
MicroBlaze Processor
Reference Guide

UG984 (v2024.1) May 30, 2024

See all versions
of this document

AMD Adaptive Computing is creating an environment where
employees, customers, and partners feel welcome and included. To
that end, we’re removing non-inclusive language from our products
and related collateral. We’ve launched an internal initiative to remove
language that could exclude people or reinforce historical biases,
including terms embedded in our software and IPs. You may still find
examples of non-inclusive language in our older products as we work
to make these changes and align with evolving industry standards.
Follow this link for more information.

https://docs.amd.com/go/en-US/ug984-vivado-microblaze-ref
https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf

Table of Contents
Chapter 1: Introduction.. 4

Guide Contents..4

Chapter 2: MicroBlaze Architecture... 5
Introduction... 5
Overview...5
Data Types and Endianness... 9
Instructions.. 10
Registers...24
Pipeline Architecture...50
Memory Architecture..56
Privileged Instructions..58
Virtual-Memory Management... 59
Reset, Interrupts, Exceptions, and Break... 74
Instruction Cache.. 84
Data Cache... 87
Floating-Point Unit (FPU)..91
Stream Link Interfaces..97
Debug and Trace... 98
Fault Tolerance.. 118
Lockstep Operation...126
Coherency.. 129
Data and Instruction Address Extension..131

Chapter 3: MicroBlaze Signal Interface Description...............................133
Introduction... 133
Overview...133
MicroBlaze I/O Overview..134
AXI4 and ACE Interface Description..147
Local Memory Bus (LMB) Interface Description..152
Lockstep Interface Description..164
Debug Interface Description... 170

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 2Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=2

Trace Interface Description..171
MicroBlaze Core Configurability..174

Chapter 4: MicroBlaze Application Binary Interface.............................. 185
Introduction... 185
Data Types..185
Register Usage Conventions..186
Stack Convention...188
Memory Model.. 190
Interrupt, Break and Exception Handling.. 191
Reset Handling.. 193
ELF Format... 193

Chapter 5: MicroBlaze Instruction Set Architecture...............................197
Introduction... 197
Notation..197
Formats...199
MicroBlaze 32-bit Instructions...199
MicroBlaze 64-bit Instructions...335

Appendix A: Performance and Resource Utilization.............................. 394
Performance.. 394
Resource Utilization.. 395
IP Characterization and fMAX Margin System Methodology.. 403

Appendix B: Additional Resources and Legal Notices........................... 405
Finding Additional Documentation...405
Support Resources.. 406
References..406
Revision History...407
Please Read: Important Legal Notices... 411

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 3Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=3

Chapter 1

Introduction
The MicroBlaze™ Processor Reference Guide provides information about the 32-bit and 64-bit
soft processor, MicroBlaze, which is included in AMD Vivado™. The document is intended as a
guide to the MicroBlaze hardware architecture.

Guide Contents
This guide contains the following sections:

• Chapter 2: MicroBlaze Architecture: Contains an overview of MicroBlaze features as well as
information on Big-Endian and Little-Endian bit-reversed format, 32-bit or 64-bit general
purpose registers, cache software support, and AXI4-Stream interfaces.

• Chapter 3: MicroBlaze Signal Interface Description: Describes the types of signal interfaces
that can be used to connect MicroBlaze.

• Chapter 4: MicroBlaze Application Binary Interface: Describes the Application Binary
Interface important for developing software in assembly language for the processor.

• Chapter 5: MicroBlaze Instruction Set Architecture: Provides notation, formats, and
instructions for the Instruction Set Architecture (ISA) of MicroBlaze.

• Appendix A: Performance and Resource Utilization: Contains maximum frequencies and
resource utilization numbers for different configurations and devices.

• Appendix B: Additional Resources and Legal Notices: Provides links to documentation and
additional resources.

Chapter 1: Introduction

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 4Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=4

Chapter 2

MicroBlaze Architecture

Introduction
This section contains an overview of MicroBlaze™ features and detailed information on
MicroBlaze architecture including Big-Endian or Little-Endian bit-reversed format, 32-bit or 64-
bit general purpose registers, virtual-memory management, cache software support, and AXI4-
Stream interfaces.

Overview
The MicroBlaze embedded processor soft core is a reduced instruction set computer (RISC)
optimized for implementation in AMD Field Programmable Gate Arrays (FPGAs). The following
figure shows a functional block diagram of the MicroBlaze core.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 5Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=5

Figure 1: MicroBlaze Core Block Diagram

Bus
IF

I-Cache

Instruction
Buffer

Instruction
Buffer

Branch Target
Cache

Program
Counter

M_AXI_IC Memory Management Unit (MMU)

ITLB DTLBUTLB

Bus
IF

D-Cache
M_AXI_DC

M_AXI_DP

DLMB

M0_AXIS ..
M15_AXIS

S0_AXIS ..
S15_AXIS

Special
Purpose
Registers

Instruction
Decode

Register File
32 registers

ALU

Shift

Barrel Shift

Multiplier

Divider

FPU

Instruction-side
Bus interface

Data-side
Bus interface

Optional MicroBlaze feature

M_AXI_IP

ILMB

M_ACE_DCM_ACE_IC

X19738-100218

Features
The MicroBlaze soft core processor is highly configurable, allowing you to select a specific set of
features required by your design.

The fixed feature set of the processor includes:

• Thirty-two 32-bit or 64-bit general purpose registers

• 32-bit instruction word with three operands and two addressing modes

• Default 32-bit address bus, extensible to 64 bits

• Single issue pipeline

In addition to these fixed features, the MicroBlaze processor is parameterized to allow selective
enabling of additional functionality. Older (deprecated) versions of MicroBlaze support a subset
of the optional features described in this manual. Only the latest (preferred) version of
MicroBlaze (v11.0) supports all options.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 6Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=6

RECOMMENDED: AMD recommends that all new designs use the latest preferred version of the
MicroBlaze processor.

The following table provides an overview of the configurable features by MicroBlaze versions.

Table 1: Configurable Feature Overview by MicroBlaze Version

Feature
MicroBlaze versions

v9.3 v9.4 v9.5 v9.6 v10.0 v11.0
Version Status deprecated deprecated deprecated deprecated deprecated preferred

Processor pipeline depth 3/5 3/5 3/5 3/5 3/5/8 3/5/8

Local Memory Bus (LMB) data side
interface

option option option option option option

Local Memory Bus (LMB) instruction
side interface

option option option option option option

Hardware barrel shifter option option option option option option

Hardware divider option option option option option option

Hardware debug logic option option option option option option

Stream link interfaces 0-16 AXI 0-16 AXI 0-16 AXI 0-16 AXI 0-16 AXI 0-16 AXI

Machine status set and clear
instructions

option option option option option option

Cache line word length 4, 8 4, 8 4, 8, 16 4, 8, 16 4, 8, 16 4, 8, 16

Hardware exception support option option option option option option

Pattern compare instructions option option option option option option

Floating-point unit (FPU) option option option option option option

Disable hardware multiplier1 option option option option option option

Hardware debug readable ESR and EAR Yes Yes Yes Yes Yes Yes

Processor Version Register (PVR) option option option option option option

Area or speed optimized option option option option option option

Hardware multiplier 64-bit result option option option option option option

LUT cache memory option option option option option option

Floating-point conversion and square
root instructions

option option option option option option

Memory Management Unit (MMU) option option option option option option

Extended stream instructions option option option option option option

Use Cache Interface for All I-Cache
Memory Accesses

option option option option option option

Use Cache Interface for All D-Cache
Memory Accesses

option option option option option option

Use Write-back Caching Policy for D-
Cache

option option option option option option

Branch Target Cache (BTC) option option option option option option

Streams for I-Cache option option option option option option

Victim handling for I-Cache option option option option option option

Victim handling for D-Cache option option option option option option

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 7Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=7

Table 1: Configurable Feature Overview by MicroBlaze Version (cont'd)

Feature
MicroBlaze versions

v9.3 v9.4 v9.5 v9.6 v10.0 v11.0
AXI4 (M_AXI_DP) data side interface option option option option option option

AXI4 (M_AXI_IP) instruction side
interface

option option option option option option

AXI4 (M_AXI_DC) protocol for D-Cache option option option option option option

AXI4 (M_AXI_IC) protocol for I-Cache option option option option option option

AXI4 protocol for stream accesses option option option option option option

Fault tolerant features option option option option option option

Force distributed RAM for cache tags option option option option option option

Configurable cache data widths option option option option option option

Count Leading Zeros instruction option option option option option option

Memory Barrier instruction Yes Yes Yes Yes Yes Yes

Stack overflow and underflow detection option option option option option option

Allow stream instructions in user mode option option option option option option

Lockstep support option option option option option option

Configurable use of FPGA primitives option option option option option option

Low-latency interrupt mode option option option option option option

Swap instructions option option option option option option

Sleep mode and sleep instruction Yes Yes Yes Yes Yes Yes

Relocatable base vectors option option option option option option

ACE (M_ACE_DC) protocol for D-Cache option option option option option option

ACE (M_ACE_IC) protocol for I-Cache option option option option option option

Extended debug: performance
monitoring, program trace, non-
intrusive profiling

option option option option option option

Reset mode: enter sleep or debug halt
at reset

option option option option option option

Extended debug: external program
trace

option option option option option

Extended data addressing option option option

Pipeline pause functionality Yes Yes Yes

Hibernate and suspend instructions Yes Yes Yes

Non-secure mode Yes Yes Yes

Bit field instructions2 option option

Parallel debug interface option option

MMU Physical Address Extension option option

64-bit mode option

Notes:
1. Used for saving DSP48E primitives.
2. Bit field instructions are available when C_USE_BARREL = 1.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 8Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=8

Data Types and Endianness
The MicroBlaze processor uses Big-Endian or Little-Endian format to represent data, depending
on the selected endianness. The parameter C_ENDIANNESS is set to 1 (little-endian) by default.

The hardware supported data types for 32-bit MicroBlaze are word, half word, and byte. With
64-bit MicroBlaze the data types long and double are also available in hardware.

When using the reversed load and store instructions LHUR, LWR, LLR, SHR, SWR and SLR, the
bytes in the data are reversed, as indicated by the byte-reversed order.

The following tables show the bit and byte organization for each type.

Table 2: Long Data Type (only 64-bit MicroBlaze)

Big-Endian Byte
Address

n n+1 n+2 n+3 n+4 n+5 n+6 n+7

Big-Endian Byte
Significance

MSByte LSByte

Big-Endian Byte Order n n+1 n+2 n+3 n+4 n+5 n+6 n+7

Big-Endian Byte-
Reversed Order

n+7 n+6 n+5 n+4 n+3 n+2 n+1 n

Little-Endian Byte
Address

n+7 n+6 n+5 n+4 n+3 n+2 n+1 n

Little-Endian Byte
Significance

MSByte LSByte

Little-Endian Byte
Order

n+7 n+6 n+5 n+4 n+3 n+2 n+1 n

Little-Endian Byte-
Reversed Order

n n+1 n+2 n+3 n+4 n+5 n+6 n+7

Bit Label 0 63

Bit Significance MSBit LSBit

Table 3: Word Data Type

Big-Endian Byte Address n n+1 n+2 n+3

Big-Endian Byte Significance MSByte LSByte

Big-Endian Byte Order n n+1 n+2 n+3

Big-Endian Byte-Reversed Order n+3 n+2 n+1 n

Little-Endian Byte Address n+3 n+2 n+1 n

Little-Endian Byte Significance MSByte LSByte

Little-Endian Byte Order n+3 n+2 n+1 n

Little-Endian Byte-Reversed Order n n+1 n+2 n+3

Bit Label 0 31

Bit Significance MSBit LSBit

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 9Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=9

Table 4: Half Word Data Type

Big-Endian Byte Address n n+1

Big-Endian Byte Significance MSByte LSByte

Big-Endian Byte Order n n+1

Big-Endian Byte-Reversed Order n+1 n

Little-Endian Byte Address n+1 n

Little-Endian Byte Significance MSByte LSByte

Little-Endian Byte Order n+1 n

Little-Endian Byte-Reversed Order n n+1

Bit Label 0 15

Bit Significance MSBit LSBit

Table 5: Byte Data Type

Byte Address n

Bit Label 0 7

Bit Significance MSBit LSBit

Instructions
Instruction Summary
All MicroBlaze instructions are 32 bits and are defined as either Type A or Type B. Type A
instructions have up to two source register operands and one destination register operand. Type
B instructions have one source register and a 16-bit immediate operand (which can be extended
to 32 bits by preceding the Type B instruction with an imm instruction).

Type B instructions have a single destination register operand. Instructions are provided in the
following functional categories: arithmetic, logical, branch, load/store, and special. The following
table describes the instruction set nomenclature used in the semantics of each instruction. The
following table lists the MicroBlaze instruction set. See Chapter 5: MicroBlaze Instruction Set
Architecture, for more information on these instructions.

Table 6: Instruction Set Nomenclature

Symbol Description
Ra R0 - R31, General Purpose Register, source operand a

• With 32-bit MicroBlaze represents the entire 32-bit register
• With 64-bit MicroBlaze and L = 0, represents the 32 least significant bits
• With 64-bit MicroBlaze and L = 1, represents the entire 64-bit register
The instruction bit L is defined in the following table.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 10Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=10

Table 6: Instruction Set Nomenclature (cont'd)

Symbol Description
Rb R0 - R31, General Purpose Register, source operand b

• With 32-bit MicroBlaze represents the entire 32-bit register
• With 64-bit MicroBlaze and L = 0, represents the 32 least significant bits
• With 64-bit MicroBlaze and L = 1, represents the entire 64-bit register
The instruction bit L is defined in the following table.

Rd R0 - R31, General Purpose Register, destination operand
• With 32-bit MicroBlaze the entire 32-bit register is assigned the result
• With 64-bit MicroBlaze and L = 0, the 32 least significant bits are assigned the result
• With 64-bit MicroBlaze and L = 1, the entire 64-bit register is assigned the result
The instruction bit L is defined in the following table.

SPR[x] Special Purpose Register number x

MSR Machine Status Register = SPR[1]

ESR Exception Status Register = SPR[5]

EAR Exception Address Register = SPR[3]

FSR Floating-point Unit Status Register = SPR[7]

PVRx Processor Version Register, where x is the register number = SPR[8192 + x]

BTR Branch Target Register = SPR[11]

PC Execute stage Program Counter = SPR[0]

x[y] Bit y of register x

x[] Bit range y to z of register x

x Bit inverted value of register x

Imm 16-bit immediate value

Immx x bit immediate value

FSLx 4-bit AXI4-Stream port designator, where x is the port number

C Carry flag, MSR[29]

Sa Special Purpose Register, source operand

Sd Special Purpose Register, destination operand

s(x) Sign extend argument x to 32-bit or 64-bit value

*Addr Memory contents at location Addr (data-size aligned)

:= Assignment operator

= Equality comparison

!= Inequality comparison

> Greater than comparison

>= Greater than or equal comparison

< Less than comparison

<= Less than or equal comparison

+ Arithmetic add

* Arithmetic multiply

/ Arithmetic divide

>> x Bit shift right x bits

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 11Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=11

Table 6: Instruction Set Nomenclature (cont'd)

Symbol Description
<< x Bit shift left x bits

and Logic AND

or Logic OR

xor Logic exclusive OR

op1 if cond else op2 Perform op1 if condition cond is true, else perform op2

& Concatenate. For example “0000100 & Imm7” is the concatenation of the fixed field “0000100”
and a 7 bit immediate value.

signed Operation performed on signed integer data type. All arithmetic operations are performed on
signed word operands, unless otherwise specified

unsigned Operation performed on unsigned integer data type

float Operation performed on floating-point data type

clz(r) Count leading zeros

Table 7: MicroBlaze Instruction Set Summary

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
ADD Rd,Ra,Rb 000000 Rd Ra Rb 00L00000000 Rd := Rb + Ra

RSUB Rd,Ra,Rb 000001 Rd Ra Rb 00L00000000 Rd := Rb + Ra + 1

ADDC Rd,Ra,Rb 000010 Rd Ra Rb 00L00000000 Rd := Rb + Ra + C

RSUBC Rd,Ra,Rb 000011 Rd Ra Rb 00L00000000 Rd := Rb + Ra + C

ADDK Rd,Ra,Rb 000100 Rd Ra Rb 00L00000000 Rd := Rb + Ra

RSUBK Rd,Ra,Rb 000101 Rd Ra Rb 00L00000000 Rd := Rb + Ra + 1

CMP Rd,Ra,Rb 000101 Rd Ra Rb 00L00000001 Rd := Rb + Ra + 1
Rd[0] := 0 if (Rb >= Ra) else
Rd[0] := 1

CMPU Rd,Ra,Rb 000101 Rd Ra Rb 00L00000011 Rd := Rb + Ra + 1 (unsigned)
Rd[0] := 0 if (Rb >= Ra,
unsigned) else
Rd[0] := 1

ADDKC Rd,Ra,Rb 000110 Rd Ra Rb 00L00000000 Rd := Rb + Ra + C

RSUBKC Rd,Ra,Rb 000111 Rd Ra Rb 00L00000000 Rd := Rb + Ra + C

ADDI Rd,Ra,Imm 001000 Rd Ra Imm Rd := s(Imm) + Ra

RSUBI Rd,Ra,Imm 001001 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIC Rd,Ra,Imm 001010 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIC Rd,Ra,Imm 001011 Rd Ra Imm Rd := s(Imm) + Ra + C

ADDIK Rd,Ra,Imm 001100 Rd Ra Imm Rd := s(Imm) + Ra

RSUBIK Rd,Ra,Imm 001101 Rd Ra Imm Rd := s(Imm) + Ra + 1

ADDIKC Rd,Ra,Imm 001110 Rd Ra Imm Rd := s(Imm) + Ra + C

RSUBIKC Rd,Ra,Imm 001111 Rd Ra Imm Rd := s(Imm) + Ra + C

MUL Rd,Ra,Rb 010000 Rd Ra Rb 00000000000 Rd := Ra * Rb

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 12Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=12

Table 7: MicroBlaze Instruction Set Summary (cont'd)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MULH Rd,Ra,Rb 010000 Rd Ra Rb 00000000001 Rd := (Ra * Rb) >> 32 (signed)

MULHU Rd,Ra,Rb 010000 Rd Ra Rb 00000000011 Rd := (Ra * Rb) >> 32 (unsigned)

MULHSU Rd,Ra,Rb 010000 Rd Ra Rb 00000000010 Rd := (Ra, signed * Rb,
unsigned) >> 32 (signed)

BSRL Rd,Ra,Rb 010001 Rd Ra Rb 00L00000000 Rd := 0 & (Ra >> Rb)

BSRA Rd,Ra,Rb 010001 Rd Ra Rb 01L00000000 Rd := s(Ra >> Rb)

BSLL Rd,Ra,Rb 010001 Rd Ra Rb 10L00000000 Rd := (Ra << Rb) & 0

IDIV Rd,Ra,Rb 010010 Rd Ra Rb 00000000000 Rd := Rb/Ra

IDIVU Rd,Ra,Rb 010010 Rd Ra Rb 00000000010 Rd := Rb/Ra, unsigned

TNEAGETD Rd,Rb 010011 Rd 00000 Rb 0N0TAE
00000

Rd := FSL Rb[28:31] (data read)
MSR[FSL] := 1 if (FSL_S_Control =
1)
MSR[C] := not FSL_S_Exists if N =
1

TNAPUTD Ra,Rb 010011 00000 Ra Rb 1N0TA0
00000

FSL Rb[28:31] := Ra (data write)
MSR[C] := FSL_M_Full if N = 1

TNECAGETD Rd,Rb 010011 Rd 00000 Rb 0N1TAE
00000

Rd := FSL Rb[28:31] (control
read)
MSR[FSL] := 1 if (FSL_S_Control =
0)
MSR[C] := not FSL_S_Exists if N =
1

TNCAPUTD Ra,Rb 010011 00000 Ra Rb 1N1TA0
00000

FSL Rb[28:31] := Ra (control
write)
MSR[C] := FSL_M_Full if N = 1

FADD Rd,Ra,Rb 010110 Rd Ra Rb 00000000000 Rd := Rb+Ra, float1

FRSUB Rd,Ra,Rb 010110 Rd Ra Rb 00010000000 Rd := Rb-Ra, float1

FMUL Rd,Ra,Rb 010110 Rd Ra Rb 00100000000 Rd := Rb*Ra, float1

FDIV Rd,Ra,Rb 010110 Rd Ra Rb 00110000000 Rd := Rb/Ra, float1

FCMP.UN Rd,Ra,Rb 010110 Rd Ra Rb 01000000000 Rd := 1 if (Rb = NaN or Ra =
NaN, float1) else
Rd := 0

FCMP.LT Rd,Ra,Rb 010110 Rd Ra Rb 01000010000 Rd := 1 if (Rb < Ra, float1) else
Rd := 0

FCMP.EQ Rd,Ra,Rb 010110 Rd Ra Rb 01000100000 Rd := 1 if (Rb = Ra, float1) else
Rd := 0

FCMP.LE Rd,Ra,Rb 010110 Rd Ra Rb 01000110000 Rd := 1 if (Rb <= Ra, float1) else
Rd := 0

FCMP.GT Rd,Ra,Rb 010110 Rd Ra Rb 01001000000 Rd := 1 if (Rb > Ra, float1) else
Rd := 0

FCMP.NE Rd,Ra,Rb 010110 Rd Ra Rb 01001010000 Rd := 1 if (Rb != Ra, float1) else
Rd := 0

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 13Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=13

Table 7: MicroBlaze Instruction Set Summary (cont'd)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
FCMP.GE Rd,Ra,Rb 010110 Rd Ra Rb 01001100000 Rd := 1 if (Rb >= Ra, float1) else

Rd := 0

FLT Rd,Ra 010110 Rd Ra 0 01010000000 Rd := float (Ra)1

FINT Rd,Ra 010110 Rd Ra 0 01100000000 Rd := int (Ra)1

FSQRT Rd,Ra 010110 Rd Ra 0 01110000000 Rd := sqrt (Ra)1

DADD Rd,Ra,Rb2 010110 Rd Ra Rb 10000000000 Rd := Rb+Ra, double1

DRSUB Rd,Ra,Rb2 010110 Rd Ra Rb 10010000000 Rd := Rb-Ra, double1

DMUL Rd,Ra,Rb2 010110 Rd Ra Rb 10100000000 Rd := Rb*Ra, double1

DDIV Rd,Ra,Rb2 010110 Rd Ra Rb 10110000000 Rd := Rb/Ra, double1

DCMP.UN Rd,Ra,Rb2 010110 Rd Ra Rb 11000000000 Rd := 1 if (Rb = NaN or Ra =
NaN, double1) else Rd := 0

DCMP.LT Rd,Ra,Rb2 010110 Rd Ra Rb 11000010000 Rd := 1 if (Rb < Ra, double1) else
Rd := 0

DCMP.EQ Rd,Ra,Rb2 010110 Rd Ra Rb 11000100000 Rd := 1 if (Rb = Ra, double1) else
Rd := 0

DCMP.LE Rd,Ra,Rb2 010110 Rd Ra Rb 11000110000 Rd := 1 if (Rb <= Ra, double1)
else
Rd := 0

DCMP.GT Rd,Ra,Rb2 010110 Rd Ra Rb 11001000000 Rd := 1 if (Rb > Ra, double1) else
Rd := 0

DCMP.NE Rd,Ra,Rb2 010110 Rd Ra Rb 11001010000 Rd := 1 if (Rb != Ra, double1)
else
Rd := 0

DCMP.GE Rd,Ra,Rb2 010110 Rd Ra Rb 11001100000 Rd := 1 if (Rb >= Ra, double1)
else
Rd := 0

DBL Rd,Ra2 010110 Rd Ra 0 11010000000 Rd := double (Ra)1

DLONG Rd,Ra2 010110 Rd Ra 0 11100000000 Rd := long (Ra)1

DSQRT Rd,Ra2 010110 Rd Ra 0 11110000000 Rd := dsqrt (Ra)1

MULI Rd,Ra,Imm 011000 Rd Ra Imm Rd := Ra * s(Imm)

BSRLI Rd,Ra,Imm 011001 Rd Ra 00L00000000 & Imm5 Rd : = 0 & (Ra >> Imm5)

BSRAI Rd,Ra,Imm 011001 Rd Ra 00L00010000 & Imm5 Rd := s(Ra >> Imm5)

BSLLI Rd,Ra,Imm 011001 Rd Ra 00L00100000 & Imm5 Rd := (Ra << Imm5) & 0

BSEFI Rd,Ra,
ImmW,ImmS

011001 Rd Ra 01L00 &
ImmW & 0 & ImmS

Rd[0:31-ImmW] := 0
Rd[32-ImmW:31] := (Ra >>
ImmS)

BSIFI Rd,Ra,
Width,ImmS

011001 Rd Ra 10L00 &
ImmW & 0 & ImmS

M := (0xffffffff << (ImmW + 1))
xor
(0xffffffff << ImmS)
Rd := ((Ra << ImmS) and M) xor
(Rd and M)
ImmW := ImmS + Width - 1

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 14Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=14

Table 7: MicroBlaze Instruction Set Summary (cont'd)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
ADDLI Rd,Imm2 011010 Rd 00000 Imm Rd[0:63] := s(Imm) + Rd[0:63]

RSUBLI Rd,Imm2 011010 Rd 00001 Imm Rd[0:63] := s(Imm) + Rd[0:63]

ADDLIC Rd,Imm2 011010 Rd 00010 Imm Rd[0:63] := s(Imm) + Rd[0:63] +
C

RSUBLIC Rd,Imm2 011010 Rd 00011 Imm Rd[0:63] := s(Imm) + Rd[0:63] +
C

ADDLIK Rd,Imm2 011010 Rd 00100 Imm Rd[0:63] := s(Imm) + Rd[0:63]

RSUBLIK Rd,Imm2 011010 Rd 00101 Imm Rd[0:63] := s(Imm) + Rd[0:63]

ADDLIKC Rd,Imm2 011010 Rd 00110 Imm Rd[0:63] := s(Imm) +Rd[0:63] + C

RSUBLIKC Rd,Imm2 011010 Rd 00111 Imm Rd[0:63] := s(Imm) + Rd[0:63] +
C

ORLI Rd,Imm2 011010 Rd 10000 Imm Rd[0:63] := s(Imm) or Rd[0:63]

ANDLI Rd,Imm2 011010 Rd 10001 Imm Rd[0:63] := s(Imm) and Rd[0:63]

XORLI Rd,Imm2 011010 Rd 10010 Imm Rd[0:63] := s(Imm) xor Rd[0:63]

ANDNLI Rd,Imm2 011010 Rd 10011 Imm Rd[0:63] := s(Imm) and Rd[0:63]

TNEAGET Rd,FSLx 011011 Rd 00000 0N0TAE000000 & FSLx Rd := FSLx (data read, blocking
if
N = 0)
MSR[FSL] := 1 if (FSLx_S_Control
= 1)
MSR[C] := not FSLx_S_Exists if N
= 1

TNAPUT Ra,FSLx 011011 00000 Ra 1N0TA0000000 & FSLx FSLx := Ra (data write, block if N
= 0)
MSR[C] := FSLx_M_Full if N = 1

TNECAGET Rd,FSLx 011011 Rd 00000 0N1TAE000000 & FSLx Rd := FSLx (control read, block if
N = 0)
MSR[FSL] := 1 if (FSLx_S_Control
= 0)
MSR[C] := not FSLx_S_Exists if N
= 1

TNCAPUT Ra,FSLx 011011 00000 Ra 1N1TA0000000 & FSLx FSLx := Ra (control write, block
if N = 0)
MSR[C] := FSLx_M_Full if N = 1

OR Rd,Ra,Rb 100000 Rd Ra Rb 00000000000 Rd := Ra or Rb

PCMPBF Rd,Ra,Rb 100000 Rd Ra Rb 10000000000 Rd := 1 if (Rb[0:7] = Ra[0:7]) else
Rd := 2 if (Rb[8:15] = Ra[8:15])
else
Rd := 3 if (Rb[16:23] = Ra[16:23])
else
Rd := 4 if (Rb[24:31] = Ra[24:31])
else
Rd := 0

AND Rd,Ra,Rb 100001 Rd Ra Rb 00000000000 Rd := Ra and Rb

XOR Rd,Ra,Rb 100010 Rd Ra Rb 00000000000 Rd := Ra xor Rb

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 15Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=15

Table 7: MicroBlaze Instruction Set Summary (cont'd)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
PCMPEQ Rd,Ra,Rb 100010 Rd Ra Rb 10000000000 Rd := 1 if (Rb = Ra) else

Rd := 0

ANDN Rd,Ra,Rb 100011 Rd Ra Rb 00000000000 Rd := Ra and Rb

PCMPNE Rd,Ra,Rb 100011 Rd Ra Rb 10000000000 Rd := 1 if (Rb != Ra) else
Rd := 0

SRA Rd,Ra 100100 Rd Ra 0000000000000001 Rd := s(Ra >> 1)
C := Ra[31]

SRC Rd,Ra 100100 Rd Ra 0000000000100001 Rd := C & (Ra >> 1)
C := Ra[31]

SRL Rd,Ra 100100 Rd Ra 0000000001000001 Rd := 0 & (Ra >> 1)
C := Ra[31]

SEXT8 Rd,Ra 100100 Rd Ra 0000000001100000 Rd := s(Ra[24:31])

SEXT16 Rd,Ra 100100 Rd Ra 0000000001100001 Rd := s(Ra[16:31])

SEXTL32 Rd,Ra2 100100 Rd Ra 0000000001100010 Rd := s(Ra[32:63])

CLZ Rd, Ra 100100 Rd Ra 0000000011100000 Rd = clz(Ra)

SWAPB Rd, Ra 100100 Rd Ra 0000000111100000 Rd = (Ra)[24:31, 16:23, 8:15, 0:7]

SWAPH Rd, Ra 100100 Rd Ra 0000000111100010 Rd = (Ra)[16:31, 0:15]

WIC Ra,Rb 100100 00000 Ra Rb 00001101000 ICache_Line[Ra >> 4].Tag := 0 if
(C_ICACHE_LINE_LEN = 4)
ICache_Line[Ra >> 5].Tag := 0 if
(C_ICACHE_LINE_LEN = 8)
ICache_Line[Ra >> 6].Tag := 0 if
(C_ICACHE_LINE_LEN = 16)

WDC Ra,Rb 100100 00000 Ra Rb 00001100100 Cache line is cleared, discarding
stored data.
DCache_Line[Ra >>
4].Tag := 0 if
(C_DCACHE_LINE_LEN = 4)

DCache_Line[Ra >>
5].Tag := 0 if
(C_DCACHE_LINE_LEN = 8)

DCache_Line[Ra >>
6].Tag := 0 if
(C_DCACHE_LINE_LEN = 16)

WDC.FLUSH Ra,Rb 100100 00000 Ra Rb 00001110100 Cache line is flushed, writing
stored data to memory, and
then cleared. Used when
C_DCACHE_USE_WRITEBACK =
1.

WDC.CLEAR Ra,Rb 100100 00000 Ra Rb 00001100110 Cache line with matching
address is cleared, discarding
stored data. Used when
C_DCACHE_USE_WRITEBACK =
1.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 16Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=16

Table 7: MicroBlaze Instruction Set Summary (cont'd)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
WDC.CLEAR.EA
Ra,Rb

100100 00000 Ra Rb 00011100110 Cache line with matching
extended address Ra & Rb is
cleared. Used when
C_DCACHE_USE_WRITEBACK =
1.

MTS Sd,Ra 100101 00000 Ra 11 & Sd SPR[Sd] := Ra, where:
• SPR[0x0001] is MSR
• SPR[0x0007] is FSR
• SPR[0x0800] is SLR
• SPR[0x0802] is SHR
• SPR[0x1000] is PID
• SPR[0x1001] is ZPR
• SPR[0x1002] is TLBX
• SPR[0x1003] is TLBLO[LSH]
• SPR[0x1004] is TLBHI
• SPR[0x1005] is TLBSX

MTSE Sd,Ra 100101 01000 Ra 11 & Sd SPR[Sd} := Ra, where:
• SPR[0x1003] is TLBLO[MSH]

MFS Rd,Sa 100101 Rd 00000 10 & Sa Rd := SPR[Sa], where:
• SPR[0x0000] is PC
• SPR[0x0001] is MSR
• SPR[0x0003] is EAR[LSH]
• SPR[0x0005] is ESR
• SPR[0x0007] is FSR
• SPR[0x000B] is BTR
• SPR[0x000D] is EDR
• SPR[0x0800] is SLR
• SPR[0x0802] is SHR
• SPR[0x1000] is PID
• SPR[0x1001] is ZPR
• SPR[0x1002] is TLBX
• SPR[0x1003] is TLBLO[LSH]
• SPR[0x1004] is TLBHI
• SPR[0x2000-200B] is

PVR[0-12][LSH]

MFSE Rd,Sa 100101 Rd 01000 10 & Sa Rd := SPR[Sa][MSH], where:
• SPR[0x0003] is EAR[MSH]
• SPR[0x1003] is TLBLO[MSH]
• SPR[0x2006-2009] is

PVR[6-9][MSH]

MSRCLR Rd,Imm 100101 Rd 10001 0 & Imm15 Rd := MSR
MSR := MSR and Imm15

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 17Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=17

Table 7: MicroBlaze Instruction Set Summary (cont'd)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
MSRSET Rd,Imm 100101 Rd 10000 0 & Imm15 Rd := MSR

MSR := MSR or Imm15

BR Rb 100110 00000 00000 Rb 00000000000 PC := PC + Rb

BRD Rb 100110 00000 10000 Rb 00000000000 PC := PC + Rb

BRLD Rd,Rb 100110 Rd 10100 Rb 00000000000 PC := PC + Rb
Rd := PC

BRA Rb 100110 00000 01000 Rb 00000000000 PC := Rb

BRAD Rb 100110 00000 11000 Rb 00000000000 PC := Rb

BRALD Rd,Rb 100110 Rd 11100 Rb 00000000000 PC := Rb
Rd := PC

BRK Rd,Rb 100110 Rd 01100 Rb 00000000000 PC := Rb
Rd := PC
MSR[BIP] := 1

BEQ Ra,Rb 100111 0L000 Ra Rb 00000000000 PC := PC + Rb if Ra = 0

BNE Ra,Rb 100111 0L001 Ra Rb 00000000000 PC := PC + Rb if Ra != 0

BLT Ra,Rb 100111 0L010 Ra Rb 00000000000 PC := PC + Rb if Ra < 0

BLE Ra,Rb 100111 0L011 Ra Rb 00000000000 PC := PC + Rb if Ra <= 0

BGT Ra,Rb 100111 0L100 Ra Rb 00000000000 PC := PC + Rb if Ra > 0

BGE Ra,Rb 100111 0L101 Ra Rb 00000000000 PC := PC + Rb if Ra >= 0

BEQD Ra,Rb 100111 1L000 Ra Rb 00000000000 PC := PC + Rb if Ra = 0

BNED Ra,Rb 100111 1L001 Ra Rb 00000000000 PC := PC + Rb if Ra != 0

BLTD Ra,Rb 100111 1L010 Ra Rb 00000000000 PC := PC + Rb if Ra < 0

BLED Ra,Rb 100111 1L011 Ra Rb 00000000000 PC := PC + Rb if Ra <= 0

BGTD Ra,Rb 100111 1L100 Ra Rb 00000000000 PC := PC + Rb if Ra > 0

BGED Ra,Rb 100111 1L101 Ra Rb 00000000000 PC := PC + Rb if Ra >= 0

ORI Rd,Ra,Imm 101000 Rd Ra Imm Rd := Ra or s(Imm)

ANDI Rd,Ra,Imm 101001 Rd Ra Imm Rd := Ra and s(Imm)

XORI Rd,Ra,Imm 101010 Rd Ra Imm Rd := Ra xor s(Imm)

ANDNI Rd,Ra,Imm 101011 Rd Ra Imm Rd := Ra and s(Imm)

IMM Imm 101100 00000 00000 Imm Imm[0:15] := Imm

IMML Imm242 101100 10 Imm24 Imm[24:47] := Imm24

RTSD Ra,Imm 101101 10000 Ra Imm PC := Ra + s(Imm)

RTID Ra,Imm 101101 10001 Ra Imm PC := Ra + s(Imm)
MSR[IE] := 1

RTBD Ra,Imm 101101 10010 Ra Imm PC := Ra + s(Imm)
MSR[BIP] := 0

RTED Ra,Imm 101101 10100 Ra Imm PC := Ra + s(Imm)
MSR[EE] := 1, MSR[EIP] := 0
ESR := 0

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 18Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=18

Table 7: MicroBlaze Instruction Set Summary (cont'd)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
BRI Imm 101110 00000 00000 Imm PC := PC + s(Imm)

MBAR Imm 101110 Imm 00010 0000000000000100 PC := PC + 4; Wait for memory
accesses.

BRID Imm 101110 00000 10000 Imm PC := PC + s(Imm)

BRLID Rd,Imm 101110 Rd 10100 Imm PC := PC + s(Imm)
Rd := PC

BRAI Imm 101110 00000 01000 Imm PC := s(Imm)

BRAID Imm 101110 00000 11000 Imm PC := s(Imm)

BRALID Rd,Imm 101110 Rd 11100 Imm PC := s(Imm)
Rd := PC

BRKI Rd,Imm 101110 Rd 01100 Imm PC := s(Imm)
Rd := PC
MSR[BIP] := 1

BEQI Ra,Imm 101111 0L000 Ra Imm PC := PC + s(Imm) if Ra = 0

BNEI Ra,Imm 101111 0L001 Ra Imm PC := PC + s(Imm) if Ra != 0

BLTI Ra,Imm 101111 0L010 Ra Imm PC := PC + s(Imm) if Ra < 0

BLEI Ra,Imm 101111 0L011 Ra Imm PC := PC + s(Imm) if Ra <= 0

BGTI Ra,Imm 101111 0L100 Ra Imm PC := PC + s(Imm) if Ra > 0

BGEI Ra,Imm 101111 0L101 Ra Imm PC := PC + s(Imm) if Ra >= 0

BEQID Ra,Imm 101111 1L000 Ra Imm PC := PC + s(Imm) if Ra = 0

BNEID Ra,Imm 101111 1L001 Ra Imm PC := PC + s(Imm) if Ra != 0

BLTID Ra,Imm 101111 1L010 Ra Imm PC := PC + s(Imm) if Ra < 0

BLEID Ra,Imm 101111 1L011 Ra Imm PC := PC + s(Imm) if Ra <= 0

BGTID Ra,Imm 101111 1L100 Ra Imm PC := PC + s(Imm) if Ra > 0

BGEID Ra,Imm 101111 1L101 Ra Imm PC := PC + s(Imm) if Ra >= 0

LBU Rd,Ra,Rb
LBUR Rd,Ra,Rb

110000 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LBUEA Rd,Ra,Rb 110000 Rd Ra Rb 00010000000 Addr := Ra & Rb
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LHU Rd,Ra,Rb
LHUR Rd,Ra,Rb

110001 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LHUEA Rd,Ra,Rb 110001 Rd Ra Rb 00010000000 Addr := Ra & Rb
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LW Rd,Ra,Rb
LWR Rd,Ra,Rb

110010 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
Rd := *Addr

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 19Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=19

Table 7: MicroBlaze Instruction Set Summary (cont'd)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
LWX Rd,Ra,Rb 110010 Rd Ra Rb 10000000000 Addr := Ra + Rb

Rd := *Addr
Reservation := 1

LWEA Rd,Ra,Rb 110010 Rd Ra Rb 00010000000 Addr := Ra & Rb
Rd := *Addr

LL Rd,Ra,Rb2LLR
Rd,Ra,Rb2

110010 Rd Ra Rb 00100000000
01100000000

Addr := Ra[0:63] + Rb[0:63]
Rd[0:63] := *Addr[0:63]

SB Rd,Ra,Rb
SBR Rd,Ra,Rb

110100 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
*Addr[0:8] := Rd[24:31]

SBEA Rd,Ra,Rb 110100 Rd Ra Rb 00010000000 Addr := Ra & Rb
*Addr[0:8] := Rd[24:31]

SH Rd,Ra,Rb
SHR Rd,Ra,Rb

110101 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
*Addr[0:16] := Rd[16:31]

SHEA Rd,Ra,Rb 110101 Rd Ra Rb 00010000000 Addr := Ra & Rb
*Addr[0:16] := Rd[16:31]

SW Rd,Ra,Rb
SWR Rd,Ra,Rb

110110 Rd Ra Rb 00000000000
01000000000

Addr := Ra + Rb
*Addr := Rd

SWX Rd,Ra,Rb 110110 Rd Ra Rb 10000000000 Addr := Ra + Rb
*Addr := Rd if Reservation = 1
Reservation := 0

SWEA Rd,Ra,Rb 110110 Rd Ra Rb 00010000000 Addr := Ra & Rb
*Addr := Rd

SL Rd,Ra,Rb2SLR
Rd,Ra,Rb2

110110 Rd Ra Rb 00100000000
01100000000

Addr := Ra[0:63] + Rb[0:63]
*Addr[0:63] := Rd[0:63]

LBUI Rd,Ra,Imm 111000 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:23] := 0
Rd[24:31] := *Addr[0:7]

LHUI Rd,Ra,Imm 111001 Rd Ra Imm Addr := Ra + s(Imm)
Rd[0:15] := 0
Rd[16:31] := *Addr[0:15]

LWI Rd,Ra,Imm 111010 Rd Ra Imm Addr := Ra + s(Imm)
Rd := *Addr

LLI Rd,Ra,Imm2 111011 Rd Ra Imm Addr := Ra[0:63] + s(Imm)
Rd[0:63] := *Addr[0:63]

SBI Rd,Ra,Imm 111100 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:7] := Rd[24:31]

SHI Rd,Ra,Imm 111101 Rd Ra Imm Addr := Ra + s(Imm)
*Addr[0:15] := Rd[16:31]

SWI Rd,Ra,Imm 111110 Rd Ra Imm Addr := Ra + s(Imm)
*Addr := Rd

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 20Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=20

Table 7: MicroBlaze Instruction Set Summary (cont'd)

Type A 0-5 6-10 11-15 16-20 21-31
Semantics

Type B 0-5 6-10 11-15 16-31
SLI Rd,Ra,Imm2 111111 Rd Ra Imm Addr := Ra[0:63] + s(Imm)

*Addr[0:63] := Rd[0:63]

Notes:
1. Due to the many different corner cases involved in floating-point arithmetic, only the normal behavior is described. A

full description of the behavior can be found in Chapter 5: MicroBlaze Instruction Set Architecture.
2. Only available with 64-bit MicroBlaze.

Semaphore Synchronization
The LWX and SWX instructions are used to implement common semaphore operations, including
test and set, compare and swap, exchange memory, and fetch and add. They are also used to
implement spinlocks.

These instructions are typically used by system programs and are called by application programs
as needed.

Generally, a program uses LWX to load a semaphore from memory, causing the reservation to be
set (the processor maintains the reservation internally). The program can compute a result based
on the semaphore value and conditionally store the result back to the same memory location
using the SWX instruction. The conditional store is performed based on the existence of the
reservation established by the preceding LWX instruction. If the reservation exists when the
store is executed, the store is performed and MSR[C] is cleared to 0. If the reservation does not
exist when the store is executed, the target memory location is not modified and MSR[C] is set to
1.

If the store is successful, the sequence of instructions from the semaphore load to the
semaphore store appear to be executed atomically—no other device modified the semaphore
location between the read and the update. Other devices can read from the semaphore location
during the operation.

For a semaphore operation to work properly, the LWX instruction must be paired with an SWX
instruction, and both must specify identical addresses.

The reservation granularity in MicroBlaze is a word. For both instructions, the address must be
word aligned. No unaligned exceptions are generated for these instructions.

The conditional store is always attempted when a reservation exists, even if the store address
does not match the load address that set the reservation.

Only one reservation can be maintained at a time. The address associated with the reservation
can be changed by executing a subsequent LWX instruction.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 21Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=21

The conditional store is performed based upon the reservation established by the last LWX
instruction executed. Executing an SWX instruction always clears a reservation held by the
processor, whether the address matches that established by the LWX or not.

Reset, interrupts, exceptions, and breaks (including the BRK and BRKI instructions) all clear the
reservation.

The following provides general guidelines for using the LWX and SWX instructions:

• The LWX and SWX instructions should be paired and use the same address.

• An unpaired SWX instruction to an arbitrary address can be used to clear any reservation held
by the processor.

• A conditional sequence begins with an LWX instruction. It can be followed by memory
accesses and/or computations on the loaded value. The sequence ends with an SWX
instruction. In most cases, failure of the SWX instruction should cause a branch back to the
LWX for a repeated attempt.

• An LWX instruction can be left unpaired when executing certain synchronization primitives if
the value loaded by the LWX is not zero. An implementation of Test and Set exemplifies this:

loop: lwx r5,r3,r0 ; load and reserve
 bnei r5,next ; branch if not equal to zero
 addik r5,r5,1 ; increment value
 swx r5,r3,r0 ; try to store non-zero value
 addic r5,r0,0 ; check reservation
 bnei r5,loop ; loop if reservation lost
next:

• Performance can be improved by minimizing looping on an LWX instruction that fails to return
a desired value. Performance can also be improved by using an ordinary load instruction to do
the initial value check. An implementation of a spinlock exemplifies this:

loop: lw r5,r3,r0 ; load the word
 bnei r5,loop ; loop back if word not equal to 0
 lwx r5,r3,r0 ; try reserving again
 bnei r5,loop ; likely that no branch is needed
 addik r5,r5,1 ; increment value
 swx r5,r3,r0 ; try to store non-zero value
 addic r5,r0,0 ; check reservation
 bnei r5,loop ; loop if reservation lost

• Minimizing the looping on an LWX/SWX instruction pair increases the likelihood that forward
progress is made. The old value should be tested before attempting the store. If the order is
reversed (store before load), more SWX instructions are executed and reservations are more
likely to be lost between the LWX and SWX instructions.

Self-Modifying Code
When using self-modifying code software must ensure that the modified instructions have been
written to memory prior to fetching them for execution. There are several aspects to consider:

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 22Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=22

• The instructions to be modified could already have been fetched prior to modification:

○ Into the instruction prefetch buffer

○ Into the instruction cache, if it is enabled

○ Into a stream buffer, if instruction cache stream buffers are used

○ Into the instruction cache, and then saved in a victim buffer, if victim buffers are used.

To ensure that the modified code is always executed instead of the old unmodified code,
software must handle all these cases.

• If one or more of the instructions to be modified is a branch, and the branch target cache is
used, the branch target address might have been cached.

To avoid using the cached branch target address, software must ensure that the branch target
cache is cleared prior to executing the modified code.

• The modified instructions might not have been written to memory prior to execution:

○ They might be en-route to memory, in temporary storage in the interconnect or the
memory controller.

○ They might be stored in the data cache, if write-back cache is used.

○ They might be saved in a victim buffer, if write-back cache and victim buffers are used.

Software must ensure that the modified instructions have been written to memory before being
fetched by the processor.

The annotated code below shows how each of the above issues can be addressed. This code
assumes that both instruction cache and write-back data cache is used. If not, the corresponding
instructions can be omitted.

The following code exemplifies storing a modified instruction:

swi r5,r6,0 ; r5 = new instruction
 ; r6 = physical instruction address
wdc.flush r6,r0 ; flush write-back data cache line
mbar 1 ; ensure new instruction is written to memory
wic r7,r0 ; invalidate line, empty stream & victim buffers
 ; r7 = virtual instruction address
mbar 2 ; empty prefetch buffer, clear branch target cache

The physical and virtual addresses above are identical, unless MMU virtual mode is used. If the
MMU is enabled, the code sequences must be executed in real mode, because WIC and WDC
are privileged instructions. The first instruction after the code sequences above must not be
modified, because it might have been prefetched.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 23Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=23

Registers
MicroBlaze has an orthogonal instruction set architecture. It has thirty-two 32-bit or 64-bit
general purpose registers and up to sixteen special purpose registers, depending on configured
options. The most significant bit of all registers is denoted as bit 0.

General Purpose Registers
The thirty-two 32-bit or 64-bit General Purpose Registers are numbered R0 through R31. The
register file is reset on bit stream download (reset value is 0x00000000). The following figure is a
representation of a General Purpose Register and the following table provides a description of
each register and the register reset value (if existing).

When 64-bit MicroBlaze is enabled (C_DATA_SIZE = 64), the General Purpose Registers have
64 bits, otherwise they have 32 bits.

Note: The register file is not reset by the external reset inputs: Reset and Debug_Rst.

Figure 2: R0-R31

R0 – R31

0 C_DATA_SIZE - 1

X19739-111417

Table 8: General Purpose Registers (R0-R31)

Bits1 Name Description Reset Value

0:63
0:31

R0 Always has a value of zero. Anything written to R0 is
discarded

0x0

R1 through R13 General purpose registers -

R14 Register used to store return addresses for
interrupts.

-

R15 General purpose register. Recommended for storing
return addresses for user vectors.

-

R16 Register used to store return addresses for breaks. -

R17 If MicroBlaze is configured to support hardware
exceptions, this register is loaded with the address of
the instruction following the instruction causing the
HW exception, except for exceptions in delay slots
that use BTR instead (see (Branch Target Register)); if
not, it is a general purpose register.

-

R18 through R31 General purpose registers. -

Notes:
1. 64 bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 24Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=24

See (Table 92: Register Usage Conventions) for software conventions on general purpose register
usage.

Special Purpose Registers

Program Counter

The program counter (PC) is the address of the execution instruction. It can be read with an MFS
instruction, but it cannot be written with an MTS instruction. When used with the MFS
instruction the PC register is specified by setting Sa = 0x0000. The following figure illustrates the
PC and the following table provides a description and reset value.

When 64-bit MicroBlaze is enabled (C_DATA_SIZE = 64), the Program Counter has up to 64
bits, according to the C_ADDR_SIZE parameter, otherwise it has 32 bits.

Figure 3: PC

C_ADDR_SIZE - 1 or 31

PC

0

X19740-111417

Table 9: Program Counter (PC)

Bits1 Name Description Reset Value
0:31
0:C_ADDR_SIZE-1

PC Program Counter
Address of executing instruction, that is,
“mfs r2 0” stores the address of the mfs
instruction itself in R2.

C_BASE_VECTORS

Notes:
1. C_ADDR_SIZE bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

Machine Status Register

The Machine Status Register (MSR) contains control and status bits for the processor. It can be
read with an MFS instruction. When reading the MSR, the carry bit is replicated in the carry copy
bit. MSR can be written using either an MTS instruction or the dedicated MSRSET and MSRCLR
instructions.

When writing to the MSR using MSRSET or MSRCLR, the Carry bit takes effect immediately and
the remaining bits take effect one clock cycle later. When writing using MTS, all bits take effect
one clock cycle later. Any value written to the carry copy bit is discarded.

When used with an MTS or MFS instruction, the MSR is specified by setting Sx = 0x0001. The
following figure illustrates the MSR register and the following table provides the bit description
and reset values.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 25Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=25

Figure 4: MSR

63

RESReservedCC

32 6261605958575655545352515049

IECBIPFSLICEDZODCEEEEIPPVRUMUMSVMVMS

310 3029282726252423222120191817

32-bit MicroBlaze: C_DATA_SIZE = 32

64-bit MicroBlaze: C_DATA_SIZE = 64

X19741-111517

Table 10: Machine Status Register (MSR)

Bits1 Name Description Reset Value
0, 32 CC Arithmetic Carry Copy

Copy of the Arithmetic Carry. CC is always the same as bit C.
0

1:16
2:48

Reserved

17, 49 VMS Virtual Protected Mode Save
Only available when configured with an MMU
(if C_USE_MMU > 1 and C_AREA_OPTIMIZED = 0 or 2)
Read/Write

0

18, 50 VM Virtual Protected Mode
0 = MMU address translation and access protection
disabled, with C_USE_MMU = 3 (Virtual). Access protection
disabled with C_USE_MMU = 2 (Protection)
1 = MMU address translation and access protection enabled,
with C_USE_MMU = 3 (Virtual). Access protection enabled,
with C_USE_MMU = 2 (Protection).
Only available when configured with an MMU (if C_USE_MMU
> 1 and C_AREA_OPTIMIZED = 0 or 2)
Read/Write

0

19, 51 UMS User Mode Save
Only available when configured with an MMU
(if C_USE_MMU > 0 and C_AREA_OPTIMIZED = 0 or 2)
Read/Write

0

20, 52 UM User Mode
0 = Privileged Mode, all instructions are allowed
1 = User Mode, certain instructions are not allowed
Only available when configured with an MMU
(if C_USE_MMU > 0 and C_AREA_OPTIMIZED = 0 or 2)
Read/Write

0

21, 53 PVR Processor Version Register exists
0 = No Processor Version Register
1 = Processor Version Register exists
Read only

Based on parameter
C_PVR

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 26Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=26

Table 10: Machine Status Register (MSR) (cont'd)

Bits1 Name Description Reset Value
22, 54 EIP Exception In Progress

0 = No hardware exception in progress
1 = Hardware exception in progress
Only available if configured with exception support
(C_*_EXCEPTION or C_USE_MMU > 0)
Read/Write

0

23, 55 EE Exception Enable
0 = Hardware exceptions disabled2

1 = Hardware exceptions enabled
Only available if configured with exception support
(C_*_EXCEPTION or C_USE_MMU > 0)
Read/Write

0

24, 56 DCE Data Cache Enable
0 = Data Cache disabled
1 = Data Cache enabled
Only available if configured to use data cache
(C_USE_DCACHE = 1)
Read/Write

0

25, 57 DZO Division by Zero or Division Overflow3

0 = No division by zero or division overflow has occurred
1 = Division by zero or division overflow has occurred
Only available if configured to use hardware divider
(C_USE_DIV = 1)
Read/Write

0

26, 58 ICE Instruction Cache Enable
0 = Instruction Cache disabled
1 = Instruction Cache enabled
Only available if configured to use instruction cache
(C_USE_ICACHE = 1)
Read/Write

0

27, 59 FSL AXI4-Stream Error
0 = get or getd had no error
1 = get or getd control type mismatch
This bit is sticky, that is it is set by a get or getd instruction
when a control bit mismatch occurs. To clear it an MTS or
MSRCLR instruction must be used.
Only available if configured to use stream links
(C_FSL_LINKS > 0)
Read/Write

0

28, 60 BIP Break in Progress
0 = No Break in Progress
1 = Break in Progress
Break Sources can be software break instruction or
hardware break from Ext_Brk or Ext_NM_Brk pin.
Read/Write

0

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 27Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=27

Table 10: Machine Status Register (MSR) (cont'd)

Bits1 Name Description Reset Value
29, 61 C Arithmetic Carry

0 = No Carry (Borrow)
1 = Carry (No Borrow)
Read/Write

0

30, 62 IE Interrupt Enable
0 = Interrupts disabled
1 = Interrupts enabled
Read/Write

0

31, 63 - Reserved 0

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.
2. The MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data TLB Miss Exception, Instruction

TLB Miss Exception) cannot be disabled, and are not affected by this bit.
3. This bit is only used for integer divide-by-zero or divide overflow signaling. There is a floating point equivalent in the

FSR. The DZO-bit flags divide by zero or divide overflow conditions regardless if the processor is configured with
exception handling or not.

Exception Address Register

The Exception Address Register (EAR) stores the full load/store address that caused the
exception for the following:

• An unaligned access exception that specifies the unaligned access data address

• An M_AXI_DP exception that specifies the failing AXI4 data access address

• A data storage exception that specifies the (virtual) effective address accessed

• An instruction storage exception that specifies the (virtual) effective address read

• A data TLB miss exception that specifies the (virtual) effective address accessed

• An instruction TLB miss exception that specifies the (virtual) effective address read

The contents of this register are undefined for all other exceptions. When read with the MFS or
MFSE instruction, the EAR is specified by setting Sa = 0x0003. The EAR register is illustrated in
the following figure and the following table provides bit descriptions and reset values.

With 32-bit MicroBlaze (parameter C_DATA_SIZE = 32) and extended data addressing is
enabled (parameter C_ADDR_SIZE > 32), the 32 least significant bits of the register are read
with the MFS instruction, and the most significant bits with the MFSE instruction.

With 64-bit MicroBlaze (parameter C_DATA_SIZE = 64) the entire register can be read with the
MFS instruction.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 28Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=28

Figure 5: EAR

C_ADDR_SIZE - 1

EAR

0

X19742-111517

Table 11: Exception Address Register (EAR)

Bits Name Description Reset Value
0:C_ADDR_SIZE-1 EAR Exception Address Register 0

Exception Status Register

The Exception Status Register (ESR) contains status bits for the processor. When read with the
MFS instruction, the ESR is specified by setting Sa = 0x0005. The ESR register is illustrated in the
following figure, the following table provides bit descriptions and reset values, and Table
13: Exception Specific Status (ESS) provides the Exception Specific Status (ESS).

Figure 6: ESR

63

EC

51

Reserved

595852

ESSDS

3119 272620

32-bit MicroBlaze: C_DATA_SIZE = 32

64-bit MicroBlaze: C_DATA_SIZE = 64

50

ESS

X19743-111517

Table 12: Exception Status Register (ESR)

Bits1 Name Description Reset Value
0:17
0:49

Reserved

-, 50 ESS Exception Specific Status, only available with 64-bit
MicroBlaze (C_DATA_SIZE = 64), otherwise reserved.
For details refer to Table 13: Exception Specific
Status (ESS).
Read-only

See Table 13: Exception Specific
Status (ESS)

19, 51 DS Delay Slot Exception.
0 = not caused by delay slot instruction
1 = caused by delay slot instruction
Read-only

0

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 29Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=29

Table 12: Exception Status Register (ESR) (cont'd)

Bits1 Name Description Reset Value
20:26
52:58

ESS Exception Specific Status
For details refer to Table 13: Exception Specific
Status (ESS).
Read-only

See Table 13: Exception Specific
Status (ESS)

27:31
59:63

EC Exception Cause
00000 = Stream exception
00001 = Unaligned data access exception
00010 = Illegal op-code exception
00011 = Instruction bus error exception
00100 = Data bus error exception
00101 = Divide exception
00110 = Floating point unit exception
00111 = Privileged instruction exception
00111 = Stack protection violation exception
10000 = Data storage exception
10001 = Instruction storage exception
10010 = Data TLB miss exception
10011 = Instruction TLB miss exception
Read-only

0

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 13: Exception Specific Status (ESS)

Exception
Cause Bits1 Name Description Reset Value

Unaligned Data
Access

-, 50 L Long Access Exception
0 = unaligned word or halfword access
1 = unaligned long access

0

20, 52 W Word Access Exception
0 = unaligned halfword access
1 = unaligned word access

0

21, 53 S Store Access Exception
0 = unaligned load access
1 = unaligned store access

0

22:26
54:58

Rx Source/Destination Register
General purpose register used as source (Store) or
destination (Load) in unaligned access

0

Illegal
Instruction

20:26
52:58

Reserved 0

Instruction bus
error

20, 52 ECC Exception caused by ILMB correctable or
uncorrectable error

0

21:26
53:58

Reserved 0

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 30Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=30

Table 13: Exception Specific Status (ESS) (cont'd)

Exception
Cause Bits1 Name Description Reset Value

Data bus error 20, 52 ECC Exception caused by DLMB correctable or
uncorrectable error

0

21:26
53:58

Reserved 0

Divide 20, 52 DEC Divide - Division exception cause
0 = Divide-By-Zero
1 = Division Overflow

0

21:26
53:58

Reserved 0

Floating point
unit

20:26
52:58

Reserved 0

Privileged
instruction

20:26
52:58

Reserved 0

Stack
protection
violation

20:26
52:58

Reserved 0

Stream 20:22
52:54

Reserved 0

23:26
55:58

FSL AXI4-Stream index that caused the exception 0

Data storage 20, 52 DIZ Data storage - Zone protection
0 = Did not occur
1 = Occurred

0

21, 53 S Data storage - Store instruction
0 = Did not occur
1 = Occurred

0

22:26
54:58

Reserved 0

Instruction
storage

20, 52 DIZ Instruction storage - Zone protection
0 = Did not occur
1 = Occurred

0

21:26
53:58

Reserved 0

Data TLB miss 20, 52 Reserved 0

21, 53 S Data TLB miss - Store instruction
0 = Did not occur
1 = Occurred

0

22:26
54:58

Reserved 0

Instruction TLB
miss

20:26
52:58

Reserved 0

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 31Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=31

Branch Target Register

The Branch Target Register (BTR) only exists if the MicroBlaze processor is configured to use
exceptions. The register stores the branch target address for all delay slot branch instructions
executed while MSR[EIP] = 0. If an exception is caused by an instruction in a delay slot (that is,
ESR[DS]=1), the exception handler should return execution to the address stored in BTR instead
of the normal exception return address stored in R17. When read with the MFS instruction, the
BTR is specified by setting Sa = 0x000B. The BTR register is illustrated in the following figure and
the following table provides bit descriptions and reset values.

When 64-bit MicroBlaze is enabled (C_DATA_SIZE = 64), the Branch Target Register has up to
64 bits, according to the C_ADDR_SIZE parameter, otherwise it has 32 bits.

Figure 7: BTR

C_ADDR_SIZE - 1

BTR

0

X19744-111517

Table 14: Branch Target Register (BTR)

Bits1 Name Description Reset Value
0:31
0:C_ADDR_SIZE-1

BTR Branch target address used by handler
when returning from an exception caused
by an instruction in a delay slot.
Read-only

0x0

Notes:
1. C_ADDR_SIZE bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

Floating-Point Status Register

The Floating-Point Status Register contains status bits for the floating-point unit. It can be read
with an MFS, and written with an MTS instruction. When read or written, the register is specified
by setting Sa = 0x0007. The bits in this register are sticky - floating-point instructions can only
set bits in the register, and the only way to clear the register is by using the MTS instruction. The
following figure illustrates the FSR register and the following table provides bit descriptions and
reset values.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 32Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=32

Figure 8: FSR

31302927 280

63

DOReserved

626159

UFOFDZIO

600

32-bit MicroBlaze: C_DATA_SIZE = 32

64-bit MicroBlaze: C_DATA_SIZE = 64

X19745-111517

Table 15: Floating Point Status Register (FSR)

Bits1 Name Description Reset Value
0:26
0:58

Reserved undefined

27, 59 IO Invalid operation 0

28, 60 DZ Divide-by-zero 0

29, 61 OF Overflow 0

30, 62 UF Underflow 0

31, 63 DO Denormalized operand error 0

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Exception Data Register

The Exception Data Register (EDR) stores data read on an AXI4-Stream link that caused a stream
exception.

The contents of this register are undefined for all other exceptions. When read with the MFS
instruction, the EDR is specified by setting Sa = 0x000D. The following figure illustrates the EDR
register and the following table provides bit descriptions and reset values.

Note: The register is only implemented if C_FSL_LINKS is greater than 0 and C_FSL_EXCEPTION is set
to 1.

Figure 9: EDR

EDR

310

X19746-111517

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 33Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=33

Table 16: Exception Data Register (EDR)

Bits Name Description Reset Value
0:31 EDR Exception Data Register 0x00000000

Stack Low Register

The Stack Low Register (SLR) stores the stack low limit use to detect stack overflow. When the
address of a load or store instruction using the stack pointer (register R1) as rA is less than the
Stack Low Register, a stack overflow occurs, causing a Stack Protection Violation exception if
exceptions are enabled in MSR.

When read with the MFS instruction, the SLR is specified by setting Sa = 0x0800. The following
figure illustrates the SLR register and the following table provides bit descriptions and reset
values.

When 64-bit MicroBlaze is enabled (C_DATA_SIZE = 64), the Stack Low Register has up to 64
bits, according to the C_ADDR_SIZE parameter, otherwise it has 32 bits.

Note: The register is only implemented if stack protection is enabled by setting the parameter
C_USE_STACK_PROTECTION to 1. If stack protection is not implemented, writing to the register has no
effect.

Note: Stack protection is not available when the MMU is enabled (C_USE_MMU > 0). With the MMU page-
based memory protection is provided through the UTLB instead.

Figure 10: SLR

SLR

C_ADDR_SIZE - 10

X19747-111517

Table 17: Stack Low Register (SLR)

Bits1 Name Description Reset Value
0:31
0:C_ADDR_SIZE-1

SLR Stack Low Register 0x0

Notes:
1. C_ADDR_SIZE bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 34Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=34

Stack High Register

The Stack High Register (SHR) stores the stack high limit use to detect stack underflow. When
the address of a load or store instruction using the stack pointer (register R1) as rA is greater than
the Stack High Register, a stack underflow occurs, causing a Stack Protection Violation exception
if exceptions are enabled in MSR.

When read with the MFS instruction, the SHR is specified by setting Sa = 0x0802. The following
figure illustrates the SHR register and the following table provides bit descriptions and reset
values.

When 64-bit MicroBlaze is enabled (C_DATA_SIZE = 64), the Stack High Register has up to 64
bits, according to the C_ADDR_SIZE parameter, otherwise it has 32 bits.

Note: The register is only implemented if stack protection is enabled by setting the parameter
C_USE_STACK_PROTECTION to 1. If stack protection is not implemented, writing to the register has no
effect.

Note: Stack protection is not available when the MMU is enabled (C_USE_MMU > 0). With the MMU page-
based memory protection is provided through the UTLB instead.

Figure 11: SHR

SHR

C_ADDR_SIZE - 10

X19748-111517

Table 18: Stack High Register (SHR)

Bits1 Name Description Reset Value
0:31
0:C_ADDR_SIZE-1

SHR Stack High Register All bits set to 1

Notes:
1. C_ADDR_SIZE bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

Process Identifier Register

The Process Identifier Register (PID) is used to uniquely identify a software process during MMU
address translation. It is controlled by the C_USE_MMU configuration option on MicroBlaze. The
register is only implemented if C_USE_MMU is greater than 1 (User Mode) and
C_AREA_OPTIMIZED is set to 0 (Performance) or 2 (Frequency).

When accessed with the MFS and MTS instructions, the PID is specified by setting Sa = 0x1000.
The register is accessible according to the memory management special registers parameter
C_MMU_TLB_ACCESS.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 35Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=35

PID is also used when accessing a TLB entry:

• When writing Translation Look-Aside Buffer High (TLBHI) the value of PID is stored in the TID
field of the TLB entry.

• When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID.

The following figure illustrates the PID register and the following table provides bit descriptions
and reset values.

Figure 12: PID

31240

6356

PIDRESERVED

0

32-bit MicroBlaze: C_DATA_SIZE = 32

64-bit MicroBlaze: C_DATA_SIZE = 64

X19749-111517

Table 19: Process Identifier Register (PID)

Bits1 Name Description Reset Value
0:23
0:55

Reserved

24:31
56:63

PID Used to uniquely identify a software process during
MMU address translation.
Read/Write

0x00

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Zone Protection Register

The Zone Protection Register (ZPR) is used to override MMU memory protection defined in TLB
entries. It is controlled by the C_USE_MMU configuration option on MicroBlaze. The register is
only implemented if C_USE_MMU is greater than 1 (User Mode), C_AREA_OPTIMIZED is set to 0
(Performance) or 2 (Frequency), and if the number of specified memory protection zones is
greater than zero (C_MMU_ZONES > 0). The implemented register bits depend on the number of
specified memory protection zones (C_MMU_ZONES). When accessed with the MFS and MTS
instructions, the ZPR is specified by setting Sa = 0x1001. The register is accessible according to
the memory management special registers parameter C_MMU_TLB_ACCESS.

The following figure illustrates the ZPR register and the following table provides bit descriptions
and reset values.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 36Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=36

Figure 13: ZPR

302826242220181614121086420

62

ZP15

60

ZP14

58

ZP13

56

ZP12

54

ZP11

52

ZP10

50

ZP9

48

ZP8

46

ZP7

44

ZP6

42

ZP5

40

ZP4

38

ZP3

36

ZP2

34

ZP1

32

ZP0

32-bit MicroBlaze: C_DATA_SIZE = 32

64-bit MicroBlaze: C_DATA_SIZE = 64

X19750-111517

Table 20: Zone Protection Register (ZPR)

Bits1 Name Description Reset Value
0:1
2:3
...
30:31

ZP0
ZP1
...
ZP15

Zone Protect
User mode (MSR[UM] = 1):

00 = Override V in TLB entry. No access to the page is allowed.
01 = No override. Use V, WR and EX from TLB entry.
10 = No override. Use V, WR and EX from TLB entry.
11 = Override WR and EX in TLB entry. Access the page as writable
and executable.

Privileged mode (MSR[UM] = 0):

00 = No override. Use V, WR and EX from TLB entry.
01 = No override. Use V, WR and EX from TLB entry.
10 = Override WR and EX in TLB entry. Access the page as writable
and executable.
11 = Override WR and EX in TLB entry. Access the page as writable
and executable.

Read/Write

0x0

32:33
34:35
...
62:63

ZP0
ZP1
...
ZP15

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Translation Look-Aside Buffer Low Register

The Translation Look-Aside Buffer Low (TLBLO) Register is used to access MMU Unified
Translation Look-Aside Buffer (UTLB) entries. It is controlled by the C_USE_MMU configuration
option on MicroBlaze. The register is only implemented if C_USE_MMU is greater than 1 (User
Mode), and C_AREA_OPTIMIZED is set to 0 (Performance) or 2 (Frequency). When accessed
with the MFS and MTS instructions, the TLBLO is specified by setting Sa = 0x1003.

When reading or writing TLBLO, the UTLB entry indexed by the TLBX register is accessed. The
register is readable according to the memory management special registers parameter
C_MMU_TLB_ACCESS.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 37Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=37

When the MMU Physical Address Extension (PAE) is enabled (parameters C_DATA_SIZE = 32,
C_USE_MMU = 3 and C_ADDR_SIZE > 32), the 32 least significant bits of TLBLO are accessed
with the MFS and MTS instructions, and the most significant bits with the MFSE and MTSE
instruction. When writing the register with PAE enabled, the most significant bits must be
written first.

With 64-bit MicroBlaze (parameter C_DATA_SIZE = 64) the entire register can be read with the
MFS instruction.

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBLO entries).

Note: The UTLB is not reset by the external reset inputs: Reset and Debug_Rst. This means that the
entire UTLB must be initialized after reset, to avoid any stale data.

The following figure illustrates the TLBLO register and the following table provides bit
descriptions and reset values. When PAE is enabled the RPN field of the register is extended
according to the C_ADDR_SIZE parameter up to 54 bits to be able to hold up to a 64-bit physical
address.

Figure 14: TLBLO

0

0

22

n-10 n-9 n-8

28 29 30 31

n-4 n-3 n-2 n-1

32-bit MicroBlaze: (C_ADDR_SIZE = 32 or C_USE_MMU ≠ 3) and (C_DATA_SIZE = 32):

PAE or 64-bit MicroBlaze: (C_ADDR_SIZE > 32 and C_USE_MMU = 3) or (C_DATA_SIZE = 64) (n = C_ADDR_SIZE):

RPN EX WWR ZSEL I M G

23 24

X19751-111517

Table 21: Translation Look-Aside Buffer Low Register (TLBLO)

Bits1 Name Description Reset Value
0:21
0:n-11

RPN Real Page Number or Physical Page Number
When a TLB hit occurs, this field is read from the TLB entry and is
used to form the physical address. Depending on the value of the
SIZE field, some of the RPN bits are not used in the physical address.
Software must clear unused bits in this field to zero.
Only defined when C_USE_MMU=3 (Virtual).
Read/Write

0x000000

22
n-10

EX Executable
When bit is set to 1, the page contains executable code, and
instructions can be fetched from the page. When bit is cleared to 0,
instructions cannot be fetched from the page. Attempts to fetch
instructions from a page with a clear EX bit cause an instruction-
storage exception.
Read/Write

0

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 38Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=38

Table 21: Translation Look-Aside Buffer Low Register (TLBLO) (cont'd)

Bits1 Name Description Reset Value
23
n-9

WR Writable
When bit is set to 1, the page is writable and store instructions can be
used to store data at addresses within the page.
When bit is cleared to 0, the page is read-only (not writable).
Attempts to store data into a page with a clear WR bit cause a data
storage exception.
Read/Write

0

24:27
n-8:n-5

ZSEL Zone Select
This field selects one of 16 zone fields (Z0-Z15) from the zone-
protection register (ZPR).
For example, if ZSEL 0x5, zone field Z5 is selected. The selected ZPR
field is used to modify the access protection specified by the TLB
entry EX and WR fields. It is also used to prevent access to a page by
overriding the TLB V (valid) field.
Read/Write

0x0

28
n-4

W Write Through
When the parameter C_DCACHE_USE_WRITEBACK is set to 1, this bit
controls caching policy. A write-through policy is selected when set to
1, and a write-back policy is selected otherwise.
This bit is fixed to 1, and write-through is always used, when
C_DCACHE_USE_WRITEBACK is cleared to 0.
Read/Write

0/1

29
n-3

I Inhibit Caching
When bit is set to 1, accesses to the page are not cached (caching is
inhibited).
When cleared to 0, accesses to the page are cacheable.
Read/Write

0

30
n-2

M Memory Coherent
This bit is fixed to 0, because memory coherence is not implemented
on MicroBlaze.
Read Only

0

31
n-1

G Guarded
When bit is set to 1, speculative page accesses are not allowed
(memory is guarded).
When cleared to 0, speculative page accesses are allowed.
The G attribute can be used to protect memory-mapped I/O devices
from inappropriate instruction accesses.
Read/Write

0

Notes:
1. The bit index n = C_ADDR_SIZE applies when PAE or 64-bit MicroBlaze is enabled.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 39Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=39

Translation Look-Aside Buffer High Register

The Translation Look-Aside Buffer High (TLBHI) Register is used to access MMU Unified
Translation Look-Aside Buffer (UTLB) entries. It is controlled by the C_USE_MMU configuration
option on MicroBlaze. The register is only implemented if C_USE_MMU is greater than 1 (User
Mode), and C_AREA_OPTIMIZED is set to 0 (Performance) or 2 (Frequency). When accessed
with the MFS and MTS instructions, the TLBHI is specified by setting Sa = 0x1004. When
reading or writing TLBHI, the UTLB entry indexed by the TLBX register is accessed.

