

Document Number: MD00582
Revision 6.05

December 15, 2016

MIPS® Architecture for Programmers
Volume II-B: microMIPS32™ Instruction

Set

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Public. This publication contains proprietary information which is subject to change without notice and is supplied ‘as is’, without any warranty of any kind.

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 3

Contents

Chapter 1: About This Book .. 13
1.1: Typographical Conventions ... 14

1.1.1: Italic Text.. 14
1.1.2: Bold Text .. 14
1.1.3: Courier Text ... 14

1.2: UNPREDICTABLE and UNDEFINED ... 14
1.2.1: UNPREDICTABLE... 14
1.2.2: UNDEFINED .. 15
1.2.3: UNSTABLE .. 15

1.3: Special Symbols in Pseudocode Notation... 15
1.4: Notation for Register Field Accessibility .. 18
1.5: For More Information ... 20

Chapter 2: Introduction .. 21
2.1: Default ISA Mode .. 21
2.2: Software Detection .. 22
2.3: Compliance and Subsetting... 22
2.4: ISA Mode Switch ... 22
2.5: Branch and Jump Offsets .. 23
2.6: Coprocessor Unusable Behavior... 23
2.7: Release 6 of the MIPS Architecture .. 24

Chapter 3: Guide to the Instruction Set.. 31
3.1: Understanding the Instruction Fields ... 31

3.1.1: Instruction Fields .. 33
3.1.2: Instruction Descriptive Name and Mnemonic... 33
3.1.3: Format Field ... 33
3.1.4: Purpose Field ... 34
3.1.5: Description Field .. 34
3.1.6: Restrictions Field.. 35
3.1.7: Availability and Compatibility Fields ... 35
3.1.8: Operation Field... 36
3.1.9: Exceptions Field... 36
3.1.10: Programming Notes and Implementation Notes Fields.. 36

3.2: Operation Section Notation and Functions.. 37
3.2.1: Instruction Execution Ordering... 37
3.2.2: Pseudocode Functions... 37

3.3: Op and Function Subfield Notation.. 48
3.4: FPU Instructions .. 48

Chapter 4: Instruction Formats ... 49
4.1: Instruction Stream Organization and Endianness ... 52

Chapter 5: microMIPS Instruction Set .. 55
5.1: 16-Bit Category.. 55

5.1.1: Frequent MIPS Instructions.. 55

4 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

5.1.2: Frequent MIPS Instruction Sequences .. 58
5.1.3: Instruction-Specific Register Specifiers and Immediate Field Encodings .. 59

5.2: 16-bit Instruction Register Set ... 60
5.3: 32-Bit Category.. 62

5.3.1: New 32-bit instructions... 62
5.4: Instructions Specific to microMIPS .. 64

ADDIUR1SP.. 65
ADDIUR2... 66
ADDIUS5... 67
ADDIUSP .. 69
ADDU16 .. 71
AND16... 72
ANDI16.. 73
BC16 ... 74
BEQZC16 .. 75
BNEZC16 .. 76
BREAK16 .. 77
JALRC16 ... 78
JRCADDIUSP ... 80
JRC16 ... 82
LBU16 ... 83
LHU16 ... 85
LI16 ... 86
LWP... 87
LW16... 88
LWM32.. 89
LWM16.. 91
LWGP.. 93
LWSP .. 94
MOVE16.. 95
MOVEP ... 96
NOT16... 98
OR16 ... 99
SB16.. 100
SDBBP16 .. 101
SH16 ... 102
SLL16.. 103
SRL16 ... 104
SUBU16 .. 105
SW16... 106
SWSP.. 107
SWM16.. 108
SWM32.. 110
SWP .. 112
XOR16... 113

5.5: Recoded MIPS Instructions ... 114
ABS.fmt ... 115
ADD... 116
ADD.fmt... 117
ADDIU ... 118
ADDIUPC .. 119
ADDU .. 120
ALIGN.. 121

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 5

ALUIPC ... 123
AND... 124
ANDI.. 125
AUI .. 126
AUIPC ... 127
BALC... 128
BC1EQZC BC1NEZC.. 129
BC2EQZC BC2NEZC.. 131
B{LE,GE,GT,LT,EQ,NE}ZALC .. 133
B<cond>C ... 135
BC ... 138
BREAK .. 139
BITSWAP ... 140
BOVC BNVC ... 142
CACHE.. 144
CACHEE ... 150
CEIL.L.fmt ... 156
CEIL.W.fmt .. 157
CFC1... 158
CFC2... 160
CLASS.fmt... 161
CLO... 163
CLZ.. 164
CMP.condn.fmt.. 165
COP2... 170
CRC32B, CRC32H, CRC32W... 171
CRC32CB, CRC32CH, CRC32CW... 174
CTC1... 177
CTC2... 180
CVT.D.fmt.. 181
CVT.L.fmt .. 182
CVT.S.fmt.. 183
CVT.W.fmt... 184
DERET .. 185
DI... 186
DIV.fmt .. 187
DIV MOD DIVU MODU ... 188
DVP... 190
EHB... 193
EI ... 194
ERET... 195
ERETNC.. 196
EXT ... 198
EVP ... 201
FLOOR.L.fmt ... 203
FLOOR.W.fmt.. 204
GINVI... 205
GINVT ... 207
INS .. 210
JALRC... 212
JALRC.HB... 214
JIALC... 217
JIC ... 219

6 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

LB.. 221
LBE.. 222
LBU ... 223
LBUE... 224
LDC1 ... 225
LDC2 ... 226
LH.. 227
LHE ... 228
LHU ... 229
LHUE... 230
LL .. 231
LLE.. 233
LLWP... 235
LLWPE .. 237
LSA ... 239
LUI... 240
LW... 241
LWC1 .. 242
LWC2 .. 243
LWE... 244
LWPC.. 245
MADDF.fmt MSUBF.fmt .. 246
MAX.fmt MIN.fmt MAXA.fmt MINA.fmt.. 248
MFC0... 252
MFC1... 253
MFC2... 254
MFHC0.. 255
MFHC1.. 256
MFHC2.. 257
MOV.fmt .. 258
MTC0... 259
MTC1... 260
MTC2... 261
MTHC0.. 262
MTHC1.. 263
MTHC2.. 264
MUL MUH MULU MUHU .. 265
MUL.fmt... 267
NEG.fmt... 268
NOP... 269
NOR .. 270
OR... 271
ORI .. 272
PAUSE .. 273
PREF... 275
PREFE .. 279
RDHWR... 283
RDPGPR... 286
RECIP.fmt ... 287
RINT.fmt .. 288
ROTR .. 290
ROTRV.. 291
ROUND.L.fmt .. 292

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 7

ROUND.W.fmt... 293
RSQRT.fmt.. 294
SB.. 295
SBE ... 296
SC ... 297
SCE... 301
SCWP.. 305
SCWPE ... 309
SDBBP .. 312
SDC1... 313
SDC2... 314
SEB ... 315
SEH... 316
SEL.fmt.. 317
SELEQZ SELNEZ ... 318
SELEQZ.fmt SELNEQZ.fmt .. 320
SH ... 322
SHE... 323
SIGRIE .. 324
SLL.. 325
SLLV.. 326
SLT.. 327
SLTI... 328
SLTIU .. 329
SLTU ... 330
SQRT.fmt .. 331
SRA... 332
SRAV... 333
SRL ... 334
SRLV... 335
SSNOP.. 336
SUB... 337
SUB.fmt ... 338
SUBU .. 339
SW... 340
SWE .. 341
SWC1.. 342
SWC2.. 343
SYNC .. 344
SYNCI ... 349
SYSCALL .. 352
TEQ... 353
TGE... 354
TGEU .. 355
TLBINV.. 357
TLBINVF.. 360
TLBP ... 362
TLBR ... 363
TLBWI ... 365
TLBWR.. 367
TLT .. 369
TLTU ... 370
TNE ... 371

8 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

TRUNC.L.fmt... 372
TRUNC.W.fmt ... 373
WAIT ... 374
WRPGPR .. 376
WSBH.. 377
XOR... 378
XORI.. 379

Chapter 7: Opcode Map ... 380
7.1: Major Opcodes .. 380
7.2: Minor Opcodes .. 382
7.3: Floating Point Unit Instruction Format Encodings ... 390

