores program flow changes, that is the sequence of branches taken or not taken, and
the new program counter for indirect branches, interrupts, exceptions and hardware
breaks.

The program counter may also optionally be stored for return instructions to simplify
program flow reconstruction, or for all taken branches to handle self-modifying code.

Data read from memory or fetched from AXI4-Stream interfaces may optionally be
stored to allow reconstructing the entire processor software state, enabling reverse
single step functionality.

« Program flow and cycle count

Stores the cycle count between instructions along with the same information as
program flow alone, to also allow reconstruction of the program execution time.

Tracing can be started via the Trace Command Register, by hitting a program breakpoint or
watchpoint configured as a tracepoint in the Trace Control Register, or by a cross trigger
event (see Table 2-61).

Tracing is automatically stopped when the trace buffer becomes full, and can be stopped
via the Trace Command Register or by a cross trigger event (see Table 2-61).

The cycle count can measure up to 32768 clock cycles when using complete trace, and up
to 8192 cycles between instructions when using program flow and cycle count. If the cycle
count exceeds this value, the Trace Status Register overflow bit is set to one.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 98
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=98

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

It is possible to configure trace to halt the processor when the trace buffer becomes full or
when the cycle count overflows. This allows continuous trace of the entire program flow,
albeit not in real time due to the time required to read the trace buffer.

The debug registers used to configure and control tracing, and to read the Embedded Trace
Buffer, are listed in Table 2-48.

The DBG_CTRL Value indicates the value to use in the MDM Debug Register Access Control
Register to access the register, used with MDM software access to debug registers.

Table 2-48: MicroBlaze Program Trace Debug Registers

. . . MDM DBG_CTRL A

Register Name |Size (bits) Command | Value R/W Description

Trace Control 22 0110 0001 | 4c215 | w | etiracepoints, trace compression level
and optionally stored trace information
Command to clear trace buffer, start or

Trace Command 4 0110 0010 4C403 W | stop trace, and sample number of
current buffer items

Trace Status 18 0110 0011 4C611 R | Read the sampled trace buffer status
Read the oldest item from the

1
Trace Data Read 18 01100110 4CC11 R Embedded Trace Buffer

1. This register is not available when C_DEBUG_EXTERNAL_TRACE is set

Trace Control Register

The Trace Control Register (TCTRLR) is used to define the trace behavior. This register is a
write-only register. Issuing a read request has no effect, and undefined data is read.

31 2221 6|5 4|3|2|1|0|
T T T T T 7TT7
Reserved Tracepoint Level FH SPC SL SR

Figure 2-31: Trace Control Register

Table 2-49: Trace Control Register (TCTRLR)

Bits Name Description Reset Value
21:6 | Tracepoint | Change corresponding breakpoint or watchpoint to a tracepoint 0
5:4 Level Trace compression level: 00

00 = Complete trace, not available with c_DEBUG_EXTERNAL_TRACE
01 = Program flow

10 = Reserved

11 = Program flow and cycle count

3 Full Halt | Debug Halt on full trace buffer or cycle count overflow 0

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 929
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=99

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-49: Trace Control Register (TCTRLR) (Cont’d)

Bits Name Description Reset Value
2 Save PC | Save new program counter for all taken branches 0
1 Save Load | Save load and get instruction new data value 0
0 Save Return | Save new program counter for return instructions 0

Trace Command Register

The Trace Command Register (TCMDR) is used to issue commands to clear, start, or stop
trace, as well as sample the number of trace items. This register is a write-only register.
Issuing a read request has no effect, and undefined data is read.

31 4 | 3 | 2 | 1 | 0 |
T T T 7
Reserved CLR STA STOP SAM

Figure 2-32: Trace Command Register

Table 2-50: Trace Command Register (TCMDR)

Bits Name Description Reset Value
3 Clear Clear trace status and empty the trace buffer 0
2 Start Start trace immediately 0
1 Stop Stop trace immediately 0
0 Sample | Sample the number of current items in the trace buffer 0

Trace Status Register

The Trace Status Register (TSR) can be used to determine if trace has been started or not, to
check for cycle count overflow and to read the sampled number of items in the Embedded
Trace Buffer. This register is a read-only register. Issuing a write request to the register does

nothing.
31 18]17]16]15 0|
T T T
Reserved STA OF Item Count

Figure 2-33: Trace Status Register

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 100
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=100

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-51: Trace Status Register (TSR)

Bits Name Description Reset Value

17 Started Trace started, set to one when trace is started and cleared to zero 0
when it is stopped

16 Overflow | Cycle count overflow, set to one when the cycle count overflows, and 0
cleared to zero by the Clear command

15:0 | Item Count | Sampled trace buffer item count 0x0000

Trace Data Read Register

The Trace Data Read Register (TDRR) contains the oldest item read from the Embedded
Trace Buffer. When the register has been read, the next item is read from the trace buffer. It
is an error to read more items than are available in the trace buffer, as indicated by the item
count in the Trace Status Register. This register is a read-only register. Issuing a write request to
the register does nothing.

Since a trace data entity can consist of more than 18 bits, depending on the compression
level and stored data, the register may need to be read repeatedly to retrieve all
information for a particular data entity. This is detailed in Table 2-53.

31 18|17 0|
T T

Reserved Buffer Value

Figure 2-34: Trace Data Read Register

Table 2-52: Trace Data Read Register (TDRR)

Bits Name Description Reset Value

17:0 | Buffer Value | Embedded Trace Buffer item 0x00000

Table 2-53: Trace Counter Data Entities

Entity Item | Bits Description

Complete Trace 1 17:3 | Cycle count for the executed instruction
2:0 Machine Status Register [17:19]

2 17:6 | Machine Status Register [20:31]
5:1 Destination register address (r0 - r31), valid if written
0 Destination register written if set to one

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 101
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=101

& XILINX

ALL PROGRAMMABLE-

Chapter 2: MicroBlaze Architecture

Table 2-53: Trace Counter Data Entities (Cont’d)

Entity Item | Bits Description
3 17:13 | Exception Kind, valid if exception taken
12 Exception taken if set to one
11 Load instruction reading data if set to one
10 Store instruction writing data if set to one
9:6 Byte enable, valid for store instruction
5:0 Write data [0:5] for store instructions, or Destination
register data [0:5] for other instructions
4 17:0 | Write data [6:23] or Destination register data [6:23]
17:10 | Write data [24:31] or Destination register data [24:31]
9:0 Data address [0:9] for load and store instructions, or
Executed instruction [0:9] for other instruction
6 17:0 | Data address [10:27] or Executed instruction [10:27]
7 17:14 | Data address [28:31] or Executed instruction [28:31]
13:0 | Program Counter [0:13]
8 17:0 | Program Counter [14:31]
Program Flow: Branches 1 17:16 | 00 - The item contains program flow branches
15:12 | Number of branches (N) counted in the item (1 - 12)
11:0 | The N leftmost bits represent branches in the
program flow. If the bit is set to one the branch is
taken, otherwise it is not taken.
Program Flow: Program Counter 1 17:16 | 01 - The item contains a Program Counter value
15:0 | Program Counter [0:15]
2 17:16 | 01 - The item contains a Program Counter value
15:0 | Program Counter [16:31]
Program Flow: Read Data 1 17:16 | 10 - The item contains read data
15:0 | Data read by load and get instructions [0:15]
2 17:16 | 10 - The item contains read data
15:0 | Data read by load and get instructions [15:31]
Program Flow with Cycle Count: 1 17:16 | 00 - The item contains program flow branches
Branches and short cycle count 15:14 | 01, 10 - Number of branches (N) counted (1 - 2)
13:8 | Cycle count for previously executed instructions
7 Branch is taken if set to one, otherwise it is not taken
6:1 Cycle count for previously executed instructions
0 Branch is taken if set to one, otherwise it is not taken
Program Flow with Cycle Count: 1 17:16 | 00 - The item contains program flow branches
Branch and long cycle count 15:14 | 11 - The item contains branch and long cycle count
13:1 | Cycle count for previously executed instructions
0 Branch is taken if set to one, otherwise it is not taken

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com l Send Feedback I 102

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=102

& XILINX

Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Non-Intrusive Profiling

With extended debugging, non-intrusive profiling is provided, which uses a Profiling Buffer
to store program execution statistics. The size of the profiling buffer can be configured
from 4KB to 128KB using the parameter C_DEBUG_PROFILE_SIZE. By setting
C_DEBUG_PROFILE_SIZE to 0 (None), non-intrusive profiling is disabled.

The Profiling Buffer is divided into a number of bins, each counting the number of executed
instructions or clock cycles within a certain address range. Each bin counts up to 236 - 1 =
68719476735 instructions or cycles.

The address range of each bin is determined by the buffer size and the profiled address
range defined via the Profiling Low Address Register and Profiling High Address Register.

Profiling can be started or stopped via the Profiling Control Register or by cross trigger
events (see Table 2-61).

The debug registers used to configure and control profiling, and to read or write the
Profiling Buffer, are listed in Table 2-54.

The DBG_CTRL Value indicates the value to use in the MDM Debug Register Access Control
Register to access the register, used with MDM software access to debug registers.

Table 2-54: MicroBlaze Profiling Debug Registers
. . . MDM DBG_CTRL _——
Register Name | Size (bits) Command Value R/W Description
Profiling Control 8 01110001 | 4E207 w | Enable ordisable profiling, configure
counting method and bin usage
Profiling Low 30 0111 0010 4E41D W Deflr\es the low address of the
Address profiled address range
Profiling High 30 0111 0011 4E61D W Deflnes the high address of the
Address profiled address range
9: 4E808
Profiling Buffer 9-14 0111 0100 10: 4E809 w | Sets the address (blp) in the Profiling
Address Buffer to read or write
14: 4E80D
profiing bata 36 | 01110110 | 4EC23 | R | Read data from the Profiling Buffer
Profiling Data . s
Write 32 0111 0111 4EELF W | Write data to the Profiling Buffer

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 103

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=103

g: X”_INX Chapter 2: MicroBlaze Architecture

Profiling Control Register

The Profiling Control Register (PCTRLR) is used to enable (start) profiling and disable (stop)
profiling. It is also used to configure whether to count the number of executed instructions
or the number of executed clock cycles, as well as define the Profiling Buffer bin usage. This
register is a write-only register. Issuing a read request has no effect, and undefined data is
read.

The Bin Control value (B) can be calculated by the formula

H-L+S-4
B = ’([092#—‘

where L is the Profiling Low Register, H is the Profiling High Register, and S is the parameter
C_DEBUG_PROFILE_SIZE.

31 8 | 7 | 6 | 5 | 4 0 |
T T 7
Reserved ENA DIS CC Bin Control

Figure 2-35: Profiling Control Register

Table 2-55: Profiling Control Register (PCTRLR)

Bits Name Description Reset Value
7 Enable Enable and start profiling 0
6 Disable Disable and stop profiling 0
5 Enable Enable cycle count to count clock cycles of executed instruction 0

Cycle Count | 0 = Disabled, number of executed instructions counted
1 = Enabled, clock cycles of executed instructions counted

4:0 | Bin Control | The number of addresses counted by each bin in the Profiling Buffer 00000

Profiling Low Address Register

The Profiling Low Address Register (PLAR) is used to define the low word address of the
profiled area. This register is a write-only register. Issuing a read request has no effect, and
undefined data is read.

[31 30] 2 0]
T

Reserved Low word address

Figure 2-36: Profiling Low Address Register

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 104
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=104

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-56: Profiling Low Address Register (PLAR)

Bits Name Description Reset Value

29:0 | Low word | Low word address of the profiled area 0

Profiling High Address Register

The Profiling High Address Register (PHAR) is used to define the high word address of the
profiled area. This register is a write-only register. Issuing a read request has no effect, and
undefined data is read.

|31 30|29 |0|
T

Reserved High word address

Figure 2-37: Profiling High Address Register

Table 2-57: Profiling High Address Register (PHAR)

Bits Name Description Reset Value

29:0 | High word | High word address of the profiled area 0

Profiling Buffer Address Register

The Profiling Buffer Address Register (PBAR) is used to define the bin in the Profiling Buffer
to be read or written. This register has variable number of bits, depending on the parameter
C_DEBUG_PROFILE_SIZE. This register is a write-only register. Issuing a read request has
no effect, and undefined data is read.

31 n |n-1 0
) T

Reserved Buffer Address

Figure 2-38: Profiling Buffer Address Register

Table 2-58: Profiling Buffer Address Register (PBAR)

Bits Name Description Reset Value

n-1:0 Buffer Bin in the Profiling Buffer to read or write. The number of bits (n) is 10 0
Address | for a 4KB buffer, 11 for a 8KB buffer, ..., 15 for a 128KB buffer.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 105
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=105

g: X”_INX Chapter 2: MicroBlaze Architecture

Profiling Data Read Register

The Profiling Data Read Register (PDRR) reads the bin value indicated by the Profiling Buffer
Address Register and increments the Profiling Buffer Address Register. This register is a read-
only register. Issuing a write request to the register does nothing.

When reading this register with MDM software access to debug registers, data is read with
two consecutive accesses.

35 0
I | |
Read Data

Figure 2-39: Profiling Data Read Register

Table 2-59: Profiling Data Read Register (PDRR)

Bits Name Description Reset Value

35:0 | Read Data | Number of executed instructions or executed clock cycles in the bin 0

Profiling Data Write Register

The Profiling Data Write Register (PDWR) writes a new value to the bin indicated by the
Profiling Buffer Address Register and increments the Profiling Buffer Address Register. This
register is a write-only register. Issuing a read request has no effect, and undefined data is
read.

This register can be used to clear the Profiling Buffer before enabling profiling.

The 4 most significant bits in the Profiling Buffer bin are set to zero when writing the new
value.

| 31 0
|
Write Data

Figure 2-40: Profiling Data Write Register

Table 2-60: Profiling Data Write Register (PDWR)

Bits Name Description Reset Value

31:0 | Write Data | Data to write to a bin 0

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 106
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=106

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Cross Trigger Support

With basic debugging, cross trigger support is provided by two signals, pec_sTop and
MB_Halted.

« When the pBa_sTopr input is set to 1, MicroBlaze will halt after a few instructions. XSDB
will detect that MicroBlaze has halted, and indicate where the halt occurred. The signal
can be used to halt MicroBlaze at any external event, for example when a Vivado®
integrated logic analyzer is triggered.

« Whenever MicroBlaze is halted the uB_nalted output signal is set to 1, for example
after a breakpoint or watchpoint is hit, after a stop XSDB command, or when the
DBG_STOP input is set. The output is cleared when MicroBlaze execution is resumed by
an XSDB command.

The MB_Halted signal may be used to trigger a Vivado integrated logic analyzer, or halt
other MicroBlaze cores in a multiprocessor system by connecting the signal to their
DBG_STOP inputs.

With extended debugging, cross trigger support is available in conjunction with the MDM.
The MDM provides programmable cross triggering between all connected processors, as
well as external trigger inputs and outputs. For details, see the MicroBlaze Debug Module
(MDM) Product Guide (PG115).

MicroBlaze can handle up to eight cross trigger actions. Cross trigger actions are generated
by the corresponding MDM cross trigger outputs, connected via the Debug bus. The effect
of each of the cross trigger actions is listed in Table 2-61.

MicroBlaze can generate up to eight cross trigger events. Cross trigger events affect the
corresponding MDM cross trigger inputs, connected via the Debug bus. The cross trigger
events are described in Table 2-62.

Table 2-61: MicroBlaze Cross Trigger Actions

Number Action Description
0 Debug stop Stop MicroBlaze if the processor is executing, and set the MB_Halted output.
The same effect is achieved by setting the Dbg_Stop input.
1 Continue execution | Continue execution if the processor is stopped, and clear the MB_Halted
output.
2 Stop program trace | Stop program trace if tracing is in progress.
3 Start program trace | Start program trace if trace is stopped.
4 Stop performance | Stop performance monitoring if it is in progress.
monitoring
5 Start performance | Start performance monitoring if it is stopped.
monitoring
6 Disable profiling | Disable profiling if it is in progress.
7 Enable profiling Enable profiling if it is disabled.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 107

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=mdm;v=latest;d=pg115-mdm.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=107

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Table 2-62: MicroBlaze Cross Trigger Events

Number Event Description
0 MicroBlaze halted | Generate an event when MicroBlaze is halted. The same event is signalled
when the MB_Halted output is set.
1 Execution resumed | Generate an event when the processor resumes execution from debug halt.
The same event is signalled when the MB_Halted output is cleared.
2 Program trace Generate an event when program trace is stopped by writing a command to
stopped the Program Trace Command Register, when the trace buffer is full, or by a
cross trigger action.
3 Program trace Generate an event when program trace is started by writing a command to
started the Program Trace Command Register, by hitting a tracepoint, or by a cross

trigger action.

4 Performance Generate an event when performance monitoring is stopped by writing a
monitoring stopped | command to the Performance Counter Command Register or by a cross
trigger action.

5 Performance Generate an event when performance monitoring is started by writing a
monitoring started | command to the Performance Counter Command Register, or by a cross
trigger action.

6 Profiling disabled | Generate an event when profiling is enabled by writing a command to the
Profiling Control Register or by a cross trigger action.

7 Profiling enabled | Generate an event when profiling is disabled by writing a command to the
Profiling Control Register or by a cross trigger action.

Trace Interface Overview

The MicroBlaze trace interface exports a number of internal state signals for performance
monitoring and analysis. Xilinx recommends that users only use the trace interface through
Xilinx developed analysis cores. This interface is not guaranteed to be backward compatible
in future releases of MicroBlaze.

See Table 3-16 for a list of exported signals.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 108
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=108

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Fault Tolerance

The fault tolerance features included in MicroBlaze, enabled with ¢_FAULT TOLERANT,
provide Error Detection for internal block RAMs (in the Instruction Cache, Data Cache,
Branch Target Cache, and MMU), and support for Error Detection and Correction (ECC) in
LMB block RAMs. When fault tolerance is enabled, all soft errors in block RAMs are detected
and corrected, which significantly reduces overall failure intensity.

In addition to protecting block RAM, the FPGA configuration memory also generally needs
to be protected. A detailed explanation of this topic, and further references, can be found in
the document LogiCore IP Soft Error Mitigation Controller (PG036).

Configuration

Using MicroBlaze Configuration
Fault tolerance can be enabled in the MicroBlaze configuration dialog, on the General page.

After enabling fault tolerance in MicroBlaze, ECC is automatically enabled in the connected
LMB BRAM Interface Controllers by the tools, when the system is generated. This means
that nothing else needs to be configured to enable fault tolerance and minimal ECC
support.

It is possible (albeit not recommended) to manually override ECC support, leaving the LMB
BRAM unprotected, by disabling c_ecc in the configuration dialogs of all connected LMB
BRAM Interface Controllers. In this case, the internal MicroBlaze block RAM protection is
still enabled, since fault tolerance is enabled.

Using LMB BRAM Interface Controller Configuration

As an alternative to the method described above, it is also possible to enable ECC in the
configuration dialogs of all connected LMB BRAM Interface Controllers. In this case, fault
tolerance is automatically enabled in MicroBlaze by the tools, when the system is
generated. This means that nothing else needs to be configured to enable ECC support and
MicroBlaze fault tolerance.

ECC must either be enabled or disabled in all Controllers, which is enforced by a DRC.

It is possible to manually override fault tolerance support in MicroBlaze, by explicitly
disabling c_raurLT_TOLERANT in the MicroBlaze configuration dialog. This is not
recommended, unless no block RAM is used in MicroBlaze, and there is no need to handle
bus exceptions from uncorrectable ECC errors.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 109
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=sem;v=latest;d=pg036_sem.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=109

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Features

An overview of all MicroBlaze fault tolerance features is given here. Further details on each
feature can be found in the following sections:

« "Instruction Cache Operation”
« "Data Cache Operation”

+ "UTLB Management”

« "Branch Target Cache”

« "Instruction Bus Exception”

» "“Data Bus Exception”

« "Exception Causes”

The LMB BRAM Interface Controller v4.0 or later provides the LMB ECC implementation. For
details, including performance and resource utilization, see the LogiCORE IP LMB BRAM
Interface Controller (PG112) product guide, in the Xilinx IP Documentation.

Instruction and Data Cache Protection

To protect the block RAM in the Instruction and Data Cache, parity is used. When a parity
error is detected, the corresponding cache line is invalidated. This forces the cache to reload
the correct value from external memory. Parity is checked whenever a cache hit occurs.

Note that this scheme only works for write-through, and thus write-back data cache is not
available when fault tolerance is enabled. This is enforced by a DRC.

When new values are written to a block RAM in the cache, parity is also calculated and
written. One parity bit is used for the tag, one parity bit for the instruction cache data, and
one parity bit for each word in a data cache line.

In many cases, enabling fault tolerance does not increase the required number of cache
block RAMs, since spare bits can be used for the parity. Any increase in resource utilization,
in particular number of block RAMs, can easily be seen in the MicroBlaze configuration
dialog, when enabling fault tolerance.

Memory Management Unit Protection

To protect the block RAM in the MMU Unified Translation Look-Aside Buffer (UTLB), parity
is used. When a parity error is detected during an address translation, a TLB miss exception
occurs, forcing software to reload the entry.

When a new TLB entry is written using the TLBHI and TLBLO registers, parity is calculated.
One parity bit is used for each entry.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 110
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=lmb_bram_if_cntlr;v=latest;d=pg112-lmb-bram-if-cntlr.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=110

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Parity is also checked when a UTLB entry is read using the TLBHI and TLBLO registers. When
a parity error is detected in this case, the entry is marked invalid by clearing the valid bit.

Enabling fault tolerance does not increase the MMU block RAM size, since a spare bit is
available for the parity.

Branch Target Cache Protection

To protect block RAM in the Branch Target Cache, parity is used. When a parity error is
detected when looking up a branch target address, the address is ignored, forcing a normal
branch.

When a new branch address is written to the Branch Target Cache, parity is calculated. One
parity bit is used for each address.

Enabling fault tolerance does not increase the Branch Target Cache block RAM size, since a
spare bit is available for the parity.

Exception Handling

With fault tolerance enabled, if an error occurs in LMB block RAM, the LMB BRAM Interface
Controller generates error signals on the LMB interface.

If exceptions are enabled in MicroBlaze, by setting the EE bit in the Machine Status Register,
the uncorrectable error signal either generates an instruction bus exception or a data bus
exception, depending on the affected interface.

Should a bus exception occur when an exception is in progress, MicroBlaze is halted, and
the external error signal MB_Error is set. This behavior ensures that it is impossible to
execute an instruction corrupted by an uncorrectable error.

Software Support

Scrubbing

To ensure that bit errors are not accumulated in block RAMs, they must be periodically
scrubbed.

The standalone BSP provides the function microblaze_scrub() to perform scrubbing of the
entire LMB block RAM and all MicroBlaze internal block RAMs used in a particular
configuration. This function is intended to be called periodically from a timer interrupt
routine.

The following example code illustrates how this can be done.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 111
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=111

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE-

#include "xparameters.h"
#include "xtmrctr.h"
#include "xintc.h"
#include "mb_interface.h"

#define SCRUB_PERIOD

XIntc InterruptController; /* The Interrupt Controller instance */
XTmrCtr TimerCounterInst;/* The Timer Counter instance */

void MicroBlazeScrubHandler (void *CallBackRef, u8 TmrCtrNumber)
{
/* Perform other timer interrupt processing here */
microblaze_scrub() ;

}

int main (void)
{
int Status;

/*
* Initialize the timer counter so that it's ready to use,
* gpecify the device ID that is generated in xparameters.h

*/
Status = XTmrCtr_Initialize (&TimerCounterInst, TMRCTR_DEVICE_ID) ;
if (Status != XST_SUCCESS) {

return XST_FAILURE;

/*
* Connect the timer counter to the interrupt subsystem such that
* interrupts can occur.

*/
Status = XIntc_Initialize(&InterruptController, INTC_DEVICE_ID);
if (Status != XST_SUCCESS) {

return XST_FAILURE;

/*
* Connect a device driver handler that will be called when an
* interrupt for the device occurs, the device driver handler performs
* the specific interrupt processing for the device
*/
Status = XIntc_Connect (&InterruptController, TMRCTR_DEVICE_ID,
(XInterruptHandler)XTmrCtr_InterruptHandler,
(void *) &TimerCounterInst);
if (Status != XST_SUCCESS) {
return XST_FAILURE;

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 112
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=112

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

/*

* Start the interrupt controller such that interrupts are enabled for
* all devices that cause interrupts, specifying real mode so that the
* timer counter can cause interrupts thru the interrupt controller.

*/
Status = XIntc_Start (&InterruptController, XIN_REAL_MODE) ;
if (Status != XST_SUCCESS) {

return XST_FAILURE;
}

* Setup the handler for the timer counter that will be called from the
* interrupt context when the timer expires, specify a pointer to the
* timer counter driver instance as the callback reference so the
* handler is able to access the instance data
*/
XTmrCtr_SetHandler (&TimerCounterInst, MicroBlazeScrubHandler,
&TimerCounterInst) ;

* Enable the interrupt of the timer counter so interrupts will occur
* and use auto reload mode such that the timer counter will reload
* itself automatically and continue repeatedly, without this option
* it would expire once only
*/
XTmrCtr_SetOptions (&TimerCounterInst, TIMER_CNTR_O,
XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION) ;

/*
* Set a reset value for the timer counter such that it will expire
* earlier than letting it roll over from 0, the reset value is loaded
* into the timer counter when it is started
*/
XTmrCtr_SetResetValue (TmrCtrInstancePtr, TmrCtrNumber, SCRUB_PERIOD) ;
/*
* Start the timer counter such that it's incrementing by default,
* then wait for it to timeout a number of times
*/
XTmrCtr_Start (&TimerCounterInst, TIMER_CNTR_O) ;

}

See the section “Scrubbing” below for further details on how scrubbing is implemented,
including how to calculate the scrubbing rate.

BRAM Driver

The standalone BSP BRAM driver is used to access the ECC registers in the LMB BRAM
Interface Controller, and also provides a comprehensive self test.

By implementing the SDK Xilinx C Project "Peripheral Tests", a self-test example including
the BRAM self test for each LMB BRAM Interface Controller in the system is generated.
Depending on the ECC features enabled in the LMB BRAM Interface Controller, this code will
perform all possible tests of the ECC function.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 113
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=113

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

The self-test example can be found in the standalone BSP BRAM driver source code,
typically in the subdirectory microblaze_0/1libsrc/bram_v3_03_a/src/xbram_selftest.c.

Scrubbing

Scrubbing Methods

Scrubbing is performed using specific methods for the different block RAMs:

« Instruction and data caches: All lines in the caches are cyclically invalidated using the
WIC and WDC instructions respectively. This forces the cache to reload the cache line
from external memory.

« Memory Management Unit UTLB: All entries in the UTLB are cyclically invalidated by
writing the TLBHI register with the valid bit cleared.

« Branch Target Cache: The entire BTC is invalided by doing a synchronizing branch, BRI 4.

« LMB block RAM: All addresses in the memory are cyclically read and written, thus
correcting any single bit errors on each address.

It is also possible to add interrupts for correctable errors from the LMB BRAM Interface
Controllers, and immediately scrub this address in the interrupt handler, although in most
cases it only improves reliability slightly.

The failing address can be determined by reading the Correctable Error First Failing Address
Register in each of the LMB BRAM Interface Controllers. To be able to generate an interrupt
C_ECC_STATUS_REGISTERS must be set to 1 in the connected LMB BRAM Interface
Controllers, and to read the failing address c_CcE_FAILING_REGISTERS must be set to 1.

Calculating Scrubbing Rate
The scrubbing rate depends on failure intensity and desired reliability.

The approximate equation to determine the LMB memory scrubbing rate is in our case
given by

BER2

PWZ760(¥

where Py is the probability of an uncorrectable error in a memory word, BER is the soft error
rate for a single memory bit, and SR is the Scrubbing Rate.

The soft error rates affecting block RAM for each product family can be found in the Device
Reliability Report (UG116).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 114
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug116.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=114

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Use Cases

Several common use cases are described here. These use cases are derived from the
LogiCore IP Processor LMB BRAM Interface Controller (PG112) product guide.

Minimal

This system is obtained when enabling fault tolerance in MicroBlaze, without doing any
other configuration.

The system is suitable when area constraints are high, and there is no need for testing of the
ECC function, or analysis of error frequency and location. No ECC registers are
implemented. Single bit errors are corrected by the ECC logic before being passed to
MicroBlaze. Uncorrectable errors set an error signal, which generates an exception in
MicroBlaze.

Small

This system should be used when it is necessary to monitor error frequency, but there is no
need for testing of the ECC function. It is a minimal system with Correctable Error Counter
Register added to monitor single bit error rates. If the error rate is too high, the scrubbing
rate should be increased to minimize the risk of a single bit error becoming an

uncorrectable double bit error. Parameters set are c_ecc = 1 and c_ceE_couNTER_wIDTH = 10.

Typical

This system represents a typical use case, where it is required to monitor error frequency, as
well as generating an interrupt to immediately correct a single bit error through software. It
does not provide support for testing of the ECC function. It is a small system with
Correctable Error First Failing registers and Status register added. A single bit error will latch
the address for the access into the Correctable Error First Failing Address Register and set
the CE_STATUS bit in the ECC Status Register. An interrupt will be generated triggering
MicroBlaze to read the failing address and then perform a read followed by a write on the
failing address. This will remove the single bit error from the BRAM, thus reducing the risk
of the single bit error becoming a uncorrectable double bit error. Parameters set are c_ecc
=1, c_CE_COUNTER_WIDTH = 10, C_ECC_STATUS_REGISTER = 1 and C_CE_FAILING_REGISTERS
=1

Full

This system uses all of the features provided by the LMB BRAM Interface Controller, to
enable full error injection capability, as well as error monitoring and interrupt generation. It
is a typical system with Uncorrectable Error First Failing registers and Fault Injection
registers added. All features are switched on for full control of ECC functionality for system
debug or systems with high fault tolerance requirements. Parameters set are c_gcc = 1,
C_CE_COUNTER_WIDTH = 10, C_ECC_STATUS_REGISTER = 1 and C_CE_FAILING_REGISTERS = 1,
C_UE_FAILING_REGISTERS = 1l and c_FAULT_ INJECT = 1.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 115
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=lmb_bram_if_cntlr;v=latest;d=pg112-lmb-bram-if-cntlr.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=115

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Lockstep Operation

MicroBlaze is able to operate in a lockstep configuration, where two or more identical
MicroBlaze cores execute the same program. By comparing the outputs of the cores, any
tampering attempts, transient faults or permanent hardware faults can be detected.

System Configuration

The parameter c_LOCKSTEP_SLAVE is set to one on all slave MicroBlaze cores in the system,
except the master (or primary) core. The master core drives all the output signals, and
handles the debug functionality. The port Lockstep Master_out on the master is
connected to the port Lockstep_slave_In on the slaves, in order to handle debugging.

The slave cores should not drive any output signals, only receive input signals. This must be
ensured by only connecting signals to the input ports of the slaves. For buses this means
that each individual input port must be explicitly connected.

The port Lockstep_out on the master and slave cores provide all output signals for
comparison. Unless an error occurs, individual signals from each of the cores are identical
every clock cycle.

To ensure that lockstep operation works properly, all input signals to the cores must be
synchronous. Input signals that may require external synchronization are Interrupt, Reset,
Ext_Brk, and Ext_Nm_Brk.

Use Cases

Two common use cases are described here. In addition, lockstep operation provides the
basis for implementing triple modular redundancy on MicroBlaze core level.

Tamper Protection

This application represents a high assurance use case, where it is required that the system
is tamper-proof. A typically example is a cryptographic application.

The approach involves having two redundant MicroBlaze processors with dedicated local
memory and redundant comparators, each in a protected area. The outputs from each
processor feed two comparators and each processor receive copies of every input signal.

The redundant MicroBlaze processors are functionally identical and completely
independent of each other, without any connecting signals. The only exception is debug
logic and associated signals, since it is assumed that debugging is disabled before any
productization and certification of the system.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 116
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=116

& XILINX

ALL PROGRAMMABLE

Chapter 2: MicroBlaze Architecture

The outputs from the master MicroBlaze core drive the peripherals in the system. All data
leaving the protected area pass through inhibitors. Each inhibitor is controlled from its
associated comparator.

Each protected area of the design must be implemented in its own partition, using a
hierarchical Single Chip Cryptography (SCC) flow. A detailed explanation of this flow, and
further references, can be found in the document Hierarchical Design Methodology Guide

(UG748).

A block diagram of the system is shown in Figure 2-41.

Debug Interface - Removed for Production

MicroBlaze Partition 515 Peripheral
C_LOCKSTEP_SLAVE = 0 Outputs > S Ppartition
o Ho M
.| ows — = &
BRAM Controller . A A
MicroBlaze Inputs |
BRAM —
e Master Comparator Partition
BRAM Controller [
Lockstep_Out > Comparator
MicroBlaze Debug | I/O Interfaces
Debug Module Lockstep_Master_Out .y
MicroBlaze Partition VLockstep_Slave_ln ExtIertnaIf Memory
Debug | nterfaces
Inputs
N
LV Comparator Partition
BRAM Controller M ic ro B Iaze
BRAM Slave Lockstep_Out Comparator
ILMB
BRAM C
C_LOCKSTEP_SLAVE = 1

Figure 2-41: Lockstep Tamper Protection Application

Error Detection

The error detection use case requires that all transient and permanent faults are detected.
This is essential in fail safe and fault tolerant applications, where redundancy is utilized to

improve system availability.

MicroBlaze Processor Reference Guide www.Xilinx.com

UG984 (v2016.4) November 30, 2016

l Send Feedback I 117

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=14.5&topic=sw+manuals&sub=Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=117

& XILINX

ALL P

ROGRAMMABLE

Chapter 2:

: MicroBlaze Architecture

In this system two redundant MicroBlaze processors run in lockstep. A comparator is used
to signal an error when a mis-match is detected on the outputs of the two processors. Any
error immediately causes both processors to halt, preventing further error propagation.

The redundant MicroBlaze processors are functionally identical, except for debug logic and
associated signals.The outputs from the master MicroBlaze core drive the peripherals in the
system. The slave MicroBlaze core only has inputs connected; all outputs are left open.

The system contains the basic building block for designing a complete fault tolerant
application, where one or more additional blocks must be added to provide redundancy.

This use case is illustrated in Figure 2-42.

BRAM

(— DLMB
BRAM Controller

ILMB

BRAM C:

MicroBlaze
Debug Module

Figure 2-42: Lockstep Error Detection Application

MicroBlaze Processor Reference Guide www.Xilinx.com
UG984 (v2016.4) November 30, 2016

C_LOCKSTEP_SLAVE = 0 Error Reset

- >

. Outputs >
MicroBlaze ;
Master < Inputs '
! Lockstep_Out !
T Debug |
: Comparator :
! Debug :
: Lockstep_Out :
| ® MicroBlaze :
' | Inputs Slave < Inputs :
P Inputs '
1 4 1
: C_LOCKSTEP_SLAVE = 1 :

I/O Interfaces

External Memory
Interfaces

l Send Feedback I 118

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=118

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Coherency

MicroBlaze supports cache coherency, as well as invalidation of caches and translation look-
aside buffers, using the AXI Coherency Extension (ACE) defined in AMBA® AXI and ACE
Protocol Specification (ARM IHI 0022E). The coherency support is enabled when the
parameter c_INTERCONNECT is set to 3 (ACE).