The register is readable according to the memory management special registers parameter
C_MMU_TLB_ACCESS.

PID is also used when accessing a TLB entry:

• When writing TLBHI the value of PID is stored in the TID field of the TLB entry.

• When reading TLBHI and MSR[UM] is not set, the value in the TID field is stored in PID.

The UTLB is reset on bit stream download (reset value is 0x00000000 for all TLBHI entries).

When 64-bit MicroBlaze is enabled (C_DATA_SIZE = 64), TLBHI has up to 64 bits, according to
the C_ADDR_SIZE parameter, otherwise it has 32 bits.

Note: The UTLB is not reset by the external reset inputs: Reset and Debug_Rst.

The following figure illustrates the TLBHI register and the following table provides bit
descriptions and reset values.

Figure 15: TLBHI

TAG

n-100 n-1n-4n-5n-6n-7

SIZE V E U0 Reserved

32-bit MicroBlaze: C_DATA_SIZE = 32:

64-bit MicroBlaze: C_DATA_SIZE = 64 (n = C_ADDR_SIZE):

220 3128272625

X19752-020618

Table 22: Translation Look-Aside Buffer High Register (TLBHI)

Bits1 Name Description Reset Value
0:21
0:n-11

TAG TLB-entry tag
Is compared with the page number portion of the virtual memory
address under the control of the SIZE field.
Read/Write

0x0

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 40Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=40

Table 22: Translation Look-Aside Buffer High Register (TLBHI) (cont'd)

Bits1 Name Description Reset Value
22:24
n-10:n-8

SIZE Size
Specifies the page size. The SIZE field controls the bit range used in
comparing the TAG field with the page number portion of the virtual
memory address. The page sizes defined by this field are listed in
Table 39: Page-Translation Bit Ranges by Page Size.
Read/Write

000

25
n-7

V Valid
When this bit is set to 1, the TLB entry is valid and contains a page-
translation entry.
When cleared to 0, the TLB entry is invalid.
Read/Write

0

26
n-6

E Endian
When this bit is set to 1, the page is accessed as a big endian page.
When cleared to 0, the page is accessed as a little endian page.
The E bit only affects data read or data write accesses. Instruction
accesses are not affected.
The E bit is only implemented when the parameter
C_USE_REORDER_INSTR is set to 1, otherwise it is fixed to 0.
Read/Write

0

27
n-5

U0 User Defined
This bit is fixed to 0, because there are no user defined storage
attributes on MicroBlaze.
Read Only

0

28:31
n-4:n-1

Reserved

Notes:
1. The bit index n = C_ADDR_SIZE applies when 64-bit MicroBlaze is enabled.

Translation Look-Aside Buffer Index Register

The Translation Look-Aside Buffer Index (TLBX) Register is used as an index to the Unified
Translation Look-Aside Buffer (UTLB) when accessing the TLBLO and TLBHI registers. It is
controlled by the C_USE_MMU configuration option on MicroBlaze. The register is only
implemented if C_USE_MMU is greater than 1 (User Mode), and C_AREA_OPTIMIZED is set to 0
(Performance) or 2 (Frequency). When accessed with the MFS and MTS instructions, the TLBX is
specified by setting Sa = 0x1002.

The following figure illustrates the TLBX register and the following tale provides bit descriptions
and reset values.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 41Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=41

Figure 16: TLBX

31260

6358

INDEXReservedMISS

32

32-bit MicroBlaze: C_DATA_SIZE = 32

64-bit MicroBlaze: C_DATA_SIZE = 64

X19753-111517

Table 23: Translation Look-Aside Buffer Index Register (TLBX)

Bits1 Name Description Reset Value
0, 32 MISS TLB Miss

This bit is cleared to 0 when the TLBSX register is written with a virtual address,
and the virtual address is found in a TLB entry.
The bit is set to 1 if the virtual address is not found. It is also cleared when the
TLBX register itself is written.
Read Only
Can be read if the memory management special registers parameter
C_MMU_TLB_ACCESS > 0 (MINIMAL).

0

1:25
33:57

Reserve
d

26:31
58:63

INDEX TLB Index
This field is used to index the Translation Look-Aside Buffer entry accessed by the
TLBLO and TLBHI registers. The field is updated with a TLB index when the TLBSX
register is written with a virtual address, and the virtual address is found in the
corresponding TLB entry.
Read/Write
Can be read and written if the memory management special registers parameter
C_MMU_TLB_ACCESS > 0 (MINIMAL).

000000

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Translation Look-Aside Buffer Search Index Register

The Translation Look-Aside Buffer Search Index Register (TLBSX) is used to search for a virtual
page number in the Unified Translation Look-Aside Buffer (UTLB). It is controlled by the
C_USE_MMU configuration option on the MicroBlaze processor.

The register is only implemented if C_USE_MMU is greater than 1 (User Mode), and
C_AREA_OPTIMIZED is set to 0 (Performance) or 2 (Frequency).

When written with the MTS instruction, the TLBSX is specified by setting Sa = 0x1005. The
following figure illustrates the TLBSX register and the following table provides bit descriptions
and reset values.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 42Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=42

When 64-bit MicroBlaze is enabled (C_DATA_SIZE = 64), TLBSX has up to 64 bits, according to
the C_ADDR_SIZE parameter, otherwise it has 32 bits.

Figure 17: TLBSX

C_ADDR_SIZE-1C_ADDR_SZE-10

ReservedVPN

0

X19754-111517

Table 24: Translation Look-Aside Buffer Index Search Register (TLBSX)

Bits1 Name Description Reset Value
0:21
0:n-9

VPN Virtual Page Number
This field represents the page number portion of the virtual memory
address. It is compared with the page number portion of the virtual
memory address under the control of the SIZE field, in each of the
Translation Look-Aside Buffer entries that have the V bit set to 1.
If the virtual page number is found, the TLBX register is written with
the index of the TLB entry and the MISS bit in TLBX is cleared to 0. If
the virtual page number is not found in any of the TLB entries, the
MISS bit in the TLBX register is set to 1.
Write Only

22:31
n-10:n-1

Reserved

Notes:
1. The bit index n = C_ADDR_SIZE applies when 64-bit MicroBlaze is enabled.

Processor Version Register

The Processor Version Register (PVR) is controlled by the C_PVR configuration option on
MicroBlaze.

• When C_PVR is set to 0 (None) the processor does not implement any PVR and MSR[PVR]=0.

• When C_PVR is set to 1 (Basic), MicroBlaze implements only the first register: PVR0, and if set
to 2 (Full), all 13 PVR registers (PVR0 to PVR12) are implemented.

When read with the MFS or MFSE instruction the PVR is specified by setting Sa = 0x200x, with x
being the register number between 0x0 and 0xB.

With extended data addressing is enabled (parameter C_DATA_SIZE = 32 and C_ADDR_SIZE >
32), the 32 least significant bits of PVR8 and PVR9 are read with the MFS instruction, and the
most significant bits with the MFSE instruction.

When physical address extension (PAE) is enabled (parameters C_DATA_SIZE = 32, C_USE_MMU
= 3 and C_ADDR_SIZE > 32), the 32 least significant bits of PVR6 and PVR7 are read with the
MFS instruction, and the most significant bits with the MFSE instruction.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 43Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=43

With 64-bit MicroBlaze (parameter C_DATA_SIZE = 64) the entire contents of the PVR6 - PVR9
and PVR12 registers can be read with the MFS instruction.

Table 25: Processor Version Register 0 (PVR0) through Table 37: Processor Version Register 12
(PVR12) provide bit descriptions and values.

Table 25: Processor Version Register 0 (PVR0)

Bits1 Name Description Value
0, 32 CFG PVR implementation:

0 = Basic, 1 = Full
Based on C_PVR

1, 33 BS Use barrel shifter C_USE_BARREL

2, 34 DIV Use divider C_USE_DIV

3, 35 MUL Use hardware multiplier C_USE_HW_MUL > 0 (None)

4, 36 FPU Use FPU C_USE_FPU > 0 (None)

5, 37 EXC Use any type of exceptions Based on C_*_EXCEPTION
Also set if C_USE_MMU > 0 (None)

6, 38 ICU Use instruction cache C_USE_ICACHE

7, 39 DCU Use data cache C_USE_DCACHE

8, 40 MMU Use MMU C_USE_MMU > 0 (None)

9, 41 BTC Use branch target cache C_USE_BRANCH_TARGET_CACHE

10, 42 ENDI Selected endianness:
Always 1 = Little endian

C_ENDIANNESS

11, 43 FT Implement fault tolerant features C_FAULT_TOLERANT

12, 44 SPROT Use stack protection C_USE_STACK_PROTECTION

13, 45 REORD Implement reorder instructions C_USE_REORDER_INSTR

14, 46 64BIT 64-bit MicroBlaze C_DATA_SIZE = 64

15, 47 Reserved 0

16:23 MBV MicroBlaze release version code Release Specific

48:55 0x19 = v8.40.b
0x1B = v9.0
0x1D = v9.1
0x1F = v9.2
0x20 = v9.3

0x21 = v9.4
0x22 = v9.5
0x23 = v9.6
0x24 = v10.0
0x25 = v11.0

24:31
56:63

USR1 User configured value 1 C_PVR_USER1

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 44Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=44

Table 26: Processor Version Register 1 (PVR1)

Bits1 Name Description Value
0:31
32:63

USR2 User configured value 2 C_PVR_USER2

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 27: Processor Version Register 2 (PVR2)

Bits1 Name Description Value
0, 32 DAXI Data side AXI4 or ACE in use C_D_AXI

1, 33 DLMB Data side LMB in use C_D_LMB

2, 34 IAXI Instruction side AXI4 or ACE in use C_I_AXI

3, 35 ILMB Instruction side LMB in use C_I_LMB

4, 36 IRQEDGE Interrupt is edge triggered C_INTERRUPT_IS_EDGE

5, 37 IRQPOS Interrupt edge is positive C_EDGE_IS_POSITIVE

6, 38 CEEXC Generate bus exceptions for ECC correctable errors
in LMB memory

C_ECC_USE_CE_EXCEPTION

7, 39 FREQ Select implementation to optimize processor
frequency

C_AREA_OPTIMIZED=2
(Frequency)

8, 40 Reserved 0

9, 41 Reserved 1

10, 42 ACE Use ACE interconnect C_INTERCONNECT = 3 (ACE)

11, 43 AXI4DP Data Peripheral AXI interface uses AXI4 protocol,
with support for exclusive access

C_M_AXI_DP_EXCLUSIVE_ACCES
S

12, 44 FSL Use extended AXI4-Stream instructions C_USE_EXTENDED_FSL_INSTR

13, 45 FSLEXC Generate exception for AXI4-Stream control bit
mismatch

C_FSL_EXCEPTION

14, 46 MSR Use msrset and msrclr instructions C_USE_MSR_INSTR

15, 47 PCMP Use pattern compare and CLZ instructions C_USE_PCMP_INSTR

16, 48 AREA Select implementation to optimize area with lower
instruction throughput

C_AREA_OPTIMIZED = 1 (Area)

17, 49 BS Use barrel shifter C_USE_BARREL

18, 50 DIV Use divider C_USE_DIV

19, 51 MUL Use hardware multiplier C_USE_HW_MUL > 0 (None)

20, 52 FPU Use FPU C_USE_FPU > 0 (None)

21, 53 MUL64 Use 64-bit hardware multiplier C_USE_HW_MUL = 2 (Mul64)

22, 54 FPU2 Use floating point conversion and square root
instructions

C_USE_FPU = 2 (Extended)

23, 55 IMPEXC Allow imprecise exceptions for ECC errors in LMB
memory

C_IMPRECISE_EXCEPTIONS

24, 56 Reserved 0

25, 57 OP0EXC Generate exception for 0x0 illegal opcode C_OPCODE_0x0_ILLEGAL

26, 58 UNEXC Generate exception for unaligned data access C_UNALIGNED_EXCEPTIONS

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 45Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=45

Table 27: Processor Version Register 2 (PVR2) (cont'd)

Bits1 Name Description Value
27, 59 OPEXC Generate exception for any illegal opcode C_ILL_OPCODE_EXCEPTION

28, 60 AXIDEXC Generate exception for M_AXI_D error C_M_AXI_D_BUS_EXCEPTION

29, 61 AXIIEXC Generate exception for M_AXI_I error C_M_AXI_I_BUS_EXCEPTION

30, 62 DIVEXC Generate exception for division by zero or division
overflow

C_DIV_ZERO_EXCEPTION

31, 63 FPUEXC Generate exceptions from FPU C_FPU_EXCEPTION

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 28: Processor Version Register 3 (PVR3)

Bits1 Name Description Value
0, 32 DEBUG Use debug logic C_DEBUG_ENABLED > 0

1, 33 EXT_DEBUG Use extended debug logic C_DEBUG_ENABLED = 2
(Extended)

2, 34 Reserved

3:6
35:38

PCBRK Number of PC breakpoints C_NUMBER_OF_PC_BRK

7:9
39:41

Reserved

10:12
42:44

RDADDR Number of read address breakpoints C_NUMBER_OF_RD_ADDR_BRK

13:15
45:47

Reserved

16:18
48:50

WRADDR Number of write address breakpoints C_NUMBER_OF_WR_ADDR_BRK

19, 51 Reserved 0

20:24
52:56

FSL Number of AXI4-Stream links C_FSL_LINKS

25:28
57:60

Reserved

29:31
61:63

BTC_SIZE Branch Target Cache size C_BRANCH_TARGET_CACHE_SIZE

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 29: Processor Version Register 4 (PVR4)

Bits1 Name Description Value
0, 32 ICU Use instruction cache C_USE_ICACHE

1:5
33:37

ICTS Instruction cache tag size C_ADDR_TAG_BITS

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 46Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=46

Table 29: Processor Version Register 4 (PVR4) (cont'd)

Bits1 Name Description Value
6, 38 Reserved 1

7, 39 ICW Allow instruction cache write C_ALLOW_ICACHE_WR

8:10
40:42

ICLL The base two logarithm of the instruction cache
line length

log2(C_ICACHE_LINE_LEN)

11:15
43:47

ICBS The base two logarithm of the instruction cache
byte size

log2(C_CACHE_BYTE_SIZE)

16, 48 IAU The instruction cache is used for all memory
accesses within the cacheable range

C_ICACHE_ALWAYS_USED

17:18
49:50

Reserved 0

19:21
51:53

ICV Instruction cache victims 0-3: C_ICACHE_VICTIMS =
0,2,4,8

22:23
54:55

ICS Instruction cache streams C_ICACHE_STREAMS

24, 56 IFTL Instruction cache tag uses distributed RAM C_ICACHE_FORCE_TAG_LUTRAM

25, 57 ICDW Instruction cache data width C_ICACHE_DATA_WIDTH > 0

26:31
58:63

Reserved 0

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 30: Processor Version Register 5 (PVR5)

Bits1 Name Description Value
0, 32 DCU Use data cache C_USE_DCACHE

1:5
33:37

DCTS Data cache tag size C_DCACHE_ADDR_TAG

6, 38 Reserved 1

7, 39 DCW Allow data cache write C_ALLOW_DCACHE_WR

8:10
40:42

DCLL The base two logarithm of the data cache line
length

log2(C_DCACHE_LINE_LEN)

11:15
43:47

DCBS The base two logarithm of the data cache byte
size

log2(C_DCACHE_BYTE_SIZE)

16, 48 DAU The data cache is used for all memory accesses
within the cacheable range

C_DCACHE_ALWAYS_USED

17, 49 DWB Data cache policy is write-back C_DCACHE_USE_WRITEBACK

18, 50 Reserved 0

19:21
51:53

DCV Data cache victims 0-3: C_DCACHE_VICTIMS = 0,2,4,8

22:23
54:55

Reserved 0

24, 56 DFTL Data cache tag uses distributed RAM C_DCACHE_FORCE_TAG_LUTRAM

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 47Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=47

Table 30: Processor Version Register 5 (PVR5) (cont'd)

Bits1 Name Description Value
25, 57 DCDW Data cache data width C_DCACHE_DATA_WIDTH > 0

26, 58 AXI4DC Data Cache AXI interface uses AXI4 protocol,
with support for exclusive access

C_M_AXI_DC_EXCLUSIVE_ACCESS

27:31
59:63

Reserved 0

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 31: Processor Version Register 6 (PVR6)

Bits Name Description Value
0:C_ADDR_SIZE-1 ICBA Instruction Cache Base Address C_ICACHE_BASEADDR

Table 32: Processor Version Register 7 (PVR7)

Bits Name Description Value
0:C_ADDR_SIZE-1 ICHA Instruction Cache High Address C_ICACHE_HIGHADDR

Table 33: Processor Version Register 8 (PVR8)

Bits Name Description Value
0:C_ADDR_SIZE-1 DCBA Data Cache Base Address C_DCACHE_BASEADDR

Table 34: Processor Version Register 9 (PVR9)

Bits Name Description Value
0:C_ADDR_SIZE-1 DCHA Data Cache High Address C_DCACHE_HIGHADDR

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 48Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=48

Table 35: Processor Version Register 10 (PVR10)

Bits1 Name Description Value
0:7
32:39

ARCH Target architecture:
0xF = AMD Virtex™ 7, Defense Grade AMD Virtex™ 7 Q
0x10 = AMD Kintex™ 7, Defense Grade Kintex 7 Q
0x11 = AMD Artix™ 7, Automotive Artix 7, Defense Grade Artix 7 Q
0x12 = AMD Zynq™ 7000, Automotive Zynq 7000, Defense Grade
Zynq 7000 Q
0x13 = AMD UltraScale™ Virtex
0x14 = Kintex UltraScale
0x15 = AMD Zynq™ UltraScale+™
0x16 = Virtex UltraScale+
0x17 = Kintex UltraScale+
0x18 = Spartan™ 7
0x19 = AMD Versal™
0x20 = Artix UltraScale+

Defined by parameter
C_FAMILY

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 36: Processor Version Register 11 (PVR11)

Bits1 Name Description Value
0:1
32:33

MMU Use MMU:

0 = None
1 = User Mode
2 = Protection
3 = Virtual

C_USE_MMU

2:4
34:36

ITLB Instruction Shadow TLB size log2(C_MMU_ITLB_SIZE)

5:7
37:39

DTLB Data Shadow TLB size log2(C_MMU_DTLB_SIZE)

8:9
40:41

TLBACC TLB register access:

0 = Minimal
1 = Read
2 = Write
3 = Full

C_MMU_TLB_ACCESS

10:14
42:46

ZONES Number of memory protection zones C_MMU_ZONES

15, 47 PRIVINS Privileged instructions:

0 = Full Protection
1 = Allow Stream Instructions

C_MMU_PRIVILEGED_INSTR

16, 48 Reserved Reserved for future use 0

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 49Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=49

Table 36: Processor Version Register 11 (PVR11) (cont'd)

Bits1 Name Description Value
17:31
49:63

RSTMSR Reset value for MSR C_RESET_MSR_IE << 2 |

C_RESET_MSR_BIP << 4 |

C_RESET_MSR_ICE << 6 |

C_RESET_MSR_DCE << 8 |

C_RESET_MSR_EE << 9 |

C_RESET_MSR_EIP << 10

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 37: Processor Version Register 12 (PVR12)

Bits1 Name Description Value
0:31
0:C_ADDR_SIZE-
1

VECTORS Location of MicroBlaze vectors C_BASE_VECTORS

Notes:
1. C_ADDR_SIZE bits with 64-bit MicroBlaze (C_DATA_SIZE = 64) and 32 bits otherwise.

Pipeline Architecture
MicroBlaze instruction execution is pipelined. For most instructions, each stage takes one clock
cycle to complete. Consequently, the number of clock cycles necessary for a specific instruction
to complete is equal to the number of pipeline stages, and one instruction is completed on every
cycle in the absence of data, control or structural hazards.

A data hazard occurs when the result of an instruction is needed by a subsequent instruction.
This can result in stalling the pipeline, unless the result can be forwarded to the subsequent
instruction. The MicroBlaze GNU Compiler attempts to avoid data hazards by reordering
instructions during optimization.

A control hazard occurs when a branch is taken, and the next instruction is not immediately
available. This results in stalling the pipeline. MicroBlaze provides delay slot branches and the
optional branch target cache to reduce the number of stall cycles.

A structural hazard occurs for a few instructions that require multiple clock cycles in the execute
stage or a later stage to complete. This is achieved by stalling the pipeline.

Load and store instructions accessing slower memory might take multiple cycles. The pipeline is
stalled until the access completes. MicroBlaze provides the optional data cache to improve the
average latency of slower memory.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 50Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=50

When executing from slower memory, instruction fetches might take multiple cycles. This
additional latency directly affects the efficiency of the pipeline. MicroBlaze implements an
instruction prefetch buffer that reduces the impact of such multi-cycle instruction memory
latency. While the pipeline is stalled for any other reason, the prefetch buffer continues to load
sequential instructions speculatively. When the pipeline resumes execution, the fetch stage can
load new instructions directly from the prefetch buffer instead of waiting for the instruction
memory access to complete.

If instructions are modified during execution (for example with self-modifying code), the prefetch
buffer should be emptied before executing the modified instructions, to ensure that it does not
contain the old unmodified instructions.

RECOMMENDED: The recommended way to do this is using an MBAR instruction, although it is also
possible to use a synchronizing branch instruction, for example BRI 4.

MicroBlaze also provides the optional instruction cache to improve the average instruction fetch
latency of slower memory.

All hazards are independent, and can potentially occur simultaneously. In such cases, the number
of cycles the pipeline is stalled is defined by the hazard with the longest stall duration.

Three Stage Pipeline
With C_AREA_OPTIMIZED set to 1 (Area), the pipeline is divided into three stages to minimize
hardware cost: Fetch, Decode, and Execute.

Figure 18: Three Stage Pipeline

Fetch Decode Execute

Fetch Decode Execute Execute Execute

ExecuteStallStallDecodeFetch

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7

Instruction 1

Instruction 2

Instruction 3

X28183-060923

The three stage pipeline does not have any data hazards. Pipeline stalls are caused by control
hazards, structural hazards due to multi-cycle instructions, memory accesses using slower
memory, instruction fetch from slower memory, or stream accesses.

The multi-cycle instruction categories are barrel shift, multiply, divide and floating-point
instructions.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 51Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=51

Five Stage Pipeline
With C_AREA_OPTIMIZED set to 0 (Performance), the pipeline is divided into five stages to
maximize performance: Fetch (IF), Decode (OF), Execute (EX), Access Memory (MEM), and
Writeback (WB).

Figure 19: Five Stage Pipeline

IF OF EX

IF OF EX MEM MEM

StallEXOFIF

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7

Instruction 1

Instruction 2

Instruction 3

MEM WB

MEM

Stall MEM WB

cycle8 cycle9

WB

X28186-061223

The five stage pipeline has two types of data hazard:

• An instruction in OF needs the result from an instruction in EX as a source operand. In this
case, the EX instruction categories are load, store, barrel shift, multiply, divide, and floating-
point instructions. This results in a 1-2 cycle stall.

• An instruction in OF uses the result from an instruction in MEM as a source operand. In this
case, the MEM instruction categories are load, multiply, and floating-point instructions. This
results in a 1 cycle stall.

Pipeline stalls are caused by data hazards, control hazards, structural hazards due to multi-cycle
instructions, memory accesses using slower memory, instruction fetch from slower memory, or
stream accesses.

The multi-cycle instruction categories are divide and floating-point instructions.

Eight Stage Pipeline
With C_AREA_OPTIMIZED set to 2 (Frequency), the pipeline is divided into eight stages to
maximize possible frequency: Fetch (IF), Decode (OF), Execute (EX), Access Memory 0 (M0),
Access Memory 1 (M1), Access Memory 2 (M2), Access Memory 3 (M3) and Writeback (WB).

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 52Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=52

Figure 20: Eight Stage Pipeline

IF OF EX

IF OF EX M0 M0

StallEXOFIF

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7

Instruction 1

Instruction 2

Instruction 3

M0

M1

M0 M1 M2

cycle8 cycle9

M2

M1 M2 M3 WB

M3 WB

M3 WB

cycle10 cycle11

X28187-061223

The eight stage pipeline has four types of data hazard:

• An instruction in OF needs the result from an instruction in EX as a source operand. In this
case, the EX instruction categories are load, store, barrel shift, multiply, divide, and floating-
point instructions. This results in a 1-5 cycle stall.

• An instruction in OF uses the result from an instruction in M0 as a source operand. In this
case, the M0 instruction categories are load, multiply, divide, and floating-point instructions.
This results in a 1-4 cycle stall.

• An instruction in OF uses the result from an instruction in M1 or M2 as a source operand. In
this case, the M1 or M2 instruction categories are load, divide, and floating-point instructions.
This results in a 1-3 or 1-2 cycle stall respectively.

• An instruction in OF uses the result from an instruction in M3 as a source operand. In this
case, M3 instruction categories are load and floating-point instructions. This results in a 1
cycle stall.

In addition to multi-cycle instructions, there are two other types of structural hazards:

• An instruction in OF is a stream instruction, and the instruction in EX, M0, M1, M2 or M3 is a
load, store, divide, or floating-point instruction with corresponding exception implemented.
This results in a 1-5 cycle stall.

• An instruction in M0 is a load or store instruction, and the instruction in M1, M2 or M3 is a
load, store, divide, or floating-point instruction with corresponding exception implemented.
This results in a 1-3 cycle stall.

Pipeline stalls are caused by data hazards, control hazards, structural hazards, memory accesses
using slower memory, instruction fetch from slower memory, or stream accesses.

The multi-cycle instruction categories are divide instructions and floating-point instructions
FDIV, FLT, FSQRT, DDIV, DBL, and DSQRT.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 53Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=53

Branches
Normally the instructions in the fetch and decode stages (as well as prefetch buffer) are flushed
when executing a taken branch. The fetch pipeline stage is then reloaded with a new instruction
from the calculated branch address. A taken branch in MicroBlaze takes three clock cycles to
execute, two of which are required for refilling the pipeline. To reduce this latency overhead,
MicroBlaze supports branches with delay slots and the optional branch target cache.

Delay Slots

When executing a taken branch with delay slot, only the fetch pipeline stage in MicroBlaze is
flushed. The instruction in the decode stage (branch delay slot) is allowed to complete. This
technique effectively reduces the branch penalty from two clock cycles to one. Branch
instructions with delay slots have a D appended to the instruction mnemonic. For example, the
BNE instruction does not execute the subsequent instruction (does not have a delay slot),
whereas BNED executes the next instruction before control is transferred to the branch location.

A delay slot must not contain the following instructions: IMM, IMML, branch, or break. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been completed.
Instructions that could cause recoverable exceptions (for example unaligned word or halfword
load and store) are allowed in the delay slot.

If an exception is caused in a delay slot the ESR[DS] bit is set, and the exception handler is
responsible for returning the execution to the branch target (stored in the special purpose
register BTR). If the ESR[DS] bit is set, register R17 is not valid (otherwise it contains the address
following the instruction causing the exception).

Branch Target Cache

To improve branch performance, MicroBlaze provides a branch target cache (BTC) coupled with a
branch prediction scheme. With the BTC enabled, a correctly predicted immediate branch or
return instruction incurs no overhead.

The BTC operates by saving the target address of each immediate branch and return instruction
the first time the instruction is encountered. The next time it is encountered, it is usually found in
the Branch Target Cache, and the Instruction Fetch Program Counter is then simply changed to
the saved target address, in case the branch should be taken. Unconditional branches and return
instructions are always taken, whereas conditional branches use branch prediction, to avoid
taking a branch that should not have been taken and vice versa.

The BTC is cleared when a memory barrier (MBAR 0) or synchronizing branch (BRI 4) is executed.
This also occurs when the memory barrier or synchronizing branch follows immediately after a
branch instruction, even if that branch is taken. To avoid inadvertently clearing the BTC, the
memory barrier or synchronizing branch should not be placed immediately after a branch
instruction.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 54Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=54

There are three cases where the branch prediction can cause a mispredict, namely:

• A conditional branch that should not have been taken, is actually taken,

• A conditional branch that should actually have been taken, is not taken,

• The target address of a return instruction is incorrect, which might occur when returning from
a function called from different places in the code.

All of these cases are detected and corrected when the branch or return instruction reaches the
execute stage, and the branch prediction bits or target address are updated in the BTC, to reflect
the actual instruction behavior. This correction incurs a penalty of 2 clock cycles for the 5-stage
pipeline and 7 clock cycles (with MMU disabled) or 9 clock cycles (with MMU enabled) for the 8-
stage pipeline due to additional instruction fetch pipeline stages.

The size of the BTC can be selected with C_BRANCH_TARGET_CACHE_SIZE. The default
recommended setting uses one block RAM with 32-bit address (C_ADDR_SIZE = 32) and
provides 512 entries. When selecting 64 entries or below, distributed RAM is used to implement
the BTC, otherwise block RAM is used.

When the BTC uses block RAM, and C_FAULT_TOLERANT is set to 1, block RAMs are protected
by parity. In case of a parity error, the branch is not predicted. To avoid accumulating errors in
this case, the BTC should be cleared periodically by a synchronizing branch.

The Branch Target Cache is available when C_USE_BRANCH_TARGET_CACHE is set to 1 and
C_AREA_OPTIMIZED is set to 0 (Performance) or 2 (Frequency).

Pipeline Hazard Example
The effect of a data hazard is illustrated in the following table, using the five stage pipeline.

The example shows a data hazard for a multiplication instruction, where the subsequent add
instruction needs the result in register r3 to proceed. This means that the add instruction is
stalled in OF during cycle 3 and 4 until the multiplication is complete.

Table 38: Multiplication Data Hazard Example

Cycle IF OF EX MEM WB
1 mul r3, r4, r5

2 add r6, r3, r4 mul r3, r4, r5

3 add r6, r3, r4 mul r3, r4, r5

4 add r6, r3, r4 - mul r3, r4, r5

5 add r6, r3, r4 - - mul r3, r4, r5

6 add r6, r3, r4 - -

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 55Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=55

Avoiding Data Hazards
In some cases, the MicroBlaze GNU Compiler is not able to optimize code to completely avoid
data hazards. However, it is often possible to change the source code to achieve this, mainly by
better utilization of the general purpose registers.

Two C code examples are shown here:

• Multiplication of a static array in memory.

static int a[4], b[4], c[4];
register int a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, c3;

a0 = a[0]; a1 = a[1]; a2 = a[2]; a3 = a[3];
b0 = b[0]; b1 = b[1]; b2 = b[2]; b3 = b[3];
c0 = a0 * b0; c1 = a1 * b1; c2 = a2 * b2; c3 = a3 * b3;
c[3] = c3; c2 = c[2]; c1 = c[1]; c0 = c[0];

This code ensures that load instructions are first executed to load operands into separate
registers, which are then multiplied and finally stored. The code can be extended up to 8
multiplications without running out of general purpose registers.

• Fetching a data packet from an AXI4-Stream interface.

#include <mb_interface.h>

static int a[4];
register int a0, a1, a2, a3;

getfsl(a0, 0); getfsl(a1, 0); getfsl(a2, 0); getfsl(a3, 0);
a[3] = a3; a[1] = a1; a[2] = a2; a[0] = a0;

This code ensures that get instructions using different registers are first executed, and then data
is stored. The code can be extended to up to 16 accesses without running out of general purpose
registers.

Memory Architecture
MicroBlaze is implemented with a Harvard memory architecture; instruction and data accesses
are done in separate address spaces.

The instruction address space has a 32-bit virtual address range with 32-bit MicroBlaze (that is,
handles up to 4 GB of instructions), and can be extended up to a 64-bit physical address range
when using the MMU in virtual mode. With 64-bit MicroBlaze, the instruction address space has
a default 32-bit range, and can be extended up to a 64-bit range (that is, handles from 4 GB to 16
EB of instructions).

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 56Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=56

The data address space has a default 32-bit range, and can be extended up to a 64-bit range (that
is, handles from 4 GB to 16 EB of data). The instruction and data memory ranges can be made to
overlap by mapping them both to the same physical memory. The latter is necessary for software
debugging.

Both instruction and data interfaces of MicroBlaze are default 32 bits wide and use big endian or
little endian, bit-reversed format, depending on the selected endianness. MicroBlaze supports
word, halfword, and byte accesses to data memory.

Big endian format is supported when using the MMU in virtual or protected mode (C_USE_MMU
> 1) or when reorder instructions are enabled (C_USE_REORDER_INSTR = 1).

Data accesses must be aligned (word accesses must be on word boundaries, halfword on
halfword boundaries), unless the processor is configured to support unaligned exceptions. All
instruction accesses must be word aligned.

MicroBlaze prefetches instructions to improve performance, using the instruction prefetch buffer
and (if enabled) instruction cache streams. To avoid attempts to prefetch instructions beyond the
end of physical memory, which might cause an instruction bus error or a processor stall,
instructions must not be located too close to the end of physical memory. The instruction
prefetch buffer requires 16 bytes margin, and using instruction cache streams adds two
additional cache lines (32, 64 or 128 bytes).

MicroBlaze does not separate data accesses to I/O and memory (it uses memory-mapped I/O).
The processor has up to three interfaces for memory accesses:

• Local Memory Bus (LMB)

• Advanced eXtensible Interface (AXI4) for peripheral access

• Advanced eXtensible Interface (AXI4) or AXI Coherency Extension (ACE) for cache access

The LMB memory address range must not overlap with AXI4 ranges.

The C_ENDIANNESS parameter is always set to little endian.

MicroBlaze has a single cycle latency for accesses to local memory (LMB) and for cache read hits,
except with C_AREA_OPTIMIZED set to 1 (Area), when data side accesses and data cache read
hits require two clock cycles, and with C_FAULT_TOLERANT set to 1, when byte writes and
halfword writes to LMB normally require two clock cycles.

The data cache write latency depends on C_DCACHE_USE_WRITEBACK. When
C_DCACHE_USE_WRITEBACK is set to 1, the write latency normally is one cycle (more if the
cache needs to do memory accesses). When C_DCACHE_USE_WRITEBACK is cleared to 0, the
write latency normally is two cycles (more if the posted-write buffer in the memory controller is
full).

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 57Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=57

The MicroBlaze instruction and data caches can be configured to use 4, 8 or 16 word cache lines.
When using a longer cache line, more bytes are prefetched, which generally improves
performance for software with sequential access patterns. However, for software with a more
random access pattern the performance can instead decrease for a given cache size. This is
caused by a reduced cache hit rate due to fewer available cache lines.

For details on the different memory interfaces, see Chapter 3: MicroBlaze Signal Interface
Description.

Privileged Instructions
The following MicroBlaze instructions are privileged:

• GET, GETD, PUT, PUTD (except when explicitly allowed)

• WIC, WDC

• MTS, MTSE

• MSRCLR, MSRSET (except when only the C bit is affected)

• BRK

• RTID, RTBD, RTED

• BRKI (except when jumping to physical address C_BASE_VECTORS + 0x8 or
C_BASE_VECTORS + 0x18)

• SLEEP, HIBERNATE, SUSPEND

• LBUEA, LHUEA, LWEA, SBEA, SHEA, SWEA (except when explicitly allowed)

Attempted use of these instructions when running in user mode causes a privileged instruction
exception. When setting the parameter C_MMU_PRIVILEGED_INSTR to 1 or 3, the instructions
GET, GETD, PUT, and PUTD are not considered privileged, and can be executed when running in
user mode.

CAUTION! It is strongly discouraged to do this, unless absolutely necessary for performance reasons,
because it allows application processes to interfere with each other.

When setting the parameter C_MMU_PRIVILEGED_INSTR to 2 or 3, the extended address
instructions LBUEA, LHUEA, LWEA, SBEA, SHEA, and SWEA are not considered privileged, and will
bypass the MMU translation, treating the extended address as a physical address. This is useful
to run software in virtual mode while still having direct access to the full physical address space,
but is discouraged in all cases where protection between application processes is necessary.

There are six ways to leave user mode and virtual mode:

1. Hardware generated reset (including debug reset)

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 58Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=58

2. Hardware exception

3. Non-maskable break or hardware break

4. Interrupt

5. Executing "BRALID Re,C_BASE_VECTORS + 0x8" to perform a user vector exception

6. Executing the software break instructions "BRKI" jumping to physical address
C_BASE_VECTORS + 0x8 or C_BASE_VECTORS + 0x18

In all of these cases, except hardware generated reset, the user mode and virtual mode status is
saved in the MSR UMS and VMS bits.

Application (user-mode) programs transfer control to system-service routines (privileged mode
programs) using the BRALID or BRKI instruction, jumping to physical address
C_BASE_VECTORS + 0x8. Executing this instruction causes a system-call exception to occur.
The exception handler determines which system-service routine to call and whether the calling
application has permission to call that service. If permission is granted, the exception handler
performs the actual procedure call to the system-service routine on behalf of the application
program.

The execution environment expected by the system-service routine requires the execution of
prologue instructions to set up that environment. Those instructions usually create the block of
storage that holds procedural information (the activation record), update and initialize pointers,
and save volatile registers (the registers that the system-service routine uses). Prologue code can
be inserted by the linker when creating an executable module, or it can be included as stub code
in either the system-call interrupt handler or the system-library routines.

Returns from the system-service routine reverse the process described above. Epilogue code is
executed to unwind and deallocate the activation record, restore pointers, and restore volatile
registers. The interrupt handler executes a return from exception instruction (RTED) to return to
the application.

Virtual-Memory Management
Programs running on MicroBlaze use effective addresses to access a flat 4 GB address space with
32-bit MicroBlaze, and up to a 16 EB address space with 64-bit MicroBlaze depending on
parameter C_ADDR_SIZE.

The processor can interpret this address space in one of two ways, depending on the translation
mode:

• In real mode, effective addresses are used to directly access physical memory.

• In virtual mode, effective addresses are translated into physical addresses by the virtual-
memory management hardware in the processor.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 59Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=59

Virtual mode provides system software with the ability to relocate programs and data anywhere
in the physical address space. System software can move inactive programs and data out of
physical memory when space is required by active programs and data.

Relocation can make it appear to a program that more memory exists than is actually
implemented by the system. This frees the programmer from working within the limits imposed
by the amount of physical memory present in a system. Programmers do not need to know which
physical-memory addresses are assigned to other software processes and hardware devices. The
addresses visible to programs are translated into the appropriate physical addresses by the
processor.

Virtual mode provides greater control over memory protection. Blocks of memory as small as 1
KB can be individually protected from unauthorized access. Protection and relocation enable
system software to support multitasking. This capability gives the appearance of simultaneous or
near-simultaneous execution of multiple programs.

In MicroBlaze, virtual mode is implemented by the memory-management unit (MMU), available
when C_USE_MMU is set to 3 (Virtual) and C_AREA_OPTIMIZED is set to 0 (Performance) or 2
(Frequency). The MMU controls effective-address to physical-address mapping and supports
memory protection. Using these capabilities, system software can implement demand-paged
virtual memory and other memory management schemes.

The MicroBlaze MMU implementation is based upon the PowerPCTM 405 processor.

The MMU features are summarized as follows:

• Translates effective addresses into physical addresses

• Controls page-level access during address translation

• Provides additional virtual-mode protection control through the use of zones

• Provides independent control over instruction-address and data-address translation and
protection

• Supports eight page sizes: 1 kB, 4 kB, 16 kB, 64 kB, 256 kB, 1 MB, 4 MB, and 16 MB. Any
combination of page sizes can be used by system software

• Software controls the page-replacement strategy

Real Mode
The processor references memory when it fetches an instruction and when it accesses data with
a load or store instruction. Programs reference memory locations using a 32-bit effective address
with 32-bit MicroBlaze, and up to a 64-bit effective address with 64-bit MicroBlaze, calculated
by the processor.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 60Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=60

When real mode is enabled, the physical address is identical to the effective address and the
processor uses it to access physical memory. After a processor reset, the processor operates in
real mode. Real mode can also be enabled by clearing the VM bit in the MSR.

Physical-memory data accesses (loads and stores) are performed in real mode using the effective
address. Real mode does not provide system software with virtual address translation, but the full
memory access-protection is available, implemented when C_USE_MMU > 1 (User Mode) and
C_AREA_OPTIMIZED = 0 (Performance) or 2 (Frequency). Implementation of a real-mode
memory manager is more straightforward than a virtual-mode memory manager.

Real mode is often an appropriate solution for memory management in simple embedded
environments, when access-protection is necessary, but virtual address translation is not
required. This can be achieved by configuring memory management to act as a Memory
Protection Unit (MPU) by setting C_USE_MMU to 2 (Protection).

Virtual Mode
In virtual mode, the processor translates an effective address into a physical address using the
process shown in the following figure. With 64-bit MicroBlaze and with the Physical Address
Extension (PAE) the physical address can be extended up to 64 bits. Virtual mode can be enabled
by setting the VM bit in the MSR.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 61Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=61

Figure 21: Virtual-Mode Address Translation

3124

Processor ID Register

31n

32-bit Effective Address

0

Effective Page Number Offset

39n+8

40-bit Virtual Address

8

Effective Page Number OffsetPID

0

Translation Look-Aside
Buffer (TLB) Look-Up

31

32-bit Physical Address

0

Real Page Number Offset

32-63

Up to 64-bit Physical Address

0

Physical Address Extension: Real Page Number Offset

or

0

X19755-111617

Each address shown in the previous figure contains a page-number field and an offset field. The
page number represents the portion of the address translated by the MMU. The offset
represents the byte offset into a page and is not translated by the MMU. The virtual address
consists of an additional field, called the process ID (PID), which is taken from the PID register
(see Process Identifier Register). The combination of PID and effective page number (EPN) is
referred to as the virtual page number (VPN). The value n is determined by the page size, as
shown in (Table 39: Page-Translation Bit Ranges by Page Size).

System software maintains a page-translation table that contains entries used to translate each
virtual page into a physical page. The page size defined by a page translation entry determines
the size of the page number and offset fields. For example, with 32-bit MicroBlaze, when a 4 kB
page size is used, the page-number field is 20 bits and the offset field is 12 bits. The VPN in this
case is 28 bits.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 62Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=62

Then the most frequently used page translations are stored in the translation look-aside buffer
(TLB). When translating a virtual address, the MMU examines the page-translation entries for a
matching VPN (PID and EPN). Rather than examining all entries in the table, only entries
contained in the processor TLB are examined. When a page-translation entry is found with a
matching VPN, the corresponding physical-page number is read from the entry and combined
with the offset to form the physical address. This physical address is used by the processor to
reference memory.

System software can use the PID to uniquely identify software processes (tasks, subroutines,
threads) running on the processor. Independently compiled processes can operate in effective-
address regions that overlap each other. This overlap must be resolved by system software if
multitasking is supported. Assigning a PID to each process enables system software to resolve
the overlap by relocating each process into a unique region of virtual-address space. The virtual-
address space mappings enable independent translation of each process into the physical-
address space.

Page-Translation Table

The page-translation table is a software-defined and software-managed data structure containing
page translations. The requirement for software-managed page translation represents an
architectural trade-off targeted at embedded-system applications. Embedded systems tend to
have a tightly controlled operating environment and a well-defined set of application software.
That environment enables virtual-memory management to be optimized for each embedded
system in the following ways:

• The page-translation table can be organized to maximize page-table search performance (also
called table walking) so that a given page-translation entry is located quickly. Most general-
purpose processors implement either an indexed page table (simple search method, large
page-table size) or a hashed page table (complex search method, small page-table size). With
software table walking, any hybrid organization can be employed that suits the particular
embedded system. Both the page-table size and access time can be optimized.

• Independent page sizes can be used for application modules, device drivers, system service
routines, and data. Independent page-size selection enables system software to more
efficiently use memory by reducing fragmentation (unused memory). For example, a large data
structure can be allocated to a 16 MB page and a small I/O device-driver can be allocated to a
1 KB page.

• Page replacement can be tuned to minimize the occurrence of missing page translations. As
described in the following section, the most-frequently used page translations are stored in
the translation look-aside buffer (TLB).

Software is responsible for deciding which translations are stored in the TLB and which
translations are replaced when a new translation is required. The replacement strategy can be
tuned to avoid thrashing, whereby page-translation entries are constantly being moved in and
out of the TLB. The replacement strategy can also be tuned to prevent replacement of critical-
page translations, a process sometimes referred to as page locking.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 63Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=63

The unified 64-entry TLB, managed by software, caches a subset of instruction and data page-
translation entries accessible by the MMU. Software is responsible for reading entries from the
page-translation table in system memory and storing them in the TLB. The following section
describes the unified TLB in more detail. Internally, the MMU also contains shadow TLBs for
instructions and data, with sizes configurable by C_MMU_ITLB_SIZE and C_MMU_DTLB_SIZE
respectively.

These shadow TLBs are managed entirely by the processor (transparent to software) and are used
to minimize access conflicts with the unified TLB.

Translation Look-Aside Buffer
The translation look-aside buffer (TLB) is used by the MicroBlaze MMU for address translation
when the processor is running in virtual mode, memory protection, and storage control. Each
entry within the TLB contains the information necessary to identify a virtual page (PID and
effective page number), specify its translation into a physical page, determine the protection
characteristics of the page, and specify the storage attributes associated with the page.

The MicroBlaze TLB is physically implemented as three separate TLBs:

• Unified TLB: The UTLB contains 64 entries and is pseudo-associative. Instruction-page and
data-page translation can be stored in any UTLB entry. The initialization and management of
the UTLB is controlled completely by software.

• Instruction Shadow TLB: The ITLB contains instruction page-translation entries and is fully
associative. The page-translation entries stored in the ITLB represent the most-recently
accessed instruction-page translations from the UTLB. The ITLB is used to minimize
contention between instruction translation and UTLB-update operations. The initialization
and management of the ITLB is controlled completely by hardware and is transparent to
software.

• Data Shadow TLB: The DTLB contains data page-translation entries and is fully associative.
The page-translation entries stored in the DTLB represent the most-recently accessed data-
page translations from the UTLB. The DTLB is used to minimize contention between data
translation and UTLB-update operations. The initialization and management of the DTLB is
controlled completely by hardware and is transparent to software.

The following figure provides the translation flow for TLB.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 64Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=64

Figure 22: TLB Address Translation Flow

Perform DTLB
Look-Up

Generate I-side
Effective Address

No Translation Perform ITLB
Look-Up

Translation Disabled
(MSR[VM]=0)

Translation Enabled
(MSR[VM]=1)

Generate D-side
Effective Address

No Translation

Translation Enabled
(MSR[VM]=1)

Translation Disabled
(MSR[VM]=0)

ITLB Hit ITLB Miss DTLB Miss DTLB Hit

Extract Real
Address from ITLB

Perform UTLB
Look-Up

Extract Real
Address from DTLB

Continue I-cache
Access

Continue I-cache
or D-cache

Access

UTLB Hit UTLB Miss

Extract Real
Address from UTLB I-Side TLB Miss or

D-Side TLB Miss
Exception

Route Address
to ITLB

Route Address
to DTLB

X19756-111617

TLB Entry Format

The following figure shows the format of a TLB entry. Each TLB entry ranges from 68 bits up to
100 bits and is composed of two portions: TLBLO (also referred to as the data entry), and TLBHI
(also referred to as the tag entry).

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 65Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=65

Figure 23: TLB Entry Format (PAE Disabled)

RPN

220 31282423

ZSEL W I G

TAG

220 3528272625

SIZE V E TID

TLBLO:

TLBHI:

29 30

M

U0

EX WR

X19757-111617

When 64-bit MicroBlaze or the Physical Address Extension (PAE) is enabled, the TLB entry is
extended with up to 32 additional bits in the TLBLO RPN field to support up to a 64 bit physical
address.

The TLB entry contents are described in more detail in Translation Look-Aside Buffer Low
Register and Translation Look-Aside Buffer High Register, including the TLBLO format with PAE
or 64-bit MicroBlaze enabled.

The fields within a TLB entry are categorized as follows:

• Virtual-page identification (TAG, SIZE, V, TID): These fields identify the page-translation entry.
They are compared with the virtual-page number during the translation process.

• Physical-page identification (RPN, SIZE): These fields identify the translated page in physical
memory.

• Access control (EX, WR, ZSEL): These fields specify the type of access allowed in the page and
are used to protect pages from improper accesses.

• Storage attributes (W, I, M, G, E, U0): These fields specify the storage-control attributes, such
as caching policy for the data cache (write-back or write-through), whether a page is
cacheable, and how bytes are ordered (endianness).

The following table shows the relationship between the TLB-entry SIZE field and the translated
page size. This table also shows how the page size determines which address bits are involved in
a tag comparison, which address bits are used as a page offset, and which bits in the physical
page number are used in the physical address. With 64-bit MicroBlaze or PAE enabled, the most
significant bits of the physical address are directly taken from the extended RPN field.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 66Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=66

Table 39: Page-Translation Bit Ranges by Page Size

Page
Size

SIZE
TLBHI
Field

Tag Comparison Bit
Range1 Page Offset

PAE Disabled PAE or 64-bit
Enabled2

Physical
Page

Number
RPN Bits
Clear to 0

Physical
Page

Number
RPN Bits
Clear to 0

1 KB 000 TAG and Address[0:n-11] Address[22:31] RPN[0:21] - RPN[0:n-11] -

4 KB 001 TAG and Address[0:n-13] Address[20:31] RPN[0:19] 20:21 RPN[0:n-13] n-12:n-11

16 KB 010 TAG and Address[0:n-15] Address[18:31] RPN[0:17] 18:21 RPN[0:n-15] n-14:n-11

64 KB 011 TAG and Address[0:n-17] Address[16:31] RPN[0:15] 16:21 RPN[0:n-17] n-16:n-11

256
KB

100 TAG and Address[0:n-19] Address[14:31] RPN[0:13] 14:21 RPN[0:n-19] n-18:n-11

1 MB 101 TAG and Address[0:n-21] Address[12:31] RPN[0:11] 12:21 RPN[0:n-21] n-20:n-11

4 MB 110 TAG and Address[0:n-23] Address[10:31] RPN[0:9] 10:21 RPN[0:n-23] n-22:n-11

16 MB 111 TAG and Address[0:n-25] Address[8:31] RPN[0:7] 8:21 RPN[0:n-25] n-24:n-11

Notes:
1. The bit index n = C_ADDR_SIZE with 64-bit MicroBlaze, and 32 otherwise.
2. The bit index n = C_ADDR_SIZE.

TLB Access

When the MMU translates a virtual address (the combination of PID and effective address) into a
physical address, it first examines the appropriate shadow TLB for the page translation entry. If
an entry is found, it is used to access physical memory. If an entry is not found, the MMU
examines the UTLB for the entry. A delay occurs each time the UTLB must be accessed due to a
shadow TLB miss. The miss latency ranges from 2-32 cycles. The DTLB has priority over the ITLB
if both simultaneously access the UTLB.

Figure 24: General Process for Examining a TLB Entry shows the logical process the MMU
follows when examining a page-translation entry in one of the shadow TLBs or the UTLB. All
valid entries in the TLB are checked.

A TLB hit occurs when all of the following conditions are met by a TLB entry:

• The entry is valid

• The TAG field in the entry matches the effective address EPN under the control of the SIZE
field in the entry

• The TID field in the entry matches the PID

If any of the above conditions are not met, a TLB miss occurs. A TLB miss causes an exception,
described as follows:

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 67Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=67

A TID value of 0x00 causes the MMU to ignore the comparison between the TID and PID. Only
the TAG and EA[EPN] are compared. A TLB entry with TID=0x00 represents a process-
independent translation. Pages that are accessed globally by all processes should be assigned a
TID value of 0x00. A PID value of 0x00 does not identify a process that can access any page.
When PID=0x00, a page-translation hit only occurs when TID=0x00. It is possible for software to
load the TLB with multiple entries that match an EA[EPN] and PID combination. However, this is
considered a programming error and results in undefined behavior.

When a hit occurs, the MMU reads the RPN field from the corresponding TLB entry. Some or all
of the bits in this field are used, depending on the value of the SIZE field (see the previous table).

For example, with PAE disabled and 32-bit MicroBlaze, if the SIZE field specifies a 256 kB page
size, RPN[0:13] represents the physical page number and is used to form the physical address.
RPN[14:21] is not used, and software must clear those bits to 0 when initializing the TLB entry.
The remainder of the physical address is taken from the page-offset portion of the EA. If the page
size is 256 kB, the 32-bit physical address is formed by concatenating RPN[0:13] with bits 14:31
of the effective address.

Instead, with PAE enabled and assuming a physical address size of 40 bits (C_ADDR_SIZE set to
40), RPN[0:21] represents the physical page number and RPN[22:29] is not used. The 40-bit
physical address is formed by concatenating RPN[0:21] with bits 14:31 of the effective address.

Prior to accessing physical memory, the MMU examines the TLB-entry access-control fields.
These fields indicate whether the currently executing program is allowed to perform the
requested memory access.

If access is allowed, the MMU checks the storage-attribute fields to determine how to access the
page. The storage-attribute fields specify the caching policy for memory accesses.

TLB Access Failures

A TLB-access failure causes an exception to occur. This interrupts execution of the instruction
that caused the failure and transfers control to an interrupt handler to resolve the failure. A TLB
access can fail for two reasons:

• A matching TLB entry was not found, resulting in a TLB miss.

• A matching TLB entry was found, but access to the page was prevented by either the storage
attributes or zone protection.

When an interrupt occurs, the processor enters real mode by clearing MSR[VM] to 0. In real
mode, all address translation and memory-protection checks performed by the MMU are
disabled. After system software initializes the UTLB with page-translation entries, management
of the MicroBlaze UTLB is usually performed using interrupt handlers running in real mode.

The following figure diagrams the general process for examining a TLB entry.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 68Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=68

Figure 24: General Process for Examining a TLB Entry

Check TLB-Entry
Using Virtual Address

TLB HI[V]=1 TLB Entry MissNo

TLBHI[TID]=0x00

Yes

Compare
TLBHI[TAG] with EA[EPN]

Using TLBHI[SIZE]

Compare
TLBHI[TID] with PID TLB Entry MissNo Match

Check Access Access ViolationNot allowed

Match (TLB Hit)

Allowed

Check for Guarded
Storage Storage ViolationGuarded

Data Reference Instruction Fetch

Read TLBLO[RPN]
Using TLBHI[SIZE]

Extract Offset from EA
using TLBHI[SIZE]

Generate Physical Address from
TLBLO[RPN] and Offset

Yes No

Match

TLB Entry MissNo Match

Not Guarded

X19758-111617

The following sections describe the conditions under which exceptions occur due to TLB access
failures.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 69Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=69

Data-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), a data-storage exception occurs when access to a
page is not permitted for any of the following reasons:

• From user mode:

○ The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00). This
applies to load and store instructions.

○ The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise overridden
by the zone field (ZPR[Zn]‚ 11). This applies to store instructions.

• From privileged mode:

○ The TLB entry specifies a read-only page (TLBLO[WR]=0) that is not otherwise overridden
by the zone field (ZPR[Zn]‚ 10 and ZPR[Zn]‚ 11). This applies to store instructions.

Instruction-Storage Exception

When virtual mode is enabled, (MSR[VM]=1), an instruction-storage exception occurs when
access to a page is not permitted for any of the following reasons:

• From user mode:

○ The TLB entry specifies a zone field that prevents access to the page (ZPR[Zn]=00).

○ The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise
overridden by the zone field (ZPR[Zn]‚ 11).

○ The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

• From privileged mode:

○ The TLB entry specifies a non-executable page (TLBLO[EX]=0) that is not otherwise
overridden by the zone field (ZPR[Zn]‚ 10 and ZPR[Zn]‚ 11).

○ The TLB entry specifies a guarded-storage page (TLBLO[G]=1).

Data TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) a data TLB-miss exception occurs if a valid,
matching TLB entry was not found in the TLB (shadow and UTLB). Any load or store instruction
can cause a data TLB-miss exception.

Instruction TLB-Miss Exception

When virtual mode is enabled (MSR[VM]=1) an instruction TLB-miss exception occurs if a valid,
matching TLB entry was not found in the TLB (shadow and UTLB). Any instruction fetch can
cause an instruction TLB-miss exception.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 70Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=70

Access Protection
System software uses access protection to protect sensitive memory locations from improper
access. System software can restrict memory accesses for both user-mode and privileged-mode
software. Restrictions can be placed on reads, writes, and instruction fetches. Access protection
is available when virtual protected mode is enabled.

Access control applies to instruction fetches, data loads, and data stores. The TLB entry for a
virtual page specifies the type of access allowed to the page.

The TLB entry also specifies a zone-protection field in the zone-protection register that is used to
override the access controls specified by the TLB entry.

TLB Access-Protection Controls

Each TLB entry controls three types of access:

• Process:

Processes are protected from unauthorized access by assigning a unique process ID (PID) to
each process. When system software starts a user-mode application, it loads the PID for that
application into the PID register. As the application executes, memory addresses are
translated using only TLB entries with a TID field in Translation Look-Aside Buffer High
(TLBHI) that matches the PID. This enables system software to restrict accesses for an
application to a specific area in virtual memory.

A TLB entry with TID=0x00 represents a process-independent translation. Pages that are
accessed globally by all processes should be assigned a TID value of 0x00.

• Execution: The processor executes instructions only if they are fetched from a virtual page
marked as executable (TLBLO[EX]=1). Clearing TLBLO[EX] to 0 prevents execution of
instructions fetched from a page, instead causing an instruction-storage interrupt (ISI) to
occur. The ISI does not occur when the instruction is fetched, but instead occurs when the
instruction is executed. This prevents speculatively fetched instructions that are later
discarded (rather than executed) from causing an ISI.

The zone-protection register can override execution protection.

• Read/Write: Data is written only to virtual pages marked as writable (TLBLO[WR]=1). Clearing
TLBLO[WR] to 0 marks a page as read-only. An attempt to write to a read-only page causes a
data-storage interrupt (DSI) to occur.

The zone-protection register can override write protection.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 71Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=71

TLB entries cannot be used to prevent programs from reading pages. In virtual mode, zone
protection is used to read-protect pages. This is done by defining a no-access-allowed zone
(ZPR[Zn] = 00) and using it to override the TLB-entry access protection. Only programs running
in user mode can be prevented from reading a page. Privileged programs always have read access
to a page.

Zone Protection

Zone protection is used to override the access protection specified in a TLB entry. Zones are an
arbitrary grouping of virtual pages with common access protection. Zones can contain any
number of pages specifying any combination of page sizes. There is no requirement for a zone to
contain adjacent pages.

The zone-protection register (ZPR) is a 32-bit register used to specify the type of protection
override applied to each of 16 possible zones. The protection override for a zone is encoded in
the ZPR as a 2-bit field.

The 4-bit zone-select field in a TLB entry (TLBLO[ZSEL]) selects one of the 16 zone fields from
the ZPR (Z0–Z15). For example, zone Z5 is selected when ZSEL = 0101.

Changing a zone field in the ZPR applies a protection override across all pages in that zone.
Without the ZPR, protection changes require individual alterations to each page translation entry
within the zone.

Unimplemented zones (when C_MMU_ZONES < 16) are treated as if they contained 11.

UTLB Management
The UTLB serves as the interface between the processor MMU and memory-management
software. System software manages the UTLB to tell the MMU how to translate virtual addresses
into physical addresses. When a problem occurs due to a missing translation or an access
violation, the MMU communicates the problem to system software using the exception
mechanism. System software is responsible for providing interrupt handlers to correct these
problems so that the MMU can proceed with memory translation.

Software reads and writes UTLB entries using the MFS and MTS instructions, respectively. With
PAE enabled, the MFSE and MTSE instructions are used to access the most significant part of the
real page number. These instructions use the TLBX register index (numbered 0 to 63)
corresponding to one of the 64 entries in the UTLB. The tag and data portions are read and
written separately, so software must execute two MFS or MTS instructions, and also an
additional MFSE or MTSE instruction when PAE is enabled, to completely access an entry.

With 64-bit MicroBlaze, the MFS and MTS instructions can access the entire contents of the
UTLB entry directly.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 72Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=72

The UTLB is searched for a specific translation using the TLBSX register. TLBSX locates a
translation using an effective address and loads the corresponding UTLB index into the TLBX
register.

Individual UTLB entries are invalidated using the MTS instruction to clear the valid bit in the tag
portion of a TLB entry (TLBHI[V]).

When C_FAULT_TOLERANT is set to 1, the UTLB block RAM is protected by parity. In case of a
parity error, a TLB miss exception occurs. To avoid accumulating errors in this case, each entry in
the UTLB should be periodically invalidated.

Recording Page Access and Page Modification
Software management of virtual-memory poses several challenges:

• In a virtual-memory environment, software and data often consume more memory than is
physically available. Some of the software and data pages must be stored outside physical
memory, such as on a hard drive, when they are not used. Ideally, the most-frequently used
pages stay in physical memory and infrequently used pages are stored elsewhere.

• When pages in physical-memory are replaced to make room for new pages, it is important to
know whether the replaced (old) pages were modified.

If they were modified, they must be saved prior to loading the replacement (new) pages. If the
old pages were not modified, the new pages can be loaded without saving the old pages.

• A limited number of page translations are kept in the UTLB. The remaining translations must
be stored in the page-translation table. When a translation is not found in the UTLB (due to a
miss), system software must decide which UTLB entry to discard so that the missing
translation can be loaded. It is desirable for system software to replace infrequently used
translations rather than frequently used translations.

Solving the above problems in an efficient manner requires keeping track of page accesses and
page modifications. MicroBlaze does not track page access and page modification in hardware.
Instead, system software can use the TLB-miss exceptions and the data-storage exception to
collect this information. As the information is collected, it can be stored in a data structure
associated with the page-translation table.

Page-access information is used to determine which pages should be kept in physical memory
and which are replaced when physical-memory space is required. System software can use the
valid bit in the TLB entry (TLBHI[V]) to monitor page accesses. This requires page translations be
initialized as not valid (TLBHI[V]=0) to indicate they have not been accessed. The first attempt to
access a page causes a TLB-miss exception, either because the UTLB entry is marked not valid or
because the page translation is not present in the UTLB. The TLB-miss handler updates the UTLB
with a valid translation (TLBHI[V]=1). The set valid bit serves as a record that the page and its
translation have been accessed. The TLB-miss handler can also record the information in a
separate data structure associated with the page-translation entry.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 73Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=73

Page-modification information is used to indicate whether an old page can be overwritten with a
new page or the old page must first be stored to a hard disk. System software can use the write-
protection bit in the TLB entry (TLBLO[WR]) to monitor page modification. This requires page
translations be initialized as read-only (TLBLO[WR]=0) to indicate they have not been modified.
The first attempt to write data into a page causes a data-storage exception, assuming the page
has already been accessed and marked valid as described above. If software has permission to
write into the page, the data-storage handler marks the page as writable (TLBLO[WR]=1) and
returns.

The set write-protection bit serves as a record that a page has been modified. The data-storage
handler can also record this information in a separate data structure associated with the page-
translation entry.

Tracking page modification is useful when virtual mode is first entered and when a new process is
started.

Reset, Interrupts, Exceptions, and Break
MicroBlaze supports reset, interrupt, user exception, break, and hardware exceptions. The
following section describes the execution flow associated with each of these events.

The relative priority starting with the highest is:

1. Reset

2. Hardware Exception

3. Non-maskable Break

4. Break

5. Interrupt

6. User Vector (Exception)

The following table defines the memory address locations of the associated vectors and the
hardware enforced register file locations for return addresses. Each vector allocates two
addresses to allow full address range branching (requires an IMM followed by a BRAI instruction).
Normally the vectors start at address 0, but the parameter C_BASE_VECTORS can be used to
locate them anywhere in memory.

The address range 0x28 to 0x4F is reserved for future software support. Allocating these
addresses for user applications is likely to conflict with future releases of support software.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 74Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=74

Table 40: Vectors and Return Address Register File Location

Event Vector Address
Register File

Return
Address

Reset C_BASE_VECTORS + 0x0 -
C_BASE_VECTORS + 0x4

-

User Vector (Exception) C_BASE_VECTORS + 0x8 -
C_BASE_VECTORS + 0xC

Rx

Interrupt1 C_BASE_VECTORS + 0x10 -
C_BASE_VECTORS + 0x14

R14

Break: Non-maskable hardware C_BASE_VECTORS + 0x18 -
C_BASE_VECTORS + 0x1C

R16

Break: Hardware

Break: Software

Hardware Exception C_BASE_VECTORS + 0x20 -
C_BASE_VECTORS + 0x24

R17 or BTR

Reserved for future use C_BASE_VECTORS + 0x28 -
C_BASE_VECTORS + 0x4F

-

Notes:
1. With low-latency interrupt mode, the vector address is supplied by the Interrupt Controller.

All of these events will clear the reservation bit, used together with the LWX and SWX
instructions to implement mutual exclusion, such as semaphores and spinlocks.

Reset
When a Reset or Debug_Rst1 occurs, MicroBlaze flushes the pipeline and immediately starts
fetching instructions from the reset vector (address C_BASE_VECTORS + 0x0). Both external
reset signals are active-High, and it is recommended to assert the signals for at least 16 cycles.

See MicroBlaze Core Configurability for more information on the MSR reset value parameters,
which are used to define the initial value of the Machine Status Register.

Reset does not clear the general purpose registers (r1 - r31) or the instruction and data caches.
To ensure that stale data is not used, software should not assume that the general purpose
registers are zero, and the program should invalidate instruction and data caches before they are
enabled. See Reset Handling for a C code example of cache invalidation.

MicroBlaze does not wait for outstanding AXI or LMB transactions to complete before it begins
fetching instructions from the reset vector. When only resetting the processor, all external
accesses must be completed before asserting Reset. This can be achieved with an MBAR
instruction to enter sleep mode or the Pause signal. See Sleep and Pause Functionality for details.

Note:
1. Reset input controlled by the debugger using MDM.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 75Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=75

Equivalent Pseudocode

PC ← C_BASE_VECTORS + 0x0
MSR ← C_RESET_MSR_IE << 2 | C_RESET_MSR_BIP << 4 | C_RESET_MSR_ICE << 6 |
 C_RESET_MSR_DCE << 8 | C_RESET_MSR_EE << 9 | C_RESET_MSR_EIP << 10
EAR ← 0; ESR ← 0; FSR ← 0
PID ← 0; ZPR ← 0; TLBX ← 0
Reservation ← 0

Hardware Exceptions
MicroBlaze can be configured to trap the following internal error conditions: illegal instruction,
instruction and data bus error, and unaligned access. The divide exception can only be enabled if
the processor is configured with a hardware divider (C_USE_DIV=1).

When configured with a hardware floating-point unit (C_USE_FPU>0), it can also trap the
following floating-point specific exceptions: underflow, overflow, float division-by-zero, invalid
operation, and denormalized operand error.

When configured with a hardware memory management unit (MMU), it can also trap the
following memory management specific exceptions: Illegal Instruction Exception, Data Storage
Exception, Instruction Storage Exception, Data TLB Miss Exception, and Instruction TLB Miss
Exception.

A hardware exception causes MicroBlaze to flush the pipeline and branch to the hardware
exception vector (address C_BASE_VECTORS + 0x20). The execution stage instruction in the
exception cycle is not executed.

The exception also updates the general purpose register R17 in the following manner:

• For the MMU exceptions (Data Storage Exception, Instruction Storage Exception, Data TLB
Miss Exception, Instruction TLB Miss Exception) the register R17 is loaded with the
appropriate program counter value to re-execute the instruction causing the exception upon
return. The value is adjusted to return to a preceding IMM instruction, if any. If the exception is
caused by an instruction in a branch delay slot, the value is adjusted to return to the branch
instruction, including adjustment for a preceding IMM instruction, if any.

• For all other exceptions the register R17 is loaded with the program counter value of the
subsequent instruction, unless the exception is caused by an instruction in a branch delay slot.
If the exception is caused by an instruction in a branch delay slot, the ESR[DS] bit is set. In this
case the exception handler should resume execution from the branch target address stored in
BTR.

The EE and EIP bits in MSR are automatically reverted when executing the RTED instruction.

The VM and UM bits in MSR are automatically reverted from VMS and UMS when executing the
RTED, RTBD, and RTID instructions.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 76Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=76

Exception Priority

When two or more exceptions occur simultaneously, they are handled in the following order,
from the highest priority to the lowest:

• Instruction Bus Exception

• Instruction TLB Miss Exception

• Instruction Storage Exception

• Illegal Opcode Exception

• Privileged Instruction Exception or Stack Protection Violation Exception

• Data TLB Miss Exception

• Data Storage Exception

• Unaligned Exception

• Data Bus Exception

• Divide Exception

• FPU Exception

• Stream Exception

Exception Causes

• Stream Exception: The AXI4-Stream exception is caused by executing a get or getd instruction
with the ‘e’ bit set to ‘1’ when there is a control bit mismatch.

• Instruction Bus Exception: The instruction bus exception is caused by errors when reading
data from memory.

• The instruction peripheral AXI4 interface (M_AXI_IP) exception is caused by an error
response on M_AXI_IP_RRESP.

• The instruction cache AXI4 interface (M_AXI_IC) exception is caused by an error response
on M_AXI_IC_RRESP. The exception can only occur when the parameter
C_ICACHE_ALWAYS_USED is set to 1 and the cache is turned off, or if the MMU Inhibit
Caching bit is set for the address. In all other cases the response is ignored.

• The instructions side local memory (ILMB) can only cause instruction bus exception when
either an uncorrectable error occurs in the LMB memory, as indicated by the IUE signal, or
C_ECC_USE_CE_EXCEPTION is set to 1 and a correctable error occurs in the LMB
memory, as indicated by the ICE signal.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 77Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=77

• Illegal Opcode Exception: The illegal opcode exception is caused by an instruction with an
invalid major opcode (bits 0 through 5 of instruction). Bits 6 through 31 of the instruction are
not checked. Optional processor instructions are detected as illegal if not enabled. If the
optional feature C_OPCODE_0x0_ILLEGAL is enabled, an illegal opcode exception is also
caused if the instruction is equal to 0x00000000.

• Data Bus Exception: The data bus exception is caused by errors when reading data from
memory or writing data to memory.

• The data peripheral AXI4 interface (M_AXI_DP) exception is caused by an error response
on M_AXI_DP_RRESP or M_AXI_DP_BRESP.

• The data cache AXI4 interface (M_AXI_DC) exception is caused by:

○ An error response on M_AXI_DC_RRESP or M_AXI_DC_BRESP,

○ OKAY response on M_AXI_DC_RRESP in case of an exclusive access using LWX.

The exception can only occur when C_DCACHE_ALWAYS_USED is set to 1 and the
cache is turned off, when an exclusive access using LWX or SWX is performed, or if the
MMU Inhibit Caching bit is set for the address. In all other cases the response is ignored.

• The data side local memory (DLMB) can only cause instruction bus exception when either
an uncorrectable error occurs in the LMB memory, as indicated by the DUE signal, or
C_ECC_USE_CE_EXCEPTION is set to 1 and a correctable error occurs in the LMB
memory, as indicated by the DCE signal. An error can occur for all read accesses, and for
byte and halfword write accesses.

• Unaligned Exception: For 32-bit MicroBlaze the unaligned exception is caused by a word
access where the address to the data bus has any of the two least significant bits set, or a half-
word access with the least significant bit set.

For 64-bit MicroBlaze the unaligned exception is caused by a long access where the address
to the data bus has any of the three least significant bits set, a word access with any of the
two least significant bits set, or a half-word access with the least significant bit set.

• Divide Exception: The divide exception is caused by an integer division (idiv or idivu)
where the divisor is zero, or by a signed integer division (idiv) where overflow occurs
(-2147483648 / -1).

• FPU Exception: An FPU exception is caused by an underflow, overflow, divide-by-zero, illegal
operation, or denormalized operand occurring with a floating-point instruction.

• Underflow occurs when the result is denormalized.

• Overflow occurs when the result is not-a-number (NaN).

• The divide-by-zero FPU exception is caused by the rA operand to fdiv being zero when rB
is not infinite.

• Illegal operation is caused by a signaling NaN operand or by illegal infinite or zero operand
combinations.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 78Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=78

• Privileged Instruction Exception: The Privileged Instruction exception is caused by an attempt
to execute a privileged instruction in User Mode.

• Stack Protection Violation Exception: A Stack Protection Violation exception is caused by
executing a load or store instruction using the stack pointer (register R1) as rA with an address
outside the stack boundaries defined by the special Stack Low and Stack High registers,
causing a stack overflow or a stack underflow.

• Data Storage Exception: The Data Storage exception is caused by an attempt to access data in
memory that results in a memory-protection violation.

• Instruction Storage Exception: The Instruction Storage exception is caused by an attempt to
access instructions in memory that results in a memory-protection violation.

• Data TLB Miss Exception: The Data TLB Miss exception is caused by an attempt to access
data in memory, when a valid Translation Look-Aside Buffer entry is not present, and virtual
protected mode is enabled.

• Instruction TLB Miss Exception: The Instruction TLB Miss exception is caused by an attempt
to access instructions in memory, when a valid Translation Look-Aside Buffer entry is not
present, and virtual protected mode is enabled.