Chapter 8: Compatibility .. 394
8.1: Assembly-Level Compatibility.. 394
8.2: ABI Compatibility ... 395
8.3: Branch and Jump Offsets .. 396
8.4: Relocation Types... 396
8.5: Boot-up Code shared between microMIPS and MIPS .. 396
8.6: Coprocessor Unusable Behavior... 397
8.7: Other Issues Affecting Software and Compatibility ... 397

Appendix A: References .. 398

Appendix B: Revision History ... 400

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 9

List of Figures

Figure 3.1: Example of Instruction Description ... 32
Figure 3.2: Example of Instruction Fields.. 33
Figure 3.3: Example of Instruction Descriptive Name and Mnemonic .. 33
Figure 3.4: Example of Instruction Format .. 33
Figure 3.5: Example of Instruction Purpose.. 34
Figure 3.6: Example of Instruction Description ... 34
Figure 3.7: Example of Instruction Restrictions .. 35
Figure 3.8: Example of Instruction Operation ... 36
Figure 3.9: Example of Instruction Exception ... 36
Figure 3.10: Example of Instruction Programming Notes ... 37
Figure 3.11: COP_LW Pseudocode Function... 37
Figure 3.12: COP_LD Pseudocode Function.. 38
Figure 3.13: COP_SW Pseudocode Function .. 38
Figure 3.14: COP_SD Pseudocode Function ... 38
Figure 3.15: CoprocessorOperation Pseudocode Function.. 39
Figure 3.16: MisalignedSupport Pseudocode Function .. 39
Figure 3.17: AddressTranslation Pseudocode Function ... 40
Figure 3.18: LoadMemory Pseudocode Function ... 40
Figure 3.19: StoreMemory Pseudocode Function .. 41
Figure 3.20: Prefetch Pseudocode Function... 41
Figure 3.21: SyncOperation Pseudocode Function .. 42
Figure 3.22: ValueFPR Pseudocode Function.. 42
Figure 3.23: StoreFPR Pseudocode Function .. 43
Figure 3.24: CheckFPException Pseudocode Function ... 44
Figure 3.25: FPConditionCode Pseudocode Function.. 44
Figure 3.26: SetFPConditionCode Pseudocode Function .. 45
Figure 3.27: sign_extend Pseudocode Functions... 45
Figure 3.28: memory_address Pseudocode Function .. 46
Figure 3.29: Instruction Fetch Implicit memory_address Wrapping .. 46
Figure 3.30: AddressTranslation implicit memory_address Wrapping.. 46
Figure 3.31: SignalException Pseudocode Function .. 47
Figure 3.32: SignalDebugBreakpointException Pseudocode Function .. 47
Figure 3.33: SignalDebugModeBreakpointException Pseudocode Function.. 47
Figure 3.34: NullifyCurrentInstruction PseudoCode Function... 47
Figure 3.35: PolyMult Pseudocode Function .. 48
Figure 4.1: 16-Bit Instruction Formats... 50
Figure 4.2: 32-Bit Instruction Formats... 51
Figure 4.3: Immediate Fields within 32-Bit Instructions... 51
Figure 5.1: ALIGN operation (32-bit)... 121
Figure 5.2: Usage of Address Fields to Select Index and Way... 144
Figure 5.3: Usage of Address Fields to Select Index and Way... 150
Figure 5.4: Operation of the EXT Instruction .. 198
Figure 5.5: Operation of the INS Instruction ... 210
Figure 7.1: Sample Bit Encoding Table .. 380

10 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 11

List of Tables

Table 1.1: Symbols Used in Instruction Operation Statements... 15
Table 1.2: Read/Write Register Field Notation ... 18
Table 2.1: Instructions Added in Release 6 .. 24
Table 2.2: Instructions Recoded in Release 6 .. 26
Table 2.3: Instructions Removed in Release 6 ... 26
Table 3.1: AccessLength Specifications for Loads/Stores.. 41
Table 4.1: microMIPS Opcode Formats.. 52
Table 5.1: 16-Bit Re-encoding of Frequent MIPS Instructions.. 56
Table 5.2: 16-Bit Re-encoding of Frequent MIPS Instruction Sequences... 58
Table 5.3: Instruction-Specific Register Specifiers and Immediate Field Values ... 59
Table 5.4: 16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17 ... 60
Table 5.5: SB16, SH16, SW16 Source Registers - $0, $2-$7, $17 .. 61
Table 5.6: 16-Bit Instruction Implicit General-Purpose Registers ... 62
Table 5.7: 16-Bit Instruction Special-Purpose Registers... 62
Table 5.8: 32-bit Instructions introduced within microMIPS .. 62
Table 5.9: Encoded and Decoded Values of the Immediate Field .. 66
Table 5-1: Encoded and Decoded Values of Signed Immediate Field ... 67
Table 5.10: Encoded and Decoded Values of Immediate Field.. 69
Table 5-2: Encoded and Decoded Values of Immediate Field.. 73
Table 5.11: Offset Field Encoding Range -1, 0..14... 83
Table 5.12: LI16 -1, 0..126 Immediate Field Encoding Range.. 86
Table 5.13: Encoded and Decoded Values of the Enc_Dest Field ... 96
Table 5.14: Encoded and Decoded Values of the Enc_rs and Enc_rt Fields ... 96
Table 5.15: Shift Amount Field Encoding.. 103
Table 5.16: Shift Amount Field Encoding.. 104
Table 5.17: Usage of Effective Address.. 144
Table 5.18: Encoding of Bits[17:16] of CACHE Instruction... 145
Table 5.19: Encoding of Bits [20:18] of the CACHE Instruction.. 146
Table 5.20: Usage of Effective Address.. 150
Table 5.21: Encoding of Bits[22:21] of CACHEE Instruction .. 151
Table 5.22: Encoding of Bits [20:18] of the CACHEE Instruction ... 152
Table 5.1: Types of Global TLB Invalidates .. 207
Table 5.24: Special Cases for FP MAX, MIN, MAXA, MINA... 250
Table 6.25: Values of hint Field for PREF Instruction ... 275
Table 6.26: Values of hint Field for PREFE Instruction... 280
Table 6.27: RDHWR Register Numbers ... 283
Table 6.28: Encodings of the Bits[10:6] of the SYNC instruction; the SType Field... 346
Table 7.1: Symbols Used in the Instruction Encoding Tables... 381
Table 7.2: microMIPS32 Encoding of Major Opcode Field ... 382
Table 7.3: Legend for Minor Opcode Tables .. 383
Table 7.4: POOL32A Encoding of Minor Opcode Field .. 383
Table 7.5: POOL32P Encoding of Minor Extension Field ... 384
Table 7.6: POOL32Axf Encoding of Minor Opcode Extension Field... 384
Table 7.7: POOL32F Encoding of Minor Opcode Field .. 385
Table 7.8: POOL32Fxf Encoding of Minor Opcode Extension Field ... 386
Table 7.9: POOL32B Encoding of Minor Opcode Field .. 387
Table 7.10: POOL32C Encoding of Minor Opcode Field .. 387

12 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Table 7.11: LD-EVA Encoding of Minor Opcode Field.. 387
Table 7.12: ST-EVA Encoding of Minor Opcode Field.. 388
Table 7.13: POOL32I Encoding of Minor Opcode Field.. 388
Table 7.14: POOL16A Encoding of Minor Opcode Field .. 388
Table 7.15: POOL16B Encoding of Minor Opcode Field .. 389
Table 7.16: POOL16C Encoding of Minor Opcode Field .. 389
Table 7.17: POOL16D Encoding of Minor Opcode Field .. 389
Table 7.18: POOL16E Encoding of Minor Opcode Field .. 390
Table 7.19: PCREL Encoding of Minor Opcode Field... 390
Table 7.20: Floating Point Unit Format Encodings - S, D, PS... 390
Table 7.21: Floating Point Unit Format Encodings - S, D 1-bit ... 390
Table 7.22: Floating Point Unit Instruction Format Encodings - S, D 2-bits .. 391
Table 7.23: Floating Point Unit Format Encodings - S, W, L... 391
Table 7.24: Floating Point Unit Format Encodings - D, W, L .. 391

Chapter 1

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 13

About This Book

The MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set comes as part of a multi-
volume set.

• Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS64® Architecture

• Volume I-B describes conventions used throughout the document set, and provides an introduction to the micro-
MIPS™ Architecture

• Volume II-A provides detailed descriptions of each instruction in the MIPS64® instruction set

• Volume II-B provides detailed descriptions of each instruction in the microMIPS64™ instruction set

• Volume III describes the MIPS64® and microMIPS64™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS64® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size. Release 6 removes
MIPS16e: MIPS16e cannot be implemented with Release 6.

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture and
microMIPS64™. With Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be imple-
mented at the same time. Release 6 removes MDMX: MDMX cannot be implemented with Release 6.

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture. Release 6
removes MIPS-3D: MIPS-3D cannot be implemented with Release 6.

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture . Release 6 removes SmartMIPS: SmartMIPS cannot be implemented with
Release 6, neither MIPS32 Release 6 nor MIPS64 Release 6.

• Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture.

• Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

• Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture

• Volume IV-i describes the MIPS® Virtualization Module to the MIPS® Architecture

• Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

 About This Book

14 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, and registers that are important from a software perspective (for instance, address bits
used by software, and programmable fields and registers), and various floating point instruction formats, such as
S and D

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers
5 through 1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 15

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described using a high-level language pseudocode resem-
bling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

 Assignment

, ≠ Tests for equality and inequality

 Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

 About This Book

16 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

xy z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z, this expression is an empty (zero length) bit string.

x.bit[y] Bit y of bitstring x. Alternative to the traditional MIPS notation xy.

x.bits[y..z] Selection of bits y through z of bit string x. Alternative to the traditional MIPS notation xy z.

x.byte[y] Byte y of bitstring x. Equivalent to the traditional MIPS notation x8*y+7 8*y.

x.bytes[y..z] Selection of bytes y through z of bit string x. Alternative to the traditional MIPS notation x8*y+7 8*z

x halfword[y]
x.word[i]

x.doubleword[i]

Similar extraction of particular bitfields (used in e.g., MSA packed SIMD vectors).

x.bit31, x.byte0, etc. Examples of abbreviated form of x.bit[y], etc. notation, when y is a constant.

x fieldy Selection of a named subfield of bitstring x, typically a register or instruction encoding.
More formally described as “Field y of register x”.
For example, FIR.D = “the D bit of the Coprocessor 1 Floating-point Implementation Register (FIR)”.

,  2’s complement or floating point arithmetic: addition, subtraction

*,  2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

 Floating point division

 2’s complement less-than comparison

 2’s complement greater-than comparison

 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

not Bitwise inversion

&& Logical (non-Bitwise) AND

<< Logical Shift left (shift in zeros at right-hand-side)

>> Logical Shift right (shift in zeros at left-hand-side)

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].
Release 6 removes the floating point condition codes.

FPR[x] Floating Point (Coprocessor unit 1), general register x

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

1.3 Special Symbols in Pseudocode Notation

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 17

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0  Little-Endian, 1  Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions) and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0  Little-Endian, 1  Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRE and User mode).

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction
time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labeled I+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.
In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. Release 6 adds PC-relative address computation and load instructions. The PC value contains a
full 32-bit address, all of which are significant during a memory reference.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

 About This Book

18 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

1.4 Notation for Register Field Accessibility

In this document, the read/write properties of register fields use the notations shown in Table 1.1.

ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-

ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). It is optional if the FPU has
32 64-bit FPRs in which 64-bit data types are stored in any FPR.

microMIPS64 implementations have a compatibility mode in which the processor references the FPRs as if it
were a microMIPS32 implementation. In such a case FP32RegisterMode is computed from the FR bit in the
Status register. If this bit is a 0, the processor operates as if it had 32, 32-bit FPRs. If this bit is a 1, the proces-
sor operates with 32 64-bit FPRs.

The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

Table 1.2 Read/Write Register Field Notation

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software read. Software updates of this field are visible by
hardware read.
If the Reset State of this field is ‘‘Undefined’’, either software or hardware must initialize the value before
the first read will return a predictable value. This should not be confused with the formal definition of
UNDEFINED behavior.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e or microMIPS
instructions

1.4 Notation for Register Field Accessibility

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 19

R A field which is either static or is updated only by
hardware.
If the Reset State of this field is either ‘‘0’’, ‘‘Pre-
set’’, or ‘‘Externally Set’’, hardware initializes this
field to zero or to the appropriate state, respectively,
on powerup. The term ‘‘Preset’’ is used to suggest
that the processor establishes the appropriate state,
whereas the term ‘‘Externally Set’’ is used to sug-
gest that the state is established via an external
source (e.g., personality pins or initialization bit
stream). These terms are suggestions only, and are
not intended to act as a requirement on the imple-
mentation.
If the Reset State of this field is ‘‘Undefined’’, hard-
ware updates this field only under those conditions
specified in the description of the field.

A field to which the value written by software is
ignored by hardware. Software may write any value
to this field without affecting hardware behavior.
Software reads of this field return the last value
updated by hardware.
If the Reset State of this field is ‘‘Undefined’’, soft-
ware reads of this field result in an UNPREDICT-
ABLE value except after a hardware update done
under the conditions specified in the description of
the field.

R0 R0 = reserved, read as zero, ignore writes by soft-
ware.

Hardware ignores software writes to an R0 field.
Neither the occurrence of such writes, nor the val-
ues written, affects hardware behavior.

Hardware always returns 0 to software reads of R0
fields.

The Reset State of an R0 field must always be 0.

If software performs an mtc0 instruction which
writes a non-zero value to an R0 field, the write to
the R0 field will be ignored, but permitted writes to
other fields in the register will not be affected.

Architectural Compatibility: R0 fields are reserved,
and may be used for not-yet-defined purposes in
future revisions of the architecture.

When writing an R0 field, current software should
only write either all 0s, or, preferably, write back the
same value that was read from the field.

Current software should not assume that the value
read from R0 fields is zero, because this may not be
true on future hardware.

Future revisions of the architecture may redefine an
R0 field, but must do so in such a way that software
which is unaware of the new definition and either
writes zeros or writes back the value it has read from
the field will continue to work correctly.

Writing back the same value that was read is guaran-
teed to have no unexpected effects on current or
future hardware behavior. (Except for non-atomicity
of such read-writes.)

Writing zeros to an R0 field may not be preferred
because in the future this may interfere with the oper-
ation of other software which has been updated for
the new field definition.

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation

 About This Book

20 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

1.5 For More Information

MIPS processor manuals and additional information about MIPS products can be found at http://www.mips.com.

.

.

0 Release 6
Release 6 legacy “0” behaves like R0 - read as zero, nonzero writes ignored.

Legacy “0” should not be defined for any new control register fields; R0 should be used instead.

HW returns 0 when read.
HW ignores writes.

Only zero should be written, or, value read from reg-
ister.

pre-Release 6
pre-Release 6 legacy “0” - read as zero, nonzero writes UNDEFINED

A field which hardware does not update, and for
which hardware can assume a zero value.

A field to which the value written by software must
be zero. Software writes of non-zero values to this
field may result in UNDEFINED behavior of the
hardware. Software reads of this field return zero as
long as all previous software writes are zero.
If the Reset State of this field is ‘‘Undefined’’, soft-
ware must write this field with zero before it is guar-
anteed to read as zero.

R/W0 Like R/W, except that writes of non-zero to a R/W0 field are ignored.
E.g. Status.NMI

Hardware may set or clear an R/W0 bit.

Hardware ignores software writes of nonzero to an
R/W0 field. Neither the occurrence of such writes,
nor the values written, affects hardware behavior.

Software writes of 0 to an R/W0 field may have an
effect.

Hardware may return 0 or nonzero to software
reads of an R/W0 bit.

If software performs an mtc0 instruction which
writes a non-zero value to an R/W0 field, the write
to the R/W0 field will be ignored, but permitted
writes to other fields in the register will not be
affected.

Software can only clear an R/W0 bit.

Software writes 0 to an R/W0 field to clear the field.