Using ACE ensures coherency between the caches of all MicroBlaze processors in the
coherency domain. The peripheral ports (AXI_IP, AXI_DP) and local memory (ILMB, DLMB)
are outside the coherency domain.

Coherency is not supported with write-back data cache, wide cache interfaces (more than
32-bit data), instruction cache streams, instruction cache victims or when area optimization
is enabled. In addition both c_1cacHE_aALwavs_USED and C_DCACHE_ALWAYS_USED must be
set to 1.

Invalidation
The coherency hardware handles invalidation in the following cases:

« Data Cache invalidation:
When a MicroBlaze core in the coherency domain invalidates a data cache line with an
external cache invalidation instruction (WDC.EXT.CLEAR or WDC.EXT.FLUSH), hardware
messages ensure that all other cores in the coherency domain will do the same. The
physical address is always used.

« Instruction Cache invalidation:
When a MicroBlaze core in the coherency domain invalidates an instruction cache line,
hardware messages ensure that all other cores in the coherency domain will do the
same. When the MMU is in virtual mode the virtual address is used, otherwise the
physical address is used.

« MMU TLB invalidation:
When a MicroBlaze core in the coherency domain invalidates an entry in the UTLB (that
is writes TLBHI with a zero Valid flag), hardware messages ensure that all other cores in
the coherency domain will invalidate all entries in their unified TLBs having a TAG
matching the invalidated virtual address, as well as empty their shadow TLBs.

The TID is not taken into account when matching the entries, which can result in
invalidation of entries belonging to other processes. Subsequent accesses to these
entries will generate TLB miss exceptions, which must be handled by software.

Before invalidating an MMU page, it must first be loaded into the UTLB to ensure that
the hardware invalidation is propagated within the coherency domain. It is not sufficient
to simply invalidate the page in memory, since other processors in the coherency
domain may have this particular entry stored in their TLBs.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 119
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=119

g: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

After a MicroBlaze core has invalidated one or more entries, it must execute a memory
barrier instruction (MBAR), to ensure that all peer processors have completed their TLB
invalidation.

« Branch Target Cache invalidation:
When a MicroBlaze core in the coherency domain invalidates the Branch Target Cache,
either with a memory barrier instruction or with a synchronizing branch, hardware
messages ensure that all other cores in the coherency domain will do the same.

In particular, this means that self-modifying code can be used transparently within the
coherency domain in a multi-processor system, provided that the guidelines in"Self-
modifying Code” are followed.

Protocol Compliance

The MicroBlaze instruction cache interface issues the following subset of the possible ACE
transactions:

« ReadClean
Issued when a cache line is allocated.

« ReadOnce
Issued when the cache is off, or if the MMU Inhibit Caching bit is set for the cache line.

The MicroBlaze data cache interface issues the following subset of the possible ACE
transactions:

« ReadClean

Issued when a cache line is allocated.

« CleanUnique
Issued when an SWX instruction is executed as part of an exclusive access sequence.

« ReadOnce
Issued when the cache is off, or if the MMU Inhibit Caching bit is set for the cache line.

+ WriteUnique
Issued whenever a store instruction performs a write.

+ C(Cleanlnvalid
Issued when a WDC.EXT.FLUSH instruction is executed.

Makelnvalid
Issued when a WDC.EXT.CLEAR instruction is executed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 120
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=120

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Both interfaces issue the following subset of the possible Distributed Virtual Memory
(DVM) transactions:

+ DVM Operation
TLB Invalidate — Hypervisor TLB Invalidate by VA
Branch Predictor Invalidate — Branch Predictor Invalidate all

Physical Instruction Cache Invalidate — Non-secure Physical Instruction Cache
Invalidate by PA without Virtual Index

Virtual Instruction Cache Invalidate — Hypervisor Invalidate by VA
« DVM Sync

Synchronization
« DVM Complete

In addition to the DVM transactions above, the interfaces only accept the
CleanInvalid and Makelnvalid transactions. These transactions have no effect in the
instruction cache, and invalidate the indicated data cache lines. If any other
transactions are received, the behavior is undefined.

Only a subset of AXI4 transactions are utilized by the interfaces, as described in
“Cache Interfaces”.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 121
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=121

i: X”_INX Chapter 2: MicroBlaze Architecture

ALL PROGRAMMABLE

Data Address Extension

MicroBlaze has the ability to address up to 16EB of data controlled by the parameter
C_ADDR_SIZE. This parameter can be set to the following values:

NONE 4 * 10243 bytes 32-bit address, no extended address instructions
64GB 64 * 10243 bytes 36-bit address
1TB 10244 bytes 40-bit address
16TB 16 * 10244 bytes 44-bit address
256TB 256 * 10244 bytes 48-bit address
16EB 16 * 1024° bytes 64-bit address

There are a number of software limitations with extended addressing:

The GNU tools only generate ELF files with 32-bit addresses, which means that program
instruction and data memory must be located in the first 4GB of the address space. This
is also the reason the instruction address space does not provide an extended address.

Since all software drivers use address pointers that are 32-bit unsigned integers, it is
not possible to access extended addresses above 4GB without modifying the driver
code, and consequently all AXI peripherals should be located in the first 4GB of the
address space.

The extended address is only treated as a physical address, and the MMU cannot be
used to translate from an extended virtual address to a physical address. This means
that Linux can only use the data address extension through a dedicated driver
operating in real mode.

The GNU compiler does not handle 64-bit address pointers, which means that the only
way to access an extended address is using the specific extended addressing
instructions, available as macros.

The following C code exemplifies how an extended address can be used to access data:

#include “xil_types.h”
#include “mb_interface.h”

int main()
{
u64 Addr = 0x000000FF00000000LL; /* Extended address */

u32 Word;
u8 Byte;
Word = lwea (Addr) ; /* Load word from extended address */
swea (Addr, Word) ; /* Store word to extended address */
Byte = lbuea(Addr); /* Load byte from extended address */
sbea (Addr, Byte); /* Store byte to extended address */

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 122

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=122

& XILINX

ALL PROGRAMMABLE.

Chapter 3

MicroBlaze Signal Interface Description

This chapter describes the types of signal interfaces that can be used to connect
MicroBlaze™.

Overview

The MicroBlaze core is organized as a Harvard architecture with separate bus interface units
for data and instruction accesses. The following two memory interfaces are supported:
Local Memory Bus (LMB), and the AMBA® AXI4 interface (AXI4) and ACE interface (ACE).

The LMB provides single-cycle access to on-chip dual-port block RAM. The AXI4 interfaces
provide a connection to both on-chip and off-chip peripherals and memory. The ACE
interfaces provide cache coherent connections to memory.

MicroBlaze also supports up to 16 AXI4-Stream interface ports, each with one master and
one slave interface.

Features

MicroBlaze can be configured with the following bus interfaces:

« The AMBA AXI4 Interface for peripheral interfaces, and the AMBA AXI4 or AXI
Coherency Extension (ACE) Interface for cache interfaces (see ARM® AMBA® AXI and
ACE Protocol Specification, ARM IHI 0022E).

« LMB provides a simple synchronous protocol for efficient block RAM transfers

» AXI4-Stream provides a fast non-arbitrated streaming communication mechanism
« Debug interface for use with the Microprocessor Debug Module (MDM) core

« Trace interface for performance analysis

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 123
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=123

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

MicroBlaze 1/O Overview

The core interfaces shown in Figure 3-1 and the following Table 3-1 are defined as follows:

M_AXI_DP:

DLMB:

M_AXILIP:

ILMB:
MO_AXIS..M15_AXIS:
SO_AXIS..S15_AXIS:

Peripheral Data Interface, AXI4-Lite or AX14 interface

Data interface, Local Memory Bus (BRAM only)

Peripheral Instruction interface, AXI4-Lite interface
Instruction interface, Local Memory Bus (BRAM only)
AXI4-Stream interface master direct connection interfaces
AXI4-Stream interface slave direct connection interfaces

M_AXI_DC: Data side cache AXI4 interface
M_ACE_DC: Data side cache AXI Coherency Extension (ACE) interface
M_AXI_IC: Instruction side cache AXI4 interface
M_ACE_IC: Instruction side cache AXI Coherency Extension (ACE) interface
Core: Miscellaneous signals for: clock, reset, interrupt, debug, trace
Instruction-side Data-side
bus interface bus interface
Memory Management Unit (MMU)
M_AXI_IC < “<_ UTLB m A M_AXI_DC
M_ACE_IC |::> _ M_ACE_DC
Sy 2
5 i 3 1t 3
(o] (o]
g :
Program v ALU
Counter A -
Special [N\ Shift
@ ;:grig?gres N Barrel Shift
Branch v Multiplier
Target S < VP >
Cache Divider
SN
Bus —/ FPU Bus
IF N Instruction —NJ IF
cwE > e e | 4y 1P
Instruction
Decode K |:> MO_AXIS..
=\ Register File M15_AXIS
—/ 32X 32b <jso_AX|s..
—N S15_AXIS
Optional MicroBlaze feature v
Figure 3-1: MicroBlaze Core Block Diagram

MicroBlaze Processor Reference Guide www.Xilinx.com

UG984 (v2016.4) November 30, 2016

l Send Feedback I 124

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=124

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-1: Summary of MicroBlaze Core I/O

Signal Interface | 1/0 Description
M_AXI_DP_AWID M_AXI_DP 0 | Master Write address ID
M_AXI_DP_AWADDR M_AXI DP 0 | Master Write address
M_AXI_DP_AWLEN M_AXI_DP 0 | Master Burst length
M_AXI_DP_AWSIZE M_AXI_DP 0 | Master Burst size
M_AXI_DP_AWBURST M_AXI_DP 0 | Master Burst type
M_AXI_DP_AWLOCK M_AXI_DP | O | Master Lock type
M_AXI_DP_AWCACHE M_AXI_DP 0 | Master Cache type
M_AXI_DP_AWPROT M_AXI_DP 0 | Master Protection type
M_AXI_DP_AWQOS M_AXI_DP 0 | Master Quality of Service
M_AXI_DP_AWVALID M_AXI_DP 0 | Master Write address valid
M_AXI_DP_AWREADY M_AXI_DP I | Slave Write address ready
M_AXI_DP_WDATA M_AXI_DP 0 | Master Write data
M_AXI_DP_WSTRB M_AXI_DP 0 | Master Write strobes
M_AXI_DP_WLAST M_AXI_DP 0 | Master Write last
M_AXI_DP_WVALID M_AXI_DP | O | Master Write valid
M_AXI_DP_WREADY M_AXI_DP I | Slave Write ready
M_AXI_DP_BID M_AXT_DP I | Slave Response ID
M_AXI_DP_BRESP M_AXI_DP I | Slave Write response
M_AXI_DP_BVALID M_AXI_DP I | Slave Write response valid
M_AXI_DP_BREADY M_AXI_DP | O | Master Response ready
M_AXI_DP_ARID M_AXI_DP 0 | Master Read address ID
M_AXI_DP_ARADDR M_AXI_DP 0 | Master Read address
M_AXI_DP_ARLEN M_AXI_DP | O | Master Burst length
M_AXI_DP_ARSIZE M_AXI_DP 0 | Master Burst size
M_AXI_DP_ARBURST M_AXI_DP 0 | Master Burst type
M_AXI_DP_ARLOCK M_AXI_DP 0 | Master Lock type
M_AXI_DP_ARCACHE M_AXI_DP | O | Master Cache type
M_AXI_DP_ARPROT M_AXI_DP 0 | Master Protection type
M_AXI_DP_ARQOS M_AXI_DP | O | Master Quality of Service
M_AXI_DP_ARVALID M_AXI_DP 0 | Master Read address valid
M_AXI_DP_ARREADY M_AXI_DP I | Slave Read address ready

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

| Send Feedback I 125

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=125

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)

Signal Interface | 1/0 Description
M_AXI_DP_RID M_AXI_DP I |Slave Read ID tag
M_AXI_DP_RDATA M_AXI_DP I | Slave Read data
M_AXI_DP_RRESP M_AXI_DP I | Slave Read response
M_AXI_DP_RLAST M_AXI_DP I | Slave Read last
M_AXI_DP_RVALID M_AXI_DP 1 | Slave Read valid
M_AXI_DP_RREADY M_AXI_DP | O | Master Read ready
M_AXI_IP_AWID M_AXI_TIP 0 | Master Write address ID
M_AXI_IP_AWADDR M_AXI_TP 0 | Master Write address
M_AXI_IP_AWLEN M_AXI_IP 0 | Master Burst length
M_AXI_TP_AWSIZE M_AXI_IP 0 | Master Burst size
M_AXI_IP_AWBURST M_AXI_IP 0 | Master Burst type
M_AXI_IP_AWLOCK M_AXI_IP 0 | Master Lock type
M_AXTI_TP_AWCACHE M_AXI_IP | O | Master Cache type
M_AXI_IP_AWPROT M_AXI_IP 0 | Master Protection type
M_AXI_IP_AWQOS M_AXI_IP | O | Master Quality of Service
M_AXT_TP_AWVALID M_AXI_IP 0 | Master Write address valid
M_AXI_IP_AWREADY M_AXI_TIP I | Slave Write address ready
M_AXI_IP_WDATA M_AXI_IP 0 | Master Write data
M_AXI_IP_WSTRB M_AXI_IP | O | Master Write strobes
M_AXI_IP_WLAST M_AXI_IP 0 | Master Write last
M_AXI_IP_WVALID M_AXI_IP 0 | Master Write valid
M_AXI_IP_WREADY M_AXI_IP I | Slave Write ready
M_AXI_IP_BID M_AXI_TIP I | Slave Response ID
M_AXI_IP_BRESP M_AXI_TIP I | Slave Write response
M_AXI_IP_BVALID M_AXI_IP | I | Slave Write response valid
M_AXI_IP_BREADY M_AXI_IP | O | Master Response ready
M_AXI_IP_ARID M_AXI_IP | O | Master Read address ID
M_AXI_IP_ARADDR M_AXI_IP 0 | Master Read address
M_AXI_IP_ARLEN M_AXI_IP 0 | Master Burst length
M_AXI_IP_ARSIZE M_AXI_IP 0 | Master Burst size
M_AXI_IP_ARBURST M_AXI TP 0 | Master Burst type
M_AXI_IP_ARLOCK M_AXI_IP | O | Master Lock type

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

| Send Feedback I 126

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=126

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)

Signal Interface | 1/0 Description
M_AXI_TIP_ARCACHE M_AXI IP 0 | Master Cache type
M_AXI_TIP_ARPROT M_AXI_IP 0 | Master Protection type
M_AXI_IP_ARQOS M_AXI_IP | O | Master Quality of Service
M_AXI_IP_ARVALID M_AXI_IP 0 | Master Read address valid
M_AXI_IP_ARREADY M_AXI_TIP I | Slave Read address ready
M_AXI_IP_RID M_AXI_IP I |Slave Read ID tag
M_AXI_IP_RDATA M_AXI_IP 1 | Slave Read data
M_AXI_IP_RRESP M_AXI_IP | I |Slave Read response
M_AXI_IP_RLAST M_AXI_IP I | Slave Read last
M_AXI_IP_RVALID M_AXT_ TP I Slave Read valid
M_AXI_IP_RREADY M_AXI_IP | O | Master Read ready
M_AXI_DC_AWADDR M_AXI_DC 0 | Master Write address
M_AXTI_DC_AWLEN M_AXI_DC | O | Master Burst length
M_AXI_DC_AWSIZE M_AXI_DC 0 | Master Burst size
M_AXI_DC_AWBURST M_AXI_DC 0 | Master Burst type
M_AXI_DC_AWLOCK M_AXI_DC 0 | Master Lock type
M_AXI_DC_AWCACHE M_AXI_DC 0 | Master Cache type
M_AXI_DC_AWPROT M_AXI_DC 0 | Master Protection type
M_AXI_DC_AWQOS M_AXI DC o) Master Quality of Service
M_AXI_DC_AWVALID M_AXI_DC 0 | Master Write address valid
M_AXI_DC_AWREADY M_AXI_DC I | Slave Write address ready
M_AXI_DC_AWUSER M_AXI_DC 0 | Master Write address user signals
M_AXI_DC_AWDOMAIN M_ACE_DC 0 | Master Write address domain
M_AXI_DC_AWSNOOP M_ACE_DC 0 | Master Write address snoop
M_AXI_DC_AWBAR M_ACE_DC 0 | Master Write address barrier
M_AXI_DC_WDATA M_AXI_DC 0 | Master Write data
M_AXI_DC_WSTRB M_AXI_DC 0 | Master Write strobes
M_AXI_DC_WLAST M_AXI_DC 0 | Master Write last
M_AXI_DC_WVALID M_AXI_DC 0 | Master Write valid
M_AXI_DC_WREADY M_AXI_DC I | Slave Write ready
M_AXI_DC_WUSER M_AXI_DC 0 | Master Write user signals
M_AXI_DC_BRESP M_AXI_DC I | Slave Write response

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 127
UG984 (v2016.4) November 30, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=127

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)

Signal Interface | 1/0 Description
M_AXI_DC_BID M_AXI_DC I | Slave Response ID
M_AXI_DC_BVALID M_AXI_DC | I | Slave Write response valid
M_AXI_DC_BREADY M_AXI_DC | O | Master Response ready
M_AXI_DC_BUSER M_AXI_DC | I | Slave Write response user signals
M_AXT_DC_WACK M_ACE_DC o0 | Slave Write acknowledge
M_AXI_DC_ARID M_AXI_DC 0 | Master Read address ID
M_AXI_DC_ARADDR M_AXI_DC 0 | Master Read address
M_AXI_DC_ARLEN M_AXI_DC | O | Master Burst length
M_AXI_DC_ARSIZE M_AXI_DC 0 | Master Burst size
M_AXI_DC_ARBURST M_AXI_DC 0 | Master Burst type
M_AXI_DC_ARLOCK M_AXI_DC 0 | Master Lock type
M_AXI_DC_ARCACHE M_AXI_DC 0 | Master Cache type
M_AXI_DC_ARPROT M_AXI_DC 0 | Master Protection type
M_AXI_DC_ARQOS M_AXI_DC | O | Master Quality of Service
M_AXI_DC_ARVALID M_AXI_DC 0 | Master Read address valid
M_AXT_DC_ARREADY M_AXI_DC I | Slave Read address ready
M_AXI_DC_ARUSER M_AXI_DC 0 | Master Read address user signals
M_AXI_DC_ARDOMAIN M_ACE_DC 0 | Master Read address domain
M_AXI_DC_ARSNOOP M_ACE_DC 0 | Master Read address snoop
M_AXI_DC_ARBAR M_ACE_DC 0 | Master Read address barrier
M_AXI_DC_RID M_AXI_DC I |Slave Read ID tag
M_AXI_DC_RDATA M_AXI_DC I | Slave Read data
M_AXT_DC_RRESP M_AXI_DC I | Slave Read response
M_AXI_DC_RLAST M_AXI_DC I | Slave Read last
M_AXI_DC_RVALID M_AXI_DC I | Slave Read valid
M_AXI_DC_RREADY M_AXI_DC | O | Master Read ready
M_AXI_DC_RUSER M_axI_DC | T |Slave Read user signals
M_AXI_DC_RACK M_ACE_DC | O | Master Read acknowledge
M_AXI_DC_ACVALID M_ACE_DC I | Slave Snoop address valid
M_AXI_DC_ACADDR M_ACE_DC I | Slave Snoop address
M_AXI_DC_ACSNOOP M_ACE_DC | I |Slave Snoop address snoop
M_AXI_DC_ACPROT M_ACE_DC I | Slave Snoop address protection type

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 128
UG984 (v2016.4) November 30, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=128

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)

Signal Interface | 1/0 Description
M_AXI_DC_ACREADY M_ACE_DC | O | Master Snoop ready
M_AXI_DC_CRREADY M_ACE_DC | I |Slave Snoop response ready
M_AXI_DC_CRVALID M_ACE_DC | O | Master Snoop response valid
M_AXI_DC_CRRESP M_ACE_DC 0 | Master Snoop response
M_AXI_DC_CDVALID M_ACE_DC 0 | Master Snoop data valid
M_AXI_DC_CDREADY M_ACE_DC | I | Slave Snoop data ready
M_AXI_DC_CDDATA M_ACE_DC | O | Master Snoop data
M_AXI_DC_CDLAST M_ACE_DC | 0 | Master Snoop data last
M_AXI_IC_AWID M_AXI_IC 0 | Master Write address ID
M_AXI_IC_AWADDR M_AXI_IC 0 | Master Write address
M_AXI_IC_AWLEN M_AXI_IC | O | Master Burst length
M_AXI_IC_AWSIZE M_AXI_IC | O | Master Burst size
M_AXI_IC_AWBURST M_AXI_IC 0 | Master Burst type
M_AXI_IC_AWLOCK M_AXI_IC | O | Master Lock type
M_AXI_IC_AWCACHE M_AXI_IC | O | Master Cache type
M_AXI_IC_AWPROT M_AXI_IC 0 | Master Protection type
M_AXI_TC_AWQOS M_AXI_IC | O | Master Quality of Service
M_AXI_IC_AWVALID M_AXI_IC 0 | Master Write address valid
M_AXI_IC_AWREADY M_AXI_IC I | Slave Write address ready
M_AXI_IC_AWUSER M_AXI_IC | O | Master Write address user signals
M_AXI_IC_AWDOMAIN M_ACE_IC 0 | Master Write address domain
M_AXT_TC_AWSNOOP M_ACE_IC 0 | Master Write address snoop
M_AXI_IC_AWBAR M_ACE_IC 0 | Master Write address barrier
M_AXI_IC_WDATA M_AXI_IC | O | Master Write data
M_AXI_IC_WSTRB M_AXI_IC | O | Master Write strobes
M_AXI_IC_WLAST M_AXI_IC | O | Master Write last
M_AXI_IC_WVALID M_AXI_IC | O | Master Write valid
M_AXI_IC_WREADY M_AXI_IC I | Slave Write ready
M_AXI_IC_WUSER M_AXI_IC 0 | Master Write user signals
M_AXI_IC_BID M_AXI_IC I | Slave Response ID
M_AXI_IC_BRESP M_AXI_IC I | Slave Write response
M_AXI_IC_BVALID M_AXI_IC | I | Slave Write response valid

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 129
UG984 (v2016.4) November 30, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=129

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)

Signal Interface | 1/0 Description
M_AXI_ IC_BREADY M_AXI_IC 0 | Master Response ready
M_AXI_IC_BUSER M_AXI_IC | I | Slave Write response user signals
M_AXI_IC_WACK M_ACE_IC 0 | Slave Write acknowledge
M_AXI_IC_ARID M_AXI_IC | O | Master Read address ID
M_AXI_IC_ARADDR M_AXI_IC 0 | Master Read address
M_AXTI_TIC_ARLEN M_AXI_IC | O | Master Burst length
M_AXI_IC_ARSIZE M_AXI_IC | O | Master Burst size
M_AXI_IC_ARBURST M_AXI_IC | O | Master Burst type
M_AXI_IC_ARLOCK M_AXI_IC | O | Master Lock type
M_AXI_IC_ARCACHE M_AXI_IC | O | Master Cache type
M_AXI_IC_ARPROT M_AXI_IC 0 | Master Protection type
M_AXI_IC_ARQOS M_AXI_IC 0 | Master Quality of Service
M_AXI_IC_ARVALID M_AXI_IC | O | Master Read address valid
M_AXI_IC_ARREADY M_AXI_IC I | Slave Read address ready
M_AXI_IC_ARUSER M_AXI_IC 0 | Master Read address user signals
M_AXI_IC_ARDOMAIN M_ACE_IC 0 | Master Read address domain
M_AXI_IC_ARSNOOP M_ACE_IC 0 | Master Read address snoop
M_AXI_IC_ARBAR M_ACE_IC | O | Master Read address barrier
M_AXI_IC_RID M_AXI_IC I | Slave Read ID tag
M_AXI_IC_RDATA M_AXI_IC I | Slave Read data
M_AXI_IC_RRESP M_AXTI_IC I | Slave Read response
M_AXI_IC_RLAST M_AXI_IC I | Slave Read last
M_AXI_IC_RVALID M_AXT_IC I | Slave Read valid
M_AXTI_TC_RREADY M_AXI_IC | O | Master Read ready
M_AXI_IC_RUSER M_AXI_IC | I |Slave Read user signals
M_AXI_IC_RACK M_ACE_IC 0 | Master Read acknowledge
M_AXI_IC_ACVALID M_ACE_IC | I |Slave Snoop address valid
M_AXI_IC_ACADDR M_ACE_IC I | Slave Snoop address
M_AXI_TIC_ACSNOOP M_ACE_IC I | Slave Snoop address snoop
M_AXI_IC_ACPROT M_ACE_IC | I |Slave Snoop address protection type
M_AXI_IC_ACREADY M_ACE_IC | O | Master Snoop ready
M_AXI_IC_CRREADY M_ACE_IC | I |Slave Snoop response ready

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 130
UG984 (v2016.4) November 30, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=130

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)

Signal Interface | 1/0 Description
M_AXI_IC_CRVALID M_ACE_IC 0 | Master Snoop response valid
M_AXI_IC_CRRESP M_ACE_IC o} Master Snoop response
M_AXI_IC_CDVALID M_ACE_IC 0 | Master Snoop data valid
M_AXI_IC_CDREADY M_ACE_IC | I | Slave Snoop data ready
M_AXI_IC_CDDATA M_ACE_IC | O | Master Snoop data
M_AXI_TIC_CDLAST M_ACE_IC 0 | Master Snoop data last
Data_Addr[0:N-1] DLMB O | Data interface LMB address bus, N = 32 - 64
Byte_Enable[0:3] DLMB O | Data interface LMB byte enables
Data_Write[0:31] DLMB O | Data interface LMB write data bus
D_AS DLMB O | Data interface LMB address strobe
Read_sStrobe DLMB O | Data interface LMB read strobe
Write_Strobe DLMB O | Data interface LMB write strobe
Data_Read[0:31] DLMB I | Data interface LMB read data bus
DReady DLMB I | Data interface LMB data ready
DWait DLMB I | Data interface LMB data wait
DCE DLMB I | Data interface LMB correctable error
DUE DLMB I | Data interface LMB uncorrectable error
Instr_Addr[0:31] ILMB O | Instruction interface LMB address bus
I_AS ILMB O |Instruction interface LMB address strobe
IFetch ILMB O | Instruction interface LMB instruction fetch
Instr[0:31] ILMB I | Instruction interface LMB read data bus
TReady ILMB I | Instruction interface LMB data ready
TWait ILMB I |Instruction interface LMB data wait
ICE ILMB I |Instruction interface LMB correctable error
IUE ILMB I |Instruction interface LMB uncorrectable error
Mn_AXIS_TLAST MO_AXIS.. O | Master interface output AXI4 channels
M15_AXIS write last

Mn_AXIS_TDATA MO_AXIS.. O | Master interface output AXI4 channels
M15_AXIS write data

Mn_AXIS_TVALID MO_AXIS.. O | Master interface output AXI4 channels
M15_AXIS write valid

Mn_AXIS_TREADY MO_AXIS.. I Master interface input AXI4 channels
M15_AXIS write ready

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 131
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=131

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)

Signal Interface | 1/0 Description
Sn_AXIS_TLAST SO_AXIS.. I | Slave interface input AXI4 channels
S15_AXIS write last
Sn_AXIS_TDATA SO_AXIS.. I | Slave interface input AXI4 channels
S15_AXIS write data
Sn_AXIS_TVALID SO_AXIS.. I | Slave interface input AXI4 channels
S15_AXIS write valid
Sn_AXIS_TREADY SO_AXIS.. O | Slave interface output AXI4 channels
S15_AXIS write ready
Interrupt Core I | Interrupt. The signal is synchronized to cixk if the
parameter C_ASYNC_INTERRUPT is set.
Interrupt_Address! Core I | Interrupt vector address
Interrupt_Ack! Core O | Interrupt acknowledge
Reset Core I | Core reset, active high. Should be held for at
least 1 c1k clock cycle.
Reset_Mode[0:1] Core I | Reset mode. Sampled when Reset is active.
SeeTable 3-2 for details.
Clk Core I | Clock?
Ext_BRK Core I | Break signal from MDM
Ext_NM_BRK Core I | Non-maskable break signal from MDM
MB_Halted Core O | Pipeline is halted, either via the Debug Interface,

by setting pbg_stop, or by setting
Reset_Mode[0:1] to 10.

Dbg_Stop Core I | Unconditionally force pipeline to halt as soon as
possible. Rising-edge detected pulse that should
be held for at least 1 Clk clock cycle. The signal
only has any effect when C_DEBUG_ENABLED is
greater than 0.

Dbg_Intr Core O | Debug interrupt output, set when a Performance
Monitor counter overflows, available when
C_DEBUG_ENABLED is set to 2 (Extended).

MB_Error Core O | Pipeline is halted due to a missed exception,
when C_FAULT_TOLERANT is set to 1.

Sleep Core O | MicroBlaze is in sleep mode after executing a
SLEEP instruction or by setting Reset_Mode[0:1]
to 10, all external accesses are completed, and
the pipeline is halted.

Hibernate Core O | MicroBlaze is in sleep mode after executing a
HIBERNATE instruction, all external accesses are
completed, and the pipeline is halted.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 132
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=132

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

Table 3-1: Summary of MicroBlaze Core 1/0O (Cont’d)

Signal

Interface

1/0

Description

Suspend

Core

@)

MicroBlaze is in sleep mode after executing a
SUSPEND instruction, all external accesses are
completed, and the pipeline is halted.

Wakeup[0:1]

Core

Wake MicroBlaze from sleep mode when either
or both bits are set to 1. Ignored if MicroBlaze is
not in sleep mode. The signals are individually
synchronized to c1k according to the parameter
C_ASYNC_WAKEUP[0:1].

Dbg_Wakeup

Core

Debug request that external logic should wake
MicroBlaze from sleep mode with the Wakeup
signal, to allow debug access. Synchronous to
Dbg_Update.

Pause

Core

When this signal is set MicroBlaze pipeline will
be paused after completing all ongoing bus
accesses, and the pause_ack signal will be set.
When this signal is cleared again MicroBlaze will
continue normal execution where it was paused.

Pause_Ack

Core

MicroBlaze is in pause mode after the pause
input signal has been set.

Dbg_Continue

Core

Debug request that external logic should clear
the rpause signal, to allow debug access.

Non_Secure[0:3]

Core

Determines whether AXI accesses are non-
secure or secure. The default value is binary
0000, setting all interfaces to be secure.

Bit 0 = M_AXI_DP
Bit 1 = M_AXLIP
Bit 2 = M_AXI_DC
Bit 3 = M_AXLIC

Lockstep_...

Core

Lockstep signals for high integrity applications.
See Table 3-13 for details.

Dbg_ ...

Core

Debug signals from MDM. See Table 3-15 for
details.

Trace_...

Core

Trace signals for real time HW analysis. See
Table 3-16 for details.

1. Only used with C_USE_INTERRUPT = 2, for low-latency interrupt support.

2. MicroBlaze is a synchronous design clocked with the Clk signal, except for serial hardware debug logic, which is
clocked with the Dbg_Clk signal. If serial hardware debug logic is not used, there is no minimum frequency limit for
Clk. However, if serial hardware debug logic is used, there are signals transferred between the two clock regions. In
this case Clk must have a higher frequency than Dbg_Clk.

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 133

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=133

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

Table 3-2: Effect of Reset Mode inputs

Reset_Mode[0:1] Description

00 MicroBlaze starts executing at the reset vector, defined by C_BASE_VECTORS. This
is the nominal default behavior.

01 MicroBlaze immediately enters sleep mode without performing any bus access,
just as if a SLEEP instruction had been executed. The Sleep output is set to 1.
When any of the Wakeup[0:1] signals is set, MicroBlaze starts executing at the
reset vector, defined by C_BASE_VECTORS.

This functionality can be useful in a multiprocessor configuration, allowing
secondary processors to be configured without LMB memory.

10 If C_DEBUG_ENABLED is 0, the behavior is the same as if Reset_Mode[0:1] = 00.

If C_DEBUG_ENABLED is greater than 0, MicroBlaze immediately enters debug halt
without performing any bus access, and the MB_Halted output is set to 1. When
execution is continued via the debug interface, MicroBlaze starts executing at the
reset vector, defined by C_BASE_VECTORS.

11 Reserved

In general MicroBlaze signals are synchronous to the Clk input signal. However, there are
some exceptions controlled by parameters as described in Table 3-3.

Table 3-3: Parameter Controlled Asynchronous Signals

Signal Parameter Default Description

Interrupt C_ASYNC_INTERRUPT | Tool controlled | Parameter set from connected signal

Reset C_NUM_SYNC_FF_CLK 2 Parameter can be manually set to 0 for
synchronous reset

Wakeup[0:1]| C_ASYNC_WAKEUP | Tool controlled | Set from connected signals
C_NUM_SYNC_FF_CLK 2 Can be manually set to 0 to override tool

Dbg_Wakeup | C_DEBUG_INTERFACE 0 (serial) 0: Clocked by Dbg_Update
1: Clocked by DEBUG_ACLK, synchronous to Clk

Sleep and Pause Functionality
There are two distinct ways of halting MicroBlaze execution in a controlled manner:

« Software controlled by executing an MBAR instruction to enter sleep mode.

» Hardware controlled by setting the input signal Pause to pause the pipeline.

Software Controlled

When an MBAR instruction is executed to enter sleep mode and MicroBlaze has completed
all external accesses, the pipeline is halted and either the Sleep, Hibernate or Suspend
output signal is set. This indicates to external hardware that it is safe to perform actions
such as stopping the clock, resetting the processor or other IP cores. Different actions can
be performed depending on which output signal is set.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 134

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=134

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

To wake up MicroBlaze when in sleep mode, one (or both) of the Wwakeup input signals must
be set to one. In this case MicroBlaze continues execution after the MBAR instruction.

The Dbg_wWakeup output signal from MicroBlaze indicates that the debugger requests a
wake up. External hardware should handle this signal and wake up the processor, after
performing any other necessary hardware actions such as starting the clock.

If debug wake up is used, the software must be aware that this could be the reason for
waking up, and go to sleep again if no other action is required.

In the simplest case, where no additional actions are needed before waking up the
processor, one of the Wakeup inputs can be connected to the same signal as the MicroBlaze
Interrupt input, and the other to the MicroBlaze Dbg_wWakeup output. This allows
MicroBlaze to wake up when an interrupt occurs, or when the debugger requests it.

To implement a software reset functionality, for example the Suspend output signal can be
connected to a suitable reset input, to either reset the processor or the entire system.

The MBAR sleep mode instructions are summarized in Table 3-4.