Should an Instruction Bus Exception, Illegal Opcode Exception, or Data Bus Exception occur
when C_FAULT_TOLERANT is set to 1, and an exception is in progress (that is MSR[EIP] set and
MSR[EE] cleared), the pipeline is halted, and the external signal MB_Error is set.

Imprecise Exceptions

Normally all exceptions in MicroBlaze are precise, meaning that any instructions in the pipeline
after the instruction causing an exception are invalidated, and have no effect.

When C_IMPRECISE_EXCEPTIONS is set to 1 (ECC) an Instruction Bus Exception or Data Bus
Exception caused by ECC errors in LMB memory is not precise, meaning that a subsequent
memory access instruction in the pipeline might be executed. If this behavior is acceptable, the
maximum frequency can be improved by setting this parameter to 1.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 79Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=79

Equivalent Pseudocode

ESR[DS] ← exception in delay slot
if ESR[DS] then
 BTR ← branch target PC
 if MMU exception then
 if branch preceded by IMM then
 r17 ← PC - 8
 else
 r17 ← PC - 4
 else
 r17 ← invalid value
else if MMU exception then
 if instruction preceded by IMM then
 r17 ← PC - 4
 else
 r17 ← PC
else
 r17 ← PC + 4
PC ← C_BASE_VECTORS + 0x20
MSR[EE] ← 0, MSR[EIP] ← 1
MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0
ESR[EC] ← exception specific value
ESR[ESS]← exception specific value
EAR ← exception specific value
FSR ← exception specific value
Reservation ← 0

Breaks
There are two kinds of breaks:

• Hardware (external) breaks

• Software (internal) breaks

Hardware Breaks

Hardware breaks are performed by asserting the external break signal (that is, the Ext_BRK and
Ext_NM_BRK input ports). On a break, the instruction in the execution stage completes while the
instruction in the decode stage is replaced by a branch to the break vector (address
C_BASE_VECTORS + 0x18).

The break return address (the PC associated with the instruction in the decode stage at the time
of the break) is automatically loaded into general purpose register R16. MicroBlaze also sets the
Break In Progress (BIP) flag in the Machine Status Register (MSR).

A normal hardware break (that is, the Ext_BRK input port) is only handled when MSR[BIP] and
MSR[EIP] are set to 0 (that is, there is no break or exception in progress). The Break In Progress
flag disables interrupts. A non-maskable break (that is, the Ext_NM_BRK input port) is always
handled immediately.

The BIP bit in the MSR is automatically cleared when executing the RTBD instruction.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 80Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=80

The Ext_BRK signal must be kept asserted until the break has occurred, and deasserted before
the RTBD instruction is executed. The Ext_NM_BRK signal must only be asserted one clock
cycle.

Software Breaks

To perform a software break, use the brk and brki instructions. Refer to Chapter 5: MicroBlaze
Instruction Set Architecture for detailed information on software breaks.

As a special case, when C_DEBUG_ENABLED is greater than zero, and brki rD,0x18 is
executed, a software breakpoint is signaled to the debugger; for example, the System Debugger
(XSDB) tool, irrespective of the value of C_BASE_VECTORS. In this case the BIP bit in the MSR is
not set.

Latency

The time it takes the MicroBlaze processor to enter a break service routine from the time the
break occurs depends on the instruction currently in the execution stage and the latency to the
memory storing the break vector.

Equivalent Pseudocode

r16 ← PC
PC ← C_BASE_VECTORS + 0x18
MSR[BIP] ← 1
MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0
Reservation ← 0

Interrupt
MicroBlaze supports one external interrupt source (connected to the Interrupt input port). The
processor only reacts to interrupts if the Interrupt Enable (IE) bit in the Machine Status Register
(MSR) is set to 1. On an interrupt, the instruction in the execution stage completes while the
instruction in the decode stage is replaced by a branch to the interrupt vector. This is either
address C_BASE_VECTORS + 0x10, or with low-latency interrupt mode, the address supplied by
the Interrupt Controller.

The interrupt return address (the PC associated with the instruction in the decode stage at the
time of the interrupt) is automatically loaded into general purpose register R14. In addition, the
processor also disables future interrupts by clearing the IE bit in the MSR. The IE bit is
automatically set again when executing the RTID instruction.

Interrupts are ignored by the processor if either of the break in progress (BIP) or exception in
progress (EIP) bits in the MSR are set to 1.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 81Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=81

By using the parameter C_INTERRUPT_IS_EDGE, the external interrupt can either be set to
level-sensitive or edge-triggered:

• When using level-sensitive interrupts, the Interrupt input must remain set until MicroBlaze
has taken the interrupt, and jumped to the interrupt vector. Software must acknowledge the
interrupt at the source to clear it before returning from the interrupt handler. If not, the
interrupt is taken again, as soon as interrupts are enabled when returning from the interrupt
handler.

• When using edge-triggered interrupts, MicroBlaze detects and latches the Interrupt input
edge, which means that the input only needs to be asserted one clock cycle. The interrupt
input can remain asserted, but must be deasserted at least one clock cycle before a new
interrupt can be detected. The latching of an edge-triggered interrupt is independent of the IE
bit in MSR. Should an interrupt occur while the IE bit is 0, it will immediately be serviced when
the IE bit is set to 1.

With periodic interrupt sources, such as the FIT Timer IP core, that do not have a method to clear
the interrupt from software, it is recommended to use edge-triggered interrupts.

Low-latency Vectored Interrupt Mode

A low-latency vectored interrupt mode is available, which allows the Interrupt Controller to
directly supply the interrupt vector for each individual interrupt (using the input port
Interrupt_Address). The address of each fast interrupt handler must be passed to the
Interrupt Controller when initializing the interrupt system. When a particular interrupt occurs,
this address is supplied by the Interrupt Controller, which allows MicroBlaze to directly jump to
the handler code.

With this mode, MicroBlaze also directly sends the appropriate interrupt acknowledge to the
Interrupt Controller (using the Interrupt_Ack output port), although it is still the responsibility
of the Interrupt Service Routine to acknowledge level sensitive interrupts at the source.

This information allows the Interrupt Controller to acknowledge interrupts appropriately, both for
level-sensitive and edge-triggered interrupt.

To inform the Interrupt Controller of the interrupt handling events, Interrupt_Ack is set to:

• 01: When MicroBlaze jumps to the interrupt handler code

• 10: When the RTID instruction is executed to return from interrupt

• 11: When MSR[IE] is changed from 0 to 1, which enables interrupts again

The Interrupt_Ack output port is active during one clock cycle, and is then reset to 00.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 82Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=82

Latency

The time it takes MicroBlaze to enter an Interrupt Service Routine (ISR) from the time an
interrupt occurs, depends on the configuration of the processor and the latency of the memory
controller storing the interrupt vectors. If MicroBlaze is configured to have a hardware divider,
the largest latency happens when an interrupt occurs during the execution of a division
instruction.

With low-latency vectored interrupt mode, the time to enter the ISR is significantly reduced,
because the interrupt vector for each individual interrupt is directly supplied by the Interrupt
Controller. With compiler support for fast interrupts, there is no need for a common ISR at all.
Instead, the ISR for each individual interrupt will be directly called, and the compiler takes care of
saving and restoring registers used by the ISR.

Equivalent Pseudocode

r14 ← PC
if C_USE_INTERRUPT = 2
 PC ← Interrupt_Address
 Interrupt_Ack ← 01
else
 PC ← C_BASE_VECTORS + 0x10
MSR[IE] ← 0
MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0
Reservation ← 0

User Vector (Exception)
The user exception vector is located at address 0x8. A user exception is caused by inserting a
‘BRALID Rx,0x8’ instruction in the software flow. Although RX could be any general purpose
register, AMD recommends using R15 for storing the user exception return address, and to use
the RTSD instruction to return from the user exception handler.

Pseudocode

rx ← PC
PC ← C_BASE_VECTORS + 0x8
MSR[UMS] ← MSR[UM], MSR[UM] ← 0, MSR[VMS] ← MSR[VM], MSR[VM] ← 0
Reservation ← 0

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 83Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=83

Instruction Cache
Overview
MicroBlaze can be used with an optional instruction cache for improved performance when
executing code that resides outside the LMB address range.

• Direct mapped (1-way associative)

• User selectable cacheable memory address range

• Configurable cache and tag size

• Caching over AXI4 interface (M_AXI_IC)

• Option to use 4, 8 or 16 word cache-line

• Cache on and off controlled using a bit in the MSR

• Optional WIC instruction to invalidate instruction cache lines

• Optional stream buffers to improve performance by speculatively prefetching instructions

• Optional victim cache to improve performance by saving evicted cache lines

• Optional parity protection that invalidates cache lines if a Block RAM bit error is detected

• Optional data width selection to either use 32 bits, an entire cache line, or 512 bits

General Instruction Cache Functionality
When the instruction cache is used, the memory address space is split into two segments: a
cacheable segment and a non-cacheable segment. The cacheable segment is determined by two
parameters: C_ICACHE_BASEADDR and C_ICACHE_HIGHADDR. All addresses within this range
correspond to the cacheable address segment. All other addresses are non-cacheable.

The cacheable segment size must be 2N, where N is a positive integer. The range specified by
C_ICACHE_BASEADDR and C_ICACHE_HIGHADDR must comprise a complete power-of-two
range, such that range = 2N and the N least significant bits of C_ICACHE_BASEADDR must be
zero.

The cacheable instruction address consists of two parts: the cache address, and the tag address.
The MicroBlaze instruction cache can be configured from 64 bytes to 64 kB. This corresponds to
a cache address of between 6 and 16 bits. The tag address together with the cache address
should match the full address of cacheable memory.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 84Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=84

When selecting cache sizes below 2 kB, distributed RAM is used to implement the Tag RAM and
Instruction RAM. Distributed RAM is always used to implement the Tag RAM, when setting the
parameter C_ICACHE_FORCE_TAG_LUTRAM to 1. This parameter is only available with cache
size 8 kB and less for 4 word cache-lines, with 16 kB and less for 8 word cache-lines, and with 32
kB and less for 16 word cache-lines.

For example: in a 32-bit MicroBlaze configured with C_ICACHE_BASEADDR= 0x00300000,
C_ICACHE_HIGHADDR=0x0030ffff, C_CACHE_BYTE_SIZE=4096,
C_ICACHE_LINE_LEN=8, and C_ICACHE_FORCE_TAG_LUTRAM=0; the cacheable memory of
64 kB uses 16 bits of byte address, and the 4 kB cache uses 12 bits of byte address, thus the
required address tag width is: 16-12=4 bits. The total number of block RAM primitives required
in this configuration is: 2 RAMB16 for storing the 1024 instruction words, and 1 RAMB16 for
128 cache line entries, each consisting of: 4 bits of tag, 8 word-valid bits, 1 line-valid bit. In total
3 RAMB16 primitives.

The following figure shows the organization of Instruction Cache.

Figure 25: Instruction Cache Organization

Tag Address Cache Address

Instruction Address Bits

- -

=Tag
RAM

Line Addr Tag

Valid (word and line)
Cache_Hit

Instruction
RAM

Word Addr
Cache_instruction_data

30 310

X19759-111617

Instruction Cache Operation
For every instruction fetched, the instruction cache detects if the instruction address belongs to
the cacheable segment. If the address is non-cacheable, the cache controller ignores the
instruction and lets the M_AXI_IP or LMB complete the request. If the address is cacheable, a
lookup is performed on the tag memory to check if the requested address is currently cached.
The lookup is successful if: the word and line valid bits are set, and the tag address matches the
instruction address tag segment. On a cache miss, the cache controller requests the new
instruction over the instruction AXI4 interface (M_AXI_IC), and waits for the memory controller
to return the associated cache line.

C_ICACHE_DATA_WIDTH determines the bus data width, either 32 bits, an entire cache line
(128, 256 or 512 bits), or 512 bits.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 85Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=85

When C_FAULT_TOLERANT is set to 1, a cache miss also occurs if a parity error is detected in a
tag or instruction Block RAM.

The instruction cache issues burst accesses for the AXI4 interface when 32-bit data width is
used, otherwise single accesses are used.

Stream Buffers

When stream buffers are enabled, by setting the parameter C_ICACHE_STREAMS to 1, the cache
will speculatively fetch cache lines in advance in sequence following the last requested address,
until the stream buffer is full.

The stream buffer can hold up to two cache lines. Should the processor subsequently request
instructions from a cache line prefetched by the stream buffer, which occurs in linear code, they
are immediately available.

The stream buffer often improves performance, because the processor generally has to spend
less time waiting for instructions to be fetched from memory.

C_ICACHE_DATA_WIDTH determines the amount of data transferred from the stream buffer
each clock cycle, either 32 bits or an entire cache line.

To be able to use instruction cache stream buffers, area optimization must not be enabled.

Victim Cache

The victim cache is enabled by setting the parameter C_ICACHE_VICTIMS to 2, 4 or 8. This
defines the number of cache lines that can be stored in the victim cache. Whenever a cache line
is evicted from the cache, it is saved in the victim cache. By saving the most recent lines they can
be fetched much faster, should the processor request them, thereby improving performance. If
the victim cache is not used, all evicted cache lines must be read from memory again when they
are needed.

C_ICACHE_DATA_WIDTH determines the amount of data transferred from/to the victim cache
each clock cycle, either 32 bits or an entire cache line.

Note: To be able to use the victim cache, area optimization must not be enabled.

Instruction Cache Software Support

MSR Bit

The ICE bit in the MSR provides software control to enable and disable caches.

The contents of the cache are preserved by default when the cache is disabled. You can
invalidate cache lines using the WIC instruction or using the hardware debug logic of MicroBlaze.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 86Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=86

WIC Instruction

The optional WIC instruction (C_ALLOW_ICACHE_WR=1) is used to invalidate cache lines in the
instruction cache from an application. For a detailed description, see Chapter 5: MicroBlaze
Instruction Set Architecture.

The WIC instruction can also be used together with parity protection to periodically invalidate
entries the cache, to avoid accumulating errors.

Data Cache
Overview
The MicroBlaze processor can be used with an optional data cache for improved performance.
The cached memory range must not include addresses in the LMB address range. The data cache
has the following features:

• Direct mapped (1-way associative)

• Write-through or Write-back

• User selectable cacheable memory address range

• Configurable cache size and tag size

• Caching over AXI4 interface (M_AXI_DC)

• Option to use 4, 8 or 16 word cache-lines

• Cache on and off controlled using a bit in the MSR

• Optional WDC instruction to invalidate or flush data cache lines

• Optional victim cache with write-back to improve performance by saving evicted cache lines

• Optional parity protection for write-through cache that invalidates cache lines if a Block RAM
bit error is detected

• Optional data width selection to either use 32 bits, an entire cache line, or 512 bits

General Data Cache Functionality
When the data cache is used, the memory address space is split into two segments: a cacheable
segment and a non-cacheable segment. The cacheable area is determined by two parameters:
C_DCACHE_BASEADDR and C_DCACHE_HIGHADDR. All addresses within this range correspond
to the cacheable address space. All other addresses are non-cacheable.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 87Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=87

The cacheable segment size must be 2N, where N is a positive integer. The range specified by
C_DCACHE_BASEADDR and C_DCACHE_HIGHADDR must comprise a complete power-of-two
range, such that range = 2N and the N least significant bits of C_DCACHE_BASEADDR must be
zero.

The following figure shows the Data Cache organization.

Figure 26: Data Cache Organization

Tag Address Cache Word Address

Data Address Bits

- -

=Tag
RAM

Addr Tag

Valid
Cache_Hit

Data
RAM

Addr Cache_data

Load_Instruction

0 30 31

X19760-111617

The cacheable data address consists of two parts: the cache address, and the tag address. The
MicroBlaze data cache can be configured from 64 bytes to 64 kB. This corresponds to a cache
address of between 6 and 16 bits. The tag address together with the cache address should match
the full address of cacheable memory. When selecting cache sizes below 2 kB, distributed RAM
is used to implement the Tag RAM and Data RAM, except that block RAM is always used for the
Data RAM when C_AREA_OPTIMIZED is set to 1 (Area) and C_DCACHE_USE_WRITEBACK is
not set. Distributed RAM is always used to implement the Tag RAM, when setting the parameter
C_DCACHE_FORCE_TAG_LUTRAM to 1. This parameter is only available with cache size 8 kB and
less for 4 word cache-lines, with 16 kB and less for 8 word cache-lines, and with 32 kB and less
for 16 word cache-lines.

For example, in a 32-bit MicroBlaze configured with C_DCACHE_BASEADDR=0x00400000,
C_DCACHE_HIGHADDR=0x00403fff, C_DCACHE_BYTE_SIZE=2048,
C_DCACHE_LINE_LEN=4, and C_DCACHE_FORCE_TAG_LUTRAM=0; the cacheable memory of
16 kB uses 14 bits of byte address, and the 2 kB cache uses 11 bits of byte address, thus the
required address tag width is 14-11=3 bits. The total number of block RAM primitives required in
this configuration is 1 RAMB16 for storing the 512 data words, and 1 RAMB16 for 128 cache
line entries, each consisting of 3 bits of tag, 4 word-valid bits, 1 line-valid bit. In total, 2 RAMB16
primitives.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 88Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=88

Data Cache Operation
The caching policy used by the MicroBlaze data cache, write-back or write-through, is
determined by the parameter C_DCACHE_USE_WRITEBACK. When this parameter is set, a
write-back protocol is implemented; otherwise write-through is implemented.

However, when configured with an MMU (C_USE_MMU > 1, C_AREA_OPTIMIZED = 0
(Performance) or 2 (Frequency), C_DCACHE_USE_WRITEBACK = 1), the caching policy in virtual
mode is determined by the W storage attribute in the TLB entry, whereas write-back is used in
real mode.

With the write-back protocol, a store to an address within the cacheable range always updates
the cached data. If the target address word is not in the cache (that is, the access is a cache miss),
and the location in the cache contains data that has not yet been written to memory (the cache
location is dirty), the old data is written over the data AXI4 interface (M_AXI_DC) to external
memory before updating the cache with the new data. If only a single word needs to be written,
a single word write is used, otherwise a burst write is used. For byte or halfword stores, in case of
a cache miss, the address is first requested over the data AXI4 interface, while a word store only
updates the cache.

With the write-through protocol, a store to an address within the cacheable range generates an
equivalent byte, halfword, or word write over the data AXI4 interface to external memory. The
write also updates the cached data if the target address word is in the cache (that is, the write is
a cache hit). A write cache-miss does not load the associated cache line into the cache.

Provided that the cache is enabled a load from an address within the cacheable range triggers a
check to determine if the requested data is currently cached. If it is (that is, on a cache hit) the
requested data is retrieved from the cache. If not (that is, on a cache miss) the address is
requested over the data AXI4 interface using a burst read, and the processor pipeline stalls until
the cache line associated to the requested address is returned from the external memory
controller.

The parameter C_DCACHE_DATA_WIDTH determines the bus data width, either 32 bits, an entire
cache line (128, 256 or 512 bits), or 512 bits.

When C_FAULT_TOLERANT is set to 1 and write-through protocol is used, a cache miss also
occurs if a parity error is detected in the tag or data block RAM.

The following table summarizes all types of accesses issued by the data cache AXI4 interface.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 89Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=89

Table 41: Data Cache Interface Accesses

Policy State Direction Access Type
Write-through Cache

Enabled
Read Burst for 32-bit interface non-exclusive access and exclusive

access with ACE enabled, single access otherwise

Write Single access

Cache
Disabled

Read Burst for 32-bit interface exclusive access with ACE enabled,
single access otherwise

Write Single access

Write-back Cache
Enabled

Read Burst for 32-bit interface, single access otherwise

Write Burst for 32-bit interface cache lines with more than one
valid word, a single access otherwise

Cache
Disabled

Read Burst for 32-bit interface non-exclusive access, discarding all
but the desired data, a single access otherwise

Write Single access

Victim Cache

The victim cache is enabled by setting the parameter C_DCACHE_VICTIMS to 2, 4 or 8. This
defines the number of cache lines that can be stored in the victim cache. Whenever a complete
cache line is evicted from the cache, it is saved in the victim cache. By saving the most recent
lines they can be fetched much faster, should the processor request them, thereby improving
performance. If the victim cache is not used, all evicted cache lines must be read from memory
again when they are needed.

With the AXI4 interface, C_DCACHE_DATA_WIDTH determines the amount of data transferred
from/to the victim cache each clock cycle, either 32 bits or an entire cache line.

Note: To be able to use the victim cache, write-back must be enabled and area optimization must not be
enabled.

Data Cache Software Support

MSR Bit

The DCE bit in the MSR controls whether or not the cache is enabled. When disabling caches the
user must ensure that all the prior writes within the cacheable range have been completed in
external memory before reading back over M_AXI_DP. This can be done by writing to a
semaphore immediately before turning off caches, and then in a loop poll until it has been
written. The contents of the cache are preserved when the cache is disabled.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 90Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=90

WDC Instruction

The optional WDC instruction (C_ALLOW_DCACHE_WR=1) is used to invalidate or flush cache
lines in the data cache from an application. For a detailed description, refer to Chapter 5:
MicroBlaze Instruction Set Architecture.

The WDC instruction can also be used together with parity protection to periodically invalidate
entries the cache, to avoid accumulating errors.

With an external L2 cache, such as the System Cache, connected to MicroBlaze using the ACE
interface, external cache invalidate or flush can be performed with WDC. See the System Cache
LogiCORE IP Product Guide (PG118) for more information on the System Cache.

Floating-Point Unit (FPU)
Overview
The MicroBlaze floating-point unit is based on the IEEE 754-1985 standard.

• Uses IEEE 754 single precision floating-point format, and double precision format with 64-bit
MicroBlaze, including definitions for infinity, not-a-number (NaN), and zero

• Supports addition, subtraction, multiplication, division, comparison, conversion and square
root instructions

• Implements round-to-nearest mode

• Generates sticky status bits for: underflow, overflow, divide-by-zero and invalid operation

For improved performance, the following non-standard simplifications are made:

• Denormalized 1 operands are not supported. A hardware floating-point operation on a
denormalized number returns a quiet NaN and sets the sticky denormalized operand error bit
in FSR; see Floating-Point Status Register.

• A denormalized result is stored as a signed 0 with the underflow bit set in FSR. This method is
commonly referred to as Flush-to-Zero (FTZ)

• An operation on a quiet NaN returns the fixed NaN: 0xFFC00000 for single precision or
0xFFF8000000000000 for double precision, rather than one of the NaN operands

• Overflow as a result of a floating-point operation always returns signed ∞.

Note:

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 91Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&ft:locale=en-US&url=pg118-system-cache
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=91

1. Numbers that are so close to 0, that they cannot be represented with full precision, that is, any number
n that falls in the following ranges for single precision: (1.17549*10-38> n > 0), or (0 > n > -1.17549 *
10-38), and the following ranges for double precision: (5.562684646268*10-309> n > 0), or (0 > n >
-5.562684646268 * 10-309)

Format

Single Precision

An IEEE 754 single precision floating-point number is composed of the following three fields:

1. 1-bit sign

2. 2.8-bit biased exponent

3. 3.23-bit fraction (a.k.a. mantissa or significand)

The fields are stored in a 32 bit word as defined in the following figure:

Figure 27: IEEE 754 Single Precision Format

319

fractionexponent

10

sign
X19761-111617

The value of a floating-point number v in MicroBlaze has the following interpretation:

1. If exponent = 255 and fraction <> 0, then v = NaN, regardless of the sign bit

2. If exponent = 255 and fraction = 0, then v = (-1)sign * ∞

3. If 0 < exponent < 255, then v = (-1)sign * 2(exponent-127) * (1.fraction)

4. If exponent = 0 and fraction <> 0, then v = (-1)sign * 2-126 * (0.fraction)

5. If exponent = 0 and fraction = 0, then v = (-1)sign * 0

For practical purposes only 3 and 5 are useful, while the others all represent either an error or
numbers that can no longer be represented with full precision in a 32 bit format.

Double Precision

An IEEE 754 double precision floating point number is composed of the following three fields:

1. 1-bit sign

2. 11-bit biased exponent

3. 52-bit fraction (a.k.a. mantissa or significand)

The fields are stored in a 64 bit long as defined in the following figure:

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 92Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=92

Figure 28: IEEE 754 Double Precision Format

6312

fractionexponent

10

sign
X20091-112317

The value of a floating point number v in MicroBlaze has the following interpretation:

1. If exponent = 2047 and fraction <> 0, then v = NaN, regardless of the sign bit

2. If exponent = 2047 and fraction = 0, then v = (-1)sign * ∞

3. If 0 < exponent < 2047, then v = (-1)sign * 2(exponent-1023) * (1.fraction)

4. If exponent = 0 and fraction <> 0, then v = (-1)sign * 2-1022 * (0.fraction)

5. If exponent = 0 and fraction = 0, then v = (-1)sign * 0

For practical purposes only 3 and 5 are useful, while the others all represent either an error or
numbers that can no longer be represented with full precision in a 64 bit format.

Rounding
The MicroBlaze FPU only implements the default rounding mode, “Round-to-nearest”, specified
in IEEE 754. By definition, the result of any floating-point operation should return the nearest
single precision value to the infinitely precise result. If the two nearest representable values are
equally near, then the one with its least significant bit zero is returned.

Operations
All MicroBlaze FPU operations use the processors general purpose registers rather than a
dedicated floating-point register file, see General Purpose Registers.

Arithmetic

The FPU implements the following floating point operations, where the double operations are
available with 64-bit MicroBlaze:

• addition, fadd and dadd

• subtraction, frsub and drsub

• multiplication, fmul and dmul

• division, fdiv and ddiv

• square root, fsqrt and dsqrt (available if C_USE_FPU = 2, EXTENDED)

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 93Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=93

Comparison

The FPU implements the following floating point comparisons, where the double operations are
available with 64-bit MicroBlaze:

• compare less-than, fcmp.lt and dcmp.lt

• compare equal, fcmp.eq and dcmp.eq

• compare less-or-equal, fcmp.le and dcmp.le

• compare greater-than, fcmp.gt and dcmp.gt

• compare not-equal, fcmp.ne and dcmp.ne

• compare greater-or-equal, fcmp.ge and dcmp.ge

• compare unordered, fcmp.un and dcmp.un (used for NaN)

Conversion

The FPU implements the following conversions (available if C_USE_FPU = 2, EXTENDED), where
the double operations are available with 64-bit MicroBlaze:

• convert from signed integer to single floating point, flt

• convert from single floating point to signed integer, fint

• convert from signed long to floating point, dbl

• convert from double floating point to signed long, dlong

Exceptions
The floating-point unit uses the regular hardware exception mechanism in MicroBlaze. When
enabled, exceptions are thrown for all the IEEE standard conditions: underflow, overflow, divide-
by-zero, and illegal operation, as well as for the MicroBlaze specific exception: denormalized
operand error.

A floating-point exception inhibits the write to the destination register (Rd). This allows a
floating-point exception handler to operate on the uncorrupted register file.

Software Support
The AMD Vitis™ unified software platform compiler system, based on GCC, provides support for
the floating-point Unit compliant with the MicroBlaze API. Compiler flags are automatically
added to the GCC command line based on the type of FPU present in the system, when using
Vitis unified software platform.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 94Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=94

All double-precision operations are emulated in software with 32-bit MicroBlaze. Be aware that
the xil_printf() function does not support floating-point output. The standard C library
printf() and related functions do support floating-point output, but will increase the program
code size.

Libraries and Binary Compatibility

The Vitis unified software platform compiler system only includes software floating-point C
runtime libraries. To take advantage of the hardware FPU, the libraries must be recompiled with
the appropriate compiler switches.

For all cases where separate compilation is used, it is very important that you ensure the
consistency of FPU compiler flags throughout the build.

Operator Latencies

The latencies of the various operations supported by the FPU are listed in Chapter 5: MicroBlaze
Instruction Set Architecture. The FPU instructions are not pipelined, so only one operation can
be ongoing at any time.

C Language Programming

To gain maximum benefit from the FPU without low-level assembly-language programming, it is
important to consider how the C compiler will interpret your source code. Very often the same
algorithm can be expressed in many different ways, and some are more efficient than others.

Immediate Constants

Floating-point constants in C are double-precision by default. When using a single-precision FPU,
careless coding could result in double-precision software emulation routines being used instead
of the native single-precision instructions. To avoid this, explicitly specify (by cast or suffix) that
immediate constants in your arithmetic expressions are single-precision values.

For example:

float x = 0.0;
...
x += (float)1.0; /* float addition */
x += 1.0F; /* alternative to above */
x += 1.0; /* warning - uses double addition! */

Note: The GNU C compiler can be instructed to treat all floating-point constants as single-precision
(contrary to the ANSI C standard) by supplying the compiler flag -fsingle-precision-constants.

Avoiding Unnecessary Casting

While conversions between floating-point and integer formats are supported in hardware by the
FPU, when C_USE_FPU is set to 2 (Extended), it is still best to avoid them when possible.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 95Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=95

The following not-recommended example calculates the sum of squares of the integers from 1 to
10 using floating-point representation:

float sum, t;
int i;
sum = 0.0f;
for (i = 1; i <= 10; i++) {
 t = (float)i;
 sum += t * t;
}

The above code requires a cast from an integer to a float on each loop iteration. This can be
rewritten as:

float sum, t;
int i;
t = sum = 0.0f;
for(i = 1; i <= 10; i++) {
 t += 1.0f;
 sum += t * t;
}

Note: The compiler is not at liberty to perform this optimization in general, as the two code fragments
above might give different results in some cases (for example, very large t).

Using Square Root Runtime Library Function

The standard C runtime math library functions operate using double-precision arithmetic. When
using a single-precision FPU, calls to the square root functions (sqrt()) result in inefficient
emulation routines being used instead of FPU instructions:

#include <math.h>
...
float x=-1.0F;
...
x = sqrt(x); /* uses double precision */

Here the math.h header is included to avoid a warning message from the compiler.

When used with single-precision data types, the result is a cast to double, a runtime library call is
made (which does not use the FPU) and then a truncation back to float is performed.

The solution is to use the non-ANSI function sqrtf() instead, which operates using single
precision and can be carried out using the FPU. For example:

#include <math.h>
...
float x=-1.0F;
...
x = sqrtf(x); /* uses single precision */

Note: When compiling this code, the compiler flag -fno-math-errno (in addition to -mhard-float
and -mxl-float-sqrt) must be used, to ensure that the compiler does not generate unnecessary code
to handle error conditions by updating the errno variable.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 96Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=96

Stream Link Interfaces
MicroBlaze can be configured with up to 16 AXI4-Stream interfaces, each consisting of one input
and one output port. The channels are dedicated uni-directional point-to-point data streaming
interfaces.

For detailed information on the AXI4-Stream interface, refer to the AMBA AXI4-Stream Protocol
Specification (ARM IHI 0051A) document.

The interfaces on MicroBlaze are 32 bits wide. A separate bit indicates whether the sent/
received word is of control or data type. The get instruction in the MicroBlaze ISA is used to
transfer information from a port to a general purpose register. The put instruction is used to
transfer data in the opposite direction. Both instructions come in 4 flavors: blocking data, non-
blocking data, blocking control, and non-blocking control. For a detailed description of the get
and put instructions, see Chapter 5: MicroBlaze Instruction Set Architecture.

Hardware Acceleration
Each link provides a low latency dedicated interface to the processor pipeline. Thus they are ideal
for extending the processors execution unit with custom hardware accelerators. A simple
example is illustrated in the following figure. The code uses RFSLx to indicate the used link.

Figure 29: Stream Link Used with HW Accelerated Function fx

MicroBlaze

Link x

// Configure fx

cput Rc, RFSLx

// Store operands

put Ra, RFSLx // op 1

put Rb, RFSLx // op 2

// Load result

Register
File

Custom HW Accelerator

Op 1 Reg Op 2 Reg

ConfigReg

fx

Result Reg
Link x

X19783-111617

This method is similar to extending the ISA with custom instructions, but has the benefit of not
making the overall speed of the processor pipeline dependent on the custom function. Also,
there are no additional requirements on the software tool chain associated with this type of
functional extension.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 97Send Feedback

https://developer.arm.com/documentation/ihi0051/a/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=97

Debug and Trace
Debug Overview
MicroBlaze features a debug interface to support JTAG based software debugging tools
(commonly known as BDM or Background Debug Mode debuggers) like the System Debugger
(XSDB) tool. The debug interface is designed to be connected to the MicroBlaze Debug Module
(MDM) core, which interfaces with the JTAG port of FPGAs. Multiple MicroBlaze instances can
be interfaced with a single MDM to enable multiprocessor debugging.

To be able to download programs, set software breakpoints and disassemble code, the instruction
and data memory ranges must overlap, and use the same physical memory.

Debug registers are accessed using the debug interface, and are not directly visible to software
running on the processor, unless the MDM is configured to enable software access to user-
accessible debug registers. The debug interface can either use JTAG serial access or AXI4-Lite
parallel access, controlled by the parameter C_DEBUG_INTERFACE.

See the MicroBlaze Debug Module (MDM) LogiCORE IP Product Guide (PG115) for a detailed
description of the MDM features.

The basic debugging features enabled by setting C_DEBUG_ENABLED to 1 (Basic) include:

• Configurable number of hardware breakpoints and watchpoints and unlimited software
breakpoints

• External processor control enables debug tools to stop, reset, and single step MicroBlaze

• Read from and write to: memory, general purpose registers, and special purpose register,
except EAR, EDR, ESR, BTR and PVR0 - PVR12, which can only be read

• Support for multiple processors

The extended debugging features enabled by setting C_DEBUG_ENABLED to 2 (Extended)
include:

• Configurable number of performance monitoring event and latency counters

• Program Trace:

○ Embedded program trace with configurable trace buffer size

○ External program trace for multiple processors, provided by the MDM

• Non-intrusive profiling support with configurable profiling buffer size

• Cross trigger support between multiple processors, and external cross trigger inputs and
outputs, provided by the MDM

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 98Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&ft:locale=en-US&url=pg115-mdm
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=98

Performance Monitoring
With extended debugging, MicroBlaze provides performance monitoring counters to count
various events and to measure latency during program execution. The number of event counters
and latency counters can be configured with C_DEBUG_EVENT_COUNTERS and
C_DEBUG_LATENCY_COUNTERS respectively, and the counter width can be set to 32, 48 or 64
bits with C_DEBUG_COUNTER_WIDTH. With the default configuration, the counter width is set
to 32 bits and there are five event counters and one latency counter.

An event counter simply counts the number of times a certain event has occurred, whereas a
latency counter provides the following information:

• Number of times the event has occurred (N)

• The sum of each event latency measured by counting clock cycles from the event starts until it
finishes (ΣL), used to calculate the mean latency

• The sum of each event latency squared (ΣL2), used to calculate the latency standard deviation

• The minimum, shortest, measured latency for all events (Lmin)

• The maximum, longest, measured latency for all events (Lmax)

The mean latency (μ) is calculated by the following formula:

Equation 1: Mean Latency

The standard deviation (σ) of the latency is calculated by the following formula:

Equation 2: Standard Deviation of Latency

Counting can be started or stopped using the Performance Counter Command Register or by
cross trigger events (see Table 63: MicroBlaze Cross Trigger Actions).

When configuring, reading or writing counters, they are accessed sequentially through the
performance counter registers. After every access the selected counter item is incremented.

All counters are sampled simultaneously for reading using the Performance Counter Command
Register. This can be done while counting, or after counting has been stopped.

When an event counter reaches its maximum value, the overflow status bit is set, and the
external interrupt signal Dbg_Intr is set to one. The interrupt signal is reset to zero by clearing
the counters using the Performance Counter Command Register.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 99Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=99

By using one of the event counters to count number of clock cycles, and initializing this counter
to overflow after a predetermined sampling interval, the external interrupt can be used to
periodically sample the performance counters.

The available events are described in Table 42: MicroBlaze Performance Monitoring Events, listed
in numerical order.

A typical procedure to follow when initializing and using the performance monitoring counters is
delineated in the steps below.

1. Initialize the events to be monitored:

• Use the Performance Counter Command Register to reset the selected counter to the first
counter, by setting the Reset bit.

• Write the desired event numbers for all counters in order, using the Performance Counter
Control Register. With the default configuration this means writing the register five times
for the event counters and then once for the latency counter.

2. Clear all counters and start monitoring using the Performance Command Register, by setting
the Clear and Start bits.

3. Run the program or function to be monitored.

4. Sample counters and stop monitoring using the Performance Command Register, by setting
the Sample and Stop bits.

5. Read the results from all counters:

• Use the Performance Command Register to reset the selected counter to the first counter,
by setting the Reset bit.

• Read the status for all counters in order, using the Performance Counter Status Register.
With the default configuration this means reading the register five times for the event
counters and then once for the latency counter. Ensure that the result is valid by checking
that the overflow and full bits are not set.

• Use the Performance Command Register to reset the selected counter to the first counter,
by setting the Reset bit.

• Read the counter items for all counters in order, using the Performance Counter Data Read
Register. With the default configuration this means reading the register five times for the
event counters and then four times for the latency counter as described in Performance
Counter Data Read Register.

6. Calculate the final results, depending on the measured events, for example:

• Use the formulas above to determine the mean latency and standard deviation for any
measured latency.

• The clock cycles per instruction (CPI) can be calculated by E30 / E0.

• The instruction and data cache hit rates can be calculated by E11 / E10 and E47 / E46.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 100Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=100

• The instruction cache miss latency is determined by (E60(ΣL) - E60(N)) / (E10 - E11), and
equivalent formulas can be used to determine the data cache read and write miss
latencies.

• The ratio of floating-point instructions in a program is E29/E0.

Table 42: MicroBlaze Performance Monitoring Events

Event Description Event Description
Event Counter Events

0 Any valid instruction executed 29 Floating-point (fadd, ..., fsqrt)

1 Load word (lw, lwi, lwx) executed 30 Number of clock cycles

2 Load halfword (lhu, lhui) executed 31 Immediate (imm) executed

3 Load byte (lbu, lbui) executed 32 Pattern compare (pcmpbf, pcmpeq, pcmpne)

4 Store word (sw, swi, swx) executed 33 Sign extend instructions (sext8, sext16)
executed

5 Store halfword (sh, shi) executed 34 Instruction cache invalidate (wic) executed

6 Store byte (sb, sbi) executed 35 Data cache invalidate or flush (wdc) executed

7 Unconditional branch (br, bri, brk, brki)
executed

36 Machine status instructions (msrset, msrclr)

8 Taken conditional branch (beq, ..., bnei)
executed

37 Unconditional branch with delay slot executed

9 Not taken conditional branch (beq,..., bnei)
executed

38 Taken conditional branch with delay slot executed

10 Data request from instruction cache 39 Not taken conditional branch with delay slot

11 Hit in instruction cache 40 Delay slot with no operation instruction executed

12 Read data requested from data cache 41 Load instruction (lbu, ..., lwx) executed

13 Read data hit in data cache 42 Store instruction (sb, ..., swx) executed

14 Write data request to data cache 43 MMU data access request

15 Write data hit in data cache 44 Conditional branch (beq, ..., bnei) executed

16 Load (lbu, ..., lwx) with r1 as operand
executed

45 Branch (br, bri, brk, brki, beq, ...,
bnei) executed

17 Store (sb, ..., swx) with r1 as operand
executed

46 Read or write data request from/to data cache

18 Logical operation (and, andn, or, xor)
executed

47 Read or write data cache hit

19 Arithmetic operation (add, idiv, mul, rsub)
executed

48 MMU exception taken

20 Multiply operation (mul, mulh, mulhu,
mulhsu, muli)

49 MMU instruction side exception taken

21 Barrel shifter operation (bsrl, bsra, bsll)
executed

50 MMU data side exception taken

22 Shift operation (sra, src, srl) executed 51 Pipeline stalled

23 Exception taken 52 Branch target cache hit for a branch or return

24 Interrupt occurred 53 MMU instruction side access request

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 101Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=101

Table 42: MicroBlaze Performance Monitoring Events (cont'd)

Event Description Event Description
25 Pipeline stalled due to operand fetch stage (OF) 54 MMU instruction TLB (ITLB) hit

26 Pipeline stalled due to execute stage (EX) 55 MMU data TLB (DTLB) hit

27 Pipeline stalled due to memory stage (MEM) 56 MMU unified TLB (UTLB) hit

28 Integer divide (idiv, idivu) executed

Latency and Event Counter events

57 Interrupt latency from input to interrupt vector 61 MMU address lookup latency

58 Data cache latency for memory read 62 Peripheral AXI interface data read latency

59 Data cache latency for memory write 63 Peripheral AXI interface data write latency

60 Instruction cache latency for memory read

The debug registers used to configure and control performance monitoring, and to read or write
the event and latency counters, are listed in the following table. All of these registers except the
Performance Counter Command register are accessed repeatedly to read or write information,
first for all of the event counters followed by all of the latency counters.

The DBG_CTRL value indicates the value to use in the MDM Debug Register Access Control
Register to access the register, used with MDM software access to debug registers.

Table 43: MicroBlaze Performance Monitoring Debug Registers

Register Name Size
(bits)

MDM
Command

DBG_CTRL
Value R/W Description

Performance
Counter Control

8 0101 0001 4A207 W Select event for each configured
counter, according to the previous
table

Performance
Counter
Command

5 0101 0010 4A404 W Command to clear counters, start or
stop counting, or sample counters

Performance
Counter Status

2 0101 0011 4A601 R Read the sampled status for each
configured performance counter

Performance
Counter Data
Read

32 0101 0110 4AC1F R Read the sampled values for each
configured performance counter

Performance
Counter Data
Write

32 0101 0111 4AE1F W Write initial values for each configured
performance counter

Performance Counter Control Register

The Performance Counter Control Register (PCCTRLR) is used to define the events that are
counted by the configured performance counters. To define the events for all configured
counters, the register should be written repeatedly for each of the counters. This register is a
write-only register. Issuing a read request has no effect, and undefined data is read.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 102Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=102

Every time the register is written, the selected counter is incremented. By using the Performance
Counter Command Register, the selected counter can be reset to the first counter again. See the
following figure and table.

Figure 30: Performance Counter Control Register

07

EventReserved

31 8

X19762-111617

Table 44: Performance Counter Control Register

Bits Name Description Reset Value
7:0 Event Performance counter event, according to Table 42: MicroBlaze

Performance Monitoring Events.
0

Performance Counter Command Register

The Performance Counter Command Register (PCCMDR) is used to issue commands to clear,
start, stop, or sample all counters. This register is a write-only register. Issuing a read request has
no effect, and undefined data is read.

Figure 31: Performance Counter Command Register

04

RESReserved

31 5 3 2 1

SAMSTOPSTACLR
X19763-111617

Table 45: Performance Counter Command Register

Bits Name Description Reset Value
4 Clear Clear all counters to zero 0

3 Start Start counting configured events for all counters simultaneously 0

2 Stop Stop counting all counters simultaneously 0

1 Sample Sample status and values in all counters simultaneously for reading 0

0 Reset Reset accessed counter to the first event counter for access using the
Performance Counter Control, Status, Read Data and Write Data

0

Performance Counter Status Register

The Performance Counter Status Register (PCSR) reads the sampled status of the counters. To
read the status for all configured counters, the register should be read repeatedly for each of the
counters. This register is a read-only register. Issuing a write request to the register does nothing.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 103Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=103

Every time the register is read, the selected counter is incremented. By using the Performance
Counter Command Register, the selected counter can be reset to the first counter again. See the
following figure and table.

Figure 32: Performance Counter Status Register

0

FULLReserved

31 2 1

OF
X19764-111617

Table 46: Performance Counter Status Register

Bits Name Description Reset Value
1 Overflow This bit is set when the counter has counted past its maximum value 0

0 Full This bit is set when a new latency counter event is started before the
previous event has finished. This indicates that the accuracy of the
measured values is reduced.

0

Performance Counter Data Read Register

The Performance Counter Data Read Register (PCDRR) reads the sampled values of the counters.
To read the values of all configured counters, the register should be read repeatedly. This register
is a read-only register. Issuing a write request to the register does nothing.

See the following figure and table.

Figure 33: Performance Counter Data Read Register

0

Item

31

X19765-111617

Table 47: Performance Counter Data Read Register

Bits Name Description Reset Value
31:0 Item Sampled counter value item 0

Because a counter can have more than 32 bits, depending on the configuration, the register
might need to be read repeatedly to retrieve all information for a particular counter. This is
detailed in the following table.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 104Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=104

Table 48: Performance Counter Data Items

Counter Type Item Description
C_DEBUG_COUNTER_WIDTH = 32

Event Counter 1 The number of times the event occurred

Latency Counter 1 The number of times the event occurred

2 The sum of each event latency

3 The sum of each event latency squared

4 31:16
15:0

Minimum measured latency, 16 bits
Maximum measured latency, 16 bits

C_DEBUG_COUNTER_WIDTH = 48

Event Counter 1 31:1615:0 0x0000
The number of times the event occurred, 16 most significant bits

2 The number of times the event occurred, 32 least significant bits

Latency Counter 1 The number of times the event occurred

2 31:16
15:0

0x0000
The sum of each event latency, 16 most significant bits

3 The sum of each event latency, 32 least significant bits

4 31:16
15:0

0x0000
The sum of each event latency squared, 16 most significant bits

5 The sum of each event latency squared, 32 least significant bits

6 Minimum measured latency, 32 bits

7 Maximum measured latency, 32 bits

C_DEBUG_COUNTER_WIDTH = 64

Event Counter 1 The number of times the event occurred, 32 most significant bits

2 The number of times the event occurred, 32 least significant bits

Latency Counter 1 The number of times the event occurred, 32 bits

2 The sum of each event latency, 32 most significant bits

3 The sum of each event latency, 32 least significant bits

4 The sum of each event latency squared, 32 most significant bits

5 The sum of each event latency squared, 32 least significant bits

6 Minimum measured latency, 32 bits

7 Maximum measured latency, 32 bits

Performance Counter Data Write Register

The Performance Counter Data Write Register (PCDWR) writes initial values to the counters. To
write all configured counters, the register should be written repeatedly. This register is a write-
only register. Issuing a read request has no effect, and undefined data is read.

Because a counter can have more than 32 bits, depending on the configuration, the register
might need to be written repeatedly to update all information for a particular counter, as
described in Table 48: Performance Counter Data Items.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 105Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=105

Figure 34: Performance Counter Data Write Register

0

Item

31

X19766-111617

Table 49: Performance Counter Data Write Register (PCDWR)

Bits Name Description Reset Value
31:0 Item Counter value item to write into a counter 0

Program and Event Trace
With extended debugging, MicroBlaze provides program and event trace, either storing
information in the Embedded Trace Buffer or transmitting it to the MDM, to enable program
execution tracing. The MDM is used when the parameter C_DEBUG_EXTERNAL_TRACE is set,
allowing output of program trace from multiple processors using external interfaces.

The size of the Embedded Trace Buffer can be configured from 8 KB to 128 KB using the
parameter C_DEBUG_TRACE_SIZE. The default buffer size with external trace is 8 KB, but it can
also be configured from 32B to 256B to use distributed RAM. It is recommended to always keep
the default 8 KB size, unless block RAM resources are very scarce. By setting
C_DEBUG_TRACE_SIZE to 0 (None), program trace is disabled.

Program trace uses compression to reduce the amount of trace data, while still allowing
reconstruction of the program execution flow or the entire processor software state. There are
three main compression levels:

• Complete trace: Stores complete trace information including cycle count for each executed
instruction using 144 bits, ranging from 512 to 8192 items depending on the configured
Embedded Trace Buffer size. Complete trace is not available when
C_DEBUG_EXTERNAL_TRACE is set or with 64-bit MicroBlaze (C_DATA_SIZE = 64).

• Program flow: Stores program flow changes, that is the sequence of branches taken or not
taken, and the new program counter for indirect branches, interrupts, exceptions and
hardware breaks.

The program counter can also optionally be stored for return instructions to simplify program
flow reconstruction, or for all taken branches to handle self-modifying code.

Data read from memory or fetched from AXI4-Stream interfaces might optionally be stored to
allow reconstructing the entire processor software state, enabling reverse single step
functionality. When the data access instruction is in a delay slot of a dynamic branch or return,
the data is stored first followed by the branch target program counter. For data access
instructions in delay slots of static branches, the program flow change is first saved followed
by the data.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 106Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=106

Events representing all program exceptions, interrupts, and breaks, as well as all cross-trigger
events defined in Table 63: MicroBlaze Cross Trigger Actions are also stored, to allow
unambiguous decoding of program flow changes. Each event is preceded by a stored program
counter.

Software can inject an event by using an “xori r0, rN, IMM” instruction. Typically this is used to
trace operating system events like context switches and system calls, but it can be used by
any program to trace significant events.

• Program flow and cycle count: Stores the cycle count between instructions along with the
same information as program flow alone, to also allow reconstruction of the program
execution time.

• Event Trace: Stores event trace information including cycle count events. Events include all
program exceptions, interrupts, and breaks, as well as all cross-trigger events defined in Table
63: MicroBlaze Cross Trigger Actions. Each event is optionally preceded by a stored program
counter.

The program counter can also optionally be stored for call instructions to trace function calls
in the program, and for return instructions to trace function call returns.

Software can inject an event by using an “xori r0, rA, IMM” instruction. Typically this is used to
trace operating system events like context switches and system calls, but it can be used by
any program to trace significant events.

Tracing can be started using the Trace Command Register, by hitting a program breakpoint or
watchpoint configured as a tracepoint in the Trace Control Register, or by a cross trigger event
(seeTable 63: MicroBlaze Cross Trigger Actions).

Tracing is automatically stopped when the trace buffer becomes full, and can be stopped using
the Trace Command Register or by a cross trigger event (see Table 63: MicroBlaze Cross Trigger
Actions).

The cycle count can measure up to 32768 clock cycles when using complete trace, and up to
8192 cycles between instructions when using program flow and cycle count. If the cycle count
exceeds this value, the Trace Status Register overflow bit is set to one.

It is possible to configure trace to halt the processor when the trace buffer becomes full or when
the cycle count overflows. This allows continuous trace of the entire program flow, albeit not in
real time due to the time required to read the trace buffer.

The debug registers used to configure and control tracing, and to read the Embedded Trace
Buffer, are listed in the following table.

The DBG_CTRL value indicates the value to use in the MDM Debug Register Access Control
Register to access the register, used with MDM software access to debug registers.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 107Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=107

Table 50: MicroBlaze Program Trace Debug Registers

Register
Name

Size
(bits)

MDM
Command

DBG_CTRL
Value R/W Description

Trace Control 22 0110 0001 4C215 W Set tracepoints, trace compression level and
optionally stored trace information

Trace Command 4 0110 0010 4C403 W Command to clear trace buffer, start or stop
trace, and sample number of current buffer
items

Trace Status 18 0110 0011 4C611 R Read the sampled trace buffer status

Trace Data Read1 18 0110 0110 4CC11 R Read the oldest item from the Embedded
Trace Buffer

Notes:
1. This register is not available when C_DEBUG_EXTERNAL_TRACE is set.

Trace Control Register

The Trace Control Register (TCTRLR) is used to define the trace behavior. This register is a write-
only register. Issuing a read request has no effect, and undefined data is read. See the following
figure and table.

Figure 35: Trace Control Register

04

Reserved

31 3 2 1

SRSLSPCFH

22 521 6

Tracepoint Level
X19767-111617

Table 51: Trace Control Register (TCTRLR)

Bits Name Description Reset Value
21:6 Tracepoint Change corresponding breakpoint or watchpoint to a tracepoint 0

5:4 Level Trace compression level:
00 = Complete trace, not available with C_DEBUG_EXTERNAL_TRACE
01 = Program flow
10 = Event
11 = Program flow and cycle count

00

3 Full Halt Debug Halt on full trace buffer or cycle count overflow 0

2 Save PC Level 01 and 11: Save new program counter for all taken branches
Level 10: Save new program counter for all function calls

0

1 Save Load Save load and get instruction new data value 0

0 Save Return Save new program counter for return instructions 0

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 108Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=108

Trace Command Register

The Trace Command Register (TCMDR) is used to issue commands to clear, start, or stop trace, as
well as sample the number of trace items. This register is a write-only register. Issuing a read
request has no effect, and undefined data is read. See the following figure and table.

Figure 36: Trace Command Register

04

Reserved

31 3 2 1

SAMSTOPSTACLR
X19768-111617

Table 52: Trace Command Register

Bits Name Description Reset Value
3 Clear Clear trace status and empty the trace buffer 0

2 Start Start trace immediately 0

1 Stop Stop trace immediately 0

0 Sample Sample the number of current items in the trace buffer 0

Trace Status Register

he Trace Status Register (TSR) can be used to determine if trace has been started or not, to check
for cycle count overflow and to read the sampled number of items in the Embedded Trace Buffer.
This register is a read-only register. Issuing a write request to the register does nothing. See the
following figure and table.

Figure 37: Trace Status Register

0

Reserved

31 18

Item Count

17

STA

16

OF

15

X19769-111617

Table 53: Trace Status Register

Bits Name Description Reset Value
17 Started Trace started, set to one when trace is started and cleared to zero

when it is stopped
0

16 Overflow Cycle count overflow, set to one when the cycle count overflows, and
cleared to zero by the Clear command

0

15:0 Item Count Sampled trace buffer item count 0x0000

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 109Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=109

Trace Data Read Register

The Trace Data Read Register (TDRR) contains the oldest item read from the Embedded Trace
Buffer. When the register has been read, the next item is read from the trace buffer. It is an error
to read more items than are available in the trace buffer, as indicated by the item count in the
Trace Status Register. This register is a read-only register. Issuing a write request to the register
does nothing. See the following figure and table.

Figure 38: Trace Data Read Register

0

Reserved

31 18

Buffer Value

17

X19770-111617

Because a trace data entity can consist of more than 18 bits, depending on the compression level
and stored data, the register might need to be read repeatedly to retrieve all information for a
particular data entity. This is detailed in Table 55: Trace Counter Data Entities.

Table 54: Trace Data Read Register

Bits Name Description Reset Value
17:0 Buffer Value Embedded Trace Buffer item 0x00000

Table 55: Trace Counter Data Entities

Entity Item Bits Description
Complete Trace 1 17:3

2:0
Cycle count for the executed instruction
Machine Status Register [17:19]

2 17:6
5:1
0

Machine Status Register [20:31]
Destination register address (r0 - r31), valid if
written
Destination register written if set to one

3 17:13
12
11
10
9:6
5:0

Exception Status Register, valid if exception
taken
Exception taken if set to one
Load instruction reading data if set to one
Store instruction writing data if set to one
Byte enable, valid for store instruction
Write data [0:5] for store instructions, or
Destination register data [0:5] for other
instructions

4 17:0 Write data [6:23] or Destination register data
[6:23]

5 17:10
9:0

Write data [24:31] or Destination register data
[24:31]
Data address [0:9] for load and store
instructions, or
Executed instruction [0:9] for other instruction

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 110Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=110

Table 55: Trace Counter Data Entities (cont'd)

Entity Item Bits Description
6 17:0 Data address [10:27] or Executed instruction

[10:27]

7 17:14
13:0

Data address [28:31] or Executed instruction
[28:31]
Program Counter [0:13]

8 17:0 Program Counter [14:31]

Program Flow: Branches 1 17:16
15:12
11:0

00 - The item contains program flow branches
Number of branches (N) counted in the item (0
- 12)
The N leftmost bits represent branches in the
program flow. If the bit is set to one the branch
is taken, otherwise it is not taken.
An item with 0 branches can be ignored, and
may occur when flushing external trace, in
order to complete a trace packet.

Program Flow: Program Counter 1 17:16
15:0

01 - The item contains a Program Counter value
Program Counter [0:15]

2 17:16
15:0

01 - The item contains a Program Counter value
Program Counter [16:31]

Program Flow: Program Counter
C_ADDR_SIZE = 32 - 48

1 17:16
15:0

01 - The item contains a Program Counter value
Program Counter [0:C_ADDR_SIZE-33] zero
extended

2 17:16
15:0

01 - The item contains a Program Counter value
Program Counter
[C_ADDR_SIZE-32:C_ADDR_SIZE-17]

3 17:16
15:0

01 - The item contains a Program Counter value
Program Counter
[C_ADDR_SIZE-16:C_ADDR_SIZE-1]

Program Flow: Program Counter
C_ADDR_SIZE = 49 - 64

1 17:16
15:0

01 - The item contains a Program Counter value
Program Counter [0:C_ADDR_SIZE-49] zero
extended

2 17:16
15:0

01 - The item contains a Program Counter value
Program Counter
[C_ADDR_SIZE-48:C_ADDR_SIZE-33]

3 17:16
15:0

01 - The item contains a Program Counter value
Program Counter
[C_ADDR_SIZE-32:C_ADDR_SIZE-17]

4 17:16
15:0

01 - The item contains a Program Counter value
Program Counter
[C_ADDR_SIZE-16:C_ADDR_SIZE-1]

Program Flow: Read Data
C_DATA_SIZE = 32 or 64

1 17:16
15:0

10 - The item contains read data
Data read by load and get instructions [0:15]

2 17:16
15:0

10 - The item contains read data
Data read by load and get instructions [15:31]

Program Flow: Read Data
C_DATA_SIZE = 64

1 17:16
15:0

10 - The item contains read data
Data read by long load instructions [0:15]

2 17:16
15:0

10 - The item contains read data
Data read by long load instructions [15:31]

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 111Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=111

Table 55: Trace Counter Data Entities (cont'd)

Entity Item Bits Description
3 17:16

15:0
10 - The item contains read data
Data read by long load instructions [32:47]

4 17:16
15:0

10 - The item contains read data
Data read by long load instructions [48:63]

Program Flow, Event: Event
Instruction event

1 17:16
15:14
13:0

11 – The item contains an event
00 – Instruction event
Software generated trace event: result of
instruction “xori r0, rA, IMM.”

Program Flow, Event: Event
Cross-trigger event

1 17:16
15:1
13:8
7:0

11 – The item contains an event
10 – Cross-trigger event
Reserved
Events according to “MicroBlaze Cross Trigger
Events” defined in Table 64: MicroBlaze Cross
Trigger Events. Each event is represented by
setting the corresponding bit in the bit field.

Program Flow, Event: Event
Exception event

1 17:1615:1413:5
4:0

11 – The item contains an event
11 – Exception event:
Reserved
Exception cause, according to “ESR Exception
Cause”, defined in LNK TBD, and:
01001 – Debug exception: Breakpoint, Stop
01010 – Interrupt
01011 – Non-maskable break
01100 – Break

Event: Event Time Stamp 1 17:16
15:14
13:0

11 – The item contains an event
01 – Time stamp
Cycle count since last time stamp

Program Flow with Cycle Count:
Branches and short cycle count

1 17:16
15:14
13:8

7
6:1
0

00 - The item contains program flow branches
01, 10 - Number of branches (N) counted (1 - 2)
Cycle count for previously executed instructions
Branch is taken if set to one, otherwise it is not
taken
Cycle count for previously executed instructions
Branch is taken if set to one, otherwise it is not
taken

Program Flow with Cycle Count:
Branch and long cycle count

1 17:16
15:14
13:1

0

00 - The item contains program flow branches
11 - The item contains branch and long cycle
count
Cycle count for previously executed instructions
Branch is taken if set to one, otherwise it is not
taken

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 112Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=112

Non-Intrusive Profiling
With extended debugging, non-intrusive profiling is provided, which uses a Profiling Buffer to
store program execution statistics. The size of the profiling buffer can be configured from 4 KB to
128 KB using the parameter C_DEBUG_PROFILE_SIZE. By setting C_DEBUG_PROFILE_SIZE
to 0 (None), non-intrusive profiling is disabled.

The Profiling Buffer is divided into a number of bins, each counting the number of executed
instructions or clock cycles within a certain address range. Each bin counts up to 236 - 1 =
68719476735 instructions or cycles.

The address range of each bin is determined by the buffer size and the profiled address range
defined using the Profiling Low Address Register and Profiling High Address Register.

Profiling can be started or stopped using the Profiling Control Register or by cross trigger events
(see Cross Trigger Support).

The debug registers used to configure and control profiling, and to read or write the Profiling
Buffer, are listed in the following table.

The DBG_CTRL value indicates the value to use in the MDM Debug Register Access Control
Register to access the register, used with MDM software access to debug registers.

Table 56: MicroBlaze Profiling Debug Registers

Register
Name Size (bits) MDM

Command
DBG_CTRL

Value R/W Description

Profiling Control 8 0111 0001 4E207 W Enable or disable profiling,
configure counting method and bin
usage

Profiling Low
Address

C_ADDR_SIZE - 2 0111 0010 4E41D W Defines the low address of the
profiled address range

Profiling High
Address

C_ADDR_SIZE - 2 0111 0011 4E61D W Defines the high address of the
profiled address range

Profiling Buffer
Address

9 - 14 0111 0100 9: 4E808
10: 4E809

...
14: 4E80D

W Sets the address (bin) in the
Profiling Buffer to read or write

Profiling Data
Read

36 0111 0110 4EC23 R Read data from the Profiling Buffer

Profiling Data
Write

32 0111 0111 4EE1F W Write data to the Profiling Buffer

Profiling Control Register

The Profiling Control Register (PCTRLR) is used to enable (start) profiling and disable (stop)
profiling. It is also used to configure whether to count the number of executed instructions or the
number of executed clock cycles, as well as define the Profiling Buffer bin usage.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 113Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=113

This register is a write-only register. Issuing a read request has no effect, and undefined data is
read. See the following figure and table.

The Bin Control value (B) can be calculated by the following formula:

Equation 3: Bin Control Value (B)

where:

• L is the Profiling Low Register

• H is the Profiling High Register

• S is the parameter C_DEBUG_PROFILE_SIZE.

Figure 39: Profiling Control Register

08

Reserved

31 7 6 5

Bin ControlCCDISENA

4

X19771-111617

Table 57: Profiling Control Register

Bits Name Description Reset Value
7 Enable Enable and start profiling 0

6 Disable Disable and stop profiling 0

5 Enable Cycle
Count

Enable cycle count to count clock cycles of executed instruction:
0 = Disabled, number of executed instructions counted
1 = Enabled, clock cycles of executed instructions counted

0

4:0 Bin Control The number of addresses counted by each bin in the Profiling Buffer 00000

Profiling Low Address Register

The Profiling Low Address Register (PLAR) is used to define the low word address of the profiled
area. This register is a write-only register. Issuing a read request has no effect, and undefined
data is read. See the following figure and table.

Figure 40: Profiling Low Address Register

0

Low word address

C_ADDR_SIZE - 3

Reserved
X19772-112317

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 114Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=114

Table 58: Profiling Low Address Register

Bits Name Description Reset Value
C_ADDR_SIZE-3:0 Low word Low word address of the profiled area 0

Profiling High Address Register

The Profiling High Address Register (PHAR) is used to define the high word address of the
profiled area. This register is a write-only register. Issuing a read request has no effect, and
undefined data is read. See the following figure and table.

Figure 41: Profiling High Address Register

0

High word address

C_ADDR_SIZE - 3

Reserved
X19773-112317

Table 59: Profiling High Address Register

Bits Name Description Reset Value
C_ADDR_SIZE-3:0 High word High word address of the profiled area 0

Profiling Buffer Address Register

he Profiling Buffer Address Register (PBAR) is used to define the bin in the Profiling Buffer to be
read or written. This register has variable number of bits, depending on the parameter
C_DEBUG_PROFILE_SIZE.

This register is a write-only register. Issuing a read request has no effect, and undefined data is
read. See the following figure and table.

Figure 42: Profiling Buffer Address Register

0

Buffer Address

31 n

Reserved

n-1

X19774-111617

Table 60: Profiling Buffer Address Register

Bits Name Description Reset Value
n-1:0 Buffer Address Bin in the Profiling Buffer to read or write. The number of bits (n) is

10 for a 4 KB buffer, 11 for a 8 KB buffer, …, 15 for a 128 KB buffer.
0

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 115Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=115

Profiling Data Read Register

The Profiling Data Read Register (PDRR) reads the bin value indicated by the Profiling Buffer
Address Register and increments the Profiling Buffer Address Register. This register is a read-only
register. Issuing a write request to the register does nothing. See the following figure and table.

When reading this register with MDM software access to debug registers, data is read with two
consecutive accesses.

Figure 43: Profiling Data Read Register

0

Read Data

35

X19775-111617

Table 61: Profiling Data Read Register

Bits Name Description Reset Value
35:0 Read Data Number of executed instructions or executed clock cycles in the bin 0

Profiling Data Write Register

The Profiling Data Write Register (PDWR) writes a new value to the bin indicated by the Profiling
Buffer Address Register and increments the Profiling Buffer Address Register. This register is a
write-only register. Issuing a read request has no effect, and undefined data is read.

This register can be used to clear the Profiling Buffer before enabling profiling.

The four most significant bits in the Profiling Buffer bin are set to zero when writing the new
value. See the following figure and table.

Figure 44: Profiling Data Write Register

0

Write Data

31

X19776-111617

Table 62: Profiling Data Write Register

Bits Name Description Reset Value
31:0 Write Data Data to write to a bin. 0

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 116Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=116

Cross Trigger Support
With basic debugging, cross trigger support is provided by two signals, DBG_STOP and
MB_Halted.

• When the DBG_STOP input is set to 1, MicroBlaze will halt after a few instructions. XSDB will
detect that MicroBlaze has halted, and indicate where the halt occurred. The signal can be
used to halt MicroBlaze at any external event, for example when a Vivado Integrated Logic
Analyzer (ILA) is triggered.

• Whenever MicroBlaze is halted, the MB_Halted output signal is set to 1; for example after a
breakpoint or watchpoint is hit, after a stop XSDB command, or when the DBG_STOP input is
set. The output is cleared when MicroBlaze execution is resumed by an XSDB command.

The MB_Halted signal can be used to trigger a Vivado integrated logic analyzer, or halt other
MicroBlaze cores in a multiprocessor system by connecting the signal to their DBG_STOP
inputs.

With extended debugging, cross trigger support is available with the MDM. The MDM provides
programmable cross triggering between all connected processors, as well as external trigger
inputs and outputs. For details, see the MicroBlaze Debug Module (MDM) LogiCORE IP Product
Guide (PG115).

MicroBlaze can handle up to eight cross trigger actions. Cross trigger actions are generated by
the corresponding MDM cross trigger outputs, connected using the Debug bus. The effect of
each of the cross trigger actions is listed in the following table.

MicroBlaze can generate up to eight cross trigger events. Cross trigger events affect the
corresponding MDM cross trigger inputs, connected using the Debug bus. The cross trigger
events are described in Table 64: MicroBlaze Cross Trigger Events.

Table 63: MicroBlaze Cross Trigger Actions

Number Action Description
0 Debug stop Stop MicroBlaze if the processor is executing, and set the MB_Halted

output. The same effect is achieved by setting the Dbg_Stop input.

1 Continue execution Continue execution if the processor is stopped, and clear the MB_Halted
output.

2 Stop program trace Stop program trace if tracing is in progress.

3 Start program trace Start program trace if trace is stopped.

4 Stop performance
monitoring

Stop performance monitoring if it is in progress.

5 Start performance
monitoring

Start performance monitoring if it is stopped.

6 Disable profiling Disable profiling if it is in progress.

7 Enable profiling Enable profiling if it is disabled.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 117Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&ft:locale=en-US&url=pg115-mdm
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=117

Table 64: MicroBlaze Cross Trigger Events

Number Event Description
0 MicroBlaze halted Generate an event when MicroBlaze is halted. The same event is signaled

when the MB_Halted output is set.

1 Execution resumed Generate an event when the processor resumes execution from debug halt.
The same event is signaled when the MB_Halted output is cleared.

2 Program trace stopped Generate an event when program trace is stopped by writing a command to
the Program Trace Command Register, when the trace buffer is full, or by a
cross trigger action.

3 Program trace started Generate an event when program trace is started by writing a command to
the Program Trace Command Register, by hitting a tracepoint, or by a cross
trigger action.

4 Performance monitoring
stopped

Generate an event when performance monitoring is stopped by writing a
command to the Performance Counter Command Register or by a cross
trigger action.

5 Performance monitoring
started

Generate an event when performance monitoring is started by writing a
command to the Performance Counter Command Register, or by a cross
trigger action.

6 Profiling disabled Generate an event when profiling is enabled by writing a command to the
Profiling Control Register or by a cross trigger action.

7 Profiling enabled Generate an event when profiling is disabled by writing a command to the
Profiling Control Register or by a cross trigger action.

Trace Interface Overview
The MicroBlaze trace interface exports a number of internal state signals for performance
monitoring and analysis.

RECOMMENDED: AMD recommends that users only use the trace interface through AMD developed
analysis cores.

This interface is not guaranteed to be backward compatible in future releases of MicroBlaze. See
Table 87: Mapping of Trace MSR for a list of exported signals.

Fault Tolerance
The fault tolerance features included in MicroBlaze, enabled with C_FAULT_TOLERANT, provide
Error Detection for internal block RAMs (in the Instruction Cache, Data Cache, Branch Target
Cache, and MMU), and support for Error Detection and Correction (ECC) in LMB block RAMs.
When fault tolerance is enabled, all soft errors in block RAMs are detected and corrected, which
significantly reduces overall failure intensity.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 118Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=118

In addition to protecting block RAM, the FPGA configuration memory also generally needs to be
protected. A detailed explanation of this topic, and further references, can be found in the two
documents Soft Error Mitigation Controller LogiCORE IP Product Guide (PG036) and UltraScale
Architecture Soft Error Mitigation Controller LogiCORE IP Product Guide (PG187).

To further increase fault tolerance, a complete triple modular redundancy (TMR) solution is
provided for MicroBlaze, using additional cores to handle majority voting and fault detection. See
the Triple Modular Redundancy (TMR) LogiCORE IP Product Guide (PG268) for a complete
description and implementation details.

Configuration

Using MicroBlaze Configuration

You can enable Fault tolerance on the General page of the MicroBlaze configuration dialog box.

After enabling fault tolerance in MicroBlaze, ECC is automatically enabled in the connected LMB
BRAM Interface Controllers by the tools, when the system is generated. This means that nothing
else needs to be configured to enable fault tolerance and minimal ECC support.

It is possible (albeit not recommended) to manually override ECC support, leaving the LMB
BRAM unprotected, by disabling C_ECC in the configuration dialogs of all connected LMB BRAM
Interface Controllers.

In this case, the internal MicroBlaze block RAM protection is still enabled, because fault tolerance
is enabled.

Using LMB BRAM Interface Controller Configuration

As an alternative to the method described above, it is also possible to enable ECC in the
configuration dialogs of all connected LMB BRAM Interface Controllers.

In this case, fault tolerance is automatically enabled in MicroBlaze by the tools, when the system
is generated. This means that nothing else needs to be configured to enable ECC support and
MicroBlaze fault tolerance.

ECC must either be enabled or disabled in all Controllers, which is enforced by a DRC.

It is possible to manually override fault tolerance support in MicroBlaze, by explicitly disabling
C_FAULT_TOLERANT in the MicroBlaze configuration dialog. This is not recommended, unless
no block RAM is used in MicroBlaze, and there is no need to handle bus exceptions from
uncorrectable ECC errors.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 119Send Feedback

https://docs.amd.com/access/sources/framemaker/map?url=pg036_sem&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&ft:locale=en-US&url=pg187-ultrascale-sem
https://docs.amd.com/access/sources/framemaker/map?url=pg268-tmr
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=119

Features
An overview of all MicroBlaze fault tolerance features is given here. Further details on each
feature can be found in the following sections:

• Instruction Cache

• Data Cache

• UTLB Management

• Branch Target Cache

• Exception Causes

The LMB BRAM Interface Controller v4.0 or later provides the LMB ECC implementation. For
details, including performance and resource utilization, see the LMB BRAM Interface Controller
LogiCORE IP Product Guide (PG112).

Instruction and Data Cache Protection

To protect the block RAM in the Instruction and Data Cache, parity is used. When a parity error
is detected, the corresponding cache line is invalidated. This forces the cache to reload the
correct value from external memory. Parity is checked whenever a cache hit occurs.

Note: This scheme only works for write-through, and thus write-back data cache is not available when fault
tolerance is enabled. This is enforced by a DRC.

When new values are written to a block RAM in the cache, parity is also calculated and written.
One parity bit is used for the tag, one parity bit for the instruction cache data, and one parity bit
for each byte in a data cache line.

In many cases, enabling fault tolerance does not increase the required number of cache block
RAMs, because spare bits can be used for the parity. Any increase in resource utilization, in
particular number of block RAMs, can easily be seen in the MicroBlaze configuration dialog,
when enabling fault tolerance.

Memory Management Unit Protection

To protect the block RAM in the MMU Unified Translation Look-Aside Buffer (UTLB), parity is
used. When a parity error is detected during an address translation, a TLB miss exception occurs,
forcing software to reload the entry.

When a new TLB entry is written using the TLBHI and TLBLO registers, parity is calculated. One
parity bit is used for each entry.

Parity is also checked when a UTLB entry is read using the TLBHI and TLBLO registers. When a
parity error is detected in this case, the entry is marked invalid by clearing the valid bit.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 120Send Feedback

https://docs.amd.com/access/sources/framemaker/map?isLatest=true&ft:locale=en-US&url=pg112-lmb-bram-if-cntlr
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=120

Enabling fault tolerance does not increase the MMU block RAM size, because a spare bit is
available for the parity.

Branch Target Cache Protection

To protect block RAM in the Branch Target Cache, parity is used. When a parity error is detected
when looking up a branch target address, the address is ignored, forcing a normal branch.

When a new branch address is written to the Branch Target Cache, parity is calculated. One
parity bit is used for each address.

