
EE Core User's Manual

Copyright © 2002 Sony Computer Entertainment Inc.
All Rights Reserved.

SCE Confidential

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-2-

© 2002 Sony Computer Entertainment Inc.

Publication date: April 2002

Sony Computer Entertainment Inc.
1-1, Akasaka 7-chome, Minato-ku
Tokyo 107-0052 Japan

Sony Computer Entertainment America
919 East Hillsdale Blvd.
Foster City, CA 94404, U.S.A.

Sony Computer Entertainment Europe
30 Golden Square
London W1F 9LD, U.K.

The EE Core User’s Manual is supplied pursuant to and subject to the terms of the Sony Computer
Entertainment PlayStation® license agreements.

The EE Core User’s Manual is intended for distribution to and use by only Sony Computer Entertainment
licensed Developers and Publishers in accordance with the PlayStation® license agreements.

Unauthorized reproduction, distribution, lending, rental or disclosure to any third party, in whole or in part, of
this book is expressly prohibited by law and by the terms of the Sony Computer Entertainment PlayStation®
license agreements.

Ownership of the physical property of the book is retained by and reserved by Sony Computer Entertainment.
Alteration to or deletion, in whole or in part, of the book, its presentation, or its contents is prohibited.

The information in the EE Core User’s Manual is subject to change without notice. The content of this book is
Confidential Information of Sony Computer Entertainment.

 ® and PlayStation® are registered trademarks, and GRAPHICS SYNTHESIZERTM and
EMOTION ENGINETM are trademarks of Sony Computer Entertainment Inc. All other trademarks are property
of their respective owners and/or their licensors.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-3-

About This Manual
The "EE Core User's Manual" describes the EE Core (the CPU core unit), which controls the entire Emotion
Engine, and its general operations. It provides overviews of the configuration and instruction set and the
functions of the main blocks. For details of the instruction set, refer to the "EE Core Instruction Set Manual".
- Chapter 1 "Architecture Overview" describes the EE Core's features and configuration, pipeline operation,

and the main blocks and functions.
- Chapter 2 "Instruction Set Overview" provides an overview of the instruction set, and describes data

alignment and characteristic operations such as branch delay.
- Chapter 3 "Registers" describes the registers of the EE Core and the System Control Coprocessor (COP0).
- Chapter 4 "Exception Processing" describes exceptions, the events that suspend execution of instructions.

This chapter also describes preprocessor resetting as one of the exceptions.
- Chapter 5 "Memory Management" describes the virtual and physical spaces, conversion from the virtual

address to the physical address, cache mode, and the System Control Coprocessor (COP0) that governs
them.

- Chapter 6 "Caches" describes the EE Core's instruction cache, data cache, and scratchpad RAM.
- Chapter 7 "Performance Counters and Instruction Stepping" describes the functions and means for

monitoring and counting the internal events of the EE Core.
- Chapter 8 "Floating-Point Unit (FPU)" describes the floating-point operation unit connected as a

coprocessor.
- Chapter 9 "Hardware Breakpoint" describes breakpoint function, a part of the COP0 functions.

Changes Since Release of 5th Edition
Since release of the 5th Edition of the EE Core User’s Manual, the following changes have been made.
Note that each of these changes is indicated by a revision bar in the margin of the affected page.

Ch. 1: Architecture Overview

• A correction has been made to section 1.1. Features of the EE Core, on page 14.
• A correction has been made to “C2 Pipe” in section 1.2.6. Physical Pipes, on page 16.

Ch. 2: Instruction Set Overview

• A correction has been made to the “JALR” row in the Branch/Jump Instructions table on page 37.
• A correction has been made to section 2.3. Load/Store Instructions, on page 39.
• A correction has been made to the “MTC1” row in Table 2-7 Coprocessor Instructions, on page 50.

Ch. 3: Registers

• A correction has made to section 3.2. System Control Coprocessor (COP0) Registers, on page 62.
• A correction has been made to the description of the Context register on page 66.
• A correction has been made to Figure 3-2 Wired TLB Entries on page 68.
• A correction has been made to the “CU (CU[3:01])” row in the COP0 Status table on page 73.
• A correction has been made to the figure in the Cause register description on page 75.
• Corrections have been made to the description of the DAB/DABM register on page 82.

Ch. 4: Exception Processing

• A correction has been made to the table in section 4.2.2. NMI Exception, on page 96.
• A correction has been made to “Operation” in section 4.2.7. TLB Refill Exception, on page 101.
• A correction has been made to “Operation” in section 4.2.8. TLB Invalid Exception, on page 102.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-4-

• A correction has been made to “Programming Notes” in section 4.2.13. Reserved Instruction
Exception, on page 107.

Ch. 5: Memory Management

• Corrections have been made to “seeg (Supervisor Mode – Supervisor Space)” in section 5.1.5.
Supervisor Mode Address Space, on page 115.

• A correction has been made to the “MASK” row of the table in section 5.2.4. TLB Entry, on page 124.
• Corrections have been made to the “Move Instruction” rows of Table 8-3 FPU Instructions, on page

161.

Ch. 9: Hardware Breakpoint

• A correction has been made to the example code in section 9.3.4. Setting a Data Value Breakpoint, on
page 177.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-5-

G l o s s a r y

Term Definition
EE Emotion Engine. CPU of the PlayStation 2.
EE Core Generalized computation and control unit of EE. Core of the CPU.
COP0 EE Core system control coprocessor.
COP1 EE Core floating-point operation coprocessor. Also referred to as FPU.
COP2 Vector operation unit coupled as a coprocessor of EE Core. VPU0.
GS Graphics Synthesizer.

Graphics processor connected to EE.
GIF EE Interface unit to GS.
IOP Processor connected to EE for controlling input/output devices.
SBUS Bus connecting EE to IOP.
VPU (VPU0/VPU1) Vector operation unit.

EE contains 2 VPUs: VPU0 and VPU1.
VU (VU0/VU1) VPU core operation unit.
VIF (VIF0/VIF1) VPU data decompression unit.
VIFcode Instruction code for VIF.
SPR Quick-access data memory built into EE Core (Scratchpad memory).
IPU EE Image processor unit.
word Unit of data length: 32 bits
qword Unit of data length: 128 bits
Slice Physical unit of DMA transfer: 8 qwords or less
Packet Data to be handled as a logical unit for transfer processing.
Transfer list A group of packets transferred in serial DMA transfer processing.
Tag Additional data indicating data size and other attributes of packets.
DMAtag Tag positioned first in DMA packet to indicate address/size of data and address

of the following packet.
GS primitive Data to indicate image elements such as point and triangle.
Context A set of drawing information (e.g. texture, distant fog color, and dither matrix)

applied to two or more primitives uniformly. Also referred to as the drawing
environment.

GIFtag Additional data to indicate attributes of GS primitives.
Display list A group of GS primitives to indicate batches of images.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-6-

(This page is left blank intentionally)

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-7-

C o n t e n t s

1. Architecture Overview.. 13
1.1. Features of the EE Core ... 14
1.2. Block Diagram and Functional Block Description ... 15

1.2.1. PC Unit .. 16
1.2.2. MMU.. 16
1.2.3. Caches and Scratchpad RAM ... 16
1.2.4. Issue Logic and Staging Registers .. 16
1.2.5. GPR (General Purpose Registers) and FPR (Floating-Point Registers) ... 16
1.2.6. Physical Pipes.. 16
1.2.7. Operand/Bypass logic ... 17
1.2.8. Writeback Buffer .. 17
1.2.9. UCAB... 17
1.2.10. Result and Move Buses ... 17
1.2.11. Bus Interface Unit .. 17

1.3. Superscalar Pipeline Operation .. 18
1.3.1. Interlock by Data Hazards .. 18
1.3.2. Integer Instruction Pipeline Stages .. 18
1.3.3. COP1 Pipeline .. 21
1.3.4. COP2 Pipeline .. 23
1.3.5. Classification and Routing of Instructions.. 23
1.3.6. Instruction Issue Combinations ... 24

1.4. Registers .. 27
1.4.1. CPU Registers ... 27
1.4.2. FPU Registers ... 27
1.4.3. COP0 Registers... 27

1.5. Memory Management.. 28
1.6. Cache Memory and Scratchpad RAM... 29
1.7. Bus Interface... 30
1.8. Floating-Point Unit.. 31
1.9. Debug Support Functions .. 32

2. Instruction Set Overview.. 33
2.1. Binary Formats ... 34
2.2. Instruction Set Summary... 35

2.2.1. Instruction Set List... 35
2.2.2. MIPS III Instructions not Supported by EE Core .. 38

2.3. Load/Store Instructions ... 39
2.3.1. Data Formats and Alignment ... 39
2.3.2. Load Delay .. 41

2.4. Computational Instructions.. 42
2.5. Branch/Jump Instructions.. 44

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-8-

2.5.1. Branch Delay Slot ...44
2.5.2. Overview of Jump Instructions ..45
2.5.3. Overview of Branch Instructions ...45

2.6. Exception Instructions ..46
2.7. Serialization Instruction...47
2.8. MIPS IV Instructions...48
2.9. System Control Coprocessor (COP0) Instructions ...49
2.10. Coprocessor Instructions (COP1/COP2) ..50

2.10.1. COP1(FPU) Instructions...50
2.10.2. COP2 Instructions..51
2.10.3. VU Macro instructions...51

2.11. EE Core-Specific Instructions..54
2.11.1. EE Core-Specific Multiply / Divide Instructions ..54
2.11.2. Multimedia Instructions...55

2.12. Latency...58
3. Registers ..59

3.1. CPU Registers ...60
3.1.1. General Purpose Registers...61
3.1.2. HI and LO Registers ..61
3.1.3. SA Register ..61
3.1.4. Program Counter (PC) ...61

3.2. System Control Coprocessor (COP0) Registers...62
Index : Index that specifies TLB entry for reading or writing ..63
Random : Index that specifies TLB entry for the TLBWR instruction ...64
EntryLo0 / EntryLo1 : Lower part of the TLB entry..65
Context : TLB miss handling information...66
PageMask : Page size comparison mask...67
Wired : The number of Wired TLB entries ...68
BadVAddr : Virtual address that causes an error..69
Count : Timer count value ...70
EntryHi : Upper parts of a TLB entry..71
Compare : Timer stable value ..72
Status : COP0 Status ...73
Cause : Cause of the most recent exception..75
EPC : Address generating exceptions...76
PRId : Processor Revision ...77
Config : Processor Configuration ...78
BadPAddr : Physical address that caused an error..79
BPC : Control of the breakpoint function...80
IAB / IABM : Instruction address breakpoint settings ...81
DAB / DABM : Data address breakpoint settings ..82
DVB / DVBM : Data value breakpoint settings ..83
PCCR : Performance Counter Control ..84
PCR0 / PCR1 : Performance Counter ...85
TagLo : Lower parts of a cache tag...86
TagHi : Upper parts of a cache tag ...87

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-9-

ErrorEPC : Address generating a level 2 exception... 88
4. Exception Processing.. 89

4.1. Exception Handling Process .. 90
4.1.1. Exception Vector ... 90
4.1.2. Level 1 Exception Handling ... 90
4.1.3. Level 2 Exception Handling ... 92
4.1.4. Exception Priority .. 93

4.2. Exception Reference ... 94
4.2.1. Reset Exception.. 95
4.2.2. NMI Exception .. 96
4.2.3. Performance Counter Exception ... 97
4.2.4. Debug Exception ... 98
4.2.5. Interrupt Exception ... 99
4.2.6. TLB Modified Exception ..100
4.2.7. TLB Refill Exception...101
4.2.8. TLB Invalid Exception..102
4.2.9. Address Error Exception ..103
4.2.10. Bus Error Exception..104
4.2.11. System Call Exception...105
4.2.12. Break Exception ...106
4.2.13. Reserved Instruction Exception...107
4.2.14. Coprocessor Unusable Exception..108
4.2.15. Trap Exception...109
4.2.16. Overflow Exception ..110

5. Memory Management ...111
5.1. Address Space...112

5.1.1. Physical Address Space..112
5.1.2. Virtual Address Space..112
5.1.3. Operating Modes and Address Space..113
5.1.4. User Mode Address Space ..114
5.1.5. Supervisor Mode Address Space ..115
5.1.6. Kernel Mode Address Space...116

5.2. Address Translation...118
5.2.1. Overview of Address Translation ..118
5.2.2. Address Translation Look-aside Buffer (TLB)...120
5.2.3. Address Translation Process Flow...121
5.2.4. TLB Entry ...123
5.2.5. Scratchpad RAM Mapping..125
5.2.6. Cache Mode ..126

5.3. System Control Coprocessor..127
5.3.1. TLB Related Register ...127
5.3.2. TLB Operation Instructions ...127

6. Caches ...129
6.1. Cache and SPRAM Features ..130
6.2. Organization of the Caches ..131

6.2.1. Organization of the Data Cache...131

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-10-

6.2.2. Organization of the Instruction Cache ... 131
6.2.3. Tag Structure .. 132

6.3. Cache Operations .. 134
6.3.1. Line Replacement Algorithm ... 134
6.3.2. Non-blocking Loads and Hit Under Miss.. 134
6.3.3. Cache Hit and Miss Operations... 135
6.3.4. Data Cache Writeback... 135
6.3.5. Data Cache State Transitions ... 136
6.3.6. Instruction Cache State Transitions .. 137
6.3.7. Data Cache Lock Function... 137
6.3.8. Relationship between Cached and Uncached Operations ... 138
6.3.9. Data Consistency between Cache and SPRAM... 138

6.4. Scratchpad RAM (SPRAM) ... 139
6.4.1. SPRAM Overview ... 139
6.4.2. DMA Access to SPRAM .. 139
6.4.3. SPRAM Mapping... 140

6.5. Uncached Accelerated Buffer (UCAB) .. 141
6.5.1. UCAB Overview.. 141
6.5.2. Non-Blocking Loads and Hit Under Miss ... 141

6.6. Cache Control Registers ... 142
7. Performance Counters and Instruction Stepping ... 143

7.1. Configuration of Performance Counter ... 144
7.1.1. Performance Counter Control Registers (PCCR).. 144
7.1.2. Counter Registers (PCR0 / PCR1).. 145
7.1.3. Access to the Performance Counter Registers... 145
7.1.4. Initial Value of the Performance Counter Registers ... 145

7.2. Performance Counter Operation Details ... 146
7.2.1. Counter Increment .. 146
7.2.2. Counter Event.. 146
7.2.3. Counter Event Descriptions .. 147
7.2.4. Occurrence of Counter Exceptions .. 150
7.2.5. Priority of Counter Exceptions.. 150
7.2.6. Initializing Performance Counters... 151
7.2.7. Notes on Pipelining ... 151
7.2.8. Notes on Instruction Stepping... 152

8. Floating-Point Unit (FPU)... 155
8.1. Data Formats ... 156

8.1.1. Floating-Point Format... 156
8.1.2. Fixed-Point Format ... 156

8.2. FPU Registers .. 157
8.3. FPU Control Registers.. 158

8.3.1. Implementation and Revision Register (FCR0)... 158
8.3.2. Control/Status Register (FCR31) .. 158

8.4. Instruction Set Overview ... 160
8.5. Results of Abnormal Computation... 162
8.6. Sign of Zero ... 163

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-11-

8.7. Rounding...164
8.8. IEEE 754 Compatibility ...165

9. Hardware Breakpoint ..167
9.1. Overview of Hardware Breakpoint ...168
9.2. Breakpoint Registers..169

9.2.1. Breakpoint Control (BPC) Register ...169
9.2.2. Instruction Address Registers (IAB / IABM) ..170
9.2.3. Data Address Registers (DAB / DABM) ...170
9.2.4. Data Value Registers (DVB / DVBM) ...171
9.2.5. Establishment of Breakpoint and Operation of Exception Generation...171

9.3. Setting Breakpoints..174
9.3.1. Procedure for Setting Breakpoints...174
9.3.2. Setting an Instruction Breakpoint ..175
9.3.3. Setting a Data Address Breakpoint ..176
9.3.4. Setting a Data Value Breakpoint ..177

9.4. Outputting Trigger Signals..179
9.5. Notes on Breakpoint Processing ...180

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-12-

(This page is left blank intentionally)

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-13-

1. Architecture Overview

This chapter provides an overview of the EE Core architecture, focusing on the following items:

• Block diagram and functional block

• Superscalar pipeline operation

• Instruction set

• Registers

• Memory Management

• Cache Memory and Scratchpad RAM

• Bus interface

• Floating-Point Unit

• Performance Monitors

• Debug Support

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-14-

1.1. Features of the EE Core
The EE Core is a superscalar processor with a subset of 64-bit MIPS IV Instruction Set Architecture. It
implements a large extension to the instruction set tailored for multimedia applications.
It contains a CPU, a floating-point execution unit (FPU = Coprocessor 1), instruction and data caches, a
scratchpad RAM and a vector operation coprocessor (VPU0= Coprocessor 2).
It has two pipelines. Two instructions can be decoded each cycle. These instructions are executed and completed
in order. However, since Data Cache misses are non-blocking and a single cache miss does not stall the pipeline,
load misses or uncached loads may be retired out-of-order. Multiply, Multiply-Accumulate, Divide, Prefetch and
Coprocessor instructions are also retired out-of-order.

These features of the EE Core are summarized as follows:

• 2-way superscalar pipeline

• 128-bit (two 64-bit) data path and 128-bit system bus

• Instruction set

- 64-bit MIPS III instruction set (excluding some instructions)

- Selected MIPS IV instructions (Prefetch and Move conditional instructions)

- Non-blocking load instructions

- Three-operand Multiply and Multiply-Accumulate instructions

- 128-bit multimedia instructions which configure the 128-bit data path as two 64-bit, four 32-bit, eight 16-

bit or sixteen 8-bit paths

- Little endian

• Branch predictions by Branch History Table (BHT) and Branch Target Address Cache (BTAC)

• On-chip caches and scratchpad RAM

- Instruction cache: 16 KB, 2-way set associative

- Data cache: 8 KB, 2-way set associative (with write-back protocol)

- Data scratchpad RAM: 16 KB

- Cache line: 64 bytes

- Data cache line locking

- Prefetch functions

• Fast integer Multiply and Multiply-Accumulate operations

• Memory management unit

- 32-bit physical address space

- 32-bit virtual address space

- 48-entry (96-page) full set associative address translation look-aside buffer (TLB)

• Performance counter features

• Debug support features

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-15-

1.2. Block Diagram and Functional Block Description
A block diagram of the EE Core is shown below.

D
M

A

1.2.2.
MMU

1.2.1.
PC Unit

COP0 Register

Instruction Virtual Address (IVA)

Data Physical
Address
(DPA)

1.2.3.
Instruction Cache

1.2.4.
Instruction Issue Logic
Staging Register

1.2.5.
General Purpose Register

1.2.7.
Operand / Bypass Logic

Instruction Physical
Address (IPA)

1.2.2.
ITLB

Virtual Address
Computation Logic

1.2.3.
Scratchpad
RAM

1.2.3.
DATA
Cache

1.2.2.
DTLB

Response
Buffer

1.2.5.
FPR

1.2.9.
UCAB

BR
 P

ip
e

I1
 P

ip
e

I0
 P

ip
e

C
1

Pi
pe

C
2

Pi
pe

(N
ot

 in
 E

E
C

or
e)

1.2.8.
WBB

1.2.10. Result and Move Buses

1.2.11.
Bus Interface Unit

CPU BUS

BIU BUS

TLB Refill Bus

Data Virtual Address (DVA)

TLB

LS
 P

ip
e

/
128bit

128bit
/

/
128bit

Figure 1-1 EE Core Block Diagram

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-16-

1.2.1. PC Unit
The 32-bit Program Counter (PC) holds the address of the instruction that is being executed. It contains a 64-
entry Branch Target Address Cache (BTAC), which is used for branch predictions.

1.2.2. MMU
The Memory Management Unit (MMU) supports the address translation functions of the CPU. It sends data to
the DTLB (Data address Translation Lookaside Buffer) and ITLB (Instruction address Translation Lookaside
Buffer) via the TLB Refill Bus. For details of the MMU, refer to "5. Memory Management".

1.2.3. Caches and Scratchpad RAM
The instruction cache, the data cache and Scratchpad RAM are described in "6. Caches". For each branch
instruction present in the Instruction Cache, two bits of branch history are stored in the Branch History Table
(BHT). Data is transferable via DMA between scratchpad RAM and main memory.

1.2.4. Issue Logic and Staging Registers
The issue logic decides which pipes to execute instructions. This unit places a maximum of two instructions in
appropriate pipes each cycle. For details, refer to "1.3. Superscalar Pipeline Operation".

1.2.5. GPR (General Purpose Registers) and FPR (Floating-Point Registers)
The General Purpose Registers and the Floating-Point Registers are described in Section "1.4. Registers".

1.2.6. Physical Pipes
The physical pipes execute operations of instructions. The EE Core has 6 physical pipes, described below.

I0 and I1 Pipes
The I0 and I1 pipes contain logic to support integer arithmetic. Both are composed of a complete 64-bit
ALU, Shifter and Multiply-Accumulate unit. The I0 pipeline contains the SA register used for funnel shift
operations. The I1 pipeline contains a LZC (leading zero counting) unit. Furthermore, the two pipelines
share a single 128-bit multimedia shifter.
These are configured dynamically into a single 128-bit execution pipe per instruction to execute the 128-bit
Multimedia ALU, Shift and MAC instructions.

LS Pipe
The LS Pipe (Load/Store Pipe) contains logic to support 128-bit Load and Store instructions.

BR Pipe
The BR Pipe (Branch Pipe) contains logic to execute a Branch instruction.

C1 Pipe
The C1 Pipe contains logic to support a Floating-Point coprocessor unit (COP1=FPU).

C2 Pipe
The C2 Pipe contains logic to support a customer-specific coprocessor unit (COP2=VPU0).

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-17-

1.2.7. Operand/Bypass logic
The Operand/Bypass logic is a unit that takes data from the GPRs, Result Bus and Move Bus and routes the
data to the pipelines and Scratchpad RAM.

1.2.8. Writeback Buffer
The Writeback Buffer (WBB) is an 8-entry by 16-byte (1-qword) FIFO storing data prior to accessing the CPU
bus. It increases performance by decoupling the processor from the latencies of the CPU bus. The WBB also
has a function for gathering uncached accelerated stores, that is, for gathering sequential stores up to 1 qword.

1.2.9. UCAB
The Uncached Accelerated Buffer (UCAB) is a 8-qword buffer. It caches 128 sequential bytes of data during an
uncached accelerated load miss. If the address hits in the UCAB, the loads from the uncached accelerated space
get the data from this buffer.

1.2.10. Result and Move Buses
The Result and Move Buses convey data between execution units, scratchpad RAM, the Data Cache and the
Operand/Bypass logic.

1.2.11. Bus Interface Unit
The Bus Interface Unit (BIU) connects the EE Core to the rest of the system. It combines the Core's internal
bus signals with the CPU Bus.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-18-

1.3. Superscalar Pipeline Operation
The EE Core has a six-stage superscalar pipeline. It can fetch, decode and execute a maximum of two
instructions in parallel each cycle.
This section discusses in more detail the six physical pipelines described above. It also discusses how instructions
are routed among pipes.

1.3.1. Interlock by Data Hazards
The following pipelines are interlocked when a register-related data hazard occurs. If the succeeding instruction
attempts to read the same register while executing an instruction to write any of the general-purpose, HI, LO,
SA, program counter, or coprocessor registers, the pipeline stalls until the write operation by the preceding
instruction finishes.

1.3.2. Integer Instruction Pipeline Stages
The EE Core contains four integer pipelines: the I0 and I1 pipes, and the LS and BR pipes. Each pipe consists
of the following six stages, with each stage having 2 phases:

Symbol Stage Phase
1I Instruction Fetch Phase 1
2I Instruction Fetch Phase 2
1Q Instruction Queue Phase 1
2Q Instruction Queue Phase 2
1R Register Fetch Phase 1
2R Register Fetch Phase 2
1A Execution Phase 1
2A Execution Phase 2
1D Data Fetch Phase 1
2D Data Fetch Phase 2
1W Write-back Phase 1
2W Write-back Phase 2

Q

A

A D
Q

W

I
A

A D

Q

R

Q R

R

Q
D

I

D
I

R

I
D

W

A

A

R
Q R A D

WA

I

I R
D

D

W

Q

Q
R

R

I

W

W

A
D

I

Q

R A
I

W
D

Q

W
I
I

A

I

Q
Q

A
R
R

W
W
D
D

W
W

Current CPU Cycle

Figure 1-2 EE Core Integer Instruction Pipeline

Operations performed in each stage and phase are described as follows.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-19-

1I: Instruction Fetch, Phase 1
• The sequential address is calculated

• The branch address is calculated

2I: Instruction Fetch, Phase 2
• Selection of instruction addresses. Selects one of the following as the instruction address to be executed:

- Sequential address

- Branch/Jump address

- Predicted Branch Target address from the BTAC

- Exception vector address

- EPC or ErrorEPC

1Q: Instruction Queue, Phase 1
• The instruction address translation look-aside buffer (ITLB) performs the virtual-to-physical address

translation

• The Instruction Cache (data, Tag, S bits and BHT) fetch begins

• The BTAC read begins

• TLB read for instruction fetch starts

2Q: Instruction Queue, Phase 2
• The Instruction Cache fetch is completed

• TLB read completes

• The Instruction Cache Tag hit check is determined and either the cache or memory is selected

• The instructions are selected based on the S bit (SPRAM selection bit)

• The BTAC read is completed and, if there is a hit, an appropriate predicted target address is output

1R: Register Fetch, Phase 1
• Instructions are passed to the appropriate execution units

• The register file read is started

• Execution unit structural hazards are determined

2R: Register Fetch, Phase 2
• Instructions are decoded, data dependencies are determined and the appropriate instructions are issued

• The register file read is completed

1A: Execution, Phase 1
• Bypassing from D or W stage

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-20-

2A: Execution, Phase 2
• The execution unit starts executing an instruction

• The integer arithmetic, logical, shift and multimedia instructions are completed

• The iterative steps of the Multiply, Multiply-Accumulate, or Divide instructions are executed

• The virtual address for load and store instructions is calculated

• The branch condition is determined

• The DTLB read starts

• The Data Cache, Scratchpad RAM, or UCAB read starts

1D: Data Fetch, Phase 1
• The DTLB read finishes

• The TLB read for a data access starts

• The Data Cache, Scratchpad RAM, or UCAB read is completed

• Data Cache Tag checking is completed

• Load or register data is obtained from COP1 and COP2

• COP0 registers are read

2D: Data Fetch, Phase 2
• The TLB read for a data access finishes

• Data alignment and way are selected for reading from the Data Cache

• Data alignment is done for reading from the Scratchpad RAM

• Data sign extension is done

• BHT bits and BTAC are updated

• Exceptions are detected

1W: Writeback, Phase 1
• The Data Cache or scratchpad RAM is written.

• Data is transferred to COP1 and COP2

2W: Writeback, Phase 2
• Results are written to the register file

• The COP0, COP1 and COP2 registers are written

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-21-

1.3.3. COP1 Pipeline
The COP1 pipeline consists of eight stages. Each stage has two phases, as shown in Figure 1-3.
COP1 instructions execute simultaneously in the integer pipeline I0 and the COP1 pipeline. With regard to
descriptions such as "A/T", "D/X" and so on, the first letter identifies the main integer pipeline stage and the
second letter identifies the COP1 pipeline stage.

Symbol Stage Phase
1I Instruction Fetch Phase 1
2I Instruction Fetch Phase 2
1Q Instruction Queue Phase 1
2Q Instruction Queue Phase 2
1R Register Fetch Phase 1
2R Register Fetch Phase 2
1T COP1 Register Fetch Phase 1
2T COP1 Register Fetch Phase 2
X Execution 1
Y Arithmetic/ALU 1
Z Arithmetic/ALU 2
1S Result writing Phase 1
2S Result writing Phase 2

I Q

R

A/T D/X W/Y Z S
I

Q

R A/T D/X W/Y

S
I Q

R

A/T D/X W/Y Z

S

I

Q

R A/T D/X

W/Y
Z

S
I

Q
R A/T

D/X
W/Y

Z

S

I

Q
R

A/T
D/X

W/Y
Z

SI
Q R

A/T
D/X

W/Y

Z
S

I Q R A/T

D/X

W/Y

Z
S

Z

Figure 1-3 COP1 Pipeline
The operations of the I, Q and R stages are the same as those of the integer pipeline. The following describes
operations in the stages specific to the COP1 pipeline.

1T: COP1 Register Fetch, Phase 1
• Operand register read

2T: COP1 Register Fetch, Phase 2
• Bypasses from the S Stage/W Stage for S/T overlap.

X: Execution 1
As the first phase for Multiply Operations, the following occurs:

• For sign, exclusive-OR is performed

• For exponent, biasing is performed

• For significand, the Booth function/Wallace multiplication is performed
ALU, Conversion and Min/Max instructions have no operations.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-22-

Y: Arithmetic / ALU Processing 1
As the second phase for Multiply Operations, the following occurs:

• Overflow/underflow on exponent is tested

• Normalization for multiplication is done
Also, as the first stage for ALU operations, the following occurs:

• Exponents are compared to determine the alignment

• For floating-point to integer conversion, the alignment step is performed

• For integer to floating-point conversion, the shift amount is determined
No operations are executed for Compare instructions.

Z: Arithmetic / ALU Processing 2
As the second phase of ALU operations, the following occurs:

• Overflow/underflow detection

• Exponent readjustment

• Significand addition

• Exponent renormalization

• For floating-point to integer conversion and 2's complement instructions, an overflow test is performed

• For integer to floating-point conversion and shift instructions, an exponent adjustment is performed

• For the Compare instruction, the comparison is performed
For Multiply Operations, this stage is no-op.

1S: Result Writing, Phase 1
During the 1S Stage, the results are available for computations.