Table 3-4: MBAR Sleep Mode Instructions

Instruction Assembler Pseudo Instruction Output Signal
mbar 16 sleep Sleep

mbar 8 hibernate Hibernate
mbar 24 suspend Suspend

Hardware Controlled

When the Pause input signal is set to one and MicroBlaze has completed all external
accesses, the pipeline is halted and the Pause_Ack output signal is set. This indicates to
external hardware that it is safe to perform actions such as stopping the clock, resetting the
processor or other IP cores.

To continue from pause, the input signal Pause must be cleared to zero. In this case
MicroBlaze continues instruction execution where it was previously paused.

The Dbg_Continue output signal from MicroBlaze indicates that the debugger requests
the processor to continue from pause. External hardware should handle this signal and clear
pause after performing any other necessary hardware actions such as starting the clock.

After external hardware has set or cleared Pause, it is recommended to wait until
Pause_Ack is set or cleared before Pause is changed again, to avoid any issues due to
incorrectly detected pause acknowledge.

All signals used for hardware control (Pause, Pause_Ack, and Dbg_Continue) are
synchronous to the MicroBlaze clock.

MicroBlaze Processor Reference Guide www.Xilinx.com

UG984 (v2016.4) November 30, 2016

l Send Feedback I 135

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=135

{: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

AXI4 and ACE Interface Description

Memory Mapped Interfaces

Peripheral Interfaces

The MicroBlaze AXI4 memory mapped peripheral interfaces are implemented as 32-bit
masters. Each of these interfaces only have a single outstanding transaction at any time,
and all transactions are completed in order.

« The instruction peripheral interface (M_AXI_IP) only performs single word read
accesses, and is always set to use the AXI4-Lite subset.

« The data peripheral interface (M_AXI_DP) performs single word accesses, and is set to
use the AXI4-Lite subset as default, but is set to use AXI4 when enabling exclusive
access for LWX and SWX instructions. Halfword and byte writes are performed by
setting the appropriate byte strobes.

The data peripheral interface (M_AXI_DP) address width can range from 32 - 64 bits,
depending on the value of the parameter C_ADDR_SIZE.

Cache Interfaces

The AXI4 memory mapped cache interfaces are implemented either as 32-bit, 128-bit, 256-
bit, or 512-bit masters, depending on cache line length and data width parameters, whereas
the AXI Coherency Extension (ACE) interfaces are implemented as 32-bit masters.

« With a 32-bit master, the instruction cache interface (M_AXI_IC or M_ACE_IC) performs
4 word, 8 word or 16 word burst read accesses, depending on cache line length. With
128-bit, 256-bit, or 512-bit masters, only single read accesses are performed.

With a 32-bit master, this interface can have multiple outstanding transactions, issuing
up to 2 transactions or up to 5 transactions when stream cache is enabled. The stream
cache can request two cache lines in advance, which means that in some cases 5
outstanding transactions can occur. In this case the number of outstanding reads is set
to 8, since this must be a power of two. With 128-bit, 256-bit, or 512-bit masters, the
interface only has a single outstanding transaction.

How memory locations are accessed depend on the parameter
C_ICACHE_ALWAYS_USED. If the parameter is 1, the cached memory range is always
accessed via the AXI4 or ACE cache interface. If the parameter is 0, the cached memory
range is accessed over the AXI4 peripheral interface when the caches are software
disabled (that is, MSR[ICE]=0).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 136
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=136

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

« With a 32-bit master, the data cache interface (M_AXI_DC or M_ACE_DC) performs
single word accesses, as well as 4 word, 8 word or 16 word burst accesses, depending
on cache line length. Burst write accesses are only performed when using write-back
cache with AXI4. With 128-bit, 256-bit, or 512-bit AXI4 masters, only single accesses
are performed.

This interface can have multiple outstanding transactions, either issuing up to 2
transactions when reading, or up to 32 transactions when writing. MicroBlaze ensures
that all outstanding writes are completed before a read is issued, since the processor
must maintain an ordered memory model but AXI4 or ACE has separate read/write
channels without any ordering. Using up to 32 outstanding write transactions improves
performance, since it allows multiple writes to proceed without stalling the pipeline.

Word, halfword and byte writes are performed by setting the appropriate byte strobes.

Exclusive accesses can be enabled for LWX and SWX instructions.

How memory locations are accessed depend on the parameter
C_DCACHE_ALWAYS_USED. If the parameter is 1, the cached memory range is always
accessed via the AXI4 or ACE cache interface. If the parameter is 0, the cached memory
range is accessed over the AXI4 peripheral interface when the caches are software
disabled (that is, MSR[DCE]=0).

Interface Parameters and Signals

The relationship between MicroBlaze parameter settings and AXI4 interface behavior for
tool-assigned parameters is summarized in Table 3-5.

Table 3-5: AXI Memory Mapped Interface Parameters
Interface Parameter Description
M_AXI_DP C_M_AXI_DP_PROTOCOL AXI4-Lite: Default.
AXI4: Used to allow exclusive access when
C_M_AXI_DP_EXCLUSIVE_ACCESS is 1.
M _AXI_IC |C_M AXI_IC_DATA_WIDTH 32: Default, single word accesses and burst accesses
M_ACE_IC with C_ICACHE_LINE_LEN word busts used with AXI4

and ACE.

128: Used when C_ICACHE_DATA_WIDTH is set to 1
and C_ICACHE_LINE_LEN is set to 4 with AXI4. Only
single accesses can occur.

256: Used when C_ICACHE_DATA_WIDTH is setto 1
and C_ICACHE_LINE_LEN is set to 8 with AXI4. Only
single accesses can occur.

512: Used when C_ICACHE_DATA_WIDTH is setto 2, or
when it is set to 1 and C_ICACHE_LINE_LEN is set to
16 with AXI4. Only single accesses can occur.

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com l Send Feedback I 137

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=137

& XILINX

ALL PROGRAMMABLE-

Table 3-5:

Chapter 3: MicroBlaze Signal Interface Description

AXI Memory Mapped Interface Parameters (Cont’d)

Interface

Parameter

Description

M_AXI_DC
M_ACE_DC

C_M_AXI_DC_DATA_WIDTH

32: Default, single word accesses and burst accesses
with C_DCACHE_LINE_LEN word busts used with AXI4
and ACE.

Write bursts are only used with AXI4 when
C_DCACHE_USE_WRITEBACK is set to 1.

128: Used when C_DCACHE_DATA_WIDTH is set to 1
and C_DCACHE_LINE_LEN is set to 4 with AXI4. Only
single accesses can occur.

256: Used when C_DCACHE_DATA_WIDTH is set to 1
and C_DCACHE_LINE_LEN is set to 8 with AXI4. Only
single accesses can occur.

512: Used when C_DCACHE_DATA_WIDTH is set to 2, or
when it is set to 1 and C_DCACHE_LINE_LEN is set to
16 with AXI4. Only single accesses can occur.

M_AXI_IC
M_ACE_IC

NUM_READ_OUTSTANDING

1: Default for 128-bit, 256-bit and 512-bit masters, a
single outstanding read.

2: Default for 32-bit masters, 2 simultaneous
outstanding reads.

8: Used for 32-bit masters when C_ICACHE_STREAMS is
set to 1, allowing 8 simultaneous outstanding reads.
Can besetto 1, 2, or 8.

M_AXI_DC
M_ACE_DC

NUM_READ_OUTSTANDING

1: Default for 128-bit, 256-bit and 512-bit masters, a
single outstanding read.

2: Default for 32-bit masters, 2 simultaneous
outstanding reads.

Can be setto 1 or 2.

M_AXI_DC
M_ACE_DC

NUM_WRITE_OUTSTANDING

32: Default, 32 simultaneous outstanding writes.
Can besetto 1, 2,4, 8, 16, or 32.

MicroBlaze Processor Reference Guide

www.Xilinx.com

UG984 (v2016.4) November 30, 2016

l Send Feedback I 138

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=138

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Values for access permissions, memory types, quality of service and shareability domain are
defined in Table 3-6.

Table 3-6: AXI Interface Signal Definitions

Interface

Signal

Description

M_AXI_TP

C_M_AXI_TIP_ARPROT

Access Permission:

« Unprivileged, secure instruction access (100) if input
signal Non_Secure[1] =0

« Unprivileged, non-secure instruction access (110) if input
signal Non_Secure[1] = 1

M_AXI_DP

C_M_AXI_DP_ARCACHE
C_M_AXI_DP_AWCACHE

Memory Type, AXI4 protocol:
* Normal Non-cacheable Bufferable (0011)

C_M_AXI_DP_ARPROT
C_M_AXI_DP_AWPROT

Access Permission, AXI4 and AXI4-Lite protocol:

« Unprivileged, secure data access (000) if input signal
Non_Secure[0] = 0

« Unprivileged, non-secure data access (010) if input signal
Non_Secure[0] = 1

C_M_AXI_DP_ARQOS
C_M_AXI_DP_AWQOS

Quality of Service, AXI4 protocol:
* Priority 8 (1000)

M_AXI_IC

C_M_AXI_TIC_ARCACHE

Memory Type:
* Write-back Read and Write-allocate (1111)

M_ACE_IC

C_M_AXI_TIC_ARCACHE

Memory Type, normal access:

* Write-back Read and Write-allocate (1111)
Memory Type, DVM access:

* Normal Non-cacheable Non-bufferable (0010)

C_M_AXI_TIC_ARDOMAIN

Shareability Domain:
 Inner shareable (01)

M_AXI_IC
M_ACE_IC

C_M_AXI_TIC_ARPROT

Access Permission:

« Unprivileged, secure instruction access (100) if input
signal Non_Secure[3] =0

« Unprivileged, non-secure instruction access (110) if input
signal Non_Secure[3] = 1

C_M_AXI_TIC_ARQOS

Quality of Service:
* Priority 7 (0111)

M_AXI_DC

C_M_AXI_DC_ARCACHE

Memory Type, normal access:

* Write-back Read and Write-allocate (1111)
Memory Type, exclusive access:

* Normal Non-cacheable Non-bufferable (0010)

M_ACE_DC

C_M_AXI_DC_ARCACHE

Memory Type, normal and exclusive access:
* Write-back Read and Write-allocate (1111)
Memory Type, DVM access:

* Normal Non-cacheable Non-bufferable (0010)

C_M_AXI_DC_ARDOMAIN
C_M_AXI_DC_AWDOMAIN

Shareability Domain:
* Inner shareable (01)

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com l Send Feedback I 139

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=139

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

Table 3-6: AXIl Interface Signal Definitions

Interface Signal Description
M_AXI_ DC C_M_AXI_DC_AWCACHE Memory Type, normal access:
M_ACE_DC « Write-back Read and Write-allocate (1111)

Memory Type, exclusive access:
* Normal Non-cacheable Non-bufferable (0010)

C_M_AXI_DC_ARPROT Access Permission:

C_M_AXI_DC_AWPROT « Unprivileged, secure data access (000) if input signal
Non_Secure[2] = 0

« Unprivileged, non-secure data access (010) if input signal
Non_Secure[2] = 1

C_M_AXI_DC_ARQOS Quality of Service, read access:

* Priority 12 ((1100)

C_M _AXI_DC_AWQOS Quality of Service, write access:
* Priority 8 (1000)

The data cache interface (M_AXI_DC or M_ACE_DC) address width can range from 32 - 64
bits, depending on the value of the parameter C_ADDR_SIZE.

Please refer to the AMBA AXI and ACE Protocol Specification (ARM IHI 0022E) document for
details.

Stream Interfaces

The MicroBlaze AXI4-Stream interfaces (MO_AXIS..M15_AXIS, SO_AXIS..S15_AXIS) are
implemented as 32-bit masters and slaves. Please refer to the AMBA 4 AXI4-Stream Protocol
Specification, Version 1.0 (ARM IHI 0051A) document for further details.

Write Operation

A write to the stream interface is performed by MicroBlaze using one of the put or putd
instructions. A write operation transfers the register contents to an output AXI4 interface.
The transfer is completed in a single clock cycle for blocking mode writes (put and cput
instructions) as long as the interface is not busy. If the interface is busy, the processor stalls
until it becomes available. The non-blocking instructions (with prefix n), always complete in
a single clock cycle even if the interface is busy. If the interface was busy, the write is
inhibited and the carry bit is set in the MSR.

The control instructions (with prefix c) set the AXI4-Stream TLAST output, to '1’, which is
used to indicate the boundary of a packet.

Read Operation

A read from the stream interface is performed by MicroBlaze using one of the get or getd
instructions. A read operations transfers the contents of an input AX14 interface to a general
purpose register. The transfer is typically completed in 2 clock cycles for blocking mode

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 140
UG984 (v2016.4) November 30, 2016 [—\/—]

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://www.xilinx.com
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=140

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

reads as long as data is available. If data is not available, the processor stalls at this
instruction until it becomes available. In the non-blocking mode (instructions with prefix n),
the transfer is completed in one or two clock cycles irrespective of whether or not data was
available. In case data was not available, the transfer of data does not take place and the
carry bit is set in the MSR.

The data get instructions (without prefix c) expect the AXI4-Stream TLAST input to be
cleared to '0’, otherwise the instructions will set MSR[FSL] to '1". Conversely, the control get
instructions (with prefix c) expect the TLAST input to be set to ‘'1’, otherwise the instructions
will set MSR[FSL] to ‘1". This can be used to check for the boundary of a packet.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 141
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=141

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

Local Memory Bus (LMB) Interface Description

The LMB is a synchronous bus used primarily to access on-chip block RAM. It uses a
minimum number of control signals and a simple protocol to ensure that local block RAM
are accessed in a single clock cycle. LMB signals and definitions are shown in the following
table. All LMB signals are active high.

LMB Signal Interface

Table 3-7: LMB Bus Signals

Signal Data Interface IT:::}::;LZ“ Type Description
Addr[0:N-1]1 Data_Addr[0:N-1]1 | Instr_Addr[0:31] O | Address bus
Byte_Enable[0:3] Byte_Enable[0:3] not used O | Byte enables
Data_Write[0:31] Data_Write[0:31] not used O | Write data bus
AS D_AS I_AS O | Address strobe
Read_Strobe Read_Strobe IFetch O | Read in progress
Write_Strobe Write_Strobe not used O | Write in progress
Data_Read[0:31] Data_Read[0:31] Instr[0:31] I Read data bus
Ready DReady IReady I | Ready for next transfer
Wait? DWait IWait I \r/(\elggyuntil accepted transfer is
CE? DCE ICE I | Correctable error
UE?2 DUE IUE I | Uncorrectable error
Cclk Clk Clk I | Bus clock

1. N = 32 - 64, set according to parameter C_ADDR_SIZE added in MicroBlaze v9.6.
2. Added in LMB for MicroBlaze v8.00

Addr[0:N-1]

The address bus is an output from the core and indicates the memory address that is being
accessed by the current transfer. It is valid only when AS is high. In multicycle accesses
(accesses requiring more than one clock cycle to complete), Addr [0:N-11] is valid only in
the first clock cycle of the transfer.

Byte _Enable[0:3]

The byte enable signals are outputs from the core and indicate which byte lanes of the data
bus contain valid data. Byte_Enable[0:3] is valid only when AS is high. In multicycle
accesses (accesses requiring more than one clock cycle to complete), Byte_Enable[0:3]

MicroBlaze Processor Reference Guide www.Xilinx.com

UG984 (v2016.4) November 30, 2016

l Send Feedback I 142

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=142

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

is valid only in the first clock cycle of the transfer. Valid values for Byte_Enable[0:3] are
shown in the following table:

Table 3-8: Valid Values for Byte_Enable[0:3]

Byte Lanes Used
Byte_Enable[0:3]
Data[0:7] Data[8:15] Data[16:23] | Data[24:31]

0001 (]
0010 °
0100 o
1000 °
0011 (] (]
1100 ° °
1111 [) [} [} [}

Data_Write[0:31]

The write data bus is an output from the core and contains the data that is written to
memory. It is valid only when AS is high. Only the byte lanes specified by
Byte_Enable[0:3] contain valid data.

AS

The address strobe is an output from the core and indicates the start of a transfer and
qualifies the address bus and the byte enables. It is high only in the first clock cycle of the
transfer, after which it goes low and remains low until the start of the next transfer.

Read_Strobe

The read strobe is an output from the core and indicates that a read transfer is in progress.
This signal goes high in the first clock cycle of the transfer, and may remain high until the
clock cycle after Ready is sampled high. If a new read transfer is directly started in the next
clock cycle, then Read_Strobe remains high.

Write_Strobe

The write strobe is an output from the core and indicates that a write transfer is in progress.
This signal goes high in the first clock cycle of the transfer, and may remain high until the
clock cycle after Ready is sampled high. If a new write transfer is directly started in the next
clock cycle, then Write_Strobe remains high.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 143
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=143

{: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

Data_Read[0:31]

The read data bus is an input to the core and contains data read from memory. Data_Read
is valid on the rising edge of the clock when Ready is high.

Ready

The Ready signal is an input to the core and indicates completion of the current transfer

and that the next transfer can begin in the following clock cycle. It is sampled on the rising
edge of the clock. For reads, this signal indicates the Data_Read[0:31] bus is valid, and
for writes it indicates that the Data_Write[0:31] bus has been written to local memory.

Wait

The wait signal is an input to the core and indicates that the current transfer has been
accepted, but not yet completed. It is sampled on the rising edge of the clock.

CE

The CE signal is an input to the core and indicates that the current transfer had a
correctable error. It is valid on the rising edge of the clock when Ready is high. For reads,
this signal indicates that an error has been corrected on the Data_Read[0:31] bus, and
for byte and halfword writes it indicates that the corresponding data word in local memory
has been corrected before writing the new data.

UE

The UE signal is an input to the core and indicates that the current transfer had an
uncorrectable error. It is valid on the rising edge of the clock when Ready is high. For reads,
this signal indicates that the value of the Data_Read[0:31] busis erroneous, and for byte
and halfword writes it indicates that the corresponding data word in local memory was
erroneous before writing the new data.

Clk

All operations on the LMB are synchronous to the MicroBlaze core clock.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 144
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=144

& XILINX

ALL PROGRAMMABLE

LMB Transactions

The following diagrams provide examples of LMB bus operations.

Generic Write Operations

Chapter 3: MicroBlaze Signal Interface Description

Clk 707 7 7 7 7"
Addr i X A0 i X | |

Byte_Enable : X BEO : X

Data_Write X DO X

AS 4:/—'\

|
Read_Strobe :

Write_Strobe '/

Data_Read

Ready

Wait

Don't Care

CE

UE

e S

Figure 3-2:

|

|

|

|
-__.-_______-__)___________.

LMB Generic Write Operation, 0 Wait States

Clk S e I e IR e I e I e N

|
Addr | X A0 | X //
Byte_Enable X BEO X ///
Data_Write X DO X ///

AS _:/—'W

Data_Read

Ready

Wait

CE

_Don't Care

UE

L - -

Figure 3-3:

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

LMB Generic Write Operation, N Wait States

l Send Feedback I 145

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=145

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Generic Read Operations

Clk 7 7 7 "7 1"
Addr : X0 : X ; ;

Byte_Enable : :

Data_Write I

AS 4I/—'W

Read_Strobe '/

Write_Strobe

X DO

Ready

I
|
|
Data_Read]
|
|
T
|

Don't Care

Wait

1
I
I
I
I
F+ A -l---Ft+td4--|->+-14-=|-FFf

CE

i N > -

UE

Figure 3-4: LMB Generic Read Operation, 0 Wait States

Clk S e I e I e I e I R R

Addr

Byte_Enable

Data_Write
|

AS 1/ 1\
I Y—

Read_Strobe !

Write_Strobe

X DO

Ready

| |
| |
| |
| |
Data_Read | | //
| |
| |
T T
| |

Wait _Don't Care

i N > -

CE

UE

Figure 3-5: LMB Generic Read Operation, N Wait States

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 146
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=146

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

Back-to-Back Write Operation

Clk _rr 7 7 7 °>7 ’°L-I ’°L-TI ’1L_71T1
Addr ix 20 Ex Al : /A ix a2 : /A ix ¥ Ex v ix :
Byte_Enable [0 50 TX_ BEl xj/ DBz xj/ MY _Be3 TX__eEa TX :
Data Write TD(__bo | X b1 Ny/mm(_be | Xoy/mm o5 (i oo
e e A T T e W
Read_Strobe : : : : : : : : :
Write_Strobe ___ / | Ay N/ : O\ .
Data_Read : : : //// : : //// : : : :
S
Wait ' ' [Don't Card / : \Don't Caré / N | Don't Care N\
I T P s
e : /A N A R : :
Figure 3-6: LMB Back-to-Back Write Operation
Back-to-Back Read Operation
Clk 05 7 7 >0 °>-7 ’°L-I ’°L-TI 1’1711
Addr : X__ a0 : X a1 : Xj/ i X a2 : Xj/ : X a3 : X a4 : X :
Byte Enable 1] : : : B/ : : :
Data_Write [T i I/ A/ i i i
e e
Read_Strobe 4: | :_//_:/—:_//_:/ : "\ :
Write_Strobe ___| : : ; : : : : :
Data_Read i i X__ Do i)(3/// i X__ b1 i)(3/// i X__ D2 i X__ D3 i X__ D4 E X
Ready o/ Ny N/ I N
Wait ' ' /[Don't Cark / | \Don't Cark / N | Don't Care, N\
CE /a—— Ja—\ L/ \
|

|

UE

Figure 3-7: LMB Back-to-Back Read Operation

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 147
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=147

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Back-to-Back Mixed Write/Read Operation

Clk 75 r o r 7 LT
Addr : a0 : a1 a2 X I
Byte_Enable X BEO : X : X BE2 i X I
Data_Write X DO X : X D2 : X :
AS L | I N\ I
Read_Strobe I I /—I\ I I
Write_Strobe —I—/—I_\—I—/—I_\ '
Data_Read I I X D1 X :
Ready I I I I I \
Wait ' ' : Don't Care : : \
CE : : : : i\
UE I I I I A\
Figure 3-8: Back-to-Back Mixed Write/Read Operation, 0 Wait States
Clk I I L L1 1 [I I
Addr :IX A0 Xj Xj
7 =/

Byte_Enable "X__BEO

Data_Write X D0 X/
| |

AS 1/ \ //_/—I__//_I_/—I__/
| |

Read_Strobe :

Write_Strobe o, .

|
|
i
I
I
I ;
I I I I
Data_Read i
- I I . Dl &
T
Ready : : \ _//_I/—:_//_I/—\—
Wait ! . ; Don't Cal:'e ; \Don't CarEI / , \Don't Carg \
CE I I I A\ L/ A .
I I I I | I | I I
UE I | I 1\ L/ 1\ L/ 1\ I

Figure 3-9: Back-to-Back Mixed Write/Read Operation, N Wait States

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 148
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=148

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Read and Write Data Steering

The MicroBlaze data-side bus interface performs the read steering and write steering
required to support the following transfers:

« byte, halfword, and word transfers to word devices
« byte and halfword transfers to halfword devices

« byte transfers to byte devices

MicroBlaze does not support transfers that are larger than the addressed device. These
types of transfers require dynamic bus sizing and conversion cycles that are not supported
by the MicroBlaze bus interface. Data steering for read cycles are shown in Table 3-9 and
Table 3-10, and data steering for write cycles are shown in Table 3-11 and Table 3-12.

Big endian format is only available when using the MMU in virtual or protected mode
(c_use_mmu > 1) or when reorder instructions are enabled (c_USE_REORDER_INSTR = 1).

Table 3-9: Big Endian Read Data Steering (Load to Register rD)

Add.ress Byte_Fnable Transfer Size Register rD Data

[30:31] [0:3] rD[0:7] | rD[8:15] | rD[16:23] | rD[24:31]
11 0001 byte Byte3
10 0010 byte Byte2
01 0100 byte Bytel
00 1000 byte ByteO
10 0011 halfword Byte2 Byte3
00 1100 halfword ByteO Bytel
00 1111 word ByteO Bytel Byte2 Byte3

Table 3-10: Little Endian Read Data Steering (Load to Register rD)

Address Byte_Enable Transfer Size Register rD Data

[30:31] [0:3] rD[0:7] | rD[8:15] | rD[16:23] | rD[24:31]
11 1000 byte ByteO
10 0100 byte Bytel
01 0010 byte Byte2
00 0001 byte Byte3
10 1100 halfword ByteO Bytel
00 0011 halfword Byte2 Byte3
00 1111 word ByteO Bytel Byte2 Byte3

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 149
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=149

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

Table 3-11: Big Endian Write Data Steering (Store from Register rD)

Add.ress Byte_FnabIe Transfer Size Write Data Bus Bytes

[30:31] [0:3] ByteO Bytel Byte2 Byte3
11 0001 byte rD[24:31]
10 0010 byte rD[24:31]
01 0100 byte rD[24:31]
00 1000 byte rD[24:31]
10 0011 halfword rD[16:23] | rD[24:31]
00 1100 halfword rD[16:23] | rD[24:31]
00 1111 word rD[0:7] | rD[8:15] | rD[16:23] | rD[24:31]

Table 3-12: Little Endian Write Data Steering (Store from Register rD)

Add.ress Byte_I.EnabIe Transfer Size Write Data Bus Bytes

[30:31] [0:3] Byte3 Byte2 Bytel ByteO
11 1000 byte rD[24:31]
10 0100 byte rD[24:31]
01 0010 byte rD[24:31]
00 0001 byte rD[24:31]
10 1100 halfword rD[16:23] | rD[24:31]
00 0011 halfword rD[16:23] | rD[24:31]
00 1111 word rD[0:7] | rD[8:15] | rD[16:23] | rD[24:31]

Note: Other masters may have more restrictive requirements for byte lane placement than those
allowed by MicroBlaze. Slave devices are typically attached “left-justified” with byte devices attached
to the most-significant byte lane, and halfword devices attached to the most significant halfword
lane. The MicroBlaze steering logic fully supports this attachment method.

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 150

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=150

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Lockstep Interface Description

The lockstep interface on MicroBlaze is designed to connect a master and one or more slave
MicroBlaze instances. The lockstep signals on MicroBlaze are listed in Table 3-13.

Table 3-13: MicroBlaze Lockstep Signals
Signal Name Description VHDL Type Direction
Lockstep_Master_Out | Output with signals going from master to | std_logic output
slave MicroBlaze. Not connected on slaves.
Lockstep_Slave_In Input with signals coming from master to | std_logic input
slave MicroBlaze. Not connected on
master.
Lockstep_Out Output with all comparison signals from std_logic output
both master and slaves.
The comparison signals provided by Lockstep_Out are listed in Table 3-14.
Table 3-14: MicroBlaze Lockstep Comparison Signals
Signal Name Bus Index Range VHDL Type
MB_Halted 0 std_logic
MB_Error 1 std_logic
IFetch 2 std_logic
I_AS 3 std_logic
Instr_ Addr 4 to 35 std_logic_vector
Data_Addr 68 to 131 std_logic_vector
Data_Write 132 to 163 std_logic_vector
D_AS 196 std_logic
Read_Strobe 197 std_logic
Write_Strobe 198 std_logic
Byte_Enable 199 to 202 std_logic_vector
M_AXI_IP_AWID 207 std_logic
M_AXI_IP_AWADDR 208 to 239 std_logic_vector
M_AXI_IP_AWLEN 272 to 279 std_logic_vector
M _AXI_IP_AWSIZE 280 to 282 std_logic_vector
M_AXI_IP_AWBURST 283 to 284 std_logic_vector
M_AXI_IP_AWLOCK 285 std_logic
M_AXI_IP_AWCACHE 286 to 289 std_logic_vector
M_AXI_IP_AWPROT 290 to 292 std_logic_vector
M_AXI_IP_AWQOS 293 to 296 std_logic_vector
M_AXI_IP_AWVALID 297 std_logic
M_AXI_IP_WDATA 298 to 329 std_logic_vector
M_AXI_IP_WSTRB 362 to 365 std_logic_vector

MicroBlaze Processor Reference Guide

UG984 (v2016.4) November 30,

www.Xilinx.com

2016

l Send Feedback I 151

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=151

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-14: MicroBlaze Lockstep Comparison Signals (Cont’d)

Signal Name Bus Index Range VHDL Type
M_AXI_IP_WLAST 370 std_logic
M_AXI_TIP_WVALID 371 std_logic
M_AXI_TIP_BREADY 372 std_logic
M_AXI_IP_ARID 373 std_logic
M_AXI_IP_ARADDR 374 to 405 std_logic_vector
M_AXI_IP_ARLEN 438 to 445 std_logic_vector
M_AXI_TIP_ARSIZE 446 to 448 std_logic_vector
M_AXI_IP_ARBURST 449 to 450 std_logic_vector
M_AXI_IP_ARLOCK 451 std_logic
M_AXI_IP_ARCACHE 452 to 455 std_logic_vector
M_AXI_IP_ARPROT 456 to 458 std_logic_vector
M_AXI_TIP_ARQOS 459 to 462 std_logic_vector
M_AXI_IP_ARVALID 463 std_logic
M_AXI_IP_RREADY 464 std_logic
M_AXI_DP_AWID 465 std_logic
M_AXI_DP_AWADDR 466 to 529 std_logic_vector
M_AXI_DP_AWLEN 530 to 537 std_logic_vector
M_AXI_DP_AWSIZE 538 to 540 std_logic_vector
M_AXI_DP_AWBURST 541 to 542 std_logic_vector
M_AXI_DP_AWLOCK 543 std_logic
M_AXI_DP_AWCACHE 544 to 547 std_logic_vector
M_AXI_DP_AWPROT 548 to 550 std_logic_vector
M_AXI_DP_AWQOS 551 to 554 std_logic_vector
M_AXI_DP_AWVALID 555 std_logic
M_AXI_DP_WDATA 556 to 587 std_logic_vector
M_AXI_DP_WSTRB 620 to 623 std_logic_vector
M_AXI_DP_WLAST 628 std_logic
M_AXI_DP_WVALID 629 std_logic
M_AXI_DP_BREADY 630 std_logic
M_AXI_DP_ARID 631 std_logic
M_AXI_DP_ARADDR 632 to 695 std_logic_vector
M_AXI_DP_ARLEN 696 to 703 std_logic_vector
M_AXI_DP_ARSIZE 704 to 706 std_logic_vector
M_AXI_DP_ARBURST 707 to 708 std_logic_vector
M_AXI_DP_ARLOCK 709 std_logic
M_AXI_DP_ARCACHE 710 to 713 std_logic_vector
M_AXI_DP_ARPROT 714 to 716 std_logic_vector
M_AXI_DP_ARQOS 717 to 720 std_logic_vector
M_AXI_DP_ARVALID 721 std_logic

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com l Send Feedback l 152

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=152

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-14: MicroBlaze Lockstep Comparison Signals (Cont’d)
Signal Name Bus Index Range VHDL Type
M_AXI_DP_RREADY 722 std_logic
Mn_AXIS_TLAST 723 + n*35 std_logic
Mn_AXIS_TDATA 758 + n*35to std_logic_vector
789 + n* 35

Mn_AXIS_TVALID 790 + n * 35 std_logic
Sn_AXIS_TREADY 791 + n* 35 std_logic
M_AXI_IC_AWID 1283 std_logic

M_AXI_TIC_AWADDR

1284 to 1315

std_logic_vector

M_AXI_TIC_AWLEN

1348 to 1355

std_logic_vector

M_AXI_TIC_AWSIZE

1356 to 1358

std_logic_vector

M_AXI_TIC_AWBURST

1359 to 1360

std_logic_vector

M_AXI_TC_AWLOCK

1361

std_logic

M_AXI_TIC_AWCACHE

1362 to 1365

std_logic_vector

M_AXI_TIC_AWPROT

1366 to 1368

std_logic_vector

M_AXI_TIC_AWQOS

1369 to 1372

std_logic_vector

M_AXI_TIC_AWVALID

1373

std_logic

M_AXI_TIC_AWUSER

1374 to 1378

std_logic_vector

M_AXI_IC_AWDOMAINI

1379 to 1380

std_logic_vector

M_AXI IC_AWSNOOPI

1381 to 1383

std_logic_vector

M_AXI_IC_AWBAR?

1384 to 1385

std_logic_vector

M_AXI_TC_WDATA

1386 to 1897

std_logic_vector

M_AXI_TIC_WSTRB

1898 to 1961

std_logic_vector

M_AXI_IC_WLAST 1962 std_logic
M_AXI_IC_WVALID 1963 std_logic
M_AXI_IC_WUSER 1964 std_logic
M_AXI_IC_BREADY 1965 std_logic
M_AXI_IC_WACK 1966 std_logic
M_AXI_IC_ARID 1967 std_logic_vector

M_AXI_TC_ARADDR

1968 to 1999

std_logic_vector

M_AXI_TIC_ARLEN

2032 to 2039

std_logic_vector

M_AXI_TC_ARSIZE

2040 to 2042

std_logic_vector

M_AXI_TIC_ARBURST

2043 to 2044

std_logic_vector

M_AXI_TC_ARLOCK

2045

std_logic

M_AXI_TC_ARCACHE

2046 to 2049

std_logic_vector

M_AXI_TIC_ARPROT

2050 to 2052

std_logic_vector

M_AXI_TIC_ARQOS

2053 to 2056

std_logic_vector

M_AXI_TIC_ARVALID

2057

std_logic

M_AXI_TC_ARUSER

2058 to 2062

std_logic_vector

M_AXI_IC_ARDOMAIN?

2063 to 2064

std_logic_vector

M_AXI_IC_ARSNOOP!

2065 to 2068

std_logic_vector

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 153

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=153

& XILINX

ALL PROGRAMMABLE-

Table 3-14:

Chapter 3: MicroBlaze Signal Interface Description

MicroBlaze Lockstep Comparison Signals (Cont’d)

Signal Name

Bus Index Range

VHDL Type

M_AXI_IC_ARBAR?

2069 to 2070

std_logic_vector

M_AXI_IC_RREADY 2071 std_logic
M_AXI_IC_RACK! 2072 std_logic
M_AXI_IC_ACREADY! 2073 std_logic
M_AXI_IC_CRVALID! 2074 std_logic

M_AXI IC_CRRESP!

2075 to 2079

std_logic_vector

M_AXI_IC_CDVALID! 2080 std_logic
M_AXI_TIC_CDLAST! 2081 std_logic
M_AXI_DC_AWID 2082 std_logic

M_AXI_DC_AWADDR

2083 to 2146

std_logic_vector

M_AXI_DC_AWLEN

2147 to 2154

std_logic_vector

M_AXI_DC_AWSIZE

2155 to 2157

std_logic_vector

M_AXI_DC_AWBURST

2158 to 2159

std_logic_vector

M_AXI_DC_AWLOCK

2160

std_logic

M_AXI_DC_AWCACHE

2161 to 2164

std_logic_vector

M_AXI_DC_AWPROT

2165 to 2167

std_logic_vector

M_AXI_DC_AWQOS

2168 to 2171

std_logic_vector

M_AXI_DC_AWVALID

2172

std_logic

M_AXI_DC_AWUSER

2172 to 2176

std_logic_vector

M_AXI_DC_AWDOMAINI

2177 to 2178

std_logic_vector

M_AXI_DC_AWSNOOP?!