Software writes nonzero to an R/W0 bit in order to
guarantee that the bit is not affected by the write.

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation

Chapter 2

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 21

Introduction

In today’s market, the lowest price, performance, or both must be satisfied, especially for deeply-embedded applica-
tions such as microcontroller applications. Moreover, customers require efficient solutions that can be turned into
products quickly. To meet this need, the MIPS® instruction set has been optimized and re-encoded into a new vari-
able-length scheme. This solution is called microMIPSTM.

microMIPS minimizes the resulting code footprint of applications and reduces the cost of memory, which is particu-
larly high for embedded memory. Simultaneously, the high performance of MIPS cores is maintained. Using this
technology, the customer can generate best results without spending time to profile its application. The smaller code
footprint typically leads to reduced power consumption per executed task because of the smaller number of memory
accesses.

microMIPS is the preferred replacement for the existing MIPS16eTM ASE. MIPS16e could only be used for user
mode programs which did not use floating-point nor any of the Application Specific Extensions (ASEs). microMIPS
does not have these limitations — it can be used for kernel mode code as well as user mode programs. It can be used
for programs which use floating-point. It can be used with the available ASEs.

microMIPS is also an alternative to the MIPS® instruction encoding and can be implemented in parallel or stand-
alone. The microMIPS equivalent of MIPS32 is microMIPS32TM and the microMIPS equivalent of MIPS64 is
microMIPS64TM.

Overview of changes vs. existing MIPS ISA:

• 16-bit and 32-bit opcodes

• Optimized opcode/operand field definitions based on statistics

• Removal of branch likely instructions, emulation by assembler

• Fine-tuned register allocation algorithm in the compiler for lowest code size

2.1 Default ISA Mode

The instruction sets which are available within an implementation are reported by the Config3ISA register field (bits

15:14). Config1CA (bit 2) is not used for microMIPS.

For implementations that support both microMIPS and MIPS, the selected ISA mode following reset is determined
by the setting of the Config3ISA register field., which is a read-only field set by a hardware signal external to the pro-

cessor core.

For implementations that support both microMIPS and MIPS, the selected ISA mode upon handling an exception is
determined by the setting of the Config3ISAOnExc register field (bit 16). The Config3ISAOnExc register field is writeable

by software and has a reset value that is set by a hardware signal external to the processor core. This register field

 Introduction

22 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

allows privileged software to change the ISA mode to be used for subsequent exceptions. This capability is for all
exception types whose vectors are offsets of the EBASE register.

For implementations that support both microMIPS and MIPS, the selected ISA mode when handling a debug excep-
tion is determined by the setting of the ISAonDebug register field in the EJTAG TAP Control register. This register
field is writeable by EJTAG probe software and has a reset value that is set by a hardware signal external to the pro-
cessor core.

For CPU cores supporting the MT ASE and multiple VPEs, the ISA mode for exceptions can be selected on a per-
VPE basis.

2.2 Software Detection

Software can determine if microMIPS ISA is implemented by checking the state of the ISA (Instruction Set Architec-
ture) field in the Config3 CP0 register. Config1CA (bit 2) is not used for microMIPS.

Software can determine if the MIPS ISA is implemented by checking the state of the ISA (Instruction Set Architec-
ture) register field in the Config3 CP0 register.

Software can determine which ISA is used when handling an exception by checking the state of the ISAOnExc (ISA
on Exception) field in the Config3 CP0 register.

Debug Probe Software can determine which ISA is used when handling a debug exception by checking the state of
the ISAOnDebug field in the EJTAG TAP Control register.

2.3 Compliance and Subsetting

This document does not change the instruction subsets as defined by the other MIPS architecture reference manuals,
including the subsets defined by the various ASEs.

2.4 ISA Mode Switch

The MIPS Release 3 architecture defines an ISA mode for each processor. An ISA mode value of 0 indicates MIPS
instruction decoding. In processors implementing microMIPS, an ISA mode value of 1 selects microMIPS instruction
decoding.

The ISA mode is not directly visible to user mode software. Upon an exception, the ISA mode of the faulting/inter-
rupted instruction is recorded in the least-significant address bit within the appropriate return address register - either
EPC or ErrorEPC or DebugEPC, depending on the exception type.

For the rest of this section, the following definitions are used:

Jump-and-Link-Register instructions: For the MIPS ISA, this means the JALR and JALR.HB instructions. For the
microMIPS ISA, this means the JALRC, JALRC.HB, JIALC, and JALRC16 instructions.

Jump-Register instructions: For the MIPS ISA, this means the JR and JR.HB instructions. For the microMIPS ISA,
this means the instructions JRC, JRC.HB, JIC, JRC16, and JRCADDIUSP instructions.

2.5 Branch and Jump Offsets

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 23

Mode switching between MIPS and microMIPS is enabled by the Jump-and-Link-Register and Jump-Register
instructions, as described below.

• The Jump-and-Link-Register and Jump-Register instructions interpret bit 0 of the source registers as the target
ISA mode (0=MIPS, 1=microMIPS) and therefore set the ISA Mode bit according to the contents of bit 0 of the
source register. For the actual jump operation, the PC is loaded with the value of the source register with bit 0 set
to 0. The Jump-and-Link-Register instructions save the ISA mode into bit 0 of the destination register.

• When exceptions or interrupts occur and the processor writes to EPC, DEPC, or ErrorEPC, the ISA Mode bit is
saved into bit 0 of these registers. Then the ISA Mode bit is set according to the Config3ISAOnExc register field.

On return from an exception, the processor loads the ISA Mode bit based on the value from either EPC, DEPC,
or ErrorEPC.

If only one ISA mode exists (either MIPS or microMIPS) then this mode switch mechanism does not exist, but the
ISA Mode bit is still maintained and has a fixed value (0=MIPS, 1=microMIPS). This is to maintain code compatibil-
ity between devices which implement both ISA modes and devices which implement only one ISA mode. Jump-Reg-
ister and Jump-and-Link-Register instructions cause an Address exception on the target instruction fetch when bit 0
of the source register is different from the fixed ISA mode. Exception handlers must use the instruction set binary for-
mat supported by the processor. The Jump-and-Link-Register instructions must still save the fixed ISA mode into bit
0 of the destination register.

2.5 Branch and Jump Offsets

In the MIPS architecture, because instructions are always 32 bits in size, the jump and branch target addresses are
word (32-bit) aligned. Jump/branch offset fields are shifted left by two bits to create a word-aligned effective address.

In the microMIPS architecture, because instructions can be either 16 or 32 bits in size, the jump and branch target
addresses are halfword (16-bit) aligned. Branch/jump offset fields are shifted left by only one bit to create halfword-
aligned effective addresses.

To maintain the existing MIPS ABIs, link unit/object file entry points are restricted to 32-bit word alignments. In the
future, a microMIPS-only ABI can be created to remove this restriction.

2.6 Coprocessor Unusable Behavior

If an instruction associated with a non-implemented coprocessor is executed, it is implementation specific whether a
processor executing in microMIPS mode raises an RI exception or a coprocessor unusable exception. This behavior is
different from the MIPS behavior in which coprocessor unusable exception is signalled for such cases.

If the microMIPS implementation chooses to use RI exception in such cases, the microMIPS RI exception handler
must check for coprocessor instructions being executed while the associated coprocessor is implemented but has been
disabled (StatusCUx set to zero).

