MicroBlaze

Processor Reference
Guide

UG984 (v2023.2) February 2, 2024

AMD Adaptive Computing is creating an environment where

employees, customers, and partners feel welcome and included.

To that end, we're removing non-inclusive language from our

products and related collateral. We've launched an internal

initiative to remove language that could exclude people or

reinforce historical biases, including terms embedded in our

software and IPs. You may still find examples of non-inclusive

language in our older products as we work to make these AM D n
changes and align with evolving industry standards. Follow this

link for more information.

https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf

AMDZ1

Table of Contents

Chapter 1: Introduction
LU To T 0o T =T | £ 4

Chapter 2: MicroBlaze Architecture

Y 4o Yo 11T 4 o) o T 5
OV VI BW L ittt ittt tti et etssesnsaasonsossnssasonsonsnssassnsansnnssnssnsnnsnss 5
Data Types and ENdianness.o iiiiiiiiiietiieeteoeeeneeenneenasennssanasannsanns 9
) €1 o 4 ' 4T 11
REEISTOIS . . i ittt it ittt itiettenetenasonassnssssassssssssnsonnssnnsssansans 26
Pipeline ArchitectUre.ottt ittt ittt ittt tenaeeeneeenesennsenesannnnns 53
Memory Architecturecoiiiiiiiiiiii ittt iieteenesensanssessssnsanssssananss 59
Privileged INStruCtionsottt i i ittt ettt et e et e, 60
Virtual-Memory Managementootiiiiininneteneeeneeenaeeeneeanesanenannsns 62
Reset, Interrupts, Exceptions,and Breakttt iineennnennaennns 77
INStructioN Cache ittt ittt i ittt ittt itenasasasasssnensasensnsasasnsnas 87
0 - T 0T T 91
Floating-Point Unit (FPU).t ittt ittt ittt ieeteteeeensasansnsasasnsnsnsnnnas 96
Stream Link Interfaces.cviiiiiiiiiii ittt i i i it i i it i 102
[0 T=Y o1 T4 T4 Lo B I - T <A 103
o LT L o] =T - T oo P 126
Lockstep Operationiiiiii ittt et ettt teesneentaneansasansansansanannnns 134
(07 4 =1 =Y 3 Voy YR 137
Data and Instruction Address EXtensionccitiiiininiinererenranrsnsosennans 140

Chapter 3: MicroBlaze Signal Interface Description

Y e Yo 11T 4 o o P 142
OV VIBW L ittt ittt te et etsnsensansossnssnssnsassossnssnsansassnssossnesnsas 142
IMICrOBlaze 1/O OVeIVIEW . oot vttt ittt tee e enesnseneenennsnsensensensnsnnsensans 143
AXI4 and ACE Interface Descriptioncoviiiiiitiiiiniiniintneenenaesnsensnssnannns 156
Local Memory Bus (LMB) Interface Descriptionccoiiiiiiiiinrnnrnnrnnnnnnns 162
Lockstep Interface Descriptioncciiiiiiiiiin e iienerenereneeenesennsennnans 174
Debug Interface Descriptioncciiiiiiii ittt ittt ietentantsnresensanssnsans 179
Trace Interface Description. ittt i et e tieineraenarensnnsnnnnns 181

MicroBlaze Processor Reference Guide Send Feedback 2
UG984 (v2023.2) February 2, 2024 [—‘ /_]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=2

AMD ¢

MicroBlaze Core Configurabilityttt i i it it teaieernennenns 184
Chapter 4: MicroBlaze Application Binary Interface
3T 0T [T 4 o T o 196
D F 1 TR N7 « = 196
Register Usage Conventionsciiiitiineiieetnnneenesenasenassanssanesannnans 197
Stack CoNVENtioNottt ittt it i ettt ittt i e e 199
Memory Modelttt ittt et iieeteeatenaseeaeeenesenasennsennnens 201
Interrupt, Break and Exception Handling.iiiiiiiiiii it iiiiiiinennnenns 202
ResetHandlingciiiiiit it i ittt tetentnnrnesneansansansannnnnns 204
o I o gy T | P 205
Chapter 5: MicroBlaze Instruction Set Architecture
3T o T LT 1 o T 209
[NV = 4o T o P 209
o 1 =) 211
MicroBlaze 32-bit Instructionsoiiiiiitiiiiiiiiiie i innentnreransnnnnns 211
MicroBlaze 64-bit Instructionsciiiiiiiiiiiiiiiiiiintienrnnteererensnnnans 321
Appendix A: Performance and Resource Utilization
=T 0T 4 T T Lo <P 384
Resource Utilization.ciiiiiiiii ittt iiiieieteterernnnnsnsnsasasasannnns 385
IP Characterization and fy;5x Margin System Methodology......................coioant 394
Appendix B: Additional Resources and Legal Notices
Finding Additional Documentation.ciiiiiiiiiiintennerenerenerenneennnnns 395
SUPPOIt RESOUINCES . o v ittt iiii ittt ieeetteneensesesnenssssessenssesasnnnsssans 396
3 TS =T =T 4T T 396
TrainNiNg RESOUINCES. . o v vt ittt iiieeeettennaneeseessaaessoassnssssesssnassesnnanans 397
ReVISION HIiStOry oottt i i i et ettt ettt tenatenassnassnnnsannnans 397
Please Read: ImportantLegal Noticescciiiiiiiniienirnennrnnennrnnnnnnns 400

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

| Send Feedback I 3

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=3

AMDA1

Chapter 1

Introduction

The MicroBlaze™ Processor Reference Guide provides information about the 32-bit and 64-
bit soft processor, MicroBlaze, which is included in Vivado™. The document is intended as a
guide to the MicroBlaze hardware architecture.

Guide Contents

This guide contains the following chapters:

« Chapter 2, MicroBlaze Architecture contains an overview of MicroBlaze features as well
as information on Big-Endian and Little-Endian bit-reversed format, 32-bit or 64-bit
general purpose registers, cache software support, and AXI4-Stream interfaces.

« Chapter 3, MicroBlaze Signal Interface Description describes the types of signal
interfaces that can be used to connect MicroBlaze.

« Chapter 4, MicroBlaze Application Binary Interface describes the Application Binary
Interface important for developing software in assembly language for the processor.

« Chapter 5, MicroBlaze Instruction Set Architecture provides notation, formats, and
instructions for the Instruction Set Architecture (ISA) of MicroBlaze.

« Appendix A, Performance and Resource Utilization contains maximum frequencies and
resource utilization numbers for different configurations and devices.

« Appendix B, Additional Resources and Legal Notices provides links to documentation
and additional resources.

MicroBlaze Processor Reference Guide Send Feedback 4
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=4

AMD 1
Chapter 2

MicroBlaze Architecture

Introduction

This chapter contains an overview of MicroBlaze™ features and detailed information on
MicroBlaze architecture including Big-Endian or Little-Endian bit-reversed format, 32-bit or
64-bit general purpose registers, virtual-memory management, cache software support,
and AXIl4-Stream interfaces.

Overview

The MicroBlaze embedded processor soft core is a reduced instruction set computer (RISC)
optimized for implementation in AMD Field Programmable Gate Arrays (FPGAs). The
following figure shows a functional block diagram of the MicroBlaze core.

Instruction-side Data-side
Bus interface Bus interface

M_AXI_IC — Memory Management Unit (MMU)] M AXI DC
M_ACE_IC [:> <:: | ITLB . UTLB > DTLB | ::> <:>M_ACE_DC

Program < v

Counter

ayoed-|
syoen-a

Special ALU
] Purpose -

<> Registers Shift
8 Barrel Shif fe

Branch Target IE
Cache Multiplier
Divider

Bus :> Instruction [> [> o

IF Buffer

Instruction

Decode {} :'|> MO_AXIS .

M15_AXIS

Register File : < ::l SO_AXIS ..
[] Optional MicroBlaze feature [> 32gregisters 518 AXIS

Figure 2-1: MicroBlaze Core Block Diagram

X19738-100218

MicroBlaze Processor Reference Guide Send Feedback 5
UG984 (v2023.2) February 2, 2024 L‘ /_]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=5

AMD ¢

Features

Chapter 2: MicroBlaze Architecture

The MicroBlaze soft core processor is highly configurable, allowing you to select a specific
set of features required by your design.

The fixed feature set of the processor includes:

« Thirty-two 32-bit or 64-bit general purpose registers

« 32-bit instruction word with three operands and two addressing modes

« Default 32-bit address bus, extensible to 64 bits

« Single issue pipeline

In addition to these fixed features, the MicroBlaze processor is parameterized to allow
selective enabling of additional functionality. Older (deprecated) versions of MicroBlaze

support a subset of the optional features described in this manual. Only the latest

(preferred) version of MicroBlaze (v11.0) supports all options.

RECOMMENDED: AMD recommends that all new designs use the latest preferred version of the
MicroBlaze processor.

The following table provides an overview of the configurable features by MicroBlaze

versions.
Table 2-1: Configurable Feature Overview by MicroBlaze Version
MicroBlaze versions
Feature
v9.3 v9.4 v9.5 v9.6 v10.0 v11.0
Version Status deprecated | deprecated | deprecated | deprecated | deprecated | preferred
Processor pipeline depth 3/5 3/5 3/5 3/5 3/5/8 3/5/8
Local Memory Bus (LMB) data side option option option option option option
interface
Local Memory Bus (LMB) option option option option option option
instruction side interface
Hardware barrel shifter option option option option option option
Hardware divider option option option option option option
Hardware debug logic option option option option option option
Stream link interfaces 0-16 AXI 0-16 AXI 0-16 AXI 0-16 AXI 0-16 AXI 0-16 AXI
Machine status set and clear option option option option option option
instructions
Cache line word length 4,8 4,8 4,8, 16 4,8, 16 4,8, 16 4,8, 16
Hardware exception support option option option option option option
Pattern compare instructions option option option option option option
Floating-point unit (FPU) option option option option option option

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=6

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-1: Configurable Feature Overview by MicroBlaze Version (Cont’d)
MicroBlaze versions
Feature
v9.3 v9.4 v9.5 v9.6 v10.0 v11.0

Disable hardware multiplier? option option option option option option
Hardware debug readable ESR and Yes Yes Yes Yes Yes Yes
EAR

Processor Version Register (PVR) option option option option option option
Area or speed optimized option option option option option option
Hardware multiplier 64-bit result option option option option option option
LUT cache memory option option option option option option
Floating-point conversion and option option option option option option
square root instructions

Memory Management Unit (MMU) option option option option option option
Extended stream instructions option option option option option option
Use Cache Interface for All I-Cache option option option option option option
Memory Accesses

Use Cache Interface for All D-Cache option option option option option option
Memory Accesses

Use Write-back Caching Policy for option option option option option option
D-Cache

Branch Target Cache (BTC) option option option option option option
Streams for [-Cache option option option option option option
Victim handling for I-Cache option option option option option option
Victim handling for D-Cache option option option option option option
AXI4 (M_AXI_DP) data side interface option option option option option option
AX14 (M_AXI_IP) instruction side option option option option option option
interface

AX14 (M_AXI_DC) protocol for D- option option option option option option
Cache

AXI4 (M_AXI_IC) protocol for I- option option option option option option
Cache

AXI4 protocol for stream accesses option option option option option option
Fault tolerant features option option option option option option
Force distributed RAM for cache option option option option option option
tags

Configurable cache data widths option option option option option option
Count Leading Zeros instruction option option option option option option
Memory Barrier instruction Yes Yes Yes Yes Yes Yes
Stack overflow and underflow option option option option option option
detection

Allow stream instructions in user option option option option option option
mode

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 7

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=7

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-1: Configurable Feature Overview by MicroBlaze Version (Cont’d)
MicroBlaze versions
Feature
v9.3 v9.4 v9.5 v9.6 v10.0 v11.0

Lockstep support option option option option option option
Configurable use of FPGA option option option option option option
primitives

Low-latency interrupt mode option option option option option option
Swap instructions option option option option option option
Sleep mode and sleep instruction Yes Yes Yes Yes Yes Yes
Relocatable base vectors option option option option option option
ACE (M_ACE_DC) protocol for D- option option option option option option
Cache

ACE (M_ACE_IC) protocol for I- option option option option option option
Cache

Extended debug: performance option option option option option option
monitoring, program trace, non-

intrusive profiling

Reset mode: enter sleep or debug option option option option option option
halt at reset

Extended debug: external program option option option option option
trace

Extended data addressing option option option
Pipeline pause functionality Yes Yes Yes
Hibernate and suspend instructions Yes Yes Yes
Non-secure mode Yes Yes Yes
Bit field instructions? option option
Parallel debug interface option option
MMU Physical Address Extension option option
64-bit mode option

1. Used for saving DSP48E primitives.

2. Bit field instructions are available when C_USE_BARREL = 1.

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 8

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=8

AM D n Chapter 2: MicroBlaze Architecture

Data Types and Endianness

The MicroBlaze processor uses Big-Endian or Little-Endian format to represent data,
depending on the selected endianness. The parameter ¢_ENDIANNESS is set to 1 (little-
endian) by default.

The hardware supported data types for 32-bit MicroBlaze are word, half word, and byte.
With 64-bit MicroBlaze the data types long and double are also available in hardware.

When using the reversed load and store instructions LHUR, LWR, LLR, SHR, SWR and SLR,
the bytes in the data are reversed, as indicated by the byte-reversed order.

The following tables show the bit and byte organization for each type.

Table 2-2: Long Data Type (only 64-bit MicroBlaze)

Big-Endian Byte Address n n+1 | n+2 | n+3 n+4 n+5 | n+6 | n+7
Big-Endian Byte Significance MSByte LSByte
Big-Endian Byte Order n n+1 n+2 | n+3 n+4 n+5 n+6 | n+7
Big-Endian Byte-Reversed Order | n+7 n+6 | n+5 |n+4 n+3 n+2 n+1 n
Little-Endian Byte Address n+7 n+6 | n+5 |n+4 n+3 n+2 n+1 n
Little-Endian Byte Significance MSByte LSByte
Little-Endian Byte Order n+7 n+6 | n+5 |n+4 n+3 n+2 n+1 n
Little-Endian Byte-Reversed Order | n n+1 | n+2 | n+3 n+4 n+5 n+6 | n+7
Bit Label 0 63

Bit Significance MSBit LSBit

Table 2-3: Word Data Type

Big-Endian Byte Address n n+1 n+2 n+3
Big-Endian Byte Significance MSByte LSByte
Big-Endian Byte Order n n+1 n+2 n+3
Big-Endian Byte-Reversed Order | n+3 n+2 n+1 n
Little-Endian Byte Address n+3 n+2 n+1 n
Little-Endian Byte Significance MSByte LSByte
Little-Endian Byte Order n+3 n+2 n+1 n
Little-Endian Byte-Reversed Order | n n+1 n+2 n+3
Bit Label 0 31

Bit Significance MSBit LSBit

MicroBlaze Processor Reference Guide Send Feedback 9
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=9

AMD ¢

Table 2-4: Half Word Data Type

Big-Endian Byte Address
Big-Endian Byte Significance
Big-Endian Byte Order

Big-Endian Byte-Reversed Order
Little-Endian Byte Address
Little-Endian Byte Significance
Little-Endian Byte Order
Little-Endian Byte-Reversed Order
Bit Label

Bit Significance

Table 2-5: Byte Data Type
Byte Address
Bit Label
Bit Significance

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

n n+1
MSByte | LSByte
n n+1
n+1 n

n+1 n
MSByte | LSByte
n+1 n

n n+1

0 15
MSBit LSBit
n

0 7
MSBit LSBit

Chapter 2: MicroBlaze Architecture

l Send Feedback I

10

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=10

AM D n Chapter 2: MicroBlaze Architecture

Instructions

Instruction Summary

All MicroBlaze instructions are 32 bits and are defined as either Type A or Type B. Type A
instructions have up to two source register operands and one destination register operand.
Type B instructions have one source register and a 16-bit immediate operand (which can be
extended to 32 bits by preceding the Type B instruction with an imm instruction).

Type B instructions have a single destination register operand. Instructions are provided in
the following functional categories: arithmetic, logical, branch, load/store, and special. The
following table describes the instruction set nomenclature used in the semantics of each
instruction. Table 2-6 lists the MicroBlaze instruction set. See Chapter 5, MicroBlaze
Instruction Set Architecture, for more information on these instructions.

Table 2-6: Instruction Set Nomenclature

Symbol Description

Ra RO - R31, General Purpose Register, source operand a
« With 32-bit MicroBlaze represents the entire 32-bit register
« With 64-bit MicroBlaze and L = 0O, represents the 32 least significant bits
« With 64-bit MicroBlaze and L = 1, represents the entire 64-bit register
The instruction bit L is defined in Table 2-7.

Rb RO - R31, General Purpose Register, source operand b
« With 32-bit MicroBlaze represents the entire 32-bit register
« With 64-bit MicroBlaze and L = 0O, represents the 32 least significant bits
« With 64-bit MicroBlaze and L = 1, represents the entire 64-bit register
The instruction bit L is defined in Table 2-7.

Rd RO - R31, General Purpose Register, destination operand
« With 32-bit MicroBlaze the entire 32-bit register is assigned the result
« With 64-bit MicroBlaze and L = 0, the 32 least significant bits are assigned the result
« With 64-bit MicroBlaze and L = 1, the entire 64-bit register is assigned the result
The instruction bit L is defined in Table 2-7.

SPRI[x] Special Purpose Register number x

MSR Machine Status Register = SPR[1]

ESR Exception Status Register = SPR[5]

EAR Exception Address Register = SPR[3]

FSR Floating-point Unit Status Register = SPR[7]

PVRx Processor Version Register, where x is the register number = SPR[8192 + x]

BTR Branch Target Register = SPR[11]

PC Execute stage Program Counter = SPR[0]

x[y] Bit y of register x

MicroBlaze Processor Reference Guide Send Feedback 11
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=11

AMD ¢

Chapter 2:

Table 2-6: Instruction Set Nomenclature (Cont’d)

MicroBlaze Architecture

Symbol Description
x[y:z] Bit range y to z of register x
X Bit inverted value of register x
Imm 16 bit immediate value
Immx X bit immediate value
FSLx 4 bit AXl4-Stream port designator, where x is the port number
C Carry flag, MSR[29]
Sa Special Purpose Register, source operand
Sd Special Purpose Register, destination operand
s(x) Sign extend argument x to 32-bit or 64-bit value
*Addr Memory contents at location Addr (data-size aligned)
= Assignment operator
= Equality comparison
= Inequality comparison
> Greater than comparison
>= Greater than or equal comparison
< Less than comparison
<= Less than or equal comparison
+ Arithmetic add
* Arithmetic multiply
/ Arithmetic divide
>> X Bit shift right x bits
<< x Bit shift left x bits
and Logic AND
or Logic OR
xor Logic exclusive OR

op1 if cond else op2

Perform op1 if condition cond is true, else perform op2

&

Concatenate. For example “0000100 & Imm7” is the concatenation of the fixed field

“0000100" and a 7 bit immediate value.

signed Operation performed on signed integer data type. All arithmetic operations are
performed on signed word operands, unless otherwise specified

unsigned Operation performed on unsigned integer data type

float Operation performed on floating-point data type

clz(r) Count leading zeros

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

| Send Feedback I 12

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=12

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-7: MicroBlaze Instruction Set Summary
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31

ADD Rd,Ra,Rb 000000 Rd Ra Rb | 00LO0000000 | Rd := Rb + Ra

RSUB Rd,Ra,Rb 000001 Rd Ra Rb | 00L0O0000000 | Rd := Rb + Ra + 1

ADDC Rd,Ra,Rb 000010 Rd Ra Rb | 00LO0000000 | Rd := Rb + Ra + C

RSUBC Rd,Ra,Rb 000011 Rd Ra Rb | 00LO0000000 |Rd:= Rb + Ra + C

ADDK Rd,Ra,Rb 000100 Rd Ra Rb | 00LO0000000 | Rd := Rb + Ra

RSUBK Rd,Ra,Rb 000101 Rd Ra Rb | 00L0O0000000 | Rd := Rb + Ra + 1

CMP Rd,Ra,Rb 000101 Rd Ra Rb | 00L00000001 | Rd := Rb + Ra + 1
Rd[0] := O if (Rb >= Ra) else
Rd[0] := 1

CMPU Rd,Ra,Rb 000101 Rd Ra Rb | 00L00000011 | Rd := Rb + Ra + 1 (unsigned)
Rd[0] := O if (Rb >= Ra, unsigned)
else
Rd[0] := 1

ADDKC Rd,Ra,Rb 000110 Rd Ra Rb | 00LO0000000 | Rd:=Rb + Ra + C

RSUBKC Rd,Ra,Rb 000111 Rd Ra Rb | 00L0O0000000 | Rd := Rb + Ra + C

ADDI Rd,Ra,Imm 001000 Rd Ra Imm Rd := s(Imm) + Ra

RSUBI Rd,Ra,Imm 001001 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIC Rd,Ra,Imm 001010 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIC Rd,Ra,Imm 001011 Rd Ra Imm Rd := s(Imm) + Ra + C

ADDIK Rd,Ra,Imm 001100 Rd Ra Imm Rd := s(Imm) + Ra

RSUBIK Rd,Ra,Imm 001101 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIKC Rd,Ra,Imm 001110 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIKC Rd,Ra,Imm | 001111 Rd Ra Imm Rd := s(Imm) + Ra + C

MUL Rd,Ra,Rb 010000 Rd Ra Rb | 00000000000 | Rd := Ra * Rb

MULH Rd,Ra,Rb 010000 Rd Ra Rb | 00000000001 | Rd := (Ra * Rb) >> 32 (signed)

MULHU Rd,Ra,Rb 010000 Rd Ra Rb | 00000000011 | Rd := (Ra * Rb) >> 32 (unsigned)

MULHSU Rd,Ra,Rb 010000 Rd Ra Rb | 00000000010 | Rd := (Ra, signed * Rb, unsigned) >>
32 (signed)

BSRL Rd,Ra,Rb 010001 Rd Ra Rb | 00LOO000000 | Rd := 0 & (Ra >> Rb)

BSRA Rd,Ra,Rb 010001 Rd Ra Rb | 01LO0000000 | Rd := s(Ra >> Rb)

BSLL Rd,Ra,Rb 010001 Rd Ra Rb | 10LO0000000 | Rd := (Ra << Rb) & 0

IDIV Rd,Ra,Rb 010010 Rd Ra Rb | 00000000000 | Rd := Rb/Ra

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I

13

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=13

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)
Type A 0-5 6-10 | 11-15 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
IDIVU Rd,Ra,Rb 010010 Rd Ra Rb | 00000000010 | Rd := Rb/Ra, unsigned
TNEAGETD Rd,Rb 010011 | Rd | 00000 | Rb ONOTAE | Rd := FSL Rb[28:31] (data read)
00000 MSRI[FSL] := 1 if (FSL_S_Control = 1)
MSRI[C] := not FSL_S_Exists if N = 1
TNAPUTD Ra,Rb 010011 | 00000 Ra Rb TNOTAO FSL Rb[28:31] := Ra (data write)
00000 MSR[C] := FSL_LM_Full if N = 1
TNECAGETD Rd,Rb 010011 Rd 00000 Rb ON1TAE Rd := FSL Rb[28:31] (control read)
00000 MSR[FSL] := 1 if (FSL_S_Control = 0)
MSR[C] := not FSL_S_Exists if N = 1
TNCAPUTD Ra,Rb 010011 | 00000 Ra Rb TN1TAO FSL Rb[28:31] := Ra (control write)
00000 MSR[C] := FSL_M_Full if N = 1
FADD Rd,Ra,Rb 010110 Rd Ra Rb | 00000000000 | Rd := Rb+Ra, float’
FRSUB Rd,Ra,Rb 010110 Rd Ra Rb | 00010000000 | Rd := Rb-Ra, float’
FMUL Rd,Ra,Rb 010110 Rd Ra Rb 00100000000 | Rd := Rb*Ra, float!
FDIV Rd,Ra,Rb 010110 Rd Ra Rb | 00110000000 | Rd := Rb/Ra, float!
FCMP.UN Rd,Ra,Rb 010110 Rd Ra Rb | 01000000000 | Rd := 1 if (Rb = NaN or Ra = NaN,
float!) else
Rd:=0
FCMP.LT Rd,Ra,Rb 010110 Rd Ra Rb | 01000010000 | Rd := 1 if (Rb < Ra, float?) else
Rd:=0
FCMP.EQ Rd,Ra,Rb 010110 Rd Ra Rb | 01000100000 | Rd := 1 if (Rb = Ra, float') else
Rd:=0
FCMP.LE Rd,Ra,Rb 010110 Rd Ra Rb 01000110000 | Rd := 1 if (Rb <= Ra, float?) else
Rd:=0
FCMP.GT Rd,Ra,Rb 010110 Rd Ra Rb 01001000000 | Rd := 1 if (Rb > Ra, float!) else
Rd:=0
FCMP.NE Rd,Ra,Rb 010110 Rd Ra Rb 01001010000 | Rd := 1 if (Rb != Ra, float!) else
Rd:=0
FCMP.GE Rd,Ra,Rb 010110 Rd Ra Rb | 01001100000 | Rd := 1 if (Rb >= Ra, float") else
Rd:=0
FLT Rd,Ra 010110 Rd Ra 0 01010000000 | Rd := float (Ra)’
FINT Rd,Ra 010110 Rd Ra 0 01100000000 | Rd := int (Ra)’
FSQRT Rd,Ra 010110 Rd Ra 0 01110000000 | Rd := sqrt (Ra)’

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I

14

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=14

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
DADD Rd,Ra,Rb? 010110 Rd Ra Rb 10000000000 | Rd := Rb+Ra, double’
DRSUB Rd,Ra,Rb? 010110 Rd Ra Rb 10010000000 | Rd := Rb-Ra, double’
DMUL Rd,Ra,Rb? 010110 Rd Ra Rb 10100000000 | Rd := Rb*Ra, double’
DDIV Rd,Ra,Rb? 010110 Rd Ra Rb 10110000000 | Rd := Rb/Ra, double’
DCMP.UN Rd,Ra,Rb2 | 010110 Rd Ra Rb 11000000000 | Rd := 1 if (Rb = NaN or Ra = NaN,
double’) else Rd := 0
DCMP.LT Rd,Ra,Rb? 010110 Rd Ra Rb 11000010000 | Rd := 1 if (Rb < Ra, double) else
Rd:=0
DCMP.EQ Rd,Ra,Rb2 | 010110 Rd Ra Rb 11000100000 | Rd := 1 if (Rb = Ra, double) else
Rd:=0
DCMP.LE Rd,Ra,Rb? 010110 Rd Ra Rb 11000110000 | Rd := 1 if (Rb <= Ra, double) else
Rd:=0
DCMP.GT Rd,Ra,Rb2 | 010110 Rd Ra Rb 11001000000 | Rd := 1 if (Rb > Ra, double') else
Rd:=0
DCMP.NE Rd,Ra,Rb2 | 010110 Rd Ra Rb 11001010000 | Rd := 1 if (Rb != Ra, double) else
Rd:=0
DCMP.GE Rd,Ra,Rb2 | 010110 Rd Ra Rb | 11001100000 | Rd := 1 if (Rb >= Ra, double’) else
Rd:=0
DBL Rd,Ra? 010110 Rd Ra 0 11010000000 | Rd := double (Ra)’
DLONG Rd,Ra? 010110 Rd Ra 0 11100000000 | Rd := long (Ra)’
DSQRT Rd,Ra? 010110 Rd Ra 0 11110000000 | Rd := dsqrt (Ra)’
MULI Rd,Ra,Imm 011000 Rd Ra Imm Rd := Ra * s(Imm)
BSRLI Rd,Ra,Imm 011001 Rd Ra 00LO0000000 & Rd: =0 & (Ra >> Immb5)
Imm5
BSRAI Rd,Ra,Imm 011001 Rd Ra 00LO0010000 & Rd := s(Ra >> Imm5)
Imm5
BSLLI Rd,Ra,Imm 011001 Rd Ra 00LO0100000 & Rd := (Ra << Imm5) & 0
Immb5
BSEFI Rd,Ra, 011001 Rd Ra 01L00 & Rd[0:31-Immy] := 0
Immyy, Immg Immy & 0 & Immg | Rd[32-Immyy:31] := (Ra >> Imms)
BSIFI Rd,Ra, 011001 Rd Ra 10L00 & M := (Oxffffffff << (Immyy, + 1)) xor
Width,Immg Immyy & 0 & Immg | (Oxffffffff << Immg)

Rd := ((Ra << Immg) and M) xor

(Rd and M)

Immyy := Immg + Width - 1

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I

15

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=15

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
ADDLI Rd,Imm2 011010 | Rd | 00000 Imm Rd[0:63] := s(Imm) + Rd[0:63]
RSUBLI Rd,Imm? 011010 | Rd 00001 Imm Rd[0:63] := s(Imm) + Rd[0:63]
ADDLIC Rd,Imm?2 011010 | Rd | 00010 Imm Rd[0:63] := s(Imm) + Rd[0:63] + C
RSUBLIC Rd,Imm?2 011010 Rd 00011 Imm Rd[0:63] := s(Imm) + Rd[0:63] + C
ADDLIK Rd,Imm? 011010 | Rd | 00100 Imm Rd[0:63] := s(Imm) + Rd[0:63]
RSUBLIK Rd,Imm? 011010 | Rd 00101 Imm Rd[0:63] := s(Imm) + Rd[0:63]
ADDLIKC Rd,Imm?2 011010 | Rd | 00110 Imm Rd[0:63] := s(Imm) + Rd[0:63] + C
RSUBLIKC Rd,Imm2 | 011010 Rd 00111 Imm Rd[0:63] := s(Imm) + Rd[0:63] + C
ORLI Rd,Imm? 011010 Rd 10000 Imm Rd[0:63] := s(Imm) or Rd[0:63]
ANDLI Rd,Imm?2 011010 | Rd 10001 Imm Rd[0:63] := s(Imm) and Rd[0:63]
XORLI Rd,Imm? 011010 | Rd 10010 Imm Rd[0:63] := s(Imm) xor Rd[0:63]
ANDNLI Rd,Imm?2 011010 | Rd 10011 Imm Rd[0:63] := s(Imm) and Rd[0:63]
TNEAGET Rd,FSLx 011011 Rd 00000 ONOTAEO00000 & Rd := FSLx (data read, blocking if
FSLx N = 0)
MSRIFSL] := 1 if (FSLx_S_Control = 1)
MSRIC] := not FSLx_S_Exists if N = 1
TNAPUT Ra,FSLx 011011 | 00000 | Ra 1NOTA0000000 & | FSLx := Ra (data write, block if N = 0)
FSLx MSRIC] := FSLx_M_Full if N = 1
TNECAGET Rd,FSLx | 011011 Rd | 00000 | ON1TAE000000 & | Rd := FSLx (control read, block if N =
FSLx 0)
MSR[FSL] := 1 if (FSLx_S_Control = 0)
MSRIC] := not FSLx_S_Exists if N = 1
TNCAPUT Ra,FSLx 011011 | 00000 | Ra 1N1TA0000000 & | FSLx := Ra (control write, block if N =
FSLx 0)
MSRIC] := FSLx_M_Full if N = 1
OR Rd,Ra,Rb 100000 | Rd Ra Rb | 00000000000 | Rd := Ra or Rb
PCMPBF Rd,Ra,Rb 100000 | Rd Ra Rb | 10000000000 | Rd := 1 if (Rb[0:7] = Ra[0:7]) else
Rd := 2 if (Rb[8:15] = Ra[8:15]) else
Rd := 3 if (Rb[16:23] = Ra[16:23]) else
Rd := 4 if (Rb[24:31] = Ra[24:31]) else
Rd:=0
AND Rd,Ra,Rb 100001 Rd Ra Rb | 00000000000 | Rd := Ra and Rb
XOR Rd,Ra,Rb 100010 | Rd Ra Rb | 00000000000 | Rd := Ra xor Rb

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 16

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=16

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)
Type A 0-5 6-10 | 11-15 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31

PCMPEQ Rd,Ra,Rb 100010 Rd Ra Rb | 10000000000 | Rd := 1 if (Rb = Ra) else
Rd:=0

ANDN Rd,Ra,Rb 100011 Rd Ra Rb | 00000000000 | Rd := Ra and Rb

PCMPNE Rd,Ra,Rb 100011 Rd Ra Rb | 10000000000 | Rd := 1 if (Rb != Ra) else
Rd:=0

SRA Rd,Ra 100100 Rd Ra 0000000000000001 | Rd :=s(Ra >> 1)
C:=Ra[31]

SRC Rd,Ra 100100 Rd Ra 0000000000100001 |Rd:=C & (Ra >> 1)
C := Ra[31]

SRL Rd,Ra 100100 Rd Ra 0000000001000001 | Rd:=0 & (Ra >> 1)
C := Ra[31]

SEXT8 Rd,Ra 100100 Rd Ra 0000000001100000 | Rd := s(Ra[24:31])

SEXT16 Rd,Ra 100100 Rd Ra 0000000001100001 | Rd := s(Ra[16:31])

SEXTL32 Rd,Ra? 100100 Rd Ra 0000000001100010 | Rd := s(Ra[32:63])

CLZ Rd, Ra 100100 Rd Ra 0000000011100000 | Rd = clz(Ra)

SWAPB Rd, Ra 100100 Rd Ra 0000000111100000 | Rd = (Ra)[24:31, 16:23, 8:15, 0:7]

SWAPH Rd, Ra 100100 Rd Ra 0000000111100010 | Rd = (Ra)[16:31, 0:15]

WIC Ra,Rb 100100 | 00000 Ra Rb | 00001101000 | ICache_Line[Ra >> 4].Tag := O if
(C_ICACHE LINE LEN = 4)
ICache_Line[Ra >> 5].Tag := O if
(C_ICACHE LINE LEN = 8)
ICache_Line[Ra >> 6].Tag := 0 if
(C_ICACHE LINE LEN = 16)

WDC Ra,Rb 100100 | 00000 Ra Rb 00001100100 | Cache line is cleared, discarding
stored data.
DCache_ Line[Ra >> 4].Tag := 0 if
(C_DCACHE_LINE_LEN = 4)
DCache_Line[Ra >> 5].Tag := 0 if
(C_DCACHE _LINE LEN = 8)
DCache_Line[Ra >> 6].Tag := 0 if
(C_DCACHE LINE LEN = 16)

WDC.FLUSH Ra,Rb 100100 | 00000 Ra Rb | 00001110100 | Cache line is flushed, writing stored

data to memory, and then cleared.
Used when
C DCACHE USE WRITEBACK = 1.

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 17

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=17

AMD ¢

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)

Chapter 2: MicroBlaze Architecture

Type A

0-5

6-10

11-15

16-20 21-31

Type B

0-5

6-10

11-15

16-31

Semantics

WDC.CLEAR Ra,Rb

100100

00000

Ra

Rb | 00001100110

Cache line with matching address is
cleared, discarding stored data. Used
when
C_DCACHE_USE _WRITEBACK = 1.

WDC.CLEAR.EA
Ra,Rb

100100

00000

Ra

Rb | 00011100110

Cache line with matching extended
address Ra & Rb is cleared. Used

when
C_DCACHE_USE_WRITEBACK = 1.

MTS Sd,Ra

100101

00000

Ra

11 & Sd

SPR[Sd] := Ra, where:

SPR[0x0001] is MSR
SPR[0x0007] is FSR
SPR[0x0800] is SLR
SPR[0x0802] is SHR
SPR[0x1000] is PID
SPR[0x1001] is ZPR
SPR[0x1002] is TLBX
SPR[0x1003] is TLBLOJ[LSH]
SPR[0x1004] is TLBHI
SPR[0x1005] is TLBSX

MTSE Sd,Ra

100101

01000

Ra

11 & Sd

SPR[Sd} := Ra, where:

SPR[0x1003] is TLBLO[MSH]

MFS Rd,Sa

100101

Rd

00000

10 & Sa

Rd := SPR[Sa], where:

SPR[0x0000] is PC
SPR[0x0001] is MSR
SPR[0x0003] is EAR[LSH]
SPR[0x0005] is ESR
SPR[0x0007] is FSR
SPR[0x000B] is BTR
SPR[0x000D] is EDR
SPR[0x0800] is SLR
SPR[0x0802] is SHR
SPR[0x1000] is PID
SPR[0x1001] is ZPR
SPR[0x1002] is TLBX
SPR[0x1003] is TLBLO[LSH]
SPR[0x1004] is TLBHI

SPR[0x2000-2008B] is PVRI[O-
12][LSH]

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I

18

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=18

AMD ¢

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)

Chapter 2: MicroBlaze Architecture

Type A 0-5 6-10 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
MFSE Rd,Sa 100101 Rd 01000 10 & Sa Rd := SPR[Sa][MSH], where:
SPR[0x0003] is EAR[MSH]
SPR[0x1003] is TLBLO[MSH]
- SPR[0x2006-2009] is PVR[6-
9][MSH]
MSRCLR Rd,Imm 100101 Rd 10001 0 & Imm15 Rd := MSR
MSR := MSR and Imm15
MSRSET Rd,Imm 100101 Rd 10000 0 & Imm15 Rd := MSR
MSR := MSR or Imm15
BR Rb 100110 | 00000 | 00000 Rb | 00000000000 | PC:= PC + Rb
BRD Rb 100110 | 00000 | 10000 Rb | 00000000000 | PC:=PC +Rb
BRLD Rd,Rb 100110 Rd 10100 Rb | 00000000000 | PC:=PC +Rb
Rd := PC
BRA Rb 100110 | 00000 | 01000 Rb | 00000000000 | PC:= Rb
BRAD Rb 100110 | 00000 | 11000 Rb | 00000000000 | PC:= Rb
BRALD Rd,Rb 100110 Rd 11100 Rb | 00000000000 | PC:= Rb
Rd := PC
BRK Rd,Rb 100110 Rd 01100 Rb | 00000000000 | PC:= Rb
Rd := PC
MSRI[BIP] := 1
BEQ Ra,Rb 100111 | OLOOO Ra Rb | 00000000000 | PC:= PC + Rbif Ra =
BNE Ra,Rb 100111 | OLOO1 Ra Rb | 00000000000 | PC:=PC +RbifRa!=0
BLT Ra,Rb 100111 | OLO10 Ra Rb | 00000000000 | PC:=PC + RbifRa<0
BLE Ra,Rb 100111 | OLO11 Ra Rb | 00000000000 | PC:=PC + RbifRa <=0
BGT Ra,Rb 100111 | OL100 Ra Rb | 00000000000 | PC:= PC + RbifRa >0
BGE Ra,Rb 100111 | OL101 Ra Rb | 00000000000 | PC:=PC +RbifRa>=0
BEQD Ra,Rb 100111 | 1LOOO Ra Rb | 00000000000 | PC:=PC+ RbifRa=0
BNED Ra,Rb 100111 | 1LOO1 Ra Rb | 00000000000 | PC:=PC +RbifRa!=0
BLTD Ra,Rb 100111 | 1LO10 Ra Rb | 00000000000 | PC:= PC + RbifRa <0
BLED Ra,Rb 100111 | 1LO11 Ra Rb | 00000000000 | PC:=PC +RbifRa <=0
BGTD Ra,Rb 100111 | 1L100 Ra Rb | 00000000000 | PC:=PC + RbifRa >0
BGED Ra,Rb 100111 | 1L101 Ra Rb | 00000000000 | PC:=PC +RbifRa>=0
ORI Rd,Ra,Imm 101000 Rd Ra Imm Rd := Ra or s(Imm)

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I

19

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=19

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
ANDI Rd,Ra,Imm 101001 Rd Ra Imm Rd := Ra and s(Imm)
XORI Rd,Ra,Imm 101010 Rd Ra Imm Rd := Ra xor s(Imm)
ANDNI Rd,Ra,Imm 101011 | Rd Ra Imm Rd := Ra and s(Imm)
IMM Imm 101100 | 00000 | 00000 Imm ImmI[0:15] := Imm
IMML Imm?242 101100 10 Imm24 Imm[24:47] := Imm24
RTSD Ra,Imm 101101 | 10000 Ra Imm PC := Ra + s(Imm)
RTID Ra,Imm 101101 | 10001 Ra Imm PC:= Ra + s(Imm)
MSR[IE] := 1
RTBD Ra,Imm 101101 | 10010 Ra Imm PC := Ra + s(Imm)
MSR[BIP] := 0
RTED Ra,Imm 101101 | 10100 Ra Imm PC := Ra + s(Imm)
MSR[EE] := 1, MSR[EIP] := 0
ESR:=0
BRI Imm 101110 | 00000 | 00000 Imm PC := PC + s(Imm)
MBAR Imm 101110 Imm 00010 | 0000000000000100 | PC:= PC + 4; Wait for memory
accesses.
BRID Imm 101110 | 00000 | 10000 Imm PC:= PC + s(Imm)
BRLID Rd,Imm 101110 Rd 10100 Imm PC:= PC + s(Imm)
Rd := PC
BRAI Imm 101110 | 00000 | 01000 Imm PC := s(Imm)
BRAID Imm 101110 | 00000 | 11000 Imm PC := s(Imm)
BRALID Rd,Imm 101110 Rd 11100 Imm PC := s(Imm)
Rd := PC
BRKI Rd,Imm 101110 Rd 01100 Imm PC := s(Imm)
Rd := PC
MSR[BIP] := 1
BEQI Ra,Imm 101111 | OLOOO Ra Imm PC:= PC + s(Imm) if Ra =0
BNEI Ra,Imm 101111 | OLOO1 Ra Imm PC:=PC + s(Imm)ifRa!=0
BLTI Ra,Imm 101111 | OLO10 Ra Imm PC:= PC + s(Imm) ifRa < 0
BLEI Ra,Imm 101111 | OLO11 Ra Imm PC := PC + s(Imm) if Ra <=0
BGTI Ra,Imm 101111 | OL100 Ra Imm PC := PC + s(Imm) if Ra > 0
BGEI Ra,Imm 101111 | OL101 Ra Imm PC:= PC + s(Imm) if Ra >= 0

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

| Send Feedback I

20

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=20

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31

BEQID Ra,Imm 101111 | 1LO0O Ra Imm PC:= PC + s(Imm) ifRa =0
BNEID Ra,Imm 101111 | 1LOO1 Ra Imm PC:=PC + s(Imm)ifRa!=0
BLTID Ra,Imm 101111 | 1LO10 Ra Imm PC:= PC + s(Imm) if Ra < 0
BLEID Ra,Imm 101111 | 1LO11 Ra Imm PC:= PC + s(Imm) if Ra <=0
BGTID Ra,Imm 101111 | 1L100 Ra Imm PC := PC + s(Imm) if Ra > 0
BGEID Ra,Imm 101111 | 1L101 Ra Imm PC := PC + s(Imm) if Ra >=0
LBU Rd,Ra,Rb 110000 Rd Ra Rb | 00000000000 | Addr := Ra + Rb
LBUR Rd,Ra,Rb 01000000000 | Rd[0:23]:= 0

Rd[24:31] := *Addr[0:7]
LBUEA Rd,Ra,Rb 110000 Rd Ra Rb | 00010000000 | Addr:= Ra & Rb

Rd[0:23]:=0

Rd[24:31] := *Addr[0:7]
LHU Rd,Ra,Rb 110001 Rd Ra Rb | 00000000000 | Addr := Ra + Rb
LHUR Rd,Ra,Rb 01000000000 | Rd[0:15] := O

Rd[16:31] := *Addr[0:15]
LHUEA Rd,Ra,Rb 110001 Rd Ra Rb | 00010000000 | Addr := Ra & Rb

Rd[0:15] := O

Rd[16:31] := *Addr[0:15]
LW Rd,Ra,Rb 110010 Rd Ra Rb | 00000000000 | Addr:= Ra + Rb
LWR Rd,Ra,Rb 01000000000 | Rrq := *addr
LWX Rd,Ra,Rb 110010 Rd Ra Rb | 10000000000 | Addr := Ra + Rb

Rd := *Addr

Reservation := 1
LWEA Rd,Ra,Rb 110010 Rd Ra Rb | 00010000000 | Addr := Ra & Rb

Rd := *Addr
LL Rd,Ra,Rb? 110010 Rd Ra Rb 00100000000 | Addr := Ra[0:63] + Rb[0:63]
LLR Rd,Ra,Rb2 01100000000 | Rd[0:63] := *Addr[0:63]
SB Rd,Ra,Rb 110100 Rd Ra Rb | 00000000000 | Addr := Ra + Rb
SBR Rd,Ra,Rb 01000000000 | *Addr[0:8] := Rd[24:31]
SBEA Rd,Ra,Rb 110100 Rd Ra Rb | 00010000000 | Addr := Ra & Rb

*Addr[0:8] := Rd[24:31]
SH Rd,Ra,Rb 110101 Rd Ra Rb | 00000000000 | Addr := Ra + Rb
SHR Rd,Ra,Rb 01000000000 | *Addr[0:16] := Rd[16:31]

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

| Send Feedback I 21

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=21

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-7: MicroBlaze Instruction Set Summary (Cont’d)
Type A 0-5 6-10 | 11-15 | 16-20 21-31
Semantics
Type B 0-5 6-10 | 11-15 16-31
SHEA Rd,Ra,Rb 110101 Rd Ra Rb | 00010000000 | Addr := Ra & Rb
*Addr[0:16] := Rd[16:31]
SW Rd,Ra,Rb 110110 Rd Ra Rb | 00000000000 | Addr:= Ra + Rb
SWR Rd,Ra,Rb 01000000000 | xpddr := Rd
SWX Rd,Ra,Rb 110110 Rd Ra Rb 10000000000 | Addr := Ra + Rb
*Addr := Rd if Reservation = 1
Reservation := 0
SWEA Rd,Ra,Rb 110110 Rd Ra Rb | 00010000000 | Addr := Ra & Rb
*Addr := Rd
SL Rd,Ra,Rb? 110110 Rd Ra Rb | 00100000000 | Addr := Ra[0:63] + Rb[0:63]
SLR Rd,Ra,Rb? 01100000000 | *Addr[0:63] := Rd[0:63]
LBUI Rd,Ra,Imm 111000 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:23]:= 0
Rd[24:31] := *Addr[0:7]
LHUI Rd,Ra,Imm 111001 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:15]:= 0
Rd[16:31] := *Addr[0:15]
LWI Rd,Ra,Imm 111010 Rd Ra Imm Addr := Ra + s(Imm)
Rd := *Addr
LLI Rd,Ra,Imm? 111011 Rd Ra Imm Addr := Ra[0:63] + s(Imm)
Rd[0:63] := *Addr[0:63]
SBI Rd,Ra,Imm 111100 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:7] := Rd[24:31]
SHI Rd,Ra,Imm 111101 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:15] := Rd[16:31]
SWI Rd,Ra,Imm 111110 Rd Ra Imm Addr := Ra + s(Imm)
*Addr := Rd
SLI Rd,Ra,Imm? 111111 Rd Ra Imm Addr := Ra[0:63] + s(Imm)
*Addr[0:63] := Rd[0:63]

1. Due to the many different corner cases involved in floating-point arithmetic, only the normal behavior is described. A full
description of the behavior can be found in Chapter 5, “MicroBlaze Instruction Set Architecture.”

2. Only available with 64-bit MicroBlaze.

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 22

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=22

AM D n Chapter 2: MicroBlaze Architecture

Semaphore Synchronization

The LWX and SWX instructions are used to implement common semaphore operations,
including test and set, compare and swap, exchange memory, and fetch and add. They are
also used to implement spinlocks.

These instructions are typically used by system programs and are called by application
programs as needed.

Generally, a program uses LWX to load a semaphore from memory, causing the reservation
to be set (the processor maintains the reservation internally). The program can compute a
result based on the semaphore value and conditionally store the result back to the same
memory location using the SWX instruction. The conditional store is performed based on
the existence of the reservation established by the preceding LWX instruction. If the
reservation exists when the store is executed, the store is performed and MSR[C] is cleared
to 0. If the reservation does not exist when the store is executed, the target memory
location is not modified and MSR[C] is set to 1.

If the store is successful, the sequence of instructions from the semaphore load to the
semaphore store appear to be executed atomically—no other device modified the
semaphore location between the read and the update. Other devices can read from the
semaphore location during the operation.

For a semaphore operation to work properly, the LWX instruction must be paired with an
SWX instruction, and both must specify identical addresses.

The reservation granularity in MicroBlaze is a word. For both instructions, the address must
be word aligned. No unaligned exceptions are generated for these instructions.

The conditional store is always attempted when a reservation exists, even if the store
address does not match the load address that set the reservation.

Only one reservation can be maintained at a time. The address associated with the
reservation can be changed by executing a subsequent LWX instruction.

The conditional store is performed based upon the reservation established by the last LWX
instruction executed. Executing an SWX instruction always clears a reservation held by the
processor, whether the address matches that established by the LWX or not.

Reset, interrupts, exceptions, and breaks (including the BRK and BRKI instructions) all clear
the reservation.

The following provides general guidelines for using the LWX and SWX instructions:

« The LWX and SWX instructions should be paired and use the same address.

« An unpaired SWX instruction to an arbitrary address can be used to clear any
reservation held by the processor.

MicroBlaze Processor Reference Guide Send Feedback 23
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=23

AMD ¢

Chapter 2: MicroBlaze Architecture

A conditional sequence begins with an LWX instruction. It can be followed by memory
accesses and/or computations on the loaded value. The sequence ends with an SWX
instruction. In most cases, failure of the SWX instruction should cause a branch back to
the LWX for a repeated attempt.

An LWX instruction can be left unpaired when executing certain synchronization
primitives if the value loaded by the LWX is not zero. An implementation of Test and Set

exemplifies this:

loop: 1lwx r5,r3,r0 ; load and reserve
bnei r5,next ; branch if not equal to zero
addik r5,r5,1 ; increment wvalue
SWX r5,r3,r0 ; try to store non-zero value
addic r5,r0,0 ; check reservation
bnei r5, loop ; loop if reservation lost
next:

» Performance can be improved by minimizing looping on an LWX instruction that fails to
return a desired value. Performance can also be improved by using an ordinary load
instruction to do the initial value check. An implementation of a spinlock exemplifies

this:

loop: 1w r5,r3,r0 ; load the word
bnei r5, loop ; loop back if word not equal to 0
lwx r5,r3,r0 ; try reserving again
bnei r5, loop ; likely that no branch is needed
addik r5,r5,1 ; increment value
SWX r5,r3,r0 ; try to store non-zero value
addic r5,r0,0 ; check reservation
bnei r5, loop ; loop if reservation lost

« Minimizing the looping on an LWX/SWX instruction pair increases the likelihood that
forward progress is made. The old value should be tested before attempting the store.
If the order is reversed (store before load), more SWX instructions are executed and
reservations are more likely to be lost between the LWX and SWX instructions.

Self-modifying Code

When using self-modifying code software must ensure that the modified instructions have
been written to memory prior to fetching them for execution. There are several aspects to

consider:

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

24

l Send Feedback I

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=24

AM D n Chapter 2: MicroBlaze Architecture

« The instructions to be modified could already have been fetched prior to modification:
Into the instruction prefetch buffer

Into the instruction cache, if it is enabled

Into a stream buffer, if instruction cache stream buffers are used

. Into the instruction cache, and then saved in a victim buffer, if victim buffers are
used.

To ensure that the modified code is always executed instead of the old unmodified
code, software must handle all these cases.

« If one or more of the instructions to be modified is a branch, and the branch target
cache is used, the branch target address might have been cached.

To avoid using the cached branch target address, software must ensure that the branch
target cache is cleared prior to executing the modified code.

« The modified instructions might not have been written to memory prior to execution:

. They might be en-route to memory, in temporary storage in the interconnect or the
memory controller.

. They might be stored in the data cache, if write-back cache is used.

. They might be saved in a victim buffer, if write-back cache and victim buffers are
used.

Software must ensure that the modified instructions have been written to memory before
being fetched by the processor.

The annotated code below shows how each of the above issues can be addressed. This code
assumes that both instruction cache and write-back data cache is used. If not, the
corresponding instructions can be omitted.

The following code exemplifies storing a modified instruction:

r5 = new instruction
r6 = physical instruction address
wdec.flush r6,r0 flush write-back data cache line

swi r5,r6,0 ;
i
i

mbar 1 ; ensure new instruction is written to memory
;
;
H

wic r7,xr0 invalidate line, empty stream & victim buffers
r7 = virtual instruction address
mbar 2 empty prefetch buffer, clear branch target cache

The physical and virtual addresses above are identical, unless MMU virtual mode is used. If
the MMU is enabled, the code sequences must be executed in real mode, because WIC and
WDC are privileged instructions. The first instruction after the code sequences above must
not be modified, because it might have been prefetched.

MicroBlaze Processor Reference Guide Send Feedback 25
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=25

AM D n Chapter 2: MicroBlaze Architecture

Registers

MicroBlaze has an orthogonal instruction set architecture. It has thirty-two 32-bit or 64-bit
general purpose registers and up to sixteen special purpose registers, depending on
configured options. The most significant bit of all registers is denoted as bit 0.

General Purpose Registers

The thirty-two 32-bit or 64-bit General Purpose Registers are numbered RO through R31.
The register file is reset on bit stream download (reset value is 0x00000000). The following
figure is a representation of a General Purpose Register and Table 2-8 provides a
description of each register and the register reset value (if existing).

When 64-bit MicroBlaze is enabled (c_paTa size = 64), the General Purpose Registers have
64 bits, otherwise they have 32 bits.

Note: The register file is not reset by the external reset inputs: Reset and Debug_Rst.

C_DATA_SIZE - 1

*
RO - R31

X19739-111417

Figure 2-2: RO-R31

Table 2-8: General Purpose Registers (R0-R31)

Bits! Name Description Reset Value
0:31 RO Always has a value of zero. Anything written to RO is 0x0
0:63 discarded

R1 through R13 | General purpose registers -

R14 Register used to store return addresses for interrupts. -

R15 General purpose register. Recommended for storing return -
addresses for user vectors.

R16 Register used to store return addresses for breaks. -

R17 If MicroBlaze is configured to support hardware -

exceptions, this register is loaded with the address of the
instruction following the instruction causing the HW
exception, except for exceptions in delay slots that use BTR
instead (see Branch Target Register (BTR)); if not, it is a
general purpose register.

R18 through R31 | General purpose registers. -

1. 64 bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise

See Table 4-2 for software conventions on general purpose register usage.

MicroBlaze Processor Reference Guide Send Feedback 26
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=26

AM D n Chapter 2: MicroBlaze Architecture

Special Purpose Registers

Program Counter (PC)

The program counter (PC) is the address of the execution instruction. It can be read with an
MFS instruction, but it cannot be written with an MTS instruction. When used with the MFS
instruction the PC register is specified by setting Sa = 0x0000. The following figure
illustrates the PC and Table 2-9 provides a description and reset value.

When 64-bit MicroBlaze is enabled (c_pata size = 64), the Program Counter has up to 64
bits, according to the c_aADDR sIzE parameter, otherwise it has 32 bits.

0 C_ADDR_SIZE -1 or 31

*

PC

X19740-111417

Figure 2-3: PC

Table 2-9: Program Counter (PC)

Bits! Name Description Reset Value
0:31 PC Program Counter C_BASE_VECTORS
0:C_ADDR_SIZE-1 Address of executing instruction, that is, “mfs r2 0"
stores the address of the mfs instruction itself in R2.

1. C_ADDR_SIZE bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

Machine Status Register (MSR)

The Machine Status Register contains control and status bits for the processor. It can be
read with an MFS instruction. When reading the MSR, the carry bit is replicated in the carry
copy bit. MSR can be written using either an MTs instruction or the dedicated MSRSET and
MSRCLR instructions.

When writing to the MSR using MSRSET or MSRCLR, the Carry bit takes effect immediately
and the remaining bits take effect one clock cycle later. When writing using MTS, all bits
take effect one clock cycle later. Any value written to the carry copy bit is discarded.

When used with an MTS or MFS instruction, the MSR is specified by setting Sx = 0x0001.
The following table illustrates the MSR register and Table 2-10 provides the bit description
and reset values.

MicroBlaze Processor Reference Guide Send Feedback 27
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=27

AM D n Chapter 2: MicroBlaze Architecture

32-bit MicroBlaze: C_DATA_SIZE = 32

0 17 |18 (1920|2122 |23 |24 |25 | 26|27 | 28 |29 30 |31

64-bit MicroBlaze: C_DATA_SIZE = 64

32 49 |50 |51 52|53 54|55 |56 |57 |58|59|60]|61|62|63
‘ ‘ FIf T FFFfF I F I T 014
CcC Reserved VMS VM UMS UM PVR EIP EE DCE DZO ICE FSL BIP C IE RES
X19741-111517

Figure 2-4: MSR

Table 2-10: Machine Status Register (MSR)

Bitsl Name Description Reset Value

0,32 | CC Arithmetic Carry Copy 0
Copy of the Arithmetic Carry. CC is always the same as bit C.

1:16 Reserved
2:48
17,49 | VMS Virtual Protected Mode Save 0

Only available when configured with an MMU
(if c USE MMU > 1 and C_AREA OPTIMIZED = 0 or 2)

Read/Write

18,50 | VM Virtual Protected Mode 0

0 = MMU address translation and access protection disabled, with
C_USE_MMU = 3 (Virtual). Access protection disabled with
C_USE_MMU = 2 (Protection)

1 = MMU address translation and access protection enabled, with
C_USE_MMU = 3 (Virtual). Access protection enabled, with
C_USE_MMU = 2 (Protection).

Only available when configured with an MMU

(if C USE MMU > 1 and C_AREA OPTIMIZED = 0 or 2)

Read/Write

19, 51 | UMS User Mode Save 0

Only available when configured with an MMU
(if . USE_MMU > 0 and C_AREA OPTIMIZED = 0 or 2)

Read/Write

20,52 | UM User Mode 0
0 = Privileged Mode, all instructions are allowed
1 = User Mode, certain instructions are not allowed

Only available when configured with an MMU
(if . USE_MMU > 0 and C_AREA OPTIMIZED = 0 or 2)

Read/Write

MicroBlaze Processor Reference Guide Send Feedback 28
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=28

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-10: Machine Status Register (MSR) (Cont’d)
Bitsl Name Description Reset Value
21,53 | PVR Processor Version Register exists Based on
0 = No Processor Version Register parameter
1 = Processor Version Register exists C_PVR
Read only
22,54 | EIP Exception In Progress 0
0 = No hardware exception in progress
1 = Hardware exception in progress
Only available if configured with exception support
(C_* EXCEPTION or C_USE MMU > 0)
Read/Write
23,55 | EE Exception Enable 0
0 = Hardware exceptions disabled?
1 = Hardware exceptions enabled
Only available if configured with exception support
(C_* EXCEPTION Of C_USE MMU > 0)
Read/Write
24,56 | DCE Data Cache Enable 0
0 = Data Cache disabled
1 = Data Cache enabled
Only available if configured to use data cache
(c_USE DCACHE = 1)
Read/Write
25,57 | DZO Division by Zero or Division Overflow3 0
0 = No division by zero or division overflow has occurred
1 = Division by zero or division overflow has occurred
Only available if configured to use hardware divider
(c_ use p1v=1)
Read/Write
26, 58 | ICE Instruction Cache Enable 0
0 = Instruction Cache disabled
1 = Instruction Cache enabled
Only available if configured to use instruction cache
(C_USE_ICACHE = 1)
Read/Write

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 29

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=29

AM D n Chapter 2: MicroBlaze Architecture

Table 2-10: Machine Status Register (MSR) (Cont’d)

Bitsl Name Description Reset Value

27,59 | FSL AXI4-Stream Error 0
0 = get or getd had no error

1 = get or getd control type mismatch

This bit is sticky, that is it is set by a get or getd instruction when a
control bit mismatch occurs. To clear it an MTS or MSRCLR instruction
must be used.

Only available if configured to use stream links
(C_FSL_LINKS > 0)

Read/Write

28, 60 | BIP Break in Progress 0

0 = No Break in Progress
1 = Break in Progress

Break Sources can be software break instruction or hardware break
from Ext Brk or Ext NM Brk pin.

Read/Write

29,61 | C Arithmetic Carry 0

0 = No Carry (Borrow)
1 = Carry (No Borrow)

Read/Write

30,62 | IE Interrupt Enable 0

0 = Interrupts disabled
1 = Interrupts enabled

Read/Write
31,63 | - Reserved 0

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

2. The MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data TLB Miss Exception, Instruction
TLB Miss Exception) cannot be disabled, and are not affected by this bit.

3. This bit is only used for integer divide-by-zero or divide overflow signaling. There is a floating point equivalent in
the FSR. The DZO-bit flags divide by zero or divide overflow conditions regardless if the processor is configured
with exception handling or not.

Exception Address Register (EAR)

The Exception Address Register stores the full load/store address that caused the exception
for the following:

« An unaligned access exception that specifies the unaligned access data address

« AnM _AXI DP exception that specifies the failing AXl4 data access address

« A data storage exception that specifies the (virtual) effective address accessed

« Aninstruction storage exception that specifies the (virtual) effective address read

« A data TLB miss exception that specifies the (virtual) effective address accessed

« Aninstruction TLB miss exception that specifies the (virtual) effective address read

MicroBlaze Processor Reference Guide Send Feedback 30
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=30

AMD ¢

Chapter 2: MicroBlaze Architecture

The contents of this register are undefined for all other exceptions. When read with the MFS
or MFSE instruction, the EAR is specified by setting Sa = 0x0003. The EAR register is
illustrated in the following figure and Table 2-11 provides bit descriptions and reset values.

With 32-bit MicroBlaze (parameter ¢c_pata size = 32) and extended data addressing is
enabled (parameter c_ADDR_SIZE > 32), the 32 least significant bits of the register are read
with the MFS instruction, and the most significant bits with the MFSE instruction.

With 64-bit MicroBlaze (parameter ¢ paTA S1zE = 64) the entire register can be read with

the MFS instruction.

0 C_ADDR_SIZE - 1
+
EAR
X19742-111517
Figure 2-5: EAR
Table 2-11: Exception Address Register (EAR)
Bits Name Description Reset Value
0:C_ADDR_SIZE-1 | EAR Exception Address Register 0

Exception Status Register (ESR)

The Exception Status Register contains status bits for the processor. When read with the
MES instruction, the ESR is specified by setting Sa = 0x0005. The ESR register is illustrated
in the following figure, Table 2-12 provides bit descriptions and reset values, and Table 2-13

provides the Exception Specific Status (ESS).

32-bit MicroBlaze: C_DATA_SIZE =32

19 | 20 26 |27 31
64-bit MicroBlaze: C_DATA_SIZE = 64
50 | 51 | 52 58 | 59 63
Reserved ESS DS ESS EC
X19743-111517
Figure 2-6: ESR

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 31

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=31

AM D n Chapter 2: MicroBlaze Architecture

Table 2-12: Exception Status Register (ESR)

MicroBlaze (C_DATA SIZE = 64), otherwise reserved.
For details refer to Table 2-13.
Read-only

Bitsl Name Description Reset Value
0:17 Reserved
0:49
-, 50 ESS Exception Specific Status, only available with 64-bit See Table 2-13

19, 51 DS Delay Slot Exception.

0 = not caused by delay slot instruction
1 = caused by delay slot instruction

Read-only
20:26 ESS Exception Specific Status See Table 2-13
52:58 For details refer to Table 2-13.
Read-only
27:31 EC Exception Cause 0
59:63 00000 = Stream exception
00001 = Unaligned data access exception
00010 = lllegal op-code exception
00011 = Instruction bus error exception
00100 = Data bus error exception
00101 = Divide exception
00110 = Floating point unit exception
00111 = Privileged instruction exception
00111 = Stack protection violation exception
10000 = Data storage exception
10001 = Instruction storage exception
10010 = Data TLB miss exception
10011 = Instruction TLB miss exception
Read-only
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.
Table 2-13: Exception Specific Status (ESS)
Ex(c:eptlon Bits! Name Description Reset Value
ause
Unaligned -, 50 L Long Access Exception 0
Data Access 0 = unaligned word or halfword access
1 = unaligned long access
20, 52 W Word Access Exception 0
0 = unaligned halfword access
1 = unaligned word access
21,53 S Store Access Exception 0
0 = unaligned load access
1 = unaligned store access
22:26 Rx Source/Destination Register 0
54:58 General purpose register used as source (Store) or
destination (Load) in unaligned access

MicroBlaze Processor Reference Guide Send Feedback 32
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=32

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-13: Exception Specific Status (ESS) (Cont’d)
Exception 1 _——

Cause Bits Name Description Reset Value
lllegal 20:26 Reserved 0
Instruction | 52:58
Instruction | 20, 52 ECC Exception caused by ILMB correctable or 0
bus error uncorrectable error

21:26 Reserved 0
53:58
Data bus 20, 52 ECC Exception caused by DLMB correctable or 0
error uncorrectable error
21:26 Reserved 0
53:58
Divide 20, 52 DEC Divide - Division exception cause 0
0 = Divide-By-Zero
1 = Division Overflow
21:26 Reserved 0
53:58
Floating 20:26 Reserved 0
point unit 52:58
Privileged 20:26 Reserved 0
instruction | 52:58
Stack 20:26 Reserved 0
protection 52:58
violation
Stream 20:22 Reserved 0
52:54
23:26 FSL AXI4-Stream index that caused the exception 0
55:58
Data 20, 52 DIZ Data storage - Zone protection 0
storage 0 = Did not occur
1 = Occurred
21,53 S Data storage - Store instruction 0
0 = Did not occur
1 = Occurred
22:26 Reserved 0
54:58
Instruction | 20, 52 DIZ Instruction storage - Zone protection 0
storage 0 = Did not occur
1 = Occurred
21:26 Reserved 0
53:58

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 33

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=33

AM D n Chapter 2: MicroBlaze Architecture

Table 2-13: Exception Specific Status (ESS) (Cont’d)

Exception 1 _——
Cause Bits Name Description Reset Value
Data TLB 20, 52 Reserved
LU 21,53 S Data TLB miss - Store instruction
0 = Did not occur
1 = Occurred
22:26 Reserved 0
54:58
Instruction | 20:26 Reserved 0
TLB miss 52:58

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Branch Target Register (BTR)

The Branch Target Register only exists if the MicroBlaze processor is configured to use
exceptions. The register stores the branch target address for all delay slot branch
instructions executed while MSR[EIP] = 0. If an exception is caused by an instruction in a
delay slot (that is, ESR[DS]=1), the exception handler should return execution to the address
stored in BTR instead of the normal exception return address stored in R17. When read with
the MFS instruction, the BTR is specified by setting Sa = 0x000B. The BTR register is
illustrated in the following figure and Table 2-14 provides bit descriptions and reset values.

When 64-bit MicroBlaze is enabled (c_pata size = 64), the Branch Target Register has up
to 64 bits, according to the c_apDR_s1zE parameter, otherwise it has 32 bits.

0 C_ADDR_SIZE - 1

*

BTR

X19744-111517

Figure 2-7: BTR

Table 2-14: Branch Target Register (BTR)

Bits! Name Description Reset Value
0:31 BTR Branch target address used by handler when returning 0x0
0:C_ADDR_SIZE-1 from an exception caused by an instruction in a delay slot.
Read-only

1. C_ADDR_SIZE bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

Floating-Point Status Register (FSR)

The Floating-Point Status Register contains status bits for the floating-point unit. It can be
read with an MFS, and written with an MTS instruction. When read or written, the register is
specified by setting Sa = 0x0007. The bits in this register are sticky — floating-point

MicroBlaze Processor Reference Guide Send Feedback 34
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=34

AM D n Chapter 2: MicroBlaze Architecture

instructions can only set bits in the register, and the only way to clear the register is by
using the MTS instruction. The following figure illustrates the FSR register and Table 2-15
provides bit descriptions and reset values.

32-bit MicroBlaze: C_DATA_SIZE = 32
0 27|28 | 29|30 31

64-bit MicroBlaze: C_DATA_SIZE = 64

0 59160 |61|62]| 63
f Frrrg

Reserved I0 Dz OF UF DO
X19745-111517

Figure 2-8: FSR

Table 2-15: Floating Point Status Register (FSR)

Bitsl Name Description Reset Value
0:26 Reserved undefined
0:58
27, 59 10 Invalid operation 0
28, 60 Dz Divide-by-zero 0
29, 61 OF Overflow 0
30, 62 UF Underflow 0
31, 63 DO Denormalized operand error 0

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Exception Data Register (EDR)

The Exception Data Register stores data read on an AXI4-Stream link that caused a stream
exception.

The contents of this register are undefined for all other exceptions. When read with the MFS
instruction, the EDR is specified by setting Sa = 0x000D. The following figure illustrates the
EDR register and Table 2-16 provides bit descriptions and reset values.

Note: The register is only implemented if C_FSL_LINKS is greater than 0 and C_FSL_EXCEPTION
is set to 1.

EDR

X19746-111517

Figure 2-9: EDR

MicroBlaze Processor Reference Guide Send Feedback 35
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=35

AM D n Chapter 2: MicroBlaze Architecture

Table 2-16: Exception Data Register (EDR)

Bits | Name Description Reset Value

0:31 EDR Exception Data Register 0x00000000

Stack Low Register (SLR)

The Stack Low Register stores the stack low limit use to detect stack overflow. When the
address of a load or store instruction using the stack pointer (register R1) as rA is less than
the Stack Low Register, a stack overflow occurs, causing a Stack Protection Violation
exception if exceptions are enabled in MSR.

When read with the MFS instruction, the SLR is specified by setting sa = 0xo0800.
Figure 2-10 illustrates the SLR register and Table 2-17 provides bit descriptions and reset
values.

When 64-bit MicroBlaze is enabled (c_paTa size = 64), the Stack Low Register has up to 64
bits, according to the ¢c_apprR_s1zE parameter, otherwise it has 32 bits.

Note: The register is only implemented if stack protection is enabled by setting the parameter
C _USE STACK PROTECTION to 1. If stack protection is not implemented, writing to the register has
no effect.

Note: Stack protection is not available when the MMU is enabled (C_USE_MMU > 0). With the MMU
page-based memory protection is provided through the UTLB instead.

0 C_ADDR_SIZE - 1

+

SLR

X19747-111517

Figure 2-10: SLR

Table 2-17: Stack Low Register (SLR)

Bitsl Name Description Reset Value

0:31 SLR Stack Low Register 0x0
0:C_ADDR_SIZE-1

1. C_ADDR_SIZE bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

Stack High Register (SHR)

The Stack High Register stores the stack high limit use to detect stack underflow. When the
address of a load or store instruction using the stack pointer (register R1) as rA is greater
than the Stack High Register, a stack underflow occurs, causing a Stack Protection Violation
exception if exceptions are enabled in MSR.

MicroBlaze Processor Reference Guide Send Feedback 36
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=36

AM D n Chapter 2: MicroBlaze Architecture

When read with the MFS instruction, the SHR is specified by setting Sa = 0x0802. The
following figure illustrates the SHR register and Table 2-18 provides bit descriptions and
reset values.

When 64-bit MicroBlaze is enabled (c_pata size = 64), the Stack High Register has up to
64 bits, according to the c_ADDR S1zE parameter, otherwise it has 32 bits.

Note: The register is only implemented if stack protection is enabled by setting the parameter
C_USE_STACK PROTECTION to 1. If stack protection is not implemented, writing to the register has
no effect.

Note: Stack protection is not available when the MMU is enabled (c_USE_MMU > 0). With the MMU
page-based memory protection is provided through the UTLB instead.

0 C_ADDR_SIZE - 1

+

SHR

X19748-111517

Figure 2-11: SHR

Table 2-18: Stack High Register (SHR)

Bitsl Name Description Reset Value

0:31 SHR Stack High Register All bits set to 1
0:C_ADDR_SIZE-1

1. C_ADDR_SIZE bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

Process Identifier Register (PID)

The Process Identifier Register is used to uniquely identify a software process during MMU
address translation. It is controlled by the c_use mmu configuration option on MicroBlaze.
The register is only implemented if ¢ USE_MMU is greater than 1 (User Mode) and

C_AREA_ OPTIMIZED is set to O (Performance) or 2 (Frequency).

When accessed with the MFS and MTS instructions, the PID is specified by setting Sa =
0x1000. The register is accessible according to the memory management special registers
parameter C_MMU TLB ACCESS.

PID is also used when accessing a TLB entry:

« When writing Translation Look-Aside Buffer High (TLBHI) the value of PID is stored in
the TID field of the TLB entry

¢ When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID

The following figure illustrates the PID register and Table 2-19 provides bit descriptions and
reset values.

MicroBlaze Processor Reference Guide Send Feedback 37
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=37

AMD ¢

32-bit MicroBlaze: C_DATA_SIZE = 32

Chapter 2:

MicroBlaze Architecture

0 24 31
64-bit MicroBlaze: C_DATA_SIZE = 64
0 56 63
RESERVED PID
Figure 2-12: PID
Table 2-19: Process ldentifier Register (PID)
Bitsl Name Description Reset Value
0:23 Reserved
0:55
24:31 | PID Used to uniquely identify a software process during MMU 0x00
56:63 address translation.
Read/Write

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Zone Protection Register (ZPR)

The Zone Protection Register is used to override MMU memory protection defined in TLB
entries. It is controlled by the c_use_mmu configuration option on MicroBlaze. The register
is only implemented if ¢ use_MMU is greater than 1 (User Mode), C_ AREA OPTIMIZED is set
to 0 (Performance) or 2 (Frequency), and if the number of specified memory protection
zones is greater than zero (C_MMU_ZONES > 0). The implemented register bits depend on the
number of specified memory protection zones (c_MMU zONES). When accessed with the
MEFS and MTS instructions, the ZPR is specified by setting Sa = 0x1001. The register is
accessible according to the memory management special registers parameter
C_MMU_TLB_ACCESS.

The following figure illustrates the ZPR register and Table 2-20 provides bit descriptions
and reset values.

32-bit MicroBlaze: C_DATA_SIZE = 32

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

64-bit MicroBlaze: C_DATA_SIZE = 64

32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

F 1 § F f f f & F fF f T f | T %

ZP0 zZP1 ZP2 ZP3 ZP4 ZP5 ZP6 ZP7 ZP8 ZP9 ZP10 ZP11 ZP12 ZP13 ZP14 ZP15

X19750-111517

Figure 2-13: ZPR

l Send Feedback I 38

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=38

AM D n Chapter 2: MicroBlaze Architecture

Table 2-20: Zone Protection Register (ZPR)

Bitsl | Name Description Reset Value
0:1 ZP0 Zone Protect 0x0
2:3 ZP1 User mode (MSR[UM] = 1):

00 = Override V in TLB entry. No access to the page is allowed
30:31 | ZP15 01 = No override. Use V, WR and EX from TLB entry

10 = No override. Use V, WR and EX from TLB entry

11 = Override WR and EX in TLB entry. Access the page as writable
and executable

32:33 | ZPO Privileged mode (MSR[UM] = 0):

34:35 | ZP1 00 = No override. Use V, WR and EX from TLB entry

01 = No override. Use V, WR and EX from TLB entry

62:63 | ZP15 10 = Override WR and EX in TLB entry. Access the page as writable
and executable

11 = Override WR and EX in TLB entry. Access the page as writable
and executable

Read/Write
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Translation Look-Aside Buffer Low Register (TLBLO)

The Translation Look-Aside Buffer Low Register is used to access MMU Unified Translation
Look-Aside Buffer (UTLB) entries. It is controlled by the ¢_use_mMMmu configuration option on
MicroBlaze. The register is only implemented if c_ Use_mmu is greater than 1 (User Mode),
and c_AREA OPTIMIZED is set to O (Performance) or 2 (Frequency). When accessed with the
MFS and MTS instructions, the TLBLO is specified by setting Sa = 0x1003.

When reading or writing TLBLO, the UTLB entry indexed by the TLBX register is accessed.
The register is readable according to the memory management special registers parameter
C_MMU_TLB_ACCESS.

When the MMU Physical Address Extension (PAE) is enabled (parameters ¢ DATA SI1zE = 32,
C_USE _MMU = 3 and C_ADDR_SIZE > 32), the 32 least significant bits of TLBLO are accessed
with the MFS and MTS instructions, and the most significant bits with the MFSE and MTSE
instruction. When writing the register with PAE enabled, the most significant bits must be
written first.

With 64-bit MicroBlaze (parameter c_DaTA s1zE = 64) the entire register can be read with
the MFS instruction.

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBLO entries).

Note: The UTLB is not reset by the external reset inputs: Reset and Debug_Rst. This means that
the entire UTLB must be initialized after reset, to avoid any stale data.

The following figure illustrates the TLBLO register and Table 2-21 provides bit descriptions
and reset values. When PAE is enabled the RPN field of the register is extended according

MicroBlaze Processor Reference Guide Send Feedback 39
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=39

AM D n Chapter 2: MicroBlaze Architecture

to the c_ADDR SIZE parameter up to 54 bits to be able to hold up to a 64-bit physical

address.