2179 to 2182

std_logic_vector

M_AXI_DC_AWBAR?

2183 to 2184

std_logic_vector

M_AXI_DC_WDATA

2185 to 2696

std_logic_vector

M_AXI_DC_WSTRB?I

2697 to 2760

std_logic_vector

M_AXI_DC_WLAST 2761 std_logic
M_AXI_DC_WVALID 2762 std_logic
M_AXI_DC_WUSER 2863 std_logic
M_AXI_DC_BREADY 2764 std_logic
M_AXI_DC_WACK! 2765 std_logic
M_AXI_DC_ARID 2766 std_logic

M_AXI_DC_ARADDR

2767 to 2830

std_logic_vector

M_AXI_DC_ARLEN

2831 to 2838

std_logic_vector

M_AXI_DC_ARSIZE

2839 to 2841

std_logic_vector

M_AXI_DC_ARBURST

2842 to 2843

std_logic_vector

M_AXI_DC_ARLOCK

2844

std_logic

M_AXI_DC_ARCACHE

2845 to 2848

std_logic_vector

M_AXI_DC_ARPROT

2849 to 2851

std_logic_vector

M_AXI_DC_ARQOS

2852 to 2855

std_logic_vector

M_AXI_DC_ARVALID

2856

std_logic

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

| Send Feedback I 154

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=154

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-14: MicroBlaze Lockstep Comparison Signals (Cont’d)

Signal Name

Bus Index Range

VHDL Type

M_AXI_DC_ARUSER

2857 to 2861

std_logic_vector

M_AXI_DC_ARDOMAIN?

2862 to 2863

std_logic_vector

M_AXI_DC_ARSNOOP!

2864 to 2867

std_logic_vector

M_AXI_DC_ARBAR?

2868 to 2869

std_logic_vector

M_AXI_DC_RREADY 2870 std_logic
M_AXI_DC_RACK! 2871 std_logic
M_AXI_DC_ACREADY! 2872 std_logic
M_AXI_DC_CRVALID! 2873 std_logic
M_AXI_DC_CRRESP! 2874 to 2878 std_logic_vector
M_AXI_DC_CDVALID?! 2879 std_logic
M_AXI_DC_CDLAST! 2880 std_logic
Trace_Instruction 2881 to 2912 std_logic_vector
Trace_Valid_Instr 2913 std_logic
Trace_PC 2914 to 2945 std_logic_vector
Trace_Reg_Write 2978 std_logic

Trace_Reg_Addr

2979 to 2983

std_logic_vector

Trace_MSR_Reg

2984 to 2998

std_logic_vector

Trace_PID_ Reg

2999 to 3006

std_logic_vector

Trace_New_Reg_Value

3007 to 3038

std_logic_vector

Trace_Exception_Taken 3071 std_logic
Trace_Exception_Kind 3072 to 3076 std_logic_vector
Trace_Jump_Taken 3077 std_logic
Trace_Delay_Slot 3078 std_logic

Trace_Data_Address

3079 to 3142

std_logic_vector

Trace_Data_Write_Value

3143 to 3174

std_logic_vector

Trace_Data_Byte_Enable

3207 to 3210

std_logic_vector

Trace_Data_Access 3215 std_logic
Trace_Data_Read 3216 std_logic
Trace_Data_Write 3217 std_logic
Trace_DCache_Req 3218 std_logic
Trace_DCache_ Hit 3219 std_logic
Trace_DCache_Rdy 3220 std_logic
Trace_DCache_Read 3221 std_logic
Trace_ICache_Reg 3222 std_logic
Trace_ICache_Hit 3223 std_logic
Trace_ICache_Rdy 3224 std_logic
Trace_OF_PipeRun 3225 std_logic
Trace_EX_PipeRun 3226 std_logic
Trace_MEM_PipeRun 3227 std_logic

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

| Send Feedback I 155

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=155

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

Table 3-14: MicroBlaze Lockstep Comparison Signals (Cont’d)

Signal Name Bus Index Range VHDL Type
Trace_MB_Halted 3228 std_logic
Trace_Jump_Hit 3229 std_logic
Reserved for future use 3230 to 4095

1. This signal is only used when C_INTERCONNECT = 3 (ACE).

Debug Interface Description

The debug interface on MicroBlaze is designed to work with the Xilinx Microprocessor
Debug Module (MDM) IP core. The MDM is controlled by the Xilinx System Debugger
(XSDB) through the JTAG port of the FPGA. The MDM can control multiple MicroBlaze
processors at the same time. The debug signals are grouped in the DEBUG bus.

The debug interface can be grouped in the DEBUG bus, using either JTAG serial signals (by
setting c_DEBUG_INTERFACE = 0) or the AXI4-Lite compatible parallel signals (by setting
C_DEBUG_INTERFACE = 1). The MDM configuration must also be set accordingly.

It is also possible to use only AXI4-Lite parallel signals (c_DEBUG_INTERFACE = 2) grouped in
an AXI4 bus, in case the MDM is not used. However, this configuration is not supported by
the tools.

The debug signals on MicroBlaze are listed in Table 3-15.

Table 3-15: MicroBlaze Debug Signals
Signal Name Description VHDL Type Kind
Dbg_Clk JTAG clock from MDM std_logic serial in
Dbg_TDI JTAG TDI from MDM std_logic serial in
Dbg_TDO JTAG TDO to MDM std_logic serial out
Dbg_Reg_En Debug register enable from MDM std_logic_vector | serial in
Dbg_shift? JTAG BSCAN shift signal from MDM std_logic serial in
Dbg_Capture JTAG BSCAN capture signal from MDM std_logic serial in
Dbg_Update JTAG BSCAN update signal from MDM std_logic serial in
Debug_Rst? Reset signal from MDM, active high. std_logic input
Should be held for at least 1 C1k clock
cycle.
Dbg_Trig_In? Cross trigger event input to MDM std_logic_vector | output
Dbg_Trig_Ack_In? | Cross trigger event input acknowledge std_logic_vector | input
from MDM
Dbg_Trig_oOut? Cross trigger action output from MDM std_logic_vector | input
Dbg_Trig_Ack_out? | Cross trigger action output acknowledge | std_logic_vector | output
to MDM

MicroBlaze Processor Reference Guide

www.Xilinx.com

UG984 (v2016.4) November 30, 2016

l Send Feedback I 156

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=156

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE

Table 3-15: MicroBlaze Debug Signals

Signal Name Description VHDL Type Kind

Dbg_Trace_Data? External Program Trace data output to std_logic_vector | output
MDM

Dbg_Trace_valid® | External Program Trace valid to MDM std_logic output
Dbg_Trace_Ready® | External Program Trace ready from MDM | std_logic input
Dbg_Trace_Clk3 External Program Trace clock from MDM | std_logic input
Dbg_ARADDR* Read address from MDM std_logic_vector | parallel in
Dbg_ARREADY* Read address ready to MDM std_logic parallel out
Dbg_ARVALID* Read address valid from MDM std_logic parallel in
Dbg_AWADDR* Write address from MDM std_logic_vector | parallel in
Dbg_AWREADY* Write address ready to MDM std_logic parallel out
Dbg_AWVALID* Write address valid from MDM std_logic parallel in
Dbg_BREADY* Write response ready to MDM std_logic parallel out
Dbg_BRESP* Write response to MDM std_logic_vector | parallel out
Dbg_BVALID4 Write response valid from MDM std_logic parallel in
Dbg_RDATA* Read data to MDM std_logic_vector | parallel out
Dbg_RREADY* Read data ready to MDM std_logic parallel out
Dbg_RRESP* Read data response to MDM std_logic_vector | parallel out
Dbg_RVALID4 Read data valid from MDM std_logic parallel in
Dbg_WDATA4 Write data from MDM std_logic_vector | parallel in
Dbg_WREADY* Write data ready to MDM std_logic parallel out
Dbg_WVALID4 Write data valid from MDM std_logic parallel in
DEBUG_ACLK* Debug clock, must be same as Clk std_logic parallel in
DEBUG_ARESET* Debug reset, must be same as Reset std_logic parallel in

Updated for MicroBlaze v7.00: Dbg_Shift added and Debug_Rst included in DEBUG bus
Updated for MicroBlaze v9.3: Dbg_Trig signals added to DEBUG bus

Updated for MicroBlaze v9.4: External Program Trace signal added to DEBUG bus
Updated for MicroBlaze v10.0: Parallel debug signals added to DEBUG bus

H W

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 157
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=157

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Trace Interface Description

The MicroBlaze core exports a number of internal signals for trace purposes. This signal
interface is not standardized and new revisions of the processor may not be backward
compatible for signal selection or functionality. It is recommended that you not design
custom logic for these signals, but rather to use them via Xilinx provided analysis IP. The
trace signals are grouped in the TRACE bus. The current set of trace signals were last

updated for MicroBlaze v7.30 and are listed in Table 3-16.

The mapping of the MSR bits is shown in Table 3-17. For a complete description of the
Machine Status Register, see “Special Purpose Registers”.

The Trace exception types are listed in Table 3-18. All unused Trace exception types are

reserved.
Table 3-16: MicroBlaze Trace Signals
Signal Name Description VHDL Type Direction
Trace_Valid_Instr Valid instruction on trace port. std_logic output
Trace_Instruction ! Instruction code std_logic_vector (0 to 31) | output
Trace PpC 1l Program counter std_logic_vector (0 to 31) | output
Trace Reg Write !l Instruction writes to the register file std_logic output
Trace Reg Addr! Destination register address std_logic_vector (0 to 4) | output
Trace_MSR_Regl Machine status register. The mapping | std_logic_vector (0 to 14)2 | output
of the register bits is documented
below.
Trace_PID_Regl Process identifier register std_logic_vector (0 to 7) | output
Trace_New_Reg_Valuel Destination register update value std_logic_vector (0 to 31) | output
Trace_Exception_Takenl? | Instruction result in taken exception std_logic output
Trace_Exception_Kindl Exception type. The description for the | std_logic_vector (0 to 4)2 | output
exception type is documented below.
Trace_Jump_Taken! Branch instruction evaluated true, that std_logic output
is taken
Trace Jump Hitl3 Branch Target Cache hit std_logic output
Trace_Delay_Slot! Instruction is in delay slot of a taken std_logic output
branch
Trace_Data_ Access! Valid D-side memory access std_logic output
Trace_Data_Address! Address for D-side memory access, std_logic_vector (0 to N-1) | output
where N = 32 - 64, determined by
parameter C_ADDR_SIZE
Trace_Data_Write_vValuel Value for D-side memory write access | std_logic_vector (0 to 31) | output
Trace_Data_Byte_Enablel Byte enables for D-side memory access | std_logic_vector (0 to 3) | output

MicroBlaze Processor Reference Guide

www.Xilinx.com

UG984 (v2016.4) November 30, 2016

l Send Feedback I 158

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=158

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-16: MicroBlaze Trace Signals (Cont’d)

Signal Name Description VHDL Type Direction
Trace_Data_Readl D-side memory access is a read std_logic output
Trace_Data_Writel D-side memory access is a write std_logic output
Trace_DCache_Req Data memory address is within D- std_logic output

Cache range
Trace_DCache_Hit Data memory address is present in D- std_logic output
Cache
Trace_DCache_Rdy Data memory address is within D- std_logic output
Cache range and the access is
completed
Trace_DCache_Read:* The D-Cache request is a read std_logic output
Trace_ICache_Req Instruction memory address is within std_logic output
I-Cacherange, and the cache is enabled
in the Machine Status Register
Trace_ICache_Hit Instruction memory address is present std_logic output
in
I-Cache
Trace_ICache_Rdy Instruction memory address is within std_logic output
I-Cache range and the access is
completed
Trace_OF_PipeRun Pipeline advance for Decode stage std_logic output
Trace_EX_PipeRun3 Pipeline advance for Execution stage std_logic output
Trace_MEM_PipeRun3 Pipeline advance for Memory stage std_logic output
Trace_MB_Halted Pipeline is halted by debug std_logic output

1. Valid only when Trace_Valid_Instr = 1
2. Valid only when Trace_Exception_Taken =1
3. Not used with area optimization feature
4. Valid only when Trace_DCache_Req =1
Table 3-17: Mapping of Trace MSR
Trace_MSR_Reg Machine Status Register
Bit Bit Name Description
0 17 VMS Virtual Protected Mode Save
1 18 VM Virtual Protected Mode
2 19 UMS User Mode Save
3 20 UM User Mode
4 21 PVR Processor Version Register exists
5 22 EIP Exception In Progress
6 23 EE Exception Enable
MicroBlaze Processor Reference Guide www.xilinx.com

UG984 (v2016.4) November 30, 2016

| Send Feedback I 159

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=159

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

Table 3-17: Mapping of Trace MSR
Trace_MSR_Reg Machine Status Register
Bit Bit Name Description
7 24 DCE Data Cache Enable
8 25 DzO Division by Zero or Division Overflow
9 26 ICE Instruction Cache Enable
10 27 FSL AXI4-Stream Error
11 28 BIP Break in Progress
12 29 C Arithmetic Carry
13 30 IE Interrupt Enable
14 31 Reserved Reserved
Table 3-18: Type of Trace Exception
Trace_Exception_Kind [0:4] Description

00000 Stream exception

00001 Unaligned exception

00010 Illegal Opcode exception

00011 Instruction Bus exception

00100 Data Bus exception

00101 Divide exception

00110 FPU exception

00111 Privileged instruction exception

01010 Interrupt

01011 External non maskable break

01100 External maskable break

10000 Data storage exception

10001 Instruction storage exception

10010 Data TLB miss exception

10011 Instruction TLB miss exception

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 160

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=160

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

MicroBlaze Core Configurability

The MicroBlaze core has been developed to support a high degree of user configurability.
This allows tailoring of the processor to meet specific cost/performance requirements.

Configuration is done via parameters that typically enable, size, or select certain processor
features. For example, the instruction cache is enabled by setting the C_USE_ICACHE
parameter. The size of the instruction cache, and the cacheable memory range, are all
configurable using: C_CACHE_BYTE_SIZE, C_ICACHE_BASEADDR, and
C_ICACHE_HIGHADDR respectively.

Parameters valid for the latest version of MicroBlaze are listed in Table 3-19. Not all of these
are recognized by older versions of MicroBlaze; however, the configurability is fully

backward compatible.

Note: Shaded rows indicate that the parameter has a fixed value and cannot be modified.

Table 3-19: Configuration Parameters

Tool
. Allowable | Default .
Parameter Name Feature/Description Values Value Asesz'gn VHDL Type
C_FAMILY Target Family Listed in virtex7 | yes string
Table 3-20

C_DATA_SIZE Data Size 32 32 NA integer
C_ADDR_SIZE Data Side Address Size 32-64 32 NA integer
C_DYNAMIC_BUS_SIZING Legacy 1 1 NA integer
C_SCO Xilinx internal 0 0 NA integer
C_AREA_OPTIMIZED Select implementation

optimization:

0 = Performance 0,1,2 0 integer

1 = Area

2 = Frequency
C_OPTIMIZATION Reserved for future use 0 0 NA integer
C_INTERCONNECT Select interconnect

2 = AXI4 only 2,3 2 integer

3 = AXI4 and ACE
C_ENDIANNESS Select endianness 1 1 os nteder

1 = Little Endian y 9
C_BASE_VECTORS? Configurable base 0x00000000- | 0x0000 std loic vector

vectors Oxffffff80 0000 -ogte

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 161

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=161

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

Table 3-19: Configuration Parameters (Cont’d)
Tool
A Allowable |Default .

Parameter Name Feature/Description Values Value As:(ljgn VHDL Type
C_FAULT_TOLERANT Implement fault 01 0 yes integer
tolerance '

C_ECC_USE_CE_EXCEPTION Generate exception for integer
0,1 0
correctable ECC error
C_LOCKSTEP_SLAVE Lockstep Slave 0,1 0 integer
C_AVOID_PRIMITIVES Disallow FPGA integer
primitives
0 = None
1 = SRL 0,123 0
2 = LUTRAM
3 = Both
C_PVR Processor version integer
register mode selection
0 = None 0,12 0
1 = Basic
2 = Full
C_PVR_USER1 Processor version std_logic_vector
register USER1 constant 0x00-0xff 0x00 (0to7)
C_PVR_USER2 Processor version 0x00000000- | 0x0000 std_logic_vector
register USER2 constant OxFFFfffff 0000 (0 to31)
C_RESET_MSR_IE Reset value for MSR Any 0x0000 std_logic
C_RESET_MSR_BIP register bits IE, BIP, ICE, | combination
C_RESET_MSR_ICE DCE, EE, and EIP ~ of the
C_RESET_MSR_DCE individual
C_RESET_MSR_EE bits
C_RESET_MSR_EIP
C_INSTANCE Instance Name Anyinstance | micro yes string
name blaze
C_D_AXI Data side AXI interface 0,1 0 integer
C_D_LMB Data side LMB interface 0,1 1 integer
C_I_AXI Instruction side AXI integer
. 0,1 0
interface
C_I_LMB Instruction side LMB integer
. 0,1 1
interface
C_USE_BARREL Include barrel shifter 0,1 0 integer
C_USE_DIV Include hardware 0,1 0 integer

divider

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 162

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=162

& XILINX

ALL PROGRAMMABLE-

Table 3-19:

Chapter 3: MicroBlaze Signal Interface Description

Configuration Parameters (Cont’d)

Parameter Name

Feature/Description

Allowable
Values

Default
Value

Tool
Assign
ed

VHDL Type

C_USE_HW_MUL

Include hardware
multiplier
0 = None
1= Mul32
2 = Mul64

0,12

integer

C_USE_FPU

Include hardware
floating point unit
0 = None

1 = Basic

2 = Extended

0,12

integer

C_USE_MSR_INSTR

Enable use of
instructions: MSRSET
and MSRCLR

0,1

integer

C_USE_PCMP_INSTR

Enable use of
instructions: CLZ,
PCMPBF, PCMPEQ, and
PCMPNE

0,1

integer

C_USE_REORDER_INSTR

Enable use of
instructions: Reverse
load, reverse store, and
swap

01

integer

C_UNALIGNED_EXCEPTIONS

Enable exception
handling for unaligned
data accesses

01

integer

C_ILL_OPCODE_EXCEPTION

Enable exception
handling for illegal op-
code

01

integer

C_M_AXI_TI_BUS_EXCEPTION

Enable exception
handling for M_AXI_I
bus error

01

integer

C_M_AXI_D_BUS_EXCEPTION

Enable exception
handling for M_AXI_D
bus error

0,1

integer

C_DIV_ZERO_EXCEPTION

Enable exception
handling for division by
zero or division
overflow

0,1

integer

C_FPU_EXCEPTION

Enable exception
handling for hardware
floating point unit
exceptions

01

integer

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 163

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=163

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

Table 3-19: Configuration Parameters (Cont’d)
Tool
Parameter Name Feature/Description Allowable | Default Assign| VHDL Type
Values Value ed
C_OPCODE_0x0_ILLEGAL Detect opcode 0x0 as an 01 0 integer
illegal instruction '
C_FSL_EXCEPTION Enable exception integer
handling for Stream 0,1 0
Links
C_ECC_USE_CE_EXCEPTION Generate Bus Error integer
Exceptions for 0,1 0
correctable errors
C_USE_STACK_PROTECTION Generate exception for integer
stack overflow or stack 0,1 0
underflow
C_IMPRECISE_EXCEPTIONS Allow imprecise integer
exceptions for ECC 0,1 0
errors in LMB memory
C_DEBUG_ENABLED MDM Debug interface integer
0 = None
1 = Basic 012 1
2 = Extended
C_NUMBER_OF_PC_BRK Number of hardware)
. 0-8 1 integer
breakpoints
C_NUMBER_OF_RD_ADDR_BRK Number of read address .
. 0-4 0 integer
watchpoints
C_NUMBER_OF_WR_ADDR_BRK Number of write)
. 0-4 0 integer
address watchpoints
C_DEBUG_EVENT_COUNTERS Number of Performance)
. 0-48 5 integer
Monitor event counters
C_DEBUG_LATENCY_COUNTERS Number of Performance
Monitor latency 0-7 1 integer
counters
C_DEBUG_COUNTER_WIDTH Performan.ce Monitor 324864 32 integer
counter width
C_DEBUG_TRACE_SIZE Trace Buffer size 0, 8192,
16384,
32768, 8192 integer
65536,
131072

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 164

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=164

& XILINX

ALL PROGRAMMABLE

Chapter 3: MicroBlaze Signal Interface Description

Table 3-19: Configuration Parameters (Cont’d)
Tool
A Allowable |Default .
Parameter Name Feature/Description Values Value As:(ljgn VHDL Type
C_DEBUG_PROFILE_SIZE Profile Buffer size 0, 4096,
8192,16384,
32768, 0 integer
65536,
131072
C_DEBUG_EXTERNAL_TRACE External Program Trace 0,1 0 yes integer
C_DEBUG_INTERFACE Debug Interface:
0 = Debug Serial .
1 = Debug Parallel 012 0 Integer
2 = AXI4-Lite
C_ASYNC_INTERRUPT Asynchronous Interrupt 0,1 0 yes integer
C_ASYNC_WAKEUP Asynchronous Wakeup 00,01,10,11 00 yes integer
C_INTERRUPT_IS_EDGE Level/Edge Interrupt 0,1 0 yes integer
C_EDGE_IS_POSITIVE Negative/Positive Edge 0,1 1 yes integer
Interrupt
C_FSL_LINKS Number of AXI-Stream integer
. 0-16 0
interfaces
C_USE_EXTENDED_FSL_INSTR Enable use of extended 01 0 integer
stream instructions !
C_ICACHE_BASEADDR Instruction cache base 0x00000000 | 0x0000 std_logic_vector
address - OXFFFFFFFF | 0000
C_ICACHE_HIGHADDR Instruction cache high 0x00000000 | Ox3FFF std_logic_vector
address - OXFFFFFFFF FFFF
C_USE_ICACHE Instruction cache 0,1 0 integer
C_ALLOW_ICACHE_WR Instruction cache write 01 1 integer
enable '
C_ICACHE_LINE_LEN Instruction cache line 48 16 4 integer
length
C_ICACHE_ALWAYS_USED Instruction cache integer
interface used for all
. 0,1 1
memory accesses in the
cacheable range
C_ICACHE_FORCE_TAG_LUTRAM Instruction cache tag integer
always implemented 0,1 0

with distributed RAM

MicroBlaze Processor Reference Guide

UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 165

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=165

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-19: Configuration Parameters (Cont’d)
Tool
. Allowable | Default .
Parameter Name Feature/Description Values Value As:(;gn VHDL Type
C_ICACHE_STREAMS Instruction cache 01 0 integer
streams !
C_ICACHE_VICTIMS Ir)st.ruction cache 0,2 4 8 0 integer
victims
C_ICACHE_DATA_WIDTH Instruction cache data integer
width
0 = 32 bits 0,12 0
1 = Full cache line
2 = 512 bits
C_ADDR_TAG_BITS Instruction cache yes integer
0-25 17
address tags
C_CACHE_BYTE_SIZE Instruction cache size 64, 128, 256, integer
512, 1024,
2048, 4096,
8192,16384, 8192
32768,
655362
C_DCACHE_BASEADDR Data cache base address | 0x00000000 | 0x0000 std_logic_vector
- OxFFFFFFFF | 0000
C_DCACHE_HIGHADDR Data cache high address | 0x00000000 | Ox3FFF std_logic_vector
- OXFFFFFFFF FFFF
C_USE_DCACHE Data cache 0,1 0 integer
C_ALLOW_DCACHE_WR Data cache write enable 0,1 1 integer
C_DCACHE_LINE_LEN Data cache line length 4,8, 16 4 integer
C_DCACHE_ALWAYS_USED Data cache interface integer
used for all accesses in 0,1 1
the cacheable range
C_DCACHE_FORCE_TAG_LUTRAM Data cache tag always integer
implemented with 0,1 0
distributed RAM
C_DCACHE_USE_WRITEBACK Data cache write-back 01 0 integer
storage policy used !
C_DCACHE_VICTIMS Data cache victims 0,2438 0 integer
C_DCACHE_DATA_WIDTH Data cache data width integer
0 = 32 bits
1,2
1 = Full cache line 0. 1 0
2 = 512 bits

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 166

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=166

& XILINX

ALL PROGRAMMABLE-

Table 3-19:

Chapter 3: MicroBlaze Signal Interface Description

Configuration Parameters (Cont’d)

Parameter Name

Feature/Description

Allowable
Values

Default
Value

Tool
Assign
ed

VHDL Type

C_DCACHE_ADDR_TAG

Data cache address tags

0-25

17

yes

integer

C_DCACHE_BYTE_SIZE

Data cache size

64,128, 256,
512, 1024,
2048, 4096,
8192, 16384,
32768,
655362

8192

integer

C_USE_MMU3

Memory Management:
0 = None

1 = User Mode

2 = Protection

3 = Virtual

0,123

integer

C_MMU_DTLB_SIZE3

Data shadow Translation
Look-Aside Buffer size

1,248

integer

C_MMU_ITLB_SIZE3

Instruction shadow
Translation Look-Aside
Buffer size

1,2,438

integer

C_MMU_TLB_ACCESS3

Access to memory
management special
registers:

0 = Minimal

1 = Read

2 = Write

3 = Full

0,123

integer

C_MMU_ZONES3

Number of memory
protection zones

0-16

16

integer

C_MMU_PRIVILEGED_INSTR?

Privileged instructions

0 = Full protection
1 = Allow stream instrs

0,1

integer

C_USE_INTERRUPT

Enable interrupt
handling

0 = No interrupt

1 = Standard interrupt
2 = Low-latency
interrupt

0,12

yes

integer

C_USE_EXT_BRK

Enable external break
handling

0,1

yes

integer

C_USE_EXT_NM_BRK

Enable external non-
maskable break
handling

0,1

yes

integer

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 167

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=167

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-19: Configuration Parameters (Cont’d)
Tool
. Allowable | Default .
Parameter Name Feature/Description Values Value As:(;gn VHDL Type
C_USE_NON_SECURE Use cor.respondlng non- 0-15 0 yes integer
secure input
C_USE_BRANCH_TARGET_CACHE? | Enable Branch Target .
0,1 0 integer
Cache
C_BRANCH_TARGET_CACHE_SIZE? | Branch Target Cache
size:
0 = Default
1 = 8 entries
2 = 16 entries .
-7 t
3 = 32 entries 0 0 neger
4 = 64 entries
5 = 512 entries
6 = 1024 entries
7 = 2048 entries
C_M_AXI_DP_ Data side AXI thread ID 1 1 integer
THREAD_ID_WIDTH width
C_M_AXI_DP_DATA_WIDTH Data side AXI data width 32 32 integer
. int
C_M_AXI_DP_ADDR_WIDTH Dgta side AXI address 32-64 32 yes integer
width
C_M_AXI_DP_ Data side AXI uses 0 0 integer
SUPPORTS_THREADS threads
C_M_AXI_DP_SUPPORTS_READ Data side AXI support 1 1 integer
for read accesses
C_M_AXI_DP_SUPPORTS_WRITE Data side AXI support 1 1 integer
for write accesses
C_M_AXI_DP_SUPPORTS_ Data side AXI narrow 0 0 integer
NARROW_BURST burst support
C_M_AXI_DP_PROTOCOL Data side AXI protocol AX14, AX14 yes string
AXIALITE LITE
C_M_AXI_DP_ Data side AXI exclusive 01 0 integer
EXCLUSIVE_ACCESS access support !
C_M_AXI_TIP_ Instruction side AXI 1 1 integer
THREAD_ID_WIDTH thread ID width
C_M_AXI_IP_DATA_WIDTH Instruction side AXI data integer
. 32 32
width
C_M_AXI_IP_ADDR_WIDTH Instruction side AXI integer
. 32 32
address width

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 168

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=168

& XILINX

ALL PROGRAMMABLE-

Chapter 3: MicroBlaze Signal Interface Description

Table 3-19: Configuration Parameters (Cont’d)
Tool
Parameter Name Feature/Description Allowable | Default Assign| VHDL Type
Values Value ed

C_M_AXI_IP_ Instruction side AXI uses 0 0 integer

SUPPORTS_THREADS threads

C_M_AXI_IP_SUPPORTS_READ Instruction side AXI integer
support for read 1 1
accesses

C_M_AXI_TIP_SUPPORTS_WRITE Instruction side AXI integer
support for write 0 0
accesses

C_M_AXI_IP_SUPPORTS_ Instruction side AXI 0 0 integer

NARROW_BURST narrow burst support

i i strin

C_M_AXI_IP_PROTOCOL Instruction side AXI AXIALITE AXI4 ring
protocol LITE

C_M_AXI_DC_ Data cache AXI ID width 1 1 integer

THREAD_ID_WIDTH

C_M_AXI_DC_DATA_WIDTH Data cache AXI data 32, 64, 128, 32 integer
width 256, 512

integer

C_M_AXI_DC_ADDR_WIDTH Dgta cache AXI address 32-64 32 yes g
width

C_M_AXI_DC_ Data cache AXI uses 0 0 integer

SUPPORTS_THREADS threads

C_M_AXI_DC_SUPPORTS_READ Data cache AXI support 1 1 integer
for read accesses

C_M_AXI_DC_SUPPORTS_WRITE Data cache AXI support 1 1 integer
for write accesses

C_M_AXI_DC_SUPPORTS_ Data cache AXI narrow 0 0 integer

NARROW_BURST burst support

C_M_AXI_DC_SUPPORTS_ Data cache AXI user 1 1 integer

USER_SIGNALS signal support

C_M_AXI_DC_PROTOCOL Data cache AXI protocol AXI4 AXI4 string

C_M_AXI_DC_AWUSER_WIDTH Data cache AXI user 5 5 integer
width

C_M_AXI DC_ARUSER_WIDTH Data cache AXI user 5 5 integer
width

C_M_AXI_DC_WUSER_WIDTH Data cache AXI user 1 1 integer
width

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 169

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=169

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Table 3-19: Configuration Parameters (Cont’d)

. Allowable | Default TOPI
Parameter Name Feature/Description Assign| VHDL Type
Values Value ed

C_M_AXI_DC_RUSER_WIDTH Data cache AXI user 1 1 integer
width

C_M_AXI_DC_BUSER_WIDTH Data cache AXI user 1 1 integer
width

C_M_AXI_DC_ Data cache AXI exclusive 01 0 integer

EXCLUSIVE_ACCESS access support '

C_M_AXI_DC_USER_VALUE Data cache AXI user 0-31 31 integer
value

C_M_AXI_IC_ Instruction cache AXI ID 1 1 integer

THREAD_ID_WIDTH width

C_M_AXI_ IC_DATA_ WIDTH Instruction cache AXI 32, 64,128, 32 integer
data width 256, 512

C_M_AXI_IC_ADDR_WIDTH Instruction cache AXI integer

. 32 32

address width

C_M_AXI_IC_ Instruction cache AXI 0 0 integer

SUPPORTS_THREADS uses threads

C_M_AXI_IC_SUPPORTS_READ Instruction cache AXI integer
support for read 1 1
accesses

C_M_AXI_IC_SUPPORTS_WRITE Instruction cache AXI integer
support for write 0 0
accesses

C_M_AXI_TIC_SUPPORTS_ Instruction cache AXI 0 0 integer

NARROW_BURST narrow burst support

C_M_AXI_IC_SUPPORTS_ Instruction cache AXI 1 1 integer

USER_SIGNALS user signal support

i strin

C_M_AXI_IC_PROTOCOL Instruction cache AXI AXI4 AX[4 g
protocol

C_M_AXI_IC_AWUSER_WIDTH Instruction cache AXI 5 5 integer
user width

C_M_AXI_IC_ARUSER_WIDTH Instruction cache AXI 5 5 integer
user width

C_M_AXI_IC_WUSER_WIDTH Instruction cache AXI 1 1 integer
user width

C_M_AXI_IC_RUSER_WIDTH Instruction cache AXI 1 1 integer
user width

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 170
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=170

i: XI I_INX Chapter 3: MicroBlaze Signal Interface Description

ALL PROGRAMMABLE-

Table 3-19: Configuration Parameters (Cont’d)

. Allowable | Default TOPI
Parameter Name Feature/Description Assign| VHDL Type
Values Value ed

C_M_AXI_IC_BUSER_WIDTH Instruction cache AXI 1 1 integer
user width

C_M_AXI_IC_USER_VALUE Instruction cache AXI 0-31 31 integer
user value

C_STREAM_INTERCONNECT Select AXI4-Stream 01 0 integer
interconnect '

C_Mn_AXIS_PROTOCOL AXI4-Stream protocol GENERIC GENERIC string

C_Sn_AXIS_PROTOCOL AXI14-Stream protocol GENERIC GENERIC string

C_Mn_AXIS_DATA_WIDTH AXI4-Stream master NA integer

. 32 32

data width

C_Sn_AXIS_DATA_WIDTH AXI4-Stream slave data NA integer

. 32 32

width

C_NUM_SYNC_FF_CLK Reset and Wakeup[0:1] 0- 2 integer
synchronization stages

C_NUM_SYNC_FF_CLK_IRQ Interrupt input signal 0- 1 integer
synchronization stages

C_NUM_SYNC_FF_CLK_DEBUG Dbg_ serial signal 0- 2 integer
synchronization stages

C_NUM_SYNC_FF_DBG_CLK Internal synchronization 0- 1 integer
stages to Dbg_Clk

1. The 7 least significant bits must all be 0.
2. Not all sizes are permitted in all architectures. The cache uses 0 - 32 RAMB primitives (0 if cache size is less than 2048).

3. Not available when C_AREA_OPTIMIZED is set to 1 (Area).

Table 3-20: Parameter C_FAMILY Allowable Values

Allowable Values

Artix® aartix7 artix7 artix7| qartix7 qartix7I

Kintex® | kintex7 kintex7| gkintex7 gkintex7!| kintexu kintexuplus

Spartan® | spartan?

Virtex® qvirtex7 virtex7 virtexu virtexuplus

Zynq® azynq zyng qzyng zynquplus

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 171
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=171

& XILINX

ALL PROGRAMMABLE.

Chapter 4

MicroBlaze Application Binary Interface

This chapter describes MicroBlaze™ Application Binary Interface (ABI), which is important
for developing software in assembly language for the soft processor. The MicroBlaze GNU
compiler follows the conventions described in this document. Any code written by assembly
programmers should also follow the same conventions to be compatible with the compiler
generated code. Interrupt and Exception handling is also explained briefly.

Data Types

The data types used by MicroBlaze assembly programs are shown in Table 4-1. Data types
such as data8, datal6, and data32 are used in place of the usual byte, half-word, and
word.register.

Table 4-1: Data Types in MicroBlaze Assembly Programs

(flxl:ca":szl:qz;:::zg:;i) Corresponding ANSI C data types Size (bytes)
data8 char 1
datal6 short 2
data32 int 4
data32 long int 4
data32 float 4
data32 enum 4
datal6/data32 pointer! 2/4

1. Pointers to small data areas, which can be accessed by global pointers are datal6.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 172
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=172

& XILINX

ALL PROGRAMMABLE-

Chapter 4: MicroBlaze Application Binary Interface

Register Usage Conventions

The register usage convention for MicroBlaze is given in Table 4-2.