2S: Result Writing, Phase 2
• FPR registers are written

• FCR31 is updated

• Bypass values are passed to the 2T stage

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-23-

1.3.4. COP2 Pipeline
For COP2 pipeline operations, refer to the supplementary volume, "VU User's Manual". COP2 instructions
execute simultaneously in the main integer pipeline I1 and the COP2 pipeline.

1.3.5. Classification and Routing of Instructions
Instruction routing, or what physical pipes are used for instructions of each category, is shown in Table 1-1.
Instructions which require more than one execution pipeline are identified with *. For example, COP1 Move is
executed in both the LS and the C1 pipelines. On the other hand, the ALU instructions are executed in either
the I0 or the I1 pipeline. Figure 1-4 illustrates the contents of Table 1-1, adding the relation with logical pipes.

Physical Pipeline Instruction
Categories

Instructions
 I0 I1 LS BR C1 C2

Load/Store Load/Store, 128-bit Load/Store,
Prefetch, CACHE

 Ο

SYNC Synchronization Ο
LZC Leading Zero Count Ο
ERET Exception return Ο
SA Operate Move to/from SA register Ο
COP0 COP0 move, COP0 operation Ο
COP1 Move COP1 move, COP1 Load/Store * *
COP2 Move COP2 move, COP2 Load/Store * *
COP1 Operate COP1 operation * *
COP2 Operate COP2 operation *
ALU Arithmetic, Shift, Logical, Trap,

SYSCALL, BREAK
Ο Ο

MAC0 Multiply and Multiply-Accumulate for
HI/LO register, Move to/from HI/LO

Ο

MAC1 Multiply and Multiply-Accumulate for
HI1/LO1 register, Move to/from
HI1/LO1

 Ο

Branch Branch and Jump Ο
Wide Operate 128-bit multimedia instructions * *

Table 1-1 Categories of Instructions and Routing to Physical Pipes

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-24-

 C2 Pipe

I0 Pipe I1 Pipe

Branch

ALU
SYNC
LZC

ERET
COP0
MAC1

Load/
Store

Prefetch
CACHE

ALU
SA Operate

MAC0

 Wide Operate Wide Operate

C1 Pipe

 COP1 Operate COP1 Operate COP1 Move COP1 Move

 COP2 Operate COP2 Operate COP2 Move COP2 Move

Logical Pipe: Pipe0 Logical Pipe: Pipe1

LS Pipe

BR Pipe

Figure 1-4 Instruction Routing in Logical and Physical Pipes

1.3.6. Instruction Issue Combinations
The EE Core always fetches two instructions and tries to issue two instructions in each cycle whenever possible.
If an instruction can't be issued because of data dependency or other reasons, a pair of staging registers is used
as a buffer to connect between the Q and the R stage. If two instructions can't be issued in a particular cycle, one
instruction is saved in the staging registers. In the next cycle, the EE Core again fetches two instructions and
tries to issue two instructions. The first one is what is left over in the staging register from the previous cycle; the
other is what is newly fetched.
The instructions that get issued go to the R-stage of the pipeline and get associated with one of two logical pipes:
Pipe 0 or Pipe 1. The instructions are then routed to an appropriate physical pipe for processing.
Instruction categories that can get issued to Pipe 0 and Pipe 1 are shown in Table 1-2.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-25-

Logical Pipes Instruction
Pipe 0 Pipe 1

Load/Store O
SYNC O
LZC O
ERET O
SA Operate O
COP0 O
COP1 Move O
COP2 Move O
COP1 Operate O
COP2 Operate O
ALU O O
MAC0 O
MAC1 O
Branch O O
Wide Operate O

Table 1-2 Instruction Categories and Routing to Logical Pipes

The ALU and Branch instruction categories can get issued to either Pipe 0 or Pipe 1. The binding of these 2
instructions is determined at instruction issue time.
In the MIPS ISA, placing an instruction from either the Branch or ERET category in the branch delay slot of
the Branch category instruction is not allowed. That is, the following sequences are illegal and should not be
issued.

• Branch – Branch

• Branch – ERET
The following sequences of instructions are also not allowed in the EE Core: (Though the Branch-Likely
instruction category is a subset of the Branch instruction category, the following limitations are restricted to the
Branch-Likely instruction category.)

• Branch – SYNC.P

• Branch – SYNC.L

• Branch – CACHE (CACHE instructions must be directly preceded and followed by a SYNC instruction.)

• Branch-Likely – MTSA

• Branch-Likely – MTSAB

• Branch-Likely – MTSAH

• Branch-Likely – TLBR

• Branch-Likely – TLBWI

• Branch-Likely – TLBWR
Table 1-3 shows the instruction categories that can be issued concurrently to the 2 logical pipes.
"X" indicates a combination in which an instruction can not be issued concurrently. "Y" indicates a combination
in which an instruction can be issued concurrently (i.e. enter the R stage), but it stalls for a single cycle in the A
stage because of a resource hazard in the previous instruction.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-26-

Pipe0
SA
Oper.

COP1
Oper.

COP2
Oper.

ALU MAC0 Branch Wide
Oper.

Load / Store O O O O O O O
ERET O O O O O X O
SYNC O O O O O O O
LZC O O O O O O Y
COP1 Move O Y O O O O O
COP2 Move O O Y O O O O
ALU O O O O O O Y
MAC1 O O O O O O Y
Branch O O O O O X O

Pipe1

COP0 O O O O O O O

Table 1-3 Concurrently Issued Instruction Categories

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-27-

1.4. Registers
The EE Core contains a register set that extends the normal MIPS-compatible register set.
General purpose registers (GPRs), are extended from 64 bits to 128 bits, and a pair of HI/LO registers for the
I1 pipe and the SA register for the funnel shift instructions are added.

1.4.1. CPU Registers
The EE Core has 128-bit wide general-purpose registers (GPRs). The upper 64 bits of the GPRs are only used
by the EE Core-specific 128-bit Multimedia instructions (Parallel instructions).
HI1 and LO1 (which are the upper 64 bits of the 128-bit HI/LO registers respectively) are also used by the EE
Core-specific multiply and divide instructions, such as MULT1, MULTU1, DIV1, DIVU1, MADD1,
MADDU1, MFHI1, MFLO1, MTHI1 and MTLO1. These are not parallel instructions, but I1 pipe-specific
instructions. The SA register holds the shift amount in funnel shift instructions that shift 128-bit registers.

1.4.2. FPU Registers
The floating-point unit (FPU=COP1) has 32-bit wide floating-point registers, 2 floating-point control registers
and a single 32-bit accumulator.

1.4.3. COP0 Registers
Coprocessor 0 (COP0) registers have registers related to address translation, exception handling, debugging, and
so forth.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-28-

1.5. Memory Management
The EE Core processor provides a memory management unit (MMU) that uses an on-chip translation look-
aside buffer (TLB) to translate virtual addresses into physical addresses.
The EE Core supports the MIPS-compatible 32-bit address and 64-bit data mode. Only 32-bit virtual and
physical addresses have been implemented. There is no requirement for address sign extension. Address error
exception checking will not be done on the upper 32 bits (which are ignored). The only condition that will
generate the address error exception will be address alignment errors and segment protection errors.
The address error exception will not occur even when a PC wraps around from kseg3 to kuseg in the kernel
mode.
The reserved instruction exception will never occur to an instruction disabled by a processor mode, since there
is only one addressing mode.
Features of the memory management of the EE Core are as follows:

• MIPS III-compatible 32-bit MMU (with special bit defined for scratchpad RAM)

• Operation Modes: User, Supervisor and Kernel

• TLB: 48 entries of even/odd page pairs (96 pages)

 Full set associative

• Page Size: 4 KB, 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 16 MB

• ITLB: 2 entries

• DTLB: 4 entries

• Address Sizes: Virtual Address Size = 32 bits, 2 GB for each user process

 Physical Address Size = 32 bits, 4 GB

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-29-

1.6. Cache Memory and Scratchpad RAM
The EE Core has an instruction cache and a separate data cache. It also has a scratchpad RAM for fast
manipulation of large data structures.
The following are the main features of the caches:

• Separate Instruction Cache and Data Cache

• Virtually addressed index and physically addressed tag

• Write-back policy for the Data Cache

• Data Cache and Instruction Cache burst read sequential ordering

• Cache Size: Instruction Cache: 16 KB

 Data Cache: 8 KB

 Scratchpad RAM: 16 KB

• Line size: 64 bytes

• Refill size: 64 bytes

• The number of way: 2-way set-associative

• Write Policy: Write-back, write allocate

• Data order for block reads: Sequential ordering

• Data order for block writes: Sequential ordering

• Instruction cache miss restart: After all data received

• Data cache miss restart: Early restart on first quadword

• Cache parity: No

• Cache Locking: Data Cache Line Lock.

 Controlled by Cache instruction

• Cache Snooping: No

• Scratchpad RAM snooping: No

• Non-blocking load: Yes

• Hit Under Miss support: Yes

• Data Cache Prefetch: Yes

The following are the features of the Scratchpad RAM (SPRAM):

• 1024 x 128 bits (16 KB) static RAM

• External DMA read and write capability

• Accessible to software through load/store instructions

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-30-

1.7. Bus Interface
The EE Core is connected to the rest of the system and external devices through the group of on-chip system
bus signals called the CPU Bus. Features of the CPU Bus include the following:

• Separate data and address buses (Demultiplexed operation)

• 128-bit data bus

• Clocked synchronous operations

• 8/16/32/64/128-bit burst access

• Multimaster capability

• Pipelined operations

• No turn-around or dead cycles between transfers
Note that cache coherency support and split transactions are not provided.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-31-

1.8. Floating-Point Unit
The floating-point unit (FPU = COP1) is a unit implementing a single-precision floating-point operation. This
unit is not IEEE 754 compatible. The features are as follows:

• High-performance single-precision floating-point unit tightly coupled to the EE Core

• Supports single-precision format as defined in the IEEE 754 specification

• Plus/Minus "0" in line with the IEEE 754 specification are supported

• NaNs and plus/minus infinities are not supported

• No hardware exception mechanism to affect instruction execution

• Supports ADD, SUB, MUL, DIV, ABS, NEG, SQRT, RSQRT, MAX, MIN, Compare, and Conversion

instructions
For details of the floating-point unit, refer to "8. Floating-Point Unit (FPU)".

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-32-

1.9. Debug Support Functions
The EE Core has the following debug support features:

• Instruction Address Breakpoint

• Data Address Breakpoint

• Data Value Breakpoint

• Each breakpoint is individually available and can set Mask

• Breakpoints can be available in different processor modes (User, Supervisor, Kernel and Exception modes)

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-33-

2. Instruction Set Overview

This chapter provides an overview of the EE Core instruction set. Refer to the supplementary volume "EE Core
Instruction Set Manual" for detailed descriptions of individual instructions.
The EE Core supports all MIPS III instructions with the exception of 64-bit multiply, 64-bit divide, Load-
Linked and Store Conditional instructions. It also implements additional EE Core-specific instructions, such as
selected MIPS IV, Multiply/Add, and multimedia instructions.
The instruction set of the EE Core can be divided into the following groups:

• Load and Store instructions

• Computational instructions

• Branch and Jump instructions

• Exception instructions

• Serialization instructions

• MIPS IV instructions

• System Control Coprocessor (COP0) instructions

• Coprocessor (COP1 / COP2) instructions

• EE Core-specific instructions

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-34-

2.1. Binary Formats
There are three instruction formats in the EE Core: I-type (immediate), J-type (Jump), R-type (register), as
shown below.

I-type (immediate)
31 26 25 21 20 16 15 0

op rs rt immediate

J-type (jump)
31 26 25 0

op target

R-type (register)
31 26 25 21 20 16 15 11 10 6 5 0

op rs rt rd sa function

The contents of each field are as follows.

Field Name Width Contents
op 6 bits Opcode
rs 5 bits Source register specifier
rt 5 bits Specifies target (source/destination) register or branch condition
immediate 16 bits Immediate value, branch instruction offset or offset address
target 26 bits Jump target address
rd 5 bits Destination register specifier
sa 5 bits Shift amount
function 6 bits Function field

Refer to the supplementary volume "EE Core Instruction Set Manual" for the actual values.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-35-

2.2. Instruction Set Summary
The EE Core supports most of the MIPS III instructions and some of the MIPS IV instructions. In addition,
EE Core-specific instructions (e.g. Multiply-Add) are implemented.

2.2.1. Instruction Set List
The EE Core instruction set is listed below.

Load/Store Instructions

Mnemonic Description MIPS ISA
LB Load Byte MIPS I
LBU Load Byte Unsigned MIPS I
LD Load Doubleword MIPS III
LDL Load Doubleword Left MIPS III
LDR Load Doubleword Right MIPS III
LH Load Halfword MIPS I
LHU Load Halfword Unsigned MIPS I
LW Load Word MIPS I
LWL Load Word Left MIPS I
LWR Load Word Right MIPS I
LWU Load Word Unsigned MIPS III
SB Store Byte MIPS I
SD Store Doubleword MIPS III
SDL Store Doubleword Left MIPS III
SDR Store Doubleword Right MIPS III
SH Store Halfword MIPS I
SW Store Word MIPS I
SWL Store Word Left MIPS I
SWR Store Word Right MIPS I

Computational Instructions: ALU Immediate Operations

Mnemonic Description MIPS ISA
ADDI Add Immediate MIPS I
ADDIU Add Immediate Unsigned MIPS I
ANDI AND Immediate MIPS I
DADDI Doubleword Add Immediate MIPS III
DADDIU Doubleword Add Immediate (Unsigned) MIPS III
LUI Load Upper Immediate MIPS I
ORI OR Immediate MIPS I
SLTI Set on Less Than Immediate MIPS I
SLTIU Set on Less Than Immediate Unsigned MIPS I
XORI Exclusive OR Immediate MIPS I

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-36-

Computational Instructions: Three-Operand Register-Type Operations

Mnemonic Description MIPS ISA
ADD Add MIPS I
ADDU Add Unsigned MIPS I
AND AND MIPS I
DADD Doubleword Add MIPS III
DADDU Doubleword Add Unsigned MIPS III
DSUB Doubleword Subtract MIPS III
DSUBU Doubleword Subtract Unsigned MIPS III
NOR NOR MIPS I
OR OR MIPS I
SLT Set on Less Than MIPS I
SLTU Set on Less Than Unsigned MIPS I
SUB Subtract MIPS I
SUBU Subtract Unsigned MIPS I
XOR Exclusive OR MIPS I

Computational Instructions: Shift Operations

Mnemonic Description MIPS ISA
DSLL Doubleword Shift Left Logical MIPS III
DSLL32 Doubleword Shift Left Logical +32 MIPS III
DSLLV Doubleword Shift Left Logical Variable MIPS III
DSRA Doubleword Shift Right Arithmetic MIPS III
DSRA32 Doubleword Shift Right Arithmetic +32 MIPS III
DSRAV Doubleword Shift Right Arithmetic Variable MIPS III
DSRL Doubleword Shift Right Logical MIPS III
DSRL32 Doubleword Shift Right Logical +32 MIPS III
DSRLV Doubleword Shift Right Logical Variable MIPS III
SLL Shift Left Logical MIPS I
SLLV Shift Left Logical Variable MIPS I
SRA Shift Right Arithmetic MIPS I
SRAV Shift Right Arithmetic Variable MIPS I
SRL Shift Right Logical MIPS I
SRLV Shift Right Logical Variable MIPS I

Computational Instructions: Multiply and Divide

Mnemonic Description MIPS ISA
DIV Divide MIPS I
DIVU Divide Unsigned MIPS I
MFHI Move From HI MIPS I
MFLO Move From LO MIPS I
MTHI Move To HI MIPS I
MTLO Move To LO MIPS I
MULT Multiply MIPS I
MULTU Multiply Unsigned MIPS I
In addition, there are EE Core-specific Multiply and Divide instructions (which use the I1 pipe explicitly.)

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-37-

Branch/Jump Instructions

Mnemonic Description MIPS ISA
J Jump MIPS I
JAL Jump And Link MIPS I
JALR Jump And Link MIPS I
JR Jump Register MIPS I
BEQ Branch on Equal MIPS I
BEQL Branch on Equal Likely MIPS II
BGEZ Branch on Greater Than or Equal to Zero MIPS I
BGEZAL Branch on Greater Than or Equal to Zero And

Link
MIPS I

BGEZALL Branch on Greater Than or Equal to Zero And
Link Likely

MIPS II

BGEZL Branch on Greater Than or Equal to Zero Likely MIPS II
BGTZ Branch on Greater Than Zero MIPS I
BGTZL Branch on Greater Than Zero Likely MIPS II
BLEZ Branch on Less Than or Equal to Zero MIPS I
BLEZL Branch on Less Than or Equal to Zero Likely MIPS II
BLTZ Branch on Less Than Zero MIPS I
BLTZAL Branch on Less Than Zero and Link MIPS I
BLTZALL Branch on Less Than Zero And Link Likely MIPS II
BLTZL Branch on Less Than Zero Likely MIPS II
BNE Branch on Not Equal MIPS I
BNEL Branch on Not Equal Likely MIPS II

Exception Instructions

Mnemonic Description MIPS ISA
SYSCALL System Call MIPS I
BREAK Break MIPS I
TGE Trap if Greater Than or Equal MIPS II
TGEU Trap if Greater Than or Equal Unsigned MIPS II
TLT Trap if Less Than MIPS II
TLTU Trap if Less Than Unsigned MIPS II
TEQ Trap if Equal MIPS II
TNE Trap if Not Equal MIPS II
TGEI Trap if Greater Than or Equal Immediate MIPS II
TGEIU Trap if Greater Than or Equal Immediate

Unsigned
MIPS II

TLTI Trap if Less Than Immediate MIPS II
TLTIU Trap if Less Than Immediate Unsigned MIPS II
TEQI Trap if Equal Immediate MIPS II
TNEI Trap if Not Equal Immediate MIPS II

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-38-

Serialization Instruction

Mnemonic Description MIPS ISA
SYNC Synchronization MIPS II

MIPS IV Instructions

Mnemonic Description MIPS ISA
MOVN Move on Register Not Equal to Zero MIPS IV
MOVZ Move on Register Equal to Zero MIPS IV
PREF Prefetch MIPS IV

2.2.2. MIPS III Instructions not Supported by EE Core
The EE Core does not support the following MIPS III instructions:

Mnemonic Description MIPS ISA
DDIV 64-bit Divide MIPS III
DDIVU 64-bit Divide (unsigned) MIPS III
DMULT 64-bit Multiply MIPS III
DMULTU 64-bit Multiply (unsigned) MIPS III
LL Semaphore MIPS III
LLD Semaphore MIPS III
SC Semaphore MIPS III
SCD Semaphore MIPS III

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-39-

2.3. Load/Store Instructions
Load/Store instructions transfer different sizes of data—bytes, halfwords, words and doublewords—between
memory and registers. Load instructions include sign-extended and zero-extended instructions. They support
signed and unsigned integers.
The binary formats of load and store instructions are I-type (Immediate) and the only addressing mode is "base
register plus 16-bit signed immediate offset" mode.
Note that the EE Core does not support Load-Linked and Store Conditional instructions, LL, LLD, SC and
SCD in MIPS III instructions.
The list of load/store instructions is shown below. In addition, refer to "2.10. Coprocessor Instructions
(COP1/COP2) " about load/store instructions related to the coprocessor.

Mnemonic Description MIPS ISA
LB Load Byte MIPS I
LBU Load Byte Unsigned MIPS I
LD Load Doubleword MIPS III
LDL Load Doubleword Left MIPS III
LDR Load Doubleword Right MIPS III
LH Load Halfword MIPS I
LHU Load Halfword Unsigned MIPS I
LW Load Word MIPS I
LWL Load Word Left MIPS I
LWR Load Word Right MIPS I
LWU Load Word Unsigned MIPS III
SB Store Byte MIPS I
SD Store Doubleword MIPS III
SDL Store Doubleword Left MIPS III
SDR Store Doubleword Right MIPS III
SH Store Halfword MIPS I
SW Store Word MIPS I
SWL Store Word Left MIPS I
SWR Store Word Right MIPS I

Table 2-1 Load/Store Instructions

2.3.1. Data Formats and Alignment
The EE Core uses the following five data formats:

• 128-bit quadword

• 64-bit doubleword

• 32-bit word

• 16-bit halfword

• 8-bit byte
Byte ordering in data formats of halfword or greater is configured in little-endian order . Byte 0 is always the
least significant (rightmost) byte, which is compatible with iAPX x86 and DEC VAX conventions.
Bit ordering is configured in little endian and bit 0 always indicates the least significant (rightmost) bit (although
no instructions explicitly designate bit positions within words).
Refer to Figure 2-1and Figure 2-2 about the word/byte ordering and bit ordering respectively.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-40-

Word
Address

12
8
4
0

Higher
Address

Lower
Address

31 24 23 16 15 8 7 0

12
8
4
0

13
9
5
1

14
10
6
2

15
11
7
3

Bit #

Figure 2-1 Little-Endian Byte Ordering
Most-significant byte Least-significant byte

Least-significant word

Bit # 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Halfword Byte

7 6 5 4 3 2 1 0

Bits in a Byte

Bit # 7 6 5 4 3 2 1 0

Byte #

Figure 2-2 Little-Endian Data in a Doubleword

The EE Core uses byte addressing for all data access. Data of a halfword or greater has the following alignment
constraints. Any access that does not satisfy these constraints will generate address error exceptions.

Data Formats Condition
Halfword Even address (0, 2, 4...)
Word Address divisible by four (0, 4, 8...)
Doubleword Address divisible by eight (0, 8, 16...)
Quadword Address divisible by sixteen (0, 16, 32...)

The following special instructions load and store words, doublewords or quadwords that are not aligned
according to the above constraints.

Mnemonic Description
LWL Load Word Left
LWR Load Word Right
SWL Store Word Left
SWR Store Word Right
LDL Load Doubleword Left
LDR Load Doubleword Right
SDL Store Doubleword Left
SDR Store Dobuleword Right

In order to load/store misaligned data, these instructions have to be used in pairs. Therefore, misaligned data
requires one more instruction cycle than aligned data. Refer to Figure 2-3.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-41-

3
6 5 4

Higher
Address

Lower
Address

31 24 23 16 15 8 7 0

Bit #

Load with LWL inst

Load with LWR inst

Figure 2-3 Little-Endian Misaligned Word Addressing

If LQ and SQ instructions are combined with a QFSRV instruction (funnel shift), extracting aligned data from a
misaligned quadword is possible.

2.3.2. Load Delay
In general, when the data loaded by an instruction is not allowed to be used by the immediately following
instruction, the load instruction is called a delayed load instruction. The delay until the data can be used is called
the load delay slot.
In the EE Core, there is no absolute delayed load instruction. Loaded data is allowed to be used in the
instruction following a load instruction. In such cases, however, hardware interlocks insert additional clock
cycles. Consequently, taking a load delay into account in programming is not required. However, for software
performance, it is desirable to place an instruction that does not use the data immediately following a load
instruction.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-42-

2.4. Computational Instructions
EE Core computational instructions can be of either the R-type or I-type format. Both operands are registers in
the R-type format. One operand is a 16-bit immediate in the I-type format.
Computational instructions perform the following operations on register values:

• Arithmetic

• Logical

• Shift

• Multiply

• Divide
Computational instructions are divided into the following four categories:

• ALU immediate instructions

• Three-Operand Register-Type instructions

• Shift instructions

• Multiply and Divide instructions
The EE Core does not support the 64-bit Multiply and Divide instructions (DMULT, DMULTU, DDIV and
DDIVU) in the MIPS III instruction set. In 64-bit operations, sign-extended or zero-extended 32-bit values are
required. The result is unpredictable if an incorrect 64-bit value is used.

Computational Instructions: ALU Immediate Operations
Mnemonic Description MIPS ISA
ADDI Add Immediate MIPS I
ADDIU Add Immediate Unsigned MIPS I
ANDI AND Immediate MIPS I
DADDI Doubleword Add Immediate MIPS III
DADDIU Doubleword Add Immediate (Unsigned) MIPS III
LUI Load Upper Immediate MIPS I
ORI OR Immediate MIPS I
SLTI Set on Less Than Immediate MIPS I
SLTIU Set on Less Than Immediate Unsigned MIPS I
XORI Exclusive OR Immediate MIPS I

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-43-

Computational Instructions: Three-Operand Register-Type Operations
Mnemonic Description MIPS ISA
ADD Add MIPS I
ADDU Add Unsigned MIPS I
AND AND MIPS I
DADD Doubleword Add MIPS III
DADDU Doubleword Add Unsigned MIPS III
DSUB Doubleword Subtract MIPS III
DSUBU Doubleword Subtract Unsigned MIPS III
NOR NOR MIPS I
OR OR MIPS I
SLT Set on Less Than MIPS I
SLTU Set on Less Than Unsigned MIPS I
SUB Subtract MIPS I
SUBU Subtract Unsigned MIPS I
XOR Exclusive OR MIPS I

Computational Instructions: Shift Operations
Mnemonic Description MIPS ISA
DSLL Doubleword Shift Left Logical MIPS III
DSLL32 Doubleword Shift Left Logical +32 MIPS III
DSLLV Doubleword Shift Left Logical Variable MIPS III
DSRA Doubleword Shift Right Arithmetic MIPS III
DSRA32 Doubleword Shift Right Arithmetic +32 MIPS III
DSRAV Doubleword Shift Right Arithmetic Variable MIPS III
DSRL Doubleword Shift Right Logical MIPS III
DSRL32 Doubleword Shift Right Logical +32 MIPS III
DSRLV Doubleword Shift Right Logical Variable MIPS III
SLL Shift Left Logical MIPS I
SLLV Shift Left Logical Variable MIPS I
SRA Shift Right Arithmetic MIPS I
SRAV Shift Right Arithmetic Variable MIPS I
SRL Shift Right Logical MIPS I
SRLV Shift Right Logical Variable MIPS I

Computational Instructions: Multiply and Divide
Mnemonic Description MIPS ISA
DIV Divide MIPS I
DIVU Divide Unsigned MIPS I
MFHI Move From HI MIPS I
MFLO Move From LO MIPS I
MTHI Move To HI MIPS I
MTLO Move To LO MIPS I
MULT Multiply MIPS I
MULTU Multiply Unsigned MIPS I
In addition, there are EE Core-specific Multiply and Divide instructions (which use the I1 pipe explicitly.)

Table 2-2 Computational Instructions

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-44-

2.5. Branch/Jump Instructions
The EE Core instruction set defines the following instructions to change the flow of control in programming:
PC-relative conditional branches, a PC-region unconditional jump, an absolute register unconditional jump, and
a corresponding subroutine call (which records the return link address in a general-purpose register). There are
two different conditional branch instructions: Branch and Branch-Likely, as described below.

Mnemonic Description MIPS ISA
J Jump MIPS I
JAL Jump And Link MIPS I
JALR Jump And Link Register MIPS I
JR Jump Register MIPS I
BEQ Branch on Equal MIPS I
BEQL Branch on Equal Likely MIPS II
BGEZ Branch on Greater Than or Equal to Zero MIPS I
BGEZAL Branch on Greater Than or Equal to Zero And Link MIPS I
BGEZALL Branch on Greater Than or Equal to Zero And Link Likely MIPS II
BGEZL Branch on Greater Than or Equal to Zero Likely MIPS II
BGTZ Branch on Greater Than Zero MIPS I
BGTZL Branch on Greater Than Zero Likely MIPS II
BLEZ Branch on Less Than or Equal to Zero MIPS I
BLEZL Branch on Less Than or Equal to Zero Likely MIPS II
BLTZ Branch on Less Than Zero MIPS I
BLTZAL Branch on Less Than Zero and Link MIPS I
BLTZALL Branch on Less Than Zero and Link Likely MIPS II
BLTZL Branch on Less Than Zero Likely MIPS II
BNE Branch on Not Equal MIPS I
BNEL Branch on Not Equal Likely MIPS II

Table 2-3 Branch and Jump Instructions

2.5.1. Branch Delay Slot
All branch instructions have a delay of one instruction (the branch delay slot). That is, the instruction
immediately following the branch instruction is executed while the target instruction is fetched.
If a branch is taken when an unconditional or conditional branch is established, the instruction in the branch
delay slot (immediately following the branch instruction) is executed before the branch operation.
If the branch is not taken and execution falls through, branch instructions execute the instruction in the delay
slot, but the branch-likely instructions do not. (They are said to nullify it.)
By convention, if an instruction in the branch delay slot is suspended by an exception or interrupt, the program
can be continued by re-executing the immediately preceding branch instruction. To permit this, branches must
be restartable. That is, in procedure calls, the register that stores the return link (usually register 31) must not
determine the branch target.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-45-

2.5.2. Overview of Jump Instructions
Subroutine calls in high-level languages are usually implemented with Jump or Jump-Link instructions, both of
which are J-type instructions. The 26-bit target address shifts left 2 bits and combines with the high-order 4 bits
of the program counter to form the branch target address.
Returns, dispatches and cross-page jumps are usually implemented with the Jump-Register or Jump-Link-
Register instructions. Both are R-type instructions, in which the value of one of the general-purpose registers is
the branch target address.

2.5.3. Overview of Branch Instructions
Conditional statements in high-level languages are usually implemented with branch or branch-likely
instructions, both of which are I-type instructions. The 16-bit offset shifts left 2 bits and is sign-extended to 32
bits, which is added to the instruction address of the branch delay slot, to form the branch target address.
Branch instructions are different from branch-likely instructions, as they execute the instruction in the branch
delay slot when a condition is not taken. Branch-likely instructions nullify the instruction in the branch delay slot
when a condition is not taken.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-46-

2.6. Exception Instructions
Exception instructions allow the software to cause traps. The list is shown below. Refer to the "EE Core
Instruction Set Manual" for further information.