Enabling fault tolerance does not increase the Branch Target Cache block RAM size, because a
spare bit is available for the parity.

Exception Handling

With fault tolerance enabled, if an error occurs in LMB block RAM, the LMB BRAM Interface
Controller generates error signals on the LMB interface.

If exceptions are enabled in the MicroBlaze processor by setting the EE bit in the Machine Status
Register, the uncorrectable error signal either generates an instruction bus exception or a data
bus exception, depending on the affected interface.

Should a bus exception occur when an exception is in progress, MicroBlaze is halted, and the
external error signal MB_Error is set. This behavior ensures that it is impossible to execute an
instruction corrupted by an uncorrectable error.

Software Support

Scrubbing

To ensure that bit errors are not accumulated in block RAMs, they must be periodically scrubbed.

The standalone BSP provides the function microblaze_scrub() to perform scrubbing of the
entire LMB block RAM and all MicroBlaze internal block RAMs used in a particular configuration.
This function is intended to be called periodically from a timer interrupt routine. One location of
each block RAM is scrubbed every time it is called, using persistent data to track the current
locations.

The following example code illustrates how this can be done.

#include "xparameters.h"
#include "xtmrctr.h"
#include "xintc.h"
#include "mb_interface.h"

#define SCRUB_PERIOD ...

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 121Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=121

XIntc InterruptController; /* The Interrupt Controller instance */
XTmrCtr TimerCounterInst; /* The Timer Counter instance */

void MicroBlazeScrubHandler(void *CallBackRef, u8 TmrCtrNumber)
{
 /* Perform other timer interrupt processing here */
 microblaze_scrub();
}

int main (void)
{
 int Status;
 /*
 * Initialize the timer counter so that it's ready to use,
 * specify the device ID that is generated in xparameters.h
 */
 Status = XTmrCtr_Initialize(&TimerCounterInst, TMRCTR_DEVICE_ID);
 if (Status != XST_SUCCESS) {
 return XST_FAILURE;
 }

 /*
 * Connect the timer counter to the interrupt subsystem such that
 * interrupts can occur.
 */
 Status = XIntc_Initialize(&InterruptController, INTC_DEVICE_ID);
 if (Status != XST_SUCCESS) {
 return XST_FAILURE;
 }

 /*
 * Connect a device driver handler that will be called when an
 * interrupt for the device occurs, the device driver handler performs
 * the specific interrupt processing for the device
 */
 Status = XIntc_Connect(&InterruptController, TMRCTR_DEVICE_ID,
 (XInterruptHandler)XTmrCtr_InterruptHandler,
 (void *) &TimerCounterInst);
 if (Status != XST_SUCCESS) {
 return XST_FAILURE;
 }

 /*
 * Start the interrupt controller such that interrupts are enabled for
 * all devices that cause interrupts, specifying real mode so that the
 * timer counter can cause interrupts thru the interrupt controller.
 */
 Status = XIntc_Start(&InterruptController, XIN_REAL_MODE);
 if (Status != XST_SUCCESS) {
 return XST_FAILURE;
 }

 /*
 * Setup the handler for the timer counter that will be called from the
 * interrupt context when the timer expires, specify a pointer to the
 * timer counter driver instance as the callback reference so the
 * handler is able to access the instance data
 */
 XTmrCtr_SetHandler(&TimerCounterInst, MicroBlazeScrubHandler,
 &TimerCounterInst);

 /*
 * Enable the interrupt of the timer counter so interrupts will occur

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 122Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=122

 * and use auto reload mode such that the timer counter will reload
 * itself automatically and continue repeatedly, without this option
 * it would expire once only
 */
 XTmrCtr_SetOptions(&TimerCounterInst, TIMER_CNTR_0,

 XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION);

 /*
 * Set a reset value for the timer counter such that it will expire
 * earlier than letting it roll over from 0, the reset value is loaded
 * into the timer counter when it is started
 */
 XTmrCtr_SetResetValue(TmrCtrInstancePtr,TmrCtrNumber,SCRUB_PERIOD);

 /*
 * Start the timer counter such that it's incrementing by default,
 * then wait for it to timeout a number of times
 */
 XTmrCtr_Start(&TimerCounterInst, TIMER_CNTR_0);

 ...
}

See Scrubbing for further details on how scrubbing is implemented, including how to calculate
the scrubbing rate.

BRAM Driver

The standalone BSP BRAM driver is used to access the ECC registers in the LMB BRAM Interface
Controller, and also provides a comprehensive self test.

By implementing the Vitis C Project "Peripheral Tests", a self-test example including the BRAM
self test for each LMB BRAM Interface Controller in the system is generated. Depending on the
ECC features enabled in the LMB BRAM Interface Controller, this code will perform all possible
tests of the ECC function. See the Vitis Unified Software Platform Documentation Landing Page
(UG1416) for more information.

The self-test example can be found in the standalone BSP BRAM driver source code, typically in
the subdirectory microblaze_0/libsrc/bram_v3_03_a/src/xbram_selftest.c.

Scrubbing

Scrubbing Methods

Scrubbing is performed using specific methods for the different block RAMs:

• Instruction and data caches: All lines in the caches are cyclically invalidated using the WIC and
WDC instructions respectively. This forces the cache to reload the cache line from external
memory.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 123Send Feedback

https://docs.amd.com/access/sources/ud/document?isLatest=true&ft:locale=en-US&url=ug1416-vitis-documentation
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=123

• Memory Management Unit UTLB: All entries in the UTLB are cyclically invalidated by writing
the TLBHI register with the valid bit cleared.

• Branch Target Cache: The entire BTC is invalided by doing a synchronizing branch, BRI 4.

• LMB block RAM: All addresses in the memory are cyclically read and written, thus correcting
any single bit errors on each address.

It is also possible to add interrupts for correctable errors from the LMB BRAM Interface
Controllers, and immediately scrub this address in the interrupt handler, although in most cases it
only improves reliability slightly.

The failing address can be determined by reading the Correctable Error First Failing Address
Register in each of the LMB BRAM Interface Controllers.

To be able to generate an interrupt C_ECC_STATUS_REGISTERS must be set to 1 in the
connected LMB BRAM Interface Controllers, and to read the failing address
C_CE_FAILING_REGISTERS must be set to 1.

Calculating Scrubbing Rate

The scrubbing rate depends on failure intensity and desired reliability.

The approximate equation to determine the LMB memory scrubbing rate is given by the
following equation.

Equation 4: LMB Memory Scrubbing

where PW is the probability of an uncorrectable error in a memory word, BER is the soft error
rate for a single memory bit, and SR is the Scrubbing Rate.

The soft error rates affecting block RAM for each product family can be found in the Device
Reliability Report (UG116).

Use Cases
Several common use cases are described here. These use cases are derived from the LMB BRAM
Interface Controller LogiCORE IP Product Guide (PG112).

Minimal

This system is obtained when enabling fault tolerance in MicroBlaze, without doing any other
configuration.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 124Send Feedback

https://docs.amd.com/go/en-US/ug116
https://docs.amd.com/access/sources/framemaker/map?isLatest=true&ft:locale=en-US&url=pg112-lmb-bram-if-cntlr
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=124

The system is suitable when area constraints are high, and there is no need for testing of the ECC
function, or analysis of error frequency and location. No ECC registers are implemented. Single
bit errors are corrected by the ECC logic before being passed to MicroBlaze. Uncorrectable errors
set an error signal, which generates an exception in MicroBlaze.

Small

This system should be used when it is necessary to monitor error frequency, but there is no need
for testing of the ECC function. It is a minimal system with Correctable Error Counter Register
added to monitor single bit error rates. If the error rate is too high, the scrubbing rate should be
increased to minimize the risk of a single bit error becoming an uncorrectable double bit error.
Parameters set are C_ECC = 1 and C_CE_COUNTER_WIDTH = 10.

Typical

This system represents a typical use case, where it is required to monitor error frequency, as well
as generating an interrupt to immediately correct a single bit error through software. It does not
provide support for testing of the ECC function.

It is a small system with Correctable Error First Failing registers and Status register added. A
single bit error will latch the address for the access into the Correctable Error First Failing
Address Register and set the CE_STATUS bit in the ECC Status Register. An interrupt will be
generated triggering MicroBlaze to read the failing address and then perform a read followed by
a write on the failing address. This will remove the single bit error from the BRAM, thus reducing
the risk of the single bit error becoming a uncorrectable double bit error. Parameters set are:

• C_ECC = 1

• C_CE_COUNTER_WIDTH = 10

• C_ECC_STATUS_REGISTER = 1

• C_CE_FAILING_REGISTERS = 1

Full

This system uses all of the features provided by the LMB BRAM Interface Controller, to enable
full error injection capability, as well as error monitoring and interrupt generation. It is a typical
system with Uncorrectable Error First Failing registers and Fault Injection registers added. All
features are switched on for full control of ECC functionality for system debug or systems with
high fault tolerance requirements. Parameters set are:

• C_ECC = 1

• C_CE_COUNTER_WIDTH = 10

• C_ECC_STATUS_REGISTER = 1

• C_CE_FAILING_REGISTERS = 1

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 125Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=125

• C_UE_FAILING_REGISTERS = 1

• C_FAULT_INJECT = 1

Lockstep Operation
MicroBlaze is able to operate in a lockstep configuration, where two or more identical MicroBlaze
cores execute the same program. By comparing the outputs of the cores, any tampering
attempts, transient faults or permanent hardware faults can be detected.

System Configuration
The parameter C_LOCKSTEP_SLAVE is set to one on all slave MicroBlaze cores in the system,
except the master (or primary) core. The master core drives all the output signals, and handles the
debug functionality. The port Lockstep_Master_Out on the master is connected to the port
Lockstep_Slave_In on the slaves, to handle debugging. The parameter C_TEMPORAL_DEPTH
is provided to support debugging with temporal lockstep, where the slave core execution is
delayed a defined number of clock cycles.

The slave cores should not drive any output signals, only receive input signals. This must be
ensured by only connecting signals to the input ports of the slaves. For buses this either means
that monitor interfaces must be used, or that each individual input port must be explicitly
connected.

The port Lockstep_Out on the master and slave cores provide all output signals for
comparison. Unless an error occurs, individual signals from each of the cores are identical every
clock cycle.

To ensure that lockstep operation works properly, all input signals to the cores must be
synchronous. Input signals that could require external synchronization are Interrupt, Reset,
Ext_Brk, and Ext_Nm_Brk.

Use Cases

Two common use cases are described here. In addition, lockstep operation provides the basis for
implementing triple modular redundancy on MicroBlaze core level.

Tamper Protection

This application represents a high assurance use case, where it is required that the system is
tamper-proof. A typically example is a cryptographic application.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 126Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=126

The approach involves having two redundant MicroBlaze processors with dedicated local
memory and redundant comparators, each in a protected area. The outputs from each processor
feed two comparators and each processor receive copies of every input signal.

The redundant MicroBlaze processors are functionally identical and completely independent of
each other, without any connecting signals. The only exception is debug logic and associated
signals, because it is assumed that debugging is disabled before any productization and
certification of the system.

The outputs from the master MicroBlaze core drive the peripherals in the system. All data leaving
the protected area pass through inhibitors. Each inhibitor is controlled from its associated
comparator.

Each protected area of the design must be implemented in its own partition, using a hierarchical
single chip cryptography (SCC) flow. A detailed explanation of this flow, and further references,
can be found in the Hierarchical Design Methodology Guide (UG748).

A block diagram of the system is shown in the following figure.

Figure 45: Lockstep Tamper Protection Application

MicroBlaze Partition

BRAM

DLMB
Bram Controller

ILMB
Bram Controller

MicroBlaze Partition

BRAM

DLMB
Bram Controller

ILMB
Bram Controller

MicroBlaze
Master

DebugMicroBlaze
Debug Module

MicroBlaze
Slave

Debug

Comparator

I/O Interfaces

External
Memory

Interfaces

Comparator Partition

Inputs

Comparator

Comparator Partition

Inhibit

Peripheral
Partition

Inputs

Debug interface – Removed for Production

InhibitOutputs

C_LOCKSTEP_SLAVE=0

C_LOCKSTEP_SLAVE=1

Lockstep_Master_Out

Lockstep_Slave_In

Lockstep_Out

Lockstep_Out

X19777-111617

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 127Send Feedback

https://docs.amd.com/access/sources/ud/document?isLatest=true&url=Hierarchical_Design_Methodology_Guide&ft:locale=en-US
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=127

Error Detection

The error detection use case requires that all transient and permanent faults are detected. This is
essential in fail safe and fault tolerant applications, where redundancy is used to improve system
availability.

In this system two redundant MicroBlaze processors run in lockstep. A comparator is used to
signal an error when a mis-match is detected on the outputs of the two processors. Any error
immediately causes both processors to halt, preventing further error propagation.

The redundant MicroBlaze processors are functionally identical, except for debug logic and
associated signals.The outputs from the master MicroBlaze core drive the peripherals in the
system. The slave MicroBlaze core only has inputs connected; all outputs are left open.

The system contains the basic building block for designing a complete fault tolerant application,
where one or more additional blocks must be added to provide redundancy.

This use case is illustrated in the following figure.

Figure 46: Lockstep Error Detection Application

BRAM

DLMB
Bram Controller

ILMB
Bram Controller

MicroBlaze
Master

DebugMicroBlaze
Debug Module

MicroBlaze
Slave

Debug

Comparator

I/O Interfaces

External
Memory

Interfaces

Error Reset

Inputs

C_LOCKSTEP_SLAVE=0

C_LOCKSTEP_SLAVE=1

Lockstep_Out

Lockstep_Out

Outputs

Inputs

Inputs

X19778-111617

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 128Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=128

Coherency
MicroBlaze supports cache coherency, as well as invalidation of caches and translation look-aside
buffers, using the AXI Coherency Extension (ACE) defined in AMBA AXI and ACE Protocol
Specification (ARM IHI0022E) AXI and ACE Protocol Specification (Arm IHI 0022E). The
coherency support is enabled when the parameter C_INTERCONNECT is set to 3 (ACE).

Using ACE ensures coherency between the caches of all MicroBlaze processors in the coherency
domain. The peripheral ports (AXI_IP, AXI_DP) and local memory (ILMB, DLMB) are outside the
coherency domain.

Coherency is not supported with write-back data cache, wide cache interfaces (more than 32-bit
data), instruction cache streams, instruction cache victims or when area optimization is enabled.
In addition both C_ICACHE_ALWAYS_USED and C_DCACHE_ALWAYS_USED must be set to 1.

Invalidation
The coherency hardware handles invalidation in the following cases:

• Data Cache invalidation: When a MicroBlaze core in the coherency domain invalidates a data
cache line with an external cache invalidation instruction (WDC.EXT.CLEAR or
WDC.EXT.FLUSH), hardware messages ensure that all other cores in the coherency domain
will do the same. The physical address is always used.

• Instruction Cache invalidation: When a MicroBlaze core in the coherency domain invalidates
an instruction cache line, hardware messages ensure that all other cores in the coherency
domain will do the same. When the MMU is in virtual mode the virtual address is used,
otherwise the physical address is used.

• MMU TLB invalidation: When a MicroBlaze core in the coherency domain invalidates an entry
in the UTLB (that is writes TLBHI with a zero Valid flag), hardware messages ensure that all
other cores in the coherency domain will invalidate all entries in their unified TLBs having a
TAG matching the invalidated virtual address, as well as empty their shadow TLBs.

The TID is not taken into account when matching the entries, which can result in invalidation
of entries belonging to other processes. Subsequent accesses to these entries will generate
TLB miss exceptions, which must be handled by software.

Before invalidating an MMU page, it must first be loaded into the UTLB to ensure that the
hardware invalidation is propagated within the coherency domain. It is not sufficient to simply
invalidate the page in memory, because other processors in the coherency domain can have
this particular entry stored in their TLBs.

After a MicroBlaze core has invalidated one or more entries, it must execute a memory barrier
instruction (MBAR), to ensure that all peer processors have completed their TLB invalidation.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 129Send Feedback

https://developer.arm.com/documentation/ihi0022/e/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=129

• Branch Target Cache invalidation: When a MicroBlaze core in the coherency domain
invalidates the Branch Target Cache, either with a memory barrier instruction or with a
synchronizing branch, hardware messages ensure that all other cores in the coherency domain
will do the same.

In particular, this means that self-modifying code can be used transparently within the coherency
domain in a multi-processor system, provided that the guidelines in Self-Modifying Code are
followed.

Protocol Compliance
The MicroBlaze instruction cache interface issues the following subset of the possible ACE
transactions:

• ReadClean: Issued when a cache line is allocated.

• ReadOnce: Issued when the cache is off, or if the MMU Inhibit Caching bit is set for the cache
line.

The MicroBlaze data cache interface issues the following subset of the possible ACE
transactions:

• ReadClean: Issued when a cache line is allocated.

• CleanUnique: Issued when an SWX instruction is executed as part of an exclusive access
sequence.

• ReadOnce: Issued when the cache is off, or if the MMU Inhibit Caching bit is set for the cache
line.

• WriteUnique: Issued whenever a store instruction performs a write.

• CleanInvalid: Issued when a WDC.EXT.FLUSH instruction is executed.

• MakeInvalid: Issued when a WDC.EXT.CLEAR instruction is executed.

Both interfaces issue the following subset of the possible Distributed Virtual Memory (DVM)
transactions:

• DVM Operation:

• TLB Invalidate: Hypervisor TLB Invalidate by VA

• Branch Predictor Invalidate: L Branch Predictor Invalidate all

• Physical Instruction Cache Invalidate: Non-secure Physical Instruction Cache Invalidate by
PA without Virtual Index

• Virtual Instruction Cache Invalidate: Hypervisor Invalidate by VA

• DVM Sync: Synchronization

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 130Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=130

• DVM Complete:

• In addition to the DVM transactions above, the interfaces only accept the CleanInvalid
and MakeInvalid transactions. These transactions have no effect in the instruction
cache, and invalidate the indicated data cache lines. If any other transactions are received,
the behavior is undefined.

• Only a subset of AXI4 transactions are used by the interfaces, as described in Cache
Interfaces.

Data and Instruction Address Extension
MicroBlaze has the ability to address up to 16 EB of data controlled by the parameter
C_ADDR_SIZE, and with 32-bit MicroBlaze also supports a physical instruction address up to 16
EB when the MMU Physical Address Extension (PAE) is enabled by setting C_USE_MMU = 3
(Virtual).

With 64-bit MicroBlaze both the virtual and physical address are extended according to the
parameter C_ADDR_SIZE. This applies to both instruction and data address spaces, thus
eliminating all limitations imposed by using 32-bit MicroBlaze listed here.

The parameter C_ADDR_SIZE can be set to the following values:

NONE 4 * 10243 bytes 32-bit address, no extended address instructions or PAE

64 GB 64 * 10243 bytes 36-bit address

1TB 10244 bytes 40-bit address

16 TB 16 * 10244 bytes 44-bit address

256 TB 256 * 10244 bytes 48-bit address

4 PB 4 * 10245 bytes 52-bit address

16 EB 16 * 10246 bytes 64-bit address

There are a number of software limitations with extended addressing when using 32-bit
MicroBlaze:

• The GNU tools only generate ELF files with 32-bit addresses with 32-bit MicroBlaze, which
means that program instruction and data memory must be located in the first 4 GB of the
address space. This is also the reason the instruction address space does not provide an
extended address unless PAE is enabled.

With PAE enabled, the majority of the program instruction and data can be located at any
physical address, but all software running in real mode must be located in the first 4 GB of the
address space. The MMU UTLB must also be initialized to set up the virtual to physical address
translation by software running in real mode, before virtual mode is activated.

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 131Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=131

• Because all software drivers use address pointers that are 32-bit unsigned integers, it is not
possible to access physical extended addresses above 4 GB without modifying the driver
code, and consequently all AXI peripherals should be located in the first 4 GB of the address
space.

With PAE enabled, AXI peripherals can be located at any physical address, provided that the
virtual address remains in the first 4 GB of the address space.

• The extended address is only treated as a physical address, and the MMU cannot be used to
translate from an extended virtual address to a physical address.

This also means that without PAE support, Linux can only use the data address extension
through a dedicated driver operating in real mode.

The extended address load and store instructions are privileged when the MMU is enabled,
unless they are allowed by setting the parameter C_MMU_PRIVILEGED_INSTR appropriately.
If allowed, the instructions bypass the MMU translation treating the extended address as a
physical address.

• The GNU compiler does not handle 64-bit address pointers, which means that unless PAE is
enabled the only way to access an extended address is using the specific extended addressing
instructions, available as macros.

The following C code exemplifies how an extended address can be used to access data:

#include "xil_types.h"
 #include "mb_interface.h"
 int main()
 {
 u64 Addr = 0x000000FF00000000LL; /* Extended address */
 u32 Word;
 u8 Byte;

 Word = lwea(Addr); /* Load word from extended address */
 swea(Addr, Word); /* Store word to extended address */
 Byte = lbuea(Addr); /* Load byte from extended address */
 sbea(Addr, Byte); /* Store byte to extended address */
 }

Chapter 2: MicroBlaze Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 132Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=132

Chapter 3

MicroBlaze Signal Interface
Description

Introduction
This chapter describes the types of signal interfaces that can be used to connect a MicroBlaze™
processor.

Overview
The MicroBlaze core is organized as a Harvard architecture with separate bus interface units for
data and instruction accesses. The following two memory interfaces are supported: Local
Memory Bus (LMB), and the AMBA® AXI4 interface (AXI4) and ACE interface (ACE).

The LMB provides single-cycle access to on-chip dual-port block RAM. The AXI4 interfaces
provide a connection to both on-chip and off-chip peripherals and memory. The ACE interfaces
provide cache coherent connections to memory.

MicroBlaze also supports up to 16 AXI4-Stream interface ports, each with one master and one
slave interface.

Features
MicroBlaze can be configured with the following bus interfaces:

• The AMBA AXI4 Interface for peripheral interfaces, and the AMBA AXI4 or AXI Coherency
Extension (ACE) Interface for cache interfaces (see Arm® AMBA AXI and ACE Protocol
Specification, Arm IHI 0022E).

• LMB provides a simple synchronous protocol for efficient block RAM transfers

• AXI4-Stream provides a fast non-arbitrated streaming communication mechanism

• Debug interface for use with the MicroBlaze Debug Module (MDM) core

• Trace interface for performance analysis

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 133Send Feedback

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=133

MicroBlaze I/O Overview
The core interfaces shown in the following figure and Table 66: Summary of MicroBlaze Core I/O
are defined as follows:

• M_AXI_DP: Peripheral Data Interface, AXI4-Lite or AXI4 interface

• DLMB: Data interface, Local Memory Bus (BRAM only)

• M_AXI_IP: Peripheral Instruction interface, AXI4-Lite interface

• ILMB: Instruction interface, Local Memory Bus (BRAM only)

• M0_AXIS..M15_AXIS: AXI4-Stream interface master direct connection interfaces

• S0_AXIS..S15_AXIS: AXI4-Stream interface slave direct connection interfaces

• M_AXI_DC: Data-side cache AXI4 interface

• M_ACE_DC: Data-side cache AXI Coherency Extension (ACE) interface

• M_AXI_IC: Instruction-side cache AXI4 interface

• M_ACE_IC: Instruction-side cache AXI Coherency Extension (ACE) interface

• Core: Miscellaneous signals for: clock, reset, interrupt, debug, trace

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 134Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=134

Figure 47: MicroBlaze Core Block Diagram

Bus
IF

I-Cache

Instruction
Buffer

Instruction
Buffer

Branch Target
Cache

Program
Counter

M_AXI_IC Memory Management Unit (MMU)

ITLB DTLBUTLB

Bus
IF

D-Cache
M_AXI_DC

M_AXI_DP

DLMB

M0_AXIS ..
M15_AXIS

S0_AXIS ..
S15_AXIS

Special
Purpose
Registers

Instruction
Decode

Register File
32 registers

ALU

Shift

Barrel Shift

Multiplier

Divider

FPU

Instruction-side
Bus interface

Data-side
Bus interface

Optional MicroBlaze feature

M_AXI_IP

ILMB

M_ACE_DCM_ACE_IC

X19738-100218

Table 66: Summary of MicroBlaze Core I/O

Signal Interface I/O Description
M_AXI_DP_AWID M_AXI_DP O Master Write address ID

M_AXI_DP_AWADDR M_AXI_DP O Master Write address

M_AXI_DP_AWLEN M_AXI_DP O Master Burst length

M_AXI_DP_AWSIZE M_AXI_DP O Master Burst size

M_AXI_DP_AWBURST M_AXI_DP O Master Burst type

M_AXI_DP_AWLOCK M_AXI_DP O Master Lock type

M_AXI_DP_AWCACHE M_AXI_DP O Master Cache type

M_AXI_DP_AWPROT M_AXI_DP O Master Protection type

M_AXI_DP_AWQOS M_AXI_DP O Master Quality of Service

M_AXI_DP_AWVALID M_AXI_DP O Master Write address valid

M_AXI_DP_AWREADY M_AXI_DP I Slave Write address ready

M_AXI_DP_WDATA M_AXI_DP O Master Write data

M_AXI_DP_WSTRB M_AXI_DP O Master Write strobes

M_AXI_DP_WLAST M_AXI_DP O Master Write last

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 135Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=135

Table 66: Summary of MicroBlaze Core I/O (cont'd)

Signal Interface I/O Description
M_AXI_DP_WVALID M_AXI_DP O Master Write valid

M_AXI_DP_WREADY M_AXI_DP I Slave Write ready

M_AXI_DP_BID M_AXI_DP I Slave Response ID

M_AXI_DP_BRESP M_AXI_DP I Slave Write response

M_AXI_DP_BVALID M_AXI_DP I Slave Write response valid

M_AXI_DP_BREADY M_AXI_DP O Master Response ready

M_AXI_DP_ARID M_AXI_DP O Master Read address ID

M_AXI_DP_ARADDR M_AXI_DP O Master Read address

M_AXI_DP_ARLEN M_AXI_DP O Master Burst length

M_AXI_DP_ARSIZE M_AXI_DP O Master Burst size

M_AXI_DP_ARBURST M_AXI_DP O Master Burst type

M_AXI_DP_ARLOCK M_AXI_DP O Master Lock type

M_AXI_DP_ARCACHE M_AXI_DP O Master Cache type

M_AXI_DP_ARPROT M_AXI_DP O Master Protection type

M_AXI_DP_ARQOS M_AXI_DP O Master Quality of Service

M_AXI_DP_ARVALID M_AXI_DP O Master Read address valid

M_AXI_DP_ARREADY M_AXI_DP I Slave Read address ready

M_AXI_DP_RID M_AXI_DP I Slave Read ID tag

M_AXI_DP_RDATA M_AXI_DP I Slave Read data

M_AXI_DP_RRESP M_AXI_DP I Slave Read response

M_AXI_DP_RLAST M_AXI_DP I Slave Read last

M_AXI_DP_RVALID M_AXI_DP I Slave Read valid

M_AXI_DP_RREADY M_AXI_DP O Master Read ready

M_AXI_IP_AWID M_AXI_IP O Master Write address ID

M_AXI_IP_AWADDR M_AXI_IP O Master Write address

M_AXI_IP_AWLEN M_AXI_IP O Master Burst length

M_AXI_IP_AWSIZE M_AXI_IP O Master Burst size

M_AXI_IP_AWBURST M_AXI_IP O Master Burst type

M_AXI_IP_AWLOCK M_AXI_IP O Master Lock type

M_AXI_IP_AWCACHE M_AXI_IP O Master Cache type

M_AXI_IP_AWPROT M_AXI_IP O Master Protection type

M_AXI_IP_AWQOS M_AXI_IP O Master Quality of Service

M_AXI_IP_AWVALID M_AXI_IP O Master Write address valid

M_AXI_IP_AWREADY M_AXI_IP I Slave Write address ready

M_AXI_IP_WDATA M_AXI_IP O Master Write data

M_AXI_IP_WSTRB M_AXI_IP O Master Write strobes

M_AXI_IP_WLAST M_AXI_IP O Master Write last

M_AXI_IP_WVALID M_AXI_IP O Master Write valid

M_AXI_IP_WREADY M_AXI_IP I Slave Write ready

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 136Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=136

Table 66: Summary of MicroBlaze Core I/O (cont'd)

Signal Interface I/O Description
M_AXI_IP_BID M_AXI_IP I Slave Response ID

M_AXI_IP_BRESP M_AXI_IP I Slave Write response

M_AXI_IP_BVALID M_AXI_IP I Slave Write response valid

M_AXI_IP_BREADY M_AXI_IP O Master Response ready

M_AXI_IP_ARID M_AXI_IP O Master Read address ID

M_AXI_IP_ARADDR M_AXI_IP O Master Read address

M_AXI_IP_ARLEN M_AXI_IP O Master Burst length

M_AXI_IP_ARSIZE M_AXI_IP O Master Burst size

M_AXI_IP_ARBURST M_AXI_IP O Master Burst type

M_AXI_IP_ARLOCK M_AXI_IP O Master Lock type

M_AXI_IP_ARCACHE M_AXI_IP O Master Cache type

M_AXI_IP_ARPROT M_AXI_IP O Master Protection type

M_AXI_IP_ARQOS M_AXI_IP O Master Quality of Service

M_AXI_IP_ARVALID M_AXI_IP O Master Read address valid

M_AXI_IP_ARREADY M_AXI_IP I Slave Read address ready

M_AXI_IP_RID M_AXI_IP I Slave Read ID tag

M_AXI_IP_RDATA M_AXI_IP I Slave Read data

M_AXI_IP_RRESP M_AXI_IP I Slave Read response

M_AXI_IP_RLAST M_AXI_IP I Slave Read last

M_AXI_IP_RVALID M_AXI_IP I Slave Read valid

M_AXI_IP_RREADY M_AXI_IP O Master Read ready

M_AXI_DC_AWADDR M_AXI_DC O Master Write address

M_AXI_DC_AWLEN M_AXI_DC O Master Burst length

M_AXI_DC_AWSIZE M_AXI_DC O Master Burst size

M_AXI_DC_AWBURST M_AXI_DC O Master Burst type

M_AXI_DC_AWLOCK M_AXI_DC O Master Lock type

M_AXI_DC_AWCACHE M_AXI_DC O Master Cache type

M_AXI_DC_AWPROT M_AXI_DC O Master Protection type

M_AXI_DC_AWQOS M_AXI_DC O Master Quality of Service

M_AXI_DC_AWVALID M_AXI_DC O Master Write address valid

M_AXI_DC_AWREADY M_AXI_DC I Slave Write address ready

M_AXI_DC_AWUSER M_AXI_DC O Master Write address user signals

M_AXI_DC_AWDOMAIN M_ACE_DC O Master Write address domain

M_AXI_DC_AWSNOOP M_ACE_DC O Master Write address snoop

M_AXI_DC_AWBAR M_ACE_DC O Master Write address barrier

M_AXI_DC_WDATA M_AXI_DC O Master Write data

M_AXI_DC_WSTRB M_AXI_DC O Master Write strobes

M_AXI_DC_WLAST M_AXI_DC O Master Write last

M_AXI_DC_WVALID M_AXI_DC O Master Write valid

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 137Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=137

Table 66: Summary of MicroBlaze Core I/O (cont'd)

Signal Interface I/O Description
M_AXI_DC_WREADY M_AXI_DC I Slave Write ready

M_AXI_DC_WUSER M_AXI_DC O Master Write user signals

M_AXI_DC_BRESP M_AXI_DC I Slave Write response

M_AXI_DC_BID M_AXI_DC I Slave Response ID

M_AXI_DC_BVALID M_AXI_DC I Slave Write response valid

M_AXI_DC_BREADY M_AXI_DC O Master Response ready

M_AXI_DC_BUSER M_AXI_DC I Slave Write response user signals

M_AXI_DC_WACK M_ACE_DC O Slave Write acknowledge

M_AXI_DC_ARID M_AXI_DC O Master Read address ID

M_AXI_DC_ARADDR M_AXI_DC O Master Read address

M_AXI_DC_ARLEN M_AXI_DC O Master Burst length

M_AXI_DC_ARSIZE M_AXI_DC O Master Burst size

M_AXI_DC_ARBURST M_AXI_DC O Master Burst type

M_AXI_DC_ARLOCK M_AXI_DC O Master Lock type

M_AXI_DC_ARCACHE M_AXI_DC O Master Cache type

M_AXI_DC_ARPROT M_AXI_DC O Master Protection type

M_AXI_DC_ARQOS M_AXI_DC O Master Quality of Service

M_AXI_DC_ARVALID M_AXI_DC O Master Read address valid

M_AXI_DC_ARREADY M_AXI_DC I Slave Read address ready

M_AXI_DC_ARUSER M_AXI_DC O Master Read address user signals

M_AXI_DC_ARDOMAIN M_ACE_DC O Master Read address domain

M_AXI_DC_ARSNOOP M_ACE_DC O Master Read address snoop

M_AXI_DC_ARBAR M_ACE_DC O Master Read address barrier

M_AXI_DC_RID M_AXI_DC I Slave Read ID tag

M_AXI_DC_RDATA M_AXI_DC I Slave Read data

M_AXI_DC_RRESP M_AXI_DC I Slave Read response

M_AXI_DC_RLAST M_AXI_DC I Slave Read last

M_AXI_DC_RVALID M_AXI_DC I Slave Read valid

M_AXI_DC_RREADY M_AXI_DC O Master Read ready

M_AXI_DC_RUSER M_AXI_DC I Slave Read user signals

M_AXI_DC_RACK M_ACE_DC O Master Read acknowledge

M_AXI_DC_ACVALID M_ACE_DC I Slave Snoop address valid

M_AXI_DC_ACADDR M_ACE_DC I Slave Snoop address

M_AXI_DC_ACSNOOP M_ACE_DC I Slave Snoop address snoop

M_AXI_DC_ACPROT M_ACE_DC I Slave Snoop address protection type

M_AXI_DC_ACREADY M_ACE_DC O Master Snoop ready

M_AXI_DC_CRREADY M_ACE_DC I Slave Snoop response ready

M_AXI_DC_CRVALID M_ACE_DC O Master Snoop response valid

M_AXI_DC_CRRESP M_ACE_DC O Master Snoop response

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 138Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=138

Table 66: Summary of MicroBlaze Core I/O (cont'd)

Signal Interface I/O Description
M_AXI_DC_CDVALID M_ACE_DC O Master Snoop data valid

M_AXI_DC_CDREADY M_ACE_DC I Slave Snoop data ready

M_AXI_DC_CDDATA M_ACE_DC O Master Snoop data

M_AXI_DC_CDLAST M_ACE_DC O Master Snoop data last

M_AXI_IC_AWID M_AXI_IC O Master Write address ID

M_AXI_IC_AWADDR M_AXI_IC O Master Write address

M_AXI_IC_AWLEN M_AXI_IC O Master Burst length

M_AXI_IC_AWSIZE M_AXI_IC O Master Burst size

M_AXI_IC_AWBURST M_AXI_IC O Master Burst type

M_AXI_IC_AWLOCK M_AXI_IC O Master Lock type

M_AXI_IC_AWCACHE M_AXI_IC O Master Cache type

M_AXI_IC_AWPROT M_AXI_IC O Master Protection type

M_AXI_IC_AWQOS M_AXI_IC O Master Quality of Service

M_AXI_IC_AWVALID M_AXI_IC O Master Write address valid

M_AXI_IC_AWREADY M_AXI_IC I Slave Write address ready

M_AXI_IC_AWUSER M_AXI_IC O Master Write address user signals

M_AXI_IC_AWDOMAIN M_ACE_IC O Master Write address domain

M_AXI_IC_AWSNOOP M_ACE_IC O Master Write address snoop

M_AXI_IC_AWBAR M_ACE_IC O Master Write address barrier

M_AXI_IC_WDATA M_AXI_IC O Master Write data

M_AXI_IC_WSTRB M_AXI_IC O Master Write strobes

M_AXI_IC_WLAST M_AXI_IC O Master Write last

M_AXI_IC_WVALID M_AXI_IC O Master Write valid

M_AXI_IC_WREADY M_AXI_IC I Slave Write ready

M_AXI_IC_WUSER M_AXI_IC O Master Write user signals

M_AXI_IC_BID M_AXI_IC I Slave Response ID

M_AXI_IC_BRESP M_AXI_IC I Slave Write response

M_AXI_IC_BVALID M_AXI_IC I Slave Write response valid

M_AXI_IC_BREADY M_AXI_IC O Master Response ready

M_AXI_IC_BUSER M_AXI_IC I Slave Write response user signals

M_AXI_IC_WACK M_ACE_IC O Slave Write acknowledge

M_AXI_IC_ARID M_AXI_IC O Master Read address ID

M_AXI_IC_ARADDR M_AXI_IC O Master Read address

M_AXI_IC_ARLEN M_AXI_IC O Master Burst length

M_AXI_IC_ARSIZE M_AXI_IC O Master Burst size

M_AXI_IC_ARBURST M_AXI_IC O Master Burst type

M_AXI_IC_ARLOCK M_AXI_IC O Master Lock type

M_AXI_IC_ARCACHE M_AXI_IC O Master Cache type

M_AXI_IC_ARPROT M_AXI_IC O Master Protection type

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 139Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=139

Table 66: Summary of MicroBlaze Core I/O (cont'd)

Signal Interface I/O Description
M_AXI_IC_ARQOS M_AXI_IC O Master Quality of Service

M_AXI_IC_ARVALID M_AXI_IC O Master Read address valid

M_AXI_IC_ARREADY M_AXI_IC I Slave Read address ready

M_AXI_IC_ARUSER M_AXI_IC O Master Read address user signals

M_AXI_IC_ARDOMAIN M_ACE_IC O Master Read address domain

M_AXI_IC_ARSNOOP M_ACE_IC O Master Read address snoop

M_AXI_IC_ARBAR M_ACE_IC O Master Read address barrier

M_AXI_IC_RID M_AXI_IC I Slave Read ID tag

M_AXI_IC_RDATA M_AXI_IC I Slave Read data

M_AXI_IC_RRESP M_AXI_IC I Slave Read response

M_AXI_IC_RLAST M_AXI_IC I Slave Read last

M_AXI_IC_RVALID M_AXI_IC I Slave Read valid

M_AXI_IC_RREADY M_AXI_IC O Master Read ready

M_AXI_IC_RUSER M_AXI_IC I Slave Read user signals

M_AXI_IC_RACK M_ACE_IC O Master Read acknowledge

M_AXI_IC_ACVALID M_ACE_IC I Slave Snoop address valid

M_AXI_IC_ACADDR M_ACE_IC I Slave Snoop address

M_AXI_IC_ACSNOOP M_ACE_IC I Slave Snoop address snoop

M_AXI_IC_ACPROT M_ACE_IC I Slave Snoop address protection type

M_AXI_IC_ACREADY M_ACE_IC O Master Snoop ready

M_AXI_IC_CRREADY M_ACE_IC I Slave Snoop response ready

M_AXI_IC_CRVALID M_ACE_IC O Master Snoop response valid

M_AXI_IC_CRRESP M_ACE_IC O Master Snoop response

M_AXI_IC_CDVALID M_ACE_IC O Master Snoop data valid

M_AXI_IC_CDREADY M_ACE_IC I Slave Snoop data ready

M_AXI_IC_CDDATA M_ACE_IC O Master Snoop data

M_AXI_IC_CDLAST M_ACE_IC O Master Snoop data last

Data_Addr[0:N-1] DLMB O Data interface LMB address bus, N = 32 - 64

Byte_Enable[0:N-1] DLMB O Data interface LMB byte enables, N = 4, 8

Data_Write[0:N-1] DLMB O Data interface LMB write data bus, N = 32, 64

D_AS DLMB O Data interface LMB address strobe

Read_Strobe DLMB O Data interface LMB read strobe

Write_Strobe DLMB O Data interface LMB write strobe

Data_Read[0:N-1] DLMB I Data interface LMB read data bus, N = 32, 64

DReady DLMB I Data interface LMB data ready

DWait DLMB I Data interface LMB data wait

DCE DLMB I Data interface LMB correctable error

DUE DLMB I Data interface LMB uncorrectable error

Instr_Addr[0:N-1] ILMB O Instruction interface LMB address bus, N = 32 - 64

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 140Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=140

Table 66: Summary of MicroBlaze Core I/O (cont'd)

Signal Interface I/O Description
I_AS ILMB O Instruction interface LMB address strobe

IFetch ILMB O Instruction interface LMB instruction fetch

Instr[0:N-1] ILMB I Instruction interface LMB read data bus, N = 32,
64

IReady ILMB I Instruction interface LMB data ready

IWait ILMB I Instruction interface LMB data wait

ICE ILMB I Instruction interface LMB correctable error

IUE ILMB I Instruction interface LMB uncorrectable error

Mn_AXIS_TLAST M0_AXIS..
M15_AXIS

O Master interface output AXI4 channels write last

Mn_AXIS_TDATA M0_AXIS..
M15_AXIS

O Master interface output AXI4 channels write data

Mn_AXIS_TVALID M0_AXIS..
M15_AXIS

O Master interface output AXI4 channels write valid

Mn_AXIS_TREADY M0_AXIS..
M15_AXIS

I Master interface input AXI4 channels write ready

Sn_AXIS_TLAST S0_AXIS..
S15_AXIS

I Slave interface input AXI4 channels write last

Sn_AXIS_TDATA S0_AXIS..
S15_AXIS

I Slave interface input AXI4 channels write data

Sn_AXIS_TVALID S0_AXIS..
S15_AXIS

I Slave interface input AXI4 channels write valid

Sn_AXIS_TREADY S0_AXIS..
S15_AXIS

O Slave interface output AXI4 channels write ready

Interrupt Core I Interrupt. The signal is synchronized to Clk if the
parameter C_ASYNC_INTERRUPT is set.

Interrupt_Address1 Core I Interrupt vector address

Interrupt_Ack1 Core O Interrupt acknowledge

Reset Core I Core reset, active-High. Must be asserted 1 Clk
clock cycle, but it is recommended to keep it
asserted for at least 16 clock cycles.

Reset_Mode[0:1]3 Core I Reset mode. Sampled when Reset is active.
See Table 67: Effect of Reset Mode Inputs for
details.

Clk Core I Clock2

Ext_BRK3 Core I Break signal from MDM

Ext_NM_BRK3 Core I Non-maskable break signal from MDM

MB_Halted3 Core O Pipeline is halted, either using the Debug
Interface, by setting Dbg_Stop, or by setting
Reset_Mode[0:1] to 10.

Dbg_Stop3 Core I Unconditionally force pipeline to halt as soon as
possible. Rising-edge detected pulse that should
be held for at least 1 Clk clock cycle. The signal
only has any effect when C_DEBUG_ENABLED is
greater than 0.

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 141Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=141

Table 66: Summary of MicroBlaze Core I/O (cont'd)

Signal Interface I/O Description
Dbg_Intr3 Core O Debug interrupt output, set when a Performance

Monitor counter overflows, available when
C_DEBUG_ENABLED is set to 2 (Extended).

MB_Error3 Core O Pipeline is halted due to a missed exception,
when C_FAULT_TOLERANT is set to 1.

Sleep3 Core O MicroBlaze is in sleep mode after executing a
SLEEP instruction or by setting Reset_Mode[0:1]
to 10, all external accesses are completed, and
the pipeline is halted.

Hibernate3 Core O MicroBlaze is in sleep mode after executing a
HIBERNATE instruction, all external accesses are
completed, and the pipeline is halted.

Suspend3 Core O MicroBlaze is in sleep mode after executing a
SUSPEND instruction, all external accesses are
completed, and the pipeline is halted.

Wakeup[0:1]3 Core I Wake MicroBlaze from sleep mode when either or
both bits are set to 1. Ignored if MicroBlaze is not
in sleep mode. The signals are individually
synchronized to Clk according to the parameter
C_ASYNC_WAKEUP[0:1].

Dbg_Wakeup3 Core O Debug request that external logic should wake
MicroBlaze from sleep mode with the Wakeup
signal, to allow debug access. Synchronous to
Dbg_Update.

Pause3 Core I When this signal is set MicroBlaze pipeline will be
paused after completing all ongoing bus
accesses, and the Pause_Ack signal will be set.
When this signal is cleared again MicroBlaze will
continue normal execution where it was paused.

Pause_Ack3 Core O MicroBlaze is in pause mode after the Pause input
signal has been set.

Dbg_Continue3 Core O Debug request that external logic should clear
the Pause signal, to allow debug access.

Non_Secure[0:3]3 Core I Determines whether AXI accesses are non-secure
or secure. The default value is binary 0000, setting
all interfaces to be secure.
Bit 0 = M_AXI_DP
Bit 1 = M_AXI_IP
Bit 2 = M_AXI_DC
Bit 3 = M_AXI_IC

Lockstep_... Core IO Lockstep signals for high integrity applications.
See Lockstep Interface Description for details.

Dbg_... Core IO Debug signals from MDM. See Debug Interface
Description for details.

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 142Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=142

Table 66: Summary of MicroBlaze Core I/O (cont'd)

Signal Interface I/O Description
Trace_... Core O Trace signals for real time HW analysis. See Trace

Interface Description for details.

Notes:
1. Only used with C_USE_INTERRUPT = 2, for low-latency interrupt support.
2. MicroBlaze is a synchronous design clocked with the Clk signal, except for serial hardware debug logic, which is

clocked with the Dbg_Clk signal. If serial hardware debug logic is not used, there is no minimum frequency limit for
Clk. However, if serial hardware debug logic is used, there are signals transferred between the two clock regions. In
this case Clk must have a higher frequency than Dbg_Clk.

3. Only visible when C_ENABLE_DISCRETE_PORTS = 1.

Table 67: Effect of Reset Mode Inputs

Reset_Mode[0:1] Description
00 MicroBlaze starts executing at the reset vector, defined by C_BASE_VECTORS. This is the

nominal default behavior.

01 MicroBlaze immediately enters sleep mode without performing any bus access, just as
if a SLEEP instruction had been executed. The Sleep output is set to 1. When any of the
Wakeup[0:1] signals is set, MicroBlaze starts executing at the reset vector, defined by
C_BASE_VECTORS.
This functionality can be useful in a multiprocessor configuration, allowing secondary
processors to be configured without LMB memory.

10 If C_DEBUG_ENABLED is 0, the behavior is the same as if Reset_Mode[0:1] = 00.
If C_DEBUG_ENABLED is greater than 0, MicroBlaze immediately enters debug halt
without performing any bus access, and the MB_Halted output is set to 1. When
execution is continued via the debug interface, MicroBlaze starts executing at the reset
vector, defined by C_BASE_VECTORS.

11 Reserved

In general, MicroBlaze signals are synchronous to the Clk input signal. However, there are some
exceptions controlled by parameters as described in the following table.

Table 68: Parameter Controlled Asynchronous Signals

Signal Parameter Default Description
Interrupt C_ASYNC_INTERRUPT Tool controlled Parameter set from connected

signal

Reset C_NUM_SYNC_FF_CLK 2 Parameter can be manually set to
0 for synchronous reset

Wakeup[0:1] C_ASYNC_WAKEUP
C_NUM_SYNC_FF_CLK

Tool controlled
2

Set from connected signals
Can be manually set to 0 to
override tool

Dbg_Wakeup C_DEBUG_INTERFACE 0 (serial) 0: Clocked by Dbg_Update
1: Clocked by DEBUG_ACLK,
synchronous to Clk

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 143Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=143

Sleep and Pause Functionality
There are two distinct ways of halting MicroBlaze execution in a controlled manner:

• Software controlled by executing an MBAR instruction to enter sleep mode.

• Hardware controlled by setting the input signal Pause to pause the pipeline.

Software Controlled

When an MBAR instruction is executed to enter sleep mode and MicroBlaze has completed all
external accesses, the pipeline is halted and either the Sleep, Hibernate, or Suspend output signal
is set.

This indicates to external hardware that it is safe to perform actions such as stopping the clock,
resetting the processor or other IP cores. Different actions can be performed depending on
which output signal is set. To wake up MicroBlaze when in sleep mode, one (or both) of the
Wakeup input signals must be set to one. In this case MicroBlaze continues execution after the
MBAR instruction.

The Dbg_Wakeup output signal from MicroBlaze indicates that the debugger requests a wake
up. External hardware should handle this signal and wake up the processor, after performing any
other necessary hardware actions such as starting the clock. If debug wake up is used, the
software must be aware that this could be the reason for waking up, and go to sleep again if no
other action is required.

In the simplest case, where no additional actions are needed before waking up the processor, one
of the Wakeup inputs can be connected to the same signal as the MicroBlaze Interrupt input, and
the other to the MicroBlaze Dbg_Wakeup output. This allows MicroBlaze to wake up when an
interrupt occurs, or when the debugger requests it.

To implement a software reset functionality, for example the Suspend output signal can be
connected to a suitable reset input, to either reset the processor or the entire system.

The following table summarizes the MBAR sleep mode instructions.

Table 69: MBAR Sleep Mode Instructions

Instruction Assembler Pseudo Instruction Output Signal
mbar 16 sleep Sleep

mbar 8 hibernate Hibernate

mbar 24 suspend Suspend

The block diagram in the following figure illustrates how to use the sleep functionality to
implement clock control. In this example, the clock is stopped when sleep is executed and any
interrupt or debug command enables the clock and wakes the processor.

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 144Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=144

Figure 48: Sleep Clock Control Block Diagram

MicroBlaze

C_ENABLE_DISCRETE_PORTS = 1

Utility Vector Logic
Binary Counter

CLK
SCLR
LOAD
L[0:0]

Q[0:0]Utility Vector LogicUtility Vector Logic

Clock Control

Utility Buffer

BUFGCE

Sleep

Clk

Wakeup[0:1] Dbg_Wakeup

Interrupt

Clock

Concat

INTERRUPT

X20274-020818

Instead of implementing the clock control with IP cores, an RTL Module can be used. A possible
VHDL implementation corresponding to Clock Control in the block diagram in the preceding
figure is given here. See the Vivado Design Suite User Guide: Designing IP Subsystems Using IP
Integrator (UG994) for more information on RTL Modules.

library IEEE;
use IEEE.STD_LOGIC_1164.all;

library UNISIM;
use UNISIM.VComponents.all;

entity clock_control is
 port (
 clkin : in std_logic;
 reset : in std_logic;
 sleep : in std_logic;
 interrupt : in std_logic;
 dbg_wakeup : in std_logic;
 clkout : out std_logic
);
end clock_control;

architecture Behavioral of clock_control is
 attribute X_INTERFACE_INFO : string;
 attribute X_INTERFACE_INFO of clkin : signal is ".com:signal:clock:1.0 clk CLK";
 attribute X_INTERFACE_INFO of reset : signal is ".com:signal:reset:1.0 reset RST";
 attribute X_INTERFACE_INFO of interrupt : signal
 is ".com:signal:interrupt:1.0 interrupt INTERRUPT";
 attribute X_INTERFACE_INFO of clkout : signal is ".com:signal:clock:1.0 clk_out CLK";

 attribute X_INTERFACE_PARAMETER : string;
 attribute X_INTERFACE_PARAMETER of reset : signal is "POLARITY ACTIVE_HIGH";
 attribute X_INTERFACE_PARAMETER of interrupt : signal is "SENSITIVITY LEVEL_HIGH";
 attribute X_INTERFACE_PARAMETER of clkout : signal is "FREQ_HZ 100000000";

 signal clk_enable : std_logic := '1';
begin

 clock_enable_dff : process (clkin) is
 begin
 if clkin'event and clkin = '1' then
 if reset = '1' then
 clk_enable <= '1';
 elsif sleep = '1' and interrupt = '0' and dbg_wakeup = '0' then

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 145Send Feedback

https://docs.amd.com/access/sources/dita/map?Doc_Version=2024.1%20English&url=ug994-vivado-ip-subsystems
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=145

 clk_enable <= '0';
 elsif clk_enable = '0' then
 clk_enable <= '1';
 end if;
 end if;
 end process clock_enable_dff;

 clock_enable : component BUFGCE
 port map (
 O => clkout,
 CE => clk_enable,
 I => clkin
);

 end Behavioral;

Hardware Controlled

When the Pause input signal is set to one and MicroBlaze has completed all external accesses,
the pipeline is halted and the Pause_Ack output signal is set. This indicates to external
hardware that it is safe to perform actions such as stopping the clock, resetting the processor or
other IP cores. To continue from pause, the input signal Pause must be cleared to zero. In this
case MicroBlaze continues instruction execution where it was previously paused.

The Dbg_Continue output signal from MicroBlaze indicates that the debugger requests the
processor to continue from pause. External hardware should handle this signal and clear pause
after performing any other necessary hardware actions such as starting the clock.

After external hardware has set or cleared Pause, it is recommended to wait until Pause_Ack is
set or cleared before Pause is changed again, to avoid any issues due to incorrectly detected
pause acknowledge.

All signals used for hardware control (Pause, Pause_Ack, and Dbg_Continue) are
synchronous to the MicroBlaze clock.

The block diagram in the following figure illustrates how to use the pause functionality to halt
the processor and how to implement clock control. In this example, Pause is an external hardware
signal that pauses processor execution and stops the clock. When Pause is cleared to zero, the
clock is enabled and execution resumes. This example assumes that the external logic monitors
Dbg_Continue, and clears Pause to allow debugging.

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 146Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=146

Figure 49: Pause Clock Control Block Diagram

MicroBlaze

C_ENABLE_DISCRETE_PORTS = 1

Utility Vector Logic
Binary Counter

CLK
SCLR
LOAD
L[0:0]

Q[0:0]

Clock Control

Utility Buffer

BUFGCE

Pause_Ack

Clk

Pause

Dbg_Continue

Pause

Clock

Dbg_Continue

X20276-020818

AXI4 and ACE Interface Description
Memory Mapped Interfaces
Peripheral Interfaces

The MicroBlaze AXI4 peripheral interfaces are implemented as 32-bit or 64-bit masters. Each of
these interfaces only have a single outstanding transaction at any time, and all transactions are
completed in order.

• The instruction peripheral interface (M_AXI_IP) is a 32-bit master, which only performs single
word read accesses, and is always set to use the AXI4-Lite subset.

• The data peripheral interface (M_AXI_DP) is a 32-bit or 64-bit master, which performs single
accesses. It is set to use the AXI4-Lite subset as default, but can be set to use AXI4 when
enabling exclusive access for LWX and SWX instructions. Halfword and byte writes are
performed by setting the appropriate byte strobes. Each write transaction waits for
M_AXI_DP_BVALID before the store instruction is completed.

The instruction peripheral interface (M_AXI_IP) address width can range from 32 - 64 bits when
the MMU physical address extension (PAE) is enabled, depending on the value of the parameter
C_ADDR_SIZE.

The data peripheral interface (M_AXI_DP) address width can range from 32 - 64 bits, depending
on the value of the parameter C_ADDR_SIZE.

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 147Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=147

Cache Interfaces

The AXI4 cache interfaces are implemented either as 32-bit, 128-bit, 256-bit, or 512-bit masters,
depending on cache line length and data width parameters, whereas the AXI Coherency
Extension (ACE) interfaces are implemented as 32-bit masters.

• With a 32-bit master, the instruction cache interface (M_AXI_IC or M_ACE_IC) performs 4
word, 8 word or 16 word burst read accesses, depending on cache line length. With 128-bit,
256-bit, or 512-bit masters, only single read accesses are performed.

With a 32-bit master, this interface can have multiple outstanding transactions, issuing up to
two transactions or up to five transactions when stream cache is enabled. The stream cache
can request two cache lines in advance, which means that in some cases five outstanding
transactions can occur. In this case the number of outstanding reads is set to 8, because this
must be a power of two. With 128-bit, 256-bit, or 512-bit masters, the interface only has a
single outstanding transaction.

How memory locations are accessed depend on parameter C_ICACHE_ALWAYS_USED. If the
parameter is 1, the cached memory range is always accessed using the AXI4 or ACE cache
interface. If the parameter is 0, the cached memory range is accessed over the AXI4 peripheral
interface when the caches are software disabled (that is, MSR[ICE]=0).

• With a 32-bit master, the data cache interface (M_AXI_DC or M_ACE_DC) performs single
word accesses, as well as 4 word, 8 word or 16 word burst accesses, depending on cache line
length. Burst write accesses are only performed when using write-back cache with AXI4. With
128-bit, 256-bit, or 512-bit AXI4 masters, only single accesses are performed.

This interface can have multiple outstanding transactions, either issuing up to two
transactions when reading, or up to 32 transactions when writing. MicroBlaze ensures that all
outstanding writes are completed before a read is issued, because the processor must
maintain an ordered memory model but AXI4 or ACE has separate read/write channels
without any ordering. Using up to 32 outstanding write transactions improves performance,
because it allows multiple writes to proceed without stalling the pipeline.

Word, halfword and byte writes are performed by setting the appropriate byte strobes.

Exclusive accesses can be enabled for LWX and SWX instructions.

How memory locations are accessed depend on the parameter C_DCACHE_ALWAYS_USED. If
the parameter is 1, the cached memory range is always accessed using the AXI4 or ACE cache
interface. If the parameter is 0, the cached memory range is accessed over the AXI4 peripheral
interface when the caches are software disabled (that is, MSR[DCE]=0).

Interface Parameters and Signals

The relationship between MicroBlaze parameter settings and AXI4 interface behavior for tool-
assigned parameters is summarized in the following table.

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 148Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=148

Table 70: AXI Memory Mapped Interface Parameters

Interface Parameter Description
M_AXI_DP C_M_AXI_DP_PROTOCOL AXI4-Lite: Default.

AXI4: Used to allow exclusive access when
C_M_AXI_DP_EXCLUSIVE_ACCESS is 1.

C_M_AXI_DP_DATA_WIDTH 32: Default.
64: Can be used with 64-bit MicroBlaze to transfer 64-bit
data with a single access.

M_AXI_IC
M_ACE_IC

C_M_AXI_IC_DATA_WIDTH 32: Default, single word accesses and burst accesses with
C_ICACHE_LINE_LEN word busts used with AXI4 and ACE.
128: Used when C_ICACHE_DATA_WIDTH is set to 1 and
C_ICACHE_LINE_LEN is set to 4 with AXI4. Only single
accesses can occur.
256: Used when C_ICACHE_DATA_WIDTH is set to 1 and
C_ICACHE_LINE_LEN is set to 8 with AXI4. Only single
accesses can occur.
512: Used when C_ICACHE_DATA_WIDTH is set to 2, or when
it is set to 1 and C_ICACHE_LINE_LEN is set to 16 with AXI4.
Only single accesses can occur.

M_AXI_DC
M_ACE_DC

C_M_AXI_DC_DATA_WIDTH 32: Default, single word accesses and burst accesses with
C_DCACHE_LINE_LEN word busts used with AXI4 and ACE.
Write bursts are only used with AXI4 when
C_DCACHE_USE_WRITEBACK is set to 1.
128: Used when C_DCACHE_DATA_WIDTH is set to 1 and
C_DCACHE_LINE_LEN is set to 4 with AXI4. Only single
accesses can occur.
256: Used when C_DCACHE_DATA_WIDTH is set to 1 and
C_DCACHE_LINE_LEN is set to 8 with AXI4. Only single
accesses can occur.
512: Used when C_DCACHE_DATA_WIDTH is set to 2, or when
it is set to 1 and C_DCACHE_LINE_LEN is set to 16 with AXI4.
Only single accesses can occur.

M_AXI_IC
M_ACE_IC

NUM_READ_OUTSTANDING 1: Default for 128-bit, 256-bit and 512-bit masters, a single
outstanding read.
2: Default for 32-bit masters, 2 simultaneous outstanding
reads.
8: Used for 32-bit masters when C_ICACHE_STREAMS is set
to 1, allowing 8 simultaneous outstanding reads.
Can be set to 1, 2, or 8.

M_AXI_DC
M_ACE_DC

NUM_READ_OUTSTANDING 1: Default for 128-bit, 256-bit and 512-bit masters, a single
outstanding read.
2: Default for 32-bit masters, 2 simultaneous outstanding
reads.
Can be set to 1 or 2.

M_AXI_DC
M_ACE_DC

NUM_WRITE_OUTSTANDING 32: Default, 32 simultaneous outstanding writes.
Can be set to 1, 2, 4, 8, 16, or 32.

MicroBlaze AXI interfaces do not use any ID, setting ID_WIDTH to 0, whereas ACE interfaces use
two ID values, setting ID_WIDTH to 1.

MicroBlaze will never issue sub-width (narrow) accesses, with size less than the bus width,
setting SUPPORTS_NARROW_BURSTS to 0 for all interfaces.

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 149Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=149

Values for access permissions, memory types, quality of service and shareability domain are
defined in the following table.

Table 71: AXI Interface Signal Definitions

Interface Signal Description
M_AXI_IP C_M_AXI_IP_ARPROT Access Permission:

• Unprivileged, secure instruction access (100) if input
signal Non_Secure[1] = 0

• Unprivileged, non-secure instruction access (110) if
input signal Non_Secure[1] = 1

M_AXI_DP C_M_AXI_DP_ARCACHE
C_M_AXI_DP_AWCACHE

Memory Type, AXI4 protocol:
• Normal Non-cacheable Bufferable (0011)

C_M_AXI_DP_ARPROT
C_M_AXI_DP_AWPROT

Access Permission, AXI4 and AXI4-Lite protocol:
• Unprivileged, secure data access (000) if input signal

Non_Secure[0] = 0
• Unprivileged, non-secure data access (010) if input

signal Non_Secure[0] = 1

C_M_AXI_DP_ARQOS
C_M_AXI_DP_AWQOS

Quality of Service, AXI4 protocol:
• Priority 8 (1000)

M_AXI_IC C_M_AXI_IC_ARCACHE Memory Type:
• Write-back Read and Write-allocate (1111)

M_ACE_IC C_M_AXI_IC_ARCACHE Memory Type, normal access:
• Write-back Read and Write-allocate (1111)
Memory Type, DVM access:
• Normal Non-cacheable Non-bufferable (0010)

C_M_AXI_IC_ARDOMAIN Shareability Domain:
• Inner shareable (01)

M_AXI_IC
M_ACE_IC

C_M_AXI_IC_ARPROT Access Permission:
• Unprivileged, secure instruction access (100) if input

signal Non_Secure[3] = 0
• Unprivileged, non-secure instruction access (110) if

input signal Non_Secure[3] = 1

C_M_AXI_IC_ARQOS Quality of Service:
• Priority 7 (0111)

M_AXI_DC C_M_AXI_DC_ARCACHE Memory Type, normal access:
• Write-back Read and Write-allocate (1111)
Memory Type, exclusive access:
• Normal Non-cacheable Non-bufferable (0010)

M_ACE_DC C_M_AXI_DC_ARCACHE Memory Type, normal and exclusive access:
• Write-back Read and Write-allocate (1111)
Memory Type, DVM access:
• Normal Non-cacheable Non-bufferable (0010)

C_M_AXI_DC_ARDOMAIN
C_M_AXI_DC_AWDOMAIN

Shareability Domain:
• Inner shareable (01)

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 150Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=150

Table 71: AXI Interface Signal Definitions (cont'd)

Interface Signal Description
M_AXI_DC
M_ACE_DC

C_M_AXI_DC_AWCACHE Memory Type, normal access:
• Write-back Read and Write-allocate (1111)
Memory Type, exclusive access:
• Normal Non-cacheable Non-bufferable (0010)

C_M_AXI_DC_ARPROT
C_M_AXI_DC_AWPROT

Access Permission:
• Unprivileged, secure data access (000) if input signal

Non_Secure[2] = 0
• Unprivileged, non-secure data access (010) if input

signal Non_Secure[2] = 1

C_M_AXI_DC_ARQOS Quality of Service, read access:
• Priority 12 ((1100)

C_M_AXI_DC_AWQOS Quality of Service, write access:
• Priority 8 (1000)

The instruction cache interface (M_AXI_IC) address width can range from 32 - 64 bits when the
MMU physical address extension (PAE) is enabled, depending on the value of the parameter
C_ADDR_SIZE.

The data cache interface (M_AXI_DC or M_ACE_DC) address width can range from 32 - 64 bits,
depending on the value of the parameter C_ADDR_SIZE.

See the AMBA AXI and ACE Protocol Specification (Arm IHI 0022E) document for details.

Stream Interfaces
The MicroBlaze AXI4-Stream interfaces (M0_AXIS, M15_AXIS, S0_AXIS, S15_AXIS) are
implemented as 32-bit masters and slaves. See the AMBA 4 AXI4-Stream Protocol Specification,
Version 1.0 (Arm IHI 0051A) document for further details.

Write Operation

A write to the stream interface is performed by MicroBlaze using one of the put or putd
instructions. A write operation transfers the register contents to an output AXI4 interface. The
transfer is completed in a single clock cycle for blocking mode writes (put and cput instructions)
as long as the interface is not busy. If the interface is busy, the processor stalls until it becomes
available. The non-blocking instructions (with prefix n), always complete in a single clock cycle
even if the interface is busy. If the interface was busy, the write is inhibited and the carry bit is
set in the MSR.

The control instructions (with prefix c) set the AXI4-Stream TLAST output, to ‘1’, which is used to
indicate the boundary of a packet.

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 151Send Feedback

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=151

Read Operation

A read from the stream interface is performed by MicroBlaze using one of the get or getd
instructions. A read operations transfers the contents of an input AXI4 interface to a general
purpose register. The transfer is typically completed in two clock cycles for blocking mode reads
as long as data is available. If data is not available, the processor stalls at this instruction until it
becomes available. In the non-blocking mode (instructions with prefix n), the transfer is
completed in one or two clock cycles irrespective of whether or not data was available. In case
data was not available, the transfer of data does not take place and the carry bit is set in the
MSR.

The data get instructions (without prefix c) expect the AXI4-Stream TLAST input to be cleared to
‘0’, otherwise the instructions will set MSR[FSL] to ‘1’. Conversely, the control get instructions
(with prefix c) expect the TLAST input to be set to ‘1’, otherwise the instructions will set
MSR[FSL] to ‘1’. This can be used to check for the boundary of a packet.

Local Memory Bus (LMB) Interface
Description

The LMB is a synchronous bus used primarily to access on-chip block RAM. It uses a minimum
number of control signals and a simple protocol to ensure that local block RAM are accessed in a
single clock cycle. LMB signals and definitions are shown in the following table. All LMB signals
are active-High.

LMB Signal Interface
Table 72: LMB Bus Signals

Signal Data Interface Instruction
Interface Type Description

Addr[0:N-1]1 Data_Addr[0:N-1]1 Instr_Addr[0:N-1]2 O Address bus

Byte_Enable[0:N-1]3 Byte_Enable[0:N-1]3 not used O Byte enables

Data_Write[0:N-1]4 Data_Write[0:N-1]4 not used O Write data bus

AS D_AS I_AS O Address strobe

Read_Strobe Read_Strobe IFetch O Read in progress

Write_Strobe Write_Strobe not used O Write in progress

Data_Read[0:N-1]4 Data_Read[0:N-1]4 Instr[0:N-1] I Read data bus

Ready DReady IReady I Ready for next transfer

Wait5 DWait IWait I Wait until accepted
transfer is ready

CE5 DCE ICE I Correctable error

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 152Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=152

Table 72: LMB Bus Signals (cont'd)

Signal Data Interface Instruction
Interface Type Description

UE5 DUE IUE I Uncorrectable error

Clk Clk Clk I Bus clock

Notes:
1. N = 32 - 64, set according to C_ADDR_SIZE, added in MicroBlaze v9.6.
2. N = 32 - 64, set according to C_ADDR_SIZE when using PAE or 64-bit MicroBlaze, added in MicroBlaze v10.0.
3. N = 4, 8, set according to C_LMB_DATA_SIZE when using 64-bit MicroBlaze, added in MicroBlaze v11.0.
4. N = 32, 64, set according to C_LMB_DATA_SIZE when using 64-bit MicroBlaze, added in MicroBlaze v11.0.
5. Added in LMB for MicroBlaze v8.00.

Addr[0:N-1]

The address bus is an output from the core and indicates the memory address that is being
accessed by the current transfer. It is valid only when AS is High. In multicycle accesses requiring
more than one clock cycle to complete), Addr[0:N-1] is valid only in the first clock cycle of the
transfer.

Byte_Enable[0:N-1]

The byte enable signals are outputs from the core and indicate which byte lanes of the data bus
contain valid data. Byte_Enable is valid only when AS is High. In multicycle accesses requiring
more than one clock cycle to complete), Byte_Enable is valid only in the first clock cycle of the
transfer. Valid values for Byte_Enable are shown in the following tables.

Table 73: Valid Values for Byte_Enable[0:3]

Byte_Enable[0:3]
C_LMB_DATA_WIDTH = 32

Data Byte Lanes Used

0:7 8:15 16:23 24:31

0001 ●

0010 ●

0100 ●

1000 ●

0011 ● ●

1100 ● ●

1111 ● ● ● ●

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 153Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=153

Table 74: Valid Values for Byte_Enable[0:7]

Byte_Enable[0:7]
C_LMB_DATA_WID

TH = 64

Data Byte Lanes Used

0:7 8:15 16:23 24:31 32:39 40:47 48:55 56:63

00000001 ●

00000010 ●

00000100 ●

00001000 ●

00010000 ●

00100000 ●

01000000 ●

10000000 ●

00000011 ● ●

00001100 ● ●

00110000 ● ●

11000000 ● ●

00001111 ● ● ● ●

11110000 ● ● ● ●

11111111 ● ● ● ● ● ● ● ●

Data_Write[0:N-1]

The write data bus is an output from the core and contains the data that is written to memory. It
is valid only when AS is high. Only the byte lanes specified by Byte_Enable[0:3] contain valid
data.

AS

The address strobe is an output from the core and indicates the start of a transfer and qualifies
the address bus and the byte enables. It is high only in the first clock cycle of the transfer, after
which it goes low and remains low until the start of the next transfer.

Read_Strobe

The read strobe is an output from the core and indicates that a read transfer is in progress. This
signal goes high in the first clock cycle of the transfer, and can remain high until the clock cycle
after Ready is sampled high. If a new read transfer is directly started in the next clock cycle, then
Read_Strobe remains high.

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 154Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=154

Write_Strobe

The write strobe is an output from the core and indicates that a write transfer is in progress. This
signal goes high in the first clock cycle of the transfer, and can remain high until the clock cycle
after Ready is sampled high. If a new write transfer is directly started in the next clock cycle, then
Write_Strobe remains high.

Data_Read[0:N-1]

The read data bus is an input to the core and contains data read from memory. Data_Read is
valid on the rising edge of the clock when Ready is high.

Ready

The Ready signal is an input to the core and indicates completion of the current transfer and that
the next transfer can begin in the following clock cycle. It is sampled on the rising edge of the
clock. For reads, this signal indicates the Data_Read[0:31] bus is valid, and for writes it
indicates that the Data_Write[0:31] bus has been written to local memory.

Wait

The Wait signal is an input to the core and indicates that the current transfer has been accepted,
but not yet completed. It is sampled on the rising edge of the clock.

CE

The CE signal is an input to the core and indicates that the current transfer had a correctable
error. It is valid on the rising edge of the clock when Ready is high. For reads, this signal indicates
that an error has been corrected on the Data_Read[0:31] bus, and for byte and halfword
writes it indicates that the corresponding data word in local memory has been corrected before
writing the new data.

UE

The UE signal is an input to the core and indicates that the current transfer had an uncorrectable
error. It is valid on the rising edge of the clock when Ready is high. For reads, this signal indicates
that the value of the Data_Read[0:31] bus is erroneous, and for byte and halfword writes it
indicates that the corresponding data word in local memory was erroneous before writing the
new data.

Clk

All operations on the LMB are synchronous to the MicroBlaze core clock.

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 155Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=155

LMB Transactions
The following diagrams provide examples of LMB bus operations.

Generic Write Operations

Figure 50: LMB Generic Write Operation, 0 Wait States

A0

BE0

D0

Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE

X19788-111717

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 156Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=156

Figure 51: LMB Generic Write Operation, N Wait States

A0

BE0

D0

Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE

X19789-111717

Generic Read Operations

Figure 52: LMB Generic Read Operation, 0 Wait States

A0

D0

Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE

X19790-111717

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 157Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=157

Figure 53: LMB Generic Read Operation, N Wait States

A0

D0

Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE

X19791-111717

Back-to-Back Write Operation

Figure 54: LMB Back-to-Back Write Operation

A0

BE0

D0

A1

BE1

D1

A2

BE2

D2

A3

BE3

D3

A4

BE4

D4

Don’t Care Don’t Care Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE

X19792-111717

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 158Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=158

Back-to-Back Read Operation

Figure 55: LMB Back-to-Back Read Operation

A0 A1 A2 A3 A4

D0 D1 D2 D3 D4

Don’t Care Don’t Care Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE

X19793-111717

Back-to-Back Mixed Write/Read Operation

Figure 56: Back-to-Back Mixed Write/Read Operation, 0 Wait States

A0 A1 A2

BE0 BE2

D0 D2

D1

Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE

X19794-111717

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 159Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=159

Figure 57: Back-to-Back Mixed Write/Read Operation, N Wait States

A0 A1 A2

BE0 BE2

D0 D2

D1

Don’t Care Don’t Care Don’t Care

Clk

Addr

Byte_Enable

Data_Write

AS

Read_Strobe

Wirte_Strobe

Data_Read

Ready

Wait

CE

UE

X19795-111717

Read and Write Data Steering
The MicroBlaze data-side bus interface performs the read steering and write steering required to
support the following transfers:

• byte, halfword, and word transfers to word devices

• byte and halfword transfers to halfword devices

• byte transfers to byte devices

MicroBlaze does not support transfers that are larger than the addressed device. These types of
transfers require dynamic bus sizing and conversion cycles that are not supported by the
MicroBlaze bus interface.