Table 4-2: Register Usage Conventions
Register Type Enforcement Purpose
RO Dedicated HW Value 0
R1 Dedicated SW Stack Pointer
R2 Dedicated SW Read-only small data area anchor
R3-R4 Volatile SW Return Values/Temporaries
R5-R10 Volatile SW Passing parameters/Temporaries
R11-R12 Volatile SW Temporaries
R13 Dedicated SW Read-write small data area anchor
R14 Dedicated HW Return address for Interrupt
R15 Dedicated SwW Return address for Sub-routine
R16 Dedicated HW Return address for Trap (Debugger)
R17 Dedicated HW/SW Return address for Exceptions
HW, if configured to support hardware exceptions, else SW
R18 Dedicated SW Reserved for Assembler/Compiler Temporaries
R19 Non-volatile SW Must be saved across function calls. Callee-save
R20 Dedicated SW Reserved for storing a pointer to the Global Offset Table (GOT) in
or Position Independent Code (PIC). Non-volatile in non-PIC code.
Non-volatile Must be saved across function calls. Callee-save
R21-R31 Non-volatile SwW Must be saved across function calls. Callee-save
RPC Special HW Program counter
RMSR Special HW Machine Status Register
REAR Special HW Exception Address Register
RESR Special HW Exception Status Register
RFSR Special HW Floating Point Status Register
RBTR Special HW Branch Target Register
REDR Special HW Exception Data Register
RPID Special HW Process Identifier Register
RZPR Special HW Zone Protection Register
RTLBLO Special HW Translation Look-Aside Buffer Low Register
RTLBHI Special HW Translation Look-Aside Buffer High Register
RTLBX Special HW Translation Look-Aside Buffer Index Register
RTLBSX Special HW Translation Look-Aside Buffer Search Index
RPVRO-12 | Special HW Processor Version Register 0 through 12

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com l Send Feedback I 173

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=173

{: X”_INX Chapter 4: MicroBlaze Application Binary Interface

ALL PROGRAMMABLE

The architecture for MicroBlaze defines 32 general purpose registers (GPRs). These registers
are classified as volatile, non-volatile, and dedicated.

« The volatile registers (also known as caller-save) are used as temporaries and do not
retain values across the function calls. Registers R3 through R12 are volatile, of which
R3 and R4 are used for returning values to the caller function, if any. Registers R5
through R10 are used for passing parameters between subroutines.

« Registers R19 through R31 retain their contents across function calls and are hence
termed as non-volatile registers (a.k.a callee-save). The callee function is expected to
save those non-volatile registers, which are being used. These are typically saved to the
stack during the prologue and then reloaded during the epilogue.

« Certain registers are used as dedicated registers and programmers are not expected to
use them for any other purpose.

Registers R14 through R17 are used for storing the return address from interrupts,
sub-routines, traps, and exceptions in that order. Subroutines are called using the
branch and link instruction, which saves the current Program Counter (PC) onto
register R15.

Small data area pointers are used for accessing certain memory locations with 16-
bit immediate value. These areas are discussed in the memory model section of this
document. The read only small data area (SDA) anchor R2 (Read-Only) is used to
access the constants such as literals. The other SDA anchor R13 (Read-Write) is used
for accessing the values in the small data read-write section.

Register R1 stores the value of the stack pointer and is updated on entry and exit
from functions.

Register R18 is used as a temporary register for assembler operations.

* MicroBlaze includes special purpose registers such as: program counter (rpc), machine
status register (rmsr), exception status register (resr), exception address register (rear),
floating point status register (rfsr), branch target register (rbtr), exception data register
(redr), memory management registers (rpid, rzpr, rtlblo, rtlbhi, rtlbx, rtlbsx), and
processor version registers (0-12). These registers are not mapped directly to the
register file and hence the usage of these registers is different from the general
purpose registers. The value of a special purpose registers can be transferred to or
from a general purpose register by using mts and mfs instructions respectively.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 174
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=174

i: X”_INX Chapter 4: MicroBlaze Application Binary Interface

ALL PROGRAMMABLE

Stack Convention

The stack conventions used by MicroBlaze are detailed in Table 4-3.

The shaded area in Table 4-3 denotes a part of the stack frame for a caller function, while
the unshaded area indicates the callee frame function. The ABI conventions of the stack
frame define the protocol for passing parameters, preserving non-volatile register values,
and allocating space for the local variables in a function.

Functions that contain calls to other subroutines are called as non-leaf functions. These
non-leaf functions have to create a new stack frame area for its own use. When the program
starts executing, the stack pointer has the maximum value. As functions are called, the stack
pointer is decremented by the number of words required by every function for its stack
frame. The stack pointer of a caller function always has a higher value as compared to the
callee function.

Table 4-3: Stack Convention
High Address

Function Parameters for called sub-routine (Arg n .. Argl)
(Optional: Maximum number of arguments required for any
called procedure from the current procedure).

Old Stack Link Register (R15)
Pointer

Callee Saved Register (R31...R19)

(Optional: Only those registers which are used by the
current procedure are saved)

Local Variables for Current Procedure
(Optional: Present only if Locals defined in the procedure)

Functional Parameters (Arg n .. Arg 1)

(Optional: Maximum number of arguments required for any
called procedure from the current procedure)

New Stack Link Register
Pointer

Low Address

Consider an example where Funcl calls Func2, which in turn calls Func3. The stack
representation at different instances is depicted in Figure 4-1. After the call from Func 1 to
Func 2, the value of the stack pointer (SP) is decremented. This value of SP is again
decremented to accommodate the stack frame for Func3. On return from Func 3 the value
of the stack pointer is increased to its original value in the function, Func 2.

Details of how the stack is maintained are shown in Figure 4-1.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 175
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=175

%: X”_INX Chapter 4: MicroBlaze Application Binary Interface

ALL PROGRAMMABLE

ngh Memory —— ——
Func 1 \ Func1 Func1 Func1
? e—— —
Func 2 Func 2 Func 2
? S — | ? ——
Func 3
v ST> ——

Low Memory

Figure 4-1: Stack Frame

Calling Convention

The caller function passes parameters to the callee function using either the registers (R5
through R10) or on its own stack frame. The callee uses the stack area of the caller to store
the parameters passed to the callee.

Refer to Figure 4-1. The parameters for Func 2 are stored either in the registers R5 through
R10 or on the stack frame allocated for Func 1.

If Func 2 has more than six integer parameters, the first six parameters can be passed in
registers R5 through R10, whereas all subsequent parameters must be passed on the stack
frame allocated for Func 1, starting at offset SP + 28.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 176
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=176

{: X”_INX Chapter 4: MicroBlaze Application Binary Interface

ALL PROGRAMMABLE

Memory Model

The memory model for MicroBlaze classifies the data into four different parts: Small Data
Area, Data Area, Common Un-Initialized Area, and Literals or Constants.

Small Data Area

Global initialized variables which are small in size are stored in this area. The threshold for
deciding the size of the variable to be stored in the small data area is set to 8 bytes in the
MicroBlaze C compiler (mb-gcc), but this can be changed by giving a command line option
to the compiler. Details about this option are discussed in the GNU Compiler Tools chapter.
64 kilobytes of memory is allocated for the small data areas. The small data area is accessed
using the read-write small data area anchor (R13) and a 16-bit offset. Allocating small
variables to this area reduces the requirement of adding IMM instructions to the code for
accessing global variables. Any variable in the small data area can also be accessed using an
absolute address.

Data Area

Comparatively large initialized variables are allocated to the data area, which can either be
accessed using the read-write SDA anchor R13 or using the absolute address, depending on
the command line option given to the compiler.

Common Un-Initialized Area

Un-initialized global variables are allocated in the common area and can be accessed either
using the absolute address or using the read-write small data area anchor R13.

Literals or Constants

Constants are placed into the read-only small data area and are accessed using the read-
only small data area anchor R2.

The compiler generates appropriate global pointers to act as base pointers. The actual
values of the SDA anchors are decided by the linker, in the final linking stages. For more
information on the various sections of the memory please refer to MicroBlaze Linker Script
Sections in the Embedded System Tools Reference Manual.The compiler generates
appropriate sections, depending on the command line options. Please refer to the GNU
Compiler Tools chapter in the Embedded System Tools Reference Manual for more
information about these options.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 177
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=177

i: X”_INX Chapter 4: MicroBlaze Application Binary Interface

ALL PROGRAMMABLE

Interrupt, Break and Exception Handling

MicroBlaze assumes certain address locations for handling interrupts and exceptions as
indicated in Table 4-4. At these locations, code is written to jump to the appropriate
handlers.

Table 4-4: Interrupt and Exception Handling

On Hardware jumps to Software Labels
Start / Reset C_BASE_VECTORS + 0x0 _start
User exception C_BASE_VECTORS + 0x8 _exception_handler
Interrupt C_BASE_VECTORS + 0x10! _interrupt_handler
Break (HW/SW) C_BASE_VECTORS + 0x18 -
Hardware exception C_BASE_VECTORS + 0x20 _hw_exception_handler
Reserved by Xilinx for future use C_BASE_VECTORS + 0x28 -)

C_BASE_VECTORS + Ox4F

1. With low-latency interrupt mode, the vector address is supplied by the Interrupt Controller.

The code expected at these locations is as shown below. The crt0. o initialization file is
passed by the mb-gcc compiler to the mb-14 linker for linking. This file sets the
appropriate addresses of the exception handlers.

The following is code for passing control to Exception, Break and Interrupt handlers,
assuming the default c_ease_vecTors value of 0x00000000:

0x00: bri _startl

0x04: nop

0x08: imm high bits of address (user exception handler)
0x0c: bri _exception_handler

0x10: imm high bits of address (interrupt handler)
0x14: bri _interrupt_handler

0x18: imm high bits of address (break handler)

Oxlc: bri low bits of address (break handler)

0x20: imm high bits of address (HW exception handler
0x24: bri _hw_exception_handler

With low-latency interrupt mode, control is directly passed to the interrupt handler for each
individual interrupt utilizing this mode. In this case, it is the responsibility of each handler
to save and restore used registers. The MicroBlaze C compiler (mb-gcc) attribute
fast_interrupt iS available to allow this task to be performed by the compiler:

void interrupt_handler_name() __ attribute_ ((fast_interrupt));

MicroBlaze allows exception and interrupt handler routines to be located at any address
location addressable using 32 bits.

The user exception handler code starts with the label _exception_handler, the
hardware exception handler starts with _hw_exception_handler, while the interrupt

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 178
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=178

i: X”_INX Chapter 4: MicroBlaze Application Binary Interface

ALL PROGRAMMABLE

handler code starts with the label _interrupt_handler for interrupts that do not use
low-latency handlers.

In the current MicroBlaze system, there are dummy routines for interrupt, break and user
exception handling, which you can change. In order to override these routines and link your
own interrupt and exception handlers, you must define the handler code with specific
attributes.

The interrupt handler code must be defined with attribute interrupt_handler to ensure
that the compiler will generate code to save and restore used registers and emit an rtid
instruction to return from the handler:

void function_name() _ attribute_ ((interrupt_handler));

The break handler code must be defined with attribute break_handler to ensure that the
compiler will generate code to save and restore used registers and emit an rtbd instruction to
return from the handler:

void function_name() _ attribute__ ((break_handler)) ;

For more details about the use and syntax of the interrupt handler attribute, please refer to
the GNU Compiler Tools chapter in the Embedded System Tools Reference Manual.

When software breakpoints are used in the Xilinx System Debugger (XSDB) tool or the
Software Development Kit (SDK) tool, the Break (HW/SW) address location is reserved for
handling the software breakpoint.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 179
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=179

& XILINX

ALL PROGRAMMABLE.

Chapter 5

MicroBlaze Instruction Set Architecture

This chapter provides a detailed guide to the Instruction Set Architecture of MicroBlaze™.

Notation

The symbols used throughout this chapter are defined in Table 5-1.

Table 5-1: Symbol Notation

Symbol Meaning

+ Add
- Subtract
X Multiply
/ Divide
A Bitwise logical AND
v Bitwise logical OR

® Bitwise logical XOR
X Bitwise logical complement of x
«— Assignment

>> Right shift

<< Left shift

rx Register x

x[i] Bit { in register x

x[iyf] Bits { through j in register x

= Equal comparison

Not equal comparison

> Greater than comparison

>= Greater than or equal comparison
< Less than comparison

<= Less than or equal comparison

Signal choice

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 180
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=180

& XILINX

ALL PROGRAMMABLE

Chapter 5: MicroBlaze Instruction Set Architecture

Table 5-1: Symbol Notation (Cont’d)
Symbol Meaning
sext(x) Sign-extend x
Mem(x) Memory location at address x
FSLx AXI4-Stream interface x
LSW(x) Least Significant Word of x
isDnz(x) Floating point: true if x is denormalized

isInfinite(x)

Floating point:

true if X is +o0 OF -o0

isPosInfinite(x)

Floating point:

true if x is +oo

isNegInfinite(x)

Floating point:

true if x -0

isNaN(x)

Floating point:

true if x is a quiet or signalling NaN

isZero(x)

Floating point:

true if x is +0 or -0

isQuietNaN(x)

Floating point:

true if x is a quiet NaN

isSigNaN(x)

Floating point:

true if x is a signaling NaN

signZero(x)

Floating point:

return +0 forx > 0, and -0 ifx < 0

signInfinite(x)

Floating point:

return +o for x > 0, and -~ if x < 0

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 181

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=181

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Formats

MicroBlaze uses two instruction formats: Type A and Type B.

Type A

Type A is used for register-register instructions. It contains the opcode, one destination and two
source registers.

Opcode Destination Reg| Source Reg A | SourceRegB [0 /0000|000 0|0|0|O0

0 6 11 16 21 31

Type B

Type B is used for register-immediate instructions. It contains the opcode, one destination and one
source registers, and a source 16-bit immediate value.

Opcode Destination Reg| Source Reg A Immediate Value
0 6 11 16 31
Instructions

This section provides descriptions of MicroBlaze instructions. Instructions are listed in alphabetical
order. For each instruction Xilinx provides the mnemonic, encoding, a description, pseudocode of its
semantics, and a list of registers that it modifies.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 182
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=182

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

add Arithmetic Add

add rD, rA, rB Add
addc rD, rA, rB Add with Carry
addk rD, rA, rB Add and Keep Carry
addkc rD, rA, rB Add with Carry and Keep Carry
000KCO rD rA rB 000O0OO0OOOOOODO
0 6 1 1 2 3
1 6 1 1
Description

The sum of the contents of registers rA and rB, is placed into register rD.

Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic addk. Bit 4 of the
instruction (labeled as C in the figure) is set to one for the mnemonic addc. Both bits are set to one
for the mnemonic addkc.

When an add instruction has bit 3 set (addk, addkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (add, addc), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addc, addkc), the content of the carry flag (MSR[C]) affects
the execution of the instruction. When bit 4 is cleared (add, addk), the content of the carry flag does
not affect the execution of the instruction (providing a normal addition).

Pseudocode

if C = 0 then

(rD) < (rA) + (rB)
else

(rD) < (rA) + (rB) + MSRI[C]
if K = 0 then

MSR[C] ¢ CarryOut

Registers Altered
« D
« MSRI[C]

Latency
1 cycle

Note
The C bit in the instruction opcode is not the same as the carry bit in the MSR.

The "add r0, r0, r0” (= 0x00000000) instruction is never used by the compiler and usually indicates
uninitialized memory. If you are using illegal instruction exceptions you can trap these instructions
by setting the MicroBlaze parameter C_OPCODE_0OxO_ILLEGAL=1.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 183
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=183

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

add| Arithmetic Add Immediate

addi rD, rA, IMM Add Immediate
addic rD, rA, IMM Add Immediate with Carry
addik rD, rA, IMM Add Immediate and Keep Carry
addikc rD, rA, IMM Add Immediate with Carry and Keep Carry
001KCO rD rA MM
0 6 1 1 3
1 6 1
Description

The sum of the contents of registers rA and the value in the IMM field, sign-extended to 32 bits, is
placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the
mnemonic addik. Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic
addic. Both bits are set to one for the mnemonic addikc.

When an addi instruction has bit 3 set (addik, addikc), the carry flag will keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addi, addic), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addic, addikc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (addi, addik), the content of the carry
flag does not affect the execution of the instruction (providing a normal addition).

Pseudocode
if ¢ = 0 then
(rD) ¢ (rA) + sext (IMM)
else
(rD) <« (rA) + sext(IMM) + MSRI[C]
if K = 0 then
MSR[C] ¢ CarryOut
Registers Altered
« D

+ MSR[C]

Latency
1 cycle

Notes
The C bit in the instruction opcode is not the same as the carry bit in the MSR.
By default, Type B Instructions take the 16-bit IMM field value and sign extend it to 32 bits to use as

the immediate operand. This behavior can be overridden by preceding the Type B instruction with an
imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 184
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=184

& XILINX

Chapter 5: MicroBlaze Instruction Set Architecture
ALL PROGRAMMABLE
and Losical AND
and rD, rA, rB
100001 rD rA rB 000O0O0O0OOOOODO
0 6 1 2 3
6 1 1
Description
The contents of register rA are ANDed with the contents of register rB; the result is placed into
register rD.
Pseudocode
(rD) < (rA) A (rB)
Registers Altered
« D
Latency
1 cycle

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 185

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=185

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

andi Losial AND with Immediate

andi rD, rA, IMM
101001 rD rA IMM
0 6 1 1 3
1 6 1
Description

The contents of register rA are ANDed with the value of the IMM field, sign-extended to 32 bits; the
result is placed into register rD.

Pseudocode
(rD) ¢ (rA) A sext (IMM)
Registers Altered
« D
Latency
1 cycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 186
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=186

& XILINX

ALL PROGRAMMABLE

andn Losical AND NOT

andn

rD, rA, rB

Chapter 5: MicroBlaze Instruction Set Architecture

1 00011

rD

rA

rB

0 00O0O0OOOOOTOOD O

Description

=

The contents of register rA are ANDed with the logical complement of the contents of register rB;
the result is placed into register rD.

Pseudocode
(rD) &« (rA) A (TB)
Registers Altered
« D
Latency
1 cycle

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

www.Xilinx.com

l Send Feedback I 187

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=187

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

andni Losical AND NOT with Immediate

andni rD, rA, IMM
101011 rD rA IMM
0 6 1 1 3
1 6 1
Description

The IMM field is sign-extended to 32 bits. The contents of register rA are ANDed with the logical
complement of the extended IMM field; the result is placed into register rD.

Pseudocode
(rD) ¢ (rA) A (sext (IMM))

Registers Altered
« D

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See the instruction “imm,” page 226 for details on using 32-
bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 188
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=188

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

beq Branch if Equal

beq rA, rB Branch if Equal
beqd rA, rB Branch if Equal with Delay
100111DOO0O0O0 rA rB 000O0OOOOOOD O
0 6 1 1 2 3
1 6 1 1
Description

Branch if rA is equal to 0, to the instruction located in the offset value of rB. The target of the branch
will be the instruction at address PC + rB.

The mnemonic beqd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA = 0 then
PC < PC + rB
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency

« 1 cycle (if branch is not taken)

» 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 189
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=189

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

beq| Branch Immediate if Equal

beqi rA, IMM Branch Immediate if Equal
beqid rA, IMM Branch Immediate if Equal with Delay
101111DOO0O0O0 rA MM
0 6 1 1 3
1 6 1
Description

Branch if rA is equal to 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic beqid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA = 0 then
PC ¢« PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict
occurs with ¢_arREA_opPTIMIZED=0)

« 7-9 cycles (if a branch prediction mispredict occurs with c_aArREA 0OPTIMIZED=2)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 190
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=190

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

bge Branch if Greater or Equal

bge rA, rB Branch if Greater or Equal
bged rA, rB Branch if Greater or Equal with Delay
100111 DO0101 rA rB 000O0OO0OOOOODO
0 6 1 1 2 3
1 6 1 1
Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bged will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA >= 0 then
PC < PC + rB
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency

« 1 cycle (if branch is not taken)

» 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 191
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=191

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

ngl Branch Immediate if Greater or Equal

bgei rA, IMM Branch Immediate if Greater or Equal
bgeid rA, IMM Branch Immediate if Greater or Equal with Delay
101111DO0101 rA IMM
0 6 1 1 3
1 6 1
Description

Branch if rA is greater or equal to O, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bgeid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA >= 0 then
PC ¢« PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict
occurs with c_AREA_oPTIMIZED=0)

« 7-9 cycles (if a branch prediction mispredict occurs with c_aArREA OPTIMIZED=2)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 192
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=192

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

bgt Branch if Greater Than

bgt rA, rB Branch if Greater Than
bgtd rA, rB Branch if Greater Than with Delay
100111 DO0O1O00O0 rA rB 000O0OO0OOOOODO
0 6 1 1 2 3
1 6 1 1
Description

Branch if rA is greater than 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bgtd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA > 0 then
PC < PC + rB
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency

« 1 cycle (if branch is not taken)

» 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 193
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=193

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

bgt| Branch Immediate if Greater Than

bgti rA, IMM Branch Immediate if Greater Than
bgtid rA, IMM Branch Immediate if Greater Than with Delay
101111 DO0O1O00O0 rA IMM
0 6 1 1 3
1 6 1
Description

Branch if rA is greater than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bgtid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA > 0 then
PC ¢« PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict
occurs with c_AREA_oPTIMIZED=0)

« 7-9 cycles (if a branch prediction mispredict occurs with c_aArREA OPTIMIZED=2)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 194
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=194

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

ble Branchif Less or Equal

ble rA, rB Branch if Less or Equal
bled rA, rB Branch if Less or Equal with Delay
100111 DO0O0OTI1T1 rA rB 000O0OO0OOOOODO
0 6 1 1 2 3
1 6 1 1
Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bled will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA <= 0 then
PC < PC + rB
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency

« 1 cycle (if branch is not taken)

» 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 195
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=195

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

blei Branch Immediate if Less or Equal

blei rA, IMM Branch Immediate if Less or Equal
bleid rA, IMM Branch Immediate if Less or Equal with Delay
101111DO0O0OTI11 rA IMM
0 6 1 1 3
1 6 1
Description

Branch if rA is less or equal to O, to the instruction located in the offset value of IMM. The target of
the branch will be the instruction at address PC + IMM.

The mnemonic bleid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA <= 0 then
PC ¢« PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict
occurs with c_AREA_oPTIMIZED=0)

« 7-9 cycles (if a branch prediction mispredict occurs with c_aArREA OPTIMIZED=2)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 196
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=196

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

b|t Branch if Less Than

blt rA, rB Branch if Less Than
bltd rA, rB Branch if Less Than with Delay
100111 DO0OO0T1ID0 rA rB 000O0OO0OOOOODO
0 6 1 1 2 3
1 6 1 1
Description

Branch if rA is less than 0, to the instruction located in the offset value of rB. The target of the branch
will be the instruction at address PC + rB.

The mnemonic bltd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA < 0 then
PC < PC + rB
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency

« 1 cycle (if branch is not taken)

» 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 197
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=197

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

blti

Branch Immediate if Less Than

blti rA, IMM Branch Immediate if Less Than
bltid rA, IMM Branch Immediate if Less Than with Delay
101111DO0OO0T1ID0 rA IMM
0 6 1 1 3
1 6 1
Description

Branch if rA is less than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bltid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA < 0 then
PC ¢« PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict
occurs with c_AREA_oPTIMIZED=0)

« 7-9 cycles (if a branch prediction mispredict occurs with c_aArREA OPTIMIZED=2)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 198

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=198

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

bne Branchif Not Equal

bne rA, rB Branch if Not Equal
bned rA, rB Branch if Not Equal with Delay
100111 DO0OO0OO0T1 rA rB 000O0OO0OOOOODO
0 6 1 1 2 3
1 6 1 1
Description

Branch if rA not equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bned will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA # 0 then
PC < PC + rB
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency

« 1 cycle (if branch is not taken)

» 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set)

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 199
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=199

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

bnei Branch Immediate if Not Equal

bnei rA, IMM Branch Immediate if Not Equal
bneid rA, IMM Branch Immediate if Not Equal with Delay
101111DO0O0OO0T1 rA IMM
0 6 1 1 3
1 6 1
Description

Branch if rA not equal to O, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bneid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA # 0 then
PC ¢« PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
. PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set)

« 3 cycles (if branch is taken and the D bit is not set, or a branch prediction mispredict
occurs with c_AREA_oPTIMIZED=0)

« 7-9 cycles (if a branch prediction mispredict occurs with c_aArREA OPTIMIZED=2)

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 200
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=200

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

br Unconditional Branch

br rB Branch

bra rB Branch Absolute

brd rB Branch with Delay

brad rB Branch Absolute with Delay

brld rD, rB Branch and Link with Delay

brald rD, rB Branch Absolute and Link with Delay
1 00110 rD DALOO rB 0 000O0O0OOOOODO O
0 6 1 1 2 3

1 6 1 1
Description

Branch to the instruction located at address determined by rB.

The mnemonics brld and brald will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics bra, brad and brald will set the A bit. If the A bit is set, it means that the branch is to
an absolute value and the target is the value in rB, otherwise, it is a relative branch and the target will
be PC + rB.

The mnemonics brd, brad, brld and brald will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction.

If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

if L = 1 then
(rD) <« PC
if A = 1 then
PC < (rB)
else
PC < PC + (rB)
if D = 1 then
allow following instruction to complete execution

Registers Altered
« D
- PC

Latency
« 2 cycles (if the D bit is set)
« 3 cycles (if the D bit is not set)

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 201
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=201

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Note

The instructions brl and bral are not available. A delay slot must not be used by the following: imm,
branch, or break instructions. Interrupts and external hardware breaks are deferred until after the
delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 202
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=202

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

bri Unconditional Branch Immediate

bri IMM Branch Immediate
brai IMM Branch Absolute Immediate
brid IMM Branch Immediate with Delay
braid IMM Branch Absolute Immediate with Delay
brlid rD, IMM Branch and Link Immediate with Delay
bralid rD, IMM Branch Absolute and Link Immediate with Delay
1 01110 rD DALODO MM
0 6 1 1 3
1 6 1
Description

Branch to the instruction located at address determined by IMM, sign-extended to 32 bits.

The mnemonics brlid and bralid will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics brai, braid and bralid will set the A bit. If the A bit is set, it means that the branch is
to an absolute value and the target is the value in IMM, otherwise, it is a relative branch and the
target will be PC + IMM.

The mnemonics brid, braid, brlid and bralid will set the D bit. The D bit determines whether there is
a branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) and “bralid rD,
C_BASE_VECTORS+0x8" is used to perform a User Vector Exception, the Machine Status Register bits
User Mode and Virtual Mode are cleared.

Pseudocode

if L = 1 then
(rD) « PC
if A = 1 then
PC ¢« sext (IMM)
else
PC < PC + sext (IMM)
if D = 1 then
allow following instruction to complete execution
if D=1 and A =1 and L = 1 and IMM = C_BASE_VECTORS+0x8 then
MSR[UMS] ¢— MSR[UM]
MSR[VMS] ¢— MSR[VM]
MSR[UM] <« 0
MSR[VM] <« 0

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 203
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=203

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Registers Altered
« D
. PC

« MSR[UM], MSR[VM]

Latency
« 1 cycle (if successful branch prediction occurs)
« 2 cycles (if the D bit is set)

« 3 cycles (if the D bit is not set, or a branch prediction mispredict occurs with
C_AREA_OPTIMIZED=0)

e 7-9 cycles (if a branch prediction mispredict occurs with c_area_opPTIMIZED=2)

Notes
The instructions brli and brali are not available.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 204
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=204

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

brk Break

brk rD, rB
100110 rD 01100 rB 00000O0O0O0O0O0OUO
0 6 11 16 21 31
Description

Branch and link to the instruction located at address value in rB. The current value of PC will be
stored in rD. The BIP flag in the MSR will be set, and the reservation bit will be cleared.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] « 00111
else
(rD) <« PC
PC < (rB)
MSR[BIP] <« 1
Reservation « 0

Registers Altered

« D

« PC

« MSRI[BIP]

« ESRI[EC], in case a privileged instruction exception is generated
Latency

« 3cycles

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 205
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=205

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

brk| Break Immediate

brki rD, IMM

101110 rD 01100 IMM

0 6 11 16 31
Description

Branch and link to the instruction located at address value in IMM, sign-extended to 32 bits. The
current value of PC will be stored in rD. The BIP flag in the MSR will be set, and the reservation bit will
be cleared.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged,
except as a special case when “brki rD, C_BASE_VECTORS+0x8" or “brki rD, C_BASE_VECTORS+0x18"
is used to perform a Software Break. This means that, apart from the special case, if the instruction
is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and "brki rD,
C_BASE_VECTORS+0x8" or "brki rD, C_BASE_VECTORS+0x18" is used to perform a Software Break,
the Machine Status Register bits User Mode and Virtual Mode are cleared.

Pseudocode

if MSR[UM] and IMM # C_BASE_VECTORS+0x8 and IMM # C_BASE_VECTORS+0x18 then
ESR[EC] « 00111
else
(rD) < PC
PC ¢ sext (IMM)
MSR[BIP] <« 1
Reservation < 0
if IMM = C_BASE_VECTORS+0x8 or IMM = C_BASE_VECTORS+0x18 then
MSR[UMS] ¢— MSR[UM]MSR[UM] <« O
MSR[VMS] ¢ MSR[VM]MSR[VM] < 0

Registers Altered
« rD, unless an exception is generated, in which case the register is unchanged
- PC

« MSR[BIP], MSR[UM], MSR[VM]
« ESRI[EC], in case a privileged instruction exception is generated

Latency
* 3 cycles

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

As a special case, the imm instruction does not override a Software Break “brki rD, 0x18" when
C_USE_DEBUG. is set, irrespective of the value of C_BASE_VECTORS, to allow Software Break after an
imm instruction.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 206
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=206

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

bS Barrel Shift

bsrl rD, rA, rB Barrel Shift Right Logical

bsra rD, rA, rB Barrel Shift Right Arithmetical

bsll rD, rA, rB Barrel Shift Left Logical
010001 rD rA rB S TOOOOOOOODO
0 6 1 1 2 3

1 6 1 1

Description

Shifts the contents of register rA by the amount specified in register rB and puts the result in register

rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is Logical.

Pseudocode
if S = 1 then
(rD) ¢ (rA) << (rB)[27:31]
else
if T = 1 then
if ((rB)[27:31]) # 0 then
(rD) [0: (xrB) [27:31]1-1] « (rA)[0]
(rD) [(xB) [27:31]:31] ¢« (rA) >> (rB) [27:31]
else
(rD) ¢« (rA)
else
(rD) « (rA) >> (rB)[27:31]

Registers Altered
« D

Latency
« 1 cycle with c_area_opriMIZED=0 Or 2
« 2 cycles with c_area opriMIzED=1

Note

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 207
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=207

& XILINX

ALL PROGRAMMABLE

bsi

Barrel Shift Inmediate

Chapter 5: MicroBlaze Instruction Set Architecture

bsrli rD, rA, IMM Barrel Shift Right Logical Immediate
bsrai rD, rA, IMM Barrel Shift Right Arithmetical Immediate
bslli rD, rA, IMM Barrel Shift Left Logical Immediate

bsefi rD, rA, IMMy, IMMg Barrel Shift Extract Field Immediate

bsifi rD, rA, Width?, IMMg Barrel Shift Insert Field Immediate

1. Width = IMMyy - IMMg + 1

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

011001 rD rA 00000O0/STOOOO IMM
0 6 11 16 21 27 31

011001 rD rA |l E0 0O IMM,, IMM
0 6 11 16 21 25 27 31
Description

The first three instructions shift the contents of register rA by the amount specified by IMM and put
the result in register rD.

Barrel Shift Extract Field extracts a bit field from register rA and puts the result in register rD. The bit
field width is specified by IMM,y and the shift amount is specified by IMMg. The bit field width must
be in the range 1 - 31, and the condition IMMy, + IMMg < 32 must apply.

Barrel Shift Insert Field inserts a bit field from register rA into register rD, modifying the existing
value in register rD. The bit field width is defined by IMM,y - IMMg + 1, and the shift amount is
specified by IMMg. The condition IMM,y > IMMg must apply.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra sets the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is Logical.

The mnemonic bsefi sets the E bit (Extract bit). In this case the S and T bits are not used.

The mnemonic bsifi sets the I bit (Insert bit). In this case the S and T bits are not used.

www.Xilinx.com

l Send Feedback I 208

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=208

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Pseudocode

if E = 1 then
(rD) [0:31-IMMy] < O
(rD) [32-IMMy:31] <« (rA) >> IMMg
else if I = 1 then
mask ¢ (Oxffffffff << (IMMy + 1)) ® (Oxffffffff << IMMg)
(rD) ¢ ((rA) << IMMg) A mask) Vv ((rD) A mask)

else if S = 1 then
(rD) « (rA) << IMM
else if T = 1 then

if IMM # 0 then
(rD) [0:IMM-1] < (rA)[0]
(rD) [IMM:31] ¢ (rA) >> IMM
else
(rD) « (rA)
else
(rD) ¢« (rA) >> IMM

Registers Altered
« D

Latency
« 1 cycle with c_aArReA_opTIMIZED=0 Or 2

« 2 cycles with c_area oprimMIzeD=1

Notes

These are not Type B Instructions. There is no effect from a preceding imm instruction.

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).

The assembler code "bsifi rD, rA, width, shift” denotes the actual bit field width, not the IMMyy, field,
which is computed by IMMyy = shift + width - 1.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 209
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=209

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

clz CountLeading Zeros
clz rD, rA Count leading zeros in rA
1 00100 rD rA 000O0O0O0O0OO11100HO0O00
6 1 1 2 3
1 6 1 1
Description

This instruction counts the number of leading zeros in register rA starting from the most significant
bit. The result is a number between 0 and 32, stored in register rD.

The result in rD is 32 when rA is 0, and it is O if rA is OXFFFFFFFF.

Pseudocode
n < 0
while (rA)[n] = 0
n<n-+1
(rD) ¢ n

Registers Altered
« D

Latency
« 1lcycle

Notes
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 210

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=210

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

cmp Integer Compare

cmp rD, rA, rB compare rB with rA (signed)
cmpu rD, rA, rB compare rB with rA (unsigned)
000101 rD rA rB 000O0OO0OOOOUI1
0 6 1 1 2 3
1 6 1 1
Description
The contents of register rA is subtracted from the contents of register rB and the result is placed into
register rD.

The MSB bit of rD is adjusted to shown true relation between rA and rB. If the U bit is set, rA and rB
is considered unsigned values. If the U bit is clear, rA and rB is considered signed values.