Mnemonic Description MIPS ISA
SYSCALL System Call MIPS I
BREAK Break MIPS I
TGE Trap if Greater Than or Equal MIPS II
TGEU Trap if Greater Than or Equal Unsigned MIPS II
TLT Trap if Less Than MIPS II
TLTU Trap if Less Than Unsigned MIPS II
TEQ Trap if Equal MIPS II
TNE Trap if Not Equal MIPS II
TGEI Trap if Greater Than or Equal Immediate MIPS II
TGEIU Trap if Greater Than or Equal Immediate

Unsigned
MIPS II

TLTI Trap if Less Than Immediate MIPS II
TLTIU Trap if Less Than Immediate Unsigned MIPS II
TEQI Trap if Equal Immediate MIPS II
TNEI Trap if Not Equal Immediate MIPS II

Table 2-4 Exception Instructions

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-47-

2.7. Serialization Instruction
The order in which memory accesses from load and store instructions appear outside the EE Core is not
specified by the EE Core architecture.
The order of loads and stores can be guaranteed at a point in a program by using a SYNC or SYNC.L
instruction. That is, load and store instructions executed before the SYNC or SYNC.L instruction are
guaranteed to retire before load and store instructions following the SYNC or SYNC.L instruction are executed.
In addition to load and store instructions, a SYNC.P instruction can be used to guarantee the completion of an
instruction. Instructions executed before a SYNC.P instruction are completed before an instruction following
SYNC.P is executed.

Mnemonic Description MIPS ISA
SYNC Synchronization with load/store operation MIPS II
SYNC.L Synchronization with load/store operation MIPS II
SYNC.P Synchronization MIPS II

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-48-

2.8. MIPS IV Instructions
The EE Core supports the following parts of the MIPS IV instruction set:

• Conditional move instructions

• The Prefetch instruction

Mnemonic Description MIPS ISA
MOVN Move on Register Not Equal to Zero MIPS IV
MOVZ Move on Register Equal to Zero MIPS IV
PREF Prefetch MIPS IV

Table 2-5 MIPS IV Instruction Supported in EE Core

Conditional Move operations allow "IF" statements to be described without branches. "THEN" and "ELSE"
clauses are always computed and the results are placed in a temporary register. Then, appropriate results are
transferred to the target register depending on the conditions.
The Prefetch instruction fetches data expected to be used in the near future and places it in the Data Cache.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-49-

2.9. System Control Coprocessor (COP0) Instructions
COP0 instructions perform operations specifically on the System Control Coprocessor to manipulate the
memory management and exception handling facilities of the processor.
COP0 instructions are enabled when the processor is in Kernel mode or when bit 28 (CU [0]) is set in the
STATUS register. Otherwise, executing the following instructions generates a "Coprocessor Unusable"
exception.
Refer to the "EE Core Instruction Set Manual" for details of each COP0 instruction.

Mnemonic Description
BC0F Branch on COP0 False
BC0FL Branch on COP0 False Likely
BC0T Branch on COP0 True
BC0TL Branch on COP0 True Likely
CACHE.op Cache
DI Disable Interrupt
EI Enable Interrupt
ERET Exception Return
MFBPC Move From Breakpoint Control
MFC0 Move From COP0
MFDAB Move From Data Address Breakpoint
MFDABM Move From Data Address Breakpoint Mask
MFDVB Move From Data Value Breakpoint
MFDVBM Move From Data Value Breakpoint Mask
MFIAB Move From Instruction Address Breakpoint
MFIABM Move From Instruction Address Breakpoint Mask
MFPC Move From Performance Counter
MFPS Move From Performance Event Specifier
MTBPC Move To Breakpoint Control
MTC0 Move To COP0
MTDAB Move To Data Address Breakpoint
MTDABM Move To Data Address Breakpoint Mask
MTDVB Move To Data Value Breakpoint
MTDVBM Move To Data Value Breakpoint Mask
MTIAB Move To Instruction Address Breakpoint
MTIABM Move To Instruction Address Breakpoint Mask
MTPC Move To Performance Counter
MTPS Move To Performance Event Specifier
TLBR Read Indexed TLB Entry
TLBWI Write Index TLB Entry
TLBWR Write Random TLB Entry

Table 2-6 Coprocessor 0 Instructions

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-50-

2.10. Coprocessor Instructions (COP1/COP2)
COP1 and COP2 instructions perform operations in their respective coprocessors. Loads and stores I-type.
Other instructions have coprocessor-dependent formats.

2.10.1. COP1(FPU) Instructions
The following are COP1 instructions.

Mnemonic Description
ABS.S Single Floating-Point Absolute
ADD.S Single Floating-Point Add
ADDA.S Single Floating-Point Add to Accumulator
BC1F Branch on FPU False
BC1FL Branch on FPU False Likely
BC1T Branch on FPU True
BC1TL Branch on FPU True Likely
C.cond.S Single Floating-Point Compare
CFC1 Move Control Word from FCR
CTC1 Move Control Word to FCR
CVT.S.W 32-bit Fixed Point Floating-Point Convert to Single Floating-Point
CVT.W.S Single Floating-Point Convert to 32-bit Fixed Point
DIV.S Single Floating-Point Divide
LWC1 Load Word to FPR
MADD.S Single Floating-Point Multiply and Add
MADDA.S Single Floating-Point Multiply and Add to Accumulator
MAX.S Single Floating-Point Maximum
MFC1 Move Word from FPR
MIN.S Single Floating-Point Minimum
MOV.S Single Floating-Point Move
MSUB.S Single Floating-Point Multiply and Subtract
MSUBA.S Single Floating-Point Multiply / Subtract from Accumulator
MTC1 Move Word to FPR
MUL.S Single Floating-Point Multiply
MULA.S Single Floating-Point Multiply to Accumulator
NEG.S Single Floating-Point Negate
RSQRT.S Single Floating-Point Reciprocal Square Root
SQRT.S Single Floating-Point Square Root
SUB.S Single Floating-Point Subtract
SUBA.S Single Floating-Point Subtract to Accumulator
SWC1 Store Word from FPR

Table 2-7 Coprocessor 1 Instructions

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-51-

2.10.2. COP2 Instructions
The following are COP2 instructions. Refer to the "VU User's Manual" for the details of COP2 instructions.

Mnemonic Description
BC2F Branch on COP2 False
BC2FL Branch on COP2 False Likely
BC2T Branch on COP2 True
BC2TL Branch on COP2 True Likely
CALLMS Call Micro Subroutine
CALLMSR Call Micro Subroutine Register
CFC2 Move Control From COP2
CTC2 Move Control To COP2
LQC2 Load Quadword to COP2
SQC2 Store Quadword from COP2
QMFC2 Quadword Move From COP2
QMTC2 Quadword Move To COP2
WAITQ Wait Q Register

Table 2-8 COP2 Instructions

2.10.3. VU Macro instructions
COP2 (VPU0) provides EE Core programs with a macro instruction set, with almost the same functionality as
the VU-specific instruction set (micro instructions). The list of macro instructions is shown below. Refer to the
"VU User's Manual" for the details of each instruction.

VU Macro Instructions: Floating-Point Operations
Mnemonic Description
VABS Absolute
VADD Addition
VADDi ADD broadcast I register
VADDq ADD broadcast Q register
VADDbc ADD broadcast bc field
VADDA ADD output to ACC
VADDAi ADD output to ACC broadcast I register
VADDAq ADD output to ACC broadcast Q register
VADDAbc ADD output to ACC broadcast bc field
VSUB Subtraction
VSUBi SUB broadcast I register
VSUBq SUB broadcast Q register
VSUBbc SUB broadcast bc field
VSUBA SUB output to ACC
VSUBAi SUB output to ACC broadcast I register
VSUBAq SUB output to ACC broadcast Q register
VSUBAbc SUB output to ACC broadcast bc field
VMU Multiply
VMULi MUL broadcast I register
VMULq MUL broadcast Q register
VMULbc MUL broadcast bc field
VMULA MUL output to ACC
VMULAi MUL output to ACC broadcast I register

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-52-

Mnemonic Description
VMULAq MUL output to ACC broadcast Q register
VMULAbc MUL output to ACC broadcast bc field
VMADD MUL and ADD (SUB)
VMADDi MUL and ADD (SUB) broadcast I register
VMADDq MUL and ADD (SUB) broadcast Q register
VMADDbc MUL and ADD (SUB) broadcast bc field
VMADDA MUL and ADD (SUB) output to ACC
VMADDAi MUL and ADD (SUB) output to ACC broadcast I register
VMADDAq MUL and ADD (SUB) output to ACC broadcast Q register
VMADDAbc MUL and ADD (SUB) output to ACC broadcast bc field
VMSUB Multiply and SUB
VMSUBi Multiply and SUB broadcast I register
VMSUBq Multiply and SUB broadcast Q register
VMSUBbc Multiply and SUB broadcast bc field
VMSUBA Multiply and SUB output to ACC
VMSUBAi Multiply and SUB output to ACC broadcast I register
VMSUBAq Multiply and SUB output to ACC broadcast Q register
VMSUBAbc Multiply and SUB output to ACC broadcast bc field
VMAX Maximum
VMAXi Maximum broadcast I register
VMAXbc Maximum broadcast bc field
VMINI Minimum
VMINIi Minimum broadcast I register
VMINIbc Minimum broadcast bc field
VOPMULA Outer product MULA
VOPMSUB Outer product MSUB
VDIV Floating Divide
VSQRT Floating Square-root
VRSQRT Floating reciprocal Square-root

VU Macro Instructions: Integer Operations
Mnemonic Description
VIADD Integer ADD
VIADDI Integer ADD immediate
VIAND Integer AND
VIOR Integer OR
VISUB Integer SUB

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-53-

VU Macro Instructions: Convert/Move
Mnemonic Description
VFTOI0 Float to Integer, fixed point 0-bit
VFTOI4 Float to Integer, fixed point 4-bit
VFTOI12 Float to Integer, fixed point 12-bit
VFTOI15 Float to Integer, fixed point 15-bit
VITOF0 Integer to Float, fixed point 0-bit
VITOF4 Integer to Float, fixed point 4-bit
VITOF12 Integer to Float, fixed point 12-bit
VITOF15 Integer to Float, fixed point 15-bit
VMOVE Move Floating register
VMFIR Move From integer register
VMTIR Move To integer register
VMR32 Rotate right 32 bits

VU Macro Instructions: Random Numbers
Mnemonic Description
VRINIT Random-unit init R register
VRGET Random-unit get R register
VRNEXT Random-unit next M sequence
VRXOR Random-unit XOR R register

VU Macro Instructions: Load/Store
Mnemonic Description
VLQD Load Quadword with pre-decrement
VLQI Load Quadword with post-increment
VSQD Store Quadword with pre-decrement
VSQI Store Quadword with post-increment
VILWR Integer load word register
VISWR Integer store word register

VU Macro Instructions: Others
Mnemonic Description
VNOP No Operation
VCLIP Clipping
VWAITQ Wait Q Register

Table 2-9 VU Macro Instructions

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-54-

2.11. EE Core-Specific Instructions
The EE Core extends its instruction set from the original MIPS architecture. The following instructions are
supported in particular:

• Three-operand Multiply and Multiply-Add instructions

• Multiply and divide instruction for Pipeline I1

• Multimedia instructions

• Enable interrupt and Disable interrupt instructions
Refer to the "EE Core Instruction Set Manual" for more information about each instruction.

2.11.1. EE Core-Specific Multiply / Divide Instructions
The standard MIPS instructions for multiply, divide and move to / from HI / LO registers execute on the I0
pipeline's MAC unit. A set of new instructions has also been defined to execute on the I1 pipeline's MAC unit:

Mnemonic Description
MADD Multiply/Add
MADDU Multiply/Add Unsigned
MULT Multiply (3-operand)
MULTU Multiply Unsigned (3-operand)
MULT1 Multiply 1
MULTU1 Multiply Unsigned 1
DIV1 Divide 1
DIVU1 Divide Unsigned 1
MADD1 Multiply/Add 1
MADDU1 Multiply/Add Unsigned 1
MFHI1 Move From HI1
MFLO1 Move From LO1
MTHI1 Move To HI1
MTLO1 Move To LO1

Table 2-10 EE Core-Specific Multiply / Divide Instructions

The EE Core supports three-operand multiply instructions that store the multiply result to a general-purpose
register in addition to the LO register. These instructions don't have to use the MFLO instruction to move data
from the LO register to a general-purpose register.

• MULT rd, rs, rt HI || LO = rs x rt (signed)

 rd = new LO contents

• MADDU rd, rs, rt HI || LO += rs x rt (unsigned)

 rd = new LO contents
The EE Core also supports new multiply-add instructions, MADD and MADDU. These instructions execute
multiply-accumulate operations using the HI and LO registers as accumulators.

• MADD rd, rs, rt HI || LO += rs x rt (signed)

 rd = new LO contents

• MADDU rd, rs, rt HI || LO += rs x rt (unsigned)

 rd = new LO contents

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-55-

2.11.2. Multimedia Instructions
The EE Core implements a new set of instructions to support multimedia applications. (See Table 2-11) Most of
these instructions perform parallel operations by combining the I0 and I1 pipelines. Instructions perform parallel
operations on either two 64-bit data items, four 32-bit data items, eight 16-bit data items or sixteen 8-bit data
items to form a 128-bit path.
In order to support the 128-bit datapath, 128-bit load/store instructions are also implemented.

Multimedia Instructions: Arithmetic
Mnemonic Description
PADDB Parallel Add Byte
PSUBB Parallel Subtract Byte
PADDH Parallel Add Halfword
PSUBH Parallel Subtract Halfword
PADDW Parallel Add Word
PSUBW Parallel Subtract Word
PADSBH Parallel Add/Subtract Halfword
PADDSB Parallel Add with Signed Saturation Byte
PSUBSB Parallel Subtract with Signed Saturation Byte
PADDSH Parallel Add with Signed Saturation Halfword
PSUBSH Parallel Subtract with Signed Saturation Halfword
PADDSW Parallel Add with Signed Saturation Word
PSUBSW Parallel Subtract with Signed Saturation Word
PADDUB Parallel Add with Signed Saturation Byte
PSUBUB Parallel Subtract with Signed Saturation Byte
PADDUH Parallel Add with Unsigned Saturation Halfword
PSUBUH Parallel Subtract with Unsigned Saturation Halfword
PADDUW Parallel Add with Unsigned Saturation Word
PSUBUW Parallel Subtract with Unsigned Saturation Word

Multimedia Instructions: Multiply and Divide
Mnemonic Description
PMULTW Parallel Multiply Word
PMULTUW Parallel Multiply Unsigned Word
PDIVW Parallel Divide Word
PDIVUW Parallel Divide Unsigned Word
PMADDW Parallel Multiply/Add Word
PMADDUW Parallel Multiply/Add Unsigned Word
PMSUBW Parallel Multiply/Subtract Word
PMFHI Parallel Move From HI
PMFLO Parallel Move From LO
PMTHI Parallel Move To HI
PMTLO Parallel Move To LO
PMULTH Parallel Multiply Halfword
PMADDH Parallel Multiply/Add Halfword
PMSUBH Parallel Multiply/Subtract Halfword
PMFHL Parallel Move From HI/LO
PMTHL Parallel Move To HI/LO
PHMADH Parallel Horizontal Multiply/Add Halfword
PHMSBH Parallel Horizontal Multiply/Subtract Halfword
PDIVBW Parallel Divide Broadcast Word

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-56-

Multimedia Instructions: Shift Operations
Mnemonic Description
MFSA Move From SA Register
MTSA Move To SA Register
MTSAB Move Byte Count to SA Register
MTSAH Move Halfword Count to SA Register
PSLLH Parallel Shift Left Logical Halfword
PSRLH Parallel Shift Right Logical Halfword
PSRAH Parallel Shift Right Arithmetic Halfword
PSLLW Parallel Shift Left Logical Word
PSLLVW Parallel Shift Left Logical Variable Word
PSRLW Parallel Shift Right Logical Word
PSRLVW Parallel Shift Right Logical Variable Word
PSRAW Parallel Shift Right Arithmetic Word
PSRAVW Parallel Shift Right Arithmetic Variable Word
QFSRV Quadword Funnel Shift Right Variable

Multimedia Instructions: Others
Mnemonic Description
PABSH Parallel Absolute Halfword
PABSW Parallel Absolute Word
PMAXH Parallel Maximum Halfword
PMINH Parallel Minimum Halfword
PMAXW Parallel Maximum Word
PMINW Parallel Minimum Word
PAND Parallel AND
POR Parallel OR
PXOR Parallel XOR
PNOR Parallel NOR

Multimedia Instructions: Compare
Mnemonic Description
PCGTB Parallel Compare for Greater Than Byte
PCEQB Parallel Compare for Equal Byte
PCGTH Parallel Compare for Greater Than Halfword
PCEQH Parallel Compare for Equal Halfword
PCGTW Parallel Compare for Greater Than Word
PCEQW Parallel Compare for Equal Word
PLZCW Parallel Leading Zero Count Word

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-57-

Multimedia Instructions: Load/Store
Mnemonic Description
LQ Load Quadword
SQ Store Quadword

Multimedia Instructions: Data Rearrangement
Mnemonic Description
PPACB Parallel Pack To Byte
PPACH Parallel Pack To Halfword
PINTEH Parallel Interleave Even Halfword
PPACW Parallel Pack To Word
PEXTUB Parallel Extend Upper From Byte
PEXTLB Parallel Extend Lower From Byte
PEXTUH Parallel Extend Upper From Halfword
PEXTLH Parallel Extend Lower From Halfword
PEXTUW Parallel Extend Upper From Word
PEXTLW Parallel Extend Lower From Word
PEXT5 Parallel Extend from 5 bits
PPAC5 Parallel Pack to 5 bits
PCPYH Parallel Copy Halfword
PCPYLD Parallel Copy Lower Doubleword
PCPYUD Parallel Copy Upper Doubleword
PREVH Parallel Reverse Halfword
PINTH Parallel Interleave Halfword
PEXEH Parallel Exchange Even Halfword
PEXCH Parallel Exchange Center Halfword
PEXEW Parallel Exchange Even Word
PEXCW Parallel Exchange Center Word
PROT3W Parallel Rotate 3 Word

Table 2-11 Multimedia Instructions

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-58-

2.12. Latency
The execution cycles of the EE Core instructions are listed below.
Obtaining cycles actually required for the program is difficult, for the following reasons:

• Determination if two instructions are issued simultaneously is required

• It is impossible to predict the latency at the time of a cache miss

Integer Instructions
Instruction Category Execution Pipe Latency Throughput
Add/Sub, and logical operations I0/I1 1 1
Transfer to HI / LO registers I0/I1 1 1
Shift / LUI I0/I1 1 1
Branch / Jump BR 1 1
Conditional Move I0/I1 1 1
MULT / MULTU I0 4* 2
MULT1 / MULTU1 I1 4* 2
DIV / DIVU I0 37* 37
DIV1 / DIVU1 I1 37* 37
MADD / MADDU I0 4* 2
MADD1 / MADDU1 I1 4* 2
Load** LS 1 1
Store** LS - 1
Multimedia Multiply I0+I1 4 2
Multimedia Divide I0+I1 37 37

* The latency for HI, LO, HI1, LO1, and GPR that store operation results
** When there is no cache miss.

Floating-Point Instructions
Instruction Category Execution Pipe Latency Throughput
MTC1 C1+LS 2 1
Add / Sub / Abs / Neg / C.cond C1 4 1
CVT C1 4 1
Mul C1 4 1
MFC1 C1+LS 2 1
Move C1 4 1
DIV.S C1 8 7
SQRT.S C1 8 7
RSQRT.S C1 14 13
MADD C1 4 1
LWC1* C1+LS 2 1

* When there is no cache miss.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-59-

3. Registers

This chapter describes registers in the CPU and the System Control Coprocessor (COP0). Refer to Chapter 8
and the "VU User’s Manual" for the FPU (COP1) registers and the VPU (COP2) registers, respectively.

The CPU registers group consists of the following:

• General-Purpose Registers (GPRs)

• HI and LO registers that hold the results of integer multiply and divide operations

• The SA register that is used by the funnel shift instructions

• The Program Counter (PC) register

The COP0 registers control the processor state and hold its status. These registers can be read using the MFC0
instruction and written using the MTC0 instruction.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-60-

3.1. CPU Registers
The EE Core provides the following registers:

• 32 128-bit General Purpose Registers (GPRs)

• Four registers that hold the results of integer multiply and divide operations (HI0, LO0, HI1, and LO1)

• Shift Amount (SA) register

• Program Counter (PC)
The EE Core has 128-bit-wide General Purpose Registers (GPRs). The upper 64-bits of the GPRs are only used
by the EE Core-specific instructions (The "Load/Store Quadword" and "Multimedia" instructions).
The HI and LO registers have also been extended to 128-bit-wide. The lower 64 bits are HI0/LO0 registers,
which correspond to the standard 64-bit HI and LO registers. The upper 64 bits, as HI1/LO1 registers, are only
used by the newly defined multiply and divide instructions. These instructions are MULT1, MULTU1, DIV1,
DIVU1, MADD1, MADDU1, MFHI1, MFLO1, MTHI1, MTLO1 and so on. All these instructions are
equivalent to existing instructions that use HI0 and LO0 registers. The SA register specifies the shift amount
used by the funnel shift (QFSRV) instruction.

(127 64 63 0)

63 0 63 0
General Purpose
Registers

r0 r0

r1 r1

r2 r2

 :
:

:
:

r31 r31

HI/LO registers HI HI1 HI(HI0)

LO LO1 LO(LO0)

31 0
SA register SA

Program Counter PC

* The EE Core specific instructions are grayed.

Figure 3-1 CPU Registers

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-61-

3.1.1. General Purpose Registers
The standard 64-bit general-purpose registers have been extended to 128-bit registers. New instructions have
been defined to use the upper 64-bits of these registers.
Two of the general-purpose registers, r0 and r31, have the following special features:

• r0 is hardwired to a value of zero. When a zero value is needed, r0 can be used as a source, and a

destination of an instruction whose result is not necessary.

• r31 is the link register used by the Jump and Link instructions. It should not used by other instructions.

3.1.2. HI and LO Registers
The standard 64-bit HI and LO registers have been expanded to 128-bit registers. New instructions have been
defined to use the upper 64-bits of these registers.
The HI and LO registers consist of the upper 64 bits (HI1/LO1) and the lower 64 bits (HI0/LO0), and can be
used separately. HI0 and LO0 are equivalent to the standard 64-bit HI and LO registers.
HI and LO registers hold the results of integer multiply, integer multiply-accumulate, and integer divide
operations. In integer divide operations, the quotient and remainder are stored in LO0 and LO1, and HI0 and
HI1, respectively.

3.1.3. SA Register
The SA register specifies the shift amount when shifting or rotating (funnel shifting) a 128-bit data using the
QFSRV instruction. The register is EE Core-specific, but it needs to be saved and restored as a part of the
processor state.
New instructions have been defined for a data transfer between the SA register and the general-purpose
registers.

3.1.4. Program Counter (PC)
The Program Counter (PC) holds the address of the instruction that is being executed. The PC is incremented
automatically by 4 when a normal instruction is executed. When the jump or branch instruction is executed, the
PC is changed to the specified target address. When an exception occurs, the value of the PC is changed to an
exception vector address.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-62-

3.2. System Control Coprocessor (COP0) Registers
As shown in Table 3-1, the system control coprocessor (COP0) has registers related to memory management
and exception handling. Details of each register are described later. For details, refer to "4. Exception
Processing" and "5. Memory Management".

No. Register Name Description Purpose
0 Index Index that specifies TLB entry for reading or writing MMU
1 Random Pseudo-random index for TLB replacement MMU
2 EntryLo0 Low half of TLB entry (for even PFN) MMU
3 EntryLo1 Low half of TLB entry (for odd PFN) MMU
4 Context Pointer to PTE table MMU
5 PageMask Most significant part of the TLB entry (page size mask) MMU
6 Wired Number of wired TLB entries MMU
7 (Reserved) Undefined -
8 BadVAddr Bad virtual address Exception
9 Count Timer compare Exception
10 EntryHi High half (Virtual page number and ASID) of TLB entry MMU
11 Compare Timer reference value Exception
12 Status Processor Status Register Exception
13 Cause Result of the last exception taken Exception
14 EPC Exception Program Counter Exception
15 PRId Processor Revision Identifier MMU
16 Config Configuration Register MMU
17 -
22

(Reserved) Undefined -

23 BadPAddr Bad physical address Exception
24 Debug Registers related to debug function Debug
25 Perf Performance Counter and Control Register Exception
26 -
27

(Reserved) Undefined -

28 TagLo Low bits of the Cache Tag Cache
29 TagHi High bits of the Cache Tag Cache
30 ErrorEPC Error Exception Program Counter Exception
31 (Reserved) Undefined -

Table 3-1 COP0 Registers

There are 7 registers related to the debug function and 3 registers related to the performance counter. They
are assigned to Register Nos. 24 and 25 respectively, and accessed via specific instructions (MFC0/MTC0
instruction variations).

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-63-

Index : Index that specifies TLB entry for reading or writing
CPR[0,00]

31 30 6 5 0

P 0 Index

1 25 6

Name Pos. Contents r/w Initial Value
Index 5:0 Index that points to the TLB entry for TLB reading or

writing
r/w Undefined

The Index register points to the TLB entry for the TLB Read (TLBR) or TLB Write (TLBWI) Instructions.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-64-

Random : Index that specifies TLB entry for the TLBWR instruction
CPR[0,01]

31 6 5 0

0 Random

26 6

Name Pos. Contents r/w Initial Value
Random 5:0 TLB Random Index r/- 47

The Random register specifies the TLB entry for the TLB Write Random (TLBWR) instruction.
The value of the Random register decrements every cycle in which an instruction is executed. Its value ranges
between an upper bound and a lower bound. The lower bound is the value the Wired register indicates. The
upper bound is set by the total number of TLB entries (47).
The Random register is set to the value of the upper bound upon system reset and when the Wired register is
written.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-65-

EntryLo0 / EntryLo1 : Lower part of the TLB entry
CPR[0,02] / CPR[0,03]

EntryLo0
31 30 26 25 6 5 3 2 1 0

S 0 PFN C D V G

1 5 20 3 1 1 1

EntryLo1
31 26 25 6 5 3 2 1 0

0 PFN C D V G

6 20 3 1 1 1

Name Pos. Description r/w Initial Value
S 31

(EntryLo0)
Memory type
0 Main memory
1 Scratchpad RAM

r/w Undefined

PFN 25:6 Page frame number (the upper bits of the physical
address)

r/w Undefined

C 5:3 TLB page coherency attribute (Cache mode)
000(0) Reserved
001(1) Reserved
010(2) Uncached
011(3) Cached, write-back, with write allocate
100(4) Reserved
101(5) Reserved
110(6) Reserved
111(7) Uncached Accelerated

r/w Undefined

D 2 Dirty bit (The bit is set to 1 if writable) r/w Undefined
V 1 Valid bit (The bit is set to 1 if the TLB entry is enabled) r/w Undefined
G 0 Global bit r/w Undefined

The EntryLo0 and EntryLo1 registers correspond to the lower part of each TLB entry. EntryLo0 and EntryLo1
are used for even and odd virtual pages, respectively. The C bit indicates cache modes for the virtual pages.
When the reserved values in the above table are set, TLB entries may not be set correctly. The Dirty bit indicates
whether or not a write to virtual pages is possible. If the bit is cleared to 0, it can be write-protected.
The Global bit indicates whether or not ASID is used during TLB look-up. If both the Global bit of EntryLo0
and EntryLo1 are set to 1, the processor ignores the ASID during TLB lookup.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-66-

Context : TLB miss handling information
CPR[0,04]

31 23 22 4 3 0

PTEBase BadVPN2 0

9 19 4

Name Pos. Description r/w Initial Value
PTEBase 31:23 Page table address r/w Undefined
BadVPN2 22:4 Virtual page address that caused TLB miss r/- Undefined

The OS uses the Context register as a pointer to a page table when handling a TLB miss.
The page table is an OS-managed data structure that holds the corresponding information of virtual and physical
addresses. In the case of address translation, the corresponding information is first searched for in TLB. If there
is no information in TLB, a TLB miss (TLB Refill exception) occurs. Then the OS refers to the Context register
and reads the corresponding information not in TLB from the page table. For details, refer to the description in
"5.2. Address Translation".
The PTEBase field sets a page address of the page table. Normally, kseg3 (Kernel mode / Kernel space 3) is
used.
In the BadVPN2 field, bits 31:13 of the virtual address, which has caused the TLB miss, are set automatically.
(The virtual address, bit 12, is excluded because a single TLB entry corresponds to an even-odd page pair).
If a page size is 4KB, the value of the Context register configured as above becomes directly the address of the
applicable entry of a page table (1 entry = 8 bytes). For other page and PTE sizes, shifting and masking this
value produces the appropriate address.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-67-

PageMask : Page size comparison mask
CPR[0,05]

31 25 24 13 12 0

0 MASK 0

7 12 13

Name Pos. Description r/w Initial Value
MASK 24:13 Page size comparison mask

0000 0000 0000 4KB
0000 0000 0011 16KB
0000 0000 1111 64KB
0000 0011 1111 256KB
0000 1111 1111 1MB
0011 1111 1111 4MB
1111 1111 1111 16MB

r/w Undefined

The PageMask register corresponds to the MASK field of each TLB entry. It holds a comparison mask that
indicates a page size.
During TLB look-up for translating virtual addresses into physical addresses, the value of the MASK field in
TLB identifies the effective bits among bits 24:13. When the value of the MASK field is not one of the values
shown in the table above, the operation of TLB is undefined. For details, refer to the description in "5.2.
Address Translation".
The TLB read (TLBR) instruction uses the PageMask register as a destination, and the TLB write (TLBWI /
TLBWR) instruction uses it as a source.
If the S bit of EntryLo0 is 1 (the page that corresponds to scratchpad RAM) on the TLB write operation, the
contents of the PageMask register are all zeros. When reading the TLB entry that corresponds to scratchpad
RAM (the S bit of EntryLo0 register is 1), the values of the PageMask register are undefined.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-68-

Wired : The number of Wired TLB entries
CPR[0,06]

31 6 5 0

0 Wired

26 6

Name Pos. Description r/w Initial Value
Wired 5:0 The number of wired TLB entries r/w 0

The Wired register specifies the boundary between the wired and random entries of the TLB. The value of the
Random register, which becomes the index for the TLB Random write (TLBWR), ranges from the largest
number of the TLB entry (47) to the value of the Wired register. Therefore, the TLB entry whose number is
smaller than the value of the Wired register cannot be overwritten by the TLBWR instruction.
The Wired register is set to 0 upon system reset. When setting the value in the Wired register, the upper limit
(47) is set in the Random register. Writing a value greater than 47 into the Wired register produces undefined
results.