32-bit MicroBlaze: (C_ADDR_SIZE = 32 or C_USE_MMU = 3) and (C_DATA_SIZE = 32):

0 22 23 | 24 28 | 29 | 30 | 31
PAE or 64-bit MicroBlaze: (C_ADDR_SIZE > 32 and C_USE_MMU = 3) or (C_DATA_SIZE = 64) (n = C_ADDR_SIZE):
0 n-10 n-9 |n-8 n-4 n-3 n-2 n-1
RPN EX WR ZSEL w | M G
X19751-111517
Figure 2-14: TLBLO
Table 2-21: Translation Look-Aside Buffer Low Register (TLBLO)
Bitsl | Name Description Reset Value
0:21 RPN Real Page Number or Physical Page Number 0x000000
0:n-11 When a TLB hit occurs, this field is read from the TLB entry and is

Only defined when C_USE_MMU=3 (Virtual).

used to form the physical address. Depending on the value of the
SIZE field, some of the RPN bits are not used in the physical address.
Software must clear unused bits in this field to zero.

protection register (ZPR).

overriding the TLB V (valid) field.
Read/Write

n-8:n-5 This field selects one of 16 zone fields (Z0-Z15) from the zone-

Read/Write
22 EX Executable 0
n-10 When bit is set to 1, the page contains executable code, and
instructions can be fetched from the page. When bit is cleared to 0,
instructions cannot be fetched from the page. Attempts to fetch
instructions from a page with a clear EX bit cause an instruction-
storage exception.
Read/Write
23 WR Writable 0
n-9 When bit is set to 1, the page is writable and store instructions can
be used to store data at addresses within the page.
When bit is cleared to 0, the page is read-only (not writable).
Attempts to store data into a page with a clear WR bit cause a data
storage exception.
Read/Write
24:27 ZSEL Zone Select 0x0

For example, if ZSEL 0x5, zone field Z5 is selected. The selected ZPR
field is used to modify the access protection specified by the TLB
entry EX and WR fields. It is also used to prevent access to a page by

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 40

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=40

AM D n Chapter 2: MicroBlaze Architecture

Table 2-21: Translation Look-Aside Buffer Low Register (TLBLO) (Cont’d)

Bitsl | Name Description Reset Value
28 w Write Through 0/1
n-4 When the parameter C DCACHE_USE_WRITEBACK is set to 1, this

bit controls caching policy. A write-through policy is selected when
set to 1, and a write-back policy is selected otherwise.

This bit is fixed to 1, and write-through is always used, when
C_DCACHE USE_WRITEBACK is cleared to 0.

Read/Write
29 Inhibit Caching 0
n-3 When bit is set to 1, accesses to the page are not cached (caching is

inhibited).

When cleared to 0, accesses to the page are cacheable.

Read/Write
30 M Memory Coherent 0
n-2 This bit is fixed to 0, because memory coherence is not implemented

on MicroBlaze.

Read Only
31 G Guarded 0
n-1 When bit is set to 1, speculative page accesses are not allowed

(memory is guarded).
When cleared to 0, speculative page accesses are allowed.

The G attribute can be used to protect memory-mapped I/O devices
from inappropriate instruction accesses.

Read/Write

1. The bit index n = c_ADDR_SIZE applies when PAE or 64-bit MicroBlaze is enabled.

Translation Look-Aside Buffer High Register (TLBHI)

The Translation Look-Aside Buffer High Register is used to access MMU Unified Translation
Look-Aside Buffer (UTLB) entries. It is controlled by the ¢_use_mmu configuration option on
MicroBlaze. The register is only implemented if c_USE_MMU is greater than 1 (User Mode),
and ¢_AREA OPTIMIZED is set to O (Performance) or 2 (Frequency). When accessed with the
MEFES and MTS instructions, the TLBHI is specified by setting Sa = 0x1004. When reading or
writing TLBHI, the UTLB entry indexed by the TLBX register is accessed.

The register is readable according to the memory management special registers parameter
C_MMU TLB_ACCESS.

PID is also used when accessing a TLB entry:

« When writing TLBHI the value of PID is stored in the TID field of the TLB entry
« When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBHI entries).

MicroBlaze Processor Reference Guide Send Feedback 41
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=41

AM D n Chapter 2: MicroBlaze Architecture

When 64-bit MicroBlaze is enabled (c_pata size = 64), TLBHI has up to 64 bits, according
to the c_apprR_s1zE parameter, otherwise it has 32 bits.

Note: The UTLB is not reset by the external reset inputs: Reset and Debug_Rst.

The following figure illustrates the TLBHI register and Table 2-22 provides bit descriptions
and reset values.

32-bit MicroBlaze: C_DATA_SIZE = 32:

0 22 25126 |27 |28 31

64-bit MicroBlaze: C_DATA_SIZE = 64 (n = C_ADDR_SIZE):

0 n-10 n-7 | n-6 | n-5 | n-4 n-1
3 F F 1 f 1
TAG SIZE V E U0 Reserved

X19752-020618

Figure 2-15: TLBHI

Table 2-22: Translation Look-Aside Buffer High Register (TLBHI)

Bits?! Name Description Reset Value
0:21 TAG TLB-entry tag 0x0
O:n-11 Is compared with the page number portion of the virtual memory

address under the control of the SIZE field.

Read/Write
22:24 SIZE Size 000
n-10:n-8 Specifies the page size. The SIZE field controls the bit range used

in comparing the TAG field with the page number portion of the
virtual memory address. The page sizes defined by this field are
listed in Table 2-39.

Read/Write
25 v Valid 0
n-7 When this bit is set to 1, the TLB entry is valid and contains a

page-translation entry.
When cleared to 0, the TLB entry is invalid.

Read/Write
26 E Endian 0
n-6 When this bit is set to 1, the page is accessed as a big endian

page.

When cleared to 0, the page is accessed as a little endian page.
The E bit only affects data read or data write accesses. Instruction
accesses are not affected.

The E bit is only implemented when the parameter
C_USE_REORDER INSTR is set to 1, otherwise it is fixed to 0.
Read/Write

MicroBlaze Processor Reference Guide Send Feedback 42
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=42

AM D n Chapter 2: MicroBlaze Architecture

Table 2-22: Translation Look-Aside Buffer High Register (TLBHI) (Cont’d) (Cont’d)

Bits! Name Description Reset Value
27 uo User Defined 0
n-5 This bit is fixed to 0, since there are no user defined storage
attributes on MicroBlaze.
Read Only
28:31 Reserved
n-4:n-1

1. The bit index n = ¢_ADDR_SIZE applies when 64-bit MicroBlaze is enabled.

Translation Look-Aside Buffer Index Register (TLBX)

The Translation Look-Aside Buffer Index Register is used as an index to the Unified
Translation Look-Aside Buffer (UTLB) when accessing the TLBLO and TLBHI registers. It is
controlled by the ¢_use_mMU configuration option on MicroBlaze. The register is only
implemented if c_ USE_MMU is greater than 1 (User Mode), and ¢_AREA OPTIMIZED is set to
0 (Performance) or 2 (Frequency). When accessed with the MFS and MTS instructions, the
TLBX is specified by setting sa = 0x1002.

The following figure illustrates the TLBX register and Table 2-23 provides bit descriptions
and reset values.

32-bit MicroBlaze: C_DATA_SIZE = 32

0 26 31
64-bit MicroBlaze: C_DATA_SIZE = 64
32 58 63
MISS Reserved INDEX
X19753-111517
Figure 2-16: TLBX
Table 2-23: Translation Look-Aside Buffer Index Register (TLBX)
Bitsl Name Description Reset Value
0,32 | MISS TLB Miss 0

This bit is cleared to 0 when the TLBSX register is written with a
virtual address, and the virtual address is found in a TLB entry.
The bitis set to 1 if the virtual address is not found. It is also cleared
when the TLBX register itself is written.

Read Only

Can be read if the memory management special registers
parameter C_MMU TLB ACCESS > 0 (MINIMAL).

MicroBlaze Processor Reference Guide Send Feedback 43
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=43

AM D n Chapter 2: MicroBlaze Architecture

Table 2-23: Translation Look-Aside Buffer Index Register (TLBX) (Cont’d)

Bitsl Name Description Reset Value
1:25 Reserved

33:57

26:31 | INDEX TLB Index 000000
58:63 This field is used to index the Translation Look-Aside Buffer entry

accessed by the TLBLO and TLBHI registers. The field is updated
with a TLB index when the TLBSX register is written with a virtual
address, and the virtual address is found in the corresponding TLB
entry.

Read/Write

Can be read and written if the memory management special
registers parameter C_MMU_TLB_ACCESS > 0 (MINIMAL).

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Translation Look-Aside Buffer Search Index Register (TLBSX)

The Translation Look-Aside Buffer Search Index Register (TLBSX) is used to search for a
virtual page number in the Unified Translation Look-Aside Buffer (UTLB). It is controlled by
the c_uske MmuU configuration option on the MicroBlaze processor.

The register is only implemented if ¢ use_MMU is greater than 1 (User Mode), and
C_AREA_ OPTIMIZED is set to O (Performance) or 2 (Frequency).

When written with the MTS instruction, the TLBSX is specified by setting Sa = 0x1005. The
following figure illustrates the TLBSX register and Table 2-24 provides bit descriptions and
reset values.

When 64-bit MicroBlaze is enabled (c_paTa s1ize = 64), TLBSX has up to 64 bits, according
to the c_apprR_s1zE parameter, otherwise it has 32 bits.

0 C_ADDR_SZE-10 C_ADDR_SIZE-1

; f

VPN Reserved

X19754-111517

Figure 2-17: TLBSX

MicroBlaze Processor Reference Guide Send Feedback 44
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=44

AM D n Chapter 2: MicroBlaze Architecture

Table 2-24: Translation Look-Aside Buffer Index Search Register (TLBSX)

Bitsl Name Description Reset Value
0:21 VPN Virtual Page Number
0:n-9 This field represents the page number portion of the virtual

memory address. It is compared with the page number portion of
the virtual memory address under the control of the SIZE field, in
each of the Translation Look-Aside Buffer entries that have the V
bit set to 1.

If the virtual page number is found, the TLBX register is written
with the index of the TLB entry and the MISS bit in TLBX is cleared
to 0. If the virtual page number is not found in any of the TLB
entries, the MISS bit in the TLBX register is set to 1.

Write Only

22:31 Reserved
n-10:n-1

1. The bit index n = ¢_ADDR_SIZE applies when 64-bit MicroBlaze is enabled.

Processor Version Register (PVR)

The Processor Version Register is controlled by the C_PVR configuration option on
MicroBlaze.

« When c_pvris set to 0 (None) the processor does not implement any PVR and
MSR[PVR]=0.

« When c_pvris setto 1 (Basic), MicroBlaze implements only the first register: PVRO, and
if set to 2 (Full), all 13 PVR registers (PVRO to PVR12) are implemented.

When read with the MFS or MFSE instruction the PVR is specified by setting Sa = 0x200x,
with x being the register number between 0x0 and OxB.

With extended data addressing is enabled (parameter ¢ DATA s1zE = 32 and C_ADDR_SIZE
> 32), the 32 least significant bits of PVR8 and PVR9 are read with the MFS instruction, and
the most significant bits with the MFSE instruction.

When physical address extension (PAE) is enabled (parameters ¢ DATA s1zE = 32,
C_USE MMU = 3 and C_ADDR_SIZE > 32), the 32 least significant bits of PVR6 and PVR7 are
read with the MFS instruction, and the most significant bits with the MFSE instruction.

With 64-bit MicroBlaze (parameter ¢ DATA S1zE = 64) the entire contents of the PVR6 -
PVR9 and PVR12 registers can be read with the MFS instruction.

Table 2-25 through Table 2-37 provide bit descriptions and values.

MicroBlaze Processor Reference Guide Send Feedback 45
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=45

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-25: Processor Version Register 0 (PVRO)
Bits! Name Description Value
0,32 | CFG PVR implementation: Based on C_PVR
0 = Basic, 1 = Full
1,33 |BS Use barrel shifter C_USE_BARREL
2,34 | DIV Use divider C_USE DIV
3,35 | MUL Use hardware multiplier C_USE_HW MUL > 0 (None)
4,36 | FPU Use FPU C_USE_FPU > 0 (None)
5,37 | EXC Use any type of exceptions Based on C_* EXCEPTION
Also set if C_USE_MMU > 0 (None)
6,38 |ICU Use instruction cache C_USE_ICACHE
7,39 | DCU Use data cache C_USE_DCACHE
8,40 | MMU Use MMU C_USE_MMU > 0 (None)
9,41 | BTC Use branch target cache C_USE _BRANCH TARGET CACHE
10, 42 | ENDI Selected endianness: C_ENDIANNESS
Always 1 = Little endian
11,43 | FT Implement fault tolerant features C_FAULT TOLERANT
12, 44 | SPROT Use stack protection C_USE_STACK PROTECTION
13,45 | REORD Implement reorder instructions C_USE_REORDER_INSTR
14, 46 | 64BIT 64-bit MicroBlaze C DATA SIZE = 64
15, 47 | Reserved 0
16:23 | MBV MicroBlaze release version code Release Specific
48:55 0x19 = v8.40.b 0x21 =v9.4
0x1B = v9.0 0x22 = v9.5
0x1D = v9.1 0x23 = v9.6
Ox1F = v9.2 0x24 = v10.0
0x20 =v9.3 0x25 =v11.0
24:31 | USR1 User configured value 1 C_PVR_USER1
56:63

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 2-26: Processor Version Register 1 (PVR1)

Bits! Name Description Value
0:31 | USR2 User configured value 2 C_PVR_USER2

32:63

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 46

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=46

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-27: Processor Version Register 2 (PVR2)
Bits?! Name Description Value
0,32 | DAXI Data side AXI4 or ACE in use C D AXI
1,33 | DLMB Data side LMB in use C D LMB
2,34 | 1AXI Instruction side AXI4 or ACE in use C I AXI
3,35 |ILMB Instruction side LMB in use C I LMB
4,36 | IRQEDGE Interrupt is edge triggered C_INTERRUPT IS EDGE
5,37 | IRQPOS Interrupt edge is positive C_EDGE_IS POSITIVE
6,38 | CEEXC Generate bus exceptions for ECC C_ECC_USE_CE EXCEPTION
correctable errors in LMB memory
7,39 | FREQ Select implementation to optimize C_AREA OPTIMIZED=2 (Frequency)
processor frequency
8,40 | Reserved 0
9,41 | Reserved 1
10, 42 | ACE Use ACE interconnect C_INTERCONNECT = 3 (ACE)
11,43 | AXI4DP Data Peripheral AXI interface uses AX|4 C_M _AXI DP_ EXCLUSIVE ACCESS
protocol, with support for exclusive access
12,44 | FSL Use extended AXI4-Stream instructions C_USE_EXTENDED FSL_INSTR
13, 45 | FSLEXC Generate exception for AXI4-Stream C_FSL_EXCEPTION
control bit mismatch
14, 46 | MSR Use msrset and msrclr instructions C_USE _MSR_INSTR
15,47 | PCMP Use pattern compare and CLZ instructions | C_ USE_PCMP_INSTR
16, 48 | AREA Select implementation to optimize area C_AREA OPTIMIZED = 1 (Area)
with lower instruction throughput
17,49 | BS Use barrel shifter C USE BARREL
18, 50 | DIV Use divider C _USE DIV
19,51 | MUL Use hardware multiplier C_USE_HW_MUL > 0 (None)
20, 52 | FPU Use FPU C _USE_FPU > 0 (None)
21,53 | MUL64 Use 64-bit hardware multiplier C _USE_HW MUL = 2 (Mul64)
22,54 | FPU2 Use floating point conversion and square | C_USE_FPU = 2 (Extended)
root instructions
23,55 | IMPEXC Allow imprecise exceptions for ECC errors | C_IMPRECISE EXCEPTIONS
in LMB memory
24, 56 | Reserved 0
25,57 | OPOEXC Generate exception for 0x0 illegal opcode | C OPCODE 0x0 ILLEGAL
26, 58 | UNEXC Generate exception for unaligned data C UNALIGNED EXCEPTIONS
access
27,59 | OPEXC Generate exception for any illegal opcode | C_ILL OPCODE_EXCEPTION
28, 60 | AXIDEXC Generate exception for M_AXI_D error C_M_AXI_D_BUS_EXCEPTION

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 47

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=47

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-27: Processor Version Register 2 (PVR2) (Cont’d)
Bitsl Name Description Value
29, 61 | AXIIEXC Generate exception for M_AXI_| error C_ M AXI I BUS_ EXCEPTION
30, 62 | DIVEXC Generate exception for division by zero or | C_ DIV _ZERO EXCEPTION
division overflow
31, 63 | FPUEXC Generate exceptions from FPU C_FPU_EXCEPTION

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 2-28: Processor Version Register 3 (PVR3)

Bits?! Name Description Value

0,32 | DEBUG Use debug logic C_DEBUG_ENABLED > 0

1,33 | EXT_DEBUG | Use extended debug logic C_DEBUG_ENABLED = 2 (Extended)
2,34 | Reserved

3:6 PCBRK Number of PC breakpoints C_NUMBER_OF PC BRK

35:38

7:9 Reserved

39:41

10:12 | RDADDR Number of read address breakpoints C_NUMBER_OF RD ADDR_ BRK
42:44

13:15 | Reserved

45:47

16:18 | WRADDR Number of write address breakpoints C_NUMBER OF WR ADDR BRK
48:50

19, 51 | Reserved 0

20:24 | FSL Number of AXI4-Stream links C_FSL_LINKS

52:56

25:28 | Reserved

57:60

29:31 | BTC_SIZE Branch Target Cache size C_BRANCH TARGET CACHE SIZE
61:63

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 48

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=48

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-29: Processor Version Register 4 (PVR4)

Bits! | Name Description Value

0,32 |ICU Use instruction cache C USE ICACHE

1:5 ICTS Instruction cache tag size C_ADDR_TAG BITS

33:37

6, 38 | Reserved 1

7,39 | ICW Allow instruction cache write C_ALLOW_ICACHE WR

8:10 | ICLL The base two logarithm of the instruction log2 (C_ICACHE LINE LEN)
40:42 cache line length

11:15 | ICBS The base two logarithm of the instruction log2 (C_CACHE BYTE SIZE)
43:47 cache byte size

16,48 | IAU The instruction cache is used for all memory | C_ ICACHE ALWAYS USED

accesses within the cacheable range

17:18 | Reserved 0

49:50

19:21 | ICV Instruction cache victims 0-3: ¢_ICACHE_VICTIMS = 0,2,4,8
51:53

22:23 | ICS Instruction cache streams C_ICACHE_STREAMS

54:55

24,56 | IFTL Instruction cache tag uses distributed RAM | C_ICACHE FORCE_TAG LUTRAM
25,57 | ICDW Instruction cache data width C_ICACHE DATA WIDTH > 0
26:31 | Reserved 0

58:63

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 2-30: Processor Version Register 5 (PVR5)

Bitsl Name Description Value

0,32 | DCU Use data cache C_USE_DCACHE

1:5 DCTS Data cache tag size C_DCACHE ADDR_TAG

33:37

6, 38 | Reserved 1

7,39 | DCW Allow data cache write C_ALLOW_DCACHE WR

8:10 | DCLL The base two logarithm of the data cache log2 (C_DCACHE LINE LEN)
40:42 line length

11:15 | DCBS The base two logarithm of the data cache log2 (C_DCACHE BYTE SIZE)
43:47 byte size

16, 48 | DAU The data cache is used for all memory C DCACHE ALWAYS USED

accesses within the cacheable range

17,49 | DWB Data cache policy is write-back C_DCACHE USE WRITEBACK
18, 50 | Reserved 0

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 49

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=49

AMD ¢

Table 2-30: Processor Version Register 5 (PVR5) (Cont’d)

Chapter 2: MicroBlaze Architecture

Bits! | Name

Description

Value

19:21 | DCV Data cache victims 0-3: C_DCACHE_VICTIMS = 0,2,4,8
51:53

22:23 | Reserved 0

54:55

24,56 | DFTL Data cache tag uses distributed RAM C_DCACHE FORCE TAG LUTRAM
25,57 | DCDW Data cache data width C _DCACHE DATA WIDTH > 0

26, 58 | AX14DC

Data Cache AXl interface uses AXI4 protocol,

with support for exclusive access

C_M AXI DC_EXCLUSIVE_ ACCESS

27:31 | Reserved
59:63

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 2-31: Processor Version Register 6 (PVR6)

Bits

Name

Description

Value

0:C_ADDR_SIZE-1

ICBA

Instruction Cache Base Address

C_ICACHE_BASEADDR

Table 2-32: Processor Version Register 7 (PVR7)

Bits

Name

Description

Value

0:C_ADDR_SIZE-1

ICHA

Instruction Cache High Address

C_ICACHE_ HIGHADDR

Table 2-33: Processor Version Register 8 (PVR8)

Bits

Name

Description

Value

0:C_ADDR_SIZE-1

DCBA

Data Cache Base Address

C DCACHE BASEADDR

Table 2-34: Processor Version Register 9 (PVR9)

Bits

Name

Description

Value

0:C_ADDR_SIZE-1

DCHA

Data Cache High Address

C DCACHE HIGHADDR

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I

50

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=50

AM D n Chapter 2: MicroBlaze Architecture

Table 2-35: Processor Version Register 10 (PVR10)

Bitsl | Name Description Value
0:7 ARCH Target architecture: Defined by parameter C_ FAMILY
32:39 OxF = Virtex™ 7, Defense Grade Virtex 7 Q

0x10 = Kintex™ 7, Defense Grade Kintex 7 Q

0x11 = Artix™ 7, Automotive Artix 7, Defense

Grade Artix 7 Q
0x12 = Zynq™ 7000, Automotive Zynq 7000,
Defense Grade Zynqg 7000 Q

0x13 = UltraScale™ Virtex

0x14 = UltraScale Kintex

0x15 = UltraScale+™ Zynq

0x16 = UltraScale+ Virtex

0x17 = UltraScale+ Kintex

0x18 = Spartan™ 7

0x19 = Versal™

0x20 = UltraScale+ Artix
8:13 | ASIZE Number of extended address bits C_ADDR_SIZE - 32
40:45
14:31 | Reserved 0
46:63

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 2-36: Processor Version Register 11 (PVR11)

Bits! | Name Description Value
0:1 MMU Use MMU: C_USE_MMU
32:33 0 = None 2 = Protection
1 = User Mode 3 = Virtual
2:4 ITLB Instruction Shadow TLB size log2 (C_MMU ITLB SIZE)
34:36
5:7 DTLB Data Shadow TLB size log2 (C_MMU DTLB SIZE)
37:39
8:9 TLBACC | TLB register access: C_MMU_TLB_ACCESS
40:41 0 = Minimal 2 = Write
1 = Read 3 = Full
10:14 | ZONES Number of memory protection zones C_MMU_ ZONES
42:46
15,47 | PRIVINS | Privileged instructions: C_MMU PRIVILEGED INSTR
0 = Full protection
1 = Allow stream instructions
16,48 | Reserved | Reserved for future use 0
17:31 | RSTMSR | Reset value for MSR C_RESET MSR IE << 2 |
49:63 C_RESET MSR BIP << 4 |
C_RESET MSR ICE << 6 |
C_RESET MSR DCE << 8 |
C_RESET MSR EE << 9 |
C_RESET MSR EIP << 10

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

MicroBlaze Processor Reference Guide Send Feedback 51
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=51

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-37: Processor Version Register 12 (PVR12)

Bitsl Name Description Value
0:31 VECTORS | Location of MicroBlaze vectors C_BASE_VECTORS
0:C_ADDR_SIZE-1

1. C_ADDR_SIZE bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I

52

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=52

AM D n Chapter 2: MicroBlaze Architecture

Pipeline Architecture

MicroBlaze instruction execution is pipelined. For most instructions, each stage takes one
clock cycle to complete. Consequently, the number of clock cycles necessary for a specific
instruction to complete is equal to the number of pipeline stages, and one instruction is
completed on every cycle in the absence of data, control or structural hazards.

A data hazard occurs when the result of an instruction is needed by a subsequent
instruction. This can result in stalling the pipeline, unless the result can be forwarded to the
subsequent instruction. The MicroBlaze GNU Compiler attempts to avoid data hazards by
reordering instructions during optimization.

A control hazard occurs when a branch is taken, and the next instruction is not immediately
available. This results in stalling the pipeline. MicroBlaze provides delay slot branches and
the optional branch target cache to reduce the number of stall cycles.

A structural hazard occurs for a few instructions that require multiple clock cycles in the
execute stage or a later stage to complete. This is achieved by stalling the pipeline.

Load and store instructions accessing slower memory might take multiple cycles. The
pipeline is stalled until the access completes. MicroBlaze provides the optional data cache
to improve the average latency of slower memory.

When executing from slower memory, instruction fetches might take multiple cycles. This
additional latency directly affects the efficiency of the pipeline. MicroBlaze implements an
instruction prefetch buffer that reduces the impact of such multi-cycle instruction memory
latency. While the pipeline is stalled for any other reason, the prefetch buffer continues to
load sequential instructions speculatively. When the pipeline resumes execution, the fetch
stage can load new instructions directly from the prefetch buffer instead of waiting for the
instruction memory access to complete.

If instructions are modified during execution (for example with self-modifying code), the
prefetch buffer should be emptied before executing the modified instructions, to ensure
that it does not contain the old unmodified instructions.

O RECOMMENDED: The recommended way to do this is using an MBAR instruction, although it is also
possible to use a synchronizing branch instruction, for example BRI 4.

MicroBlaze also provides the optional instruction cache to improve the average instruction
fetch latency of slower memory.

All hazards are independent, and can potentially occur simultaneously. In such cases, the
number of cycles the pipeline is stalled is defined by the hazard with the longest stall
duration.

MicroBlaze Processor Reference Guide Send Feedback 53
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=53

AM D n Chapter 2: MicroBlaze Architecture

Three Stage Pipeline

With ¢_AREA oPTIMIZED set to 1 (Area), the pipeline is divided into three stages to
minimize hardware cost: Fetch, Decode, and Execute.

cycle cycle2 cycle3 cycled cycle5 cycle6 cycle7

instruction 1 Fetch Decode | Execute

instruction 2 Fetch Decode | Execute | Execute | Execute

instruction 3 Fetch Decode Stall Stall Execute

The three stage pipeline does not have any data hazards. Pipeline stalls are caused by
control hazards, structural hazards due to multi-cycle instructions, memory accesses using
slower memory, instruction fetch from slower memory, or stream accesses.

The multi-cycle instruction categories are barrel shift, multiply, divide and floating-point
instructions.

Five Stage Pipeline

With ¢_aAREA opTIMIZED set to O (Performance), the pipeline is divided into five stages to
maximize performance: Fetch (IF), Decode (OF), Execute (EX), Access Memory (MEM), and
Writeback (WB).

cyclel «cycle2 cycle3 cycle4d «cycle5 cycle6 cycle7 cycle8 cycle9

instruction 1 IF OF EX MEM WB
instruction 2 IF OF EX MEM MEM MEM WB
instruction 3 IF OF EX Stall Stall MEM WB

The five stage pipeline has two kinds of data hazard:

* Aninstruction in OF needs the result from an instruction in EX as a source operand. In
this case, the EX instruction categories are load, store, barrel shift, multiply, divide, and
floating-point instructions. This results in a 1-2 cycle stall.

« Aninstruction in OF uses the result from an instruction in MEM as a source operand. In
this case, the MEM instruction categories are load, multiply, and floating-point
instructions. This results in a 1 cycle stall.

Pipeline stalls are caused by data hazards, control hazards, structural hazards due to multi-
cycle instructions, memory accesses using slower memory, instruction fetch from slower
memory, or stream accesses.

The multi-cycle instruction categories are divide and floating-point instructions.

MicroBlaze Processor Reference Guide Send Feedback 54
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=54

AM D n Chapter 2: MicroBlaze Architecture

Eight Stage Pipeline

With ¢_AREA OPTIMIZED set to 2 (Frequency), the pipeline is divided into eight stages to
maximize possible frequency: Fetch (IF), Decode (OF), Execute (EX), Access Memory 0 (MO0),
Access Memory 1 (M1), Access Memory 2 (M2), Access Memory 3 (M3) and Writeback (WB).

cyclel «cycle2 «cycle3 «cycled «cycle5 cycle6 cycle7 «cycle8 cycle9 cycle10 cyclel1
instruction 1 IF OF EX MO M1 M2 M3 WB
instruction 2 IF OF EX MO MO M1 M2 M3 WB
instruction 3 IF OF EX Stall MO M1 M2 M3 WB

The eight stage pipeline has four kinds of data hazard:

« Aninstruction in OF needs the result from an instruction in EX as a source operand. In
this case, the EX instruction categories are load, store, barrel shift, multiply, divide, and
floating-point instructions. This results in a 1-5 cycle stall.

* Aninstruction in OF uses the result from an instruction in MO as a source operand. In
this case, the MO instruction categories are load, multiply, divide, and floating-point
instructions. This results in a 1-4 cycle stall.

« Aninstruction in OF uses the result from an instruction in M1 or M2 as a source
operand. In this case, the M1 or M2 instruction categories are load, divide, and
floating-point instructions. This results in a 1-3 or 1-2 cycle stall respectively.

« Aninstruction in OF uses the result from an instruction in M3 as a source operand. In
this case, M3 instruction categories are load and floating-point instructions. This results
in a1 cycle stall.

In addition to multi-cycle instructions, there are two other kinds of structural hazards:

« An instruction in OF is a stream instruction, and the instruction in EX, MO, M1, M2 or
M3 is a load, store, divide, or floating-point instruction with corresponding exception
implemented. This results in a 1-5 cycle stall.

« Aninstruction in MO is a load or store instruction, and the instruction in M1, M2 or M3
is a load, store, divide, or floating-point instruction with corresponding exception
implemented. This results in a 1-3 cycle stall.

Pipeline stalls are caused by data hazards, control hazards, structural hazards, memory
accesses using slower memory, instruction fetch from slower memory, or stream accesses.

The multi-cycle instruction categories are divide instructions and floating-point instructions
FDIV, FLT, FSQRT, DDIV, DBL, and DSQRT.

MicroBlaze Processor Reference Guide Send Feedback 55
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=55

AM D n Chapter 2: MicroBlaze Architecture

Branches

Normally the instructions in the fetch and decode stages (as well as prefetch buffer) are
flushed when executing a taken branch. The fetch pipeline stage is then reloaded with a new
instruction from the calculated branch address. A taken branch in MicroBlaze takes three
clock cycles to execute, two of which are required for refilling the pipeline. To reduce this
latency overhead, MicroBlaze supports branches with delay slots and the optional branch
target cache.

Delay Slots

When executing a taken branch with delay slot, only the fetch pipeline stage in MicroBlaze
is flushed. The instruction in the decode stage (branch delay slot) is allowed to complete.
This technique effectively reduces the branch penalty from two clock cycles to one. Branch
instructions with delay slots have a D appended to the instruction mnemonic. For example,
the BNE instruction does not execute the subsequent instruction (does not have a delay
slot), whereas BNED executes the next instruction before control is transferred to the
branch location.

A delay slot must not contain the following instructions: IMM, IMML, branch, or break.
Interrupts and external hardware breaks are deferred until after the delay slot branch has
been completed. Instructions that could cause recoverable exceptions (for example
unaligned word or halfword load and store) are allowed in the delay slot.

If an exception is caused in a delay slot the ESR[DS] bit is set, and the exception handler is
responsible for returning the execution to the branch target (stored in the special purpose
register BTR). If the ESR[DS] bit is set, register R17 is not valid (otherwise it contains the
address following the instruction causing the exception).

Branch Target Cache

To improve branch performance, MicroBlaze provides a branch target cache (BTC) coupled
with a branch prediction scheme. With the BTC enabled, a correctly predicted immediate
branch or return instruction incurs no overhead.

The BTC operates by saving the target address of each immediate branch and return
instruction the first time the instruction is encountered. The next time it is encountered, it
is usually found in the Branch Target Cache, and the Instruction Fetch Program Counter is
then simply changed to the saved target address, in case the branch should be taken.
Unconditional branches and return instructions are always taken, whereas conditional
branches use branch prediction, to avoid taking a branch that should not have been taken
and vice versa.

The BTC is cleared when a memory barrier (MBAR 0) or synchronizing branch (BRI 4) is
executed. This also occurs when the memory barrier or synchronizing branch follows
immediately after a branch instruction, even if that branch is taken. To avoid inadvertently

MicroBlaze Processor Reference Guide Send Feedback 56
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=56

AM D n Chapter 2: MicroBlaze Architecture

clearing the BTC, the memory barrier or synchronizing branch should not be placed
immediately after a branch instruction.

There are three cases where the branch prediction can cause a mispredict, namely:

« A conditional branch that should not have been taken, is actually taken,
« A conditional branch that should actually have been taken, is not taken,

» The target address of a return instruction is incorrect, which might occur when
returning from a function called from different places in the code.

All of these cases are detected and corrected when the branch or return instruction reaches
the execute stage, and the branch prediction bits or target address are updated in the BTC,
to reflect the actual instruction behavior. This correction incurs a penalty of 2 clock cycles
for the 5-stage pipeline and 7-9 clock cycles for the 8-stage pipeline.

The size of the BTC can be selected with ¢ BRANCH TARGET CACHE_ SIZE. The default
recommended setting uses one block RAM with 32-bit address (c_ADDR _s1ZzE = 32) and
provides 512 entries. When selecting 64 entries or below, distributed RAM is used to
implement the BTC, otherwise block RAM is used.

When the BTC uses block RAM, and ¢_FAULT TOLERANT is set to 1, block RAMs are
protected by parity. In case of a parity error, the branch is not predicted. To avoid
accumulating errors in this case, the BTC should be cleared periodically by a synchronizing
branch.

The Branch Target Cache is available when ¢_USE_BRANCH TARGET CACHE is set to 1 and
C_AREA_ OPTIMIZED is set to O (Performance) or 2 (Frequency).

Pipeline Hazard Example
The effect of a data hazard is illustrated in Table 2-38, using the five stage pipeline.

The example shows a data hazard for a multiplication instruction, where the subsequent
add instruction needs the result in register r3 to proceed. This means that the add
instruction is stalled in OF during cycle 3 and 4 until the multiplication is complete.

Table 2-38: Multiplication Data Hazard Example
Cycle IF OF EX MEM WB

1 mul r3, r4, r5

2 add r6, r3, r4 mul r3, r4, r5

3 add r6, r3, r4 mul r3, r4, r5

4 add r6, r3, r4 - mul r3, r4, r5

5 add r6, r3, r4 - - mul r3, r4, r5
6 add r6, r3, r4 - -

MicroBlaze Processor Reference Guide Send Feedback 57
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=57

AM D n Chapter 2: MicroBlaze Architecture

Avoiding Data Hazards

In some cases, the MicroBlaze GNU Compiler is not able to optimize code to completely
avoid data hazards. However, it is often possible to change the source code in order to
achieve this, mainly by better utilization of the general purpose registers.

Two C code examples are shown here:

« Multiplication of a static array in memory

static int al4]l, bl4], cl4];
register int a0, al, a2, a3, b0, bl, b2, b3, c0, cl, c2, c3;

a0 al0]l; al = all]l; a2 = al2]; a3 = al3];
b0 b[0]; bl = b[1l]; b2 = b[2]; b3 = b[3];
cO = a0 * b0; cl = al * bl; c2 = a2 * b2; c3 = a3 * b3;
c[3] = c3; ¢c2 = c[2]; ¢l = c[1l]; cO = c[O];

This code ensures that load instructions are first executed to load operands into
separate registers, which are then multiplied and finally stored. The code can be
extended up to 8 multiplications without running out of general purpose registers.

« Fetching a data packet from an AXI4-Stream interface.

#include <mb_interface.h>

static int al4];
register int a0, al, a2, a3;

getfsl (a0, 0); getfsl(al, 0); getfsl(a2, 0); getfsl(a3, 0);
al3] = a3; all] = al; al2] = a2; al0] = ao0;

This code ensures that get instructions using different registers are first executed, and
then data is stored. The code can be extended to up to 16 accesses without running out
of general purpose registers.

MicroBlaze Processor Reference Guide Send Feedback 58
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=58

AM D n Chapter 2: MicroBlaze Architecture

Memory Architecture

MicroBlaze is implemented with a Harvard memory architecture; instruction and data
accesses are done in separate address spaces.

The instruction address space has a 32-bit virtual address range with 32-bit MicroBlaze
(that is, handles up to 4GB of instructions), and can be extended up to a 64-bit physical
address range when using the MMU in virtual mode. With 64-bit MicroBlaze, the instruction
address space has a default 32-bit range, and can be extended up to a 64-bit range (that is,
handles from 4GB to 16EB of instructions).

The data address space has a default 32-bit range, and can be extended up to a 64-bit
range (that is, handles from 4GB to 16EB of data). The instruction and data memory ranges
can be made to overlap by mapping them both to the same physical memory. The latter is
necessary for software debugging.

Both instruction and data interfaces of MicroBlaze are default 32 bits wide and use big
endian or little endian, bit-reversed format, depending on the selected endianness.
MicroBlaze supports word, halfword, and byte accesses to data memory.

Big endian format is supported when using the MMU in virtual or protected mode
(c_use_MMU > 1) or when reorder instructions are enabled (C_USE_REORDER_INSTR = 1).

Data accesses must be aligned (word accesses must be on word boundaries, halfword on
halfword boundaries), unless the processor is configured to support unaligned exceptions.
All instruction accesses must be word aligned.

MicroBlaze prefetches instructions to improve performance, using the instruction prefetch
buffer and (if enabled) instruction cache streams. To avoid attempts to prefetch instructions
beyond the end of physical memory, which might cause an instruction bus error or a
processor stall, instructions must not be located too close to the end of physical memory.
The instruction prefetch buffer requires 16 bytes margin, and using instruction cache
streams adds two additional cache lines (32, 64 or 128 bytes).

MicroBlaze does not separate data accesses to I/O and memory (it uses memory-mapped
[/0). The processor has up to three interfaces for memory accesses:

+ Local Memory Bus (LMB)
« Advanced eXtensible Interface (AXI4) for peripheral access

« Advanced eXtensible Interface (AXI4) or AXI Coherency Extension (ACE) for cache
access

The LMB memory address range must not overlap with AXI4 ranges.

The c_ENDIANNESS parameter is always set to little endian.

MicroBlaze Processor Reference Guide Send Feedback 59
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=59

AM D n Chapter 2: MicroBlaze Architecture

MicroBlaze has a single cycle latency for accesses to local memory (LMB) and for cache read
hits, except with ¢ AREA OPTIMIZED set to 1 (Area), when data side accesses and data
cache read hits require two clock cycles, and with ¢_FAULT TOLERANT set to 1, when byte
writes and halfword writes to LMB normally require two clock cycles.

The data cache write latency depends on ¢_DCACHE USE_WRITEBACK. When

C_DCACHE USE_WRITEBACK is set to 1, the write latency normally is one cycle (more if the
cache needs to do memory accesses). When C_DCACHE _USE WRITEBACK is cleared to 0,
the write latency normally is two cycles (more if the posted-write buffer in the memory
controller is full).

The MicroBlaze instruction and data caches can be configured to use 4, 8 or 16 word cache
lines. When using a longer cache line, more bytes are prefetched, which generally improves
performance for software with sequential access patterns. However, for software with a
more random access pattern the performance can instead decrease for a given cache size.
This is caused by a reduced cache hit rate due to fewer available cache lines.

For details on the different memory interfaces, see Chapter 3, MicroBlaze Signal Interface
Description.

Privileged Instructions

The following MicroBlaze instructions are privileged:

* GET, GETD, PUT, PUTD (except when explicitly allowed)
* WIC, WDC

e MTS, MTSE

* MSRCLR, MSRSET (except when only the C bit is affected)
e BRK

* RTID, RTBD, RTED

* BRKI (except when jumping to physical address c_BASE VECTORS + Ox8 or
C_BASE _VECTORS + 0x18)

* SLEEP, HIBERNATE, SUSPEND

* LBUEA, LHUEA, LWEA, SBEA, SHEA, SWEA (except when explicitly allowed)

Attempted use of these instructions when running in user mode causes a privileged
instruction exception. When setting the parameter ¢ MMU PRIVILEGED INSTRto 1or 3, the
instructions GET, GETD, PUT, and PUTD are not considered privileged, and can be executed
when running in user mode.

MicroBlaze Processor Reference Guide Send Feedback 60
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=60

AM D n Chapter 2: MicroBlaze Architecture

C CAUTION! [t is strongly discouraged to do this, unless absolutely necessary for performance reasons,
because it allows application processes to interfere with each other.

When setting the parameter ¢ MMU PRIVILEGED INSTR to 2 or 3, the extended address
instructions LBUEA, LHUEA, LWEA, SBEA, SHEA, and SWEA are not considered privileged, and
will bypass the MMU translation, treating the extended address as a physical address. This
is useful to run software in virtual mode while still having direct access to the full physical
address space, but is discouraged in all cases where protection between application
processes is necessary.

There are six ways to leave user mode and virtual mode:

Hardware generated reset (including debug reset)
Hardware exception

Non-maskable break or hardware break

Interrupt

Executing "BRALID Re,C_BASE_VECTORS + 0x8" to perform a user vector exception

o vk W=

Executing the software break instructions "BRKI"” jumping to physical address
C_BASE_VECTORS + Ox8 or C_BASE VECTORS + 0x18

In all of these cases, except hardware generated reset, the user mode and virtual mode
status is saved in the MSR UMS and VMS bits.

Application (user-mode) programs transfer control to system-service routines (privileged
mode programs) using the BRALID or BRKI instruction, jumping to physical address
C_BASE_VECTORS + 0x8. Executing this instruction causes a system-call exception to occur.
The exception handler determines which system-service routine to call and whether the
calling application has permission to call that service. If permission is granted, the
exception handler performs the actual procedure call to the system-service routine on
behalf of the application program.

The execution environment expected by the system-service routine requires the execution
of prologue instructions to set up that environment. Those instructions usually create the
block of storage that holds procedural information (the activation record), update and
initialize pointers, and save volatile registers (the registers that the system-service routine
uses). Prologue code can be inserted by the linker when creating an executable module, or
it can be included as stub code in either the system-call interrupt handler or the system-
library routines.

Returns from the system-service routine reverse the process described above. Epilogue
code is executed to unwind and deallocate the activation record, restore pointers, and
restore volatile registers. The interrupt handler executes a return from exception instruction
(RTED) to return to the application.

MicroBlaze Processor Reference Guide Send Feedback 61
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=61

AM D n Chapter 2: MicroBlaze Architecture

Virtual-Memory Management

Programs running on MicroBlaze use effective addresses to access a flat 4 GB address space
with 32-bit MicroBlaze, and up to a 16 EB address space with 64-bit MicroBlaze depending
on parameter ¢_ADDR_SIZE.

The processor can interpret this address space in one of two ways, depending on the
translation mode:

« Inreal mode, effective addresses are used to directly access physical memory

« Invirtual mode, effective addresses are translated into physical addresses by the
virtual-memory management hardware in the processor

Virtual mode provides system software with the ability to relocate programs and data
anywhere in the physical address space. System software can move inactive programs and
data out of physical memory when space is required by active programs and data.

Relocation can make it appear to a program that more memory exists than is actually
implemented by the system. This frees the programmer from working within the limits
imposed by the amount of physical memory present in a system. Programmers do not need
to know which physical-memory addresses are assigned to other software processes and
hardware devices. The addresses visible to programs are translated into the appropriate
physical addresses by the processor.

Virtual mode provides greater control over memory protection. Blocks of memory as small
as 1 KB can be individually protected from unauthorized access. Protection and relocation
enable system software to support multitasking. This capability gives the appearance of
simultaneous or near-simultaneous execution of multiple programs.

In MicroBlaze, virtual mode is implemented by the memory-management unit (MMU),
available when ¢ _use mmu is set to 3 (Virtual) and ¢_AREA OPTIMIZED is set to 0
(Performance) or 2 (Frequency). The MMU controls effective-address to physical-address
mapping and supports memory protection. Using these capabilities, system software can
implement demand-paged virtual memory and other memory management schemes.

The MicroBlaze MMU implementation is based upon the PowerPC™ 405 processor.

The MMU features are summarized as follows:

« Translates effective addresses into physical addresses
« Controls page-level access during address translation
« Provides additional virtual-mode protection control through the use of zones

« Provides independent control over instruction-address and data-address translation
and protection

MicroBlaze Processor Reference Guide Send Feedback 62
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=62

AM D n Chapter 2: MicroBlaze Architecture

« Supports eight page sizes: 1 kB, 4 kB, 16 kB, 64 kB, 256 kB, 1 MB, 4 MB, and 16 MB. Any
combination of page sizes can be used by system software

« Software controls the page-replacement strategy

Real Mode

The processor references memory when it fetches an instruction and when it accesses data
with a load or store instruction. Programs reference memory locations using a 32-bit
effective address with 32-bit MicroBlaze, and up to a 64-bit effective address with 64-bit
MicroBlaze, calculated by the processor.

When real mode is enabled, the physical address is identical to the effective address and the
processor uses it to access physical memory. After a processor reset, the processor operates
in real mode. Real mode can also be enabled by clearing the VM bit in the MSR.

Physical-memory data accesses (loads and stores) are performed in real mode using the
effective address. Real mode does not provide system software with virtual address
translation, but the full memory access-protection is available, implemented when
c_usg_MMU > 1 (User Mode) and ¢_aAREA opPTIMIZED = 0 (Performance) or 2 (Frequency).
Implementation of a real-mode memory manager is more straightforward than a virtual-
mode memory manager.

Real mode is often an appropriate solution for memory management in simple embedded
environments, when access-protection is necessary, but virtual address translation is not
required. This can be achieved by configuring memory management to act as a Memory
Protection Unit (MPU) by setting ¢_use _MmuU to 2 (Protection).

Virtual Mode

In virtual mode, the processor translates an effective address into a physical address using
the process shown in Figure 2-18. With 64-bit MicroBlaze and with the Physical Address
Extension (PAE) the physical address can be extended up to 64 bits. Virtual mode can be
enabled by setting the VM bit in the MSR.

MicroBlaze Processor Reference Guide Send Feedback 63
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=63

AM D n Chapter 2: MicroBlaze Architecture

0 24 31
| | | Processor ID Register
0 n 31
| Effective Page Number | Offset | 32-bit Effective Address
0 v 8 n+8 ¥ 39
| PID | Effective Page Number | Offset | 40-bit Virtual Address

'

Translation Look-Aside
Buffer (TLB) Look-Up

0 \i y 31

Real Page Number | Offset | 32-bit Physical Address
or
0 v y 32-63
Physical Address Extension: Real Page Number | Offset | Up to 64-bit Physical Address

X19755-111617

Figure 2-18: Virtual-Mode Address Translation

Each address shown in Figure 2-18 contains a page-number field and an offset field. The
page number represents the portion of the address translated by the MMU. The offset
represents the byte offset into a page and is not translated by the MMU. The virtual address
consists of an additional field, called the process ID (PID), which is taken from the PID
register (see Process-ID Register, page 38). The combination of PID and effective page
number (EPN) is referred to as the virtual page number (VPN). The value n is determined by
the page size, as shown in Table 2-39.

System software maintains a page-translation table that contains entries used to translate
each virtual page into a physical page. The page size defined by a page translation entry
determines the size of the page number and offset fields. For example, with 32-bit
MicroBlaze, when a 4 kB page size is used, the page-number field is 20 bits and the offset
field is 12 bits. The VPN in this case is 28 bits.

Then the most frequently used page translations are stored in the translation look-aside
buffer (TLB). When translating a virtual address, the MMU examines the page-translation
entries for a matching VPN (PID and EPN). Rather than examining all entries in the table,
only entries contained in the processor TLB are examined. When a page-translation entry is
found with a matching VPN, the corresponding physical-page number is read from the
entry and combined with the offset to form the physical address. This physical address is
used by the processor to reference memory.

MicroBlaze Processor Reference Guide Send Feedback 64
UG984 (v2023.2) February 2, 2024 L‘ /_]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=64

AM D n Chapter 2: MicroBlaze Architecture

System software can use the PID to uniquely identify software processes (tasks, subroutines,
threads) running on the processor. Independently compiled processes can operate in
effective-address regions that overlap each other. This overlap must be resolved by system
software if multitasking is supported. Assigning a PID to each process enables system
software to resolve the overlap by relocating each process into a unique region of virtual-
address space. The virtual-address space mappings enable independent translation of each
process into the physical-address space.

Page-Translation Table

The page-translation table is a software-defined and software-managed data structure
containing page translations. The requirement for software-managed page translation
represents an architectural trade-off targeted at embedded-system applications.
Embedded systems tend to have a tightly controlled operating environment and a well-
defined set of application software. That environment enables virtual-memory
management to be optimized for each embedded system in the following ways:

« The page-translation table can be organized to maximize page-table search
performance (also called table walking) so that a given page-translation entry is
located quickly. Most general-purpose processors implement either an indexed page
table (simple search method, large page-table size) or a hashed page table (complex
search method, small page-table size). With software table walking, any hybrid
organization can be employed that suits the particular embedded system. Both the
page-table size and access time can be optimized.

« Independent page sizes can be used for application modules, device drivers, system
service routines, and data. Independent page-size selection enables system software to
more efficiently use memory by reducing fragmentation (unused memory). For
example, a large data structure can be allocated to a 16 MB page and a small I/O
device-driver can be allocated to a 1 KB page.

« Page replacement can be tuned to minimize the occurrence of missing page
translations. As described in the following section, the most-frequently used page
translations are stored in the translation look-aside buffer (TLB).

Software is responsible for deciding which translations are stored in the TLB and which
translations are replaced when a new translation is required. The replacement strategy
can be tuned to avoid thrashing, whereby page-translation entries are constantly being
moved in and out of the TLB. The replacement strategy can also be tuned to prevent
replacement of critical-page translations, a process sometimes referred to as page
locking.

The unified 64-entry TLB, managed by software, caches a subset of instruction and data
page-translation entries accessible by the MMU. Software is responsible for reading entries
from the page-translation table in system memory and storing them in the TLB. The
following section describes the unified TLB in more detail. Internally, the MMU also contains
shadow TLBs for instructions and data, with sizes configurable by ¢ MmMu 1TLB SIZE and
C_MMU DTLB_SIZE respectively.

MicroBlaze Processor Reference Guide Send Feedback 65
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=65

AM D n Chapter 2: MicroBlaze Architecture

These shadow TLBs are managed entirely by the processor (transparent to software) and are
used to minimize access conflicts with the unified TLB.

Translation Look-Aside Buffer

The translation look-aside buffer (TLB) is used by the MicroBlaze MMU for address
translation when the processor is running in virtual mode, memory protection, and storage
control. Each entry within the TLB contains the information necessary to identify a virtual
page (PID and effective page number), specify its translation into a physical page,
determine the protection characteristics of the page, and specify the storage attributes
associated with the page.

The MicroBlaze TLB is physically implemented as three separate TLBs:

Unified TLB: The UTLB contains 64 entries and is pseudo-associative. Instruction-page
and data-page translation can be stored in any UTLB entry. The initialization and
management of the UTLB is controlled completely by software.

Instruction Shadow TLB: The ITLB contains instruction page-translation entries and is
fully associative. The page-translation entries stored in the ITLB represent the most-
recently accessed instruction-page translations from the UTLB. The ITLB is used to
minimize contention between instruction translation and UTLB-update operations. The
initialization and management of the ITLB is controlled completely by hardware and is
transparent to software.

Data Shadow TLB: The DTLB contains data page-translation entries and is fully
associative. The page-translation entries stored in the DTLB represent the most-recently
accessed data-page translations from the UTLB. The DTLB is used to minimize
contention between data translation and UTLB-update operations. The initialization
and management of the DTLB is controlled completely by hardware and is transparent
to software.

MicroBlaze Processor Reference Guide [Send Feedback] 66

UG984 (v2023.2) February 2, 2024

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=66

AMD ¢

Chapter 2: MicroBlaze Architecture

The following figure provides the translation flow for TLB.

Generate I-side
Eﬁectlve Address

Translation Disabled
(MSR[VM]=0)

No Translation

Extract Real
Address from ITLB

Translation Enabled
(MSR[VM]=1)

Translation Enabled
(MSR[VM]=1)

Perform ITLB
Look-Up

ITLB Hit l ITLB Miss

Perform DTLB
Look-Up

DTLB MisleTLB Hit

Perform UTLB
Look-Up

UTLB Hit * UTLB Miss

Generate D-side
Effectlve Address

Translation Disabled
(MSR[VM]=0)

No Translation

Extract Real
Address from DTLB

Continue I-cache
Access
Extract Real

Address from UTLB

'

Route Address
to ITLB

X19756-111617

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

Route Address
to DTLB

Figure 2-19: TLB Address Translation Flow

|-Side TLB Miss or
D-Side TLB Miss
Exception

Continue I-cache
or D-cache
Access

l Send Feedback I 67

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=67

AM D n Chapter 2: MicroBlaze Architecture

TLB Entry Format

The following figure shows the format of a TLB entry. Each TLB entry ranges from 68 bits up
to 100 bits and is composed of two portions: TLBLO (also referred to as the data entry), and
TLBHI (also referred to as the tag entry).

TLBLO:
0 22| 23| 24 28|29|30] 31
; FT 1T 11717
RPN EX WR ZSEL Wil MG
TLBHI:
0 22 25]26(27| 28 35
: 1171 :
TAG SIZE V E U0 TID

X19757-111617

Figure 2-20: TLB Entry Format (PAE Disabled)

When 64-bit MicroBlaze or the Physical Address Extension (PAE) is enabled, the TLB entry is
extended with up to 32 additional bits in the TLBLO RPN field to support up to a 64 bit
physical address.

The TLB entry contents are described in more detail in Table 2-21 and Table 2-22, including
the TLBLO format with PAE or 64-bit MicroBlaze enabled.

The fields within a TLB entry are categorized as follows:

« Virtual-page identification (TAG, SIZE, V, TID): These fields identify the page-translation
entry. They are compared with the virtual-page number during the translation process.

« Physical-page identification (RPN, SIZE): These fields identify the translated page in
physical memory.

« Access control (EX, WR, ZSEL): These fields specify the type of access allowed in the
page and are used to protect pages from improper accesses.

« Storage attributes (W, I, M, G, E, U0): These fields specify the storage-control attributes,
such as caching policy for the data cache (write-back or write-through), whether a page
is cacheable, and how bytes are ordered (endianness).

Table 2-39 shows the relationship between the TLB-entry s1zk field and the translated
page size. This table also shows how the page size determines which address bits are
involved in a tag comparison, which address bits are used as a page offset, and which bits
in the physical page number are used in the physical address. With 64-bit MicroBlaze or PAE
enabled, the most significant bits of the physical address are directly taken from the
extended RPN field.

MicroBlaze Processor Reference Guide Send Feedback 68
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=68

AM D n Chapter 2: MicroBlaze Architecture

Table 2-39: Page-Translation Bit Ranges by Page Size

PAE Disabled PAE or 64-bit Enabled?

SIZE .
Page Tag Comparison Physical | RPN Physical .
Size TLBHI Bit Rangel Page Offset \é F \4 RPN Bits
Field Page Bits Page Clearto 0
Number |Clearto0| Number
1 KB 000 | TAG and Address[0:n-11] | Address[22:31] | RPN[0:21] - RPNI[O:n-11] -

4 KB 001 | TAG and Address[0:n-13] | Address[20:31] | RPN[0:19] | 20:21 RPN[O:n-13] | n-12:n-11
16 KB 010 | TAG and Address[0:n-15] | Address[18:31] | RPN[0:17] | 18:21 RPN[O:n-15] | n-14:n-11
64 KB 011 | TAG and Address[0:n-17] | Address[16:31] | RPN[0:15] | 16:21 RPN[O:n-17] | n-16:n-11
256 KB | 100 | TAG and Address[0:n-19] | Address[14:31] | RPN[0:13] | 14:21 RPN[O:n-19] | n-18:n-11
1 MB 101 | TAG and Address[0:n-21] | Address[12:31] | RPN[0:11] | 12:21 RPN[0:n-21] | n-20:n-11
4 MB 110 | TAG and Address[0:n-23] | Address[10:31] | RPNJ0:9] 10:21 RPN[0:n-23] | n-22:n-11
16 MB 111 | TAG and Address[0:n-25] | Address[8:31] RPNI0:7] 8:21 RPNI[O:n-25] | n-24:n-11

1. The bit index n = ¢_ADDR_SIZE with 64-bit MicroBlaze, and 32 otherwise.
2. The bitindex n = C_ADDR_SIZE.

TLB Access

When the MMU translates a virtual address (the combination of PID and effective address)
into a physical address, it first examines the appropriate shadow TLB for the page
translation entry. If an entry is found, it is used to access physical memory. If an entry is not
found, the MMU examines the UTLB for the entry. A delay occurs each time the UTLB must
be accessed due to a shadow TLB miss. The miss latency ranges from 2-32 cycles. The DTLB
has priority over the ITLB if both simultaneously access the UTLB.

Figure 2-21 shows the logical process the MMU follows when examining a page-translation
entry in one of the shadow TLBs or the UTLB. All valid entries in the TLB are checked.

A TLB hit occurs when all of the following conditions are met by a TLB entry:

+ The entry is valid

» The TAG field in the entry matches the effective address EPN under the control of the
SIZE field in the entry

« The TID field in the entry matches the PID

If any of the above conditions are not met, a TLB miss occurs. A TLB miss causes an
exception, described as follows:

A TID value of 0x00 causes the MMU to ignore the comparison between the TID and PID.
Only the TAG and EA[EPN] are compared. A TLB entry with TID=0x00 represents a process-
independent translation. Pages that are accessed globally by all processes should be
assigned a TID value of 0x00. A PID value of 0x00 does not identify a process that can access
any page. When PID=0x00, a page-translation hit only occurs when TID=0x00. It is possible
for software to load the TLB with multiple entries that match an EA[EPN] and PID

MicroBlaze Processor Reference Guide Send Feedback 69
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=69

AM D n Chapter 2: MicroBlaze Architecture

combination. However, this is considered a programming error and results in undefined
behavior.

When a hit occurs, the MMU reads the RPN field from the corresponding TLB entry. Some
or all of the bits in this field are used, depending on the value of the s1zE field (see
Table 2-39).

For example, with PAE disabled and 32-bit MicroBlaze, if the s1zE field specifies a 256 kB
page size, RPN[0:13] represents the physical page number and is used to form the physical
address. RPN[14:21] is not used, and software must clear those bits to 0 when initializing the
TLB entry. The remainder of the physical address is taken from the page-offset portion of
the EA. If the page size is 256 kB, the 32-bit physical address is formed by concatenating
RPN[0:13] with bits 14:31 of the effective address.

Instead, with PAE enabled and assuming a physical address size of 40 bits (c_ADDR SIZE set
to 40), RPN[0:21] represents the physical page number and RPN[22:29] is not used. The 40-
bit physical address is formed by concatenating RPN[0:21] with bits 14:31 of the effective
address.

Prior to accessing physical memory, the MMU examines the TLB-entry access-control fields.
These fields indicate whether the currently executing program is allowed to perform the
requested memory access.

If access is allowed, the MMU checks the storage-attribute fields to determine how to
access the page. The storage-attribute fields specify the caching policy for memory
accesses.

TLB Access Failures

A TLB-access failure causes an exception to occur. This interrupts execution of the
instruction that caused the failure and transfers control to an interrupt handler to resolve
the failure. A TLB access can fail for two reasons:

« A matching TLB entry was not found, resulting in a TLB miss

« A matching TLB entry was found, but access to the page was prevented by either the
storage attributes or zone protection

When an interrupt occurs, the processor enters real mode by clearing MSR[VM] to 0. In real
mode, all address translation and memory-protection checks performed by the MMU are
disabled. After system software initializes the UTLB with page-translation entries,
management of the MicroBlaze UTLB is usually performed using interrupt handlers running
in real mode.

MicroBlaze Processor Reference Guide Send Feedback 70
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=70

AM D n Chapter 2: MicroBlaze Architecture

The following figure diagrams the general process for examining a TLB entry.

Check TLB-Entry
Using Virtual Address

A
TLB HI[V]=1 |— No =(TLB Entry Miss J

Yes

v

[TLBHI[TID]=0x00)

— Yes | No #
Compare .

[TLBHI[TID] with PID]— No Match —>(TLB Entry Miss J

Match]

Y
Compare
TLBHI[TAG] with EA[EPN] No Match =(TLB Entry Miss J
Using TLBHI[SIZE] L

|
Match (TLB Hit)

Check Access Not allowed :(Access Violation J

Allowed

Data Reference ——()—— Instruction Fetch

Check for Guarded =(Storage Violation J

Guarded Storage

Not Guarded
J

Y

Read TLBLO[RPN]
Using TLBHI[SIZE]

v ‘(Generate Physical Address from
- ~ 'L TLBLO[RPN] and Offset

Extract Offset from EA
using TLBHI[SIZE]

X19758-111617

Figure 2-21: General Process for Examining a TLB Entry

The following sections describe the conditions under which exceptions occur due to TLB
access failures.

MicroBlaze Processor Reference Guide Send Feedback 71
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=71

AM D n Chapter 2: MicroBlaze Architecture

Data-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), a data-storage exception occurs when access
to a page is not permitted for any of the following reasons:

« From user mode:

The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00).
This applies to load and store instructions.

The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 11). This applies to store instructions.

« From privileged mode:

The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 10 and ZPR[Zn], 11). This applies to store
instructions.

Instruction-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), an instruction-storage exception occurs when
access to a page is not permitted for any of the following reasons:

* From user mode:
The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00).

The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 11).
. The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

+ From privileged mode:

The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise
overridden by the zone field (ZPR[Zn], 10 and ZPR[Zn], 11).

The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

Data TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) a data TLB-miss exception occurs if a valid,
matching TLB entry was not found in the TLB (shadow and UTLB). Any load or store
instruction can cause a data TLB-miss exception.

Instruction TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) an instruction TLB-miss exception occurs if a
valid, matching TLB entry was not found in the TLB (shadow and UTLB). Any instruction
fetch can cause an instruction TLB-miss exception.

MicroBlaze Processor Reference Guide Send Feedback 72
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=72

AM D n Chapter 2: MicroBlaze Architecture

Access Protection

System software uses access protection to protect sensitive memory locations from
improper access. System software can restrict memory accesses for both user-mode and
privileged-mode software. Restrictions can be placed on reads, writes, and instruction
fetches. Access protection is available when virtual protected mode is enabled.

Access control applies to instruction fetches, data loads, and data stores. The TLB entry for
a virtual page specifies the type of access allowed to the page.

The TLB entry also specifies a zone-protection field in the zone-protection register that is
used to override the access controls specified by the TLB entry.

TLB Access-Protection Controls
Each TLB entry controls three types of access:

« Process: Processes are protected from unauthorized access by assigning a unique
process ID (PID) to each process. When system software starts a user-mode application,
it loads the PID for that application into the PID register. As the application executes,
memory addresses are translated using only TLB entries with a TID field in Translation
Look-Aside Buffer High (TLBHI) that matches the PID. This enables system software to
restrict accesses for an application to a specific area in virtual memory.

A TLB entry with TID=0x00 represents a process-independent translation. Pages that
are accessed globally by all processes should be assigned a TID value of 0x00.

« Execution: The processor executes instructions only if they are fetched from a virtual
page marked as executable (TLBLO[EX]=1). Clearing TLBLO[EX] to O prevents execution
of instructions fetched from a page, instead causing an instruction-storage interrupt
(ISI) to occur. The ISl does not occur when the instruction is fetched, but instead occurs
when the instruction is executed. This prevents speculatively fetched instructions that
are later discarded (rather than executed) from causing an ISI.

The zone-protection register can override execution protection.

+ Read/Write: Data is written only to virtual pages marked as writable (TLBLO[WR]=1).
Clearing TLBLO[WR] to 0 marks a page as read-only. An attempt to write to a read-only
page causes a data-storage interrupt (DSI) to occur.

The zone-protection register can override write protection.

TLB entries cannot be used to prevent programs from reading pages. In virtual mode, zone
protection is used to read-protect pages. This is done by defining a no-access-allowed zone
(ZPR[Zn] = 00) and using it to override the TLB-entry access protection. Only programs
running in user mode can be prevented from reading a page. Privileged programs always
have read access to a page.

MicroBlaze Processor Reference Guide Send Feedback 73
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=73

AM D n Chapter 2: MicroBlaze Architecture

Zone Protection

Zone protection is used to override the access protection specified in a TLB entry. Zones are
an arbitrary grouping of virtual pages with common access protection. Zones can contain
any number of pages specifying any combination of page sizes. There is no requirement for
a zone to contain adjacent pages.

The zone-protection register (ZPR) is a 32-bit register used to specify the type of protection
override applied to each of 16 possible zones. The protection override for a zone is encoded
in the ZPR as a 2-bit field.

The 4-bit zone-select field in a TLB entry (TLBLO[ZSEL]) selects one of the 16 zone fields
from the ZPR (Z0-Z15). For example, zone Z5 is selected when ZSEL = 0101.

Changing a zone field in the ZPR applies a protection override across all pages in that zone.
Without the ZPR, protection changes require individual alterations to each page translation
entry within the zone.

Unimplemented zones (when ¢_MMU ZONES < 16) are treated as if they contained 11.

UTLB Management

The UTLB serves as the interface between the processor MMU and memory-management
software. System software manages the UTLB to tell the MMU how to translate virtual
addresses into physical addresses. When a problem occurs due to a missing translation or
an access violation, the MMU communicates the problem to system software using the
exception mechanism. System software is responsible for providing interrupt handlers to
correct these problems so that the MMU can proceed with memory translation.

Software reads and writes UTLB entries using the MFS and MTS instructions, respectively.
With PAE enabled, the MFSE and MTSE instructions are used to access the most significant
part of the real page number. These instructions use the TLBX register index (numbered 0 to
63) corresponding to one of the 64 entries in the UTLB. The tag and data portions are read
and written separately, so software must execute two MFS or MTS instructions, and also an
additional MFSE or MTSE instruction when PAE is enabled, to completely access an entry.

With 64-bit MicroBlaze, the MFS and MTS instructions can access the entire contents of the
UTLB entry directly.

The UTLB is searched for a specific translation using the TLBSX register. TLBSX locates a
translation using an effective address and loads the corresponding UTLB index into the
TLBX register.

Individual UTLB entries are invalidated using the MTS instruction to clear the valid bit in the
tag portion of a TLB entry (TLBHI[V]).

MicroBlaze Processor Reference Guide Send Feedback 74
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=74

AM D n Chapter 2: MicroBlaze Architecture

When c_FAULT TOLERANT is set to 1, the UTLB block RAM is protected by parity. In case of
a parity error, a TLB miss exception occurs. To avoid accumulating errors in this case, each
entry in the UTLB should be periodically invalidated.

Recording Page Access and Page Modification
Software management of virtual-memory poses several challenges:

* Inavirtual-memory environment, software and data often consume more memory than
is physically available. Some of the software and data pages must be stored outside
physical memory, such as on a hard drive, when they are not used. Ideally, the most-
frequently used pages stay in physical memory and infrequently used pages are stored
elsewhere.

« When pages in physical-memory are replaced to make room for new pages, it is
important to know whether the replaced (old) pages were modified.

If they were modified, they must be saved prior to loading the replacement (new) pages.
If the old pages were not modified, the new pages can be loaded without saving the old

pages.

« Alimited number of page translations are kept in the UTLB. The remaining translations
must be stored in the page-translation table. When a translation is not found in the
UTLB (due to a miss), system software must decide which UTLB entry to discard so that
the missing translation can be loaded. It is desirable for system software to replace
infrequently used translations rather than frequently used translations.

Solving the above problems in an efficient manner requires keeping track of page accesses
and page modifications. MicroBlaze does not track page access and page modification in
hardware. Instead, system software can use the TLB-miss exceptions and the data-storage
exception to collect this information. As the information is collected, it can be stored in a
data structure associated with the page-translation table.

Page-access information is used to determine which pages should be kept in physical
memory and which are replaced when physical-memory space is required. System software
can use the valid bit in the TLB entry (TLBHI[V]) to monitor page accesses. This requires
page translations be initialized as not valid (TLBHI[V]=0) to indicate they have not been
accessed. The first attempt to access a page causes a TLB-miss exception, either because
the UTLB entry is marked not valid or because the page translation is not present in the
UTLB. The TLB-miss handler updates the UTLB with a valid translation (TLBHI[V]=1). The set
valid bit serves as a record that the page and its translation have been accessed. The TLB-
miss handler can also record the information in a separate data structure associated with
the page-translation entry.

Page-modification information is used to indicate whether an old page can be overwritten
with a new page or the old page must first be stored to a hard disk. System software can use
the write-protection bit in the TLB entry (TLBLO[WR]) to monitor page modification. This

requires page translations be initialized as read-only (TLBLO[WR]=0) to indicate they have

MicroBlaze Processor Reference Guide Send Feedback 75
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=75

AM D n Chapter 2: MicroBlaze Architecture

not been modified. The first attempt to write data into a page causes a data-storage
exception, assuming the page has already been accessed and marked valid as described
above. If software has permission to write into the page, the data-storage handler marks the
page as writable (TLBLO[WR]=1) and returns.

The set write-protection bit serves as a record that a page has been modified. The data-
storage handler can also record this information in a separate data structure associated
with the page-translation entry.

Tracking page modification is useful when virtual mode is first entered and when a new
process is started.

MicroBlaze Processor Reference Guide Send Feedback 76
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=76

AM D n Chapter 2: MicroBlaze Architecture

Reset, Interrupts, Exceptions, and Break

MicroBlaze supports reset, interrupt, user exception, break, and hardware exceptions. The
following section describes the execution flow associated with each of these events.

The relative priority starting with the highest is:

1. Reset

2. Hardware Exception
3. Non-maskable Break
4. Break

5. Interrupt

6.

User Vector (Exception)

Table 2-40 defines the memory address locations of the associated vectors and the
hardware enforced register file locations for return addresses. Each vector allocates two
addresses to allow full address range branching (requires an 1mMM followed by a BRAT
instruction). Normally the vectors start at address 0, but the parameter c_ BASE_VECTORS
can be used to locate them anywhere in memory.

The address range 0x28 to 0x4F is reserved for future software support. Allocating these
addresses for user applications is likely to conflict with future releases of support software.

Table 2-40: Vectors and Return Address Register File Location

Register File
Event Vector Address Return Address
Reset C_BASE_VECTORS + 0x0 -)
C_BASE_VECTORS + 0x4
User Vector (Exception) C_BASE_VECTORS + 0x8 - Ry
C_BASE_VECTORS + 0xC
Interrupt’ C_BASE_VECTORS + 0x10 - R14
C_BASE_VECTORS + 0x14
Break: Non-maskable
hardware C_BASE_VECTORS + 0x18 - R16
Break: Hardware C_BASE_VECTORS + 0x1C
Break: Software
Hardware Exception C_BASE_VECTORS + 0x20 -
C_BASE_VECTORS + 0x24 RT7 or BTR
Reserved for future use C_BASE_VECTORS + 0x28 -)
C_BASE_VECTORS + 0x4F

1. With low-latency interrupt mode, the vector address is supplied by the Interrupt Controller.
All of these events will clear the reservation bit, used together with the LWX and SWX
instructions to implement mutual exclusion, such as semaphores and spinlocks.

MicroBlaze Processor Reference Guide Send Feedback 77
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=77

AM D n Chapter 2: MicroBlaze Architecture

Reset

When a Reset or Debug_Rst (1) occurs, MicroBlaze flushes the pipeline and immediately
starts fetching instructions from the reset vector (address C_BASE VECTORS + 0x0). Both
external reset signals are active high, and it is recommended to assert the signals for at
least 16 cycles.

See MicroBlaze Core Configurability in Chapter 3 for more information on the MSR reset
value parameters, which are used to define the initial value of the Machine Status Register.

Reset does not clear the general purpose registers (r1 - r31) or the instruction and data
caches. To ensure that stale data is not used, software should not assume that the general
purpose registers are zero, and the program should invalidate instruction and data caches
before they are enabled. See Chapter 4, Reset Handling for a C code example of cache
invalidation.

MicroBlaze does not wait for outstanding AXI or LMB transactions to complete before it
begins fetching instructions from the reset vector. When only resetting the processor, all
external accesses must be completed before asserting Reset. This can be achieved with an
MBAR instruction to enter sleep mode or the pause signal. See Sleep and Pause Functionality
in Chapter 3 for details.

Equivalent Pseudocode

PC < C_BASE_VECTORS + 0x0

MSR <— C_RESET MSR_IE << 2 | C_RESET MSR _BIP << 4 | C_RESET_MSR _ICE << 6 |
C_RESET MSR DCE << 8 | C_RESET MSR EE << 9 | C_RESET MSR EIP << 10

EAR < 0; ESR < 0; FSR < 0

PID < 0; ZPR <« 0; TLBX <« 0

Reservation < 0

Hardware Exceptions

MicroBlaze can be configured to trap the following internal error conditions: illegal
instruction, instruction and data bus error, and unaligned access. The divide exception can
only be enabled if the processor is configured with a hardware divider (c_USE_D1v=1).

When configured with a hardware floating-point unit (c_Use_FpPU>0), it can also trap the
following floating-point specific exceptions: underflow, overflow, float division-by-zero,
invalid operation, and denormalized operand error.

When configured with a hardware memory management unit (MMU), it can also trap the
following memory management specific exceptions: Illegal Instruction Exception, Data
Storage Exception, Instruction Storage Exception, Data TLB Miss Exception, and Instruction
TLB Miss Exception.

1. Reset input controlled by the debugger using MDM.

MicroBlaze Processor Reference Guide Send Feedback 78
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=78

AM D n Chapter 2: MicroBlaze Architecture

A hardware exception causes MicroBlaze to flush the pipeline and branch to the hardware
exception vector (address ¢_BASE VECTORS + 0x20). The execution stage instruction in the
exception cycle is not executed.

The exception also updates the general purpose register R17 in the following manner:

For the MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data
TLB Miss Exception, Instruction TLB Miss Exception) the register R17 is loaded with the
appropriate program counter value to re-execute the instruction causing the exception
upon return. The value is adjusted to return to a preceding 1mMm instruction, if any. If the
exception is caused by an instruction in a branch delay slot, the value is adjusted to
return to the branch instruction, including adjustment for a preceding 1MM instruction,
if any.

For all other exceptions the register R17 is loaded with the program counter value of
the subsequent instruction, unless the exception is caused by an instruction in a branch
delay slot. If the exception is caused by an instruction in a branch delay slot, the
ESR[DS] bit is set. In this case the exception handler should resume execution from the
branch target address stored in BTR.

The EE and EIP bits in MSR are automatically reverted when executing the RTED instruction.

The VM and UM bits in MSR are automatically reverted from VMS and UMS when executing
the RTED, RTBD, and RTID instructions.

Exception Priority

When two or more exceptions occur simultaneously, they are handled in the following
order, from the highest priority to the lowest:

Instruction Bus Exception
Instruction TLB Miss Exception
Instruction Storage Exception
[llegal Opcode Exception
Privileged Instruction Exception or Stack Protection Violation Exception
Data TLB Miss Exception

Data Storage Exception
Unaligned Exception

Data Bus Exception

Divide Exception

FPU Exception

Stream Exception

MicroBlaze Processor Reference Guide Send Feedback 79
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=79

AM D n Chapter 2: MicroBlaze Architecture

Exception Causes

« Stream Exception: The AXI4-Stream exception is caused by executing a get or getd
instruction with the ‘e’ bit set to ‘1" when there is a control bit mismatch.

« Instruction Bus Exception: The instruction bus exception is caused by errors when
reading data from memory.

. Theinstruction peripheral AX14 interface (M_aAXI 1Pp)exception is caused by an error
response on M_AXI IP RRESP.

. The instruction cache AXI4 interface (M_AXI 1C) exception is caused by an error
response on M_AXI IC_RRESP. The exception can only occur when the parameter
C_ICACHE ALWAYS USED is set to 1 and the cache is turned off, or if the MMU
Inhibit Caching bit is set for the address. In all other cases the response is ignored.

. The instructions side local memory (ILMB) can only cause instruction bus exception
when either an uncorrectable error occurs in the LMB memory, as indicated by the
IUE signal, or C_ECC_USE_CE_EXCEPTION is set to 1 and a correctable error occurs
in the LMB memory, as indicated by the 1cE signal.

« lllegal Opcode Exception: The illegal opcode exception is caused by an instruction
with an invalid major opcode (bits 0 through 5 of instruction). Bits 6 through 31 of the
instruction are not checked. Optional processor instructions are detected as illegal if
not enabled. If the optional feature ¢ oPCODE_0x0 ILLEGAL is enabled, an illegal
opcode exception is also caused if the instruction is equal to 0x00000000.

« Data Bus Exception: The data bus exception is caused by errors when reading data
from memory or writing data to memory.

. The data peripheral AXI4 interface (M_aAxI DP) exception is caused by an error
response on M _AXI DP RRESP Or M_AXI DP_ BRESP.