Big endian format is only applicable when using the MMU in virtual or protected mode
(C_USE_MMU > 1) or when reorder instructions are enabled (C_USE_REORDER_INSTR = 1).

Data steering with 32-bit data for read cycles are shown in Table 75: Big Endian Read Data
Steering (Load to Register rD) and Table 76: Little Endian Read Data Steering (Load to Register
rD) , and 32-bit data steering for write cycles are shown in Table 77: Big Endian Write Data
Steering (Store from Register rD) and Table 78: Little Endian Write Data Steering (Store from
Register rD).

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 160Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=160

Table 75: Big Endian Read Data Steering (Load to Register rD)

Address
[LSB-1:LSB]

Byte_Enable
[0:3] Transfer Size

Register rD Data
0:7 8:15 16:23 24:31

11 0001 byte Byte3

10 0010 byte Byte2

01 0100 byte Byte1

00 1000 byte Byte0

10 0011 halfword Byte2 Byte3

00 1100 halfword Byte0 Byte1

00 1111 word Byte0 Byte1 Byte2 Byte3

Table 76: Little Endian Read Data Steering (Load to Register rD)

Address
[LSB-1:LSB]

Byte_Enable
[0:3] Transfer Size

Register rD Data
0:7 8:15 16:23 24:31

11 1000 byte Byte0

10 0100 byte Byte1

01 0010 byte Byte2

00 0001 byte Byte3

10 1100 halfword Byte0 Byte1

00 0011 halfword Byte2 Byte3

00 1111 word Byte0 Byte1 Byte2 Byte3

Table 77: Big Endian Write Data Steering (Store from Register rD)

Address
[LSB-1:LSB]

Byte_Enable
[0:3] Transfer Size

Write Data Bus Bytes from rD
Byte0 Byte1 Byte2 Byte3

11 0001 byte 24:31

10 0010 byte rD[24:31

01 0100 byte 24:31

00 1000 byte 24:31

10 0011 halfword 16:23 24:31

00 1100 halfword 16:23 24:31

00 1111 word 0:7 8:15 16:23 24:31

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 161Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=161

Table 78: Little Endian Write Data Steering (Store from Register rD)

Address
[LSB-1:LSB]

Byte_Enable
[0:3] Transfer Size

Write Data Bus Bytes from rD
Byte3 Byte2 Byte1 Byte0

11 1000 byte 24:31

10 0100 byte 24:31

01 0010 byte 24:31

00 0001 byte 24:31

10 1100 halfword 16:23 24:31

00 0011 halfword 16:23 24:31

00 1111 word 0:7 8:15 16:23 24:31

Note: Other masters could have more restrictive requirements for byte lane placement than those allowed
by MicroBlaze. Slave devices are typically attached “left-justified” with byte devices attached to the most-
significant byte lane, and halfword devices attached to the most significant halfword lane. The MicroBlaze
steering logic fully supports this attachment method.

When using 64-bit data on DLMB or M_AXI_DP with 64-bit MicroBlaze, the following transfers
are also supported:

• byte, halfword, word, and long transfers to long devices

Data steering with 64-bit data for read cycles are shown in Table 79: Big Endian Read Data
Steering (Load to Register rD) and Table 80: Little Endian Read Data Steering (Load to Register
rD), and 64-bit data steering for write cycles are shown in Table 81: Big Endian Write Data
Steering (Store from Register rD) and Table 82: Little Endian Write Data Steering (Store from
Register rD).

Table 79: Big Endian Read Data Steering (Load to Register rD)

Address
[LSB-2:LSB]

Byte_Enable
[0:7]

Transfer
Size

Register rD Data
0:7 8:15 16:23 24:31 32:39 40:47 48:55 56:63

111 00000001 byte Byte7

110 00000010 byte Byte6

101 00000100 byte Byte5

100 00001000 byte Byte4

011 00010000 byte Byte3

010 00100000 byte Byte2

001 01000000 byte Byte1

000 10000000 byte Byte0

110 00000011 halfword Byte7 Byte6

100 00001100 halfword Byte5 Byte4

010 00110000 halfword Byte3 Byte2

000 11000000 halfword Byte1 Byte0

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 162Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=162

Table 79: Big Endian Read Data Steering (Load to Register rD) (cont'd)

Address
[LSB-2:LSB]

Byte_Enable
[0:7]

Transfer
Size

Register rD Data
0:7 8:15 16:23 24:31 32:39 40:47 48:55 56:63

100 00001111 word Byte4 Byte5 Byte6 Byte7

000 11110000 word Byte0 Byte1 Byte2 Byte3

000 11111111 long Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7

Table 80: Little Endian Read Data Steering (Load to Register rD)

Address
[LSB-2:LSB]

Byte_Enable
[0:7]

Transfer
Size

Register rD Data
0:7 8:15 16:23 24:31 32:39 40:47 48:55 56:63

111 10000000 byte Byte0

110 01000000 byte Byte1

101 00100000 byte Byte2

100 00010000 byte Byte3

011 00001000 byte Byte4

010 00000100 byte Byte5

001 00000010 byte Byte6

000 00000001 byte Byte7

110 11000000 halfword Byte0 Byte1

100 00110000 halfword Byte2 Byte3

010 00001100 halfword Byte4 Byte5

000 00000011 halfword Byte6 Byte7

100 11110000 word Byte0 Byte1 Byte2 Byte3

000 00001111 word Byte4 Byte5 Byte6 Byte7

000 11111111 long Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7

Table 81: Big Endian Write Data Steering (Store from Register rD)

Address
[LSB-2:LSB]

Byte_Enable
[0:7]

Transfer
Size

Write Data Bus Bytes from rD
Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7

111 00000001 byte 56:63

110 00000010 byte 56:63

101 00000100 byte 56:63

100 00001000 byte 56:63

011 00010000 byte 56:63

010 00100000 byte 56:63

001 01000000 byte 56:63

000 10000000 byte 56:63

110 00000011 halfword 48:55 56:63

100 00001100 halfword 48:55 56:63

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 163Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=163

Table 81: Big Endian Write Data Steering (Store from Register rD) (cont'd)

Address
[LSB-2:LSB]

Byte_Enable
[0:7]

Transfer
Size

Write Data Bus Bytes from rD
Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7

010 00110000 halfword 48:55 56:63

000 11000000 halfword 48:55 56:63

100 00001111 word 32:39 40:47 48:55 56:63

000 11110000 word 32:39 40:47 48:55 56:63

000 11111111 long 0:7 8:15 16:23 24:31 32:39 40:47 48:55 56:63

Table 82: Little Endian Write Data Steering (Store from Register rD)

Address
[LSB-2:LSB]

Byte_Enable
[0:7]

Transfer
Size

Write Data Bus Bytes from rD
Byte7 Byte6 Byte5 Byte4 Byte3 Byte2 Byte1 Byte0

111 10000000 byte 56:63

110 01000000 byte 56:63

101 00100000 byte 56:63

100 00010000 byte 56:63

011 00001000 byte 56:63

010 00000100 byte 56:63

001 00000010 byte 56:63

000 00000000 byte 56:63

110 11000000 halfword 48:55 56:63

100 00110000 halfword 48:55 56:63

010 00001100 halfword 48:55 56:63

000 00000011 halfword 48:55 56:63

100 11110000 word 32:39 40:47 48:55 56:63

000 00001111 word 32:39 40:47 48:55 56:63

000 11111111 long 0:7 8:15 16:23 24:31 32:39 40:47 48:55 56:63

Lockstep Interface Description
The lockstep interface on MicroBlaze is designed to connect a master and one or more slave
MicroBlaze instances. The lockstep signals on MicroBlaze are listed in the following table.

Table 83: MicroBlaze Lockstep Signals

Signal Name Description VHDL Type Direction
Lockstep_Master_Out Output with signals going from master

to slave MicroBlaze. Not connected on
slaves.

std_logic output

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 164Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=164

Table 83: MicroBlaze Lockstep Signals (cont'd)

Signal Name Description VHDL Type Direction
Lockstep_Slave_In Input with signals coming from master

to slave MicroBlaze. Not connected on
master.

std_logic input

Lockstep_Out Output with all comparison signals
from both master and slaves.

std_logic output

The comparison signals provided by Lockstep_Out are listed in the following table.

Table 84: MicroBlaze Lockstep Comparison Signals

Signal Name Bus Index Range VHDL Type
MB_Halted 0 std_logic

MB_Error 1 std_logic

IFetch 2 std_logic

I_AS 3 std_logic

Instr_Addr 4 to 67 std_logic_vector

Data_Addr 68 to 131 std_logic_vector

Data_Write 132 to 163 std_logic_vector

D_AS 196 std_logic

Read_Strobe 197 std_logic

Write_Strobe 198 std_logic

Byte_Enable 199 to 202 std_logic_vector

M_AXI_IP_AWID 207 std_logic

M_AXI_IP_AWADDR 208 to 271 std_logic_vector

M_AXI_IP_AWLEN 272 to 279 std_logic_vector

M_AXI_IP_AWSIZE 280 to 282 std_logic_vector

M_AXI_IP_AWBURST 283 to 284 std_logic_vector

M_AXI_IP_AWLOCK 285 std_logic

M_AXI_IP_AWCACHE 286 to 289 std_logic_vector

M_AXI_IP_AWPROT 290 to 292 std_logic_vector

M_AXI_IP_AWQOS 293 to 296 std_logic_vector

M_AXI_IP_AWVALID 297 std_logic

M_AXI_IP_WDATA 298 to 329 std_logic_vector

M_AXI_IP_WSTRB 362 to 365 std_logic_vector

M_AXI_IP_WLAST 370 std_logic

M_AXI_IP_WVALID 371 std_logic

M_AXI_IP_BREADY 372 std_logic

M_AXI_IP_ARID 373 std_logic

M_AXI_IP_ARADDR 374 to 437 std_logic_vector

M_AXI_IP_ARLEN 438 to 445 std_logic_vector

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 165Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=165

Table 84: MicroBlaze Lockstep Comparison Signals (cont'd)

Signal Name Bus Index Range VHDL Type
M_AXI_IP_ARSIZE 446 to 448 std_logic_vector

M_AXI_IP_ARBURST 449 to 450 std_logic_vector

M_AXI_IP_ARLOCK 451 std_logic

M_AXI_IP_ARCACHE 452 to 455 std_logic_vector

M_AXI_IP_ARPROT 456 to 458 std_logic_vector

M_AXI_IP_ARQOS 459 to 462 std_logic_vector

M_AXI_IP_ARVALID 463 std_logic

M_AXI_IP_RREADY 464 std_logic

M_AXI_DP_AWID 465 std_logic

M_AXI_DP_AWADDR 466 to 529 std_logic_vector

M_AXI_DP_AWLEN 530 to 537 std_logic_vector

M_AXI_DP_AWSIZE 538 to 540 std_logic_vector

M_AXI_DP_AWBURST 541 to 542 std_logic_vector

M_AXI_DP_AWLOCK 543 std_logic

M_AXI_DP_AWCACHE 544 to 547 std_logic_vector

M_AXI_DP_AWPROT 548 to 550 std_logic_vector

M_AXI_DP_AWQOS 551 to 554 std_logic_vector

M_AXI_DP_AWVALID 555 std_logic

M_AXI_DP_WDATA 556 to 619 std_logic_vector

M_AXI_DP_WSTRB 620 to 627 std_logic_vector

M_AXI_DP_WLAST 628 std_logic

M_AXI_DP_WVALID 629 std_logic

M_AXI_DP_BREADY 630 std_logic

M_AXI_DP_ARID 631 std_logic

M_AXI_DP_ARADDR 632 to 695 std_logic_vector

M_AXI_DP_ARLEN 696 to 703 std_logic_vector

M_AXI_DP_ARSIZE 704 to 706 std_logic_vector

M_AXI_DP_ARBURST 707 to 708 std_logic_vector

M_AXI_DP_ARLOCK 709 std_logic

M_AXI_DP_ARCACHE 710 to 713 std_logic_vector

M_AXI_DP_ARPROT 714 to 716 std_logic_vector

M_AXI_DP_ARQOS 717 to 720 std_logic_vector

M_AXI_DP_ARVALID 721 std_logic

M_AXI_DP_RREADY 722 std_logic

Mn_AXIS_TLAST 723 + n * 35 std_logic

Mn_AXIS_TDATA 758 + n * 35 to
789 + n * 35

std_logic_vector

Mn_AXIS_TVALID 790 + n * 35 std_logic

Sn_AXIS_TREADY 791 + n * 35 std_logic

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 166Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=166

Table 84: MicroBlaze Lockstep Comparison Signals (cont'd)

Signal Name Bus Index Range VHDL Type
M_AXI_IC_AWID 1283 std_logic

M_AXI_IC_AWADDR 1284 to 1347 std_logic_vector

M_AXI_IC_AWLEN 1348 to 1355 std_logic_vector

M_AXI_IC_AWSIZE 1356 to 1358 std_logic_vector

M_AXI_IC_AWBURST 1359 to 1360 std_logic_vector

M_AXI_IC_AWLOCK 1361 std_logic

M_AXI_IC_AWCACHE 1362 to 1365 std_logic_vector

M_AXI_IC_AWPROT 1366 to 1368 std_logic_vector

M_AXI_IC_AWQOS 1369 to 1372 std_logic_vector

M_AXI_IC_AWVALID 1373 std_logic

M_AXI_IC_AWUSER 1374 to 1378 std_logic_vector

M_AXI_IC_AWDOMAIN1 1379 to 1380 std_logic_vector

M_AXI_IC_AWSNOOP1 1381 to 1383 std_logic_vector

M_AXI_IC_AWBAR1 1384 to 1385 std_logic_vector

M_AXI_IC_WDATA 1386 to 1897 std_logic_vector

M_AXI_IC_WSTRB 1898 to 1961 std_logic_vector

M_AXI_IC_WLAST 1962 std_logic

M_AXI_IC_WVALID 1963 std_logic

M_AXI_IC_WUSER 1964 std_logic

M_AXI_IC_BREADY 1965 std_logic

M_AXI_IC_WACK 1966 std_logic

M_AXI_IC_ARID 1967 std_logic_vector

M_AXI_IC_ARADDR 1968 to 2031 std_logic_vector

M_AXI_IC_ARLEN 2032 to 2039 std_logic_vector

M_AXI_IC_ARSIZE 2040 to 2042 std_logic_vector

M_AXI_IC_ARBURST 2043 to 2044 std_logic_vector

M_AXI_IC_ARLOCK 2045 std_logic

M_AXI_IC_ARCACHE 2046 to 2049 std_logic_vector

M_AXI_IC_ARPROT 2050 to 2052 std_logic_vector

M_AXI_IC_ARQOS 2053 to 2056 std_logic_vector

M_AXI_IC_ARVALID 2057 std_logic

M_AXI_IC_ARUSER 2058 to 2062 std_logic_vector

M_AXI_IC_ARDOMAIN1 2063 to 2064 std_logic_vector

M_AXI_IC_ARSNOOP1 2065 to 2068 std_logic_vector

M_AXI_IC_ARBAR1 2069 to 2070 std_logic_vector

M_AXI_IC_RREADY 2071 std_logic

M_AXI_IC_RACK1 2072 std_logic

M_AXI_IC_ACREADY1 2073 std_logic

M_AXI_IC_CRVALID1 2074 std_logic

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 167Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=167

Table 84: MicroBlaze Lockstep Comparison Signals (cont'd)

Signal Name Bus Index Range VHDL Type
M_AXI_IC_CRRESP1 2075 to 2079 std_logic_vector

M_AXI_IC_CDVALID1 2080 std_logic

M_AXI_IC_CDLAST1 2081 std_logic

M_AXI_DC_AWID 2082 std_logic

M_AXI_DC_AWADDR 2083 to 2146 std_logic_vector

M_AXI_DC_AWLEN 2147 to 2154 std_logic_vector

M_AXI_DC_AWSIZE 2155 to 2157 std_logic_vector

M_AXI_DC_AWBURST 2158 to 2159 std_logic_vector

M_AXI_DC_AWLOCK 2160 std_logic

M_AXI_DC_AWCACHE 2161 to 2164 std_logic_vector

M_AXI_DC_AWPROT 2165 to 2167 std_logic_vector

M_AXI_DC_AWQOS 2168 to 2171 std_logic_vector

M_AXI_DC_AWVALID 2172 std_logic

M_AXI_DC_AWUSER 2172 to 2176 std_logic_vector

M_AXI_DC_AWDOMAIN1 2177 to 2178 std_logic_vector

M_AXI_DC_AWSNOOP1 2179 to 2182 std_logic_vector

M_AXI_DC_AWBAR1 2183 to 2184 std_logic_vector

M_AXI_DC_WDATA 2185 to 2696 std_logic_vector

M_AXI_DC_WSTRB 2697 to 2760 std_logic_vector

M_AXI_DC_WLAST 2761 std_logic

M_AXI_DC_WVALID 2762 std_logic

M_AXI_DC_WUSER 2863 std_logic

M_AXI_DC_BREADY 2764 std_logic

M_AXI_DC_WACK1 2765 std_logic

M_AXI_DC_ARID 2766 std_logic

M_AXI_DC_ARADDR 2767 to 2830 std_logic_vector

M_AXI_DC_ARLEN 2831 to 2838 std_logic_vector

M_AXI_DC_ARSIZE 2839 to 2841 std_logic_vector

M_AXI_DC_ARBURST 2842 to 2843 std_logic_vector

M_AXI_DC_ARLOCK 2844 std_logic

M_AXI_DC_ARCACHE 2845 to 2848 std_logic_vector

M_AXI_DC_ARPROT 2849 to 2851 std_logic_vector

M_AXI_DC_ARQOS 2852 to 2855 std_logic_vector

M_AXI_DC_ARVALID 2856 std_logic

M_AXI_DC_ARUSER 2857 to 2861 std_logic_vector

M_AXI_DC_ARDOMAIN1 2862 to 2863 std_logic_vector

M_AXI_DC_ARSNOOP1 2864 to 2867 std_logic_vector

M_AXI_DC_ARBAR1 2868 to 2869 std_logic_vector

M_AXI_DC_RREADY 2870 std_logic

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 168Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=168

Table 84: MicroBlaze Lockstep Comparison Signals (cont'd)

Signal Name Bus Index Range VHDL Type
M_AXI_DC_RACK1 2871 std_logic

M_AXI_DC_ACREADY1 2872 std_logic

M_AXI_DC_CRVALID1 2873 std_logic

M_AXI_DC_CRRESP1 2874 to 2878 std_logic_vector

M_AXI_DC_CDVALID1 2879 std_logic

M_AXI_DC_CDLAST1 2880 std_logic

Trace_Instruction 2881 to 2912 std_logic_vector

Trace_Valid_Instr 2913 std_logic

Trace_PC 2914 to 2945 std_logic_vector

Trace_Reg_Write 2978 std_logic

Trace_Reg_Addr 2979 to 2983 std_logic_vector

Trace_MSR_Reg 2984 to 2998 std_logic_vector

Trace_PID_Reg 2999 to 3006 std_logic_vector

Trace_New_Reg_Value 3007 to 3038 std_logic_vector

Trace_Exception_Taken 3071 std_logic

Trace_Exception_Kind 3072 to 3076 std_logic_vector

Trace_Jump_Taken 3077 std_logic

Trace_Delay_Slot 3078 std_logic

Trace_Data_Address 3079 to 3142 std_logic_vector

Trace_Data_Write_Value 3143 to 3174 std_logic_vector

Trace_Data_Byte_Enable 3207 to 3210 std_logic_vector

Trace_Data_Access 3215 std_logic

Trace_Data_Read 3216 std_logic

Trace_Data_Write 3217 std_logic

Trace_DCache_Req 3218 std_logic

Trace_DCache_Hit 3219 std_logic

Trace_DCache_Rdy 3220 std_logic

Trace_DCache_Read 3221 std_logic

Trace_ICache_Req 3222 std_logic

Trace_ICache_Hit 3223 std_logic

Trace_ICache_Rdy 3224 std_logic

Trace_OF_PipeRun 3225 std_logic

Trace_EX_PipeRun 3226 std_logic

Trace_MEM_PipeRun 3227 std_logic

Trace_MB_Halted 3228 std_logic

Trace_Jump_Hit 3229 std_logic

Reserved 3230 to 4095

Notes:
1. This signal is only used when C_INTERCONNECT = 3 (ACE).

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 169Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=169

Debug Interface Description
The debug interface on MicroBlaze is designed to work with the MicroBlaze Debug Module
(MDM) IP core. The MDM is controlled by the Xilinx System Debugger (XSDB) through the JTAG
port of the FPGA. The MDM can control multiple MicroBlaze processors at the same time. The
debug signals are grouped in the DEBUG bus.

The debug interface can be grouped in the DEBUG bus, using either JTAG serial signals (by
setting C_DEBUG_INTERFACE = 0) or the AXI4-Lite compatible parallel signals (by setting
C_DEBUG_INTERFACE = 1). The MDM configuration must also be set accordingly.

It is also possible to use only AXI4-Lite parallel signals (C_DEBUG_INTERFACE = 2) grouped in an
AXI4 bus, in case the MDM is not used. However, this configuration is not supported by the
tools.

The following table lists the debug signals on MicroBlaze.

Table 85: MicroBlaze Debug Signals

Signal Name Description VHDL Type Kind
Dbg_Clk JTAG clock from MDM std_logic serial in

Dbg_TDI JTAG TDI from MDM std_logic serial in

Dbg_TDO JTAG TDO to MDM std_logic serial out

Dbg_Reg_En Debug register enable from MDM std_logic_vector serial in

Dbg_Shift1 JTAG BSCAN shift signal from MDM std_logic serial in

Dbg_Capture JTAG BSCAN capture signal from MDM std_logic serial in

Dbg_Update JTAG BSCAN update signal from MDM std_logic serial in

Debug_Rst1 Reset signal from MDM, active-High. Should be
held for at least 1 Clk clock cycle.

std_logic input

Dbg_Disable2 Debug disable signal from MDM std_logic input

Dbg_Trig_In2 Cross trigger event input to MDM std_logic_vector output

Dbg_Trig_Ack_In2 Cross trigger event input acknowledge from
MDM

std_logic_vector input

Dbg_Trig_Out2 Cross trigger action output from MDM std_logic_vector input

Dbg_Trig_Ack_Out2 Cross trigger action output acknowledge to
MDM

std_logic_vector output

Dbg_Trace_Data3 External Program Trace data output to MDM std_logic_vector output

Dbg_Trace_Valid3 External Program Trace valid to MDM std_logic output

Dbg_Trace_Ready3 External Program Trace ready from MDM std_logic input

Dbg_Trace_Clk3 External Program Trace clock from MDM std_logic input

Dbg_ARADDR4 Read address from MDM std_logic_vector parallel in

Dbg_ARREADY4 Read address ready to MDM std_logic parallel out

Dbg_ARVALID4 Read address valid from MDM std_logic parallel in

Dbg_AWADDR4 Write address from MDM std_logic_vector parallel in

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 170Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=170

Table 85: MicroBlaze Debug Signals (cont'd)

Signal Name Description VHDL Type Kind
Dbg_AWREADY4 Write address ready to MDM std_logic parallel out

Dbg_AWVALID4 Write address valid from MDM std_logic parallel in

Dbg_BREADY4 Write response ready to MDM std_logic parallel out

Dbg_BRESP4 Write response to MDM std_logic_vector parallel out

Dbg_BVALID4 Write response valid from MDM std_logic parallel in

Dbg_RDATA4 Read data to MDM std_logic_vector parallel out

Dbg_RREADY4 Read data ready to MDM std_logic parallel out

Dbg_RRESP4 Read data response to MDM std_logic_vector parallel out

Dbg_RVALID4 Read data valid from MDM std_logic parallel in

Dbg_WDATA4 Write data from MDM std_logic_vector parallel in

Dbg_WREADY4 Write data ready to MDM std_logic parallel out

Dbg_WVALID4 Write data valid from MDM std_logic parallel in

DEBUG_ACLK4 Debug clock, must be same as Clk std_logic parallel in

DEBUG_ARESET4 Debug reset, must be same as Reset std_logic parallel in

Notes:
1. Updated for MicroBlaze v7.00: Dbg_Shift added and Debug_Rst included in DEBUG bus
2. Updated for MicroBlaze v9.3: Dbg Disable and Dbg_Trig signals added to DEBUG bus
3. Updated for MicroBlaze v9.4: External Program Trace signal added to DEBUG bus
4. Updated for MicroBlaze v10.0: Parallel debug signals added to DEBUG bus

Trace Interface Description
The MicroBlaze processor core exports a number of internal signals for trace purposes. This
signal interface is not standardized and new revisions of the processor might not be backward
compatible for signal selection or functionality. It is recommended that you not design custom
logic for these signals, but rather to use them using AMD provided analysis IP. The trace signals
are grouped in the TRACE bus. The current set of trace signals were last updated for MicroBlaze
v7.30 and are listed in Table 86: MicroBlaze Trace Signals.

The mapping of the MSR bits is shown in Table 87: Mapping of Trace MSR. For a complete
description of the Machine Status Register, see Special Purpose Registers.

The Trace exception types are listed in Table 88: Type of Trace Exception. All unused Trace
exception types are reserved.

Table 86: MicroBlaze Trace Signals

Signal Name Description VHDL Type Direction
Trace_Valid_Instr Valid instruction on trace port. std_logic output

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 171Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=171

Table 86: MicroBlaze Trace Signals (cont'd)

Signal Name Description VHDL Type Direction
Trace_Instruction1 Instruction code std_logic_vector (0 to 31) output

Trace_PC1 Program counter, where N = 32 -
64, determined by parameter
C_ADDR_SIZE for 64-bit
MicroBlaze, and 32 otherwise

std_logic_vector (0 to 31) output

Trace_Reg_Write1 Instruction writes to the register
file

std_logic output

Trace_Reg_Addr1 Destination register address std_logic_vector (0 to 4) output

Trace_MSR_Reg1 Machine status register. The
mapping of the register bits is
documented below.

std_logic_vector (0 to 14)1 output

Trace_PID_Reg1 Process identifier register std_logic_vector (0 to 7) output

Trace_New_Reg_Value1 Destination register update value,
where N = C_DATA_SIZE

std_logic_vector (0 to N-1) output

Trace_Exception_Taken1,2 Instruction result in taken
exception

std_logic output

Trace_Exception_Kind1 Exception type. The description
for the exception type is
documented below.

std_logic_vector (0 to 4)2 output

Trace_Jump_Taken1 Branch instruction evaluated true,
that is taken

std_logic output

Trace_Jump_Hit1,3 Branch Target Cache hit std_logic output

Trace_Delay_Slot1 Instruction is in delay slot of a
taken branch

std_logic output

Trace_Data_Access1 Valid D-side memory access std_logic output

Trace_Data_Address1 Address for D-side memory
access, where N = 32 - 64,
determined by parameter
C_ADDR_SIZE

std_logic_vector (0 to N-1) output

Trace_Data_Write_Value1 Value for D-side memory write
access, where N = C_DATA_SIZE

std_logic_vector (0 to N-1) output

Trace_Data_Byte_Enable1 Byte enables for D-side memory
access, where N = C_DATA_SIZE / 8

std_logic_vector (0 to N-1) output

Trace_Data_Read1 D-side memory access is a read std_logic output

Trace_Data_Write1 D-side memory access is a write std_logic output

Trace_DCache_Req Data memory address is within D-
Cache range. Set when a memory
access instruction is executed.

std_logic output

Trace_DCache_Hit Data memory address is present
in D-Cache. Set simultaneously
with Trace_DCache_Req when a
cache hit occurs.

std_logic output

Trace_DCache_Rdy Data memory address is within D-
Cache range and the access is
completed. Only set following a
request with Trace_DCache_Req =
1 and Trace_DCache_Hit = 0.

std_logic output

Trace_DCache_Read The D-Cache request is a read.
Valid only when
Trace_DCache_Req = 1.

std_logic output

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 172Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=172

Table 86: MicroBlaze Trace Signals (cont'd)

Signal Name Description VHDL Type Direction
Trace_ICache_Req Instruction memory address is

within I-Cache range, and the
cache is enabled in the Machine
Status Register. Set when an
instruction is read into the
instruction prefetch buffer.

std_logic output

Trace_ICache_Hit Instruction memory address is
present in I-Cache. Set
simultaneously with
Trace_ICache_Req when a cache
hit occurs.

std_logic output

Trace_ICache_Rdy • Instruction memory address is
present in I-Cache. Set
simultaneously with
Trace_ICache_Req when a
cache hit occurs in this case.

• Instruction memory address is
within I-Cache range and the
access is completed. Set
following a request with
Trace_ICache_Req = 1 and
Trace_ICache_Hit = 0 in this
case.

std_logic output

Trace_OF_PipeRun Pipeline advance for Decode
stage

std_logic output

Trace_EX_PipeRun3 Pipeline advance for Execution
stage

std_logic output

Trace_MEM_PipeRun3 Pipeline advance for Memory
stage

std_logic output

Trace_MB_Halted Pipeline is halted by debug std_logic output

Notes:
1. Valid only when Trace_Valid_Instr = 1
2. Valid only when Trace_Exception_Taken = 1
3. Not used with area optimization feature

Table 87: Mapping of Trace MSR

Trace_MSR_Reg Machine Status Register
Bit Bit1 Name Description

0 17 or 49 VMS Virtual Protected Mode Save

1 18 or 50 VM Virtual Protected Mode

2 19 or 51 UMS User Mode Save

3 20 or 52 UM User Mode

4 21 or 53 PVR Processor Version Register exists

5 22 or 54 EIP Exception In Progress

6 23 or 55 EE Exception Enable

7 24 or 56 DCE Data Cache Enable

8 25 or 57 DZO Division by Zero or Division Overflow

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 173Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=173

Table 87: Mapping of Trace MSR (cont'd)

Trace_MSR_Reg Machine Status Register
Bit Bit1 Name Description

9 26 or 58 ICE Instruction Cache Enable

10 27 or 59 FSL AXI4-Stream Error

11 28 or 60 BIP Break in Progress

12 29 or 61 C Arithmetic Carry

13 30 or 62 IE Interrupt Enable

14 31 or 63 Reserved Reserved

Notes:
1. Bit numbers depend on if 64-bit MicroBlaze (C_DATA_SIZE = 64) is enabled or not.

Table 88: Type of Trace Exception

Trace_Exception_Kind [0:4] Description
00000 Stream exception

00001 Unaligned exception

00010 Illegal Opcode exception

00011 Instruction Bus exception

00100 Data Bus exception

00101 Divide exception

00110 FPU exception

00111 Privileged instruction exception

01010 Interrupt

01011 External non maskable break

01100 External maskable break

10000 Data storage exception

10001 Instruction storage exception

10010 Data TLB miss exception

10011 Instruction TLB miss exception

MicroBlaze Core Configurability
The MicroBlaze core has been developed to support a high degree of user configurability. This
allows tailoring of the processor to meet specific cost/performance requirements.

Configuration is done using parameters that typically enable, size, or select certain processor
features. For example, the instruction cache is enabled by setting the C_USE_ICACHE parameter.
The size of the instruction cache, and the cacheable memory range, are all configurable using:
C_CACHE_BYTE_SIZE, C_ICACHE_BASEADDR, and C_ICACHE_HIGHADDR respectively.

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 174Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=174

Parameters valid for the latest version of MicroBlaze are listed in the following table. Not all of
these are recognized by older versions of MicroBlaze; however, the configurability is fully
backward compatible.

Note: Shaded rows indicate that the parameter has a fixed value and cannot be modified.

Table 89: Configuration Parameters

Parameter Name Feature/
Description

Allowable
Values

Default
Value

Tool
Assigned VHDL Type

C_FAMILY Target Family Listed in Table
90: Parameter
C_FAMILY
Allowable
Values

virtex7 yes string

C_DATA_SIZE Data Size
32 = 32-bit MicroBlaze
64 = 64-bit MicroBlaze

32, 64 32 integer

C_ADDR_SIZE Address Size 32-64 32 NA integer

C_DYNAMIC_BUS_SIZING Legacy 1 1 NA integer

C_SCO Internal 0 0 NA integer

C_AREA_OPTIMIZED Select
implementation
optimization:
0 = Performance
1 = Area
2 = Frequency

0, 1, 2 0 integer

C_OPTIMIZATION Reserved for future
use

0 0 NA integer

C_INTERCONNECT Select interconnect
2 = AXI4 only
3 = AXI4 and ACE

2, 3 2 integer

C_ENDIANNESS Select endianness
1 = Little Endian

1 1 yes integer

C_BASE_VECTORS1 Configurable base
vectors

0x0 -
0xFFFFFFFF
FFFFFFFF

0x0 std_logic_vec
tor

C_FAULT_TOLERANT Implement fault
tolerance

0, 1 0 yes integer

C_ECC_USE_CE_EXCEPTION Generate exception
for correctable ECC
error

0,1 0 integer

C_LOCKSTEP_SLAVE Lockstep Slave 0, 1 0 integer

C_TEMPORAL_DEPTH Lockstep Temporal
Depth

0 - 31 0 integer

C_AVOID_PRIMITIVES Disallow FPGA
primitives
0 = None
1 = SRL
2 = LUTRAM
3 = Both

0, 1, 2, 3 0 integer

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 175Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=175

Table 89: Configuration Parameters (cont'd)

Parameter Name Feature/
Description

Allowable
Values

Default
Value

Tool
Assigned VHDL Type

C_ENABLE_DISCRETE_PORTS Show discrete ports 0, 1 0 integer

C_PVR Processor version
register mode
selection
0 = None
1 = Basic
2 = Full

0, 1, 2 0 integer

C_PVR_USER1 Processor version
register USER1
constant

0x00-0xff 0x00 std_logic_vec
tor
(0 to 7)

C_PVR_USER2 Processor version
register USER2
constant

0x00000000-0xf
fffffff

0x000000
00

std_logic_vec
tor
(0 to 31)

C_RESET_MSR_IE C_RESET_MSR_BIP
C_RESET_MSR_ICE
C_RESET_MSR_DCE
C_RESET_MSR_EE
C_RESET_MSR_EIP

Reset value for MSR
register bits IE, BIP,
ICE, DCE, EE, and EIP

Any
combination of
the individual
bits

0x0000 std_logic

C_INSTANCE Instance Name Any instance
name

micro
blaze

yes string

C_D_AXI Data side AXI
interface

0, 1 0 integer

C_D_LMB Data side LMB
interface

0, 1 1 integer

C_I_AXI Instruction side AXI
interface

0, 1 0 integer

C_I_LMB Instruction side LMB
interface

0, 1 1 integer

C_LMB_DATA_SIZE LMB interface data
size

32, 64 32 integer

C_USE_BARREL Include barrel shifter 0, 1 0 integer

C_USE_DIV Include hardware
divider

0, 1 0 integer

C_USE_HW_MUL Include hardware
multiplier
0 = None
1 = Mul32
2 = Mul64

0, 1, 2 1 integer

C_USE_FPU Include hardware
floating-point unit
0 = None
1 = Basic
2 = Extended

0, 1, 2 0 integer

C_USE_MSR_INSTR Enable use of
instructions: MSRSET
and MSRCLR

0, 1 1 integer

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 176Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=176

Table 89: Configuration Parameters (cont'd)

Parameter Name Feature/
Description

Allowable
Values

Default
Value

Tool
Assigned VHDL Type

C_USE_PCMP_INSTR Enable use of
instructions: CLZ,
PCMPBF, PCMPEQ,
and PCMPNE

0, 1 1 integer

C_USE_REORDER_INSTR Enable use of
instructions: Reverse
load, reverse store,
and swap

0, 1 1 integer

C_UNALIGNED_EXCEPTIONS Enable exception
handling for
unaligned data
accesses

0, 1 0 integer

C_ILL_OPCODE_EXCEPTION Enable exception
handling for illegal
op-code

0, 1 0 integer

C_M_AXI_I_BUS_EXCEPTION Enable exception
handling for M_AXI_I
bus error

0, 1 0 integer

C_M_AXI_D_BUS_EXCEPTION Enable exception
handling for M_AXI_D
bus error

0, 1 0 integer

C_DIV_ZERO_EXCEPTION Enable exception
handling for division
by zero or division
overflow

0, 1 0 integer

C_FPU_EXCEPTION Enable exception
handling for
hardware floating-
point unit exceptions

0, 1 0 integer

C_OPCODE_0x0_ILLEGAL Detect opcode 0x0 as
an illegal instruction

0,1 0 integer

C_FSL_EXCEPTION Enable exception
handling for Stream
Links

0,1 0 integer

C_ECC_USE_CE_EXCEPTION Generate Bus Error
Exceptions for
correctable errors

0,1 0 integer

C_USE_STACK_PROTECTION Generate exception
for stack overflow or
stack underflow

0,1 0 integer

C_IMPRECISE_EXCEPTIONS Allow imprecise
exceptions for ECC
errors in LMB
memory

0,1 0 integer

C_DEBUG_ENABLED MDM Debug interface
0 = None
1 = Basic
2 = Extended

0,1,2 1 integer

C_NUMBER_OF_PC_BRK Number of hardware
breakpoints

0-8 1 integer

C_NUMBER_OF_RD_ADDR_BRK Number of read
address watchpoints

0-4 0 integer

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 177Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=177

Table 89: Configuration Parameters (cont'd)

Parameter Name Feature/
Description

Allowable
Values

Default
Value

Tool
Assigned VHDL Type

C_NUMBER_OF_WR_ADDR_BRK Number of write
address watchpoints

0-4 0 integer

C_DEBUG_EVENT_COUNTERS Number of
Performance Monitor
event counters

0-48 5 integer

C_DEBUG_LATENCY_COUNTERS Number of
Performance Monitor
latency counters

0-7 1 integer

C_DEBUG_COUNTER_WIDTH Performance Monitor
counter width

32,48,64 32 integer

C_DEBUG_TRACE_SIZE Trace Buffer size
Embedded: 0, ≥ 8192
External: 0, 32 - 8192

0, 32, 64, 128,
256, 8192,
16384, 32768,
65536, 131072

8192 integer

C_DEBUG_PROFILE_SIZE Profile Buffer size 0, 4096, 8192,
16384, 32768,
65536, 131072

0 integer

C_DEBUG_EXTERNAL_TRACE External Program
Trace

0,1 0 yes integer

C_DEBUG_INTERFACE Debug Interface:
0 = Debug Serial
1 = Debug Parallel
2 = AXI4-Lite

0,1,2 0 integer

C_ASYNC_INTERRUPT Asynchronous
Interrupt

0,1 0 yes integer

C_ASYNC_WAKEUP Asynchronous
Wakeup

00,01,10,11 00 yes integer

C_INTERRUPT_IS_EDGE Level/Edge Interrupt 0, 1 0 yes integer

C_EDGE_IS_POSITIVE Negative/Positive
Edge Interrupt

0, 1 1 yes integer

C_FSL_LINKS Number of AXI4-
Stream interfaces

0-16 0 integer

C_USE_EXTENDED_FSL_INSTR Enable use of
extended stream
instructions

0, 1 0 integer

C_ICACHE_BASEADDR Instruction cache
base address

0x0 -
0xFFFFFFFF
FFFFFFFF

0x0 std_logic_vec
tor

C_ICACHE_HIGHADDR Instruction cache
high address

0x0 -
0xFFFFFFFF
FFFFFFFF

0x3FFFFFF
F

std_logic_vec
tor

C_USE_ICACHE Instruction cache 0, 1 0 integer

C_ALLOW_ICACHE_WR Instruction cache
write enable

0, 1 1 integer

C_ICACHE_LINE_LEN Instruction cache line
length

4, 8, 16 4 integer

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 178Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=178

Table 89: Configuration Parameters (cont'd)

Parameter Name Feature/
Description

Allowable
Values

Default
Value

Tool
Assigned VHDL Type

C_ICACHE_ALWAYS_USED Instruction cache
interface used for all
memory accesses in
the cacheable range

0, 1 1 integer

C_ICACHE_FORCE_TAG_LUTRAM Instruction cache tag
always implemented
with distributed RAM

0, 1 0 integer

C_ICACHE_STREAMS Instruction cache
streams

0, 1 0 integer

C_ICACHE_VICTIMS Instruction cache
victims

0, 2, 4, 8 0 integer

C_ICACHE_DATA_WIDTH Instruction cache
data width
0 = 32 bits
1 = Full cache line
2 = 512 bits

0, 1, 2 0 integer

C_ADDR_TAG_BITS Instruction cache
address tags

0-25 17 yes integer

C_CACHE_BYTE_SIZE Instruction cache size 64, 128, 256,
512, 1024, 2048,
4096, 8192,
16384, 32768,
655361

8192 integer

C_DCACHE_BASEADDR Data cache base
address

0x0 -
0xFFFFFFFF
FFFFFFFF

0x0 std_logic_vec
tor

C_DCACHE_HIGHADDR Data cache high
address

0x0 -
0xFFFFFFFF
FFFFFFFF

0x3FFFFFF
F

std_logic_vec
tor

C_USE_DCACHE Data cache 0, 1 0 integer

C_ALLOW_DCACHE_WR Data cache write
enable

0, 1 1 integer

C_DCACHE_LINE_LEN Data cache line
length

4, 8, 16 4 integer

C_DCACHE_ALWAYS_USED Data cache interface
used for all accesses
in the cacheable
range

0, 1 1 integer

C_DCACHE_FORCE_TAG_LUTRAM Data cache tag always
implemented with
distributed RAM

0, 1 0 integer

C_DCACHE_USE_WRITEBACK Data cache write-back
storage policy used

0, 1 0 integer

C_DCACHE_VICTIMS Data cache victims 0, 2, 4, 8 0 integer

C_DCACHE_DATA_WIDTH Data cache data
width
0 = 32 bits
1 = Full cache line
2 = 512 bits

0, 1, 2 0 integer

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 179Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=179

Table 89: Configuration Parameters (cont'd)

Parameter Name Feature/
Description

Allowable
Values

Default
Value

Tool
Assigned VHDL Type

C_DCACHE_ADDR_TAG Data cache address
tags

0-25 17 yes integer

C_DCACHE_BYTE_SIZE Data cache size 64, 128, 256,
512, 1024, 2048,
4096, 8192,
16384, 32768,
655362

8192 integer

C_USE_MMU3 Memory
Management:
0 = None
1 = User Mode
2 = Protection
3 = Virtual

0, 1, 2, 3 0 integer

C_MMU_DTLB_SIZE3 Data shadow
Translation Look-
Aside Buffer size

1, 2, 4, 8 4 integer

C_MMU_ITLB_SIZE3 Instruction shadow
Translation Look-
Aside Buffer size

1, 2, 4, 8 2 integer

C_MMU_TLB_ACCESS3 Access to memory
management special
registers:
0 = Minimal
1 = Read
2 = Write
3 = Full

0, 1, 2, 3 3 integer

C_MMU_ZONES3 Number of memory
protection zones

0-16 16 integer

C_MMU_PRIVILEGED_INSTR3 Privileged
instructions
0 = Full protection
1 = Allow stream
instrs
2 = Allow extended
addr
3 = Allow both

0,1,2,3 0 integer

C_USE_INTERRUPT Enable interrupt
handling
0 = No interrupt
1 = Standard interrupt
2 = Low-latency
interrupt

0, 1, 2 1 yes integer

C_USE_EXT_BRK Enable external break
handling

0,1 0 yes integer

C_USE_EXT_NM_BRK Enable external non-
maskable break
handling

0,1 0 yes integer

C_USE_NON_SECURE Use corresponding
non-secure input

0-15 0 yes integer

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 180Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=180

Table 89: Configuration Parameters (cont'd)

Parameter Name Feature/
Description

Allowable
Values

Default
Value

Tool
Assigned VHDL Type

C_USE_BRANCH_TARGET_CACHE3 Enable Branch Target
Cache

0,1 0 integer

C_BRANCH_TARGET_CACHE_SIZE3 Branch Target Cache
size:
0 = Default
1 = 8 entries
2 = 16 entries
3 = 32 entries
4 = 64 entries
5 = 512 entries
6 = 1024 entries
7 = 2048 entries

0-7 0 integer

C_M_AXI_DP_
THREAD_ID_WIDTH

Data side AXI thread
ID width

1 1 integer

C_M_AXI_DP_DATA_WIDTH Data side AXI data
width

32, 64 32 integer

C_M_AXI_DP_ADDR_WIDTH Data side AXI address
width

32-64 32 yes integer

C_M_AXI_DP_
SUPPORTS_THREADS

Data side AXI uses
threads

0 0 integer

C_M_AXI_DP_SUPPORTS_READ Data side AXI support
for read accesses

1 1 integer

C_M_AXI_DP_SUPPORTS_WRITE Data side AXI support
for write accesses

1 1 integer

C_M_AXI_DP_SUPPORTS_
NARROW_BURST

Data side AXI narrow
burst support

0 0 integer

C_M_AXI_DP_PROTOCOL Data side AXI
protocol

AXI4, AXI4LITE AXI4
LITE

yes string

C_M_AXI_DP_
EXCLUSIVE_ACCESS

Data side AXI
exclusive access
support

0,1 0 integer

C_M_AXI_IP_
THREAD_ID_WIDTH

Instruction side AXI
thread ID width

1 1 integer

C_M_AXI_IP_DATA_WIDTH Instruction side AXI
data width

32 32 integer

C_M_AXI_IP_ADDR_WIDTH Instruction side AXI
address width

32-64 32 yes integer

C_M_AXI_IP_
SUPPORTS_THREADS

Instruction side AXI
uses threads

0 0 integer

C_M_AXI_IP_SUPPORTS_READ Instruction side AXI
support for read
accesses

1 1 integer

C_M_AXI_IP_SUPPORTS_WRITE Instruction side AXI
support for write
accesses

0 0 integer

C_M_AXI_IP_SUPPORTS_
NARROW_BURST

Instruction side AXI
narrow burst support

0 0 integer

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 181Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=181

Table 89: Configuration Parameters (cont'd)

Parameter Name Feature/
Description

Allowable
Values

Default
Value

Tool
Assigned VHDL Type

C_M_AXI_IP_PROTOCOL Instruction side AXI
protocol

AXI4LITE AXI4
LITE

string

C_M_AXI_DC_
THREAD_ID_WIDTH

Data cache AXI ID
width

1 1 integer

C_M_AXI_DC_DATA_WIDTH Data cache AXI data
width

32, 64, 128, 256,
512

32 integer

C_M_AXI_DC_ADDR_WIDTH Data cache AXI
address width

32-64 32 yes integer

C_M_AXI_DC_
SUPPORTS_THREADS

Data cache AXI uses
threads

0 0 integer

C_M_AXI_DC_SUPPORTS_READ Data cache AXI
support for read
accesses

1 1 integer

C_M_AXI_DC_SUPPORTS_WRITE Data cache AXI
support for write
accesses

1 1 integer

C_M_AXI_DC_SUPPORTS_
NARROW_BURST

Data cache AXI
narrow burst support

0 0 integer

C_M_AXI_DC_SUPPORTS_
USER_SIGNALS

Data cache AXI user
signal support

1 1 integer

C_M_AXI_DC_PROTOCOL Data cache AXI
protocol

AXI4 AXI4 string

C_M_AXI_DC_AWUSER_WIDTH Data cache AXI user
width

5 5 integer

C_M_AXI_DC_ARUSER_WIDTH Data cache AXI user
width

5 5 integer

C_M_AXI_DC_WUSER_WIDTH Data cache AXI user
width

1 1 integer

C_M_AXI_DC_RUSER_WIDTH Data cache AXI user
width

1 1 integer

C_M_AXI_DC_BUSER_WIDTH Data cache AXI user
width

1 1 integer

C_M_AXI_DC_
EXCLUSIVE_ACCESS

Data cache AXI
exclusive access
support

0,1 0 integer

C_M_AXI_DC_USER_VALUE Data cache AXI user
value

0-31 31 integer

C_M_AXI_IC_
THREAD_ID_WIDTH

Instruction cache AXI
ID width

1 1 integer

C_M_AXI_IC_DATA_WIDTH Instruction cache AXI
data width

32, 64, 128, 256,
512

32 integer

C_M_AXI_IC_ADDR_WIDTH Instruction cache AXI
address width

32-64 32 yes integer

C_M_AXI_IC_
SUPPORTS_THREADS

Instruction cache AXI
uses threads

0 0 integer

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 182Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=182

Table 89: Configuration Parameters (cont'd)

Parameter Name Feature/
Description

Allowable
Values

Default
Value

Tool
Assigned VHDL Type

C_M_AXI_IC_SUPPORTS_READ Instruction cache AXI
support for read
accesses

1 1 integer

C_M_AXI_IC_SUPPORTS_WRITE Instruction cache AXI
support for write
accesses

0 0 integer

C_M_AXI_IC_SUPPORTS_
NARROW_BURST

Instruction cache AXI
narrow burst support

0 0 integer

C_M_AXI_IC_SUPPORTS_
USER_SIGNALS

Instruction cache AXI
user signal support

1 1 integer

C_M_AXI_IC_PROTOCOL Instruction cache AXI
protocol

AXI4 AXI4 string

C_M_AXI_IC_AWUSER_WIDTH Instruction cache AXI
user width

5 5 integer

C_M_AXI_IC_ARUSER_WIDTH Instruction cache AXI
user width

5 5 integer

C_M_AXI_IC_WUSER_WIDTH Instruction cache AXI
user width

1 1 integer

C_M_AXI_IC_RUSER_WIDTH Instruction cache AXI
user width

1 1 integer

C_M_AXI_IC_BUSER_WIDTH Instruction cache AXI
user width

1 1 integer

C_M_AXI_IC_USER_VALUE Instruction cache AXI
user value

0-31 31 integer

C_STREAM_INTERCONNECT Select AXI4-Stream
interconnect

0,1 0 integer

C_Mn_AXIS_PROTOCOL AXI4-Stream protocol GENERIC GENERIC string

C_Sn_AXIS_PROTOCOL AXI4-Stream protocol GENERIC GENERIC string

C_Mn_AXIS_DATA_WIDTH AXI4-Stream master
data width

32 32 NA integer

C_Sn_AXIS_DATA_WIDTH AXI4-Stream slave
data width

32 32 NA integer

C_NUM_SYNC_FF_CLK Reset and
Wakeup[0:1]
synchronization
stages

≥0 2 integer

C_NUM_SYNC_FF_CLK_IRQ Interrupt input signal
synchronization
stages

≥0 1 integer

C_NUM_SYNC_FF_CLK_DEBUG Dbg_ serial signal
synchronization
stages

≥0 2 integer

C_NUM_SYNC_FF_DBG_CLK Internal
synchronization
stages to Dbg_Clk

≥0 1 integer

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 183Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=183

Table 89: Configuration Parameters (cont'd)

Parameter Name Feature/
Description

Allowable
Values

Default
Value

Tool
Assigned VHDL Type

C_NUM_SYNC_FF_DBG_TRACE_CLK Internal
synchronization
stages to
Dbg_Trace_Clk

≥0 1 integer

Notes:
1. The 7 least significant bits must all be 0.
2. Not all sizes are permitted in all architectures. The cache uses 0 - 32 RAMB primitives (0 if cache size is less than 2048).
3. Not available when C_AREA_OPTIMIZED is set to 1 (Area).

Table 90: Parameter C_FAMILY Allowable Values

Allowable Values
AMD Artix™ aartix7 artix7 artix7l qartix7 qartix7l artixuplus

Kintex kintex7 kintex7l qkintex7 qkintex7l kintexu kintexuplus

Spartan spartan7

Virtex qvirtex7 virtex7 virtexu virtexuplus virtexuplusHBM

AMD Zynq™ azynq zynq qzynq zynquplus zynquplusRFSOC

AMD Versal™ versal

Chapter 3: MicroBlaze Signal Interface Description

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 184Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=184

Chapter 4

MicroBlaze Application Binary
Interface

Introduction
This chapter describes MicroBlaze™ Application Binary Interface (ABI), which is important for
developing software in assembly language for the soft processor. The MicroBlaze GNU compiler
follows the conventions described in this document. Any code written by assembly programmers
should also follow the same conventions to be compatible with the compiler generated code.
Interrupt and Exception handling is also explained briefly.

Data Types
The data types used by MicroBlaze assembly programs are shown in the following table. Data
types such as data8, data16, data32, and data64 are used in place of the usual byte, half-word,
and word.register.

Table 91: Data Types in MicroBlaze Assembly Programs

MicroBlaze data types (for
assembly programs)

Corresponding ANSI C data
types 32-bit MicroBlaze

Corresponding ANSI C
data types 64-bit

MicroBlaze
Size (bytes)

data8 char char 1

data16 short short 2

data32 int int 4

long int - 4

float float 4

enum enum 4

data16/data32 pointer1 - 2/4

Chapter 4: MicroBlaze Application Binary Interface

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 185Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=185

Table 91: Data Types in MicroBlaze Assembly Programs (cont'd)

MicroBlaze data types (for
assembly programs)

Corresponding ANSI C data
types 32-bit MicroBlaze

Corresponding ANSI C
data types 64-bit

MicroBlaze
Size (bytes)

data64 - long int 8

long long int long long int 8

- double 8

- pointer 8

Notes:
1. Pointers to small data areas, which can be accessed by global pointers are data16.

Register Usage Conventions
The register usage convention for MicroBlaze is given in the following table.

Table 92: Register Usage Conventions

Register Type Enforcement Purpose
R0 Dedicated HW Value 0

R1 Dedicated SW Stack Pointer

R2 Dedicated SW Read-only small data area anchor

R3-R4 Volatile SW Return Values/Temporaries

R5-R10 Volatile SW Passing parameters/Temporaries

R11-R12 Volatile SW Temporaries

R13 Dedicated SW Read-write small data area anchor

R14 Dedicated HW Return address for Interrupt

R15 Dedicated SW Return address for Sub-routine

R16 Dedicated HW Return address for Trap (Debugger)

R17 Dedicated HW/SW Return address for Exceptions HW, if
configured to support hardware
exceptions, else SW

R18 Dedicated SW Reserved for Assembler/Compiler
Temporaries

R19 Non-volatile SW Must be saved across function calls.
Callee-save

R20 Dedicated
or

Non-volatile

SW Reserved for storing a pointer to the
global offset table (GOT) in position
independent code (PIC). Non-volatile
in non-PIC code. Must be saved
across function calls. Callee-save.

R21-R31 Non-volatile SW Must be saved across function calls.
Callee-save.

RPC Special HW Program counter

RMSR Special HW Machine Status Register

Chapter 4: MicroBlaze Application Binary Interface

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 186Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=186

Table 92: Register Usage Conventions (cont'd)

Register Type Enforcement Purpose
REAR Special HW Exception Address Register

RESR Special HW Exception Status Register

RFSR Special HW Floating-Point Status Register

RBTR Special HW Branch Target Register

REDR Special HW Exception Data Register

RPID Special HW Process Identifier Register

RZPR Special HW Zone Protection Register

RTLBLO Special HW Translation Look-Aside Buffer Low
Register

RTLBHI Special HW Translation Look-Aside Buffer High
Register

RTLBX Special HW Translation Look-Aside Buffer Index
Register

RTLBSX Special HW Translation Look-Aside Buffer Search
Index

RPVR0-12 Special HW Processor Version Register 0 through
12

The architecture for MicroBlaze defines 32 general purpose registers (GPRs). These registers are
classified as volatile, non-volatile, and dedicated.

• The volatile registers (also known as caller-save) are used as temporaries and do not retain
values across the function calls. Registers R3 through R12 are volatile, of which R3 and R4 are
used for returning values to the caller function, if any. Registers R5 through R10 are used for
passing parameters between subroutines.

• Registers R19 through R31 retain their contents across function calls and are hence termed as
non-volatile registers (a.k.a callee-save). The callee function is expected to save those non-
volatile registers, which are being used. These are typically saved to the stack during the
prologue and then reloaded during the epilogue.

• Certain registers are used as dedicated registers and programmers are not expected to use
them for any other purpose.

○ Registers R14 through R17 are used for storing the return address from interrupts, sub-
routines, traps, and exceptions in that order. Subroutines are called using the branch and
link instruction, which saves the current Program Counter (PC) onto register R15.

○ Small data area pointers are used for accessing certain memory locations with 16- bit
immediate value. These areas are discussed in the memory model section of this document.
The read only small data area (SDA) anchor R2 (Read-Only) is used to access the constants
such as literals. The other SDA anchor R13 (Read-Write) is used for accessing the values in
the small data read-write section.

○ Register R1 stores the value of the stack pointer and is updated on entry and exit from
functions.

Chapter 4: MicroBlaze Application Binary Interface

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 187Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=187

○ Register R18 is used as a temporary register for assembler operations.

• MicroBlaze includes special purpose registers such as:

○ program counter (rpc)

○ machine status register (rmsr)

○ exception status register (resr)

○ exception address register (rear)

○ floating-point status register (rfsr), branch target register (rbtr)

○ exception data register (redr)

○ memory management registers (rpid, rzpr, rtlblo, rtlbhi, rtlbx, rtlbsx)

○ processor version registers (0-12)

These registers are not mapped directly to the register file; and hence, the usage of these
registers is different from the general purpose registers. The value of a special purpose registers
can be transferred to or from a general purpose register by using mts and mfs instructions
respectively.

Stack Convention
The stack conventions used by MicroBlaze are detailed in the following table.

The shaded area in the following table denotes a part of the stack frame for a caller function,
while the unshaded area indicates the callee frame function. The ABI conventions of the stack
frame define the protocol for passing parameters, preserving non-volatile register values, and
allocating space for the local variables in a function.

Functions that contain calls to other subroutines are called as non-leaf functions. These non-leaf
functions have to create a new stack frame area for its own use. When the program starts
executing, the stack pointer has the maximum value. As functions are called, the stack pointer is
decremented by the number of words required by every function for its stack frame. The stack
pointer of a caller function always has a higher value as compared to the callee function.

Chapter 4: MicroBlaze Application Binary Interface

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 188Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=188

Table 93: Stack Convention

High Address

Function Parameters for called sub-routine (Arg n .. Arg1)
(Optional: Maximum number of arguments required for any
called procedure from the current procedure).

Old Stack Pointer Link Register (R15)

Callee Saved Register (R31....R19)
(Optional: Only those registers which are used by the
current procedure are saved)

Local Variables for Current Procedure
(Optional: Present only if Locals defined in the procedure)

Functional Parameters (Arg n .. Arg 1)
(Optional: Maximum number of arguments required for any
called procedure from the current procedure)

New Stack Pointer Link Register

Low Address

Consider an example where Func1 calls Func2, which in turn calls Func3. The stack
representation at different instances is depicted in the following figure. After the call from Func 1
to Func 2, the value of the stack pointer (SP) is decremented. This value of SP is again
decremented to accommodate the stack frame for Func3. On return from Func 3 the value of the
stack pointer is increased to its original value in the function, Func 2.

Details of how the stack is maintained are shown in the following figure.

Figure 58: Stack Frame

Func 1

High Memory

SP

Func 1

SP

Func 2

Func 1

SP

Func 2

Func 3

Func 1

SP

Func 2

Low Memory
X19785-111717

Stack protection is available to ensure that the stack does not grow above the high limit or shrink
below the low limit. The Stack High Register (SHR) and Stack Low Register (SLR) are used to
enforce this, respectively. These registers are automatically initialized to the stack limits from
linker symbols by the crt0.o initialization file.

Enabling stack protection in hardware can be useful to detect erroneous program behavior due
to stack size issues, which can otherwise be very hard to debug.

Chapter 4: MicroBlaze Application Binary Interface

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 189Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=189

Calling Convention
The caller function passes parameters to the callee function using either the registers (R5
through R10) or on its own stack frame. The callee uses the stack area of the caller to store the
parameters passed to the callee.

See Table 91: Data Types in MicroBlaze Assembly Programs. The parameters for Func 2 are
stored either in the registers R5 through R10 or on the stack frame allocated for Func 1.

If Func 2 has more than six integer parameters, the first six parameters can be passed in registers
R5 through R10, whereas all subsequent parameters must be passed on the stack frame allocated
for Func 1, starting at offset SP + 28.

Should Func2 be a variable argument function (a variadic function) such as printf(), all
variable arguments are stored on the stack frame allocated by the caller.

Memory Model
The memory model for MicroBlaze classifies the data into four different parts: Small Data Area,
Data Area, Common Un-Initialized Area, and Literals or Constants.

Small Data Area
Global initialized variables which are small in size are stored in this area. The threshold for
deciding the size of the variable to be stored in the small data area is set to 8 bytes in the
MicroBlaze C compiler (mb-gcc), but this can be changed by giving a command line option to the
compiler. Details about this option are discussed in the “GNU Compiler Tools” chapter of the Vitis
Unified Software Platform Documentation: Embedded Software Development (UG1400). 64 kilobytes
of memory is allocated for the small data areas. The small data area is accessed using the read-
write small data area anchor (R13) and a 16-bit offset. Allocating small variables to this area
reduces the requirement of adding IMM instructions to the code for accessing global variables.
Any variable in the small data area can also be accessed using an absolute address.

Data Area
Comparatively large initialized variables are allocated to the data area, which can either be
accessed using the read-write SDA anchor R13 or using the absolute address, depending on the
command line option given to the compiler.

Chapter 4: MicroBlaze Application Binary Interface

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 190Send Feedback

https://docs.amd.com/access/sources/dita/map?Doc_Version=2024.1%20English&url=ug1400-vitis-embedded
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=190

Common Un-Initialized Area
Un-initialized global variables are allocated in the common area and can be accessed either using
the absolute address or using the read-write small data area anchor R13.

Literals or Constants
Constants are placed into the read-only small data area and are accessed using the read-only
small data area anchor R2.

The compiler generates appropriate global pointers to act as base pointers. The actual values of
the SDA anchors are decided by the linker, in the final linking stages. For more information on the
various sections of the memory see the “MicroBlaze Linker Scripts” section of the Vitis Unified
Software Platform Documentation: Embedded Software Development (UG1400).

The compiler generates appropriate sections, depending on the command line options. See the
“GNU Compiler Tools” chapter in the Vitis Unified Software Platform Documentation: Embedded
Software Development (UG1400) for more information about these options.

Interrupt, Break and Exception Handling
MicroBlaze assumes certain address locations for handling interrupts and exceptions as indicated
in the following table. At these locations, code is written to jump to the appropriate handlers.

Table 94: Interrupt and Exception Handling

On Hardware jumps to Software Labels
Start / Reset C_BASE_VECTORS + 0x0 _start

User exception C_BASE_VECTORS + 0x8 _exception_handler

Interrupt C_BASE_VECTORS + 0x101 _interrupt_handler

Break (HW/SW) C_BASE_VECTORS + 0x18 -

Hardware exception C_BASE_VECTORS + 0x20 _hw_exception_handler

Reserved C_BASE_VECTORS + 0x28 -
C_BASE_VECTORS + 0x4F

-

Notes:
1. With low-latency interrupt mode, the vector address is supplied by the Interrupt Controller.

The code expected at these locations is as shown below. The crt0.o initialization file is passed
by the mb-gcc compiler to the mb-ld linker for linking. This file sets the appropriate addresses of
the exception handlers.

Chapter 4: MicroBlaze Application Binary Interface

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 191Send Feedback

https://docs.amd.com/access/sources/dita/map?Doc_Version=2024.1%20English&url=ug1400-vitis-embedded
https://docs.amd.com/access/sources/dita/map?Doc_Version=2024.1%20English&url=ug1400-vitis-embedded
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=191

The following is code for passing control to Exception, Break and Interrupt handlers, assuming
the default C_BASE_VECTORS value of 0x00000000:

0x00: bri _start1
0x04: nop
0x08: imm high bits of address (user exception handler)
0x0c: bri _exception_handler
0x10: imm high bits of address (interrupt handler)
0x14: bri _interrupt_handler
0x18: imm high bits of address (break handler)
0x1c: bri low bits of address (break handler)
0x20: imm high bits of address (HW exception handler
0x24: bri _hw_exception_handler

With low-latency interrupt mode, control is directly passed to the interrupt handler for each
individual interrupt utilizing this mode. In this case, it is the responsibility of each handler to save
and restore used registers. The MicroBlaze C compiler (mb-gcc) attribute fast_interrupt is
available to allow this task to be performed by the compiler:

void interrupt_handler_name() __attribute__((fast_interrupt));

MicroBlaze allows exception and interrupt handler routines to be located at any address location
addressable using 32 bits.

• The user exception handler code starts with the label _exception_handler

• The hardware exception handler starts with _hw_exception_handler

• The interrupt handler code starts with the label _interrupt_handler for interrupts that do not
use low-latency handlers.

In the current MicroBlaze system, there are dummy routines for interrupt, break and user
exception handling, which you can change. In order to override these routines and link your own
interrupt and exception handlers, you must define the handler code with specific attributes.

The interrupt handler code must be defined with attribute interrupt_handler to ensure that
the compiler will generate code to save and restore used registers and emit an rtid instruction to
return from the handler:

void function_name() __attribute__((interrupt_handler));

The break handler code must be defined with attribute break_handler to ensure that the compiler
will generate code to save and restore used registers and emit an rtbd instruction to return from
the handler:

void function_name() __attribute__((break_handler));

For more details about the use and syntax of the interrupt handler attribute, please refer to the
GNU Compiler Tools chapter in the Vitis Unified Software Platform Documentation: Embedded
Software Development (UG1400).

Chapter 4: MicroBlaze Application Binary Interface

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 192Send Feedback

https://docs.amd.com/access/sources/dita/map?Doc_Version=2024.1%20English&url=ug1400-vitis-embedded
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=192

When software breakpoints are used in the Xilinx System Debugger (XSDB) tool or the AMD
Vitis™ Development Environment, the Break (HW/SW) address location is reserved for handling
the software breakpoint.

Reset Handling
After programming the FPGA, the MicroBlaze instruction and data caches are invalidated.
However, because hardware reset does not invalidate the instruction and data caches, this has to
be done by software before enabling the caches, to avoid using any stale data. With the
Standalone BSP, this can be achieved by the code below.

#include <xil_cache.h>

int main()
{
 Xil_ICacheInvalidate();
 Xil_ICacheEnable();
 Xil_DCacheInvalidate();
 Xil_DCacheEnable();

 ...
}

It is also possible to call these functions from a custom first stage initialization file, if startup
times are critical. See the Vitis Unified Software Platform Documentation: Embedded Software
Development (UG1400) for a detailed description of MicroBlaze initialization files.

ELF Format
The executable, object code and shared library format used by MicroBlaze tool chain is the
Executable and Linkable Format (ELF). This section describes the specific use of the ELF format
in the MicroBlaze architecture.

For further details on the format, see the Tool Interface Standard (TIS) Executable and Linking
Format (ELF) Specification.

File Header
The ELF header architecture-specific fields are listed in the following table, showing the values
for the three available formats: 32-bit big-endian, 32-bit little-endian and 64-bit little-endian.

In object file dumps, the formats are denoted elf32-microblaze, elf32-microblazeel, and elf64-
microblazeel respectively.

Chapter 4: MicroBlaze Application Binary Interface

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 193Send Feedback

https://docs.amd.com/access/sources/dita/map?Doc_Version=2024.1%20English&url=ug1400-vitis-embedded
http://refspecs.linuxbase.org/elf/elf.pdf
http://refspecs.linuxbase.org/elf/elf.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=193

Table 95: ELF Header

Field

32-bit big endian 32-bit little endian 64-bit little endian

C_DATA_SIZE = 32

C_ENDIANNESS = 0

C_DATA_SIZE = 32

C_ENDIANNESS = 1

C_DATA_SIZE = 64

C_ENDIANNESS = 1

e_ident[EL_CLASS] ELFCLASS32 (0x01) ELFCLASS32 (0x01) ELFCLASS64 (0x02)

e_ident[EL_DATA] ELFDATA2MSB (0x02) ELFDATA2LSB (0x01) ELFDATA2LSB (0x01)

e_machine EM_MICROBLAZE (189 = 0x00bd)

e_entry C_BASE_VECTORS

e_flags 0x00000000

Sections
The architecture does not define any special section indexes, types or attribute flags.

Sections containing code must be at least 32-bit aligned, and sections containing data must be at
least 32-bit aligned with 32-bit formats or at least 64-bit aligned with 64-bit format.

MicroBlaze special sections are listed in the following table.

Table 96: Special Sections

Name Type Attributes
.vectors.reset SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.vectors.sw_exception SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.vectors.interrupt SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.vectors.hw_exception SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

Relocations
Relocation information is used by linkers in order to bind symbols and addresses that could not
be determined when the initial object was generated.

Relocation entries describe how to alter the instruction and data relocation fields Relocations
applied to executable or shared object files are similar and accomplish the same result.

All relocations are listed and described in the following table, including the operation performed
to compute the value of the relocation.

Table 97: Relocation Entries

Code Name Description Operation
1 R_MICROBLAZE_NONE This relocation does nothing. none

Chapter 4: MicroBlaze Application Binary Interface

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 194Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=194

Table 97: Relocation Entries (cont'd)

Code Name Description Operation
2 R_MICROBLAZE_32 A standard 32 bit relocation. S+A

3 R_MICROBLAZE_32_PCREL A standard PCREL 32 bit
relocation.

S+A-P

4 R_MICROBLAZE_64_PCREL A 64 bit PCREL relocation. Table-
entry only used for 64-bit
implementation.

(S+A-P)&0xFFFF
(#imm)

5 R_MICROBLAZE_32_PCREL_LO The low half of a PCREL 32 bit
relocation.

(S+A-P)&0xFFFF

6 R_MICROBLAZE_64 A 64 bit relocation. Table entry
only used for 64-bit
implementation.

(S+A)&0xFFFF (#imm)

7 R_MICROBLAZE_32_LO The low half of a 32 bit
relocation.

(S+A)&0xFFFF

8 R_MICROBLAZE_SRO32 Read-only small data section
relocation.

(S+A -_SDA_BASE_)

9 R_MICROBLAZE_SRW32 Read-write small data area
relocation.

(S+A-_SDA_BASE_)

10 R_MICROBLAZE_64_NONE This relocation does nothing.
Used for relaxation.

none

11 R_MICROBLAZE_32_SYM_OP_SYM Symbol Op Symbol relocation. none

12 R_MICROBLAZE_GNU_VTINHERIT GNU extension to record C++
vtable hierarchy.

13 R_MICROBLAZE_GNU_VTENTRY GNU extension to record C++
vtable member usage.

14 R_MICROBLAZE_GOTPC_64 A 64 bit GOTPC relocation.
Table-entry only used for 64-bit
implementation.

G+A–P (#imm)

15 R_MICROBLAZE_GOT_64 A 64 bit GOT relocation. Table-
entry only used for 64-bit
implementation.

G+A (#imm)

16 R_MICROBLAZE_PLT_64 A 64 bit PLT relocation. Table-
entry only used for 64-bit
implementation.

L+A (#imm)

17 R_MICROBLAZE_REL Table-entry not used. ((B + A)>>16) & 0xFFFF

18 R_MICROBLAZE_JUMP_SLOT Table-entry not used. (S >> 16) & 0xFFFF

19 R_MICROBLAZE_GLOB_DAT Table-entry not used. (S >> 16) & 0xFFFF

20 R_MICROBLAZE_GOTOFF_64 A 64 bit GOT relative relocation. (S+A-GOT)&0xFFFF

21 R_MICROBLAZE_GOTOFF_32 A 32 bit GOT relative relocation. (S+A-GOT)&0xFFFF

22 R_MICROBLAZE_COPY COPY relocation. none

23 R_MICROBLAZE_TLS TLS relocations for TLS. none

24 R_MICROBLAZE_TLSGD TLSGD relocations for TLS. @got@tlsgd

25 R_MICROBLAZE_TLSLD TLSLD relocations for TLS. @got@tlsld

26 R_MICROBLAZE_TLSDTPMOD32 Computes the load module. @got@dtpmod

27 R_MICROBLAZE_TLSDTPREL32 Computes a dtv-relative
displacement.

@got@dtprel

28 R_MICROBLAZE_TLSDTPREL64 Computes a dtv-relative
displacement.

@got@dtprel

Chapter 4: MicroBlaze Application Binary Interface

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 195Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=195

Table 97: Relocation Entries (cont'd)

Code Name Description Operation
29 R_MICROBLAZE_TLSGOTTPREL32 Computes a tp-relative

displacement.
@got@prel

30 R_MICROBLAZE_TLSTPREL32 Computes a tp-relative
displacement.

@got@prel

31 R_MICROBLAZE_32_NONE Standard 32-bit relocation. none

The symbol nomenclature and relocation calculations with thread-local symbols used in the
relocation entries table are explained in the following table.

Table 98: Symbol Notation

Symbol Meaning
A The addend used to compute the value of the relocatable field.

B The base address at which a shared object has been loaded into memory during execution.
Generally, a shared object file is built with a 0 base virtual address, but the execution
address will be different.

G The offset into the global offset table at which the address of the relocation entry’s symbol
will reside during execution.

GOT The address of the global offset table.

L The place (section offset or address) of the procedure linkage table entry for a symbol. A
procedure linkage table entry redirects a function call to the proper destination. The link
editor builds the initial procedure linkage table, and the dynamic linker modifies the entries
during execution.

P The place (section offset or address) of the storage unit being relocated (computed using
r_offset).

S The value of the symbol whose index resides in the relocation entry.

@dtpmod Computes the load module index of the load module that contain the definition of a symbol.
The addend, if present, is ignored

@dtprel Computes a dtv-relative displacement, the difference between the value of S + A and the
base address of the thread-local storage block that contains the definition of the symbol,
minus 0x8000.