TLB
47

 Range of random register
 values

Random entries

 Wired register value
 Wired register value -1

Wired entries

0

 Figure 3-2 Wired TLB Entries

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-69-

BadVAddr : Virtual address that causes an error
CPR[0,08]

31 0

BadVAddr

32

Name Pos. Description r/w Initial Value
BadVAddr 31:0 Virtual address that has caused the most recent TLB

Invalid, TLB Modified, TLB Refill, or Address Error
exception.

r/- Undefined

In the BadVAddr register, when the TLB Invalid, TLB Modified, TLB Refill, or Address Error exception occurs,
its virtual address is stored.
Since bus errors are not addressing errors, the BadVAddr register does not have any information about bus
errors.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-70-

Count : Timer count value
CPR[0,09]

31 0

Count

32

Name Pos. Description r/w Initial Value
Count 31:0 Timer count value r/w Undefined

The Count register is a real-time timer register that is incremented every CPU clock cycle. When the value is
equal to the value of the Compare register, the timer interrupt is signaled through IP[7]. (This interrupt can be
disabled through the interrupt mask bit, IM[7].)

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-71-

EntryHi : Upper parts of a TLB entry
CPR[0,10]

31 13 12 8 7 0

VPN2 0 ASID

19 5 8

Name Pos. Description r/w Initial Value
VPN2 31:13 Virtual page number divided by two r/w Undefined
ASID 7:0 Address space ID field r/w Undefined

The EntryHi register corresponds to the upper parts of each TLB entry.
When mapping a single virtual address to different physical addresses per process is desirable, the ASID field
can be used as an additional part of the virtual address.
When a TLB Refill, TLB Invalid, or TLB Modified exception occurs, the virtual page number (VPN2) and
ASID that do not match a TLB entry are stored in the EntryHi register.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-72-

Compare : Timer stable value
CPR[0,11]

31 0

Compare

32

Name Pos. Description r/w Initial Value
Compare 31:0 Timer stable value r/w Undefined

The Compare register acts as a timer, in addition to the Count register. It maintains a stable value. When the
value of the Count register incremented every CPU cycle equals the stable value, a timer interrupt occurs. (To be
more precise, when the value of the Compare register equals the value of the Count register, the interrupt bit
IP[7] of the Cause register is set. If an interrupt is enabled, a timer interrupt occurs.)
As a side effect, writing to the Compare register clears the timer interrupt.
The Compare register is a read/write register. In normal use, however, the Compare register is write-only.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-73-

Status : COP0 Status
COP[0,12]

3
1

2
8

2
3

2
2

1
8

1
7

1
6

1
5

1
2

1
1

1
0

0
4

0
3

0
2

0
1

0
0

CU 0
D
E
V

B
E
V

0 C
H

E
D
I

E
I
E

I
M
7

0
B
E
M

I
M 0

K
S
U

E
R
L

E
X
L

I
E

4 4 1 1 3 1 1 1 1 2 1 2 5 2 1 1 1

Name Pos. Description r/w Initial Value
CU
(CU[3:0])

31:28 Usability of each of coprocessor units.
0 Unusable
1 Usable

r/w Undefined

DEV 23 Address of Performance counter and debug exception
vectors (1→bootstrap).

r/w Undefined

BEV 22 Address of the TLB Refill exception or general exception
vectors (1→bootstrap).

r/w 1

CH 18 Status of the most recent Cache instructions (Cache Hit
Invalidate / Cache Hit Write-back Invalidate) for the data
cache.
0 miss
1 hit

r/w Undefined

EDI 17 EI/DI instruction enable
0 enabled only in Kernel mode
1 enabled in all modes

r/w Undefined

EIE 16 Enable IE bit
0 disables the IE bit
 (disables all interrupts regardless of the value of
 the IE bit)
1 enables the IE bit

 Undefined

IM[7,3:2] 15, 11:10 Interrupt Mask
0 disables interrupts
1 enables interrupts

r/w Undefined

BEM 12 Bus Error Mask
0 signals a bus error
1 masks a bus error

r/w Undefined

KSU 4:3 Operation modes
00 Kernel mode
01 Supervisor mode
10 User mode
11 (Reserved)

r/w Undefined

ERL 2 Error Level
(set by the processor when Reset, NMI, performance
counter, or debug exception is taken).

r/w 1

EXL 1 Exception Level:
(set by the processor when any exception other than
Reset, NMI, performance counter, or debug exception is
taken).

r/w Undefined

IE 0 Interrupt Enable flag
0 disables all interrupts
1 enables all interrupts

r/w Undefined

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-74-

The Status register indicates operating mode, interrupt enabling, and COP0 processor status. The following
paragraphs describe some of the important fields.
The CU field controls the usability of COP0 to COP3. Regardless of the setting of the CU[0] (bit 28), COP0 is
always usable in Kernel mode. For other cases, an access to an unusable coprocessor causes an exception. In the
EE Core, COP3 is always unusable.
The EDI bit controls the EI and DI instructions, which enable and disable interrupts, except NMI, respectively.
If this bit is 1, the EI and DI instructions are usable in User, Supervisor, and Kernel modes. If this bit is 0, the
EI and DI instructions are usable only in Kernel mode, and operate as NOP in the User and Supervisor modes.
The EIE bit and IE bit control interrupt enabling. Only when both bits are set to 1 (in addition, when the ERL
and EXL bits are 0), interrupts are enabled.
The IM field controls the usability of three interrupt signals. IM[7] (bit 15) and IM[3:2] (bit 11:10) correspond to
the internal timer interrupt and Int[1:0] signals, respectively.
The processor recognizes an interrupt only when the corresponding IM bits, the IP bit of the Cause register, and
the IE field of the Status register are set to 1. Note that the EE Core does not support software interrupts.
The BEM bit controls an update of the BadPAddr register (COP[0,23]) and a signal of the bus error exception.
When the bit is 0, updating the BadPAddr register and signaling the bus error exception takes place. (At the
same time, this bit is set to 1.) When the bit is 1, updating the BadPAddr register and signaling the bus error
exception does not occur.
The KSU field (bit 4:3), along with the ERL and EXL bits, indicates the operation mode of the processor.

KSU ERL EXL Operation mode
10 0 0 User mode
01 0 0 Supervisor mode
00 0 0 Kernel mode
(any) 0 1 Kernel mode (level 1 exception handler)
(any) 1 (any) Kernel mode (level 2 exception handler)

According to the operation mode, accessible address spaces are restricted as follows:

Operation mode User address space Supervisor address
space

Kernel address
space

User mode Yes No No
Supervisor mode Yes Yes No
Kernel mode Yes Yes Yes

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-75-

Cause : Cause of the most recent exception
COP [0,13]

3
1

3
0

2
9

2
8

1
8

1
6

1
5

1
1

1
0

0
6

0
2

0
0

B
D

B
D
2

CE 0 EXC2 IP
[7] 0 IP

[3:2] 0 ExcCode 0

1 1 2 9 3 1 3 2 3 5 2

Name Pos. Description r/w Initial Value
BD 31 Set by the processor when any exception other than

Reset, NMI, performance counter, or debug exception
occurs in a branch delay slot.

r/- Undefined

BD2 30 Set by the processor when NMI, performance counter,
or debug exception occurs in a branch delay slot.

r/- Undefined

CE 29:28 Coprocessor number when a Coprocessor Unusable
exception is taken.

r/- Undefined

EXC2 18:16 Exception codes for level 2 exceptions
000 (0) : Res (Reset)
001 (1) : NMI (Non-maskable Interrupt)
010 (2) : PerfC (Performance Counter)
011 (3) : Dbg (Debug)
1xx (4-7): (Reserved)

r/- Undefined

IP[7] 15 Set when a timer interrupt is pending. r/- Undefined
IP[3] 11 Set when the Int[0] interrupt is pending. r/- Undefined
IP[2] 10 Set when the Int[1] interrupt is pending. r/- Undefined
ExcCode 6:2 Exception codes

00000 (0): Int (Interrupt)
00001 (1): Mod (TLB Modified)
00010 (2): TLBL (TLB Refill(instruction fetch
 or load))
00011 (3): TLBS (TLB Refill(store))
00100 (4): AdEL (Address error(instruction
 fetch or load))
00101 (5): AdES (Address error(store))
00110 (6): IBE (Bus error(instruction))
00111 (7): DBE (Bus error(data))
01000 (8): Sys (System call)
01001 (9): Bp (Breakpoint)
01010 (10): RI (Reserved instruction)
01011 (11): CpU (Coprocessor Unusable)
01100 (12): Ov (Overflow)
01101 (13): Tr (Trap)
 (14-31): (Reserved)

r/- Undefined

The Cause register indicates information about the cause of the most recent exception.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-76-

EPC : Address generating exceptions
CPR[0,14]

31 0

EPC

32

Name Pos. Description r/w Initial Value
EPC 31:0 Address that is to resume after an exception has been

serviced.
r/w Undefined

The EPC register is set automatically when an exception occurs, and indicates the address that is to be restored
from the exception handler. If an exception is precise, the value of the EPC register will be one of the following:

• The virtual address of the instruction that was the direct cause of the exception

• The virtual address of the immediately preceding branch or jump instruction (the BD bit in the Cause

register is set then)

Note that if the EXL bit in the Status register is set to 1, the value of the EPC register is not updated even when
an exception occurs.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-77-

PRId : Processor Revision
CPR[0,15]

31 16 15 8 7 0

0 Imp Rev

16 8 8

Name Pos. Description r/w Initial Value
Imp 15:8 Implementation number r/- 0x2E
Rev 7:0 Revision number r/- Revision

number

The PRId register contains the implementation and revision information of the EE Core and COP0.
The value of the Imp field is fixed to 0x2e, which indicates the EE Core.
The Rev field is a revision number of a chip architecture. Hi-order 4 bits (bits 7:4) and low-order 4 bits (bits 3:0)
indicate a major and minor revision number, respectively.
Note that there is no guarantee that changes to the chip will be reflected in the PRId register, or that changes to
the revision number will indicate chip changes. For this reason, the software should not rely on the value of the
PRId register.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-78-

Config : Processor Configuration
CPR[0,16]

3
1

3 2
0 8

2
7

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1 0
1 9

0 0
8 6

0 0
5 3

0 0
2 0

0 EC 0
D
I
E

I
C
E

D
C
E

0
N
B
E

B
P
E

IC DC 0 K0

1 3 9 1 1 1 2 1 1 3 3 3 3

Name Pos. Description r/w Initial Value
EC 30:28 Bus clock ratio

000 Value from dividing the processor clock frequency
 by 2

r/- 0

DIE 18 Setting this bit to 1 enables the pipeline parallel issue.
0 Single issue
1 Double issue

r/w 0

ICE 17 Setting this bit to 1 enables the instruction cache.
0 Instruction cache disable
1 Instruction cache enable

r/w 0

DCE 16 Setting this bit to 1 enables the data cache
0 Data cache disable
1 Data cache enable

r/w 0

NBE 13 Setting this bit to 1 enables non-blocking load
0 Enables Blocking loads
1 Enables Non-blocking loads and hit under miss

r/w 0

BPE 12 Setting this bit to 1 enables branch prediction
0 Disables Branch Prediction
1 Enables Branch Prediction

r/w 0

IC 11:9 Instruction cache size
010 16KB

r/- 010

DC 8:6 Data cache size
001 8KB

r/- 001

K0 2:0 kseg0 cache mode
000 Cached without writeback and write allocate
010 Uncached
011 Cached with writeback and write allocate
111 Uncached Accelerated
(Others: Reserved)

r/w Undefined

The Config register sets various options concerning processor operation and configuration. The EC, IC, and DC
fields are related to the hardware configuration, and are set by hardware on reset. Software cannot change the
settings.
When the DIE bit is cleared to 0, the EE Core uses one of two pipelines, and issues one instruction per cycle.
The ICE and DCE bits specify if the instruction cache and data cache are enabled or disabled, respectively.
Specifying them is given higher priority than specifying a cache mode in the K0 filed or TLB entry.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-79-

BadPAddr : Physical address that caused an error
CPR[0,23]

31 4 0

BdPAddr

28 4

Name Pos. Description r/w Initial Value
BdPAddr 31:4 Physical address value r/w Undefined
The BadPAddr register contains the most recent physical address that caused a bus error.
However, the error address is set only when Status.BEM is cleared to 0. When Status.BEM is set to 1, a bus
error is masked, and the value of this register cannot be changed.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-80-

BPC : Control of the breakpoint function
CCR[0,24]-0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

0
3

0
2

0
1

0
0

I
A
E

D
R
E

D
W
E

D
V
E

0
I
U
E

I
S
E

I
K
E

I
X
E

0
D
U
E

D
S
E

D
K
E

D
X
E

I
T
E

D
T
E

B
E
D

0
D
W
B

D
R
B

I
A
B

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1

Name Pos. Description r/w Initial Value
IAE 31 Instruction Address breakpoint Enable r/w 0
DRE 30 Data Read breakpoint Enable r/w 0
DWE 29 Data Write breakpoint Enable r/w 0
DVE 28 Data Value breakpoint Enable r/w Undefined
IUE 26 Instruction address breakpoint - User mode Enable r/w Undefined
ISE 25 Instruction address breakpoint - Supervisor mode Enable r/w Undefined
IKE 24 Instruction address breakpoint - Kernel mode Enable r/w Undefined
IXE 23 Instruction address breakpoint - EXL mode Enable r/w Undefined
DUE 21 Data breakpoint - User mode Enable r/w Undefined
DSE 20 Data breakpoint - Supervisor mode Enable r/w Undefined
DKE 19 Data breakpoint - Kernel mode Enable r/w Undefined
DXE 18 Data breakpoint - EXL mode Enable r/w Undefined
ITE 17 Instruction address breakpoint - Trigger generation Enable r/w Undefined
DTE 16 Data breakpoint - Trigger generation Enable r/w Undefined
BED 15 Breakpoint Exception Disable r/w Undefined
DWB 2 Data Write Breakpoint establishment flag r/w Undefined
DRB 1 Data Read Breakpoint establishment flag r/w Undefined
IAB 0 Instruction Address Breakpoint r/w Undefined

The BPC register controls the breakpoint functions, and has a flag that indicates the establishment of a
breakpoint. BPC is assigned to COP0 register 24 along with other breakpoint-related registers. Instead of MFC0
and MTC0 instructions, MFBPC and MTBPC are used to read or write the contents.
The IAE, IUE, ISE, IKE, or IXE bit determines whether or not to judge the establishment of the instruction
address breakpoint.
The DWE, DRE, DUE, DSE, DKE, or DXE bit determines whether or not to judge the establishment of the
data address breakpoint. Also, the DVE bit determines whether or not to judge the establishment of the data
value breakpoint.
The ITE, DTE, or BED bit sets the operation when the breakpoint is established.
The DWB, DRB, or IAB bit is a flag that indicates that a breakpoint has been established. Bits 27, 22 and 14 are
reserved and must be set to 0.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-81-

IAB / IABM : Instruction address breakpoint settings
CCR[0,24]-1/-2

31 0

32

The IAB and IABM registers indicate the establishment condition of the instruction address breakpoint. The
IAB and IABM registers specify a break address and the mask that indicates valid bits among the break address,
respectively.
The IAB and IABM registers, along with other breakpoint-related registers, are assigned to COP0 register 24 in
duplicate. To read/write the contents, the MFIAB / MTIAB and MFIABM / MTIABM instructions are used
instead of the MFC0 / MTC0 instruction.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-82-

DAB / DABM : Data address breakpoint settings
CCR[0,24]-4/-5

31 0

32

The DAB and DABM registers indicate the establishment condition of the data address breakpoint. The DAB
and DABM registers specify a break address and the mask that indicates the valid bits among the break address,
respectively.
The DAB and DABM registers, along with other breakpoint-related registers, are assigned to COP0 register 24
in duplicate. To read/write the contents, the MFDAB / MTDAB and MFDABM / MTDABM instructions are
used instead of the MFC0 / MTC0 instruction.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-83-

DVB / DVBM : Data value breakpoint settings
CCR[0,24]-6/-7

31 0

32

The DVB and DVBM registers indicate the establishment condition of the data value breakpoint. The DVB and
DVBM registers specify a break value and the mask that indicates valid bits among the break value.
The DVB and DVBM registers, along with other breakpoint related registers, are assigned to COP0 register 24
in duplicate. To read/write the contents, the MFDVB / MTDVB and MFDVBM / MTDVBM instructions are
used instead of the MFC0 / MTC0 instruction.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-84-

PCCR : Performance Counter Control
CCR[0,25]

31 19 15 14 13 12 11 9 5 4 3 2 1

C
T
E

0 EVENT1 U
1

S
1

K
1

E
X
L
1

0 EVENT0 U
0

S
0

K
0

E
X
L
0

0

1 11 5 1 1 1 1 1 5 1 1 1 1 1

Name Pos. Description r/w Initial Value
CTE 31 Enables counter function r/w 0
EVENT1 19:15 Events that counted in CTR1 (Refer to the table below) r/w Undefined
U1 14 Enables a counting operation in CTR1 in the User mode. r/w Undefined
S1 13 Enables a counting operation in CTR1 in the Supervisor

mode.
r/w Undefined

K1 12 Enables a counting operation in CTR1 in the Kernel
mode.

r/w Undefined

EXL1 11 Enables a counting operation in CTR1 when executing
the level 1 exception handler.

r/w Undefined

EVENT0 9:5 Events that counted in CTR0 (Refer to the table below) r/w Undefined
U0 4 Enables a counting operation in CTR0 in the User mode. r/w Undefined
S0 3 Enables a counting operation in CTR0 in the Supervisor

mode.
r/w Undefined

K0 2 Enables a counting operation in CTR0 in the Kernel
mode.

r/w Undefined

EXL0 1 Enables a counting operation in CTR0 when executing
the level 1 exception handler.

r/w Undefined

Events to be counted EVENT0

/ EVENT1 CTR0 CTR1
0 (reserved) Issues the low-order branch
1 Processor cycle Processor cycle
2 Issues a single instruction Issues a double instruction
3 Issues branch Branch prediction miss
4 BTAC miss TLB miss
5 TLB miss DTLB miss
6 Instruction cache (I$) miss Data cache (D$) miss
7 Access to DTLB WBB single request unusable
8 Non-blocking load WBB burst request unusable
9 WBB single request WBB burst request almost full
10 WBB burst request WBB burst request full
11 CPU address bus busy CPU data bus busy
12 Completes instruction Completes instruction
13 Completes non-BDS instruction Completes non-BDS instruction
14 Completes the COP2 instruction Completes the COP1 instruction
15 Completes loads Completes stores
16 No event No event

17-31 (reserved) (reserved)
The PCCR register controls the function of the performance counter. It determines which events are counted,
and which operation modes are used for counting, for counter registers PCR0 and PCR1.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-85-

PCR0 / PCR1 : Performance Counter
CCR[0,25]

31 30 0
O
V
F
L

VALUE

1 31

Name Pos. Description r/w Initial Value
OVFL 31 Overflow flag r/w Undefined
VALUE 30:0 Counter r/w Undefined

PCR0 and PCR1 are performance counter registers. They execute a count operation separately, according to the
specification of the CCR register. When the VALUE field overflows, the OVFL bit is set. When the CCR.CTE
bit is set to 1, the debug exception occurs.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-86-

TagLo : Lower parts of a cache tag
CCR[0,28]

The TagLo register, when operating a cache by the CACHE instruction, is used as follows:

Instruction Processing

BTAC fetch address -> TagLo[31:3] CACHE BXLBT Index Load BTAC
BTAC.V bit -> TagLo[0]
BTAC fetch address <- TagLo[31:3] CACHE BXSBT Index Store BTAC
BTAC.V bit <- TagLo[0]

CACHE DXLDT Index Load Data Data cache data -> TagLo[31:0]
CACHE DXLTG Index Load Tag Data cache tag -> TagLo
CACHE DXSDT Index Store Data Data cache data <- TagLo[31:0]
CACHE DXSTG Index Store Tag Data cache tag <- TagLo*
CACHE IXLDT Index Load Data Instruction cache data (instruction word) -> TagLo[31:0]
CACHE IXLTG Index Load Tag Instruction cache tag -> TagLo**
CACHE IXSDT Index Store Data Instruction cache data (instruction word) <- TagLo[31:0]
CACHE IXSTG Index Store Tag Instruction cache tag <- TagLo**

TagLo* indicates the following field structure which corresponds to the cache tag.
TagLo** has this field structure, except the D/L bits.

31 12 11 7 6 5 4 3 2 0

PTagLo - D V R L -

20 5 1 1 1 1 3

Name Pos. Description r/w Initial Value
PTagLo 31:12 Physical address tag cache r/w Undefined
D 6 Dirty bit r/w Undefined
V 5 Valid bit r/w Undefined
R 4 LRF bit r/w Undefined
L 3 Lock bit r/w Undefined

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-87-

TagHi : Upper parts of a cache tag
CCR[0,29]

The TagHi register, when operating a cache by the CACHE instruction, is used as follows:

Instruction Processing
CACHE BXLBT Index Load BTAC BTAC target address -> TagHi[31:2]
CACHE BXSBT Index Store BTAC BTAC target address <- TagHi[31:2]

Instruction cache BHT -> TagHi[5:4] CACHE IXLDT Index Load Data
Instruction cache steering bit -> TagHi[3:0]
Instruction cache BHT <- TagHi[5:4] CACHE IXSDT Index Store Data
Instruction cache steering bit <- TagHi[3:0]

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-88-

ErrorEPC : Address generating a level 2 exception
CCR[0,30]

31 0

ErrorEPC

32

Name Pos. Description r/w Initial Value
ErrorEPC 31:0 Restart address after servicing a level 2 error r/w Undefined

The ErrorEPC register contains a return address from an exception handler when NMI, a debug, or a counter
exception occurs.
The value of the ErrorEPC register normally becomes the address of the instruction in which an exception is
generated. However, when an exception occurs to the instruction in the branch delay slot, the value becomes the
address of the branch instruction immediately preceding the instruction in which an exception is generated. In
order to identify this, the Cause.BD2 bit is set to 1.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-89-

4. Exception Processing

Any event that causes an instruction’s execution to be interrupted is called an exception. This chapter discusses
how the processor handles exceptions.
Because processor reset is one of the exceptions, reset semantics are also discussed in this chapter.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-90-

4.1. Exception Handling Process
This section describes the processor handling process when exceptions are recognized. Exceptions are divided
into levels 1 and 2. The processing of level 1 differs from that of level 2 in details. Refer to "4.2. Exception
Reference" for further information about each exception.

4.1.1. Exception Vector
The entry address of an exception handler (exception vector) is fixed at a particular address in memory. An
exception vector has two types: one is normally used, and the other is used when bootstrapping. The usage
depends on the value of the Status.BEV or Status.DEV bit (except Reset/NMI).
The list of exception vectors is shown below. Address 0 is normally used, and Address 1 is used when
bootstrapping.

Exception Vector Exception Level BEV DEV Address 0 Address 1
V_RESET_NMI Reset / NMI 2 - - 0xBFC00000 0xBFC00000

0 - 0x80000000 - V_TLB_REFILL TLB Refill * 1
1 - - 0xBFC00200
- 0 0x80000080 - V_COUNTER Performance

Counter
2

- 1 - 0xBFC00280
- 0 0x80000100 - V_DEBUG Debug 2
- 1 - 0xBFC00300
0 - 0x80000180 - V_COMMON All other

exceptions
1

1 - - 0xBFC00380
0 - 0x80000200 - V_INTERRUPT Interrupt

1

1 - - 0xBFC00400
* For the TLB Refill exception that is recognized when Status.EXL = 1 (i.e. in an exception handler), the V_COMMON vector is used.

Table 4-1 Exception Vector Types

4.1.2. Level 1 Exception Handling
When a level 1 exception is recognized, the following processes are executed:

• Switches to Kernel mode (Status.EXL <- 1)

• Saves addresses (sets EPC, Cause.BD)

• Sets exception cause codes (sets Cause.ExcCode, etc.)

• Jumps to the specified vector address
When a level 1 exception is recognized in an exception handler, an address is not saved. Also, in this case, the
V_COMMON vector is applied to the TLB Refill exception.
Exceptions occur and are recognized in all modes; User, Supervisor, and Kernel. However, the processor is
switched to Kernel mode before executing the first instruction of an exception handler. This switching takes
place by setting the Status.EXL bit, not the Status.KSU bit, to 1. When Status.EXL is 1, the operating mode is
Kernel mode, regardless of the setting of Status.KSU. If executing the ERET instruction when an exception
handler finishes, the EXL is cleared to zero, and the processor restores the original mode.
In addition to switching operating modes, the virtual address of the instruction cancelled by the exception is
saved in the EPC register as a restart address, and the Cause.BD bit is cleared to 0. However, if the cancelled
instruction is in the delay slot of a branch instruction, the virtual address of the branch instruction, not the

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-91-

cancelled instruction, is saved in the EPC register. The Cause.BD bit is set to 1. For this reason, when the
exception handler examines the instruction address for an exception cause, it should consider the Cause.BD bit.
The code indicating an exception cause is determined in the 5-bit Cause.ExcCode field. In addition, with the
coprocessor exception, the coprocessor number for the exception cause is set in the Cause.CE field.
Finally, it jumps to the vector address specified by the exception cause and the Status.BEV bit (see Table 4-1).
The operation of the exception handling is described in pseudo-C code as follows:

Level1_exception_base (int cause, int in_branch_delay)
{
 Cause.ExcCode = cause; // set Level 1 exception cause

 // if already in exception handler (i.e. EXL==1),
 // do not update EPC and Cause.BD.
 // Furthermore, use general vector in this case.
 if (Status.EXL) {
 vector = V_COMMON; // use general vector
 }
 else { // normal Level 1 exception processing
 if (in_branch_delay) { // Check for branch delay slot
 EPC = PC-4;
 Cause.BD = 1;
 }
 else {
 EPC = PC;
 Cause.BD = 0;
 }

 // Set to kernel mode, and disable interrupts
 Status.EXL = 1;

 // Select vector
 if (cause == TLB_REFILL)
 vector = V_TLB_REFILL;
 else if (cause == INTERRUPT)
 vector = V_INTERRUPT;
 else
 vector = V_COMMON;
 }

 // Select vector base according to Status.BEV bit.
 if (Status.BEV)
 PC = 0xBFC00200 + vector;
 else
 PC = 0x80000000 + vector;
}

Once an exception service routine is entered, external interrupts (interrupt exceptions) other than NMI are
disabled. An internal interrupt is generated and recognized if other level 1 exceptions are enabled in addition to
level 2 exceptions (reset, NMI, performance counter, and debug). Note that the EPC register and Cause.BD bit
are overwritten at this time.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-92-

4.1.3. Level 2 Exception Handling
Reset, NMI, performance counter, and debug exceptions, which may be generated during execution of the level
1 exception hander, are handled as level 2 exceptions. The contents of handling are similar to those of level 1,
except that different registers are used.
First, switching to Kernel mode is executed by setting Status.ERL to 1. The instruction address, which is
cancelled by an exception, is stored in the ErrorEPC register as a restart address, and the Cause.BD2 bit is
cleared to 0. However, if the cancelled instruction is in the delay slot of a branch instruction, the Cause.BD2 bit
is set to 1 and the address of the branch instruction is stored in the Error EPC register.
The cause code for an exception is stored in the Cause.EXC2 field.
The operation of the level 2 handling is described in pseudo-C code as follows:

Level2_exception_base (int cause, int in_branch_delay)
{
 Cause.EXC2 = cause; // set Level 2 exception cause

 if (in_branch_delay) { // Check for branch delay slot
 ErrorEPC = PC-4;
 Cause.BD2 = 1;
 }
 else {
 ErrorEPC = PC;
 Cause.BD2 = 0;
 }

 // Set to Level 2 kernel mode
 Status.ERL = 1;

 // Jump to appropriate address
 if (cause == RESET || cause == NMI)
 PC = 0xBFC00000;
 else {
 // Select non NMI/reset vector
 if (cause == COUNTER)
 vector = V_COUNTER;
 else if (cause == DEBUG)
 vector = V_DEBUG;

 // Select vector base according to Status.DEV bit.
 if (Status.DEV)
 PC = 0xBFC00200 + vector;
 else
 PC = 0x80000000 + vector;
 }
}

If the level 2 exception handler is entered, NMI, interrupt, bus error, debug, and performance counter
exceptions are disabled. (They are stored until the exception 2 handler finishes, and are recognized when
finishing.) Programmers must set the program not to generate internal exceptions. When internal exceptions
such as overflow occur during execution of the level 2 exception handler, the control is transferred to the
corresponding level 1 handler. Both Status.EXL and Status.ERL will be set and the ERET instruction cannot
operate properly.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-93-

4.1.4. Exception Priority
Exception priority rules determine which exception is taken first, if multiple internal exceptions occur
simultaneously. Priority for internal and external exceptions in the EE Core is shown in Table 4-2. Note that this
priority is from the pipeline’s perspective. Since external exceptions occur regardless of an instruction execution,
the priority between external and internal exceptions has little meaning.