 Introduction

24 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

2.7 Release 6 of the MIPS Architecture

Table 2.1 Instructions Added in Release 6

Instruction Instruction’s Purpose Replaces

ADDIUPC Add Immediate to PC (unsigned - non-trapping) New

ALIGN Concatenate two GPRs, and extract a contiguous subset at a byte
position (32-bit)

New

ALUIPC Aligned Add Upper Immediate to PC New

AUI Add Upper Immediate New

AUIPC Add Upper Immediate to PC New

BC1EQZC Branch if Coprocessor 1 (FPU) Register Bit 0 is Equal to Zero BCIF

BC1NEZC Branch if Coprocessor 1 (FPR) Register Bit 0 is Not Equal to Zero BCIT

BC2EQZC Branch if Coprocessor 2 Condition Register is Equal to Zero BC2F

BC2NEZC Branch if Coprocessor 2 Condition Register is Not Equal to Zero BC2T

BLEZALC Compact branch-and-link if GPR rt is less than or equal to zero New

BGEZALC Compact branch-and-link if GPR rt is greater than or equal to zero Compact version

BGTZALC Compact branch-and-link if GPR rt is greater than zero New

BLTZALC Compact branch-and-link if GPR rt is less than to zero Compact version

BEQZALC Compact branch-and-link if GPR rt is equal to zero New

BNEZALC Compact branch-and-link if GPR rt is not equal to zero New

BEQC Equal register-register compare and branch with 16-bit offset New

BNEC Not-Equal register-register compare and branch with 16-bit offset New

BLTC Signed register-register compare and branch with 16-bit offset:67 New

BGEC Signed register-register compare and branch with 16-bit offset: New

BLTUC Unsigned register-register compare and branch with 16-bit offset: New

BGEUC Unsigned register-register compare and branch with 16-bit offset: New

BGTC Assembly idioms with reversed operands for signed/unsigned com-
pare-and-branch

New

BLEC Assembly idioms with reversed operands for signed/unsigned com-
pare-and-branch

New

BGTUC Assembly idioms with reversed operands for signed/unsigned com-
pare-and-branch

New

BLEUC Assembly idioms with reversed operands for signed/unsigned com-
pare-and-branch

New

BLTZC Signed Compare register to Zero and branch with 16-bit offset Compact version

BLEZC Signed Compare register to Zero and branch with 16-bit offset Compact version

BGEZC Signed Compare register to Zero and branch with 16-bit offset Compact version

BGTZC Signed Compare register to Zero and branch with 16-bit offset Compact version

BEQZC Equal Compare register to Zero and branch with 21-bit offset Compact version with 21-bit offset

2.7 Release 6 of the MIPS Architecture

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 25

BNEZC Not-equal Compare register to Zero and branch with 21-bit offset Compact version with 21-bit offset

BC/BC16 Branch, Compact (16) B/B16

BALC Branch and Link, Compact BAL

BITSWAP Swaps (reverses) bits in each byte New

BOVC Branch on Overflow, Compact; Branch on No Overflow, Compact New

BNVC Branch on Overflow, Compact; Branch on No Overflow, Compact New

CRC32B/CRC32H/
CRC32W/CRC32D

Generate CRC with reversed polynomial 0xEDB88320 New

CRC32CB/CRC32CH/
CRC32CW/CRC32CD

Generate CRC with reversed polynomial 0x82F63B78 New

CLASS fmt Scalar Floating-Point Class Mask New

CMP.condn fmt Floating Point Compare setting Mask C.condn fmt

DIV Divide Words Signed DIV

DVP Disable Virtual Processor New

EVP Enable Virtual Processor New

MOD Modulo Words Signed DIV

DIVU Divide Words Signed DIVU

MODU Modulo Words Signed DIVU

GINVI Global Invalidate Instruction Cache New

GINVT Global Invalidate TLB New

JALRC16 Jump and Link Register Compact (16-bit instr size) JALR16

JIALC Jump Indexed and Link, Compact New

JIC Jump Indexed, Compact New

JRCADDIUSP Jump Register, Adjust Stack Pointer (16-bit) JRADDIUSP

LDPC Load Doubleword PC-relative New

LSA Load Scaled Address New

MADDF.fmt Floating Point Fused Multiply Add MADD fmt

MSUBF.fmt Floating Point Fused Multiply Subtract MSUB fmt

MAX fmt Scalar Floating-Point Maximum New

MAXA.fmt Scalar Floating-Point Argument with Maximum Absolute Value New

MIN.fmt Scalar Floating-Point Minimum New

MINA.fmt Scalar Floating-Point Argument with Minimum Absolute Value New

MUL Multiply Words Signed, Low Word MULT

MUH Multiply Words Signed, High Word MULT

MULU Multiply Words Signed, Low Word MULTU

MUHU Multiply Words Signed, High Word MULTU

RINT fmt Floating-Point Round to Integral New

SEL.fmt Select floating point values with FPR condition MOVF fmt, MOVT fmt

Table 2.1 Instructions Added in Release 6 (Continued)

Instruction Instruction’s Purpose Replaces

 Introduction

26 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

SELEQZ Select integer GPR value or zero MOVZ, MOVN

SELNEZ Select integer GPR value or zero MOVZ, MOVN

SELEQZ fmt Select floating point value or zero with FPR condition MOVZ fmt, MOVN.fmt

SELNEZ fmt Select floating point value or zero with FPR condition MOVZ fmt, MOVN.fmt

Table 2.2 Instructions Recoded in Release 6

Instruction Purpose

AND16 To do a bitwise logical AND

BEQZC Branch on Equal to Zero, Compact

BNEZC Branch on Not Equal to Zero, Compact

BREAK16 Breakpoint

JRC16 Jump Register, Compact (16-bit)

LUI To load a constant into the upper half of a word

LWM16 Load Word Multiple (16-bit)

MOVEP Move a Pair of Registers

NOT16 Invert (16-bit instr size)

OR16 Or (16-bit instr size)

SDBBP16 Software Debug Breakpoint (16-bit instr size)

SWM16 Store Word Multiple (16-bit)

SYNCI Synchronize Caches to Make Instruction Writes Effective

XOR16 Exclusive OR (16-bit instr size)

Table 2.3 Instructions Removed in Release 6

Instruction Purpose Replaced by

ABS.PS Floating Point Absolute Value, Paired Single —

ADD.PS Floating Point Add, Paired Single —

ADDI Add Immediate Word —

ALNV.PS Floating Point Align Variable, Paired Single —

B Unconditional Branch BC

B16 Unconditional Branch (16-bit instr size) BC16

Table 2.1 Instructions Added in Release 6 (Continued)

Instruction Instruction’s Purpose Replaces

2.7 Release 6 of the MIPS Architecture

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 27

BAL Branch and Link BALC

BC1F Branch on FP False BC1EQZC

BC1T Branch on FP True BC1NEZC

BC2F Branch on COP2 False BC2EQZC

BC2T Branch on COP2 True BC2NEZC

BEQ Branch on Equal BEQC

BGEZ Branch on Greater Than or Equal to Zero BGEZC

BEQZ16 Branch on Equal to Zero (16-bit instr size) BEQZC16

BGEZAL Branch on Greater Than or Equal to Zero and Link BGEZALC

BGEZALS Branch on Greater Than or Equal to Zero and Link, Short Delay-Slot —

BGTZ Branch on Greater Than Zero BGTZC

BLEZ Branch on Less Than or Equal to Zero BLEZC

BLTZ Branch on Less Than Zero BLTZC

BLTZAL Branch on Less Than Zero and Link BLTZALC

BLTZALS Branch on Less Than Zero and Link, Short Delay-Slot BLTZALC.

BNE Branch on Not Equal BNEC

BNEZ16 Branch on Not Equal to Zero (16-bit instr size) BNEZC16.