Pseudocode

(rD) « (rB) + (E)+1
(rD) (MSB) < (rA) > (rB)

Registers Altered
« D

Latency
« 1lcycle

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 211
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=211

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

fadd Floating Point Arithmetic Add

fadd rD, rA, rB Add
010110 rD rA rB 0000O0O0OOOTO OO
0 6 11 16 21 31
Description

The floating point sum of registers rA and rB, is placed into register rD.

Pseudocode

if isDnz (rA) or isDnz (rB) then
(rD) ¢« OxXFFC00000
FSR[DO] « 1
ESR[EC] ¢« 00110
else if isSigNaN(rA) or isSigNaN(rB)or
(isPosInfinite(rA) and isNegInfinite(rB)) or
(isNegInfinite(rA) and isPosInfinite(rB))) then
(rD) ¢« OxXFFC00000
FSR[IO] « 1
ESR[EC] ¢« 00110
else i1if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) ¢ OxFFC00000
else if isDnz((rA)+(rB)) then
(rD) ¢ signZero((rA)+(rB))
FSR[UF] « 1
ESR[EC] ¢« 00110
else if isNaN((rA)+(rB)) then
(rD) ¢« signInfinite((rA)+(rB))
FSR[OF] « 1
ESR[EC] ¢« 00110
else
(rD) ¢« (rA) + (rB)

Registers Altered

« D, unless an FP exception is generated, in which case the register is unchanged

« ESR[EC], if an FP exception is generated
« FSR[IO,UF,OF,DO]

Latency
* 4 cycles with c_area_opTIMIZED=0

« 6 cycles with c_area_opriMIZED=1

« 1 cycle with c_AREA_OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide www.Xilinx.com
UG984 (v2016.4) November 30, 2016

l Send Feedback I 212

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=212

& XILINX

ALL PROGRAMMABLE

frsub Reverse Floating Point Arithmetic Subtraction

Chapter 5: MicroBlaze Instruction Set Architecture

frsub rD, rA, rB Reverse subtract
010110 rD rA rB 0 001000O0O0OO0CTO
0 6 11 16 21 31
Description

The floating point value in rA is subtracted from the floating point value in rB and the result is

placed into register rD.

Pseudocode

if isDnz(rA) or isDnz (rB) then
(rD) ¢« OxFFC00000
FSR[DO] <« 1
ESR[EC] <« 00110
else if (isSigNaN(rA) or isSigNaN(rB) or

(isPosInfinite(rA) and isPosInfinite(rB)) or

(isNegInfinite(rA) and isNegInfinite(rB)))

(rD) ¢« OxFFC00000
FSR[IO] « 1
ESR[EC] ¢« 00110

else i1if isQuietNaN(rA) or isQuietNaN(rB) then

(rD) ¢ OxFFC00000

else if isDnz ((rB)-(rA)) then
(rD) ¢ signZero((rB)-(rA))
FSR[UF] « 1
ESR[EC] ¢« 00110

else if isNaN((rB)-(rA)) then
(rD) ¢« signInfinite((rB)-(ra))
FSR[OF] « 1
ESR[EC] ¢« 00110

else
(rD) ¢« (rB) - (rA)
Registers Altered

then

« D, unless an FP exception is generated, in which case the register is unchanged

« ESR[EC], if an FP exception is generated
« FSR[IO,UF,OF,DO]

Latency
* 4 cycles with c_area_opTIMIZED=0

« 6 cycles with c_area_opriMIZED=1
« 1 cycle with c_AREA_OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide www.Xilinx.com

UG984 (v2016.4) November 30, 2016

l Send Feedback I 213

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=213

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

fmu| Floating Point Arithmetic Multiplication

fmul rD, rA, rB Multiply
010110 rD rA rB 001000O0O0OO0OO0OTO
0 6 11 16 21 31
Description

The floating point value in rA is multiplied with the floating point value in rB and the result is placed
into register rD.

Pseudocode

if isDnz(rA) or isDnz (rB) then

(rD) ¢ OxFFC00000

FSR[DO] « 1

ESR[EC] <« 00110

else
if isSigNaN(rA) or i1sSigNaN(rB) or (isZero(rA) and isInfinite(rB)) or
(isZero(rB) and isInfinite(rA)) then

(rD) <« OxFFC00000
FSR[IO] « 1
ESR[EC] ¢« 00110

else i1if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) ¢ OxFFC00000

else if isDnz ((rB)* (rA)) then
(rD) ¢ signZero((rA)*(rB))
FSR[UF] « 1
ESR[EC] ¢« 00110

else if isNaN((rB) *(rA)) then
(rD) ¢ signInfinite((rB)* (rA))
FSR[OF] « 1
ESR[EC] « 00110

else
(rD) ¢ (rB) * (rA)

Registers Altered
« D, unless an FP exception is generated, in which case the register is unchanged

« ESR[EC], if an FP exception is generated
« FSR[IO,UF,OF,DO]

Latency
* 4 cycles with c_area_opTIMIZED=0

« 6 cycles with c_area_opriMIzED=1
« 1 cycle with c_AREA_OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 214
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=214

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

fd|v Floating Point Arithmetic Division

fdiv rD, rA, rB Divide
010110 rD rA rB 00110000000
0 6 11 16 21 31
Description

The floating point value in rB is divided by the floating point value in rA and the result is placed
into register rD.

Pseudocode

if isDnz (rA) or isDnz (rB) then

(rD) ¢« OxFFC00000

FSR[DO] « 1

ESR[EC] ¢« 00110

else
if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isZero(rB)) or
(isInfinite(rA) and isInfinite(rB)) then

(rD) ¢ OxFFC00000
FSR[IO] « 1
ESR[EC] ¢« 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) ¢ OxXFFC00000

else if isZero(rA) and not isInfinite(rB) then
(rD) ¢ signInfinite((rB)/(rA))
FSR[DZ] « 1
ESR[EC] ¢« 00110

else if isDnz ((rB) / (rA)) then
(rD) ¢ signZero((xrB) / (rA))
FSR[UF] « 1
ESR[EC] <« 00110

else if isNaN((rB)/(rA)) then
(rD) ¢ signInfinite((rB) / (rA))
FSR[OF] « 1
ESR[EC] <« 00110

else
(rD) <« (rB) / (xrA)

Registers Altered

« D, unless an FP exception is generated, in which case the register is unchanged
« ESR[EC], if an FP exception is generated

« FSR[IO,UF,OF,DO,DZ]

Latency
« 28 cycles with c_area_opriMizED=0, 30 cycles with c_area_opTIiMIZED=1, 24 cycles
with c_AREA_OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 215
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=215

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

fcmpFIoating Point Number Comparison

fcmp.un rD, rA, rB Unordered floating point comparison

fcmp. It rD, rA, rB Less-than floating point comparison

fcmp.eq rD, rA, rB Equal floating point comparison

fcmp.le rD, rA, rB Less-or-Equal floating point comparison

fcmp.gt rD, rA, rB Greater-than floating point comparison

fcmp.ne rD, rA, rB Not-Equal floating point comparison

fcmp.ge rD, rA, rB Greater-or-Equal floating point

comparison

010110 rD rA rB 0 1 0 0 OpSel 0 00O
0 6 11 16 21 25 28 31

Description

The floating point value in rB is compared with the floating point value in rA and the comparison
result is placed into register rD. The OpSel field in the instruction code determines the type of
comparison performed.

Pseudocode

if isDnz (rA) or isDnz (rB) then
(rD) « 0
FSR[DO] « 1
ESR[EC] <« 00110
else
{read out behavior from Table 5-2}

Registers Altered

« D, unless an FP exception is generated, in which case the register is unchanged
« ESRIEC], if an FP exception is generated

« FSRI[IO,DO]

Latency
« 1 cycle with c_aArReA_opTIMIZED=0 Or 2
+ 3 cycles with c_area_opriMIzED=1

Note
These instructions are only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

Table 5-2, page 217 lists the floating point comparison operations.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 216
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=216

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE-

Table 5-2: Floating Point Comparison Operation

Comparison Type Operand Relationship
. _ isSigNaN(rA) or isQuietNaN(rA) or
Description OpSel | (rB) > (rA) | (rB) < (rA) | (rB) =(rA) isSigNaN(rB) isQuietNaN(rB)
Unordered 000 | (rD)« O (rD) « 0 (rD) « 0 (rD) « 1 (rD) « 1
FSR[IO] « 1
ESR[EC] « 00110
Less-than 001 | (rD)« 0 (rD) « 1 (rD) « 0 (rD) « 0 (rD) « 0
FSR[IO] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110
Equal 010 |(rD) « 0 (rD) « 0 (rD) « 1 (rD) « 0 (rD) « 0
FSR[IO] « 1
ESR[EC] « 00110
Less-or-equal 011 | (D)« 0 (rD) « 1 (rD) « 1 (rD) «~ 0 (rD) « 0
FSR[IO] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110
Greater-than 100 | (rD) « 1 (rD) « 0 (rD) « 0 (rD) « 0 (rD) « 0
FSR[IO] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110
Not-equal 101 | (rD) « 1 (rD) « 1 (rD) «~ 0 (rD) « 1 (rD) « 1
FSR[IO] « 1
ESR[EC] « 00110
Greater-or-equal 110 | (rD) « 1 (rD) «~ 0 (rD) « 1 (rD) « 0 (rD) « 0
FSR[IO] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 217
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=217

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

flt Floating Point Convert Integer to Float

flt rD, rA
010110 rD rA 0 01010000000
0 6 11 16 21 31
Description

Converts the signed integer in register rA to floating point and puts the result in register rD. This is
a 32-bit rounding signed conversion that will produce a 32-bit floating point result.

Pseudocode
(rD) ¢« float ((rA))

Registers Altered
« D

Latency
* 4 cycles with c_area_oprTIMIZED=0
« 6 cycles with c_area_opriMIzED=1

« 1 cycle with c_AREA_OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 218
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=218

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

fint Floating Point Convert Float to Integer

fint rD, rA
010110 rD rA 0 01100000000
0 6 11 16 21 31
Description

Converts the floating point number in register rA to a signed integer and puts the result in register
rD. This is a 32-bit signed conversion that will produce a 32-bit integer result.

Pseudocode

if isDnz (rA) then
(rD) <« OxXFFC00000
FSR[DO] « 1
ESR[EC] <« 00110
else if isNaN(rA) then
(rD) <« OxFFC00000
FSR[IO] « 1
ESR[EC] <« 00110
else if isInf(rA) or (rA) < -231 or (ra) > 231 - 1 then
(rD) < OxXFFC00000
FSR[IO] « 1
ESR[EC] <« 00110
else
(rD) <« int ((rA))

Registers Altered
« rD, unless an FP exception is generated, in which case the register is unchanged

« ESR[EC], if an FP exception is generated
« FSR[IO,DO]

Latency
« 5 cycles with c_area_opTiMIZED=0

« 7 cycles with c_area_opTIMIZED=1
« 2 cycles with c_arREA_OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 219
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=219

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

fsq rt Floating Point Arithmetic Square Root

fsqrt rD, rA Square Root
010110 rD rA 0 01110000000
0 6 11 16 21 31
Description

Performs a floating point square root on the value in rA and puts the result in register rD.

Pseudocode

if isDnz (rA) then
(rD) ¢ OxFFC00000
FSR[DO] « 1
ESR[EC] ¢« 00110

else if isSigNaN(rA) then
(rD) ¢ OxFFC00000
FSR[IO] « 1
ESR[EC] ¢« 00110

else if isQuietNaN(rA) then
(rD) ¢ OxFFC00000

else if (rA) < 0 then
(rD) ¢ OxFFC00000
FSR[IO] « 1
ESR[EC] ¢« 00110

else if (rA) = -0 then
(rD) ¢« -0
else

(rD) <« saqgrt ((rA))

Registers Altered
« D, unless an FP exception is generated, in which case the register is unchanged

« ESRIEC], if an FP exception is generated
« FSR[IO,DO]

Latency

« 27 cycles with c_arREa_opTIMIZED=0
« 29 cycles with c_area_opriMIzED=1
» 23 cycles with c_aAREA_OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 220
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=220

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

get get from stream interface

tneaget rD, FSLx get data from link x
t = test-only
n = non-blocking
e = exception if control bit set
a = atomic

tnecaget rD, FSLx get control from link x
t = test-only
n = non-blocking
e = exception if control bit not set
a = atomic

0 1011 rD 000O0O0ONTCtaeOO0O0OOO0OTD 0 FSLx
6 11 16 28 31
Description

MicroBlaze will read from the link x interface and place the result in register rD. If the available
number of links set by C_FSL_LINKS is less than or equal to FSLx, link O is used.

The get instruction has 32 variants.

The blocking versions (when 'n’ bit is ‘0") will stall MicroBlaze until the data from the interface is
valid. The non-blocking versions will not stall micro blaze and will set carry to ‘0" if the data was
valid and to ‘1" if the data was invalid. In case of an invalid access the destination register contents
is undefined.

All data get instructions (when ‘c’ bit is ‘0") expect the control bit from the interface to be '0". If this
is not the case, the instruction will set MSR[FSL] to ‘1. All control get instructions (when ‘c’ bit is
'1") expect the control bit from the interface to be '1". If this is not the case, the instruction will set
MSRI[FSL] to ‘1".

The exception versions (when ‘e’ bit is ‘1) will generate an exception if there is a control bit
mismatch. In this case ESR is updated with EC set to the exception cause and ESS set to the link
index. The target register, rD, is not updated when an exception is generated, instead the data is
stored in EDR.

The test versions (when 't’ bit is '1") will be handled as the normal case, except that the read signal
to the link is not asserted.

Atomic versions (when ‘a’ bit is '1’) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However,
note that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR[UM]=1) a Privileged Instruction exception occurs.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 221

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=221

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Pseudocode
if MSR[UM] = 1 then
ESR[EC] « 00111
else
X <« FSLx
if x >= C_FSL_LINKS then
x < 0

(rD) <« Sx_AXIS_TDATA
if (n = 1) then
MSR[Carry] ¢ Sx_AXIS TVALID
if Sx_AXIS_TLAST # c¢ and Sx_AXIS_TVALID then
MSRI[FSL] <« 1
if (e = 1) then
ESR[EC] ¢« 00000
ESR[ESS] ¢« instruction bits [28:31]

EDR ¢« Sx_AXIS_TDATA
Registers Altered
« D, unless an exception is generated, in which case the register is unchanged
* MSRJ[FSL]

+ MSR[Carry]
« ESRI[EC], in case a stream exception or a privileged instruction exception is generated
« ESR[ESS], in case a stream exception is generated

« EDR, in case a stream exception is generated

Latency
* 1 cycle with c_arRea_opT1MIZED=0 Or 2
» 2 cycles with c_arREA_opTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction can
be completed. Interrupts are served when the parameter C_USE_EXTENDED_FSL_INSTR is set to 1,
and the instruction is not atomic.

Note

To refer to an FSLx interface in assembly language, use rfslO, rfsl1, ... rfsl15.

The blocking versions of this instruction should not be placed in a delay slot when the parameter
C_USE_EXTENDED_FSL_INSTR is set to 1, since this prevents interrupts from being served.

For non-blocking versions, an rsubc instruction can be used to decrement an index variable.
The ‘e’ bit does not have any effect unless C_FSL_EXCEPTION is set to 1.
These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater than 0.

The extended instructions (exception, test and atomic versions) are only available when the
MicroBlaze parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 222
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=222

& XILINX

ALL PROGRAMMABLE

getd get from stream interface dynamic

Chapter 5: MicroBlaze Instruction Set Architecture

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

tneagetd rD, rB get data from link rB[28:31]
t = test-only
n = non-blocking
e = exception if control bit set
a = atomic
tnecagetd rD, rB get control from link rB[28:31]
t = test-only
n = non-blocking
e = exception if control bit not set
a = atomic
010011 rD 0 0O0OD O rB OnctaeOO0OOTD O
6 11 16 21 31

Description

MicroBlaze will read from the interface defined by the four least significant bits in rB and place the
result in register rD. If the available number of links set by C_FSL_LINKS is less than or equal to the
four least significant bits in rB, link 0 is used.

The getd instruction has 32 variants.

The blocking versions (when 'n’ bit is ‘0") will stall MicroBlaze until the data from the interface is valid.
The non-blocking versions will not stall micro blaze and will set carry to ‘0" if the data was valid and
to ‘1" if the data was invalid. In case of an invalid access the destination register contents is
undefined.

All data get instructions (when ‘c’ bit is '0') expect the control bit from the interface to be '0". If this
is not the case, the instruction will set MSR[FSL] to '1". All control get instructions (when ‘c’ bit is '1)
expect the control bit from the interface to be '1". If this is not the case, the instruction will set
MSR[FSL] to '1".

The exception versions (when ‘e’ bit is '1") will generate an exception if there is a control bit
mismatch. In this case ESR is updated with EC set to the exception cause and ESS set to the link index.
The target register, rD, is not updated when an exception is generated, instead the data is stored in
EDR.

The test versions (when 't' bit is '1") will be handled as the normal case, except that the read signal
to the link is not asserted.

Atomic versions (when ‘a’ bit is '1’) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

www.Xilinx.com

l Send Feedback I 223

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=223

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Pseudocode
if MSR[UM] = 1 then
ESR[EC] « 00111
else

X ¢ rB[28:31]
if x >= C_FSL_LINKS then
x < 0
(rD) <« Sx_AXIS_TDATA
if (n = 1) then
MSR[Carry] ¢ Sx_AXIS TVALID
if Sx_AXIS_TLAST # c¢ and Sx_AXIS_TVALID then
MSRI[FSL] <« 1
if (e = 1) then
ESR[EC] <« 00000
ESR[ESS] ¢~ rB[28:31]

EDR ¢« Sx_AXIS_TDATA
Registers Altered
« D, unless an exception is generated, in which case the register is unchanged
* MSRJ[FSL]

+ MSR[Carry]

« ESRI[EC], in case a stream exception or a privileged instruction exception is generated
« ESR[ESS], in case a stream exception is generated

« EDR, in case a stream exception is generated

Latency
« 1 cycle with c_aArRea_opTIMIZED=0 Or 2
« 2 cycles with c_area opriMIzED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction can
be completed. Interrupts are served unless the instruction is atomic, which ensures that the
instruction cannot be interrupted.

Note

The blocking versions of this instruction should not be placed in a delay slot, since this prevents
interrupts from being served.

For non-blocking versions, an rsubc instruction can be used to decrement an index variable.
The ‘e’ bit does not have any effect unless C_FSL_EXCEPTION is set to 1.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater than 0
and the parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 224
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=224

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

idiv !nteger Divide

idiv rD, rA, rB divide rB by rA (signed)
idivu rD, rA, rB divide rB by rA (unsigned)
010010 rD rA rB 000O0O0O0OOOOUDO
0 6 1 1 2 3
1 6 1 1
Description
The contents of register rB is divided by the contents of register rA and the result is placed into
register rD.

If the U bit is set, rA and rB are considered unsigned values. If the U bit is clear, rA and rB are
considered signed values.

If the value of rA is O (divide by zero), the DZO bit in MSR will be set and the value in rD will be 0,
unless an exception is generated.

If the U bit is clear, the value of rA is -1, and the value of rB is -2147483648 (divide overflow), the DZO
bit in MSR will be set and the value in rD will be -2147483648, unless an exception is generated.

Pseudocode
if (rA) = 0 then
(rD) <- 0

MSR[DZO] <- 1
ESR[EC] <- 00101
ESR[DEC] <- 0
else if U = 0 and (rA) = -1 and (rB) = -2147483648 then
(rD) <- -2147483648
MSR[DZO] <- 1
ESR[EC] <- 00101
ESR[DEC] <- 1
else
(rD) ¢ (rB) / (rA)
Registers Altered
« D, unless a divide exception is generated, in which case the register is unchanged
« MSR[DZO], if divide by zero or divide overflow occurs

« ESRIEC], if divide by zero or divide overflow occurs

Latency

« 1cycleif (rA) = 0, otherwise 34 cycles with c_aArReEA_opPTIMIZED=0
« 1cycleif (rA) = 0, otherwise 35 cycles with c_arReA_opTIMIZED=1
« 1cycleif (rA) = 0, otherwise 30 cycles with c_AREA_OPTIMIZED=2

Note

This instruction is only valid if MicroBlaze is configured to use a hardware divider (C_USE_DIV = 1).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 225
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=225

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

imm Immediate

imm IMM
101100/00000/0000°0 IMM
0 6 1 1 3
1 6 1
Description

The instruction imm loads the IMM value into a temporary register. It also locks this value so it can
be used by the following instruction and form a 32-bit immediate value.

The instruction imm is used in conjunction with Type B instructions. Since Type B instructions have
only a 16-bit immediate value field, a 32-bit immediate value cannot be used directly. However, 32-
bit immediate values can be used in MicroBlaze. By default, Type B Instructions will take the 16-bit
IMM field value and sign extend it to 32 bits to use as the immediate operand. This behavior can be
overridden by preceding the Type B instruction with an imm instruction. The imm instruction locks
the 16-bit IMM value temporarily for the next instruction. A Type B instruction that immediately
follows the imm instruction will then form a 32-bit immediate value from the 16-bit IMM value of the
imm instruction (upper 16 bits) and its own 16-bit immediate value field (lower 16 bits). If no Type B
instruction follows the imm instruction, the locked value gets unlocked and becomes useless.

Latency
« 1cycle

Notes

The imm instruction and the Type B instruction following it are atomic; consequently, no interrupts
are allowed between them.

The assembler provided by Xilinx automatically detects the need for imm instructions. When a 32-bit
IMM value is specified in a Type B instruction, the assembler converts the IMM value to a 16-bit one
to assemble the instruction and inserts an imm instruction before it in the executable file.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 226
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=226

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Ibu Load Byte Unsigned

Ibu rD, rA, rB
lbur rD, rA, rB
Ibuea rD, rA, rB
110000 rD rA rB O ROEAO O OOOO OO O
0 6 11 16 21 31
Description

Loads a byte (8 bits) from the memory location that results from adding the contents of registers rA
and rB. The data is placed in the least significant byte of register rD and the other three bytes in rD
are cleared.

If the R bit is set, a byte reversed memory location is used, loading data with the opposite endianness
of the endianness defined by the E bit (if virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

Pseudocode

if EA = 1 then
Addr « (rA) & (rB)

else
Addr <« (rA) + (rB)
if TLB_Miss (Addr) and MSR[VM] = 1 then

ESR[EC]¢— 10010;ESR[S]¢« O

MSR[UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] ¢« 10000;ESR[S]¢= 0; ESR[DIZ] « 1

MSR[UMS] ¢~ MSR[UM]; MSR[VMS] ¢~ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else

(rD) [24:31] ¢ Mem(Addr)

(rD) [0:23] <« O

Registers Altered

« D, unless an exception is generated, in which case the register is unchanged
« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated

« ESRI[EC], ESR[S], if an exception is generated

« ESR[DIZ], if a data storage exception is generated

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 227
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=227

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Latency
« 1 cycle with c_area_opTiMIZED=0 Or 2
« 2 cycles with c_area_opriMIzED=1

Note

The byte reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 228
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=228

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Ibui Load Byte Unsigned Immediate

Ibui rD, rA, IMM

111000 rD rA IMM

0 6 11 16 31
Description

Loads a byte (8 bits) from the memory location that results from adding the contents of register rA
with the value in IMM, sign-extended to 32 bits. The data is placed in the least significant byte of
register rD and the other three bytes in rD are cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

Pseudocode
Addr ¢« (rA) + sext (IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]¢ 10010;ESR[S]¢ 0
MSR[UMS] ¢— MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢« 0; MSR[VM] <« O
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] < 10000;ESR[S]¢— 0; ESR[DIZ] « 1
MSR[UMS] ¢~ MSR[UM]; MSR[VMS] ¢— MSR[VM]; MSR[UM] ¢ 0; MSR[VM] ¢ 0
else
(rD) [24:31] ¢ Mem(Addr)
(rD) [0:23] « O
Registers Altered
« rD, unless an exception is generated, in which case the register is unchanged
« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
« ESR[EC], ESR[S], if an exception is generated

« ESR[DIZ], if a data storage exception is generated

Latency
« 1 cycle with c_area_opTiMIZED=0 Or 2
« 2 cycles with c_area_opriMIzED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 229
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=229

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

lhu

Load Halfword Unsigned

lhu rD, rA, rB
lhur rD, rA, rB
lhuea rD, rA, rB
110001 rD rA rB O ROEAO OOOOOD O
0 6 11 16 21 31
Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from adding the
contents of registers rA and rB. The data is placed in the least significant halfword of register rD and
the most significant halfword in rD is cleared.

If the R bit is set, a halfword reversed memory location is used and the two bytes in the halfword are
reversed, loading data with the opposite endianness of the endianness defined by the E bit (if virtual
protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the least significant bit in the address is not zero.

Pseudocode

if EA = 1 then
Addr « (rA) & (rB)
else
Addr < (rA) + (rB)
if TLB_Miss (Addr) and MSR[VM] = 1 then
ESR[EC]¢— 10010;ESR[S]¢« O
MSR[UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] ¢« 10000;ESR[S]¢= 0; ESR[DIZ] « 1
MSR[UMS] ¢~ MSR[UM]; MSR[VMS] ¢~ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Addr[31] # 0 then
ESR[EC] ¢ 00001; ESR[W] ¢ 0; ESR[S] ¢« 0; ESR[Rx] ¢ rD
else if (VM = 0 and R = 1) or
(VM =1 and R =1 and E = 1) or
(VM =1 and R = 0 and E = 0) then

(rD) [16:23] ¢ Mem(Addr); (rD)[24:31] ¢ Mem(Addr+1l); (rD)[0:15] < O
else
(rD) [16:23] ¢ Mem(Addr+1); (rD)[24:31] ¢~ Mem(Addr); (rD)[0:15] ¢« O

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 230

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=230

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Registers Altered

« rD, unless an exception is generated, in which case the register is unchanged
« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated

« ESR[EC], ESR[S], if an exception is generated

« ESR[DIZ], if a data storage exception is generated

« ESR[W], ESR[R¥], if an unaligned data access exception is generated

Latency

* 1 cycle with c_aArReA_opTIMIZED=0 Or 2
« 2 cycles with c_area_opriMIzED=1

Note

The halfword reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 231
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=231

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

|lhui Load Halfword Unsigned Immediate

lhui rD, rA, IMM

111001 rD rA IMM

0 6 11 16 31
Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from adding the
contents of register rA and the value in IMM, sign-extended to 32 bits. The data is placed in the least
significant halfword of register rD and the most significant halfword in rD is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB. A data storage exception occurs if access is
prevented by a no-access-allowed zone protection. This only applies to accesses with user mode and
virtual protected mode enabled. An unaligned data access exception occurs if the least significant bit
in the address is not zero.

Pseudocode
Addr ¢ (rA) + sext (IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]¢ 10010;ESR[S]¢« O

MSR[UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] ¢ 10000;ESR[S]¢ 0; ESR[DIZ] <« 1

MSR[UMS] ¢~ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Addr[31] # 0 then

ESR[EC] ¢ 00001; ESR[W] ¢ 0; ESR[S] ¢« 0; ESR[Rx] ¢« rD
else

(rD) [16:31] ¢ Mem(Addr)

(rD) [0:15] <« O

Registers Altered

« D, unless an exception is generated, in which case the register is unchanged

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESRI[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

« 1 cycle with c_area_opTiMIZED=0 Or 2
« 2 cycles with c_area_opriMIzED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 232
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=232

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

Iw

ALL PROGRAMMABLE

Load Word
lw rD, rA, rB
lwr rD, rA, rB
lwea rD, rA, rB
110010 rD rA rB O ROEAO O OOOODO
6 11 16 21 31
Description

Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of registers rA and rB. The data is placed in register rD.

If the R bit is set, the bytes in the loaded word are reversed , loading data with the opposite
endianness of the endianness defined by the E bit (if virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode

if EA = 1 then
Addr <« (rA) & (rB)

else
Addr « (rA) + (rB)
if TLB_Miss (Addr) and MSR[VM] = 1 then

ESR[EC]¢ 10010;ESR[S]« O

MSR[UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] ¢ 10000;ESR[S]¢ 0; ESR[DIZ] < 1

MSR[UMS] ¢~ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Addr[30:31] # 0 then

ESR[EC] ¢ 00001; ESR[W] ¢ 1; ESR[S] ¢« 0; ESR[Rx] ¢« rD
else

(rD) ¢— Mem (Addr)

Registers Altered

« D, unless an exception is generated, in which case the register is unchanged

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[W], ESR[Rx], if an unaligned data access exception is generated

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 233

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=233

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Latency

« 1 cycle with c_area_opTiMIZED=0 Or 2
« 2 cycles with c_area_opTiMIZED=1

Note

The word reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 234
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=234

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Iwi

Load Word Immediate

Iwi rD, rA, IMM

1

11010 rD rA IMM

0

Description

Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of register rA and the value IMM, sign-extended to 32 bits. The data is placed in register rD. A data
TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.A data storage exception occurs if access is
prevented by a no-access-allowed zone protection. This only applies to accesses with user mode and
virtual protected mode enabled. An unaligned data access exception occurs if the two least
significant bits in the address are not zero.

Pseudocode
Addr « (rA) + sext (IMM)
if TLB_Miss (Addr) and MSR[VM] = 1 then

ESR[EC]¢— 10010;ESR[S]¢« O

MSR[UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] ¢« 10000;ESR[S]¢— 0; ESR[DIZ] « 1

MSR[UMS] ¢~ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Addr[30:31] # 0 then

ESR[EC] ¢ 00001; ESR[W] ¢ 1; ESR[S] ¢« 0; ESR[Rx] ¢ rD
else

(rD) ¢— Mem (Addr)

Registers Altered
« D, unless an exception is generated, in which case the register is unchanged

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESRI[EC], ESR[S], if an exception is generated
« ESRI[DIZ], if a data storage exception is generated
« ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
« 1 cycle with c_aArReA_opTIMIZED=0 Or 2
« 2 cycles with c_area_opriMIzED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 235

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=235

& XILINX

ALL PROGRAMMABLE

Chapter 5

|WX Load Word Exclusive

lwx rD, rA, rB

: MicroBlaze Instruction Set Architecture

110010 rD rA rB

1 000000O0O0OO0OOTDO

MicroBlaze Processor Reference Guide
UG984 (v2016.4) November 30, 2016

11 16 21 31

Description

Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of registers rA and rB. The data is placed in register rD, and the reservation bit is set. If an AXI4
interconnect with exclusive access enabled is used, and the interconnect response is not EXOKAY, the
carry flag (MSR[C]) is set; otherwise the carry flag is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception will not occur, even if the two least significant bits in the address
are not zero.

A data bus exception can occur when an AXI4 interconnect with exclusive access enabled is used, and
the interconnect response is not EXOKAY, which means that an exclusive access cannot be handled.

Enabling AXI exclusive access ensures that the operation is protected from other bus masters, but
requires that the addressed slave supports exclusive access. When exclusive access is not enabled,
only the internal reservation bit is used. Exclusive access is enabled using the two parameters
C_M_AXI_DP_EXCLUSIVE_ACCESS and C_M_AXI_DC_EXCLUSIVE_ACCESS for the peripheral and cache
interconnect, respectively.

Pseudocode

Addr < (rA) + (rB)
if TLB_Miss (Addr) and MSR[VM]
ESR[EC]¢— 10010;ESR[S]« O

1 then

MSR[UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] ¢ 10000;ESR[S]¢ 0; ESR[DIZ] <« 1

MSR[UMS] ¢~ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if AXI_Exclusive (Addr) and AXI_Response # EXOKAY and MSR[EE] then

ESR[EC] < 00100;ESR[ECC]« O0;

MSR[UMS] ¢~ MSR[UM]; MSR[VMS] ¢~ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O

else
(rD) ¢ Mem(Addr); Reservation ¢« 1;
if AXI_Exclusive(Addr) and AXI_Response # EXOKAY then

MSR[C] « 1
else
MSR[C] « O

www.Xilinx.com

l Send Feedback I 236

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=236

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Registers Altered
« rD and MSRI[(C], unless an exception is generated, in which case they are unchanged

« MSR[UM], MSR[VM], MSRIUMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated

Latency
« 1 cycle with c_area_opTiMIZED=0 Or 2
« 2 cycles with c_area_opTIMIZED=1

Note

This instruction is used together with SWX to implement exclusive access, such as semaphores and
spinlocks.

The carry flag (MSR[C]) may not be set immediately (dependent on pipeline stall behavior). The
LWX instruction should not be immediately followed by an MSRCLR, MSRSET, MTS, or SRC
instruction, to ensure the correct value of the carry flag is obtained.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 237
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=237

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

mbar Memory Barrier

mbar IMM Memory Barrier
101110 IMM 000100O0O0O0OO0OO0OOOOOOOOTI1IO0O0
0 6 11 16 31
Description

This instruction ensures that outstanding memory accesses on memory interfaces are completed
before any subsequent instructions are executed. This is necessary to guarantee that self-
modifying code is handled correctly, and that a DMA transfer can be safely started.

With self-modifying code, it is necessary to first use an MBAR instruction to wait for data accesses,
which can be done by setting IMM to 1, and then use another MBAR instruction to clear the
Branch Target Cache and empty the instruction prefetch buffer, which can be done by setting IMM
to 2.

To ensure that data to be read by a DMA unit has been written to memory, it is only necessary to
wait for data accesses, which can be done by setting IMM to 1.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged
when the most significant bit in IMM is set to 1. This means that if the instruction is attempted in
User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

When the two most significant bits in IMM are set to 10 (Sleep), 01 (Hibernate), or 11 (Suspend)
and no exception occurs, MicroBlaze enters sleep mode after all outstanding accesses have been
completed. and sets the Sleep, Hibernate or Suspend output signal respectively to indicate
this. The pipeline is halted, and MicroBlaze will not continue execution until a bit in the Wakeup
input signal is asserted.

Pseudocode
if (IMM & 1) = 0 then
wait for instruction side memory accesses
if (IMM & 2) = 0 then

wait for data side memory accesses
PC ¢ PC + 4
if (IMM & 24)!= 0 then

enter sleep mode

Registers Altered
- PC
« ESRIEC], in case a privileged instruction exception is generated

Latency

* 2+ N cycles when C_INTERCONNECT = 2 (AXI)
8 + N cycles when C_INTERCONNECT = 3 (ACE)

N is the number of cycles to wait for memory accesses to complete
Notes

This instruction must not be preceded by an imm instruction, and must not be placed in a delay
slot.

The assembler pseudo-instructions sleep, hibernate, and suspend can be used instead of
“mbar 16", “mbar 8", and "mbar 24" respectively to enter sleep mode.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 238
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=238

& XILINX

Chapter 5: MicroBlaze Instruction Set Architecture
ALL PROGRAMMABLE
me Move From Special Purpose Register
mfs rD, rS
mfse rD, rS
100101 rD 0O EOOOUO|1 rS
0 6 11 16 18 31
Description

Copies the contents of the special purpose register rS into register rD. The special purpose registers
TLBLO and TLBHI are used to copy the contents of the Unified TLB entry indexed by TLBX.