Priority Exception Internal /
External

Highest Reset External
 NMI External
 Performance Counter Internal
 Debug (Instruction Breakpoint) Internal
 Address Error (Instruction Fetch) Internal
 TLB Refill (Instruction Fetch) Internal
 TLB Invalid (Instruction Fetch) Internal
 Bus Error (Instruction Fetch) Internal
 SYSTEMCALL, BREAK, Reserved Instruction, or Coprocessor

Unusable
Internal

 Interrupt External
 Debug (Data address/ Data value breakpoint) Internal
 Overflow, Trap Internal
 Address Error (Load / Store) Internal
 TLB Refill (Load / Store) Internal
 TLB Invalid (Load / Store) Internal
 TLB Modified (Load / Store) Internal
Lowest Bus error (Load / Store) Internal

Table 4-2 Exception Priority Order

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-94-

4.2. Exception Reference
Exceptions for the EE Core are listed in the table below.

Exception Cause of Exception
Code

Level

ExcCode EXC2

Vector

Reset 2 − 0 V_RESET_NMI
NMI 2 − 1 V_RESET_NMI
Performance Counter 2 − 2 V_COUNTER
Debug 2 − 4 V_DEBUG
Interrupt 1 0 − V_INTERRUPT
TLB Modified 1 1 − V_COMMON
TLB Refill (Instruction Fetch / Load) 1 2 − V_TLB_REFILL
TLB Refill (Store) 1 3 − V_TLB_REFILL
TLB Invalid (Instruction Fetch / Load) 1 2 − V_COMMON
TLB Invalid (Store) 1 3 − V_COMMON
Address error (Instruction Fetch / Load) 1 4 − V_COMMON
Address Error (Store) 1 5 − V_COMMON
Bus Error (Instruction Fetch) 1 6 − V_COMMON
Bus Error (Load / Store) 1 7 − V_COMMON
SYSTEMCALL 1 8 − V_COMMON
BREAK 1 9 − V_COMMON
Reserved Instruction 1 10 − V_COMMON
Coprocessor Unusable 1 11 − V_COMMON
Overflow 1 12 − V_COMMON
Trap 1 13 − V_COMMON

Table 4-3 Exception List

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-95-

4.2.1. Reset Exception
Exception Level Exception Vector Address Cause Code
Level 2 V_RESET_NMI

 0xBFC00000
Cause.EXC2 = 0

Cause of Exception
The Reset exception occurs when the Reset* signal is asserted and then deasserted. The exception is not
maskable.

Operation
When the Reset exception occurs, registers in the COP0 are initialized as follows and the control is
transferred to the V_RESET_NMI exception vector. The value of the bits and registers, not shown below, is
undefined other than the bits fixed to 0.

• Status Register : Status.ERL=Status.BEV=1, Status.BEM=0

• Cause Register : Cause.EXC2=0

• Config Register : Config.DIE=Config.ICE=Config.DCE=Config.NBE=Config.BPE=0

• Random Register : Value of its upper bound (47)

• Wired Register : 0

• CCR Register : CCR.CTE=0

• BPC Register : BPC.IAE=BPC.DRE=BPC.DWE=0
The Valid, Dirty, LRF, and Lock bits of the data cache and the Valid and LRF bits of the instruction cache
are all initialized to 0.

Handler Processing
The following should be handled in the Reset exception handler:

• Initializing the registers of the CPU and coprocessor, caches, and the memory system

• Performing diagnostic tests

• Bootstrapping the operating system
The Reset exception vector is located within uncached and unmapped address space. Therefore, the cache
and TLB need not be initialized in order to process the exception handler.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-96-

4.2.2. NMI Exception
Exception Level Exception Vector Cause Code
Level 2 V_RESET_NMI

 0xBFC00000
Cause.EXC2 = 1

Cause of Exception
The NMI (Non-Maskable Interrupt) exception is external, and occurs in the falling edge of the NMI* signal.
The NMI exception is masked only when the level 2 exception handler is in process. It is recognized
regardless of the settings of the Status.EXL and Status.IE bits.

Operation
When the NMI exception is recognized, the following registers are set, and the control is transferred to the
V_RESET_NMI exception vector.

• Cause.EXC2 : 1

• ErrorEPC Register : Restart Address

• Cause.BD2 : When the exception occurs in the instruction of a branch delay slot, it is set to 1, and

otherwise, 0

• Status Register : Status.ERL=Status.BEV=1
The contents of all registers, other than these above, are not modified.

Handler Processing
The NMI and Reset exceptions share the same exception vector. This vector is located within uncached and
unmapped address space. Therefore, the cache and TLB need not be initialized in order to process the
exception handler.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-97-

4.2.3. Performance Counter Exception
Exception Level Exception Vector Cause Code
Level 2 V_COUNTER

 DEV=0: 0x80000080
 DEV=1: 0xBFC00280

Cause.EXC2 = 2

Cause of Exception
The Performance Counter exception occurs when the performance counter overflows or meets specified
conditions. This exception is not maskable.

Operation
When the Performance Counter exception is recognized, each of the registers is set as follows, and the
control is transferred to the V_ COUNTER exception vector:

• Cause.EXC2 : 2

• Cause.BD2 : When the exception is caused in the branch delay slot, it is set to 1, otherwise, 0

• ErrorEPC Register : Restart Address (the address of the instruction causing exception. However,

the address of the preceding conditional branch instruction if Cause.BD2 is 1.)

Handler Processing
No special attention is needed.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-98-

4.2.4. Debug Exception
Exception Level Exception Vector Cause Code
Level 2 V_DEBUG

 DEV=0: 0x80000100
 DEV=1: 0xBFC00300

Cause.EXC2 = 3

Cause of Exception
The Debug exception occurs when the breakpoint conditions are met. This exception is masked when the
Status.ERL bit is set to 1, that is, when the level 2 exception handler is in process.

Operation
When the Debug exception is recognized, each of the registers is set as follows, and the control is transferred
to the V_ DEBUG exception vector:

• Cause.EXC2 : 3

• Cause.BD2 : When the exception is caused in the branch delay slot, it is set to 1, otherwise, 0

• ErrorEPC Register : Restart Address (The address of the instruction causing exception. However,

if Cause.BD2 is 1, it is the address of the preceding conditional branch instruction.)

Handler Processing
For breakpoints, refer to the description in "3.2. System Control Coprocessor (COP0) Registers".
A data value breakpoint becomes an inaccurate exception in load instructions due to memory latency. If
ASID is changed while the control is transferred from a load instruction that has caused an exception to an
exception handler, the memory mapping referred to by the exception handler differs from the memory
mapping at the occurrence of the exception.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-99-

4.2.5. Interrupt Exception
Exception Level Exception Vector Cause Code
Level 1 V_INTERRUPT

 BEV=0: 0x80000200
 BEV=1: 0xBFC00400

Cause.ExcCode = 0

Cause of Exception
The interrupt exception occurs if one of the three interrupt signals is asserted.
Each of the three interrupts can be masked by clearing the Status.IM[7], Status.IM[3], or Status.IM[2] bit to
0. Also, all of three interrupts can be masked at once by clearing the Status.IE or Status.EIE bit to 0.
The three interrupts are masked when the Status.EXL or Status.ERL bit is set to 1, that is, when the
exception handler is in process.

Operation
When the Interrupt exception is recognized, each of the registers is set as follows, and the control is
transferred to the V_ INTERRUPT exception vector:

• Cause.ExcCode : 0

• Cause.IP[7] / [3] / [2] : When the corresponding interrupt is caused, it is set to 1, otherwise, 0

• Cause.BD : When the exception is caused in the branch delay slot, it is set to 1, otherwise, 0

• EPC Register : Restart Address (The address of the instruction causing exception. However, if

Cause.BD is 1, it is the address of the preceding conditional branch instruction.)
If the interrupt signal is asserted and deasserted in a very short time, the Cause.IP[7], [3], or [2] bit may not
reflect the cause of an interruption correctly.

Handler Processing
Interruptions, generated by external devices, are cleared by issuing the appropriate instruction, and then
removing the cause of the interruption. Note that, because of buffering, the instruction to the external device
occurs after other instructions finish. If the ERET instruction is executed before the interrupt signal is
deasserted, the same interrupt exception is caused again. To avoid this, execute the SYNC instruction before
the ERET instruction.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-100-

4.2.6. TLB Modified Exception
Exception Level Exception Vector Cause Code
Level 1 V_COMMON

 BEV=0: 0x80000180
 BEV=1: 0xBFC00380

Cause.ExcCode = 1

Cause of Exception
The TLB Modified exception occurs when the virtual address of a store operation matches a TLB entry that
is Valid, not Dirty (i.e. not writable). This exception is not maskable.

Operation
When the TLB Modified exception is recognized, the values of the registers are set as follows, and the
control is transferred to the V_COMMON exception vector:

• Cause.ExcCode : 1

• EPC Register : Restart Address

• Cause.BD : When the exception is caused in the branch delay slot, it is set to 1, otherwise, 0.

• BadVAddr Register : The virtual address that failed address translation.

• Context Register : The address of the page table and high-order 19 bits of the virtual address that

failed address translation

• EntryHi Register : High-order 19 bits of the virtual address that failed address translation and

ASID

• EntryLo Register : Undefined

Handler Processing
The kernel uses the failed virtual address or virtual page number to identify the access control information. If
write operations are not permitted, a write protection violation occurs. If write accesses are permitted, the
page frame is marked dirty/writable by the kernel in its own data structures.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-101-

4.2.7. TLB Refill Exception
Exception Level Exception Vector Cause Code
Level 1 V_TLB_REFILL *

 BEV=0: 0x80000000
 BEV=1: 0xBFC00200

Cause.ExcCode = 2(Load)
Cause.ExcCode = 3(Store)

* When it occurs in the TLB Refill exception handler, the vector is V_COMMON (0x80000180 / 0xBFC00380).

Cause of Exception
The TLB Refill exception occurs if there is no TLB entry that matches a virtual address when referring to a
mapped address space. This exception is not maskable.

Operation
When the TLB Refill exception is recognized, the values of the registers are set as follows, and the control is
transferred to the V_TLB_REFILL exception vector:

• Cause.ExcCode: When the exception is caused due to a load operation, it is set to 2, and when it

is caused due to a store operation, it is set to 3

• EPC Register : Restart Address

• Cause.BD : When the exception is caused due to the instruction of a branch delay slot, it is set to

1, otherwise, 0

• BadVAddr Register : The virtual address that failed address translation

• Context Register : The address of the page table and high-order 19 bits of the virtual address that

failed address translation

• EntryHi Register : High-order 19 bits of the virtual address that failed address translation and

ASID

• EntryLo Regiseter : Undefined

• Random Register : Place that stores new TLB entry (TLB index)
When the TLB Refill exception occurs within the TLB Refill exception handler (since the Status.EXL bit has
been set), the control is transferred to the V_COMMON exception vector. Note that, in this situation, the
EPC register and Status.BD bit that indicate the position where the exception is caused are not modified.

Handler Processing
The handler of this exception reads physical frames and access control bits from the page table, regarding the
contents of the Context register as a virtual address, and stores them in the EntryLo0 and EntryLo1 registers.
Then, it writes the EntryHi and EntryLo registers in TLB.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-102-

4.2.8. TLB Invalid Exception
Exception Level Exception Vector Cause Code
Level 1 V_COMMON

 BEV=0: 0x80000180
 BEV=1: 0xBFC00380

Cause.ExcCode = 2 (Instruction Fetch / Load)
Cause.ExcCode = 3 (Store)

Cause of Exception
The TLB Invalid Exception occurs when the TLB entry that matches a virtual address is invalid (V=0). This
exception is not maskable.

Operation
When the TLB Invalid exception is recognized, the values of the registers are set as follows, and the control
is transferred to the V_COMMON exception vector:

• Cause.ExcCode: When the exception is caused due to an instruction fetch or a load operation, it is

set to 2, and when it is caused due to a store operation, it is set to 3

• EPC Register : Restart Address

• Cause.BD : When the exception is caused in the branch delay slot, it is set to 1, otherwise, 0

• BadVAddr Register : The virtual address that failed address translation

• Context Register : The address of the page table and high-order 19 bits of the virtual address that

failed address translation

• EntryHi Register : High-order 19 bits of the virtual address that failed address translation and

ASID

• EntryLo Register : Undefined

• Random Register : Position that stores new TLB entry (TLB index)

Handler Processing
A TLB entry is, typically, marked invalid when one of the following is true, and the V bit is cleared to 0.

• A virtual address does not exist

• The virtual address exists, but not in main memory (a page fault)

• Desired trap (e.g. to maintain a reference bit)
After servicing the cause of a TLB Invalid exception, the TLB entry is probed with TLBP (TLB Probe), and
replaced by an entry with its Valid bit set.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-103-

4.2.9. Address Error Exception
Exception Level Exception Vector Cause Code
Level 1 V_COMMON

 BEV=0: 0x80000180
 BEV=1: 0xBFC00380

Cause.ExcCode = 4 (Instruction Fetch / Load)
Cause.ExcCode = 5 (Store)

Cause of Exception
The Address Error exception occurs in one of these situations:

• Attempting to load or store a doubleword, word, or halfword data on an unaligned address

• Attempting to fetch an instruction that is not aligned on a word boundary

• Attempting to refer to the kernel address space in User or Supervisor mode

• Attempting to refer to the supervisor address space in User mode
This exception is not maskable.

Operation
When the Address Error exception is recognized, the values in each register are set as follows, and the
control is transferred to the V_COMMON exception vector:

• Cause.ExcCode : When the exception is caused due to a load or the instruction fetch, it is set to 4,

and when it is caused due to a store, it is set to 5

• EPC Register : Restart Address

• Cause.BD : When the exception is caused due to the instruction of a branch delay slot, it is set to

1, and otherwise, 0

• BadVAddr Register : Bad Virtual address that is the direct cause for an exception generation

• Context Register : Undefined

• EntryHi.VPN : Undefined

• EntryLo Register : Undefined

Handler Processing
No special attention is required for the exception handler.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-104-

4.2.10. Bus Error Exception
Exception Level Exception Vector Cause Code
Level 1 V_COMMON

 BEV=0: 0x80000180
 BEV=1: 0xBFC00380

Cause.ExcCode = 6 (Instruction Fetch)
Cause.ExcCode = 7 (Load / Store)

Cause of Exception
The Bus Error is an external exception, and is caused by events such as bus time-out, external bus parity
errors, invalid physical memory addresses or invalid access types. This exception is masked when Status.EXL
or Status.ERL is set to 1 (when processing an exception handler).

Operation
When the Bus Error exception is recognized, each of the registers is set as follows, and the control is
transferred to the V_COMMON exception vector:

• Cause.ExcCode : When the exception is caused due to an instruction fetch operation, it is set to 6,

and when it is caused due to a load/store operation, it is set to 7

• EPC Register : The instruction that the processor is executing

• Cause.BD : When the exception is caused in the branch delay slot, it is set to 1, otherwise, 0
If the Bus Error exception is caused by a load or store instruction, the instruction is retired. At that time, the
value that is loaded in the registers is undefined, and how the contents of memory are updated depends on
the memory subsystem’s design. If a data value breakpoint is set at the address, breakpoint recognition
depends on the implementation.

Handler Processing
The Bus Error exception is imprecise and has no special relation to a currently executing instruction. The
Bus Error may occur due to an instruction prefetch, the operation to the data cache line that is not related to
the instruction, or the load / store instruction issued several steps before. So restoring and continuing the
processing is difficult.
If the Bus Error occurs when reading an instruction fetch or data cache, the value of the loaded cache line is
undefined. Since it is not possible, in general, to determine the offending address, the entire data and
instruction cache should be invalidated.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-105-

4.2.11. System Call Exception
Exception Level Exception Vector Cause Code
Level 1 V_COMMON

 BEV=0: 0x80000180
 BEV=1: 0xBFC00380

Cause.ExcCode = 8

Cause of Exception
The System Call exception occurs when executing the SYSCALL instruction. This exception is not maskable.

Operation
When the System call exception is recognized, each of the registers is set as follows, and the control is
transferred to the V_COMMON exception vector:

• Cause.ExcCode : 8

• Cause.BD : When the exception is caused in the branch delay slot, it is set to 1, otherwise, 0

• EPC Register : Restart Address (The address of the instruction causing exception. However, if

Cause.BD is 1, it is the address of the preceding conditional branch instruction.)

Handler Processing
With the SYSCALL instruction, bits 25:6 of the instruction code are an optional code field. Obtain the
parameter for the exception by calculating the address of the SYSCALL instruction with the Cause.BD and
EPC in the handler, and reading the code field.
When resuming the execution after finishing the handler processing, the SYSCALL instruction that caused
an exception should not be re-executed. For this reason, add 4 to the EPC register before returning with
ERET. Note that if the SYSCALL instruction is in a branch delay slot, complicated processing (i.e.
calculating the re-executing address by considering if the conditional branch can be generated or not) may be
required.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-106-

4.2.12. Break Exception
Exception Level Exception Vector Cause Code
Level 1 V_COMMON

 BEV=0: 0x80000180
 BEV=1: 0xBFC00380

Cause.ExcCode = 9

Cause of Exception
The Break exception occurs when executing the BREAK instruction. This exception is not maskable.

Operation
When the Break exception is recognized, each of the registers is set as follows, and the control is transferred
to the V_COMMON exception vector:

• Cause.ExcCode : 9

• Cause.BD : When the exception is caused in the branch delay slot, it is set to 1, otherwise, 0

• EPC Register : Restart Address (The address of the instruction causing exception. However, if

Cause.BD is 1, it is the address of the preceding conditional branch instruction.)

Handler Processing
With the BREAK instruction, bits 25:6 of the instruction code are an optional code field. Obtain the
parameter for the exception by calculating the address of the BREAK instruction with the Cause.BD and
EPC in the handler, and reading the code field.
When resuming the execution after finishing the handler processing, the BREAK instruction that caused an
exception should not be re-executed. For this reason, add 4 to the EPC register before returning with ERET.
Note that if the BREAK instruction is caused in a branch delay slot, complicated processing (i.e. calculating
the re-executing address by considering if the conditional branch can be generated or not) may be required.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-107-

4.2.13. Reserved Instruction Exception
Exception Level Exception Vector Cause Code
Level 1 V_COMMON

 BEV=0: 0x80000180
 BEV=1: 0xBFC00380

Cause.ExcCode = 10

Cause of Exception
The Reserved Instruction exception occurs when attempting to execute an undefined or unsupported
instruction code. This exception is not maskable.

Operation
When the Reserved Instruction exception is recognized, each of the registers is set as follows, and the
control is transferred to the V_ COMMON exception vector:

• Cause.ExcCode : 10

• Cause.BD : When the exception is caused in the branch delay slot, it is set to 1, otherwise, 0

• EPC Register : Restart Address (The address of the instruction causing exception. However, if

Cause.BD is 1, it is the address of the preceding conditional branch instruction.)

Handler Processing
When resuming the execution after finishing the handler processing, the Reserved Instruction that caused an
exception should not be re-executed. For this reason, add 4 to the EPC register before returning with ERET.
Note that if the exception is caused in a branch delay slot, complicated processing (i.e. calculating the re-
executing address by considering if the conditional branch can be generated or not) may be required.

Programming Notes
In other MIPS ISA implementations, attempting to execute 64-bit operations in 32-bit User or Supervisor
mode may cause the Reserved Instruction exception. In the EE Core, however, 64-bit operations are always
valid, regardless of the operation mode.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-108-

4.2.14. Coprocessor Unusable Exception
Exception Level Exception Vector Cause Code
Level 1 V_COMMON

 BEV=0: 0x80000180
 BEV=1: 0xBFC00380

Cause.ExcCode = 11

Cause of Exception
The Coprocessor Unusable exception occurs when attempting to execute the instruction of a coprocessor
whose CUx bit of the Status register is 0 (unusable). (In Kernel mode, however, the COP0 instruction can
execute regardless of Status.CU0.) This instruction is not maskable.

Operation
When the Coprocessor Unusable exception is recognized, each of the registers is set as follows, and the
control is transferred to the V_COMMON exception vector:

• Cause.ExcCode : 11

• Cause.CE : The number of the coprocessor causing exceptions

• Cause.BD : When the exception is caused in the branch delay slot, it is set to 1, otherwise, 0

• EPC Register : Restart Address (the address of the instruction causing exception. However, if

Cause.BD is 1, it is the address of the preceding conditional branch instruction.)

Handler Processing
If the process that causes exceptions has access to the coprocessor, the process can be re-executed by setting
the Status.CUx bit to 1 (usable) and restoring from the exception handler.
Even if the process has access, when the coprocessor does not exist or has failed, resuming the process is
possible by emulating the interpretation of the coprocessor instruction in the handler and advancing the EPC
register to the next address. Note that if the Cause.BD is 1, the conditional branch instruction should be
interpreted before the processing.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-109-

4.2.15. Trap Exception
Exception Level Exception Vector Cause Code
Level 1 V_COMMON

 BEV=0: 0x80000180
 BEV=1: 0xBFC00380

Cause.ExcCode = 13

Cause of Exception
The Trap exception occurs when the TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEIU, TLTI,
TLTIU, TEQI, or TNEI instruction (Trap Instruction) results in a true condition. This exception is not
maskable.

Operation
When the Trap exception is recognized, each of the registers is set as follows, and the control is transferred
to the V_COMMON exception vector:

• Cause.ExcCode : 12

• Cause.BD : When the exception is caused in the branch delay slot, it is set to 1, otherwise, 0

• EPC Register : Restart Address (the address of the instruction causing exception. If Cause.BD is

1, however, the address of the preceding conditional branch instruction.)
Note that the trap instruction is considered complete regardless of whether or not the Trap exception
occurs.

Handler Processing
With the TGE, TGEU, TLT, TLTU, TEQ, or TNE instruction, bits 15:6 of the instruction code are an
optional code field. Obtain the parameter for the exception by calculating the address of the trap instruction
with Cause.BD and EPC in the handler and, reading the code field. If the trap instruction has the code field
or not depends on bits 31:26; 000000 or 000001.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-110-

4.2.16. Overflow Exception
Exception Level Exception Vector Cause Code
Level 1 V_COMMON

 BEV=0: 0x80000180
 BEV=1: 0xBFC00380

Cause.ExcCode = 12

Cause of Exception
The Overflow exception occurs when the ADD, ADDI, SUB, DADD, DADDI, or DSUB instruction
results in a 2’s complement overflow. This exception is not maskable.

Operation
When the Overflow exception is recognized, each of the registers is set as follows, and the control is
transferred to the V_COMMON exception vector:

• Cause.ExcCode : 12

• EPC Register : Restart Address

• Cause.BD : When the exception is caused in the branch delay slot, it is set to 1, otherwise, 0

Handler Processing
No special attention is needed.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-111-

5. Memory Management

The EE Core processor provides a memory control unit (MMU) which uses an on-chip address translation look-
aside buffer (TLB) to translate virtual addresses into physical addresses.
This chapter describes the virtual and physical address spaces, the virtual-to-physical address translation, the
cache mode, and the System Control Coprocessor (COP0) that provides the software interface to the TLB.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-112-

5.1. Address Space
This section describes virtual and physical spaces.

5.1.1. Physical Address Space
The EE Core has a 32-bit physical address. The physical address space corresponds to 4 GB.

5.1.2. Virtual Address Space
The EE Core implements only a 32-bit virtual address space. There is no requirement for address sign extension,
and no checking for the address error exception will be done on the upper 32 bits of the address.
The virtual address is 32-bit, and consists of the virtual page number (VPN) and offset. The upper 3 bits of the
VPN is used for identifying the operation mode. The page size is variable; either 4KB, 16KB, 64KB, 256KB,
1MB, 4MB, or 16MB. The width of the VPN and offset depend on the page size.
Also, the virtual address space has an 8-bit address space identifier (ASID), which reduces the frequency of the
TLB flushing when switching contexts.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-113-

5.1.3. Operating Modes and Address Space
The EE Core has the three standard MIPS operating modes: User (user program), Supervisor (OS), and Kernel
(exception handler). The address spaces of each operating mode are shown in Figure 5-1.

 User Mode Supervisor Mode Kernel Mode
 Status.KSU = 10 Status.KSU = 01 Status.KSU = 00

 Status.EXL = 0 Status.EXL = 0 or Status.EXL = 1

Virtual Address Status.ERL = 0 Status.ERL = 0 or Status.ERL = 1

0xFFFF FFFF

0xE000 0000

Address Error

 kseg3 (0.5GB)
Mapped

0xDFFF FFFF

0xC000 0000

Address Error

 sseg (0.5GB)
Mapped

 ksseg (0.5GB)
Mapped

0xBFFF FFFF

0xA000 0000

Address Error

 kseg1 (0.5GB)
Unmapped*
Uncached

0x9FFF FFFF

0x8000 0000

 kseg0 (0.5GB)
Unmapped*

Cached**
0x7FFF FFFF

0x0000 0000

useg (2GB)

Mapped

suseg (2GB)

Mapped

kuseg (2GB)

Mapped***

*Note: Virtual addresses of Kernel segments, kseg0 and kseg1, are not mapped through the TLB, and are always translated into physical

addresses from 0x0000 0000 to 0x1FFF FFFF.

**Note: The kseg0 cache mode is controlled by the K0 field in the Config register.

***Note: The Kernel mode user space, or kuseg, is unmapped when Status.ERL=1 (when the level 2 exception handler is executing).

Figure 5-1 Address Space of Each Operating Mode

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-114-

5.1.4. User Mode Address Space
In the User mode, a user program is executed. The processor operates in the User mode when KSU = 10, ERL
=0, and EXL = 0 in the Status register.
In the User mode, a uniform virtual address space of 2 GB, useg, is available (Fig. 5-2). The most significant bit
of the virtual address available in User mode is 0. Attempting to access the address whose most significant bit is
1 will cause the address error exception.

Virtual Address User Mode Physical Address Space
0xFFFF FFFF

0xE000 0000

0xDFFF FFFF
0xC000 0000

Address Error

0xBFFF FFFF
0xA000 0000

0x9FFF FFFF
0x8000 0000

0x7FFF FFFF

0x0000 0000

useg
(2GB)

-> Mapped
through

TLB

Figure 5-2 User Mode Address Space

useg (User Mode – User Space)
The user space, or useg, is allocated to the virtual address 0x00000000 to 0x7FFFFFFF, and is mapped into
the physical address by the TLB. (At that time, the virtual address is extended by adding 8 bits ASID.) The
cache mode is also controlled by the TLB entry.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-115-

5.1.5. Supervisor Mode Address Space
The Supervisor mode is the operation mode in which an OS routine is executed. The processor operates in the
Supervisor mode when KSU = 01, ERL =0, and EXL = 0 in the Status register.
In the Supervisor mode, in addition to the address space available in User mode (0x00000000 to 0x7FFFFFFF),
the address space in which the most significant 3 bits of the virtual address is 110 (0xC0000000 to
0xDFFFFFFF) is available. Attempting to access other than these addresses will cause the address error
exception.

Virtual Address Supervisor Mode Physical Address Space
0xFFFF FFFF

0xE000 0000

0xDFFF FFFF
0xC000 0000

sseg
(0.5GB)

-> Mapped
through TLB

0xBFFF FFFF
0xA000 0000

0x9FFF FFFF
0x8000 0000

0x7FFF FFFF

0x0000 0000

suseg
(2GB)

-> Mapped
through

TLB

Figure 5-3 Supervisor Mode Virtual Address Space

suseg (Supervisor Mode – User Space)
Supervisor mode user space, or suseg, is allocated to the virtual address 0x00000000 to 0x7FFFFFFF, and is
mapped into the physical address by the TLB. (At that time, the virtual address is extended by adding 8 bits
ASID.) The cache mode is also controlled by the TLB entry.

sseg (Supervisor Mode – Supervisor Space)
Supervisor space, or sseg, is allocated to the virtual address0xC0000000 to 0xDFFFFFFF, and is mapped
into the physical address by the TLB. (At that time, the virtual address is extended by adding 8 bits ASID.)
The cache mode is also controlled by the TLB entry.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-116-

5.1.6. Kernel Mode Address Space
The Kernel mode is the operation mode in which the exception handler is executed. When an exception is
recognized, the processor becomes Kernel mode, and returns to the original mode by the ERET instruction.
The processor operates in the Kernel mode when KSU = 00, EXL = 1, or ERL=1 in the Status register.
The virtual address space of the Kernel mode is divided into regions differentiated by the most-significant 3 bits
of the virtual address, as shown in Fig. 5-4.

Virtual Address Kernel Mode Physical Address Space
0xFFFF FFFF

0xE000 0000
kseg3
(0.5GB)

-> Mapped
through TLB

0xDFFF FFFF
0xC000 0000

ksseg
(0.5GB)

-> Mapped
through TLB

0xBFFF FFFF
0xA000 0000

kseg1
(0.5GB Uncached)

0x9FFF FFFF
0x8000 0000

kseg0
(0.5GB Cached)

0x7FFF FFFF

0x2000 0000

->
Mapped
through
TLB*

0x1FFF FFFF
0x0000 0000

kuseg
(2GB)

 Kernel Boot and I/O
(0.5GB)

*Note: Kernel mode user space, or kuseg, is unmapped when Status.ERL=1 (when the level 2 exception handler is executing).