@got@tlsgd Allocates entries in the GOT to hold a tls_index structure, with values @dtpmod and @dtprel,
and computes the offset to the first entry relative to the TOC base.

@got@tlsld Allocates entries in the GOT to hold a tls_index structure, with values @dtpmod and zero,
and computes the offset to the first entry relative to the TOC base.

@got@dtpmod Computes the load module index of the load module that contains the definition of its TLS
symbol.

@got@dtprel Computes a dtv-relative displacement, the difference between the value of symbol + add
and the base address of the thread-local storage block that contains the definition of the
symbol, minus 0x8000. Used for initializing GOT.

@got@prel Computes a tp-relative displacement, the difference between the value of symbol + add and
the value of the thread pointer (r13).

#imm Inserts imm instruction if the immediate value is greater than 16 bits in the instruction.

Chapter 4: MicroBlaze Application Binary Interface

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 196Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=196

Chapter 5

MicroBlaze Instruction Set
Architecture

Introduction
This chapter provides a detailed guide to the Instruction Set Architecture of the MicroBlaze™
processor.

Notation
The symbols used throughout this chapter are defined in the following tables.

Table 99: Register Name Notation

Register Name Mode Meaning
rD 32-bit Destination register r0 - r31, 32 bits:

Entire register assigned instruction result

64-bit Destination register r0 - r31, 64 bits:
32 least significant bits assigned instruction result
32 most significant bits cleared to 0

rA
rB

32-bit Source register r0 - r31, 32 bits:
Entire register used as instruction operand

64-bit Source register r0 - r31, 64 bits:
32 least significant bits used as instruction operand
32 most significant bits ignored

rDL 64-bit Destination register r0 - r31, 64 bits:
Entire register assigned instruction result

rALrBL 64-bit Source register r0 - r31, 64 bits:
Entire register used as instruction operand

rDX 32-bit
64-bit

Destination register r0 - r31:
Entire register assigned instruction result

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 197Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=197

Table 99: Register Name Notation (cont'd)

Register Name Mode Meaning
rAXrBX 32-bit Source register r0 - r31, 32 bits:

Entire register used as instruction operand

64-bit Source register r0 - r31, 64 bits:
Entire register used as instruction operand

Table 100: Symbol Notation

Symbol Meaning
+ Add

- Subtract

× Multiply

/ Divide

˄ Bitwise logical AND

˅ Bitwise logical OR

⊕ Bitwise logical XOR

x Bitwise logical complement of x

← Assignment

>> Right shift

<< Left shift

rx Register x

x[i] Bit i in register x

x[i:j] Bits i through j in register x

= Equal comparison

≠ Not equal comparison

> Greater than comparison

>= Greater than or equal comparison

< Less than comparison

<= Less than or equal comparison

| Signal choice

sext(x) Sign-extend x

Mem(x) Memory location at address x

FSLx AXI4-Stream interface x

LSW(x) Least Significant Word of x

isDnz(x) Floating-point: true if x is denormalized

isInfinite(x) Floating-point: true if x is +¥ or -¥

isPosInfinite(x) Floating-point: true if x is +¥

isNegInfinite(x) Floating-point: true if x -¥

isNaN(x) Floating-point: true if x is a quiet or signaling NaN

isZero(x) Floating-point: true if x is +0 or -0

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 198Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=198

Table 100: Symbol Notation (cont'd)

Symbol Meaning
isQuietNaN(x) Floating-point: true if x is a quiet NaN

isSigNaN(x) Floating-point: true if x is a signaling NaN

signZero(x) Floating-point: return +0 for x > 0, and -0 if x < 0

signInfinite(x) Floating-point: return +¥ for x > 0, and -¥ if x < 0

Formats
MicroBlaze uses two instruction formats: Type A and Type B.

Type A

Type A is used for register-register instructions. It contains the opcode, one destination and two
source registers.

Table 101: Type A Instruction Formats

Opcode Destination
Reg Source Reg A Source Reg B 0 0 0 0 0 0 0 0 0 0 0

0 6 11 16 21 31

Type B

Type B is used for register-immediate instructions. It contains the opcode, one destination and
one source registers, and a source 16-bit immediate value.

Table 102: Type B Instruction Formats

Opcode Destination
Reg Source Reg A Immediate Value

0 6 11 16 31

MicroBlaze 32-bit Instructions
This section provides descriptions of MicroBlaze instructions. Instructions are listed in
alphabetical order. For each instruction the mnemonic, encoding, a description, pseudocode of its
semantics, and a list of registers that it modifies are provided.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 199Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=199

All instructions included in the instruction set for 32-bit MicroBlaze are defined in this section.
These instructions are also available as part of the extended instruction set for 64-bit
MicroBlaze.

add
Figure 59: add

00 0 0 000 0 K0 C

add rD, rA, rB Add
Add with Carry
Add and Keep Carry
Add with Carry and Keep Carry

rD, rA, rB
rD, rA, rB
rD, rA, rB

addc
addk
addkc

rArD rB

Arithmetic Add

0 6 11 16 21 31
00 0 00 0

Description

The sum of the contents of registers rA and rB, is placed into register rD.

Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic addk. Bit 4 of
the instruction (labeled as C in the figure) is set to one for the mnemonic addc. Both bits are set
to one for the mnemonic addkc.

When an add instruction has bit 3 set (addk, addkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (add, addc), then
the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addc, addkc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (add, addk), the content of the
carry flag does not affect the execution of the instruction (providing a normal addition).

Pseudocode

if C = 0 then
 (rD) ¬ (rA) + (rB)
else
 (rD) ¬ (rA) + (rB) + MSR[C]
if K = 0 then
 MSR[C] ¬ CarryOut

Registers Altered

• rD

• MSR[C]

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 200Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=200

Latency

1 cycle

Notes

• The C bit in the instruction opcode is not the same as the carry bit in the MSR.

• The “add r0, r0, r0” (= 0x00000000) instruction is never used by the compiler and usually
indicates uninitialized memory. If you are using illegal instruction exceptions you can trap
these instructions by setting the MicroBlaze parameter C_OPCODE_0x0_ILLEGAL=1.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 201Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=201

addi
Figure 60: addi

00 0 K0 C

addi rD, rA, IMM Add Immediate
Add Immediate with Carry
Add immediate and Keep Carry
Add Immediate with Carry and Keep Carry

rD, rA, IMM
rD, rA, IMM
rD, rA, IMM

addic
addik
addikc

rArD IMM

Arithmetic Add Immediate

0 6 11 16 31

Description

The sum of the contents of registers rA and the value in the IMM field, sign-extended to 32 bits,
is placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the
mnemonic addik. Bit 4 of the instruction (labeled as C in the figure) is set to one for the
mnemonic addic. Both bits are set to one for the mnemonic addikc.

When an addi instruction has bit 3 set (addik, addikc), the carry flag will keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addi, addic), then
the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addic, addikc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (addi, addik), the content of the
carry flag does not affect the execution of the instruction (providing a normal addition).

Pseudocode

if C = 0 then
 (rD) ¬ (rA) + sext(IMM)
else
 (rD) ¬ (rA) + sext(IMM) + MSR[C]
if K = 0 then
 MSR[C] ¬ CarryOut

Registers Altered

• rD

• MSR[C]

Latency

1 cycle

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 202Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=202

Notes

• The C bit in the instruction opcode is not the same as the carry bit in the MSR.

• By default, Type B Instructions take the 16-bit IMM field value and sign extend it to 32 bits to
use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See the instruction imm for details on using 32-bit
immediate values.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 203Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=203

and
Figure 61: and

00 0 0 010 0 01 0

rD, rA, rBand

rArD rB

Logical AND

0 6 11 16 21 31
00 0 00 0

Description

The contents of register rA are ANDed with the contents of register rB; the result is placed into
register rD.

Pseudocode

(rD) ← (rA) ˄ (rB)

Registers Altered

rD

Latency

1 cycle

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 204Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=204

andi
Figure 62: andi

10 1 01 0

rD, rA, IMMandi

rArD IMM

Logical AND with Immediate

0 6 11 16 31

Description

The contents of register rA are ANDed with the value of the IMM field, sign-extended to 32 bits;
the result is placed into register rD.

Pseudocode

(rD) ← (rA) ˄ sext(IMM)

Registers Altered

• rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See the instruction imm for details on using 32-bit
immediate values.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 205Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=205

andn
Figure 63: andn

00 0 0 010 0 01 1

rD, rA, rBandn

rArD rB

Logical AND NOT

0 6 11 16 21 31
00 0 00 0

Description

The contents of register rA are ANDed with the logical complement of the contents of register
rB; the result is placed into register rD.

Pseudocode

(rD) ← (rA) ˄ (rB)

Registers Altered

• rD

Latency

1 cycle

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 206Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=206

andni
Figure 64: andni

10 1 01 1

rD, rA, IMMandni

rArD IMM

Logical AND NOT with Immediate

0 6 11 16 31

Description

The IMM field is sign-extended to 32 bits. The contents of register rA are ANDed with the logical
complement of the extended IMM field; the result is placed into register rD.

Pseudocode

(rD) ← (rA) (sext(IMM))

Registers Altered

• rD

Latency

1 cycle

Note

By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits
to use as the immediate operand. This behavior can be overridden by preceding the Type B
instruction with an imm instruction. See the instruction imm for details on using 32-bit
immediate values.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 207Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=207

beq
Figure 65: beq

00 0 0 010 0 11 1

rA, rBbeq

rA rB

Branch if Equal

0 6 11 16 21 31
00 0 00 0

Branch if Equal
rA, rBbeqd Branch if Equal with Delay

0 0 0D 0

Description

Branch if rA is equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic beqd will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA = 0 then
 PC ← PC + rB
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 208Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=208

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 209Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=209

beqi
Figure 66: beqi

10 1 11 1

rA, IMMbeqi

rA IMM

Branch Immediate if Equal

0 6 11 16 31

Branch Immediate if Equal
rA, IMMbeqid Branch Immediate if Equal with Delay

0 0 0D 0

Description

Branch if rA is equal to 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic beqid will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA = 0 then
 PC ← PC + sext(IMM)
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken, or successful branch prediction occurs)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2, or a branch
prediction mispredict occurs with C_AREA_OPTIMIZED=0)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict occurs
with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 210Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=210

Notes

• By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the Type
B instruction with an imm instruction. See the instruction imm for details on using 32-bit
immediate values.

• A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been
completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 211Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=211

bge
Figure 67: bge

00 0 0 010 0 11 1

rA, rBbge

rA rB

Branch if Greater or Equal

0 6 11 16 21 31
00 0 00 0

Branch if Greater or Equal
rA, rBbegd Branch if Greater or Equal with Delay

0 1 0D 1

Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of rB. The target
of the branch will be the instruction at address PC + rB.

The mnemonic bged will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA >= 0 then
 PC ← PC + rB
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 212Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=212

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 213Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=213

bgei
Figure 68: bgei

10 1 11 1

rA, IMMbgei

rA IMM

Branch Immediate if Greater or Equal

0 6 11 16 31

Branch Immediate if Greater or Equal
rA, IMMbegid Branch Immediate if Greater or Equal with Delay

0 1 0D 1

Description

Branch if rA is greater or equal to 0, to the instruction located in the offset value of IMM. The
target of the branch will be the instruction at address PC + IMM.

The mnemonic bgeid will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA >= 0 then
 PC ← PC + sext(IMM)
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken, or successful branch prediction occurs)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2, or a branch
prediction mispredict occurs with C_AREA_OPTIMIZED=0)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict occurs
with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 214Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=214

Notes

• By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the Type
B instruction with an imm instruction. See the instruction imm for details on using 32-bit
immediate values.

• A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been
completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 215Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=215

bgt
Figure 69: bgt

00 0 0 010 0 11 1

rA, rBbgt

rA rB

Branch if Greater Than

0 6 11 16 21 31
00 0 00 0

Branch if Greater Than
rA, rBbgtd Branch if Greater Than with Delay

0 1 0D 0

Description

Branch if rA is greater than 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bgtd will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA > 0 then
 PC ← PC + rB
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 216Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=216

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 217Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=217

bgti
Figure 70: bgti

10 1 11 1

rA, IMMbgti

rA IMM

Branch Immediate if Greater Than

0 6 11 16 31

Branch Immediate if Greater Than
rA, IMMbgtid Branch Immediate if Greater Than with Delay

0 1 0D 0

Description

Branch if rA is greater than 0, to the instruction located in the offset value of IMM. The target of
the branch will be the instruction at address PC + IMM.

The mnemonic bgtid will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA > 0 then
 PC ← PC + sext(IMM)
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken, or successful branch prediction occurs)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2, or a branch
prediction mispredict occurs with C_AREA_OPTIMIZED=0)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict occurs
with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 218Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=218

Notes

• By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the Type
B instruction with an imm instruction. See the instruction imm for details on using 32-bit
immediate values.

• A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been
completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 219Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=219

ble
Figure 71: ble

00 0 0 010 0 11 1

rA, rBble

rA rB

Branch if Less or Equal

0 6 11 16 21 31
00 0 00 0

Branch if Less or Equal
rA, rBbled Branch if Less or Equal with Delay

0 0 1D 1

Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of rB. The target of
the branch will be the instruction at address PC + rB.

The mnemonic bled will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA <= 0 then
 PC ← PC + rB
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 220Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=220

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 221Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=221

blei
Figure 72: blei

10 1 11 1

rA, IMMblei

rA IMM

Branch Immediate if Less or Equal

0 6 11 16 31

Branch Immediate if Less or Equal
rA, IMMbleid Branch Immediate if Less or Equal with Delay

0 0 1D 1

Description

Branch if rA is less or equal to 0, to the instruction located in the offset value of IMM. The target
of the branch will be the instruction at address PC + IMM.

The mnemonic bleid will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA <= 0 then
 PC ← PC + sext(IMM)
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken, or successful branch prediction occurs)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2, or a branch
prediction mispredict occurs with C_AREA_OPTIMIZED=0)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict occurs
with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 222Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=222

Notes

• By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the Type
B instruction with an imm instruction. See the instruction imm for details on using 32-bit
immediate values.

• A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been
completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 223Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=223

blt
Figure 73: blt

00 0 0 010 0 11 1

rA, rBblt

rA rB

Branch if Less Than

0 6 11 16 21 31
00 0 00 0

Branch if Less Than
rA, rBbltd Branch if Less Than with Delay

0 0 1D 0

Description

Branch if rA is less than 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bltd will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA < 0 then
 PC ← PC + rB
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 224Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=224

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 225Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=225

blti
Figure 74: blti

10 1 11 1

rA, IMMblti

rA IMM

Branch Immediate if Less Than

0 6 11 16 31

Branch Immediate if Less Than
rA, IMMbltid Branch Immediate if Less Than with Delay

0 0 1D 0

Description

Branch if rA is less than 0, to the instruction located in the offset value of IMM. The target of the
branch will be the instruction at address PC + IMM.

The mnemonic bltid will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA < 0 then
 PC ← PC + sext(IMM)
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken, or successful branch prediction occurs)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2, or a branch
prediction mispredict occurs with C_AREA_OPTIMIZED=0)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict occurs
with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 226Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=226

Notes

• By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the Type
B instruction with an imm instruction. See the instruction imm for details on using 32-bit
immediate values.

• A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been
completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 227Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=227

bne
Figure 75: bne

00 0 0 010 0 11 1

rA, rBbne

rA rB

Branch if Not Equal

0 6 11 16 21 31
00 0 00 0

Branch if Not Equal
rA, rBbned Branch if Not Equal with Delay

0 0 0D 1

Description

Branch if rA not equal to 0, to the instruction located in the offset value of rB. The target of the
branch will be the instruction at address PC + rB.

The mnemonic bned will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA ≠ 0 then
 PC ← PC + rB
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 228Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=228

Note

A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts and
external hardware breaks are deferred until after the delay slot branch has been completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 229Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=229

bnei
Figure 76: bnei

10 1 11 1

rA, IMMbnei

rA IMM

Branch Immediate if Not Equal

0 6 11 16 31

Branch Immediate if Not Equal
rA, IMMbneid Branch Immediate if Not Equal with Delay

0 0 0D 1

Description

Branch if rA not equal to 0, to the instruction located in the offset value of IMM. The target of
the branch will be the instruction at address PC + IMM.

The mnemonic bneid will set the D bit. The D bit determines whether there is a branch delay slot
or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Pseudocode

If rA ¹ 0 then
 PC ← PC + sext(IMM)
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken, or successful branch prediction occurs)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2, or a branch
prediction mispredict occurs with C_AREA_OPTIMIZED=0)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict occurs
with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 230Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=230

Notes

• By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the Type
B instruction with an imm instruction. See the instruction imm for details on using 32-bit
immediate values.

• A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been
completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 231Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=231

br
Figure 77: br

00 0 0 000 0 11 1

rBbr

rB

Unconditional Branch

0 6 11 16 21 31
00 0 00 0

Branch
rBbra Branch Absolute
rBbrd Branch with Delay
rBbrad Branch Absolute with Delay
rD, rBbrld Branch and Link with Delay
rD, rBbrald Branch Absolute and Link with Delay

rD A L 0D 0

Description

Branch to the instruction located at address determined by rB.

The mnemonics brld and brald will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics bra, brad and brald will set the A bit. If the A bit is set, it means that the branch is
to an absolute value and the target is the value in rB, otherwise, it is a relative branch and the
target will be PC + rB.

The mnemonics brd, brad, brld and brald will set the D bit. The D bit determines whether there is
a branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction.

If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after
the branch is the target instruction.

Pseudocode

if L = 1 then
 (rD) ← PC
if A = 1 then
 PC ← (rB)
else
 PC ← PC + (rB)
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• rD

• PC

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 232Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=232

Latency

• 2 cycles (if the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if the D bit is not set with C_AREA_OPTIMIZED≠2)

• 6 cycles (if the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if the D bit is not set with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

The instructions brl and bral are not available. A delay slot must not be used by the following:
imm, branch, or break instructions. Interrupts and external hardware breaks are deferred until
after the delay slot branch has been completed.

With 64-bit mode, the absolute branch instructions bra, brad, and brald use the entire 64-bit
register rBL, brald uses the entire 64-bit register rDL, and the instructions can be used for
extended address branches.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 233Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=233

bri
Figure 78: bri

00 1 11 1

IMMbri

IMM

Unconditional Branch Immediate

0 6 11 16 31

Branch Immediate
IMMbrai Branch Absolute Immediate
IMMbrid Branch Immediate with Delay
IMMbraid Branch Absolute Immediate with Delay
rD, IMMbrlid Branch and Link Immediate with Delay
rD, IMMbralid Branch Absolute and Link Immediate with Delay

rD A L 0D 0

Description

Branch to the instruction located at address determined by IMM, sign-extended to 32 bits.

The mnemonics brlid and bralid will set the L bit. If the L bit is set, linking will be performed. The
current value of PC will be stored in rD.

The mnemonics brai, braid and bralid will set the A bit. If the A bit is set, it means that the branch
is to an absolute value and the target is the value in IMM, otherwise, it is a relative branch and
the target will be PC + IMM.

The mnemonics brid, braid, brlid and bralid will set the D bit. The D bit determines whether there
is a branch delay slot or not. If the D bit is set, it means that there is a delay slot and the
instruction following the branch (that is, in the branch delay slot) is allowed to complete
execution before executing the target instruction. If the D bit is not set, it means that there is no
delay slot, so the instruction to be executed after the branch is the target instruction.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and
"bralid rD, C_BASE_VECTORS+0x8" is used to perform a User Vector Exception, the
Machine Status Register bits User Mode and Virtual Mode are cleared.

Pseudocode

if L = 1 then
 (rD) ← PC
if A = 1 then
 PC ← sext(IMM)
else
 PC ← PC + sext(IMM)
if D = 1 then
 allow following instruction to complete execution

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 234Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=234

if D = 1 and A = 1 and L = 1 and IMM = C_BASE_VECTORS+0x8 then
 MSR[UMS] ← MSR[UM]
 MSR[VMS] ← MSR[VM]
 MSR[UM] ← 0
 MSR[VM] ← 0

Registers Altered

• rD

• PC

• MSR[UM], MSR[VM]

Latency

• 1 cycle (if successful branch prediction occurs)

• 2 cycles (if the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if the D bit is not set with C_AREA_OPTIMIZED≠2, or a branch prediction mispredict
occurs with C_AREA_OPTIMIZED=0)

• 6 cycles (if the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if the D bit is not set, or if branch prediction mispredict occurs with
C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• The instructions brli and brali are not available.

• By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to use as
the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction imm for details on using immediate values.

• A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been
completed.

• With 64-bit mode, the absolute branch instructions brai, braid, and bralid can also be
preceded by an imml instruction, bralid uses the entire 64-bit registers rDL, and the
instructions can be used for extended address branches.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 235Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=235

brk
Figure 79: brk

00 0 0 000 0 11 1 rB

Break

0 6 11 16 21 31
00 0 00 0

rD, rBbrk

1 1 00 0rD

Description

Branch and link to the instruction located at address value in rB. The current value of PC will be
stored in rD. The BIP flag in the MSR will be set, and the reservation bit will be cleared.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

Pseudocode

if MSR[UM] = 1 then
 ESR[EC] ← 00111
else
 (rD) ← PC
 PC ← (rB)
 MSR[BIP] ← 1
 Reservation ← 0

Registers Altered

• rD

• PC

• MSR[BIP]

• ESR[EC], in case a privileged instruction exception is generated

Latency

• 3 cycles (with C_AREA_OPTIMIZED≠2)

• 7 cycles (with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 236Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=236

Note

With 64-bit mode, the instruction uses the entire 64-bit registers rBL and rDL, and can be used
for extended address branches.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 237Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=237

brki
Figure 80: brki

00 1 11 1

rD, IMMbrki

rD IMM

Break Immediate

0 6 11 16 31
1 1 00 0

Description

Branch and link to the instruction located at address value in IMM, sign-extended to 32 bits. The
current value of PC will be stored in rD. The BIP flag in the MSR will be set, except in case of a
Software Break, and the reservation bit will be cleared.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged,
except as a special case when "brki rD, C_BASE_VECTORS+0x8" or "brki rD,
C_BASE_VECTORS+0x18" is used to perform a Software Break. This means that, apart from the
special case, if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged Instruction
exception occurs.

As a special case, when MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and "brki
rD, C_BASE_VECTORS+0x8" or "brki rD, C_BASE_VECTORS+0x18" is used to perform a
Software Break, the Machine Status Register bits User Mode and Virtual Mode are cleared.

Pseudocode

if MSR[UM] and IMM ≠ C_BASE_VECTORS+0x8 and IMM ≠ C_BASE_VECTORS+0x18 then
 ESR[EC] ← 00111
else
 (rD) ← PC
 PC ← sext(IMM)
 if IMM ¹ 0x18 then
 MSR[BIP] ← 1
 Reservation ← 0
 if IMM = C_BASE_VECTORS+0x8 or IMM = C_BASE_VECTORS+0x18 then
 MSR[UMS] ← MSR[UM]
 MSR[UM] ← 0
MSR[VMS] ← MSR[VM]
MSR[VM] ← 0

Registers Altered

• rD, unless an exception is generated, in which case the register is unchanged

• PC

• MSR[BIP], MSR[UM], MSR[VM]

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 238Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=238

• ESR[EC], in case a privileged instruction exception is generated

Latency

• 3 cycles (with C_AREA_OPTIMIZED≠2)

• 7 cycles (with C_AREA_OPTIMIZED = 2)

Notes

• By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to use as
the immediate operand. This behavior can be overridden by preceding the Type B instruction
with an imm instruction. See the instruction imm for details on using immediate values.

• As a special case, the imm instruction does not override a Software Break “brki rD, 0x18”
when C_DEBUG_ENABLED. is greater than zero, irrespective of the value of
C_BASE_VECTORS, to allow Software Break after an imm instruction.

• With 64-bit mode, the instruction can also be preceded by an imml instruction, uses the entire
64-bit register rDL, and can be used for extended address branches.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 239Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=239

bs
Figure 81: bs

00 0 0 011 0 00 0

rD, rA, rBbsrl

rB

Barrel Shift

0 6 11 16 21 31
0T 0 0S 0

Barrel Shift Right Logical
rD, rA, rBbsra Barrel Shift Right Arithmetical
rD, rA, rBbsll Barrel Shift Left Logical

rD rA

Description

Shifts the contents of register rA by the amount specified in register rB and puts the result in
register rD.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left.
The mnemonics bsrl and bsra clear the S bit and the shift is done to the right.

The mnemonic bsra will set the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrl and bsll clear the T bit and the shift performed is Logical.

Pseudocode

if S = 1 then
 (rD) ← (rA) << (rB)[27:31]
else
 if T = 1 then
 if ((rB)[27:31]) ≠ 0 then
 (rD)[0:(rB)[27:31]-1] ← (rA)[0]
 (rD)[(rB)[27:31]:31] ← (rA) >> (rB)[27:31]
 else
 (rD) ← (rA)
 else
 (rD) ← (rA) >> (rB)[27:31]

Registers Altered

• rD

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 240Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=240

Note

These instructions are optional. To use them, MicroBlaze has to be configured to use barrel shift
instructions (C_USE_BARREL=1).

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 241Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=241

bsi
Figure 82: bsi

11 1 00 0

rD, rA, IMMbsrli

Barrel Shift Immediate

0 6 11 16 21 31
0T 0 0S 0

Barrel Shift Right Logical Immediate
rD, rA, IMMbsrai Barrel Shift Right Arithmetic Immediate
rD, rA, IMMbslli Barrel Shift Left Logical Immediate

rD rA

rD, rA, IMMW, IMMSbsefi Barrel Shift Right Logical Immediate
rD, rA, Width1, IMMSbsifi Barrel Shift Right Arithmetic Immediate

1. Width = IMMW-IMMS+1

0 0 00 0 IMM
27

011 1 00 0
0 6 11 16 21 31

rD rA E 0 0I 0 IMM
27

IMMW

25

Description

The first three instructions shift the contents of register rA by the amount specified by IMM and
put the result in register rD.

Barrel Shift Extract Field extracts a bit field from register rA and puts the result in register rD. The
bit field width is specified by IMMW and the shift amount is specified by IMMS. The bit field
width must be in the range 1 - 31, and the condition IMMW + IMMS≤32 must apply.

Barrel Shift Insert Field inserts a bit field from register rA into register rD, modifying the existing
value in register rD. The bit field width is defined by IMMW - IMMS + 1, and the shift amount is
specified by IMMS. The condition IMMW ≥ IMMS must apply.

The mnemonic bslli sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left.
The mnemonics bsrli and bsrai clear the S bit and the shift is done to the right.

The mnemonic bsrai sets the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bsrli and bslli clear the T bit and the shift performed is Logical.

The mnemonic bsefi sets the E bit (Extract bit). In this case the S and T bits are not used.

The mnemonic bsifi sets the I bit (Insert bit). In this case the S and T bits are not used.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 242Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=242

Pseudocode

if E = 1 then
 (rD)[0:31-IMMW] ← 0
 (rD)[32-IMMW:31] ← (rA) >> IMMS
else if I = 1 then
 mask ← (0xffffffff << (IMMW + 1)) ⊕ (0xffffffff << IMMS)
 (rD) ← ((rA) << IMMS) ˄ mask) ˅ ((rD) ˄ mask)
else if S = 1 then
 (rD) ← (rA) << IMM
else if T = 1 then
 if IMM ≠ 0 then
 (rD)[0:IMM-1] ← (rA)[0]
 (rD)[IMM:31] ← (rA) >> IMM
 else
 (rD) ← (rA)
else
 (rD) ← (rA) >> IMM

Registers Altered

• rD

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Notes

• These are not Type B Instructions. There is no effect from a preceding imm instruction.

• These instructions are optional. To use them, MicroBlaze has to be configured to use barrel
shift instructions (C_USE_BARREL=1).

• The assembler code "bsifi rD, rA, width, shift" denotes the actual bit field width, not the IMMW
field, which is computed by IMMW = shift + width - 1.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 243Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=243

clz
Figure 83: clz

00 0 0 000 0 11 0

rD, rA,clz

rArD

Count Leading Zeroes

0 6 11 16 21 31
10 0 10 10 0 00 0

Count Leading Zeroes in rA

Description

This instruction counts the number of leading zeros in register rA starting from the most
significant bit. The result is a number between 0 and 32, stored in register rD.

The result in rD is 32 when rA is 0, and it is 0 if rA is 0xFFFFFFFF.

Pseudocode

n ← 0
while (rA)[n] = 0
 n ← n + 1
(rD) ← n

Registers Altered

• rD

Latency

1 cycle

Note

This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 244Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=244

cmp
Figure 84: cmp

10 0 0 U10 0 10 0

rD, rA, rBcmp

rA rB

Integer Compare

0 6 11 16 21 31
00 0 00 0

Compare rB with rA (signed)
rD, rA, rBcmpu Compare rB with rA (unsigned)

rD

Description

The contents of register rA are subtracted from the contents of register rB and the result is
placed into register rD.

The MSB bit of rD is adjusted to shown true relation between rA and rB. If the U bit is set, rA and
rB is considered unsigned values. If the U bit is clear, rA and rB is considered signed values.

Pseudocode

(rD) ← (rB) + (rA) + 1
(rD)(MSB) ← (rA) > (rB)

Registers Altered

• rD

Latency

1 cycle

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 245Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=245

fadd
Figure 85: fadd

0 0 00 00 0 0 001 0 10 1

rD, rA, rBfadd

rArD

Floating-Point Arithmetic Add

0 6 11 16 21 31
00rB

Add

Description

The floating-point sum of registers rA and rB, is placed into register rD.

Pseudocode

if isDnz(rA) or isDnz(rB) then
 (rD) ← 0xFFC00000
 FSR[DO] ← 1
 ESR[EC] ← 00110
else if isSigNaN(rA) or isSigNaN(rB)or
 (isPosInfinite(rA) and isNegInfinite(rB)) or
 (isNegInfinite(rA) and isPosInfinite(rB))) then
 (rD) ← 0xFFC00000
 FSR[IO] ← 1
 ESR[EC] ← 00110
else if isQuietNaN(rA) or isQuietNaN(rB) then
 (rD) ← 0xFFC00000
else if isDnz((rA)+(rB)) then
 (rD) ← signZero((rA)+(rB))
 FSR[UF] ← 1
 ESR[EC] ← 00110
else if isNaN((rA)+(rB)) then
 (rD) ← signInfinite((rA)+(rB))
 FSR[OF] ← 1
 ESR[EC] ← 00110
else
 (rD) ← (rA) + (rB)

Registers Altered

• rD, unless an FP exception is generated, in which case the register is unchanged

• ESR[EC], if an FP exception is generated

• FSR[IO,UF,OF,DO]

Latency

• 4 cycles with C_AREA_OPTIMIZED=0

• 6 cycles with C_AREA_OPTIMIZED=1

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 246Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=246

• 1 cycle with C_AREA_OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 247Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=247

frsub
Figure 86: frsub

1 00 0 0 001 0 10 1

rD, rA, rBfrsub

rArD

Reverse Floating-Point Arithmetic Subtraction

0 6 11 16 21 31
00 00 0rB

Reverse Subtract

Description

The floating-point value in rA is subtracted from the floating-point value in rB and the result is
placed into register rD.

Pseudocode

if isDnz(rA) or isDnz(rB) then
 (rD) ← 0xFFC00000
 FSR[DO] ← 1
 ESR[EC] ← 00110
else if (isSigNaN(rA) or isSigNaN(rB) or
 (isPosInfinite(rA) and isPosInfinite(rB)) or
 (isNegInfinite(rA) and isNegInfinite(rB))) then
 (rD) ← 0xFFC00000
 FSR[IO] ← 1
 ESR[EC] ← 00110
else if isQuietNaN(rA) or isQuietNaN(rB) then
 (rD) ← 0xFFC00000
else if isDnz((rB)-(rA)) then
 (rD) ← signZero((rB)-(rA))
 FSR[UF] ← 1
 ESR[EC] ← 00110
else if isNaN((rB)-(rA)) then
 (rD) ← signInfinite((rB)-(rA))
 FSR[OF] ← 1
 ESR[EC] ← 00110
else
 (rD) ← (rB) - (rA)

Registers Altered

• rD, unless an FP exception is generated, in which case the register is unchanged

• ESR[EC], if an FP exception is generated

• FSR[IO,UF,OF,DO]

Latency

• 4 cycles with C_AREA_OPTIMIZED=0

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 248Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=248

• 6 cycles with C_AREA_OPTIMIZED=1

• 1 cycle with C_AREA_OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 249Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=249

fmul
Figure 87: fmul

0 0 1 0 00 0 0 001 0 10 1

rD, rA, rBfmul

rArD

Floating-Point Arithmetic Multiplication

0 6 11 16 21 31
00rB

Multiply

Description

The floating-point value in rA is multiplied with the floating-point value in rB and the result is
placed into register rD.

Pseudocode

if isDnz(rA) or isDnz(rB) then
 (rD) ← 0xFFC00000
 FSR[DO] ← 1
 ESR[EC] ← 00110
else
 if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isInfinite(rB)) or
 (isZero(rB) and isInfinite(rA)) then
 (rD) ← 0xFFC00000
 FSR[IO] ← 1
 ESR[EC] ← 00110
 else if isQuietNaN(rA) or isQuietNaN(rB) then
 (rD) ← 0xFFC00000
 else if isDnz((rB)*(rA)) then
 (rD) ← signZero((rA)*(rB))
 FSR[UF] ← 1
 ESR[EC] ← 00110
 else if isNaN((rB)*(rA)) then
 (rD) ← signInfinite((rB)*(rA))
 FSR[OF] ← 1
 ESR[EC] ← 00110
 else
 (rD) ← (rB) * (rA)

Registers Altered

• rD, unless an FP exception is generated, in which case the register is unchanged

• ESR[EC], if an FP exception is generated

• FSR[IO,UF,OF,DO]

Latency

• 4 cycles with C_AREA_OPTIMIZED=0

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 250Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=250

• 6 cycles with C_AREA_OPTIMIZED=1

• 1 cycle with C_AREA_OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 251Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=251

fdiv
Figure 88: fdiv

0 1 10 00 0 0 001 0 10 1

rD, rA, rBfdiv

rArD

Floating-Point Arithmetic Division

0 6 11 16 21 31
00rB

Divide

Description

The floating-point value in rB is divided by the floating-point value in rA and the result is placed
into register rD.

Pseudocode

if isDnz(rA) or isDnz(rB) then
 (rD) ← 0xFFC00000
 FSR[DO] ← 1
 ESR[EC] ← 00110
else
 if isSigNaN(rA) or isSigNaN(rB) or (isZero(rA) and isZero(rB)) or
 (isInfinite(rA) and isInfinite(rB)) then
 (rD) ← 0xFFC00000
 FSR[IO] ← 1
 ESR[EC] ← 00110
 else if isQuietNaN(rA) or isQuietNaN(rB) then
 (rD) ← 0xFFC00000
 else if isZero(rA) and not isInfinite(rB) then
 (rD) ← signInfinite((rB)/(rA))
 FSR[DZ] ← 1
 ESR[EC] ← 00110
 else if isDnz((rB) / (rA)) then
 (rD) ← signZero((rB) / (rA))
 FSR[UF] ← 1
 ESR[EC] ← 00110
 else if isNaN((rB)/(rA)) then
 (rD) ← signInfinite((rB) / (rA))
 FSR[OF] ← 1
 ESR[EC] ← 00110
 else
 (rD) ← (rB) / (rA)

Registers Altered

• rD, unless an FP exception is generated, in which case the register is unchanged

• ESR[EC], if an FP exception is generated

• FSR[IO,UF,OF,DO,DZ]

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 252Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=252

Latency

• 28 cycles with C_AREA_OPTIMIZED=0

• 30 cycles with C_AREA_OPTIMIZED=1

• 24 cycles with C_AREA_OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than 0.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 253Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=253

fcmp
Figure 89: fcmp

00 0 001 0 10 1

rD, rA, rBfcmp.un

rB

Floating-Point Number Comparison

0 6 11 16 21 31
1 0 00

Unordered floating-point comparison
rD, rA, rBfcmp.lt Less-than floating-point comparison
rD, rA, rBfcmp.eq Equal floating-point comparison
rD, rA, rBfcmp.le Less-or-equal floating-point comparison
rD, rA, rBfcmp.gt Greater-than floating-point comparison
rD, rA, rBfcmp.ne Not-Equal floating-point comparison

rD rA

rD, rA, rBfcmp.ge Greater-or-Equal floating-point comparison

OpSel
25 28

Description

The floating-point value in rB is compared with the floating-point value in rA and the comparison
result is placed into register rD. The OpSel field in the instruction code determines the type of
comparison performed.

Pseudocode

if isDnz(rA) or isDnz(rB) then
 (rD) ← 0
 FSR[DO] ← 1
 ESR[EC] ← 00110
else
 {read out behavior from Table 103: Floating-Point Comparison Operation}

Registers Altered

• rD, unless an FP exception is generated, in which case the register is unchanged

• ESR[EC], if an FP exception is generated

• FSR[IO,DO]

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 3 cycles with C_AREA_OPTIMIZED=1

Note

These instructions are only available when the MicroBlaze parameter C_USE_FPU is greater than
0.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 254Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=254

The following table lists the floating-point comparison operations.

Table 103: Floating-Point Comparison Operation

Description OpSel (rB) >
(rA)

(rB) <
(rA)

(rB) =
(rA)

isSigNaN(rA) or

isSigNaN(rB)

isQuietNaN(rA) or

isQuietNaN(rB)

Comparison Type Operand Relationship
Unordered 000 (rD) ← 0 (rD) ← 0 (rD) ← 0 (rD) ← 1

FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 1

Less-than 001 (rD) ← 0 (rD) ← 1 (rD) ← 0 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Equal 010 (rD) ← 0 (rD) ← 0 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0

Less-or-equal 011 (rD) ← 0 (rD) ← 1 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Greater-than 100 (rD) ← 1 (rD) ← 0 (rD) ← 0 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Not-equal 101 (rD) ← 1 (rD) ← 1 (rD) ← 0 (rD) ← 1
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 1

Greater-or-equal 110 (rD) ← 1 (rD) ← 0 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 255Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=255

flt
Figure 90: flt

00 0 0 001 0 10 1

rD, rA,flt

rArD

Floating-Point Convert Integer to Float

0 6 11 16 21 31
01 0 10 00 0 00 0

Description

Converts the signed integer in register rA to floating-point and puts the result in register rD. This
is a 32-bit rounding signed conversion that will produce a 32-bit floating-point result.

Pseudocode

(rD) ← float ((rA))

Registers Altered

• rD

Latency

• 5 cycles with C_AREA_OPTIMIZED=0

• 7 cycles with C_AREA_OPTIMIZED=1

• 2 cycles with C_AREA_OPTIMIZED=2

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2
(Extended).

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 256Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=256

fint
Figure 91: fint

01 1 00 0 00 0 0 001 0 10 1

rD, rA,fint

rArD

Floating-Point Convert Float to Integer

0 6 11
0 0 00 0

16 21 31

Description

Converts the floating-point number in register rA to a signed integer and puts the result in
register rD. This is a 32-bit truncating signed conversion that will produce a 32-bit integer result.

Pseudocode

if isDnz(rA) then
 (rD) ← 0xFFC00000
 FSR[DO] ← 1
 ESR[EC] ← 00110
else if isNaN(rA) then
 (rD) ← 0xFFC00000
 FSR[IO] ← 1
 ESR[EC] ← 00110
else if isInf(rA) or (rA) < -231 or (rA) > 231 - 1 then
 (rD) ← 0xFFC00000
 FSR[IO] ← 1
 ESR[EC] ← 00110
else
 (rD) ← int ((rA))

Registers Altered

• rD, unless an FP exception is generated, in which case the register is unchanged

• ESR[EC], if an FP exception is generated

• FSR[IO,DO]

Latency

• 4 cycles with C_AREA_OPTIMIZED=0

• 6 cycles with C_AREA_OPTIMIZED=1

• 1 cycle with C_AREA_OPTIMIZED=2

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 257Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=257

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2
(Extended).

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 258Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=258

fsqrt
Figure 92: fsqrt

1 00 0 0 001 0 10 1

rD, rA,fsqrt

rArD

Floating-Point Arithmetic Square Root

0 6 11 16 21 31
01 10 00 0 00 0

Square Root

Description

Performs a floating-point square root on the value in rA and puts the result in register rD.

Pseudocode

if isDnz(rA) then
 (rD) ← 0xFFC00000
 FSR[DO] ← 1
 ESR[EC] ← 00110
else if isSigNaN(rA) then
 (rD) ← 0xFFC00000
 FSR[IO] ← 1
 ESR[EC] ← 00110
else if isQuietNaN(rA) then
 (rD) ← 0xFFC00000
else if (rA) < 0 then
 (rD) ← 0xFFC00000
 FSR[IO] ← 1
 ESR[EC] ← 00110
else if (rA) = -0 then
 (rD) ← -0
else
 (rD) ← sqrt ((rA))

Registers Altered

• rD, unless an FP exception is generated, in which case the register is unchanged

• ESR[EC], if an FP exception is generated

• FSR[IO,DO]

Latency

• 27 cycles with C_AREA_OPTIMIZED=0

• 29 cycles with C_AREA_OPTIMIZED=1

• 23 cycles with C_AREA_OPTIMIZED=2

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 259Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=259

Note

This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2
(Extended).

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 260Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=260

get
Figure 93: get

0 0 0n c at011 1 00 1

rD, FSLxtneaget

get from stream interface

0 6 11 16 31
0 0 0e

get data from link x
t = test only
n = non-blocking
e = exception if control bit set
a = atomic

rD FSLx
28

rD, FSLxtnecaget get control from link x
t = test only
n = non-blocking
e = exception if control bit not set
a = atomic

0 0 00 0

Description

MicroBlaze will read from the link x interface and place the result in register rD. If the available
number of links set by C_FSL_LINKS is less than or equal to FSLx, link 0 is used.

The get instruction has 32 variants.

The blocking versions (when ‘n’ bit is ‘0’) will stall MicroBlaze until the data from the interface is
valid. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if the data was
valid and to ‘1’ if the data was invalid. In case of an invalid access the destination register
contents are undefined.

All data get instructions (when ‘c’ bit is ‘0’) expect the control bit from the interface to be ‘0’. If
this is not the case, the instruction will set MSR[FSL] to ‘1’. All control get instructions (when ‘c’
bit is ‘1’) expect the control bit from the interface to be ‘1’. If this is not the case, the instruction
will set MSR[FSL] to ‘1’.

The exception versions (when ‘e’ bit is ‘1’) will generate an exception if there is a control bit
mismatch. In this case ESR is updated with EC set to the exception cause and ESS set to the link
index. The target register, rD, is not updated when an exception is generated, instead the data is
stored in EDR.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the read
signal to the link is not asserted.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 261Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=261

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. Each atomic instruction prevents the
subsequent instruction from being interrupted. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However,
note that exceptions might still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if
these instructions are attempted in User Mode (MSR[UM]=1) a Privileged Instruction exception
occurs.

Pseudocode

if MSR[UM] = 1 then
 ESR[EC] ← 00111
else
 x ← FSLx
 if x >= C_FSL_LINKS then
 x ← 0
 (rD) ← Sx_AXIS_TDATA
 if (n = 1) then
 MSR[Carry] ← Sx_AXIS_TVALID
 if Sx_AXIS_TLAST ¹ c and Sx_AXIS_TVALID then
 MSR[FSL] ← 1
 if (e = 1) then
 ESR[EC] ← 00000
 ESR[ESS] ← instruction bits [28:31]
 EDR ← Sx_AXIS_TDATA

Registers Altered

• rD, unless an exception is generated, in which case the register is unchanged

• MSR[FSL]

• MSR[Carry]

• ESR[EC], in case a stream exception or a privileged instruction exception is generated

• ESR[ESS], in case a stream exception is generated

• EDR, in case a stream exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction
can be completed. Interrupts are served when the parameter C_USE_EXTENDED_FSL_INSTR is
set to 1, and the instruction is not atomic.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 262Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=262

Notes

• To refer to an FSLx interface in assembly language, use rfsl0, rfsl1, ... rfsl15.

• The blocking versions of this instruction should not be placed in a delay slot when the
parameter C_USE_EXTENDED_FSL_INSTR is set to 1, because this prevents interrupts from
being served.

• For non-blocking versions, an rsubc instruction can be used to decrement an index variable.

• The ‘e’ bit does not have any effect unless C_FSL_EXCEPTION is set to 1.

• These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is
greater than 0.

• The extended instructions (exception, test and atomic versions) are only available when the
MicroBlaze parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

• It is not recommended to allow these instructions in user mode, unless absolutely necessary
for performance reasons, because that removes all hardware protection preventing incorrect
use of a link.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 263Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=263

getd
Figure 94: getd

11 0 00 1

rD, rBtneagetd

get from stream interface dynamic

0 6 11 16 31

get data from link rB[28:31]
t = test only
n = non-blocking
e = exception if control bit set
a = atomic

rD

rD, rBtnecagetd get control from link rB[28:31]
t = test only
n = non-blocking
e = exception if control bit not set
a = atomic

0 0 00 0 0 0n c at0 0 0 0erB
21

Description

MicroBlaze will read from the interface defined by the four least significant bits in rB and place
the result in register rD. If the available number of links set by C_FSL_LINKS is less than or
equal to the four least significant bits in rB, link 0 is used.

The getd instruction has 32 variants.

The blocking versions (when ‘n’ bit is ‘0’) will stall MicroBlaze until the data from the interface is
valid. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if the data was
valid and to ‘1’ if the data was invalid. In case of an invalid access the destination register
contents are undefined.

All data get instructions (when ‘c’ bit is ‘0’) expect the control bit from the interface to be ‘0’. If
this is not the case, the instruction will set MSR[FSL] to ‘1’. All control get instructions (when ‘c’
bit is ‘1’) expect the control bit from the interface to be ‘1’. If this is not the case, the instruction
will set MSR[FSL] to ‘1’.

The exception versions (when ‘e’ bit is ‘1’) will generate an exception if there is a control bit
mismatch. In this case ESR is updated with EC set to the exception cause and ESS set to the link
index. The target register, rD, is not updated when an exception is generated, instead the data is
stored in EDR.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the read
signal to the link is not asserted.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 264Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=264

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. Each atomic instruction prevents the
subsequent instruction from being interrupted. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However,
note that exceptions might still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if
these instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception
occurs.

Pseudocode

if MSR[UM] = 1 then
 ESR[EC] ← 00111
else
 x ← rB[28:31]
 if x >= C_FSL_LINKS then
 x ← 0
 (rD) ← Sx_AXIS_TDATA
 if (n = 1) then
 MSR[Carry] ← Sx_AXIS_TVALID
 if Sx_AXIS_TLAST ¹ c and Sx_AXIS_TVALID then
 MSR[FSL] ← 1
 if (e = 1) then
 ESR[EC] ← 00000
 ESR[ESS] ← rB[28:31]
 EDR ← Sx_AXIS_TDATA

Registers Altered

• rD, unless an exception is generated, in which case the register is unchanged

• MSR[FSL]

• MSR[Carry]

• ESR[EC], in case a stream exception or a privileged instruction exception is generated

• ESR[ESS], in case a stream exception is generated

• EDR, in case a stream exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

The blocking versions of this instruction will stall the pipeline of MicroBlaze until the instruction
can be completed. Interrupts are served unless the instruction is atomic, which ensures that the
instruction cannot be interrupted.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 265Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=265

Notes

• The blocking versions of this instruction should not be placed in a delay slot, because this
prevents interrupts from being served.

• For non-blocking versions, an rsubc instruction can be used to decrement an index variable.

• The ‘e’ bit does not have any effect unless C_FSL_EXCEPTION is set to 1.

• These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is
greater than 0 and the parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

• It is not recommended to allow these instructions in user mode, unless absolutely necessary
for performance reasons, because that removes all hardware protection preventing incorrect
use of a link.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 266Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=266

idiv
Figure 95: idiv

00 0 0 U01 0 00 1

rD, rA, rBidiv

rA rB

Integer Divide

0 6 11 16 21 31
00 0 00 0

Divide rB by rA (signed)
rD, rA, rBidivu Divide rB by rA (unsigned)

rD

Description

The contents of register rB are divided by the contents of register rA and the result is placed into
register rD.

If the U bit is set, rA and rB are considered unsigned values. If the U bit is clear, rA and rB are
considered signed values.

If the value of rA is 0 (divide by zero), the DZO bit in MSR will be set and the value in rD will be 0,
unless an exception is generated.

If the U bit is clear, the value of rA is -1, and the value of rB is -2147483648 (divide overflow),
the DZO bit in MSR will be set and the value in rD will be -2147483648, unless an exception is
generated.

Pseudocode

if (rA) = 0 then
 (rD) <- 0
 MSR[DZO] <- 1
 ESR[EC] <- 00101
 ESR[DEC] <- 0
else if U = 0 and (rA) = -1 and (rB) = -2147483648 then
 (rD) <- -2147483648
 MSR[DZO] <- 1
 ESR[EC] <- 00101
 ESR[DEC] <- 1
else
 (rD) ← (rB) / (rA)

Registers Altered

• rD, unless a divide exception is generated, in which case the register is unchanged

• MSR[DZO], if divide by zero or divide overflow occurs

• ESR[EC], if divide by zero or divide overflow occurs

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 267Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=267

Latency

• 1 cycle if (rA) = 0, otherwise 34 cycles with C_AREA_OPTIMIZED=0

• 1 cycle if (rA) = 0, otherwise 35 cycles with C_AREA_OPTIMIZED=1

• 1 cycle if (rA) = 0, otherwise 30 cycles with C_AREA_OPTIMIZED=2

Note

This instruction is only valid if MicroBlaze is configured to use a hardware divider (C_USE_DIV =
1).

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 268Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=268

imm
Figure 96: imm

00 1 11 0

IMMimm

Immediate

0 6 11 16 31
IMM0 0 00 0 0 0 00 0

Description

The instruction imm loads the IMM value into a temporary register. It also locks this value so it
can be used by the following instruction and form a 32-bit immediate value.

The instruction imm is used with Type B instructions. Because Type B instructions have only a
16-bit immediate value field, a 32-bit immediate value cannot be used directly. However, 32-bit
immediate values can be used in MicroBlaze. By default, Type B Instructions will take the 16-bit
IMM field value and sign extend it to 32 bits to use as the immediate operand. This behavior can
be overridden by preceding the Type B instruction with an imm instruction. The imm instruction
locks the 16-bit IMM value temporarily for the next instruction. A Type B instruction that
immediately follows the imm instruction will then form a 32-bit immediate value from the 16-bit
IMM value of the imm instruction (upper 16 bits) and its own 16-bit immediate value field (lower
16 bits). If no Type B instruction follows the imm instruction, the locked value gets unlocked and
becomes useless.

Latency

• 1 cycle

Notes

• The imm instruction and the Type B instruction following it are atomic; consequently, no
interrupts are allowed between them.

• The assembler automatically detects the need for imm instructions. When a 32-bit IMM value
is specified in a Type B instruction, the assembler converts the IMM value to a 16-bit one to
assemble the instruction and inserts an imm instruction before it in the executable file.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 269Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=269

lbu
Figure 97: lbu

00 0 0 001 0 01 0

rDx, rAx, rBxlbu

rAx rBx

Load Byte Unsigned

0 6 11 16 21 31
0R 0 EA0 0

rDx, rAx, rBxlbur

rDx

rD, rA, rBlburea

Description

Loads a byte (8 bits) from the memory location that results from adding the contents of registers
rAX and rBX. The data is placed in the least significant byte of register rDX and the other bytes in
rDX are cleared.

If the R bit is set, a byte reversed memory location is used, loading data with the opposite
endianness of the endianness defined by the E bit (if virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of
adding them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection.
This only applies to accesses with user mode and virtual protected mode enabled.

A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is
enabled, and the instruction is not explicitly allowed.

Pseudocode

if EA = 1 then
 Addr ← (rA) & (rB)
else
 Addr ← (rAx) + (rBx)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 0
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
0 ; ESR[DIZ] ← 1

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 270Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=270

 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←
0; MSR[VM] ← 0
else
 (rDx)[C_DATA_SIZE-8:C_DATA_SIZE-1] ← Mem(Addr)
 (rDx)[0:C_DATA_SIZE-9] ← 0

Registers Altered

• rDX, unless an exception is generated, in which case the register is unchanged

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Notes

• The byte reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

• The extended address instruction is only valid if MicroBlaze is configured to use extended
address (C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA_SIZE = 32).

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 271Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=271

lbui
Figure 98: lbui

01 1 01 0

rDx, rAx, IMMlbui

rAx IMM

Load Byte Unsigned Immediate

0 6 11 16 31
rDx

Description

Loads a byte (8 bits) from the memory location that results from adding the contents of register
rAX with the sign-extended value in IMM. The data is placed in the least significant byte of
register rDX and the other bytes in rDX are cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection.
This only applies to accesses with user mode and virtual protected mode enabled.

Pseudocode

Addr ← (rAx) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 0
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
0 ; ESR[DIZ] ← 1
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←
0; MSR[VM] ← 0
else
 (rDx)[C_DATA_SIZE-8:C_DATA_SIZE-1] ← Mem(Addr)
 (rDx)[0:C_DATA_SIZE-9] ← 0

Registers Altered

• rDX, unless an exception is generated, in which case the register is unchanged

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 272Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=272

• 2 cycles with C_AREA_OPTIMIZED=1

Note

By default, Type B load instructions will take the 16-bit IMM field value and sign extend it to use
as the immediate operand. This behavior can be overridden by preceding the instruction with an
imm or imml instruction. See the instructions imm and imml for details on using immediate
values.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 273Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=273

lhu
Figure 99: lhu

00 0 0 011 0 01 0

rDx, rAx, rBxlhu

rAx rBx

Load Halfword Unsigned

0 6 11 16 21 31
0R 0 EA0 0

rDx, rAx, rBxlhur

rDx

rD, rA, rBlhurea

Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from adding
the contents of registers rAX and rBX. The data is placed in the least significant halfword of
register rDX and the other halfwords in rDX is cleared.

If the R bit is set, a halfword reversed memory location is used and the two bytes in the halfword
are reversed, loading data with the opposite endianness of the endianness defined by the E bit (if
virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of
adding them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection.
This only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the least significant bit in the address is not zero.

A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is
enabled, and the instruction is not explicitly allowed.

Pseudocode

if EA = 1 then
 Addr ← (rA) & (rB)
else
 Addr ← (rAx) + (rBx)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 0
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
0 ; ESR[DIZ] ← 1

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 274Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=274

 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←
0; MSR[VM] ← 0
else if Addr[31] ¹ 0 then
 ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 0; ESR[Rx] ← rD
else if (VM = 0 and R = 1) or
 (VM = 1 and R = 1 and E = 1) or
 (VM = 1 and R = 0 and E = 0) then
 (rDx)[C_DATA_SIZE-16:C_DATA_SIZE-9] ← Mem(Addr);
 (rDx)[C_DATA_SIZE-8:C_DATA_SIZE-1] ← Mem(Addr+1);
 (rDx)[0:C_DATA_SIZE-17] ← 0
else
 (rDx)[C_DATA_SIZE-16:C_DATA_SIZE-9] ← Mem(Addr+1);
 (rDx)[C_DATA_SIZE-8:C_DATA_SIZE-1] ← Mem(Addr);
 (rDx)[0:C_DATA_SIZE-17] ← 0

Registers Altered

• rDX, unless an exception is generated, in which case the register is unchanged

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Notes

• The halfword reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

• The extended address instruction is only valid if MicroBlaze is configured to use extended
address (C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA_SIZE = 32).

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 275Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=275

lhui
Figure 100: lhui

11 1 01 0

rDx, rAx, IMMlhui

rAx IMM

Load Halfword Unsigned Immediate

0 6 11 16 31
rDx

Description

Loads a halfword (16 bits) from the halfword aligned memory location that results from adding
the contents of register rAX and the sign-extended value in IMM. The data is placed in the least
significant halfword of register rDX and the other halfwords in rDX is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB. A data storage exception occurs if
access is prevented by a no-access-allowed zone protection. This only applies to accesses with
user mode and virtual protected mode enabled. An unaligned data access exception occurs if the
least significant bit in the address is not zero.

Pseudocode

Addr ← (rAX) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 0
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
0 ; ESR[DIZ] ← 1
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←
0; MSR[VM] ← 0
else if Addr[31] ≠ 0 then
 ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 0; ESR[Rx] ← rD
else
 (rDX)[C_DATA_SIZE-16:C_DATA_SIZE-1] ← Mem(Addr)
 (rDX)[0:C_DATA_SIZE-17] ← 0

Registers Altered

• rDX, unless an exception is generated, in which case the register is unchanged

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 276Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=276

• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Note

By default, Type B load instructions will take the 16-bit IMM field value and sign extend it to use
as the immediate operand. This behavior can be overridden by preceding the instruction with an
imm or imml instruction. See the instructions imm and imml for details on using immediate
values.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 277Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=277

lw
Figure 101: lw

00 0 0 001 0 01 1

rDx, rAx, rBxlw

rAx rBx

Load Word

0 6 11 16 21 31
0R 0 EA0 0

rDx, rAx, rBxlwr

rDx

rD, rA, rBlwea

Description

Loads a word (32 bits) from the word aligned memory location that results from adding the
contents of registers rAX and rBX. The data is placed in least significant word of register rDX and
the most significant word (if any) is cleared.

If the R bit is set, the bytes in the loaded word are reversed , loading data with the opposite
endianness of the endianness defined by the E bit (if virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of
adding them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection.
This only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the two least significant bits in the address are not
zero.

A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is
enabled, and the instruction is not explicitly allowed.

Pseudocode

if EA = 1 then
 Addr ← (rA) & (rB)
else
 Addr ← (rAX) + (rBX)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 0
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
0 ; ESR[DIZ] ← 1

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 278Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=278

 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←
0; MSR[VM] ← 0
else if Addr[30:31] ≠ 0 then
 ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 0; ESR[Rx] ← rD
else
 (rDX[C_DATA_SIZE-32:C_DATA_SIZE-1]) ← Mem(Addr)
 (rDX[0:C_DATA_SIZE-33]) ← 0

Registers Altered

• rDX, unless an exception is generated, in which case the register is unchanged

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Notes

• The word reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

• The extended address instruction is only valid if MicroBlaze is configured to use extended
address (C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA_SIZE = 32).

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 279Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=279

lwi
Figure 102: lwi

01 1 01 1

rDx, rAx, IMMlwi

rAx IMM

Load Word Immediate

0 6 11 16 31
rDx

Description

Loads a word (32 bits) from the word aligned memory location that results from adding the
contents of register rAX and the sign-extended value IMM. The data is placed in the least
significant word of register rDX and the most significant word (if any) is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection.
This only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the two least significant bits in the address are not
zero.

Pseudocode

Addr ← (rAX) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 0
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
0 ; ESR[DIZ] ← 1
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←
0; MSR[VM] ← 0
else if Addr[30:31] ≠ 0 then
 ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 0 ; ESR[Rx] ←
rD
else
 (rDX[C_DATA_SIZE-32:C_DATA_SIZE-1]) ← Mem(Addr);
(rDX[0:C_DATA_SIZE-33]) ← 0

Registers Altered

• rDX, unless an exception is generated, in which case the register is unchanged

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 280Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=280

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Note

By default, Type B load instructions will take the 16-bit IMM field value and sign extend it to use
as the immediate operand. This behavior can be overridden by preceding the instruction with an
imm or imml instruction. See the instructions imm and imml for details on using immediate
values.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 281Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=281

lwx
Figure 103: lwx

00 0 0 001 0 01 1

rD, rA, rBlwx

rA

Load Word Exclusive

0 6 11 16 31
rD rB 00 0 01 0

21

Description

Loads a word (32 bits) from the word aligned memory location that results from adding the
contents of registers rA and rB. The data is placed in register rD, and the reservation bit is set. If
an AXI4 interconnect with exclusive access enabled is used, and the interconnect response is not
EXOKAY, the carry flag (MSR[C]) is set; otherwise the carry flag is cleared.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection.
This only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception will not occur, even if the two least significant bits in the
address are not zero.

A data bus exception can occur when an AXI4 interconnect with exclusive access enabled is
used, and the interconnect response is not EXOKAY, which means that an exclusive access
cannot be handled.

Enabling AXI exclusive access ensures that the operation is protected from other bus masters,
but requires that the addressed slave supports exclusive access. When exclusive access is not
enabled, only the internal reservation bit is used. Exclusive access is enabled using the two
parameters C_M_AXI_DP_EXCLUSIVE_ACCESS and C_M_AXI_DC_EXCLUSIVE_ACCESS for
the peripheral and cache interconnect, respectively.

Pseudocode

Addr ← (rA) + (rB)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 0
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
0 ; ESR[DIZ] ← 1
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←
0; MSR[VM] ← 0

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 282Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=282

else if AXI_Exclusive(Addr) and AXI_Response ¹ EXOKAY and MSR[EE] then
 ESR[EC] ← 00100; ESR[ECC] ← 0 ;
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←
0; MSR[VM] ← 0
else
 (rD) ← Mem(Addr); Reservation ← 1;
 if AXI_Exclusive(Addr) and AXI_Response ¹ EXOKAY then
 MSR[C] ← 1
 else
 MSR[C] ← 0

Registers Altered

• rD and MSR[C], unless an exception is generated, in which case they are unchanged

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Notes

• This instruction is used together with SWX to implement exclusive access, such as
semaphores and spinlocks.

• The carry flag (MSR[C]) might not be set immediately (dependent on pipeline stall behavior).
The LWX instruction should not be immediately followed by an MSRCLR, MSRSET, MTS, or
SRC instruction, to ensure the correct value of the carry flag is obtained.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 283Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=283

mbar
Figure 104: mbar

0 0 0 0 0 00 0 0 100 1 11 1

IMMmbar

Memory Barrier

0 6 11 16 31
IMM 00 0 00 0

Memory Barrier

0 0 10 0

Decsription

This instruction ensures that outstanding memory accesses on memory interfaces are completed
before any subsequent instructions are executed. This is necessary to guarantee that self-
modifying code is handled correctly, and that a DMA transfer can be safely started.

With self-modifying code, it is necessary to first use an MBAR instruction to wait for data
accesses, which can be done by setting IMM to 1, and then use another MBAR instruction to
clear the Branch Target Cache and empty the instruction prefetch buffer, which can be done by
setting IMM to 2.

To ensure that data to be read by a DMA unit has been written to memory, it is only necessary to
wait for data accesses, which can be done by setting IMM to 1.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged
when the most significant bit in IMM is set to 1. This means that if the instruction is attempted in
User Mode (MSR[UM] = 1) a Privileged Instruction exception occurs.

When the two most significant bits in IMM are set to 10 (Sleep), 01 (Hibernate), or 11 (Suspend)
and no exception occurs, MicroBlaze enters sleep mode after all outstanding accesses have been
completed. and sets the Sleep, Hibernate or Suspend output signal respectively to indicate
this. The pipeline is halted, and MicroBlaze will not continue execution until a bit in the Wakeup
input signal is asserted.

Pseudocode

if (IMM & 1) = 0 then
 wait for instruction side memory accesses
if (IMM & 2) = 0 then
 wait for data side memory accesses
PC ← PC + 4
if (IMM & 24)!= 0 then
 enter sleep mode

Registers Altered

• PC

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 284Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=284

• ESR[EC], in case a privileged instruction exception is generated

Latency

• 2 + N cycles when C_INTERCONNECT = 2 (AXI)

• 8 + N cycles when C_INTERCONNECT = 3 (ACE)

N is the number of cycles to wait for memory accesses to complete.

Notes

• This instruction must not be preceded by an imm instruction, and must not be placed in a
delay slot.

• The assembler pseudo-instructions sleep, hibernate, and suspend can be used instead of
“mbar 16”, “mbar 8”, and “mbar 24” respectively to enter sleep mode.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 285Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=285

mfs
Figure 105: mfs

10 0 11 0

rD, rSmfs

Move From Special Purpose Register

0 6 11 16 18 31
rS

rD, rSmfse

rD E 0 00 0 1 0

Description

Copies the contents of the special purpose register rS into register rD. The special purpose
registers TLBLO and TLBHI are used to copy the contents of the Unified TLB entry indexed by
TLBX.

If the E bit is set, the extended part of the special register is moved. The EAR, PVR[8] and PVR[9}
registers have extended parts when extended addressing is enabled (C_ADDR_SIZE > 32), and
the TLBLO, PVR[6] and PVR[7] registers have extended parts when Physical Address Extension
(PAE) is enabled.

Pseudocode

if E = 1 then
 switch (rS):
 case 0x0003 : (rD) ← EAR [0:C_ADDR_SIZE-32-1]
 case 0x1003 : (rD) ← TLBLO[0:C_ADDR_SIZE-32-1]
 case 0x2006 : (rD) ← PVR6[0:C_ADDR_SIZE-32-1]
 case 0x2007 : (rD) ← PVR7[0:C_ADDR_SIZE-32-1]
 case 0x2008 : (rD) ← PVR8[0:C_ADDR_SIZE-32-1]
 case 0x2009 : (rD) ← PVR9[0:C_ADDR_SIZE-32-1]
 default : (rD) ← Undefined
else
 switch (rS):
 case 0x0000 : (rD) ← PC
 case 0x0001 : (rD) ← MSR
 case 0x0003 : (rD) ← EAR[C_ADDR_SIZE-32:C_ADDR_SIZE-1]
 case 0x0005 : (rD) ← ESR
 case 0x0007 : (rD) ← FSR
 case 0x000B : (rD) ← BTR
 case 0x000D : (rD) ← EDR
 case 0x0800 : (rD) ← SLR
 case 0x0802 : (rD) ← SHR
 case 0x1000 : (rD) ← PID
 case 0x1001 : (rD) ← ZPR
 case 0x1002 : (rD) ← TLBX
 case 0x1003 : (rD) ← TLBLO[C_ADDR_SIZE-32:C_ADDR_SIZE-1]
 case 0x1004 : (rD) ← TLBHI
 case 0x200x : (rD) ← PVRx[C_ADDR_SIZE-32:C_ADDR_SIZE-1] (where x = 0
to 12)
 default : (rD) ← Undefined

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 286Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=286

Registers Altered

• rD

Latency

• 1 cycle

Notes

• To refer to special purpose registers in assembly language, use rpc for PC, rmsr for MSR, rear
for EAR, resr for ESR, rfsr for FSR, rbtr for BTR, redr for EDR, rslr for SLR, rshr for SHR, rpid
for PID, rzpr for ZPR, rtlblo for TLBLO, rtlbhi for TLBHI, rtlbx for TLBX, and rpvr0 - rpvr12 for
PVR0 - PVR12.

• The value read from MSR might not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede
the MFS instruction to guarantee correct MSR value.

• The value read from FSR might not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect FSR must precede
the MFS instruction to guarantee correct FSR value.

• EAR, ESR and BTR are only valid as operands when at least one of the MicroBlaze
C_*_EXCEPTION parameters are set to 1.

• EDR is only valid as operand when the parameter C_FSL_EXCEPTION is set to 1 and the
parameter C_FSL_LINKS is greater than 0.

• FSR is only valid as an operand when the C_USE_FPU parameter is greater than 0.

• SLR and SHR are only valid as an operand when the C_USE_STACK_PROTECTION parameter
is set to 1.

• PID, ZPR, TLBLO and TLBHI are only valid as operands when the parameter C_USE_MMU > 1
(User Mode) and the parameter C_MMU_TLB_ACCESS = 1 (Read) or 3 (Full).

• TLBX is only valid as operand when the parameter C_USE_MMU > 1 (User Mode) and the
parameter C_MMU_TLB_ACCESS > 0 (Minimal).

• PVR0 is only valid as an operand when C_PVR is 1 (Basic) or 2 (Full), and PVR1 - PVR12 are
only valid as operands when C_PVR is set to 2 (Full).

• The extended instruction is only valid if MicroBlaze is configured to use extended address
(C_ADDR_SIZE > 32).

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 287Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=287

msrclr
Figure 106: msrclr

010 0 11 0

rD, Immmsrclr

rD

Read MSR and clear bits in MSR

0 6 11 17 31
Imm150 0 01 1

Description

Copies the contents of the special purpose register MSR into register rD. Bit positions in the
IMM value that are 1 are cleared in the MSR. Bit positions that are 0 in the IMM value are left
untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged
for all IMM values except those only affecting C. This means that if the instruction is attempted
in User Mode (MSR[UM] = 1) in this case a Privileged Instruction exception occurs.

Pseudocode

if MSR[UM] = 1 and IMM ≠ 0x4 then
 ESR[EC] ← 00111
else
 (rD) ← (MSR)
 (MSR) ← (MSR) ˄ (IMM))

Registers Altered

• rD

• MSR

• ESR[EC], in case a privileged instruction exception is generated

Latency

• 1 cycle

Notes

• MSRCLR will affect the Carry bit immediately while the remaining bits will take effect one
cycle after the instruction has been executed. When clearing the IE bit, it is guaranteed that
the processor will not react to any interrupt for the subsequent instructions.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 288Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=288

• The value read from MSR might not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede
the MSRCLR instruction to guarantee correct MSR value. This applies to both the value copied
to register rD and the changed MSR value itself.

• The immediate values has to be less than 215 when C_USE_MMU >= 1 (User Mode), and less
than 214 otherwise. Only bits 17 to 31 of the MSR can be cleared when C_USE_MMU >= 1
(User Mode), and.bits 18 to 31 otherwise.

• This instruction is only available when the parameter C_USE_MSR_INSTR is set to 1.

• When clearing MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 289Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=289

msrset
Figure 107: msrset

010 0 11 0

rD, Immmsrset

rD

Read MSR and set bits in MSR

0 6 11 17 31
Imm150 0 01 0

Description

Copies the contents of the special purpose register MSR into register rD. Bit positions in the
IMM value that are 1 are set in the MSR. Bit positions that are 0 in the IMM value are left
untouched.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged
for all IMM values except those only affecting C. This means that if the instruction is attempted
in User Mode (= 1) in this case a Privileged Instruction exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port is set
to 11 if the MSR{IE] bit is set by executing this instruction.

Pseudocode

if MSR[UM] = 1 and IMM ≠ 0x4 then
 ESR[EC] ← 00111
else
 (rD) ← (MSR)
 (MSR) ← (MSR) ˅ (IMM)
 if (IMM) & 2
 Interrupt_Ack ← 11

Registers Altered

• rD

• MSR

• ESR[EC], in case a privileged instruction exception is generated

Latency

• 1 cycle

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 290Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=290

Notes

• MSRSET will affect the Carry bit immediately while the remaining bits will take effect one
cycle after the instruction has been executed. When setting the EIP or BIP bit, it is guaranteed
that the processor will not react to any interrupt or normal hardware break for the subsequent
instructions.

• The value read from MSR might not include effects of the immediately preceding instruction
(dependent on pipeline stall behavior). An instruction that does not affect MSR must precede
the MSRSET instruction to guarantee correct MSR value. This applies to both the value copied
to register rD and the changed MSR value itself.

• The immediate values has to be less than 215 when C_USE_MMU >= 1 (User Mode), and less
than 214 otherwise. Only bits 17 to 31 of the MSR can be set when C_USE_MMU >= 1 (User
Mode), and.bits 18 to 31 otherwise.

• This instruction is only available when the parameter C_USE_MSR_INSTR is set to 1.

• When setting MSR[VM] the instruction must always be followed by a synchronizing branch
instruction, for example BRI 4.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 291Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=291

mts
Figure 108: mts

10 0 11 0

rS, rAmts

rA

Move to Special Purpose Register

0 6 11 16 18 31
rS

rS, rAmtse

E 0 00 0 11

Description

Copies the contents of register rD into the special purpose register rS. The special purpose
registers TLBLO and TLBHI are used to copy to the Unified TLB entry indexed by TLBX.

If the E bit is set, the extended part of the special register is moved. The TLBLO register has an
extended part when the Physical Address Extension (PAE) is enabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port is set
to 11 if the MSR{IE] bit is set by executing this instruction.

Pseudocode

if MSR[UM] = 1 then
 ESR[EC] ← 00111
else
 if E = 1 then
 if (rS) = 0x1003 then
 TLBLO[0:C_ADDR_SIZE-32-1] ← (rA)
 else
 switch (rS)
 case 0x0001 : MSR ← (rA)
 case 0x0007 : FSR ← (rA)
 case 0x0800 : SLR ← (rA)
 case 0x0802 : SHR ← (rA)
 case 0x1000 : PID ← (rA)
 case 0x1001 : ZPR ← (rA)
 case 0x1002 : TLBX ← (rA)
 case 0x1003 : TLBLO[C_ADDR_SIZE-32:C_ADDR_SIZE-1] ← (rA)
 case 0x1004 : TLBHI ← (rA)
 case 0x1005 : TLBSX ← (rA)
 if (rS) = 0x0001 and (rA) & 2
 Interrupt_Ack ← 11

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 292Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=292

Registers Altered

• rS

• ESR[EC], in case a privileged instruction exception is generated

Latency

• 1 cycle

Notes

• When writing MSR using MTS, all bits take effect one cycle after the instruction has been
executed. An MTS instruction writing MSR should never be followed back-to-back by an
instruction that uses the MSR content. When clearing the IE bit, it is guaranteed that the
processor will not react to any interrupt for the subsequent instructions. When setting the EIP
or BIP bit, it is guaranteed that the processor will not react to any interrupt or normal
hardware break for the subsequent instructions.

• To refer to special purpose registers in assembly language, use rmsr for MSR, rfsr for FSR, rslr
for SLR, rshr for SHR, rpid for PID, rzpr for ZPR, rtlblo for TLBLO, rtlbhi for TLBHI, rtlbx for
TLBX, and rtlbsx for TLBSX.