. The data cache AXI4 interface (M_AXI DC) exception is caused by:
- An error response on M_AXI DC_RRESP Or M_AXI DC_BRESP,

- OKAY response on M_AXI_ DC_RRESP in case of an exclusive access using LWX.

The exception can only occur when ¢_DCACHE ALWAYS USED is set to 1 and the
cache is turned off, when an exclusive access using Lwx or swx is performed, or if the
MMU Inhibit Caching bit is set for the address. In all other cases the response is
ignored.

. The data side local memory (DLMB) can only cause instruction bus exception when
either an uncorrectable error occurs in the LMB memory, as indicated by the DUE
signal, or C_ECC_USE_CE_EXCEPTION is set to 1 and a correctable error occurs in the

MicroBlaze Processor Reference Guide Send Feedback 80
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=80

AM D n Chapter 2: MicroBlaze Architecture

LMB memory, as indicated by the pcE signal. An error can occur for all read
accesses, and for byte and halfword write accesses.

« Unaligned Exception: For 32-bit MicroBlaze the unaligned exception is caused by a
word access where the address to the data bus has any of the two least significant bits
set, or a half-word access with the least significant bit set.

For 64-bit MicroBlaze the unaligned exception is caused by a long access where the
address to the data bus has any of the three least significant bits set, a word access with
any of the two least significant bits set, or a half-word access with the least significant
bit set.

- Divide Exception: The divide exception is caused by an integer division (idiv or
idivu) where the divisor is zero, or by a signed integer division (idiv) where overflow
occurs (-2147483648 / -1).

« FPU Exception: An FPU exception is caused by an underflow, overflow, divide-by-zero,
illegal operation, or denormalized operand occurring with a floating-point instruction.

Underflow occurs when the result is denormalized.

. Overflow occurs when the result is not-a-number (NaN).

. The divide-by-zero FPU exception is caused by the rA operand to fdiv being zero
when rB is not infinite.

Illegal operation is caused by a signaling NaN operand or by illegal infinite or zero
operand combinations.

« Privileged Instruction Exception: The Privileged Instruction exception is caused by an
attempt to execute a privileged instruction in User Mode.

« Stack Protection Violation Exception: A Stack Protection Violation exception is
caused by executing a load or store instruction using the stack pointer (register R1) as
rA with an address outside the stack boundaries defined by the special Stack Low and
Stack High registers, causing a stack overflow or a stack underflow.

« Data Storage Exception: The Data Storage exception is caused by an attempt to
access data in memory that results in a memory-protection violation.

« Instruction Storage Exception: The Instruction Storage exception is caused by an
attempt to access instructions in memory that results in a memory-protection violation.

- Data TLB Miss Exception: The Data TLB Miss exception is caused by an attempt to
access data in memory, when a valid Translation Look-Aside Buffer entry is not present,
and virtual protected mode is enabled.

MicroBlaze Processor Reference Guide Send Feedback 81
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=81

AM D n Chapter 2: MicroBlaze Architecture

* Instruction TLB Miss Exception: The Instruction TLB Miss exception is caused by an
attempt to access instructions in memory, when a valid Translation Look-Aside Buffer
entry is not present, and virtual protected mode is enabled.

Should an Instruction Bus Exception, Illegal Opcode Exception, or Data Bus Exception occur
when C_FAULT TOLERANT is set to 1, and an exception is in progress (that is MSR[EIP] set
and MSR[EE] cleared), the pipeline is halted, and the external signal MB_Error is set.

Imprecise Exceptions

Normally all exceptions in MicroBlaze are precise, meaning that any instructions in the
pipeline after the instruction causing an exception are invalidated, and have no effect.

When C¢_IMPRECISE EXCEPTIONS is setto 1 (Ecc) an Instruction Bus Exception or Data Bus
Exception caused by ECC errors in LMB memory is not precise, meaning that a subsequent
memory access instruction in the pipeline might be executed. If this behavior is acceptable,
the maximum frequency can be improved by setting this parameter to 1.

Equivalent Pseudocode

ESR[DS] <« exception in delay slot
if ESR[DS] then
BTR < branch target PC
if MMU exception then
if branch preceded by IMM then
rl7 < PC - 8
else
rl7 < PC - 4
else
rl7 < invalid value
else if MMU exception then
if instruction preceded by IMM then
rl7 «<— PC - 4
else
rl7 < PC
else
rl7 < PC + 4
PC ¢ C_BASE_VECTORS + 0x20
MSR[EE] < 0, MSR[EIP]« 1
MSR [UMS] < MSR[UM], MSR[UM] <« 0, MSR[VMS] <« MSR[VM], MSR[VM] <« 0
ESR[EC] <~ exception specific value
ESR[ESS] <~ exception specific value
EAR < exception specific value
FSR < exception specific value
Reservation <« 0

Breaks
There are two kinds of breaks:

« Hardware (external) breaks

MicroBlaze Processor Reference Guide Send Feedback 82
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=82

AM D n Chapter 2: MicroBlaze Architecture

« Software (internal) breaks

Hardware Breaks

Hardware breaks are performed by asserting the external break signal (that is, the Ext BRK
and Ext NM_BRK input ports). On a break, the instruction in the execution stage completes
while the instruction in the decode stage is replaced by a branch to the break vector
(address ¢_BASE VECTORS + 0x18).

The break return address (the PC associated with the instruction in the decode stage at the
time of the break) is automatically loaded into general purpose register R16. MicroBlaze
also sets the Break In Progress (B1p) flag in the Machine Status Register (MSR).

A normal hardware break (that is, the Ext BRK input port) is only handled when MSRI[BIP]
and MSRIEIP] are set to O (that is, there is no break or exception in progress). The Break In
Progress flag disables interrupts. A non-maskable break (that is, the Ext NM BRK input
port) is always handled immediately.

The BIP bit in the MSR is automatically cleared when executing the RTBD instruction.

The Ext BRK signal must be kept asserted until the break has occurred, and deasserted
before the RTBD instruction is executed. The Ext NM_BRK signal must only be asserted one
clock cycle.

Software Breaks

To perform a software break, use the brk and brki instructions. Refer to Chapter 5,
MicroBlaze Instruction Set Architecture for detailed information on software breaks.

As a special case, when C¢_DEBUG_ENABLED is greater than zero, and "brki rD, 0x18" is
executed, a software breakpoint is signaled to the debugger; for example, the Xilinx System
Debugger (XSDB) tool, irrespective of the value of c_BASE VECTORS. In this case the BIP bit
in the MSR is not set.

Latency

The time it takes the MicroBlaze processor to enter a break service routine from the time
the break occurs depends on the instruction currently in the execution stage and the
latency to the memory storing the break vector.

Equivalent Pseudocode

rl6e < PC
PC <~ C_BASE VECTORS + 0x18
MSR [BIP] <« 1

MicroBlaze Processor Reference Guide Send Feedback 83
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=83

AM D n Chapter 2: MicroBlaze Architecture

MSR [UMS] <¢— MSR[UM], MSR[UM] <« 0, MSR[VMS] <« MSR[VM], MSR[VM] <« O
Reservation < 0

Interrupt

MicroBlaze supports one external interrupt source (connected to the Interrupt input
port). The processor only reacts to interrupts if the Interrupt Enable (IE) bit in the Machine
Status Register (MSR) is set to 1. On an interrupt, the instruction in the execution stage
completes while the instruction in the decode stage is replaced by a branch to the interrupt
vector. This is either address ¢_BASE _VECTORS + 0x10, or with low-latency interrupt mode,
the address supplied by the Interrupt Controller.

The interrupt return address (the PC associated with the instruction in the decode stage at
the time of the interrupt) is automatically loaded into general purpose register R14. In
addition, the processor also disables future interrupts by clearing the IE bit in the MSR. The
IE bit is automatically set again when executing the RTID instruction.

Interrupts are ignored by the processor if either of the break in progress (B1p) or exception
in progress (EIP) bits in the MSR are set to 1.

By using the parameter ¢_INTERRUPT IS EDGE, the external interrupt can either be set to
level-sensitive or edge-triggered:

« When using level-sensitive interrupts, the Interrupt input must remain set until
MicroBlaze has taken the interrupt, and jumped to the interrupt vector. Software must
acknowledge the interrupt at the source to clear it before returning from the interrupt
handler. If not, the interrupt is taken again, as soon as interrupts are enabled when
returning from the interrupt handler.

« When using edge-triggered interrupts, MicroBlaze detects and latches the Interrupt
input edge, which means that the input only needs to be asserted one clock cycle. The
interrupt input can remain asserted, but must be deasserted at least one clock cycle
before a new interrupt can be detected. The latching of an edge-triggered interrupt is
independent of the IE bit in MSR. Should an interrupt occur while the IE bit is 0, it will
immediately be serviced when the IE bit is set to 1.

With periodic interrupt sources, such as the FIT Timer IP core, that do not have a method to
clear the interrupt from software, it is recommended to use edge-triggered interrupts.

Low-latency Vectored Interrupt Mode

A low-latency vectored interrupt mode is available, which allows the Interrupt Controller to
directly supply the interrupt vector for each individual interrupt (using the input port
Interrupt Address). The address of each fast interrupt handler must be passed to the

MicroBlaze Processor Reference Guide Send Feedback 84
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=84

AM D n Chapter 2: MicroBlaze Architecture

Interrupt Controller when initializing the interrupt system. When a particular interrupt
occurs, this address is supplied by the Interrupt Controller, which allows MicroBlaze to
directly jump to the handler code.

With this mode, MicroBlaze also directly sends the appropriate interrupt acknowledge to
the Interrupt Controller (using the Interrupt Ack output port), although it is still the
responsibility of the Interrupt Service Routine to acknowledge level sensitive interrupts at
the source.

This information allows the Interrupt Controller to acknowledge interrupts appropriately,
both for level-sensitive and edge-triggered interrupt.

To inform the Interrupt Controller of the interrupt handling events, Interrupt Ack is set
to:

* 01: When MicroBlaze jumps to the interrupt handler code,
« 10: When the RTID instruction is executed to return from interrupt,

« 11: When MSRJIE] is changed from 0 to 1, which enables interrupts again.

The Interrupt Ack output port is active during one clock cycle, and is then reset to 00.

Latency

The time it takes MicroBlaze to enter an Interrupt Service Routine (ISR) from the time an
interrupt occurs, depends on the configuration of the processor and the latency of the
memory controller storing the interrupt vectors. If MicroBlaze is configured to have a
hardware divider, the largest latency happens when an interrupt occurs during the
execution of a division instruction.

With low-latency vectored interrupt mode, the time to enter the ISR is significantly reduced,
since the interrupt vector for each individual interrupt is directly supplied by the Interrupt
Controller. With compiler support for fast interrupts, there is no need for a common ISR at
all. Instead, the ISR for each individual interrupt will be directly called, and the compiler
takes care of saving and restoring registers used by the ISR.

Equivalent Pseudocode

rl4 < PC
if C USE INTERRUPT = 2
PC < Interrupt Address
Interrupt_Ack < 01
else
PC <~ C_BASE VECTORS + 0x10
MSR[IE] <« 0
MSR [UMS] < MSR[UM], MSR[UM] < 0, MSR[VMS] < MSR[VM], MSR[VM] <« 0
Reservation < 0

MicroBlaze Processor Reference Guide Send Feedback 85
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=85

AM D n Chapter 2: MicroBlaze Architecture

User Vector (Exception)

The user exception vector is located at address 0x8. A user exception is caused by inserting
a '‘BRALID Rx,0x8" instruction in the software flow. Although Rx could be any general
purpose register, AMD recommends using R15 for storing the user exception return
address, and to use the RTSD instruction to return from the user exception handler.

Pseudocode

rx < PC
PC <~ C_BASE VECTORS + 0x8
MSR [UMS] <— MSR[UM], MSR[UM] < 0, MSR[VMS] ¢ MSR[VM], MSR[VM] 4 O

Reservation < 0

MicroBlaze Processor Reference Guide Send Feedback 86
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=86

AM D n Chapter 2: MicroBlaze Architecture

Instruction Cache

Overview

MicroBlaze can be used with an optional instruction cache for improved performance when
executing code that resides outside the LMB address range.

The instruction cache has the following features:

« Direct mapped (1-way associative)

» User selectable cacheable memory address range

« Configurable cache and tag size

« Caching over AXl4 interface (M_AXI 1C)

« Option to use 4, 8 or 16 word cache-line

« Cache on and off controlled using a bit in the MSR

« Optional WIC instruction to invalidate instruction cache lines

« Optional stream buffers to improve performance by speculatively prefetching
instructions

« Optional victim cache to improve performance by saving evicted cache lines

« Optional parity protection that invalidates cache lines if a Block RAM bit error is
detected

« Optional data width selection to either use 32 bits, an entire cache line, or 512 bits

General Instruction Cache Functionality

When the instruction cache is used, the memory address space is split into two segments:
a cacheable segment and a non-cacheable segment. The cacheable segment is determined
by two parameters: ¢C_ ICACHE BASEADDR and C_ICACHE HIGHADDR. All addresses within
this range correspond to the cacheable address segment. All other addresses are non-
cacheable.

The cacheable segment size must be 2N, where N is a positive integer. The range specified
by c_ICACHE BASEADDR and C_ICACHE HIGHADDR must comprise a complete power-of-two
range, such that range = 2N and the N least significant bits of c_TcACHE BASEADDR must be
zero.

The cacheable instruction address consists of two parts: the cache address, and the tag
address. The MicroBlaze instruction cache can be configured from 64 bytes to 64 kB. This
corresponds to a cache address of between 6 and 16 bits. The tag address together with the
cache address should match the full address of cacheable memory.

MicroBlaze Processor Reference Guide Send Feedback 87
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=87

AM D n Chapter 2: MicroBlaze Architecture

When selecting cache sizes below 2 kB, distributed RAM is used to implement the Tag RAM
and Instruction RAM. Distributed RAM is always used to implement the Tag RAM, when
setting the parameter ¢_ICACHE FORCE_TAG_LUTRAM to 1. This parameter is only available
with cache size 8 kB and less for 4 word cache-lines, with 16 kB and less for 8 word cache-
lines, and with 32 kB and less for 16 word cache-lines.

For example: in a 32-bit MicroBlaze configured with ¢ ICACHE BASEADDR= 0x00300000,
C_ICACHE HIGHADDR=0x0030ffff, C_CACHE BYTE SIZE=4096, C_ICACHE LINE LEN=8,
and C_ICACHE FORCE TAG LUTRAM=0; the cacheable memory of 64 kB uses 16 bits of byte
address, and the 4 kB cache uses 12 bits of byte address, thus the required address tag
width is: 16-12=4 bits. The total number of block RAM primitives required in this
configuration is: 2 RAMB16 for storing the 1024 instruction words, and 1 RAMB16 for 128
cache line entries, each consisting of: 4 bits of tag, 8 word-valid bits, 1 line-valid bit. In total
3 RAMB16 primitives.

The following figure shows the organization of Instruction Cache.

0 Instruction Address Bits 30 31

Tag Address Cache Address

_

: T:
Line Addr Tag L»@—» Cache_Hit
RAM Valid (word and line)

Word Addr

Instruction Cache_instruction_data
RAM o

X19759-111617

Figure 2-22: Instruction Cache Organization

Instruction Cache Operation

For every instruction fetched, the instruction cache detects if the instruction address
belongs to the cacheable segment. If the address is non-cacheable, the cache controller
ignores the instruction and lets the M_ax1 1P or LMB complete the request. If the address
is cacheable, a lookup is performed on the tag memory to check if the requested address is
currently cached. The lookup is successful if: the word and line valid bits are set, and the tag
address matches the instruction address tag segment. On a cache miss, the cache controller
requests the new instruction over the instruction AXI4 interface (m_ax1_1c), and waits for
the memory controller to return the associated cache line.

C_ICACHE DATA WIDTH determines the bus data width, either 32 bits, an entire cache line
(128, 256 or 512 bits), or 512 bits.

MicroBlaze Processor Reference Guide Send Feedback 88
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=88

AM D n Chapter 2: MicroBlaze Architecture

When Cc_FAULT_ TOLERANT is set to 1, a cache miss also occurs if a parity error is detected in
a tag or instruction Block RAM.

The instruction cache issues burst accesses for the AXI4 interface when 32-bit data width is
used, otherwise single accesses are used.

Stream Buffers

When stream buffers are enabled, by setting the parameter ¢_1caACHE STREAMS to 1, the
cache will speculatively fetch cache lines in advance in sequence following the last
requested address, until the stream buffer is full.

The stream buffer can hold up to two cache lines. Should the processor subsequently
request instructions from a cache line prefetched by the stream buffer, which occurs in
linear code, they are immediately available.

The stream buffer often improves performance, since the processor generally has to spend
less time waiting for instructions to be fetched from memory.

C_ICACHE DATA WIDTH determines the amount of data transferred from the stream buffer
each clock cycle, either 32 bits or an entire cache line.

To be able to use instruction cache stream buffers, area optimization must not be enabled.

Victim Cache

The victim cache is enabled by setting the parameter ¢_1cAacHE vICcTIMS to 2, 4 or 8. This
defines the number of cache lines that can be stored in the victim cache. Whenever a cache
line is evicted from the cache, it is saved in the victim cache. By saving the most recent lines
they can be fetched much faster, should the processor request them, thereby improving
performance. If the victim cache is not used, all evicted cache lines must be read from
memory again when they are needed.

C_ICACHE DATA WIDTH determines the amount of data transferred from/to the victim
cache each clock cycle, either 32 bits or an entire cache line.

Note: To be able to use the victim cache, area optimization must not be enabled.

Instruction Cache Software Support

MSR Bit

The ICE bit in the MSR provides software control to enable and disable caches.

The contents of the cache are preserved by default when the cache is disabled. You can
invalidate cache lines using the WIC instruction or using the hardware debug logic of
MicroBlaze.

MicroBlaze Processor Reference Guide Send Feedback 89
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=89

AM D n Chapter 2: MicroBlaze Architecture

WIC Instruction

The optional WIC instruction (C_ALLOW ICACHE WR=1) is used to invalidate cache lines in
the instruction cache from an application. For a detailed description, see Chapter 5,
MicroBlaze Instruction Set Architecture.

The WIC instruction can also be used together with parity protection to periodically
invalidate entries the cache, to avoid accumulating errors.

MicroBlaze Processor Reference Guide Send Feedback 20
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=90

AM D n Chapter 2: MicroBlaze Architecture

Data Cache

Overview

The MicroBlaze processor can be used with an optional data cache for improved
performance. The cached memory range must not include addresses in the LMB address
range. The data cache has the following features:

« Direct mapped (1-way associative)

» Write-through or Write-back

» User selectable cacheable memory address range

« Configurable cache size and tag size

« Caching over AXI4 interface (M_AXI DC)

« Option to use 4, 8 or 16 word cache-lines

« Cache on and off controlled using a bit in the MSR

« Optional WDC instruction to invalidate or flush data cache lines

« Optional victim cache with write-back to improve performance by saving evicted cache
lines

« Optional parity protection for write-through cache that invalidates cache lines if a Block
RAM bit error is detected

« Optional data width selection to either use 32 bits, an entire cache line, or 512 bits

General Data Cache Functionality

When the data cache is used, the memory address space is split into two segments: a
cacheable segment and a non-cacheable segment. The cacheable area is determined by
two parameters: C_ DCACHE_BASEADDR and C_DCACHE_ HIGHADDR. All addresses within this
range correspond to the cacheable address space. All other addresses are non-cacheable.

The cacheable segment size must be 2N, where N is a positive integer. The range specified
by ¢ DCACHE BASEADDR and C_DCACHE_HIGHADDR must comprise a complete power-of-two
range, such that range = 2N and the N least significant bits of ¢ DCACHE BASEADDR must be
zero.

MicroBlaze Processor Reference Guide Send Feedback 91
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=91

AM D n Chapter 2: MicroBlaze Architecture

The following figure shows the Data Cache organization.

0 Data Address Bits 30 31
Tag Address Cache Word Address
T:
Addr Tag ag Cache_Hit
RAM Valid

»
|
»
|

Load_Instruction

Addr

Y

Data Cache_data
RAM >

X19760-111617

Figure 2-23: Data Cache Organization

The cacheable data address consists of two parts: the cache address, and the tag address.
The MicroBlaze data cache can be configured from 64 bytes to 64 kB. This corresponds to
a cache address of between 6 and 16 bits. The tag address together with the cache address
should match the full address of cacheable memory. When selecting cache sizes below 2 kB,
distributed RAM is used to implement the Tag RAM and Data RAM, except that block RAM
is always used for the Data RAM when ¢c_AREA OPTIMIZED is set to 1 (Area) and
C_DCACHE_USE_ WRITEBACK is not set. Distributed RAM is always used to implement the
Tag RAM, when setting the parameter C_DCACHE FORCE_TAG LUTRAM to 1. This
parameter is only available with cache size 8 kB and less for 4 word cache-lines, with 16 kB
and less for 8 word cache-lines, and with 32 kB and less for 16 word cache-lines.

For example, in a 32-bit MicroBlaze configured with ¢ DCACHE BASEADDR=0x00400000,
C_DCACHE HIGHADDR=0x00403fff, C_ DCACHE BYTE SIZE=2048, C_ DCACHE LINE LEN=4,
and C_DCACHE FORCE_TAG LUTRAM=0; the cacheable memory of 16 kB uses 14 bits of byte
address, and the 2 kB cache uses 11 bits of byte address, thus the required address tag
width is 14-11=3 bits. The total number of block RAM primitives required in this
configuration is 1 RAMB16 for storing the 512 data words, and 1 RAMB16 for 128 cache line
entries, each consisting of 3 bits of tag, 4 word-valid bits, 1 line-valid bit. In total, 2 RAMB16
primitives.

Data Cache Operation

The caching policy used by the MicroBlaze data cache, write-back or write-through, is
determined by the parameter ¢_DCACHE USE_WRITEBACK. When this parameter is set, a
write-back protocol is implemented; otherwise write-through is implemented.

However, when configured with an MMU (c_USE_MMU > 1, C_AREA OPTIMIZED = 0
(Performance) or 2 (Frequency), C_ DCACHE _USE_WRITEBACK = 1), the caching policy in
virtual mode is determined by the W storage attribute in the TLB entry, whereas write-back
is used in real mode.

MicroBlaze Processor Reference Guide Send Feedback 92
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=92

AM D n Chapter 2: MicroBlaze Architecture

With the write-back protocol, a store to an address within the cacheable range always
updates the cached data. If the target address word is not in the cache (that is, the access
is a cache miss), and the location in the cache contains data that has not yet been written
to memory (the cache location is dirty), the old data is written over the data AXI4 interface
(M_axI_Dc) to external memory before updating the cache with the new data. If only a
single word needs to be written, a single word write is used, otherwise a burst write is used.
For byte or halfword stores, in case of a cache miss, the address is first requested over the
data AXI4 interface, while a word store only updates the cache.

With the write-through protocol, a store to an address within the cacheable range
generates an equivalent byte, halfword, or word write over the data AXI4 interface to
external memory. The write also updates the cached data if the target address word is in the
cache (that is, the write is a cache hit). A write cache-miss does not load the associated
cache line into the cache.

Provided that the cache is enabled a load from an address within the cacheable range
triggers a check to determine if the requested data is currently cached. If it is (that is, on a
cache hit) the requested data is retrieved from the cache. If not (that is, on a cache miss) the
address is requested over the data AXI4 interface using a burst read, and the processor
pipeline stalls until the cache line associated to the requested address is returned from the
external memory controller.

The parameter ¢_DCACHE DATA WIDTH determines the bus data width, either 32 bits, an
entire cache line (128, 256 or 512 bits), or 512 bits.

When ¢_FAULT TOLERANT is set to 1 and write-through protocol is used, a cache miss also
occurs if a parity error is detected in the tag or data block RAM.

MicroBlaze Processor Reference Guide Send Feedback 93
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=93

AM D n Chapter 2: MicroBlaze Architecture

The following table summarizes all types of accesses issued by the data cache AXI4
interface.

Table 2-41: Data Cache Interface Accesses

Policy State | Direction Access Type
Write- Cache Read Burst for 32-bit interface non-exclusive access and exclusive
through Enabled access with ACE enabled, single access otherwise

Write Single access

Cache Read Burst for 32-bit interface exclusive access with ACE enabled,
Disabled single access otherwise

Write Single access

Write-back Cache Read Burst for 32-bit interface, single access otherwise
Enabled Write Burst for 32-bit interface cache lines with more than one valid
word, a single access otherwise
Cache Read Burst for 32-bit interface non-exclusive access, discarding all but
Disabled the desired data, a single access otherwise

Write Single access

Victim Cache

The victim cache is enabled by setting the parameter ¢_DCACHE vICTIMS to 2, 4 or 8. This
defines the number of cache lines that can be stored in the victim cache. Whenever a
complete cache line is evicted from the cache, it is saved in the victim cache. By saving the
most recent lines they can be fetched much faster, should the processor request them,
thereby improving performance. If the victim cache is not used, all evicted cache lines must
be read from memory again when they are needed.

With the AXI4 interface, c_ DCACHE DATA WIDTH determines the amount of data transferred
from/to the victim cache each clock cycle, either 32 bits or an entire cache line.

Note: To be able to use the victim cache, write-back must be enabled and area optimization must
not be enabled.

Data Cache Software Support

MSR Bit

The DCE bit in the MSR controls whether or not the cache is enabled. When disabling
caches the user must ensure that all the prior writes within the cacheable range have been
completed in external memory before reading back over M_ax1 Dp. This can be done by
writing to a semaphore immediately before turning off caches, and then in a loop poll until
it has been written. The contents of the cache are preserved when the cache is disabled.

MicroBlaze Processor Reference Guide Send Feedback 94
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=94

AM D n Chapter 2: MicroBlaze Architecture

WDC Instruction

The optional WDC instruction (C_ALLOW DCACHE WR=1) is used to invalidate or flush cache
lines in the data cache from an application. For a detailed description, please refer to
Chapter 5, MicroBlaze Instruction Set Architecture.

The WDC instruction can also be used together with parity protection to periodically
invalidate entries the cache, to avoid accumulating errors.

With an external L2 cache, such as the System Cache, connected to MicroBlaze using the
ACE interface, external cache invalidate or flush can be performed with WDC. See the
System Cache LogiCORE IP Product Guide (PG118) [Ref 6] for more information on the
System Cache.

MicroBlaze Processor Reference Guide Send Feedback 95
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=95

AM D n Chapter 2: MicroBlaze Architecture

Floating-Point Unit (FPU)

Overview
The MicroBlaze floating-point unit is based on the IEEE 754-1985 standard [Ref 18]:

« Uses IEEE 754 single precision floating-point format, and double precision format with
64-bit MicroBlaze, including definitions for infinity, not-a-number (NaN), and zero

« Supports addition, subtraction, multiplication, division, comparison, conversion and
square root instructions

» Implements round-to-nearest mode

« Generates sticky status bits for: underflow, overflow, divide-by-zero and invalid
operation

For improved performance, the following non-standard simplifications are made:

« Denormalized (") operands are not supported. A hardware floating-point operation on a
denormalized number returns a quiet NaN and sets the sticky denormalized operand
error bit in FSR; see Floating-Point Status Register (FSR).

« A denormalized result is stored as a signed 0 with the underflow bit set in FSR. This
method is commonly referred to as Flush-to-Zero (FTZ)

» An operation on a quiet NaN returns the fixed NaN: 0xFFC00000 for single precision or
OxFFF8000000000000 for double precision, rather than one of the NaN operands

« Overflow as a result of a floating-point operation always returns signed «

Format

Single Precision

An IEEE 754 single precision floating-point number is composed of the following three
fields:

1. 1-bit sign
2. 8-bit biased exponent

3. 23-bit fraction (a.k.a. mantissa or significand)

The fields are stored in a 32 bit word as defined in the following figure:

1. Numbers that are so close to 0, that they cannot be represented with full precision, that is, any number n that falls in the
following ranges for single precision: (1.17549*10738 > n > 0), or (0 > n > -1.17549 * 10-38), and the following ranges for
double precision: (5.562684646268*10-309 > n > 0), or (0 > n > -5.562684646268 * 10-309)

MicroBlaze Processor Reference Guide Send Feedback 96
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=96

AM D n Chapter 2: MicroBlaze Architecture

f f f
sign exponent fraction

X19761-111617

Figure 2-24: |EEE 754 Single Precision Format

The value of a floating-point number v in MicroBlaze has the following interpretation:
1. If exponent = 255 and fraction <> 0, then v = NaN, regardless of the sign bit

If exponent = 255 and fraction = 0, then v = (-1)S9n * oo

If 0 < exponent < 255, then v = (-1)sign * 2(exponent-127) * (1 fraction)

If exponent = 0 and fraction <> 0, then v = (-1)5ign * 2-126 * (Q_fraction)

If exponent = 0 and fraction = 0, then v = (-1)5i9n * 0

vk w

For practical purposes only 3 and 5 are useful, while the others all represent either an error
or numbers that can no longer be represented with full precision in a 32 bit format.

Double Precision

An |IEEE 754 double precision floating point number is composed of the following three
fields:

1. 1-bit sign
2. 11-bit biased exponent

3. 52-bit fraction (a.k.a. mantissa or significand)

The fields are stored in a 64 bit long as defined in the following figure:

f f f
sign exponent fraction

X20091-112317

Figure 2-25: |EEE 754 Double Precision Format

The value of a floating point number v in MicroBlaze has the following interpretation:
1. If exponent = 2047 and fraction <> 0, then v = NaN, regardless of the sign bit

If exponent = 2047 and fraction = 0, then v = (-1)519" *

If 0 < exponent < 2047, then v = (-1)sign * 2(exponent-1023) * (1 frqction)

If exponent = 0 and fraction <> 0, then v = (-1)sign * 2-1022 * (0 fraction)

If exponent = 0 and fraction = 0, then v = (-1)5i97 * 0

vk wn

For practical purposes only 3 and 5 are useful, while the others all represent either an error
or numbers that can no longer be represented with full precision in a 64 bit format.

MicroBlaze Processor Reference Guide Send Feedback 97
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=97

AM D n Chapter 2: MicroBlaze Architecture

Rounding

The MicroBlaze FPU only implements the default rounding mode, "Round-to-nearest”,
specified in IEEE 754. By definition, the result of any floating-point operation should return
the nearest single precision value to the infinitely precise result. If the two nearest
representable values are equally near, then the one with its least significant bit zero is
returned.

Operations

All MicroBlaze FPU operations use the processors general purpose registers rather than a
dedicated floating-point register file, see General Purpose Registers.

Arithmetic

The FPU implements the following floating point operations, where the double operations
are available with 64-bit MicroBlaze:

addition, fadd and dadd

» subtraction, frsub and drsub
« multiplication, fmul and dmul
« division, fdiv and ddiv

« square root, fsqrt and dsqrt (available if c USE FPU = 2, EXTENDED)
Comparison

The FPU implements the following floating point comparisons, where the double operations
are available with 64-bit MicroBlaze:

« compare less-than, fcmp.lt and dcmp.It

« compare equal, fcmp.eq and dcmp.eq

« compare less-or-equal, fcmp.le and dcmp.le

e compare greater-than, fcmp.gt and dcmp.gt

« compare not-equal, fcmp.ne and dcmp.ne

¢ compare greater-or-equal, fcmp.ge and dcmp.ge

« compare unordered, fcmp.un and dcmp.un (used for NaN)
Conversion

The FPU implements the following conversions (available if c USE FPU = 2, EXTENDED),
where the double operations are available with 64-bit MicroBlaze:

MicroBlaze Processor Reference Guide Send Feedback 98
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=98

AM D n Chapter 2: MicroBlaze Architecture

« convert from signed integer to single floating point, flt
« convert from single floating point to signed integer, fint
« convert from signed long to floating point, dbl

« convert from double floating point to signed long, dlong

Exceptions

The floating-point unit uses the regular hardware exception mechanism in MicroBlaze.
When enabled, exceptions are thrown for all the IEEE standard conditions: underflow,
overflow, divide-by-zero, and illegal operation, as well as for the MicroBlaze specific
exception: denormalized operand error.

A floating-point exception inhibits the write to the destination register (Rd). This allows a
floating-point exception handler to operate on the uncorrupted register file.

Software Support

The Vitis™ compiler system, based on GCC, provides support for the floating-point Unit
compliant with the MicroBlaze API. Compiler flags are automatically added to the GCC
command line based on the type of FPU present in the system, when using Vitis.

All double-precision operations are emulated in software with 32-bit MicroBlaze. Be aware
that the xi1 printf () function does not support floating-point output. The standard C
library print£ () and related functions do support floating-point output, but will increase
the program code size.

Libraries and Binary Compatibility

The Vitis compiler system only includes software floating-point C runtime libraries. To take
advantage of the hardware FPU, the libraries must be recompiled with the appropriate
compiler switches.

For all cases where separate compilation is used, it is very important that you ensure the
consistency of FPU compiler flags throughout the build.

Operator Latencies

The latencies of the various operations supported by the FPU are listed in Chapter 5,
“MicroBlaze Instruction Set Architecture.” The FPU instructions are not pipelined, so only
one operation can be ongoing at any time.

C Language Programming

To gain maximum benefit from the FPU without low-level assembly-language
programming, it is important to consider how the C compiler will interpret your source

MicroBlaze Processor Reference Guide Send Feedback 99
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=99

AM D n Chapter 2: MicroBlaze Architecture

code. Very often the same algorithm can be expressed in many different ways, and some are
more efficient than others.

Immediate Constants

Floating-point constants in C are double-precision by default. When using a single-
precision FPU, careless coding could result in double-precision software emulation routines
being used instead of the native single-precision instructions. To avoid this, explicitly
specify (by cast or suffix) that immediate constants in your arithmetic expressions are
single-precision values.

For example:

float x = 0.0;

X += (float)1.0; /* float addition */
x += 1.0F; /* alternative to above */
X += 1.0; /* warning - uses double addition! */

Note that the GNU C compiler can be instructed to treat all floating-point constants as
single-precision (contrary to the ANSI C standard) by supplying the compiler flag -fsingle-
precision-constants.

Avoiding Unnecessary Casting

While conversions between floating-point and integer formats are supported in hardware
by the FPU, when c_USE_FPU is set to 2 (Extended), it is still best to avoid them when
possible.

The following not-recommended example calculates the sum of squares of the integers
from 1 to 10 using floating-point representation:

float sum, t;

int i;
sum = 0.0f;
for (i = 1; i <= 10; i++) {

t = (float)i;
sum += t * t;

}

The above code requires a cast from an integer to a float on each loop iteration. This can be
rewritten as:

float sum, t;

int 1i;

t = sum = 0.0f;

for(i = 1; i <= 10; i++) {
t += 1.0f;

sum += t * t;

}

Note: The compiler is not at liberty to perform this optimization in general, as the two code
fragments above might give different results in some cases (for example, very large t).

MicroBlaze Processor Reference Guide Send Feedback 100
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=100

AM D n Chapter 2: MicroBlaze Architecture

Using Square Root Runtime Library Function

The standard C runtime math library functions operate using double-precision arithmetic.
When using a single-precision FPU, calls to the square root functions (sqgrt ()) result in
inefficient emulation routines being used instead of FPU instructions:

#include <math.h>
float x=-1.0F;
X = sgrt(x); /* uses double precision */

Here the math.h header is included to avoid a warning message from the compiler.

When used with single-precision data types, the result is a cast to double, a runtime library
call is made (which does not use the FPU) and then a truncation back to float is performed.

The solution is to use the non-ANSI function sqrtf () instead, which operates using single
precision and can be carried out using the FPU. For example:

#include <math.h>
float x=-1.0F;

X = sqgrtf(x); /* uses single precision */

Note: When compiling this code, the compiler flag - fno-math-errno (in addition to
-mhard-float and -mx1-float-sgrt) must be used, to ensure that the compiler does not
generate unnecessary code to handle error conditions by updating the errno variable.

MicroBlaze Processor Reference Guide Send Feedback 101
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=101

AM D n Chapter 2: MicroBlaze Architecture

Stream Link Interfaces

MicroBlaze can be configured with up to 16 AXI4-Stream interfaces, each consisting of one
input and one output port. The channels are dedicated uni-directional point-to-point data
streaming interfaces.

For detailed information on the AXI4-Stream interface, please refer to the AMBA 4 AXI4-
Stream Protocol Specification, Version 1.0 (Arm IHI 0051A) [Ref 14] document.

The interfaces on MicroBlaze are 32 bits wide. A separate bit indicates whether the
sent/received word is of control or data type. The get instruction in the MicroBlaze ISA is
used to transfer information from a port to a general purpose register. The put instruction
is used to transfer data in the opposite direction. Both instructions come in 4 flavors:
blocking data, non-blocking data, blocking control, and non-blocking control. For a
detailed description of the get and put instructions, see Chapter 5, MicroBlaze Instruction
Set Architecture.

Hardware Acceleration

Each link provides a low latency dedicated interface to the processor pipeline. Thus they are
ideal for extending the processors execution unit with custom hardware accelerators. A
simple example is illustrated in the following figure. The code uses RFSLx to indicate the

used link.
\
Link x
J/ Configure fx Custom HW Accelerator
d MicroBlaze
cput Re, RFSLx | Op 1 Reg | | Op 2 Reg |
Register
/I Store operands File ConfigReg
put Ra, RFSLx // op 1 f,
Rb, RFSL 2

UL, RFSLxflop Result Reg
// Load result Link x |

X19783-111617

Figure 2-26: Stream Link Used with HW Accelerated Function fx

This method is similar to extending the ISA with custom instructions, but has the benefit of
not making the overall speed of the processor pipeline dependent on the custom function.
Also, there are no additional requirements on the software tool chain associated with this
type of functional extension.

MicroBlaze Processor Reference Guide Send Feedback 102
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=102

AM D n Chapter 2: MicroBlaze Architecture

Debug and Trace

Debug Overview

MicroBlaze features a debug interface to support JTAG based software debugging tools
(commonly known as BDM or Background Debug Mode debuggers) like the Xilinx System
Debugger (XSDB) tool. The debug interface is designed to be connected to the
Microprocessor Debug Module (MDM) core, which interfaces with the JTAG port of FPGAs.
Multiple MicroBlaze instances can be interfaced with a single MDM to enable
multiprocessor debugging.

To be able to download programs, set software breakpoints and disassemble code, the
instruction and data memory ranges must overlap, and use the same physical memory.

Debug registers are accessed using the debug interface, and are not directly visible to
software running on the processor, unless the MDM is configured to enable software access
to user-accessible debug registers. The debug interface can either use JTAG serial access or
AXI4-Lite parallel access, controlled by the parameter ¢ DEBUG_INTERFACE.

See the MicroBlaze Debug Module (MDM) Product Guide (PG115) [Ref 4] for a detailed
description of the MDM features.

The basic debugging features enabled by setting ¢ _DEBUG_ ENABLED to 1 (Basic) include:

« Configurable number of hardware breakpoints and watchpoints and unlimited software
breakpoints

« External processor control enables debug tools to stop, reset, and single step
MicroBlaze

« Read from and write to: memory, general purpose registers, and special purpose
register, except EAR, EDR, ESR, BTR and PVRO - PVR12, which can only be read

« Support for multiple processors

The extended debugging features enabled by setting ¢ DEBUG ENABLED to 2 (Extended)
include:

« Configurable number of performance monitoring event and latency counters
* Program Trace:

Embedded program trace with configurable trace buffer size

External program trace for multiple processors, provided by the MDM
« Non-intrusive profiling support with configurable profiling buffer size

« Cross trigger support between multiple processors, and external cross trigger inputs
and outputs, provided by the MDM

MicroBlaze Processor Reference Guide Send Feedback 103
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=103

AM D n Chapter 2: MicroBlaze Architecture

Performance Monitoring

With extended debugging, MicroBlaze provides performance monitoring counters to count
various events and to measure latency during program execution. The number of event
counters and latency counters can be configured with ¢ DEBUG_EVENT COUNTERS and
C_DEBUG_LATENCY COUNTERS respectively, and the counter width can be set to 32, 48 or 64
bits with ¢ DEBUG_cOUNTER wIDTH. With the default configuration, the counter width is set
to 32 bits and there are five event counters and one latency counter.

An event counter simply counts the number of times a certain event has occurred, whereas
a latency counter provides the following information:

« Number of times the event has occurred (N)

« The sum of each event latency measured by counting clock cycles from the event starts
until it finishes (ZL), used to calculate the mean latency

« The sum of each event latency squared (5L9), used to calculate the latency standard
deviation

« The minimum, shortest, measured latency for all events (L,,;,)

« The maximum, longest, measured latency for all events (L,,4y)

The mean latency () is calculated by the formula:

1
N

The standard deviation (o) of the latency is calculated by the formula:

JINZL2 —(21)?

N

Counting can be started or stopped using the Performance Counter Command Register or
by cross trigger events (see Table 2-63).

When configuring, reading or writing counters, they are accessed sequentially through the
performance counter registers. After every access the selected counter item is incremented.

All counters are sampled simultaneously for reading using the Performance Counter
Command Register. This can be done while counting, or after counting has been stopped.

When an event counter reaches its maximum value, the overflow status bit is set, and the
external interrupt signal bbg_Intr is set to one. The interrupt signal is reset to zero by
clearing the counters using the Performance Counter Command Register.

By using one of the event counters to count number of clock cycles, and initializing this
counter to overflow after a predetermined sampling interval, the external interrupt can be
used to periodically sample the performance counters.

The available events are described in Table 2-42, listed in numerical order.

MicroBlaze Processor Reference Guide Send Feedback 104
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=104

AM D n Chapter 2: MicroBlaze Architecture

A typical procedure to follow when initializing and using the performance monitoring
counters is delineated in the steps below.

1. Initialize the events to be monitored:

Use the Performance Command Register (Table 2-45) to reset the selected counter
to the first counter, by setting the Reset bit.

Write the desired event numbers for all counters in order, using the Performance
Control Register (Table 2-44). With the default configuration this means writing the
register five times for the event counters and then once for the latency counter.

2. Clear all counters and start monitoring using the Performance Command Register, by
setting the Clear and Start bits.

3. Run the program or function to be monitored.

4. Sample counters and stop monitoring using the Performance Command Register, by
setting the Sample and Stop bits.

5. Read the results from all counters:

Use the Performance Command Register to reset the selected counter to the first
counter, by setting the Reset bit.

Read the status for all counters in order, using the Performance Counter Status
Register (Table 2-46). With the default configuration this means reading the register
five times for the event counters and then once for the latency counter. Ensure that
the result is valid by checking that the overflow and full bits are not set.

Use the Performance Command Register to reset the selected counter to the first
counter, by setting the Reset bit.

Read the counter items for all counters in order, using the Performance Counter
Data Read Register (Table 2-47). With the default configuration this means reading
the register five times for the event counters and then four times for the latency
counter as described in Table 2-48.

6. Calculate the final results, depending on the measured events, for example:

Use the formulas above to determine the mean latency and standard deviation for
any measured latency.

The clock cycles per instruction (CPI) can be calculated by E3q / Eq.
The instruction and data cache hit rates can be calculated by Eq1 / E1g and E47 / Ege.

The instruction cache miss latency is determined by (Ego(ZL) - Ego(N)) / (E1g - Eq1),
and equivalent formulas can be used to determine the data cache read and write
miss latencies.

The ratio of floating-point instructions in a program is E»g/Eg.

MicroBlaze Processor Reference Guide Send Feedback 105
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=105

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-42: MicroBlaze Performance Monitoring Events
Event Description Event Description
Event Counter Events
0 Any valid instruction executed 29 Floating-point (£add, ..., £sqrt)
1 Load word (1w, 1wi, 1wx) executed 30 Number of clock cycles
2 Load halfword (1hu, 1hui) executed 31 Immediate (imm) executed
3 Load byte (1bu, 1bui) executed 32 Pattern compare (pcmpbf, pcmpeg, pcmpne)
4 Store word (sw, swi, swx) executed 33 Sign extend instructions (sext8, sext16) executed
5 Store halfword (sh, shi) executed 34 Instruction cache invalidate (wic) executed
6 Store byte (sb, sbi) executed 35 Data cache invalidate or flush (wdc) executed
7 Unconditional branch (br, bri, brk, brki) executed | 36 Machine status instructions (msrset, msrclr)
8 Taken conditional branch (begq, ..., bnei) executed 37 Unconditional branch with delay slot executed
9 Not taken conditional branch (begq,..., bnei) 38 Taken conditional branch with delay slot executed
executed
10 Data request from instruction cache 39 Not taken conditional branch with delay slot
11 Hit in instruction cache 40 Delay slot with no operation instruction executed
12 Read data requested from data cache 41 Load instruction (1bu, ..., 1wx) executed
13 Read data hit in data cache 42 Store instruction (sb, ..., swx) executed
14 Write data request to data cache 43 MMU data access request
15 Werite data hit in data cache 44 Conditional branch (begq, ..., bnei) executed
16 Load (1buy, ..., 1wx) with r1 as operand executed 45 Branch (br, bri, brk, brki, begq, ..., bnei) executed
17 Store (sb, ..., swx) with r1 as operand executed 46 Read or write data request from/to data cache
18 Logical operation (and, andn, or, xor) executed 47 Read or write data cache hit
19 Arithmetic operation (add, idiv, mul, rsub) 48 MMU exception taken
executed
20 Multiply operation (mul, mulh, mulhu, mulhsuy, 49 MMU instruction side exception taken
muli)
21 Barrel shifter operation (bsrl, bsra, bs11l) 50 MMU data side exception taken
executed
22 Shift operation (sra, src, srl) executed 51 Pipeline stalled
23 Exception taken 52 Branch target cache hit for a branch or return
24 Interrupt occurred 53 MMU instruction side access request
25 Pipeline stalled due to operand fetch stage (OF) 54 MMU instruction TLB (ITLB) hit
26 Pipeline stalled due to execute stage (EX) 55 MMU data TLB (DTLB) hit
27 Pipeline stalled due to memory stage (MEM) 56 MMU unified TLB (UTLB) hit
28 Integer divide (idiv, idivu) executed
Latency and Event Counter events
57 Interrupt latency from input to interrupt vector 61 MMU address lookup latency
58 Data cache latency for memory read 62 Peripheral AXI interface data read latency

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

| Send Feedback I 106

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=106

AM D n Chapter 2: MicroBlaze Architecture

Table 2-42: MicroBlaze Performance Monitoring Events (Cont’d)

Event Description Event Description
59 Data cache latency for memory write 63 Peripheral AXI interface data write latency
60 Instruction cache latency for memory read

The debug registers used to configure and control performance monitoring, and to read or
write the event and latency counters, are listed in Table 2-43. All of these registers except
the Performance Counter Command register are accessed repeatedly to read or write
information, first for all of the event counters followed by all of the latency counters.

The pBG_CTRL value indicates the value to use in the MDM Debug Register Access Control
Register to access the register, used with MDM software access to debug registers.

Table 2-43: MicroBlaze Performance Monitoring Debug Registers

. . . MDM DBG_CTRL —

Register Name | Size (bits) Command Value R/W Description
Performance Select event for each configured
Counter Control 8 0101 0001 4n207 w counter, according to Table 2-42
Performance 5 0101 0010 4A404 W Command fco clear counters, start or
Counter Command stop counting, or sample counters
Performance 5 0101 0011 4601 R Reaq the sampled status for each
Counter Status configured performance counter
Performance 32 0101 0110 AACTE R Reac! the sampled values for each
Counter Data Read configured performance counter
Performance Write initial values for each
Counter Data Write 32 0101 0111 AAETF w configured performance counter

Performance Counter Control Register

The Performance Counter Control Register (PCCTRLR) is used to define the events that are
counted by the configured performance counters. To define the events for all configured
counters, the register should be written repeatedly for each of the counters. This register is
a write-only register. Issuing a read request has no effect, and undefined data is read.

Every time the register is written, the selected counter is incremented. By using the
Performance Counter Command Register, the selected counter can be reset to the first
counter again. See the following figure and table.

31 8| 7 0

‘ ‘

Reserved Event

X19762-111617

Figure 2-27: Performance Counter Control Register

MicroBlaze Processor Reference Guide Send Feedback 107
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=107

AM D n Chapter 2: MicroBlaze Architecture

Table 2-44: Performance Counter Control Register (PCCTRLR)

Bits Name Description Reset Value

7:0 Event Performance counter event, according to Table 2-42. 0

Performance Counter Command Register

The Performance Counter Command Register (PCCMDR) is used to issue commands to
clear, start, stop, or sample all counters. This register is a write-only register. Issuing a read
request has no effect, and undefined data is read.

31 5| 4 3 2 1 0
f FF F f 7
Reserved CLR STA STOP SAM RES

X19763-111617

Figure 2-28: Performance Counter Command Register

Table 2-45: Performance Counter Command Register (PCCMDR)

Bits Name Description Reset Value
4 Clear Clear all counters to zero 0
3 Start Start counting configured events for all counters simultaneously 0
2 Stop Stop counting all counters simultaneously 0
1 Sample | Sample status and values in all counters simultaneously for reading 0
0 Reset Reset accessed counter to the first event counter for access using the 0
Performance Counter Control, Status, Read Data and Write Data

Performance Counter Status Register

The Performance Counter Status Register (PCSR) reads the sampled status of the counters.
To read the status for all configured counters, the register should be read repeatedly for
each of the counters. This register is a read-only register. Issuing a write request to the
register does nothing.

Every time the register is read, the selected counter is incremented. By using the
Performance Counter Command Register, the selected counter can be reset to the first
counter again. See Figure 2-29 and Table 2-46.

31 2 1 0
Reserved OF FULL
X19764-111617

Figure 2-29: Performance Counter Status Register

MicroBlaze Processor Reference Guide Send Feedback 108
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=108

AM D n Chapter 2: MicroBlaze Architecture

Table 2-46: Performance Counter Status Register (PCSR)

Bits Name Description Reset Value
1 Overflow | This bit is set when the counter has counted past its maximum value 0
0 Full This bit is set when a new latency counter event is started before the 0

previous event has finished. This indicates that the accuracy of the
measured values is reduced.

Performance Counter Data Read Register

The Performance Counter Data Read Register (PCDRR) reads the sampled values of the
counters. To read the values of all configured counters, the register should be read

repeatedly. This register is a read-only register. Issuing a write request to the register does
nothing.

See the following figure and table.

31 0

f

ltem

X19765-111617

Figure 2-30: Performance Counter Data Read Register

Table 2-47: Performance Counter Data Read Register (PCDRR)

Bits Name Description Reset Value

31:0 Item Sampled counter value item 0

Because a counter can have more than 32 bits, depending on the configuration, the register

might need to be read repeatedly to retrieve all information for a particular counter. This is
detailed in Table 2-48.

Table 2-48: Performance Counter Data Items

Counter Type Item Description

C_DEBUG_COUNTER WIDTH = 32

Event Counter 1 The number of times the event occurred

Latency Counter 1 The number of times the event occurred

The sum of each event latency

The sum of each event latency squared

Al w N

31:16 Minimum measured latency, 16 bits

15:0 Maximum measured latency, 16 bits

MicroBlaze Processor Reference Guide Send Feedback 109
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=109

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-48: Performance Counter Data Items (Cont’d)

Counter Type

Item

Description

C_DEBUG_COUNTER WIDTH = 48

Event Counter

31:16
15:0

0x0000
The number of times the event occurred, 16 most significant bits

The number of times the event occurred, 32 least significant bits

Latency Counter

The number of times the event occurred

31:16
15:0

0x0000
The sum of each event latency, 16 most significant bits

The su

m of each event latency, 32 least significant bits

31:16
15:0

0x0000
The sum of each event latency squared, 16 most significant bits

The su

m of each event latency squared, 32 least significant bits

Minim

um measured latency, 32 bits

Maximum measured latency, 32 bits

C_DEBUG_COUNTER_WIDTH = 64

Event Counter

The number of times the event occurred, 32 most significant bits

The number of times the event occurred, 32 least significant bits

Latency Counter

The number of times the event occurred, 32 bits

The su

m of each event latency, 32 most significant bits

The su

m of each event latency, 32 least significant bits

The su

m of each event latency squared, 32 most significant bits

The su

m of each event latency squared, 32 least significant bits

Minim

um measured latency, 32 bits

N|lo|lu| M W N

Maximum measured latency, 32 bits

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 110

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=110

AMD ¢

Performance Counter Data Write Register

Chapter 2: MicroBlaze Architecture

The Performance Counter Data Write Register (PCDWR) writes initial values to the counters.
To write all configured counters, the register should be written repeatedly. This register is a
write-only register. Issuing a read request has no effect, and undefined data is read.

Since a counter can have more than 32 bits, depending on the configuration, the register
might need to be written repeatedly to update all information for a particular counter, as
described in Table 2-48.

31 0
Item
X19766-111617
Figure 2-31: Performance Counter Data Write Register
Table 2-49: Performance Counter Data Write Register (PCDWR)
Bits Name Description Reset Value
31:0 Iltem Counter value item to write into a counter 0

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 111

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=111

AM D n Chapter 2: MicroBlaze Architecture

Program and Event Trace

With extended debugging, MicroBlaze provides program and event trace, either storing
information in the Embedded Trace Buffer or transmitting it to the MDM, to enable program
execution tracing. The MDM is used when the parameter C_ DEBUG_EXTERNAL_TRACE is set,
allowing output of program trace from multiple processors using external interfaces.

The size of the Embedded Trace Buffer can be configured from 8KB to 128KB using the
parameter C_DEBUG_TRACE_SIZE. The default buffer size with external trace is 8KB, but it
can also be configured from 32B to 256B to use distributed RAM. It is recommended to
always keep the default 8KB size, unless block RAM resources are very scarce. By setting
C_DEBUG_TRACE _SIzE to O (None), program trace is disabled.

Program trace uses compression to reduce the amount of trace data, while still allowing
reconstruction of the program execution flow or the entire processor software state. There
are three main compression levels:

« Complete trace: Stores complete trace information including cycle count for each
executed instruction using 144 bits, ranging from 512 to 8192 items depending on the
configured Embedded Trace Buffer size. Complete trace is not available when
C_DEBUG_EXTERNAL TRACE is set or with 64-bit MicroBlaze (C_DATA SIZE = 64).

« Program flow: Stores program flow changes, that is the sequence of branches taken or
not taken, and the new program counter for indirect branches, interrupts, exceptions
and hardware breaks.

The program counter can also optionally be stored for return instructions to simplify
program flow reconstruction, or for all taken branches to handle self-modifying code.

Data read from memory or fetched from AXI4-Stream interfaces might optionally be
stored to allow reconstructing the entire processor software state, enabling reverse
single step functionality. When the data access instruction is in a delay slot of a dynamic
branch or return, the data is stored first followed by the branch target program counter.
For data access instructions in delay slots of static branches, the program flow change is
first saved followed by the data.

Events representing all program exceptions, interrupts, and breaks, as well as all cross-
trigger events defined in Table 2-63 are also stored, to allow unambiguous decoding of
program flow changes. Each event is preceded by a stored program counter.

Software can inject an event by using an “xori r0, rN, IMM" instruction. Typically this is
used to trace operating system events like context switches and system calls, but it can
be used by any program to trace significant events.

« Program flow and cycle count: Stores the cycle count between instructions along with
the same information as program flow alone, to also allow reconstruction of the
program execution time.

MicroBlaze Processor Reference Guide Send Feedback 112
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=112

AMD ¢

Chapter 2: MicroBlaze Architecture

« Event trace: Stores event trace information including cycle count events. Events include
all program exceptions, interrupts, and breaks, as well as all cross-trigger events
defined in Table 2-63. Each event is optionally preceded by a stored program counter.

The program counter can also optionally be stored for call instructions to trace function
calls in the program, and for return instructions to trace function call returns.

Software can inject an event by using an “xori r0, rA, IMM" instruction. Typically this is
used to trace operating system events like context switches and system calls, but it can
be used by any program to trace significant events.

Tracing can be started using the Trace Command Register, by hitting a program breakpoint
or watchpoint configured as a tracepoint in the Trace Control Register, or by a cross trigger
event (see Table 2-63).

Tracing is automatically stopped when the trace buffer becomes full, and can be stopped
using the Trace Command Register or by a cross trigger event (see Table 2-63).

The cycle count can measure up to 32768 clock cycles when using complete trace, and up
to 8192 cycles between instructions when using program flow and cycle count. If the cycle
count exceeds this value, the Trace Status Register overflow bit is set to one.

It is possible to configure trace to halt the processor when the trace buffer becomes full or
when the cycle count overflows. This allows continuous trace of the entire program flow,
albeit not in real time due to the time required to read the trace buffer.

The debug registers used to configure and control tracing, and to read the Embedded Trace
Buffer, are listed in the following table.

The pBG_CTRL value indicates the value to use in the MDM Debug Register Access Control
Register to access the register, used with MDM software access to debug registers.

Table 2-50: MicroBlaze Program Trace Debug Registers
. . . MDM DBG_CTRL —
Register Name |Size (bits) Command | Value R/W Description

Trace Control 22 | 01100001 | 4c215 | w | €ttracepoints, trace compression level
and optionally stored trace information
Command to clear trace buffer, start or

Trace Command 4 0110 0010 4C403 W | stop trace, and sample number of
current buffer items

Trace Status 18 0110 0011 4C611 R | Read the sampled trace buffer status
Read the oldest item from the

1
Trace Data Read 18 0110 0110 4CC11 R Embedded Trace Buffer

1. This register is not available when C_ DEBUG_EXTERNAL_ TRACE is set

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 113

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=113

AM D n Chapter 2: MicroBlaze Architecture

Trace Control Register

The Trace Control Register (TCTRLR) is used to define the trace behavior. This register is a
write-only register. Issuing a read request has no effect, and undefined data is read. See the
following figure and table.

31 22 |21 6|5 41 3 2 1 0
f f Ff F F 1
Reserved Tracepoint Level FH SPC SL SR
X19767-111617

Figure 2-32: Trace Control Register

Table 2-51: Trace Control Register (TCTRLR)

Bits Name Description Reset Value
21:6 | Tracepoint | Change corresponding breakpoint or watchpoint to a tracepoint 0
5:4 Level Trace compression level: 00

00 = Complete trace, not available with ¢_DEBUG_EXTERNAL_TRACE
01 = Program flow

10 = Event

11 = Program flow and cycle count
3 Full Halt | Debug Halt on full trace buffer or cycle count overflow 0
2 Save PC Level 01 and 11: Save new program counter for all taken branches 0

Level 10: Save new program counter for all function calls

1 Save Load | Save load and get instruction new data value 0

0 | Save Return | Save new program counter for return instructions 0

Trace Command Register

The Trace Command Register (TCMDR) is used to issue commands to clear, start, or stop
trace, as well as sample the number of trace items. This register is a write-only register.
Issuing a read request has no effect, and undefined data is read. See the following figure

and table.
31 4 3 2 1 0
Reserved CLR STA STOP SAM
X19768-111617

Figure 2-33: Trace Command Register

MicroBlaze Processor Reference Guide Send Feedback 114
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=114

AMD ¢

Table 2-52: Trace Command Register (TCMDR)

Chapter 2:

MicroBlaze Architecture

Bits Name Description Reset Value
3 Clear Clear trace status and empty the trace buffer 0
2 Start Start trace immediately 0
1 Stop Stop trace immediately 0
0 Sample | Sample the number of current items in the trace buffer 0

Trace Status Register

The Trace Status Register (TSR) can be used to determine if trace has been started or not, to
check for cycle count overflow and to read the sampled number of items in the Embedded
Trace Buffer. This register is a read-only register. Issuing a write request to the register does
nothing. See the following figure and table.

Figure 2-35: Trace Data Read Register

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

31 18| 17 | 16 |15 0
f 3 f
Reserved STA OF Item Count
X19769-111617
Figure 2-34: Trace Status Register

Table 2-53: Trace Status Register (TSR)

Bits Name Description Reset Value

17 Started Trace started, set to one when trace is started and cleared to zero 0

when it is stopped
16 Overflow | Cycle count overflow, set to one when the cycle count overflows, and 0
cleared to zero by the Clear command

15:0 | Item Count | Sampled trace buffer item count 0x0000
Trace Data Read Register
The Trace Data Read Register (TDRR) contains the oldest item read from the Embedded
Trace Buffer. When the register has been read, the next item is read from the trace buffer. It
is an error to read more items than are available in the trace buffer, as indicated by the item
count in the Trace Status Register. This register is a read-only register. Issuing a write
request to the register does nothing. See the following figure and table.

31 18 | 17 0
f f
Reserved Buffer Value
X19770-111617

l Send Feedback I 115

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=115

AMD ¢

Because a trace data entity can consist of more than 18 bits, depending on the compression
level and stored data, the register might need to be read repeatedly to retrieve all
information for a particular data entity. This is detailed in Table 2-55.

Chapter 2: MicroBlaze Architecture

Table 2-54: Trace Data Read Register (TDRR)
Bits Name Description Reset Value
17:0 | Buffer Value | Embedded Trace Buffer item 0x00000
Table 2-55: Trace Counter Data Entities
Entity Item | Bits Description
Complete Trace 1 17:3 | Cycle count for the executed instruction
2:0 Machine Status Register [17:19]
2 17:6 | Machine Status Register [20:31]
5:1 Destination register address (rO - r31), valid if written
0 Destination register written if set to one
3 17:13 | Exception Kind, valid if exception taken
12 Exception taken if set to one
11 Load instruction reading data if set to one
10 Store instruction writing data if set to one
9:6 Byte enable, valid for store instruction
5:0 Write data [0:5] for store instructions, or Destination
register data [0:5] for other instructions
4 17:0 | Write data [6:23] or Destination register data [6:23]
17:10 | Write data [24:31] or Destination register data [24:31]
9:0 Data address [0:9] for load and store instructions, or
Executed instruction [0:9] for other instruction
6 17:0 | Data address [10:27] or Executed instruction [10:27]
7 17:14 | Data address [28:31] or Executed instruction [28:31]
13:0 | Program Counter [0:13]
8 17:0 | Program Counter [14:31]
Program Flow: Branches 1 17:16 | 00 - The item contains program flow branches
15:12 | Number of branches (N) counted in the item (0 - 12)
11:0 | The N leftmost bits represent branches in the
program flow. If the bit is set to one the branch is
taken, otherwise it is not taken.
An item with 0 branches can be ignored, and may
occur when flushing external trace, in order to
complete a trace packet.
Program Flow: Program Counter 1 17:16 | 01 - The item contains a Program Counter value
15:0 Program Counter [0:15]
2 17:16 | 01 - The item contains a Program Counter value
15:0 | Program Counter [16:31]

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 116

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=116

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-55: Trace Counter Data Entities (Cont’d)

Entity Item | Bits Description
Program Flow: Program Counter 1 17:16 | 01 - The item contains a Program Counter value
C_ADDR_SIZE = 32 - 48 15:0 | Program Counter [0:C_ADDR_SIZE-33] zero extended
2 17:16 | 01 - The item contains a Program Counter value
15:0 | Program Counter [C_ADDR_SIZE-32:C_ADDR_SIZE-17]
3 17:16 | 01 - The item contains a Program Counter value
15:0 | Program Counter [C_ADDR_SIZE-16:C_ADDR_SIZE-1]
Program Flow: Program Counter 1 17:16 | 01 - The item contains a Program Counter value
C_ADDR_SIZE = 49 - 64 15:0 | Program Counter [0:C_ADDR_SIZE-49] zero extended
2 17:16 | 01 - The item contains a Program Counter value
15:0 | Program Counter [C_ADDR_SIZE-48:C_ADDR_SIZE-33]
3 17:16 | 01 - The item contains a Program Counter value
15:0 | Program Counter [C_ADDR_SIZE-32:C_ADDR_SIZE-17]
4 17:16 | 01 - The item contains a Program Counter value
15:0 | Program Counter [C_ADDR_SIZE-16:C_ADDR_SIZE-1]
Program Flow: Read Data 1 17:16 | 10 - The item contains read data
C_DATA_SIZE = 32 or 64 15:0 | Data read by load and get instructions [0:15]
2 17:16 | 10 - The item contains read data
15:0 | Data read by load and get instructions [15:31]
Program Flow: Read Data 1 17:16 | 10 - The item contains read data
C_DATA_SIZE = 64 15:0 | Data read by long load instructions [0:15]
2 17:16 | 10 - The item contains read data
15:0 | Data read by long load instructions [15:31]
3 17:16 | 10 - The item contains read data
15:0 | Data read by long load instructions [32:47]
4 17:16 | 10 - The item contains read data
15:0 | Data read by long load instructions [48:63]
Program Flow, Event: Event 1 17:16 | 11 — The item contains an event
Instruction event 15:14 | 00 — Instruction event
13:0 | Software generated trace event: result of instruction
“xori r0, rA, IMM".
Program Flow, Event: Event 1 17:16 | 11 — The item contains an event
Cross-trigger event 15:1 | 10 — Cross-trigger event
13:8 | Reserved
7:0 Events according to “MicroBlaze Cross Trigger

Events” defined in Table 2-64. Each event is
represented by setting the corresponding bit in the
bit field.

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 117

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=117

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-55: Trace Counter Data Entities (Cont’d)

Entity Item | Bits Description
Program Flow, Event: Event 1 17:16 | 11 — The item contains an event
Exception event 15:14 | 11 — Exception event:
13:5 | Reserved
4:0 Exception cause, according to “ESR Exception Cause”,
defined in Table 2-12, and:
01001 — Debug exception: Breakpoint, Stop
01010 — Interrupt
01011 — Non-maskable break
01100 — Break
Event: Event Time Stamp 1 17:16 | 11 — The item contains an event
15:14 | 01 — Time stamp
13:0 | Cycle count since last time stamp
Program Flow with Cycle Count: 1 17:16 | 00 - The item contains program flow branches
Branches and short cycle count 15:14 | 01, 10 - Number of branches (N) counted (1 - 2)
13:8 | Cycle count for previously executed instructions
7 Branch is taken if set to one, otherwise it is not taken
6:1 Cycle count for previously executed instructions
0 Branch is taken if set to one, otherwise it is not taken
Program Flow with Cycle Count: 1 17:16 | 00 - The item contains program flow branches
Branch and long cycle count 15:14 | 11 - The item contains branch and long cycle count
13:1 | Cycle count for previously executed instructions
0 Branch is taken if set to one, otherwise it is not taken

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 118

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=118

AMD ¢

Non-Intrusive Profiling

Chapter 2: MicroBlaze Architecture

With extended debugging, non-intrusive profiling is provided, which uses a Profiling Buffer
to store program execution statistics. The size of the profiling buffer can be configured
from 4KB to 128KB using the parameter c_DEBUG_PROFILE_SIZE. By setting
C_DEBUG_PROFILE SIZE to O (None), non-intrusive profiling is disabled.

The Profiling Buffer is divided into a number of bins, each counting the number of executed
instructions or clock cycles within a certain address range. Each bin counts up to 236 - 1 =
68719476735 instructions or cycles.

The address range of each bin is determined by the buffer size and the profiled address
range defined using the Profiling Low Address Register and Profiling High Address Register.

Profiling can be started or stopped using the Profiling Control Register or by cross trigger
events (see Table 2-63).

The debug registers used to configure and control profiling, and to read or write the
Profiling Buffer, are listed in Table 2-56.

The pBG_CTRL value indicates the value to use in the MDM Debug Register Access Control
Register to access the register, used with MDM software access to debug registers.

Table 2-56: MicroBlaze Profiling Debug Registers
. . . MDM DBG_CTRL __—
Register Name Size (bits) Command Value R/W Description
Enable or disable profiling,
Profiling Control 8 0111 0001 4E207 W | configure counting method and
bin usage
Profiling Low C_ADDR.SIZE-2 | 01110010 4E41D W Deflpes the low address of the
Address profiled address range
Profiling High C_ADDR SIZE-2 | 0111 0011 4E61D W Deflpes the high address of the
Address profiled address range
9: 4E808
Profiling Buffer 10: 4E809 Sets the address (bin) in the
Address 9-14 01110100 w Profiling Buffer to read or write
14: 4E80D
Profiling Data 36 0111 0110 4EC23 R Read data from the Profiling
Read Buffer
Profiling Data . -
Write 32 01110111 4EE1F W | Write data to the Profiling Buffer

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 119

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=119

AM D n Chapter 2: MicroBlaze Architecture

Profiling Control Register

The Profiling Control Register (PCTRLR) is used to enable (start) profiling and disable (stop)
profiling. It is also used to configure whether to count the number of executed instructions
or the number of executed clock cycles, as well as define the Profiling Buffer bin usage.

This register is a write-only register. Issuing a read request has no effect, and undefined
data is read. See the following figure and table.

The Bin Control value (B) can be calculated by the formula:

H-L+S-4
B = {10927&4 W

where:

L is the Profiling Low Register
H is the Profiling High Register

S is the parameter c_DEBUG_PROFILE_SIZE.

31 8| 7 6 5 |4 0
Reserved ENA DIS CC Bin Control
X19771-111617

Figure 2-36: Profiling Control Register

Table 2-57: Profiling Control Register (PCTRLR)

Bits Name Description Reset Value
7 Enable Enable and start profiling 0
6 Disable Disable and stop profiling 0
5 Enable Enable cycle count to count clock cycles of executed instruction: 0
Cycle Count 0 = Disabled, number of executed instructions counted
1 = Enabled, clock cycles of executed instructions counted
4:0 | Bin Control | The number of addresses counted by each bin in the Profiling Buffer 00000

Profiling Low Address Register

The Profiling Low Address Register (PLAR) is used to define the low word address of the
profiled area. This register is a write-only register. Issuing a read request has no effect, and
undefined data is read. See the following figure and Table 2-58.

MicroBlaze Processor Reference Guide Send Feedback 120
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=120

AM D n Chapter 2: MicroBlaze Architecture

C_ADDR_SIZE - 3 0

; f

Reserved Low word address
X19772-112317

Figure 2-37: Profiling Low Address Register

Table 2-58: Profiling Low Address Register (PLAR)

Bits Name Description Reset Value

C_ADDR_SIZE-3:0 | Low word | Low word address of the profiled area 0

Profiling High Address Register

The Profiling High Address Register (PHAR) is used to define the high word address of the
profiled area. This register is a write-only register. Issuing a read request has no effect, and
undefined data is read. See the following figure and table.

C_ADDR _SIZE -3 0

7 7

Reserved High word address

X19773-112317

Figure 2-38: Profiling High Address Register

Table 2-59: Profiling High Address Register (PHAR)

Bits Name Description Reset Value

C_ADDR_SIZE-3:0 | High word | High word address of the profiled area 0

Profiling Buffer Address Register

The Profiling Buffer Address Register (PBAR) is used to define the bin in the Profiling Buffer
to be read or written. This register has variable number of bits, depending on the parameter
C_DEBUG_PROFILE SIZE.

This register is a write-only register. Issuing a read request has no effect, and undefined
data is read. See the following figure and table.

31 n |[n1 0

7 '

Reserved Buffer Address

X19774-111617

Figure 2-39: Profiling Buffer Address Register

MicroBlaze Processor Reference Guide Send Feedback 121
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=121

AM D n Chapter 2: MicroBlaze Architecture

Table 2-60: Profiling Buffer Address Register (PBAR)

Bits Name Description Reset Value

n-1:0 Buffer Bin in the Profiling Buffer to read or write. The number of bits (n) is 10 0
Address | for a 4KB buffer, 11 for a 8KB buffer, ..., 15 for a 128KB buffer.

Profiling Data Read Register

The Profiling Data Read Register (PDRR) reads the bin value indicated by the Profiling Buffer
Address Register and increments the Profiling Buffer Address Register. This register is a
read-only register. Issuing a write request to the register does nothing. See the following
figure and table.

When reading this register with MDM software access to debug registers, data is read with
two consecutive accesses.

35 0

+

Read Data

X19775-111617

Figure 2-40: Profiling Data Read Register

Table 2-61: Profiling Data Read Register (PDRR)

Bits Name Description Reset Value

35:0 | Read Data | Number of executed instructions or executed clock cycles in the bin 0

Profiling Data Write Register

The Profiling Data Write Register (PDWR) writes a new value to the bin indicated by the
Profiling Buffer Address Register and increments the Profiling Buffer Address Register. This
register is a write-only register. Issuing a read request has no effect, and undefined data is
read.

This register can be used to clear the Profiling Buffer before enabling profiling.

The 4 most significant bits in the Profiling Buffer bin are set to zero when writing the new
value. See the following figure and table.

31 0

*

Write Data

X19776-111617

Figure 2-41: Profiling Data Write Register

MicroBlaze Processor Reference Guide Send Feedback 122
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=122

AM D n Chapter 2: MicroBlaze Architecture

Table 2-62: Profiling Data Write Register (PDWR)

Bits Name Description Reset Value

31:0 | Write Data | Data to write to a bin. 0

Cross Trigger Support

With basic debugging, cross trigger support is provided by two signals, bBG_sTop and
MB_ Halted.

+ When the DBG_STOP input is set to 1, MicroBlaze will halt after a few instructions. XSDB
will detect that MicroBlaze has halted, and indicate where the halt occurred. The signal
can be used to halt MicroBlaze at any external event, for example when a Vivado™
Integrated Logic Analyzer (ILA) is triggered.

« Whenever MicroBlaze is halted, the MB_Halted output signal is set to 1; for example
after a breakpoint or watchpoint is hit, after a stop XSDB command, or when the
DBG_STOP input is set. The output is cleared when MicroBlaze execution is resumed by
an XSDB command.

The MB_Halted signal can be used to trigger a Vivado integrated logic analyzer, or halt
other MicroBlaze cores in a multiprocessor system by connecting the signal to their
DBG_STOP inputs.

With extended debugging, cross trigger support is available in conjunction with the MDM.
The MDM provides programmable cross triggering between all connected processors, as
well as external trigger inputs and outputs. For details, see the MicroBlaze Debug Module
(MDM) Product Guide (PG115) [Ref 4].

MicroBlaze can handle up to eight cross trigger actions. Cross trigger actions are generated
by the corresponding MDM cross trigger outputs, connected using the Debug bus. The
effect of each of the cross trigger actions is listed in Table 2-63.

MicroBlaze can generate up to eight cross trigger events. Cross trigger events affect the
corresponding MDM cross trigger inputs, connected using the Debug bus. The cross trigger
events are described in Table 2-64.

MicroBlaze Processor Reference Guide Send Feedback 123
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=123

AMD ¢

Chapter 2: MicroBlaze Architecture

Table 2-63: MicroBlaze Cross Trigger Actions
Number Action Description
0 Debug stop Stop MicroBlaze if the processor is executing, and set the MB_Halted
output. The same effect is achieved by setting the Dbg_Stop input.
1 Continue execution | Continue execution if the processor is stopped, and clear the
MB_Halted output.
2 Stop program trace | Stop program trace if tracing is in progress.
3 Start program trace | Start program trace if trace is stopped.
4 Stop performance | Stop performance monitoring if it is in progress.
monitoring
5 Start performance | Start performance monitoring if it is stopped.
monitoring
6 Disable profiling | Disable profiling if it is in progress.
7 Enable profiling | Enable profiling if it is disabled.
Table 2-64: MicroBlaze Cross Trigger Events
Number Event Description
0 MicroBlaze halted | Generate an event when MicroBlaze is halted. The same event is signaled
when the MB_Halted output is set.
1 Execution resumed | Generate an event when the processor resumes execution from debug
halt. The same event is signaled when the MB_Halted output is cleared.
2 Program trace Generate an event when program trace is stopped by writing a command
stopped to the Program Trace Command Register, when the trace buffer is full, or
by a cross trigger action.
3 Program trace Generate an event when program trace is started by writing a command
started to the Program Trace Command Register, by hitting a tracepoint, or by a
cross trigger action.
4 Performance Generate an event when performance monitoring is stopped by writing
monitoring stopped | a command to the Performance Counter Command Register or by a cross
trigger action.
5 Performance Generate an event when performance monitoring is started by writing a
monitoring started | command to the Performance Counter Command Register, or by a cross
trigger action.
6 Profiling disabled | Generate an event when profiling is enabled by writing a command to
the Profiling Control Register or by a cross trigger action.
7 Profiling enabled | Generate an event when profiling is disabled by writing a command to
the Profiling Control Register or by a cross trigger action.

MicroBlaze Processor Reference Guide

UG984 (v2023.2) Feb

ruary 2, 2024

l Send Feedback I 124

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=124

AM D n Chapter 2: MicroBlaze Architecture

Trace Interface Overview

The MicroBlaze trace interface exports a number of internal state signals for performance
monitoring and analysis.

O RECOMMENDED: AMD recommends that users only use the trace interface through AMD developed
analysis cores.

This interface is not guaranteed to be backward compatible in future releases of MicroBlaze.
See Table 3-21 in Chapter 3, MicroBlaze Signal Interface Description for a list of exported
signals.