Figure 5-4 Kernel Mode Virtual Address Space

kuseg (Kernel Mode – User Space)
Kernel mode user space, or kuseg, is allocated to the virtual address 0x00000000 to 0x7FFFFFFF. When
Status.ERL=0, (when the level 1 exception handler is executing), as in the cases of User and Supervisor
mode, the virtual address is mapped into the physical address by adding 8 bits ASID by the TLB.
When Status.ERL = 1 (when the level 2 exception handler is executing), kuseg becomes unmapped and
uncached, and mapped to the physical address 0x00000000 to 0x7FFFFFFF directly.

kseg0 (Kernel Mode – Kernel Space 0)
In Kernel mode, the space whose most significant 3 bits of the virtual address is 100 (0x80000000 -
0x9FFFFFFF) is the Kernel space, kseg0.
kseg0 is not affected by the address translation by the TLB, and is mapped to the physical address, defined
by subtracting 0x80000000 from the virtual address, that is 0x00000000 to 0x1FFFFFFF directly. The cache
mode is controlled by the k0 field of the Config register.

kseg1 (Kernel Mode – Kernel Space 1)
In Kernel mode, the space whose most significant 3 bits of the virtual address is 101 (0xA0000000 to
0xBFFFFFFF) is the Kernel space, kseg1.
kseg1 is not affected by the address translation by the TLB, and is mapped to the physical address, defined
by subtracting 0xA0000000 from the virtual address, that is 0x00000000 to 0x1FFFFFFF directly. Caches are
disabled, and the physical memory (or memory-mapped I/O device register) is accessed directly.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-117-

ksseg (Kernel Mode – Supervisor Mode)
In Kernel mode, the space whose most significant 3 bits of the virtual address is 110 (0xC0000000 to
0xDFFFFFFF) is the Supervisor space, ksseg. As in the case of Supervisor mode, the virtual address is
extended by adding 8 bits ASID, and is mapped into the physical address by the TLB.

kseg3 (Kernel Mode – Kernel Space 3)
In Kernel mode, the space whose most significant 3 bits of the virtual address is 111 (0xE0000000 to
0xFFFFFFFF) is the Kernel space, kseg3. The virtual address is extended by adding 8 bits ASID, and is
mapped into the physical address by the TLB. The cache mode is also controlled by the TLB.
Note that even if the program counter wraps around from kseg3 to kuseg, no address error exception occurs.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-118-

5.2. Address Translation
A virtual address to physical address translation is done by calculating the physical frame number (PFN) that
corresponds to a virtual page number (VPN) from the corresponding table (page table). The page table is placed
in memory, and is controlled by the OS. In order to accelerate the address translation, the address translation
look-aside buffer (TLB) is provided. The following sections describe the address translation that uses the TLB.

5.2.1. Overview of Address Translation
The virtual address space is divided into particular size pages and is mapped into the physical address space in
pages (Fig 5-5). The address translation process calculates the page number of the physical address space from
the page number of the virtual address space using the page table.

PFN
Physical Address

Space

m

m-1

2

1

0

Virtual Address
Space VPN

n

n-1

2

1

0

A
ddress T

ran
slation

Figure 5-5 Mapping in Page Units

Page sizes can be chosen from 4KB, 16KB, 64KB, 256KB, 1MB, 4MB, or 16MB. The upper 20 to 8 bits of the
virtual address become the virtual page number (VPN), depending on these sizes.
Fig. 5-6 and Fig 5-7 illustrate the corresponding conception figures between virtual and physical addresses, when
the page size is 4KB, or the VPN is 20-bit width, and when the page size is 16MB, or the VPN is 8-bit width,
respectively.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-119-

 Page Size = 4 KB

31 12 11 0

VPN Offset
20 12

Virtual Address

31 12 11 0

PFN Offset
20 12

Physical Address

Page Table (TLB)
VPN0 PFN0
VPN1 PFN1
VPN2 PFN2
VPN3 PFN3

:
:

:
:

Figure 5-6 Address Translation with 4 KB Pages

Page Size = 16 MB

31 24 23 0

VPN Offset
8 24

Virtual Address

31 24 23 0

PFN Offset
8 24

Physical Address

Page Table (TLB)
VPN0 PFN0
VPN1 PFN1
VPN2 PFN2
VPN3 PFN3

:
:

:
:

Figure 5-7 Address Translation with 16 MB Pages

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-120-

5.2.2. Address Translation Look-aside Buffer (TLB)
Since the page table that indicates the relation between the virtual and physical addresses must be read and
written at high speed, an on-chip address translation look-aside buffer (TLB) is provided. The TLB is a 48-entry
full associative memory. It holds the access limitation flag of each page, cache mode, page size information,
ASID, as well as VPN-PFN corresponding information 2 pages per 1 entry. (The contents of a TLB entry are
described in detail later.)
During the address translation, the TLB takes the VPN from the virtual address that is to be accessed, and the
TLB entry that has the VPN2 field that matches the VPN is searched. If the matched TLB entry is searched
(TLB hit), it takes the PFN from the TLB entry, and a physical address is obtained by combining it with the
lower Offset of the virtual address. (ASID and the G bit are related to judge the TLB hit. Details are described
later.)
Since the number of the TLB entry is limited, holding information about the entire virtual address is not
possible. If there is no TLB entry that matches the VPN, a TLB miss occurs and a TLB Refill exception is
generated. Then the software (OS) reads the proper information from the page table in memory into the TLB.
The corresponding information newly read by the TLB miss can be written in the TLB entry that is selected by
the hardware at random or the TLB entry specified in software.

Fixed Entry
A part of the TLB entry can be fixed to protect it from rewriting when newly corresponding information is
read due to a TLB miss. Refer to the description of the Wired register and the TLBWR instruction for more
details.

TLB Invalid
The V bit of the TLB entry indicates validity of the entry. When the V bit of the TLB entry that matches the
given virtual address is 0, a TLB Invalid exception occurs.

Multiple Match Protection
The EE Core does not support multiple TLB entry matches to a given virtual address. In this case, the
operation is undefined. The software is expected never to allow the multiple matches to occur.

G bit and ASID
When the G bit of the TLB entry is set to 1, the TLB hit or miss is judged only by the VPN match for the
TLB entry. When the G bit is 0, the TLB hit does not occur unless, in addition to the VPN match, ASID
corresponds to the ASID field of the EntryHi register. Therefore, if allocating different ASIDs
(EntryHi.ASID holds different values) during each process (by providing proper page tables), different
physical memory regions are available for every process in the same virtual address.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-121-

5.2.3. Address Translation Process Flow
Fig. 5-8 illustrates the flow chart for the address translation process, which obtains the physical address from the
virtual address.
The address translation process is largely divided into four stages:

• At the first stage, according to the processor’s operating mode, the logic judges if the input virtual address

is valid or not. If it is not valid, the address error exception occurs. Since the address that corresponds to

kseg0 and kseg1 in Kernel mode is unmapped, the physical address is obtained at this stage.

• At the second stage, the logic searches the VPN, the upper 8 to 20 bits (depending on the page size) of the

virtual address, and the TLB entry that matches the ASID field of the EntryHi register (only when the

Global bit is 1). If there is no TLB entry to match, the TLB Refill exception is generated.

• At the third stage, the logic examines the control bit of the matched TLB entry. If the V bit is 0, the TLB

Invalid exception occurs. If the D bit is 0 and there is a write access, the TLB Modified exception occurs.

• At the final stage, the access target is determined according to the contents of the S bit and the C field. The

physical address is obtained from the physical page number (PFN) taken from the TLB entry and Offset in

the lower 24 to 12 bits of the virtual address.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-122-

Vir. Address
VPN / ASID

User Mode?

Valid Address?

Supervisor Mode?

No

Yes

No

Yes

Valid Address?
No

Yes

Yes

No

Mapped Address?

Yes

No

Address Error
Exception

Address Error
Exception

Unmapped
Access

VPN Match?

Yes

No

G = 1?

Yes

No

ASID Match?
No

Yes

TLB Refill
Exception

TLB Refill
Exception

V = 1?

Yes

No
TLB Invalid
Exception

D = 1?

Yes

No

Write Access?
Yes

No

TLB Modified
Exception

S = 1?

No

Yes

Use Cache?

No

Yes

Memory
Access

Cache
Access

SPR
Access

Global?

Valid?

Dirty?

Scratchpad?

1

2

3

4

Figure 5-8 Address Translation Process Flow

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-123-

5.2.4. TLB Entry
The TLB entry is a 128-bit data, and has the structure illustrated in Fig. 5-9. The contents of each field are
shown in the table below.

127 121 120 109 108 96

0 MASK 0

7 12 13

95 77 76 75 72 71 64

VPN2 G 0 ASID

19 1 4 8

63 62 58 57 38 37 35 34 33 32

S 0 PFN C D V 0

1 5 20 3 1 1 1

31 26 25 6 5 3 2 1 0

0 PFN C D V 0

6 20 3 1 1 1

Figure 5-9 Structure of a TLB Entry

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-124-

Name Pos. Contents
V 1 Valid

0 Mapping even pages is invalid.
1 Mapping even pages is valid.

D 2 Dirty
0 Disables a write to even pages.
1 Enables a write to even pages.

C 5:3 Cache modes in even pages
2 Uncached
3 Cached with write-back and write-allocate
7 Uncached accelerated
(Other values are reserved)

PFN 25:6 Page Frame Number
Page frame number of even pages.

V 33 Valid
0 Mapping odd pages is invalid
1 Mapping odd pages is valid

D 34 Dirty
0 Disables a write to odd pages
1 Enables a write to odd pages

C 37:35 Cache modes in odd pages
2 Uncached
3 Cached with write-back and write-allocate
7 Uncached accelerated
(Other values are reserved)

PFN 57:38 Page Frame Number
Page frame number of odd pages.

S 63 Scratchpad RAM
0 Main memory
1 Scratchpad RAM

ASID 71:64 Address Space ID
Address space identifier.

G 76 Global
0 Includes ASID for judgement condition of the TLB hit.
1 Ignores ASID.

VPN2 95:77 Virtual Page Number / 2
The value from dividing the virtual number by 2. (If concatenated with 0, it
becomes an even page, and if concatenated with 1, it becomes the virtual
page number corresponding to odd pages.)

MASK 120:109 Page Comparison Mask
The mask that indicates valid parts in VPN2 (indicates the page size).

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-125-

5.2.5. Scratchpad RAM Mapping
The scratchpad RAM (SPRAM) has a special restriction for allocating the virtual address, because it is physically
different from normal memories. It must be mapped into a contiguous 16 KB of virtual address space that is
aligned on a 16KB boundary. Results are not guaranteed if this restriction is not followed.
The TLB entry corresponding to SPRAM is indicated by setting the S bit to 1. The MASK field must be all
zeros, and two D bits and two V bits must be the same value, respectively. The PFN and C field values are
disregarded. (When read, the C field value is 2, which indicates uncached mode.)
The virtual address region 16KB that is to be a pair of even and odd pages to the virtual address allocated in
SPRAM will not be able to map as a 16KB page, since a multiple match of the TLB is not allowed. To use the
virtual address or keep it unused, it must be mapped as 4KB by 4 pages. (It can also be allocated to SPRAM
using another TLB entry.)
Fig. 5-10 illustrates the allocation of SPRAM to 16KB from the virtual address 0x00010000, and the mapping of
the corresponding odd pages (16KB from 0x00014000) as a 4KB page.

Virtual Address TLB Entry
0x0001700 4KB Odd Page

0x0001600 4KB Even Page VPN2 S=0

0x0001500 4KB Odd Page

0x0001400 4KB Even Page VPN2 S=0

0x0001300

0x0001200

0x0001100 VPN2 S=1

0x0001000

16KB-SPRAM

Figure 5-10 Example of SPRAM Mapping

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-126-

5.2.6. Cache Mode
One of the following cache modes can be specified for each page by the C field of the TLB entry.

C Field Setting Value Cache Mode

2 Uncached
3 Cached with write-back and write-allocate
7 Uncached accelerated

In the cached mode, when a cache miss occurs in a store operation, the missed data is read from memory to a
cache line. Then the data is stored, to perform a write allocate.
In the uncached accelerated mode, a special buffer (UCAB) is used. When loading data, the EE Core fetches 128
bytes (8 quadwords) from memory at one time and places them in UCAB. In the following load operation,
taking as much data from the UCAB as possible can reduce the bus traffic. For details of the UCAB, see "6.5.
Uncached Accelerated Buffer (UCAB)".
The store operation in the uncached accelerated mode uses a write-back buffer (WBB) of 8 qwords (128 bits x 8
entries). Data is stacked up in the same WBB entry to reduce bus traffic, as long as the destination memory
address is written in a store operation and the next store operation is performed within the same qword
boundary. Data is stacked up until any of the following occurs:

• Attempting to store data having a different attribute or an address

• Executing a load operation

• Executing the SYNC or SYNC.L instruction

• An exception

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-127-

5.3. System Control Coprocessor
The System Control Coprocessor (COP0) is the unit that supports privileged operations such as memory
management, address translation, cache control, and exception handling. TLB related registers and TLB
operating instructions of the COP0 are described in this section.

5.3.1. TLB Related Register
The registers directly related to the TLB entry, PageMask, EntryHi, EntryLo0, and EntryLo1, are provided.
Except for the G Bit position, the contents of these four registers correspond to the TLB entry. The registers
for controlling the use of each TLB entry, Index, Random, and Wired are provided. Also, the registers related to
the TLB exception, Context and BadVAddr are provided.

Register
Name

Register
Number

Contents

PageMask 5 Page Comparison Mask (Page Size)
EntryHi 10 VPN2 Virtual page number divided by two

ASID Address Space Identifier
EntryLo0 2 S Scratchpad RAM flag

PFN Page frame number of odd pages
C Cache mode of odd pages
D Write permission flag of add pages
G Global (disregard of ASID) flag

EntryLo1 3 PFN Page frame number of even pages
C Cache mode of even pages
D Write permission flag of even pages
G Global (disregard of ASID) flag

Index 0 Index TLB entry index
Random 1 Random TLB entry index (Updated automatically)
Wired 6 Wired The number of wired TLB entries
Context 4 PTEBase Page table address

BadVPN2 Virtual page number of an exception cause
BadVAddr 8 Virtual address of an exception cause

5.3.2. TLB Operation Instructions
The following instructions are provided in order to operate the TLB.

Mnemonic Function
TLBR Translation Look-aside Buffer Read

Reads the contents of the TLB entry that is indicated by the Index register, and
stores them in PageMask, EntryHi, EntryLo0, and EntryLo1 registers.

TLBWI Translation Look-aside Buffer Write Index
Stores the contents of PageMask, EntryHi, EntryLo0, and EntryLo1 registers in
the TLB entry that the Index register indicates.

TLBWR Translation Look-aside Buffer Write Random
Stores the contents of PageMask, EntryHi, EntryLo0, and EntryLo1 registers in
the TLB entry that the Random register indicates. (The Random register is
updated automatically.)

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-128-

(This page is left blank intentionally)

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-129-

6. Caches

The EE Core contains both an instruction cache and a separate data cache. The processor also contains an
embedded scratchpad RAM (SPRAM) for fast manipulation of large data structures and an embedded Uncached
Accelerated Buffer (UCAB), which operates as a read buffer for the uncached accelerated space.

This chapter describes the cache structures, operations and control.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-130-

6.1. Cache and SPRAM Features
The two caches of the EE Core are configured as shown in Table 6-1:

Cache Size Organization Line Size Refill Size
Instruction Cache 16 KB 2-Way 64 bytes 64 bytes
Data Cache 8 KB 2-Way 64 bytes 64 bytes

Table 6-1 Cache Configuration

The following are the main features of the caches:

• Separate Instruction Cache and Data Cache

• Virtually indexed and physically tagged caches

• 64-byte line size

• 64-byte refill size

• 2-way set-associative cache

• Write-back policy (Data Cache)

• Missed quadword first sequential order refills (Data Cache)

• Line Locking (Data Cache)

• Non-Blocking Loads

• Supports hits under miss (Data Cache)

• No bus snooping (CACHE instructions are used to keep coherency with memory)
The following are the features of the Scratchpad RAM (SPRAM):

• 16 KB static RAM organized as 1K x 128 bits

• External DMA read and write capability

• Accessible to software through load/store instructions

• Can be mapped to the virtual address space via software

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-131-

6.2. Organization of the Caches
Organization of the Instruction and Data Caches is described below. Both are 2-way set-associative, composed
of two sets of tags and 64-byte data.

Cache Size Organization Tag Index
Data 8KB 64 bytes x 64 entries x 2-way Bits 11: 6 in the virtual address
Instruction 16KB 64 bytes x 128 entries x 2-way Bits 12: 6 in the virtual address

Table 6-2 Cache Size and Address Bits

While the caches are indexed by the virtual address, a hit or miss is determined in a physical address. This is
possible because the caches and the TLB are accessed in parallel. When the tags have been accessed, the
translated physical address is compared with the frame number and a cache hit or miss is determined.

6.2.1. Organization of the Data Cache
The Data Cache is connected to the CPU via a 128-bit bus. Therefore, the Data Cache can supply to the CPU or
the coprocessors up to a quadword of data per access.
Organization of the Data Cache is illustrated in Figure 6-1. Tags are discussed in detail in a later section.

Way 0 Way 1

 　
↑

 ↑
 ↑

　
　
　

　
 　

↑
　

 ↑
　

 ↑
V

irtu
al A

ddress In
dex

64 bytes

64 bytes

Data

64 bytes

64 bytes

64 bytes

64 bytes

Tag

 L R V D PFN

 L R V D PFN

 L R V D PFN

 L R V D PFN

 L R V D PFN

 L R V D PFN

64 bytes

64 bytes

Data

64 bytes

64 bytes

64 bytes

64 bytes

Tag

 L R V D PFN

 L R V D PFN

 L R V D PFN

 L R V D PFN

 L R V D PFN

 L R V D PFN

64
 e

n
tr

ie
s

Figure 6-1 Organization of Data Cache

6.2.2. Organization of the Instruction Cache
The Instruction Cache is connected to the CPU pipeline via a 64-bit bus. This enables the CPU to fetch two
instructions per cycle. Organization of the Instruction Cache is shown in Figure 6-2. Tags are discussed in detail
in a later section.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-132-

Way 0 Way 1

 　
 ↑ ↑ ↑

　
　
　
　

 　
 ↑
　

 ↑
　

 ↑
V

irtu
al A

ddress In
dex

64 bytes

64 bytes

Data

64 bytes

64 bytes

64 bytes

64 bytes

Tag

V D PFN

V D PFN

V D PFN

V D PFN

V D PFN

V D PFN

12
8

en
tr

ie
s

64 bytes

64 bytes

Data

64 bytes

64 bytes

64 bytes

64 bytes

Tag

V D PFN

V D PFN

V D PFN

V D PFN

V D PFN

V D PFN

Figure 6-2 Organization of Instruction Cache

6.2.3. Tag Structure
The cache tag consists of a set of state bits and a physical page frame number or PFN field. The data and
instruction caches have different numbers of state bits.

Data Cache Tag Structure
Each Data Cache tag entry, as shown below, contains four state bits in addition to the physical page frame
number (PFN).

Dirty
(D)

Valid
(V)

LRF
(R)

Lock
(L) PFN

Figure 6-3 Data Cache Tag Fields

The Dirty bit and the Valid bit together identify the three states of the Data Cache Line (Valid Clean, Valid
Dirty or Invalid).

Dirty (D) Valid (V) Cache Line State
0 0 Invalid
0 1 Valid Clean
1 1 Valid Dirty

* The combination of D=1 and V=0 does not occur. When the V bit is set to 0, the D bit is also set to 0.

Table 6-3 Data Cache Line States

The LRF bits indicate the Least-Recently-Filled line and control a replacement between the two ways on the
same line. A refill access to a cache line in a way will flip the LRF bit to point to the other way as the least
recently filled. For details of the LRF line update operation, refer to Section "6.3.1. Line Replacement
Algorithm".
The lock bit is a flag which locks lines to keep data from being replaced. Refer to "6.3.7. Data Cache Lock
Function" for more details.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-133-

Instruction Cache Tag Structure
Each Instruction Cache tag entry, as shown below, contains two state bits in addition to the physical page
frame number (PFN).

Valid
(V)

LRF
(R) PFN

Figure 6-4 Instruction Cache Tag Fields

The Valid bit indicates if each line is in the Valid or Invalid states. The LRF bits, like those of the Data
Cache tag, indicate the Least-Recently-Filled line and control a replacement. Refer to Section "6.3.1. Line
Replacement Algorithm" for more information.

Initial Value of Cache Tags
Status bits of all Data and Instruction Cache tags are initialized to 0 and the values of PFN fields are
undefined upon reset.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-134-

6.3. Cache Operations
This section describes cache operations in regard to read/write policies, coherency, write-back and the lock
function.

6.3.1. Line Replacement Algorithm
Based on the LRF algorithm for line replacement of the Instruction Cache and Data Cache, one of the 2 ways
that was least recently refilled is replaced. For example, when a read from memory to each line occurs, the LRF
bit is flipped. (Load and store accesses to the Data Cache do not modify the LRF bit.) XOR of the LRF bits
indicate which way is the least recently filled and that result determines which way could be refilled. Refer to the
following table.

Way0
LRF

Way1
LRF

XOR Refill Way New
Way0 LRF

New
 Way1 LRF

0 0 0 -> 0 1 0
1 0 1 1 1 1
1 1 0 0 0 1
0 1 1 1 0 0

Table 6-4 LRF Line Replacement Algorithm

If the cache line is locked, regardless of the state of the LRF bits, the data is refilled into the unlocked way.
And when one of the ways is Invalid in the Instruction Cache, regardless of the state of the LRF bits, the data is
refilled into the Invalidated way.

6.3.2. Non-blocking Loads and Hit Under Miss
The Data Cache supports non-blocking load and hit under miss to improve performance. Support for a non-
blocking load allows the pipeline to continue instruction execution until one of the following occurs even when
load instructions are pending due to a cache miss or uncached loads are in the process of execution:

• An instruction which has data dependency with a load instruction that is pending (except for a load, store,

or prefetch instruction) is issued

• Pipe 0 stalls

Loads to GPRs are non-blocking and loads to COP1 and COP2 are always blocking.
Support for hit under miss enables access to the Data Cache and continued execution of instructions in the
pipeline, even when load, store, or prefetch instructions are pending due to a cache miss.
Uncached loads also do not stall the pipeline. The pipeline continues instruction execution until one of the
following occurs:

• A load, store, or prefetch instruction which has data dependency with the preceeding uncached load is

issued

• A Data Cache miss occurs

• An uncached accelerated buffer miss occurs

• An uncached load instruction is issued

Support for a blocking load and hit under miss allows the pipeline to continue instruction execution until one of
the following occurs, even when memory is accessed due to a data cache miss or uncached loads:

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-135-

• An instruction that has data dependency with the load instruction in the process of accessing memory is

issued

• A second Data Cache miss occurs or an uncached accelerated buffer miss occurs

• An uncached load instruction is issued

• Pipe 0 stalls

6.3.3. Cache Hit and Miss Operations
With a Data Cache hit, the cache sends data to the CPU in 128-bit (1-qword) units. In case of an Instruction
Cache hit, the cache sends data (instruction code) in 64-bit units. To read or write data less than 128 bits is
specified by the least significant 4 bits (bits 3:0) of the address.
With cache misses, cache refill is performed in one cache line (64-byte = 4-qword). Since the caches are
connected to the system bus via a 128-bit bus, cache refill takes a burst of 4 bus cycles (8 CPU cycles). (Actual
transfer time can be more due to bus arbitration, etc).
With a cache refill, both the Instruction and Data Cache always fetch first a missed quadword of a burst of four
quadwords. The sequence in which four quadwords are read depending on the least significant 2 bits of the
missed quadword is shown in the table below. Figure 6-5 illustrates the sequence in which the Data Cache is
read from the memory when the second quadword misses.

Missed Address
(PA[5:4])

Read Order (PA[5:4])

00 00 → 01 → 10 → 11
01 01 → 10 → 11 → 00
10 10 → 11 → 00 → 01
11 11 → 00 → 01 → 10

Table 6-5 Reread Order in Case of Cache Miss

 ↓ Miss
 128 bits 128 bits 128 bits 128 bits

 11 10 01 00

Read order Third Second First Fourth

Figure 6-5 Reread Processing in Case of Cache Miss

With a write miss to the Data Cache, the data is read from main memory in sequential order.
With cache misses in the Instruction Cache, just like with the Data Cache, a reread is performed in 4 quadwords
and the pipeline starts in the same cycle the final qword is stored into the Instruction Cache.

6.3.4. Data Cache Writeback
Data cache lines are written back to memory before the missed data are read when the line data are dirty and a
read or write miss occurs.
In addition, when the CACHE DXWBIN instruction has been executed to a dirty cache line or the CACHE
DHWBIN or CACHE DHWOIN instruction hits on a dirty cache line, the cache line is written back.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-136-

6.3.5. Data Cache State Transitions
As discussed previously, lines in the Data Cache can be in one of several states: Invalid, Valid Clean or Valid
Dirty.
Invalid means the Data Cache line does not contain valid data. When a miss occurs, the data can be read in to
the line immediately.
Valid Clean indicates that there is valid data in the Data Cache line and it is the same data as in memory.
Valid Dirty indicates that there is valid data in the Data Cache line and it is not the same data as in memory. That
is, the data written into the cache has not been reflected yet in memory. The line has to be written back before
reading the data.
The transition of the Data Cache is shown in Figure 6-6.

Read / Write

Write

Load miss
Prefetch miss
CACHE IXSTG (V=1, D=0)
Hit with CACHE DHWOIN

CACHE IXIN
CACHE DXWBIN

Hit with CACHE DHWBIN
Hit with CACHE DHIN
CACHE IXSTG (V=0)

Reset

Store miss
CACHE IXSTG (V=1, D=1)

Invalid

Valid
Dirty

Valid
Clean

Read

Figure 6-6 Data Cache Transition Diagram

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-137-

6.3.6. Instruction Cache State Transitions
Cache lines in the Instruction Cache can be in either of two states: Invalid or Valid.
Invalid means the Instruction Cache line does not contain valid instructions. When a miss occurs, the line can
read the instruction immediately.
Valid state indicates that there are valid instructions in the cache line.
The transition of the Data Cache is shown in Figure 6-7.

Reset
CACHE IXSTG (V=0)

CACHE IXIN

Valid

Read

Invalid

Hit with
CACHE IHIN

Load miss
CACHE IXSTG (V=1)
CACHE FILL

Figure 6-7 Instruction Cache Transition Diagram

6.3.7. Data Cache Lock Function
The contents of the Data Cache are replaced dynamically using the LRF algorithm. However, a Data Cache lock
function has been provided to retain important data in the cache.
When the Lock bit of the data cache tag is set, the LRF bit on the line is no longer meaningful and the other way
is the only way available for cache miss processing (this cache miss is blocking). A write access to a locked line is
performed only to the cache, not to memory. Also, the Dirty bit is not set. To lock the Data Cache, the
following two instructions can be used:

CACHE DXSTG(DCACHE Index Store Tag)
CACHE DXSDT(DCACHE Index Store Data)

The sample code for locking the data cache is as follows:

li t0,0x00010068 // PTagLo = 0x00010, D=V=L=1, R=0
mtc0 t0,$28 // Transfers t0 to the TagLo register
sync.l
cache dxstg,0(r0) // Sets (locks) the cache tag via the TagLo register
sync.l
la s0,0x00010000
sw t1,0(s0) // Writes to the locked line

The sample code for unlocking the data chache is as follows:

li t0,0x00010060 // D=V=1, L=R=0
mtc0 t0,$28 // Transfers t0 to the TagLo register
sync.l
cache dxstg,0(r0) // Sets (unlocks) the cache tag via the TagLo register
sync.l

The following restrictions apply to line locking:

• The result of re-locking a locked line is undefined

• The results of locking both ways of a cache line are undefined

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-138-

6.3.8. Relationship between Cached and Uncached Operations
Uncached or Uncached Accelerated load and store operations are always executed in order on the CPU bus. On
the other hand, cached load operations can precede earlier stored data on the CPU bus while the data is kept in
the buffer. In order to avoid this, wait until the stored data has been sent to the Data Cache, SPRAM or CPU
bus, using the SYNC or SYNC.L instructions.
Uncached or Uncached Accelerated store operations bypass the Data Cache completely.

6.3.9. Data Consistency between Cache and SPRAM
The capability to retain data consistency between address spaces, which are mapped into the instruction cache
and the data cache, and SPRAM is not provided.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-139-

6.4. Scratchpad RAM (SPRAM)
Certain applications require high-speed on-chip RAM that can be accessed by normal load and store instructions
to handle data structures efficiently. To achieve this capability, a Scratchpad RAM (SPRAM) of 16 KB is
provided, in addition to the locked Data Cache capability. The DMA controller, as well as the CPU, can access
SPRAM; the DMA controller has access priority.

6.4.1. SPRAM Overview
The SPRAM is similar to a tag-free Data Cache configured as 1024 x 128 bits. The SPRAM and the Data Cache
use the same access paths, which means the CPU can access only either SPRAM or the Data Cache in any given
CPU cycle. The SPRAM can be mapped into the virtual address.
SPRAM space pages are 16 KB in size. The least significant 14 bits of the virtual address indicate addresses in
SPRAM. The upper 18 bits of the virtual address are used to access the TLB to determine if that particular 16
KB block is mapped into SPRAM or not. To differentiate between the memory spaces (between the Data Cache
and SPRAM), the S bit in the TLB entry is used.

6.4.2. DMA Access to SPRAM
To read data from and write data to the SPRAM, a special DMA protocol is provided, in addition to load/store
instructions. The DMA transfer between SPRAM and memory is performed as shown in Figure 6-8.
For DMA writes to SPRAM, a special SPRAM write signal is provided to the CPU along with a 10-bit SPRAM
address (bits 13: 4). Data is placed on the CPU Bus. The CPU samples the data from the CPU Bus and writes it
into the indexed address in the SPRAM.
For DMA reads from SPRAM, the external DMA controller reads the contents of the SPRAM into memory.
The CPU Bus address is used to index the SPRAM and the corresponding data is placed on the CPU Bus. Thus,
by reading / writing with DMA, the CPU can execute programs concurrently, which can result in higher
performance.

SPRAM

CPU Bus

Pipeline

BIU
DMAC

address
data

CPU

Figure 6-8 SPRAM Data Paths

Figure 6-8 illustrates how the SPRAM is embedded in the CPU and accessed by the DMA. Simultaneous access
to the SPRAM by the CPU and the DMA controller results in alternate cycle accesses, with the DMA controller
having the highest priority.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-140-

6.4.3. SPRAM Mapping
The SPRAM can be mapped into the virtual address space as one 16-KB page. The sample code for setting
TLB is as follows:

li t0, Lo0 // Lo0=0x80000018 or (D<<2)31..0 or (V<<1)31..0
MTC0 t0, $2 // EntryLo0($2)=Lo0
li t1, Lo1 // Lo1=0x00000018 or (D<<2)31..0 or (V<<1)31..0
MTC0 t1, $3 // EntryLo0($3)=Lo1
MTC0 $0, $5 // PageMask($5)=0x00000000
li t2, VA_ASID // VA_ASID=(VA>>1)31..13 || 05 || (ASID)7..0
MTC0 t2, $10 // EntryHi($10)=VA_ASID
TLBWI // Can be replaced with TLBWR
SYNC.P

One of the following three values is given to EntryLo0/EntryLo1. In the SPRAM, the D and V bits of
EntryLo0 must be the same as those of EntryLo1. In addition, setting V to 0 and D to 1 is meaningless.