If the E bit is set, the extended part of the special register is moved. The EAR, PVR[8] and PVR[9}
registers have extended parts when extended addressing is enabled (C_ADDR_SIZE > 32).

Pseudocode
if E = 1 then
switch (rS):
case 0x0003 (rD)
case 0x2008 : (xrD)
case 0x2009 : (rD)

default : (rD) ¢« Undefined
else

switch (rS):
case 0x0000 : (xrD) <« PC
case 0x0001 : (rD) <« MSR
case 0x0003 : (rD) <«
case 0x0005 : (rD) ¢« ESR
case 0x0007 : (rD) ¢ FSR
case 0x000B : (rD) <« BTR
case 0x000D : (rD) <« EDR
case 0x0800 : (rD) <« SLR
case 0x0802 : (rD) ¢« SHR
case 0x1000 : (rD) ¢« PID
case 0x1001 : (rD) ¢« ZPR
case 0x1002 : (rD) ¢« TLBX
case 0x1003 : (rD) <« TLBLO
case 0x1004 : (rD) <« TLBHI
case 0x200x : (rD) <«
default : (rD) ¢« Undefined

Registers Altered

-« D

Latency

« 1cycle

MicroBlaze Processor Reference Guide

PVRx [C_ADDR_SIZE-32:C_ADDR_SIZE-1]

www.Xilinx.com

¢« EAR[0:C_ADDR_SIZE-32-1]
¢ PVR8[0:C_ADDR_SIZE-32-1]
¢« PVR9[0:C_ADDR_SIZE-32-1]

EAR[C_ADDR_SIZE-32:C_ADDR_SIZE-1]

(where x = 0 to 12)

UG984 (v2016.4) November 30, 2016

l Send Feedback I 239

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=239

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Notes

To refer to special purpose registers in assembly language, use rpc for PC, rmsr for MSR, rear for
EAR, resr for ESR, rfsr for FSR, rbtr for BTR, redr for EDR, rslr for SLR, rshr for SHR, rpid for PID,
rzpr for ZPR, rtlblo for TLBLO, rtlbhi for TLBHI, rtlbx for TLBX, and rpvr0 - rpvrl2 for PVRO -
PVR12.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede
the MFS instruction to guarantee correct MSR value.

The value read from FSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect FSR must precede the
MES instruction to guarantee correct FSR value.

EAR, ESR and BTR are only valid as operands when at least one of the MicroBlaze
C_*_EXCEPTION parameters are set to 1.

EDR is only valid as operand when the parameter C_FSL_EXCEPTION is set to 1 and the
parameter C_FSL_LINKS is greater than 0.

FSR is only valid as an operand when the C_USE_FPU parameter is greater than 0.

SLR and SHR are only valid as an operand when the C_USE_STACK_PROTECTION parameter is set
to 1.

PID, ZPR, TLBLO and TLBHI are only valid as operands when the parameter c_use_mMu > 1 (User
Mode) and the parameter c_MMU_TLB_ACCESS = 1 (Read) or 3 (Full).

TLBX is only valid as operand when the parameter c_UsSeE_MMU > 1 (User Mode) and the
parameter C_MMU_TLB_ACCESS > 0 (Minimal).

PVRO is only valid as an operand when c_pVR is 1 (Basic) or 2 (Full), and PVR1 - PVR12 are only
valid as operands when C_PVR is set to 2 (Full).

The extended instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 240
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=240

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

msrclr Read MSR and clear bits in MSR

msrclr rD, Imm

1 00101 rD 1 00010 Imm15

0 6 11 16 17 31
Description

Copies the contents of the special purpose register MSR into register rD.
Bit positions in the IMM value that are 1 are cleared in the MSR. Bit positions that are 0 in the
IMM value are left untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged
for all IMM values except those only affecting C. This means that if the instruction is attempted
in User Mode (MSR[UM] = 1) in this case a Privileged Instruction exception occurs.

Pseudocode

if MSR[UM] = 1 and IMM # 0x4 then
ESR[EC] <« 00111

else
(rD) & (MSR)
(MSR) < (MSR) A (IMM))

Registers Altered

« D

« MSR

« ESRI[EC], in case a privileged instruction exception is generated
Latency

« 1cycle

Notes

MSRCLR will affect the Carry bit immediately while the remaining bits will take effect one cycle
after the instruction has been executed. When clearing the IE bit, it is guaranteed that the
processor will not react to any interrupt for the subsequent instructions.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede
the MSRCLR instruction to guarantee correct MSR value. This applies to both the value copied to
register rD and the changed MSR value itself.

The immediate values has to be less than 215 when c_USE_MMU >= 1 (User Mode), and less than
214 otherwise. Only bits 17 to 31 of the MSR can be cleared when c_use_mMU >= 1 (User Mode),
and.bits 18 to 31 otherwise.

This instruction is only available when the parameter C_USE_MSR_INSTR is set to 1.

When clearing MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 241
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=241

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

msrset Read MSR and set bits in MSR

msrset rD, Imm

1 00101 rD 1 00000 IMM

0 6 11 16 17 31
Description

Copies the contents of the special purpose register MSR into register rD. Bit positions in the IMM
value that are 1 are set in the MSR. Bit positions that are 0 in the IMM value are left untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged
for all IMM values except those only affecting C. This means that if the instruction is attempted
in User Mode (MSR[UM] = 1) in this case a Privileged Instruction exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port is set to
11 if the MSR(IE] bit is set by executing this instruction.

Pseudocode

if MSR[UM] = 1 and IMM # 0Ox4 then
ESR[EC] < 00111
else
(rD) < (MSR)
(MSR) ¢ (MSR) VvV (IMM)
if (IMM) & 2
Interrupt_Ack « 11

Registers Altered

« D

« MSR

« ESRIEC], in case a privileged instruction exception is generated
Latency

« 1cycle

Notes

MSRSET will affect the Carry bit immediately while the remaining bits will take effect one cycle
after the instruction has been executed. When setting the EIP or BIP bit, it is guaranteed that the
processor will not react to any interrupt or normal hardware break for the subsequent
instructions.

The value read from MSR may not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede
the MSRSET instruction to guarantee correct MSR value. This applies to both the value copied to
register rD and the changed MSR value itself.

The immediate values has to be less than 215 when ¢_UsE_MMU >= 1 (User Mode), and less than
214 otherwise. Only bits 17 to 31 of the MSR can be set when c_use_mMU >= 1 (User Mode),
and.bits 18 to 31 otherwise.

This instruction is only available when the parameter C_USE_MSR_INSTR is set to 1.

When setting MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 242

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=242

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

mts Move To Special Purpose Register

mts rS, rA

10010100000 rA 11 rS

0 6 11 16 18 31
Description

Copies the contents of register rD into the special purpose register rS. The special purpose
registers TLBLO and TLBHI are used to copy to the Unified TLB entry indexed by TLBX.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port is set to
11 if the MSR({IE] bit is set by executing this instruction.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] « 00111
else
switch (rS)

case 0x0001 : MSR <« (rA)
case 0x0007 : FSR <« (rA)
case 0x0800 : SLR <« (rA)
case 0x0802 : SHR ¢« (rA)
case 0x1000 : PID « (rA)
case 0x1001 : ZPR « (rA)
case 0x1002 : TLBX <« (rA)
case 0x1003 : TLBLO « (rA)
case 0x1004 : TLBHI « (rA)
case 0x1005 : TLBSX « (rA)
if (rS) = 0x0001 and (rA) & 2

Interrupt_Ack « 11

Registers Altered
e 1S
« ESR[EC], in case a privileged instruction exception is generated

Latency
« 1cycle

Notes

When writing MSR using MTS, all bits take effect one cycle after the instruction has been executed.
An MTS instruction writing MSR should never be followed back-to-back by an instruction that uses
the MSR content. When clearing the IE bit, it is guaranteed that the processor will not react to any
interrupt for the subsequent instructions. When setting the EIP or BIP bit, it is guaranteed that the
processor will not react to any interrupt or normal hardware break for the subsequent instructions.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 243
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=243

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

To refer to special purpose registers in assembly language, use rmsr for MSR, rfsr for FSR, rslr for
SLR, rshr for SHR, rpid for PID, rzpr for ZPR, rtlblo for TLBLO, rtlbhi for TLBHI, rtlbx for TLBX, and
rtlbsx for TLBSX.

The PC, ESR, EAR, BTR, EDR and PVRO - PVR12 cannot be written by the MTS instruction.
The FSR is only valid as a destination if the MicroBlaze parameter C_USE_FPU is greater than 0.

The SLR and SHR are only valid as a destination if the MicroBlaze parameter
C_USE_STACK_PROTECTION is set to 1.

PID, ZPR and TLBSX are only valid as destinations when the parameter ¢c_use_mMU > 1 (User
Mode) and the parameter ¢_MMU_TLB_ACCESS > 1 (Read). TLBLO, TLBHI and TLBX are only valid
as destinations when the parameter ¢c_use_MmMU > 1 (User Mode).

When changing MSR[VM] or PID the instruction must always be followed by a synchronizing
branch instruction, for example BRI 4.

After writing to TLBHI in order to invalidate one or more UTLB entries, an MBAR 1 instruction
must be issued to ensure that coherency is preserved in a coherent multi-processor system.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 244
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=244

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

mul Multiply

mul rD, rA, rB
010000 rD rA rB 0000O0O0OOOTO OO
0 6 1 1 2 3
1 6 1 1
Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit multiplication that will produce a 64-bit result. The least significant word of this value is
placed in rD. The most significant word is discarded.

Pseudocode
(rD) <= LsSW((rA) X (rB))
Registers Altered
« D
Latency

« 1 cycle with c_area_opTiMIZED=0 Or 2
« 3 cycles with c_area_opriMIZED=1
Note

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is greater than 0.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 245
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=245

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

mulh Multiply High

mulh rD, rA, rB
010000 rD rA rB 00000O0CO0O0OTO0T1
0 6 1 1 2 3
1 6 1 1
Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit signed multiplication that will produce a 64-bit result. The most significant word of this
value is placed in rD. The least significant word is discarded.

Pseudocode
(rD) ¢ MSW((rA) X (rB)), signed
Registers Altered
« D
Latency

« 1 cycle with c_area_opTiMIZED=0 Or 2
* 3 cycles with c_arRea_opTIMIZED=1

Note

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULH is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between the
two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the actual
values were not relevant.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 246
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=246

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

mulhu Multiply High Unsigned

mulhu rD, rA, rB
010000 rD rA rB 0 000O0O0OO0OO0OT11
0 6 1 1 2 3
1 6 1 1
Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit unsigned multiplication that will produce a 64-bit unsigned result. The most significant
word of this value is placed in rD. The least significant word is discarded.

Pseudocode
(rD) ¢ MSW((rA) X (rB)), unsigned
Registers Altered
« D
Latency

« 1 cycle with c_area_opTiMIZED=0 Or 2
« 3 cycles with c_area_opriMIZED=1

Note

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULHU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between
the two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the
actual values were not relevant.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 247
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=247

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

mulhsu Multiply High Signed Unsigned

mulhsu rD, rA, rB
010000 rD rA rB 0000O0O0O0OOO0OTILIO
0 6 1 1 2 3
1 6 1 1
Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit
signed by 32-bit unsigned multiplication that will produce a 64-bit signed result. The most
significant word of this value is placed in rD. The least significant word is discarded.

Pseudocode
(rD) ¢ MSW((rA), signed X (rB), unsigned), signed
Registers Altered
« D
Latency

« 1 cycle with c_area_opTiMIZED=0 Or 2
« 3 cycles with c_area_opriMIZED=1

Note

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULHSU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between
the two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the
actual values were not relevant.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 248
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=248

& XILINX

ALL PROGRAMMABLE

muli Multiply Immediate

Chapter 5: MicroBlaze Instruction Set Architecture

muli rD, rA, IMM
011000 rD rA IMM
6 1 1 3
1 6 1

Description

Multiplies the contents of registers rA and the value IMM, sign-extended to 32 bits; and puts the
result in register rD. This is a 32-bit by 32-bit multiplication that will produce a 64-bit result. The
least significant word of this value is placed in rD. The most significant word is discarded.

Pseudocode
(rD) = LSW((rA) X sext (IMM))
Registers Altered
« D
Latency

« 1 cycle with c_area_opTiMIZED=0 Or 2
« 3 cycles with c_area_opriMIZED=1

Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See the instruction "imm,” page 226 for details on using 32-
bit immediate values.

This instruction is only valid if the target architecture has multiplier primitives, and if present,
the MicroBlaze parameter C_USE_HW_MUL is greater than O.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 249

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=249

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

or Logical OR

or rD, rA, rB

100000 rD rA rB 0 00O0O0OOOOOTOOD O

Description

The contents of register rA are ORed with the contents of register rB; the result is placed into
register rD.

Pseudocode
(rD) < (rA) Vv (rB)

Registers Altered
« D

Latency
« 1cycle

Note

The assembler pseudo-instruction nop is implemented as “or r0, r0, r0".

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 250
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=250

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

ori Logical OR with Immediate
ori rD, rA, IMM
1 01000 rD rA IMM
0 6 1 1 3
1 6 1
Description

The contents of register rA are ORed with the extended IMM field, sign-extended to 32 bits; the
result is placed into register rD.

Pseudocode
(rD) ¢« (rA) VvV sext (IMM)
Registers Altered
« D
Latency
« 1cycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See the instruction “imm,” page 226 for details on using
32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 251
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=251

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

pcmpbf Pattern Compare Byte Find

pcmpbf rD, rA, rB bytewise comparison returning position
of first match

100000 rD rA rB 100000000O00O
0 6 1 1 2 3
1 6 1 1

Description

The contents of register rA is bytewise compared with the contents in register rB.

« rDis loaded with the position of the first matching byte pair, starting with MSB as
position 1, and comparing until LSB as position 4

« If none of the byte pairs match, rD is set to 0

Pseudocode
if rB[0:7] = rA[0:7] then
(rD) « 1
else
if rB[8:15] = rA[8:15] then
(rD) « 2
else
if rB[16:23] = rA[16:23] then
(rD) <« 3
else
if rB[24:31] = rA[24:31] then
(rD) « 4
else
(rD) « 0
Registers Altered
« D
Latency
« 1cycle
Note

This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 252
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=252

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

pcmpeq Pattern Compare Equal

pcmpeq rD, rA, rB equality comparison with a positive
boolean result

100010 rD rA rB 100000000O00O
0 6 1 1 2 3
1 6 1 1

Description

The contents of register rA is compared with the contents in register rB.
« rDis loaded with 1 if they match, and 0 if not

Pseudocode

if (rB) = (rA) then
(rD) <« 1

else
(rD) «— O

Registers Altered
« D

Latency
« 1cycle

Note

This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 253
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=253

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

pcmpne Pattern Compare Not Equal

pcmpne rD, rA, rB equality comparison with a negative
boolean result

100011 rD rA rB 100000000O00O
0 6 1 1 2 3
1 6 1 1

Description

The contents of register rA is compared with the contents in register rB.
« rDis loaded with 0 if they match, and 1 if not

Pseudocode

if (rB) = (rA) then
(rD) <~ 0

else
(rD) «— 1

Registers Altered
« D

Latency
« 1cycle

Note

This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 254
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=254

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

put Put to stream interface

naput rA, FSLx put data to link x
n = non-blocking
a = atomic
tnaput FSLx put data to link x test-only
n = non-blocking
a = atomic
ncaput rA, FSLx put control to link x
n = non-blocking
a = atomic
tncaput FSLx put control to link x test-only
n = non-blocking
a = atomic
01101100000 rA 1 nctaO0O0OO0ODO0 FSLx
0 6 11 16 28 31
Description

MicroBlaze will write the value from register rA to the link x interface. If the available number of links
set by C_FSL_LINKS is less than or equal to FSLx, link O is used.

The put instruction has 16 variants.

The blocking versions (when ‘n" is '0’) will stall MicroBlaze until there is space available in the
interface. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0" if space was
available and to ‘1" if no space was available.

All data put instructions (when ‘c’ is ‘0") will set the control bit to the interface to ‘0’ and all control
put instructions (when ‘c’ is ‘1') will set the control bit to '1".

The test versions (when ‘t’ bit is ‘1") will be handled as the normal case, except that the write signal
to the link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 255
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=255

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Pseudocode
if MSR[UM] = 1 then
ESR[EC] « 00111
else
X <« FSLx
if x >= C_FSL_LINKS then
x < 0

Mx_AXIS_TDATA ¢ (rA)
if (n = 1) then

MSR[Carry] ¢ Mx_AXIS_TVALID A Mx_AXIS_TREADY
Mx_ AXIS_TLAST <« C

Registers Altered
+ MSRI[Carry]
« ESRI[EC], in case a privileged instruction exception is generated

Latency
« 1 cycle with c_area_opTiMIZED=0 Or 2
« 2 cycles with c_area_opriMIzED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction can
be completed. Interrupts are served when the parameter C_USE_EXTENDED_FSL_INSTR is set to 1,
and the instruction is not atomic.

Note
To refer to an FSLx interface in assembly language, use rfslO, rfsll, ... rfsI15.

The blocking versions of this instruction should not be placed in a delay slot when the parameter
C_USE_EXTENDED_FSL_INSTR is set to 1, since this prevents interrupts from being served.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater than 0.

The extended instructions (test and atomic versions) are only available when the MicroBlaze
parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 256
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=256

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

putd Put to stream interface dynamic

naputd rA, rB put data to link rB[28:31]
n = non-blocking
a = atomic
tnaputd rB put data to link rB[28:31] test-only
n = non-blocking
a = atomic
ncaputd rA, rB put control to link rB[28:31]
n = non-blocking
a = atomic
tncaputd rB put control to link rB[28:31] test-only
n = non-blocking
a = atomic
01001100000 rA rB 1 nctaoOO0O0UOOD
0 6 11 16 21 31
Description

MicroBlaze will write the value from register rA to the link interface defined by the four least
significant bits in rB. If the available number of links set by c_FSL_LINKS is less than or equal to the
four least significant bits in rB, link 0 is used.

The putd instruction has 16 variants.

The blocking versions (when ‘n" is '0’) will stall MicroBlaze until there is space available in the
interface. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0" if space was
available and to ‘1" if no space was available.

All data putd instructions (when ‘c’ is ‘0') will set the control bit to the interface to ‘0" and all control
putd instructions (when ‘c’ is '1") will set the control bit to '1".

The test versions (when ‘t’ bit is ‘1) will be handled as the normal case, except that the write signal
to the link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1) are not interruptible. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However, note
that exceptions may still occur.

When MicroBlaze is configured to use an MMU (c_usk_mMMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 257
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=257

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Pseudocode

if MSR[UM] = 1 then
ESR[EC] « 00111
else
X ¢ rB[28:31]
if x >= C_FSL_LINKS then
x < 0
Mx_AXIS_TDATA ¢ (rA)
if (n = 1) then
MSR[Carry] < Mx_AXIS_TVALID A Mx_AXIS_TREADY
Mx AXIS_TLAST <« C

Registers Altered
+ MSRI[Carry]
« ESRI[EC], in case a privileged instruction exception is generated

Latency

« 1 cycle with c_area_opTiMIZED=0 Or 2

« 2 cycles with c_area_opriMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction

can be completed. Interrupts are served unless the instruction is atomic, which ensures that the
instruction cannot be interrupted.

Note

The blocking versions of this instruction should not be placed in a delay slot, since this prevents
interrupts from being served.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater than
0 and the parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for

performance reasons, since that removes all hardware protection preventing incorrect use of a
link.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 258
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=258

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

rsub Arithmetic Reverse Subtract

rsub rD, rA, rB Subtract
rsubc rD, rA, rB Subtract with Carry
rsubk rD, rA, rB Subtract and Keep Carry
rsubkc rD, rA, rB Subtract with Carry and Keep Carry
0 00 KC1 rD rA rB 000O0O0O0OOOOOD O
0 6 1 1 2 3
1 6 1 1
Description

The contents of register rA is subtracted from the contents of register rB and the result is placed into
register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic rsubk.
Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic rsubc. Both bits are
set to one for the mnemonic rsubkec.

When an rsub instruction has bit 3 set (rsubk, rsubkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsub, rsubc), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (rsubc, rsubkc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (rsub, rsubk), the content of the carry
flag does not affect the execution of the instruction (providing a normal subtraction).

Pseudocode
if ¢ = 0 then _
(rD) < (rB) + (rA)+1
else _
(rD) <« (rB) + (rA) + MSRI[C]
if K = 0 then
MSR[C] ¢ CarryOut
Registers Altered
« D

+ MSRI[C]
Latency
« 1lcycle
Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 259
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=259

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

rsubi Arithmetic Reverse Subtract Immediate

rsubi rD, rA, IMM Subtract Immediate
rsubic rD, rA, IMM Subtract Immediate with Carry
rsubik rD, rA, IMM Subtract Immediate and Keep Carry
rsubikc rD, rA, IMM Subtract Immediate with Carry and Keep Carry
0 01 KC1 rD rA IMM
0 6 1 1 3
1 6 1
Description

The contents of register rA is subtracted from the value of IMM, sign-extended to 32 bits, and the
result is placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for
the mnemonic rsubik. Bit 4 of the instruction (labeled as C in the figure) is set to one for the
mnemonic rsubic. Both bits are set to one for the mnemonic rsubikc.

When an rsubi instruction has bit 3 set (rsubik, rsubikc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsubi, rsubic), then
the carry flag will be affected by the execution of the instruction. When bit 4 of the instruction is
set to one (rsubic, rsubikc), the content of the carry flag (MSR[C]) affects the execution of the
instruction. When bit 4 is cleared (rsubi, rsubik), the content of the carry flag does not affect the
execution of the instruction (providing a normal subtraction).

Pseudocode

if C = 0 then _

(rD) ¢ sext(IMM) + (rA)+1
else .

(rD) <« sext (IMM) + (rA) + MSRI[C]
if K = 0 then

MSR[C] ¢ CarryOut

Registers Altered
« D
« MSRIC]

Latency
« 1cycle

Notes

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow. By default, Type B
Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use as the
immediate operand. This behavior can be overridden by preceding the Type B instruction with an
imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 260
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=260

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

rtbd Return from Break

rtbd rA, IMM

10110110010 rA IMM

0 6 11 16 31
Description

Return from break will branch to the location specified by the contents of rA plus the IMM field, sign-
extended to 32 bits. It will also enable breaks after execution by clearing the BIP flag in the MSR.

This instruction always has a delay slot. The instruction following the RTBD is always executed before
the branch target. That delay slot instruction has breaks disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode
if MSR[UM] = 1 then
ESR[EC] <« 00111
else

PC ¢« (rA) + sext (IMM)
allow following instruction to complete execution
MSR[BIP] < O
MSR[UM] < MSR[UMS]
MSR[VM] < MSR[VMS]
Registers Altered
- PC
« MSRI[BIP], MSR[UM], MSR[VM]

« ESRI[EC], in case a privileged instruction exception is generated

Latency
« 2cycles

Note
Convention is to use general purpose register rl6 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 261
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=261

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

rtid Returnfrom Interrupt

rtid rA, IMM

10110110001 rA IMM

0 6 11 16 31
Description

Return from interrupt will branch to the location specified by the contents of rA plus the IMM field,
sign-extended to 32 bits. It will also enable interrupts after execution.

This instruction always has a delay slot. The instruction following the RTID is always executed before
the branch target. That delay slot instruction has interrupts disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port is set to 10
when this instruction is executed, and subsequently to 11 when the MSR{IE] bit is set.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] « 00111
else
PC ¢« (rA) + sext (IMM)
Interrupt_Ack <« 10
allow following instruction to complete execution
MSR[IE] < 1
MSR[UM] ¢ MSR[UMS]
MSR[VM] ¢ MSR[VMS]
Interrupt_Ack « 11

Registers Altered

« PC

« MSRI[IE], MSR[UM], MSR[VM]

« ESRI[EC], in case a privileged instruction exception is generated

Latency
« 2cycles

Note
Convention is to use general purpose register r14 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 262
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=262

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

rted Return from Exception
rted rA, IMM
101101[/10100 A v
i ° H 16 31
Description

Return from exception will branch to the location specified by the contents of rA plus the IMM
field, sign-extended to 32 bits. The instruction will also enable exceptions after execution.

This instruction always has a delay slot. The instruction following the RTED is always executed
before the branch target.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] ¢« 00111
else
PC ¢ (rA) + sext (IMM)
allow following instruction to complete execution
MSR[EE] <« 1
MSR[EIP] <« O
MSR[UM] < MSR[UMS]
MSR[VM] < MSR[VMS]

ESR « 0
Registers Altered
- PC
» MSRIEE], MSR[EIP], MSR[UM], MSR[VM]
« ESR
Latency
« 2cycles
Note

Convention is to use general purpose register r17 as rA. This instruction requires that one or more
of the MicroBlaze parameters C_*_EXCEPTION are set to 1 or that c_use_mmu > 0.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

The instruction should normally not be used when MSRI[EE] is set, since if the instruction in the
delay slot would cause an exception, the exception handler would be entered with exceptions
enabled.

Code returning from an exception must first check if MSR[DS] is set, and in that case return to the
address in BTR.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 263

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=263

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

rtsd Return from Subroutine
rtsd rA, IMM
1 110110000 rA IMM
0 6 1 1 3
1 6 1
Description

Return from subroutine will branch to the location specified by the contents of rA plus the IMM
field, sign-extended to 32 bits.

This instruction always has a delay slot. The instruction following the RTSD is always executed
before the branch target.

Pseudocode

PC ¢ (rA) + sext (IMM)
allow following instruction to complete execution

Registers Altered
- PC

Latency

« 1 cycle (if successful branch prediction occurs)

« 2 cycles (with Branch Target Cache disabled)

« 3 cycles (if branch prediction mispredict occurs with c_arRea_opTIMIZED=0)

e 7-9 cycles (if a branch prediction mispredict occurs with c_arREa_opPTIMIZED=2)

Note
Convention is to use general purpose register rl5 as rA.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 264

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=264

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

sb Store Byte
sb rD, rA, rB
sbr rD, rA, rB
sbea rD, rA, rB
110100 rD rA rB O ROEAO O OOOO OO O
0 6 11 16 21 31
Description

Stores the contents of the least significant byte of register rD, into the memory location that
results from adding the contents of registers rA and rB.

If the R bit is set, a byte reversed memory location is used, storing data with the opposite
endianness of the endianness defined by the E bit (if virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of
adding them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by
no-access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

Pseudocode

if EA = 1 then
Addr <« (rA) & (rB)

else
Addr < (rA) + (rB)
if TLB_Miss (Addr) and MSR[VM] = 1 then

ESR[EC]¢— 10010;ESR[S]¢« 1

MSR[UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else i1f Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ¢« 10000;ESR[S]¢- 1; ESR[DIZ] ¢« No-access-allowed

MSR[UMS] ¢~ MSR[UM]; MSR[VMS] ¢~ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else

Mem (Addr) ¢ (rD) [24:31]

Registers Altered
« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated

« ESR[EC], ESR[S], if an exception is generated
« ESRI[DIZ], if a data storage exception is generated

Latency
« 1 cycle with c_area_opTIMIZED=0 Or 2

« 2 cycles with c_area_opTiMIZED=1

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 265
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=265

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Note

The byte reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 266
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=266

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

sbi Store Byte Immediate
sbi rD, rA, IMM
111100 rD rA IMM
0 6 11 16 31
Description

Stores the contents of the least significant byte of register rD, into the memory location that
results from adding the contents of register rA and the value IMM, sign-extended to 32 bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by
no-access-allowed or read-only zone protection. No-access-allowed can only occur in user

mode.
Pseudocode
Addr ¢ (rA) + sext (IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then

ESR[EC]¢ 10010;ESR[S]¢« 1

MSR[UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] < O
else i1f Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10000;ESR[S]¢- 1; ESR[DIZ] ¢ No-access-allowed

MSR[UMS] ¢~ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢« 0; MSR[VM] <« O
else

Mem (Addr) <« (rD) [24:31]

Registers Altered

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
« ESR[EC], ESR[S], if an exception is generated

« ESR[DIZ], if a data storage exception is generated

Latency
« 1 cycle with c_area_opTiMIZED=0 Or 2

« 2 cycles with c_area_opTiMIzED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See the instruction “imm,” page 226 for details on using 32-
bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 267
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=267

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

sext16 Sign Extend Halfword

sextl6 rD, rA
100100 rD rA 000000O0O0O01100001
0 6 1 1 3
1 6 1
Description

This instruction sign-extends a halfword (16 bits) into a word (32 bits). Bit 16 in rA will be copied
into bits 0-15 of rD. Bits 16-31 in rA will be copied into bits 16-31 of rD.

Pseudocode

(rD) [0:15] <« (xA) [16]
(rD) [16:31] <« (rA)[16:31]

Registers Altered
« D

Latency
« 1cycle

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 268
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=268

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

sext8 Sign Extend Byte

sext8 rD, rA
100100 rD rA 000000O0O0O0O1100000
0 6 1 1 3
1 6 1
Description

This instruction sign-extends a byte (8 bits) into a word (32 bits). Bit 24 in rA will be copied into
bits 0-23 of rD. Bits 24-31 in rA will be copied into bits 24-31 of rD.

Pseudocode

(rD) [0:23] <« (xA) [24]
(rD) [24:31] <« (rA)[24:31]

Registers Altered
« D

Latency
« 1cycle

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 269
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=269

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Sh Store Halfword

sh rD, rA, rB
shr rD, rA, rB
shea rD, rA, rB
110101 rD rA rB O ROEAO OOOUOOD O
0 6 11 16 21 31
Description

Stores the contents of the least significant halfword of register rD, into the halfword aligned memory
location that results from adding the contents of registers rA and rB.

If the R bit is set, a halfword reversed memory location is used and the two bytes in the halfword are
reversed, storing data with the opposite endianness of the endianness defined by the E bit (if virtual
protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the least significant bit in the address is not zero.

Pseudocode

if EA = 1 then

Addr « (rA) & (rB)
else

Addr ¢« (rA) + (rB)
if TLB_Miss (Addr) and MSR[VM] = 1 then

ESR[EC]¢— 10010;ESR[S]« 1

MSR[UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ¢« 10000;ESR[S]¢« 1; ESR[DIZ] ¢« No-access-allowed

MSR[UMS] ¢~ MSR[UM]; MSR[VMS] ¢~ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Addr[31] # 0 then

ESR[EC] ¢« 00001; ESR[W] ¢« 0; ESR[S] ¢« 1; ESR[Rx] ¢ rD
else

Mem (Addr) ¢ (rD)[16:31]

Registers Altered

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESRI[EC], ESR[S], if an exception is generated

« ESR[DIZ], if a data storage exception is generated

« ESR[W], ESR[Rx], if an unaligned data access exception is generated

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 270
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=270

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Latency

« 1 cycle with c_area_opTiMIZED=0 Or 2
« 2 cycles with c_area_opTiMIzED=1

Note

The halfword reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended
address (C_ADDR_SIZE > 32).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 271
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=271

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

shi

Store Halfword Immediate

shi rD, rA, IMM

111101 rD rA IMM

0 6 11 16 31
Description

Stores the contents of the least significant halfword of register rD, into the halfword aligned
memory location that results from adding the contents of register rA and the value IMM, sign-
extended to 32 bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB. A data storage exception occurs if
virtual protected mode is enabled, and access is prevented by no-access-allowed or read-only
zone protection. No-access-allowed can only occur in user mode. An unaligned data access
exception occurs if the least significant bit in the address is not zero.

Pseudocode
Addr < (rA) + sext (IMM)
if TLB_Miss (Addr) and MSR[VM] = 1 then

ESR[EC]¢ 10010;ESR[S]¢« 1

MSR[UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10000;ESR[S]¢« 1; ESR[DIZ] ¢« No-access-allowed

MSR[UMS] ¢~ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Addr[31] # 0 then

ESR[EC] < 00001; ESR[W] ¢« 0; ESR[S] ¢« 1; ESR[Rx] ¢« rD
else

Mem (Addr) <« (rD)[16:31]

Registers Altered

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data
storage exception is generated

« ESRI[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[WI], ESR[Rx], if an unaligned data access exception is generated

Latency
« 1 cycle with c_area_opTiMIZED=0 Or 2

« 2 cycles with c_area_opTiMIzZED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See the instruction "imm,” page 226 for details on using 32-
bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 272

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=272

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

sra Shift Right Arithmetic
sra rD, rA
1 00100 rD rA 0 000O0O0OOOOOOOOODOT1
0 6 1 1 3
1 6 1
Description

Shifts arithmetically the contents of register rA, one bit to the right, and places the result in rD.
The most significant bit of rA (that is, the sign bit) placed in the most significant bit of rD. The
least significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD) [0] « (rA)[0]
(rD) [1:31] « (rA)[0:30]
MSR[C] ¢ (rA)[31]

Registers Altered
« D
« MSRI[C]

Latency
« 1cycle

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 273
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=273

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

src Shift Right with Carry

src rD, rA

100100 rD rA 000000O0O0O0O01000O0T0O0T1

0 6 1 1 3
1 6 1

Description

Shifts the contents of register rA, one bit to the right, and places the result in rD. The Carry flag is
shifted in the shift chain and placed in the most significant bit of rD. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode

(rD) [0] ¢ MSRI[C]
(rD) [1:31]1 <« (rA)[0:30]
MSR[C] ¢ (rA)[31]

Registers Altered
« D

« MSRI[C]
Latency

« 1lcycle

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 274
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=274

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

sri Shift Right Logical

srl rD, rA

100100 rD rA 000000O0O0OO0O1000O00O0TO071

0 6 1 1 3
1 6 1

Description

Shifts logically the contents of register rA, one bit to the right, and places the result in rD. A zero is
shifted in the shift chain and placed in the most significant bit of rD. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode

(rD) [0] < O
(rD) [1:31] « (xrA) [0:30]
MSR[C] <« (rA)[31]

Registers Altered
« D

« MSRI[C]
Latency

« 1lcycle

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 275
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=275

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

SW Store Word

sSwW rD, rA, rB
Swr rD, rA, rB
swea rD, rA, rB
110110 rD rA rB 0O ROEAO O OOOOD
0 6 11 16 21 31
Description

Stores the contents of register rD, into the word aligned memory location that results from adding
the contents of registers rA and rB.

If the R bit is set, the bytes in the stored word are reversed , storing data with the opposite
endianness of the endianness defined by the E bit (if virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode

if EA = 1 then
Addr <« (rA) & (rB)

else
Addr « (rA) + (rB)
if TLB_Miss (Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10010;ESR[S]« 1

MSR[UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10000;ESR[S]¢ 1; ESR[DIZ] ¢ No-access-allowed

MSR[UMS] ¢~ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Addr[30:31] # 0 then

ESR[EC] ¢ 00001; ESR[W] ¢ 1; ESR[S] ¢« 1; ESR[Rx] ¢« rD
else

Mem (Addr) ¢ (rD)[0:31]

Registers Altered

« MSR[UM], MSR[VM], MSRIUMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESR[S], if an exception is generated

« ESR[DIZ], if a data storage exception is generated

« ESR[W], ESR[Rx], if an unaligned data access exception is generated

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 276
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=276

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Latency

« 1 cycle with c_area_opTiMIZED=0 Or 2
« 2 cycles with c_area_opTiMIzED=1

Note

The word reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended
address (C_ADDR_SIZE > 32).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 277
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=277

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

swa pb Swap Bytes

swapb rD, rA
100100 rD rA 000000O0111100000
0 6 1 1 3
1 6 1
Description

Swaps the contents of register rA treated as four bytes, and places the result in rD. This
effectively converts the byte sequence in the register between endianness formats, either from
little-endian to big-endian or vice versa.