• The PC, ESR, EAR, BTR, EDR and PVR0 - PVR12 cannot be written by the MTS instruction.

• The FSR is only valid as a destination if the MicroBlaze parameter C_USE_FPU is greater than
0.

• The SLR and SHR are only valid as a destination if the MicroBlaze parameter
C_USE_STACK_PROTECTION is set to 1.

• PID, ZPR and TLBSX are only valid as destinations when the parameter C_USE_MMU > 1 (User
Mode) and the parameter C_MMU_TLB_ACCESS > 1 (Read). TLBLO, TLBHI and TLBX are only
valid as destinations when the parameter C_USE_MMU > 1 (User Mode).

• When changing MSR[VM] or PID the instruction must always be followed by a synchronizing
branch instruction, for example BRI 4.

• After writing to TLBHI to invalidate one or more UTLB entries, an MBAR 1 instruction must
be issued to ensure that coherency is preserved in a coherent multi-processor system.

• When PAE is enabled, the entire TLBLO register must be written, by first using the extended
instruction to write the most significant bits immediately followed by the least significant bits.

• The extended instruction is only valid if MicroBlaze is configured to use the MMU in virtual
mode (C_USE_MMU = 3) and extended address (C_ADDR_SIZE > 32).

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 293Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=293

mul
Figure 109: mul

00 0 00 0 00 0 0 001 0 00 0 rA

Multiply

0 6 11 16 31

rD, rA, rBmul

rD rB
21

Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit multiplication that will produce a 64-bit result. The least significant word of this value is
placed in rD. The most significant word is discarded.

Pseudocode

(rD) ← LSW((rA) × (rB))

Registers Altered

• rD

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 3 cycles with C_AREA_OPTIMIZED=1

Note

This instruction is only valid if the target architecture has multiplier primitives, and if present, the
MicroBlaze parameter C_USE_HW_MUL is greater than 0.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 294Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=294

mulh
Figure 110: mulh

10 0 0 001 0 00 0

rD, rA, rBmulh

rArD

Multiply High

0 6 11 16 21 31
00 0 00 0rB

Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit signed multiplication that will produce a 64-bit result. The most significant word of this
value is placed in rD. The least significant word is discarded.

Pseudocode

(rD) ← MSW((rA) × (rB)), signed

Registers Altered

• rD

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 3 cycles with C_AREA_OPTIMIZED=1

Notes

• This instruction is only valid if the target architecture has multiplier primitives, and if present,
the MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

• When MULH is used, bit 30 and 31 in the MUL instruction must be zero to distinguish
between the two instructions. In previous versions of MicroBlaze, these bits were defined as
zero, but the actual values were not relevant.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 295Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=295

mulhu
Figure 111: mulhu

0 10 0 0 101 0 00 0

rD, rA, rBmulhu

rArD

Multiply High Unsigned

0 6 11 16 21 31
00 00 0rB

Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit by
32-bit unsigned multiplication that will produce a 64-bit unsigned result. The most significant
word of this value is placed in rD. The least significant word is discarded.

Pseudocode

(rD) ← MSW((rA) × (rB)), unsigned

Registers Altered

• rD

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 3 cycles with C_AREA_OPTIMIZED=1

Notes

• This instruction is only valid if the target architecture has multiplier primitives, and if present,
the MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

• When MULHU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish
between the two instructions. In previous versions of MicroBlaze, these bits were defined as
zero, but the actual values were not relevant.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 296Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=296

mulhsu
Figure 112: mulhsu

0 00 0 0 101 0 00 0

rD, rA, rBmulhsu

rArD

Multiply High Signed Unsigned

0 6 11 16 21 31
00 00 0rB

Description

Multiplies the contents of registers rA and rB and puts the result in register rD. This is a 32-bit
signed by 32-bit unsigned multiplication that will produce a 64-bit signed result. The most
significant word of this value is placed in rD. The least significant word is discarded.

Pseudocode

(rD) ← MSW((rA), signed × (rB), unsigned), signed

Registers Altered

• rD

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 3 cycles with C_AREA_OPTIMIZED=1

Notes

• This instruction is only valid if the target architecture has multiplier primitives, and if present,
the MicroBlaze parameter C_USE_HW_MUL is set to 2 (Mul64).

• When MULHSU is used, bit 30 and 31 in the MUL instruction must be zero to distinguish
between the two instructions. In previous versions of MicroBlaze, these bits were defined as
zero, but the actual values were not relevant.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 297Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=297

muli
Figure 113: muli

01 1 00 0

rD, rA, IMMmuli

rArD

Multiply Immediate

0 6 11 16 31
IMM

Description

Multiplies the contents of registers rA and the value IMM, sign-extended to 32 bits; and puts the
result in register rD. This is a 32-bit by 32-bit multiplication that will produce a 64-bit result. The
least significant word of this value is placed in rD. The most significant word is discarded.

Pseudocode

(rD) ← LSW((rA) × sext(IMM))

Registers Altered

• rD

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 3 cycles with C_AREA_OPTIMIZED=1

Notes

• By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the Type
B instruction with an imm instruction. See the instruction imm for details on using 32-bit
immediate values.

• This instruction is only valid if the target architecture has multiplier primitives, and if present,
the MicroBlaze parameter C_USE_HW_MUL is greater than 0.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 298Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=298

or
Figure 114: or

00 0 00 0 0 0 0 0000 0 01 0

rD, rA, rBor

rArD

Logical OR

0 6 11 16 31
rB

21

Description

The contents of register rA are ORed with the contents of register rB; the result is placed into
register rD.

Pseudocode

rD) ← (rA) ˅ (rB)

Registers Altered

• rD

Latency

• 1 cycle

Note

• The assembler pseudo-instruction nop is implemented as "or r0, r0, r0".

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 299Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=299

ori
Figure 115: ori

00 1 01 0

rD, rA, IMMori

rArD

Logical OR with Immediate

0 6 11 16 31
IMM

Description

The contents of register rA are ORed with the extended IMM field, sign-extended to 32 bits; the
result is placed into register rD.

Pseudocode

(rD) ← (rA) ˅ sext(IMM)

Registers Altered

• rD

Latency

• 1 cycle

Note

• By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the Type
B instruction with an imm instruction. See the instruction imm for details on using 32-bit
immediate values.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 300Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=300

pcmpbf
Figure 116: pcmpbf

00 0 01 0 0 0 0 0000 0 01 0

rD, rA, rBpcmpbf

rArD

Pattern Compare Byte Find

0 6 11 16 31
rB

21

bytewise comparison returning position of first match

Description

The contents of register rA are bytewise compared with the contents in register rB.

• rD is loaded with the position of the first matching byte pair, starting with MSB as position 1,
and comparing until LSB as position 4

• If none of the byte pairs match, rD is set to 0

Pseudocode

if rB[0:7] = rA[0:7] then
 (rD) ← 1
else
 if rB[8:15] = rA[8:15] then
 (rD) ← 2
 else
 if rB[16:23] = rA[16:23] then
 (rD) ← 3
 else
 if rB[24:31] = rA[24:31] then
 (rD) ← 4
 else
 (rD) ← 0

Registers Altered

• rD

Latency

• 1 cycle

Note

• This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 301Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=301

pcmpeq
Figure 117: pcmpeq

00 0 01 0 0 0 0 0000 0 01 1

rD, rA, rBpcmpeq

rArD

Pattern Compare Equal

0 6 11 16 31
rB

21

equality comparison with a positive boolean result

Description

The contents of register rA are compared with the contents in register rB.

• rD is loaded with 1 if they match, and 0 if not

Pseudocode

if (rB) = (rA) then
 (rD) ← 1
else
 (rD) ← 0

Registers Altered

• rD

Latency

• 1 cycle

Note

• This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 302Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=302

pcmpne
Figure 118: pcmpne

00 0 01 0 0 0 0 0010 0 01 1

rD, rA, rBpcmpne

rArD

Pattern Compare Not Equal

0 6 11 16 31
rB

21

equality comparison with a negative boolean result

Description

The contents of register rA are compared with the contents in register rB.

• rD is loaded with 0 if they match, and 1 if not

Pseudocode

if (rB) = (rA) then
 (rD) ← 0
else
 (rD) ← 1

Registers Altered

• rD

Latency

• 1 cycle

Note

• This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 303Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=303

put
Figure 119: put

0 0 0n c at111 1 00 1

rA, FSLxnaput

Put to stream interface

0 6 11 16 31
0 0 00

put data to link x
n = non-blocking
a = atomic

rA FSLx
28

0 0 00 0

FSLxtnaput put data to link x test-only
n = non-blocking
a = atomic

rA, FSLxncaput put control to link x
n = non-blocking
a = atomic

FSLxtncaput put control to link x test only
n = non-blocking
a = atomic

Description

MicroBlaze will write the value from register rA to the link x interface. If the available number of
links set by C_FSL_LINKS is less than or equal to FSLx, link 0 is used.

The put instruction has 16 variants.

The blocking versions (when ‘n’ is ‘0’) will stall MicroBlaze until there is space available in the
interface. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if space was
available and to ‘1’ if no space was available.

All data put instructions (when ‘c’ is ‘0’) will set the control bit to the interface to ‘0’ and all
control put instructions (when ‘c’ is ‘1’) will set the control bit to ‘1’.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the write
signal to the link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. Each atomic instruction prevents the
subsequent instruction from being interrupted. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However,
note that exceptions might still occur.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if
these instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception
occurs.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 304Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=304

Pseudocode

if MSR[UM] = 1 then
 ESR[EC] ← 00111
else
 x ← FSLx
 if x >= C_FSL_LINKS then
 x ← 0
 Mx_AXIS_TDATA ← (rA)
 if (n = 1) then
 MSR[Carry] ← Mx_AXIS_TVALID ˄ Mx_AXIS_TREADY
 Mx_AXIS_TLAST ← C

Registers Altered

• MSR[Carry]

• ESR[EC], in case a privileged instruction exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Notes

• To refer to an FSLx interface in assembly language, use rfsl0, rfsl1, ... rfsl15.

• The blocking versions of this instruction should not be placed in a delay slot when the
parameter C_USE_EXTENDED_FSL_INSTR is set to 1, because this prevents interrupts from
being served.

• These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is
greater than 0.

• The extended instructions (test and atomic versions) are only available when the MicroBlaze
parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

• It is not recommended to allow these instructions in user mode, unless absolutely necessary
for performance reasons, because that removes all hardware protection preventing incorrect
use of a link.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 305Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=305

putd
Figure 120: putd

1 0 0 0n c at11 0 00 1

rA, rBnaputd

Put to stream interface dynamic

0 6 11 16 31
0 0 00

put data to link rB[28:31]
n = non-blocking
a = atomic

rA0 0 00 0

rBtnaputd put data to link rB[28:31] test-only
n = non-blocking
a = atomic

rA, rBncaputd put control to link rB[28:31]
n = non-blocking
a = atomic

rBtncaputd put control to link rB[28:31] test only
n = non-blocking
a = atomic

rB
21

Description

MicroBlaze will write the value from register rA to the link interface defined by the four least
significant bits in rB. If the available number of links set by C_FSL_LINKS is less than or equal to
the four least significant bits in rB, link 0 is used.

The putd instruction has 16 variants.

The blocking versions (when ‘n’ is ‘0’) will stall MicroBlaze until there is space available in the
interface. The non-blocking versions will not stall MicroBlaze and will set carry to ‘0’ if space was
available and to ‘1’ if no space was available.

All data putd instructions (when ‘c’ is ‘0’) will set the control bit to the interface to ‘0’ and all
control putd instructions (when ‘c’ is ‘1’) will set the control bit to ‘1’.

The test versions (when ‘t’ bit is ‘1’) will be handled as the normal case, except that the write
signal to the link is not asserted (thus no source register is required).

Atomic versions (when ‘a’ bit is ‘1’) are not interruptible. Each atomic instruction prevents the
subsequent instruction from being interrupted. This means that a sequence of atomic
instructions can be grouped together without an interrupt breaking the program flow. However,
note that exceptions might still occur.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 306Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=306

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) and not explicitly allowed by
setting C_MMU_PRIVILEGED_INSTR to 1 these instructions are privileged. This means that if
these instructions are attempted in User Mode (MSR[UM] = 1) a Privileged Instruction exception
occurs.

Pseudocode

if MSR[UM] = 1 then
 ESR[EC] ← 00111
else
 x ← rB[28:31]
 if x >= C_FSL_LINKS then
 x ← 0
 Mx_AXIS_TDATA ← (rA)
 if (n = 1) then
 MSR[Carry] ← Mx_AXIS_TVALID ˄ Mx_AXIS_TREADY
 Mx_AXIS_TLAST ← C

Registers Altered

• MSR[Carry]

• ESR[EC], in case a privileged instruction exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Notes

• The blocking versions of this instruction should not be placed in a delay slot, because this
prevents interrupts from being served.

• These instructions are only available when the MicroBlaze parameter C_FSL_LINKS is
greater than 0 and the parameter C_USE_EXTENDED_FSL_INSTR is set to 1.

It is not recommended to allow these instructions in user mode, unless absolutely necessary
for performance reasons, because that removes all hardware protection preventing incorrect
use of a link.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 307Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=307

rsub
Figure 121: rsub

00 0 0 010 0 K0 C

rD, rA, rBrsub

rA rB

Arithmetic Reverse Subtract

0 6 11 16 21 31
00 0 00 0

rD, rA, rBrsubc

rD

rD, rA, rBrsubk
rD, rA, rBrsubkc

Subtract
Subtract with Carry
Subtract and Keep Carry
Subtract with Carry and Keep Carry

Description

The contents of register rA are subtracted from the contents of register rB and the result is
placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to one for the
mnemonic rsubk. Bit 4 of the instruction (labeled as C in the figure) is set to one for the
mnemonic rsubc. Both bits are set to one for the mnemonic rsubkc.

When an rsub instruction has bit 3 set (rsubk, rsubkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsub, rsubc), then
the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (rsubc, rsubkc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (rsub, rsubk), the content of the
carry flag does not affect the execution of the instruction (providing a normal subtraction).

Pseudocode

if C = 0 then
 (rD) ← (rB) + (rA) + 1
else
 (rD) ← (rB) + (rA) + MSR[C]
if K = 0 then
 MSR[C] ← CarryOut

Registers Altered

• rD

• MSR[C]

Latency

• 1 cycle

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 308Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=308

Note

• In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there
is no Borrow, and when the Carry is cleared, it means that there is a Borrow.

rsubi
Figure 122: rsubi

10 1 K0 C

rD, rA, IMMrsubi

rA

Arithmetic Reverse Subtract Immediate

0 6 11 16 31
IMM

rD, rA, IMMrsubic

rD

rD, rA, IMMrsubik
rD, rA, IMMrsubikc

Subtract Immediate
Subtract Immediate with Carry
Subtract Immediate and Keep Carry
Subtract Immediate with Carry and Keep Carry

Description

The contents of register rA are subtracted from the value of IMM, sign-extended to 32 bits, and
the result is placed into register rD. Bit 3 of the instruction (labeled as K in the figure) is set to
one for the mnemonic rsubik. Bit 4 of the instruction (labeled as C in the figure) is set to one for
the mnemonic rsubic. Both bits are set to one for the mnemonic rsubikc.

When an rsubi instruction has bit 3 set (rsubik, rsubikc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsubi, rsubic),
then the carry flag will be affected by the execution of the instruction. When bit 4 of the
instruction is set to one (rsubic, rsubikc), the content of the carry flag (MSR[C]) affects the
execution of the instruction. When bit 4 is cleared (rsubi, rsubik), the content of the carry flag
does not affect the execution of the instruction (providing a normal subtraction).

Pseudocode

if C = 0 then
 (rD) ← sext(IMM) + (rA) + 1
else
 (rD) ← sext(IMM) + (rA) + MSR[C]
if K = 0 then
 MSR[C] ← CarryOut

Registers Altered

• rD

• MSR[C]

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 309Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=309

Latency

• 1 cycle

Note

• In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there
is no Borrow, and when the Carry is cleared, it means that there is a Borrow. By default, Type
B Instructions will take the 16-bit IMM field value and sign extend it to 32 bits to use as the
immediate operand. This behavior can be overridden by preceding the Type B instruction with
an imm instruction. See the instruction imm for details on using 32-bit immediate values.

rtbd
Figure 123: rtbd

10 1 11 0

rAx, IMMrtbd

Return from Break

0 6 11 16 31
rAx0 0 11 0 IMM

Description

Return from break will branch to the location specified by the contents of rAX plus the sign-
extended IMM field. It will also enable breaks after execution by clearing the BIP flag in the MSR.

This instruction always has a delay slot. The instruction following the RTBD is always executed
before the branch target. That delay slot instruction has breaks disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

Pseudocode

if MSR[UM] = 1 then
 ESR[EC] ← 00111
else
 PC ← (rAX) + sext(IMM)
 allow following instruction to complete execution
 MSR[BIP] ← 0
 MSR[UM] ← MSR[UMS]
 MSR[VM] ← MSR[VMS]

Registers Altered

• PC

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 310Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=310

• MSR[BIP], MSR[UM], MSR[VM]

• ESR[EC], in case a privileged instruction exception is generated

Latency

• 2 cycles (with C_AREA_OPTIMIZED≠2)

• 6 cycles (with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• Convention is to use general purpose register r16 as rAX.

• A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been
completed.

rtid
Figure 124: rtid

10 1 11 0

rAx, IMMrtid

Return from Interrupt

0 6 11 16 31
rAx0 0 01 1 IMM

Description

eturn from interrupt will branch to the location specified by the contents of rAX plus the sign-
extended IMM field. It will also enable interrupts after execution.

This instruction always has a delay slot. The instruction following the RTID is always executed
before the branch target. That delay slot instruction has interrupts disabled.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

With low-latency interrupt mode (C_USE_INTERRUPT = 2), the Interrupt_Ack output port is set
to 10 when this instruction is executed, and subsequently to 11 when the MSR{IE] bit is set.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 311Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=311

Pseudocode

if MSR[UM] = 1 then
 ESR[EC] ← 00111
else
 PC ← (rAX) + sext(IMM)
 Interrupt_Ack ← 10
 allow following instruction to complete execution
 MSR[IE] ← 1
 MSR[UM] ← MSR[UMS]
 MSR[VM] ← MSR[VMS]
 Interrupt_Ack ← 11

Registers Altered

• PC

• MSR[IE], MSR[UM], MSR[VM]

• ESR[EC], in case a privileged instruction exception is generated

Latency

• 2 cycles (with C_AREA_OPTIMIZED≠2)

• 6 cycles (with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• Convention is to use general purpose register r14 as rAX.

• A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been
completed.

rted
Figure 125: rted

10 1 11 0

rAx, IMMrted

Return from Exception

0 6 11 16 31
rAx0 1 01 0 IMM

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 312Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=312

Description

Return from exception will branch to the location specified by the contents of rAX plus the sign-
extended IMM field. The instruction will also enable exceptions after execution.

This instruction always has a delay slot. The instruction following the RTED is always executed
before the branch target.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

Pseudocode

if MSR[UM] = 1 then
 ESR[EC] ← 00111
else
 PC ← (rAX) + sext(IMM)
 allow following instruction to complete execution
 MSR[EE] ← 1
 MSR[EIP] ← 0
 MSR[UM] ← MSR[UMS]
 MSR[VM] ← MSR[VMS]
 ESR ← 0

Registers Altered

• PC

• MSR[EE], MSR[EIP], MSR[UM], MSR[VM]

• ESR

Latency

• 2 cycles (with C_AREA_OPTIMIZED≠2)

• 6 cycles (with C_AREA_OPTIMIZED=2)

• If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• Convention is to use general purpose register r17 as rAX. This instruction requires that one or
more of the MicroBlaze parameters C_*_EXCEPTION are set to 1 or that C_USE_MMU > 0.

• A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been
completed.

• The instruction should normally not be used when MSR[EE] is set, because if the instruction in
the delay slot would cause an exception, the exception handler would be entered with
exceptions enabled.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 313Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=313

• Code returning from an exception must first check if MSR[DS] is set, and in that case return to
the address in BTR.

rtsd
Figure 126: rtsd

10 1 11 0

rAx, IMMrtsd

Return from Subroutine

0 6 11 16 31
rAx0 0 01 0 IMM

Description

Return from subroutine will branch to the location specified by the contents of rAX plus the sign-
extended IMM field.

This instruction always has a delay slot. The instruction following the RTSD is always executed
before the branch target.

Pseudocode

PC ← (rAX) + sext(IMM)
allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if successful branch prediction occurs)

• 2 cycles (with Branch Target Cache disabled and C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch prediction mispredict occurs with C_AREA_OPTIMIZED=0)

• 6 cycles (with Branch Target Cache disabled and C_AREA_OPTIMIZED=2)

• 7 cycles (if branch prediction mispredict occurs with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• Convention is to use general purpose register r15 as rAX.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 314Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=314

• A delay slot must not be used by the following: imm, branch, or break instructions. Interrupts
and external hardware breaks are deferred until after the delay slot branch has been
completed.

sb
Figure 127: sb

00 0 0 001 0 11 0

rDx, rAx, rBxsb

rA rBx

Store Byte

0 6 11 16 21 31
0R 0 EA0 0

rDx, rAx, rBxsbr

rD

rD, rA, rBsbea

Description

Stores the contents of the least significant byte of register rD, into the memory location that
results from adding the contents of registers rAX and rBX.

If the R bit is set, a byte reversed memory location is used, storing data with the opposite
endianness of the endianness defined by the E bit (if virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of
adding them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by
no-access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is
enabled, and the instruction is not explicitly allowed.

Pseudocode

if EA = 1 then
 Addr ← (rA) & (rB)
else
 Addr ← (rAX) + (rBX)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 1
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 315Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=315

1 ; ESR[DIZ] ← No-access-allowed
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←
0; MSR[VM] ← 0
else
 Mem(Addr) ← (rD)[C_DATA_SIZE-8:C_DATA_SIZE-1]

Registers Altered

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Notes

• The byte reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

• The extended address instruction is only valid if MicroBlaze is configured to use extended
address (C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA_SIZE = 32).

sbi
Figure 128: sbi

01 1 11 0

rD, rAx, IMMsbi

Store Byte Immediate

0 6 11 16 31
rAx IMMrD

Description

Stores the contents of the least significant byte of register rD, into the memory location that
results from adding the contents of register rAX and the sign-extended IMM value.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by
no-access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 316Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=316

Pseudocode

Addr ← (rAX) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 1
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
1 ; ESR[DIZ] ← No-access-allowed
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←
0; MSR[VM] ← 0
else
 Mem(Addr) ← (rD)[C_DATA_SIZE-8:C_DATA_SIZE-1]

Registers Altered

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if an exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Notes

• By default, Type B store instructions will take the 16-bit IMM field value and sign extend it to
use as the immediate operand. This behavior can be overridden by preceding the instruction
with an imm or imml instruction. See the instructions imm and imml for details on using
immediate values.

sext16
Figure 129: sext16

0 0 0 0 0 0 0 0 0 10 0 0 000 0 11 0

rD, rA,sext16

rArD

Sign Extend Halfword

0 6 11 16 31
11

Description

This instruction sign-extends a halfword (16 bits) into a word (32 bits). Bit 16 in rA will be copied
into bits 0-15 of rD. Bits 16-31 in rA will be copied into bits 16-31 of rD.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 317Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=317

Pseudocode

(rD)[0:15] ← (rA)[16]
(rD)[16:31] ← (rA)[16:31]

Registers Altered

• rD

Latency

• 1 cycle

sext8
Figure 130: sext8

0 0 00 0 00 0 0 000 0 11 0

rD, rA,sext8

rArD

Sign Extend Byte

0 6 11 16 31
10 0 00 1

Description

This instruction sign-extends a byte (8 bits) into a word (32 bits). Bit 24 in rA will be copied into
bits 0-23 of rD. Bits 24-31 in rA will be copied into bits 24-31 of rD.

Pseudocode

(rD)[0:23] ← (rA)[24]
(rD)[24:31] ← (rA)[24:31]

Registers Altered

• rD

Latency

• 1 cycle

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 318Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=318

sh
Figure 131: sh

00 0 0 011 0 11 0

rDx, rAx, rBxsh

rAx rBx

Store Halfword

0 6 11 16 21 31
0R 0 EA0 0

rDx, rAx, rBxshr

rD

rD, rA, rBshea

Description

Stores the contents of the least significant halfword of register rD, into the halfword aligned
memory location that results from adding the contents of registers rAX and rBX.

If the R bit is set, a halfword reversed memory location is used and the two bytes in the halfword
are reversed, storing data with the opposite endianness of the endianness defined by the E bit (if
virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of
adding them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by
no-access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the least significant bit in the address is not zero.

A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is
enabled, and the instruction is not explicitly allowed.

Pseudocode

if EA = 1 then
 Addr ← (rA) & (rB)
else
 Addr ← (rAX) + (rBX)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 1
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
1 ; ESR[DIZ] ← No-access-allowed
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 319Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=319

0; MSR[VM] ← 0
else if Addr[31] ≠ 0 then
 ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 1; ESR[Rx] ← rD
else
 Mem(Addr) ← (rD)[C_DATA_SIZE-16:C_DATA_SIZE-1]

Registers Altered

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Notes

• The halfword reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

• The extended address instruction is only valid if MicroBlaze is configured to use extended
address (C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA_SIZE = 32).

shi
Figure 132: shi

11 1 11 0

rD, rAX, IMMshi

rAXrD

Store Halfword Immediate

0 6 11 16 31
IMM

Description

Stores the contents of the least significant halfword of register rD, into the halfword aligned
memory location that results from adding the contents of register rAX and the sign-extended
IMM value.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 320Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=320

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB. A data storage exception occurs if
virtual protected mode is enabled, and access is prevented by no-access-allowed or read-only
zone protection. No-access-allowed can only occur in user mode. An unaligned data access
exception occurs if the least significant bit in the address is not zero.

Pseudocode

Addr ← (rAX) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 1
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
1 ; ESR[DIZ] ← No-access-allowed
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←
0; MSR[VM] ← 0
else if Addr[31] ≠ 0 then
 ESR[EC] ← 00001; ESR[W] ← 0; ESR[S] ← 1; ESR[Rx] ← rD
else
 Mem(Addr) ← (rD)[C_DATA_SIZE-16:C_DATA_SIZE-1]

Registers Altered

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Notes

• By default, Type B store instructions will take the 16-bit IMM field value and sign extend it to
use as the immediate operand. This behavior can be overridden by preceding the instruction
with an imm or imml instruction. See the instructions imm and imml for details on using
immediate values.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 321Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=321

sra
Figure 133: sra

0 0000 0 00 0 00 0 0 10 000 0 11 0

rD, rAsra

rArD

Shift Right Arithmetic

0 6 11 16 31

Description

Shifts arithmetically the contents of register rA, one bit to the right, and places the result in rD.
The most significant bit of rA (that is, the sign bit) placed in the most significant bit of rD. The
least significant bit coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD)[0] ← (rA)[0]
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered

• rD

• MSR[C]

Latency

• 1 cycle

src
Figure 134: src

0 0 00 0 10 0 0 000 0 11 0

rD, rAsrc

rA

Shift Right with Carry

0 6 11 16 31
10 0 00 0rD

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 322Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=322

Description

Shifts the contents of register rA, one bit to the right, and places the result in rD. The Carry flag is
shifted in the shift chain and placed in the most significant bit of rD. The least significant bit
coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD)[0] ← MSR[C]
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered

• rD

• MSR[C]

Latency

• 1 cycle

srl
Figure 135: srl

0 0 00 0 10 0 0 000 0 11 0

rD, rAsrl

rA

Shift Right Logical

0 6 11 16 31
00 0 00 1rD

Description

Shifts logically the contents of register rA, one bit to the right, and places the result in rD. A zero
is shifted in the shift chain and placed in the most significant bit of rD. The least significant bit
coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rD)[0] ← 0
(rD)[1:31] ← (rA)[0:30]
MSR[C] ← (rA)[31]

Registers Altered

• rD

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 323Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=323

• MSR[C]

Latency

• 1 cycle

sw
Figure 136: sw

00 0 0 001 0 11 1

rD, rAx, rBxsw

rAx rBx

Store Word

0 6 11 16 21 31
0R 0 EA0 0

rD, rAx, rBxswr

rD

rD, rA, rBswea

Description

Stores the contents of register rD, into the word aligned memory location that results from
adding the contents of registers rAX and rBX.

If the R bit is set, the bytes in the stored word are reversed , storing data with the opposite
endianness of the endianness defined by the E bit (if virtual protected mode is enabled).

If the EA bit is set, an extended address is used, formed by concatenating rA and rB instead of
adding them.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by
no-access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are not
zero.

A privileged instruction error occurs if the EA bit is set, Physical Address Extension (PAE) is
enabled, and the instruction is not explicitly allowed.

Pseudocode

if EA = 1 then
 Addr ← (rA) & (rB)
else
 Addr ← (rAX) + (rBX)
if TLB_Miss(Addr) and MSR[VM] = 1 then

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 324Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=324

 ESR[EC] ← 10010; ESR[S] ← 1
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
1 ; ESR[DIZ] ← No-access-allowed
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←
0; MSR[VM] ← 0
else if Addr[30:31] ≠ 0 then
 ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 1; ESR[Rx] ← rD
else
 Mem(Addr) ← (rD)

Registers Altered

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Notes

• The word reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

• The extended address instruction is only valid if MicroBlaze is configured to use extended
address (C_ADDR_SIZE > 32) and is using 32-bit mode (C_DATA_SIZE = 32).

swapb
Figure 137: swapb

0 0 00 0 00 0 0 000 0 11 0

rD, rAswapb

rA

Swap Bytes

0 6 11 16 31
10 1 10 1rD

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 325Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=325

Description

Swaps the contents of register rA treated as four bytes, and places the result in rD. This
effectively converts the byte sequence in the register between endianness formats, either from
little-endian to big-endian or vice versa.

Pseudocode

(rD)[24:31] ← (rA)[0:7]
(rD)[16:23] ← (rA)[8:15]
(rD)[8:15] ← (rA)[16:23]
(rD)[0:7] ← (rA)[24:31]

Registers Altered

• rD

Latency

• 1 cycle

Note

• This instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

swaph
Figure 138: swaph

0 0 00 0 00 0 0 100 0 11 0

rD, rAswaph

rA

Swap Halfwords

0 6 11 16 31
10 1 10 1rD

Description

Swaps the contents of register rA treated as two halfwords, and places the result in rD. This
effectively converts the two halfwords in the register between endianness formats, either from
little-endian to big-endian or vice versa.

Pseudocode

(rD)[0:15] ← (rA)[16:31]
(rD)[16:31] ← (rA)[0:15]

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 326Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=326

Registers Altered

• rD

Latency

• 1 cycle

Note

• This instruction is only valid if MicroBlaze is configured to use reorder instructions
(C_USE_REORDER_INSTR = 1).

swi
Figure 139: swi

01 1 11 1

rD, rAX, IMMswi

rAX

Store Word Immediate

0 6 11 16 31
IMMrD

Description

Stores the contents of register rD, into the word aligned memory location that results from
adding the contents of registers rAX and the sign-extended IMM value.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by
no-access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the two least significant bits in the address are not
zero.

Pseudocode

Addr ← (rAX) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 1
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
1 ; ESR[DIZ] ← No-access-allowed
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM]

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 327Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=327

← 0
else if Addr[30:31] ≠ 0 then
 ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 1; ESR[Rx] ← rD
else
 Mem(Addr) ← (rD)

Registers Altered

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Note

• By default, Type B store instructions will take the 16-bit IMM field value and sign extend it to
use as the immediate operand. This behavior can be overridden by preceding the instruction
with an imm or imml instruction. See the instructions imm and imml for details on using
immediate values.

swx
Figure 140: swx

00 0 0 001 0 11 1

rD, rA, rBswx

rA

Store Word Exclusive

0 6 11 16 31
00 0 01 0rD rB

21

Description

Conditionally stores the contents of register rD, into the word aligned memory location that
results from adding the contents of registers rA and rB. If an AXI4 interconnect with exclusive
access enabled is used, the store occurs if the interconnect response is EXOKAY, and the
reservation bit is set; otherwise the store occurs when the reservation bit is set. The carry flag
(MSR[C]) is set if the store does not occur, otherwise it is cleared. The reservation bit is cleared.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 328Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=328

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by
no-access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception will not occur even if the two least significant bits in the
address are not zero.

Enabling AXI exclusive access ensures that the operation is protected from other bus masters,
but requires that the addressed slave supports exclusive access. When exclusive access is not
enabled, only the internal reservation bit is used. Exclusive access is enabled using the two
parameters C_M_AXI_DP_EXCLUSIVE_ACCESS and C_M_AXI_DC_EXCLUSIVE_ACCESS for
the peripheral and cache interconnect, respectively.

Pseudocode

Addr ← (rA) + (rB)
if Reservation = 0 then
 MSR[C] ← 1
else
 if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 1
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM]
← 0
 else if Access_Protected(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
1 ; ESR[DIZ] ← No-access-allowed
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM]
← 0; MSR[VM] ← 0
 else
 Reservation ← 0
 if AXI_Exclusive(Addr) and AXI_Response ≠ EXOKAY then
 MSR[C] ← 1
 else
 Mem(Addr) ← (rD)[0:31]
 MSR[C] ← 0

Registers Altered

• MSR[C], unless an exception is generated

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 329Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=329

Notes

• This instruction is used together with LWX to implement exclusive access, such as
semaphores and spinlocks.

• The carry flag (MSR[C]) might not be set immediately (dependent on pipeline stall behavior).
The SWX instruction should not be immediately followed by an MSRCLR, MSRSET, MTS, or
SRC instruction, to ensure the correct value of the carry flag is obtained.

wdc
Figure 141: wdc

T 0101 1 F00 0 11 0

rA, rBwdc

rB

Write to Data Cache

0 6 11 16 21 31
0 0 EAE

rA, rBwdc.flush
rA, rBwdc.clear
rA, rBwdc.clear.ea
rA, rBwdc.ext.flush
rA, rBwdc.ext.clear

rA0 0 00 0

Description

Write into the data cache tag to invalidate or flush a cache line. The mnemonic wdc.flush is used
to set the F bit, wdc.clear is used to set the T bit, wdc.clear.ea is used to set the T and EA bits,
wdc.ext.flush is used to set the E, F and T bits, and wdc.ext.clear is used to set the E and T bits.

When C_DCACHE_USE_WRITEBACK is set to 1:

• If the F bits is set, the instruction will flush and invalidate the cache line.

• Otherwise, the instruction will only invalidate the cache line and discard any data that has not
been written to memory.

• If the T bit is set, only a cache line with a matching address is invalidated:

○ If the EA bit is set register rA concatenated with rB is the extended address of the affected
cache line.

○ Otherwise, register rA added with rB is the address of the affected cache line.

○ The EA bit is only taken into account when the parameter C_ADDR_SIZE > 32.

• The E bit is not taken into account.

• The F and T bits cannot be used at the same time.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 330Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=330

When C_DCACHE_USE_WRITEBACK is cleared to 0:

• If the E bit is not set, the instruction will invalidate the cache line. Register rA contains the
address of the affected cache line, and the register rB value is not used.

• Otherwise, MicroBlaze will request that the matching address in an external cache should be
invalidated or flushed, depending on the value of the F bit, and invalidate the internal affected
cache line. Register rA added with rB is the address in the external cache, and of the affected
cache line.

• The E bit is only taken into account when the parameter C_INTERCONNECT is set to 3 (ACE).

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) the instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

Pseudocode

if MSR[UM] = 1 then
 ESR[EC] ← 00111
else
 if C_DCACHE_USE_WRITEBACK = 1 then
 if T = 1 and EA = 1 then
 address ← (rA) & (rB)
 else
 address ← (rA) + (rB)
 else if E = 0 then
 address ← (rA)
 else
 address ← (rA) + (rB)
 if C_DCACHE_LINE_LEN = 4 then
 cacheline_mask ← (1 <<
log2(C_DCACHE_BYTE_SIZE) - 4) - 1
 cacheline ← (DCache Line)[(address >> 4) ˄
cacheline_mask]
 cacheline_addr ← address & 0xfffffff0
 if C_DCACHE_LINE_LEN = 8 then
 cacheline_mask ← (1 <<
log2(C_DCACHE_BYTE_SIZE) - 5) - 1
 cacheline ← (DCache Line)[(address >> 5) ˄
cacheline_mask]
 cacheline_addr ← address & 0xffffffe0
 if C_DCACHE_LINE_LEN = 16 then
 cacheline_mask ← (1 <<
log2(C_DCACHE_BYTE_SIZE) - 6) - 1
 cacheline ← (DCache Line)[(address >> 6) ˄
cacheline_mask]
 cacheline_addr ← address & 0xffffffc0
 if E = 0 and F = 1 and cacheline.Dirty then
 for i = 0 .. C_DCACHE_LINE_LEN - 1 loop
 if cacheline.Valid[i] then
 Mem(cacheline_addr + i * 4) ← cacheline.Data[i]
 if T = 0 or C_DCACHE_USE_WRITEBACK = 0 then
 cacheline.Tag ← 0
 else if cacheline.Address = cacheline_addr then
 cacheline.Tag ← 0

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 331Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=331

 if E = 1 then
 if F = 1 then
 request external cache flush with address
 else
 request external cache invalidate with address

Registers Altered

• ESR[EC], in case a privileged instruction exception is generated

Latency

• 2 cycles for wdc.clear

• 2 cycles for wdc with C_AREA_OPTIMIZED=0 or 2

• 3 cycles for wdc with C_AREA_OPTIMIZED=0

• 2 + N cycles for wdc.flush, where N is the number of clock cycles required to flush the cache
line to memory when necessary

Notes

• The wdc, wdc.flush, wdc.clear and wdc.clear.ea instructions are independent of data cache
enable (MSR[DCE]), and can be used either with the data cache enabled or disabled.

• The wdc.clear and wdc.clear.ea instructions are intended to invalidate a specific area in
memory, for example a buffer to be written by a Direct Memory Access device.

• Using this instruction ensures that other cache lines are not inadvertently invalidated,
erroneously discarding data that has not yet been written to memory.

• The address of the affected cache line is always the physical address, independent of the
parameter C_USE_MMU and whether the MMU is in virtual mode or real mode.

• When using wdc.flush in a loop to flush the entire cache, the loop can be optimized by using
rA as the cache base address and rB as the loop counter:

addik r5,r0,C_DCACHE_BASEADDR
 addik r6,r0,C_DCACHE_BYTE_SIZE-
C_DCACHE_LINE_LEN*4
loop: wdc.flush r5,r6
 bgtid r6,loop
 addik r6,r6,-C_DCACHE_LINE_LEN*4

• When using wdc.clear in a loop to invalidate a memory area in the cache, the loop can be
optimized by using rA as the memory area base address and rB as the loop counter:

addik r5,r0,memory_area_base_address
 addik r6,r0,memory_area_byte_size-
C_DCACHE_LINE_LEN*4
loop: wdc.clear r5,r6
 bgtid r6,loop
 addik r6,r6,-C_DCACHE_LINE_LEN*4

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 332Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=332

wic
Figure 142: wic

00 1 0 000 0 11 0

rA, rBwic

rA

Write to Instruction Cache

0 6 11 16 31
10 0 00 1rB

21
0 0 00 0

Description

Write into the instruction cache tag to invalidate a cache line. The register rB value is not used.
Register rA contains the address of the affected cache line.

When MicroBlaze is configured to use an MMU (C_USE_MMU >= 1) this instruction is privileged.
This means that if the instruction is attempted in User Mode (MSR[UM] = 1) a Privileged
Instruction exception occurs.

Pseudocode

if MSR[UM] = 1 then
 ESR[EC] ← 00111
else
 if C_ICACHE_LINE_LEN = 4 then
 cacheline_mask ← (1 << log2(C_CACHE_BYTE_SIZE) - 4) - 1
 (ICache Line)[((Ra) >> 4) ˄ cacheline_mask].Tag ← 0
 if C_ICACHE_LINE_LEN = 8 then
 cacheline_mask ← (1 << log2(C_CACHE_BYTE_SIZE) - 5) - 1
 (ICache Line)[((Ra) >> 5) ˄ cacheline_mask].Tag ← 0
 if C_ICACHE_LINE_LEN = 16 then
 cacheline_mask ← (1 << log2(C_CACHE_BYTE_SIZE) - 6) - 1
 (ICache Line)[((Ra) >> 6) ˄ cacheline_mask].Tag ← 0

Registers Altered

• ESR[EC], in case a privileged instruction exception is generated

Latency

• 2 cycles

Notes

• The WIC instruction is independent of instruction cache enable (MSR[ICE]), and can be used
either with the instruction cache enabled or disabled.

• The address of the affected cache line is the virtual address when the parameter C_USE_MMU
= 3 (VIRTUAL) and the MMU is in virtual mode, otherwise it is the physical address.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 333Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=333

xor
Figure 143: xor

00 0 0 000 0 01 1

rD, rA, rBxor

rA

Logical Exclusive OR

0 6 11 16 31
00 0 00 0rB

21
rD

Description

The contents of register rA are XORed with the contents of register rB; the result is placed into
register rD.

Pseudocode

(rD) ← (rA) ⊕ (rB)

Registers Altered

• rD

Latency

• 1 cycle

xori
Figure 144: xori

00 1 01 1

rD, rA, IMMxori

rA

Logical Exclusive OR with Immediate

0 6 11 16 31
IMMrD

Description

The IMM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of
register rA are XOR’ed with the extended IMM field; the result is placed into register rD.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 334Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=334

Pseudocode

(rD) ← (rA) ⊕ sext(IMM)

Registers Altered

• rD

Latency

• 1 cycle

Notes

• By default, Type B Instructions will take the 16-bit IMM field value and sign extend it to 32
bits to use as the immediate operand. This behavior can be overridden by preceding the Type
B instruction with an imm instruction. See the instruction imm for details on using 32-bit
immediate values.

• When this instruction is used with rD set to r0, a program trace event is emitted with the 14
least significant bits of the result. Typically this is used to trace operating system events like
context switches and system calls, but it can be used by any program to trace significant
events. The functionality is enabled by setting C_DEBUG_ENABLED = 2 (Extended) and
C_DEBUG_TRACE_SIZE > 0. See Program and Event Trace for further details.

MicroBlaze 64-bit Instructions
All additional instructions included in the instruction set for 64-bit MicroBlaze are defined in this
section.

These instructions use the full 64-bit register size to provide long arithmetic and logical
operations.

All Type B 64-bit arithmetic and logical instructions must be preceded by an imml instruction, to
indicate that they are 64-bit instructions. See the instruction imml for details on using 64-bit
immediate values.

The extended instruction set also defines double precision floating point instructions.

The 64-bit instruction set does not define a long multiplication instruction to multiply two 64-bit
values with a 64-bit result.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 335Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=335

addl
Figure 145: addl

0 00 000 1000 0 K0 C

rDL, rAL, rBLaddl

rBL

Arithmetic Add Long

0 6 11 16 21 31

Add Long
addlc Add Long with Carry
addlk Add Long and Keep Carry
addlkc Add Long with Carry and Keep Carry

rDL rAL

rDL, rAL, rBL

rDL, rAL, rBL

rDL, rAL, rBL

0 00

Description

The sum of the contents of registers rAL and rBL, is placed into register rDL.

Bit 3 of the instruction (labeled as K in the figure) is set to one for the mnemonic addlk. Bit 4 of
the instruction (labeled as C in the figure) is set to one for the mnemonic addlc. Both bits are set
to one for the mnemonic addlkc.

When an add instruction has bit 3 set (addlk, addlkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (addl, addlc), then
the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (addlc, addlkc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (addl, addlk), the content of the
carry flag does not affect the execution of the instruction (providing a normal addition).

Pseudocode

if C = 0 then
 (rDL) ← (rAL) + (rBL)
else
 (rDL) ← (rAL) + (rBL) + MSR[C]
if K = 0 then
 MSR[C] ← CarryOut64

Registers Altered

• rDL

• MSR[C]

Latency

• 1 cycle

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 336Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=336

Notes

• The C bit in the instruction opcode is not the same as the carry bit in the MSR.

addli
Figure 146: addli

0 0 K C 01 0 1 010

00 1 K0 C

rDL, rAL, IMMaddli

Arithmetic Add Long Immediate

0 6 11 16 31

Add Long Immediate
addlic Add Long Immediate with Carry
addlik Add Long Immediate and Keep Carry
addlikc Add Long Immediate with Carry and Keep Carry

rDL rAL

rDL, rAL, IMM
rDL, rAL, IMM
rDL, rAL, IMM

IMM

|
|
|
|

rDL, IMM
rDL, IMM
rDL, IMM
rDL, IMM

rDL IMM

Description

The sum of the contents of registers rAL or rDL and the value in the IMM field extended with the
immediate value from the preceding imml instructions, if any, is placed into register rDL. Bit 3 or
13 of the instruction (labeled as K in the figure) is set to one for the mnemonic addik. Bit 4 or 14
of the instruction (labeled as C in the figure) is set to one for the mnemonic addlic. Both bits are
set to one for the mnemonic addlikc.

When an addli instruction has bit 3 or 13 set (addlik, addlikc), the carry flag will keep its previous
value regardless of the outcome of the execution of the instruction. If bit 3 or 13 is cleared (addli,
addlic), then the carry flag will be affected by the execution of the instruction.

When bit 4 or 14 of the instruction is set to one (addlic, addlikc), the content of the carry flag
(MSR[C]) affects the execution of the instruction. When bit 4 or 14 is cleared (addli, addlik), the
content of the carry flag does not affect the execution of the instruction (providing a normal
addition).

Pseudocode

if C = 0 then
 (rDL) ← (rAL|rDL) + sext(IMM)
else
 (rDL) ← (rAL|rDL) + sext(IMM) + MSR[C]
if K = 0 then
 MSR[C] ← CarryOut64

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 337Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=337

Registers Altered

• rDL

• MSR[C]

Latency

• 1 cycle

Notes

• The C bit in the instruction opcode is not the same as the carry bit in the MSR.

• Type B arithmetic long instructions with three operands must be preceded by an imml
instruction. See the instruction imml for details on using long immediate values.

andl
Figure 147: andl

00 0 0 010 0 01 0

rDL, rAL, rBLandl

rALrDL

Logical AND Long

0 6 11 16 21 31
00 1 00 0rBL

Description

The contents of register rAL are ANDed with the contents of register rBL; the result is placed into
register rDL.

Pseudocode

(rDL) ← (rAL) ˄ (rBL)

Registers Altered

• rDL

Latency

• 1 cycle

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 338Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=338

andli
Figure 148: andli

0 0 1

10 1 01 0

rDL, rAL, IMMandli

rALrDL

Logical AND Long with Immediate

0 6 11 16 31

IMM

| rDL, IMM

01 1 00 1 rDL IMM01

Description

The contents of register rAL or rDL are ANDed with the value of the IMM field extended with the
immediate value from the preceding imml instructions; the result is placed into register rDL.

Pseudocode

(rDL) ← (rAL|rDL) ˄ sext(IMM)

Registers Altered

• rDL

Latency

• 1 cycle

Note

• Type B logical long instructions with three operands must be preceded by an imml instruction.
See the instruction imml for details on using long immediate values.

andnl
Figure 149: andnl

00 0 0 010 0 01 1

rDL, rAL, rBLandnl

rALrDL

Logical AND NOT Long

0 6 11 16 21 31
00 1 00 0rBL

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 339Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=339

Description

The contents of register rAL are ANDed with the logical complement of the contents of register
rBL; the result is placed into register rDL.

Pseudocode

(rDL) ← (rAL) ˄ (rBL)

Registers Altered

• rDL

Latency

• 1 cycle

andnli
Figure 150: andnli

0 1 1

10 1 01 1

rDL, rAL, IMMandnli

rALrDL

Logical AND NOT Long with Immediate

0 6 11 16 31

IMM

| rDL, IMM

01 1 00 1 rDL IMM01

Description

The IMM field is sign-extended with the immediate value from the preceding imml instructions.
The contents of register rAL or rDL are ANDed with the logical complement of the extended IMM
field; the result is placed into register rDL.

Pseudocode

(rDL) ← (rAL|rDL) ˄ (sext(IMM))

Registers Altered

• rDL

Latency

• 1 cycle

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 340Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=340

Note

• Type B logical long instructions with three operands must be preceded by an imml instruction.
See the instruction imml for details on using long immediate values.

beaeq
Figure 151: beaeq

1 0 0D 0 0 00 000 L010 0 11 1

rA, rBLbeaeq

rBL

Branch Extended Address if Equal

0 6 11 16 21 31

Branch Extended Address if Equal
bealeq Branch Extended Address if Long Equal
beaeqd Branch Extended Address if Equal with Delay
bealeqd Branch Extended Address if Long Equal with Delay

rAL

rAL, rBL

rA, rBL

rAL, rBL

0 00

Description

Branch if rA or rAL is equal to 0, to the instruction located in the offset value of rBL. The target of
the branch will be the instruction at address PC + rBL.

The mnemonics bealeq and bealeqd will set the L bit. If the L bit is set, a long comparison using
rAL is performed, otherwise a 32-bit comparison using rA is performed.

The mnemonics beaeqd and bealeqd will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

if L = 1 and rAL = 0 then
 PC ← PC + rBL
else if rA = 0 then
 PC ← PC + rBL
else
 PC ← PC + 4

if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 341Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=341

Latency

• 1 cycle (if branch is not taken)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Note

• A delay slot must not be used by the following: imm, imml, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has been
completed.

beaeqi
Figure 152: beaeqi

1 0 0D 010 1 11 1

rA, IMMbeaeqi

Branch Extended Address Immediate if Equal

0 6 11 16 31

Branch Extended Address immediate if Equal
bealeqid Branch Extended Address Immediate if Equal with Delay

rAL

rA, IMM

IMM

Description

Branch if rA or rAL is equal to 0, to the instruction located in the offset value of IMM extended
with the immediate value from the preceding imm or imml instructions. The target of the branch
will be the instruction at address PC + IMM.

When preceded by an imml instruction, a long comparison using rAL is performed, otherwise a
32-bit comparison using rA is performed.

The mnemonic beaeqid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 342Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=342

Pseudocode

If (preceded by imml) and rAL = 0 then
 PC ← PC + sext(IMM)
else if rA = 0 then
 PC ← PC + sext(IMM)
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken, or successful branch prediction occurs)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2, or a branch
prediction mispredict occurs with C_AREA_OPTIMIZED=0)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict occurs
with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign
extend it to 64 bits to use as the immediate operand. This behavior can be overridden by
preceding the Type B instruction with an imm or imml instruction. See the instructions imm
and imml for details on using 64-bit immediate values.

• The assembler pseudo-instructions bealeqi and bealeqid are used to indicate a long
comparison.

A delay slot must not be used by the following: imm, imml, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has been
completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 343Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=343

beage
Figure 153: beage

1 1 0D 1 0 00 000 L010 0 11 1

rA, rBLbeaege

rBL

Branch Extended Address if Greater or Equal

0 6 11 16 21 31

Branch Extended Address if Greater or Equal
bealge Branch Extended Address if Long Greater or Equal
beaged Branch Extended Address if Greater or Equal with Delay
bealged Branch Extended Address if Long Greater or Equal with Delay

rAL

rAL, rBL

rA, rBL

rAL, rBL

0 00

Description

Branch if rA or rAL is greater or equal to 0, to the instruction located in the offset value of rBL.
The target of the branch will be the instruction at address PC + rBL.

The mnemonics bealge and bealged will set the L bit. If the L bit is set, a long comparison using
rAL is performed, otherwise a 32-bit comparison using rA is performed.

The mnemonics beaged and bealged will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

if L = 1 and rAL >= 0 then
 PC ← PC + rBL
else if rA >= 0 then
 PC ← PC + rBL
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 344Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=344

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• A delay slot must not be used by the following: imm, imml, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has been
completed.

beagei
Figure 154: beagei

1 1 0D 110 1 11 1

rA, IMMbeagei

Branch Extended Address Immediate if Greater or Equal

0 6 11 16 31

Branch Extended Address Immediate if Greater or Equal
beageid Branch Extended Address Immediate if Greater or Equal with Delay

rAL

rA, IMM

IMM

Description

Branch if rA or rAL is greater or equal to 0, to the instruction located in the offset value of IMM
extended with the immediate value from the preceding imm or imml instructions. The target of
the branch will be the instruction at address PC + IMM.

When preceded by an imml instruction, a long comparison using rAL is performed, otherwise a
32-bit comparison using rA is performed.

The mnemonic beaeqid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 345Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=345

Pseudocode

If (preceded by imml) and rAL >= 0 then
 PC ← PC + sext(IMM)
else if rA >= 0 then
 PC ← PC + sext(IMM)
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken, or successful branch prediction occurs)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2, or a branch
prediction mispredict occurs with C_AREA_OPTIMIZED=0)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict occurs
with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign
extend it to 64 bits to use as the immediate operand. This behavior can be overridden by
preceding the Type B instruction with an imm or imml instruction. See the instructions imm
and imml for details on using 64-bit immediate values.

• The assembler pseudo-instructions bealgei and bealgeid are used to indicate a long
comparison.

• A delay slot must not be used by the following: imm, imml, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has been
completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 346Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=346

beagt
Figure 155: beagt

1 1 0D 0 0 00 000 L010 0 11 1

rA, rBLbeagt

rBL

Branch Extended Address if Greater Than

0 6 11 16 21 31

Branch Extended Address if Greater Than
bealgt Branch Extended Address if Long Greater Than
beagtd Branch Extended Address if Greater Than with Delay
bealgtd Branch Extended Address if Long Greater Than with Delay

rAL

rAL, rBL

rA, rBL

rAL, rBL

0 00

Description

Branch if rA or rAL is greater than 0, to the instruction located in the offset value of rBL. The
target of the branch will be the instruction at address PC + rBL.

The mnemonics bealgt and bealgtd will set the L bit. If the L bit is set, a long comparison using
rAL is performed, otherwise a 32-bit comparison using rA is performed.

The mnemonics beagtd and bealgtd will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

if L = 1 and rAL > 0 then
 PC ← PC + rBL
else if rA > 0 then
 PC ← PC + rBL
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 347Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=347

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Note

• A delay slot must not be used by the following: imm, imml, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has been
completed.

beagti
Figure 156: beagti

1 1 0D 010 1 11 1

rA, IMMbeagti

Branch Extended Address Immediate if Greater Than

0 6 11 16 31

Branch Extended Address Immediate if Greater Than
beagtid Branch Extended Address Immediate if Greater Than with Delay

rAL

rA, IMM

IMM

Description

Branch if rA or rAL is greater than 0, to the instruction located in the offset value of IMM
extended with the immediate value from the preceding imm or imml instructions. The target of
the branch will be the instruction at address PC + IMM.

When preceded by an imml instruction, a long comparison using rAL is performed, otherwise a
32-bit comparison using rA is performed.

The mnemonic beagtid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 348Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=348

Pseudocode

If (preceded by imml) and rAL > 0 then
 PC ← PC + sext(IMM)
else if rA > 0 then
 PC ← PC + sext(IMM)
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken, or successful branch prediction occurs)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2, or a branch
prediction mispredict occurs with C_AREA_OPTIMIZED=0)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict occurs
with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign
extend it to 64 bits to use as the immediate operand. This behavior can be overridden by
preceding the Type B instruction with an imm or imml instruction. See the instructions imm
and imml for details on using 64-bit immediate values.

The assembler pseudo-instructions bealgti and bealgtid are used to indicate a long
comparison.

A delay slot must not be used by the following: imm, imml, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has been
completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 349Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=349

beale
Figure 157: beale

1 0 1D 1 0 00 000 L010 0 11 1

rA, rBLbeale

rBL

Branch Extended Address if Less or Equal

0 6 11 16 21 31

Branch Extended Address if Less or Equal
bealle Branch Extended Address if Long Less or Equal
bealed Branch Extended Address if Less or Equal with Delay
bealled Branch Extended Address if Long Less or Equal with Delay

rAL

rAL, rBL

rA, rBL

rAL, rBL

0 00

Description

Branch if rA or rAL is less or equal to 0, to the instruction located in the offset value of rBL. The
target of the branch will be the instruction at address PC + rBL.

The mnemonics bealle and bealled will set the L bit. If the L bit is set, a long comparison using rAL
is performed, otherwise a 32-bit comparison using rA is performed.

The mnemonics bealed and bealled will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

if L = 1 and rAL <= 0 then
 PC ← PC + rBL
else if rA <= 0 then
 PC ← PC + rBL
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 350Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=350

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Note

• A delay slot must not be used by the following: imm, imml, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has been
completed.

bealei
Figure 158: bealei

1 0 1D 110 1 11 1

rA, IMMbealei

Branch Extended Address Immediate if Less or Equal

0 6 11 16 31

Branch Extended Address Immediate if Less or Equal
bealeid Branch Extended Address if Immediate if Less or Equal with Delay

rAL

rA, IMM

IMM

Description

Branch if rA or rAL is less or equal to 0, to the instruction located in the offset value of IMM
extended with the immediate value from the preceding imm or imml instructions. The target of
the branch will be the instruction at address PC + IMM.

When preceded by an imml instruction, a long comparison using rAL is performed, otherwise a
32-bit comparison using rA is performed.

The mnemonic bealeid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 351Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=351

Pseudocode

If (preceded by imml) and rAL <= 0 then
 PC ← PC + sext(IMM)
else if rA <= 0 then
 PC ← PC + sext(IMM)
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken, or successful branch prediction occurs)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2, or a branch
prediction mispredict occurs with C_AREA_OPTIMIZED=0)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict occurs
with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign
extend it to 64 bits to use as the immediate operand. This behavior can be overridden by
preceding the Type B instruction with an imm or imml instruction. See the instructions imm
and imml for details on using 64-bit immediate values.

• The assembler pseudo-instructions beallei and bealleid are used to indicate a long comparison.

• A delay slot must not be used by the following: imm, imml, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has been
completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 352Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=352

bealt
Figure 159: bealt

1 0 1D 0 0 00 000 L010 0 11 1

rA, rBLbealt

rBL

Branch Extended Address if Less Than

0 6 11 16 21 31

Branch Extended Address if Less Than
beallt Branch Extended Address if Long Less Than
bealtd Branch Extended Address if Less Than with Delay
bealltd Branch Extended Address if Long Less Than with Delay

rAL

rAL, rBL

rA, rBL

rAL, rBL

0 00

Description

Branch if rA or rAL is less than 0, to the instruction located in the offset value of rBL. The target
of the branch will be the instruction at address PC + rBL.

The mnemonics beallt and bealltd will set the L bit. If the L bit is set, a long comparison using rAL
is performed, otherwise a 32-bit comparison using rA is performed.

The mnemonics bealtd and bealltd will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

if L = 1 and rAL < 0 then
 PC ← PC + rBL

else if rA < 0 then
 PC ← PC + rBL
else
 PC ← PC + 4

if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken)

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 353Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=353

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• A delay slot must not be used by the following: imm, imml, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has been
completed.

bealti
Figure 160: bealti

1 0 1D 010 1 11 1

rA, IMMbealti

Branch Extended Address Immediate if Less Than

0 6 11 16 31

Branch Extended Address Immediate if Less Than
bealtid Branch Extended Address Immediate if Less Than with Delay

rAL

rA, IMM

IMM

Description

Branch if rA or rAL is less than 0, to the instruction located in the offset value of IMM extended
with the immediate value from the preceding imm or imml instructions. The target of the branch
will be the instruction at address PC + IMM.

When preceded by an imml instruction, a long comparison using rAL is performed, otherwise a
32-bit comparison using rA is performed.

The mnemonic bealtid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 354Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=354

Pseudocode

If (preceded by imml) and rAL < 0 then
 PC ← PC + sext(IMM)
else if rA < 0 then
 PC ← PC + sext(IMM)
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken, or successful branch prediction occurs)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2, or a branch
prediction mispredict occurs with C_AREA_OPTIMIZED=0)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict occurs
with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign
extend it to 64 bits to use as the immediate operand. This behavior can be overridden by
preceding the Type B instruction with an imm or imml instruction. See the instructions imm
and imml for details on using 64-bit immediate values.

• The assembler pseudo-instructions beallti and bealltid are used to indicate a long comparison.

• A delay slot must not be used by the following: imm, imml, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has been
completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 355Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=355

beane
Figure 161: beane

1 0 0D 1 0 00 000 L010 0 11 1

rA, rBLbeane

rBL

Branch Extended Address if Not Equal

0 6 11 16 21 31

Branch Extended Address if Not Equal
bealne Branch Extended Address if Long Not Equal
beaned Branch Extended Address if Not Equal with Delay
bealned Branch Extended Address if Long Not Equal with Delay

rAL

rAL, rBL

rA, rBL

rAL, rBL

0 00

Description

Branch if rA or rAL is not equal to 0, to the instruction located in the offset value of rBL. The
target of the branch will be the instruction at address PC + rBL.

The mnemonics bealne and bealned will set the L bit. If the L bit is set, a long comparison using
rAL is performed, otherwise a 32-bit comparison using rA is performed.

The mnemonics beaned and bealned will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

if L = 1 and rAL ≠ 0 then
 PC ← PC + rBL
else if rA ≠ 0 then
 PC ← PC + rBL
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 356Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=356

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• A delay slot must not be used by the following: imm, imml, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has been
completed.

beanei
Figure 162: beanei

1 0 0D 110 1 11 1

rA, IMMbeanei

Branch Extended Address Immediate if Not Equal

0 6 11 16 31

Branch Extended Address Immediate if not Equal
beaneid Branch Extended Address Immediate if Not Equal with Delay

rAL

rA, IMM

IMM

Description

Branch if rA or rAL is not equal to 0, to the instruction located in the offset value of IMM
extended with the immediate value from the preceding imm or imml instructions. The target of
the branch will be the instruction at address PC + IMM.

When preceded by an imml instruction, a long comparison using rAL is performed, otherwise a
32-bit comparison using rA is performed.

The mnemonic beaneid will set the D bit. The D bit determines whether there is a branch delay
slot or not. If the D bit is set, it means that there is a delay slot and the instruction following the
branch (that is, in the branch delay slot) is allowed to complete execution before executing the
target instruction. If the D bit is not set, it means that there is no delay slot, so the instruction to
be executed after the branch is the target instruction.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 357Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=357

Pseudocode

If (preceded by imml) and rAL ≠ 0 then
 PC ← PC + sext(IMM)
else if rA ≠ 0 then
 PC ← PC + sext(IMM)
else
 PC ← PC + 4
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• PC

Latency

• 1 cycle (if branch is not taken, or successful branch prediction occurs)

• 2 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if branch is taken and the D bit is not set with C_AREA_OPTIMIZED≠2, or a branch
prediction mispredict occurs with C_AREA_OPTIMIZED=0)

• 6 cycles (if branch is taken and the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if branch is taken and the D bit is not set, or if branch prediction mispredict occurs
with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign
extend it to 64 bits to use as the immediate operand. This behavior can be overridden by
preceding the Type B instruction with an imm or imml instruction. See the instructions imm
and imml for details on using 64-bit immediate values.

The assembler pseudo-instructions bealnei and bealneid are used to indicate a long
comparison.

A delay slot must not be used by the following: imm, imml, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has been
completed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 358Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=358

brea
Figure 163: brea

0 L 0D 1 0 00 000 0000 0 11 1

rBLbrea

rBL

Unconditional Branch Extended Address

0 6 11 16 21 31

Branch Extended Address
bread Branch Extended Address with Delay
breald Branch Extended Address and Link with Delay

rDL

rBL

rDL, rBL

0 00

Description

Branch to the instruction located at address determined by PC + rBL.

The mnemonic breald will set the L bit. If the L bit is set, linking will be performed. The current
value of PC will be stored in rDL.

The mnemonics bread and breald will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction.

If the D bit is not set, it means that there is no delay slot, so the instruction to be executed after
the branch is the target instruction.

Pseudocode

if L = 1 then
 (rDL) ← PC
PC ← PC + (rBL)
if D = 1 then
 allow following instruction to complete execution

Registers Altered

• rDL

• PC

Latency

• 2 cycles (if the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if the D bit is not set with C_AREA_OPTIMIZED≠2)

• 6 cycles (if the D bit is set with C_AREA_OPTIMIZED=2)

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 359Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=359

• 7 cycles (if the D bit is not set with C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• The instruction breal is not available.

• Absolute extended address branches can be performed with the instructions bra, brad, and
brald.

• A delay slot must not be used by the following: imm, imml, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has been
completed.

breai
Figure 164: breai

0 L 0D 100 1 11 1

IMMbreai

Unconditional Branch Extended Address Immediate

0 6 11 16 21 31

Branch Extended Address Immediate
breaid Branch Extended Address Immediate with Delay
brealid Branch Extended Address and Link Immediate with Delay

rDL

IMM
rDL, IMM

IMM

Description

Branch to the instruction located at address determined by PC + IMM, extended with the
immediate value from the preceding IMM or imml instructions.

The mnemonic brealid will set the L bit. If the L bit is set, linking will be performed. The current
value of PC will be stored in rDL.

The mnemonics breaid and brealid will set the D bit. The D bit determines whether there is a
branch delay slot or not. If the D bit is set, it means that there is a delay slot and the instruction
following the branch (that is, in the branch delay slot) is allowed to complete execution before
executing the target instruction. If the D bit is not set, it means that there is no delay slot, so the
instruction to be executed after the branch is the target instruction.

Pseudocode

if L = 1 then
 (rDL) ← PC
PC ← PC + sext(IMM)
if D = 1 then
 allow following instruction to complete execution

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 360Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=360

Registers Altered

• rDL

• PC

Latency

• 1 cycle (if successful branch prediction occurs)

• 2 cycles (if the D bit is set with C_AREA_OPTIMIZED≠2)

• 3 cycles (if the D bit is not set with C_AREA_OPTIMIZED≠2, or a branch prediction mispredict
occurs with C_AREA_OPTIMIZED=0)

• 6 cycles (if the D bit is set with C_AREA_OPTIMIZED=2)

• 7 cycles (if the D bit is not set, or if branch prediction mispredict occurs with
C_AREA_OPTIMIZED=2)

If C_USE_MMU > 1 two additional cycles are added with C_AREA_OPTIMIZED=2.

Notes

• The instruction breali is not available.

• Absolute extended address branches can be performed with the instructions brai, braid, and
bralid.

• By default, Type B Branch Long Instructions will take the 16-bit IMM field value and sign
extend it to 64 bits to use as the immediate operand. This behavior can be overridden by
preceding the Type B instruction with an imm or imml instruction. See the instructions imm
and imml for details on using 64-bit immediate values.

• A delay slot must not be used by the following: imm, imml, branch, or break instructions.
Interrupts and external hardware breaks are deferred until after the delay slot branch has been
completed.

bsl
Figure 165: bsl

0 00 00T 1S11 0 00 0

rDL, rAL, rBbslrl

rB

Barrel Shift Long

0 6 11 16 21 31

Barrel Shift Long Right Logical
bslra Barrel Shift Long Right Arithmetical
bsll Barrel Shift Long Left Logical

rAL

rDL, rAL, rB
rDL, rAL, rB

0 00rDL

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 361Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=361

Description

Shifts the contents of register rAL by the amount specified in register rB and puts the result in
register rDL.

The mnemonic bsll sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left.
The mnemonics bslrl and bslra clear the S bit and the shift is done to the right.

The mnemonic bslra will set the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bslrl and bslll clear the T bit and the shift performed is Logical.

Pseudocode

if S = 1 then

 (rDL) ← (rAL) << (rB)[26:31]
else
 if T = 1 then
 if ((rB)[26:31]) ≠ 0 then
 (rDL)[0:(rB)[26:31]-1] ← (rAL)[0]
 (rDL)[(rB)[26:31]:31] ← (rAL) >> (rB)[26:31]
 else
 (rDL) ← (rAL)
 else
 (rDL) ← (rAL) >> (rB)[26:31]

Registers Altered

• rDL

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Notes

• These instructions are optional. To use them, MicroBlaze has to be configured to use barrel
shift instructions (C_USE_BARREL=1).

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 362Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=362

bsli
Figure 166: bsli

11 1 00 0

rDL, rAL, IMMbslrli

Barrel Shift Long Immediate

0 6 11 16 21 31
0T 0 0S 0

Barrel Shift Long Right Logical Immediate
rDL, rAL, IMMbslrai Barrel Shift Long Right Arithmetic Immediate
rDL, rAL, IMMbsllli Barrel Shift Long Left Logical Immediate

rDL rAL

rDL, rAL, IMMW, IMMSbslefi Barrel Shift Long Extract Field Immediate
rDL, rAL, Width1, IMMSbslifi Barrel Shift Long Insert Field Immediate

1. Width = IMMW-IMMS+1

0 1 00 0 IMM
26

11 1 00 0
0 6 11 16 20 31

rDL rAL E 1 0I IMMS

26
IMMW

25

Description

The first three instructions shift the contents of register rAL by the amount specified by IMM and
put the result in register rDL.

Barrel Shift Extract Field extracts a bit field from register rAL and puts the result in register rDL.
The bit field width is specified by IMMW and the shift amount is specified by IMMS. The bit field
width must be in the range 1 - 63, and the condition IMMW + IMMS ≤ 64 must apply.

Barrel Shift Insert Field inserts a bit field from register rAL into register rDL, modifying the
existing value in register rDL. The bit field width is defined by IMMW - IMMS + 1, and the shift
amount is specified by IMMS. The condition IMMW ≥ IMMS must apply.

The mnemonic bsllli sets the S bit (Side bit). If the S bit is set, the barrel shift is done to the left.
The mnemonics bslrli and bslrai clear the S bit and the shift is done to the right.

The mnemonic bslrai sets the T bit (Type bit). If the T bit is set, the barrel shift performed is
Arithmetical. The mnemonics bslrli and bsllli clear the T bit and the shift performed is Logical.

The mnemonic bslefi sets the E bit (Extract bit). In this case the S and T bits are not used.

The mnemonic bslifi sets the I bit (Insert bit). In this case the S and T bits are not used.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 363Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=363

Pseudocode

if E = 1 then
 (rDL)[0:63-IMMW] ← 0
 (rDL)[64-IMMW:63] ← (rAL) >> IMMS
else if I = 1 then
 mask ← (0xffffffffffffffff << (IMMW + 1)) ⊕ (0xffffffffffffffff <<
IMMS)
 (rDL) ← ((rAL) << IMMS) ˄ mask) ˅ ((rDL) ˄ mask)
else if S = 1 then
 (rDL) ← (rAL) << IMM
else if T = 1 then
 if IMM ≠ 0 then
 (rDL)[0:IMM-1] ← (rAL)[0]
 (rDL)[IMM:31] ← (rAL) >> IMM
 else
 (rDL) ← (rAL)
else
 (rDL) ← (rAL) >> IMM

Registers Altered

• rDL

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 2 cycles with C_AREA_OPTIMIZED=1

Notes

• These are not Type B Instructions. There is no effect from a preceding imm or imml
instruction.

• These instructions are optional. To use them, MicroBlaze has to be configured to use barrel
shift instructions (C_USE_BARREL=1).

• The assembler code “bslifi rD, rA, width, shift” denotes the actual bit field width, not the
IMMW field, which is computed by IMMW = shift + width - 1.

cmpl
Figure 167: cmpl

U 10 000 1010 0 10 0

rDL, rAL, rBcmpl

rBL

Integer Compare Long

0 6 11 16 21 31

Compare rBL with rAL (signed)
cmplu Compare rBL with rAL (unsigned)

rAL

rDL, rAL, rB

0 00rDL

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 364Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=364

Description

The contents of register rAL are subtracted from the contents of register rBL and the result is
placed into register rDL.

The MSB bit of rDL is adjusted to shown true relation between rAL and rBL. If the U bit is set, rAL
and rBL is considered unsigned values. If the U bit is clear, rAL and rBL is considered signed
values.

Pseudocode

(rDL) ← (rBL) + (rAL) + 1
(rDL)(MSB) ← (rAL) > (rBL)

Registers Altered

• rDL

Latency

• 1 cycle

dadd
Figure 168: dadd

00 0 0 001 0 10 1

rDL, rAL, rBLdadd

rALrDL

Double Floating-Point Arithmetic Add

0 6 11 16 21 31
00 0 01 0rBL

Add

Description

The double precision floating-point sum of registers rAL and rBL, is placed into register rDL.