• Invalid entry (A TLB Invalid exception occurs to the first access.)

EntryLo0($2)==0x8000_0018 (S=1, D=0, V=0)

EntryLo1($3)==0x0000_0018 (D=0, V=0)

• Valid clean entry (A TLB Modified exception occurs to the first write operation.)

EntryLo0($2)==0x8000_001a (S=1, D=0, V=1)

EntryLo1($3)==0x0000_001a (D=0, V=1)

• Valid dirty entry (Normal setting that indicates writable area.)

EntryLo0($2)==0x8000_001e (S=1, D=1, V=1)

EntryLo1($3)==0x0000_001e (D=1, V=1)
The SPRAM has a restriction for mapping the page that pairs up with it. For details, refer to "5.2.5. Scratchpad
RAM Mapping".

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-141-

6.5. Uncached Accelerated Buffer (UCAB)
The EE Core has a small-capacity read-only cache for the uncached accelerated space to reduce the bus traffic.
This cache is called the Uncached Accelerated Buffer (UCAB).

6.5.1. UCAB Overview
The UCAB is a Direct Map cache of 128 bytes x 1 line. The UCAB is a read-only cache, and only a refill access
by a UCAB miss can write data to it.

Cache Size Organization Tag Index
UCAB 128 bytes 128 bytes x 1 Direct Map -

Table 6-6 UCAB Configuration

The UCAB tag holds the upper 25 bits of the physical address (5 bits from bit 11 to bit 7 are the same as those
of the virtual address). In an uncached accelerated load, if the upper 25 bits of the physical address match the
UCAB tag address, that is, if there is a hit in the UCAB, then data is provided from the UCAB.
The UCAB is disabled by one of the following:

• Load operation resulting in no hit in the UCAB

• Store operation

• SYNC or SYNC.L instruction

• Some exception
Bus snooping is not supported.
The UCAB tag has the Valid bit (V), but does not have the Dirty, LRF, and Lock bits.
The Valid bit is initialized to 0 when reset.

6.5.2. Non-Blocking Loads and Hit Under Miss
The UCAB supports non-blocking load and hit under miss as well as the Data Cache. Support for a non-
blocking load allows the pipeline to continue instruction execution until one of the following occurs even when
a refill operation is in the process of execution due to a load instruction resulted in a UCAB miss:

• An instruction which has data dependency with the load instruction that has resulted in a UCAB miss is

issued

• A Data Cache miss occurs or a second UCAB miss occurs

• An uncached load instruction is issued

• Pipe 0 stalls

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-142-

6.6. Cache Control Registers
The operations of the caches are controlled by bits in the Config register. For details, refer to "3.2. System
Control Coprocessor (COP0) Registers".

Bit Description
ICE Instruction Cache Enable
DCE Data Cache Enable
IC Instruction Cache Size (fixed)
DC Data Cache Size (fixed)

The two cache tag registers TagLo and TagHi are 32-bit read/write registers that are used for setting the cache
tag and running diagnostic checks on it.

TagLo Register
31 12 11 7 6 5 4 3 2 0

PTagLo 0 D V R L 0

TagHi Register
31 0

Name Contents
PTagLo Physical address bits 31:12
D Dirty bit (Not used for the Instruction Cache)
V Valid bit
L Lock bit (Not used for the Instruction Cache)
R LRF bit

The contents of the TagHi register have a variety of meanings depending on instructions.
These Tag registers are manipulated by MTC0 and CACHE instructions.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-143-

7. Performance Counters and Instruction Stepping

The performance counter provides the means for monitoring and counting the internal events of the CPU and
the pipeline during program execution. It is used for tuning the software and hardware. Debuggers can also use
the performance counter to provide instruction stepping.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-144-

7.1. Configuration of Performance Counter
The performance counter consists of one control register and two counter registers. These three registers are
mapped to COP0 register 25 and can be accessed by the dedicated COP0 move instruction.

7.1.1. Performance Counter Control Registers (PCCR)
The Performance Counter Control Register, or PCCR, controls the functions of the performance counter.

31 30 20 19 15 14 13 12 11 10 9 5 4 3 2 1 0

C
T
E

0 EVENT1 U1 S1 K1

E
X
L
1

0 EVENT0 U0 S0 K0

E
X
L
0

0

1 5 1 1 1 1 1 5 1 1 1 1 1

Name Pos. Contents
EXL0 1 PCR0 operation in Level 1 exception handler

0 Not counted
1 Counted

K0 2 PCR0 operation in Kernel mode (except in an exception handler)
0 Not Counted
1 Counted

S0 3 PCR0 operation in Supervisor mode
0 Not Counted
1 Counted

U0 4 PCR0 operation in User mode
0 Not Counted
1 Counted

EVENT0 9:5 Event specification counted by PCR0 (See Table 7-1)
EXL1 11 PCR1 operation in Level 1 exception handler

0 Not Counted
1 Counted

K1 12 PCR1 operation in Kernel mode (except in an exception handler)
0 Not Counted
1 Counted

S1 13 PCR1 operation in Supervisor mode
0 Not Counted
1 Counted

U1 14 PCR1 operation in User mode
0 Not Counted
1 Counted

EVENT1 19:15 Event specification counted by PCR1 (See Table 7-1)
CTE 31 Counter Enable

If 1, PCR0 and PCR1 counting and exception generation are enabled.
The PCCR register bits are initially undefined, except for the CTE bit, which is initialized to 0.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-145-

7.1.2. Counter Registers (PCR0 / PCR1)
There are two counter registers; PCR0 and PCR1. PCR0 and PCR1 can independently count one event,
according to the specifications in the control register.

31 30 0
O
V
F
L

VALUE

1 31

Name Pos. Contents
VALUE 30:0 Counter Value
OVFL 31 Counter Overflow Flag

7.1.3. Access to the Performance Counter Registers
Performance counter control register PCCR and counter registers PCR0 and PCR1 are accessed by using the
following MFC0 and MTC0 instruction variations, respectively.

Mnemonic Function
MFPC rt, 0 GPR[rt] ← PCR0 Transfer from counter PCR0 to GPR.
MFPC rt, 1 GPR[rt] ← PCR1 Transfer from counter PCR1 to GPR.
MFPS rt, 0 GPR[rt] ← PCCR Transfer from performance counter control register to GPR.
MTPC rt, 0 PCR0 ← GPR[rt] Transfer from GPR to counter PCR0.
MTPC rt, 1 PCR1 ← GPR[rt] Transfer from GPR to counter PCR1.
MTPS rt, 0 PCCR ← GPR[rt] Transfer from GPR to performance counter control register.

7.1.4. Initial Value of the Performance Counter Registers
The CTE bit of the Performance Counter Control Register PCCR is initialized to 0 upon reset. This prevents
event counting and exception generation immediately after reset.
The remaining bits of PCCR, and counter registers PCR0 and PCR1 must be initialized by software.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-146-

7.2. Performance Counter Operation Details
7.2.1. Counter Increment

Counters PCR0 and PCR1 increment by 1 whenever the events specified in PCCR.EVENT0 and
PCCR.EVENT1 are generated. However, the following three conditions must be met:

1. Counter enable flag PCCR.CTE is set to 1.
2. The processor’s operation mode matches the operation mode specified in PCCR.U0 / PCCR.S0 /

PCCR.K0 / PCCR.EXL0 or PCCR.U1 / PCCR.S1 / PCCR.K1 / PCCR.EXL1.
3. Level 2 exception handlers are not being executed.

7.2.2. Counter Event
The following table lists the events performance counters PCR0 and PCR1 can detect respectively and the values
that are specified in PCCR.EVENT0 and PCCR.EVENT1.

EVENT0/1 Counter 0 (PCR0) Counter 1 (PCR1)
0 (reserved) Low-order branch issued
1 Processor cycle Processor cycle
2 Single instruction issue Dual instruction issue
3 Branch issued Branch mispredicted
4 BTAC miss TLB miss
5 ITLB miss DTLB miss
6 Instruction cache (I$) miss Data cache (D$) miss
7 Access to DTLB WBB single request unavailable
8 Non-blocking load WBB burst request unavailable
9 WBB single request WBB burst request almost full
10 WBB burst request WBB burst request full
11 CPU address bus busy CPU data bus busy
12 Instruction completed Instruction completed
13 Non-BDS instruction completed Non-BDS instruction completed
14 COP2 instruction completed COP1 instruction completed
15 Load completed Store completed
16 No event No event

17-31 (reserved) (reserved)

Table 7-1 Events that the Performance Counters Support

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-147-

7.2.3. Counter Event Descriptions
The following are detailed descriptions of the events that the performance counter can count.

Low-order branch issued [PCR1, PCCR.EVENT1=0]
This event occurs whenever a branch is issued in the low-order (even address) position. The feature to
count this event is required, since only these branches are subject to BTAC lookup.
Note that a branch in this case is accompanied by the branch prediction (i.e. conditional branches and J/JAL
instruction). The JR, JALR, ERET, SYSCALL, BREAK, or TRAP instructions do not generate this event.

Processor cycle [PCR0, PCCR.EVENT0=1 / PCR1, PCCR.EVENT1=1]
This event occurs every CPU clock cycle.

Single instruction issue [PCR0, PCCR.EVENT0=2]
This event occurs when an instruction is issued in only one of the two EE Core logical pipelines.

Dual instruction issued [PCR1, PCCR.EVENT1=2]
This event occurs when an instruction is issued in the two EE Core logical pipelines. The counter value
increments by 1 at this point. Therefore, the number of instructions issued in a certain period can be
obtained from the following expression.

(Dual instruction issued) x 2 + (Single instruction issued)

Branch issued [PCR0, PCCR.EVENT0=3]
This event occurs when a branch is issued. If the instruction prior to the branch instruction generates an
exception, the branch instruction may be cancelled even when this event occurs.
Note that a branch in this case is accompanied by the branch prediction (i.e. conditional branches and J/JAL
instruction). The JR, JALR, ERET, SYSCALL, BREAK, or TRAP instructions do not generate this event.

Branch mispredicted [PCR1, PCCR.EVENT1=3]
This event occurs when the prediction of a branch address is incorrect in conditional branches. The TRAP
instruction does not generate this event. Note that a branch may get cancelled if the instruction prior to it
signals an exception.

BTAC miss [PCR0, PCCR.EVENT0=4]
This event occurs when the lookup to BTAC (Branch Target Address Cache) fails.
This enables counting of the low-order (even address) branch instructions that hit the BTAC. Note that
high-order (odd address) branch instructions do not refer to the BTAC.

TLB miss [PCR1, PCCR.EVENT1=4]
This event occurs when a TLB miss occurs.

ITLB miss [PCR0, PCCR.EVENT0=5]
This event occurs when an ITLB miss occurs.

DTLB miss [PCR1, PCCR.EVENT1=5]
This event occurs when a DTLB miss occurs.
DTLB is accessed even when an unmapped virtual address is accessed.

Instruction cache miss [PCR0, PCCR.EVENT0=6]
This event occurs when an instruction cache miss occurs. An uncached instruction fetch will not be
counted.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-148-

Data cache miss [PCR1, PCCR.EVENT1=6]
This event occurs when a bus read access occurs during a load, store, or prefetch instruction. It occurs if a
load, store, or prefetch instruction to the cached area results in a cache miss. This event also occurs during a
load operation from the cached area, when the cache is disabled (Config.DCE=0), and during a load
operation from an uncached or an uncached accelerated area.

Access to DTLB [PCR0, PCCR.EVENT0=7]
This event occurs when an access to DTLB occurs.
This event counts the total number of loads and stores executed to the cached area (including cancelled
ones). If there are no uncached loads and stores, dividing the counter value of the "data cache miss" event
by that of the "access to DTLB" event provides a good estimate of the data cache miss rate.
DTLB is accessed even when an unmapped virtual address is accessed.

WBB single request unavailable [PCR1, PCCR.EVENT1=7]
This event occurs when a single request is issued to a WBB having insufficient free entries (i.e. all eight
entries have already been used).

Non-blocking load [PCR0, PCCR.EVENT0=8]
This event occurs when a non-blocking cache miss (first cache miss) occurs due to a load instruction. It also
occurs when a UCAB miss occurs or a load instruction from the uncached area is executed.

WBB burst request unavailable [PCR1, PCCR.EVENT1=8]
This event occurs when a burst request is issued to a WBB having insufficient free entries (i.e. five or more
entries have already been used).

WBB single request [PCR0, PCCR.EVENT0=9]
This event occurs when a single request is issued to the WBB.

WBB burst request almost full [PCR1, PCCR.EVENT1=9]
This event occurs when a burst request is issued to a WBB having insufficient free entries (i.e. five to seven
entries have already been used).

WBB burst request [PCR0, PCCR.EVENT0=10]
This event occurs when a burst request is issued to the WBB.

WBB burst request full [PCR1, PCCR.EVENT1=10]
This event occurs when a burst request is issued to the WBB with no free entries (i.e. all eight entries have
already been used).

CPU address bus busy [PCR0, PCCR.EVENT0=11]
This event occurs every BUSCLK (not CPU clock) when the CPU address bus is unavailable.
The CPU address bus is considered unavailable if it is busy or data for the first address (out of two addresses
issued) has not yet been returned.

CPU data bus busy [PCR1, PCCR.EVENT1=11]
This event occurs every BUSCLK (not CPU clock) when the CPU data bus is unavailable.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-149-

Instruction completed [PCR0, PCCR.EVENT0=12 / PCR1, PCCR.EVENT1=12]

This event occurs when an instruction is completed (reaches the stage in which the instruction is sure to be
ended).
Subtracting the count value of the "instruction completed" event from the number of executed instructions
provides the number of cancelled instructions.
Some instructions including SYSCALL and TEQ generate exceptions as part of their operations. It is
considered that such instructions should complete, regardless of the occurrence of the exceptions. Even if
the condition of the TEQ instruction succeeds and causes a Trap exception, an instruction complete event
occurs. However, if an exception due to another cause occurs at this time, the instruction is cancelled, and no
instruction complete event occurs.
Even if an instruction in the branch delay slot (BDS) of a branch-likely instruction does not meet the branch
conditions, and is nullified, an instruction complete event occurs.
Note that up to two instructions can be executed every CPU cycle in the EE Core. Other instruction
completion type events are in like manner, but the event counter is incremented by two when two
instructions are executed and completed. Therefore, it is ambiguous which instruction causes counter
exceptions. When it is inconvenient, a dual instruction issue must be prohibited.

Non-BDS instruction completed [PCR0, PCCR.EVENT0=13 / PCR1, PCCR.EVENT1=13]
This event occurs when an instruction that does not have a branch delay slot completes (or reaches the stage
in which the instruction is sure to be finished).
This event does not occur when the branch instructions or jump instructions complete, but does occur when
the instruction in the branch delay slot completes. This event also occurs when an instruction in the branch
delay slot of a branch-likely instruction is nullified (the branch condition is not met).

COP2 instruction completed [PCR0, PCCR.EVENT0=14]
This event occurs when a COP2 instruction completes. This event also occurs when a COP2 instruction in
the branch delay slot of a branch-likely instruction is nullified (the branch condition is not met).

COP1 instruction completed [PCR1, PCCR.EVENT1=14]
This event occurs when a COP1 instruction completes. This event also occurs when a COP1 instruction in
the branch delay slot of a branch-likely instruction is nullified (the branch condition is not met).

Load completed [PCR0, PCCR.EVENT0=15]
This event occurs when a load instruction completes. This event even occurs when a load instruction is in
the branch delay slot of the branch-likely instruction, and the branch condition is not met and nullified. In
addition, this event occurs even when a bus error occurs.

Store completed [PCR1, PCCR.EVENT1=15]
This event occurs when a store instruction completes. This event even occurs when a store instruction is in
the branch delay slot of the branch-likely instruction, and the branch condition is not met and nullified. In
addition, this event occurs even when a bus error occurs.

No event [PCR0, PCCR.EVENT0=16 / PCR1, PCCR.EVENT1=13]
This event is a virtual event, and effectively disables the corresponding counter from counting up. It is
available if one of the two counters needs to be activated.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-150-

7.2.4. Occurrence of Counter Exceptions
A counter exception occurs when one of the performance counters overflows. The condition to generate the
counter exception is shown in the following expression.

STATUS.ERL && PCCR.CTE && (PCR0.OVFL || PCR1.OVFL)

When a counter exception occurs, after the instruction being executed is cancelled (see notes provided later in
this chapter), control is transferred to the counter exception handler using the following processing.

if (in branch delay slot) {
 ErrorEPC = PC - 4;
 CAUSE.BD2 = 1;
}
else {
 ErrorEPC = PC;
 CAUSE.BD2 = 0;
}
if (STATUS.DEV)
 PC = 0xBFC00280; // Entry point for bootstrap (Uncached)
else
 PC = 0x80000080; // Normal entry point
STATUS.ERL = 1;
CAUSE.EXC2 = 2; // Counter exception

Since the normal exception entry point is in kseg0 space, the address is unmapped in the counter exception
handler. Config.K0 determines the caching policy. If the cache must be saved at the time of the occurrence of a
counter exception, kseg0 should be configured in uncached mode. If the processing performance is more
important than caching, kseg0 should be configured in cached mode.

7.2.5. Priority of Counter Exceptions
Counter exceptions have the highest priority after the Reset and NMI exceptions.
If the Reset exception occurs, the program is initialized, and a simultaneous counter exception is ignored.
If the NMI and counter exceptions occur at the same time, the control is transferred to the NMI exception
handler with the OVFL bit of the counter set to 1 and the ErrorEPC register pointing at the instruction causing
the counter overflow. If the NMI exception handler exits, the instruction that caused the overflow is re-
executed. However, since the OVFL bit is set, the instruction is cancelled once more, and the control is
transferred to the counter exception handler.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-151-

7.2.6. Initializing Performance Counters
The following pseudo code sequence is needed to initialize and activate the performance counters. In the
example below, PCR0 is set up to count CPU clocks in all operating modes and generate a counter exception
after the count exceeds 231. PCR1 counts stores while in supervisor mode and generates a counter exception
after 256 such stores. The code must be executed while in kernel mode.

STATUS.ERL = 1; // Set ERL (to inhibit counting)
ErrorEPC = <target address where counting is to start>

PCR0 = 0; // Initialize PCR0 and …
PCCR.EVENT0 = 1; // … set up to count CPU clocks …
PCCR.U0 = 1; // in all operation modes
PCCR.S0 = 1;
PCCR.K0 = 1;
PCCR.EXL0 = 1;

PCR1 = 0x7FFFFF00; // Initialize PCR1 to 231 – 256, and …
PCCR.EVENT1 = 15; // … set up to count completed stores …
PCCR.U1 = 0; // … while in super visor mode
PCCR.S1 = 1;
PCCR.K1 = 0;
PCCR.EXL1 = 0;

PCCR.CTE = 1; // Enable counter operations
ERET // Clear ERL to jump to the target address
 // (Also guarantee that the COP0 registers are updated.)

7.2.7. Notes on Pipelining
Counters are incremented immediately after an event occurs. The occurrence of an event does not correspond
to the execution of an instruction, except for an event that specifies instruction completion. Even when an
instruction is nullified and leaves no results, the events generated so far are counted.
An event that specifies instruction completion (e.g. "load completed") is generated in the 2W stage where it is
guaranteed to complete. (Even if a bus error occurs in this stage, the load is considered to have been completed
and an event is generated.) Instruction completion is always in-order. Even if an instruction features out-of-
order completion, it must generate "instruction completed" events in order.
The general rule for internal exception handling is that only the instruction that has caused the exception and the
following instruction in process in the pipeline are cancelled. For counter exceptions, however, instructions in
process but which are older than the one causing the exception may also be cancelled. It is permitted only when
the event being counted is not an instruction completion event. If the performance counter counts ICache
misses that cause an exception, instructions in the pipe prior to the one causing the ICache miss may get
cancelled. If the exception handler examines the instruction word at ErrorEPC, it may find the word to be free
from the ICache miss. The instruction-completion-type events generated at stage 2W are detected as exceptions
by the EE Core at stage 2D. Therefore, there is a difference between the instructions that cause exceptions and
the instructions where the exceptions are generated. An example is shown in the figure below.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-152-

I Q R A D WI0

I Q R A D WI1

I Q R A D WI2

<- Counter overflow occurs.

<- Exception is generated.
 (Instruction is cancelled.)

7.2.8. Notes on Instruction Stepping
The following setting causes the program to be trapped after executing k steps.

PCCR.EVENT1=13
PCR1=0x8000_0000 - k

However, as described in "7.2.7. Notes on Pipelining", a counter exception might occur a few instructions after
the counter overflows. In the following example, the counter overflows when Instruction I0 is completed, but
an exception occurs in Instruction I4. The PCR1 value indicates three more instructions have been completed
in between.

I Q R A D WI1

I Q R A D WI2

I Q R A DI4

PCR1:

<- Exception is generated.
 (Instruction is cancelled.)

I Q R A D WI0

I Q R A D WI3

0x8000_0000

0x8000_0001

0x8000_0002

0x8000_0003

W

When canceling multiple instructions by clearing Config.DIE to 0, one more instruction is completed.

I Q R A D WI1

I Q R A DI2

PCR1:

<- Exception is generated.
 (Instruction is cancelled.)

I Q R A D WI0 0x8000_0000

0x8000_0001

W

If I1 has a stall condition, there are no more instructions to be executed.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-153-

I Q R A DI1

PCR1:

<- Exception is generated.
 (Instruction is cancelled.)

I Q R A D WI0 0x8000_0000

Wd

Note that inaccuracy is unavoidable in instruction stepping.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-154-

(This page is left blank intentionally)

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-155-

8. Floating-Point Unit (FPU)

This chapter describes the floating-point unit (FPU=COP1) of the EE Core. The following is an overview of
the FPU's features :

• High performance single-precision floating-point unit tightly coupled to the EE Core

• Supports single-precision format, as defined in the IEEE 754 specification

• No support for NaNs and plus/minus infinite is provided. Plus/minus "0" support is provided

• No hardware exception mechanism to affect the instruction stream

• Compatible with coprocessor 2 (VPU)

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-156-

8.1. Data Formats
8.1.1. Floating-Point Format

The FPU only supports 32-bit single-precision for floating-point numbers. The numeric value format is based
on the IEEE754 standard, and has a 24-bit signed fraction and an 8-bit exponent.

31 30 23 22 0
s

Sign
e

Exponent
f

Fraction
1 8 23

Specification
Size (Width) 32 bits
Exponent 8 bits
Integer bit hidden
Fraction 24 bits
Emax
(Maximum Exponent)

+128

Emin
(Minimum Exponent)

-126

Biased Exponent +127

Figure 8-1 Single-Precision Floating-Point Format

The true exponent E is calculated by subtracting the biased value from the exponent e. The range of E can be
every integer value between Emin and Emax. The value of a single-precision floating-point number is shown
below.

IF 0 < e <=255, then(-1)s•2e-127(1.f)
IF e = 0, then(-1)s•0

Note that FPU does not support denormalized numbers, plus and minus infinities, and NaN (Not a Number) as
defined in IEEE754.

8.1.2. Fixed-Point Format
Fixed-point values are in 2's complement format, shown in Figure 8-2, and unsigned fixed-point values are not
directly supported.

31 0

Fixed-point (2's complement)

 32

Figure 8-2 Fixed-Point Format

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-157-

8.2. FPU Registers
The FPU has 32 general-purpose registers (FPRs), each of which is 32 bits wide. The CPU can access these
registers through move (MFC1 and MTC1), load (LWC1) and store (SWC1) instructions.
There are 32 floating-point control registers (FCR), of which only two (FCR0 and FCR31) are implemented.
Details of these are described later.
In addition, a 32-bit accumulator is used in the multiply-accumulate type instructions.

FPU General Purpose Register (FPR)
 31 0

FPR0
FPR1
FPR2

 :
:

FPR31
FPU Control Register (FCR)

 31 0
FCR0 Implementation/Revision Register

FCR31 Control/Status Register

Accumulator
 31 0

ACC

Figure 8-3 FPU Registers

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-158-

8.3. FPU Control Registers
The FPU has 32 control registers (FCRs), which can only be accessed by move instructions (CFC1 and CTC1).
However, FCR1 to FCR30 are reserved registers, and only FCR0 (Implementation/Revision register) and
FCR31(Control/Status register) are implemented.

8.3.1. Implementation and Revision Register (FCR0)
The Implementation and Revision register (FCR0) is read-only and contains the implementation number that
indicates specifications of FPU, and the revision number that indicates changes made to design and production
process of the chip. This information can determine the FPU capability and performance level, and can be used
for diagnostic software.

31 16 15 8 7 0

0 Imp Rev

16 8 8

Figure 8-4 Implementation/Revision Register

Field Pos. Description r/w Initial

Value
0 31:16 Fixed as zero (reserved) r /- 0

Imp 15:8 Implementation number r /- 0x2E
Rev 7:0 Revision number

bits 7:4 and bits 3:0 indicate a major and
minor revision respectively.

r /- Revision
Number

Table 8-1 Implementation/Revision Register Fields

8.3.2. Control/Status Register (FCR31)
The Control/Status register (FCR31) contains FPU status information, such as results of arithmetic operations.

 Cause Flags Sticky Flags
31 25 24 23 17 16 15 14 6 5 4 3 2 1 0

0 1 C 0 I D O U 0 S
I

S
D

S
O

S
U 0 0 1

7 1 1 5 1 1 1 1 7 1 1 1 1 1 1 1

Figure 8-5 Control/Status Register

Four flags—I, D, O, and U—are collectively referred to as the Cause flags. Likewise, four flags—SI, SD, SO,
and SU—are collectively referred to as the Sticky flags (Accumulation flags).
Cause flags indicate the result of the immediately prior arithmetic instruction. Sticky flags are set to 1 when the
corresponding Cause flags become 1, and are never set to 0 unless software explicitly clears them. That is, part
of the program indicates the result of arithmetic instructions.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-159-

Field Pos. Description r/w Initial Value
C 23 Condition bit

The bit is set to 1 when the result of a floating-point
Compare operation is true and the bit is cleared to 0
when the result is false.

r/w 0

I 17 Invalid Operation flag
The bit is set to 1 when attempting to execute 0/0
division, square root of a negative number or reciprocal
square root of a negative number. Otherwise, the bit is
cleared to 0.

r/w 0

D 16 Division by Zero flag
The bit is set to 1 when attempting to execute division
by zero. Otherwise, the bit is cleared to 0.

r/w 0

O 15 Overflow flag
The bit is set to 1 when the exponent of the
computational result overflows. Otherwise, the bit is
cleared to 0.

r/w 0

U 14 Underflow flag
The bit is set to 1 when the exponent of the
computational result underflows. Otherwise, the bit is
cleared to 0

r/w 0

SI 6 Invalid Operation cumulative flag
The bit is set to 1 when attempting to execute 0/0
division, square root of the negative number or
reciprocal square root of the negative number.

r/w 0

SD 5 Division by Zero cumulative flag
The bit is set to 1 when attempting to execute division
by zero.

r/w 0

SO 4 Overflow cumulative flag
The bit is set to 1 when the exponent of the
computational result overflows.

r/w 0

SU 3 Underflow cumulative flag
The bit is set to 1 when the exponent of the
computational result underflows.

r/w 0

Table 8-2 Control/Status Register Fields

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-160-

8.4. Instruction Set Overview
All FPU instructions are 32 bits long and aligned on a word boundary.
FPU instructions can be divided into the following categories:

• Move instructions: Instructions which move data between memory and the main processor and between

FPU general-purpose registers and FPU control registers

• Conversion instructions: Instructions that convert data formats of numeric data

• Computational instructions: Instructions that perform arithmetic operations on floating-point data in the

FPU general-purpose register

• Compare instructions: Instructions that compare the contents of FPU general-purpose registers and reflect

the result in the C bit of the status register

• Branch on FPU condition instructions: Instructions that branch according to the C bit of the status register
The list of FPU instructions is shown below. For details of each instruction, refer to the "EE Core Instruction
Set Manual".

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-161-

Category Instruct. Description
Move LWC1 Load Word to FPR
Instruction SWC1 Store Word from FPR
 MTC1 Move Word to FPR
 MFC1 Move Word from FPR
 MOV.S Single Floating-point Move
 CTC1 Move Control Word to FCR
 CFC1 Move Control Word from FCR
Conversion CVT.S.W 32-bit Fixed Point Convert to Single Floating-point
Instruction CVT.W.S Single Floating-point Convert to 32-bit Fixed Point
Computational ADD.S Single Floating-point Add
Instruction SUB.S Single Floating-point Subtract
 MUL.S Single Floating-point Multiply
 DIV.S Single Floating-point Divide
 ABS.S Single Floating-point Absolute
 NEG.S Single Floating-point Negate
 SQRT.S Single Floating-point Square Root
 ADDA.S Single Floating-point Add to Accumulator
 SUBA.S Single Floating-point Subtract to Accumulator
 MULA.S Single Floating-point Multiply to Accumulator
 MADD.S Single Floating-point Multiply and Add
 MADDA.S Single Floating-point Multiply and Add to Accumulator
 MSUB.S Single Floating-point Multiply and Subtract
 MSUBA.S Single Floating-point Multiply/Subtract from Accumulator
 RSQRT.S Single Floating-point Reciprocal Square Root
Computational MAX.S Single Floating-point Maximum
Instruction MIN.S Single Floating-point Minimum
Comparison C.cond.S Single Floating-point Compare
Branch on BC1T Branch on FPU True
FPU Condition BC1F Branch on FPU False
 BC1TL Branch on FPU True Likely
 BC1FL Branch on FPU False Likely

Table 8-3 FPU Instructions

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-162-

8.5. Results of Abnormal Computation
If abnormal computations such as "Divide by Zero" are performed, or an overflow or underflow occurs, the
resulting values and flags set in the status register are as shown in the table below.