MicroBlaze Processor Reference Guide Send Feedback 125
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=125

AM D n Chapter 2: MicroBlaze Architecture

Fault Tolerance

The fault tolerance features included in MicroBlaze, enabled with ¢_ FAULT TOLERANT,
provide Error Detection for internal block RAMs (in the Instruction Cache, Data Cache,
Branch Target Cache, and MMU), and support for Error Detection and Correction (ECC) in
LMB block RAMs. When fault tolerance is enabled, all soft errors in block RAMs are detected
and corrected, which significantly reduces overall failure intensity.

In addition to protecting block RAM, the FPGA configuration memory also generally needs
to be protected. A detailed explanation of this topic, and further references, can be found in
the two documents Soft Error Mitigation Controller LogiCORE IP Product Guide (PG036)
[Ref 2] and UltraScale Architecture Soft Error Mitigation Controller LogiCORE IP Product
Guide (PG187) [Ref 16].

To further increase fault tolerance, a complete triple modular redundancy (TMR) solution is
provided for MicroBlaze, using additional cores to handle majority voting and fault
detection. See the Triple Modular Redundancy (TMR) Subsystem Product Guide (PG268)
[Ref 7] for a complete description and implementation details.

Configuration

Using MicroBlaze Configuration

You can enable Fault tolerance on the General page of the MicroBlaze configuration dialog
box.

After enabling fault tolerance in MicroBlaze, ECC is automatically enabled in the connected
LMB BRAM Interface Controllers by the tools, when the system is generated. This means
that nothing else needs to be configured to enable fault tolerance and minimal ECC
support.

It is possible (albeit not recommended) to manually override ECC support, leaving the LMB
BRAM unprotected, by disabling c_ecc in the configuration dialogs of all connected LMB
BRAM Interface Controllers.

In this case, the internal MicroBlaze block RAM protection is still enabled, since fault
tolerance is enabled.

Using LMB BRAM Interface Controller Configuration

As an alternative to the method described above, it is also possible to enable ECC in the
configuration dialogs of all connected LMB BRAM Interface Controllers.

MicroBlaze Processor Reference Guide Send Feedback 126
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=126

AM D n Chapter 2: MicroBlaze Architecture

In this case, fault tolerance is automatically enabled in MicroBlaze by the tools, when the
system is generated. This means that nothing else needs to be configured to enable ECC
support and MicroBlaze fault tolerance.

ECC must either be enabled or disabled in all Controllers, which is enforced by a DRC.

It is possible to manually override fault tolerance support in MicroBlaze, by explicitly
disabling ¢ FAULT TOLERANT in the MicroBlaze configuration dialog. This is not
recommended, unless no block RAM is used in MicroBlaze, and there is no need to handle
bus exceptions from uncorrectable ECC errors.

Features

An overview of all MicroBlaze fault tolerance features is given here. Further details on each
feature can be found in the following sections:

* Instruction Cache

« Data Cache

« UTLB Management
« Branch Target Cache

» Exception Causes

The LMB BRAM Interface Controller v4.0 or later provides the LMB ECC implementation. For
details, including performance and resource utilization, see the LMB BRAM Interface
Controller LogiCORE IP Product Guide (PG112) [Ref 3].

Instruction and Data Cache Protection

To protect the block RAM in the Instruction and Data Cache, parity is used. When a parity
error is detected, the corresponding cache line is invalidated. This forces the cache to reload
the correct value from external memory. Parity is checked whenever a cache hit occurs.

Note: This scheme only works for write-through, and thus write-back data cache is not available
when fault tolerance is enabled. This is enforced by a DRC.

When new values are written to a block RAM in the cache, parity is also calculated and
written. One parity bit is used for the tag, one parity bit for the instruction cache data, and
one parity bit for each byte in a data cache line.

In many cases, enabling fault tolerance does not increase the required number of cache
block RAMs, since spare bits can be used for the parity. Any increase in resource utilization,
in particular number of block RAMs, can easily be seen in the MicroBlaze configuration
dialog, when enabling fault tolerance.

MicroBlaze Processor Reference Guide Send Feedback 127
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=127

AM D n Chapter 2: MicroBlaze Architecture

Memory Management Unit Protection

To protect the block RAM in the MMU Unified Translation Look-Aside Buffer (UTLB), parity
is used. When a parity error is detected during an address translation, a TLB miss exception
occurs, forcing software to reload the entry.

When a new TLB entry is written using the TLBHI and TLBLO registers, parity is calculated.
One parity bit is used for each entry.

Parity is also checked when a UTLB entry is read using the TLBHI and TLBLO registers. When
a parity error is detected in this case, the entry is marked invalid by clearing the valid bit.

Enabling fault tolerance does not increase the MMU block RAM size, since a spare bit is
available for the parity.

Branch Target Cache Protection

To protect block RAM in the Branch Target Cache, parity is used. When a parity error is
detected when looking up a branch target address, the address is ignored, forcing a normal
branch.

When a new branch address is written to the Branch Target Cache, parity is calculated. One
parity bit is used for each address.

Enabling fault tolerance does not increase the Branch Target Cache block RAM size, since a
spare bit is available for the parity.

Exception Handling

With fault tolerance enabled, if an error occurs in LMB block RAM, the LMB BRAM Interface
Controller generates error signals on the LMB interface.

If exceptions are enabled in the MicroBlaze processor by setting the EE bit in the Machine
Status Register, the uncorrectable error signal either generates an instruction bus exception
or a data bus exception, depending on the affected interface.

Should a bus exception occur when an exception is in progress, MicroBlaze is halted, and
the external error signal MB_Error is set. This behavior ensures that it is impossible to
execute an instruction corrupted by an uncorrectable error.

Software Support

Scrubbing

To ensure that bit errors are not accumulated in block RAMs, they must be periodically
scrubbed.

MicroBlaze Processor Reference Guide Send Feedback 128
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=128

AM D n Chapter 2: MicroBlaze Architecture

The standalone BSP provides the function microblaze scrub () to perform scrubbing of
the entire LMB block RAM and all MicroBlaze internal block RAMs used in a particular
configuration. This function is intended to be called periodically from a timer interrupt
routine. One location of each block RAM is scrubbed every time it is called, using persistent
data to track the current locations.

The following example code illustrates how this can be done.

#include "xparameters.h"
#include "xtmrctr.h"
#include "xintc.h"
#include "mb_interface.h"

#define SCRUB_PERIOD

XIntc InterruptController; /* The Interrupt Controller instance */
XTmrCtr TimerCounterInst;/* The Timer Counter instance */

void MicroBlazeScrubHandler (void *CallBackRef, u8 TmrCtrNumber)
{
/* Perform other timer interrupt processing here */
microblaze scrub() ;

}

int main (void)

{

int Status;

/*

* Initialize the timer counter so that it's ready to use,

* gpecify the device ID that is generated in xparameters.h

*/
Status = XTmrCtr Initialize(&TimerCounterInst, TMRCTR DEVICE ID) ;
if (Status != XST SUCCESS) {

return XST_ FAILURE;

}
/*

* Connect the timer counter to the interrupt subsystem such that
* interrupts can occur.

*/
Status = XIntc Initialize(&InterruptController, INTC DEVICE ID);
if (Status != XST SUCCESS) {
return XST FAILURE;
!
/*

* Connect a device driver handler that will be called when an
* interrupt for the device occurs, the device driver handler performs
* the specific interrupt processing for the device
*/
Status = XIntc Connect (&InterruptController, TMRCTR DEVICE ID,
(XInterruptHandler)XTmrCtr InterruptHandler,
(void *) &TimerCounterInst) ;
if (Status != XST SUCCESS) {
return XST_ FAILURE;

}

MicroBlaze Processor Reference Guide Send Feedback 129
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=129

AM D n Chapter 2: MicroBlaze Architecture

/*

* Start the interrupt controller such that interrupts are enabled for
* all devices that cause interrupts, specifying real mode so that the
* timer counter can cause interrupts thru the interrupt controller.

*/
Status = XIntc_Start (&InterruptController, XIN_ REAL MODE) ;
if (Status != XST SUCCESS) {

return XST FAILURE;
/*

* Setup the handler for the timer counter that will be called from the
* interrupt context when the timer expires, specify a pointer to the
* timer counter driver instance as the callback reference so the
* handler is able to access the instance data
*/
XTmrCtr SetHandler (&TimerCounterInst, MicroBlazeScrubHandler,
&TimerCounterInst) ;

* Enable the interrupt of the timer counter so interrupts will occur
* and use auto reload mode such that the timer counter will reload
* itself automatically and continue repeatedly, without this option
* it would expire once only
*/
XTmrCtr SetOptions (&TimerCounterInst, TIMER CNTR O,
XTC_INT MODE_OPTION | XTC_AUTO RELOAD OPTION) ;

/*
* Set a reset value for the timer counter such that it will expire
* earlier than letting it roll over from 0, the reset value is loaded
* into the timer counter when it is started
*/

XTmrCtr SetResetValue (TmrCtrInstancePtr, TmrCtrNumber, SCRUB_PERIOD) ;

/*

* Start the timer counter such that it's incrementing by default,
* then wait for it to timeout a number of times

*/

XTmrCtr Start (&TimerCounterInst, TIMER CNTR O0) ;

}

See the section Scrubbing for further details on how scrubbing is implemented, including
how to calculate the scrubbing rate.

BRAM Driver

The standalone BSP BRAM driver is used to access the ECC registers in the LMB BRAM
Interface Controller, and also provides a comprehensive self test.

By implementing the Vitis C Project "Peripheral Tests", a self-test example including the
BRAM self test for each LMB BRAM Interface Controller in the system is generated.
Depending on the ECC features enabled in the LMB BRAM Interface Controller, this code will

MicroBlaze Processor Reference Guide Send Feedback 130
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=130

AM D n Chapter 2: MicroBlaze Architecture

perform all possible tests of the ECC function. See the Vitis Unified Software Platform
Documentation [Ref 9] for more information.

The self-test example can be found in the standalone BSP BRAM driver source code,
typically in the subdirectory microblaze 0/libsrc/bram v3 03 a/src/xbram selftest.c.

Scrubbing

Scrubbing Methods

Scrubbing is performed using specific methods for the different block RAMs:

« Instruction and data caches: All lines in the caches are cyclically invalidated using the
WIC and WDC instructions respectively. This forces the cache to reload the cache line
from external memory.

+ Memory Management Unit UTLB: All entries in the UTLB are cyclically invalidated by
writing the TLBHI register with the valid bit cleared.

« Branch Target Cache: The entire BTC is invalided by doing a synchronizing branch, BRI 4.

« LMB block RAM: All addresses in the memory are cyclically read and written, thus
correcting any single bit errors on each address.

It is also possible to add interrupts for correctable errors from the LMB BRAM Interface
Controllers, and immediately scrub this address in the interrupt handler, although in most
cases it only improves reliability slightly.

The failing address can be determined by reading the Correctable Error First Failing Address
Register in each of the LMB BRAM Interface Controllers.

To be able to generate an interrupt ¢_ECC_STATUS REGISTERS must be set to 1 in the
connected LMB BRAM Interface Controllers, and to read the failing address
C_CE_FAILING REGISTERS must be set to 1.

Calculating Scrubbing Rate
The scrubbing rate depends on failure intensity and desired reliability.

The approximate equation to determine the LMB memory scrubbing rate is in our case
given by

2

sz760(%j

SR

where Py is the probability of an uncorrectable error in a memory word, BER is the soft error
rate for a single memory bit, and SR is the Scrubbing Rate.

The soft error rates affecting block RAM for each product family can be found in the Device
Reliability Report User Guide (UG116) [Ref 5].

MicroBlaze Processor Reference Guide Send Feedback 131
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=131

AM D n Chapter 2: MicroBlaze Architecture

Use Cases

Several common use cases are described here. These use cases are derived from the
Processor LMB BRAM Interface Controller LogiCORE IP Product Guide (PG112) [Ref 3].

Minimal

This system is obtained when enabling fault tolerance in MicroBlaze, without doing any
other configuration.

The system is suitable when area constraints are high, and there is no need for testing of the
ECC function, or analysis of error frequency and location. No ECC registers are
implemented. Single bit errors are corrected by the ECC logic before being passed to
MicroBlaze. Uncorrectable errors set an error signal, which generates an exception in
MicroBlaze.

Small

This system should be used when it is necessary to monitor error frequency, but there is no
need for testing of the ECC function. It is a minimal system with Correctable Error Counter
Register added to monitor single bit error rates. If the error rate is too high, the scrubbing
rate should be increased to minimize the risk of a single bit error becoming an
uncorrectable double bit error. Parameters set are ¢ Ecc = 1 and C_CE_COUNTER_WIDTH =
10.

Typical

This system represents a typical use case, where it is required to monitor error frequency, as
well as generating an interrupt to immediately correct a single bit error through software. It
does not provide support for testing of the ECC function.

It is a small system with Correctable Error First Failing registers and Status register added. A
single bit error will latch the address for the access into the Correctable Error First Failing
Address Register and set the cE_sTATUS bit in the ECC Status Register. An interrupt will be
generated triggering MicroBlaze to read the failing address and then perform a read
followed by a write on the failing address. This will remove the single bit error from the
BRAM, thus reducing the risk of the single bit error becoming a uncorrectable double bit
error. Parameters set are:

c_eEcc =1

C_CE_COUNTER WIDTH = 10
C_ECC_STATUS REGISTER = 1

C_CE_FAILING REGISTERS = 1

MicroBlaze Processor Reference Guide Send Feedback 132
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=132

AM D n Chapter 2: MicroBlaze Architecture

Full

This system uses all of the features provided by the LMB BRAM Interface Controller, to
enable full error injection capability, as well as error monitoring and interrupt generation. It
is a typical system with Uncorrectable Error First Failing registers and Fault Injection
registers added. All features are switched on for full control of ECC functionality for system
debug or systems with high fault tolerance requirements. Parameters set are:

Cc ECC =1
. C_CE_COUNTER WIDTH = 10

C_ECC_STATUS REGISTER = 1

11
—

. C_CE_FAILING_REGISTERS

1l
—

. C_UE_FAILING REGISTERS

C_FAULT_ INJECT = 1

MicroBlaze Processor Reference Guide Send Feedback 133
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=133

AM D n Chapter 2: MicroBlaze Architecture

Lockstep Operation

MicroBlaze is able to operate in a lockstep configuration, where two or more identical
MicroBlaze cores execute the same program. By comparing the outputs of the cores, any
tampering attempts, transient faults or permanent hardware faults can be detected.

System Configuration

The parameter c_LOCKSTEP_ SLAVE is set to one on all slave MicroBlaze cores in the system,
except the master (or primary) core. The master core drives all the output signals, and
handles the debug functionality. The port Lockstep Master oOut on the master is
connected to the port Lockstep Slave In on the slaves, in order to handle debugging.
The parameter ¢C_ TEMPORAL DEPTH is provided to support debugging with temporal
lockstep, where the slave core execution is delayed a defined number of clock cycles.

The slave cores should not drive any output signals, only receive input signals. This must be
ensured by only connecting signals to the input ports of the slaves. For buses this either
means that monitor interfaces must be used, or that each individual input port must be
explicitly connected.

The port Lockstep oOut on the master and slave cores provide all output signals for
comparison. Unless an error occurs, individual signals from each of the cores are identical
every clock cycle.

To ensure that lockstep operation works properly, all input signals to the cores must be
synchronous. Input signals that could require external synchronization are Interrupt,
Reset, Ext Brk, and Ext Nm_ Brk.

Use Cases

Two common use cases are described here. In addition, lockstep operation provides the
basis for implementing triple modular redundancy on MicroBlaze core level.

Tamper Protection

This application represents a high assurance use case, where it is required that the system
is tamper-proof. A typically example is a cryptographic application.

The approach involves having two redundant MicroBlaze processors with dedicated local
memory and redundant comparators, each in a protected area. The outputs from each
processor feed two comparators and each processor receive copies of every input signal.

The redundant MicroBlaze processors are functionally identical and completely
independent of each other, without any connecting signals. The only exception is debug

MicroBlaze Processor Reference Guide Send Feedback 134
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=134

AM D n Chapter 2: MicroBlaze Architecture

logic and associated signals, because it is assumed that debugging is disabled before any
productization and certification of the system.

The outputs from the master MicroBlaze core drive the peripherals in the system. All data
leaving the protected area pass through inhibitors. Each inhibitor is controlled from its
associated comparator.

Each protected area of the design must be implemented in its own partition, using a
hierarchical single chip cryptography (SCC) flow. A detailed explanation of this flow, and
further references, can be found in the document Hierarchical Design Methodology Guide
(UG748) [Ref 8].

A block diagram of the system is shown in the following figure.

MicroBlaze Partition
C_LOCKSTEP_SLAVE=0 — .
El Peripheral
DLMB Outputs 53 Partition
[| Bram Controller y
MicroBlaze In
puts
BRAM Master N
| | ILMB Comparator Partition
Bram Controller
: Lockstep_out Y Comparator
MicroBlaze Debug |]
Debug Module
Lockstep_Master_Out
D, 1/0 Interfaces
MicroBlaze Partition y octep-Stavetn
External
D
| Debug | ’ 1 Memory
DLVB <.l nputs Interfaces
| Bram Controller .
MicroBIaze Comparator Partition
BRAM Slave c t
Lockstep_Out omparator
ILMB
[| Bram Controller k_|_>
C_LOCKSTEP_SLAVE=1

|:| Debug interface — Removed for Production

X19777-111617

Figure 2-42: Lockstep Tamper Protection Application

Error Detection

The error detection use case requires that all transient and permanent faults are detected.
This is essential in fail safe and fault tolerant applications, where redundancy is utilized to
improve system availability.

MicroBlaze Processor Reference Guide Send Feedback 135
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=135

AM D n Chapter 2: MicroBlaze Architecture

In this system two redundant MicroBlaze processors run in lockstep. A comparator is used
to signal an error when a mis-match is detected on the outputs of the two processors. Any
error immediately causes both processors to halt, preventing further error propagation.

The redundant MicroBlaze processors are functionally identical, except for debug logic and
associated signals.The outputs from the master MicroBlaze core drive the peripherals in the
system. The slave MicroBlaze core only has inputs connected; all outputs are left open.

The system contains the basic building block for designing a complete fault tolerant
application, where one or more additional blocks must be added to provide redundancy.

This use case is illustrated in the following figure.

! |
: Error Reset |
| C_LOCKSTEP_SLAVE=0 |« : >
! I
Outputs
DLMB p | >
Bram Controller : :
! MicroBlaze < Input
| puts
BRAM : Master T
|
ILMB : :
Bram Controller : |
—' \ |
I Lockstep_Out ! I/O Interfaces
MicroBlaze ! Debug | —I/ !
Debug Module : |
! i
! |
|
! Comparator | Eﬂ’gggf’y'
|
: | | Interfaces
: Debug | :
| —l\
| Lockstep_Out :
|
! v |
! |
| .| MicroBlaze !
| - Inputs
! Inputs Slave < P :
| > :
! - I
|
: C_LOCKSTEP_SLAVE=1 :
! |
! |
! |
|

X19778-111617

Figure 2-43: Lockstep Error Detection Application

MicroBlaze Processor Reference Guide Send Feedback 136
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=136

AM D n Chapter 2: MicroBlaze Architecture

Coherency

MicroBlaze supports cache coherency, as well as invalidation of caches and translation look-
aside buffers, using the AXI Coherency Extension (ACE) defined in AMBA® AXI and ACE
Protocol Specification (Arm IHI 0022E) [Ref 15]. The coherency support is enabled when the
parameter C_INTERCONNECT is set to 3 (ACE).

Using ACE ensures coherency between the caches of all MicroBlaze processors in the
coherency domain. The peripheral ports (ax1_1p, axI DP) and local memory (ILMB, DLMB)
are outside the coherency domain.

Coherency is not supported with write-back data cache, wide cache interfaces (more than
32-bit data), instruction cache streams, instruction cache victims or when area optimization
is enabled. In addition both ¢_ICACHE ALWAYS USED and C_DCACHE ALWAYS USED must be
set to 1.

Invalidation
The coherency hardware handles invalidation in the following cases:

« Data Cache invalidation: When a MicroBlaze core in the coherency domain invalidates a
data cache line with an external cache invalidation instruction (Wbc.EXT.CLEAR Or
WDC.EXT.FLUSH), hardware messages ensure that all other cores in the coherency
domain will do the same. The physical address is always used.

« Instruction Cache invalidation: When a MicroBlaze core in the coherency domain
invalidates an instruction cache line, hardware messages ensure that all other cores in
the coherency domain will do the same. When the MMU is in virtual mode the virtual
address is used, otherwise the physical address is used.

« MMU TLB invalidation: When a MicroBlaze core in the coherency domain invalidates an
entry in the UTLB (that is writes TLBHI with a zero Valid flag), hardware messages
ensure that all other cores in the coherency domain will invalidate all entries in their
unified TLBs having a TAG matching the invalidated virtual address, as well as empty
their shadow TLBs.

The TID is not taken into account when matching the entries, which can result in
invalidation of entries belonging to other processes. Subsequent accesses to these
entries will generate TLB miss exceptions, which must be handled by software.

Before invalidating an MMU page, it must first be loaded into the UTLB to ensure that
the hardware invalidation is propagated within the coherency domain. It is not sufficient
to simply invalidate the page in memory, since other processors in the coherency
domain can have this particular entry stored in their TLBs.

MicroBlaze Processor Reference Guide Send Feedback 137
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=137

AM D n Chapter 2: MicroBlaze Architecture

After a MicroBlaze core has invalidated one or more entries, it must execute a memory
barrier instruction (MBAR), to ensure that all peer processors have completed their TLB
invalidation.

« Branch Target Cache invalidation: When a MicroBlaze core in the coherency domain
invalidates the Branch Target Cache, either with a memory barrier instruction or with a
synchronizing branch, hardware messages ensure that all other cores in the coherency
domain will do the same.

In particular, this means that self-modifying code can be used transparently within the
coherency domain in a multi-processor system, provided that the guidelines in Self-
modifying Code are followed.

Protocol Compliance

The MicroBlaze instruction cache interface issues the following subset of the possible ACE
transactions:

« ReadClean: Issued when a cache line is allocated.

« ReadOnce: Issued when the cache is off, or if the MMU Inhibit Caching bit is set for the
cache line.

The MicroBlaze data cache interface issues the following subset of the possible ACE
transactions:

« ReadClean: Issued when a cache line is allocated.

« CleanUnique: Issued when an SWX instruction is executed as part of an exclusive access
sequence.

« ReadOnce: Issued when the cache is off, or if the MMU Inhibit Caching bit is set for the
cache line.

» WriteUnique: Issued whenever a store instruction performs a write.
+ Cleanlnvalid: Issued when a wDC.EXT.FLUSH instruction is executed.

+ Makelnvalid: Issued when a wDC.EXT.CLEAR instruction is executed.

MicroBlaze Processor Reference Guide Send Feedback 138
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=138

AM D n Chapter 2: MicroBlaze Architecture

Both interfaces issue the following subset of the possible Distributed Virtual Memory
(DVM) transactions:

+ DVM Operation
. TLB Invalidate: Hypervisor TLB Invalidate by VA
. Branch Predictor Invalidate: L Branch Predictor Invalidate all

. Physical Instruction Cache Invalidate: Non-secure Physical Instruction Cache
Invalidate by PA without Virtual Index

- Virtual Instruction Cache Invalidate: Hypervisor Invalidate by VA
+ DVM Sync
- Synchronization

« DVM Complete

- In addition to the DVM transactions above, the interfaces only accept the
CleanInvalid and MakeInvalid transactions. These transactions have no effect in
the instruction cache, and invalidate the indicated data cache lines. If any other
transactions are received, the behavior is undefined.

. Only a subset of AXI4 transactions are utilized by the interfaces, as described in
Cache Interfaces.

MicroBlaze Processor Reference Guide Send Feedback 139
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=139

AM D n Chapter 2: MicroBlaze Architecture

Data and Instruction Address Extension

MicroBlaze has the ability to address up to 16EB of data controlled by the parameter
C_ADDR_SIzE, and with 32-bit MicroBlaze also supports a physical instruction address up to
16EB when the MMU Physical Address Extension (PAE) is enabled by setting ¢ usg_mmu = 3
(Virtual).

With 64-bit MicroBlaze both the virtual and physical address are extended according to the
parameter c_ADDR_SIzE. This applies to both instruction and data address spaces, thus
eliminating all limitations imposed by using 32-bit MicroBlaze listed here.

The parameter c_ADDR_SIZE can be set to the following values:

- NONE 4 * 10243 bytes 32-bit address, no extended address instructions or PAE
- 64GB 64 * 10243 bytes 36-bit address
- 1TB 10244 bytes 40-bit address
. 16TB 16 * 10244 bytes 44-bit address
- 256TB 256 * 10244 bytes 48-bit address
- 4PB 4 * 1024° bytes 52-bit address
- 16EB 16 * 1024° bytes 64-bit address

There are a number of software limitations with extended addressing when using 32-bit
MicroBlaze:

« The GNU tools only generate ELF files with 32-bit addresses with 32-bit MicroBlaze,
which means that program instruction and data memory must be located in the first
4GB of the address space. This is also the reason the instruction address space does not
provide an extended address unless PAE is enabled.

With PAE enabled, the majority of the program instruction and data can be located at
any physical address, but all software running in real mode must be located in the first
4GB of the address space. The MMU UTLB must also be initialized to set up the virtual
to physical address translation by software running in real mode, before virtual mode is
activated.

» Because all software drivers use address pointers that are 32-bit unsigned integers, it is
not possible to access physical extended addresses above 4GB without modifying the
driver code, and consequently all AXI peripherals should be located in the first 4GB of
the address space.

With PAE enabled, AXI peripherals can be located at any physical address, provided that
the virtual address remains in the first 4GB of the address space.

MicroBlaze Processor Reference Guide Send Feedback 140
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=140

AM D n Chapter 2: MicroBlaze Architecture

« The extended address is only treated as a physical address, and the MMU cannot be
used to translate from an extended virtual address to a physical address.

This also means that without PAE support, Linux can only use the data address extension
through a dedicated driver operating in real mode.

The extended address load and store instructions are privileged when the MMU is
enabled, unless they are allowed by setting the parameter ¢ MMU PRIVILEGED INSTR
appropriately. If allowed, the instructions bypass the MMU translation treating the
extended address as a physical address.

+ The GNU compiler does not handle 64-bit address pointers, which means that unless
PAE is enabled the only way to access an extended address is using the specific
extended addressing instructions, available as macros.

The following C code exemplifies how an extended address can be used to access data:

#include “xil types.h”
#include “mb_interface.h”

int main()

{

u64 Addr = 0x000000FF00000000LL; /* Extended address */

u32 Word;

u8 Byte;

Word = lwea (Addr); /* Load word from extended address */
swea (Addr, Word) ; /* Store word to extended address */

Byte = lbuea(Addr); /* Load byte from extended address */
sbea (Addr, Byte) ; /* Store byte to extended address */

MicroBlaze Processor Reference Guide Send Feedback 141
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=141

AMDA1

Chapter 3

MicroBlaze Signal Interface Description

Introduction

This chapter describes the types of signal interfaces that can be used to connect a
MicroBlaze™ processor.

Overview

The MicroBlaze core is organized as a Harvard architecture with separate bus interface units
for data and instruction accesses. The following two memory interfaces are supported:
Local Memory Bus (LMB), and the AMBA® AXI4 interface (AX14) and ACE interface (ACE).

The LMB provides single-cycle access to on-chip dual-port block RAM. The AXI4 interfaces
provide a connection to both on-chip and off-chip peripherals and memory. The ACE
interfaces provide cache coherent connections to memory.

MicroBlaze also supports up to 16 AXI4-Stream interface ports, each with one master and
one slave interface.

Features
MicroBlaze can be configured with the following bus interfaces:

« The AMBA AXI4 Interface for peripheral interfaces, and the AMBA AXI4 or AXI
Coherency Extension (ACE) Interface for cache interfaces (see Arm® AMBA® AX| and
ACE Protocol Specification, Arm IHI 0022E [Ref 15]).

« LMB provides a simple synchronous protocol for efficient block RAM transfers

» AXI4-Stream provides a fast non-arbitrated streaming communication mechanism
« Debug interface for use with the Microprocessor Debug Module (MDM) core

« Trace interface for performance analysis

MicroBlaze Processor Reference Guide Send Feedback 142
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=142

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

MicroBlaze 1/O Overview

The core interfaces shown in the following figure and Table 3-1 are defined as follows:

« M_AXI_DP: Peripheral Data Interface, AXl4-Lite or AXI4 interface

« DLMB: Data interface, Local Memory Bus (BRAM only)

« M_AXI_IP: Peripheral Instruction interface, AXl4-Lite interface

« ILMB: Instruction interface, Local Memory Bus (BRAM only)

« MO_AXIS..M15_AXIS: AXI4-Stream interface master direct connection interfaces
« SO _AXIS..S15_AXIS: AXl4-Stream interface slave direct connection interfaces

« M_AXI_DC: Data-side cache AXIl4 interface

« M_ACE_DC: Data-side cache AXI Coherency Extension (ACE) interface

« M_AXILIC: Instruction-side cache AXI4 interface

« M_ACE_IC: Instruction-side cache AXI Coherency Extension (ACE) interface

« Core: Miscellaneous signals for: clock, reset, interrupt, debug, trace

Instruction-side Data-side
Bus interface Bus interface

M_AXI_IC — Memory Management Unit (MMU) — M AXI DC
M—ACE—'C[:: \4/1: [me || uns }» oms | :V,\ @ M_ACE_DC

3 1 i 5
& g
=) o
3 < o

Program S

Counter

Special
L | Purpose ALU —

<> Registers Shift
ﬁ Barrel Shift Bus

Branch Target \F

E

Divider

Instruction
BIL;_S :> Buffer [> [> ARG

Instruction

i1

Decode ﬁ{} MO_AXIS ..
M15_AXIS

:] <:: SO_AXIS ..

Register File <:| S15._AXIS

[] Optional MicroBlaze feature [> 32 registers :>

X19738-100218

Figure 3-1: MicroBlaze Core Block Diagram

MicroBlaze Processor Reference Guide Send Feedback 143
UG984 (v2023.2) February 2, 2024 [—‘ /_]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=143

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Table 3-1: Summary of MicroBlaze Core I/0

Signal Interface | 1/0 Description
M_AXI_DP_AWID M_AXI DP O | Master Write address ID
M_AXI_DP_AWADDR M_AXI DP O | Master Write address
M _AXI DP AWLEN M_AXI DP O | Master Burst length
M_AXI_DP_AWSIZE M_AXI DP O | Master Burst size
M_AXI_DP_AWBURST M_AXI DP O | Master Burst type
M_AXI_DP_AWLOCK M_AXI_DP O | Master Lock type
M_AXI_DP_AWCACHE M_AXI DP O | Master Cache type
M_AXI DP_AWPROT M_AXI DP O | Master Protection type
M_AXI_DP_AWQOS M_AXI DP O | Master Quality of Service
M_AXI_DP_AWVALID M_AXI DP 0 Master Write address valid
M_AXI_DP_AWREADY M_AXI DP I Slave Write address ready
M_AXI_DP_WDATA M_AXI DP O | Master Write data
M_AXI DP_WSTRB M_AXI DP @) Master Write strobes
M_AXI_DP_WLAST M_AXI DP O | Master Write last
M_AXI_DP_WVALID M_AXI DP O | Master Write valid
M_AXI_DP_WREADY M_AXI DP [Slave Write ready
M_AXI DP BID M_AXI_DP [Slave Response ID
M_AXI_DP_BRESP M_AXI DP [Slave Write response
M_AXI DP BVALID M_AXI DP | Slave Write response valid
M_AXI_ DP_BREADY M_AXI DP O | Master Response ready
M_AXI_DP_ARID M_AXI DP O | Master Read address ID
M_AXI_DP_ARADDR M_AXI DP O | Master Read address
M_AXI_DP_ARLEN M_AXI DP @] Master Burst length
M_AXI_DP_ARSIZE M_AXI_DP O | Master Burst size
M_AXI_ DP_ARBURST M_AXI DP (@) Master Burst type
M_AXI_DP_ARLOCK M_AXI DP O Master Lock type
M_AXI DP_ARCACHE M_AXI DP @) Master Cache type
M_AXI_DP_ARPROT M_AXI DP O | Master Protection type
M_AXI_DP_ARQOS M_AXI DP O | Master Quality of Service
M_AXI DP_ARVALID M_AXI DP O | Master Read address valid
M_AXI_DP_ARREADY M_AXI DP [Slave Read address ready
M_AXI_DP_RID M_AXI DP [Slave Read ID tag
M_AXI_DP_RDATA M_AXI_DP [Slave Read data
M_AXI_DP_RRESP M_AXI DP [Slave Read response
M_AXI_DP_RLAST M_AXI_DP [Slave Read last

MicroBlaze Processor Reference Guide Send Feedback 144
UG984 (v2023.2) February 2, 2024 l—, /—I

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=144

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-1: Summary of MicroBlaze Core 1/0 (Cont’d)

Signal Interface | 1/O Description
M_AXI_DP_RVALID M_AXI DP [Slave Read valid
M_AXI_DP_RREADY M_AXI DP O | Master Read ready
M_AXI_TIP_AWID M_AXI_IP O | Master Write address ID
M_AXI_TIP_AWADDR M_AXI IP O | Master Write address
M_AXI_IP_AWLEN M_AXI_IP O | Master Burst length
M_AXI IP AWSIZE M_AXI IP O | Master Burst size
M_AXI_IP_AWBURST M_AXI IP O | Master Burst type
M_AXI IP_ AWLOCK M_AXI_IP O | Master Lock type
M_AXI_IP_ AWCACHE M_AXI_IP O | Master Cache type
M_AXI_IP_AWPROT M_AXI IP O | Master Protection type
M_AXI_IP_AWQOS M_AXI IP O | Master Quality of Service
M_AXI_IP_AWVALID M_AXI IP O | Master Write address valid
M_AXI_IP_AWREADY M_AXI IP [Slave Write address ready
M_AXI_IP_WDATA M_AXI IP O | Master Write data
M_AXI_IP_WSTRB M_AXI IP @) Master Write strobes
M_AXI_IP_WLAST M_AXI_IP O | Master Write last
M_AXI_IP_WVALID M_AXI_IP O | Master Write valid
M_AXI IP_ WREADY M_AXI_IP [Slave Write ready
M_AXI_IP_BID M_AXI IP I Slave Response ID
M_AXI_IP_BRESP M _AXI IP [Slave Write response
M_AXI_IP_ BVALID M _AXI IP | Slave Write response valid
M_AXI_IP_BREADY M_AXI IP O | Master Response ready
M_AXI_IP_ARID M_AXI IP O | Master Read address ID
M_AXI_ IP_ARADDR M_AXI_IP | O | Master Read address
M_AXI_IP_ARLEN M_AXI IP O | Master Burst length
M_AXI_IP_ARSIZE M_AXI IP O | Master Burst size
M_AXI IP_ARBURST M_AXI IP @) Master Burst type
M_AXI_IP_ARLOCK M_AXI IP O | Master Lock type
M_AXI_TIP_ARCACHE M_AXI IP O | Master Cache type
M_AXI_IP_ARPROT M_AXI IP O | Master Protection type
M_AXI_IP_ARQOS M_AXI IP O | Master Quality of Service
M_AXI_IP_ARVALID M _AXI IP O | Master Read address valid
M_AXI_IP_ARREADY M_AXI IP [Slave Read address ready
M_AXI_IP_RID M_AXI IP [Slave Read ID tag
M_AXI_IP_RDATA M_AXI_IP [Slave Read data

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

| Send Feedback I 145

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=145

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-1: Summary of MicroBlaze Core 1/0 (Cont’d)

Signal Interface | 1/O Description
M _AXI_TIP_RRESP M_AXI IP I Slave Read response
M_AXI_IP_RLAST M_AXI_IP [Slave Read last
M_AXI_IP_RVALID M_AXI_IP [Slave Read valid
M_AXI_IP_RREADY M_AXI IP O | Master Read ready
M_AXI_DC_AWADDR M_AXI DC O | Master Write address
M_AXI_DC_AWLEN M_AXI DC O | Master Burst length
M_AXI_DC_AWSIZE M_AXI DC O | Master Burst size
M_AXI_DC_AWBURST M_AXI DC O | Master Burst type
M_AXI DC_AWLOCK M_AXI_DC O | Master Lock type
M_AXI_DC_AWCACHE M_AXI DC O | Master Cache type
M_AXI_DC_AWPROT M_AXI DC @) Master Protection type
M_AXI_DC_AWQOS M_AXI DC O | Master Quality of Service
M_AXI_DC_AWVALID M_AXI DC O | Master Write address valid
M_AXI_DC_AWREADY M_AXI DC [Slave Write address ready
M_AXI_DC_AWUSER M_AXI DC O | Master Write address user signals
M_AXI DC_AWDOMAIN M_ACE_DC O | Master Write address domain
M_AXI_DC_AWSNOOP M_ACE DC O | Master Write address snoop
M_AXI DC_AWBAR M_ACE_DC O | Master Write address barrier
M_AXI_DC_WDATA M_AXI DC O | Master Write data
M_AXI_DC_WSTRB M_AXI DC O | Master Write strobes
M_AXI_DC_WLAST M_AXI DC O | Master Write last
M_AXI_ DC_WVALID M_AXI DC O | Master Write valid
M_AXI_DC_WREADY M_AXI_DC [Slave Write ready
M_AXI_DC_WUSER M_AXI DC O | Master Write user signals
M_AXI_DC_BRESP M_AXI DC I Slave Write response
M_AXI DC_BID M_AXI DC I Slave Response ID
M_AXI_DC_BVALID M_AXI DC [Slave Write response valid
M_AXI DC_BREADY M_AXI DC @) Master Response ready
M_AXI DC_BUSER M_AXI DC [Slave Write response user signals
M_AXI_DC_WACK M_ACE DC O | Slave Write acknowledge
M_AXI_DC_ARID M_AXI DC O | Master Read address ID
M_AXI_DC_ARADDR M_AXI DC O | Master Read address
M_AXI DC_ARLEN M_AXI DC O | Master Burst length
M_AXI_DC_ARSIZE M_AXI DC O | Master Burst size
M_AXI DC_ARBURST M_AXI DC 0 Master Burst type

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

| Send Feedback I 146

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=146

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-1: Summary of MicroBlaze Core 1/0 (Cont’d)

Signal Interface | 1/O Description
M_AXI_DC_ARLOCK M_AXI DC O | Master Lock type
M_AXI DC_ARCACHE M_AXI DC @) Master Cache type
M_AXI_DC_ARPROT M_AXI DC O | Master Protection type
M_AXI_DC_ARQOS M_AXI DC O | Master Quality of Service
M_AXI_DC_ARVALID M_AXI DC O | Master Read address valid
M_AXI_DC_ARREADY M_AXI DC [Slave Read address ready
M_AXI DC_ARUSER M_AXI DC O | Master Read address user signals
M_AXI_ DC_ARDOMAIN M_ACE_DC | O | Master Read address domain
M_AXI_ DC_ARSNOOP M_ACE_DC | O | Master Read address snoop
M_AXI_DC_ARBAR M_ACE DC O | Master Read address barrier
M_AXI_DC_RID M_AXI DC I Slave Read ID tag
M_AXI_DC_RDATA M_AXI DC I Slave Read data
M_AXI_DC_RRESP M_AXI DC I Slave Read response
M_AXI_DC_RLAST M_AXI DC I Slave Read last
M_AXI_DC_RVALID M_AXI DC [Slave Read valid
M_AXI_DC_RREADY M_AXI DC O | Master Read ready
M_AXI_DC_RUSER M_AXI DC [Slave Read user signals
M_AXI_DC_RACK M_ACE DC O | Master Read acknowledge
M_AXI_DC_ACVALID M_ACE_DC [Slave Snoop address valid
M_AXI_ DC_ACADDR M_ACE_DC | Slave Snoop address
M_AXI_DC_ACSNOOP M_ACE_DC [Slave Snoop address snoop
M_AXI_DC_ACPROT M_ACE_DC [Slave Snoop address protection type
M_AXI_DC_ACREADY M_ACE DC O | Master Snoop ready
M_AXI DC_CRREADY M_ACE DC [Slave Snoop response ready
M_AXI_DC_CRVALID M_ACE DC O | Master Snoop response valid
M_AXI DC_CRRESP M_ACE_DC @) Master Snoop response
M_AXI_DC_CDVALID M_ACE DC O | Master Snoop data valid
M_AXI_DC_CDREADY M_ACE DC [Slave Snoop data ready
M_AXI_DC_CDDATA M_ACE DC O | Master Snoop data
M_AXI_DC_CDLAST M_ACE DC O | Master Snoop data last
M_AXI_IC_AWID M_AXI IC O | Master Write address ID
M_AXI_IC_AWADDR M_AXI IC O | Master Write address
M_AXI_IC_AWLEN M_AXI IC O | Master Burst length
M_AXI_IC_AWSIZE M _AXI IC O | Master Burst size
M_AXI_ IC_AWBURST M_AXI IC 0 Master Burst type

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

| Send Feedback I 147

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=147

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-1: Summary of MicroBlaze Core 1/0 (Cont’d)

Signal Interface | 1/O Description
M_AXI_IC_AWLOCK M_AXI IC O | Master Lock type
M_AXI IC_AWCACHE M_AXI IC @) Master Cache type
M_AXI_IC_AWPROT M_AXI_ IC O | Master Protection type
M_AXI_IC_AWQOS M_AXI_IC O | Master Quality of Service
M_AXI_IC_AWVALID M_AXI IC O | Master Write address valid
M_AXI_IC_AWREADY M_AXI IC I Slave Write address ready
M_AXI_IC_AWUSER M_AXI IC O | Master Write address user signals
M_AXI_ IC_AWDOMAIN M_ACE_IC | O | Master Write address domain
M_AXI_IC_AWSNOOP M_ACE_IC O | Master Write address snoop
M_AXI IC_AWBAR M_ACE IC @] Master Write address barrier
M_AXI_IC_WDATA M_AXI IC O | Master Write data
M_AXI IC_WSTRB M_AXI_IC | O | Master Write strobes
M_AXI_IC_WLAST M_AXI IC O | Master Write last
M_AXI_IC_WVALID M_AXI IC O | Master Write valid
M_AXI_IC_WREADY M_AXI IC [Slave Write ready
M _AXI_ IC_WUSER M _AXI IC @) Master Write user signals
M_AXI IC BID M_AXI_IC [Slave Response ID
M_AXI_IC_BRESP M_AXI IC I Slave Write response
M_AXI_IC_BVALID M_AXI IC [Slave Write response valid
M_AXI_ IC_BREADY M _AXI IC O | Master Response ready
M_AXI_TIC_BUSER M _AXI IC I Slave Write response user signals
M_AXI_ IC_WACK M_ACE_IC | O | Slave Write acknowledge
M_AXI_ IC_ARID M_AXI_Ic | O | Master Read address ID
M_AXI_ IC_ARADDR M_AXI_IC | O | Master Read address
M_AXI_IC_ARLEN M_AXI IC O | Master Burst length
M_AXI_IC_ARSIZE M_AXI IC O | Master Burst size
M_AXI IC_ARBURST M_AXI IC @) Master Burst type
M_AXI_IC_ARLOCK M_AXI IC O | Master Lock type
M_AXI_IC_ARCACHE M_AXI IC O | Master Cache type
M_AXI_IC_ARPROT M_AXI IC O | Master Protection type
M_AXI_IC_ARQOS M_AXI IC O | Master Quality of Service
M_AXI_IC_ARVALID M_AXI IC O | Master Read address valid
M_AXI_ IC_ARREADY M_AXI_IC [Slave Read address ready
M_AXI_IC_ARUSER M_AXI IC O | Master Read address user signals
M_AXI_IC_ARDOMAIN M_ACE_IC | O | Master Read address domain

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

| Send Feedback I 148

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=148

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-1: Summary of MicroBlaze Core 1/0 (Cont’d)

Signal Interface | 1/O Description
M_AXI_IC_ARSNOOP M_ACE_IC O | Master Read address snoop
M_AXI_IC_ARBAR M_ACE_IC O | Master Read address barrier
M_AXI_IC_RID M_AXI_IC [Slave Read ID tag
M_AXI IC_ RDATA M_AXI_IC [Slave Read data
M_AXI_IC_RRESP M_AXI IC [Slave Read response
M_AXI IC_RLAST M_AXI_IC [Slave Read last
M_AXI_IC_RVALID M_AXI IC [Slave Read valid
M_AXI_IC_RREADY M_AXI_IC O | Master Read ready
M_AXI_IC_RUSER M_AXI_IC [Slave Read user signals
M_AXI_IC_RACK M_ACE_IC O | Master Read acknowledge
M_AXI_IC_ACVALID M_ACE IC [Slave Snoop address valid
M_AXI_ IC_ACADDR M_ACE_IC [Slave Snoop address
M_AXI_ IC_ACSNOOP M_ACE_IC [Slave Snoop address snoop
M_AXI_TIC_ACPROT M_ACE_IC [Slave Snoop address protection type
M_AXI IC_ACREADY M_ACE_IC @) Master Snoop ready
M_AXI_IC_CRREADY M_ACE_IC [Slave Snoop response ready
M_AXI_IC_CRVALID M_ACE_IC O | Master Snoop response valid
M_AXI_IC_CRRESP M_ACE_IC O | Master Snoop response
M_AXI_IC_CDVALID M_ACE_IC O | Master Snoop data valid
M_AXI_IC_CDREADY M_ACE_IC [Slave Snoop data ready
M_AXI_IC_CDDATA M _ACE_IC O | Master Snoop data
M_AXI_IC_CDLAST M_ACE IC O | Master Snoop data last
Data_Addr[0:N-1] DLMB O | Data interface LMB address bus, N = 32 - 64
Byte_Enable[0:N-1] DLMB O | Data interface LMB byte enables, N = 4, 8
Data_Write[0:N-1] DLMB 0 Data interface LMB write data bus, N = 32, 64
D _AS DLMB O | Data interface LMB address strobe
Read_Strobe DLMB O | Data interface LMB read strobe
Write_Strobe DLMB O | Data interface LMB write strobe
Data_Read[0:N-1] DLMB I Data interface LMB read data bus, N = 32, 64
DReady DLMB [Data interface LMB data ready
DWait DLMB [Data interface LMB data wait
DCE DLMB [Data interface LMB correctable error
DUE DLMB [Data interface LMB uncorrectable error
Instr_Addr[0:N-1] ILMB O | Instruction interface LMB address bus, N = 32 - 64
I_AS ILMB O | Instruction interface LMB address strobe

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

| Send Feedback I 145

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=149

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-1: Summary of MicroBlaze Core 1/0 (Cont’d)
Signal Interface | 1/O Description
IFetch ILMB O | Instruction interface LMB instruction fetch
Instr[0:N-1] ILMB [Instruction interface LMB read data bus, N = 32, 64
IReady ILMB [Instruction interface LMB data ready
IWait ILMB [Instruction interface LMB data wait
ICE ILMB [Instruction interface LMB correctable error
IUE ILMB [Instruction interface LMB uncorrectable error
Mn_AXIS_TLAST MO_AXIS.. O | Master interface output AXI4 channels write last
M15_AXIS
Mn_AXIS_TDATA MO_AXIS.. (0] Master interface output AXI4 channels write data
M15_AXIS
Mn_AXIS_ TVALID MO_AXIS.. (0] Master interface output AXI4 channels write valid
M15_AXIS
Mn_AXIS_TREADY MO_AXIS.. Master interface input AXI4 channels write ready
M15_AXIS
Sn_AXIS_TLAST SO_AXIS.. Slave interface input AXI4 channels write last
S15_AXIS
Sn_AXIS_TDATA SO_AXIS.. Slave interface input AXI4 channels write data
S15_AXIS
Sn_AXIS_TVALID SO_AXIS.. Slave interface input AXl4 channels write valid
S15_AXIS
Sn_AXIS_TREADY SO_AXIS.. O | Slave interface output AXI4 channels write ready
S15_AXIS
Interrupt Core Interrupt. The signal is synchronized to C1k if the parameter
C_ASYNC_INTERRUPT is set.
Interrupt Address? Core [Interrupt vector address
Interrupt Ack? Core O | Interrupt acknowledge
Reset Core [Core reset, active high. Must be asserted 1 C1k clock cycle, but it
is recommended to keep it asserted for at least 16 clock cycles.
Reset Mode[0:1]3 Core Reset mode. Sampled when Reset is active.
SeeTable 3-2 for details.
Clk Core I | Clock?
Ext BRK3 Core [Break signal from MDM
Ext NM BRK3 Core [Non-maskable break signal from MDM
MB Halted?3 Core O | Pipeline is halted, either using the Debug Interface, by setting
Dbg Stop, or by setting Reset Mode [0:1] to 10.
Dbg Stop?3 Core Unconditionally force pipeline to halt as soon as possible. Rising-

edge detected pulse that should be held for at least 1 Clk clock
cycle. The signal only has any effect when C_DEBUG_ENABLED
is greater than 0.

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

| Send Feedback I 150

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=150

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Table 3-1: Summary of MicroBlaze Core 1/0 (Cont’d)

Signal Interface | 1/O Description
Dbg Intr3 Core O | Debuginterrupt output, set when a Performance Monitor counter
overflows, available when C_DEBUG_ENABLED is set to 2
(Extended).
MB_Error3 Core O | Pipeline is halted due to a missed exception, when

C_FAULT TOLERANT is set to 1.

Sleep? Core O | MicroBlaze is in sleep mode after executing a SLEEP instruction
or by setting Reset _Mode [0:1] to 10, all external accesses are
completed, and the pipeline is halted.

Hibernate? Core O | MicroBlaze is in sleep mode after executing a HIBERNATE
instruction, all external accesses are completed, and the pipeline
is halted.

Suspend? Core O | MicroBlaze is in sleep mode after executing a SUSPEND
instruction, all external accesses are completed, and the pipeline
is halted.

Wakeup[0:1]3 Core Wake MicroBlaze from sleep mode when either or both bits are
set to 1. Ignored if MicroBlaze is not in sleep mode. The signals
are individually synchronized to 1k according to the parameter
C_ASYNC_ WAKEUP([0:1].

Dbg Wakeup? Core O | Debug request that external logic should wake MicroBlaze from
sleep mode with the Wakeup signal, to allow debug access.
Synchronous to Dbg_Update.

Pause? Core When this signal is set MicroBlaze pipeline will be paused after
completing all ongoing bus accesses, and the Pause Ack signal
will be set. When this signal is cleared again MicroBlaze will
continue normal execution where it was paused.

Pause Ack? Core O | MicroBlaze is in pause mode after the Pause input signal has
been set.
Dbg_ Continue? Core O | Debug request that external logic should clear the Pause signal,

to allow debug access.

Non Secure[0:3]3 Core Determines whether AXI| accesses are non-secure or secure. The
default value is binary 0000, setting all interfaces to be secure.

Bit0 =M AXI DP
Bit1=M AXI IP
Bit2 =M AXI DC
Bit3 =M AXI IC

Lockstep_. .. Core IO | Lockstep signals for high integrity applications. See Table 3-18
for details.

Dbg_... Core IO | Debug signals from MDM. See Table 3-20 for details.

Trace_... Core O | Trace signals for real time HW analysis. See Table 3-21 for details.

1. Only used with ¢C_USE_INTERRUPT = 2, for low-latency interrupt support.

2. MicroBlaze is a synchronous design clocked with the Clk signal, except for serial hardware debug logic, which is clocked with
the Dbg_Clk signal. If serial hardware debug logic is not used, there is no minimum frequency limit for C1k. However, if
serial hardware debug logic is used, there are signals transferred between the two clock regions. In this case C1k must have
a higher frequency than Dbg_Clk.

3. Only visible when C_ENABLE DISCRETE_ PORTS = 1.

MicroBlaze Processor Reference Guide Send Feedback 151
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=151

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Table 3-2: Effect of Reset Mode Inputs

Reset_Mode[0:1] Description

00 MicroBlaze starts executing at the reset vector, defined by C_BASE VECTORS. This
is the nominal default behavior.

01 MicroBlaze immediately enters sleep mode without performing any bus access,
just as if a SLEEP instruction had been executed. The Sleep output is set to 1.
When any of the Wakeup [0:1] signals is set, MicroBlaze starts executing at the
reset vector, defined by C_ BASE VECTORS.

This functionality can be useful in a multiprocessor configuration, allowing
secondary processors to be configured without LMB memory.

10 If C_ DEBUG ENABLED is 0, the behavior is the same as if Reset _Mode [0:1] = 00.

If C_ DEBUG ENABLED is greater than 0, MicroBlaze immediately enters debug halt
without performing any bus access, and the MB_Halted output is set to 1. When
execution is continued via the debug interface, MicroBlaze starts executing at the
reset vector, defined by C_ BASE VECTORS.

11 Reserved

In general, MicroBlaze signals are synchronous to the c1k input signal. However, there are
some exceptions controlled by parameters as described in the following table.

Table 3-3: Parameter Controlled Asynchronous Signals

Signal Parameter Default Description

Interrupt C_ASYNC INTERRUPT | Tool controlled | Parameter set from connected signal

Reset C_NUM_SYNC_FF CLK 2 Parameter can be manually set to 0 for
synchronous reset

Wakeup [0:1] C_ASYNC_WAKEUP Tool controlled | Set from connected signals

C_NUM_SYNC_FF_CLK 2 Can be manually set to 0 to override tool

Dbg_Wakeup | ¢ DEBUG INTERFACE 0 (serial) 0: Clocked by Dbg_Update
1: Clocked by DEBUG_ACLK, synchronous
to Clk

Sleep and Pause Functionality
There are two distinct ways of halting MicroBlaze execution in a controlled manner:

« Software controlled by executing an MBAR instruction to enter sleep mode.

« Hardware controlled by setting the input signal Pause to pause the pipeline.

Software Controlled

When an MBAR instruction is executed to enter sleep mode and MicroBlaze has completed
all external accesses, the pipeline is halted and either the sleep, Hibernate, Or Suspend
output signal is set.

MicroBlaze Processor Reference Guide Send Feedback 152
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=152

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

This indicates to external hardware that it is safe to perform actions such as stopping the
clock, resetting the processor or other IP cores. Different actions can be performed
depending on which output signal is set. To wake up MicroBlaze when in sleep mode, one
(or both) of the wakeup input signals must be set to one. In this case MicroBlaze continues
execution after the MBAR instruction.

The bDbg Wakeup output signal from MicroBlaze indicates that the debugger requests a
wake up. External hardware should handle this signal and wake up the processor, after
performing any other necessary hardware actions such as starting the clock. If debug wake
up is used, the software must be aware that this could be the reason for waking up, and go
to sleep again if no other action is required.

In the simplest case, where no additional actions are needed before waking up the
processor, one of the wakeup inputs can be connected to the same signal as the MicroBlaze
Interrupt input, and the other to the MicroBlaze pbg wakeup output. This allows
MicroBlaze to wake up when an interrupt occurs, or when the debugger requests it.

To implement a software reset functionality, for example the suspend output signal can be
connected to a suitable reset input, to either reset the processor or the entire system.

The following table summarizes the MBAR sleep mode instructions.

Table 3-4: MBAR Sleep Mode Instructions
Instruction Assembler Pseudo Instruction Output Signal
mbar 16 sleep Sleep
mbar 8 hibernate Hibernate
mbar 24 suspend Suspend

The block diagram in Figure 3-2 illustrates how to use the sleep functionality to implement
clock control. In this example, the clock is stopped when sleep is executed and any interrupt
or debug command enables the clock and wakes the processor.

Clock —

| |
| |
| |
| L |
| ¢ |
Binary Counter o
! Utility Vector Logic| | Utility Buffer !
: CLK | Clk
,|Utility Vector Logic| |Utility Vector Logic D — fgkg Q[0:0] BUFGCE :
| |
| _ o 1 L[0:0] 1
Interrupt — T |
| |
g 4

MicroBlaze

X20274-020818

Figure 3-2:

INTERRUPT

Sleep |—

Dbg_Wakeup |——

C_ENABLE_DISCRETE_PORTS =1

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

Sleep Clock Control Block Diagram

l Send Feedback I 153

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=153

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Instead of implementing the clock control with IP cores, an RTL Module can be used. A
possible VHDL implementation corresponding to Clock Control in the block diagram in
Figure 3-2 is given here. See the Vivado Design Suite User Guide: Designing IP Subsystems
Using IP Integrator (UG994) [Ref 12] for more information on RTL Modules.

library IEEE;
use IEEE.STD LOGIC 1164.all;

library UNISIM;
use UNISIM.VComponents.all;

entity clock control is

port (
clkin in std _logic;
reset in std_logic;
sleep in std logic;
interrupt in std _logic;
dbg_wakeup in std_logic;
clkout out std _logic

)i
end clock control;

architecture Behavioral of clock control is

attribute X INTERFACE_INFO string;
attribute X INTERFACE_ INFO of clkin signal is ".com:signal:clock:1.0 clk CLK";
attribute X INTERFACE_INFO of reset signal is ".com:signal:reset:1.0 reset RST";
attribute X INTERFACE_INFO of interrupt signal
is ".com:signal:interrupt:1.0 interrupt INTERRUPT";
attribute X INTERFACE_INFO of clkout signal is ".com:signal:clock:1.0 clk out CLK";
attribute X INTERFACE PARAMETER string;
attribute X INTERFACE_PARAMETER of reset signal is "POLARITY ACTIVE_HIGH";
attribute X INTERFACE_PARAMETER of interrupt signal is "SENSITIVITY LEVEL_ HIGH";
attribute X INTERFACE PARAMETER of clkout signal is "FREQ HZ 100000000";
signal clk enable std _logic := '1';
begin
clock_enable dff process (clkin) is
begin
if clkin'event and clkin = '1' then
if reset = '1' then
clk enable <= '1';
elsif sleep = 'l' and interrupt = '0' and dbg wakeup = '0' then
clk_enable <= '0';
elsif clk enable = '0' then
clk_enable <= '1"';
end if;
end if;

end process clock_enable dff;

clock enable
port map (
O => clkout,
CE => clk_enable,
I => clkin

)i

end Behavioral;

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

component BUFGCE

l Send Feedback I 154

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=154

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Clock—

Hardware Controlled

When the pause input signal is set to one and MicroBlaze has completed all external
accesses, the pipeline is halted and the pause Ack output signal is set. This indicates to
external hardware that it is safe to perform actions such as stopping the clock, resetting the
processor or other IP cores. To continue from pause, the input signal pause must be cleared
to zero. In this case MicroBlaze continues instruction execution where it was previously
paused.

The bbg Continue output signal from MicroBlaze indicates that the debugger requests the
processor to continue from pause. External hardware should handle this signal and clear
pause after performing any other necessary hardware actions such as starting the clock.

After external hardware has set or cleared Pause, it is recommended to wait until
Pause_ Ack is set or cleared before Pause is changed again, to avoid any issues due to
incorrectly detected pause acknowledge.

All signals used for hardware control (Pause, Pause Ack, and Dbg Continue) are
synchronous to the MicroBlaze clock.

The block diagram in Figure 3-3 illustrates how to use the pause functionality to halt the
processor and how to implement clock control. In this example, pause is an external
hardware signal that pauses processor execution and stops the clock. When pause is
cleared to zero, the clock is enabled and execution resumes. This example assumes that the
external logic monitors bDbg_Continue, and clears pause to allow debugging.

Pause

[T~~~ ——— e ————————
! Clock Control : MicroBlaze
+ |
| |
| Binary Counter m |
Utility Buffe
! Utility Vector Logic] L_{ 5 k — fity Butter |
: —] SCLR Q[0:0] : ck
— . BUFGCE
I D —{LOAD I
| — L[0:0] :
| [
| |
Pause Pause_Ack ——
Dbg_Continue —— Dbg_Continue
C_ENABLE_DISCRETE_PORTS = 1

X20276-020818

Figure 3-3: Pause Clock Control Block Diagram

MicroBlaze Processor Reference Guide Send Feedback 155
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=155

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

AXI4 and ACE Interface Description

Memory Mapped Interfaces

Peripheral Interfaces

The MicroBlaze AXl4 memory mapped peripheral interfaces are implemented as 32-bit or
64-bit masters. Each of these interfaces only have a single outstanding transaction at any
time, and all transactions are completed in order.

« The instruction peripheral interface (M _axI_1Pp) is a 32-bit master, which only performs
single word read accesses, and is always set to use the AXI4-Lite subset.

« The data peripheral interface (m_axI_DP) is a 32-bit or 64-bit master, which performs
single accesses. It is set to use the AXI4-Lite subset as default, but can be set to use
AXI4 when enabling exclusive access for LWX and SWX instructions. Halfword and byte
writes are performed by setting the appropriate byte strobes. Each write transaction
waits for M_AxI DP BVALID before the store instruction is completed.

The instruction peripheral interface (v_ax1 1p) address width can range from 32 - 64 bits
when the MMU physical address extension (PAE) is enabled, depending on the value of the
parameter C_ADDR SIZE.

The data peripheral interface (M_ax1 Dp) address width can range from 32 - 64 bits,
depending on the value of the parameter C_ ADDR SIZE.

Cache Interfaces

The AXI4 memory mapped cache interfaces are implemented either as 32-bit, 128-bit, 256-
bit, or 512-bit masters, depending on cache line length and data width parameters, whereas
the AXI Coherency Extension (ACE) interfaces are implemented as 32-bit masters.

« With a 32-bit master, the instruction cache interface (m_ax1_1c orM_AcCE_1c) performs
4 word, 8 word or 16 word burst read accesses, depending on cache line length. With
128-bit, 256-bit, or 512-bit masters, only single read accesses are performed.

With a 32-bit master, this interface can have multiple outstanding transactions, issuing
up to 2 transactions or up to 5 transactions when stream cache is enabled. The stream
cache can request two cache lines in advance, which means that in some cases 5
outstanding transactions can occur. In this case the number of outstanding reads is set
to 8, since this must be a power of two. With 128-bit, 256-bit, or 512-bit masters, the
interface only has a single outstanding transaction.

How memory locations are accessed depend on parameter C_ ICACHE ALWAYS USED.
If the parameter is 1, the cached memory range is always accessed using the AXI4 or ACE

MicroBlaze Processor Reference Guide Send Feedback 156
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=156

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

cache interface. If the parameter is 0, the cached memory range is accessed over the
AXI4 peripheral interface when the caches are software disabled (that is, MSR[ICE]=0).

With a 32-bit master, the data cache interface (M_ax1I Dc orM ACE Dc) performs single
word accesses, as well as 4 word, 8 word or 16 word burst accesses, depending on
cache line length. Burst write accesses are only performed when using write-back cache
with AXI4. With 128-bit, 256-bit, or 512-bit AXI4 masters, only single accesses are
performed.

This interface can have multiple outstanding transactions, either issuing up to 2
transactions when reading, or up to 32 transactions when writing. MicroBlaze ensures
that all outstanding writes are completed before a read is issued, since the processor
must maintain an ordered memory model but AXl4 or ACE has separate read/write
channels without any ordering. Using up to 32 outstanding write transactions improves
performance, since it allows multiple writes to proceed without stalling the pipeline.

Word, halfword and byte writes are performed by setting the appropriate byte strobes.
Exclusive accesses can be enabled for LWX and SWX instructions.

How memory locations are accessed depend on the parameter
C_DCACHE_ALWAYS USED. If the parameter is 1, the cached memory range is always
accessed using the AXI4 or ACE cache interface. If the parameter is 0, the cached
memory range is accessed over the AXI4 peripheral interface when the caches are
software disabled (that is, MSR[DCE]=0).

Interface Parameters and Signals

The relationship between MicroBlaze parameter settings and AXI4 interface behavior for
tool-assigned parameters is summarized in the following table.

Table 3-5: AXI Memory Mapped Interface Parameters

Interface Parameter Description

M _AXI DP |C M AXI DP PROTOCOL AXIl4-Lite: Default.

AXI4: Used to allow exclusive access when
C_M AXI DP EXCLUSIVE ACCESSis 1.

C_M _AXI DP DATA WIDTH 32: Default.
64: Can be used with 64-bit MicroBlaze to transfer 64-
bit data with a single access.

MicroBlaze Processor Reference Guide Send Feedback 157
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=157

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Table 3-5: AXI Memory Mapped Interface Parameters (Cont’d)

Interface Parameter Description

M_AXI IC |C_M AXI IC DATA WIDTH 32: Default, single word accesses and burst accesses

M ACE IC with C_ICACHE LINE LEN word busts used with AXI4
- and ACE.

128: Used when C_ICACHE DATA WIDTH is set to 1
and C_ICACHE LINE LEN is set to 4 with AXI4. Only
single accesses can occur.

256: Used when C_ICACHE DATA WIDTH is set to 1
and C_ICACHE LINE LEN is set to 8 with AXI4. Only
single accesses can occur.

512: Used when C_ICACHE DATA WIDTHIis setto 2, or
when it is set to 1 and C_ICACHE LINE LEN is set to
16 with AXI4. Only single accesses can occur.

M_AXI DC |C_M AXI DC_DATA WIDTH 32: Default, single word accesses and burst accesses

M ACE DC with C_ DCACHE LINE LEN word busts used with AXI4
- and ACE.

Write bursts are only used with AXI4 when

C_DCACHE USE_WRITEBACK is set to 1.

128: Used when C_DCACHE DATA WIDTH is setto 1
and C_DCACHE LINE LEN is set to 4 with AXI4. Only
single accesses can occur.

256: Used when C_DCACHE DATA WIDTH is set to 1
and C_DCACHE LINE LEN is set to 8 with AXI4. Only
single accesses can occur.

512: Used when C_ DCACHE DATA WIDTHIis setto 2, or
when itis setto 1 and C_ DCACHE LINE LEN is set to
16 with AXI4. Only single accesses can occur.

M _AXI IC |NUM READ OUTSTANDING 1: Default for 128-bit, 256-bit and 512-bit masters, a

M ACE IC single outstanding read.

2: Default for 32-bit masters, 2 simultaneous
outstanding reads.

8: Used for 32-bit masters when C_ ICACHE STREAMS is
set to 1, allowing 8 simultaneous outstanding reads.

Can besetto 1, 2, or 8.

M_AXI DC |NUM READ OUTSTANDING 1: Default for 128-bit, 256-bit and 512-bit masters, a
M ACE DC single outstanding read.

B B 2: Default for 32-bit masters, 2 simultaneous
outstanding reads.

Can be set to 1 or 2.

M _AXI DC |NUM WRITE OUTSTANDING 32: Default, 32 simultaneous outstanding writes.
M_ACE_DC Can besetto 1, 2, 4, 8, 16, or 32.

MicroBlaze AXI interfaces do not use any ID, setting 1p_wIDTH to O, whereas ACE interfaces
use two ID values, setting 1p_wiDTH to 1.

MicroBlaze will never issue sub-width (narrow) accesses, with size less than the bus width,
setting supPOrRTS NARROW BURSTS to O for all interfaces.

MicroBlaze Processor Reference Guide Send Feedback 158
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=158

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Values for access permissions, memory types, quality of service and shareability domain are
defined in the following table.

Table 3-6: AXIl Interface Signal Definitions

Interface Signal Description
M_AXI IP |C_M AXI IP ARPROT Access Permission:
« Unprivileged, secure instruction access (100) if input signal
Non_Secure[1] =0
» Unprivileged, non-secure instruction access (110) if input
signal Non_Secure[1] = 1
M AXI DP | C M AXI DP ARCACHE Memory Type, AXI4 protocol:
C_M AXI DP_AWCACHE « Normal Non-cacheable Bufferable (0011)
C_ M AXI DP_ ARPROT Access Permission, AXI4 and AXIl4-Lite protocol:
C_M_AXI DP_AWPROT + Unprivileged, secure data access (000) if input signal
Non_Secure[0] = 0
« Unprivileged, non-secure data access (010) if input signal
Non_Secure[0] = 1
C_ M _AXI DP ARQOS Quality of Service, AXI4 protocol:
C_M AXI DP_AWQOS + Priority 8 (1000)
M AXI IC |C_M AXI IC ARCACHE Memory Type:
» Write-back Read and Write-allocate (1111)
M _ACE IC |C M AXI IC ARCACHE Memory Type, normal access:
» Write-back Read and Write-allocate (1111)
Memory Type, DVM access:
* Normal Non-cacheable Non-bufferable (0010)
C_ M _AXI IC ARDOMAIN Shareability Domain:
* Inner shareable (01)
M_AXI IC |C M AXI IC ARPROT Access Permission:
M _ACE_IC « Unprivileged, secure instruction access (100) if input signal
Non_Secure[3] = 0
« Unprivileged, non-secure instruction access (110) if input
signal Non_Secure[3] = 1
C_M AXI IC_ARQOS Quality of Service:
 Priority 7 (0111)
M AXI DC C M AXI DC ARCACHE Memory Type, normal access:
« Write-back Read and Write-allocate (1111)
Memory Type, exclusive access:
« Normal Non-cacheable Non-bufferable (0010)
M _ACE DC |C_M AXI DC ARCACHE Memory Type, normal and exclusive access:
» Write-back Read and Write-allocate (1111)
Memory Type, DVM access:
* Normal Non-cacheable Non-bufferable (0010)
C_M_AXI DC_ARDOMAIN Shareability Domain:
C_ M AXI DC AWDOMAIN * Inner shareable (01)

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 159

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=159

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Table 3-6: AXIl Interface Signal Definitions (Cont’d)

Interface Signal Description
M _AXI DC |C M AXI DC_AWCACHE Memory Type, normal access:
M_ACE_DC » Write-back Read and Write-allocate (1111)

Memory Type, exclusive access:
* Normal Non-cacheable Non-bufferable (0010)

C_M AXI DC_ARPROT Access Permission:

C_M _AXI DC AWPROT « Unprivileged, secure data access (000) if input signal
Non_Secure[2] = 0

« Unprivileged, non-secure data access (010) if input signal
Non_Secure[2] = 1

C_M AXI DC_ARQOS Quality of Service, read access:
 Priority 12 ((1100)

C_ M AXI DC_AWQOS Quality of Service, write access:
 Priority 8 (1000)

The instruction cache interface (M_ax1_1c) address width can range from 32 - 64 bits when
the MMU physical address extension (PAE) is enabled, depending on the value of the
parameter C_ADDR_SIZE.

The data cache interface (M_axI DcorM ACE Dc)address width can range from 32 - 64 bits,
depending on the value of the parameter C_ADDR SIZE.

See the AMBA AXI and ACE Protocol Specification (Arm IHI 0022E) [Ref 15] document for
details.

Stream Interfaces

The MicroBlaze AXI4-Stream interfaces (M0 AXIS, M15 AXIS, SO _AXIS, S15 AXIS) are
implemented as 32-bit masters and slaves. See the AMBA 4 AXI4-Stream Protocol
Specification, Version 1.0 (Arm IHI 0051A) [Ref 14] document for further details.

Write Operation

A write to the stream interface is performed by MicroBlaze using one of the put or putd
instructions. A write operation transfers the register contents to an output AXI4 interface.
The transfer is completed in a single clock cycle for blocking mode writes (put and cput
instructions) as long as the interface is not busy. If the interface is busy, the processor stalls
until it becomes available. The non-blocking instructions (with prefix n), always complete in
a single clock cycle even if the interface is busy. If the interface was busy, the write is
inhibited and the carry bit is set in the MSR.

The control instructions (with prefix c) set the AXl4-Stream TLAST output, to '1’, which is
used to indicate the boundary of a packet.

MicroBlaze Processor Reference Guide Send Feedback 160
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=160

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Read Operation

A read from the stream interface is performed by MicroBlaze using one of the get or getd
instructions. A read operations transfers the contents of an input AXI4 interface to a general
purpose register. The transfer is typically completed in 2 clock cycles for blocking mode
reads as long as data is available. If data is not available, the processor stalls at this
instruction until it becomes available. In the non-blocking mode (instructions with prefix n),
the transfer is completed in one or two clock cycles irrespective of whether or not data was
available. In case data was not available, the transfer of data does not take place and the
carry bit is set in the MSR.

The data get instructions (without prefix c) expect the AXI4-Stream TLAST input to be
cleared to '0’, otherwise the instructions will set MSR[FSL] to '1". Conversely, the control get
instructions (with prefix c) expect the TLAST input to be set to '1’, otherwise the instructions
will set MSR[FSL] to ‘1. This can be used to check for the boundary of a packet.

MicroBlaze Processor Reference Guide Send Feedback 161
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=161

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Local Memory Bus (LMB) Interface Description

The LMB is a synchronous bus used primarily to access on-chip block RAM. It uses a

minimum number of control signals and a simple protocol to ensure that local block RAM
are accessed in a single clock cycle. LMB signals and definitions are shown in the following
table. All LMB signals are active high.

LMB Signal Interface

Table 3-7: LMB Bus Signals
. Instruction i
Signal Data Interface Interface Type Description
Addr[0:N-1]1 Data_Addr[0:N-1]% | Instr_Addr[0:N-1]2 | O | Address bus

Byte Enable[0:N-1]12 | Byte_Enable[0:N-1]3 not used O | Byte enables
Data Write[0:N-11% Data_Write[0:N-1]4 not used O | Write data bus
AS D_AS I_AS O | Address strobe
Read_Strobe Read_Strobe [Fetch O | Read in progress
Write Strobe Write_Strobe not used O | Write in progress
Data Read[0:N-1]% Data_Read[0:N-1]4 Instr[0:N-1] | Read data bus
Ready DReady IReady || Ready for next transfer
Waits DWait \Wait I | Wait until accepted
transfer is ready
CE® DCE ICE || Correctable error
UE® DUE IUE I | Uncorrectable error
Cclk Clk Clk || Bus clock
1. N = 32 - 64, set according to C_ADDR_SIZE, added in MicroBlaze v9.6.
2. N =32 - 64, set according to C_ADDR_SIZE when using PAE or 64-bit MicroBlaze, added in MicroBlaze v10.0.
3. N =4, 8, set according to C_LMB_DATA_SIZE when using 64-bit MicroBlaze, added in MicroBlaze v11.0.
4. N = 32, 64, set according to C_LMB_DATA_SIZE when using 64-bit MicroBlaze, added in MicroBlaze v11.0.
5. Added in LMB for MicroBlaze v8.00.

Addr[0:N-1]

The address bus is an output from the core and indicates the memory address that is being
accessed by the current transfer. It is valid only when as is high. In multicycle accesses
requiring more than one clock cycle to complete), addr [0:N-11] is valid only in the first
clock cycle of the transfer.

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 162

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=162

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Byte Enable[0:N-1]

The byte enable signals are outputs from the core and indicate which byte lanes of the data
bus contain valid data. Byte Enable is valid only when as is high. In multicycle accesses
requiring more than one clock cycle to complete), Byte Enable is valid only in the first
clock cycle of the transfer. Valid values for Byte Enable are shown in the following tables.

Table 3-8: Valid Values for Byte_Enable[0:3]

Byte_Enable[0:3] Data Byte Lanes Used

C_LMB_DATA_WIDTH = 32 0:7 8:15 16:23 24:31
0001 °
0010 °
0100 °
1000 °
0011 P o
1100 ° °
111 . . . o

Table 3-9: Valid Values for Byte_Enable[0:7]

Byte_Enable[0:7] Data Byte Lanes Used

C_LMB_DATA_WIDTH =64 | q.7 8:15 | 16:23 | 24:31 | 32:39 | 40:47 @ 48:55 | 56:63
00000001 o
00000010 °
00000100 o
00001000 °
00010000 o
00100000 o
01000000 o
10000000 °
00000011 L L4
00001100 ° °
00110000 L L
11000000 ° o
00001111 L] L4 ° L4
11110000 o o o ®

11111111 ° ° ° ° ° ° °)

Data_Write[0:N-1]

The write data bus is an output from the core and contains the data that is written to
memory. It is valid only when AS is high. Only the byte lanes specified by
Byte_ Enable[0:3]contain valid data.

MicroBlaze Processor Reference Guide Send Feedback 163
UG984 (v2023.2) February 2, 2024 [-\ ,——-—-—-—-—-J

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=163

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

AS

The address strobe is an output from the core and indicates the start of a transfer and
qualifies the address bus and the byte enables. It is high only in the first clock cycle of the
transfer, after which it goes low and remains low until the start of the next transfer.

Read_Strobe

The read strobe is an output from the core and indicates that a read transfer is in progress.
This signal goes high in the first clock cycle of the transfer, and can remain high until the
clock cycle after Ready is sampled high. If a new read transfer is directly started in the next
clock cycle, then Read_Strobe remains high.

Write_Strobe

The write strobe is an output from the core and indicates that a write transfer is in progress.
This signal goes high in the first clock cycle of the transfer, and can remain high until the
clock cycle after Ready is sampled high. If a new write transfer is directly started in the next
clock cycle, then write Strobe remains high.

Data_Read[0:N-1]

The read data bus is an input to the core and contains data read from memory. Data_Read
is valid on the rising edge of the clock when Ready is high.

Ready

The rReady signal is an input to the core and indicates completion of the current transfer
and that the next transfer can begin in the following clock cycle. It is sampled on the rising
edge of the clock. For reads, this signal indicates the bata Read[0:31]bus is valid, and for
writes it indicates that the pata wWrite[0:31] bus has been written to local memory.