C.cond fmt Floating Point Compare CMP.condn.fmt

CVT.PS.S Floating Point Convert Pair to Paired Single —

CVT.S.PL Floating Point Convert Pair Lower to Single Floating Point —

CVT.S.PU Floating Point Convert Pair Upper to Single Floating Point —

DADDI Doubleword Add Immediate —

DIV Divide Word —

DIVU Divide Unsigned Word —

DMULT Doubleword Multiply —

DMULTU Doubleword Multiply Unsigned —

JALC Jump and Link Compact —

JALR16 Jump and Link Register (16-bit instr size) JALRC16

JALRS Jump and Link Register, Short Delay Slot JALRC

JALRS.HB Jump and Link Register with Hazard Barrier, Short Delay-Slot —

JALRS16 Jump and Link Register, Short Delay-Slot (16-bit instr size) JALRC16

Table 2.3 Instructions Removed in Release 6 (Continued)

Instruction Purpose Replaced by

 Introduction

28 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

JALS Jump and Link, Short Delay Slot —

JALX Jump and Link Exchange (microMIPS Format) —

JC Jump Register, Compact —

JR Jump Register JALRC

JR.HB Jump Register with Hazard Barrier JALRC.HB

JRC Jump Register, Compact (16) —

JR16 Jump Register (16-bit instr size) JRC16

JRADDIUSP Jump Register, Adjust Stack Pointer JRCADDIUSP

LDL Load Doubleword Left —

LDR Load Doubleword Right —

LDXC1 Load Doubleword Indexed to Floating Point —

LUXC1 Load Doubleword Indexed Unaligned to Floating Point —

LWL Load Word Left —

LWLE Load Word Left EVA —

LWR Load Word Right —

LWRE Load Word Right EVA —

LWXC1 Load Word Indexed to Floating Point —

LWXS Load Word Indexed, Scaled —

MADD Multiply and Add Word to Hi, Lo —

MADD.fmt Floating Point Multiply Add MADDF fmt

MADDU Multiply and Add Unsigned Word to Hi,Lo —

MFHI16 Move From HI Register (16-bit instr size) —

MFLO16 Move From LO Register —

MFHI Move From HI Register —

MFLO Move From LO Register —

MOV.PS Floating Point Move —

MOVF.fmt Floating Point Move Conditional on Floating Point False SEL.fmt

MOVN Move Conditional on Not Zero SELNEZ, SELEQZ

MOVN.fmt Floating Point Move Conditional on Not Zero SELNEZ fmt

MOVT Move Conditional on Floating Point True —

MOVT fmt Floating Point Move Conditional on Floating Point True SEL.fmt

Table 2.3 Instructions Removed in Release 6 (Continued)

Instruction Purpose Replaced by

2.7 Release 6 of the MIPS Architecture

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 29

MOVZ Move Conditional on Zero SELNEZ, SELEQZ

MOVZ.fmt Floating Point Move Conditional on Zero SELEZQZ fmt

MSUB Multiply and Subtract Word to Hi, Lo —

MSUB.fmt Floating Point Multiply Subtract MSUBF.fmt

MSUBU Multiply and Subtract Word to Hi,Lo —

MTHI Move to HI Register —

MTLO Move to LO Register —

MUL Multiply Word to GPR —

MUL.PS Floating Point Multiply, Paired Single —

MULT Multiply Word MUL, MULH

MULTU Multiply Unsigned Word MULU, MUHU

NEG.PS Floating Point Negate, Paired Single —

NMADD fmt Floating Point Negative Multiply Add NMADDF.fmt

NMSUB fmt Floating Point Negative Multiply Subtract NMSUBF fmt

PLL.PS Pair Lower Lower, Paired Single —

PLU.PS Pair Lower Upper, Paired Single —

PREFX Prefetch Indexed —

PUL.PS Pair Upper Lower, Paired Single —

PUU.PS Pair Upper Upper, Paired Single —

SDL Store Doubleword Left —

SDR Store Doubleword Right —

SDXC1 Store Doubleword Indexed from Floating Point —

SUB.PS Floating Point Subtract —

SUXC1 Store Doubleword Indexed Unaligned from Floating Point —

SWL Store Word Left —

SWLE Store Word Left EVA —

SWR Store Word Right —

SWXC1 Store Word Indexed from Floating Point —

TEQI Trap if Equal Immediate —

TGEI Trap if Greater or Equal Immediate —

TGEIU Trap if Greater or Equal Immediate Unsigned —

Table 2.3 Instructions Removed in Release 6 (Continued)

Instruction Purpose Replaced by

 Introduction

30 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

TLTI Trap if Less Than Immediate —

TLTIU Trap if Less Than Immediate Unsigned —

TNEI Trap if Not Equal Immediate —

Table 2.3 Instructions Removed in Release 6 (Continued)

Instruction Purpose Replaced by

Chapter 3

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 31

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

3.1 Understanding the Instruction Fields

Figure 3.1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• “Instruction Fields” on page 33

• “Instruction Descriptive Name and Mnemonic” on page 33

• “Format Field” on page 33

• “Purpose Field” on page 34

• “Description Field” on page 34

• “Restrictions Field” on page 35

• “Operation Field” on page 36

• “Exceptions Field” on page 36

• “Programming Notes and Implementation Notes Fields” on page 36

3.1 Understanding the Instruction Fields

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 33

3.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

• The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 3.2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
3.2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 3.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 3.2 Example of Instruction Fields

3.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
3.3.

Figure 3.3 Example of Instruction Descriptive Name and Mnemonic

3.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 3.4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields.

The architectural level at which the instruction was first defined, for example “MIPS32” is shown at the right side of
the page. Instructions introduced at different times by different ISA family members, are indicated by markings such

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00000

ADD
100000

6 5 5 5 5 6

rs rt rd

Add Word ADD

Format: ADD fd,rs,rt MIPS32

 Guide to the Instruction Set

34 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

as “MIPS64, MIPS32 Release 2”. Instructions removed by particular architecture release are indicated in the Avail-
ability section.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD fmt instruction lists both ADD.S and ADD.D.

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

The term decoded_immediate is used if the immediate field is encoded within the binary format but the assembler for-
mat uses the decoded value. The term left_shifted_offset is used if the offset field is encoded within the binary format
but the assembler format uses value after the appropriate amount of left shifting.

3.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 3.5 Example of Instruction Purpose

3.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 3.6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register
fd” is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /
Status register.

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd]  GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPR rd.

3.1 Understanding the Instruction Fields

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 35

3.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

• Valid values for instruction fields (for example, see floating point ADD.fmt)

• ALIGNMENT requirements for memory addresses (for example, see LW)

• Valid values of operands (for example, see ALNV.PS)

• Valid operand formats (for example, see floating point ADD.fmt)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL/SC)

Figure 3.7 Example of Instruction Restrictions

3.1.7 Availability and Compatibility Fields

The Availability and Compatibility sections are not provided for all instructions. These sections list considerations
relevant to whether and how an implementation may implement some instructions, when software may use such
instructions, and how software can determine if an instruction or feature is present. Such considerations include:

• Some instructions are not present on all architecture releases. Sometimes the implementation is required to
signal a Reserved Instruction exception, but sometimes executing such an instruction encoding is architec-
turally defined to give UNPREDICTABLE results.

• Some instructions are available for implementations of a particular architecture release, but may be provided
only if an optional feature is implemented. Control register bits typically allow software to determine if the
feature is present.

• Some instructions may not behave the same way on all implementations. Typically this involves behavior
that was UNPREDICTABLE in some implementations, but which is made architectural and guaranteed con-
sistent so that software can rely on it in subsequent architecture releases.

• Some instructions are prohibited for certain architecture releases and/or optional feature combinations.

• Some instructions may be removed for certain architecture releases. Implementations may then be required
to signal a Reserved Instruction exception for the removed instruction encoding; but sometimes the instruc-
tion encoding is reused for other instructions.

Restrictions:

None

 Guide to the Instruction Set

36 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

All of these considerations may apply to the same instruction. If such considerations applicable to an instruction are
simple, the architecture level in which an instruction was defined or redefined in the Format field, and/or the Restric-
tions section, may be sufficient; but if the set of such considerations applicable to an instruction is complicated, the
Availability and Compatibility sections may be provided.

3.1.8 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. This formal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 3.8 Example of Instruction Operation

See 3.2 “Operation Section Notation and Functions” on page 37 for more information on the formal notation used
here.

3.1.9 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 3.9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

3.1.10 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Operation:

temp  (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32  temp31 then

SignalException(IntegerOverflow)
else

GPR[rd]  temp
endif

Exceptions:

Integer Overflow

3.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 37

Figure 3.10 Example of Instruction Programming Notes

3.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

• “Instruction Execution Ordering” on page 37

• “Pseudocode Functions” on page 37

3.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

3.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

• “Coprocessor General Register Access Functions” on page 37

• “Memory Operation Functions” on page 39

• “Floating Point Functions” on page 42

• “Miscellaneous Functions” on page 46

3.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and
how a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted
into the functions described in this section.

3.2.2.1.1 COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-
word in coprocessor general register rt.

Figure 3.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

 Guide to the Instruction Set

38 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW

3.2.2.1.2 COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-
tents of memdouble in coprocessor general register rt.