Computational Exception Result Value Cause Flag
Divide by Zero +Fmax or –Fmax D=1
0 / 0 +Fmax or –Fmax I=1
Square root of a negative number Square root of the absolute value

of the parameter
I=1

Exponent Overflow +Fmax or –Fmax O=1
Exponent Underflow +0 or –0 U=1
Conversion Overflow +Fmax or –Fmax None

*Fmax is the maximum number in a single-precision floating-point format.

Table 8-4 Results of Abnormal Computation

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-163-

8.6. Sign of Zero
In a single-precision floating-point format, two zeros, +0 and –0 are present. The results when using signed 0 as
both of the operands are shown in the table below. This is compatible with the IEEE 754 specification.

Operation Result I/SI flag D/SD flag
(+0)+(+0) +0 -/- -/-
(+0)+(-0) +0 -/- -/-
(-0)+(+0) +0 -/- -/-
(-0)+(-0) -0 -/- -/-
(+0)-(+0) +0 -/- -/-
(+0)-(-0) +0 -/- -/-
(-0)-(+0) -0 -/- -/-
(-0)-(-0) +0 -/- -/-
(+0)×(+0) +0 -/- -/-
(+0)×(-0) -0 -/- -/-
(-0)×(+0) -0 -/- -/-
(-0)×(-0) +0 -/- -/-
(+0)/(+0) 7FFFFFFF 1/1 0/0
(+0)/(-0) FFFFFFFF 1/1 0/0
(-0)/(+0) FFFFFFFF 1/1 0/0
(-0)/(-0) 7FFFFFFF 1/1 0/0
Max(+0,+0) +0 -/- -/-
Max(+0,-0) +0 -/- -/-
Max(-0,+0) +0 -/- -/-
Max(-0,-0) -0 -/- -/-
Min(+0,+0) +0 -/- -/-
Min(+0,-0) -0 -/- -/-
Min(-0,+0) -0 -/- -/-
Min(-0,-0) -0 -/- -/-
(+0)/SQRT(+0) 7FFFFFFF 1/1 0/0
(+0)/SQRT(-0) FFFFFFFF 1/1 0/0
(-0)/SQRT(+0) FFFFFFFF 1/1 0/0
(-0)/SQRT(-0) 7FFFFFFF 1/1 0/0
(+fs)/(+0) 7FFFFFFF 0/0 1/1
(+fs)/(-0) FFFFFFFF 0/0 1/1
(-fs)/(+0) FFFFFFFF 0/0 1/1
(-fs)/(-0) 7FFFFFFF 0/0 1/1

Table 8-5 Computation of Signed Zero

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-164-

8.7. Rounding
The FPU only supports "Rounding towards 0". "Rounding towards Nearest" and "Rounding towards +/-
infinities" as defined by IEEE 754 are not supported.
Since "Rounding towards Nearest" is not supported, the FPU does not use the Guard, Round and Sticky bits
during rounding. Also, since "Rounding toward 0" does not require full value prior to rounding, unlike the
definition of IEEE 754, the results may differ from the IEEE 754 Rounding to 0. This difference is usually
restricted to the least significant bit only.
Since the rounding mode is not programmable in this FPU, the two least significant bits of the Control and
Status registers (FCR31) are hardwired to "01".

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-165-

8.8. IEEE 754 Compatibility
The FPU is not compatible with the IEEE 754 Floating-Point standard. Only single-precision operations are
supported. Overflow and Underflow are detected only for overflow or underflow of the exponent. While the
IEEE standard recommends trapping a computational exception, in the FPU, processing continues by just
setting a flag. Since these flags can be sampled on an instruction by instruction basis, emulating this trap is
possible if necessary.
In addition, the following shows the differences from the IEEE 754 specification. When computational results
are different, refer to Table 8-6.

• NaN (Not a Number), +∞, -∞ and denormalized numbers are not supported.

• The FPU does not use the Guard, Round and Sticky bits during computations. The computed result usually

differs from IEEE 754 only in the least-significant bit. For saturating instructions, bits other than the least-

significant bit can be different.

• Only "Rounding towards 0" is supported and "Rounding towards Nearest", "Rounding towards +/-∞" are

not supported. The result of "Rounding towards 0" can differ from IEEE 754 in the least significant bit.

• IEEE 754-defined exceptions are not fully supported. In particular, Invalid Operation exceptions due to

NaN, +/-∞ and Inexact exceptions are not supported.

Operation IEEE 754 FPU
0/0 Result is a "NaN".

Invalid Operation exception is
taken.

Result is +Fmax or -Fmax.
I bit (SI bit) is set.

Sqrt
(negative number)

Result is a "NaN".
Invalid Operation exception is
taken.

Result is Sqrt (|x|).
I bit (SI bit) is set.

Division by zero Result is +∞ or -∞
Division by Zero exception is
taken

Result is +Fmax or -Fmax.
D bit (SD bit) is set.

Exponent overflow Result is +∞, -∞,+Fmax or -Fmax
(determined by the rounding
mode)
Overflow exception is taken

Result is +Fmax or -Fmax.
O bit (SO bit) is set.

Exponent
underflow

Result is Denormalized value.
Underflow exception is taken

Result is +0 or -0.
U bit (SU bit) is set.

Conversion of
Floating-point to
Integer Overflow

Result is not defined.
Invalid Operation exception is
taken.

Result is 231-1 or -231
I bit (SI bit) is set.

Table 8-6 Differences of the Computational Results between IEEE 754 and FPU

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-166-

(This page is left blank intentionally)

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-167-

9. Hardware Breakpoint

This chapter describes hardware breakpoint function, one of the debugging support functions provided by the
EE Core.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-168-

9.1. Overview of Hardware Breakpoint
The EE Core has a hardware breakpoint function for debugging purposes. The main features are as follows:

• Provision of both instruction and data breakpoints in the virtual address

• Instruction address breakpoint with address masking

• Data breakpoint by three events: address with masking, data value with masking, and directions of reading

and writing

• Independent breakpoint control for instruction and data

• Breakpoint function control by the processor’s operating mode

• Provision of an external signal when the breakpoint conditions are met

When the breakpoint conditions are met, a debugging exception, one of the level 2 exceptions, can be generated.
This exception is masked only when level 2 exceptions are in process. The occurrence of this exception is
controllable by the breakpoint control register.
Note that some data value breakpoint exceptions are imprecise, because some instructions are completed before
data is read from memory. The following summarizes imprecise cases:

• Data value breakpoint in a load instruction

• Data value breakpoint in a SWC1 instruction

• Data value breakpoint in a SQC2 instruction

The hardware breakpoint is implemented as a part of the COP0 functions, and controlled by specifying values to
seven registers using dedicated transfer instructions.
Figure 9-1 shows an overview of breakpoint operations.

Address / Value Register
IAB / DAB / DVB

Mask Register
IABM / DABM / DVBM PC /Data Address / Data Value

AND Mask AND Mask

Matching
Judgement

on / off

on / off

Debugging
Exception

TRIG* Signal

Breakpoint Control Register
BPC

Figure 9-1 Overview of Breakpoint Operations

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-169-

9.2. Breakpoint Registers
The hardware breakpoint uses one breakpoint control register and three pairs of breakpoint registers (seven
registers in total).

Register Name Function
BPC Breakpoint control register
IAB Instruction address breakpoint register
IABM Instruction address breakpoint mask register
DAB Data address breakpoint register
DABM Data address breakpoint mask register
DVB Data value breakpoint register
DVBM Data value breakpoint mask register

All of these registers are writable/readable in 32-bit width, and mapped to COP0 register 24. The following
special instructions are provided for transferring data between these registers and the general-purpose registers.

Register Name Read Instruction Write Instruction
BPC MFBPC MTBPC
IAB MFIAB MTIAB
IABM MFIABM MTIABM
DAB MFDAB MTDAB
DABM MFDABM MTDABM
DVB MFDVB MTDVB
DVBM MFDVBM MTDVBM

The function and usage of each register are described as follows:

9.2.1. Breakpoint Control (BPC) Register
The Breakpoint control register (BPC register) has the control bit for the breakpoint function and the status flag.

3
1

3
0

2
9

2
8

 2
6

2
5

2
4

2
3

 2
1

2
0

1
9

1
8

1
7

1
6

1
5

 0
2

0
1

0
0

I
A
E

D
R
E

D
W
E

D
V
E

0
I
U
E

I
S
E

I
K
E

I
X
E

0
D
U
E

D
S
E

D
K
E

D
X
E

I
T
E

D
T
E

B
E
D

0
D
W
B

D
R
B

I
A
B

IAE / DRE / DWE / DVE: Control of entire breakpoint functions
These bits enable/disable these functions: the instruction address breakpoint, the data address breakpoint
(when reading), the data address breakpoint (when writing), and the data value breakpoint. The
corresponding breakpoint function is valid when these bits are 1.

IUE / ISE / IKE / IXE: Control of instruction breakpoint in each processor mode
These bits enable/disable the instruction address breakpoint function in the User, Supervisor, Kernel, and
Level 1 exception handler execution (Kernel) modes. The corresponding instruction address breakpoint
function is valid when these bits are 1. When the IAE bit is 0, the instruction address breakpoint function is
disabled, and these bits are meaningless.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-170-

DUE / DSE / DKE / DXE: Control of data breakpoint in each processor mode
These bits enable/disable the data address breakpoint function in the User, Supervisor, Kernel, and Level 1
exception handler execution (Kernel) modes. The corresponding data address breakpoint function is valid
when these bits are 1. When both the DRE and DWE bits are 0, the data address breakpoint function is
disabled, and these bits are meaningless.

ITE / DTE: Control of Trigger Signal Output
These bits enable/disable trigger signal generation when the condition of the instruction address breakpoint
or data breakpoint is established. If the corresponding breakpoint condition is established when these bits
are 1, the TRIG* signal is asserted.

BED: Control of Debug Exceptions
This bit enables/disables debug exception generation when the condition of the instruction address
breakpoint or data breakpoint is established. When the bit is 1, a debug exception does not occur even
though the breakpoint conditions are met.
Note that the setting of this bit does not affect trigger signal generation set by the ITE or DTE bit.

DWB / DRB / IAB: Breakpoint Condition Establishment Flag
These bits become 1 when the conditions of the data breakpoint (when writing), the data breakpoint (when
reading), or the instruction address breakpoint are established.

9.2.2. Instruction Address Registers (IAB / IABM)
The Instruction Address Breakpoint register (IAB register) and the Instruction Address Breakpoint Mask
register (IABM register), as a pair, specify the range of instruction addresses that are to be the breakpoint
condition.
Virtual addresses are specified in the IAB register, and a mask that indicates valid bits in the virtual addresses is
specified in the IABM register. If the AND between the IAB and IABM registers matches the AND between
the program counter and the IABM register, the condition of the instruction address breakpoint is established.
Since the lower two bits of the program counter are always set to 0, the lower two bits of these registers are also
fixed to 0.

9.2.3. Data Address Registers (DAB / DABM)
The Data Address Breakpoint register (DAB register) and the Data Address Breakpoint Mask register (DABM
register), as a pair, specify the range of data addresses that are to be the breakpoint condition.
Virtual addresses are specified in the DAB register, and a mask that indicates valid bits in the virtual addresses is
specified in the DABM register. If the AND between the DAB and DABM registers matches the AND between
the effective address of the load/store instruction and the DABM register, the condition of the data address
breakpoint is established.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-171-

9.2.4. Data Value Registers (DVB / DVBM)
The Data Value Breakpoint register (DVB register) and the Data Value Breakpoint Mask register (DVBM
register), as a pair, specify the data values that are to be the breakpoint condition. Values are specified in the
DVB register, and a mask that indicates valid bits in the values is specified in the DVBM register.
If the data address breakpoint conditions are met and the AND between the DVB and DVBM registers matches
the AND between the data to be loaded/stored and the DVBM register, the conditions of the data value
breakpoint are established.
Since the data value register has a 32-bit width, the data to be loaded/stored is treated as follows:

• Only the lower 32 bits of GPR in store instructions

• Only the lower 32 bits of loaded data in LQ/LD instructions

• The value obtained by sign-extending the loaded data to 32 bits in LH/LB instructions

• The lower 32 bits of the value loaded and merged with the GPR value in load instructions that disregard

alignments (e.g. LWL, LDL)

9.2.5. Establishment of Breakpoint and Operation of Exception Generation
Figure 9-2 is a flowchart indicating the first part of the operations that determine the establishment of the
hardware breakpoint.

Start

Status.ERL ?

Status.EXL ?

Status.KSU ?

Level 2 Mode?

Level 1 Mode?

Processor Mode?

ISE / DSE ? IUE / DUE ? IKE / DKE ? IXE / DXE ?

Supervisor
Mode

User Mode Kernel Mode

Check
Breakpoint

1 (Level 2)

1 (Level 1)

0 0 0 0

0

0

00b

10b

01b

1 1 1 1

No Breakpoint

Figure 9-2 Breakpoint Operation (1)

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-172-

The following flowchart shows the establishment of an instruction breakpoint in response to Figure 9-2 and
generation of an exception or a trigger signal.

IAE = 1 ?

ITC = 1 ?

Enabled?

BED = 1 ?

Check
Breakpoint

No Breakpoint

Mask Instruction
Address with IABM

Mask IAB with
IABM

Equal?
No

Yes

IAB = 1

Assert TRIG*

Yes

Yes

Yes

Generate Exception

No

No

No

End

Establish
Breakpoint?

Generate Exception?

Trigger Signal Output?

Figure 9-3 Breakpoint Operation (2): Instruction Breakpoint

The following flowchart shows the establishment of a data breakpoint in response to Figure 9-2 and generation
of an exception or a trigger signal.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-173-

DRE = 1 ?

ITC = 1 ?

Enabled?

BED = 1 ?

Check
Breakpoint

No Breakpoint

Mask Data Address
with DABM

Mask DAB with
DABM

Equal? No

Yes

DRB ← 1

Assert TRIG*

Yes

Yes

Yes

Generate Exception

No

No

No

End

Establish
Breakpoint?

Generate Exception?

Trigger Signal Output?

Mask Data Value
with DVBM

Mask DVB with
DVBM

Equal?
No

Yes

Establish
Breakpoint?

DVE = 1 ?

Yes

No

Data Value Breakpoint?

Read / Write ?Access Direction?

read

write

DWE = 1 ?

DWB ← 1

Yes

No

Figure 9-4 Breakpoint Operation (3): Data Breakpoint

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-174-

9.3. Setting Breakpoints
It is necessary to follow several restrictions to set a breakpoint properly under the pipeline operation. There are
two main issues:

• In setting a breakpoint, a group of three or more register values must be changed. Note that this change is

made via a pipeline operation, and may create a hazardous area when generating an exception carelessly.

• A load instruction may be completed before data is obtained. The occurrence of a breakpointing event may

be behind the instruction completion. This makes generated breakpoints imprecise. In addition,

recognition of a debugging exception will be delayed until the processor returns from the level 2 exception

handler in the case where another level 2 exception is generated immediately after the instruction in which a

data value breakpoint is established.
These restrictions are described below, using sample programs.

9.3.1. Procedure for Setting Breakpoints
It is necessary to control the on/off settings of the breakpoint functions properly to avoid establishing a
breakpoint under unsatisfactory conditions while a breakpoint setting is being changed. One easy way is to
change the processor mode into Level 2 to mask debugging exceptions temporarily. However, there is a side
effect: the user segment becomes unmapped. Therefore, the following sections describe procedures for setting
breakpoints according to the steps below without changing the processor mode.
 (1) Synchronize the pipeline
 (2) Disable the breakpoint that is going to be set
 (3) Synchronize the pipeline
 (4) Set the breakpoint register pairs
 (5) Set the breakpoint control register (enabling the specified breakpoints)
 (6) Synchronize the pipeline
Step (1) is to ensure that there is no pending debugging exception at this point. This is to avoid inconsistency in
the debugging exception handler encountered when a debugging exception originating from a preceding
instruction occurs at the start of changing the breakpoint setting. This synchronized operation uses a SYNC.P
instruction for setting an instruction breakpoint and a SYNC.L instruction for setting a data breakpoint.
Step (3) is a process to wait until the breakpoint control register value change made by disabling the breakpoint
in Step (2) is written. A SYNC.P instruction is used.
Breakpoint conditions are specified to the two registers in Step (4), and then the breakpoint is enabled in Step
(5). These two stages of operations are always written to the registers in this order, so a breakpoint is never
established in unsatisfactory conditions. Step (6) is to guarantee that the process moves to the next stage after
the breakpoint set in (4) and (5) is enabled. A SYNC.P instruction is used.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-175-

9.3.2. Setting an Instruction Breakpoint
The following sample code sets a breakpoint which generates a debugging exception when performing a
program within the range from 0x1234_5600 to 0x1234_56ff in user mode or supervisor mode.

--

(1) Separation from the breakpoint originating from the preceding instructions
sync.p

(2) Prohibition of instruction breakpoint
(Settings related to data breakpoint are to be stored.)
mfbpc $4 # Acquisition of the breakpoint control register value
bgez $4, 1f # Skip (2) if the IAE bit is 0. It has already been prohibited.
nop # (bds)
li $5, (1 << 31) # The IAE bit is …
xor $4, $5, $4 # … set to 0, then …
mtbpc $4 # … the breakpoint control register is written.

(3) Synchronization for guaranteeing that breakpoints has been prohibited.
sync.p

1:

(4) Setting breakpoint conditions
li $4, 0x12345678 # A breakpoint address is …
mtiab $4 # … specified to the IAB register (the lower 8 bits are arbitrary because they are to be masked).

li $5, 0xffffff00 # Masking is …
mtiabm $5 # … specified to the IABM register.

(5) Setting the breakpoint control register
mfbpc $4 # Obtains the current value, and …
li $5, ~(\
 (1 << 26) # IUE \
 | (1 << 25) # ISE \
 | (1 << 24) # IKE \
 | (1 << 23) # IXE \
 | (1 << 17) # ITE \
 | (1 << 0) # IAB \
)
and $4, $4, $5 # … clears the flags related to the instruction breakpoint, then …
li $6, \
 (\
 (1 << 31) # IAE = 1: instruction breakpoint is enabled \
 | (1 << 26) # IUE = 1: enabled in user mode \
 | (1 << 20) # IUE = 1: enabled in supervisor mode \
 | (1 << 15) # BED = 1: debugging exception occurs \
)
or $5, $4, $6
mtbpc $5 # … makes settings again.

(6) Synchronization for guaranteeing that breakpoint has been set.
sync.p

--

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-176-

9.3.3. Setting a Data Address Breakpoint
The following sample code sets a breakpoint which generates a debugging exception when reading/writing an
address from 0x1230_0000 to 0x1233_ffff in kernel mode or while executing a Level 1 exception handler.

(1) Separation from the debug exception originating from the preceding instructions
sync.l

(2) Prohibition of data breakpoint
mfbpc $4 # Acquisition of the breakpoint control register value
li $5, ~(\
 (1 << 30) # DRE \
 | (1 << 29) # DWE \
 | (1 << 28) # DVE \
 | (1 << 21) # DUE \
 | (1 << 20) # DSE \
 | (1 << 19) # DKE \
 | (1 << 18) # DXE \
 | (1 << 16) # DTE \
 | (1 << 2) # DWB \
 | (1 << 1) # DRB \
)
and $4, $4, $5 # Clears all the flags related to the data breakpoint, then …
mtbpc $4 # … makes settings again.

(3) Synchronization for guaranteeing that data breakpoint has been prohibited.
sync.p

(4) Setting breakpoint registers
li $6, 0x12305678
mtdab $6 # Specifies the address to the DAB register (the lower 18 bits are arbitrary because they are to be
masked).

li $5, 0xfffc0000
mtdabm $5 # Masking is specified to the DABM register.

(5) Setting the breakpoint control register.
li $6, \
 (\
 (1 << 30) # DRE = 1: enabled when reading \
 | (1 << 29) # DWE = 1: enabled when writing \
 | (1 << 19) # DKE = 1: enabled in kernel mode \
 | (1 << 18) # DXE = 1: enabled in level 1 exception handler \
 | (1 << 15) # BED = 1: debugging exception occurs \
)
or $5, $4, $6
mtbpc $5

(6) Synchronization for guaranteeing that breakpoint has been set.
sync.p

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-177-

9.3.4. Setting a Data Value Breakpoint
The following sample code sets a breakpoint which generates a debugging exception when reading data
containing 0xcafe in the lower 16 bits in an address from 0x1230_0000 to 0x1233_ffff in kernel mode or while
executing a Level 1 exception handler.

(1) Separation from the debug exception originating from the preceding instructions
sync.l

(2) Prohibition of data breakpoint
mfbpc $4 # Acquisition of the breakpoint control register value
li $5, ~(\
 (1 << 30) # DRE \
 | (1 << 29) # DWE \
 | (1 << 28) # DVE \
 | (1 << 21) # DUE \
 | (1 << 20) # DSE \
 | (1 << 19) # DKE \
 | (1 << 18) # DXE \
 | (1 << 16) # DTE \
 | (1 << 2) # DWB \
 | (1 << 1) # DRB \
)
and $4, $4, $5 # Clears all the flags related to the data breakpoint, then …
mtbpc $4 # … makes settings again.

(3) Synchronization for guaranteeing that data breakpoint has been prohibited.
sync.p

(4) Setting breakpoint registers
li $6, 0x12305678
mtdab $6 # Specifies the address to the DAB register (the lower 18 bits are arbitrary because they are to be
masked).

li $5, 0xfffc0000
mtdabm $5 # Masking is specified to the DABM register.

li $6, 0xbabecafe
mtdvb $6 # Specifies the data value to the DVB register (the upper 16 bits are arbitrary because they are to
be masked).

li $5, 0x0000ffff
mtdvbm $5 # Masking is specified to the DVBM register.

(5) Setting the breakpoint control register.
li $6, \
 (\
 (1 << 30) # DRE = 1: enabled when reading \
 | (1 << 28) # DVE = 1: determines the data value as well \
 | (1 << 19) # DKE = 1: enabled in kernel mode \
 | (1 << 18) # DXE = 1: enabled in level 1 exception handler \
 | (1 << 15) # BED = 1: debugging exception occurs \
)
or $5, $4, $6
mtbpc $5

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-178-

(6) Synchronization for guaranteeing that breakpoint has been set.
sync.p

A data value breakpoint can be set by adding conditions to a data address breakpoint. By setting the DABM
register to 0x00000000, the entire address can be masked, and a breakpoint can be established only with the data
values to be read/written as conditions.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-179-

9.4. Outputting Trigger Signals
A TRIG* signal can be asserted to make the establishment of a breakpoint visible outside of the processor.
Setting the ITE bit of the breakpoint control register (BPC. ITE) to 1 causes a TRIG* signal to be asserted for
two bus clocks when an instruction address breakpoint is established. Setting BPC.DTE to 1 causes a TRIG*
signal to be asserted in the same manner, when a data breakpoint is established.
A TRIG* signal is directly connected to the breakpoint establishment logic while exceptions (including a
debugging exception) always occur with the completion of an instruction. Therefore, the timing of the assertion
of a TRIG* signal and the timing of an occurrence of an exception may differ. If the breakpoint established
right before the control moves to the Level 2 exception handler results in an imprecise debugging exception, the
debugging exception may not be generated although a TRIG* signal has already been asserted, because the
debugging exception is held while the handler is in process.

SCE CONFIDENTIAL EE Core User's Manual Version 6.0

© SCEI

-180-

9.5. Notes on Breakpoint Processing
As previously described, imprecise exceptions are sometimes generated due to the establishment of breakpoints.
Please note the following issues regarding breakpoint processing.

Consistency in ASID
ASID is not addressed in a breakpoint operation. Therefore, it is necessary for software to take care of this
when applying breakpoints only to a specific process. It is also necessary to consider the possibility that an
imprecise debugging exception (originating from an instruction in the yet-to-be-switched context) may be
detected in the middle of or immediately after context switching. This means that the ASID may different
values between when the process moves to the exception handler and when the instruction causes the
exception.
To avoid this, recognition of a breakpoint (originating from the instructions so far) must be waited for (if
there is one), by executing a SYNC.L instruction right before changing the ASID. (Since imprecise
debugging exceptions relate to load/store instructions, a SYNC.L instruction is used for synchronization
purposes.)

Overlapping with Level 2 Exception
A debugging exception caused by an instruction may be suspended and occur after another Level 2
exception caused by the following instruction has occurred. In such a case, debugging exception handling is
performed after the control returns from another Level 2 exception handler.
The debugging exception will always eventually be issued. If a program needs to ensure the order in which
exceptions are handled, then the program must check whether or not there is an established breakpoint
pending at the start of all Level 2 exception handlers.
In addition, if a Level 2 exception handler does not return to the place where the exception has been
detected, the breakpoint conditions must be reset.

	EE CORE USER'S MANUAL
	6th Edition, April 2002

	About This Manual
	Changes Since Release of 5th Edition
	Architecture Overview
	Features of the EE Core
	Block Diagram and Functional Block Description
	PC Unit
	MMU
	Caches and Scratchpad RAM
	Issue Logic and Staging Registers
	GPR (General Purpose Registers) and FPR (Floating-Point Registers)
	Physical Pipes
	Operand/Bypass logic
	Writeback Buffer
	UCAB
	Result and Move Buses
	Bus Interface Unit

	Superscalar Pipeline Operation
	Interlock by Data Hazards
	Integer Instruction Pipeline Stages
	COP1 Pipeline
	COP2 Pipeline
	Classification and Routing of Instructions
	Instruction Issue Combinations

	Registers
	CPU Registers
	FPU Registers
	COP0 Registers

	Memory Management
	Cache Memory and Scratchpad RAM
	Bus Interface
	Floating-Point Unit
	Debug Support Functions

	Instruction Set Overview
	Binary Formats
	Instruction Set Summary
	Instruction Set List
	MIPS III Instructions not Supported by EE Core

	Load/Store Instructions
	Data Formats and Alignment
	Load Delay

	Computational Instructions
	Branch/Jump Instructions
	Branch Delay Slot
	Overview of Jump Instructions
	Overview of Branch Instructions

	Exception Instructions
	Serialization Instruction
	MIPS IV Instructions
	System Control Coprocessor (COP0) Instructions
	Coprocessor Instructions (COP1/COP2)
	COP1(FPU) Instructions
	COP2 Instructions
	VU Macro instructions

	EE Core-Specific Instructions
	EE Core-Specific Multiply / Divide Instructions
	Multimedia Instructions

	Latency

	Registers
	CPU Registers
	General Purpose Registers
	HI and LO Registers
	SA Register
	Program Counter (PC)

	System Control Coprocessor (COP0) Registers

	Exception Processing
	Exception Handling Process
	Exception Vector
	Level 1 Exception Handling
	Level 2 Exception Handling
	Exception Priority

	Exception Reference
	Reset Exception
	NMI Exception
	Performance Counter Exception
	Debug Exception
	Interrupt Exception
	TLB Modified Exception
	TLB Refill Exception
	TLB Invalid Exception
	Address Error Exception
	Bus Error Exception
	System Call Exception
	Break Exception
	Reserved Instruction Exception
	Coprocessor Unusable Exception
	Trap Exception
	Overflow Exception

	Memory Management
	Address Space
	Physical Address Space
	Virtual Address Space
	Operating Modes and Address Space
	User Mode Address Space
	Supervisor Mode Address Space
	Kernel Mode Address Space

	Address Translation
	Overview of Address Translation
	Address Translation Look-aside Buffer (TLB)
	Address Translation Process Flow
	TLB Entry
	Scratchpad RAM Mapping
	Cache Mode

	System Control Coprocessor
	TLB Related Register
	TLB Operation Instructions

	Caches
	Cache and SPRAM Features
	Organization of the Caches
	Organization of the Data Cache
	Organization of the Instruction Cache
	Tag Structure

	Cache Operations
	Line Replacement Algorithm
	Non-blocking Loads and Hit Under Miss
	Cache Hit and Miss Operations
	Data Cache Writeback
	Data Cache State Transitions
	Instruction Cache State Transitions
	Data Cache Lock Function
	Relationship between Cached and Uncached Operations
	Data Consistency between Cache and SPRAM

	Scratchpad RAM (SPRAM)
	SPRAM Overview
	DMA Access to SPRAM
	SPRAM Mapping

	Uncached Accelerated Buffer (UCAB)
	UCAB Overview
	Non-Blocking Loads and Hit Under Miss

	Cache Control Registers

	Performance Counters and Instruction Stepping
	Configuration of Performance Counter
	Performance Counter Control Registers (PCCR)
	Counter Registers (PCR0 / PCR1)
	Access to the Performance Counter Registers
	Initial Value of the Performance Counter Registers

	Performance Counter Operation Details
	Counter Increment
	Counter Event
	Counter Event Descriptions
	Occurrence of Counter Exceptions
	Priority of Counter Exceptions
	Initializing Performance Counters
	Notes on Pipelining
	Notes on Instruction Stepping

	Floating-Point Unit (FPU)
	Data Formats
	Floating-Point Format
	Fixed-Point Format

	FPU Registers
	FPU Control Registers
	Implementation and Revision Register (FCR0)
	Control/Status Register (FCR31)

	Instruction Set Overview
	Results of Abnormal Computation
	Sign of Zero
	Rounding
	IEEE 754 Compatibility

	Hardware Breakpoint
	Overview of Hardware Breakpoint
	Breakpoint Registers
	Breakpoint Control (BPC) Register
	Instruction Address Registers (IAB / IABM)
	Data Address Registers (DAB / DABM)
	Data Value Registers (DVB / DVBM)
	Establishment of Breakpoint and Operation of Exception Generation

	Setting Breakpoints
	Procedure for Setting Breakpoints
	Setting an Instruction Breakpoint
	Setting a Data Address Breakpoint
	Setting a Data Value Breakpoint

	Outputting Trigger Signals
	Notes on Breakpoint Processing