Pseudocode

if isDnz(rAL) or isDnz(rBL) then
 (rDL) ← 0xFFF8000000000000
 FSR[DO] ← 1
 ESR[EC] ← 00110
else if isSigNaN(rAL) or isSigNaN(rBL)or
 (isPosInfinite(rAL) and isNegInfinite(rBL)) or
 (isNegInfinite(rAL) and isPosInfinite(rBL))) then
 (rDL) ← 0xFFF8000000000000
 FSR[IO] ← 1
 ESR[EC] ← 00110
else if isQuietNaN(rAL) or isQuietNaN(rBL) then

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 365Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=365

 (rDL) ← 0xFFF8000000000000
else if isDnz((rAL)+(rBL)) then
 (rDL) ← signZero((rAL)+(rBL))
 FSR[UF] ← 1
 ESR[EC] ← 00110
else if isNaN((rAL)+(rBL)) then
 (rDL) ← signInfinite((rAL)+(rBL))
 FSR[OF] ← 1
 ESR[EC] ← 00110
else
 (rDL) ← (rAL) + (rBL)

Registers Altered

• rDL, unless an FP exception is generated, in which case the register is unchanged

• ESR[EC], if an FP exception is generated

• FSR[IO,UF,OF,DO]

Latency

• 4 cycles with C_AREA_OPTIMIZED=0

• 6 cycles with C_AREA_OPTIMIZED=1

• 1 cycle with C_AREA_OPTIMIZED=2

Notes

• This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than
0.

drsub
Figure 169: drsub

00 0 0 001 0 10 1

rDL, rAL, rBLdrsub

rALrDL

Double Reverse Floating-Point Arithmetic Subtraction

0 6 11 16 21 31
00 0 11 0rBL

Reverse Subtract

Description

The double precision floating-point value in rAL is subtracted from the double floating-point
value in rBL and the result is placed into register rDL.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 366Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=366

Pseudocode

if isDnz(rAL) or isDnz(rBL) then
 (rDL) ← 0xFFF8000000000000
 FSR[DO] ← 1
 ESR[EC] ← 00110
else if (isSigNaN(rAL) or isSigNaN(rBL) or
 (isPosInfinite(rAL) and isPosInfinite(rBL)) or
 (isNegInfinite(rAL) and isNegInfinite(rBL))) then
 (rDL) ← 0xFFF8000000000000
 FSR[IO] ← 1
 ESR[EC] ← 00110
else if isQuietNaN(rAL) or isQuietNaN(rBL) then
 (rDL) ← 0xFFF8000000000000
else if isDnz((rBL)-(rAL)) then
 (rDL) ← signZero((rBL)-(rAL))
 FSR[UF] ← 1
 ESR[EC] ← 00110
else if isNaN((rBL)-(rAL)) then
 (rDL) ← signInfinite((rBL)-(rAL))
 FSR[OF] ← 1
 ESR[EC] ← 00110
else
 (rDL) ← (rBL) - (rAL)

Registers Altered

• rDL, unless an FP exception is generated, in which case the register is unchanged

• ESR[EC], if an FP exception is generated

• FSR[IO,UF,OF,DO]

Latency

• 4 cycles with C_AREA_OPTIMIZED=0

• 6 cycles with C_AREA_OPTIMIZED=1

• 1 cycle with C_AREA_OPTIMIZED=2

Notes

• This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than
0.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 367Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=367

dmul
Figure 170: dmul

00 0 0 001 0 10 1

rDL, rAL, rBLdmul

rALrDL

Double Floating-Point Arithmetic Multiplication

0 6 11 16 21 31
00 1 01 0rBL

Multiply

Description

The double precision floating-point value in rAL is multiplied with the double floating-point value
in rBL and the result is placed into register rDL.

Pseudocode

if isDnz(rAL) or isDnz(rBL) then
 (rDL) ← 0xFFF8000000000000
 FSR[DO] ← 1
 ESR[EC] ← 00110
else
 if isSigNaN(rAL) or isSigNaN(rBL) or (isZero(rAL) and isInfinite(rBL)) or
 (isZero(rBL) and isInfinite(rAL)) then
 (rDL) ← 0xFFF8000000000000
 FSR[IO] ← 1
 ESR[EC] ← 00110
 else if isQuietNaN(rAL) or isQuietNaN(rBL) then
 (rDL) ← 0xFFF8000000000000
 else if isDnz((rBL)*(rAL)) then
 (rDL) ← signZero((rAL)*(rBL))
 FSR[UF] ← 1
 ESR[EC] ← 00110
 else if isNaN((rBL)*(rAL)) then
 (rDL) ← signInfinite((rBL)*(rAL))
 FSR[OF] ← 1
 ESR[EC] ← 00110
 else
 (rDL) ← (rBL) * (rAL)

Registers Altered

• rDL, unless an FP exception is generated, in which case the register is unchanged

• ESR[EC], if an FP exception is generated

• FSR[IO,UF,OF,DO]

Latency

• 4 cycles with C_AREA_OPTIMIZED=0

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 368Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=368

• 6 cycles with C_AREA_OPTIMIZED=1

• 1 cycle with C_AREA_OPTIMIZED=2

Notes

• This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than
0.

ddiv
Figure 171: ddiv

00 0 0 001 0 10 1

rDL, rAL, rBLddiv

rALrDL

Double Floating-Point Arithmetic Division

0 6 11 16 21 31
00 1 11 0rBL

Divide

Description

The double precision floating-point value in rBL is divided by the double floating-point value in
rAL and the result is placed into register rDL.

Pseudocode

if isDnz(rAL) or isDnz(rBL) then
 (rDL) ← 0xFFF8000000000000
 FSR[DO] ← 1
 ESR[EC] ← 00110
else
 if isSigNaN(rAL) or isSigNaN(rBL) or (isZero(rAL) and isZero(rBL)) or
 (isInfinite(rAL) and isInfinite(rBL)) then
 (rDL) ← 0xFFF8000000000000
 FSR[IO] ← 1
 ESR[EC] ← 00110
 else if isQuietNaN(rAL) or isQuietNaN(rBL) then
 (rDL) ← 0xFFF8000000000000
 else if isZero(rAL) and not isInfinite(rBL) then
 (rDL) ← signInfinite((rBL)/(rAL))
 FSR[DZ] ← 1
 ESR[EC] ← 00110
 else if isDnz((rBL) / (rAL)) then
 (rDL) ← signZero((rBL) / (rAL))
 FSR[UF] ← 1
 ESR[EC] ← 00110
 else if isNaN((rBL)/(rAL)) then
 (rDL) ← signInfinite((rBL) / (rAL))
 FSR[OF] ← 1
 ESR[EC] ← 00110
 else
 (rDL) ← (rBL) / (rAL)

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 369Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=369

Registers Altered

• rDL, unless an FP exception is generated, in which case the register is unchanged

• ESR[EC], if an FP exception is generated

• FSR[IO,UF,OF,DO,DZ]

Latency

• 28 cycles with C_AREA_OPTIMIZED=0

• 30 cycles with C_AREA_OPTIMIZED=1

• 24 cycles with C_AREA_OPTIMIZED=2

Notes

• This instruction is only available when the MicroBlaze parameter C_USE_FPU is greater than
0.

dcmp
Figure 172: dcmp

1 0 0101 0 10 1

rD, rAL, rBLdcmp.un

Double Floating-Point Number Comparison

0 6 11 16 21 31
1 0 01

Unordered double floating-point comparison
rD, rAL, rBLdcmp.lt Less than double floating-point comparison
rD, rAL, rBLdcmp.eq Equal double floating-point comparison

rD rAL

rD, rAL, rBLdcmp.le Less-or-Equal double floating-point comparison
rD, rAL, rBLdcmp.gt Greater than double floating-point comparison

28

rD, rAL, rBLdcmp.ne Not Equal double floating-point comparison
rD, rAL, rBLdcmp.ge Greater-or-Equal double floating-point comparison

rBL OpSel
25

Description

The double precision floating-point value in rBL is compared with the double precision floating-
point value in rAL and the comparison result is placed into register rD. The OpSel field in the
instruction code determines the type of comparison performed.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 370Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=370

Pseudocode

if isDnz(rAL) or isDnz(rBL) then
 (rD) ← 0
 FSR[DO] ← 1
 ESR[EC] ← 00110
else
 {read out behavior from Table: Table 103: Floating-Point Comparison
Operation}

Registers Altered

• rDL, unless an FP exception is generated, in which case the register is unchanged

• ESR[EC], if an FP exception is generated

• FSR[IO,DO]

Latency

• 1 cycle with C_AREA_OPTIMIZED=0 or 2

• 3 cycles with C_AREA_OPTIMIZED=1

Notes

• These instructions are only available when the MicroBlaze parameter C_USE_FPU is greater
than 0.

Table 104: Double Floating-Point Comparison Operation

Comparison Type Operand Relationship

Description OpSel (rBL) >
(rAL)

(rBL) <
(rAL)

(rBL) =
(rAL)

isSigNaN(rAL) or

isSigNaN(rBL)

isQuietNaN(rAL)
or

isQuietNaN(rBL)

Unordered 000 (rD) ← 0 (rD) ← 0 (rD) ← 0 (rD) ← 1
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 1

Less-than 001 (rD) ← 0 (rD) ← 1 (rD) ← 0 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Equal 010 (rD) ← 0 (rD) ← 0 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0

Less-or-equal 011 (rD) ← 0 (rD) ← 1 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 371Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=371

Table 104: Double Floating-Point Comparison Operation (cont'd)

Comparison Type Operand Relationship

Description OpSel (rBL) >
(rAL)

(rBL) <
(rAL)

(rBL) =
(rAL)

isSigNaN(rAL) or

isSigNaN(rBL)

isQuietNaN(rAL)
or

isQuietNaN(rBL)

Greater-than 100 (rD) ← 1 (rD) ← 0 (rD) ← 0 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

Not-equal 101 (rD) ← 1 (rD) ← 1 (rD) ← 0 (rD) ← 1
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 1

Greater-or-equal 110 (rD) ← 1 (rD) ← 0 (rD) ← 1 (rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

(rD) ← 0
FSR[IO] ← 1
ESR[EC] ← 00110

dbl
Figure 173: dbl

000 0 0 00 0 0 001 0 10 1

rDL, rALdbl

rALrDL

Floating-Point Convert Long to Double

0 6 11 16 21 31
00 1 00 0

Description

Converts the signed long value in register rAL to double precision floating-point and puts the
result in register rDL. This is a 64-bit rounding signed conversion that will produce a 64-bit
floating-point result.

Pseudocode

(rDL) ← double ((rAL))

Registers Altered

• rDL

Latency

• 5 cycles with C_AREA_OPTIMIZED=0

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 372Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=372

• 7 cycles with C_AREA_OPTIMIZED=1

• 2 cycles with C_AREA_OPTIMIZED=2

Notes

• This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2
(Extended).

dlong
Figure 174: dlong

00 0 0 0 00 0 0 001 0 10 1

rDL, rALdlong

rALrDL

Floating-Point Convert Double to Long

0 6 11 16 21 31
01 1 01 0

Description

Converts the double precision floating-point number in register rAL to a signed long value and
puts the result in register rDL. This is a 64-bit truncating signed conversion that will produce a
64-bit long result.

Pseudocode

if isDnz(rAL) then
 (rDL) ← 0xFFF8000000000000
 FSR[DO] ← 1
 ESR[EC] ← 00110
else if isNaN(rAL) then
 (rDL) ← 0xFFF8000000000000
 FSR[IO] ← 1
 ESR[EC] ← 00110
else if isInf(rAL) or (rAL) < -263 or (rAL) > 263 - 1 then
 (rDL) ← 0xFFF8000000000000
 FSR[IO] ← 1
 ESR[EC] ← 00110
else
 (rDL) ← long ((rAL))

Registers Altered

• rDL, unless an FP exception is generated, in which case the register is unchanged

• ESR[EC], if an FP exception is generated

• FSR[IO,DO]

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 373Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=373

Latency

• 4 cycles with C_AREA_OPTIMIZED=0

• 6 cycles with C_AREA_OPTIMIZED=1

• 1 cycle with C_AREA_OPTIMIZED=2

Notes

• This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2
(Extended).

dsqrt
Figure 175: dsqrt

00 0 0 0 00 0 0 001 0 10 1

rDL, rALdsqrt

rALrDL

Double Floating-Point Arithmetic Square Root

0 6 11 16 21 31
01 1 11 0

Square Root

Description

Performs a double precision floating-point square root on the value in rAL and puts the result in
register rDL.

Pseudocode

if isDnz(rAL) then
 (rDL) ← 0xFFF8000000000000
 FSR[DO] ← 1
 ESR[EC] ← 00110
else if isSigNaN(rAL) then
 (rDL) ← 0xFFF8000000000000
 FSR[IO] ← 1
 ESR[EC] ← 00110
else if isQuietNaN(rAL) then
 (rDL) ← 0xFFF8000000000000
else if (rAL) < 0 then
 (rDL) ← 0xFFF8000000000000
 FSR[IO] ← 1
 ESR[EC] ← 00110
else if (rAL) = -0 then
 (rDL) ← -0
else
 (rDL) ← sqrt ((rAL))

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 374Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=374

Registers Altered

• rDL, unless an FP exception is generated, in which case the register is unchanged

• ESR[EC], if an FP exception is generated

• FSR[IO,DO]

Latency

• 27 cycles with C_AREA_OPTIMIZED=0

• 29 cycles with C_AREA_OPTIMIZED=1

• 23 cycles with C_AREA_OPTIMIZED=2

Notes

• This instruction is only available when the MicroBlaze parameter C_USE_FPU is set to 2
(Extended).

imml
Figure 176: imml

00 1 11 0

IMM24imml

Immediate Long

0 6 31
IMM2401

8

Description

The instruction imml loads the IMM24 value into a temporary register. It also locks this value so
it can be used by the following instruction and form a 40-bit or 64-bit immediate value, and
ensures that the following instruction is treated as a 64-bit Type B instruction.

The instruction imml is used with Type B 64-bit instructions.

Up to a 40-bit immediate value can be used for all 64-bit immediate long instructions in
MicroBlaze with a single imml instruction. The imml instruction locks the 24-bit IMM24 value
temporarily for the next instruction. A Type B instruction that immediately follows the imml
instruction will then form a 40-bit immediate value from the 24-bit IMM24 value of the imml
instruction (upper 24 bits) and its own 16-bit immediate value field (lower 16 bits). If no Type B
instruction follows the imml instruction, the locked value gets unlocked and becomes useless.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 375Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=375

A 64-bit immediate value can be used for all 64-bit immediate long instructions in MicroBlaze
with dual imml instructions. Each imml instruction locks the 24-bit IMM24 value temporarily for
the next instruction. A Type B instruction that immediately follows the two imml instructions will
then form a 64-bit immediate value from the two 24-bit IMM24 values of the imml instructions
(upper 48 bits) and its own 16-bit immediate value field (lower 16 bits). If no Type B instruction
follows the two imml instructions, the locked value gets unlocked and becomes useless.

Latency

• 1 cycle

Notes

• The imml instruction and the Type B instruction following it are atomic; consequently, no
interrupts are allowed between them.

• The assembler automatically detects the need for imml instructions.

• When a 40-bit IMM value is specified in a Type B instruction, the assembler converts the IMM
value to a 16-bit one to assemble the instruction and inserts an imml instruction before it in
the executable file. If the immediate value exceeds 40 bits, the assembler converts the IMM
value to a 16-bit one to assemble the instruction and inserts two imml instructions before it in
the executable file.

ll
Figure 177: ll

00 0 0 001 0 01 1

rDL, rAL, rBLll

rALrDL

Load Long

0 6 11 16 21 31
0R 1 00 0

rDL, rAL, rBLllr

rBL

Description

Loads a long (64 bits) from the long aligned memory location that results from adding the
contents of registers rAL and rBL. The data is placed in register rDL.

If the R bit is set, the bytes in the loaded word are reversed , loading data with the opposite
endianness of the endianness defined by the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 376Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=376

A data storage exception occurs if access is prevented by a no-access-allowed zone protection.
This only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the three least significant bits in the address are not
zero.

Pseudocode

Addr ← (rAL) + (rBL)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 0
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
0 ; ESR[DIZ] ← 1
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←
0; MSR[VM] ← 0
else if Addr[C_ADDR_SIZE-3:C_ADDR_SIZE-1] ¹ 0 then
 ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 0; ESR[Rx] ← rD
else
 (rDL) ← Mem(Addr)

Registers Altered

• rDL, unless an exception is generated, in which case the register is unchanged

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

• 2 cycles with C_AREA_OPTIMIZED=0 or 2

• 3 cycles with C_AREA_OPTIMIZED=1

Notes

• The long reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 377Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=377

lli
Figure 178: lli

11 1 01 1

rDL, rAL, IMMlli

rALrDL

Load Long Immediate

0 6 11 16 31
IMM

Description

Loads a long (64 bits) from the long aligned memory location that results from adding the
contents of register rAL and the sign-extended IMM value. The data is placed in register rDL.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if access is prevented by a no-access-allowed zone protection.
This only applies to accesses with user mode and virtual protected mode enabled.

An unaligned data access exception occurs if the three least significant bits in the address are not
zero

Pseudocode

Addr ← (rAL) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 0
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[UM] = 1 and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
0 ; ESR[DIZ] ← 1
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←
0; MSR[VM] ← 0
else if Addr[C_ADDR_SIZE-3:C_ADDR_SIZE-1] ≠ 0 then
 ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 0 ; ESR[Rx] ←
rD
else
 (rDL) ← Mem(Addr)

Registers Altered

• rDL, unless an exception is generated, in which case the register is unchanged

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

• ESR[EC], ESR[S], if an exception is generated

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 378Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=378

• ESR[DIZ], if a data storage exception is generated

• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

• 2 cycles with C_AREA_OPTIMIZED=0 or 2

• 3 cycles with C_AREA_OPTIMIZED=1

Notes

• By default, Type B load immediate instructions will take the 16-bit IMM field value and sign
extend it to 64 bits to use as the immediate operand. This behavior can be overridden by
preceding the Type B instruction with an imm or imml instruction. See the instructions imm
and imml for details on using 64-bit immediate values.

orl
Figure 179: orl

00 0 0 000 0 01 0

rDL, rAL, rBLorl

rALrDL

Logical OR Long

0 6 11 16 21 31
00 1 00 0rBL

Description

The contents of register rAL are ORed with the contents of register rBL; the result is placed into
register rDL.

Pseudocode

(rDL) ← (rAL) ˅ (rBL)

Registers Altered

• rDL

Latency

• 1cycle

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 379Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=379

orli
Figure 180: orli

00 1 01 0

rDL, rAL, IMMorli

rALrDL

Logical OR Long with Immediate

0 6 11 16 31

IMM

| rDL, IMM

01 1 00 1 rDL IMM0 0 01 0

Description

The contents of register rAL or rDL are ORed with the IMM field, sign extended with the
immediate value from the preceding imml instructions; the result is placed into register rDL.

Pseudocode

(rDL) ← (rAL|rDL) ˅ sext(IMM)

Registers Altered

• rDL

Latency

• 1 cycle

Notes

• Type B logical long instructions with three operands must be preceded by an imml instruction.
See the instruction imml for details on using long immediate values.

pcmplbf
Figure 181: pcmplbf

00 0 0 000 0 01 0

rDL, rAL, rBLpcmplbf

rALrD

Pattern Compare Long Byte Find

0 6 11 16 21 31
00 1 01 0rBL

Bytewise comparison returning position of first match

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 380Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=380

Description

The contents of register rAL are bytewise compared with the contents in register rBL.

• rD is loaded with the position of the first matching byte pair, starting with MSB as position 1,
and comparing until LSB as position 8

• If none of the byte pairs match, rD is set to 0

Pseudocode

if rBL[0:7] = rAL[0:7] then
 (rD) ← 1
else if rBL[8:15] = rAL[8:15] then
 (rD) ← 2
else if rBL[16:23] = rAL[16:23] then
 (rD) ← 3
else if rBL[24:31] = rAL[24:31] then
 (rD) ← 4
else if rBL[32:39] = rAL[32:39] then
 (rD) ← 5
else if rBL[40:47] = rAL[40:47] then
 (rD) ← 6
else if rBL[48:55] = rAL[48:55] then
 (rD) ← 7
else if rBL[56:63] = rAL[56:63] then
 (rD) ← 8
else
 (rD) ← 0

Registers Altered

• rD

Latency

• 1 cycle

Notes

• This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

pcmpleq
Figure 182: pcmpleq

00 0 0 000 0 01 1

rD, rAL, rBLpcmpleq

rALrD

Pattern Compare Long Equal

0 6 11 16 21 31
00 1 01 0rBL

Equality comparison with a positive boolean result

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 381Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=381

Description

The contents of register rAL are compared with the contents in register rBL.

• rD is loaded with 1 if they match, and 0 if not

Pseudocode

if (rBL) = (rAL) then
 (rD) ← 1
else
 (rD) ← 0

Registers Altered

• rD

Latency

• 1 cycle

Notes

• This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

pcmplne
Figure 183: pcmplne

00 0 0 010 0 01 1

rD, rAL, rBLpcmplne

rALrD

Pattern Compare Long Not Equal

0 6 11 16 21 31
00 1 01 0rBL

Equality comparison with a negative boolean result

Description

The contents of register rAL are compared with the contents in register rBL.

• rD is loaded with 0 if they match, and 1 if not

Pseudocode

if (rBL) = (rAL) then
 (rD) ← 0
else
 (rD) ← 1

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 382Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=382

Registers Altered

• rD

Latency

• 1 cycle

Notes

• This instruction is only available when the parameter C_USE_PCMP_INSTR is set to 1.

rsubl
Figure 184: rsubl

0 00 000 1010 0 K0 C

rDL, rAL, rBLrsubl

rBL

Arithmetic Reverse Subtract Long

0 6 11 16 21 31

Subtract Long
rsublc Subtract Long with Carry
rsublk Subtract Long and Keep Carry
rsublkc Subtract Long with Carry and Keep Carry

rDL rAL

rDL, rAL, rBL

rDL, rAL, rBL

rDL, rAL, rBL

0 00

Description

The contents of register rAL are subtracted from the contents of register rBL and the result is
placed into register rDL. Bit 3 of the instruction (labeled as K in the figure) is set to one for the
mnemonic rsublk. Bit 4 of the instruction (labeled as C in the figure) is set to one for the
mnemonic rsublc. Both bits are set to one for the mnemonic rsublkc.

When an rsubl instruction has bit 3 set (rsublk, rsublkc), the carry flag will Keep its previous value
regardless of the outcome of the execution of the instruction. If bit 3 is cleared (rsubl, rsublc),
then the carry flag will be affected by the execution of the instruction.

When bit 4 of the instruction is set to one (rsublc, rsublkc), the content of the carry flag (MSR[C])
affects the execution of the instruction. When bit 4 is cleared (rsubl, rsublk), the content of the
carry flag does not affect the execution of the instruction (providing a normal subtraction).

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 383Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=383

Pseudocode

if C = 0 then
 (rDL) ← (rBL) + (rAL) + 1
else
 (rDL) ← (rBL) + (rAL) + MSR[C]
if K = 0 then
 MSR[C] ← CarryOut64

Registers Altered

• rDL

• MSR[C]

Latency

• 1 cycle

Notes

• In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there
is no Borrow, and when the Carry is cleared, it means that there is a Borrow.

rsubli
Figure 185: rsubli

10 0 K0 C

rDL, rAL, IMMrsubli

Arithmetic Reverse Subtract Long Immediate

0 6 11 16 31

Subtract Long Immediate
rsublic Subtract Long Immediate with Carry
rsublik Subtract Long Immediate and Keep Carry
rsublikc Subtract Long Immediate with Carry and Keep Carry

rDL rAL

rDL, rAL, IMM
rDL, rAL, IMM
rDL, rAL, IMM

IMM

rDL, IMM
rDL, IMM
rDL, IMM
rDL, IMM

|
|
|
|

00 1 00 1 rDL IMM10 0 K C

Description

The contents of register rAL or rDL are subtracted from the value of IMM, sign extended with the
immediate value from the preceding imml instructions, and the result is placed into register rDL.
Bit 3 or 13 of the instruction (labeled as K in the figure) is set to one for the mnemonic rsublik.
Bit 4 or 14 of the instruction (labeled as C in the figure) is set to one for the mnemonic rsublic.
Both bits are set to one for the mnemonic rsublikc.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 384Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=384

When an rsubli instruction has bit 3 or 13 set (rsublik, rsublikc), the carry flag will Keep its
previous value regardless of the outcome of the execution of the instruction. If bit 3 or 13 is
cleared (rsubli, rsublic), then the carry flag will be affected by the execution of the instruction.

When bit 4 or 14 of the instruction is set to one (rsublic, rsublikc), the content of the carry flag
(MSR[C]) affects the execution of the instruction. When bit 4 or 14 is cleared (rsubli, rsublik), the
content of the carry flag does not affect the execution of the instruction (providing a normal
subtraction).

Pseudocode

if C = 0 then
 (rDL) ← sext(IMM) + (rAL|rDL) + 1
else
 (rDL) ← sext(IMM) + (rAL|rDL) + MSR[C]
if K = 0 then
 MSR[C] ← CarryOut64

Registers Altered

• rDL

• MSR[C]

Latency

• 1 cycle

Notes

• In subtractions, Carry = (Borrow). When the Carry is set by a subtraction, it means that there
is no Borrow, and when the Carry is cleared, it means that there is a Borrow.

• Type B arithmetic long instructions with three operands must be preceded by an imml
instruction. See the instruction imml for details on using long immediate values.

sextl16
Figure 186: sextl16

0 0 0 0 0 0 0 1 0 10 0 0 000 0 11 0

rDL, rAL,sextl16

rALrDL

Sign Extend Long Halfword

0 6 11 16 31
11

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 385Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=385

Description

This instruction sign-extends a halfword (16 bits) into a long (64 bits). Bit 48 in rAL will be copied
into bits 0-47 of rDL. Bits 48-63 in rAL will be copied into bits 48-63 of rDL.

Pseudocode

rDL)[0:47] ← (rAL)[48]
(rDL)[48:63] ← (rAL)[48:63]

Registers Altered

• rDL

Latency

• 1 cycle

sextl32
Figure 187: sextl32

0 0 0 0 0 0 0 1 0 00 0 0 100 0 11 0

rDL, rAL,sextl32

rALrDL

Sign Extend Long Word

0 6 11 16 31
11

Description

This instruction sign-extends a word (32 bits) into a long (64 bits). Bit 32 in rAL will be copied into
bits 0-31 of rDL. Bits 32-63 in rAL will be copied into bits 32-63 of rDL.

Pseudocode

(rDL)[0:31] ← (rAL)[32]
(rDL)[32:63] ← (rAL)[32:63]

Registers Altered

• rDL

Latency

• 1 cycle

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 386Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=386

sextl8
Figure 188: sextl8

0 0 0 0 0 0 0 1 0 00 0 0 000 0 11 0

rDL, rAL,sextl8

rALrDL

Sign Extend Long Byte

0 6 11 16 31
11

Description

This instruction sign-extends a byte (8 bits) into a long (64 bits). Bit 56 in rAL will be copied into
bits 0-55 of rDL. Bits 56-63 in rAL will be copied into bits 56-63 of rDL.

Pseudocode

(rDL)[0:55] ← (rAL)[56]
(rDL)[56:63] ← (rAL)[56:63]

Registers Altered

• rDL

Latency

• 1 cycle

srla
Figure 189: srla

0 0 0 0 0 0 0 1 0 10 0 0 000 0 11 0

rDL, rAL,srla

rALrDL

Shift Right Long Arithmetic

0 6 11 16 31
00

Description

Shifts arithmetically the contents of register rAL, one bit to the right, and places the result in rDL.
The most significant bit of rAL (that is, the sign bit) placed in the most significant bit of rDL. The
least significant bit coming out of the shift chain is placed in the Carry flag.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 387Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=387

Pseudocode

(rDL)[0] ← (rAL)[0]
(rDL)[1:63] ← (rAL)[0:62]
MSR[C] ← (rAL)[63]

Registers Altered

• rDL

• MSR[C]

Latency

• 1 cycle

srlc
Figure 190: srlc

0 0 0 0 0 0 0 1 0 10 0 0 000 0 11 0

rDL, rAL,srlc

rALrDL

Shift Right Long with Carry

0 6 11 16 31
10

Description

Shifts the contents of register rAL, one bit to the right, and places the result in rDL. The Carry flag
is shifted in the shift chain and placed in the most significant bit of rDL. The least significant bit
coming out of the shift chain is placed in the Carry flag.

Pseudocode

(rDL)[0] ← MSR[C]
(rDL)[1:63] ← (rAL)[0:62]
MSR[C] ← (rAL)[63]

Registers Altered

• rDL

• MSR[C]

Latency

• 1 cycle

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 388Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=388

srll
Figure 191: srll

0 0 0 0 0 0 0 1 0 10 0 0 000 0 11 0

rDL, rAL,srll

rALrDL

Shift Right Long Logical

0 6 11 16 31
01

Description

Shifts logically the contents of register rAL, one bit to the right, and places the result in rDL. A
zero is shifted in the shift chain and placed in the most significant bit of rDL. The least significant
bit coming out of the shift chain is placed in the Carry flag.

Pseudocode

rDL)[0] ← 0
(rDL)[1:63] ← (rAL)[0:62]
MSR[C] ← (rAL)[63]

Registers Altered

• rDL

• MSR[C]

Latency

• 1 cycle

sl
Figure 192: sl

0 R 1 0 00 0 0 001 0 11 1

rDL, rAL, rBLsl

rALrDL

Store Long

0 6 11 16 31
00

rDL, rAL, rBLslr

rBL

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 389Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=389

Description

Stores the contents of register rDL, into the long aligned memory location that results from
adding the contents of registers rAL and rBL.

If the R bit is set, the bytes in the stored long are reversed, storing data with the opposite
endianness of the endianness defined by the E bit (if virtual protected mode is enabled).

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by
no-access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the three least significant bits in the address are not
zero.

Pseudocode

Addr ← (rAL) + (rBL)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 1
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
1 ; ESR[DIZ] ← No-access-allowed
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ←
0; MSR[VM] ← 0
else if Addr[C_ADDR_SIZE-3:C_ADDR_SIZE-1] ≠ 0 then
 ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 1; ESR[Rx] ← rD
else
 Mem(Addr) ← (rDL)

Registers Altered

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

• 2 cycles with C_AREA_OPTIMIZED=0 or 2

• 3 cycles with C_AREA_OPTIMIZED=1

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 390Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=390

Notes

• The long reversed instruction is only valid if MicroBlaze is configured to use reorder
instructions (C_USE_REORDER_INSTR = 1).

sli
Figure 193: sli

11 1 11 1

rDL, rAL, IMMsli

rALrDL

Store Long Immediate

0 6 11 16 31
IMM

Description

Stores the contents of register rDL, into the long aligned memory location that results from
adding the contents of registers rAL and the sign-extended IMM value.

A data TLB miss exception occurs if virtual protected mode is enabled, and a valid translation
entry corresponding to the address is not found in the TLB.

A data storage exception occurs if virtual protected mode is enabled, and access is prevented by
no-access-allowed or read-only zone protection. No-access-allowed can only occur in user mode.

An unaligned data access exception occurs if the three least significant bits in the address are not
zero.

Pseudocode

Addr ← (rAL) + sext(IMM)
if TLB_Miss(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10010; ESR[S] ← 1
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM] ←
0
else if Access_Protected(Addr) and MSR[VM] = 1 then
 ESR[EC] ← 10000; ESR[S] ←
1 ; ESR[DIZ] ← No-access-allowed
 MSR[UMS] ← MSR[UM]; MSR[VMS] ← MSR[VM]; MSR[UM] ← 0; MSR[VM]
← 0
else if Addr[C_ADDR_SIZE-3:C_ADDR_SIZE-1] ≠ 0 then
 ESR[EC] ← 00001; ESR[W] ← 1; ESR[S] ← 1; ESR[Rx] ← rD
else
 Mem(Addr) ← (rDL)

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 391Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=391

Registers Altered

• MSR[UM], MSR[VM], MSR[UMS], MSR[VMS], if a TLB miss exception or a data storage
exception is generated

• ESR[EC], ESR[S], if an exception is generated

• ESR[DIZ], if a data storage exception is generated

• ESR[W], ESR[Rx], if an unaligned data access exception is generated

Latency

• 2 cycles with C_AREA_OPTIMIZED=0 or 2

• 3 cycles with C_AREA_OPTIMIZED=1

Notes

• By default, Type B store immediate instructions will take the 16-bit IMM field value and sign
extend it to 64 bits to use as the immediate operand. This behavior can be overridden by
preceding the Type B instruction with an imm or imml instruction.

xorl
Figure 194: xorl

00 0 00 0 0 00 1000 0 01 1

rDL, rAL, rBLxorl

rALrDL

Logical Exclusive OR Long

0 6 11 16 31
rBL

21

Description

The contents of register rAL are XORed with the contents of register rBL; the result is placed into
register rDL.

Pseudocode

(rDL) ← (rAL) ⊕ (rBL)

Registers Altered

• rDL

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 392Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=392

Latency

• 1 cycle

xorli
Figure 195: xorli

IMM00 1 01 1

rDL, rAL, IMMxorli

rALrDL

Logical Exclusive OR Long with Immediate

0 6 11 3116

| rDL, IMM

IMM01 1 00 1 rDL 0 0 11 0

Description

The contents of register rAL or rDL are XOR’ed with the IMM field, sign extended with the
immediate value from the preceding imml instructions; the result is placed into register rDL.

Pseudocode

(rDL) ← (rAL|rDL) ⊕ sext(IMM24 & IMM)

Registers Altered

• rDL

Latency

• 1 cycle

Notes

• Type B logical long instructions with three operands must be preceded by an imml instruction.
See the instruction imml for details on using long immediate values.

Chapter 5: MicroBlaze Instruction Set Architecture

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 393Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=393

Appendix A

Performance and Resource
Utilization

Performance
Performance characterization of this core has been done using the margin system methodology.
The details of the margin system characterization methodology is described in IP
Characterization and fMAX Margin System Methodology below.

For additional details about performance and resource utilization, visit Performance and
Resource Utilization.

Maximum Frequencies
The maximum frequencies for the MicroBlaze™ core are provided in the following table. The
fastest speed grade of each family is used to generate the results in this table.

Table 105: Maximum Frequencies

Family Fmax (MHz)
AMD Virtex™ 7 382

AMD Kintex™ 7 398

AMD Artix™ 7 267

AMD Zynq™ 7000 265

AMD Spartan™ 7 234

Virtex UltraScale 460

Kintex UltraScale 463

AMD Virtex™ UltraScale+™ 682

Kintex UltraScale+ 650

Zynq UltraScale+ 661

AMD Versal™ 456

Appendix A: Performance and Resource Utilization

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 394Send Feedback

https://www.xilinx.com/htmldocs/ip_docs/pru_files/microblaze.html
https://www.xilinx.com/htmldocs/ip_docs/pru_files/microblaze.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=394

Resource Utilization
The MicroBlaze core resource utilization for various parameter configurations are measured for
the following devices:

• Virtex 7 Devices

• Kintex 7 Devices

• Artix 7 Devices

• Zynq 7000 Devices

• Spartan 7 Devices

• Virtex UltraScale Devices

• Kintex UltraScale Devices

• Virtex UltraScale+ Devices

• Kintex UltraScale+ Devices

• Zynq UltraScale+ Devices

• Versal Devices

The parameter values for each of the measured configurations are shown in Table
117: Parameter Configurations. The configurations directly correspond to the predefined presets
and templates in the MicroBlaze Configuration Wizard, defined for the 32-bit processor
implementation.

The 32-bit processor implementation data uses the parameters C_DATA_SIZE = 32 and
C_ADDR_SIZE = 32, whereas the 64-bit processor implementation data uses the parameters
C_DATA_SIZE = 64 and C_ADDR_SIZE = 48.

Virtex 7 Devices
Table 106: Device Utilization - Virtex 7 FPGAs (XC7VX485T ffg1761-3)

Configuration

Device Resources
32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)
Microcontroller Preset 1173 811 0 308 2139 1262 0 286

Real-time Preset 2484 2121 6 245 3793 3150 6 241

Application Preset 4340 3807 19 212 6492 4919 19 165

Minimum Area 629 230 0 382 1133 400 0 329

Maximum Performance 4096 3210 19 218 6813 4778 20 172

Appendix A: Performance and Resource Utilization

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 395Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=395

Table 106: Device Utilization - Virtex 7 FPGAs (XC7VX485T ffg1761-3) (cont'd)

Configuration

Device Resources
32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)
Maximum Frequency 915 553 0 382 1815 858 0 329

Linux with MMU 3512 3126 11 213 5084 4496 16 198

Low-end Linux with
MMU

2986 2511 7 233 4519 3726 10 207

Typical 2007 1680 6 253 3389 2498 8 251

Frequency Optimized 6011 5791 14 252 9398 8735 15 168

Kintex 7 Devices
Table 107: Device Utilization - Kintex 7 FPGAs (XC7K325T ffg900-3)

Configuration

Device Resources
32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)
Microcontroller Preset 1176 811 0 318 2129 1226 0 287

Real-time Preset 2477 2121 6 246 3792 3151 6 220

Application Preset 4368 3779 19 214 6479 4899 19 174

Minimum Area 637 234 0 398 1146 398 0 330

Maximum Performance 4129 3207 19 222 6816 4778 20 171

Maximum Frequency 908 553 0 398 1817 862 0 330

Linux with MMU 3507 3149 11 206 5088 4493 16 205

Low-end Linux with
MMU

2986 2537 7 213 4521 3708 10 202

Typical 2017 1679 6 257 3404 2496 8 252

Frequency Optimized 6004 5874 14 263 9425 8765 15 172

Artix 7 Devices
Table 108: Device Utilization - Artix 7 FPGAs (XC7A200T fbg676-3)

Configuration

Device Resources
32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)
Microcontroller Preset 1174 811 0 218 2145 1226 0 187

Real-time Preset 2467 2121 6 177 3797 3153 6 178

Appendix A: Performance and Resource Utilization

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 396Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=396

Table 108: Device Utilization - Artix 7 FPGAs (XC7A200T fbg676-3) (cont'd)

Configuration

Device Resources
32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)
Application Preset 4326 3747 19 149 6461 4891 19 136

Minimum Area 625 227 0 267 1141 397 0 221

Maximum Performance 4106 3208 19 153 6802 4799 20 142

Maximum Frequency 911 553 0 267 1815 858 0 221

Linux with MMU 3515 3122 11 150 5081 4492 16 139

Low-end Linux with
MMU

2987 2506 7 151 4490 3711 10 136

Typical 2014 1682 6 187 3398 2500 8 190

Frequency Optimized 5956 5787 14 166 9366 8725 15 137

Zynq 7000 Devices
Table 109: Device Utilization - Zynq 7000 FPGAs (XC7Z020 clg484-3)

Configuration

Device Resources
32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)
Microcontroller Preset 1174 811 0 221 2148 1226 0 191

Real-time Preset 2465 2120 6 176 3785 3156 6 178

Application Preset 4345 3744 19 148 6496 4979 19 141

Minimum Area 626 226 0 265 1138 400 0 222

Maximum Performance 4105 3197 19 152 6791 4760 20 138

Maximum Frequency 908 553 0 265 1813 858 0 222

Linux with MMU 3507 3125 11 147 5086 4489 16 135

Low-end Linux with
MMU

2988 2506 7 159 4489 3711 10 138

Typical 2021 1680 6 191 3416 2501 8 192

Frequency Optimized 5953 5785 14 176 9381 8724 15 134

Appendix A: Performance and Resource Utilization

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 397Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=397

Spartan 7 Devices
Table 110: Device Utilization - Zynq 7000 FPGAs (XC7Z020 clg484-3)

Configuration

Device Resources
32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)
Microcontroller Preset 1174 811 0 221 2148 1226 0 191

Real-time Preset 2465 2120 6 176 3785 3156 6 178

Application Preset 4345 3744 19 148 6496 4979 19 141

Minimum Area 626 226 0 265 1138 400 0 222

Maximum Performance 4105 3197 19 152 6791 4760 20 138

Maximum Frequency 908 553 0 265 1813 858 0 222

Linux with MMU 3507 3125 11 147 5086 4489 16 135

Low-end Linux with
MMU

2988 2506 7 159 4489 3711 10 138

Typical 2021 1680 6 191 3416 2501 8 192

Frequency Optimized 5953 5785 14 176 9381 8724 15 134

Virtex UltraScale Devices
Table 111: Device Utilization - Virtex UltraScale FPGAs (XCVU095 ffvd1924-3)

Configuration

Device Resources
32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)
Microcontroller Preset 1105 821 0 413 2090 1226 0 345

Real-time Preset 2520 2121 6 295 3822 3158 6 293

Application Preset 4355 3801 19 262 6617 4826 19 238

Minimum Area 567 231 0 460 991 415 0 374

Maximum Performance 4102 3208 19 286 6936 4776 20 244

Maximum Frequency 913 553 0 460 1817 860 0 374

Linux with MMU 3523 3221 11 258 5149 4511 16 239

Low-end Linux with
MMU

3002 2518 7 271 4559 3728 10 234

Typical 2035 1680 6 316 3482 2497 8 307

Frequency Optimized 6150 5806 14 301 9579 8814 15 240

Appendix A: Performance and Resource Utilization

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 398Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=398

Kintex UltraScale Devices
Table 112: Device Utilization - Kintex UltraScale FPGAs (XCKU040 ffva1156-3)

Configuration

Device Resources
32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)
Microcontroller Preset 1106 811 0 417 2046 1261 0 352

Real-time Preset 2507 2119 6 300 3820 3155 6 302

Application Preset 4336 3760 19 255 6621 4961 19 233

Minimum Area 578 240 0 463 988 401 0 391

Maximum Performance 4117 3209 19 285 6943 4784 20 249

Maximum Frequency 913 556 0 463 1832 869 0 391

Linux with MMU 3502 3129 11 247 5142 4492 16 239

Low-end Linux with
MMU

2997 2507 7 267 4560 3745 10 233

Typical 2033 1683 6 319 3471 2505 8 313

Frequency Optimized 6172 5837 14 307 9574 8777 15 243

Virtex UltraScale+ Devices
Table 113: Device Utilization - Virtex UltraScale+ FPGAs (XCVU3P ffvc1517-3)

Configuration

Device Resources
32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)
Microcontroller Preset 1107 823 0 573 2063 1226 0 462

Real-time Preset 2543 2122 6 399 3911 3156 6 389

Application Preset 4403 3745 19 360 6679 4872 19 333

Minimum Area 563 225 0 682 991 397 0 602

Maximum Performance 4207 3208 19 371 7044 4772 20 330

Maximum Frequency 910 553 0 682 1816 858 0 602

Linux with MMU 3553 3129 11 350 5213 4486 16 333

Low-end Linux with
MMU

3020 2508 7 374 4595 3705 10 333

Typical 2064 1679 6 433 3492 2496 8 427

Frequency Optimized 6227 5789 14 416 9649 8773 15 344

Appendix A: Performance and Resource Utilization

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 399Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=399

Kintex UltraScale+ Devices
Table 114: Device Utilization - Kintex UltraScale+ FPGAs (XCKU15P ffva1156-3)

Configuration

Device Resources
32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)
Microcontroller Preset 1105 811 0 573 2049 1226 0 522

Real-time Preset 2449 2122 6 416 3914 3151 6 407

Application Preset 4404 3744 19 349 6693 4873 19 341

Minimum Area 566 225 0 650 996 397 0 602

Maximum Performance 4209 3237 19 371 7045 4778 20 340

Maximum Frequency 915 553 0 650 1814 858 0 602

Linux with MMU 3554 3190 11 351 5216 4491 16 323

Low-end Linux with
MMU

3023 2507 7 365 4598 3712 10 344

Typical 2067 1681 6 441 3489 2493 8 421

Frequency Optimized 6223 5787 14 433 9652 8766 15 340

Zynq UltraScale+ Devices
Table 115: Device Utilization - Zynq UltraScale+ FPGAs (XCZU9EG ffvb1156-3)

Configuration

Device Resources
32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)
Microcontroller Preset 1112 822 0 561 2046 1226 0 476

Real-time Preset 2540 2120 6 409 3912 3150 6 388

Application Preset 4415 3743 19 346 6684 4888 19 336

Minimum Area 566 229 0 661 995 407 0 573

Maximum Performance 4212 3207 19 372 7027 4779 20 336

Maximum Frequency 908 553 0 661 1818 858 0 573

Linux with MMU 3552 3121 11 338 5227 4553 16 335

Low-end Linux with
MMU

3018 2501 7 369 4597 3703 10 319

Typical 2068 1681 6 430 3490 2493 8 428

Frequency Optimized 6248 5819 14 413 9647 8781 15 348

Appendix A: Performance and Resource Utilization

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 400Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=400

Versal Devices
Table 116: Device Utilization - Versal FPGAs (XCVC1920 vsva2197-3HP)

Configuration

Device Resources
32-bit 64-bit

LUTs FFs BRAMs
(36K)

Fmax
(MHz) LUTs FFs BRAMs

(36K)
Fmax

(MHz)
Microcontroller Preset 1841 1257 0 399 2480 1344 0 365

Real-time Preset 5561 5670 4 340 6951 6709 4 289

Application Preset 7543 7326 18 265 9885 8388 18 264

Minimum Area 650 263 0 456 1325 458 0 379

Maximum Performance 6708 6469 17 227 9711 8066 17 254

Maximum Frequency 971 519 0 456 1818 826 0 383

Linux with MMU 6610 6619 10 279 8512 8091 14 253

Low-end Linux with
MMU

6008 6021 6 280 7575 7239 8 254

Typical 4071 4136 4 337 5450 5009 6 266

Frequency Optimized 8001 8387 12 286 11602 11173 12 267

Parameter Configurations
Table 117: Parameter Configurations

Parameter

Configuration Parameter Values

M
ic

ro
co

nt
ro

lle
r P

re
se

t

Re
al

-t
im

e
Pr

es
et

Ap
pl

ic
at

io
n

Pr
es

et

M
in

im
um

 A
re

a

M
ax

im
um

 P
er

fo
rm

an
ce

M
ax

im
um

 F
re

qu
en

cy

Li
nu

x
w

it
h

M
M

U

Lo
w

-e
nd

 L
in

ux
 w

it
h

M
M

U

Ty
pi

ca
l

Fr
eq

ue
nc

y
O

pt
im

iz
ed

C_ALLOW_DCACHE_WR 1 1 1 1 1 1 1 1 1 1

C_ALLOW_ICACHE_WR 1 1 1 1 1 1 1 1 1 1

C_AREA_OPTIMIZED 1 0 0 1 0 0 0 0 0 2

C_CACHE_BYTE_SIZE 4096 8192 32768 4096 32768 4096 1638
4

8192 8192 16384

C_DCACHE_BYTE_SIZE 4096 8192 32768 4096 32768 4096 1638
4

8192 8192 16384

C_DCACHE_LINE_LEN 4 4 4 4 8 4 4 4 4 4

C_DCACHE_USE_WRITEBACK 0 1 1 0 1 0 0 0 0 1

C_DEBUG_ENABLED 1 1 1 0 1 0 1 1 1 1

Appendix A: Performance and Resource Utilization

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 401Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=401

Table 117: Parameter Configurations (cont'd)

Parameter

Configuration Parameter Values

M
ic

ro
co

nt
ro

lle
r P

re
se

t

Re
al

-t
im

e
Pr

es
et

Ap
pl

ic
at

io
n

Pr
es

et

M
in

im
um

 A
re

a

M
ax

im
um

 P
er

fo
rm

an
ce

M
ax

im
um

 F
re

qu
en

cy

Li
nu

x
w

it
h

M
M

U

Lo
w

-e
nd

 L
in

ux
 w

it
h

M
M

U

Ty
pi

ca
l

Fr
eq

ue
nc

y
O

pt
im

iz
ed

C_DIV_ZERO_EXCEPTION 0 1 1 0 0 0 1 0 0 1

C_M_AXI_D_BUS_EXCEPTION 0 1 1 0 0 0 1 1 1 1

C_FPU_EXCEPTION 0 0 1 0 0 0 0 0 0 1

C_FSL_EXCEPTION 0 0 0 0 0 0 0 0 0 0

C_FSL_LINKS 0 0 0 0 0 1 0 0 0 0

C_ICACHE_LINE_LEN 4 4 8 4 8 4 8 4 8 8

C_ILL_OPCODE_EXCEPTION 0 1 1 0 0 0 1 1 0 1

C_M_AXI_I_BUS_EXCEPTION 0 1 1 0 0 0 1 1 0 1

C_MMU_DTLB_SIZE 2 2 4 2 4 2 4 4 4 4

C_MMU_ITLB_SIZE 1 1 2 1 2 1 2 2 2 2

C_MMU_TLB_ACCESS 3 3 3 3 3 3 3 3 3 3

C_MMU_ZONES 2 2 2 2 2 2 2 2 2 2

C_NUMBER_OF_PC_BRK 1 2 2 0 1 1 1 1 2 1

C_NUMBER_OF_RD_ADDR_BRK 0 0 1 0 0 0 0 0 0 0

C_NUMBER_OF_WR_ADDR_BR
K

0 0 1 0 0 0 0 0 0 0

C_OPCODE_0x0_ILLEGAL 0 1 1 0 0 0 1 1 0 1

C_PVR 0 0 2 0 0 0 2 0 0 2

C_UNALIGNED_EXCEPTIONS 0 1 1 0 0 0 1 1 0 1

C_USE_BARREL 1 1 1 0 1 0 1 1 1 1

C_USE_DCACHE 0 1 1 0 1 0 1 1 1 1

C_USE_DIV 0 1 1 0 1 0 1 0 0 1

C_USE_EXTENDED_FSL_INSTR 0 0 0 0 0 0 0 0 0 0

C_USE_FPU 0 0 1 0 2 0 0 0 0 2

C_USE_HW_MUL 1 1 2 0 2 0 2 1 1 2

C_USE_ICACHE 0 1 1 0 1 0 1 1 1 1

C_USE_MMU 0 0 3 0 0 0 3 3 0 3

C_USE_MSR_INSTR 1 1 1 0 1 0 1 1 1 1

C_USE_PCMP_INSTR 1 1 1 0 1 0 1 1 1 1

C_USE_REORDER_INSTR 0 1 1 0 1 1 1 1 1 1

Appendix A: Performance and Resource Utilization

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 402Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=402

Table 117: Parameter Configurations (cont'd)

Parameter

Configuration Parameter Values

M
ic

ro
co

nt
ro

lle
r P

re
se

t

Re
al

-t
im

e
Pr

es
et

Ap
pl

ic
at

io
n

Pr
es

et

M
in

im
um

 A
re

a

M
ax

im
um

 P
er

fo
rm

an
ce

M
ax

im
um

 F
re

qu
en

cy

Li
nu

x
w

it
h

M
M

U

Lo
w

-e
nd

 L
in

ux
 w

it
h

M
M

U

Ty
pi

ca
l

Fr
eq

ue
nc

y
O

pt
im

iz
ed

C_USE_BRANCH_TARGET_CAC
HE

0 0 0 0 1 0 0 0 0 1

C_BRANCH_TARGET_CACHE_SI
ZE

0 0 0 0 0 0 0 0 0 0

C_ICACHE_STREAMS 0 0 1 0 1 0 1 0 0 0

C_ICACHE_VICTIMS 0 0 8 0 8 0 8 0 0 0

C_DCACHE_VICTIMS 0 0 0 0 8 0 8 0 0 0

C_ICACHE_FORCE_TAG_LUTRA
M

0 0 0 0 0 0 0 0 0 0

C_DCACHE_FORCE_TAG_LUTR
AM

0 0 0 0 0 0 0 0 0 0

C_ICACHE_ALWAYS_USED 1 1 1 1 1 1 1 1 0 1

C_DCACHE_ALWAYS_USED 1 1 1 1 1 1 1 1 0 1

C_D_AXI 1 1 1 0 1 0 1 1 0 1

C_USE_INTERRUPT 1 1 1 0 0 0 1 1 0 1

C_USE_STACK_PROTECTION 0 1 0 0 0 0 0 0 0 0

IP Characterization and fMAX Margin System
Methodology

Introduction
This section describes the methods to determine the maximum frequency (FMAX) of IP operation
within a system design. The method enables realistic performance reporting for any FPGA
architecture. The maximum frequency of a design is the maximum frequency at which the overall
system can be implemented without encountering timing issues.

Appendix A: Performance and Resource Utilization

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 403Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=403

The FMAX Margin System Methodology
It is important to determine the IP performance in the context of a user system. In the case of the
MicroBlaze characterization, the system includes the following items:

• The IP under test (MicroBlaze Processor)

• Local Memory (LMB)

• One level of Interconnect (AXI4, AXI4-Lite, AXI4-Stream)

• Memory controller (EMC)

• On-chip BRAM controller

• Peripherals (UART, Timer, Interrupt Controller, MDM)

Determining the FMAX of an Embedded IP with these components provides a more realistic
performance target.

The system above has three types of AXI Interconnect. AXI4-Lite used for peripheral command
and control, AXI4 used for memory accesses, and AXI4-Stream used for MicroBlaze streams.

For FMAX Margin System Analysis, the clock frequency of the system is incremented up to the
maximum frequency where the system breaks with timing violations (worst case negative slack).
The reported frequency is the failing frequency subtracted with this worst case negative slack.

Tool Options and Other Factors
AMD tools offer a number of options and settings that provide a trade-off between design
performance, resource usage, implementation runtime, and memory footprint. The settings that
produce the best results for one design might not necessarily work for another design.

For the purpose of the FMAX Margin System Analysis, the IP design is characterized with default
settings without specific constraints (other than the clocking constraint). This analysis is done
with all different FPGA architectures and the maximum speed grade.

Appendix A: Performance and Resource Utilization

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 404Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=404

Appendix B

Additional Resources and Legal
Notices

Finding Additional Documentation
Technical Information Portal

The AMD Technical Information Portal is an online tool that provides robust search and
navigation for documentation using your web browser. To access the Technical Information
Portal, go to https://docs.amd.com.

Documentation Navigator

Documentation Navigator (DocNav) is an installed tool that provides access to AMD Adaptive
Computing documents, videos, and support resources, which you can filter and search to find
information. To open DocNav:

• From the AMD Vivado™ IDE, select Help → Documentation and Tutorials.

• On Windows, click the Start button and select Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Note: For more information on DocNav, refer to the Documentation Navigator User Guide (UG968).

Design Hubs

AMD Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• Go to the Design Hubs web page.

Appendix B: Additional Resources and Legal Notices

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 405Send Feedback

https://docs.amd.com
https://docs.amd.com/access/sources/dita/map?isLatest=true&ft:locale=en-US&url=Xilinx-Documentation-Navigator-User-Guide
https://docs.amd.com/p/design-hubs
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=405

Support Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Support.

References
These documents provide supplemental material useful with this guide:

1. PowerPC Processor, Reference Guide (UG011)

2. Soft Error Mitigation Controller LogiCORE IP Product Guide (PG036)

3. LMB BRAM Interface Controller LogiCORE IP Product Guide (PG112)

4. MicroBlaze Debug Module (MDM) LogiCORE IP Product Guide (PG115)

5. MicroBlaze Microcontroller System LogiCORE IP Product Guide (PG116)

6. System Cache LogiCORE IP Product Guide (PG118)

7. Triple Modular Redundancy (TMR) LogiCORE IP Product Guide (PG268)

8. Hierarchical Design Methodology Guide (UG748)

9. Vitis Unified Software Platform Documentation Landing Page (UG1416)

10. Vivado Design Suite User Guide: Designing with IP (UG896)

11. MicroBlaze Processor Embedded Design User Guide (UG1579)

12. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

13. Vitis Unified Software Platform Documentation: Embedded Software Development (UG1400)

14. AMBA 4 AXI4-Stream Protocol Specification, Version 1.0 (Arm IHI 0051A)

15. AMBA AXI and ACE Protocol Specification (Arm IHI 0022E)

16. UltraScale Architecture Soft Error Mitigation Controller LogiCORE IP Product Guide (PG187)

The following lists additional resources you can access directly using the provided URLs.

1. The entire set of GNU manuals: https://www.gnu.org/manual

2. IEEE 754-1985 standard https://en.wikipedia.org/wiki/IEEE_754-1985

3. Wiki: MicroBlaze, MicroBlaze Tagged Pages

4. ELF: Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification

Appendix B: Additional Resources and Legal Notices

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 406Send Feedback

https://www.xilinx.com/support
https://docs.amd.com/go/en-US/ug011
https://docs.amd.com/access/sources/framemaker/map?url=pg036_sem&ft:locale=en-US
https://docs.amd.com/access/sources/framemaker/map?isLatest=true&ft:locale=en-US&url=pg112-lmb-bram-if-cntlr
https://docs.amd.com/access/sources/dita/map?isLatest=true&ft:locale=en-US&url=pg115-mdm
https://docs.amd.com/access/sources/ud/document?isLatest=true&url=pg116-microblaze-mcs&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&ft:locale=en-US&url=pg118-system-cache
https://docs.amd.com/access/sources/framemaker/map?url=pg268-tmr
https://docs.amd.com/access/sources/ud/document?isLatest=true&url=Hierarchical_Design_Methodology_Guide&ft:locale=en-US
https://docs.amd.com/access/sources/ud/document?isLatest=true&ft:locale=en-US&url=ug1416-vitis-documentation
https://docs.amd.com/access/sources/dita/map?Doc_Version=2024.1%20English&url=ug896-vivado-ip
https://docs.amd.com/access/sources/dita/map?Doc_Version=2024.1%20English&url=ug1579-microblaze-embedded-design
https://docs.amd.com/access/sources/dita/map?Doc_Version=2024.1%20English&url=ug994-vivado-ip-subsystems
https://docs.amd.com/access/sources/dita/map?Doc_Version=2024.1%20English&url=ug1400-vitis-embedded
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
https://docs.amd.com/access/sources/dita/map?isLatest=true&ft:locale=en-US&url=pg187-ultrascale-sem
https://www.gnu.org/manual
https://en.wikipedia.org/wiki/IEEE_754-1985
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842560/MicroBlaze
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841892/MicroBlaze+Tagged+Pages
http://refspecs.linuxbase.org/elf/elf.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=406

Training Resources

AMD provides a variety of QuickTake videos and training courses to help you learn more about
the concepts presented in this document. Use these links to explore related training resources:

• Designing FPGAs Using the Vivado Design Suite 1 Training Course

• Embedded Systems Design Training Course

• Embedded Systems Software Design Training Course

• Vivado Design Suite QuickTake Video Tutorials

Revision History
The following table shows the revision history for this document.

Section Revision Summary
05/30/2024 Version 2024.1

General Updates Updated for Vivado 2024.1 release
• Corrected expanded form of MDM
• Clarified that a long multiplication instruction is not

defined by the 64-bit ISA
• Explained the 8-stage pipeline branch penalty

06/05/2023 Version 2023.1

General Updates Updated for Vivado 2023.1 release
• Editorial updates.
• Corrected eight stage pipeline stalls.
• Updated branch latency.

05/25/2022 Version 2022.1

General Updates Updated for Vivado 2022.1 release
• Support 64-bit LMB and M_AXI_DP data width.
• Added temporal lockstep description.
• Replaced reference to UG898 with UG1579.

10/27/2021 Version 2021.2

General Updates Updated for Vivado 2021.2 release
• Added AMD Artix™ AMD UltraScale+™ device

06/16/2021 Version 2021.1

General Updates Updated for Vivado 2021.1 release
• Corrected MSRCLR and MSRSET in MicroBlaze

Instruction Set Summary.
• Corrected TNAPUTD and TNCAPUTD in MicroBlaze

Instruction Set Summary.
• Provided additional information on AXI and ACE

interface parameters.
• Added missing description of Dbg_Disable signal.

Appendix B: Additional Resources and Legal Notices

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 407Send Feedback

https://docs.xilinx.com/access/sources/ud/document?isLatest=true&url=fpga-vdes1&ft:locale=en-US
https://learningcatalog-amd.netexam.com/Search?searchText=Embedded+Systems+Design
https://learningcatalog-amd.netexam.com/Search?searchText=Embedded+Systems+Software+Design
https://www.xilinx.com/products/design-tools/vivado.html#video
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=407

Section Revision Summary
11/18/2020 Version 2020.2

General Updates Updated for Vivado 2020.2 release
• Corrected parity bits in a data cache line.
• Added Versal to supported families.
• Clarified atomic stream instruction behavior.
• Provided performance and resource utilization for

Versal.

06/03/2020 Version 2020.1

General Updates Updated for Vivado 2020.1 release
• Added ELF format description.
• Describe Memory Protection feature in more detail.
• Clarified Peripheral Data AXI write behavior.
• Define FINT and DLONG instruction rounding behavior.

10/30/2019 Version 2019.2

General Updates Updated for Vivado 2019.2 release:
• Updated description of 64-bit immediate instructions

with added opcodes.
• Clarified reset behavior.
• Replaced SDK with Vitis.
• Added Block-RAM count to resource utilization tables.

24/04/2019 Version 2019.1

General Updates Updated for Vivado 2019.1 release:
• Added information about cache reset behavior.
• Included calling convention for variable argument

functions.
• Corrected WDC pseudo code.
• Provided link to MicroBlaze pages on the Xilinx Wiki.

11/14/2018 Version 2018.3

General Updates Updated for Vivado 2018.3 release:
• Added description of MicroBlaze 64-bit implementation,

new in version 11.0.

04/04/2018 Version 2018.1

General Updates Updated for Vivado 2018.1 release:
• Included information about instruction pipeline hazards

and forwarding.
• Clarified that software break does not set the BIP bit in

MSR.
• Explained memory scrubbing behavior.
• Added more detailed description of sleep and pause

usage.
• Clarified use of parallel debug clock and reset.

Appendix B: Additional Resources and Legal Notices

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 408Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=408

Section Revision Summary
10/04/2017 Version 2017.3

General Updates Updated for Vivado 2017.3 release:
• Added automotive UltraScale+, Zynq, and Spartan 7

devices.
• Updated description of debug trace, to add event trace,

new in version 10.0.
• Added 4PB extended address size.
• Clarified description of cache trace signals.

04/05/2017 Version 2017.1

General Updates Updated for Vivado 2017.1 release:
• Added description of MMU Physical Address Extension

(PAE), new in version 10.0.
• Extended privileged instruction list, and updated

instruction descriptions.
• Updated information on debug program trace.
• Added reference to the Triple Modular Redundancy

(TMR) subsystem.
• Corrected description of BSIFI instruction.
• Updated MFSE instruction description with PAE

information.
• Added MTSE instruction used with PAE, new in version

10.0.
• Updated WDC instruction for external cache invalidate

and flush.

10/05/2016 Version 2016.3

General Updates Updated for Vivado 2016.3 release:
• Added description of frequency optimized 8-stage

pipeline, new in version 10.0.
• Describe bit field instructions, new in version 10.0.
• Include information on parallel debug interface, new in

version 10.0.
• Added version 10.0 to MicroBlaze release version code in

PVR.
• Included Spartan 7 target architecture in PVR.
• Updated description of MSR reset value.
• Updated Xilinx

Appendix B: Additional Resources and Legal Notices

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 409Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=409

Section Revision Summary
04/06/2016 Version 2016.1

General Updates Updated for Vivado 2016.1 release:
• Included description of address extension, new in

version 9.6.
• Included description of pipeline pause functionality, new

in version 9.6
• Included description of non-secure AXI access support,

new in version 9.6.
• Included description of hibernate and suspend

instructions, new in version 9.6.
• Added version 9.6 to MicroBlaze release version code in

PVR.
• Corrected references to tables in Performance Counter

Data Read Register
• Replaced references to the deprecated Xilinx

Microprocessor Debugger (XMD) with Xilinx System
Debugger (XSDB).

• Removed C code function attributes svc_handler and
svc_table_handler.

04/15/2015 Version 2015.1

General Updates Updated for Vivado 2015.1 release:
• Included description of 16 word cache line length, new

in version 9.5.
• Added version 9.5 to MicroBlaze release version code in

PVR.
• Corrected description of supported endianness and

parameter C_ENDIANNESS.
• Corrected description of outstanding reads for

instruction and data cache.
• Updated FPGA configuration memory protection

document reference MicroBlaze Microcontroller System
LogiCORE IP Product Guide (PG116).

• Corrected Bus Index Range definitions for Lockstep
Comparison in Lockstep Interface Description.

• Clarified registers altered for IDIV instruction.
• Corrected PVR assembler mnemonics for MFS

instruction.
• Updated performance and resource utilization for

2015.1.
• Added references to training resources.

10/01/2014 Version 2014.3

General Updates Updated for Vivado 2014.3 release:
• Corrected semantic description for PCMPEQ and

PCMPNE in Table 2.1.
• Added version 9.4 to MicroBlaze release version code in

PVR.
• Included description of external program trace, new in

version 9.4

Appendix B: Additional Resources and Legal Notices

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 410Send Feedback

https://docs.amd.com/access/sources/ud/document?isLatest=true&url=pg116-microblaze-mcs&ft:locale=en-US
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=410

Section Revision Summary
04/02/2014 Version 2014.1

General Updates Updated for Vivado 2014.1 release:
• Added v9.3 to MicroBlaze release version code in PVR.
• Clarified availability and behavior of stack protection

registers.
• Corrected description of LMB instruction and data bus

exception.
• Included description of extended debug features, new in

version 9.3: performance monitoring, program trace
and non-intrusive profiling.

• Included definition of Reset Mode signals, new in
version 9.3.

• Clarified how the AXI4-Stream TLAST signal is handled.
• Added UltraScale and updated performance and

resource utilization for 2014.1.

12/18/2013 Version 2013.4

General Updates Updated for Vivado 2013.4 release.

10/02/2013 Version 2013.3

General Updates Updated for Vivado 2013.3 release.

06/19/2013 Version 2013.2

General Updates Updated for Vivado 2013.2 release.

03/20/2013 Version 2013.1

General Updates Initial Xilinx release. This User Guide is derived from UG081.

Please Read: Important Legal Notices
The information presented in this document is for informational purposes only and may contain
technical inaccuracies, omissions, and typographical errors. The information contained herein is
subject to change and may be rendered inaccurate for many reasons, including but not limited to
product and roadmap changes, component and motherboard version changes, new model and/or
product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities
that cannot be completely prevented or mitigated. AMD assumes no obligation to update or
otherwise correct or revise this information. However, AMD reserves the right to revise this
information and to make changes from time to time to the content hereof without obligation of
AMD to notify any person of such revisions or changes. THIS INFORMATION IS PROVIDED "AS
IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES,
ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY

Appendix B: Additional Resources and Legal Notices

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 411Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=411

DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR
FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY
PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL
DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF
AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2013-2024 Advanced Micro Devices, Inc. AMD, the AMD Arrow logo, Artix, Kintex,
Spartan, Vivado, Vitis, UltraScale, UltraScale+, Versal, Zynq, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

Appendix B: Additional Resources and Legal Notices

UG984 (v2024.1) May 30, 2024
MicroBlaze Processor Reference Guide 412Send Feedback

https://www.xilinx.com/about/feedback/document-feedback.html?docType=Reference_Guide&docId=UG984&Title=MicroBlaze%20Processor%20Reference%20Guide&releaseVersion=2024.1&docPage=412

	MicroBlaze Processor Reference Guide
	Table of Contents
	Ch. 1: Introduction
	Guide Contents

	Ch. 2: MicroBlaze Architecture
	Introduction
	Overview
	Features

	Data Types and Endianness
	Instructions
	Instruction Summary
	Semaphore Synchronization
	Self-Modifying Code

	Registers
	General Purpose Registers
	Special Purpose Registers
	Program Counter
	Machine Status Register
	Exception Address Register
	Exception Status Register
	Branch Target Register
	Floating-Point Status Register
	Exception Data Register
	Stack Low Register
	Stack High Register
	Process Identifier Register
	Zone Protection Register
	Translation Look-Aside Buffer Low Register
	Translation Look-Aside Buffer High Register
	Translation Look-Aside Buffer Index Register
	Translation Look-Aside Buffer Search Index Register
	Processor Version Register

	Pipeline Architecture
	Three Stage Pipeline
	Five Stage Pipeline
	Eight Stage Pipeline
	Branches
	Delay Slots
	Branch Target Cache

	Pipeline Hazard Example
	Avoiding Data Hazards

	Memory Architecture
	Privileged Instructions
	Virtual-Memory Management
	Real Mode
	Virtual Mode
	Page-Translation Table

	Translation Look-Aside Buffer
	TLB Entry Format
	TLB Access
	TLB Access Failures

	Access Protection
	TLB Access-Protection Controls
	Zone Protection

	UTLB Management
	Recording Page Access and Page Modification

	Reset, Interrupts, Exceptions, and Break
	Reset
	Equivalent Pseudocode

	Hardware Exceptions
	Exception Priority
	Exception Causes
	Imprecise Exceptions
	Equivalent Pseudocode

	Breaks
	Hardware Breaks
	Software Breaks
	Latency
	Equivalent Pseudocode

	Interrupt
	Low-latency Vectored Interrupt Mode
	Latency
	Equivalent Pseudocode

	User Vector (Exception)
	Pseudocode

	Instruction Cache
	Overview
	General Instruction Cache Functionality
	Instruction Cache Operation
	Stream Buffers
	Victim Cache

	Instruction Cache Software Support
	MSR Bit
	WIC Instruction

	Data Cache
	Overview
	General Data Cache Functionality
	Data Cache Operation
	Victim Cache

	Data Cache Software Support
	MSR Bit
	WDC Instruction

	Floating-Point Unit (FPU)
	Overview
	Format
	Single Precision
	Double Precision

	Rounding
	Operations
	Arithmetic
	Comparison
	Conversion

	Exceptions
	Software Support
	Libraries and Binary Compatibility
	Operator Latencies
	C Language Programming
	Immediate Constants
	Avoiding Unnecessary Casting
	Using Square Root Runtime Library Function

	Stream Link Interfaces
	Hardware Acceleration

	Debug and Trace
	Debug Overview
	Performance Monitoring
	Performance Counter Control Register
	Performance Counter Command Register
	Performance Counter Status Register
	Performance Counter Data Read Register
	Performance Counter Data Write Register

	Program and Event Trace
	Trace Control Register
	Trace Command Register
	Trace Status Register
	Trace Data Read Register

	Non-Intrusive Profiling
	Profiling Control Register
	Profiling Low Address Register
	Profiling High Address Register
	Profiling Buffer Address Register
	Profiling Data Read Register
	Profiling Data Write Register

	Cross Trigger Support
	Trace Interface Overview

	Fault Tolerance
	Configuration
	Using MicroBlaze Configuration
	Using LMB BRAM Interface Controller Configuration

	Features
	Instruction and Data Cache Protection
	Memory Management Unit Protection
	Branch Target Cache Protection
	Exception Handling

	Software Support
	Scrubbing
	BRAM Driver

	Scrubbing
	Scrubbing Methods
	Calculating Scrubbing Rate

	Use Cases
	Minimal
	Small
	Typical
	Full

	Lockstep Operation
	System Configuration
	Use Cases
	Tamper Protection
	Error Detection

	Coherency
	Invalidation
	Protocol Compliance

	Data and Instruction Address Extension

	Ch. 3: MicroBlaze Signal Interface Description
	Introduction
	Overview
	Features

	MicroBlaze I/O Overview
	Sleep and Pause Functionality
	Software Controlled
	Hardware Controlled

	AXI4 and ACE Interface Description
	Memory Mapped Interfaces
	Interface Parameters and Signals

	Stream Interfaces

	Local Memory Bus (LMB) Interface Description
	LMB Signal Interface
	LMB Transactions
	Read and Write Data Steering

	Lockstep Interface Description
	Debug Interface Description
	Trace Interface Description
	MicroBlaze Core Configurability

	Ch. 4: MicroBlaze Application Binary Interface
	Introduction
	Data Types
	Register Usage Conventions
	Stack Convention
	Calling Convention

	Memory Model
	Small Data Area
	Data Area
	Common Un-Initialized Area
	Literals or Constants

	Interrupt, Break and Exception Handling
	Reset Handling
	ELF Format
	File Header
	Sections
	Relocations

	Ch. 5: MicroBlaze Instruction Set Architecture
	Introduction
	Notation
	Formats
	MicroBlaze 32-bit Instructions
	add
	addi
	and
	andi
	andn
	andni
	beq
	beqi
	bge
	bgei
	bgt
	bgti
	ble
	blei
	blt
	blti
	bne
	bnei
	br
	bri
	brk
	brki
	bs
	bsi
	clz
	cmp
	fadd
	frsub
	fmul
	fdiv
	fcmp
	flt
	fint
	fsqrt
	get
	getd
	idiv
	imm
	lbu
	lbui
	lhu
	lhui
	lw
	lwi
	lwx
	mbar
	mfs
	msrclr
	msrset
	mts
	mul
	mulh
	mulhu
	mulhsu
	muli
	or
	ori
	pcmpbf
	pcmpeq
	pcmpne
	put
	putd
	rsub
	rsubi
	rtbd
	rtid
	rted
	rtsd
	sb
	sbi
	sext16
	sext8
	sh
	shi
	sra
	src
	srl
	sw
	swapb
	swaph
	swi
	swx
	wdc
	wic
	xor
	xori

	MicroBlaze 64-bit Instructions
	addl
	addli
	andl
	andli
	andnl
	andnli
	beaeq
	beaeqi
	beage
	beagei
	beagt
	beagti
	beale
	bealei
	bealt
	bealti
	beane
	beanei
	brea
	breai
	bsl
	bsli
	cmpl
	dadd
	drsub
	dmul
	ddiv
	dcmp
	dbl
	dlong
	dsqrt
	imml
	ll
	lli
	orl
	orli
	pcmplbf
	pcmpleq
	pcmplne
	rsubl
	rsubli
	sextl16
	sextl32
	sextl8
	srla
	srlc
	srll
	sl
	sli
	xorl
	xorli

	Appx. A: Performance and Resource Utilization
	Performance
	Maximum Frequencies

	Resource Utilization
	Virtex 7 Devices
	Kintex 7 Devices
	Artix 7 Devices
	Zynq 7000 Devices
	Spartan 7 Devices
	Virtex UltraScale Devices
	Kintex UltraScale Devices
	Virtex UltraScale+ Devices
	Kintex UltraScale+ Devices
	Zynq UltraScale+ Devices
	Versal Devices
	Parameter Configurations

	IP Characterization and fMAX Margin System Methodology
	Introduction
	The FMAX Margin System Methodology
	Tool Options and Other Factors

	Appx. B: Additional Resources and Legal Notices
	Finding Additional Documentation
	Support Resources
	References
	Revision History
	Please Read: Important Legal Notices