Wait

The wait signal is an input to the core and indicates that the current transfer has been
accepted, but not yet completed. It is sampled on the rising edge of the clock.

CE

The cE signal is an input to the core and indicates that the current transfer had a correctable
error. It is valid on the rising edge of the clock when Ready is high. For reads, this signal
indicates that an error has been corrected on the pata Read[0:31] bus, and for byte and
halfword writes it indicates that the corresponding data word in local memory has been
corrected before writing the new data.

MicroBlaze Processor Reference Guide Send Feedback 164
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=164

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

UE

The UE signal is an input to the core and indicates that the current transfer had an
uncorrectable error. It is valid on the rising edge of the clock when Ready is high. For reads,
this signal indicates that the value of the pata Read[0:31]bus is erroneous, and for byte
and halfword writes it indicates that the corresponding data word in local memory was
erroneous before writing the new data.

Clk

All operations on the LMB are synchronous to the MicroBlaze core clock.

MicroBlaze Processor Reference Guide Send Feedback 165
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=165

AMD ¢

LMB Transactions

The following diagrams provide examples of LMB bus operations.

Generic Write Operations

Chapter 3: MicroBlaze Signal Interface Description

cik - I —r 7 7 LT

1
Addr A0 H

Byte_Enable BEO

Data_Write DO

X
)
)
\

AS

LXXX

Read_Strobe

Wirte_Strobe /

Data_Read

Ready

Wait

Don’t Care

CE

N N NN

UE

L~ - - -

Figure 3-4:

X19788-111717

LMB Generic Write Operation, 0 Wait States

Cik . " 1 I

Addr X H) G/4
]] U» i]]
Byte_Enable X BEO X/
! ; " ! H !
Data_Write X DO X/
T T 7/ T T T
1 1 1 1
AS '/ H \ // i ! !
1 1 [\ 1 1
Read_Strobe ! ! /4 ! : ;
1 1 4 . 1 1
Wirte_Strobe : / i \ // : : :
: Ly ! l :
Data_Read //
1 1 o4 \ 1 1
Ready : : // v/ i \ :
]] 7/ | 1 T
1 1 —f - h 1
Wait 1 ! ! 1 \ Don’t Care | \ 1
1 1 1 T T
1 1 1 1 1
cE ! I—7; / 1 :
1 1 : 1 1
UE : : /1 ! / : \ :
1 1 7/ i 1 1
X19789-111717
Figure 3-5: LMB Generic Write Operation, N Wait States

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 166

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=166

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Generic Read Operations

Clk _rr 7 7 I LI

Al : X

Addr

Byte_Enable

Data_Write

AS

I
X
1
1
:
] f
I
Read_Strobe : /
:
:
i
1
1
:
I
I
1
1
I
|
]

Wirte_Strobe

/l

1

1

i
J’.: i

M| (R —— p— ———

Data Read Do

Ready

Wait

CE

X
/
/ Don't Care
/
UE /

X171 1T

Figure 3-6: LMB Generic Read Operation, 0 Wait States

Clk N e IR e R I I m Y I I

i 1 i] i
Addr W Al /i
1 1 oy H 1 I
Byte_Enable /4
I 1 oy H 1
Data_Wnte /L
: L i : :
: 1
AS e |\t : : !
I T 1 I I
Read_Strobe —:—/ H \ '/ N 1 ;
I 1 1 1 |
Wirte_Strobe : : /s : : :
! ! 11 ! : !
Data_Read : . {.{f : X Do X |
i i " i |
Ready : : /i : / i\ l
I 1 1 |
L ! X
Wait | v i %\ DontCare 1\ :
T L] l L Ll
I 1 i 1 |
CE ! ! JL ! / ! \ !
I 1 4 1 I
UE : : Y 4 HAA l
I 1 L 1]]
i 1 N [1

HFU-AU1TT

Figure 3-7: LMB Generic Read Operation, N Wait States

MicroBlaze Processor Reference Guide Send Feedback 167
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=167

AMD ¢

Back-to-Back Write Operation

Chapter 3: MicroBlaze Signal Interface Description

Clk | I | | | L | | | | | | L | I |
1 I] N] | N] I] |
Addr XA XA X 72 xj«' A XA X
! ! I ! f, 1 ! !
Byte_Enable ¥ BEO Y BET Xj" BEZ |)(7}' N~ BE3 | ¥ BE4 1 X
| | LV HIEAP | | |
Data_Write X b0 'YX _Di1_! qf D2_! qf X D3 'X b4 'X
1 I 1 1 1 1 I 1 |
1 T T 1 1 T T |
—/ | R
5 AR e A
Read_Strobe ! ! ! i ! | iy 1 I 1 I
— o, —F—h |
Wirte_Strobe
] | i L T i ! !
Data Read V/4 V4
i i - i " i ; H ;
Rty N Ny i N
1 I 1 Fa 1 | rya 1 | 1 |
. ! ! Don'tCarel [7/ "™\DontCare! / % A ! Don't Care ! !
Wait | |] : 1 : | 1 1
| I 1] 1 1 | 1 1
CE ! L/ A/, . LN/ 1/ I : I \
[l i] L] i "] I] i
e | S N L N, T | A\
T RANTIT
Figure 3-8: LMB Back-to-Back Write Operation

Back-to-Back Read Operation

o Sy A s A e A e AN e A e N s N
Addr D G S G/ A SR S/ " S D G '
T i i '/ T i '/ T i i T
i | i 1t i i i i i i i
Byte Enable /i /4
' ' L P : : :
Data_Wnte : : y/i V/i
[| 1 o ! N ! 1 1 :
AS I i /_l./—'__/ i N
— | \—] N— : ,
Read_Strobe I 1 1 /_:_/—r_/ I 1 i 1
— | N | A
Wirte_Strobe 1 H . : Ly : : :
I I I L [l I [I I | 1
[| [. [i , [i i i
Data Read) G 0/ LAY /Ay GRS GER D SR
: :] / :] ! :]]]
R d Ll L] L]
ey : / N N ! ! -
i | 1 Y. 1 1 by, 1 1 i i
Wait ! ! /Don't Care! / ¥/ | \Don'tCare} [7 HAY ! Don't Care ! Y
i i i i i i i i i
CE l VT aN . I\, i/ \ \ N\
UE i i I i I i i i i
; L/ AN AN | | HAN
L] | L] rr 1] r L]]]]
XIF-111717
Figure 3-9: LMB Back-to-Back Read Operation

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

| Send Feedback I 168

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=168

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Back-to-Back Mixed Write/Read Operation

Clk 1 I T

! I !
Addr X Al ' A Al LA A2 LA
i | X i
Byte_Enable Y BED ™Y W BEZ i
H ! ! : -
Data_Write Y DO H X D2 B
i ' . i i
AS i/ | ! N\ 5
|
] |] |
Read_Strobe H i [\ H !
1 i |] |
,] H i I |
Wirte_Strobe 1 f : \ :_/' :\ 1
i i |
Data_Read I I}(D1 i)
! I I 1 I
Ready ' '/ H : : \
T | 1
Wait E L/ E Don't Care : : \
i | L 1 I
CE ! : / I A \
] |] |
UE ! / | ! N\
T " i T]
X -11177
Figure 3-10: Back-to-Back Mixed Write/Read Operation, 0 Wait States
Clk 4 -4 - -4y)) °J L4 I
I 1 7 I I 4 1] .] I]
Addr OB 0/ A SN O/) GV, 0/ . I !
v i i » i i i] | i
Byte Enable H H H i BEZ2 | H H \
' :" S s s s s Vs s S
Data Wikte T} D01 /= /A QY G/ : :
| [1 L4 1 ! 1 I 1
AS TN, L N, T, ! !
i i : ' | I | i
Read Strobe 1 1 I] /_:_\ﬁ” | | rya ! ! !
i A I T N i i
Wirte_Strobe 1/ : \ , 1 I e 1 : \ ” 1 I 1
i i o i ” I i 4] i i
Dota Read L b oy : :
i 7 SN A ' i
Ready] 1 mm 1/ 1\ |
: + S [i |
Wai | : .] |] 1 —f] | :
al 4 T " T T " f
i WK | \DnntCane/ ! _Don't Cane / :\DontCar?\ |
CE : : Iy : | i : f (Y 1L : ,ll | 'i‘ :
] Ll v L " 1] |
UE i i » W, TN, | f Ty i | i
1 1 L) ‘II L 1 : 1 : 1

X171 11T

Figure 3-11: Back-to-Back Mixed Write/Read Operation, N Wait States

MicroBlaze Processor Reference Guide Send Feedback 169
UG984 (v2023.2) February 2, 2024 l—, /—I

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=169

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Read and Write Data Steering

The MicroBlaze data-side bus interface performs the read steering and write steering
required to support the following transfers:

« byte, halfword, and word transfers to word devices
« byte and halfword transfers to halfword devices

« byte transfers to byte devices

MicroBlaze does not support transfers that are larger than the addressed device. These
types of transfers require dynamic bus sizing and conversion cycles that are not supported
by the MicroBlaze bus interface.

Big endian format is only applicable when using the MMU in virtual or protected mode
(c_use_MMU > 1) or when reorder instructions are enabled (C_USE_REORDER_INSTR = 1).

Data steering with 32-bit data for read cycles are shown in Table 3-10 and Table 3-11, and
32-bit data steering for write cycles are shown in Table 3-12 and Table 3-13.

Table 3-10: Big Endian Read Data Steering (Load to Register rD)

Address Byte_Enable Transfer Size Register rD Data
[LSB-1:LSB] [0:3] 0:7 8:15 16:23 | 24:31
11 0001 byte Byte3
10 0010 byte Byte2
01 0100 byte Byte1
00 1000 byte Byte0
10 0011 halfword Byte2 Byte3
00 1100 halfword ByteO Byte1
00 1111 word ByteO Byte1 Byte2 Byte3

Table 3-11: Little Endian Read Data Steering (Load to Register rD)

Address Byte_Enable Transfer Size Register rD Data
[LSB-1:LSB] [0:3] 0:7 8:15 16:23 | 24:31
11 1000 byte ByteO
10 0100 byte ByteT
01 0010 byte Byte2
00 0001 byte Byte3
10 1100 halfword ByteO Byte1
00 0011 halfword Byte2 Byte3
00 1111 word ByteO Byte1 Byte2 Byte3

MicroBlaze Processor Reference Guide Send Feedback 170
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=170

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-12: Big Endian Write Data Steering (Store from Register rD)
Write Data Bus Bytes from rD
[Légfjlrﬁ-sz] Bytelalts??]able Transfer Size ByteO Bytel yByteZ Byte3
11 0001 byte 24:31
10 0010 byte rD[24:31
01 0100 byte 24:31
00 1000 byte 24:31
10 0011 halfword 16:23 24:31
00 1100 halfword 16:23 24:31
00 1111 word 0:7 8:15 16:23 24:31

Table 3-13: Little Endian Write Data Steering (Store from Register rD)

Address Byte_Enable Transfer Size Write Data Bus Bytes from rD

[LSB-1:LSB] [0:3] Byte3 Byte2 Bytel Byte0
11 1000 byte 24:31
10 0100 byte 24:31
01 0010 byte 24:31
00 0001 byte 24:31
10 1100 halfword 16:23 24:31
00 0011 halfword 16:23 24:31
00 1111 word 0:7 8:15 16:23 24:31

Note: Other masters could have more restrictive requirements for byte lane placement than those
allowed by MicroBlaze. Slave devices are typically attached “left-justified” with byte devices attached
to the most-significant byte lane, and halfword devices attached to the most significant halfword
lane. The MicroBlaze steering logic fully supports this attachment method.

When using 64-bit data on DLMB or M_AXI_DP with 64-bit MicroBlaze, the following
transfers are also supported:

« byte, halfword, word, and long transfers to long devices

Data steering with 64-bit data for read cycles are shown in Table 3-14 and Table 3-15, and
64-bit data steering for write cycles are shown in Table 3-16 and Table 3-17.

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 1n

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=171

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Table 3-14: Big Endian Read Data Steering (Load to Register rD)

Address | Byte_Enable | Transfer Register rD Data
[LSB-2:LSB] [0:7] Size 0:7 | 8:15 [16:23 | 24:31[32:39 | 40:47 |48::55] 56:63
111 00000001 byte Byte7
110 00000010 byte Byte6
101 00000100 byte Byte5
100 00001000 byte Byted
011 00010000 byte Byte3
010 00100000 byte Byte2
001 01000000 byte Byte1
000 10000000 byte ByteO
110 00000011 halfword Byte7 | Byte6
100 00001100 halfword Byte5 | Byte4
010 00110000 | halfword Byte3 | Byte2
000 11000000 | halfword Byte1 | ByteO
100 00001111 word Byte4 | Byte5 | Byte6 | Byte7
000 11110000 word ByteO | Byte1 | Byte2 | Byte3
000 11111111 long ByteO | Byte1 | Byte2 | Byte3 | Byte4 | Byte5 | Byte6 | Byte7

Table 3-15: Little Endian Read Data Steering (Load to Register rD)

Address | Byte_Enable | Transfer Register rD Data
[LSB-2:LSB] [0:7] Size 0:7 | 8:15 | 16:23 | 24:3132:39 | 40:47 [48::55 56:63
111 10000000 byte ByteO
110 01000000 byte Byte1
101 00100000 byte Byte2
100 00010000 byte Byte3
011 00001000 byte Byte4
010 00000100 byte Byte5
001 00000010 byte Byte6
000 00000001 byte Byte7
110 11000000 | halfword ByteO | ByteT
100 00110000 | halfword Byte2 | Byte3
010 00001100 | halfword Byte4 | Byte5
000 00000011 | halfword Byte6 | Byte7
100 11110000 word ByteO | Byte1 | Byte2 | Byte3
000 00001111 word Byte4 | Byte5 | Byte6 | Byte7
000 11111111 long ByteO | Byte1 | Byte2 | Byte3 | Byte4 | Byte5 | Byte6 | Byte7

MicroBlaze Processor Reference Guide Send Feedback 172
UG984 (v2023.2) February 2, 2024 l—, /—I

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=172

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Table 3-16: Big Endian Write Data Steering (Store from Register rD)

Address |Byte_Enable Transfer Write Data Bus Bytes from rD

[LSB-2:LSB] [0:7] Size ByteO | Bytel | Byte2 | Byte3 | Byte4 | Byte5 | Byte6 | Byte7
111 00000001 byte 56:63
110 00000010 byte 56:63
101 00000100 byte 56:63
100 00001000 byte 56:63
011 00010000 byte 56:63
010 00100000 byte 56:63
001 01000000 byte 56:63
000 10000000 byte 56:63
110 00000011 | halfword 48:55 | 56:63
100 00001100 | halfword 48:55 | 56:63
010 00110000 | halfword 48:55 | 56:63
000 11000000 | halfword | 48:55 | 56:63
100 00001111 word 32:39 | 40:47 | 48:55 | 56:63
000 11110000 word 32:39 | 40:47 | 48:55 | 56:63
000 11111111 long 0:7 8:15 | 16:23 | 24:31 | 32:39 | 40:47 | 48:55 | 56:63

Table 3-17: Little Endian Write Data Steering (Store from Register rD)

Address |Byte_Enable| Transfer Write Data Bus Bytes from rD

[LSB-2:LSB] [0:7] Size Byte7 | Byte6 | Byte5 | Byte4 | Byte3 | Byte2 | Bytel | ByteO
111 10000000 byte 56:63
110 01000000 byte 56:63
101 00100000 byte 56:63
100 00010000 byte 56:63
011 00001000 byte 56:63
010 00000100 byte 56:63
001 00000010 byte 56:63
000 00000000 byte 56:63
110 11000000 | halfword | 48:55 | 56:63
100 00110000 | halfword 48:55 | 56:63
010 00001100 | halfword 48:55 | 56:63
000 00000011 | halfword 48:55 | 56:63
100 11110000 word 32:39 | 40:47 | 48:55 | 56:63
000 00001111 word 32:39 | 40:47 | 48:55 | 56:63
000 111111 long 0:7 8:15 | 16:23 | 24:31 | 32:39 | 40:47 | 48:55 | 56:63

MicroBlaze Processor Reference Guide Send Feedback 173
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=173

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Lockstep Interface Description

The lockstep interface on MicroBlaze is designed to connect a master and one or more slave
MicroBlaze instances. The lockstep signals on MicroBlaze are listed in the following table.

Table 3-18: MicroBlaze Lockstep Signals

Signal Name Description VHDL Type Direction

Lockstep_Master_Out | Output with signals going from master to | std_logic output
slave MicroBlaze. Not connected on slaves.

Lockstep Slave In Input with signals coming from master to | std_logic input
slave MicroBlaze. Not connected on
master.

Lockstep_Out Output with all comparison signals from std_logic output
both master and slaves.

The comparison signals provided by Lockstep out are listed in the following table.

Table 3-19: MicroBlaze Lockstep Comparison Signals

Signal Name Bus Index Range VHDL Type
MB_Halted 0 std_logic
MB_Error 1 std_logic
IFetch 2 std_logic
I _AS 3 std_logic
Instr Addr 4 to 67 std_logic_vector
Data_ Addr 68 to 131 std_logic_vector
Data Write 132 to 163 std_logic_vector
D _AS 196 std_logic
Read Strobe 197 std_logic
Write Strobe 198 std_logic
Byte Enable 199 to 202 std_logic_vector
M_AXI IP AWID 207 std_logic
M_AXI IP AWADDR 208 to 271 std_logic_vector
M _AXI IP AWLEN 272 to 279 std_logic_vector
M _AXI IP AWSIZE 280 to 282 std_logic_vector
M_AXI IP AWBURST 283 to 284 std_logic_vector
M _AXI IP AWLOCK 285 std_logic
M_AXI IP AWCACHE 286 to 289 std_logic_vector
M _AXI IP AWPROT 290 to 292 std_logic_vector
M _AXI IP AWQOS 293 to 296 std_logic_vector
M_AXI IP AWVALID 297 std_logic
M_AXI IP WDATA 298 to 329 std_logic_vector

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 174

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=174

AMD ¢

Table 3-19: MicroBlaze Lockstep Comparison Signals (Cont’d)

Chapter 3: MicroBlaze Signal Interface Description

Signal Name

Bus Index Range

VHDL Type

M _AXI IP WSTRB 362 to 365 std_logic_vector
M _AXI IP WLAST 370 std_logic
M_AXI IP WVALID 371 std_logic
M_AXI IP BREADY 372 std_logic
M_AXI IP ARID 373 std_logic
M_AXI IP ARADDR 374 to 437 std_logic_vector
M _AXI IP ARLEN 438 to 445 std_logic_vector
M _AXI IP ARSIZE 446 to 448 std_logic_vector
M_AXI IP ARBURST 449 to 450 std_logic_vector
M _AXI IP ARLOCK 451 std_logic
M_AXI IP ARCACHE 452 to 455 std_logic_vector
M _AXI IP ARPROT 456 to 458 std_logic_vector
M _AXI IP ARQOS 459 to 462 std_logic_vector
M_AXI IP ARVALID 463 std_logic
M_AXI IP RREADY 464 std_logic
M_AXI DP AWID 465 std_logic
M _AXI DP AWADDR 466 to 529 std_logic_vector
M_AXI DP AWLEN 530 to 537 std_logic_vector
M _AXI DP AWSIZE 538 to 540 std_logic_vector
M_AXI DP AWBURST 541 to 542 std_logic_vector
M_AXI DP AWLOCK 543 std_logic
M_AXI DP AWCACHE 544 to 547 std_logic_vector
M_AXI DP AWPROT 548 to 550 std_logic_vector
M _AXI DP AWQOS 551 to 554 std_logic_vector
M_AXI DP AWVALID 555 std_logic
M_AXI DP_ WDATA 556 to 619 std_logic_vector
M_AXI DP WSTRB 620 to 627 std_logic_vector
M_AXI DP WLAST 628 std_logic
M _AXI DP WVALID 629 std_logic
M_AXI DP BREADY 630 std_logic
M _AXI DP ARID 631 std_logic
M_AXI DP ARADDR 632 to 695 std_logic_vector
M_AXI DP ARLEN 696 to 703 std_logic_vector
M_AXI DP ARSIZE 704 to 706 std_logic_vector
M_AXI DP ARBURST 707 to 708 std_logic_vector
M_AXI DP ARLOCK 709 std_logic
M _AXI DP ARCACHE 710 to 713 std_logic_vector
M_AXI DP ARPROT 714 to 716 std_logic_vector
M_AXI DP ARQOS 717 to 720 std_logic_vector

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

| Send Feedback I 175

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=175

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-19: MicroBlaze Lockstep Comparison Signals (Cont’d)

Signal Name Bus Index Range VHDL Type
M_AXI DP ARVALID 721 std_logic
M _AXI DP RREADY 722 std_logic
Mn AXIS TLAST 723 + n* 35 std_logic
Mn_ AXIS TDATA 758 + n * 35 to std_logic_vector
789 + n * 35
Mn AXIS TVALID 790 + n * 35 std_logic
Sn_AXIS TREADY 791 + n * 35 std_logic
M _AXI IC AWID 1283 std_logic

M _AXI IC_AWADDR

1284 to 1347

std_logic_vector

M AXI IC AWLEN

1348 to 1355

std_logic_vector

M AXI IC AWSIZE

1356 to 1358

std_logic_vector

M AXI IC_ AWBURST

1359 to 1360

std_logic_vector

M AXI IC_ AWLOCK

1361

std_logic

M AXI IC_ AWCACHE

1362 to 1365

std_logic_vector

M AXI IC AWPROT

1366 to 1368

std_logic_vector

M AXI IC_AWQOS

1369 to 1372

std_logic_vector

M AXI IC AWVALID

1373

std_logic

M AXI IC_AWUSER

1374 to 1378

std_logic_vector

M AXI IC_ AWDOMAIN?!

1379 to 1380

std_logic_vector

M_AXI IC AWSNOOP?!

1381 to 1383

std_logic_vector

M _AXI IC AWBAR?

1384 to 1385

std_logic_vector

M AXI IC_WDATA

1386 to 1897

std_logic_vector

M AXI IC_WSTRB

1898 to 1961

std_logic_vector

M_AXI IC WLAST 1962 std_logic
M _AXI IC WVALID 1963 std_logic
M _AXI IC WUSER 1964 std_logic
M _AXI IC BREADY 1965 std_logic
M_AXI IC WACK 1966 std_logic
M_AXI IC ARID 1967 std_logic_vector

M _AXI IC_ARADDR

1968 to 2031

std_logic_vector

M AXI IC_ARLEN

2032 to 2039

std_logic_vector

M AXI IC ARSIZE

2040 to 2042

std_logic_vector

M AXI IC_ARBURST

2043 to 2044

std_logic_vector

M AXI IC ARLOCK

2045

std_logic

M AXI IC_ARCACHE

2046 to 2049

std_logic_vector

M _AXI IC_ARPROT

2050 to 2052

std_logic_vector

M AXI IC_ ARQOS

2053 to 2056

std_logic_vector

M AXI IC_ARVALID

2057

std_logic

M AXI IC ARUSER

2058 to 2062

std_logic_vector

M_AXI IC ARDOMAIN?

2063 to 2064

std_logic_vector

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

| Send Feedback I 176

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=176

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-19: MicroBlaze Lockstep Comparison Signals (Cont’d)

Signal Name

Bus Index Range

VHDL Type

M _AXI IC_ARSNOOP!

2065 to 2068

std_logic_vector

M_AXI IC ARBAR!

2069 to 2070

std_logic_vector

M_AXI IC RREADY 2071 std_logic
M_AXI IC RACK! 2072 std_logic
M_AXI IC ACREADY! 2073 std_logic
M_AXI IC CRVALID! 2074 std_logic
M_AXI IC CRRESP! 2075 to 2079 std_logic_vector
M_AXI IC CDVALID! 2080 std_logic
M_AXI IC CDLAST! 2081 std_logic
M_AXI DC AWID 2082 std_logic

M _AXI DC_AWADDR

2083 to 2146

std_logic_vector

M AXI DC_AWLEN

2147 to 2154

std_logic_vector

M AXI DC AWSIZE

2155 to 2157

std_logic_vector

M _AXI DC_AWBURST

2158 to 2159

std_logic_vector

M _AXI DC_AWLOCK

2160

std_logic

M AXI DC_AWCACHE

2161 to 2164

std_logic_vector

M _AXI DC_AWPROT

2165 to 2167

std_logic_vector

M _AXI DC_AWQOS

2168 to 2171

std_logic_vector

M _AXI DC_AWVALID

2172

std_logic

M _AXI DC_AWUSER

2172 to 2176

std_logic_vector

M _AXI DC_AWDOMAIN?!

2177 to 2178

std_logic_vector

M_AXI DC_ AWSNOOP!

2179 to 2182

std_logic_vector

M_AXI DC AWBAR?

2183 to 2184

std_logic_vector

M _AXI DC_WDATA

2185 to 2696

std_logic_vector

M _AXI DC_WSTRB

2697 to 2760

std_logic_vector

M_AXI DC_ WLAST 2761 std_logic
M_AXI DC WVALID 2762 std_logic
M_AXI DC_WUSER 2863 std_logic
M _AXI DC BREADY 2764 std_logic
M _AXI DC WACK! 2765 std_logic
M _AXI DC ARID 2766 std_logic

M _AXI DC_ARADDR

2767 to 2830

std_logic_vector

M _AXI DC_ARLEN

2831 to 2838

std_logic_vector

M _AXI DC_ARSIZE

2839 to 2841

std_logic_vector

M _AXI DC_ARBURST

2842 to 2843

std_logic_vector

M _AXI DC_ARLOCK

2844

std_logic

M _AXI DC_ARCACHE

2845 to 2848

std_logic_vector

M _AXI DC_ARPROT

2849 to 2851

std_logic_vector

M _AXI DC_ARQOS

2852 to 2855

std_logic_vector

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 177

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=177

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-19: MicroBlaze Lockstep Comparison Signals (Cont’d)

Signal Name

Bus Index Range

VHDL Type

M _AXI DC_ARVALID

2856

std_logic

M AXI DC_ARUSER

2857 to 2861

std_logic_vector

M_AXI DC ARDOMAIN?

2862 to 2863

std_logic_vector

M AXI DC_ARSNOOP!

2864 to 2867

std_logic_vector

M_AXI DC ARBAR?

2868 to 2869

std_logic_vector

M_AXI DC RREADY 2870 std_logic
M _AXI DC RACK! 2871 std_logic
M_AXI DC ACREADY! 2872 std_logic
M_AXI DC CRVALID! 2873 std_logic
M_AXI DC CRRESP! 2874 to 2878 std_logic_vector
M_AXI DC CDVALID?! 2879 std_logic
M_AXI DC CDLAST! 2880 std_logic
Trace_ Instruction 2881 to 2912 std_logic_vector
Trace Valid Instr 2913 std_logic
Trace PC 2914 to 2945 std_logic_vector
Trace Reg Write 2978 std_logic

Trace Reg Addr

2979 to 2983

std_logic_vector

Trace_MSR_Reg

2984 to 2998

std_logic_vector

Trace_ PID Reg

2999 to 3006

std_logic_vector

Trace_New_Reg Value

3007 to 3038

std_logic_vector

Trace Exception Taken 3071 std_logic
Trace Exception Kind 3072 to 3076 std_logic_vector
Trace Jump Taken 3077 std_logic
Trace Delay Slot 3078 std_logic

Trace_Data_Address

3079 to 3142

std_logic_vector

Trace_Data Write Value

3143 to 3174

std_logic_vector

Trace Data_ Byte Enable

3207 to 3210

std_logic_vector

Trace Data Access 3215 std_logic
Trace Data Read 3216 std_logic
Trace Data Write 3217 std_logic
Trace DCache Reg 3218 std_logic
Trace DCache Hit 3219 std_logic
Trace DCache Rdy 3220 std_logic
Trace DCache Read 3221 std_logic
Trace ICache Reg 3222 std_logic
Trace ICache Hit 3223 std_logic
Trace ICache Rdy 3224 std_logic
Trace OF PipeRun 3225 std_logic
Trace EX PipeRun 3226 std_logic

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

| Send Feedback I 178

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=178

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-19: MicroBlaze Lockstep Comparison Signals (Cont’d)

Signal Name Bus Index Range VHDL Type
Trace MEM PipeRun 3227 std_logic
Trace MB Halted 3228 std_logic
Trace Jump Hit 3229 std_logic
Reserved 3230 to 4095

1. This signal is only used when ¢_INTERCONNECT = 3 (ACE).

Debug Interface Description

The debug interface on MicroBlaze is designed to work with the Microprocessor Debug
Module (MDM) IP core. The MDM is controlled by the Xilinx System Debugger (XSDB)
through the JTAG port of the FPGA. The MDM can control multiple MicroBlaze processors at
the same time. The debug signals are grouped in the DEBUG bus.

The debug interface can be grouped in the DEBUG bus, using either JTAG serial signals (by
setting C_DEBUG_INTERFACE = 0) or the AXI4-Lite compatible parallel signals (by setting
C_DEBUG_INTERFACE = 1). The MDM configuration must also be set accordingly.

It is also possible to use only AXI4-Lite parallel signals (C_DEBUG INTERFACE = 2) grouped
in an AXI4 bus, in case the MDM is not used. However, this configuration is not supported

by the tools.

Table 3-20 lists the debug signals on MicroBlaze.

Table 3-20: MicroBlaze Debug Signals
Signal Name Description VHDL Type Kind
Dbg Clk JTAG clock from MDM std_logic serial in
Dbg TDI JTAG TDI from MDM std_logic serial in
Dbg TDO JTAG TDO to MDM std_logic serial out
Dbg Reg En Debug register enable from MDM std_logic_vector | serial in
Dbg Shift? JTAG BSCAN shift signal from MDM std_logic serial in
Dbg_ Capture JTAG BSCAN capture signal from MDM std_logic serial in
Dbg Update JTAG BSCAN update signal from MDM std_logic serial in
Debug Rst? Reset signal from MDM, active high. Should | std_logic input
be held for at least 1 C1k clock cycle.
Dbg Disable? Debug disable signal from MDM std_logic input
Dbg Trig In? Cross trigger event input to MDM std_logic_vector | output
Dbg Trig Ack_In? | Crosstrigger eventinput acknowledge from | std_logic_vector |input
MDM
Dbg Trig Out? Cross trigger action output from MDM std_logic_vector | input
Dbg Trig Ack Out? | Cross trigger action output acknowledge to | std_logic_vector | output
MDM

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 179

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=179

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Table 3-20: MicroBlaze Debug Signals (Cont’d)

Signal Name Description VHDL Type Kind
Dbg Trace Data3 External Program Trace data output to MDM | std_logic_vector | output
Dbg Trace Valid3?® | External Program Trace valid to MDM std_logic output
Dbg Trace Ready® | External Program Trace ready from MDM std_logic input
Dbg Trace Clk3 External Program Trace clock from MDM std_logic input
Dbg ARADDR* Read address from MDM std_logic_vector | parallel in
Dbg ARREADY* Read address ready to MDM std_logic parallel out
Dbg ARVALID* Read address valid from MDM std_logic parallel in
Dbg AWADDR* Write address from MDM std_logic_vector | parallel in
Dbg AWREADY* Write address ready to MDM std_logic parallel out
Dbg AWVALID* Write address valid from MDM std_logic parallel in
Dbg BREADY* Write response ready to MDM std_logic parallel out
Dbg BRESP*4 Write response to MDM std_logic_vector | parallel out
Dbg BVALID* Write response valid from MDM std_logic parallel in
Dbg RDATA* Read data to MDM std_logic_vector | parallel out
Dbg RREADY* Read data ready to MDM std_logic parallel out
Dbg RRESP* Read data response to MDM std_logic_vector | parallel out
Dbg RVALID* Read data valid from MDM std_logic parallel in
Dbg WDATA* Write data from MDM std_logic_vector | parallel in
Dbg_ WREADY* Write data ready to MDM std_logic parallel out
Dbg WVALID* Write data valid from MDM std_logic parallel in
DEBUG_ACLK* Debug clock, must be same as Clk std_logic parallel in
DEBUG_ARESET# Debug reset, must be same as Reset std_logic parallel in

1. Updated for MicroBlaze v7.00: Dbg_Shift added and Debug_Rst included in DEBUG bus
2. Updated for MicroBlaze v9.3: Dbg Disable and Dbg_Trig signals added to DEBUG bus
3. Updated for MicroBlaze v9.4: External Program Trace signal added to DEBUG bus

4. Updated for MicroBlaze v10.0: Parallel debug signals added to DEBUG bus

MicroBlaze Processor Reference Guide Send Feedback 180
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=180

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Trace Interface Description

The MicroBlaze processor core exports a number of internal signals for trace purposes. This
signal interface is not standardized and new revisions of the processor might not be
backward compatible for signal selection or functionality. It is recommended that you not
design custom logic for these signals, but rather to use them using AMD provided analysis
IP. The trace signals are grouped in the TRACE bus. The current set of trace signals were last
updated for MicroBlaze v7.30 and are listed in Table 3-21.

The mapping of the MSR bits is shown in Table 3-22. For a complete description of the
Machine Status Register, see “Special Purpose Registers” in Chapter 2.

The Trace exception types are listed in Table 3-23. All unused Trace exception types are

reserved.
Table 3-21: MicroBlaze Trace Signals
Signal Name Description VHDL Type Direction

Trace Valid Instr Valid instruction on trace port. std_logic output

Trace Instruction? Instruction code std_logic_vector (0 to 31) | output

Trace PC! Program counter, where N = 32 - 64, std_logic_vector (0 to 31) | output
determined by parameter C_ ADDR_SIZE
for 64-bit MicroBlaze, and 32 otherwise

Trace Reg Writel Instruction writes to the register file std_logic output

Trace Reg Addr! Destination register address std_logic_vector (0 to 4) | output

Trace MSR_Reg! Machine status register. The mapping of | std_logic_vector (0to 14)! | output
the register bits is documented below.

Trace PID Reg! Process identifier register std_logic_vector (0 to 7) | output

Trace New Reg Value! Destination register update value, where | std_logic_vector (0 to N-1) | output
N = C_DATA SIZE

Trace Exception Takenl' 2 | Instruction result in taken exception std_logic output

Trace Exception Kind?! Exception type. The description for the std_logic_vector (0 to 4)2 | output
exception type is documented below.

Trace Jump Taken? Branch instruction evaluated true, that is std_logic output
taken

Trace Jump Hitl:3 Branch Target Cache hit std_logic output

Trace Delay Slot? Instruction is in delay slot of a taken std_logic output
branch

Trace Data Access! Valid D-side memory access std_logic output

Trace Data Address? Address for D-side memory access, std_logic_vector (0 to N-1) | output
where N = 32 - 64, determined by
parameter C_ADDR SIZE

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 181

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=181

AMD ¢

Table 3-21:

Chapter 3: MicroBlaze Signal Interface Description

MicroBlaze Trace Signals (Cont’d)

Signal Name

Description

VHDL Type

Direction

Trace Data Write Value?l

Value for D-side memory write access,
where N = C_DATA SIZE

std_logic_vector (0 to N-1)

output

Trace Data Byte Enablel

Byte enables for D-side memory access,
where N = C_DATA SIZE/S8

std_logic_vector (0 to N-1)

output

Trace Data Read!

D-side memory access is a read

std_logic

output

Trace Data Writel

D-side memory access is a write

std_logic

output

Trace DCache Reg

Data memory address is within D-Cache
range. Set when a memory access
instruction is executed.

std_logic

output

Trace_DCache Hit

Data memory address is present in
D-Cache. Set simultaneously with
Trace DCache Reg when a cache hit
occurs.

std_logic

output

Trace_DCache_ Rdy

Data memory address is within D-Cache
range and the access is completed. Only
set following a request with

Trace DCache Reg = 1and

Trace_ DCache Hit = 0.

std_logic

output

Trace DCache Read

The D-Cache request is a read. Valid only
when Trace DCache Req = 1.

std_logic

output

Trace ICache Reqg

Instruction memory address is within
[-Cache range, and the cache is enabled
in the Machine Status Register. Set when
an instruction is read into the instruction
prefetch buffer.

std_logic

output

Trace_ICache Hit

Instruction memory address is present in
[-Cache. Set simultaneously with
Trace_ ICache Reg when a cache hit
occurs.

std_logic

output

Trace_ICache_ Rdy

« Instruction memory address is presentin
I-Cache. Set simultaneously with
Trace_ICache Reg when a cache hit
occurs in this case.

 Instruction memory address is within
I-Cache range and the access is
completed. Set following a request with
Trace_ICache_Reg = 1 and
Trace_ICache Hit = 0in this case.

std_logic

output

Trace_OF_ PipeRun

Pipeline advance for Decode stage

std_logic

output

Trace EX PipeRun?3

Pipeline advance for Execution stage

std_logic

output

Trace MEM PipeRun?

Pipeline advance for Memory stage

std_logic

output

Trace_MB_Halted

Pipeline is halted by debug

std_logic

output

1. Valid only when Trace_Valid Instr =1

2. Valid only when Trace Exception Taken =1

3. Not used with area optimization feature

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 182

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=182

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-22: Mapping of Trace MSR

Trace_MSR_Reg Machine Status Register
Bit Bit! Name Description
0 17 or 49 | VMS Virtual Protected Mode Save
1 18 or 50 | VM Virtual Protected Mode
2 19 or 51 | UMS User Mode Save
3 200r52 | UM User Mode
4 21 or 53 | PVR Processor Version Register exists
5 22 or 54 | EIP Exception In Progress
6 23 or 55 | EE Exception Enable
7 24 or 56 | DCE Data Cache Enable
8 25 or 57 | DZO Division by Zero or Division Overflow
9 26 or 58 | ICE Instruction Cache Enable
10 27 or 59 | FSL AXl4-Stream Error
11 28 or 60 | BIP Break in Progress
12 29 0or61 | C Arithmetic Carry
13 30or62 | IE Interrupt Enable
14 31 or 63 | Reserved Reserved

1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 3-23: Type of Trace Exception

Trace_Exception_Kind [0:4] Description
00000 Stream exception
00001 Unaligned exception
00010 [llegal Opcode exception
00011 Instruction Bus exception
00100 Data Bus exception
00101 Divide exception
00110 FPU exception
00111 Privileged instruction exception
01010 Interrupt
01011 External non maskable break
01100 External maskable break
10000 Data storage exception

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

| Send Feedback I

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=183

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-23: Type of Trace Exception (Cont’d)

Trace_Exception_Kind [0:4]

Description

10001 Instruction storage exception
10010 Data TLB miss exception
10011 Instruction TLB miss exception

MicroBlaze Core Configurability

The MicroBlaze core has been developed to support a high degree of user configurability.
This allows tailoring of the processor to meet specific cost/performance requirements.

Configuration is done using parameters that typically enable, size, or select certain

processor features. For example, the instruction cache is enabled by setting the

C_USE_ICACHE parameter. The size of the instruction cache, and the cacheable memory
range, are all configurable using: ¢ CACHE BYTE SIZE, C_ICACHE BASEADDR, and
C_ICACHE_ HIGHADDR respectively.

Parameters valid for the latest version of MicroBlaze are listed in Table 3-24. Not all of these
are recognized by older versions of MicroBlaze; however, the configurability is fully

backward compatible.

Note: Shaded rows indicate that the parameter has a fixed value and cannot be modified.

Table 3-24: Configuration Parameters

_—— Allowable |Default| Tool
Parameter Name Feature/Description Values Value |Assigned VHDL Type
C_FAMILY Target Family Listed in virtex7 | yes string
Table 3-25

C_DATA SIZE Data Size 32, 64 32 integer

32 = 32-bit MicroBlaze

64 = 64-bit MicroBlaze
C _ADDR SIZE Address Size 32-64 32 NA integer
C_DYNAMIC BUS SIZING Legacy 1 1 NA integer
C _sco Internal 0 0 NA integer
C_AREA OPTIMIZED Select implementation

optimization:

0 = Performance 0,1,2 0 integer

1 = Area

2 = Frequency
C_OPTIMIZATION Reserved for future use 0 0 NA integer

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 184

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=184

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-24: Configuration Parameters (Cont’d)
A Allowable |Default| Tool
Parameter Name Feature/Description Values Value Assigned VHDL Type
C_INTERCONNECT Select interconnect
2 = AXl4 only 2,3 2 integer
3 = AXl4 and ACE
C_ENDIANNESS Select endianness 1 1 os integer
1 = Little Endian y 9
C_BASE_VECTORS?! Configurable base 0x0 - :
vectors OXFFFFFFFF | 0x0 s:ij['oorg'c—
FFFFFFFF v
C_FAULT TOLERANT Implement fault 0 1 0 yes integer
tolerance '
C_ECC_USE_CE_EXCEPTION Generate exception for integer
- =TT 0,1 0
correctable ECC error
C_LOCKSTEP SLAVE Lockstep Slave 0, 1 0 integer
C_TEMPORAL DEPTH Lockstep Temporal integer
— - 0-31 0
Depth
C _AVOID PRIMITIVES Disallow FPGA integer
primitives
0 = None 012 3 0
1 =SRL o
2 = LUTRAM
3 = Both
C_ENABLE DISCRETE PORTS Show discrete ports 0, 1 0 integer
C_PVR Processor version integer
register mode selection
0 = None 0,12 0
1 = Basic
2 = Full
C_PVR_USERL Processor version std_logic_
register USERT constant | 0x00-0xff 0x00 vector
(0to 7)
g -OXFFFFFFEE | 0000
(0 to 31)
C RESET MSR_IE Reset value for MSR Any 0x0000 std_logic
C_RESET MSR BIP register bits IE, BIP, ICE, | combination
C_RESET_MSR_ICE DCE, EE, and EIP of the
- - - individual
C_RESET MSR DCE bits

C_RESET MSR_EE
C_RESET MSR EIP

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 185

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=185

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-24: Configuration Parameters (Cont’d)
Parameter Name Feature/Description Allowable | Default TPOI VHDL Type
Values Value |Assigned
C INSTANCE Instance Name Any . yes string
_ . micro
instance
blaze
name
C D AXI Data side AXI interface 0, 1 0 integer
C D LMB Data side LMB interface 0,1 1 integer
C I AXI Instruction side AXI integer
1 . 0,1 0
interface
C I LMB Instruction side LMB 01 1 integer
interface '
C LMB DATA SIZE LMB interface data size 32, 64 32 integer
C_USE_BARREL Include barrel shifter 0, 1 0 integer
C _USE DIV Include hardware integer
- = L 0,1 0
divider
C_USE_HW_ MUL Include hardware integer
multiplier
0 = None 0,12 1
1 = Mul32
2 = Mulé4
C_USE_FPU Include hardware integer
floating-point unit
0 = None 0,12 0
1 = Basic
2 = Extended
C_USE_MSR_INSTR Enable use of integer
instructions: MSRSET 0, 1 1
and MSRCLR
C_USE_PCMP_ INSTR Enable use of integer
instructions: CLZ, 01 1
PCMPBF, PCMPEQ, and !
PCMPNE
C_USE_REORDER_INSTR Enable use of integer
instructions: Reverse
0,1 1
load, reverse store, and
swap
C_UNALIGNED EXCEPTIONS Enable exception integer
handling for unaligned 0, 1 0

data accesses

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 186

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=186

AM D ‘l Chapter 3: MicroBlaze Signal Interface Description

Table 3-24: Configuration Parameters (Cont’d)

Allowable | Default| Tool

Parameter Name Feature/Description Values Value Assigned

VHDL Type

C ILL OPCODE EXCEPTION Enable exception integer
handling for illegal op- 0, 1 0
code

C M AXI I BUS EXCEPTION Enable exception integer
handling for M_AXI_| 0,1 0
bus error

C_ M _AXI D BUS EXCEPTION Enable exception integer
handling for M_AXI_D 0,1 0
bus error

C DIV ZERO EXCEPTION Enable exception integer
handling for division by

. 0,1 0
zero or division
overflow

C_FPU_EXCEPTION Enable exception integer
handling for hardware
floating-point unit
exceptions

C_OPCODE_0x0_ ILLEGAL Detect opcode 0x0 as an
illegal instruction

0.1 0 integer

C_FSL_EXCEPTION Enable exception integer
handling for Stream 0,1 0
Links

C_ECC_USE_CE_EXCEPTION Generate Bus Error integer
Exceptions for 0,1 0
correctable errors

C_USE_STACK PROTECTION Generate exception for integer
stack overflow or stack 0,1 0
underflow

C_IMPRECISE EXCEPTIONS Allow imprecise integer
exceptions for ECC 0,1 0
errors in LMB memory

C_DEBUG_ENABLED MDM Debug interface integer
0 = None
1 = Basic
2 = Extended

0,1,2 1

C_NUMBER OF PC BRK Number of hardware

breakpoints 0-8 1 Integer

C NUMBER OF RD ADDR BRK Number of read address

watchpoints 0-4 0 Integer

MicroBlaze Processor Reference Guide Send Feedback 187
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=187

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-24: Configuration Parameters (Cont’d)
A Allowable |Default| Tool
Parameter Name Feature/Description Values Value Assigned VHDL Type
C_NUMBER_OF WR_ADDR BRK Number of write .
— - == — . 0-4 0 integer
address watchpoints
C_DEBUG_EVENT_COUNTERS Number of Performance .
- - - . 0-48 5 integer
Monitor event counters
C_DEBUG_LATENCY COUNTERS Number of Performance
Monitor latency 0-7 1 integer
counters
C_DEBUG_COUNTER_WIDTH Performan.ce Monitor 32,48 64 32 integer
counter width
C_DEBUG_TRACE SIZE Trace Buffer size 0, 32, 64,
Embedded: 0, > 8192 128, 256,
External: 0, 32 - 8192 8192, ‘
16384, 8192 integer
32768,
65536,
131072
C_DEBUG_PROFILE SIZE Profile Buffer size 0, 4096,
8192,
16384, 0 integer
32768, 9
65536,
131072
C_DEBUG_EXTERNAL TRACE External Program Trace 0,1 0 yes integer
C_DEBUG_INTERFACE Debug Interface:
0 = Debug Serial .
0,1,2 0 t
1 = Debug Parallel Integer
2 = AXl4-Lite
C_ASYNC_INTERRUPT Asynchronous Interrupt 0,1 0 yes integer
C_ASYNC_WAKEUP Asynchronous Wakeup | 00,01,10,11 00 yes integer
C_INTERRUPT IS EDGE Level/Edge Interrupt 0,1 0 yes integer
C_EDGE_IS POSITIVE Negative/Positive Edge integer
- - = 0,1 1 yes
Interrupt
C_FSL_LINKS Number of AXI-Stream integer
— . 0-16 0
interfaces
C USE EXTENDED FSL INSTR Enable use of extended 01 0 integer
stream instructions !
C_ICACHE BASEADDR Instruction cache base 0x0 - 0x0 std_logic_
address OxFFFFFFFF vector
FFFFFFFF

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 188

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=188

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-24: Configuration Parameters (Cont’d)
A Allowable |Default| Tool
Parameter Name Feature/Description Values Value Assigned VHDL Type
C_ICACHE HIGHADDR Instruction cache high 0x0 - Ox3FFFF std_logic_
address OxFFFFFFFF FFF vector
FFFFFFFF
C_USE_ICACHE Instruction cache 0, 1 0 integer
C_ALLOW_ICACHE WR Instruction cache write 01 1 integer
enable '
C_ICACHE LINE LEN Instruction cache line 48 16 4 integer
length
C_ICACHE ALWAYS USED Instruction cache integer
interface used for all
: 0,1 1
memory accesses in the
cacheable range
C_ICACHE FORCE_TAG LUTRAM Instruction cache tag integer
always implemented 0,1 0
with distributed RAM
C_ICACHE_ STREAMS Instruction cache 01 0 integer
streams !
C_ICACHE VICTIMS |I‘.ISt.I’UCtI0n cache 0,248 0 integer
victims
C_ICACHE DATA WIDTH Instruction cache data integer
width
0 = 32 bits 0,12 0
1 = Full cache line
2 = 512 bits
C_ADDR_TAG_BITS Instruction cache yes integer
- - = 0-25 17
address tags
C_CACHE BYTE_SIZE Instruction cache size 64, 128, integer
256, 512,
1024, 2048,
4096, 8192, | 8192
16384,
32768,
655361
C_DCACHE BASEADDR Data cache base address 0x0 - 0x0 std_logic_
OxFFFFFFFF vector
FFFFFFFF
C_DCACHE HIGHADDR Data cache high address 0x0 - Ox3FFFF std_logic_
OxFFFFFFFF FFF vector
FFFFFFFF
C_USE_DCACHE Data cache 0,1 0 integer

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 189

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=189

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-24: Configuration Parameters (Cont’d)
A Allowable |Default| Tool
Parameter Name Feature/Description Values Value Assigned VHDL Type
C_ALLOW_DCACHE WR Data cache write enable 0,1 1 integer
C_DCACHE LINE LEN Data cache line length 4,8,16 4 integer
C_DCACHE_ALWAYS USED Data cache interface integer
used for all accesses in 0, 1 1
the cacheable range
C DCACHE FORCE TAG LUTRAM Data cache tag always integer
implemented with 0, 1 0
distributed RAM
C_DCACHE USE WRITEBACK Data cache write-back 0 1 0 integer
storage policy used '
C_DCACHE_VICTIMS Data cache victims 0,243 0 integer
C DCACHE DATA WIDTH Data cache data width integer
0 = 32 bits
0,12 0
1 = Full cache line
2 = 512 bits
C_DCACHE_ADDR_TAG Data cache address tags 0-25 17 yes integer
C_DCACHE BYTE SIZE Data cache size 64, 128, integer
256, 512,
1024, 2048,
4096, 8192, | 8192
16384,
32768,
655362
C_USE_MMU? Memory Management:
0 = None
1 = User Mode 0,1,2 3 0 integer
2 = Protection
3 = Virtual
C_MMU DTLB SIZE3 Data shadow Translation 1248 4 integer
Look-Aside Buffer size e 9
C_ MMU_ ITLB SIZE3 Instruction shadow
Translation Look-Aside 1,2,4,8 2 integer
Buffer size
C_MMU_TLB_ ACCESS3 Access to memory
management special
registers:
0 = Minimal 0,1,2,3 3 integer
1 = Read
2 = Write
3 = Full

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 130

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=190

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-24: Configuration Parameters (Cont’d)

Parameter Name

Feature/Description

Allowable
Values

Default
Value

Tool
Assigned

VHDL Type

C_MMU_ZONES?

Number of memory
protection zones

0-16

16

integer

C_MMU PRIVILEGED INSTR3

Privileged instructions
0 = Full protection

1 = Allow stream instrs
2 = Allow extended addr
3 = Allow both

0,1,2,3

integer

C_USE_INTERRUPT

Enable interrupt
handling

0 = No interrupt
1 = Standard interrupt

2 = Low-latency
interrupt

01,2

yes

integer

C_USE_EXT_ BRK

Enable external break
handling

0,1

yes

integer

C_USE_EXT _NM BRK

Enable external non-
maskable break
handling

0,1

yes

integer

C_USE_NON_SECURE

Use corresponding non-
secure input

yes

integer

C_USE_BRANCH_TARGET_CACHE3

Enable Branch Target
Cache

integer

C_BRANCH TARGET CACHE SIZE3

Branch Target Cache
size:

0 = Default

1 = 8 entries

2 = 16 entries

3 = 32 entries

4 = 64 entries

5 = 512 entries

6 = 1024 entries

7 = 2048 entries

0-7

integer

C_M AXI DP_
THREAD ID WIDTH

Data side AXI thread ID
width

integer

C_M_AXI DP DATA WIDTH

Data side AX| data width

32, 64

32

integer

C_M _AXI DP_ADDR WIDTH

Data side AXI address
width

32-64

32

yes

integer

C_ M _AXI DP_
SUPPORTS_THREADS

Data side AXI uses
threads

integer

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 191

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=191

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-24: Configuration Parameters (Cont’d)
A Allowable |Default| Tool
Parameter Name Feature/Description Values Value Assigned VHDL Type
C M AXI DP SUPPORTS READ Data side AXI support 1 1 integer
for read accesses
C_M_AXI DP_ SUPPORTS WRITE Data side AXI support 1 1 integer
for write accesses
C_ M AXI DP_SUPPORTS Data side AXI narrow 0 0 integer
NARROW BURST burst support
C M _AXI DP PROTOCOL Data side AXI protocol AXI4, AX14 yes string
AXI4LITE LITE
C M AXI DP_ Data side AXI exclusive 01 0 integer
EXCLUSIVE ACCESS access support '
C M _AXI IP Instruction side AXI 1 1 integer
THREAD ID WIDTH thread ID width
C_ M AXI IP DATA WIDTH Instruction side AXI data integer
- === -) 32 32
width
C M AXI IP ADDR WIDTH Instructlor) side AXI 32-64 32 yes integer
address width
C M AXI IP Instruction side AXl uses 0 0 integer
SUPPORTS_THREADS threads
C M AXI IP SUPPORTS READ Instruction side AXI integer
support for read 1 1
accesses
C M AXI IP SUPPORTS WRITE Instruction side AXI integer
support for write 0 0
accesses
C M AXI IP SUPPORTS Instruction side AXI 0 0 integer
NARROW BURST narrow burst support
C_M_AXI_IP_ PROTOCOL Instruction side AXI AXIALITE AX14 string
protocol LITE
C M AXI DC_ Data cache AXI ID width 1 1 integer
THREAD ID WIDTH
C_M_AXI DC DATA WIDTH Data cache AXI data 32, 64, 128, 32 integer
width 256, 512
C_M_AXI_DC_ADDR_WIDTH Data cache AXI address 32-64 32 yes integer
width
C M _AXI DC_ Data cache AXI uses 0 0 integer
SUPPORTS_ THREADS threads
C_M_AXI DC_SUPPORTS_READ Data cache AXI support 1 1 integer
for read accesses

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 192

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=192

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-24: Configuration Parameters (Cont’d)
A Allowable |Default| Tool
Parameter Name Feature/Description Values Value Assigned VHDL Type
C_M AXI DC_SUPPORTS WRITE Data cache AXI support 1 1 integer
for write accesses
C_ M _AXI DC SUPPORTS Data cache AXI narrow 0 0 integer
NARROW_BURST burst support
C_M _AXI DC_SUPPORTS Data cache AXI user 1 1 integer
USER_SIGNALS signal support
C_M_AXI DC_PROTOCOL Data cache AXI protocol AXI4 AXl4 string
C_ M AXI DC AWUSER WIDTH Data cache AXI user 5 5 integer
width
C M AXI DC_ARUSER WIDTH Data cache AXI user 5 5 integer
width
C_M_AXI DC_WUSER_WIDTH Data cache AXI user 1 1 integer
width
C_M _AXI DC_RUSER WIDTH Data cache AXI user 1 1 integer
width
C M AXI DC BUSER WIDTH Data cache AXI user 1 1 integer
width
C_ M AXI DC_ Data cache AXl exclusive 01 0 integer
EXCLUSIVE ACCESS access support '
C_M AXI DC_USER_VALUE Data cache AXI user 0-31 31 integer
value
C M AXI IC_ Instruction cache AXI ID 1 1 integer
THREAD ID WIDTH width
C M AXI IC DATA WIDTH Instruction cache AXI 32, 64, 128, 32 integer
data width 256, 512
C M AXI IC ADDR WIDTH Instructloq cache AXI 32-64 32 yes integer
address width
C M AXI IC_ Instruction cache AXI 0 0 integer
SUPPORTS THREADS uses threads
C M AXI IC SUPPORTS READ Instruction cache AXI integer
support for read 1 1
accesses
C_ M _AXI IC SUPPORTS WRITE Instruction cache AXI integer
support for write 0 0
accesses
C M AXI IC_SUPPORTS Instruction cache AXI 0 0 integer
NARROW BURST narrow burst support

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 193

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=193

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-24: Configuration Parameters (Cont’d)
— Allowable |Default| Tool
Parameter Name Feature/Description Values Value Assigned VHDL Type

C M _AXI IC SUPPORTS Instruction cache AXI 1 1 integer

USER_SIGNALS user signal support

C M _AXI IC PROTOCOL Instruction cache AXI AXI4 AX14 string
protocol

C M AXI IC AWUSER WIDTH Instruction cache AXI 5 5 integer
user width

C M AXI IC ARUSER WIDTH Instruction cache AXI 5 5 integer
user width

C_ M AXI IC WUSER WIDTH Instruction cache AXI 1 1 integer
user width

C_ M AXI IC RUSER WIDTH Instruction cache AXI 1 1 integer
user width

C M AXI IC BUSER WIDTH Instruction cache AXI 1 1 integer
user width

C_ M _AXI IC USER _VALUE Instruction cache AXI 0-31 31 integer
user value

C_STREAM INTERCONNECT Select AXI4-Stream 01 0 integer
interconnect !

C Mn AXIS PROTOCOL AXIl4-Stream protocol GENERIC GENERIC string

C_Sn_ AXIS_PROTOCOL AXIl4-Stream protocol GENERIC GENERIC string

C_Mn AXIS DATA WIDTH AXI4—Sfcream master 32 32 NA integer
data width

C _Sn AXIS DATA WIDTH AXI4-Stream slave data 32 32 NA integer
width

C_NUM_SYNC_FF_ CLK Reset and Wakeup[0:1] 50 5 integer
synchronization stages -

C_NUM_SYNC_FF_CLK IRQ Interrupt input signal 50 1 integer
synchronization stages -

C_NUM_SYNC_FF_CLK DEBUG Dbg_ serial signal 50 > integer
synchronization stages -

C_NUM_SYNC_FF DBG_CLK Internal synchronization 50 1 integer
stages to Dbg_Clk -

C NUM SYNC FF DBG TRACE CLK | Internalsynchronization 50 1 integer
stages to Dbg_Trace_Clk -

1. The 7 least significant bits must all be 0.
2. Not all sizes are permitted in all architectures. The cache uses 0 - 32 RAMB primitives (0 if cache size is less than 2048).
3. Not available when C_ AREA OPTIMIZED is set to 1 (Area).

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 194

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=194

AMD ¢

Chapter 3: MicroBlaze Signal Interface Description

Table 3-25: Parameter C_FAMILY Allowable Values
Allowable Values

Artix™ aartix7 artix7 artix71 gartix7 qartix7| artixuplus

Kintex™ kintex7 kintex71 gkintex7 gkintex7I kintexu kintexuplus
Spartan™ | spartan?

Virtex™ qvirtex7 virtex7 virtexu virtexuplus virtexuplusHBM

Zynq™ azynq zyng qzynq zynquplus zynquplusRFSOC

Versal™ versal

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 195

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=195

AMDA1

Chapter 4

MicroBlaze Application Binary Interface

Introduction

This chapter describes MicroBlaze™ Application Binary Interface (ABI), which is important

for developing software in assembly language for the soft processor. The MicroBlaze GNU
compiler follows the conventions described in this document. Any code written by assembly
programmers should also follow the same conventions to be compatible with the compiler
generated code. Interrupt and Exception handling is also explained briefly.

Data Types

The data types used by MicroBlaze assembly programs are shown in the following table.
Data types such as data8, data16, data32, and data64 are used in place of the usual byte,
half-word, and word.register.

Table 4-1: Data Types in MicroBlaze Assembly Programs

MicroBlaze data types | ANSIC daca types | ANSI C data types | Size (bytes
32-bit MicroBlaze | 64-bit MicroBlaze

data8 char char 1
data16 short short 2
data32 int int 4

long int - 4

float float 4

enum enum 4
datal6/data32 pointer! - 2/4
data64 - long int 8

long long int long long int 8

- double 8

- pointer 8

1. Pointers to small data areas, which can be accessed by global pointers are data16é.

MicroBlaze Processor Reference Guide Send Feedback 196
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=196

AM D ‘l Chapter 4: MicroBlaze Application Binary Interface

Register Usage Conventions

The register usage convention for MicroBlaze is given in the following table.

Table 4-2: Register Usage Conventions

Register Type Enforcement Purpose
RO Dedicated HW Value 0
R1 Dedicated SW Stack Pointer
R2 Dedicated SW Read-only small data area anchor
R3-R4 Volatile SW Return Values/Temporaries
R5-R10 Volatile SW Passing parameters/Temporaries
R11-R12 Volatile SW Temporaries
R13 Dedicated SW Read-write small data area anchor
R14 Dedicated HW Return address for Interrupt
R15 Dedicated SW Return address for Sub-routine
R16 Dedicated HW Return address for Trap (Debugger)
R17 Dedicated HW/SW Return address for Exceptions
HW, if configured to support hardware exceptions, else SW
R18 Dedicated SW Reserved for Assembler/Compiler Temporaries
R19 Non-volatile SW Must be saved across function calls. Callee-save
R20 Dedicated SW Reserved for storing a pointer to the global offset table (GOT)
or in position independent code (PIC). Non-volatile in non-PIC
Non-volatile code. Must be saved across function calls. Callee-save.
R21-R31 | Non-volatile SW Must be saved across function calls. Callee-save.
RPC Special HW Program counter
RMSR Special HW Machine Status Register
REAR Special HW Exception Address Register
RESR Special HW Exception Status Register
RFSR Special HW Floating-Point Status Register
RBTR Special HW Branch Target Register
REDR Special HW Exception Data Register
RPID Special HW Process Identifier Register
RZPR Special HW Zone Protection Register
RTLBLO Special HW Translation Look-Aside Buffer Low Register
RTLBHI Special HW Translation Look-Aside Buffer High Register
RTLBX Special HW Translation Look-Aside Buffer Index Register
RTLBSX Special HW Translation Look-Aside Buffer Search Index
RPVRO-12 Special HW Processor Version Register 0 through 12

MicroBlaze Processor Reference Guide Send Feedback 197
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=197

AM D ‘l Chapter 4: MicroBlaze Application Binary Interface

The architecture for MicroBlaze defines 32 general purpose registers (GPRs). These registers
are classified as volatile, non-volatile, and dedicated.

« The volatile registers (also known as caller-save) are used as temporaries and do not
retain values across the function calls. Registers R3 through R12 are volatile, of which
R3 and R4 are used for returning values to the caller function, if any. Registers R5
through R10 are used for passing parameters between subroutines.

« Registers R19 through R31 retain their contents across function calls and are hence
termed as non-volatile registers (a.k.a callee-save). The callee function is expected to
save those non-volatile registers, which are being used. These are typically saved to the
stack during the prologue and then reloaded during the epilogue.

« Certain registers are used as dedicated registers and programmers are not expected to
use them for any other purpose.

. Registers R14 through R17 are used for storing the return address from interrupts,
sub-routines, traps, and exceptions in that order. Subroutines are called using the
branch and link instruction, which saves the current Program Counter (PC) onto
register R15.

. Small data area pointers are used for accessing certain memory locations with 16-
bit immediate value. These areas are discussed in the memory model section of this
document. The read only small data area (SDA) anchor R2 (Read-Only) is used to
access the constants such as literals. The other SDA anchor R13 (Read-Write) is used
for accessing the values in the small data read-write section.

Register R1 stores the value of the stack pointer and is updated on entry and exit
from functions.

. Register R18 is used as a temporary register for assembler operations.
* MicroBlaze includes special purpose registers such as:
. program counter (rpc)
. machine status register (rmsr)
. exception status register (resr)
. exception address register (rear)
floating-point status register (rfsr), branch target register (rbtr)
. exception data register (redr)

memory management registers (rpid, rzpr, rtlblo, rtibhi, rtlbx, rtlbsx)

. processor version registers (0-12)

These registers are not mapped directly to the register file; and hence, the usage of these
registers is different from the general purpose registers. The value of a special purpose
registers can be transferred to or from a general purpose register by using mts and mfs
instructions respectively.

MicroBlaze Processor Reference Guide Send Feedback 198
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=198

AM D ‘l Chapter 4: MicroBlaze Application Binary Interface

Stack Convention

The stack conventions used by MicroBlaze are detailed in Table 4-3.

The shaded area in Table 4-3 denotes a part of the stack frame for a caller function, while
the unshaded area indicates the callee frame function. The ABI conventions of the stack
frame define the protocol for passing parameters, preserving non-volatile register values,
and allocating space for the local variables in a function.

Functions that contain calls to other subroutines are called as non-leaf functions. These
non-leaf functions have to create a new stack frame area for its own use. When the program
starts executing, the stack pointer has the maximum value. As functions are called, the stack
pointer is decremented by the number of words required by every function for its stack
frame. The stack pointer of a caller function always has a higher value as compared to the
callee function.

Table 4-3: Stack Convention
High Address

Function Parameters for called sub-routine (Arg n .. Arg1)

(Optional: Maximum number of arguments required for any
called procedure from the current procedure).

Old Stack Link Register (R15)
Pointer

Callee Saved Register (R31....R19)

(Optional: Only those registers which are used by the current
procedure are saved)

Local Variables for Current Procedure
(Optional: Present only if Locals defined in the procedure)

Functional Parameters (Arg n .. Arg 1)

(Optional: Maximum number of arguments required for any
called procedure from the current procedure)

New Stack Link Register
Pointer

Low Address

Consider an example where Func1 calls Func2, which in turn calls Func3. The stack
representation at different instances is depicted in Figure 4-1. After the call from Func 1 to
Func 2, the value of the stack pointer (SP) is decremented. This value of SP is again
decremented to accommodate the stack frame for Func3. On return from Func 3 the value
of the stack pointer is increased to its original value in the function, Func 2.

MicroBlaze Processor Reference Guide Send Feedback 199
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=199

AM D ‘l Chapter 4: MicroBlaze Application Binary Interface

Details of how the stack is maintained are shown in the following figure.

High Memory
Func 1 Func 1 Func 1 Func 1
—>
SP
Func 2 Func 2 Func 2
SP SP
Func 3
\/ >
Low Memory SP

X19785-111717

Figure 4-1: Stack Frame

Stack protection is available to ensure that the stack does not grow above the high limit or
shrink below the low limit. The Stack High Register (SHR) and Stack Low Register (SLR) are
used to enforce this, respectively. These registers are automatically initialized to the stack
limits from linker symbols by the crto0. o initialization file.

Enabling stack protection in hardware can be useful to detect erroneous program behavior
due to stack size issues, which can otherwise be very hard to debug.

Calling Convention

The caller function passes parameters to the callee function using either the registers (R5
through R10) or on its own stack frame. The callee uses the stack area of the caller to store
the parameters passed to the callee.

See Table 4-1. The parameters for Func 2 are stored either in the registers R5 through R10
or on the stack frame allocated for Func 1.

If Func 2 has more than six integer parameters, the first six parameters can be passed in
registers R5 through R10, whereas all subsequent parameters must be passed on the stack
frame allocated for Func 1, starting at offset SP + 28.

Should Func2 be a variable argument function (a variadic function) such as printf (), all
variable arguments are stored on the stack frame allocated by the caller.

MicroBlaze Processor Reference Guide Send Feedback 200
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=200

AM D ‘l Chapter 4: MicroBlaze Application Binary Interface

Memory Model

The memory model for MicroBlaze classifies the data into four different parts: Small Data
Area, Data Area, Common Un-Initialized Area, and Literals or Constants.

Small Data Area

Global initialized variables which are small in size are stored in this area. The threshold for
deciding the size of the variable to be stored in the small data area is set to 8 bytes in the
MicroBlaze C compiler (mb-gcc), but this can be changed by giving a command line option
to the compiler. Details about this option are discussed in the "GNU Compiler Tools”
chapter of the Embedded System Tools Reference Manual (UG1043) [Ref 13]. 64 kilobytes of
memory is allocated for the small data areas. The small data area is accessed using the read-
write small data area anchor (R13) and a 16-bit offset. Allocating small variables to this area
reduces the requirement of adding IMM instructions to the code for accessing global
variables. Any variable in the small data area can also be accessed using an absolute
address.

Data Area

Comparatively large initialized variables are allocated to the data area, which can either be
accessed using the read-write SDA anchor R13 or using the absolute address, depending on
the command line option given to the compiler.

Common Un-Initialized Area

Un-initialized global variables are allocated in the common area and can be accessed either
using the absolute address or using the read-write small data area anchor R13.

Literals or Constants

Constants are placed into the read-only small data area and are accessed using the read-
only small data area anchor R2.

The compiler generates appropriate global pointers to act as base pointers. The actual
values of the SDA anchors are decided by the linker, in the final linking stages. For more
information on the various sections of the memory see the “MicroBlaze Linker Scripts”
section and Appendix B of the Embedded System Tools Reference Manual (UG1043) [Ref 13].

The compiler generates appropriate sections, depending on the command line options. See
the "GNU Compiler Tools” chapter in the Embedded System Tools Reference Manual
(UG1043) [Ref 13] for more information about these options.

MicroBlaze Processor Reference Guide Send Feedback 201
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=201

AM D ‘l Chapter 4: MicroBlaze Application Binary Interface

Interrupt, Break and Exception Handling

MicroBlaze assumes certain address locations for handling interrupts and exceptions as
indicated in the following table. At these locations, code is written to jump to the
appropriate handlers.

Table 4-4: Interrupt and Exception Handling

On Hardware jumps to Software Labels
Start / Reset C_BASE_VECTORS + 0x0 _start
User exception C_BASE_VECTORS + 0x8 _exception_handler
Interrupt C_BASE_VECTORS + 0x10? _interrupt_handler
Break (HW/SW) C_BASE _VECTORS + 0x18 -
Hardware exception C_BASE_VECTORS + 0x20 _hw_exception_handler
Reserved C_BASE_VECTORS + 0x28 -)

C_BASE_ VECTORS + Ox4F

1. With low-latency interrupt mode, the vector address is supplied by the Interrupt Controller.

The code expected at these locations is as shown below. The crt0. o initialization file is
passed by the mb-gcc compiler to the mb-14d linker for linking. This file sets the
appropriate addresses of the exception handlers.

The following is code for passing control to Exception, Break and Interrupt handlers,
assuming the default ¢ Base vecTors value of 0x00000000:

0x00: bri _startl

0x04: nop

0x08: imm high bits of address (user exception handler)
0x0c: bri __exception handler

0x10: imm high bits of address (interrupt handler)
0x14: bri _interrupt handler

0x18: imm high bits of address (break handler)

Oxlc: bri low bits of address (break handler)

0x20: imm high bits of address (HW exception handler
0x24: bri _hw exception handler

With low-latency interrupt mode, control is directly passed to the interrupt handler for each
individual interrupt utilizing this mode. In this case, it is the responsibility of each handler
to save and restore used registers. The MicroBlaze C compiler (mb-gcc) attribute

fast interrupt is available to allow this task to be performed by the compiler:

void interrupt handler name() _ attribute ((fast interrupt));

MicroBlaze Processor Reference Guide Send Feedback 202
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=202

AM D ‘l Chapter 4: MicroBlaze Application Binary Interface

MicroBlaze allows exception and interrupt handler routines to be located at any address
location addressable using 32 bits.

« The user exception handler code starts with the label exception handler
+ The hardware exception handler starts with _hw exception handler

« The interrupt handler code starts with the label interrupt handler for interrupts
that do not use low-latency handlers.

In the current MicroBlaze system, there are dummy routines for interrupt, break and user
exception handling, which you can change. In order to override these routines and link your
own interrupt and exception handlers, you must define the handler code with specific
attributes.

The interrupt handler code must be defined with attribute interrupt handler to ensure
that the compiler will generate code to save and restore used registers and emit an rtid
instruction to return from the handler:

void function name() _ attribute ((interrupt handler)) ;

The break handler code must be defined with attribute break handler to ensure that the
compiler will generate code to save and restore used registers and emit an rtbd instruction
to return from the handler:

void function name() _ attribute ((break handler)) ;

For more details about the use and syntax of the interrupt handler attribute, please refer to
the GNU Compiler Tools chapter in the Embedded System Tools Reference Manual (UG1043)
[Ref 13].

When software breakpoints are used in the Xilinx System Debugger (XSDB) tool or the
Vitis™ Development Environment, the Break (HW/SW) address location is reserved for
handling the software breakpoint.

MicroBlaze Processor Reference Guide Send Feedback 203
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=203

AM D ‘l Chapter 4: MicroBlaze Application Binary Interface

Reset Handling

After programming the FPGA, the MicroBlaze instruction and data caches are invalidated.
However, since hardware reset does not invalidate the instruction and data caches, this has
to be done by software before enabling the caches, in order to avoid using any stale data.
With the Standalone BSP, this can be achieved by the code below.

#include <xil cache.h>

int main()

{

Xil ICachelInvalidate();
Xil ICacheEnable();
Xil DCachelInvalidate();
Xil DCacheEnable () ;

}

It is also possible to call these functions from a custom first stage initialization file, if
startup times are critical. See Embedded System Tools Reference Manual (UG1043) [Ref 13]
for a detailed description of MicroBlaze initialization files.

MicroBlaze Processor Reference Guide Send Feedback 204
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=204

AM D ‘l Chapter 4: MicroBlaze Application Binary Interface

ELF Format

The executable, object code and shared library format used by MicroBlaze tool chain is the
Executable and Linkable Format (ELF). This section describes the specific use of the ELF
format in the MicroBlaze architecture.

For further details on the format, see the Tool Interface Standard (TIS) Executable and
Linking Format (ELF) Specification [Ref 20].
File Header

The ELF header architecture-specific fields are listed in Table 4-5, showing the values for the
three available formats: 32-bit big-endian, 32-bit little-endian and 64-bit little-endian.

In object file dumps, the formats are denoted elf32-microblaze, elf32-microblazeel, and
elf64-microblazeel respectively.

Table 4-5: ELF Header

32-bit big endian 32-bit little endian 64-bit little endian
Field C_DATA_SIZE = 32 C_DATA_SIZE = 32 C_DATA_SIZE = 64
C_ENDIANNESS =0 C_ENDIANNESS =1 C_ENDIANNESS =1
e_ident[EL_CLASS] ELFCLASS32 (0x01) ELFCLASS32 (0x01) ELFCLASS64 (0x02)
e_ident[EL_DATA] ELFDATA2MSB (0x02) ELFDATAZ2LSB (0x01) ELFDATA2LSB (0x01)
e_machine EM_MICROBLAZE (189 = 0x00bd)
e_entry C_BASE_VECTORS
e_flags 0x00000000

Sections
The architecture does not define any special section indexes, types or attribute flags.

Sections containing code must be at least 32-bit aligned, and sections containing data must
be at least 32-bit aligned with 32-bit formats or at least 64-bit aligned with 64-bit format.

MicroBlaze special sections are listed in Table 4-6.

Table 4-6: Special Sections

Name Type Attributes
.vectors.reset SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR
.vectors.sw_exception SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR
.vectors.interrupt SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR
.vectors.hw_exception SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

MicroBlaze Processor Reference Guide Send Feedback 205
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=205

AMD ¢

Relocations

Chapter 4: MicroBlaze Application Binary Interface

Relocation information is used by linkers in order to bind symbols and addresses that could
not be determined when the initial object was generated.

Relocation entries describe how to alter the instruction and data relocation fields
Relocations applied to executable or shared object files are similar and accomplish the

same result.

All relocations are listed and described in Table 4-7, including the operation performed to

compute the value of the relocation.

Table 4-7: Relocation Entries
Code Name Description Operation
1 R_MICROBLAZE_NONE This relocation does nothing. none
2 R_MICROBLAZE_32 A standard 32 bit relocation. S+A
3 R_MICROBLAZE_32_PCREL A standard PCREL 32 bit relocation. S+A-P
4 R_MICROBLAZE_64_PCREL A 64 bit PCREL relocation. Table-entry only |(S+A-P)&OXFFFF (#imm)
used for 64-bit implementation.
5 R_MICROBLAZE_32_PCREL_LO The low half of a PCREL 32 bit relocation. |(S+A-P)&O0xFFFF
6 R_MICROBLAZE_64 A 64 bit relocation. Table entry only used |(S+A)&OxFFFF (#imm)
for 64-bit implementation.
7 R_MICROBLAZE_32_LO The low half of a 32 bit relocation. (S+A)&OxFFFF
8 R_MICROBLAZE_SR032 Read-only small data section relocation. |(S+A -_SDA_BASE_)
9 R_MICROBLAZE_SRW32 Read-write small data area relocation. (S+A-_SDA_BASE_)
10 R_MICROBLAZE_64_NONE This relocation does nothing. Used for none
relaxation.
11 R_MICROBLAZE_32_SYM_OP_SYM |Symbol Op Symbol relocation. none
12 R_MICROBLAZE_GNU_VTINHERIT |GNU extension to record C++ vtable
hierarchy.
13 R_MICROBLAZE_GNU_VTENTRY |GNU extension to record C++ vtable
member usage.
14 R_MICROBLAZE_GOTPC_64 A 64 bit GOTPC relocation. Table-entry G+A-P (#imm)
only used for 64-bit implementation.
15 R_MICROBLAZE_GOT_64 A 64 bit GOT relocation. Table-entry only |G+A (#imm)
used for 64-bit implementation.
16 R_MICROBLAZE_PLT_64 A 64 bit PLT relocation. Table-entry only |L+A (#imm)
used for 64-bit implementation.
17 R_MICROBLAZE_REL Table-entry not used. ((B + A)>>16) & OxFFFF
18 R_MICROBLAZE_JUMP_SLOT Table-entry not used. (S>> 16) & OXFFFF
19 R_MICROBLAZE_GLOB_DAT Table-entry not used. (S>> 16) & OXFFFF
20 R_MICROBLAZE_GOTOFF_64 A 64 bit GOT relative relocation. (S+A-GOT)&OXFFFF

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 206

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=206

AMD ¢

Chapter 4: MicroBlaze Application Binary Interface

Table 4-7: Relocation Entries

Code Name Description Operation
21 R_MICROBLAZE_GOTOFF_32 A 32 bit GOT relative relocation. (S+A-GOT)&OxFFFF
22 R_MICROBLAZE_COPY COPY relocation. none
23 R_MICROBLAZE_TLS TLS relocations for TLS. none
24 R_MICROBLAZE_TLSGD TLSGD relocations for TLS. @got@tlsgd
25 R_MICROBLAZE_TLSLD TLSLD relocations for TLS. @got@tlsld
26 R_MICROBLAZE_TLSDTPMOD32 Computes the load module. @got@dtpmod
27 R_MICROBLAZE_TLSDTPREL32 Computes a dtv-relative displacement. @got@dtprel
28 R_MICROBLAZE_TLSDTPREL64 Computes a dtv-relative displacement. @got@dtprel
29 R_MICROBLAZE_TLSGOTTPREL32 |Computes a tp-relative displacement. @got@prel
30 R_MICROBLAZE_TLSTPREL32 Computes a tp-relative displacement. @got@prel
31 R_MICROBLAZE_32_NONE Standard 32-bit relocation. none

The symbol nomenclature and relocation calculations with thread-local symbols used in the
relocation entries table are explained in Table 4-8.