Pseudocode
(rD) [24:31] « (rA)[0:7]
(rD) [16:23] « (rA)[8:15]
(rD) [8:15] <« (rA)[16:23]
(rD) [0:7] — (rA)[24:31]

Registers Altered

-« D

Latency

« 1lcycle

Note

This instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 278
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=278

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

swaph Swap Halfwords

swaph rD, rA
100100 rD rA 000000O0111100010
0 6 1 1 3
1 6 1
Description

Swaps the contents of register rA treated as two halfwords, and places the result in rD. This
effectively converts the two halfwords in the register between endianness formats, either from
little-endian to big-endian or vice versa.

Pseudocode

(rD) [0:15] < (rA)[16:31]
(rD) [16:31] « (rA) [0:15]

Registers Altered
« D

Latency
« 1cycle
Note

This instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 279
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=279

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

SWi Store Word Immediate

Swi rD, rA, IMM

111110 rD rA IMM

0 6 11 16 31
Description

Stores the contents of register rD, into the word aligned memory location that results from adding
the contents of registers rA and the value IMM, sign-extended to 32 bits.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode
Addr « (rA) + sext (IMM)
if TLB_Miss (Addr) and MSR[VM] = 1 then

ESR[EC]¢— 10010;ESR[S]¢« 1

MSR[UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] <« O
else if Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10000;ESR[S]¢- 1; ESR[DIZ] ¢« No-access-allowed

MSR[UMS]¢— MSR[UM]; MSR[VMS] ¢« MSR[VM]; MSR[UM] ¢« 0; MSR[VM] <« O
else if Addr[30:31] # 0 then

ESR[EC] ¢ 00001; ESR[W] ¢ 1; ESR[S] ¢« 1; ESR[Rx] ¢ rD
else

Mem (Addr) <« (rD)[0:31]

Register Altered

« MSR[UM], MSR[VM], MSRIUMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESR[S], if an exception is generated

« ESR[DIZ], if a data storage exception is generated

« ESR[W], ESR[R¥], if an unaligned data access exception is generated

Latency

« 1 cycle with c_aArReA_opTIMIZED=0 Or 2
« 2 cycles with c_area_opriMIzED=1

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 280
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=280

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

SWX Store Word Exclusive

SWX rD, rA, rB
110110 rD rA rB 1 00000O0O0OO0OO0CO0
0 6 11 16 21 31
Description

Conditionally stores the contents of register rD, into the word aligned memory location that results
from adding the contents of registers rA and rB. If an AXI4 interconnect with exclusive access enabled
is used, the store occurs if the interconnect response is EXOKAY, and the reservation bit is set;
otherwise the store occurs when the reservation bit is set. The carry flag (MSR[C]) is set if the store
does not occur, otherwise it is cleared. The reservation bit is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception will not occur even if the two least significant bits in the address
are not zero.

Enabling AXI exclusive access ensures that the operation is protected from other bus masters, but
requires that the addressed slave supports exclusive access. When exclusive access is not enabled,
only the internal reservation bit is used. Exclusive access is enabled using the two parameters
C_M_AXI_DP_EXCLUSIVE_ACCESS and C_M_AXI_DC_EXCLUSIVE_ACCESS for the peripheral and cache
interconnect, respectively.

Pseudocode

Addr < (rA) + (rB)
if Reservation = 0 then
MSR[C] « 1
else
if TLB_Miss (Addr) and MSR[VM] = 1 then
ESR[EC]¢ 10010;ESR[S]¢« 1
MSR[UMS] ¢ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] ¢ 0; MSR[VM] « O
else i1f Access_Protected(Addr) and MSR[VM] = 1 then
ESR[EC] ¢« 10000;ESR[S]¢- 1; ESR[DIZ] ¢« No-access-allowed
MSR[UMS] ¢~ MSR[UM]; MSR[VMS] - MSR[VM]; MSR[UM] ¢ 0; MSR[VM] « O
else
Reservation « 0
if AXI_Exclusive(Addr) and AXI_Response # EXOKAY then
MSR[C] « 1
else
Mem (Addr) <« (rD) [0:31]
MSR[C] « O

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 281
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=281

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Registers Altered
« MSR[C], unless an exception is generated

« MSR[UM], MSR[VM], MSRIUMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated

Latency
« 1 cycle with c_arRea_opT1MIZED=0 Or 2
« 2 cycles with c_arREA_opTIMIZED=1

Note

This instruction is used together with LWX to implement exclusive access, such as semaphores and
spinlocks.

The carry flag (MSR[C]) may not be set immediately (dependent on pipeline stall behavior). The SWX
instruction should not be immediately followed by an MSRCLR, MSRSET, MTS, or SRC instruction, to
ensure the correct value of the carry flag is obtained.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 282
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=282

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

WdC Write to Data Cache

wdc rA,rB
wdc.flush rA,rB
wdc.clear rA,rB

wdc.clear.ea rA,rB
wdc.ext.flush rA,rB
wdc.ext.clear rA,rB

1 001000O0O0OO0OD0O rA rB EO0OOEA1 1 FO01TO

0 6 11 16 21 27 31

Description

Write into the data cache tag to invalidate or flush a cache line. The mnemonic wdc.flush is used to
set the F bit, wdc.clear is used to set the T bit, wdc.clear.ea is used to set the T and EA bits,
wdc.ext.flush is used to set the E, F and T bits, and wdc.ext.clear is used to set the E and T bits.

When C_DCACHE_USE_WRITEBACK is set to 1:

« If the F bits is set, the instruction will flush and invalidate the cache line.

« Otherwise, the instruction will only invalidate the cache line and discard any data that has not
been written to memory.

« If the T bit is set, only a cache line with a matching address is invalidated:

o If the EA bit is set register rA concatenated with rB is the extended address of the affected
cache line.

- Otherwise, register rA added with rB is the address of the affected cache line.
- The EA bit is only taken into account when the parameter C_ADDR_SIZE > 32.
« The E bit is not taken into account.

e The Fand T bits cannot be used at the same time.
When C_DCACHE_USE_WRITEBACK is cleared to 0:

« If the E bit is not set, the instruction will invalidate the cache line. Register rA contains the
address of the affected cache line, and the register rB value is not used.

« Otherwise, MicroBlaze will request that the matching address in an external cache should be
invalidated or flushed, depending on the value of the F bit.

« The E bit is only taken into account when the parameter C_INTERCONNECT is set to 3 (ACE).
When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) the instruction is privileged. This

means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 283
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=283

& XILINX

ALL PROGRAMMABLE

Chapter 5

Pseudocode

if MSR[UM] 1 then
ESR[EC] ¢« 00111
else
if C_DCACHE_USE_WRITEBACK
if T 1 and EA 1 then
address <« (rA) & (rB)
else
address <«
else
address <«
if E 0 then
if C_DCACHE_LINE_LEN = 4 then
cacheline_mask ¢« (1 << log2 (C_DCACHE_BYT
cacheline —
cacheline_addr <« address & Oxfffffffo
if C_DCACHE_LINE_LEN = 8 then
cacheline_mask <
cacheline
cacheline_addr < address & Oxffffffel
if C_DCACHE_LINE_LEN = 16 then
cacheline_mask <«
cacheline
cacheline addr < address & OxffffffcO
if F 1 and cacheline.Dirty then
for i 0 C_DCACHE_LINE_LEN - 1 loop
if cacheline.Valid[i] then
Mem (cacheline_addr + 1 * 4)
if T = 0 then
cacheline.Tag < 0
else if cacheline.Address
cacheline.Tag < 0
if E 1 then
if F 1 then
request external cache flush with address
else

1 then

(rA) + (rB)

(rA)

cacheline_addr

(DCache Line) [(address >> 4)

(1 << log2 (C_DCACHE_BYTE_SIZE)
& (DCache Line) [(address >> 5)

(1 << log2 (C_DCACHE_BYTE_SIZE)
¢ (DCache Line) [(address >> 6)

: MicroBlaze Instruction Set Architecture

E_SIZE) - 4) - 1
A cacheline_mask]

-5 -1
A cacheline_mask]

- 6) -1
A cacheline_mask]

¢ cacheline.Datali]

then

request external cache invalidate with address

Registers Altered

Latency

2 cycles for wdc.clear

2 cycles for wdc with c_area_opTIiMIZED=0 or 2
3 cycles for wdc with c_area_opTIMIZED=0

cache line to memory when necessary

Note

ESR[EC], in case a privileged instruction exception is generated

2 + N cycles for wdc.flush, where N is the number of clock cycles required to flush the

The wdc, wdc.flush, wdc.clear and wdc.clear.ea instructions are independent of data cache enable
(MSR[DCE]), and can be used either with the data cache enabled or disabled.

The wdc.clear and wdc.clear.ea instructions are intended to invalidate a specific area in memory, for
example a buffer to be written by a Direct Memory Access device. Using this instruction ensures that

MicroBlaze Processor Reference Guide www.Xilinx.com

UG984 (v2016.4) November 30, 2016

l Send Feedback I 284

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=284

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

other cache lines are not inadvertently invalidated, erroneously discarding data that has not yet been
written to memory.

The address of the affected cache line is always the physical address, independent of the parameter
c_use_MMU and whether the MMU is in virtual mode or real mode.

When using wdc.flush in a loop to flush the entire cache, the loop can be optimized by using rA as
the cache base address and rB as the loop counter:

addik r5,r0,C_DCACHE_BASEADDR

addik r6,r0,C_DCACHE_BYTE_SIZE-C_DCACHE_LINE_LEN*4
loop: wdc.flush r5,r6

bgtid r6, loop

addik r6,r6,-C_DCACHE_LINE_LEN*4

When using wdc.clear in a loop to invalidate a memory area in the cache, the loop can be optimized
by using rA as the memory area base address and rB as the loop counter:

addik r5,r0, memory_area_base_address

addik r6,r0,memory_area_byte_size-C_DCACHE_LINE_LEN*4
loop: wdc.clear r5,r6

bgtid r6,loop

addik r6,r6,-C_DCACHE_LINE_LEN*4

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 285
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=285

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

WiC Write to Instruction Cache

wic rA,rB

10010000000 rA rB 00001101000

0 6 1 1 3
1 6 1

Description

Write into the instruction cache tag to invalidate a cache line. The register rB value is not used.
Register rA contains the address of the affected cache line.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode
if MSR[UM] = 1 then
ESR[EC] « 00111
else
if C_ICACHE_LINE_LEN = 4 then
cacheline_mask ¢« (1 << log2(C_CACHE_BYTE_SIZE) - 4) -1
(ICache Line) [((Ra) >> 4) A cacheline_mask].Tag ¢ 0
if C_ICACHE_LINE_LEN = 8 then
cacheline_mask ¢ (1 << log2(C_CACHE_BYTE_SIZE) - 5) - 1
(ICache Line)[((Ra) >> 5) A cacheline_mask].Tag < 0
if C_ICACHE_LINE_LEN = 16 then
cacheline_mask ¢« (1 << log2(C_CACHE_BYTE_SIZE) - 6) - 1
(ICache Line) [((Ra) >> 6) A cacheline_mask].Tag ¢ 0
Registers Altered
« ESR[EC], in case a privileged instruction exception is generated
Latency
« 2cycles
Note

The WIC instruction is independent of instruction cache enable (MSR[ICE]), and can be used either
with the instruction cache enabled or disabled.

The address of the affected cache line is the virtual address when the parameter C_USE_MMU = 3
(VIRTUAL) and the MMU is in virtual mode, otherwise it is the physical address.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 286
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=286

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Xor Logical Exclusive OR

xor rD, rA, rB

100010 rD rA rB 0 00O0O0OOOOOTOOD O

Description

The contents of register rA are XORed with the contents of register rB; the result is placed into
register rD.

Pseudocode
(rD) ¢« (rA) @ (rB)

Registers Altered
« D

Latency
« 1lcycle

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 287
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=287

i: XI I_INX Chapter 5: MicroBlaze Instruction Set Architecture

ALL PROGRAMMABLE

Xorj Losical Exclusive OR with Immediate

XOri rD, rA, IMM
1 01010 rD rA IMM
0 6 1 1 3
1 6 1
Description

The IMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of register
rA are XOR'ed with the extended IMM field; the result is placed into register rD.

Pseudocode
(rD) ¢« (rA) @ sext (IMM)
Registers Altered
« D
Latency
« 1lcycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm,” page 226 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 288
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=288

& XILINX

ALL PROGRAMMABLEw

Appendix A

Performance and Resource Utilization

Performance

Performance characterization of this core has been done using the margin system
methodology. The details of the margin system characterization methodology is described
in “IP Characterization and fMAX Margin System Methodology” below.

Maximum Frequencies

The maximum frequencies for the MicroBlaze™ core are provided in Table A-1.
Note: Zyng®-7000 results are expected to be similar to 7 series results.

Note: Spartan®-7 results are expected to be similar to Artix®-7 results.

Table A-1: Maximum Frequencies

Family Frnax (MHz)
Virtex®-7 397
Kintex®-7 393

Artix-7 252

Virtex UltraScale™ 452
Kintex UltraScale 457
Virtex UltraScale+™ 670
Kintex UltraScale+ 629
Zynq UltraScale+ 542

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 289
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=289

8 XI I_INX Appendix A: Performance and Resource Utilization

ALL PROGRAMMABLE

Resource Utilization

The MicroBlaze core resource utilization for various parameter configurations are measured
for the following devices:

« Virtex-7 (Table A-2)

« Kintex-7 (Table A-3)

» Artix-7 (Table A-4)

« Virtex UltraScale (Table A-5)

« Kintex UltraScale (Table A-6)

« Virtex UltraScale+ (Table A-7)

« Kintex UltraScale+ (Table A-8)

« Zynq UltraScale+ (Table A-9)

Note: Zyng-7000 results are expected to be similar to 7 series results.

Note: Spartan-7 results are expected to be similar to Artix-7 results.

The parameter values for each of the measured configurations are shown in Table A-10. The
configurations directly correspond to the predefined templates in the MicroBlaze
Configuration Wizard.

Table A-2: Device Utilization - Virtex-7 FPGAs (XC7VX485T ffg1761-3)

Device Resources
Configuration E
LUTs FFs (N'I“;;)
Minimum Area 626 226 389
Maximum Performance 3817 2994 213
Maximum Frequency 901 543 389
Linux with MMU 3452 3195 215
Low-end Linux with MMU 2861 2549 225
Typical 1914 1512 252
Frequency Optimized 5939 5924 231

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 290
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=290

& XILINX

ALL PROGRAMMABLE

Table A-3: Device Utilization - Kintex-7 FPGAs (XC7K325T ffg900-3)

Appendix A: Performance and Resource Utilization

Device Resources

Configuration E
LUTs FFs (lVrInI:;)
Minimum Area 620 217 357
Maximum Performance 3809 2994 221
Maximum Frequency 900 543 357
Linux with MMU 3446 3190 213
Low-end Linux with MMU 2868 2546 228
Typical 1922 1512 252
Frequency Optimized 5937 5925 227
Table A-4: Device Utilization - Artix-7 FPGAs (XC7A200T fbg676-3)
Device Resources
Configuration E
LUTs FFs ('VTI:;)
Minimum Area 619 217 240
Maximum Performance 3809 2994 161
Maximum Frequency 900 543 240
Linux with MMU 3459 3164 152
Low-end Linux with MMU 2868 2545 156
Typical 1922 1517 190
Frequency Optimized 5880 5905 161
Table A-5: Device Utilization - Virtex UltraScale FPGAs (XCVUO095 ffvd1924-3)
Device Resources
Configuration E
LUTs FFs (l\;l“;:)
Minimum Area 550 223 431
Maximum Performance 3813 2993 282
Maximum Frequency 898 551 431
Linux with MMU 3417 3171 250
Low-end Linux with MMU 2874 2550 262
Typical 1954 1512 316
Frequency Optimized 6035 5945 286

MicroBlaze Processor Reference Guide www.Xilinx.com

UG984 (v2016.4) November 30, 2016

| Send Feedback I 291

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=291

& XILINX

ALL PROGRAMMABLE

Appendix A: Performance and Resource Utilization

Table A-6: Device Utilization - Kintex UltraScale FPGAs (XCKU040 ffva1156-3)

Device Resources
Configuration E
LUTs FFs (I\;InI::)
Minimum Area 564 227 422
Maximum Performance 3822 2993 283
Maximum Frequency 905 548 422
Linux with MMU 3410 3164 250
Low-end Linux with MMU 2862 2547 264
Typical 1956 1514 307
Frequency Optimized 6038 5936 298
Table A-7: Device Utilization - Virtex UltraScale+ FPGAs (XCVU3P ffvc1517-3)
Device Resources
Configuration E
LUTs FFs (I\;InI::)
Minimum Area 556 227 598
Maximum Performance 3851 2993 390
Maximum Frequency 900 543 598
Linux with MMU 3418 3164 366
Low-end Linux with MMU 2891 2544 344
Typical 1956 1512 452
Frequency Optimized 6070 5930 411
Table A-8: Device Utilization - Kintex UltraScale+ FPGAs (XCKU15P ffva1156-3)
Device Resources
Configuration E
LUTs FFs (I\;InI::)
Minimum Area 567 242 621
Maximum Performance 3857 2993 352
Maximum Frequency 909 548 621
Linux with MMU 3466 3218 367
Low-end Linux with MMU 2918 2587 325
Typical 1966 1516 433
Frequency Optimized 6136 5949 401

MicroBlaze Processor Reference Guide www.Xilinx.com

UG984 (v2016.4) November 30, 2016

| Send Feedback I 292

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=292

8 XI I_INX Appendix A: Performance and Resource Utilization

ALL PROGRAMMABLE

Table A-9: Device Utilization - Zynq UltraScale+ FPGAs (XCZU9EG ffvb1156-3)

Device Resources
Configuration E
LUTs FFs (lVrInI:;)
Minimum Area 552 217 535
Maximum Performance 3843 2996 339
Maximum Frequency 901 543 535
Linux with MMU 3436 3163 317
Low-end Linux with MMU 2892 2545 323
Typical 1966 1522 400
Frequency Optimized 6103 5950 358

Table A-10: Parameter Configurations

Configuration Parameter Values
£ e gz 2 é 2 - | 2%
Parameter E g E g E § E E ':’::’I E g § E
(¥ o
-
C_ALLOW_DCACHE_WR 1 1 1 1 1 1 1
C_ALLOW_ICACHE_WR 1 1 1 1 1 1 1
C_AREA_OPTIMIZED 1 0 0 0 0 0 2
C_CACHE_BYTE_SIZE 4096| 32768 4096| 16384| 8192| 8192 16384
C_DCACHE_BYTE_SIZE 4096| 32768 4096, 16384| 8192| 8192| 16384
C_DCACHE_LINE_LEN 4 8 4 4 4 4 4
C_DCACHE_USE_WRITEBACK 0 1 0 0 0 0 1
C_DEBUG_ENABLED 0 1 0 1 1 1 1
C_DIV_ZERO_EXCEPTION 0 0 0 1 0 0 1
C_M_AXI_D_BUS_EXCEPTION 0 0 0 1 1 1 1
C_FPU_EXCEPTION 0 0 0 0 0 0 1
C_FSL_EXCEPTION 0 0 0 0 0 0 0
C_FSL_LINKS 0 0 1 0 0 0 0
C_ICACHE_LINE_LEN 4 8 4 8 4 8 8
C_ILL_OPCODE_EXCEPTION 0 0 0 1 1 0 1
C_M_AXI_I_BUS_EXCEPTION 0 0 0 1 1 0 1
C_MMU_DTLB_SIZE 2 4 2 4 4 4 4

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 293
UG984 (v2016.4) November 30, 2016 l—\/—l

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=293

8 XI I_INX Appendix A: Performance and Resource Utilization

ALL PROGRAMMABLE

Table A-10: Parameter Configurations (Cont’d)

Configuration Parameter Values
£ el | ep 2 :="_i = | - | 2%
Parameter E 3 E E =§5 § EE _EE g- § E
. 2
C_MMU_ITLB_SIZE 1 2 1 2 2 2 2
C_MMU_TLB_ACCESS 3 3 3 3 3 3 3
C_MMU_ZONES 2 2 2 2 2 2 2
C_NUMBER_OF_PC_BRK 0 1 1 1 1 2 1
C_NUMBER_OF_RD_ADDR_BRK 0 0 0 0 0 0 0
C_NUMBER_OF_WR_ADDR_BRK 0 0 0 0 0 0 0
C_OPCODE_0OxO_ILLEGAL 0 0 0 1 1 0 1
C_PVR 0 0 0 2 0 0 2
C_UNALIGNED_EXCEPTIONS 0 0 0 1 1 0 1
C_USE_BARREL 0 1 0 1 1 1 1
C_USE_DCACHE 0 1 0 1 1 1 1
C_USE_DIV 0 1 0 1 0 0 1
C_USE_EXTENDED_FSL_INSTR 0 0 0 0 0 0 0
C_USE_FPU 0 2 0 0 0 0 2
C_USE_HW_MUL 0 2 0 2 1 1 2
C_USE_ICACHE 0 1 0 1 1 1 1
C_USE_MMU 0 0 0 3 3 0 3
C_USE_MSR_INSTR 0 1 0 1 1 1 1
C_USE_PCMP_INSTR 0 1 0 1 1 1 1
C_USE_REORDER_INSTR 0 1 1 1 1 1 1
C_USE_BRANCH_TARGET_CACHE 0 1 0 0 0 0 1
C_BRANCH_TARGET_CACHE_SIZE 0 0 0 0 0 0 0
C_ICACHE_STREAMS 0 1 0 1 0 0 0
C_ICACHE_VICTIMS 0 8 0 8 0 0 0
C_DCACHE_VICTIMS 0 8 0 8 0 0 0
C_ICACHE_FORCE_TAG_LUTRAM 0 0 0 0 0 0 0
C_DCACHE_FORCE_TAG_LUTRAM 0 0 0 0 0 0 0
C_ICACHE_ALWAYS_USED 0 1 0 1 1 0 1
C_DCACHE_ALWAYS_USED 0 1 0 1 1 0 1
C_D_AXI 0 1 0 1 1 0 1
C_USE_INTERRUPT 0 0 0 1 1 0 1

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 294
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=294

8 XI I_INX Appendix A: Performance and Resource Utilization

ALL PROGRAMMABLE

IP Characterization and fy,px Margin System Methodology

Introduction

This section describes the methods to determine the maximum frequency (Fyax) of IP
operation within a system design. The method enables realistic performance reporting for
any Xilinx FPGA architecture. The maximum frequency of a design is the maximum
frequency at which the overall system can be implemented without encountering timing
issues.

The Fy,ax Margin System Methodology

It is important to determine the IP performance in the context of a user system. In the case
of the MicroBlaze characterization, the system includes the following items:

« The IP under test (MicroBlaze Processor)

« Local Memory (LMB)

« One level of Interconnect (AX14, AXI4-Lite, AXI4-Stream)

* Memory controller (EMC)

* On-chip BRAM controller

« Peripherals (UART, Timer, Interrupt Controller, MDM)

Determining the Fy ax of an Embedded IP with these components provides a more realistic
performance target.

The system above has three types of AXI Interconnect. AXI4-Lite used for peripheral
command and control, AXI4 used for memory accesses, and AXI4-Stream used for
MicroBlaze streams.

For Fyppax Margin System Analysis, the clock frequency of the system is incremented up to
the maximum frequency where the system breaks with timing violations (worst case
negative slack). The reported frequency is the failing frequency subtracted with this worst
case negative slack.

Tool Options and Other Factors

Xilinx tools offer a number of options and settings that provide a trade-off between design
performance, resource usage, implementation run time, and memory footprint. The settings
that produce the best results for one design might not necessarily work for another design.

For the purpose of the Fyyax Margin System Analysis, the IP design is characterized with
default settings without specific constraints (other than the clocking constraint). This
analysis is done with all different FPGA architectures and the maximum speed grade.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 295
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=295

& XILINX

ALL PROGRAMMABLE.

Appendix B

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References

The following documents are available via your Vivado® installation.

Relevant individual documents are linked below.

1.
2.

© ©® N o u A~

Vivado Design Suite User Guide: Designing With IP (UG896)

Vivado Design Suite User Guide:
Designing IP Subsystems Using IP Integrator (UG994)

Vivado Design Suite User Guide:
Embedded Processor Hardware Design (UG898)

Xilinx Software Development Kit Help (UG782)

Embedded System Tools Reference Manual (UG1043)

PowerPC Processor Reference Guide (UG011)

AMBA 4 AXI4-Stream Protocol Specification, Version 1.0 (ARM IHI 0051A)
AMBA AXI and ACE Protocol Specification (ARM IHI 0022E)

MicroBlaze Debug Module (MDM) Product Guide (PG115)

MicroBlaze Processor Reference Guide www.Xilinx.com [Send Feedback] 296

UG984 (v2016.4) November 30, 2016

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=user+guides&sub=ug011.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=SDK_Doc/index.html
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1043-embedded-system-tools.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=mdm;v=latest;d=pg115-mdm.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug898-vivado-embedded-design.pdf
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=296

8 XI LINX Appendix B: Additional Resources and Legal Notices

ALL PROGRAMMABLE

10. LogiCore IP Soft Error Mitigation Controller (PG036)

11. Device Reliability Report (UG116)

12. LogiCore IP Processor LMB BRAM Interface Controller (PG112)
13. Hierarchical Design Methodology Guide (UG748)

The following lists additional resources you can access directly using the provided URLs.

14. The entire set of GNU manuals:
http://www.gnu.org/manual

15. IEEE 754-1985 standard
http://en.wikipedia.org/wiki/IEEE_754-1985

Training Resources

Xilinx provides a variety of QuickTake videos and training courses to help you learn more
about the concepts presented in this document. Use these links to explore related training
resources:

Vivado Design Suite QuickTake Video: Creating IP Subsystems with Vivado IP Integrator
Vivado Design Suite QuickTake Video: IP Integrator Advanced User Tips

Vivado Design Suite QuickTake Video Tutorials

Essentials of FPGA Design Training Course

Vivado Design Suite Tool Flow Training Course

Vivado Design Suite Embedded Systems Design

Vivado Design Suite Advanced Embedded Systems Design

© N o v A~ W N e

Embedded Systems Software Design

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 297
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.gnu.org/manual
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=14.5&topic=sw+manuals&sub=Hierarchical_Design_Methodology_Guide.pdf
http://en.wikipedia.org/wiki/IEEE_754-1985
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=fpga/essentials-of-fpga-design.htm
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=lmb_bram_if_cntlr;v=latest;d=pg112-lmb-bram-if-cntlr.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide;d=ug116.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=sem;v=latest;d=pg036_sem.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/vivado-design-suite-tool-flow.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=embedded/embedded-systems-software-design.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=embedded/embedded-systems-design.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=embedded/advanced-embedded-systems-design.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/index.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/ip-integrator-advanced-user-tips.htm
http://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=vivado/creating-ip-subsystems-with-vivado-ip-integrator.htm
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=297

8 XI LINX Appendix B: Additional Resources and Legal Notices

ALL PROGRAMMABLE

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any
application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications,
please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.

Automotive Applications Disclaimer
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF

AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

© Copyright 2013-2016 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zyng, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of

their respective owners.

MicroBlaze Processor Reference Guide www.Xilinx.com Send Feedback 298
UG984 (v2016.4) November 30, 2016 [—\/—]

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2016.4&docPage=298

	MicroBlaze Processor Reference Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Guide Contents

	Ch. 2: MicroBlaze Architecture
	Overview
	Features

	Data Types and Endianness
	Instructions
	Instruction Summary
	Semaphore Synchronization
	Self-modifying Code

	Registers
	General Purpose Registers
	Special Purpose Registers
	Program Counter (PC)
	Machine Status Register (MSR)
	Exception Address Register (EAR)
	Exception Status Register (ESR)
	Branch Target Register (BTR)
	Floating Point Status Register (FSR)
	Exception Data Register (EDR)
	Stack Low Register (SLR)
	Stack High Register (SHR)
	Process Identifier Register (PID)
	Zone Protection Register (ZPR)
	Translation Look-Aside Buffer Low Register (TLBLO)
	Translation Look-Aside Buffer High Register (TLBHI)
	Translation Look-Aside Buffer Index Register (TLBX)
	Translation Look-Aside Buffer Search Index Register (TLBS X)
	Processor Version Register (PVR)

	Pipeline Architecture
	Three Stage Pipeline
	Five Stage Pipeline
	Eight Stage Pipeline
	Branches
	Delay Slots
	Branch Target Cache

	Memory Architecture
	Privileged Instructions
	Virtual-Memory Management
	Real Mode
	Virtual Mode
	Page-Translation Table

	Translation Look-Aside Buffer
	TLB Entry Format
	TLB Access
	TLB Access Failures

	Access Protection
	TLB Access-Protection Controls
	Zone Protection

	UTLB Management
	Recording Page Access and Page Modification

	Reset, Interrupts, Exceptions, and Break
	Reset
	Equivalent Pseudocode

	Hardware Exceptions
	Exception Priority
	Exception Causes
	Imprecise Exceptions
	Equivalent Pseudocode

	Breaks
	Hardware Breaks
	Software Breaks
	Latency
	Equivalent Pseudocode

	Interrupt
	Low-latency Interrupt Mode
	Latency
	Equivalent Pseudocode

	User Vector (Exception)
	Pseudocode

	Instruction Cache
	Overview
	General Instruction Cache Functionality
	Instruction Cache Operation
	Stream Buffers
	Victim Cache

	Instruction Cache Software Support
	MSR Bit
	WIC Instruction

	Data Cache
	Overview
	General Data Cache Functionality
	Data Cache Operation
	Victim Cache

	Data Cache Software Support
	MSR Bit
	WDC Instruction

	Floating Point Unit (FPU)
	Overview
	Format
	Rounding
	Operations
	Arithmetic
	Comparison
	Conversion

	Exceptions
	Software Support
	Libraries and Binary Compatibility
	Operator Latencies
	C Language Programming

	Stream Link Interfaces
	Hardware Acceleration

	Debug and Trace
	Debug Overview
	Performance Monitoring
	Performance Counter Control Register
	Performance Counter Command Register
	Performance Counter Status Register
	Performance Counter Data Read Register
	Performance Counter Data Write Register

	Program Trace
	Trace Control Register
	Trace Command Register
	Trace Status Register
	Trace Data Read Register

	Non-Intrusive Profiling
	Profiling Control Register
	Profiling Low Address Register
	Profiling High Address Register
	Profiling Buffer Address Register
	Profiling Data Read Register
	Profiling Data Write Register

	Cross Trigger Support
	Trace Interface Overview

	Fault Tolerance
	Configuration
	Using MicroBlaze Configuration
	Using LMB BRAM Interface Controller Configuration

	Features
	Instruction and Data Cache Protection
	Memory Management Unit Protection
	Branch Target Cache Protection
	Exception Handling

	Software Support
	Scrubbing
	BRAM Driver

	Scrubbing
	Scrubbing Methods
	Calculating Scrubbing Rate

	Use Cases
	Minimal
	Small
	Typical
	Full

	Lockstep Operation
	System Configuration
	Use Cases
	Tamper Protection
	Error Detection

	Coherency
	Invalidation
	Protocol Compliance

	Data Address Extension

	Ch. 3: MicroBlaze Signal Interface Description
	Overview
	Features

	MicroBlaze I/O Overview
	Sleep and Pause Functionality
	Software Controlled
	Hardware Controlled

	AXI4 and ACE Interface Description
	Memory Mapped Interfaces
	Peripheral Interfaces
	Cache Interfaces
	Interface Parameters and Signals

	Stream Interfaces
	Write Operation
	Read Operation

	Local Memory Bus (LMB) Interface Description
	LMB Signal Interface
	Addr[0:N-1]
	Byte_Enable[0:3]
	Data_Write[0:31]
	AS
	Read_Strobe
	Write_Strobe
	Data_Read[0:31]
	Ready
	Wait
	CE
	UE
	Clk

	LMB Transactions
	Generic Write Operations
	Generic Read Operations
	Back-to-Back Write Operation
	Back-to-Back Read Operation
	Back-to-Back Mixed Write/Read Operation

	Read and Write Data Steering

	Lockstep Interface Description
	Debug Interface Description
	Trace Interface Description
	MicroBlaze Core Configurability

	Ch. 4: MicroBlaze Application Binary Interface
	Data Types
	Register Usage Conventions
	Stack Convention
	Calling Convention

	Memory Model
	Small Data Area
	Data Area
	Common Un-Initialized Area
	Literals or Constants

	Interrupt, Break and Exception Handling

	Ch. 5: MicroBlaze Instruction Set Architecture
	Notation
	Formats
	Type A
	Type B

	Instructions
	add
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	addi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	and
	Description
	Pseudocode
	Registers Altered
	Latency

	andi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	andn
	Description
	Pseudocode
	Registers Altered
	Latency

	andni
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beqi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bge
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgti
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	ble
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blti
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bne
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bnei
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	br
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bri
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	brk
	Description
	Pseudocode
	Registers Altered
	Latency

	brki
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bs
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bsi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	clz
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	cmp
	Description
	Pseudocode
	Registers Altered
	Latency

	fadd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	frsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fmul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fdiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fcmp
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	flt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fint
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fsqrt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	get
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	getd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	idiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	imm
	Description
	Latency
	Notes

	lbu
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lbui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lhu
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lhui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lw
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lwi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lwx
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mbar
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mfs
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	msrclr
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	msrset
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mts
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mulh
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mulhu
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mulhsu
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	muli
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	or
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	ori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpbf
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpeq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpne
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	put
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	putd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rsubi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rtbd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rtid
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rted
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rtsd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sb
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sbi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sext16
	Description
	Pseudocode
	Registers Altered
	Latency

	sext8
	Description
	Pseudocode
	Registers Altered
	Latency

	sh
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	shi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sra
	Description
	Pseudocode
	Registers Altered
	Latency

	src
	Description
	Pseudocode
	Registers Altered
	Latency

	srl
	Description
	Pseudocode
	Registers Altered
	Latency

	sw
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	swapb
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	swaph
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	swi
	Description
	Pseudocode
	Register Altered
	Latency
	Note

	swx
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	wdc
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	wic
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	xor
	Description
	Pseudocode
	Registers Altered
	Latency

	xori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	Appx. A: Performance and Resource Utilization
	Performance
	Maximum Frequencies

	Resource Utilization
	IP Characterization and fMAX Margin System Methodology
	Introduction
	The FMAX Margin System Methodology
	Tool Options and Other Factors

	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	References
	Training Resources
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