Figure 3.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD

3.2.2.1.3 COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register rt.

Figure 3.13 COP_SW Pseudocode Function

dataword  COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW

3.2.2.1.4 COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the low-
order doubleword in coprocessor general register rt.

Figure 3.14 COP_SD Pseudocode Function

datadouble  COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

3.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 39

endfunction COP_SD

3.2.2.1.5 CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 3.15 CoprocessorOperation Pseudocode Function

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

3.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the Access-
Length field. The valid constant names and values are shown in Table 3.1. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

3.2.2.2.1 Misaligned Support

MIPS processors originally required all memory accesses to be naturally aligned. MSA (the MIPS SIMD Architec-
ture) supported misaligned memory accesses for its 128 bit packed SIMD vector loads and stores, from its introduc-
tion in MIPS Release 5. Release 6 requires systems to provide support for misaligned memory accesses for all
ordinary memory reference instructions: the system must provide a mechanism to complete a misaligned memory ref-
erence for this instruction, ranging from full execution in hardware to trap-and-emulate.

The pseudocode function MisalignedSupport encapsulates the version number check to determine if misalignment is
supported for an ordinary memory access.

Figure 3.16 MisalignedSupport Pseudocode Function

predicate  MisalignedSupport ()
return Config.AR ≥ 2 // Architecture Revision 2 corresponds to MIPS Release 6.

end function

See Appendix B, “Misaligned Memory Accesses” on page 511 for a more detailed discussion of misalignment,
including pseudocode functions for the actual misaligned memory access.

3.2.2.2.2 AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

 Guide to the Instruction Set

40 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Given the virtual address vAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual address is in one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 3.17 AddressTranslation Pseudocode Function

(pAddr, CCA)  AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute,the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

3.2.2.2.3 LoadMemory

The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (IorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
access type of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the access type is cached but the data is not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this
block is the entire memory element.

Figure 3.18 LoadMemory Pseudocode Function

MemElem  LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */
/* respectively. */
/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */
/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

3.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 41

3.2.2.2.4 StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the
bytes that are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytes in memory will
actually be changed.

Figure 3.19 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength: Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr: physical address */
/* vAddr: virtual address */

endfunction StoreMemory

3.2.2.2.5 Prefetch

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 3.20 Prefetch Pseudocode Function

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 3.1 lists the data access lengths and their labels for loads and stores.

Table 3.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

 Guide to the Instruction Set

42 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

3.2.2.2.6 SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

Figure 3.21 SyncOperation Pseudocode Function

SyncOperation(stype)

/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

3.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

3.2.2.3.1 ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

Figure 3.22 ValueFPR Pseudocode Function

value  ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

Table 3.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

3.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 43

case fmt of
S, W, UNINTERPRETED_WORD:

valueFPR  FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode  0)

if (fpr0  0) then
valueFPR  UNPREDICTABLE

else
valueFPR  FPR[fpr1]31..0  FPR[fpr]31..0

endif
else

valueFPR  FPR[fpr]
endif

L:
if (FP32RegistersMode  0) then

valueFPR  UNPREDICTABLE
else

valueFPR  FPR[fpr]
endif

DEFAULT:
valueFPR  UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

3.2.2.3.2 StoreFPR

Figure 3.23 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

FPR[fpr]  value

D, UNINTERPRETED_DOUBLEWORD:

 Guide to the Instruction Set

44 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

if (FP32RegistersMode  0)
if (fpr0  0) then

UNPREDICTABLE
else

FPR[fpr]  UNPREDICTABLE32  value31..0
FPR[fpr1]  UNPREDICTABLE32  value63..32

endif
else

FPR[fpr]  value
endif

L:
if (FP32RegistersMode  0) then

UNPREDICTABLE
else

FPR[fpr]  value
endif

endcase

endfunction StoreFPR

3.2.2.3.3 CheckFPException

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

Figure 3.24 CheckFPException Pseudocode Function

CheckFPException()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if ((FCSR17  1) or
((FCSR16..12 and FCSR11..7)  0))) then

SignalException(FloatingPointException)
endif

endfunction CheckFPException

3.2.2.3.4 FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.

Figure 3.25 FPConditionCode Pseudocode Function

tf FPConditionCode(cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then
FPConditionCode  FCSR23

else
FPConditionCode  FCSR24+cc

3.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 45

endif

endfunction FPConditionCode

3.2.2.3.5 SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 3.26 SetFPConditionCode Pseudocode Function

SetFPConditionCode(cc, tf)
if cc = 0 then

FCSR  FCSR31..24 || tf || FCSR22..0
else

FCSR  FCSR31..25+cc || tf || FCSR23+cc..0
endif

endfunction SetFPConditionCode

3.2.2.4 Pseudocode Functions Related to Sign and Zero Extension

3.2.2.4.1 Sign extension and zero extension in pseudocode

Much pseudocode uses a generic function sign_extend without specifying from what bit position the extension is
done, when the intention is obvious. E.g. sign_extend(immediate16) or sign_extend(disp9).

However, sometimes it is necessary to specify the bit position. For example, sign_extend(temp31..0) or the

more complicated (offset15)
GPRLEN-(16+2) || offset || 02.

The explicit notation sign_extend.nbits(val) or sign_extend(val,nbits) is suggested as a simpli-
fication. They say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually appar-
ent by context, and is usually GPRLEN, 32 or 64 bits. The previous examples then become.

sign_extend(temp31..0)
= sign_extend.32(temp)

and
(offset15)

GPRLEN-(16+2) || offset || 02

= sign_extend.16(offset)<<2

Note that sign_extend.N(value) extends from bit position N-1, if the bits are numbered 0..N-1 as is typical.

The explicit notations sign_extend.nbits(val) or sign_extend(val,nbits) is used as a simplifica-
tion. These notations say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually
apparent by context, and is usually GPRLEN, 32 or 64 bits.

Figure 3.27 sign_extend Pseudocode Functions
sign_extend.nbits(val) = sign_extend(val,nbits) /* syntactic equivalents */

function sign_extend(val,nbits)
return (valnbits-1)

GPRLEN-nbits || valnbits-1..0
end function

The earlier examples can be expressed as

 Guide to the Instruction Set

46 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

(offset15)
GPRLEN-(16+2) || offset || 02

= sign_extend.16(offset) << 2)

and
sign_extend(temp31..0)
= sign_extend.32(temp)

Similarly for zero_extension, although zero extension is less common than sign extension in the MIPS ISA.

Floating point may use notations such as zero_extend.fmt corresponding to the format of the FPU instruction.
E.g. zero_extend.S and zero_extend.D are equivalent to zero_extend.32 and zero_extend.64.

Existing pseudocode may use any of these, or other, notations.

3.2.2.4.2 memory_address

The pseudocode function memory_address performs mode-dependent address space wrapping for compatibility
between MIPS32 and MIPS64. It is applied to all memory references. It may be specified explicitly in some places,
particularly for new memory reference instructions, but it is also declared to apply implicitly to all memory refer-
ences as defined below. In addition, certain instructions that are used to calculate effective memory addresses but
which are not themselves memory accesses specify memory_address explicitly in their pseudocode.

Figure 3.28 memory_address Pseudocode Function
function memory_address(ea)

return ea
end function

On a 32-bit CPU, memory_address returns its 32-bit effective address argument unaffected.

In addition to the use of memory_address for all memory references (including load and store instructions, LL/
SC), Release 6 extends this behavior to control transfers (branch and call instructions), and to the PC-relative address
calculation instructions (ADDIUPC, AUIPC, ALUIPC). In newer instructions the function is explicit in the pseudo-
code.