Table 4-8: Symbol Notation

Symbol Meaning

A The addend used to compute the value of the relocatable field.

B The base address at which a shared object has been loaded into memory during
execution. Generally, a shared object file is built with a 0 base virtual address, but
the execution address will be different.

G The offset into the global offset table at which the address of the relocation
entry’s symbol will reside during execution.

GOT The address of the global offset table.

L The place (section offset or address) of the procedure linkage table entry for a
symbol. A procedure linkage table entry redirects a function call to the proper
destination. The link editor builds the initial procedure linkage table, and the
dynamic linker modifies the entries during execution.

P The place (section offset or address) of the storage unit being relocated
(computed using r_offset).

S The value of the symbol whose index resides in the relocation entry.

@dtpmod Computes the load module index of the load module that contain the definition
of a symbol. The addend, if present, is ignored
@dtprel Computes a dtv-relative displacement, the difference between the value of S + A
and the base address of the thread-local storage block that contains the
definition of the symbol, minus 0x8000.
@got@tlsgd | Allocates entries in the GOT to hold a tls_index structure, with values @dtpmod
and @dtprel, and computes the offset to the first entry relative to the TOC base.

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 207

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=207

AMD ¢

Chapter 4: MicroBlaze Application Binary Interface

Table 4-8: Symbol Notation (Cont’d)

Symbol Meaning
@got@tlsld Allocates entries in the GOT to hold a tls_index structure, with values @dtpmod
and zero, and computes the offset to the first entry relative to the TOC base.
@got@dtpmod | Computes the load module index of the load module that contains the definition
of its TLS symbol.

@got@dtprel | Computes a dtv-relative displacement, the difference between the value of
symbol + add and the base address of the thread-local storage block that
contains the definition of the symbol, minus 0x8000. Used for initializing GOT.

@got@prel Computes a tp-relative displacement, the difference between the value of symbol
+ add and the value of the thread pointer (r13).
#imm Inserts imm instruction if the immediate value is greater than 16 bits in the
instruction.

MicroBlaze Processor Reference Guide Send Feedback 208
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=208

AMD 1
Chapter 5

MicroBlaze Instruction Set Architecture

Introduction

This chapter provides a detailed guide to the Instruction Set Architecture of the MicroBlaze™
processor.

Notation
The symbols used throughout this chapter are defined in the following tables.

Table 5-1: Register Name Notation

Register Name Mode Meaning
rD 32-bit Destination register r0 - r31, 32 bits:
Entire register assigned instruction result
64-bit Destination register r0 - r31, 64 bits:

32 least significant bits assigned instruction result
32 most significant bits cleared to 0

rA 32-bit Source register r0 - r31, 32 bits:
rB Entire register used as instruction operand
64-bit Source register r0 - r31, 64 bits:

32 least significant bits used as instruction operand
32 most significant bits ignored

rD. 64-bit Destination register r0 - r31, 64 bits:
Entire register assigned instruction result

rA; 64-bit Source register r0 - r31, 64 bits:
B Entire register used as instruction operand
rDy 32-bit Destination register r0 - r31:

64-bit Entire register assigned instruction result
rAy 32-bit Source register r0 - r31, 32 bits:
rBx Entire register used as instruction operand

64-bit Source register r0 - r31, 64 bits:
Entire register used as instruction operand

MicroBlaze Processor Reference Guide Send Feedback 209
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=209

AMD ¢

Chapter 5: MicroBlaze Instruction Set Architecture

Table 5-2: Symbol Notation
Symbol Meaning
+ Add
- Subtract
x Multiply
/ Divide
A Bitwise logical AND
v Bitwise logical OR
® Bitwise logical XOR
X Bitwise logical complement of x
«— Assignment
>> Right shift
<< Left shift
rx Register x
x[i] Bit i in register x
x[iy] Bits { throughj in register x
= Equal comparison
Not equal comparison
> Greater than comparison
>= Greater than or equal comparison
< Less than comparison
<= Less than or equal comparison
| Signal choice
sext(x) Sign-extend x
Mem(x) Memory location at address x
FSLx AXI4-Stream interface x
LSW(x) Least Significant Word of x
isDnz(x) Floating-point: true if x is denormalized
isInfinite(x) Floating-point: true if x is +o or -

isPosInfinite(x)

Floating-point: true if x is +w

isNeglnfinite(x)

Floating-point: true if x -

isNaN(x)

Floating-point: true if x is a quiet or signaling NaN

isZero(x)

Floating-point: true if x is +0 or

-0

isQuietNaN(x)

Floating-point: true if x is a quiet NaN

isSigNaN(x)

Floating-point: true if x is a signaling NaN

signZero(x)

Floating-point: return +0 for x > 0, and -0 if x < 0

signinfinite(x)

Floating-point: return +o for x > 0, and -0 if x <0

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

| Send Feedback I 210

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=210

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Formats

MicroBlaze uses two instruction formats: Type A and Type B.

Type A

Type A is used for register-register instructions. It contains the opcode, one destination and two
source registers.

Opcode Destination Reg| Source Reg A | SourceRegB (00 0|0|0|0(0 O0O|0|0|0

0 6 11 16 21 31

Type B

Type B is used for register-immediate instructions. It contains the opcode, one destination and one
source registers, and a source 16-bit immediate value.

Opcode Destination Reg| Source Reg A Immediate Value

0 6 11 16 31

MicroBlaze 32-bit Instructions

This section provides descriptions of MicroBlaze instructions. Instructions are listed in
alphabetical order. For each instruction the mnemonic, encoding, a description,
pseudocode of its semantics, and a list of registers that it modifies are provided.

All instructions included in the instruction set for 32-bit MicroBlaze are defined in this
section. These instructions are also available as part of the extended instruction set for 64-
bit MicroBlaze.

MicroBlaze Processor Reference Guide Send Feedback 211
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=211

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Arithmetic Add
add rD, rA, rB Add
addc rD, rA, rB Add with Carry
addk rD, rA, B Add and Keep Carry
addkc rD, rA, rB Add with Carry and Keep Carry
0 00 KCO rD rA rB 0 0O0OO0OOOOOOOTP O
6 11 16 21 31
Description

The sum of the contents of registers rA and rB, is placed into register rD.

Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic addk. Bit 4 of the
instruction (labeled as C in the figure) is set to one for the mnemonic addc. Both bits are set to one
for the mnemonic addkc.

When an add instruction has bit 3 set (addk, addkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (add, addc), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addc, addkc), the content of the carry flag (MSR[C]) affects
the execution of the instruction. When bit 4 is cleared (add, addk), the content of the carry flag does
not affect the execution of the instruction (providing a normal addition).

Pseudocode

if C = 0 then

(rD) <« (rA) + (rB)
else

(rD) <« (rA) + (rB) + MSRI[C]
if K = 0 then

MSR[C] <« CarryOut

Registers Altered
« D
« MSRIC]

Latency
1 cycle

Notes
The C bit in the instruction opcode is not the same as the carry bit in the MSR.
The "add r0, r0, r0" (= 0x00000000) instruction is never used by the compiler and usually indicates

uninitialized memory. If you are using illegal instruction exceptions you can trap these instructions by
setting the MicroBlaze parameter C_ OPCODE 0x0 ILLEGAL=1.

MicroBlaze Processor Reference Guide Send Feedback 212
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=212

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

addl Arithmetic Add Immediate

addi rD, rA, IMM Add Immediate
addic rD, rA, IMM Add Immediate with Carry
addik rD, rA, IMM Add Immediate and Keep Carry
addikc rD, rA, IMM Add Immediate with Carry and Keep Carry

0 01 KCO rD rA IMM

0 6 11 16 31

Description

The sum of the contents of registers rA and the value in the IMM field, sign-extended to 32 bits, is
placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the
mnemonic addik. Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic
addic. Both bits are set to one for the mnemonic addikc.

When an addi instruction has bit 3 set (addik, addikc), the carry flag will keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addi, addic), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addic, addikc), the content of the carry flag (MSR[C]) affects
the execution of the instruction. When bit 4 is cleared (addi, addik), the content of the carry flag does
not affect the execution of the instruction (providing a normal addition).

Pseudocode

if C = 0 then

(rD) <« (rA) + sext (IMM)
else

(rD) <« (rA) + sext (IMM) + MSRI[C]
if K = 0 then

MSR[C] <« CarryOut

Registers Altered
« D
« MSRI[C]

Latency
1 cycle

Notes
The C bit in the instruction opcode is not the same as the carry bit in the MSR.
By default, Type B Instructions take the 16-bit IMM field value and sign extend it to 32 bits to use as

the immediate operand. This behavior can be overridden by preceding the Type B instruction with an
imm instruction. See the instruction “imm,” page 256 for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide Send Feedback 213
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=213

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

and Logical AND
and rD, rA, rB
100 00 1 rD rA rB 000O0OO0OOOOOOD O
0 6 11 16 21 31
Description
The contents of register rA are ANDed with the contents of register rB; the result is placed into register
rD.
Pseudocode
(rD) < (rA) A (rB)
Registers Altered
« D
Latency
1 cycle

MicroBlaze Processor Reference Guide Send Feedback 214
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=214

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

andi Logial AND with Immediate
andi rD, rA, IMM
101 00 1 rD rA IMM
0 6 11 16 31
Description

The contents of register rA are ANDed with the value of the IMM field, sign-extended to 32 bits; the
result is placed into register rD.

Pseudocode
(rD) < (rA) A sext (IMM)
Registers Altered
« D
Latency
1 cycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide Send Feedback 215
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=215

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

andn Logical AND NOT
andn rD, rA, rB
100 0 1 1 rD rA rB 0 000O0OOOOODO
0 6 11 16 21 31
Description

The contents of register rA are ANDed with the logical complement of the contents of register rB; the
result is placed into register rD.

Pseudocode
(rD) <« (rA) A (TB)
Registers Altered
« D
Latency
1 cycle

MicroBlaze Processor Reference Guide Send Feedback 216
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=216

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

andni Logical AND NOT with Immediate
andni rD, rA, IMM
101011 (D A v
0 6 11 16 ”
Description

The IMM field is sign-extended to 32 bits. The contents of register rA are ANDed with the logical
complement of the extended IMM field; the result is placed into register rD.

Pseudocode
(rD) <« (rA) A (sext (IMM))
Registers Altered
« D
Latency
1 cycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide Send Feedback 217
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=217

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

beq

Branch if Equal

beq rA, rB Branch if Equal
beqd rA, rB Branch if Equal with Delay
100111 DO0O0OO0O rA rB 00 0O0OO0OOOODO
0 6 11 16 21 31
Description

Branch if rA is equal to 0, to the instruction located in the offset value of rB. The target of the branch
will be the instruction at address PC + rB.

The mnemonic beqd will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA = 0 then
PC < PC + rB
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency

« 1 cycle (if branch is not taken)

« 2 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA_ OPTIMIZED#2)
« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

» 7 cycles (if branch is taken and the D bit is not set with ¢_ AREA OPTIMIZED=2)

If c use_ mMmu > 1 two additional cycles are added with ¢ AREA OPTIMIZED=2.

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 218
(v2023.2) February 2, 2024 [—‘ /—]

uGo84

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=218

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

beql Branch Immediate if Equal

beqi rA, IMM Branch Immediate if Equal
beqid rA, IMM Branch Immediate if Equal with Delay

101111 D0O0O0O rA IMM
0 6 11 16 31

Description
Branch if rA is equal to O, to the instruction located in the offset value of IMM. The target of the branch
will be the instruction at address PC + IMM.

The mnemonic beqid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA = 0 then
PC < PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED#2, Or a
branch prediction mispredict occurs with ¢ AREA OPTIMIZED=0)

« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict
occurs with ¢_AREA_ OPTIMIZED=2)

If c use_MMU > 1 two additional cycles are added with ¢ AREA OPTIMIZED=2.

Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 219
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=219

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

bge

Branch if Greater or Equal

bge rA, rB Branch if Greater or Equal
bged rA, rB Branch if Greater or Equal with Delay
100111/ DO01O0 1 rA rB 00 0O0OO0OOOODO
0 6 11 16 21 31
Description

Branch if rA is greater or equal to O, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bged will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA >= 0 then
PC < PC + rB
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency

« 1 cycle (if branch is not taken)

« 2 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA_ OPTIMIZED#2)
« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

» 7 cycles (if branch is taken and the D bit is not set with ¢_ AREA OPTIMIZED=2)

If c use_MmU > 1 two additional cycles are added with ¢_ AREA OPTIMIZED=2.

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 220
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=220

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

ngI Branch Immediate if Greater or Equal
bgei rA, IMM Branch Immediate if Greater or Equal
bgeid rA, IMM Branch Immediate if Greater or Equal with Delay
101111 D010 1 rA IMM
0 6 11 16 31
Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bgeid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA >= 0 then
PC < PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED#2, Or a
branch prediction mispredict occurs with ¢ AREA OPTIMIZED=0)

« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict
occurs with ¢_AREA_ OPTIMIZED=2)

If c use_MMU > 1 two additional cycles are added with ¢ AREA OPTIMIZED=2.

Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 221
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=221

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

bgt

Branch if Greater Than

bgt rA, rB Branch if Greater Than
bgtd rA, rB Branch if Greater Than with Delay
100111 DO01TO0O rA rB 00 0O0OO0OOOODO
0 6 11 16 21 31
Description

Branch if rA is greater than 0O, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bgtd will set the D bit. The D bit determines whether there is a branch delay slot or not.
If the D bit is set, it means that there is a delay slot and the instruction following the branch (that is,
in the branch delay slot) is allowed to complete execution before executing the target instruction. If
the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA > 0 then
PC < PC + rB
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency

« 1 cycle (if branch is not taken)

« 2 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA_ OPTIMIZED#2)
« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

» 7 cycles (if branch is taken and the D bit is not set with ¢_ AREA OPTIMIZED=2)

If c use_MmU > 1 two additional cycles are added with ¢_ AREA OPTIMIZED=2.

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 222
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=222

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

bgti

Branch Immediate if Greater Than

bgti rA, IMM Branch Immediate if Greater Than
bgtid rA, IMM Branch Immediate if Greater Than with Delay
101111 D01TO00O0 rA IMM
0 6 11 16 31
Description

Branch if rA is greater than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bgtid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA > 0 then
PC < PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED#2, Or a
branch prediction mispredict occurs with ¢ AREA OPTIMIZED=0)

« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict
occurs with ¢_AREA_ OPTIMIZED=2)

If c use_MMU > 1 two additional cycles are added with ¢ AREA OPTIMIZED=2.

Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 223
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=223

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

ble

Branch if Less or Equal

ble rA, rB Branch if Less or Equal
bled rA, rB Branch if Less or Equal with Delay
100111 DpDO0O0 1T 1 rA rB 0 00O OOOOOOODQ
0 6 11 16 21 31
Description

Branch if rA is less or equal to O, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bled will set the D bit. The D bit determines whether there is a branch delay slot or not.
If the D bit is set, it means that there is a delay slot and the instruction following the branch (that is,
in the branch delay slot) is allowed to complete execution before executing the target instruction. If
the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA <= 0 then
PC < PC + rB
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency

« 1 cycle (if branch is not taken)

« 2 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA_ OPTIMIZED#2)
« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

» 7 cycles (if branch is taken and the D bit is not set with ¢_ AREA OPTIMIZED=2)

If c use_MmU > 1 two additional cycles are added with ¢_ AREA OPTIMIZED=2.

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 224
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=224

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

blei

Branch Immediate if Less or Equal

blei rA, IMM Branch Immediate if Less or Equal
bleid rA, IMM Branch Immediate if Less or Equal with Delay
101111 pDO0O0T1T1 rA IMM
0 6 11 16 31
Description

Branch if rAis less or equal to O, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bleid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA <= 0 then
PC < PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED#2, Or a
branch prediction mispredict occurs with ¢ AREA OPTIMIZED=0)

« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict
occurs with ¢_AREA_ OPTIMIZED=2)

If c use_MMU > 1 two additional cycles are added with ¢ AREA OPTIMIZED=2.

Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 225
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=225

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

bit

Branch if Less Than

blt rA, rB Branch if Less Than
bltd rA, rB Branch if Less Than with Delay
100111 pD0O0T1TOPO0 rA rB 0 00O OOOOOOODQ
0 6 11 16 21 31
Description

Branch if rA is less than 0, to the instruction located in the offset value of rB. The target of the branch
will be the instruction at address PC + rB.

The mnemonic bltd will set the D bit. The D bit determines whether there is a branch delay slot or not.
If the D bit is set, it means that there is a delay slot and the instruction following the branch (that is,
in the branch delay slot) is allowed to complete execution before executing the target instruction. If
the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA < 0 then
PC < PC + rB
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency

« 1 cycle (if branch is not taken)

« 2 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA_ OPTIMIZED#2)
« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

» 7 cycles (if branch is taken and the D bit is not set with ¢_ AREA OPTIMIZED=2)

If c use_MmU > 1 two additional cycles are added with ¢_ AREA OPTIMIZED=2.

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 226
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=226

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

blti

Branch Immediate if Less Than

blti rA, IMM Branch Immediate if Less Than
bltid rA, IMM Branch Immediate if Less Than with Delay
101111 po0O0T1T0O0 rA IMM
0 6 11 16 31
Description

Branch if rA is less than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bltid will set the D bit. The D bit determines whether there is a branch delay slot or not.
If the D bit is set, it means that there is a delay slot and the instruction following the branch (that is,
in the branch delay slot) is allowed to complete execution before executing the target instruction. If
the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA < 0 then
PC < PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED#2, Or a
branch prediction mispredict occurs with ¢ AREA OPTIMIZED=0)

« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict
occurs with ¢_AREA_ OPTIMIZED=2)

If c use_MMU > 1 two additional cycles are added with ¢ AREA OPTIMIZED=2.

Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 227
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=227

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

bne Branch if Not Equal
bne rA, rB Branch if Not Equal
bned rA, rB Branch if Not Equal with Delay
100111, DO0O0O01 rA rB 00 0O0OO0OOOODO
0 6 11 16 21 31
Description

Branch if rA not equal to 0, to the instruction located in the offset value of rB. The target of the branch
will be the instruction at address PC + rB.

The mnemonic bned will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA # 0 then
PC < PC + rB
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency

« 1 cycle (if branch is not taken)

« 2 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA_ OPTIMIZED#2)
« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

» 7 cycles (if branch is taken and the D bit is not set with ¢_ AREA OPTIMIZED=2)

If c use_MmU > 1 two additional cycles are added with ¢_ AREA OPTIMIZED=2.

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 228
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=228

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

bnei Branch Immediate if Not Equal
bnei rA, IMM Branch Immediate if Not Equal
bneid rA, IMM Branch Immediate if Not Equal with Delay
101111 pO0O0O0 1 rA IMM
0 6 11 16 31
Description

Branch if rA not equal to O, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bneid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If rA # 0 then
PC < PC + sext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED#2, Or a
branch prediction mispredict occurs with ¢ AREA OPTIMIZED=0)

« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict
occurs with ¢_AREA_ OPTIMIZED=2)

If c use_MMU > 1 two additional cycles are added with ¢ AREA OPTIMIZED=2.

Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 229
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=229

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

br

Unconditional Branch

br rB Branch

bra rB Branch Absolute

brd rB Branch with Delay

brad rB Branch Absolute with Delay

brid rD, rB Branch and Link with Delay

brald rD, rB Branch Absolute and Link with Delay
100110 rD DAL OO rB 0 00 OOOOOOODP
0 6 11 16 21 31

Description

Branch to the instruction located at address determined by rB.

The mnemonics brld and brald will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics bra, brad and brald will set the A bit. If the A bit is set, it means that the branch is to
an absolute value and the target is the value in rB, otherwise, it is a relative branch and the target will
be PC + rB.

The mnemonics brd, brad, brld and brald will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction.

If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
if L = 1 then
(rD) <« PC
if A = 1 then
PC < (rB)
else

PC < PC + (rB)
if D = 1 then
allow following instruction to complete execution

Registers Altered
-« D
- PC

MicroBlaze Processor Reference Guide Send Feedback 230
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=230

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Latency

« 2 cycles (if the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if the D bit is not set with ¢ AREA OPTIMIZED#2)
« 6 cycles (if the D bit is set with ¢ AREA OPTIMIZED=2)

« 7 cycles (if the D bit is not set with ¢ AREA OPTIMIZED=2)

If c use_MMU > 1 two additional cycles are added with ¢ AREA OPTIMIZED=2.

Notes

The instructions brl and bral are not available. A delay slot must not be used by the following: imm,
branch, or break instructions. Interrupts and external hardware breaks are deferred until after the
delay slot branch has been completed.

With 64-bit mode, the absolute branch instructions bra, brad, and brald use the entire 64-bit register
rB.. brald uses the entire 64-bit register rD|, and the instructions can be used for extended address
branches.

MicroBlaze Processor Reference Guide Send Feedback 231
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=231

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

bri Unconditional Branch Immediate

bri IMM Branch Immediate
brai IMM Branch Absolute Immediate
brid IMM Branch Immediate with Delay
braid IMM Branch Absolute Immediate with Delay
brlid rD, IMM Branch and Link Immediate with Delay
bralid rD, IMM Branch Absolute and Link Immediate with Delay

101110 rD DALOO IMM

0 6 11 16 31

Description

Branch to the instruction located at address determined by IMM, sign-extended to 32 bits.

The mnemonics brlid and bralid will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics brai, braid and bralid will set the A bit. If the A bit is set, it means that the branch is
to an absolute value and the target is the value in IMM, otherwise, it is a relative branch and the target
will be PC + IMM.

The mnemonics brid, braid, brlid and bralid will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and "bralid
rD, C_BASE VECTORS+0x8"is used to perform a User Vector Exception, the Machine Status
Register bits User Mode and Virtual Mode are cleared.

Pseudocode

if L = 1 then
(rD) « PC
if A = 1 then
PC < sext (IMM)
else
PC < PC + sext (IMM)
if D = 1 then
allow following instruction to complete execution
if D=1and A =1 and L = 1 and IMM = C_BASE_VECTORS+0x8 then
MSR [UMS] <— MSR [UM]
MSR [VMS] <— MSR [VM]
MSR[UM] <« O
MSR[VM] <« O

MicroBlaze Processor Reference Guide Send Feedback 232
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=232

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Registers Altered
« D
- PC

+ MSR[UM], MSR[VM]

Latency
« 1 cycle (if successful branch prediction occurs)
« 2 cycles (if the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if the D bit is not set with ¢ AREA OPTIMIZED#2, or a branch prediction
mispredict occurs with ¢_AREA OPTIMIZED=0)

« 6 cycles (if the D bit is set with ¢ AREA OPTIMIZED=2)

« 7 cycles (if the D bit is not set, or if branch prediction mispredict occurs with
C_AREA OPTIMIZED=2)

If c_ use_MMU > 1 two additional cycles are added with ¢_AREA OPTIMIZED=2.

Notes
The instructions brli and brali are not available.

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to use as the
immediate operand. This behavior can be overridden by preceding the Type B instruction with an imm
instruction. See the instruction “imm” for details on using immediate values.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

With 64-bit mode, the absolute branch instructions brai, braid, and bralid may also be preceded by an
imml instruction, bralid uses the entire 64-bit registers rD|, and the instructions can be used for
extended address branches.

MicroBlaze Processor Reference Guide Send Feedback 233
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=233

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

brk Break
brk rD, rB
100110 rD o1100 rB 0 000OO0OO0OMOMOTUOD O
0 6 11 16 21 31
Description

Branch and link to the instruction located at address value in rB. The current value of PC will be stored
in rD. The BIP flag in the MSR will be set, and the reservation bit will be cleared.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] <« 00111
else
(rD) <« PC
PC <« (rB)
MSR [BIP] <« 1
Reservation <« 0

Registers Altered
-« D

. PC

e MSRIBIP]

« ESR[EC], in case a privileged instruction exception is generated

Latency
« 3 cycles (with ¢ AREA OPTIMIZED#2)
« 7 cycles (with ¢_AREA OPTIMIZED=2)

If c_ use_MMmU > 1 two additional cycles are added with ¢_ AREA OPTIMIZED=2.

Notes

With 64-bit mode, the instruction uses the entire 64-bit registers rB, and rD|, and can be used for
extended address branches.

MicroBlaze Processor Reference Guide Send Feedback 234
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=234

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Break Immediate

brki rD, IMM
01110 rD 01100 IMM
6 11 16 31
Description

Branch and link to the instruction located at address value in IMM, sign-extended to 32 bits. The
current value of PC will be stored in rD. The BIP flag in the MSR will be set, except in case of a Software
Break, and the reservation bit will be cleared.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged,

except as a special case when "brki rD, C BASE VECTORS+0x8" or "brki rD,

C_BASE VECTORS+0x18" is used to perform a Software Break. This means that, apart from the

special case, if the instruction is attempted in User Mode (MSR [UM] = 1) a Privileged Instruction
exception occurs.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and "brki rD,
C_BASE VECTORS+0x8" or "brki rD, C BASE VECTORS+0x18"is used to perform a Software
Break, the Machine Status Register bits User Mode and Virtual Mode are cleared.

Pseudocode

if MSR[UM] and IMM # C_BASE VECTORS+0x8 and IMM # C_BASE VECTORS+0x18 then
ESR[EC] <« 00111
else
(rD) <« PC
PC <« sext (IMM)
if IMM # 0x18 then
MSR [BIP] « 1
Reservation <« 0
if IMM = C_BASE VECTORS+0x8 or IMM = C BASE VECTORS+0x18 then
MSR [UMS] <— MSR [UM]
MSR [UM] <« O
MSR [VMS] < MSR[VM]
MSR[VM] <« O

Registers Altered

« D, unless an exception is generated, in which case the register is unchanged
« PC

« MSRI[BIP], MSR[UM], MSR[VM]

« ESRI[EC], in case a privileged instruction exception is generated

Latency
« 3 cycles (with ¢ AREA OPTIMIZED#2)

« 7 cycles (with ¢C_AREA OPTIMIZED = 2)

If c_ use_MMmU > 1 two additional cycles are added with ¢_ AREA OPTIMIZED=2.

MicroBlaze Processor Reference Guide Send Feedback 235
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=235

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to use as the
immediate operand. This behavior can be overridden by preceding the Type B instruction with an imm
instruction. See the instruction “imm” for details on using immediate values.

As a special case, the imm instruction does not override a Software Break "brki rD, 0x18" when
C_DEBUG_ENABLED. is greater than zero, irrespective of the value of C_BASE VECTORS, to allow
Software Break after an imm instruction.

With 64-bit mode, the instruction may also be preceded by an imml instruction, uses the entire 64-bit
register rD|, and can be used for extended address branches.

MicroBlaze Processor Reference Guide Send Feedback 236
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=236

AMD ¢

Chapter 5: MicroBlaze Instruction Set Architecture

bs Barrel Shift
bsrl rD, rA, rB Barrel Shift Right Logical
bsra rD, rA, rB Barrel Shift Right Arithmetical
bsll rD, rA, rB Barrel Shift Left Logical
010001 rD rA rB S TOOOOOOOOO O
0 6 11 16 21 31

Description

Shifts the contents of register rA by the amount specified in register rB and puts the result in register

rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is Logical.

Pseudocode

if S = 1 then

(rD) <«
else

(ra) <<

if T = 1 then

if ((xB) [27:31])
(rD) [0: (¥rB) [27:31]-1] <«

(rB) [27:31]

0 then

(rAa) [0]

(rD) [(rB) [27:31]:31] <« (rA) >> (rB) [27:31]

(rA) >> (rB) [27:31]

else
(rD) <« (rA)
else
(rD) <«
Registers Altered
-« D
Latency

* 1 cycle with ¢ AREA OPTIMIZED=0 or 2

« 2 cycles with ¢_AREA OPTIMIZED=1

Note

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 237

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=237

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

bsi

Barrel Shift Immediate

bsrli rD, rA, IMM Barrel Shift Right Logical Immediate
bsrai rD, rA, IMM Barrel Shift Right Arithmetic Immediate
bslli rD, rA, IMM Barrel Shift Left Logical Immediate
bsefi rD, rA, IMMy, IMMg Barrel Shift Extract Field Immediate
bsifi rD, rA, Width1, IMMg Barrel Shift Insert Field Immediate

1. Width = IMMy, - IMMg + 1

011001 rD rA 00O0O0OSTOOGO OO IMM

0 6 ik 16 21 27 31

011001 rD rA Il EO0 0O IMM,y 0 IMM

0 6 ik 16 21 25 27 31
Description

The first three instructions shift the contents of register rA by the amount specified by IMM and put
the result in register rD.

Barrel Shift Extract Field extracts a bit field from register rA and puts the result in register rD. The bit
field width is specified by IMM,y and the shift amount is specified by IMMs. The bit field width must
be in the range 1 - 31, and the condition IMMy + IMMg<32 must apply.

Barrel Shift Insert Field inserts a bit field from register rA into register rD, modifying the existing value
in register rD. The bit field width is defined by IMM,y - IMMg + 1, and the shift amount is specified by
IMMs. The condition IMMyy, > IMMg must apply.

The mnemonic bslli sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bsrli and bsrai clear the S bit and the shift is done to the right.

The mnemonic bsrai sets the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrli and bslli clear the T bit and the shift performed is Logical.

The mnemonic bsefi sets the E bit (Extract bit). In this case the S and T bits are not used.

The mnemonic bsifi sets the | bit (Insert bit). In this case the S and T bits are not used.

MicroBlaze Processor Reference Guide Send Feedback 238
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=238

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Pseudocode

if E = 1 then
(rD) [0:31-IMMy] <« O
(rD) [32-IMMy:31] < (rA) >> IMMg
else if I = 1 then
mask < (OxEffffffff << (IMMy + 1)) @ (Oxffffffff << IMMg)
(rD) <« ((rA) << IMMg) A mask) v ((rD) A mask)
else 1f S = 1 then
(rD) « (rA) << IMM
else 1f T = 1 then
if IMM # 0 then
(rD) [0:IMM-1] <« (xrA) [0]
(rD) [IMM:31] <« (rA) >> IMM
else
(rD) <« (rA)
else
(rD) <« (rA) >> IMM

Registers Altered
« D

Latency
* 1 cycle with ¢_AREA opTIMIZED=0 or 2
« 2 cycles with ¢ AREA OPTIMIZED=1

Notes
These are not Type B Instructions. There is no effect from a preceding imm instruction.

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).

The assembler code “bsifi rD, rA, width, shift” denotes the actual bit field width, not the IMMyy, field,
which is computed by IMMyy = shift + width - 1.

MicroBlaze Processor Reference Guide Send Feedback 239
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=239

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

ClZ Count Leading Zeros
clz rD, rA Count leading zeros in rA
100100 rD rA 0 00O0OO0OO0OOOI1I11000O0O0T 0
0 6 11 16 21 31
Description

This instruction counts the number of leading zeros in register rA starting from the most significant
bit. The result is a number between 0 and 32, stored in register rD.

The result in rD is 32 when rA is 0, and it is O if rA is OxFFFFFFFF.

Pseudocode

n < 0

while (rA) [n] = 0
n<n+ 1

(rD) ¢ n

Registers Altered
« D
Latency

« 1cycle

Note
This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

MicroBlaze Processor Reference Guide Send Feedback 240
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=240

AMD ¢

Chapter 5: MicroBlaze Instruction Set Architecture

cmp Integer Compare
cmp rD, rA, rB compare rB with rA (signed)
cmpu rD, rA, rB compare rB with rA (unsigned)
0 00 101 rD rA rB 00 0O0O0OO0O0UOO0OOUI1
0 6 11 16 21 31
Description

The contents of register rA are subtracted from the contents of register rB and the result is placed into

register rD.

The MSB bit of rD is adjusted to shown true relation between rA and rB. If the U bit is set, rA and rB is
considered unsigned values. If the U bit is clear, rA and rB is considered signed values.

Pseudocode

(rD) <« (rB) + (rA) + 1
(rD) (MSB) <« (rA) > (rB)

Registers Altered
« D

Latency
« 1cycle

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 241

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=241

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

fadd Floating-Point Arithmetic Add
fadd rD, rA, rB Add
010110 rD rA rB 0 00O0OOOOOOD O
0 6 11 16 21 31
Description

The floating-point sum of registers rA and rB, is placed into register rD.

Pseudocode

if isDnz (rA) or isDnz (rB) then
(rD) < O0xFFC00000
FSR[DO] <« 1
ESR[EC] <« 00110
else 1f isSigNaN(rA) or isSigNaN (rB)or
(isPosInfinite(rA) and isNegInfinite(rB)) or
(isNegInfinite (rA) and isPosInfinite(rB))) then
(rD) < OxFFC00000
FSR[IO] « 1
ESR[EC] <« 00110
else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) <« OxXFFC00000
else if isDnz ((rA)+ (rB)) then
(rD) < signZero((rA)+ (rB))
FSR[UF] « 1
ESR[EC] <« 00110
else if isNaN((rA)+ (rB)) then
(rD) <« signInfinite((rA)+(rB))
FSR[OF] <« 1
ESR[EC] <« 00110
else
(rD) <« (rA) + (rB)

Registers Altered
« D, unless an FP exception is generated, in which case the register is unchanged

« ESRI[EC], if an FP exception is generated
« FSR[IO,UF,OF,DO]

Latency
» 4 cycles with c_AREA OPTIMIZED=0

« 6 cycles with ¢ AREA OPTIMIZED=1
* 1 cycle with ¢C_AREA OPTIMIZED=2

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide Send Feedback 242
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=242

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

erUb Reverse Floating-Point Arithmetic Subtraction
frsub rD, rA, rB Reverse subtract
010110 rD rA rB 000100O0O0OO0OO0DO
0 6 11 16 21 31
Description

The floating-point value in rA is subtracted from the floating-point value in rB and the result is placed
into register rD.

Pseudocode

if isDnz (rA) or isDnz (rB) then
(rD) < O0xFFC00000
FSR[DO] <« 1
ESR[EC] <« 00110
else if (isSigNaN(rA) or isSigNaN(rB) or
(isPosInfinite (rA) and isPosInfinite(rB)) or
(isNegInfinite (rA) and isNegInfinite(rB))) then
(rD) < OxFFC00000
FSR[IO] « 1
ESR[EC] <« 00110
else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) <« OxXFFC00000
else if isDnz ((rB)-(rA)) then
(rD) <« signZero((rB)- (rd))
FSR[UF] « 1
ESR[EC] <« 00110
else if isNaN((rB)-(rA)) then
(rD) <« signInfinite((rB)- (rd))
FSR[OF] <« 1
ESR[EC] <« 00110

else
(rD) <« (rB) - (rA)
Registers Altered

« D, unless an FP exception is generated, in which case the register is unchanged
« ESRI[EC], if an FP exception is generated
* FSR[IO,UF,OF,DO]

Latency
» 4 cycles with c_AREA OPTIMIZED=0

« 6 cycles with ¢ AREA OPTIMIZED=1
* 1 cycle with ¢C_AREA OPTIMIZED=2

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide Send Feedback 243
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=243

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

fmu| Floating-Point Arithmetic Multiplication
fmul rD, rA, rB Multiply
010110 rD rA rB 001000O0OOO0ODO
0 6 11 16 21 31
Description

The floating-point value in rA is multiplied with the floating-point value in rB and the result is placed
into register rD.

Pseudocode

if isDnz (rA) or isDnz (rB) then

(rD) < O0xFFC00000

FSR[DO] <« 1

ESR[EC] <« 00110

else
if isSigNaN(rA) or i1sSigNaN(rB) or (isZero(rA) and isInfinite(rB)) or
(isZero(rB) and isInfinite(rA)) then

(rD) <« 0xFFC00000
FSR[IO] « 1
ESR[EC] <« 00110

else if isQuietNaN(rA) or isQuietNaN (rB) then
(rD) <« OxXFFC00000

else if isDnz ((rB) * (rA)) then
(rD) <« signZero((rA)* (rB))
FSR[UF] <« 1
ESR[EC] <« 00110

else if isNaN((rB)* (rA)) then
(rD) < signInfinite((rB)* (rAd))
FSR[OF] <« 1
ESR[EC] <« 00110

else
(rD) <« (rB) * (rA)

Registers Altered
« D, unless an FP exception is generated, in which case the register is unchanged

« ESRI[EC], if an FP exception is generated
« FSR[IO,UF,OF,DO]

Latency
» 4 cycles with c_AREA OPTIMIZED=0

« 6 cycles with ¢ AREA OPTIMIZED=1
* 1 cycle with ¢C_AREA OPTIMIZED=2

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide Send Feedback 244
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=244

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

deV Floating-Point Arithmetic Division
fdiv rD, rA, rB Divide
010110 rD rA rB 00110000O0O0OTO0
0 6 11 16 21 31
Description
The floating-point value in rB is divided by the floating-point value in rA and the result is placed into
register rD.
Pseudocode

if isDnz (rA) or isDnz (rB) then

(rD) <« OxFFC00000

FSR[DO] <« 1

ESR[EC] <« 00110

else
if isSigNaN(rA) or i1sSigNaN(rB) or (isZero(rA) and isZero(rB)) or
(isInfinite (rA) and isInfinite(rB)) then

(rD) <« O0xFFC00000
FSR[IO] « 1
ESR[EC] <« 00110

else if isQuietNaN(rA) or isQuietNaN(rB) then
(rD) <« OxXFFC00000

else if isZero(rA) and not isInfinite(rB) then
(rD) <« signInfinite((xB)/(rA))
FSR[DZ] « 1
ESR[EC] <« 00110

else if isDnz((rB) / (rA)) then
(rD) <« signZero((rB) / (rA))
FSR[UF] <« 1
ESR[EC] <« 00110

else if isNaN((rB)/(rA)) then
(rD) <« signInfinite((rB) / (rA))
FSR[OF] <« 1
ESR[EC] <« 00110

else
(rD) <« (rB) / (rA)

Registers Altered

« rD, unless an FP exception is generated, in which case the register is unchanged
« ESR[EC], if an FP exception is generated
« FSR[IO,UF,OF,DO,DZ]

Latency

« 28 cycles with ¢ AREA OPTIMIZED=0
« 30 cycles with ¢_AREA OPTIMIZED=1
» 24 cycles with ¢_AREA OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide Send Feedback 245
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=245

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

fcmp Floating-Point Number Comparison
fcmp.un rD, rA, rB Unordered floating-point comparison
fcmp.It rD, rA, rB Less-than floating-point comparison
fcmp.eq rD, rA, rB Equal floating-point comparison
fcmp.le rD, rA, rB Less-or-Equal floating-point comparison
fcmp.gt rD, rA, rB Greater-than floating-point comparison
fcmp.ne rD, rA, rB Not-Equal floating-point comparison
fcmp.ge rD, rA, rB Greater-or-Equal floating-point comparison
010110 rD rA rB O 10 0|OpSel [0 O O O
0 6 11 16 21 25 28 31
Description

The floating-point value in rB is compared with the floating-point value in rA and the comparison
result is placed into register rD. The OpSel field in the instruction code determines the type of
comparison performed.

Pseudocode

if isDnz(rA) or isDnz (rB) then
(rD) « 0
FSR[DO] <« 1
ESR[EC] <« 00110
else
{read out behavior from Table 5-3}

Registers Altered

« D, unless an FP exception is generated, in which case the register is unchanged
« ESR[EC], if an FP exception is generated

* FSR[IO,DO]

Latency
* 1 cycle with ¢_AREA opTIMIZED=0 or 2

» 3 cycles with c_ AREA OPTIMIZED=1

Note

These instructions are only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

Table 5-3 lists the floating-point comparison operations.

MicroBlaze Processor Reference Guide Send Feedback 246
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=246

AMD ¢

Table 5-3:

Floating-Point Comparison Operation

Chapter 5: MicroBlaze Instruction Set Architecture

Comparison Type

Operand Relationship

isSigNaN(rA) or

isQuietNaN(rA) or

ESRI[EC] <~ 00110

Description OpSel | (rB) > (rA) | (rB) < (rA) | (rB) =(rA) isSigNaN(rB) isQuietNaN(rB)
Unordered 000 | (rD)« O (rD) «~ 0 (rD) «~ 0 (rD) « 1 (rD) « 1
FSR[IO] « 1
ESR[EC] « 00110
Less-than 001 |(rD) « O (rD) « 1 (rD) <~ 0 (rD) «~ 0 (rD) « 0
FSR[IO] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110
Equal 010 | (rD)« 0 (rD) «~ 0 (rD) « 1 (rD) «~ 0 (rD) « 0
FSR[IO] « 1
ESR[EC] « 00110
Less-or-equal 011 (rD) «~ 0 (rD) « 1 (rD) « 1 (rD) «~ 0 (rD) « 0
FSR[IO] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110
Greater-than 100 | (rD) « 1 (rD) <~ 0 (rD) <~ 0 (rD) <~ 0 (rD) <~ 0
FSR[IO] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110
Not-equal 101 | (rD) « 1 (rD) « 1 (rD) «~ 0 (rD) « 1 (rD) « 1
FSR[IO] « 1
ESR[EC] « 00110
Greater-or-equal 110 | (rD) « 1 (rD) «~ 0 (rD) « 1 (rD) «~ 0 (rD) « 0
FSR[IO] « 1 FSR[IO] « 1

ESRI[EC] <~ 00110

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 247

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=247

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

fit

Floating-Point Convert Integer to Float

flt rD, rA
010110 rD rA 00000O0010100000O00
0 6 11 16 21 31
Description

Converts the signed integer in register rA to floating-point and puts the result in register rD. This is a
32-bit rounding signed conversion that will produce a 32-bit floating-point result.

Pseudocode
(rD) <« float ((rAa))

Registers Altered
« D

Latency

« 5 cycles with ¢ AREA oPTIMIZED=0
» 7 cycles with ¢ AREA OPTIMIZED=1
+ 2 cycles with ¢ AREA OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).

MicroBlaze Processor Reference Guide Send Feedback 248
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=248

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

fint Floating-Point Convert Float to Integer
fint rD, rA
o1o0110 rD rA 000O0OOO0O1100000O0OO0OO0O
0 6 11 16 o7 >
Description

Converts the floating-point number in register rA to a signed integer and puts the result in register rD.
This is a 32-bit truncating signed conversion that will produce a 32-bit integer result.

Pseudocode

if isDnz (rA) then
(rD) < O0xFFC00000
FSR[DO] <« 1
ESR[EC] <« 00110
else if isNaN(rA) then
(rD) <« OxXFFC00000
FSR[IO] <« 1
ESR[EC] <« 00110
else if isInf(rA) or (rA) < -231 or (rA) > 231 - 1 then
(rD) < OxFFCO00000
FSR[IO] « 1
ESR[EC] <« 00110
else
(rD) <« int ((xA))

Registers Altered
« D, unless an FP exception is generated, in which case the register is unchanged

« ESR[EC], if an FP exception is generated
« FSR[IO,DO]

Latency

* 4 cycles with ¢ AREA OPTIMIZED=0
» 6 cycles with ¢ AREA OPTIMIZED=1
* 1 cycle with ¢_AREA OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_ USE FPU is set to 2 (Extended).

MicroBlaze Processor Reference Guide Send Feedback 249
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=249

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

fsq rt Floating-Point Arithmetic Square Root
fsqrt rD, rA Square Root
erorto rD rA 00000011100 00000
Description

Performs a floating-point square root on the value in rA and puts the result in register rD.

Pseudocode

if isDnz (rA) then
(rD) < O0xFFC00000
FSR[DO] <« 1
ESR[EC] <« 00110

else if isSigNaN(rA) then
(rD) <« OxXFFC00000
FSR[IO] <« 1
ESR[EC] <« 00110

else if isQuietNaN(rA) then
(rD) < OxXFFCO00000

else if (rA) < 0 then
(rD) <« OxXFFC00000
FSR[IO] <« 1
ESR[EC] <« 00110

else 1if (rA) = -0 then
(rD) <« -0
else

(rD) <« sqgrt ((rA))

Registers Altered

« D, unless an FP exception is generated, in which case the register is unchanged
« ESR[EC], if an FP exception is generated

« FSR[IO,DO]

Latency

« 27 cycles with ¢_AREA OPTIMIZED=0
« 29 cycles with ¢ AREA OPTIMIZED=1
« 23 cycles with ¢_AREA OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).

MicroBlaze Processor Reference Guide Send Feedback 250
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=250

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

get get from stream interface

tneaget rD, FSLx get data from link x
t = test-only

n = non-blocking
e = exception if control bit set
a = atomic
tnecaget rD, FSLx get control from link x
t = test-only
n = non-blocking
e = exception if control bit not set
a = atomic
011011 rD 0 00O0OO0ONCTtaeOO0OO0O0T 0 FSLx
0 6 11 16 28 31

Description

MicroBlaze will read from the link x interface and place the result in register rD. If the available number
of links set by C_FSL LINKS is less than or equal to FSLx, link O is used.

The get instruction has 32 variants.

The blocking versions (when ‘n’ bit is '0") will stall MicroBlaze until the data from the interface is valid.
The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if the data was valid and to
1" if the data was invalid. In case of an invalid access the destination register contents are undefined.

All data get instructions (when 'c’ bit is '0") expect the control bit from the interface to be ‘0. If this is
not the case, the instruction will set MSR[FSL] to '1'. All control get instructions (when ‘c’ bit is '1')
expect the control bit from the interface to be '1'. If this is not the case, the instruction will set
MSRI[FSL] to '1".

The exception versions (when ‘e’ bit is ‘1) will generate an exception if there is a control bit mismatch.
In this case ESR is updated with EC set to the exception cause and ESS set to the link index. The target
register, rD, is not updated when an exception is generated, instead the data is stored in EDR.

The test versions (when ‘t’ bit is "1") will be handled as the normal case, except that the read signal to
the link is not asserted.

Atomic versions (when ‘a’ bit is ‘1") are not interruptible. Each atomic instruction prevents the
subsequent instruction from being interrupted. This means that a sequence of atomic instructions can
be grouped together without an interrupt breaking the program flow. However, note that exceptions
might still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_ INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR [UM] =1) a Privileged Instruction exception occurs.

MicroBlaze Processor Reference Guide Send Feedback 251
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=251

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Pseudocode
if MSR[UM] = 1 then
ESR[EC] <« 00111
else
X <« FSLx
if x >= C_FSL LINKS then
x < 0

(rD) <« Sx_AXIS_TDATA
if (n = 1) then
MSR [Carry] <« Sx AXIS_TVALID
if Sx AXIS TLAST # c and Sx AXIS TVALID then
MSR[FSL] <« 1
if (e = 1) then
ESR[EC] <« 00000
ESR[ESS] ¢ instruction bits [28:31]

EDR < Sx_AXIS TDATA
Registers Altered
« D, unless an exception is generated, in which case the register is unchanged
« MSRI[FSL]

+ MSRI[Carry]

« ESR[EC], in case a stream exception or a privileged instruction exception is generated
« ESR[ESS], in case a stream exception is generated

« EDR, in case a stream exception is generated

Latency
* 1 cycle with ¢ AREA OoPTIMIZED=0 or 2
« 2 cycles with ¢_AREA OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction can
be completed. Interrupts are served when the parameter C USE EXTENDED FSL_ INSTR is setto 1,
and the instruction is not atomic.

Notes
To refer to an FSLx interface in assembly language, use rfslO, rfsl1, ... rfsl15.

The blocking versions of this instruction should not be placed in a delay slot when the parameter
C USE EXTENDED FSL INSTR is set to 1, since this prevents interrupts from being served.

For non-blocking versions, an rsubc instruction can be used to decrement an index variable.
The ‘e’ bit does not have any effect unless C_FSL EXCEPTION is set to 1.
These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater than 0.

The extended instructions (exception, test and atomic versions) are only available when the
MicroBlaze parameter C_USE_EXTENDED_ FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.

MicroBlaze Processor Reference Guide Send Feedback 252
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=252

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

getd get from stream interface dynamic

tneagetd rD, rB get data from link rB[28:31]

t = test-only

n = non-blocking
= exception if control bit set
= atomic

Q O
|

tnecagetd D, rB get control from link rB[28:31]
t = test-only

n = non-blocking

e = exception if control bit not set
a

atomic

0

100 11 rD 0 00O0O rB 0Onct aeOOO0O 0O

6 11 16 21 31

Description

MicroBlaze will read from the interface defined by the four least significant bits in rB and place the
result in register rD. If the available number of links set by C_FSL_LINKS is less than or equal to the
four least significant bits in rB, link 0 is used.

The getd instruction has 32 variants.

The blocking versions (when ‘n’ bit is '0") will stall MicroBlaze until the data from the interface is valid.
The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if the data was valid and to
1" if the data was invalid. In case of an invalid access the destination register contents are undefined.

All data get instructions (when 'c’ bit is '0") expect the control bit from the interface to be ‘0. If this is
not the case, the instruction will set MSR[FSL] to '1'. All control get instructions (when ‘c’ bit is '1')
expect the control bit from the interface to be '1'. If this is not the case, the instruction will set
MSRI[FSL] to '1".

The exception versions (when ‘e’ bit is ‘1) will generate an exception if there is a control bit mismatch.
In this case ESR is updated with EC set to the exception cause and ESS set to the link index. The target
register, rD, is not updated when an exception is generated, instead the data is stored in EDR.

The test versions (when ‘t’ bit is "1") will be handled as the normal case, except that the read signal to
the link is not asserted.

Atomic versions (when ‘a’ bit is ‘1") are not interruptible. Each atomic instruction prevents the
subsequent instruction from being interrupted. This means that a sequence of atomic instructions can
be grouped together without an interrupt breaking the program flow. However, note that exceptions
might still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_ INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

MicroBlaze Processor Reference Guide Send Feedback 253
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=253

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Pseudocode
if MSR[UM] = 1 then
ESR[EC] « 00111
else

x < rB[28:31]
if x >= C_FSL LINKS then
X < 0
(rD) <« Sx_AXIS_TDATA
if (n = 1) then
MSR [Carry] < Sx AXIS TVALID
if Sx AXIS TLAST # c and Sx_AXIS TVALID then
MSR[FSL] <« 1
if (e = 1) then
ESR[EC] <« 00000
ESR[ESS] < rB[28:31]

EDR < Sx_AXIS TDATA
Registers Altered
« D, unless an exception is generated, in which case the register is unchanged
« MSRI[FSL]

+ MSRI[Carry]

« ESR[EC], in case a stream exception or a privileged instruction exception is generated
« ESR[ESS], in case a stream exception is generated

« EDR, in case a stream exception is generated

Latency
* 1 cycle with ¢ AREA OoPTIMIZED=0 or 2
« 2 cycles with ¢_AREA OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction can
be completed. Interrupts are served unless the instruction is atomic, which ensures that the
instruction cannot be interrupted.

Notes

The blocking versions of this instruction should not be placed in a delay slot, since this prevents
interrupts from being served.

For non-blocking versions, an rsubc instruction can be used to decrement an index variable.
The 'e’ bit does not have any effect unless C_ FSL, EXCEPTION is set to 1.

These instructions are only available when the MicroBlaze parameter C_FSL LINKS is greater than 0
and the parameter C_USE EXTENDED_ FSL INSTR is setto 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.

MicroBlaze Processor Reference Guide Send Feedback 254
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=254

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

IdIV Integer Divide
idiv rD, rA, rB divide rB by rA (signed)
idivu rD, rA, rB divide rB by rA (unsigned)
010010 rD rA rB 0 00 O0OOOOOOUDO
0 6 11 16 21 31
Description

The contents of register rB are divided by the contents of register rA and the result is placed into
register rD.

If the U bit is set, rA and rB are considered unsigned values. If the U bit is clear, rA and rB are
considered signed values.

If the value of rA is 0 (divide by zero), the DZO bit in MSR will be set and the value in rD will be 0,
unless an exception is generated.

If the U bit is clear, the value of rA is -1, and the value of rB is -2147483648 (divide overflow), the DZO
bit in MSR will be set and the value in rD will be -2147483648, unless an exception is generated.

Pseudocode
if (rA) = 0 then
(rD) <- 0

MSR [DZO] <- 1
ESR[EC] <- 00101
ESR[DEC] <- 0
else 1f U = 0 and (rA) = -1 and (rB) = -2147483648 then
(rD) <- -2147483648
MSR [DZO] <- 1
ESR[EC] <- 00101
ESR[DEC] <- 1
else
(rD) <« (rB) / (rA)
Registers Altered
« D, unless a divide exception is generated, in which case the register is unchanged
« MSR[DZO], if divide by zero or divide overflow occurs

« ESRI[EC], if divide by zero or divide overflow occurs

Latency

« 1 cycleif (rA) = 0, otherwise 34 cycles with ¢_AREA OPTIMIZED=0
« 1 cycleif (rA) = 0, otherwise 35 cycles with ¢_AREA OPTIMIZED=1
« 1 cycleif (rA) = 0, otherwise 30 cycles with ¢_AREA OPTIMIZED=2

Note
This instruction is only valid if MicroBlaze is configured to use a hardware divider (C_USE DIV = 1).

MicroBlaze Processor Reference Guide Send Feedback 255
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=255

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

imm Immediate
imm IMM
10110 0/0 0 0 O0 O0O(0 OO0 O0TUDO IMM
0 6 11 16 31
Description

The instruction imm loads the IMM value into a temporary register. It also locks this value so it can be
used by the following instruction and form a 32-bit immediate value.

The instruction imm is used in conjunction with Type B instructions. Since Type B instructions have
only a 16-bit immediate value field, a 32-bit immediate value cannot be used directly. However, 32-bit
immediate values can be used in MicroBlaze. By default, Type B Instructions will take the 16-bit IMM
field value and sign extend it to 32 bits to use as the immediate operand. This behavior can be
overridden by preceding the Type B instruction with an imm instruction. The imm instruction locks the
16-bit IMM value temporarily for the next instruction. A Type B instruction that immediately follows
the imm instruction will then form a 32-bit immediate value from the 16-bit IMM value of the imm
instruction (upper 16 bits) and its own 16-bit immediate value field (lower 16 bits). If no Type B
instruction follows the imm instruction, the locked value gets unlocked and becomes useless.

Latency
« 1cycle
Notes

The imm instruction and the Type B instruction following it are atomic; consequently, no interrupts are
allowed between them.

The assembler automatically detects the need for imm instructions. When a 32-bit IMM value is
specified in a Type B instruction, the assembler converts the IMM value to a 16-bit one to assemble
the instruction and inserts an imm instruction before it in the executable file.

MicroBlaze Processor Reference Guide Send Feedback 256
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=256

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

|bu Load Byte Unsigned
Ibu rD,, rA,, rBy
Ibur rD,, rA,, rBy
Ibuea rD, rA, rB
110000 rD, rA, rB, O ROEA 00O0OOOOO
0 6 11 16 21 31
Description

Loads a byte (8 bits) from the memory location that results from adding the contents of registers rAy
and rBy. The data is placed in the least significant byte of register rDy and the other bytes in rDy are
cleared.

If the R bit is set, a byte reversed memory location is used, loading data with the opposite endianness
of the endianness defined by the E bit (if virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is enabled,
and the instruction is not explicitly allowed.

Pseudocode

if EA = 1 then
Addr « (rA) & (rB)
else
Addr <« (rA,) + (rBy)
if TLB Miss(Addr) and MSR[VM] = 1 then
ESR[EC] <« 10010;ESR[S]« 0
MSR [UMS] < MSR[UM]; MSR[VMS] <« MSR[VM]; MSR[UM] < 0; MSR[VM] <« 0
else if Access Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] < 10000;ESR[S]<« 0; ESR[DIZ] <« 1
MSR [UMS] <~ MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] < 0; MSR[VM] <« O
else
(rDy) [C_DATA SIZE-8:C_DATA SIZE-1] < Mem(Addr)
(rDy) [0:C_DATA SIZE-9] <« O

MicroBlaze Processor Reference Guide Send Feedback 257
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=257

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Registers Altered
« Dy, unless an exception is generated, in which case the register is unchanged

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
« ESR[EC], ESRI[S], if an exception is generated

« ESR[DIZ], if a data storage exception is generated

Latency

* 1 cycle with ¢ AREA OPTIMIZED=0 or 2
« 2 cycles with c_AREA OPTIMIZED=1

Notes

The byte reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA SIZE = 32).

MicroBlaze Processor Reference Guide Send Feedback 258
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=258

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

|bU| Load Byte Unsigned Immediate
lbui rD,. rA,, IMM
111000 rDy rAy IMM
0 6 11 16 31
Description

Loads a byte (8 bits) from the memory location that results from adding the contents of register rAy
with the sign-extended value in IMM. The data is placed in the least significant byte of register rDy
and the other bytes in rDy are cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

Pseudocode
Addr <« (rhA,) + sext (IMM)
if TLB Miss(Addr) and MSRI[VM] = 1 then

ESR[EC] <~ 10010;ESR[S]<« 0
MSR [UMS] < MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] < 0; MSR[VM] <« 0
else if Access Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] < 10000;ESR[S]< 0; ESR[DIZ] <« 1
MSR [UMS] <~ MSR[UM] ; MSR[VMS] < MSR[VM]; MSR[UM] < 0; MSR[VM] < 0
else
(rDy) [C_DATA SIZE-8:C_DATA SIZE-1] < Mem(Addr)
(rD,) [0:C_DATA SIZE-9] < 0
Registers Altered
« Dy, unless an exception is generated, in which case the register is unchanged
« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
« ESRI[EC], ESR[S], if an exception is generated

« ESR[DIZ], if a data storage exception is generated

Latency
* 1 cycle with c_ AREA oPTIMIZED=0 or 2
» 2 cycles with ¢ AREA OPTIMIZED=1

Note

By default, Type B load instructions will take the 16-bit IMM field value and sign extend it to use as the
immediate operand. This behavior can be overridden by preceding the instruction with an imm or
imml instruction. See the instructions “imm” and “imml” for details on using immediate values.

MicroBlaze Processor Reference Guide Send Feedback 259
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=259

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

lhu

Load Halfword Unsigned

lhu rD,. rA,, rBy
lhur rD,. rA, rBy
lhuea rD, rA, rB
11000 1 rDy rAy rBy O ROEA O0OO0OOOOOO
0 6 11 16 21 31
Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from adding the
contents of registers rAy and rBy. The data is placed in the least significant halfword of register rDy
and the other halfwords in rDy is cleared.

If the R bit is set, a halfword reversed memory location is used and the two bytes in the halfword are
reversed, loading data with the opposite endianness of the endianness defined by the E bit (if virtual
protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the least significant bit in the address is not zero.

A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is enabled,
and the instruction is not explicitly allowed.

MicroBlaze Processor Reference Guide Send Feedback 260
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=260

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Pseudocode

if EA = 1 then
Addr <« (rA) & (rB)

else
Addr « (rA,) + (rBy)
if TLB Miss(Addr) and MSR[VM] = 1 then

ESR[EC] < 10010;ESR[S]« O
MSR [UMS] < MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] < 10000;ESR[S]<¢ 0; ESR[DIZ] <« 1
MSR [UMS] - MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] < 0; MSR[VM] < O
else if Addr([31] # 0 then
ESR[EC] <« 00001; ESR[W] <« 0; ESR[S] <« 0; ESR[Rx] <« rD
else if (VM = 0 and R = 1) or
(VM = 1 and R =1 and E = 1) or
(VM = 1 and R = 0 and E = 0) then

(rDy) [C_DATA SIZE-16:C_DATA SIZE-9] < Mem(Addr) ;
(rD,) [C_DATA SIZE-8:C_DATA SIZE-1] < Mem(Addr+l);
(rDy) [0:C_DATA SIZE-17] < O

else

(rDy) [C_DATA SIZE-16:C_DATA SIZE-9] < Mem(Addr+1l) ;
(rDy) [C_DATA SIZE-8:C DATA SIZE-1] < Mem(Addr) ;
(rDy) [0:C_DATA SIZE-17] < 0

Registers Altered
« Dy, unless an exception is generated, in which case the register is unchanged

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
« ESR[EC], ESRI[S], if an exception is generated

« ESR[DIZ], if a data storage exception is generated

« ESR[WI], ESR[RX], if an unaligned data access exception is generated

Latency
* 1 cycle with ¢ AREA OoPTIMIZED=0 or 2

« 2 cycles with c_AREA OPTIMIZED=1

Notes

The halfword reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA SIZE = 32).

MicroBlaze Processor Reference Guide Send Feedback 261
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=261

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

|hUI Load Halfword Unsigned Immediate
lhui rDy, rA,, IMM
11100 1 rDy rAy MM
0 6 11 16 31
Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from adding the
contents of register rAy and the sign-extended value in IMM. The data is placed in the least significant
halfword of register rDy and the other halfwords in rDy is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB. A data storage exception occurs if access is
prevented by a no-access-allowed zone protection. This only applies to accesses with user mode and
virtual protected mode enabled. An unaligned data access exception occurs if the least significant bit
in the address is not zero.

Pseudocode
Addr < (rAg) + sext (IMM)
if TLB Miss(Addr) and MSR[VM] = 1 then
ESR[EC] <« 10010;ESR[S]« 0
MSR [UMS] < MSR[UM]; MSR[VMS] <« MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Access Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] < 10000;ESR[S]<« 0; ESR[DIZ] <« 1
MSR [UMS] <~ MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Addr[31] # 0 then
ESR[EC] < 00001; ESR[W] < 0; ESR[S] <« 0; ESR[Rx] <« 1D
else
(rDy) [C_DATA SIZE-16:C_DATA SIZE-1] < Mem(Addr)
(rDy) [0:C_DATA SIZE-17] <« 0

Registers Altered

« Dy, unless an exception is generated, in which case the register is unchanged

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESRI[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[WI], ESR[Rx], if an unaligned data access exception is generated

Latency
* 1 cycle with c_AREA oPTIMIZED=0 or 2

« 2 cycles with ¢ AREA OPTIMIZED=1

Note

By default, Type B load instructions will take the 16-bit IMM field value and sign extend it to use as the
immediate operand. This behavior can be overridden by preceding the instruction with an imm or
imml instruction. See the instructions “imm” and “imml” for details on using immediate values.

MicroBlaze Processor Reference Guide Send Feedback 262
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=262

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Iw

Load Word
Iw rD,, rA,, rBy
Iwr rD,, rA,, rBy
lwea rD, rA, rB
10010 rDy rAy rBy O ROEA 0O0OOOOODO
6 11 16 21 31
Description

Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of registers rAy and rBy. The data is placed in least significant word of register rDy and the most
significant word (if any) is cleared.

If the R bit is set, the bytes in the loaded word are reversed , loading data with the opposite
endianness of the endianness defined by the E bit (if virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is enabled,
and the instruction is not explicitly allowed.

Pseudocode

if EA = 1 then
Addr « (rA) & (rB)
else
Addr <« (rAy) + (rBy)
if TLB Miss(Addr) and MSR[VM] = 1 then
ESR[EC] <« 10010;ESR[S]« 0
MSR [UMS] < MSR[UM]; MSR[VMS] <« MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Access Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] < 10000;ESR[S]<« 0; ESR[DIZ] <« 1
MSR [UMS] <~ MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Addr[30:31] # 0 then
ESR[EC] < 00001; ESR[W] <« 1; ESR[S] <« 0; ESR[Rx] <« 1D
else
(rDyx [C_DATA SIZE-32:C_DATA SIZE-1]) < Mem(Addr)
(rDy [0:C_DATA SIZE-33]) <« 0

MicroBlaze Processor Reference Guide Send Feedback 263
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=263

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Registers Altered

« Dy, unless an exception is generated, in which case the register is unchanged

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESRI[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[WI], ESR[Rx], if an unaligned data access exception is generated

Latency
* 1 cycle with c_AREA oPTIMIZED=0 or 2
» 2 cycles with ¢ AREA OPTIMIZED=1

Notes

The word reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA SIZE = 32).

MicroBlaze Processor Reference Guide Send Feedback 264
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=264

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

|WI Load Word Immediate
lwi rDy, rAy, IMM
111 010 rDX rAX IMM
0 6 11 16 31
Description

Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of register rAy and the sign-extended value IMM. The data is placed in the least significant word of
register rDy and the most significant word (if any) is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the two least significant bits in the address are not zero

Pseudocode
Addr < (rAg) + sext (IMM)
if TLB Miss(Addr) and MSR[VM] = 1 then

ESR[EC] <« 10010;ESR[S]< 0
MSR [UMS] < MSR[UM]; MSR[VMS] <« MSR[VM]; MSR[UM] < 0; MSR[VM] <« 0
else if Access Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] < 10000;ESR[S]« 0; ESR[DIZ] <« 1
MSR [UMS] <~ MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Addr[30:31] # 0 then
ESR[EC] < 00001; ESR[W] <« 1; ESR[S] <« 0; ESR[Rx] <« rD
else
(rDy [C_DATA SIZE-32:C DATA SIZE-1]) < Mem(Addr); (rDy[0:C DATA SIZE-33]) <« 0

Registers Altered
« Dy, unless an exception is generated, in which case the register is unchanged

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESRI[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
* 1 cycle with ¢_AREA opTIMIZED=0 or 2
« 2 cycles with ¢ AREA OPTIMIZED=1

Note

By default, Type B load instructions will take the 16-bit IMM field value and sign extend it to use as the
immediate operand. This behavior can be overridden by preceding the instruction with an imm or
imml instruction. See the instructions “imm” and “imml” for details on using immediate values.

MicroBlaze Processor Reference Guide Send Feedback 265
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=265

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Load Word Exclusive

lwx rD, rA, rB
10010 rD rA rB 1 00000O0OO0OO0OO0DO
6 11 16 21 31
Description

Loads a word (32 bits) from the word aligned memory location that results from adding the contents
of registers rA and rB. The data is placed in register rD, and the reservation bit is set. If an AXI4
interconnect with exclusive access enabled is used, and the interconnect response is not EXOKAY, the
carry flag (MSRIC]) is set; otherwise the carry flag is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception will not occur, even if the two least significant bits in the address
are not zero.

A data bus exception can occur when an AXI4 interconnect with exclusive access enabled is used, and
the interconnect response is not EXOKAY, which means that an exclusive access cannot be handled.

Enabling AXI exclusive access ensures that the operation is protected from other bus masters, but
requires that the addressed slave supports exclusive access. When exclusive access is not enabled,
only the internal reservation bit is used. Exclusive access is enabled using the two parameters

C_M _AXI DP_EXCLUSIVE_ ACCESS and C_M AXI DC_EXCLUSIVE ACCESS for the peripheral and
cache interconnect, respectively.

Pseudocode

Addr < (rA) + (rB)
if TLB_Miss (Addr) and MSRI[VM] = 1 then
ESR[EC] <« 10010;ESR[S]<« 0
MSR [UMS] < MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] < 0; MSR[VM] <« O
else if Access Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] <« 10000;ESR[S]<« 0; ESR[DIZ] <« 1
MSR [UMS] - MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] < 0; MSR[VM] <« O
else if AXI Exclusive (Addr) and AXI Response # EXOKAY and MSR[EE] then
ESR[EC] < 00100;ESR[ECCl<« O0;
MSR [UMS] <~ MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else
(rD) <« Mem(Addr); Reservation <« 1;
if AXI Exclusive (Addr) and AXI Response # EXOKAY then
MSR[C] <« 1
else
MSR[C] <« ©

MicroBlaze Processor Reference Guide Send Feedback 266
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=266

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Registers Altered
« rD and MSR[C], unless an exception is generated, in which case they are unchanged

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESRI[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated

Latency
* 1 cycle with ¢_AREA opTIMIZED=0 or 2
« 2 cycles with ¢ AREA OPTIMIZED=1

Notes

This instruction is used together with SWX to implement exclusive access, such as semaphores and
spinlocks.

The carry flag (MSR[C]) might not be set immediately (dependent on pipeline stall behavior). The LWX
instruction should not be immediately followed by an MSRCLR, MSRSET, MTS, or SRC instruction, to
ensure the correct value of the carry flag is obtained.

MicroBlaze Processor Reference Guide Send Feedback 267
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=267

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

mbar Memory Barrier
mbar IMM Memory Barrier
101110 IMM 00010/0O0O0OOOOOOOOOOTOODO
0 6 11 16 31
Description

This instruction ensures that outstanding memory accesses on memory interfaces are
completed before any subsequent instructions are executed. This is necessary to guarantee
that self-modifying code is handled correctly, and that a DMA transfer can be safely started.

With self-modifying code, it is necessary to first use an MBAR instruction to wait for data
accesses, which can be done by setting IMM to 1, and then use another MBAR instruction to
clear the Branch Target Cache and empty the instruction prefetch buffer, which can be done
by setting IMM to 2.

To ensure that data to be read by a DMA unit has been written to memory, it is only
necessary to wait for data accesses, which can be done by setting IMM to 1.

When MicroBlaze is configured to use an MMU (c_use_MMU >= 1) this instruction is
privileged when the most significant bit in IMM is set to 1. This means that if the instruction
is attempted in User Mode (MSr [uUM] = 1) a Privileged Instruction exception occurs.

When the two most significant bits in IMM are set to 10 (Sleep), 01 (Hibernate), or 11
(Suspend) and no exception occurs, MicroBlaze enters sleep mode after all outstanding
accesses have been completed. and sets the Sleep, Hibernate or Suspend output signal
respectively to indicate this. The pipeline is halted, and MicroBlaze will not continue
execution until a bit in the Wakeup input signal is asserted.

Pseudocode
if (IMM & 1) = 0 then
wait for instruction side memory accesses
if (IMM & 2) = 0 then

wait for data side memory accesses
PC < PC + 4
if (IMM & 24)!= 0 then

enter sleep mode

Registers Altered

- PC
« ESR[EC], in case a privileged instruction exception is generated

Latency

2+ N cycles when C_INTERCONNECT = 2 (AXI)

8+ N cycles when C_INTERCONNECT = 3 (ACE)

N is the number of cycles to wait for memory accesses to complete

MicroBlaze Processor Reference Guide Send Feedback 268
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=268

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Notes

This instruction must not be preceded by an imm instruction, and must not be placed in a delay slot.

The assembler pseudo-instructions sleep, hibernate, and suspend can be used instead of "mbar 16",
“mbar 8", and "mbar 24" respectively to enter sleep mode.

MicroBlaze Processor Reference Guide Send Feedback 269
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=269

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

me Move From Special Purpose Register
mfs rD, rS
mfse rD, rS
100101 rD 0 EO0OOO1TO0 rS
0 6 11 16 18 31
Description

Copies the contents of the special purpose register rS into register rD. The special purpose registers
TLBLO and TLBHI are used to copy the contents of the Unified TLB entry indexed by TLBX.

If the E bit is set, the extended part of the special register is moved. The EAR, PVR[8] and PVR[9}
registers have extended parts when extended addressing is enabled (C_ADDR_SIZE > 32), and the
TLBLO, PVR[6] and PVR[7] registers have extended parts when Physical Address Extension (PAE) is
enabled.

Pseudocode

if E = 1 then
switch (xS):

case 0x0003 (rD) <« EAR[O:C_ADDR_SIZE—32—1]
case 0x1003 (rD) <« TLBLO[O:C_ADDR_SIZE—32—1]
case 0x2006 : (rD) < PVR6[0:C_ADDR_SIZE-32-1]
case 0x2007 : (rD) <« PVR7[0:C_ADDR_SIZE-32-1]
case 0x2008 : (rD) < PVR8[0:C ADDR SIZE-32-1]
case 0x2009 : (rD) <« PVR9[O:C_ADDR_SIZE—32-1]
default : (rD) <« Undefined
else
switch (rS):
case 0x0000 : (rD) <« PC
case 0x0001 : (rD) <« MSR
case 0x0003 (rD) <« EAR[C_ADDR_SIZE—32:C_ADDR_SIZE—l]
case 0x0005 : (rD) <« ESR
case 0x0007 : (rD) <« FSR
case 0x000B : (rD) <« BTR
case 0x000D : (rD) <« EDR
case 0x0800 : (rD) <« SLR
case 0x0802 (rD) <« SHR
case 0x1000 : (rD) <« PID
case 0x1001 : (rD) <« ZPR
case 0x1002 (rD) <« TLBX
case 0x1003 (rD) < TLBLO[C_ADDR SIZE-32:C_ADDR_SIZE-1]
case 0x1004 (rD) <« TLBHI
case 0x200x : (rD) < PVRx[C ADDR SIZE-32:C ADDR SIZE-1] (where x = 0 to 12)
default : (¥rD) <« Undefined
Registers Altered
« D

MicroBlaze Processor Reference Guide Send Feedback 270
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=270

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Latency
« 1cycle

Notes

To refer to special purpose registers in assembly language, use rpc for PC, rmsr for MSR, rear for EAR,
resr for ESR, rfsr for FSR, rbtr for BTR, redr for EDR, rsir for SLR, rshr for SHR, rpid for PID, rzpr for ZPR,
rtiblo for TLBLO, rtlbhi for TLBHI, rtlbx for TLBX, and rpvrO - rpvr12 for PVRO - PVR12.

The value read from MSR might not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede the MFS
instruction to guarantee correct MSR value.

The value read from FSR might not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect FSR must precede the MFS
instruction to guarantee correct FSR value.

EAR, ESR and BTR are only valid as operands when at least one of the MicroBlaze ¢_* EXCEPTION
parameters are set to 1.

EDR is only valid as operand when the parameter C_FSL_ EXCEPTION is set to 1 and the parameter
C_FSL_LINKS is greater than 0.

FSR is only valid as an operand when the C_USE_FPU parameter is greater than 0.

SLR and SHR are only valid as an operand when the C_ USE_STACK PROTECTION parameter is set to
1.

PID, ZPR, TLBLO and TLBHI are only valid as operands when the parameter C_ USE_MMU > 1 (User
Mode) and the parameter C_MMU TLB ACCESS = 1 (Read) or 3 (Full).

TLBX is only valid as operand when the parameter C_USE_MMU > 1 (User Mode) and the parameter
C_MMU TLB ACCESS > 0 (Minimal).

PVRO is only valid as an operand when C¢_PVR is 1 (Basic) or 2 (Full), and PVR1 - PVR12 are only valid
as operands when C_PVR is set to 2 (Full).

The extended instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32).

MicroBlaze Processor Reference Guide Send Feedback 271
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=271

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

msrcir Read MSR and clear bits in MSR
msrclr rD, Imm
10010 1 rD 100010 Imm15
’ ° B 17 31
Description

Copies the contents of the special purpose register MSR into register rD. Bit positions in the IMM
value that are 1 are cleared in the MSR. Bit positions that are 0 in the IMM value are left untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged for
all IMM values except those only affecting C. This means that if the instruction is attempted in User
Mode (MSR[UM] = 1) in this case a Privileged Instruction exception occurs.

Pseudocode

if MSR[UM] = 1 and IMM # 0x4 then
ESR[EC] <« 00111

else
(rD) < (MSR)
(MSR) < (MSR) A (IMM))

Registers Altered

-« D

+ MSR

« ESRI[EC], in case a privileged instruction exception is generated
Latency

« 1cycle

Notes

MSRCLR will affect the Carry bit immediately while the remaining bits will take effect one cycle after
the instruction has been executed. When clearing the IE bit, it is guaranteed that the processor will not
react to any interrupt for the subsequent instructions.

The value read from MSR might not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede the
MSRCLR instruction to guarantee correct MSR value. This applies to both the value copied to register
rD and the changed MSR value itself.

The immediate values has to be less than 215 when ¢_USE MMU >= 1 (User Mode), and less than 214
otherwise. Only bits 17 to 31 of the MSR can be cleared when ¢_USE_MMU >= 1 (User Mode), and.bits
18 to 31 otherwise.

This instruction is only available when the parameter C._ USE_MSR INSTR is set to 1.

When clearing MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

MicroBlaze Processor Reference Guide Send Feedback 272
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=272

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

msrset Read MSR and set bits in MSR

msrset rD, Imm
10010 1 rD 10 0 0 00O Imm15
0 6 11 17 31
Description

Copies the contents of the special purpose register MSR into register rD. Bit positions in the IMM
value that are 1 are set in the MSR. Bit positions that are 0 in the IMM value are left untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged for all
IMM values except those only affecting C. This means that if the instruction is attempted in User Mode
(MSR [UM] = 1) in this case a Privileged Instruction exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port is set to 11
if the MSR{IE] bit is set by executing this instruction.

Pseudocode

if MSR[UM] = 1 and IMM # 0x4 then
ESR[EC] <« 00111
else
(rD) < (MSR)
(MSR) < (MSR) Vv (IMM)
if (IMM) & 2
Interrupt Ack <« 11

Registers Altered

« D

« MSR

« ESRI[EC], in case a privileged instruction exception is generated
Latency

« 1cycle

Notes

MSRSET will affect the Carry bit immediately while the remaining bits will take effect one cycle after
the instruction has been executed. When setting the EIP or BIP bit, it is guaranteed that the processor
will not react to any interrupt or normal hardware break for the subsequent instructions.

The value read from MSR might not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede the
MSRSET instruction to guarantee correct MSR value. This applies to both the value copied to register
rD and the changed MSR value itself.

The immediate values has to be less than 215 when ¢_USE MMU >= 1 (User Mode), and less than 214
otherwise. Only bits 17 to 31 of the MSR can be set when ¢_USE_MMU >= 1 (User Mode), and.bits 18
to 31 otherwise.

This instruction is only available when the parameter C_ USE_MSR_INSTR is set to 1.

When setting MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

MicroBlaze Processor Reference Guide Send Feedback 273
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=273

AMD ¢

Chapter 5: MicroBlaze Instruction Set Architecture

mts Move To Special Purpose Register
mts rS, rA
mtse rS, rA

10010 1

0O EOOUO rA 1 1

rS

Description

11 16 18

31

Copies the contents of register rD into the special purpose register rS. The special purpose registers
TLBLO and TLBHI are used to copy to the Unified TLB entry indexed by TLBX.

If the E bit is set, the extended part of the special register is moved. The TLBLO register has an
extended part when the Physical Address Extension (PAE) is enabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR [UM] = 1) a Privileged Instruction
exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output portis setto 11
if the MSR{IE] bit is set by executing this instruction.

Pseudocode
if MSR[UM]

else
if E = 1
if (rs)

else
switch
case
case
case
case
case
case
case
case
case
case
if (rs)

= 1 then
ESR[EC] <« 00111

then

= 0x1003 then
TLBLO [O:C_ADDR_SIZE—32—1] <« (rA)

(rs)
0x0001
0x0007
0x0800
0x0802
0x1000
0x1001
0x1002
0x1003
0x1004
0x1005

: MSR <« (rA)
: FSR <« (rA)
: SLR <« (rA)
: SHR <« (rA)
: PID <« (rA)
: ZPR <« (rA)

: TLBX <« (rA)
: TLBLO[C ADDR SIZE-32:C ADDR SIZE-1] <« (rA)
: TLBHI <« (rA)
: TLBSX <« (rA)

= 0x0001 and (rA) & 2
Interrupt Ack <« 11

Registers Altered

e S

« ESR[EC], in case a privileged instruction exception is generated

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 274

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=274

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Latency
« 1cycle

Notes

When writing MSR using MTS, all bits take effect one cycle after the instruction has been executed. An
MTS instruction writing MSR should never be followed back-to-back by an instruction that uses the
MSR content. When clearing the IE bit, it is guaranteed that the processor will not react to any
interrupt for the subsequent instructions. When setting the EIP or BIP bit, it is guaranteed that the
processor will not react to any interrupt or normal hardware break for the subsequent instructions.

To refer to special purpose registers in assembly language, use rmsr for MSR, rfsr for FSR, rsIr for SLR,
rshr for SHR, rpid for PID, rzpr for ZPR, rtlblo for TLBLO, rtlbhi for TLBHI, rtlbx for TLBX, and rtlbsx for
TLBSX.

The PC, ESR, EAR, BTR, EDR and PVRO - PVR12 cannot be written by the MTS instruction.
The FSR is only valid as a destination if the MicroBlaze parameter C_USE_FPU is greater than 0.

The SLR and SHR are only valid as a destination if the MicroBlaze parameter
C_USE_STACK_PROTECTION is set to 1.

PID, ZPR and TLBSX are only valid as destinations when the parameter ¢ USE MMU > 1 (User Mode)
and the parameter C_MMU_TLB_ACCESS > 1 (Read). TLBLO, TLBHI and TLBX are only valid as
destinations when the parameter ¢ USE MMU > 1 (User Mode).

When changing MSR[VM] or PID the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

After writing to TLBHI in order to invalidate one or more UTLB entries, an MBAR 1 instruction must be
issued to ensure that coherency is preserved in a coherent multi-processor system.

When PAE is enabled, the entire TLBLO register must be written, by first using the extended
instruction to write the most significant bits immediately followed by the least significant bits.

The extended instruction is only valid if MicroBlaze is configured to use the MMU in virtual mode
(C_USE_MMU = 3) and extended address (C_ADDR SIZE > 32).

MicroBlaze Processor Reference Guide Send Feedback 275
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=275

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

mul rD, rA, rB
01 00O0O0 rD rA rB 0 0O0OO0OOOOOOOTG O
0 6 11 16 21 31
Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by 32-
bit multiplication that will produce a 64-bit result. The least significant word of this value is placed in
rD. The most significant word is discarded.

Pseudocode
(rD) <« LSW((rA) x (rB))
Registers Altered
« D
Latency

* 1 cycle with c_ AREA oPTIMIZED=0 or 2
» 3 cycles with ¢ AREA OPTIMIZED=1

Note

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is greater than 0.

MicroBlaze Processor Reference Guide Send Feedback 276
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=276

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

mulh rD, rA, rB
01 00O0O0 rD rA rB 0 0O0OO0OOOOODOU O?1
0 6 11 16 21 31
Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by 32-
bit signed multiplication that will produce a 64-bit result. The most significant word of this value is
placed in rD. The least significant word is discarded.

Pseudocode
(rD) <« MSW((rA) X (rB)), signed
Registers Altered
« D
Latency

* 1 cycle with c_ AREA oPTIMIZED=0 or 2
« 3 cycles with ¢ AREA OPTIMIZED=1

Notes

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULH is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between the two
instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the actual values
were not relevant.

MicroBlaze Processor Reference Guide Send Feedback 277
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=277

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

mulhu Multiply High Unsigned
mulhu rD, rA, rB
010000 rD rA rB 0 00O0OOOOOTI11
0 6 11 16 21 31
Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by 32-
bit unsigned multiplication that will produce a 64-bit unsigned result. The most significant word of
this value is placed in rD. The least significant word is discarded.

Pseudocode
(rD) <« MSW((rA) X (rB)), unsigned
Registers Altered
« D
Latency

* 1 cycle with c_ AREA oPTIMIZED=0 or 2
» 3 cycles with ¢ AREA OPTIMIZED=1

Notes

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULHU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between the
two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the actual
values were not relevant.

MicroBlaze Processor Reference Guide Send Feedback 278
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=278

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

mulhsu Multiply High Signed Unsigned

mulhsu rD, rA, rB
01 00O0U0O rD rA rB 0 00 OOOOOOTI10O0
0 6 11 16 21 31
Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit signed
by 32-bit unsigned multiplication that will produce a 64-bit signed result. The most significant word
of this value is placed in rD. The least significant word is discarded.

Pseudocode
(rD) ¢ MSW((rA), signed X (rB), unsigned), signed
Registers Altered
« D
Latency

* 1 cycle with c_ AREA oPTIMIZED=0 or 2
» 3 cycles with ¢ AREA OPTIMIZED=1

Notes

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

When MULHSU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish between the
two instructions. In previous versions of MicroBlaze, these bits were defined as zero, but the actual
values were not relevant.

MicroBlaze Processor Reference Guide Send Feedback 279
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=279

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

mu|| Multiply Immediate

muli rD, rA, IMM

011000 rD rA IMM

Description

Multiplies the contents of registers rA and the value IMM, sign-extended to 32 bits; and puts the result
in register rD. This is a 32-bit by 32-bit multiplication that will produce a 64-bit result. The least
significant word of this value is placed in rD. The most significant word is discarded.

Pseudocode
(rD) «— LSW((rA) X sext (IMM))
Registers Altered
« D
Latency

* 1 cycle with c_ AREA oPTIMIZED=0 or 2
» 3 cycles with ¢ AREA OPTIMIZED=1

Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_ USE_HW MUL is greater than 0.

MicroBlaze Processor Reference Guide Send Feedback 280
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=280

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

or Logical OR
or rD, rA, B
100 000 rD rA rB 000O0OO0OOOOOOD O
0 6 11 16 21 31
Description
The contents of register rA are ORed with the contents of register rB; the result is placed into register
rD.
Pseudocode
(rD) < (rA) v (rB)
Registers Altered
« D
Latency
« 1cycle
Note

The assembler pseudo-instruction nop is implemented as “or r0, r0, r0".

MicroBlaze Processor Reference Guide Send Feedback 281
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=281

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

ori Logical OR with Immediate
ori rD, rA, IMM
101 000 rD rA IMM
0 6 11 16 31
Description

The contents of register rA are ORed with the extended IMM field, sign-extended to 32 bits; the result
is placed into register rD.

Pseudocode
(rD) <« (rA) Vv sext (IMM)
Registers Altered
« D
Latency
« 1cycle
Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide Send Feedback 282
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=282

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

pcmpbf Pattern Compare Byte Find

pcmpbf rD, rA, rB bytewise comparison returning position of first match
100 000 rD rA rB 100000O0OO0ODOO0OTDO
0 6 11 16 21 31
Description

The contents of register rA are bytewise compared with the contents in register rB.

« D is loaded with the position of the first matching byte pair, starting with MSB as
position 1, and comparing until LSB as position 4

« If none of the byte pairs match, rD is set to 0

Pseudocode
if rB[0:7] = rA[0:7] then
(rD) « 1
else
if rB[8:15] = rA[8:15] then
(rD) <« 2
else
if rB[16:23] = rA[16:23] then
(rD) « 3
else
if rB[24:31] = rA[24:31] then
(rD) <« 4
else
(rD) <« O
Registers Altered
« D
Latency
« 1cycle
Note

This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

MicroBlaze Processor Reference Guide Send Feedback 283
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=283

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

pcmpeq Pattern Compare Equal

pcmpeq rD, rA, rB equality comparison with a positive boolean result
100 010 rD rA rB 10000O0O0OOO0OOTO
0 6 11 16 21 31
Description

The contents of register rA are compared with the contents in register rB.
« rDisloaded with 1 if they match, and 0 if not

Pseudocode

if (rB) = (rA) then
(rD) <« 1

else
(rD) < 0

Registers Altered
« D

Latency
« 1cycle

Note
This instruction is only available when the parameter C_ USE_PCMP_ INSTR is set to 1.

MicroBlaze Processor Reference Guide Send Feedback 284
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=284

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

pcmpne Pattern Compare Not Equal

pcmpne rD, rA, rB equality comparison with a negative boolean result
100 0 11 rD rA rB 10000O0O0OOO0OOTO
0 6 11 16 21 31
Description

The contents of register rA are compared with the contents in register rB.
« rDisloaded with O if they match, and 1 if not

Pseudocode

if (rB) = (rA) then
(rD) < 0

else
(rD) « 1

Registers Altered
« D

Latency
« 1cycle

Note
This instruction is only available when the parameter C_ USE_PCMP_ INSTR is set to 1.

MicroBlaze Processor Reference Guide Send Feedback 285
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=285

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

put Put to stream interface
naput rA, FSLx put data to link x
n = non-blocking
a = atomic
tnaput FSLx put data to link x test-only
n = non-blocking
a = atomic
ncaput rA, FSLx put control to link x
n = non-blocking
a = atomic
tncaput FSLx put control to link x test-only
n = non-blocking
a = atomic
01101100000 rA 1T nctaoOO0OO0UOTO OO FSLx
0 6 11 16 28 31
Description

MicroBlaze will write the value from register rA to the link x interface. If the available number of links
set by C_FSL LINKS is less than or equal to FSLx, link O is used.

The put instruction has 16 variants.

The blocking versions (when 'n"is ‘0") will stall MicroBlaze until there is space available in the interface.
The non-blocking versions will not stall MicroBlaze and will set carry to ‘0" if space was available and
to "1" if no space was available.

All data put instructions (when ‘c’ is ‘0") will set the control bit to the interface to ‘0" and all control put
instructions (when ‘c’ is ‘1) will set the control bit to '1".

The test versions (when ‘t’ bit is ‘1) will be handled as the normal case, except that the write signal to
the link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1) are not interruptible. Each atomic instruction prevents the
subsequent instruction from being interrupted. This means that a sequence of atomic instructions can
be grouped together without an interrupt breaking the program flow. However, note that exceptions
might still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU PRIVILEGED INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

MicroBlaze Processor Reference Guide Send Feedback 286
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=286

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Pseudocode
if MSR[UM] = 1 then
ESR[EC] <« 00111
else
X <« FSLx
if x >= C_FSL LINKS then
x < 0

Mx_AXIS TDATA < (rA)
if (n = 1) then

MSR [Carry] < Mx AXIS TVALID A Mx_AXIS_ TREADY
Mx AXIS TLAST <« C

Registers Altered
+ MSR[Carry]

« ESR[EC], in case a privileged instruction exception is generated

Latency
* 1 cycle with c_ AREA oPTIMIZED=0 or 2
» 2 cycles with ¢ AREA OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the
instruction can be completed. Interrupts are served when the parameter
C_USE_EXTENDED FSL _ INSTR is setto 1, and the instruction is not atomic.

Notes

To refer to an FSLx interface in assembly language, use rfsl0, rfsl1, ... rfsl15.

The blocking versions of this instruction should not be placed in a delay slot when the parameter
C_USE_EXTENDED FSL_ INSTR is set to 1, since this prevents interrupts from being served.

These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is greater than 0.

The extended instructions (test and atomic versions) are only available when the MicroBlaze
parameter C_USE_EXTENDED FSL INSTR is setto 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.

MicroBlaze Processor Reference Guide Send Feedback 287
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=287

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

putd Put to stream interface dynamic
naputd rA, rB ut data to link rB[28:31]
P p
n = non-blocking
a = atomic
tnaputd rB ut data to link rB[28:31] test-only
p p
n = non-blocking
a = atomic
ncaputd rA, rB put control to link rB[28:31]
n = non-blocking
a = atomic
tncaputd rB put control to link rB[28:31] test-only
n = non-blocking
a = atomic

1001 100 000 rA rB 1 nct aoOO0OO0OO0

6 11 16 21 31

Description

MicroBlaze will write the value from register rA to the link interface defined by the four least
significant bits in rB. If the available number of links set by C_FSL_LINKS is less than or equal to the
four least significant bits in rB, link 0 is used.

The putd instruction has 16 variants.

The blocking versions (when 'n"is ‘0") will stall MicroBlaze until there is space available in the interface.
The non-blocking versions will not stall MicroBlaze and will set carry to ‘0" if space was available and
to "1" if no space was available.

All data putd instructions (when ‘c’ is '0') will set the control bit to the interface to ‘0’ and all control
putd instructions (when ‘c’ is '1") will set the control bit to '1'.

The test versions (when 't’ bit is ‘1) will be handled as the normal case, except that the write signal to
the link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1) are not interruptible. Each atomic instruction prevents the
subsequent instruction from being interrupted. This means that a sequence of atomic instructions can
be grouped together without an interrupt breaking the program flow. However, note that exceptions
might still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_ MMU PRIVILEGED INSTR to 1 these instructions are privileged. This means that if these
instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

MicroBlaze Processor Reference Guide Send Feedback 288
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=288

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Pseudocode
if MSR[UM] = 1 then
ESR[EC] <« 00111
else

x < rB[28:31]
if x >= C_FSL LINKS then
X < 0
Mx_AXIS TDATA < (rA)
if (n = 1) then
MSR[Carry] < Mx AXIS TVALID A Mx_AXIS TREADY
Mx AXIS TLAST <« C

Registers Altered
+ MSR[Carry]
« ESR[EC], in case a privileged instruction exception is generated

Latency
* 1 cycle with c_ AREA oPTIMIZED=0 or 2
» 2 cycles with ¢ AREA OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction can
be completed. Interrupts are served unless the instruction is atomic, which ensures that the
instruction cannot be interrupted.

Notes

The blocking versions of this instruction should not be placed in a delay slot, since this prevents
interrupts from being served.

These instructions are only available when the MicroBlaze parameter C_FSL LINKS is greater than 0
and the parameter C_ USE EXTENDED FSL INSTR is setto 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary for
performance reasons, since that removes all hardware protection preventing incorrect use of a link.

MicroBlaze Processor Reference Guide Send Feedback 289
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=289

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

rsub Arithmetic Reverse Subtract
rsub rD, rA, rB Subtract
rsubc rD, rA, rB Subtract with Carry
rsubk rD, rA, rB Subtract and Keep Carry
rsubkc rD, rA, rB Subtract with Carry and Keep Carry
0 00 KC 1 rD rA rB 0 0000O0O0O0OODBOTDO

6 11 16 21 31

Description

The contents of register rA are subtracted from the contents of register rB and the result is placed into
register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic rsubk.
Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic rsubc. Both bits are
set to one for the mnemonic rsubkec.

When an rsub instruction has bit 3 set (rsubk, rsubkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsub, rsubc), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (rsubc, rsubkc), the content of the carry flag (MSR[C]) affects
the execution of the instruction. When bit 4 is cleared (rsub, rsubk), the content of the carry flag does
not affect the execution of the instruction (providing a normal subtraction).

Pseudocode
if C = 0 then
(rD) < (rB) + (rA) + 1
else
(rD) <« (rB) + (rA) + MSRI[C]
if K = 0 then
MSR [C] < CarryOut
Registers Altered
« D

+ MSRI[C]

Latency
« 1cycle

Note

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow.

MicroBlaze Processor Reference Guide Send Feedback 290
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=290

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

rsu bl Arithmetic Reverse Subtract Immediate

rsubi rD, rA, IMM Subtract Immediate
rsubic rD, rA, IMM Subtract Immediate with Carry
rsubik rD, rA, IMM Subtract Immediate and Keep Carry
rsubikc rD, rA, IMM Subtract Immediate with Carry and Keep Carry

0 01 KC 1 rD rA IMM

0 6 11 16 31

Description

The contents of register rA are subtracted from the value of IMM, sign-extended to 32 bits, and the
result is placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the
mnemonic rsubik. Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic
rsubic. Both bits are set to one for the mnemonic rsubikc.

When an rsubi instruction has bit 3 set (rsubik, rsubikc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsubi, rsubic), then the
carry flag will be affected by the execution of the instruction. When bit 4 of the instruction is set to
one (rsubic, rsubikc), the content of the carry flag (MSR[C]) affects the execution of the instruction.
When bit 4 is cleared (rsubi, rsubik), the content of the carry flag does not affect the execution of the
instruction (providing a normal subtraction).

Pseudocode

if C = 0 then

(rD) <« sext (IMM) + (rA) + 1
else

(rD) <« sext (IMM) + (rA) + MSRI[C]
if K = 0 then

MSR [C] < CarryOut

Registers Altered
« D
+ MSRI[C]

Latency
« 1cycle

Note

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow. By default, Type B Instructions
will take the 16-bit IMM field value and sign extend it to 32 bits to use as the immediate operand. This
behavior can be overridden by preceding the Type B instruction with an imm instruction. See the
instruction “imm” for details on using 32-bit immediate values.

MicroBlaze Processor Reference Guide Send Feedback 291
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=291

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

rtbd Return from Break

rtbd rAy, IMM

10110110010 rAy IMM
0 6 11 16 31

Description

Return from break will branch to the location specified by the contents of rAy plus the sign-extended
IMM field. It will also enable breaks after execution by clearing the BIP flag in the MSR.

This instruction always has a delay slot. The instruction following the RTBD is always executed before
the branch target. That delay slot instruction has breaks disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR [UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode
if MSR[UM] = 1 then
ESR[EC] <« 00111
else

PC <« (rAg) + sext (IMM)
allow following instruction to complete execution
MSR [BIP] <« 0
MSR [UM] < MSR[UMS]
MSR [VM] < MSR[VMS]
Registers Altered
. PC
* MSRI[BIP], MSR[UM], MSR[VM]

« ESR[EC], in case a privileged instruction exception is generated

Latency
« 2 cycles (with ¢_AREA OPTIMIZED#2)
« 6 cycles (with ¢ AREA OPTIMIZED=2)

If c use_MmU > 1 two additional cycles are added with ¢_AREA OPTIMIZED=2.
Notes
Convention is to use general purpose register r16 as rAy.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 292
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=292

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

rtid Return from Interrupt

rtid rAy, IMM

10110110001 rAy IMM
0 6 11 16 31

Description

Return from interrupt will branch to the location specified by the contents of rAy plus the sign-
extended IMM field. It will also enable interrupts after execution.

This instruction always has a delay slot. The instruction following the RTID is always executed before
the branch target. That delay slot instruction has interrupts disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR [UM] = 1) a Privileged Instruction
exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port is set to 10
when this instruction is executed, and subsequently to 11 when the MSR{IE] bit is set.

Pseudocode
if MSR[UM] = 1 then
ESR[EC] <« 00111
else

PC < (rAy) + sext (IMM)

Interrupt Ack < 10

allow following instruction to complete execution
MSR[IE] <« 1

MSR [UM] < MSR [UMS]

MSR [VM] < MSR [VMS]

Interrupt_ Ack <« 11

Registers Altered

« PC

« MSRIIE], MSR[UM], MSR[VM]

« ESR[EC], in case a privileged instruction exception is generated

Latency
« 2 cycles (with ¢ AREA OPTIMIZED#2)
« 6 cycles (with c_AREA OPTIMIZED=2)

If c use_mMMU > 1 two additional cycles are added with ¢ AREA OPTIMIZED=2.
Notes
Convention is to use general purpose register r14 as rAy.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 293
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=293

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

rted Return from Exception
rted rAy, IMM
1011011 0100 rAy IMM
0 6 11 16 31
Description

Return from exception will branch to the location specified by the contents of rAy plus the sign-
extended IMM field. The instruction will also enable exceptions after execution.

This instruction always has a delay slot. The instruction following the RTED is always executed before
the branch target.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR [UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode
if MSR[UM] = 1 then
ESR[EC] <« 00111
else

PC <« (rAg) + sext (IMM)

allow following instruction to complete execution
MSR[EE] <« 1

MSR [EIP] <« 0

MSR[UM] <« MSR[UMS]

MSR[VM] < MSR[VMS]

ESR <« 0
Registers Altered
- PC
» MSRIEE], MSR[EIP], MSR[UM], MSR[VM]
e ESR
Latency

« 2 cycles (with ¢_AREA OPTIMIZED#2)
» 6 cycles (with ¢ AREA OPTIMIZED=2)

If c use_MmU > 1 two additional cycles are added with ¢_ AREA OPTIMIZED=2.

MicroBlaze Processor Reference Guide Send Feedback 294
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=294

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Notes

Convention is to use general purpose register r17 as rAy. This instruction requires that one or more of
the MicroBlaze parameters C_* EXCEPTION are set to 1 or that C_ USE_MMU > 0.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

The instruction should normally not be used when MSR[EE] is set, since if the instruction in the delay
slot would cause an exception, the exception handler would be entered with exceptions enabled.

Code returning from an exception must first check if MSR[DS] is set, and in that case return to the
address in BTR.

MicroBlaze Processor Reference Guide Send Feedback 295
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=295

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

rtsd Return from Subroutine

rtsd rAy, IMM

1011011 0000 rAy IMM
0 6 11 16 31

Description
Return from subroutine will branch to the location specified by the contents of rAy plus the sign-
extended IMM field.

This instruction always has a delay slot. The instruction following the RTSD is always executed before
the branch target.

Pseudocode

PC < (rAx) + sext (IMM)
allow following instruction to complete execution

Registers Altered

- PC

Latency

« 1 cycle (if successful branch prediction occurs)

« 2 cycles (with Branch Target Cache disabled and ¢ AREA OPTIMIZED#2)

« 3 cycles (if branch prediction mispredict occurs with ¢ AREA oPTIMIZED=0)
+ 6 cycles (with Branch Target Cache disabled and ¢ AREA OPTIMIZED=2)

« 7 cycles (if branch prediction mispredict occurs with ¢ AREA_ OPTIMIZED=2)

If c use_MMU > 1 two additional cycles are added with ¢ AREA OPTIMIZED=2.
Notes
Convention is to use general purpose register r15 as rAy.

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 296
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=296

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

sb

Store Byte
sb rD, rAy, rBy
sbr rD, rAy, rBy
sbea rD, rA, rB
10100 rD rAy rBy O ROEA OOOOOOODO
6 11 16 21 31
Description

Stores the contents of the least significant byte of register rD, into the memory location that results
from adding the contents of registers rAy and rBy.

If the R bit is set, a byte reversed memory location is used, storing data with the opposite endianness
of the endianness defined by the E bit (if virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is enabled,
and the instruction is not explicitly allowed.

Pseudocode

if EA = 1 then

Addr « (rA) & (rB)
else

Addr <« (rAy) + (rBy)
if TLB Miss(Addr) and MSR[VM] = 1 then

ESR[EC] < 10010;ESR[S]« 1

MSR [UMS] < MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Access Protected(Addr) and MSR[VM] = 1 then

ESR[EC] < 10000;ESR[S]¢ 1; ESR[DIZ] < No-access-allowed

MSR [UMS] ¢<— MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] < 0; MSR[VM] < O
else

Mem (Addr) < (rD) [C_DATA SIZE-8:C DATA SIZE-1]

Registers Altered

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
« ESR[EC], ESRI[S], if an exception is generated

« ESR[DIZ], if a data storage exception is generated

MicroBlaze Processor Reference Guide Send Feedback 297
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=297

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Latency
* 1 cycle with c_ AREA oPTIMIZED=0 or 2
» 2 cycles with ¢ AREA OPTIMIZED=1

Notes

The byte reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA SIZE = 32).

MicroBlaze Processor Reference Guide Send Feedback 298
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=298

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Sbl Store Byte Immediate
sbi rD, rAy, IMM
111100 rD rAy IMM
0 6 11 16 31
Description

Stores the contents of the least significant byte of register rD, into the memory location that results
from adding the contents of register rAy and the sign-extended IMM value.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

Pseudocode
Addr < (rAg) + sext (IMM)
if TLB Miss(Addr) and MSRI[VM] = 1 then

ESR[EC] ¢ 10010;ESR[S]<« 1
MSR [UMS] < MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Access Protected(Addr) and MSR[VM] = 1 then
ESR[EC] <« 10000;ESR[S]« 1; ESR[DIZ] <« No-access-allowed
MSR [UMS] <~ MSR[UM]; MSR[VMS] <- MSR[VM]; MSR[UM] <« 0; MSR[VM] < O
else
Mem (Addr) < (rD) [C DATA SIZE-8:C_DATA SIZE-1]
Registers Altered
« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated
« ESR[EC], ESRI[S], if an exception is generated

« ESR[DIZ], if a data storage exception is generated

Latency
* 1 cycle with ¢_AREA opTIMIZED=0 or 2
« 2 cycles with c_AREA OPTIMIZED=1

Note

By default, Type B store instructions will take the 16-bit IMM field value and sign extend it to use as
the immediate operand. This behavior can be overridden by preceding the instruction with an imm or
imml instruction. See the instructions “imm” and “imml” for details on using immediate values.

MicroBlaze Processor Reference Guide Send Feedback 299
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=299

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

sext1l6 Sign Extend Halfword

sext16 rD, rA
100100 rD rA 0 00 0OOOOOOT11TT1TO0OT OT O 1
0 6 11 16 31
Description

This instruction sign-extends a halfword (16 bits) into a word (32 bits). Bit 16 in rA will be copied into
bits 0-15 of rD. Bits 16-31 in rA will be copied into bits 16-31 of rD.

Pseudocode

(rD) [0:15] <« (xA) [16]
(rD) [16:31] <« (xA) [16:31]

Registers Altered
« D

Latency
« 1cycle

MicroBlaze Processor Reference Guide Send Feedback 300
UG984 (v2023.2) February 2, 2024 [-\ ,——-—-—-—-—-J

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=300

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

sext8 Sign Extend Byte
sext8 rD, rA
100100 rD rA 0 000 0O OOOT1TT1TO0UOOU OO
0 6 11 16 31
Description

This instruction sign-extends a byte (8 bits) into a word (32 bits). Bit 24 in rA will be copied into bits
0-23 of rD. Bits 24-31 in rA will be copied into bits 24-31 of rD.

Pseudocode

(rD) [0:23] <« (rA) [24]
(rD) [24:31] <« (xrA) [24:31]

Registers Altered
« D

Latency
« 1cycle

MicroBlaze Processor Reference Guide Send Feedback 301
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=301

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

sh

Store Halfword

sh rD, rAy, rBy
shr rD, rAy, rBy
shea rD, rA, rB
101 0 1 rD rAy rBy O ROEA 0O0OOOOODO
6 11 16 21 31
Description

Stores the contents of the least significant halfword of register rD, into the halfword aligned memory
location that results from adding the contents of registers rAy and rBy.

If the R bit is set, a halfword reversed memory location is used and the two bytes in the halfword are
reversed, storing data with the opposite endianness of the endianness defined by the E bit (if virtual
protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the least significant bit in the address is not zero.

A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is enabled,
and the instruction is not explicitly allowed.

Pseudocode

if EA = 1 then

Addr <« (rA) & (rB)
else

Addr <« (rAy) + (rBy)
if TLB_Miss (Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10010;ESR[S]« 1

MSR [UMS] < MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] < 0; MSR[VM] <« 0
else if Access Protected(Addr) and MSR[VM] = 1 then

ESR[EC] <« 10000;ESR[S]« 1; ESRI[DIZ] <« No-access-allowed

MSR [UMS] «— MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Addr[31] # 0 then

ESR[EC] <« 00001; ESR[W] <« 0; ESR[S] <« 1; ESR[Rx] <« D
else

Mem (Addr) < (rD) [C_DATA SIZE-16:C_DATA SIZE-1]

MicroBlaze Processor Reference Guide Send Feedback 302
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=302

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Registers Altered

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESRI[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[WI], ESR[Rx], if an unaligned data access exception is generated

Latency
* 1 cycle with ¢ AREA OPTIMIZED=0 or 2

« 2 cycles with c_AREA OPTIMIZED=1

Notes

The halfword reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA SIZE = 32).

MicroBlaze Processor Reference Guide Send Feedback 303
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=303

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Shl Store Halfword Immediate
shi rD, rAy, IMM
111101 rD rAy IMM
0 6 11 16 31
Description

Stores the contents of the least significant halfword of register rD, into the halfword aligned memory
location that results from adding the contents of register rAy and the sign-extended IMM value.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB. A data storage exception occurs if virtual
protected mode is enabled, and access is prevented by no-access-allowed or read-only zone
protection. No-access-allowed can only occur in user mode. An unaligned data access exception
occurs if the least significant bit in the address is not zero.

Pseudocode
Addr < (rAg) + sext (IMM)
if TLB Miss(Addr) and MSR[VM] = 1 then

ESR[EC] < 10010;ESR[S]« 1

MSR [UMS] < MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Access Protected(Addr) and MSR[VM] = 1 then

ESR[EC] < 10000;ESR[S]¢ 1; ESR[DIZ] < No-access-allowed

MSR [UMS] ¢<— MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] < 0; MSR[VM] < O
else if Addr[31] # 0 then

ESR[EC] <« 00001; ESR[W] <« 0; ESR[S] <« 1; ESR[Rx] <« rD
else

Mem (Addr) < (rD) [C_DATA SIZE-16:C_DATA SIZE-1]

Registers Altered

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESRI[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
* 1 cycle with ¢_AREA opTIMIZED=0 or 2
« 2 cycles with ¢ AREA OPTIMIZED=1

Note

By default, Type B store instructions will take the 16-bit IMM field value and sign extend it to use as
the immediate operand. This behavior can be overridden by preceding the instruction with an imm or
imml instruction. See the instructions “imm” and “imml” for details on using immediate values.

MicroBlaze Processor Reference Guide Send Feedback 304
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=304

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

sra Shift Right Arithmetic
sra rD, rA
100100 rD rA 0 00O OO OOOOUOOO OO OTU O 1
0 6 11 16 31
Description

Shifts arithmetically the contents of register rA, one bit to the right, and places the result in rD. The
most significant bit of rA (that is, the sign bit) placed in the most significant bit of rD. The least
significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD) [0] <« (xA) [0]
(rD) [1:31] <« (xrA) [0:30]
MSR[C] <« (rA) [31]

Registers Altered
« D

« MSRI[C]
Latency

« 1cycle

MicroBlaze Processor Reference Guide Send Feedback 305
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=305

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Src Shift Right with Carry
src rD, rA
100100 rD rA 0 00O OO OOOOT11TOU OO OTU O 1
0 6 11 16 31
Description

Shifts the contents of register rA, one bit to the right, and places the result in rD. The Carry flag is
shifted in the shift chain and placed in the most significant bit of rD. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode

(rD) [0] « MSRI[C]
(rD) [1:31] <« (rA) [0:30]
MSR[C] < (rA) [31]

Registers Altered
« D

« MSRI[C]
Latency

« 1cycle

MicroBlaze Processor Reference Guide Send Feedback 306
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=306

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

er Shift Right Logical
srl rD, rA
100100 rD rA 0 00O OO OOOT11TOOOOU O 1
0 6 11 16 31
Description

Shifts logically the contents of register rA, one bit to the right, and places the result in rD. A zero is
shifted in the shift chain and placed in the most significant bit of rD. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode

(rD) [0] « ©
(rD) [1:31] <« (rA) [0:30]
MSR[C] <« (rA) [31]

Registers Altered
« D

« MSRI[C]
Latency

« 1cycle

MicroBlaze Processor Reference Guide Send Feedback 307
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=307

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

SW Store Word
SW rD, rAy, rBy
Swr rD, rAy, rBy
swea rD, rA, rB
110110 rD rAy rBy O ROEA 0O0OOOOODO
0 6 11 16 21 31
Description

Stores the contents of register rD, into the word aligned memory location that results from adding the
contents of registers rAy and rBy.

If the R bit is set, the bytes in the stored word are reversed, storing data with the opposite endianness
of the endianness defined by the E bit (if virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of adding
them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is enabled,
and the instruction is not explicitly allowed.

Pseudocode

if EA = 1 then

Addr <« (rA) & (rB)
else

Addr < (rAy) + (rBy)
if TLB Miss(Addr) and MSRI[VM] = 1 then

ESR[EC] ¢ 10010;ESR[S]« 1

MSR [UMS] < MSR[UM]; MSR[VMS] <« MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Access Protected(Addr) and MSR[VM] = 1 then

ESR[EC] <« 10000;ESR[S]<« 1; ESR[DIZ] < No-access-allowed

MSR [UMS] ¢~ MSR[UM]; MSRI[VMS] ¢« MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Addr([30:31] # 0 then

ESR[EC] <« 00001; ESR[W] <« 1; ESR[S] <« 1; ESRI[Rx] <« 1D
else

Mem (Addr) <« (rD)

MicroBlaze Processor Reference Guide Send Feedback 308
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=308

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Registers Altered

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESRI[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[WI], ESR[Rx], if an unaligned data access exception is generated

Latency
* 1 cycle with c_AREA oPTIMIZED=0 or 2
» 2 cycles with ¢ AREA OPTIMIZED=1

Notes

The word reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

The extended address instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA SIZE = 32).

MicroBlaze Processor Reference Guide Send Feedback 309
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=309

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

swa p b Swap Bytes

swapb rD, rA
100100 rD rA 0 00O0O0OO0O0OT11T1T1T1O0O0O0TUO0TU O
0 6 11 16 31
Description

Swaps the contents of register rA treated as four bytes, and places the result in rD. This effectively
converts the byte sequence in the register between endianness formats, either from little-endian to
big-endian or vice versa.

Pseudocode
(rD) [24:31] <« (rA) [0:7]
(rD) [16:23] <« (rA) [8:15]
(rD) [8:15] <« (rA) [16:23]
(rD) [0:7] <« (rA) [24:31]

Registers Altered

« D

Latency

« 1cycle

Note

This instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER INSTR = 1).

MicroBlaze Processor Reference Guide Send Feedback 310
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=310

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

swap h Swap Halfwords

swaph rD, rA
100100 rD rA 0 00O0O0O0O0O0OT11TT1T1T1TO0O0O0OT1TDO0
0 6 11 16 31
Description

Swaps the contents of register rA treated as two halfwords, and places the result in rD. This effectively
converts the two halfwords in the register between endianness formats, either from little-endian to
big-endian or vice versa.

Pseudocode

(rD) [0:15] <« (rA) [16:31]
(rD) [16:31] <« (xA) [0:15]

Registers Altered
-« D

Latency
« 1cycle

Note

This instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE _REORDER INSTR = 1).

MicroBlaze Processor Reference Guide Send Feedback 311
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=311

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

SWi Store Word Immediate
swi rD, rAy, IMM
111110 rD rAy IMM
0 6 11 16 31
Description

Stores the contents of register rD, into the word aligned memory location that results from adding the
contents of registers rAy and the sign-extended IMM value.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are not zero.

Pseudocode
Addr < (rAg) + sext (IMM)
if TLB_Miss (Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10010;ESR[S]<« 1

MSR [UMS] <4 MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] < 0; MSR[VM] <« O
else if Access Protected(Addr) and MSR[VM] = 1 then

ESR[EC] <« 10000;ESR[S]« 1; ESRI[DIZ] <« No-access-allowed

MSR [UMS] ¢— MSR[UM]; MSR[VMS] ¢- MSR[VM]; MSR[UM] < 0; MSR[VM] <« 0
else if Addr([30:31] # 0 then

ESR[EC] < 00001; ESR[W] < 1; ESR[S] <« 1; ESR[Rx] <« D
else

Mem (Addr) < (rD)

Registers Altered

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESRI[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[WI], ESR[Rx], if an unaligned data access exception is generated

Latency
* 1 cycle with c_ AREA oPTIMIZED=0 or 2
» 2 cycles with ¢ AREA OPTIMIZED=1

Note

By default, Type B store instructions will take the 16-bit IMM field value and sign extend it to use as
the immediate operand. This behavior can be overridden by preceding the instruction with an imm or
imml instruction. See the instructions “imm” and “imml” for details on using immediate values.

MicroBlaze Processor Reference Guide Send Feedback 312
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=312

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

SWX Store Word Exclusive
SWX rD, rA, rB
110110 rD rA rB 1 00000O0OOO0OTDO
0 6 11 16 21 31
Description

Conditionally stores the contents of register rD, into the word aligned memory location that results
from adding the contents of registers rA and rB. If an AXI4 interconnect with exclusive access enabled
is used, the store occurs if the interconnect response is EXOKAY, and the reservation bit is set;
otherwise the store occurs when the reservation bit is set. The carry flag (MSR[C]) is set if the store
does not occur, otherwise it is cleared. The reservation bit is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception will not occur even if the two least significant bits in the address
are not zero.

Enabling AXI exclusive access ensures that the operation is protected from other bus masters, but
requires that the addressed slave supports exclusive access. When exclusive access is not enabled,
only the internal reservation bit is used. Exclusive access is enabled using the two parameters

C M AXI DP EXCLUSIVE ACCESSand C_M AXI DC EXCLUSIVE ACCESS for the peripheral and
cache interconnect, respectively.

Pseudocode

Addr <« (rA) + (rB)
if Reservation = 0 then
MSR[C] « 1
else
if TLB_Miss (Addr) and MSR[VM] = 1 then
ESR[EC] ¢ 10010;ESR[S]« 1
MSR [UMS] < MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] < 0; MSR[VM] < O
else if Access Protected(Addr) and MSR[VM] = 1 then
ESR[EC] <« 10000;ESR[S]<« 1; ESR[DIZ] <« No-access-allowed
MSR [UMS] ¢— MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else
Reservation <« 0
if AXI_Exclusive (Addr) and AXI_Response # EXOKAY then
MSR[C] « 1
else
Mem (Addr) < (rD) [0:31]
MSR[C] « O

MicroBlaze Processor Reference Guide Send Feedback 313
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=313

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Registers Altered
« MSR[C], unless an exception is generated

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESRI[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated

Latency
* 1 cycle with ¢_AREA opTIMIZED=0 or 2
« 2 cycles with ¢ AREA OPTIMIZED=1

Notes

This instruction is used together with LWX to implement exclusive access, such as semaphores and
spinlocks.

The carry flag (MSR[C]) might not be set immediately (dependent on pipeline stall behavior). The SWX
instruction should not be immediately followed by an MSRCLR, MSRSET, MTS, or SRC instruction, to
ensure the correct value of the carry flag is obtained.

MicroBlaze Processor Reference Guide Send Feedback 314
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=314

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

WdC Write to Data Cache
wdc rA,rB
wdc.flush rA,rB
wdc.clear rA,rB
wdc.clear.ea rA,rB
wdc.ext.flush rA,rB
wdc.ext.clear rA,rB
10010 0/0 0 O0O0TUO0 rA rB EOOEA 11 F O01TO
0 6 11 16 21 31
Description

Write into the data cache tag to invalidate or flush a cache line. The mnemonic wdc.flush is used to set
the F bit, wdc.clear is used to set the T bit, wdc.clear.ea is used to set the T and EA bits, wdc.ext.flush
is used to set the E, F and T bits, and wdc.ext.clear is used to set the E and T bits.

When C_DCACHE USE WRITEBACK is set to 1:

.

.

If the F bits is set, the instruction will flush and invalidate the cache line.

Otherwise, the instruction will only invalidate the cache line and discard any data that has not
been written to memory.

If the T bit is set, only a cache line with a matching address is invalidated:

- If the EA bit is set register rA concatenated with rB is the extended address of the affected
cache line.

- Otherwise, register rA added with rB is the address of the affected cache line.
o The EA bit is only taken into account when the parameter C_ADDR SIZE > 32.
The E bit is not taken into account.

The F and T bits cannot be used at the same time.

When C_DCACHE USE WRITEBACK is cleared to 0:

3

If the E bit is not set, the instruction will invalidate the cache line. Register rA contains the
address of the affected cache line, and the register rB value is not used.

Otherwise, MicroBlaze will request that the matching address in an external cache should be
invalidated or flushed, depending on the value of the F bit, and invalidate the internal affected
cache line. Register rA added with rB is the address in the external cache, and of the affected
cache line.

The E bit is only taken into account when the parameter C_ INTERCONNECT is set to 3 (ACE).

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) the instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR [UM] = 1) a Privileged Instruction
exception occurs.

MicroBlaze Processor Reference Guide Send Feedback 315
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=315

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Pseudocode
if MSR[UM] = 1 then
ESR[EC] « 00111
else

if C DCACHE USE WRITEBACK = 1 then
if T = 1 and EA = 1 then
address < (rA) & (rB)
else
address < (rA) + (rB)
else if E = 0 then
address < (rA)
else
address <« (rA) + (rB)
if C_DCACHE LINE LEN = 4 then
cacheline mask < (1 << log2(C_DCACHE_BYTE SIZE) - 4) - 1
cacheline < (DCache Line) [(address >> 4) A cacheline_mask]
cacheline addr < address & OxfE£EfffffO
if C_DCACHE LINE LEN = 8 then
cacheline mask < (1 << log2(C_DCACHE BYTE SIZE) - 5) - 1
cacheline < (DCache Line) [(address >> 5) A cacheline mask]
cacheline addr < address & Oxffffffe0
if C_DCACHE LINE LEN = 16 then
cacheline mask < (1 << log2(C_DCACHE BYTE SIZE) - 6) - 1
cacheline < (DCache Line) [(address >> 6) A cacheline mask]
cacheline addr <« address & Oxffffffco
if E = 0 and F = 1 and cacheline.Dirty then
for i = 0 .. C_DCACHE LINE_LEN - 1 loop
if cacheline.Valid[i] then
Mem (cacheline addr + i * 4) < cacheline.Datal[i]
if T = 0 or C DCACHE USE WRITEBACK = 0 then
cacheline.Tag <« 0
else if cacheline.Address = cacheline addr then
cacheline.Tag < 0
if E = 1 then
if F = 1 then
request external cache flush with address
else
request external cache invalidate with address

Registers Altered
« ESR[EC], in case a privileged instruction exception is generated

Latency

« 2 cycles for wdc.clear
« 2 cycles for wdc with ¢_ArREA OPTIMIZED=0 or 2
« 3 cycles for wdc with ¢_AREA OPTIMIZED=0

« 2 + N cycles for wdc.flush, where N is the number of clock cycles required to flush the
cache line to memory when necessary

MicroBlaze Processor Reference Guide Send Feedback 316
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=316

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Notes

The wdc, wdc.flush, wdc.clear and wdc.clear.ea instructions are independent of data cache enable
(MSR[DCE]), and can be used either with the data cache enabled or disabled.

The wdc.clear and wdc.clear.ea instructions are intended to invalidate a specific area in memory, for
example a buffer to be written by a Direct Memory Access device.

Using this instruction ensures that other cache lines are not inadvertently invalidated, erroneously
discarding data that has not yet been written to memory.

The address of the affected cache line is always the physical address, independent of the parameter
C_USE_MMU and whether the MMU is in virtual mode or real mode.

When using wdc.flush in a loop to flush the entire cache, the loop can be optimized by using rA as the
cache base address and rB as the loop counter:

addik r5,r0,C DCACHE BASEADDR

addik r6,r0,C _DCACHE BYTE SIZE-C DCACHE LINE LEN*4
loop: wdc.flush r5,r6

bgtid r6,loop

addik r6,r6,-C_DCACHE LINE LEN*4

When using wdc.clear in a loop to invalidate a memory area in the cache, the loop can be optimized
by using rA as the memory area base address and rB as the loop counter:

addik r5,r0, memory area base_address

addik r6,r0, memory area byte size-C DCACHE LINE LEN*4
loop: wdc.clear r5,r6

bgtid r6,loop

addik r6,r6,-C_DCACHE LINE_LEN*4

MicroBlaze Processor Reference Guide Send Feedback 317
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=317

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

WiC Write to Instruction Cache
wic rA,rB
10010 0/0 0 O0O0TUO rA rB 00001101000
0 6 11 16 21 31
Description

Write into the instruction cache tag to invalidate a cache line. The register rB value is not used.
Register rA contains the address of the affected cache line.

When MicroBlaze is configured to use an MMU (C_USE_MMU > = 1) this instruction is privileged. This
means that if the instruction is attempted in User Mode (MSR [UM] = 1) a Privileged Instruction
exception occurs.

Pseudocode

if MSR[UM] = 1 then
ESR[EC] <« 00111

else
if C_ICACHE LINE LEN = 4 then
cacheline mask <« (1 << log2(C_CACHE BYTE SIZE) - 4) - 1

(ICache Line) [((Ra) >> 4) A cacheline mask].Tag < 0
if C_ICACHE LINE LEN = 8 then

cacheline mask < (1 << log2(C_CACHE BYTE SIZE) - 5) - 1
(ICache Line) [((Ra) >> 5) A cacheline mask].Tag < 0
if C_ICACHE LINE LEN = 16 then
cacheline mask <« (1 << log2(C_CACHE BYTE SIZE) - 6) - 1
(ICache Line) [((Ra) >> 6) A cacheline mask].Tag < 0
Registers Altered
« ESRIEC], in case a privileged instruction exception is generated
Latency
« 2cycles
Notes

The WIC instruction is independent of instruction cache enable (MSR[ICE]), and can be used either
with the instruction cache enabled or disabled.

The address of the affected cache line is the virtual address when the parameter ¢ USE MMU = 3
(VIRTUAL) and the MMU is in virtual mode, otherwise it is the physical address.

MicroBlaze Processor Reference Guide Send Feedback 318
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=318

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Xor Logical Exclusive OR
xor rD, rA, rB
100010 rD rA rB 00O0OOOOOOOD O
0 6 11 16 21 31
Description
The contents of register rA are XORed with the contents of register rB; the result is placed into register
rD.
Pseudocode
(rD) « (rA) @ (rB)
Registers Altered
« D
Latency
« 1cycle

MicroBlaze Processor Reference Guide Send Feedback 319
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=319

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

xori Logical Exclusive OR with Immediate
Xori rD, rA, IMM
101010 rD rA IMM
0 6 11 16 31
Description

The IMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of register
rA are XOR'ed with the extended IMM field; the result is placed into register rD.

Pseudocode
(rD) <« (rhA) @ sext (IMM)

Registers Altered
« D

Latency
« 1cycle

Notes

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use
as the immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction “imm” for details on using 32-bit immediate values.

When this instruction is used with rD set to r0, a program trace event is emitted with the 14 least
significant bits of the result. Typically this is used to trace operating system events like context
switches and system calls, but it can be used by any program to trace significant events. The
functionality is enabled by setting C_DEBUG_ENABLED = 2 (Extended) and C_DEBUG_TRACE_SIZE > 0.
See “"Program and Event Trace” in Chapter 2 for further details.

MicroBlaze Processor Reference Guide Send Feedback 320
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=320

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

MicroBlaze 64-bit Instructions

All additional instructions included in the instruction set for 64-bit MicroBlaze are
defined in this section.

These instructions use the full 64-bit register size to provide long arithmetic and logical
operations.

All Type B 64-bit arithmetic and logical instructions must be preceded by an imml
instruction, to indicate that they are 64-bit instructions. See the instruction “imml” for
details on using 64-bit immediate values.

The extended instruction set also defines double precision floating point instructions.

MicroBlaze Processor Reference Guide Send Feedback 321
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=321

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

add' Arithmetic Add Long
add| rDy, rAL B Add Long
addlc rDy, rAL, 1B, Add Long with Carry
addlk rDy, rAL 1B Add Long and Keep Carry
addlkc rDy, rAL rB. Add Long with Carry and Keep Carry
000 KCO rD, rA, rB, 00100O0O0OO0OO0OO0ODO
0 6 11 16 21 31
Description

The sum of the contents of registers rA| and rB|, is placed into register rD,.

Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic addlk. Bit 4 of the
instruction (labeled as C in the figure) is set to one for the mnemonic addlc. Both bits are set to one
for the mnemonic addlkc.

When an add instruction has bit 3 set (addlk, addlkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addl, addlc), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addlc, addlkc), the content of the carry flag (MSR[C]) affects
the execution of the instruction. When bit 4 is cleared (addl, addlk), the content of the carry flag does
not affect the execution of the instruction (providing a normal addition).

Pseudocode
if C = 0 then
(rD;) <« (rAp) + (xBp)
else
(rD;) <« (rA;) + (rBp) + MSRI[C]
if K = 0 then
MSR[C] <« CarryOutg,
Registers Altered
. rD|_

+ MSRI[C]

Latency
1 cycle

Notes
The C bit in the instruction opcode is not the same as the carry bit in the MSR.

MicroBlaze Processor Reference Guide Send Feedback 322
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=322

AMD ¢

Chapter 5: MicroBlaze Instruction Set Architecture

H Arithmetic Add Long Immediate
d |
addli rDy, rAL, IMM | rDL IMM Add Long Immediate
addlic rD., rA,, IMM | rDL IMM Add Long Immediate with Carry
addlik rDL rA, IMM | rD, IMM Add Long Immediate and Keep Carry
addlikc DL rA, IMM | 1D, IMM Add Long Immediate with Carry and Keep Carry
0 01 KCO rD, rA; IMM
011010 rD_ 0 0 KCO IMM
0 6 11 16 31

Description

The sum of the contents of registers rA_ or rD| and the value in the IMM field extended with the
immediate value from the preceding imml instructions, if any, is placed into register rD,. Bit 3 or 13 of
the instruction (labeled as K in the figure) is set to one for the mnemonic addik. Bit 4 or 14 of the
instruction (labeled as C in the figure) is set to one for the mnemonic addlic. Both bits are set to one
for the mnemonic addlikc.

When an addli instruction has bit 3 or 13 set (addlik, addlikc), the carry flag will keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 or 13 is cleared (addli, addlic),
then the carry flag will be affected by the execution of the instruction.

When bit 4 or 14 of the instruction is set to one (addlic, addlikc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 or 14 is cleared (addli, addlik), the content of the
carry flag does not affect the execution of the instruction (providing a normal addition).

Pseudocode

if ¢ = 0 then
(rDy) < (rA|rD;) + sext (IMM)

else

(rD;) <« (rA;|rD;) + sext(IMM) + MSRIC]
if K = 0 then
MSR[C] <« CarryOutg,

Registers Altered

. rD|_
« MSRI[C]

Latency
1 cycle

Notes

The C bit in the instruction opcode is not the same as the carry bit in the MSR.

Type B arithmetic long instructions with three operands must be preceded by an imml instruction. See
the instruction “imml” for details on using long immediate values.

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 323

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=323

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

and' Logical AND Long
and| rDy, rAL B
10000 1 rD, rA, rB, 0010000O0CO0CO0TO
0 6 11 16 21 31
Description

The contents of register rA| are ANDed with the contents of register rB; the result is placed into
register rDy.

Pseudocode
(rDy) <« (rAp) A (rBg)
Registers Altered
. rD|_
Latency
1 cycle

MicroBlaze Processor Reference Guide Send Feedback 324
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=324

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

and“ Logial AND Long with Immediate
andli rDL rA, IMM | D, IMM
101 0 01 rD, rA_ IMM
011010 rD, 100 0 1 IMM
0 6 11 16 31
Description

The contents of register rA| or rD| are ANDed with the value of the IMM field extended with the
immediate value from the preceding imml instructions; the result is placed into register rD,.

Pseudocode
(rDy) < (rA;|rD;) A sext (IMM)

Registers Altered
. I’DL

Latency
1 cycle

Note

Type B logical long instructions with three operands must be preceded by an imml instruction. See the
instruction “imml” for details on using long immediate values.

MicroBlaze Processor Reference Guide Send Feedback 325
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=325

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

andn| Logical AND NOT Long
andnl rDy, rAL B
1000 11 rD, rA, rB, 0010000O00O0GO0O
0 6 11 16 21 31
Description

The contents of register rA| are ANDed with the logical complement of the contents of register rB;
the result is placed into register rD,.

Pseudocode
(rDy) < (rAy) A (TBp)

Registers Altered
. rD|_

Latency
1 cycle

MicroBlaze Processor Reference Guide Send Feedback 326
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=326

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

andn“ Logical AND NOT Long with Immediate
andnli rDL rA, IMM | D, IMM
101011 rD, rA, IMM
011010 rD_ 100 1 1 IMM
0 6 11 16 31
Description

The IMM field is sign-extended with the immediate value from the preceding imml instructions. The
contents of register rA_ or rD| are ANDed with the logical complement of the extended IMM field; the
result is placed into register rD,.

Pseudocode
(rDy) < (rAy|rDy) A (sext (IMM))

Registers Altered
. I’DL

Latency
1 cycle

Note

Type B logical long instructions with three operands must be preceded by an imml instruction. See the
instruction “imml” for details on using long immediate values.

MicroBlaze Processor Reference Guide Send Feedback 327
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=327

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

beaeq Branch Extended Address if Equal

beaeq rA, rB. Branch Extended Address if Equal

bealeq rA, rB. Branch Extended Address if Long Equal

beaeqd rA, rBp Branch Extended Address if Equal with Delay

bealeqd rAL, rB. Branch Extended Address if Long Equal with Delay
100111 D1TO0O0O rA, rB, 00LOOOOOOO ODP
0 6 11 16 21 31

Description

Branch if rA or rA is equal to 0, to the instruction located in the offset value of rB|. The target of the
branch will be the instruction at address PC + rB.

The mnemonics bealeq and bealeqd will set the L bit. If the L bit is set, a long comparison using rA;
is performed, otherwise a 32-bit comparison using rA is performed.

The mnemonics beaeqd and bealeqd will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode

if L = 1 and rA; = 0 then
PC < PC + 1By
else if rA = 0 then
PC < PC + rBp
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency

« 1 cycle (if branch is not taken)

« 2 cycles (if branch is taken and the D bit is set with C_AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA_ OPTIMIZED#2)
« 6 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED=2)

If c_ use_MMU > 1 two additional cycles are added with ¢_ AREA OPTIMIZED=2.

Note

A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 328
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=328

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

beaeqi Branch Extended Address Immediate if Equal

beaeqi rA, IMM Branch Extended Address Immediate if Equal
beaeqid rA, IMM Branch Extended Address Immediate if Equal with Delay
101111 p100O0O rA| IMM
0 6 11 16 31
Description

Branch if rA or rA| is equal to O, to the instruction located in the offset value of IMM extended with the
immediate value from the preceding imm or imml instructions. The target of the branch will be the
instruction at address PC + IMM.

When preceded by an imml instruction, a long comparison using rA is performed, otherwise a 32-bit
comparison using rA is performed.

The mnemonic beaeqid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If (preceded by imml) and rA; = 0 then
PC < PC + sext (IMM)
else if rA = 0 then
PC < PC + gext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)

« 2 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED#2, or a
branch prediction mispredict occurs with ¢_AREA OPTIMIZED=0)

« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict
occurs with C_ AREA OPTIMIZED=2)

If c use_MmMmU > 1 two additional cycles are added with ¢_AREA OPTIMIZED=2.

MicroBlaze Processor Reference Guide Send Feedback 329
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=329

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Notes

By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign extend it to
64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.

The assembler pseudo-instructions bealeqi and bealeqid are used to indicate a long comparison.

A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 330
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=330

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

beage Branch Extended Address if Greater or Equal

beage rA, rB. Branch Extended Address if Greater or Equal

bealge rA, rB. Branch Extended Address if Long Greater or Equal

beaged rA, rB. Branch Extended Address if Greater or Equal with Delay

bealged rAL, rB. Branch Extended Address if Long Greater or Equal with Delay
100111 D110 1 rA, rB, 00LOOOOOOO ODP
0 6 11 16 21 31

Description

Branch if rA or rA_ is greater or equal to O, to the instruction located in the offset value of rB;. The
target of the branch will be the instruction at address PC + rB,.

The mnemonics bealge and bealged will set the L bit. If the L bit is set, a long comparison using rA;
is performed, otherwise a 32-bit comparison using rA is performed.

The mnemonics beaged and bealged will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode

if L = 1 and rA; >= 0 then
PC < PC + 1By
else if rA >= 0 then
PC < PC + rBp
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered

PC

Latency

1 cycle (if branch is not taken)

2 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED#2)

3 cycles (if branch is taken and the D bit is not set with ¢_AREA OPTIMIZED#2)
6 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED=2)

7 cycles (if branch is taken and the D bit is not set with ¢_ AREA OPTIMIZED=2)

If c_ use_MMU > 1 two additional cycles are added with ¢_ AREA OPTIMIZED=2.

Note

A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 331
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=331

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

beagei Branch Extended Address Immediate if Greater or Equal
beagei rA, IMM Branch Extended Address Immediate if Greater or Equal
beageid rA, IMM Branch Extended Address Immediate if Greater or Equal with Delay
101111 p1101 rA; IMM
0 11 16 31
Description

Branch if rA or rA| is greater or equal to O, to the instruction located in the offset value of IMM
extended with the immediate value from the preceding imm or imml instructions. The target of the
branch will be the instruction at address PC + IMM.

When preceded by an imml instruction, a long comparison using rA is performed, otherwise a 32-bit
comparison using rA is performed.

The mnemonic beaeqid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If (preceded by imml) and rA; >= 0 then
PC < PC + sext (IMM)
else if rA >= 0 then
PC < PC + gext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED#2, or a
branch prediction mispredict occurs with ¢_AREA OPTIMIZED=0)

« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict
occurs with C_ AREA OPTIMIZED=2)

If c use_MmMmU > 1 two additional cycles are added with ¢_AREA OPTIMIZED=2.

MicroBlaze Processor Reference Guide Send Feedback 332
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=332

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Notes

By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign extend it to
64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.

The assembler pseudo-instructions bealgei and bealgeid are used to indicate a long comparison.

A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 333
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=333

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

beagt Branch Extended Address if Greater Than

beagt rA, rB. Branch Extended Address if Greater Than

bealgt rAL, rBp Branch Extended Address if Long Greater Than

beagtd rA, rB. Branch Extended Address if Greater Than with Delay

bealgtd rAL, rB. Branch Extended Address if Long Greater Than with Delay
100111 D1T100 rA, rB, 00LOOOOOOO ODP
0 6 11 16 21 31

Description

Branch if rA or rA_ is greater than 0, to the instruction located in the offset value of rB,. The target of
the branch will be the instruction at address PC + rB,.

The mnemonics bealgt and bealgtd will set the L bit. If the L bit is set, a long comparison using rA| is
performed, otherwise a 32-bit comparison using rA is performed.

The mnemonics beagtd and bealgtd will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode

if L = 1 and rA; > 0 then
PC < PC + 1By
else if rA > 0 then
PC < PC + rBp
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency

« 1 cycle (if branch is not taken)

« 2 cycles (if branch is taken and the D bit is set with C_AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA_ OPTIMIZED#2)
« 6 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED=2)

If c_ use_MMU > 1 two additional cycles are added with ¢_ AREA OPTIMIZED=2.

Note

A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 334
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=334

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

beagti Branch Extended Address Immediate if Greater Than
beagti rA, IMM Branch Extended Address Immediate if Greater Than
beagtid rA, IMM Branch Extended Address Immediate if Greater Than with Delay
10111 1/p1100 rA; IMM
0 6 11 16 31
Description

Branch if rA or rA_ is greater than 0, to the instruction located in the offset value of IMM extended with
the immediate value from the preceding imm or imml instructions. The target of the branch will be the
instruction at address PC + IMM.

When preceded by an imml instruction, a long comparison using rA is performed, otherwise a 32-bit
comparison using rA is performed.

The mnemonic beagtid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If (preceded by imml) and rA; > 0 then
PC < PC + sext (IMM)
else if rA > 0 then
PC < PC + gext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED#2, or a
branch prediction mispredict occurs with ¢_AREA OPTIMIZED=0)

« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict
occurs with C_ AREA OPTIMIZED=2)

If c use_MmMmU > 1 two additional cycles are added with ¢_AREA OPTIMIZED=2.

MicroBlaze Processor Reference Guide Send Feedback 335
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=335

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Notes

By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign extend it to
64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.

The assembler pseudo-instructions bealgti and bealgtid are used to indicate a long comparison.

A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 336
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=336

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

bea|e Branch Extended Address if Less or Equal

beale rA, rB. Branch Extended Address if Less or Equal

bealle rA, rB. Branch Extended Address if Long Less or Equal

bealed rA, rB. Branch Extended Address if Less or Equal with Delay

bealled rAL, rB. Branch Extended Address if Long Less or Equal with Delay
100111 D1TO0T11 rA, rB, 00LOOOOOOO ODP
0 6 11 16 21 31

Description

Branch if rA or rA| is less or equal to 0, to the instruction located in the offset value of rB|. The target
of the branch will be the instruction at address PC + rBy.

The mnemonics bealle and bealled will set the L bit. If the L bit is set, a long comparison using rA| is
performed, otherwise a 32-bit comparison using rA is performed.

The mnemonics bealed and bealled will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode

if L = 1 and rA; <= 0 then
PC < PC + 1By
else if rA <= 0 then
PC < PC + rBp
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency

« 1 cycle (if branch is not taken)

« 2 cycles (if branch is taken and the D bit is set with C_AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA_ OPTIMIZED#2)
« 6 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED=2)

If c_ use_MMU > 1 two additional cycles are added with ¢_ AREA OPTIMIZED=2.

Note

A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 337
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=337

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

bea|ei Branch Extended Address Immediate if Less or Equal
bealei rA, IMM Branch Extended Address Immediate if Less or Equal
bealeid rA, IMM Branch Extended Address Immediate if Less or Equal with Delay
101111 p1011 rA_ IMM
0 6 11 16 31
Description

Branch if rA or rA_ is less or equal to 0, to the instruction located in the offset value of IMM extended
with the immediate value from the preceding imm or imml instructions. The target of the branch will
be the instruction at address PC + IMM.

When preceded by an imml instruction, a long comparison using rA is performed, otherwise a 32-bit
comparison using rA is performed.

The mnemonic bealeid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If (preceded by imml) and rA; <= 0 then
PC < PC + sext (IMM)
else if rA <= 0 then
PC < PC + gext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED#2, or a
branch prediction mispredict occurs with ¢_AREA OPTIMIZED=0)

« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict
occurs with C_ AREA OPTIMIZED=2)

If c use_MmMmU > 1 two additional cycles are added with ¢_AREA OPTIMIZED=2.

MicroBlaze Processor Reference Guide Send Feedback 338
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=338

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Notes

By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign extend it to
64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.

The assembler pseudo-instructions beallei and bealleid are used to indicate a long comparison.

A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 339
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=339

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

bealt Branch Extended Address if Less Than

bealt rA, rB. Branch Extended Address if Less Than

beallt rA, rB. Branch Extended Address if Long Less Than

bealtd rA, rB. Branch Extended Address if Less Than with Delay

bealltd rAL, rB. Branch Extended Address if Long Less Than with Delay
100111 D1TO0T1T0O rA, rB, 00LOOOOOOO ODP
0 6 11 16 21 31

Description

Branch if rA or rA| is less than 0, to the instruction located in the offset value of rB|. The target of the
branch will be the instruction at address PC + rB.

The mnemonics beallt and bealltd will set the L bit. If the L bit is set, a long comparison using rA| is
performed, otherwise a 32-bit comparison using rA is performed.

The mnemonics bealtd and bealltd will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode

if L = 1 and rA; < 0 then
PC < PC + 1By
else if rA < 0 then
PC < PC + rBp
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency

« 1 cycle (if branch is not taken)

« 2 cycles (if branch is taken and the D bit is set with C_AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA_ OPTIMIZED#2)
« 6 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED=2)

If c_ use_MMU > 1 two additional cycles are added with ¢_ AREA OPTIMIZED=2.

Note

A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 340
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=340

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

bea|ti Branch Extended Address Immediate if Less Than
bealti rA, IMM Branch Extended Address Immediate if Less Than
bealtid rA, IMM Branch Extended Address Immediate if Less Than with Delay
101111 D1 01O rA_ IMM
0 6 11 16 31
Description

Branch if rA or rA| is less than O, to the instruction located in the offset value of IMM extended with
the immediate value from the preceding imm or imml instructions. The target of the branch will be the
instruction at address PC + IMM.

When preceded by an imml instruction, a long comparison using rA is performed, otherwise a 32-bit
comparison using rA is performed.

The mnemonic bealtid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If (preceded by imml) and rA; < 0 then
PC < PC + sext (IMM)
else if rA < 0 then
PC < PC + gext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED#2, or a
branch prediction mispredict occurs with ¢_AREA OPTIMIZED=0)

« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict
occurs with C_ AREA OPTIMIZED=2)

If c use_MmMmU > 1 two additional cycles are added with ¢_AREA OPTIMIZED=2.

MicroBlaze Processor Reference Guide Send Feedback 341
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=341

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Notes

By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign extend it to
64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.

The assembler pseudo-instructions beallti and bealltid are used to indicate a long comparison.

A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 342
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=342

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

beane Branch Extended Address if Not Equal

beane rA, rB. Branch Extended Address if Not Equal

bealne rA, rB. Branch Extended Address if Long Not Equal

beaned rA, rB. Branch Extended Address if Not Equal with Delay

bealned rAL, rB. Branch Extended Address if Long Not Equal with Delay
100111 D1TO0O01 rA, rB, 00LOOOOOOO ODP
0 6 11 16 21 31

Description

Branch if rA or rA| is not equal to O, to the instruction located in the offset value of rB|. The target of
the branch will be the instruction at address PC + rB,.

The mnemonics bealne and bealned will set the L bit. If the L bit is set, a long comparison using rA is
performed, otherwise a 32-bit comparison using rA is performed.

The mnemonics beaned and bealned will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode

if L = 1 and rA; # 0 then
PC < PC + 1By
else if rA # 0 then
PC < PC + 1B
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency

« 1 cycle (if branch is not taken)

« 2 cycles (if branch is taken and the D bit is set with C_AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA_ OPTIMIZED#2)
« 6 cycles (if branch is taken and the D bit is set with ¢ AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED=2)

If c_ use_MMU > 1 two additional cycles are added with ¢_ AREA OPTIMIZED=2.

Note

A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 343
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=343

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

beanei Branch Extended Address Immediate if Not Equal

beanei rA, IMM Branch Extended Address Immediate if Not Equal
beaneid rA, IMM Branch Extended Address Immediate if Not Equal with Delay
1011 11DpD10O0 1 rA| IMM
0 6 11 16 31
Description

Branch if rA or rA_ is not equal to 0, to the instruction located in the offset value of IMM extended with
the immediate value from the preceding imm or imml instructions. The target of the branch will be the
instruction at address PC + IMM.

When preceded by an imml instruction, a long comparison using rA is performed, otherwise a 32-bit
comparison using rA is performed.

The mnemonic beaneid will set the D bit. The D bit determines whether there is a branch delay slot or
not. If the D bit is set, it means that there is a delay slot and the instruction following the branch (that
is, in the branch delay slot) is allowed to complete execution before executing the target instruction.
If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode

If (preceded by imml) and rA;, # 0 then
PC < PC + sext (IMM)
else if rA # 0 then
PC < PC + gext (IMM)
else
PC < PC + 4
if D = 1 then
allow following instruction to complete execution

Registers Altered
- PC

Latency
« 1 cycle (if branch is not taken, or successful branch prediction occurs)
« 2 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED#2)

« 3 cycles (if branch is taken and the D bit is not set with ¢ AREA OPTIMIZED#2, or a
branch prediction mispredict occurs with ¢_AREA OPTIMIZED=0)

« 6 cycles (if branch is taken and the D bit is set with ¢_AREA OPTIMIZED=2)

« 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict
occurs with C_ AREA OPTIMIZED=2)

If c use_MmMmU > 1 two additional cycles are added with ¢_AREA OPTIMIZED=2.

MicroBlaze Processor Reference Guide Send Feedback 344
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=344

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Notes

By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign extend it to
64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.

The assembler pseudo-instructions bealnei and bealneid are used to indicate a long comparison.

A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 345
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=345

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

brea Unconditional Branch Extended Address
brea rB. Branch Extended Address
bread rB. Branch Extended Address with Delay
breald rD., rB. Branch Extended Address and Link with Delay
100110 rD, DOL 01 rB. 000O0OO0OOOODO
0 6 11 16 21 31
Description

Branch to the instruction located at address determined by PC + rB,.

The mnemonic breald will set the L bit. If the L bit is set, linking will be performed. The current value
of PC will be stored in rD,.

The mnemonics bread and breald will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction.

If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after the
branch is the target instruction.

Pseudocode
if L = 1 then
(rDy) <« PC
PC < PC + (rBy)
if D = 1 then
allow following instruction to complete execution
Registers Altered
. rD|_
. PC

Latency

« 2 cycles (if the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if the D bit is not set with ¢ AREA OPTIMIZED#2)
« 6 cycles (if the D bit is set with ¢ AREA OPTIMIZED=2)

« 7 cycles (if the D bit is not set with ¢ AREA OPTIMIZED=2)

If c_ use_MMmU > 1 two additional cycles are added with ¢_ AREA OPTIMIZED=2.

Note

The instruction breal is not available.
Absolute extended address branches can be performed with the instructions bra, brad, and brald.

A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 346
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=346

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

breai Unconditional Branch Extended Address Immediate
breai IMM Branch Extended Address Immediate
breaid IMM Branch Extended Address Immediate with Delay
brealid rD., IMM Branch Extended Address and Link Immediate with Delay
101110 rD, DOL 01 IMM
0 6 11 16 31
Description

Branch to the instruction located at address determined by PC + IMM, extended with the immediate
value from the preceding IMM or imml instructions.

The mnemonic brealid will set the L bit. If the L bit is set, linking will be performed. The current value
of PC will be stored in rD,.

The mnemonics breaid and brealid will set the D bit. The D bit determines whether there is a branch
delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the target
instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to be executed
after the branch is the target instruction.

Pseudocode
if L = 1 then
(rDy) <« PC
PC ¢~ PC + sext (IMM)
if D = 1 then
allow following instruction to complete execution
Registers Altered
. rD|_
- PC

Latency
« 1 cycle (if successful branch prediction occurs)
« 2 cycles (if the D bit is set with ¢ AREA OPTIMIZED#2)

« 3 cycles (if the D bit is not set with ¢ AREA OPTIMIZED#2, or a branch prediction
mispredict occurs with ¢ AREA OPTIMIZED=0)

« 6 cycles (if the D bit is set with ¢ AREA OPTIMIZED=2)

« 7 cycles (if the D bit is not set, or if branch prediction mispredict occurs with
C_AREA OPTIMIZED=2)

If c use_MmMmU > 1 two additional cycles are added with ¢_AREA OPTIMIZED=2.

MicroBlaze Processor Reference Guide Send Feedback 347
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=347

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Notes
The instruction breali is not available.
Absolute extended address branches can be performed with the instructions brai, braid, and bralid.

By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign extend it to
64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.

A delay slot must not be used by the following: imm, imml, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.

MicroBlaze Processor Reference Guide Send Feedback 348
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=348

AMD ¢

Chapter 5: MicroBlaze Instruction Set Architecture

bSl Barrel Shift Long
bslrl rD., rA,, B Barrel Shift Long Right Logical
bslra rD., rA,, B Barrel Shift Long Right Arithmetical
bslll rDy, rAL 1B Barrel Shift Long Left Logical
010001 rD, rA, rB S T1000O0O0OO0OO0ODO
0 6 11 16 21 31

Description

Shifts the contents of register rA; by the amount specified in register rB and puts the result in register

rD|_.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bslrl and bslra clear the S bit and the shift is done to the right.

The mnemonic bslra will set the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bslrl and bslll clear the T bit and the shift performed is Logical.

Pseudocode

if S = 1 then

(rD;) <
else

(rh;) <<

if T = 1 then
if ((rB) [26:31])
(rDy) [0: (¥rB) [26:31]-1] <« (rAp) [0]
(rDy) [(rB) [26:31]:31] <« (rA;) >> (rB) [26:31]

else

(rD;) < (rAp)

else

(rDy) <«

(rB) [26:31]

0 then

(ra;) >> (rB) [26:31]

Registers Altered

. rD|_

Latency

* 1 cycle with ¢ AREA opTIMIZED=0 or 2

» 2 cycles with ¢ AREA OPTIMIZED=1

Note

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 349

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=349

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

bsli

Barrel Shift Long Immediate

bslrli rD., rA,, IMM Barrel Shift Long Right Logical Immediate
bslrai rD., rA,, IMM Barrel Shift Long Right Arithmetic Immediate
bsllli rD, rAL, IMM Barrel Shift Long Left Logical Immediate
bslefi rDy, rAL, IMMyy, IMMg Barrel Shift Long Extract Field Immediate
bslifi rD., rAL, Width!, IMMg Barrel Shift Long Insert Field Immediate

1. Width = IMMy, - IMMg + 1

011001 rD, rA, 00100/STO0O0O IMM

0 6 ik 16 21 26 31

011001 rD, rA, I E10 IMM,y IMMg

0 6 ik 16 20 25 26 31
Description

The first three instructions shift the contents of register rA| by the amount specified by IMM and put
the result in register rDy.

Barrel Shift Extract Field extracts a bit field from register rA| and puts the result in register rD,. The bit
field width is specified by IMM,y and the shift amount is specified by IMMs. The bit field width must
be in the range 1 - 63, and the condition IMMy + IMMg < 64 must apply.

Barrel Shift Insert Field inserts a bit field from register rA| into register rD|, modifying the existing
value in register rD. The bit field width is defined by IMM,y - IMMg + 1, and the shift amount is
specified by IMMg. The condition IMMy, > IMMg must apply.

The mnemonic bsllli sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left. The
mnemonics bslirli and bslrai clear the S bit and the shift is done to the right.

The mnemonic bslrai sets the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bslrli and bsllli clear the T bit and the shift performed is Logical.

The mnemonic bslefi sets the E bit (Extract bit). In this case the S and T bits are not used.

The mnemonic bslifi sets the | bit (Insert bit). In this case the S and T bits are not used.

MicroBlaze Processor Reference Guide Send Feedback 350
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=350

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Pseudocode

if E = 1 then
(rDy) [0:63-IMMy] <« O
(rD;) [64-IMMy:63] < (rA;) >> IMMg
else if I = 1 then
mask <« (OxEfffffffffffffff << (IMMy + 1)) @ (OxEfffEfFfffffFFffff << IMMg)
(rD;) <« ((rhA;) << IMMg) A mask) v ((rDy) A mask)
else 1f S = 1 then
(rDy) < (rAp) << IMM
else 1f T = 1 then
if IMM # 0 then
(rDy) [0:IMM-1] <« (rA;) [0]
(rDy) [IMM:31] < (rA;) >> IMM
else
(rDy) < (rAp)
else
(rDy) <« (rA;) >> IMM

Registers Altered
. rD|_

Latency
* 1 cycle with ¢_AREA opTIMIZED=0 or 2
« 2 cycles with ¢ AREA OPTIMIZED=1

Notes
These are not Type B Instructions. There is no effect from a preceding imm or imml instruction.

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).

The assembler code “bslifi rD, rA, width, shift” denotes the actual bit field width, not the IMM,y field,
which is computed by IMMyy = shift + width - 1.

MicroBlaze Processor Reference Guide Send Feedback 351
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=351

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

cmpl Integer Compare Long
cmpl rDy, rAL B compare rB| with rA_ (signed)
cmplu rDy, rAL B compare rB| with rA| (unsigned)
000101 rD, rA, rB, 001000O0OO0OO0OUI1
0 6 11 16 21 31
Description

The contents of register rA| are subtracted from the contents of register rB| and the result is placed
into register rD,.

The MSB bit of rD| is adjusted to shown true relation between rA| and rB,. If the U bit is set, rA; and
rB, is considered unsigned values. If the U bit is clear, rA| and rB| is considered signed values.

Pseudocode

(rDy) <« (rBy) + (rAp) + 1
(rDy) (MSB) <= (rAp) > (rBp)

Registers Altered
. rD|_

Latency
« 1cycle

MicroBlaze Processor Reference Guide Send Feedback 352
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=352

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

dadd Double Floating-Point Arithmetic Add
dadd rD., rA, B Add
010110 rD, rA_ rB, 1 0000O0O0OO0OO0OO0ODO
0 6 11 16 21 31
Description

The double precision floating-point sum of registers rA_ and rB, is placed into register rD,.

Pseudocode

if isDnz(rA;) or isDnz(rB;) then
(rDL) < OxFFF8000000000000
FSR[DO] « 1
ESR[EC] <« 00110
else if isSigNaN(rA;) or isSigNaN(rB;)or
(isPosInfinite(rA;) and isNegInfinite(rB;)) or
(isNegInfinite(rA;) and isPosInfinite(rB;))) then
(rDL) < OxFFF8000000000000
FSR[IO] « 1
ESR[EC] <« 00110
else if isQuietNaN(rA;) or isQuietNaN(rB;) then
(rD;) < OxFFF8000000000000
else if isDnz ((rAp)+(rBg)) then
(rD;) < signZero((rAp)+ (rBg))
FSR[UF] « 1
ESR[EC] <« 00110
else if isNaN((rA;)+(rB;)) then
(rD;) < signInfinite((rA;)+ (xBg))
FSR[OF] « 1
ESR[EC] <« 00110
else
(rD;) <« (rA;) + (rBp)

Registers Altered
« Dy, unless an FP exception is generated, in which case the register is unchanged

« ESRI[EC], if an FP exception is generated
« FSR[IO,UF,OF,DO]

Latency

» 4 cycles with c_AREA OPTIMIZED=0
« 6 cycles with ¢ AREA OPTIMIZED=1
* 1 cycle with ¢C_AREA OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide Send Feedback 353
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=353

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

drsub Double Reverse Floating-Point Arithmetic Subtraction
drsub rD., rA, B Reverse subtract
010110 rD, rA_ rB, 1 001000O0O0OO0OO0
0 6 11 16 21 31
Description

The double precision floating-point value in rA is subtracted from the double floating-point value in
rB. and the result is placed into register rD,.

Pseudocode

if isDnz(rA;) or isDnz(rB;) then
(rDL) < OxFFF8000000000000
FSR[DO] « 1
ESR[EC] <« 00110
else if (isSigNaN(rA;) or isSigNaN(rB;) or
(isPosInfinite(rA;) and isPosInfinite(rB;)) or
(isNegInfinite(rA;) and isNegInfinite(rB;))) then
(rDL) < OxFFF8000000000000
FSR[IO] « 1
ESR[EC] <« 00110
else if isQuietNaN(rA;) or isQuietNaN(rB;) then
(rD;) < OxFFF8000000000000
else if isDnz ((rB;)-(rA;)) then
(rD;) < signZero((rBp) - (rAp))
FSR[UF] « 1
ESR[EC] <« 00110
else if isNaN((rBi)-(rA;)) then
(rD;) < signInfinite((rB;) - (rAp))
FSR[OF] « 1
ESR[EC] <« 00110
else
(rD;) <« (rBp) - (rAp)

Registers Altered
« Dy, unless an FP exception is generated, in which case the register is unchanged

« ESRI[EC], if an FP exception is generated
« FSR[IO,UF,OF,DO]

Latency
» 4 cycles with c_AREA OPTIMIZED=0

« 6 cycles with ¢ AREA OPTIMIZED=1
* 1 cycle with ¢C_AREA OPTIMIZED=2

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide Send Feedback 354
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=354

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

de| Double Floating-Point Arithmetic Multiplication
dmul rDy, rAL B Multiply
010110 rD, rA_ rB, 1 01000O0O0O0OO0OO0
0 6 11 16 21 31
Description

The double precision floating-point value in rA| is multiplied with the double floating-point value in
rB. and the result is placed into register rD,.

Pseudocode

if isDnz(rA;) or isDnz(rB;) then

(rDL) < OxFFF8000000000000

FSR[DO] « 1

ESR[EC] <« 00110

else
if isSigNaN(rA;) or isSigNaN(rB;) or (isZero(rAd;) and isInfinite(rB;)) or
(isZero (rB;) and isInfinite(rA;)) then

(rDL) < OxFFF8000000000000
FSR[IO] « 1
ESR[EC] <« 00110

else if isQuietNaN(rA;) or isQuietNaN(rB;) then
(rD;) < OxFFF8000000000000

else if isDnz((rB;) * (rA;)) then
(rD;) < signZero((rAp) * (rBg))
FSR[UF] « 1
ESR[EC] <« 00110

else if isNaN((rB;) * (rA;)) then
(rD;) < signInfinite((rBy) * (rAp))
FSR[OF] « 1
ESR[EC] <« 00110

else
(rDy) < (rBp) * (rAp)

Registers Altered
« Dy, unless an FP exception is generated, in which case the register is unchanged

« ESRI[EC], if an FP exception is generated
« FSR[IO,UF,OF,DO]

Latency

» 4 cycles with c_AREA OPTIMIZED=0
« 6 cycles with ¢ AREA OPTIMIZED=1
* 1 cycle with ¢C_AREA OPTIMIZED=2

Note
This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide Send Feedback 355
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=355

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

ddIV Double Floating-Point Arithmetic Division
ddiv rDy, rAL B Divide
010110 rD, rA_ rB, 1 011000O0O0O00O0
0 6 11 16 21
Description

The double precision floating-point value in rB| is divided by the double floating-point value in rA_

and the result is placed into register rD,.

Pseudocode

if isDnz(rA;) or isDnz(rB;) then

(rDL) < OxFFF8000000000000

FSR[DO] <« 1

ESR[EC] <« 00110

else
if isSigNaN(rA;) or isSigNaN(rB;) or (isZero(rd;) and isZero(rB;)) or
(isInfinite(raA;) and isInfinite(rB;)) then

(rDL) < OxFFF8000000000000
FSR[IO] <« 1
ESR[EC] <« 00110

else if isQuietNaN(rA;) or isQuietNaN(rB;) then
(rD;) < OxFFF8000000000000

else if isZero(rA;) and not isInfinite(rB;) then
(rD;) < signInfinite((xBy)/ (rA))
FSR[DZ] « 1
ESR[EC] <« 00110

else if isDnz ((rB;) / (rA;)) then
(rD;) < signZero((rB;) / (rAy))
FSR[UF] « 1
ESR[EC] <« 00110

else if isNaN((rB;)/(rA;)) then
(rD;) < signInfinite((rBy) / (rAp))
FSR[OF] <« 1
ESR[EC] <« 00110

else
(rDy) < (rBp) / (rAp)

Registers Altered

« Dy, unless an FP exception is generated, in which case the register is unchanged
« ESR[EC], if an FP exception is generated
« FSR[IO,UF,OF,DO,DZ]

Latency

« 28 cycles with ¢ AREA OPTIMIZED=0
« 30 cycles with ¢_AREA OPTIMIZED=1
» 24 cycles with ¢_AREA OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

MicroBlaze Processor Reference Guide Send Feedback
UG984 (v2023.2) February 2, 2024 [—‘ /—]

356

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=356

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

dcmp Double Floating-Point Number Comparison

dcmp.un rD, rA, rB Unordered double floating-point comparison

dcmp.lt rD, rA, rB Less-than double floating-point comparison

dcmp.eq rD, rA, rB Equal double floating-point comparison

dcmp.le rD, rAL, rB. Less-or-Equal double floating-point comparison

dcmp.gt rD, rAL, rB. Greater-than double floating-point comparison

dcmp.ne rD, rAL, rB. Not-Equal double floating-point comparison

dcmp.ge rD, rA|, rB, Greater-or-Equal double floating-point comparison
010110 rD rA, rB, 110 0/ OpSel |0 0 0O
0 6 11 16 21 25 28 31

Description

The double precision floating-point value in rB| is compared with the double precision floating-point
value in rA| and the comparison result is placed into register rD. The OpSel field in the instruction
code determines the type of comparison performed.

Pseudocode

if isDnz (rA;) or isDnz (rB;) then
(rD) « 0
FSR[DO] <« 1
ESR[EC] <« 00110
else
{read out behavior from Table 5-3}

Registers Altered

« Dy, unless an FP exception is generated, in which case the register is unchanged
« ESR[EC], if an FP exception is generated

+ FSR[IO,DO]

Latency
* 1 cycle with ¢_AREA opTIMIZED=0 or 2
» 3 cycles with c_ AREA OPTIMIZED=1

Note

These instructions are only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

Table 5-3 lists the floating-point comparison operations.

MicroBlaze Processor Reference Guide Send Feedback 357
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=357

AMD ¢

Table 5-4:

Chapter 5: MicroBlaze Instruction Set Architecture

Double Floating-Point Comparison Operation

Comparison Type

Operand Relationship

isSigNaN(rA,) or

isQuietNaN(rA,) or

ESRI[EC] <~ 00110

Description OpSel |(rB}) > (rA) |(rBy) < (rA}) |(rB.) = (rA}) isSigNaN(rB,) isQuietNaN(rB,)
Unordered 000 | (rD)« O (rD) «~ 0 (rD) «~ 0 (rD) « 1 (rD) « 1
FSR[IO] « 1
ESR[EC] « 00110
Less-than 001 |(rD) « O (rD) « 1 (rD) <~ 0 (rD) «~ 0 (rD) « 0
FSR[IO] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110
Equal 010 | (rD)« 0 (rD) «~ 0 (rD) « 1 (rD) «~ 0 (rD) « 0
FSR[IO] « 1
ESR[EC] « 00110
Less-or-equal 011 | (rD) « 0 (rD) « 1 (rD) « 1 (rD) <~ 0 (rD) «~ 0
FSR[IO] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110
Greater-than 100 | (rD) « 1 (rD) <~ 0 (rD) <~ 0 (rD) <~ 0 (rD) <~ 0
FSR[IO] « 1 FSR[IO] « 1
ESR[EC] « 00110 ESR[EC] « 00110
Not-equal 101 | (rD) « 1 (rD) « 1 (rD) «~ 0 (rD) « 1 (rD) « 1
FSR[IO] « 1
ESR[EC] « 00110
Greater-or-equal 110 | (rD) « 1 (rD) «~ 0 (rD) « 1 (rD) «~ 0 (rD) « 0
FSR[IO] « 1 FSR[IO] « 1

ESRI[EC] <~ 00110

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 358

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=358

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

dbl

Floating-Point Convert Long to Double

dbl rD|_, rA|_
010110 rD, rA, 0000O0O11010000000
0 6 11 16 21 31
Description

Converts the signed long value in register rA; to double precision floating-point and puts the result in
register rD. This is a 64-bit rounding signed conversion that will produce a 64-bit floating-point
result.

Pseudocode
(rD;) <« double ((rAp))

Registers Altered

i rD|_

Latency

« 5 cycles with ¢ AREA oPTIMIZED=0

» 7 cycles with ¢ AREA OPTIMIZED=1
+ 2 cycles with ¢ AREA OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).

MicroBlaze Processor Reference Guide Send Feedback 359
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=359

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

d|ong Floating-Point Convert Double to Long
dlong rDy, rAL
010110 rD rA 00000/11100000000
° ° " 16 21 31
Description

Converts the double precision floating-point number in register rA| to a signed long value and puts
the result in register rD|. This is a 64-bit truncating signed conversion that will produce a 64-bit long
result.

Pseudocode

if isDnz (rA;) then
(rD;) < OxFFF8000000000000
FSR([DO] <« 1
ESR[EC] <« 00110

else if isNaN(rA;) then
(rD;) < OxFFF8000000000000
FSR[IO] <« 1
ESR[EC] <« 00110

else if isInf(rA;) or (rA;) < -2% or (rA;) > 2% - 1 then
(rD;) < OxFFF8000000000000
FSR[IO] <« 1
ESR[EC] <« 00110

else
(rD;) <« long ((rAp))

Registers Altered
« Dy, unless an FP exception is generated, in which case the register is unchanged

« ESR[EC], if an FP exception is generated
« FSR[IO,DO]

Latency

* 4 cycles with ¢ AREA OPTIMIZED=0
» 6 cycles with ¢ AREA OPTIMIZED=1
* 1 cycle with ¢_AREA OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_ USE FPU is set to 2 (Extended).

MicroBlaze Processor Reference Guide Send Feedback 360
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=360

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

dsq rt Double Floating-Point Arithmetic Square Root
dsgrt rD., rAp Square Root
010110 rD_ rA; 00O0O0O1111000O0O0O00D0
0 6 11 16 21 31
Description

Performs a double precision floating-point square root on the value in rA| and puts the result in
register rDy.

Pseudocode

if isDnz (rA;) then
(rDL) <« OxFFF8000000000000
FSR[DO] <« 1
ESR[EC] <« 00110
else if isSigNaN(rA;) then
(rD;) < OxFFF8000000000000
FSR[IO] « 1
ESR[EC] <« 00110
else if isQuietNaN(rA;) then
(rD;) < OxFFF8000000000000
else if (rA;) < 0 then
(rD;) < OxFFF8000000000000
FSR[IO] « 1
ESR[EC] <« 00110

else if (rA;) = -0 then
(rD;) <« -0
else

(rD;) < sqgrt ((rA;))

Registers Altered

« Dy, unless an FP exception is generated, in which case the register is unchanged
« ESR[EC], if an FP exception is generated

« FSR[IO,DO]

Latency

« 27 cycles with ¢_AREA OPTIMIZED=0
« 29 cycles with ¢ AREA OPTIMIZED=1
« 23 cycles with ¢_AREA OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2 (Extended).

MicroBlaze Processor Reference Guide Send Feedback 361
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=361

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

|mm| Immediate Long

imml IMM24

10110010 IMM24

Description

The instruction imml loads the IMM24 value into a temporary register. It also locks this value so it can
be used by the following instruction and form a 40-bit or 64-bit immediate value, and ensures that the
following instruction is treated as a 64-bit Type B instruction.

The instruction imml is used in conjunction with Type B 64-bit instructions.

Up to a 40-bit immediate value can be used for all 64-bit immediate long instructions in MicroBlaze
with a single imml instruction. The imml instruction locks the 24-bit IMM24 value temporarily for the
next instruction. A Type B instruction that immediately follows the imml instruction will then form a

40-bit immediate value from the 24-bit IMM24 value of the imml instruction (upper 24 bits) and its

own 16-bit immediate value field (lower 16 bits). If no Type B instruction follows the imml instruction,
the locked value gets unlocked and becomes useless.

A 64-bit immediate value can be used for all 64-bit immediate long instructions in MicroBlaze with
dual imml instructions. Each imml instruction locks the 24-bit IMM24 value temporarily for the next
instruction. A Type B instruction that immediately follows the two imml instructions will then form a
64-bit immediate value from the two 24-bit IMM24 values of the imml instructions (upper 48 bits) and
its own 16-bit immediate value field (lower 16 bits). If no Type B instruction follows the two imml
instructions, the locked value gets unlocked and becomes useless.

Latency
« 1cycle

Notes

The imml instruction and the Type B instruction following it are atomic; consequently, no interrupts
are allowed between them.

The assembler automatically detects the need for imml instructions.

When a 40-bit IMM value is specified in a Type B instruction, the assembler converts the IMM value to
a 16-bit one to assemble the instruction and inserts an imml instruction before it in the executable
file. If the immediate value exceeds 40 bits, the assembler converts the IMM value to a 16-bit one to
assemble the instruction and inserts two imml instructions before it in the executable file.

MicroBlaze Processor Reference Guide Send Feedback 362
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=362

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Load Long
1 rDL, rA|_, rBL
lIr rDy, rAL rBL
10010 rD, rA, rB, OR100O0O0OO0OOOTDO
6 11 16 21 31
Description

Loads a long (64 bits) from the long aligned memory location that results from adding the contents
of registers rA| and rB|. The data is placed in register rDy.

If the R bit is set, the bytes in the loaded word are reversed , loading data with the opposite
endianness of the endianness defined by the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the three least significant bits in the address are not
zero.

Pseudocode
Addr <« (rA;) + (rBp)
if TLB Miss(Addr) and MSR[VM] = 1 then

ESR[EC] <« 10010;ESR[S]« 0

MSR [UMS] < MSR[UM]; MSR[VMS] <« MSR[VM]; MSR[UM] < 0; MSR[VM] <« 0
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then

ESR[EC] < 10000;ESR[S]<« 0; ESR[DIZ] <« 1

MSR [UMS] <~ MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] < 0; MSR[VM] <« 0
else if Addr[C_ADDR SIZE-3:C_ADDR_SIZE-1] # 0 then

ESR[EC] <« 00001; ESR[W] <« 1; ESR[S] <« 0; ESR[Rx] <« rD
else

(rD;) < Mem(Addr)

Registers Altered

« Dy, unless an exception is generated, in which case the register is unchanged

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[WI], ESR[Rx], if an unaligned data access exception is generated

Latency
« 2 cycles with ¢ AREA opTIMIZED=0 or 2
» 3 cycles with ¢ AREA OPTIMIZED=1

MicroBlaze Processor Reference Guide Send Feedback 363
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=363

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Notes

The long reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

MicroBlaze Processor Reference Guide Send Feedback 364
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=364

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

||| Load Long Immediate
i rD|_, rA|_, IMM
111011 rD, rA, IMM
0 6 11 16 31
Description

Loads a long (64 bits) from the long aligned memory location that results from adding the contents of
register rA| and the sign-extended IMM value. The data is placed in register rD,.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection. This
only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the three least significant bits in the address are not zero

Pseudocode

Addr < (rA;) + sext (IMM)
if TLB Miss(Addr) and MSR[VM] = 1 then
ESR[EC] <« 10010;ESR[S]<« 0
MSR [UMS] < MSR[UM]; MSR[VMS] <« MSR[VM]; MSR[UM] < 0; MSR[VM] <« 0
else if Access Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
ESR[EC] < 10000;ESR[S]« 0; ESR[DIZ] <« 1
MSR [UMS] <~ MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] <« 0; MSR[VM] <« O
else if Addr([C_ADDR_SIZE-3:C ADDR SIZE-1] # 0 then
ESR[EC] <« 00001; ESR[W] < 1; ESR[S] <« 0; ESR[Rx] < rD
else
(rD;) ¢ Mem(Addr)

Registers Altered
« Dy, unless an exception is generated, in which case the register is unchanged

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESRI[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[W], ESR[R¥], if an unaligned data access exception is generated

Latency
« 2 cycles with c_aArREA OoPTIMIZED=0 or 2

» 3 cycles with c_ AREA OPTIMIZED=1

Note

By default, Type B load immediate instructions will take the 16-bit IMM field value and sign extend it
to 64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction. See the instructions “imm” and “imml” for details on
using 64-bit immediate values.

MicroBlaze Processor Reference Guide Send Feedback 365
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=365

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

orI Logical OR Long
orl rDy, rAL B
100000 rD, rA, rB, 00100000O0O00O
0 6 11 16 21 31
Description
The contents of register rA| are ORed with the contents of register rB|; the result is placed into register
rD|_.
Pseudocode
(rDy) < (rA;) v (rBp)
Registers Altered
. rD|_
Latency
« 1cycle

MicroBlaze Processor Reference Guide Send Feedback 366
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=366

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

orIi Logical OR Long with Immediate
orli rDL rA, IMM | D, IMM
101000 rD, rA, IMM
011010 rD_ 100 00 IMM
0 6 11 16 31
Description

The contents of register rA| or rDare ORed with the IMM field, sign extended with the immediate
value from the preceding imml instructions; the result is placed into register rD,.

Pseudocode
(rDy) < (rA;|rD;) Vv sext (IMM)
Registers Altered
. I’DL
Latency
« 1cycle
Note

Type B logical long instructions with three operands must be preceded by an imml instruction. See the
instruction “imml"” for details on using long immediate values.

MicroBlaze Processor Reference Guide Send Feedback 367
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=367

AMD ¢

pcmplbf

pcmplbf rD, rA|, rB.

Pattern Compare Long Byte Find

Chapter 5: MicroBlaze Instruction Set Architecture

bytewise comparison returning position of first match

1

0 000D O

rD

rAL

rBL

10100000O0O0O0O0OTP 0

0

Description

11

16

21 31

The contents of register rA| are bytewise compared with the contents in register rBy.

rD is loaded with the position of the first matching byte pair, starting with MSB as

position 1, and comparing until LSB as position 8

If none of the byte pairs match, rD is set to 0

Pseudocode

if rBy[0:7] =
(rD) <« 1

else if rB;[8:15]

(rD) <« 2

else if rB;[l6:

(rD) <« 3

else if rB;[24:

(rD) <« 4

else if rB;[32:

(rD) <« 5

else if rB;[40:

(rD) <« 6

else if rB[48:

(rD) « 7

else if rB; [56:

(rD) <« 8
else
(rD) <« ©

23]

31]

39]

47]

55]

63]

Registers Altered

rD

Latency

1 cycle

Note
This instruction is only available when the parameter C_ USE_PCMP_INSTR is set to 1.

rA; [0:7] then
= rA;[8:15]
= rAp[16:
TA; [24:

rA; [32:

rAp [40

rA; [48:

rA; [56:

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

23]

31]

39]

:47]

55]

63]

then

then

then

then

then

then

then

l Send Feedback I 368

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=368

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

pcmp]eq Pattern Compare Long Equal

pcmpleq rD, rA, rB equality comparison with a positive boolean result
100 010 rD rA; rB, 10100000O0O0O0O0OTP 0
0 6 11 16 21 31
Description

The contents of register rA| are compared with the contents in register rBy.
« rDisloaded with 1 if they match, and 0 if not

Pseudocode

if (rB;) = (rA;) then
(rD) <« 1

else
(rD) < 0

Registers Altered
« D

Latency
« 1cycle

Note
This instruction is only available when the parameter C_ USE_PCMP_ INSTR is set to 1.

MicroBlaze Processor Reference Guide Send Feedback 369
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=369

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

pcmp]ne Pattern Compare Long Not Equal

pcmplne rD, rA, rB equality comparison with a negative boolean result
100 0 11 rD rA; rB, 10100000O0O0O0O0OTP 0
0 6 11 16 21 31
Description

The contents of register rA| are compared with the contents in register rBy.
« rDisloaded with O if they match, and 1 if not

Pseudocode

if (rB;) = (rA;) then
(rD) < 0

else
(rD) « 1

Registers Altered
« D

Latency
« 1cycle

Note
This instruction is only available when the parameter C_ USE_PCMP_ INSTR is set to 1.

MicroBlaze Processor Reference Guide Send Feedback 370
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=370

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

rsubl Arithmetic Reverse Subtract Long
rsubl rD., rA, B Subtract Long
rsublc rD., rA, B Subtract Long with Carry
rsublk rDy, rAL 1B Subtract Long and Keep Carry
rsublkc rDy, rAL rB. Subtract Long with Carry and Keep Carry
0 00 KC 1 rD, rA, rB, 001000OO0ODOTO0OODO

6 11 16 21 31

Description

The contents of register rA| are subtracted from the contents of register rB| and the result is placed
into register rD|. Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic
rsublk. Bit 4 of the instruction (labeled as C in the figure) is set to one for the mnemonic rsublc. Both
bits are set to one for the mnemonic rsublkc.

When an rsubl instruction has bit 3 set (rsublk, rsublkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsubl, rsublc), then the
carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (rsublc, rsublkc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (rsubl, rsublk), the content of the carry
flag does not affect the execution of the instruction (providing a normal subtraction).

Pseudocode
if C = 0 then
(rDy) <= (rBp) + (rA;) + 1
else
(rD;) <« (rB;) + (rA;) + MSR[C]
if K = 0 then
MSR[C] < CarryOutg,
Registers Altered
. rD|_
+ MSRI[C]

Latency
« 1cycle

Note

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow.

MicroBlaze Processor Reference Guide Send Feedback 371
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=371

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

rsubli Arithmetic Reverse Subtract Long Immediate
rsubli rD,, rA, IMM | D, IMM Subtract Long Immediate
rsublic rD,, rA, IMM | D, IMM Subtract Long Immediate with Carry
rsublik rD,, rA, IMM | D[, IMM Subtract Long Immediate and Keep Carry
|

rsublikc rDy, rAL, IMM rD,, IMM Subtract Long Immediate with Carry and Keep Carry

01 KC 1 rDL rA|_ IMM
11010 rD, 00 KC 1 IMM

6 11 16 31
Description

The contents of register rA| or rD| are subtracted from the value of IMM, sign extended with the
immediate value from the preceding imml instructions, and the result is placed into register rD,. Bit 3
or 13 of the instruction (labeled as K in the figure) is set to one for the mnemonic rsublik. Bit 4 or 14
of the instruction (labeled as C in the figure) is set to one for the mnemonic rsublic. Both bits are set
to one for the mnemonic rsublikc.

When an rsubli instruction has bit 3 or 13 set (rsublik, rsublikc), the carry flag will Keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 or 13 is cleared (rsubli,
rsublic), then the carry flag will be affected by the execution of the instruction.

When bit 4 or 14 of the instruction is set to one (rsublic, rsublikc), the content of the carry flag
(MSR]C]) affects the execution of the instruction. When bit 4 or 14 is cleared (rsubli, rsublik), the
content of the carry flag does not affect the execution of the instruction (providing a normal
subtraction).

Pseudocode
if ¢ = 0 then
(rD;) <« sext (IMM) + (TrA;|rD;) + 1
else
(rD;) < sext (IMM) + (TrAp|rD;) + MSRI[C]
if K = 0 then
MSR[C] <« CarryOutg,

Registers Altered
. rD|_
+ MSRI[(C]

Latency
« 1cycle

Note

In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there is no
Borrow, and when the Carry is cleared, it means that there is a Borrow.

Type B arithmetic long instructions with three operands must be preceded by an imml instruction. See
the instruction "imml” for details on using long immediate values.

MicroBlaze Processor Reference Guide Send Feedback 372
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=372

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

sextl16 Sign Extend Long Halfword

sextl16 rD, rAL
100100 rD, rA_ 0 000O0OOT11TO0OT1TT1TO0O0OOTU OH1
0 6 11 16 31
Description

This instruction sign-extends a halfword (16 bits) into a long (64 bits). Bit 48 in rA| will be copied into
bits 0-47 of rD. Bits 48-63 in rA_ will be copied into bits 48-63 of rD,.

Pseudocode

(rDy) [0:47] <« (rAp) [48]
(rDy,) [48:63] <« (rA;) [48:63]

Registers Altered
. rD|_

Latency
« 1cycle

MicroBlaze Processor Reference Guide Send Feedback 373
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=373

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

sexti32 Sign Extend Long Word

sextl32 rDy, rAL
100100 rD, rA, 000O0O0OO0OO0OT1TUO0OT1TT1TO0O0OO0OT1TOP0O
0 6 11 16 31
Description

This instruction sign-extends a word (32 bits) into a long (64 bits). Bit 32 in rA| will be copied into bits
0-31 of rDy. Bits 32-63 in rA_ will be copied into bits 32-63 of rD,.

Pseudocode

(rDy) [0:31] < (rAp) [32]
(rDy) [32:63] <« (rAp) [32:63]

Registers Altered
. rD|_

Latency
« 1cycle

MicroBlaze Processor Reference Guide Send Feedback 374
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=374

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

sextl 8 Sign Extend Long Byte
sextl8 rDy, rAL
100100 rD, rA_ 0 000 O0OOT1TOT11T1TO0UO0OOTU OO
0 6 11 16 31
Description

This instruction sign-extends a byte (8 bits) into a long (64 bits). Bit 56 in rA| will be copied into bits
0-55 of rDy. Bits 56-63 in rA_ will be copied into bits 56-63 of rD,.

Pseudocode

(rDy) [0:55] <« (rAp) [56]
(rDy,) [56:63] <« (rA;) [56:63]

Registers Altered
. rD|_

Latency
« 1cycle

MicroBlaze Processor Reference Guide Send Feedback 375
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=375

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

era Shift Right Long Arithmetic
srla rDy, rAL
1001 00 rD, rA_ 0 000O0OOT11TO0OOOOUOU OO OH1
0 6 11 16 31
Description

Shifts arithmetically the contents of register rA;, one bit to the right, and places the result in rD,. The
most significant bit of rA_ (that is, the sign bit) placed in the most significant bit of rD|. The least
significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rDy) [0] <« (rAp) [0]
(rDy) [1:63] <« (rAp) [0:62]
MSR[C] <« (rA;p) [63]

Registers Altered
. rD|_

« MSRIC]
Latency

« 1cycle

MicroBlaze Processor Reference Guide Send Feedback 376
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=376

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

erc Shift Right Long with Carry
srlc rDy, rAL
1001 00 rD, rA_ 0 000O0OOT11TO0OT11TO0UOO OO O1
0 6 11 16 31
Description

Shifts the contents of register rA|, one bit to the right, and places the result in rD|. The Carry flag is
shifted in the shift chain and placed in the most significant bit of rD|. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode
(rDy) [0] < MSRI[C]
(rDy) [1:63] <« (rAp) [0:62]
MSRI[C] <« (rA;) [63]
Registers Altered
i rD|_
« MSR[C]

Latency
« 1cycle

MicroBlaze Processor Reference Guide Send Feedback 377
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=377

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

erI Shift Right Long Logical
srll rDy, rAL
100100 rD, rA_ 0 000 OOOT1TO0OT1TUO0OOOOU O1
0 6 11 16 31
Description

Shifts logically the contents of register rA|, one bit to the right, and places the resultin rD;. A zero is
shifted in the shift chain and placed in the most significant bit of rD|. The least significant bit coming
out of the shift chain is placed in the Carry flag.

Pseudocode
(rDy) [0] < O
(rDy) [1:63] <« (rAp) [0:62]
MSRI[C] <« (rA;) [63]
Registers Altered
i rD|_
« MSR[C]

Latency
« 1cycle

MicroBlaze Processor Reference Guide Send Feedback 378
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=378

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Sl Store Long
sl rDy, rAp, B
slr rD, rAL rB.
110110 rD, rA rB, OR10000O0CO0O0O O
0 6 11 16 21 31
Description

Stores the contents of register rD|, into the long aligned memory location that results from adding
the contents of registers rA| and rB.

If the R bit is set, the bytes in the stored long are reversed, storing data with the opposite endianness
of the endianness defined by the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the three least significant bits in the address are not

zero.
Pseudocode
Addr <« (rA;) + (rBp)
if TLB Miss(Addr) and MSR[VM] = 1 then

ESR[EC] <« 10010;ESR[S]<« 1

MSR [UMS] <« MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] < 0; MSR[VM] <« O
else if Access_Protected(Addr) and MSR[VM] = 1 then

ESR[EC] <« 10000;ESR[S]« 1; ESR[DIZ] <« No-access-allowed

MSR [UMS] - MSR[UM]; MSR[VMS] <= MSR[VM]; MSR[UM] < 0; MSR[VM] <« O
else if Addr[C_ADDR SIZE-3:C_ADDR _SIZE-1] # 0 then

ESR[EC] <« 00001; ESR[W] <« 1; ESR[S] <« 1; ESR[Rx] <« rD
else

Mem (Addr) < (rDy)

Registers Altered

« MSR[UM], MSR[VM], MSRIUMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESR[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency
+ 2 cycles with ¢ AREA OPTIMIZED=0 or 2
» 3 cycles with ¢ AREA OPTIMIZED=1

MicroBlaze Processor Reference Guide Send Feedback 379
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=379

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Notes

The long reversed instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE _REORDER INSTR = 1).

MicroBlaze Processor Reference Guide Send Feedback 380
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=380

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

Sll Store Long Immediate
sli rDy, rAL, IMM
1 1 1 1 1 1 rD|_ rAL IMM
0 6 11 16 31
Description

Stores the contents of register rD|, into the long aligned memory location that results from adding the
contents of registers rA| and the sign-extended IMM value.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation entry
corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by no-
access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the three least significant bits in the address are not

zero.
Pseudocode
Addr < (rA;) + sext (IMM)
if TLB_Miss (Addr) and MSR[VM] = 1 then

ESR[EC] ¢ 10010;ESR[S]« 1

MSR [UMS] < MSR[UM]; MSR[VMS] < MSR[VM]; MSR[UM] < 0; MSR[VM] <« 0
else if Access Protected(Addr) and MSR[VM] = 1 then

ESR[EC] <« 10000;ESR[S]« 1; ESRI[DIZ] <« No-access-allowed

MSR [UMS] ¢—~ MSR[UM]; MSR[VMS] ¢ MSR[VM]; MSR[UM] < 0; MSR[VM] <« O
else if Addr[C _ADDR _SIZE-3:C_ADDR_SIZE-1] # 0 then

ESR[EC] <« 00001; ESR[W] <« 1; ESR[S] <« 1; ESR[Rx] <« D
else

Mem (Addr) < (rDyg,)

Registers Altered

« MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

« ESRI[EC], ESR[S], if an exception is generated
« ESR[DIZ], if a data storage exception is generated
« ESR[WI], ESR[Rx], if an unaligned data access exception is generated

Latency
« 2 cycles with ¢ AREA opTIMIZED=0 or 2
» 3 cycles with ¢ AREA OPTIMIZED=1

Note

By default, Type B store immediate instructions will take the 16-bit IMM field value and sign extend it
to 64 bits to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm or imml instruction.

MicroBlaze Processor Reference Guide Send Feedback 381
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=381

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

xorI Logical Exclusive OR Long
xorl rDy, rAL B
100010 rD; rA, rB, 001000O0OOO0ODO
0 6 11 16 21 31
Description

The contents of register rA| are XORed with the contents of register rB; the result is placed into
register rDy.

Pseudocode
(rDy) <« (rAp) @ (rBp)
Registers Altered
. rD|_
Latency
« 1cycle

MicroBlaze Processor Reference Guide Send Feedback 382
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=382

AM D ‘l Chapter 5: MicroBlaze Instruction Set Architecture

xorIi Logical Exclusive OR Long with Immediate
xorli rDy, rAL, IMM | rDL IMM
101 010 rD|_ rAL IMM
011010 rD_ 100 10 IMM
0 6 11 16 31
Description

The contents of register rA_ or rD; are XOR’ed with the IMM field, sign extended with the immediate
value from the preceding imml instructions; the result is placed into register rD,.

Pseudocode
(rDy) < (rA;|rD;) @ sext (IMM24 & IMM)

Registers Altered
. rD|_

Latency
« 1cycle

Notes

Type B logical long instructions with three operands must be preceded by an imml instruction. See the
instruction “imml” for details on using long immediate values.

MicroBlaze Processor Reference Guide Send Feedback 383
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=383

AMD 1
Appendix A

Performance and Resource Utilization

Performance

Performance characterization of this core has been done using the margin system
methodology. The details of the margin system characterization methodology is described
in “IP Characterization and fyax Margin System Methodology” P€low.

For additional details about performance and resource utilization, visit Performance and
Resource Utilization.

Maximum Frequencies

The maximum frequencies for the MicroBlaze™ core are provided in Table A-1. The fastest speed
grade of each family is used to generate the results in this table.

Table A-1: Maximum Frequencies

Family Frmax (MHz)
Virtex™ 7 382
Kintex™ 7 398
Artix™ 7 267

Zynq™ 7000 265
Spartan™ 7 234
Virtex UltraScale™ 460
Kintex UltraScale 463
Virtex UltraScale+™ 682
Kintex UltraScale+ 650
Zynq UltraScale+ 661
Versal™ 456

MicroBlaze Processor Reference Guide Send Feedback 384
UG984 (v2023.2) February 2, 2024 l—, /—I

https://www.xilinx.com/htmldocs/ip_docs/pru_files/microblaze.html
https://www.xilinx.com/htmldocs/ip_docs/pru_files/microblaze.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=384

AM D ‘l Appendix A: Performance and Resource Utilization

Resource Utilization

The MicroBlaze core resource utilization for various parameter configurations are measured

for the following devices:

« Virtex 7 (Table A-2)

» Kintex 7 (Table A-3)

» Artix 7 (Table A-4)

* Zynq 7000 (Table A-5)

« Spartan 7 (Table A-6)

» Virtex UltraScale (Table A-7)

« Kintex UltraScale (Table A-8)

« Virtex UltraScale+ (Table A-9)
« Kintex UltraScale+ (Table A-10)
« Zynq UltraScale+ (Table A-11)
e Versal (Table A-12)

The parameter values for each of the measured configurations are shown in Table A-13. The
configurations directly correspond to the predefined presets and templates in the
MicroBlaze Configuration Wizard, defined for the 32-bit processor implementation.

The 32-bit processor implementation data uses the parameters C DATA SIZE = 32 and
C_ADDR_SIZE = 32, whereas the 64-bit processor implementation data uses the

parameters C_DATA SIZE = 64 and C_ADDR_SIZE = 48.

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 385

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=385

AM D ‘l Appendix A: Performance and Resource Utilization

Table A-2: Device Utilization - Virtex 7 FPGAs (XC7VX485T ffg1761-3)

Device Resources
Configuration 32-bit 64-bit
LUTs FFs B(g/;KM)s (31;;) LUTs FFs B(Z’:KM)S (IEI'I"I::)
Microcontroller Preset 1173 811 0 308 2139 1262 0 286
Real-time Preset 2484 2121 6 245 3793 3150 6 241
Application Preset 4340 3807 19 212 6492 4919 19 165
Minimum Area 629 230 0 382 1133 400 0 329
Maximum Performance 4096 3210 19 218 6813 4778 20 172
Maximum Frequency 915 553 0 382 1815 858 0 329
Linux with MMU 3512 3126 11 213 5084 4496 16 198
Low-end Linux with MMU | 2986 2511 7 233 4519 3726 10 207
Typical 2007 1680 6 253 3389 2498 8 251
Frequency Optimized 6011 5791 14 252 9398 8735 15 168

Table A-3: Device Utilization - Kintex 7 FPGAs (XC7K325T ffg900-3)

Device Resources
Configuration 32-bit 64-bit
LUTs FFs B(';’;:Z;S (;“Ha’z‘) LUTs FFs B(';‘::Z;S (:/'I“Ha;)
Microcontroller Preset 1176 811 0 318 2129 1226 0 287
Real-time Preset 2477 2121 6 246 3792 3151 6 220
Application Preset 4368 3779 19 214 6479 4899 19 174
Minimum Area 637 234 0 398 1146 398 0 330
Maximum Performance 4129 3207 19 222 6816 4778 20 171
Maximum Frequency 908 553 0 398 1817 862 0 330
Linux with MMU 3507 3149 11 206 5088 4493 16 205
Low-end Linux with MMU 2986 2537 7 213 4521 3708 10 202
Typical 2017 1679 6 257 3404 2496 8 252
Frequency Optimized 6004 5874 14 263 9425 8765 15 172

MicroBlaze Processor Reference Guide Send Feedback 386
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=386

AM D ‘l Appendix A: Performance and Resource Utilization

Table A-4: Device Utilization - Artix 7 FPGAs (XC7A200T fbg676-3)

Device Resources
Configuration 32-bit 64-bit
LUTs FFs B(Z’:KM)S (|er|“|::) LUTs FFs B(Z’:KM)S (:I'I"'::)
Microcontroller Preset 1174 811 0 218 2145 1226 0 187
Real-time Preset 2467 2121 6 177 3797 3153 6 178
Application Preset 4326 3747 19 149 6461 4891 19 136
Minimum Area 625 227 0 267 1141 397 0 221
Maximum Performance 4106 3208 19 153 6802 4799 20 142
Maximum Frequency 911 553 0 267 1815 858 0 221
Linux with MMU 3515 3122 11 150 5081 4492 16 139
Low-end Linux with MMU 2987 2506 7 151 4490 3711 10 136
Typical 2014 1682 6 187 3398 2500 8 190
Frequency Optimized 5956 5787 14 166 9366 8725 15 137

Table A-5: Device Utilization - Zynq 7000 FPGAs (XC7Z020 clg484-3)

Device Resources
Configuration 32-bit 64-bit
LUTs FFs B(';‘:KM)S ('F\;lﬂlj’z‘) LUTs FFs B(';’;:Z;s (:;I";:)
Microcontroller Preset 1174 811 0 221 2148 1226 0 191
Real-time Preset 2465 2120 6 176 3785 3156 6 178
Application Preset 4345 3744 19 148 6496 4979 19 141
Minimum Area 626 226 0 265 1138 400 0 222
Maximum Performance 4105 3197 19 152 6791 4760 20 138
Maximum Frequency 908 553 0 265 1813 858 0 222
Linux with MMU 3507 3125 11 147 5086 4489 16 135
Low-end Linux with MMU 2988 2506 7 159 4489 3711 10 138
Typical 2021 1680 6 191 3416 2501 8 192
Frequency Optimized 5953 5785 14 176 9381 8724 15 134

MicroBlaze Processor Reference Guide Send Feedback 387
UG984 (v2023.2) February 2, 2024 l—, /—I

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=387

AM D ‘l Appendix A: Performance and Resource Utilization

Table A-6: Device Utilization - Spartan 7 FPGAs (XC7S25 csga225-2)

Device Resources

Configuration 32-bit 64-bit
LUTs FFs B(F;’;:)'S (|er|n|-a|"z() LUTs FFs B(Z’:KM)S (|er|“|::)
Microcontroller Preset 1175 811 0 188 2134 1226 0 161
Real-time Preset 2461 2125 6 161 3810 3151 6 148
Application Preset 4342 3812 19 130 6465 4872 19 120
Minimum Area 625 225 0 234 1145 406 0 199
Maximum Performance 4085 3197 19 134 6779 4757 20 118
Maximum Frequency 909 553 0 234 1816 858 0 199
Linux with MMU 3505 3128 11 133 5077 4490 16 118
Low-end Linux with MMU 2980 2509 7 144 4466 3709 10 122
Typical 2020 1680 6 168 3406 2492 8 160
Frequency Optimized 5955 5783 14 154 9363 8724 15 119

Table A-7: Device Utilization - Virtex UltraScale FPGAs (XCVU095 ffvd1924-3)

Device Resources

Configuration 32-bit 64-bit
LUTs FFs B(';QKM)S (:/'I“;:) LUTs FFs B(';‘:KM)S (:;I";:)
Microcontroller Preset 1105 821 0 413 2090 1226 0 345
Real-time Preset 2520 2121 6 295 3822 3158 6 293
Application Preset 4355 3801 19 262 6617 4826 19 238
Minimum Area 567 231 0 460 991 415 0 374
Maximum Performance 4102 3208 19 286 6936 4776 20 244
Maximum Frequency 913 553 0 460 1817 860 0 374
Linux with MMU 3523 3221 11 258 5149 4511 16 239
Low-end Linux with MMU 3002 2518 7 271 4559 3728 10 234
Typical 2035 1680 6 316 3482 2497 8 307
Frequency Optimized 6150 5806 14 301 9579 8814 15 240

MicroBlaze Processor Reference Guide Send Feedback 388
UG984 (v2023.2) February 2, 2024 l—, /—I

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=388

AMD ¢

Appendix A: Performance and Resource Utilization

Table A-8: Device Utilization - Kintex UltraScale FPGAs (XCKU040 ffva1156-3)

Device Resources
Configuration 32-bit 64-bit
LUTs FFs B(F;’;KM)S (If;l";:) LUTs FFs B(';’;:)'S (|er|n|-a|"z()
Microcontroller Preset 1106 811 0 417 2046 1261 0 352
Real-time Preset 2507 2119 6 300 3820 3155 6 302
Application Preset 4336 3760 19 255 6621 4961 19 233
Minimum Area 578 240 0 463 988 401 0 391
Maximum Performance 4117 3209 19 285 6943 4784 20 249
Maximum Frequency 913 556 0 463 1832 869 0 391
Linux with MMU 3502 3129 11 247 5142 4492 16 239
Low-end Linux with MMU 2997 2507 7 267 4560 3745 10 233
Typical 2033 1683 6 319 3471 2505 8 313
Frequency Optimized 6172 5837 14 307 9574 8777 15 243
Table A-9: Device Utilization - Virtex UltraScale+ FPGAs (XCVU3P ffvc1517-3)
Device Resources
Configuration 32-bit 64-bit
LUTs FFs B(';QKM)S (:Z’ﬁi) LUTs FFs B(';'::‘(’;s (:;I“Ha:)

Microcontroller Preset 1107 823 0 573 2063 1226 0 462
Real-time Preset 2543 2122 6 399 3911 3156 6 389
Application Preset 4403 3745 19 360 6679 4872 19 333
Minimum Area 563 225 0 682 991 397 0 602
Maximum Performance 4207 3208 19 371 7044 4772 20 330
Maximum Frequency 910 553 0 682 1816 858 0 602
Linux with MMU 3553 3129 11 350 5213 4486 16 333
Low-end Linux with MMU 3020 2508 7 374 4595 3705 10 333
Typical 2064 1679 6 433 3492 2496 8 427
Frequency Optimized 6227 5789 14 416 9649 8773 15 344

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 389

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=389

AMD ¢

Appendix A: Performance and Resource Utilization

Table A-10: Device Utilization - Kintex UltraScale+ FPGAs (XCKU15P ffval156-3)

Device Resources
Configuration 32-bit 64-bit
LUTs FFs B(z‘:KM)S (If/'l";:) LUTs FFs B(z‘:KM)S (If;l";;)
Microcontroller Preset 1105 811 0 573 2049 1226 0 522
Real-time Preset 2449 2122 6 416 3914 3151 6 407
Application Preset 4404 3744 19 349 6693 4873 19 341
Minimum Area 566 225 0 650 996 397 0 602
Maximum Performance 4209 3237 19 371 7045 4778 20 340
Maximum Frequency 915 553 0 650 1814 858 0 602
Linux with MMU 3554 3190 11 351 5216 4491 16 323
Low-end Linux with MMU 3023 2507 7 365 4598 3712 10 344
Typical 2067 1681 6 441 3489 2493 8 421
Frequency Optimized 6223 5787 14 433 9652 8766 15 340
Table A-11: Device Utilization - Zynq UltraScale+ FPGAs (XCZU9EG ffvb1156-3)
Device Resources
Configuration 32-bit 64-bit
LUTs FFs B(';:KM)S (:;I";:) LUTs FFs B(';':KM)S (:Z’ﬁi)
Microcontroller Preset 1112 822 0 561 2046 1226 0 476
Real-time Preset 2540 2120 6 409 3912 3150 6 388
Application Preset 4415 3743 19 346 6684 4888 19 336
Minimum Area 566 229 0 661 995 407 0 573
Maximum Performance 4212 3207 19 372 7027 4779 20 336
Maximum Frequency 908 553 0 661 1818 858 0 573
Linux with MMU 3552 3121 11 338 5227 4553 16 335
Low-end Linux with MMU 3018 2501 7 369 4597 3703 10 319
Typical 2068 1681 6 430 3490 2493 8 428
Frequency Optimized 6248 5819 14 413 9647 8781 15 348

MicroBlaze Processor Reference Guide
UG984 (v2023.2) February 2, 2024

l Send Feedback I 390

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=390

AM D ‘l Appendix A: Performance and Resource Utilization

Table A-12: Device Utilization - Versal FPGAs (XCVC1920 vsva2197-3HP)

Device Resources
Configuration 32-bit 64-bit

LUTs FFs B(';:KM)S (:;I";:) LUTs FFs B(';‘:KM)S (:mz)
Microcontroller Preset 1841 1257 0 399 2480 1344 0 365
Real-time Preset 5561 5670 4 340 6951 6709 4 289
Application Preset 7543 7326 18 265 9885 8388 18 264
Minimum Area 650 263 0 456 1325 458 0 379
Maximum Performance 6708 6469 17 227 9711 8066 17 254
Maximum Frequency 971 519 0 456 1818 826 0 383
Linux with MMU 6610 6619 10 279 8512 8091 14 253
Low-end Linux with MMU 6008 6021 6 280 7575 7239 8 254
Typical 4071 4136 4 337 5450 5009 6 266
Frequency Optimized 8001 8387 12 286 11602 | 11173 12 267

MicroBlaze Processor Reference Guide Send Feedback 391
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=391

AMD ¢

Table A-13: Parameter Configurations

Appendix A: Performance and Resource Utilization

Parameter

Configuration Parameter Values

Microcontroller
Preset

Real-time
Preset

Application
Preset

Minimum
Area

Maximum

Performance

Maximum

Frequency

Linux
with MMU

with MMU

Low-end Linux

Typical

Frequency
Optimized

C_ALLOW_DCACHE_WR

C_ALLOW_ICACHE_ WR

C_AREA OPTIMIZED

C_CACHE_BYTE SIZE

4096

8192

32768

4096

32768

4096

16384

8192

8192

16384

C_DCACHE BYTE_ SIZE

4096

8192

32768

4096

32768

4096

16384

8192

8192

16384

C_DCACHE_LINE_ LEN

C_DCACHE_USE_WRITEBACK

C_DEBUG_ENABLED

C_DIV_ZERO EXCEPTION

C_M AXI D BUS_EXCEPTION

C_FPU_EXCEPTION

C_FSL_EXCEPTION

OO 0O ||| o |>

C_FSL_LINKS

C_ICACHE_LINE LEN

© O |o o

A | O | O O

C_ILL OPCODE_EXCEPTION

—_

C_M AXI I _BUS_EXCEPTION

—_

C_MMU DTLB_SIZE

N OO OC O O O

N OOl dMOjOJO OO | O O | >

N EE=RE=RED

C_MMU ITLB_SIZE

—_

—_

—_

C_MMU_TLB_ACCESS

C_MMU_ZONES

N | W

NN fw NN OO | 0O O |0 | O | O

N | W

D w NN

N fw N

NN jw N

C_NUMBER_OF_PC_BRK

—_

—_

—_

C_NUMBER_OF RD ADDR_BRK

C_NUMBER_OF WR_ADDR_BRK

o | o

o | O

o | o

C_OPCODE_0x0_ ILLEGAL

C_PVR

C_UNALIGNED EXCEPTIONS

o | O |0 o o

o | O o | o o

O | OO 0ol D W M MO O|lww O |O|O

C_USE_BARREL

—_

—_

C_USE_DCACHE

(=)

—_

C_USE DIV

O | O 00/ |oo|o | |WwW

O oo/ | o |o

o

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

| Send Feedback l 392

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=392

AMD ¢

Table A-13:

Parameter Configurations (Cont’d)

Appendix A: Performance and Resource Utilization

Parameter

Configuration Parameter Values

Microcontroller

Preset

Real-time

Preset

Application

Preset

Minimum
Area
Maximum
Performance
Maximum
Frequency
Linux
with MMU
with MMU
Typical
Frequency
Optimized

Low-end Linux

C _USE EXTENDED FSL INSTR

C_USE_FPU

C_USE_HW_MUL

N[N O
N O | O
o
o
DN O

C_USE_ICACHE

C_USE_MMU

C_USE_MSR_INSTR

C_USE_PCMP_INSTR

N
R E=REi=RE=-NE=-RE=RE=]
-

—_

—_

N

C_USE_REORDER_INSTR

C _USE BRANCH TARGET CACHE

C_BRANCH TARGET CACHE SIZE

o | O

o | O

C_ICACHE_STREAMS

C ICACHE VICTIMS

C DCACHE VICTIMS

C ICACHE FORCE TAG LUTRAM

C DCACHE FORCE_ TAG LUTRAM

O | 0O/l o/lo|lo|o|o |o

o | O | O |

O | O 00 0o|oojlojo|ojo|]o | |©o |o©
N
N
-
—_
—_
N

O | O |00 | o |0 o

O | O |00 |

C ICACHE ALWAYS USED

N
N
N
-
Y

C DCACHE ALWAYS USED

N
N
N
-
Y

C_D AXI

C _USE_ INTERRUPT

C_USE_STACK PROTECTION

O | O oo ojoojlo|o|o|o |o

o | O | O
o

o | O | o
-
—_

MicroBlaze Processor Reference Guide

UG984 (v2023.2) February 2, 2024

l Send Feedback I 393

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=393

AM D ‘l Appendix A: Performance and Resource Utilization

IP Characterization and fy,px Margin System Methodology

Introduction

This section describes the methods to determine the maximum frequency (Fypax) of IP
operation within a system design. The method enables realistic performance reporting for
any FPGA architecture. The maximum frequency of a design is the maximum frequency at
which the overall system can be implemented without encountering timing issues.

The Fyax Margin System Methodology

It is important to determine the IP performance in the context of a user system. In the case
of the MicroBlaze characterization, the system includes the following items:

« The IP under test (MicroBlaze Processor)

* Local Memory (LMB)

« One level of Interconnect (AXI4, AXl4-Lite, AXI4-Stream)

* Memory controller (EMC)

* On-chip BRAM controller

« Peripherals (UART, Timer, Interrupt Controller, MDM)

Determining the Fy,ax of an Embedded IP with these components provides a more realistic
performance target.

The system above has three types of AXI Interconnect. AXI4-Lite used for peripheral
command and control, AXI4 used for memory accesses, and AXI4-Stream used for
MicroBlaze streams.

For Fpmax Margin System Analysis, the clock frequency of the system is incremented up to
the maximum frequency where the system breaks with timing violations (worst case
negative slack). The reported frequency is the failing frequency subtracted with this worst
case negative slack.

Tool Options and Other Factors

AMD tools offer a number of options and settings that provide a trade-off between design
performance, resource usage, implementation run time, and memory footprint. The settings
that produce the best results for one design might not necessarily work for another design.

For the purpose of the Fyyax Margin System Analysis, the IP design is characterized with
default settings without specific constraints (other than the clocking constraint). This
analysis is done with all different FPGA architectures and the maximum speed grade.

MicroBlaze Processor Reference Guide Send Feedback 394
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=394

AMD 1
Appendix B

Additional Resources and Legal Notices

Finding Additional Documentation

Documentation Portal

The AMD Adaptive Computing Documentation Portal is an online tool that provides robust
search and navigation for documentation using your web browser. To access the Documentation
Portal, go to https://docs.xilinx.com.

Documentation Navigator

Documentation Navigator (DocNav) provides access to AMD Adaptive Computing
documents, videos, and support resources, which you can filter and search to find information.
To open DocNav:

« From the IDE, select Help > Documentation and Tutorials.
« On Windows, click the Start button and select Xilinx Design Tools > DocNav.

« At the Linux command prompt, enter docnav.

Design Hubs

AMD Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

* In DocNav, click the Design Hubs View tab.
« Go to the Design Hubs webpage.

Note: For more information on DocNav, see the Documentation Navigator webpage.

MicroBlaze Processor Reference Guide Send Feedback 395
UG984 (v2023.2) February 2, 2024 L‘ /_]

https://docs.xilinx.com
https://docs.xilinx.com
https://docs.xilinx.com/r/1.4-English/Xilinx-Documentation-Navigator-User-Guide
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=395

AM D ‘l Appendix B: Additional Resources and Legal Notices

Support Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see
Support.

References

These documents provide supplemental material useful with this user guide:

_

PowerPC Processor Reference Guide (UG011)

Soft Error Mitigation Controller LogiCORE IP Product Guide (PG036)

LMB BRAM Interface Controller LogiCORE IP Product Guide (PG112)

MicroBlaze Debug Module (MDM) Product Guide (PG115)

Device Reliability Report User Guide (UG116)

System Cache LogiCORE IP Product Guide (PG118)

Triple Modular Redundancy (TMR) Subsystem Product Guide (PG268)
Hierarchical Design Methodology Guide (UG748)

© ©®© N o U~ W DN

Vitis Unified Software Platform Documentation (UG1416)

—_
o

. Vivado Design Suite User Guide: Designing With IP (UG896)

11. MicroBlaze Processor Embedded Design Guide (UG1579)

12. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)
13. Embedded System Tools Reference Manual (UG1043)

14. AMBA 4 AXI4-Stream Protocol Specification, Version 1.0 (Arm IHI 0051A)

15. AMBA AXI and ACE Protocol Specification (Arm IHI 0022E)

16. UltraScale Architecture Soft Error Mitigation Controller LogiCORE IP Product Guide
(PG187)

The following lists additional resources you can access directly using the provided URLs.

17. The entire set of GNU manuals: https://www.gnu.org/manual

18. IEEE 754-1985 standard https://en.wikipedia.org/wiki/IEEE_754-1985

19. Wiki: MicroBlaze, MicroBlaze Tagged Pages

20. ELF: Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification

MicroBlaze Processor Reference Guide Send Feedback 396
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://docs.xilinx.com/access/sources/ud/document?url=ug011&ft:locale=en-US
https://docs.xilinx.com/access/sources/framemaker/map?url=pg036_sem&ft:locale=en-US
https://docs.xilinx.com/access/sources/ud/document?url=pg112-lmb-bram-if-cntlr&ft:locale=en-US
https://docs.xilinx.com/access/sources/ud/document?url=ug1416-vitis-documentation&ft:locale=en-US
https://www.xilinx.com/support
https://docs.xilinx.com/access/sources/ud/document?url=ug896-vivado-ip&ft:locale=en-US
https://docs.xilinx.com/access/sources/dita/map?url=ug1579-microblaze-embedded-design&ft:locale=en-US
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842560/MicroBlaze
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841892/MicroBlaze+Tagged+Pages
http://refspecs.linuxbase.org/elf/elf.pdf
https://docs.xilinx.com/access/sources/ud/document?url=ug994-vivado-ip-subsystems&ft:locale=en-US
https://docs.xilinx.com/access/sources/ud/document?url=pg115-mdm&ft:locale=en-US
https://docs.xilinx.com/access/sources/dita/map?url=ug116&ft:locale=en-US
https://docs.xilinx.com/access/sources/ud/document?url=pg118-system-cache&ft:locale=en-US
https://docs.xilinx.com/access/sources/framemaker/map?url=pg268-tmr&ft:locale=en-US
https://www.xilinx.com/cgi-bin/docs/rdoc?v=14.7;d=Hierarchical_Design_Methodology_Guide.pdf
https://docs.xilinx.com/access/sources/framemaker/map?url=pg187-ultrascale-sem&ft:locale=en-US
https://docs.xilinx.com/access/sources/ud/document?url=ug1043-embedded-system-tools&ft:locale=en-US
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
https://www.gnu.org/manual
https://en.wikipedia.org/wiki/IEEE_754-1985
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=396

AMD ¢

Appendix B: Additional Resources and Legal Notices

Training Resources

AMD provides a variety of QuickTake videos and training courses to help you learn more
about the concepts presented in this document. Use these links to explore related training

resources:

1. Designing FPGAs Using the Vivado Design Suite 1 Training Course

M won

Embedded Systems Design Training Course
Embedded Systems Software Design Training Course

Vivado Design Suite QuickTake Video Tutorials

Revision History

02/02/2024: Released with Vivado Design Suite 2023.2 without changes from 2023.1.

Date Version Revision
06/05/2023 2023.1 Updated for Vivado 2023.1 release
- Editorial updates.
« Corrected eight stage pipeline stalls.
« Updated branch latency.
05/25/2022 2022.1 Updated for Vivado 2022.1 release
« Support 64-bit LMB and M_AXI_DP data width.
« Added temporal lockstep description.
« Replaced reference to UG898 with UG1579.
10/27/2021 2021.2 | Updated for Vivado 2021.2 release
« Added Artix UltraScale+ device
06/16/2021 2021.1 Updated for Vivado 2021.1 release
« Corrected MSRCLR and MSRSET in MicroBlaze Instruction Set Summary.
« Corrected TNAPUTD and TNCAPUTD in MicroBlaze Instruction Set
Summary.
« Provided additional information on AXI and ACE interface parameters.
« Added missing description of Dbg_Disable signal.
11/18/2020 2020.2 | Updated for Vivado 2020.2 release
« Corrected parity bits in a data cache line.
« Added Versal to supported families.
« Clarified atomic stream instruction behavior.
« Provided performance and resource utilization for Versal.
06/03/2020 2020.1 Updated for Vivado 2020.1 release
« Added ELF format description.
« Describe Memory Protection feature in more detail.
« Clarified Peripheral Data AXI write behavior.
« Define FINT and DLONG instruction rounding behavior.

MicroBlaze Processor Reference Guide [Send Feedback] 397

UG984 (v2023.2) February 2, 2024

https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/training/courses/embedded-systems-design.html
https://www.xilinx.com/training/courses/designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/training/courses/embedded-systems-software-design.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=397

AM D ‘l Appendix B: Additional Resources and Legal Notices

Date Version Revision

10/30/2019 2019.2 | Updated for Vivado 2019.2 release:

« Updated description of 64-bit immediate instructions with added
opcodes.

« Clarified reset behavior.

« Replaced SDK with Vitis.

« Added Block-RAM count to resource utilization tables.

24/04/2019 2019.1 Updated for Vivado 2019.1 release:

+ Added information about cache reset behavior.

* Included calling convention for variable argument functions.
« Corrected WDC pseudo code.

» Provided link to MicroBlaze pages on the Xilinx Wiki.

11/14/2018 2018.3 Updated for Vivado 2018.3 release:

« Added description of MicroBlaze 64-bit implementation, new in version
11.0.

04/04/2018 2018.1 Updated for Vivado 2018.1 release:

« Included information about instruction pipeline hazards and forwarding.
« Clarified that software break does not set the BIP bit in MSR.

« Explained memory scrubbing behavior.

« Added more detailed description of sleep and pause usage.

« Clarified use of parallel debug clock and reset.

10/04/2017 2017.3 | Updated for Vivado 2017.3 release:

« Added automotive UltraScale+ Zynq and Spartan 7 devices.

« Updated description of debug trace, to add event trace, new in version
10.0.

« Added 4PB extended address size.

« Clarified description of cache trace signals.

04/05/2017 2017.1 Updated for Vivado 2017.1 release:

« Added description of MMU Physical Address Extension (PAE), new in
version 10.0.

« Extended privileged instruction list, and updated instruction descriptions.

« Updated information on debug program trace.

« Added reference to the Triple Modular Redundancy (TMR) subsystem.

« Corrected description of BSIFI instruction.

« Updated MFSE instruction description with PAE information.

« Added MTSE instruction used with PAE, new in version 10.0.

« Updated WDC instruction for external cache invalidate and flush.

10/05/2016 2016.3 | Updated for Vivado 2016.3 release:

« Added description of frequency optimized 8-stage pipeline, new in
version 10.0.

» Describe bit field instructions, new in version 10.0.

« Include information on parallel debug interface, new in version 10.0.

« Added version 10.0 to MicroBlaze release version code in PVR.

« Included Spartan 7 target architecture in PVR.

« Updated description of MSR reset value.

+ Updated Xilinx

MicroBlaze Processor Reference Guide Send Feedback 398
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=398

AM D ‘l Appendix B: Additional Resources and Legal Notices

Date Version Revision

04/06/2016 2016.1 Updated for Vivado 2016.1 release:

« Included description of address extension, new in version 9.6.

« Included description of pipeline pause functionality, new in version 9.6

« Included description of non-secure AXI| access support, new in version
9.6.

* Included description of hibernate and suspend instructions, new in
version 9.6.

e Added version 9.6 to MicroBlaze release version code in PVR.

« Corrected references to Table 2-47 and Table 2-48.

« Replaced references to the deprecated Xilinx Microprocessor Debugger
(XMD) with Xilinx System Debugger (XSDB).

« Removed C code function attributes svc_handler and svc_table_handler.

04/15/2015 2015.1 Updated for Vivado 2015.1 release:

« Included description of 16 word cache line length, new in version 9.5.

« Added version 9.5 to MicroBlaze release version code in PVR.

« Corrected description of supported endianness and parameter
C_ENDIANNESS.

« Corrected description of outstanding reads for instruction and data

cache.

« Updated FPGA configuration memory protection document reference
[Ref 5].

« Corrected Bus Index Range definitions for Lockstep Comparison in
Table 3-19.

« Clarified registers altered for IDIV instruction.

« Corrected PVR assembler mnemonics for MFS instruction.
« Updated performance and resource utilization for 2015.1.
« Added references to training resources.

10/01/2014 2014.3 | Updated for Vivado 2014.3 release:

« Corrected semantic description for PCMPEQ and PCMPNE in Table 2.1.
« Added version 9.4 to MicroBlaze release version code in PVR.
« Included description of external program trace, new in version 9.4

04/02/2014 2014.1 Updated for Vivado 2014.1 release:

+ Added v9.3 to MicroBlaze release version code in PVR.

« Clarified availability and behavior of stack protection registers.

« Corrected description of LMB instruction and data bus exception.

« Included description of extended debug features, new in version 9.3:
performance monitoring, program trace and non-intrusive profiling.

« Included definition of Reset Mode signals, new in version 9.3.

« Clarified how the AXI4-Stream TLAST signal is handled.

« Added UltraScale and updated performance and resource utilization for
2014.1.

12/18/2013 2013.4 | Updated for Vivado 2013.4 release.
10/02/2013 2013.3 | Updated for Vivado 2013.3 release.
06/19/2013 2013.2 | Updated for Vivado 2013.2 release.

03/20/2013 2013.1 Initial Xilinx release. This User Guide is derived from UG081.

MicroBlaze Processor Reference Guide Send Feedback 399
UG984 (v2023.2) February 2, 2024 [—\ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=399

AM D ‘l Appendix B: Additional Resources and Legal Notices

Please Read: Important Legal Notices

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,
and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons,
including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or
product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the
like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no
obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and
to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or
changes. THIS INFORMATION IS PROVIDED “AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN
THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR
FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT,
INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN,
EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY
CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFET DESIGN").
CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH
SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK
OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2013-2023 Advanced Micro Devices, Inc. AMD, the AMD Arrow logo, Artix, Kintex, Spartan, Versal, Virtex, Vivado, Zyng,
and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies. AMBA, AMBA Designer, Arm, ARM1176JZ-S,
CoreSight, Cortex, PrimeCell, Mali, and MPCore are trademarks of Arm Limited in the EU and other countries. All other trademarks are
the property of their respective owners.

MicroBlaze Processor Reference Guide Send Feedback 400
UG984 (v2023.2) February 2, 2024 [—‘ /—]

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2023.2&docPage=400

	MicroBlaze Processor Reference Guide
	Table of Contents
	Ch. 1: Introduction
	Guide Contents

	Ch. 2: MicroBlaze Architecture
	Introduction
	Overview
	Features

	Data Types and Endianness
	Instructions
	Instruction Summary
	Semaphore Synchronization
	Self-modifying Code

	Registers
	General Purpose Registers
	Special Purpose Registers
	Program Counter (PC)
	Machine Status Register (MSR)
	Exception Address Register (EAR)
	Exception Status Register (ESR)
	Branch Target Register (BTR)
	Floating-Point Status Register (FSR)
	Exception Data Register (EDR)
	Stack Low Register (SLR)
	Stack High Register (SHR)
	Process Identifier Register (PID)
	Zone Protection Register (ZPR)
	Translation Look-Aside Buffer Low Register (TLBLO)
	Translation Look-Aside Buffer High Register (TLBHI)
	Translation Look-Aside Buffer Index Register (TLBX)
	Translation Look-Aside Buffer Search Index Register (TLBSX)
	Processor Version Register (PVR)

	Pipeline Architecture
	Three Stage Pipeline
	Five Stage Pipeline
	Eight Stage Pipeline
	Branches
	Delay Slots
	Branch Target Cache

	Pipeline Hazard Example
	Avoiding Data Hazards

	Memory Architecture
	Privileged Instructions
	Virtual-Memory Management
	Real Mode
	Virtual Mode
	Page-Translation Table

	Translation Look-Aside Buffer
	TLB Entry Format
	TLB Access
	TLB Access Failures

	Access Protection
	TLB Access-Protection Controls
	Zone Protection

	UTLB Management
	Recording Page Access and Page Modification

	Reset, Interrupts, Exceptions, and Break
	Reset
	Equivalent Pseudocode

	Hardware Exceptions
	Exception Priority
	Exception Causes
	Imprecise Exceptions
	Equivalent Pseudocode

	Breaks
	Hardware Breaks
	Software Breaks
	Latency
	Equivalent Pseudocode

	Interrupt
	Low-latency Vectored Interrupt Mode
	Latency
	Equivalent Pseudocode

	User Vector (Exception)
	Pseudocode

	Instruction Cache
	Overview
	General Instruction Cache Functionality
	Instruction Cache Operation
	Stream Buffers
	Victim Cache

	Instruction Cache Software Support
	MSR Bit
	WIC Instruction

	Data Cache
	Overview
	General Data Cache Functionality
	Data Cache Operation
	Victim Cache

	Data Cache Software Support
	MSR Bit
	WDC Instruction

	Floating-Point Unit (FPU)
	Overview
	Format
	Single Precision
	Double Precision

	Rounding
	Operations
	Arithmetic
	Comparison
	Conversion

	Exceptions
	Software Support
	Libraries and Binary Compatibility
	Operator Latencies
	C Language Programming

	Stream Link Interfaces
	Hardware Acceleration

	Debug and Trace
	Debug Overview
	Performance Monitoring
	Performance Counter Control Register
	Performance Counter Command Register
	Performance Counter Status Register
	Performance Counter Data Read Register
	Performance Counter Data Write Register

	Program and Event Trace
	Trace Control Register
	Trace Command Register
	Trace Status Register
	Trace Data Read Register

	Non-Intrusive Profiling
	Profiling Control Register
	Profiling Low Address Register
	Profiling High Address Register
	Profiling Buffer Address Register
	Profiling Data Read Register
	Profiling Data Write Register

	Cross Trigger Support
	Trace Interface Overview

	Fault Tolerance
	Configuration
	Using MicroBlaze Configuration
	Using LMB BRAM Interface Controller Configuration

	Features
	Instruction and Data Cache Protection
	Memory Management Unit Protection
	Branch Target Cache Protection
	Exception Handling

	Software Support
	Scrubbing
	BRAM Driver

	Scrubbing
	Scrubbing Methods
	Calculating Scrubbing Rate

	Use Cases
	Minimal
	Small
	Typical
	Full

	Lockstep Operation
	System Configuration
	Use Cases
	Tamper Protection
	Error Detection

	Coherency
	Invalidation
	Protocol Compliance

	Data and Instruction Address Extension

	Ch. 3: MicroBlaze Signal Interface Description
	Introduction
	Overview
	Features

	MicroBlaze I/O Overview
	Sleep and Pause Functionality
	Software Controlled
	Hardware Controlled

	AXI4 and ACE Interface Description
	Memory Mapped Interfaces
	Peripheral Interfaces
	Cache Interfaces
	Interface Parameters and Signals

	Stream Interfaces
	Write Operation
	Read Operation

	Local Memory Bus (LMB) Interface Description
	LMB Signal Interface
	Addr[0:N-1]
	Byte_Enable[0:N-1]
	Data_Write[0:N-1]
	AS
	Read_Strobe
	Write_Strobe
	Data_Read[0:N-1]
	Ready
	Wait
	CE
	UE
	Clk

	LMB Transactions
	Generic Write Operations
	Generic Read Operations
	Back-to-Back Write Operation
	Back-to-Back Read Operation
	Back-to-Back Mixed Write/Read Operation

	Read and Write Data Steering

	Lockstep Interface Description
	Debug Interface Description
	Trace Interface Description
	MicroBlaze Core Configurability

	Ch. 4: MicroBlaze Application Binary Interface
	Introduction
	Data Types
	Register Usage Conventions
	Stack Convention
	Calling Convention

	Memory Model
	Small Data Area
	Data Area
	Common Un-Initialized Area
	Literals or Constants

	Interrupt, Break and Exception Handling
	Reset Handling
	ELF Format
	File Header
	Sections
	Relocations

	Ch. 5: MicroBlaze Instruction Set Architecture
	Introduction
	Notation
	Formats
	Type A
	Type B

	MicroBlaze 32-bit Instructions
	add
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	addi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	and
	Description
	Pseudocode
	Registers Altered
	Latency

	andi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	andn
	Description
	Pseudocode
	Registers Altered
	Latency

	andni
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beqi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	bge
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgei
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	bgt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bgti
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	ble
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blei
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	blt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	blti
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	bne
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bnei
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	br
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	bri
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	brk
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	brki
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	bs
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bsi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	clz
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	cmp
	Description
	Pseudocode
	Registers Altered
	Latency

	fadd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	frsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fmul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fdiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fcmp
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	flt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fint
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	fsqrt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	get
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	getd
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	idiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	imm
	Description
	Latency
	Notes

	lbu
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	lbui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lhu
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	lhui
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lw
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	lwi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	lwx
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mbar
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mfs
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	msrclr
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	msrset
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mts
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	mulh
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mulhu
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	mulhsu
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	muli
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	or
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	ori
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpbf
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpeq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpne
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	put
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	putd
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rsubi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rtbd
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rtid
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rted
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	rtsd
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	sb
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	sbi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sext16
	Description
	Pseudocode
	Registers Altered
	Latency

	sext8
	Description
	Pseudocode
	Registers Altered
	Latency

	sh
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	shi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sra
	Description
	Pseudocode
	Registers Altered
	Latency

	src
	Description
	Pseudocode
	Registers Altered
	Latency

	srl
	Description
	Pseudocode
	Registers Altered
	Latency

	sw
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	swapb
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	swaph
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	swi
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	swx
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	wdc
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	wic
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	xor
	Description
	Pseudocode
	Registers Altered
	Latency

	xori
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	MicroBlaze 64-bit Instructions
	addl
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	addli
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	andl
	Description
	Pseudocode
	Registers Altered
	Latency

	andli
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	andnl
	Description
	Pseudocode
	Registers Altered
	Latency

	andnli
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beaeq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beaeqi
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	beage
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beagei
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	beagt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beagti
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	beale
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bealei
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	bealt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bealti
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	beane
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	beanei
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	brea
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	breai
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	bsl
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	bsli
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	cmpl
	Description
	Pseudocode
	Registers Altered
	Latency

	dadd
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	drsub
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	dmul
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	ddiv
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	dcmp
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	dbl
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	dlong
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	dsqrt
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	imml
	Description
	Latency
	Notes

	ll
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	lli
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	orl
	Description
	Pseudocode
	Registers Altered
	Latency

	orli
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmplbf
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmpleq
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	pcmplne
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rsubl
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	rsubli
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	sextl16
	Description
	Pseudocode
	Registers Altered
	Latency

	sextl32
	Description
	Pseudocode
	Registers Altered
	Latency

	sextl8
	Description
	Pseudocode
	Registers Altered
	Latency

	srla
	Description
	Pseudocode
	Registers Altered
	Latency

	srlc
	Description
	Pseudocode
	Registers Altered
	Latency

	srll
	Description
	Pseudocode
	Registers Altered
	Latency

	sl
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	sli
	Description
	Pseudocode
	Registers Altered
	Latency
	Note

	xorl
	Description
	Pseudocode
	Registers Altered
	Latency

	xorli
	Description
	Pseudocode
	Registers Altered
	Latency
	Notes

	Appx. A: Performance and Resource Utilization
	Performance
	Maximum Frequencies

	Resource Utilization
	IP Characterization and fMAX Margin System Methodology
	Introduction
	The FMAX Margin System Methodology
	Tool Options and Other Factors

	Appx. B: Additional Resources and Legal Notices
	Finding Additional Documentation
	Documentation Portal
	Documentation Navigator
	Design Hubs

	Support Resources
	References
	Training Resources
	Revision History
	Please Read: Important Legal Notices