Implicit address space wrapping for all instruction fetches is described by the following pseudocode fragment which
should be considered part of instruction fetch:

Figure 3.29 Instruction Fetch Implicit memory_address Wrapping
PC  memory_address(PC)
(instruction_data, length)  instruction_fetch(PC)
/* decode and execute instruction */

Implicit address space wrapping for all data memory accesses is described by the following pseudocode, which is
inserted at the top of the AddressTranslation pseudocode function:

Figure 3.30 AddressTranslation implicit memory_address Wrapping
(pAddr, CCA)  AddressTranslation (vAddr, IorD, LorS)

vAddr  memory_address(vAddr)

In addition to its use in instruction pseudocode,

3.2.2.5 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

3.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 47

3.2.2.5.1 SignalException

The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 3.31 SignalException Pseudocode Function

SignalException(Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

3.2.2.5.2 SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 3.32 SignalDebugBreakpointException Pseudocode Function

SignalDebugBreakpointException()

endfunction SignalDebugBreakpointException

3.2.2.5.3 SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 3.33 SignalDebugModeBreakpointException Pseudocode Function

SignalDebugModeBreakpointException()

endfunction SignalDebugModeBreakpointException

3.2.2.5.4 NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

Figure 3.34 NullifyCurrentInstruction PseudoCode Function

NullifyCurrentInstruction()

 Guide to the Instruction Set

48 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

endfunction NullifyCurrentInstruction

3.2.2.5.5 PolyMult

The PolyMult function multiplies two binary polynomial coefficients.

Figure 3.35 PolyMult Pseudocode Function

PolyMult(x, y)
temp  0
for i in 0 .. 31

if xi = 1 then
temp  temp xor (y(31-i)..0 || 0

i)
endif

endfor

PolyMult  temp

endfunction PolyMult

3.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, a single field has both fixed and variable subfields, so the name con-
tains both upper- and lowercase characters.

3.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such as fs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-
case.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 48 for a description of the op and function subfields.

Chapter 4

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 49

Instruction Formats

This chapter defines the formats of microMIPS instructions. The microMIPS variable-length encoding comprises 16-
bit and 32-bit wide instructions. The 6-bit major opcode is left-aligned within the instruction encoding. Instructions
can have 0 to 4 register fields. For 32-bit instructions, the register field width is 5 bits, while for most 16-bit instruc-
tions, the register field width is 3 bits, utilizing instruction-specific register encoding. All 5-bit register fields are
located at a constant position within the instruction encoding.

The immediate field is right-aligned in the following instructions:

• some 16-bit instructions with 3-bit register fields

• 32-bit instructions with 16-bit or 26-bit immediate field

The name ‘immediate field’ as used here includes the address offset field for branches and load/store instructions as
well as the jump target field.

Other instruction-specific fields are typically located between the immediate and minor opcode fields. Instructions
that have multiple “other” fields are listed in alphabetical order according to the name of the field, with the first name
of the order located at the lower bit position. An empty bit field that is not explicitly shown in the instruction format
is located next to the minor opcode field.

Figure 4.1 and Figure 4.2 show the 16-bit and 32-bit instruction formats.

 Instruction Formats

50 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Figure 4.1 16-Bit Instruction Formats

15 10 9 0

S3R0 Major Opcode Minor Opc/Imm

15 10 9 7 6 0

S3R1I7 Major Opcode rs1/d Minor Opc/Imm

15 10 9 6 5 3 2 0

S3R2I0 Major Opcode Minor Opc rs2/d rs1

15 10 9 7 6 4 3 1 0

S3R2I3 Major Opcode rs2/d rs1 Imm M

15 10 9 7 6 4 3 0

S3R2I4 Major Opcode rs2/d rs1 MInor Opc/Imm

15 10 9 7 6 4 3 1 0

S3R3I0 Major Opcode rd rs2 rs1 M

15 10 9 5 4 0

S5R1I0 Major Opcode Minor opc rs1/d

15 10 9 5 4 0

S5R1I5 Major Opcode rd Minor Opc/Imm

15 10 9 5 4 0

S5R2I0 Major Opcode rd rs1

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 51

Figure 4.2 32-Bit Instruction Formats

Figure 4.3 Immediate Fields within 32-Bit Instructions

31 26 25 0

R0 Major Opcode Immediate/Minor Opcode/Other

31 26 25 21 20 16 15 0

R1 Major Opcode Imm/Other rs/fs/base Immediate/Minor Opcode/Other

31 26 25 21 20 16 15 0

R2 Major Opcode rt/ft/index rs/fs/base Immediate/Minor Opcode/Other

31 26 25 21 20 16 15 11 10 0

R3 Major Opcode rt/ft/index rs/fs/base rd/fd Immediate/Minor Opcode/Other

31 26 25 21 20 16 15 11 10 6 5 0

R4 Major Opcode rt/ft rs/fs rd/fd rr/fr Minor Opcode/Other

32-bit instruc ion formats with 26-bit immediate fields:

31 26 25 0

R0I26 Major Opcode Immediate

31 26 25 16 15 0

R0I16 Major Opcode Minor Opcode/Other Immediate

32-bit instruc ion formats with 16-bit immediate fields:

31 26 25 21 20 16 15 0

R1I16 Major Opcode Minor Opcode/Other rs/fs Immediate

31 26 25 21 20 16 15 0

R2I16 Major Opcode rt/ft rs/fs Immediate

32-bit instruction formats with 12-bit immediate fields:

31 26 25 21 20 16 15 12 11 0

R1I12 Major Opcode Other rs/fs Minor Opcode Immediate

31 26 25 21 20 16 15 12 11 0

R2I12 Major Opcode rt/ft rs/fs Minor Opcode Immediate

 Instruction Formats

52 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

The instruction size can be completely derived from the major opcode. For 32-bit instructions, the major opcode also
defines the position of the minor opcode field and whether or not the immediate field is right-aligned.

Instructions formats are named according to the number of the register fields and the size of the immediate field. The
names have the structure R<x>I<y>. For example, an instruction based on the format R2I16 has 2 register fields and
a 16-bit immediate field.

Table 4.1 shows all formats. The 16-bit formats refer to either 3-bit or 5-bit register fields. To visualize this, a 16-bit
format name starts with the prefix S3 or S5 respectively.

4.1 Instruction Stream Organization and Endianness

16-bit instructions are placed within the 32-bit (or 64-bit) memory element according to system endianness.

• On a 32-bit processor in big-endian mode, the first instruction is read from bits 31..16, and the second instruction
is read from bits 15..0.

Table 4.1 microMIPS Opcode Formats

32-bit Instruction
Formats (existing

instructions)

32-bit
Instruction

Formats
(additional

format(s) for
new

instructions)

16-bit
Instruction

Formats

R0I0 R2I12 S3R0I0

R0I8 S3R0I10

R0I16 S3R1I7

R0I26 S3R2I0

R1I0 S3R2I3

R1I2 S3R2I4

R1I7 S3R3I1

R1I8 S5R1I0

R1I10 S5R1I4

R1I16 S5R2I0

R2I0

R2I2

R2I3

R2I4

R2I5

R2I10

R2I16

R3I0

R3I3

R4I0

4.1 Instruction Stream Organization and Endianness

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 53

• On a 32-bit processor in little-endian mode, the first instruction is read from bits 15..0, and the second instruction
is read from bits 31..16.

The above rule also applies to the halfwords of 32-bit instructions. This means that a 32-bit instruction is not treated
as a word data type; instead, the halfwords are treated in the same way as individual 16-bit instructions. The halfword
containing the major opcode is always the first in the sequence.

Example:
SRL r1, r1, 7 binary opcode fields: 000000 00001 00001 00111 00001 000000

hex representation: 0021 3840

Address: 3 2 1 0
Little Endian: Data: 38 40 00 21

Address: 0 1 2 3
Big Endian: Data: 00 21 38 40

Instructions are placed in memory such that they are in-order with respect to the address.

 Instruction Formats

54 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Chapter 5

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 55

microMIPS Instruction Set

This chapter lists all microMIPS encoded instructions, sorted into 16-bit and 32-bit categories.

In the 16-bit category:

• Frequent MIPS instructions and macros, re-encoded as 16-bit. Register and immediate fields are reduced in size
by using encodings of frequently occurring values.

In the 32-bit category:

• Opcode space for user-defined instructions (UDIs).

• New instructions designed primarily to reduce code size.

To differentiate between 16-bit and 32-bit encoded instructions, the instruction mnemonic can be optionally extended
with the suffix “16” or “32” respectively. This suffix is placed at the end of the instruction before the first ‘.’ if there
is one. For example:

ADD16, ADD32, ADD32.PS

If these suffixes are omitted, the assembler automatically chooses the smallest instruction size.

For each instruction, the tables in this chapter provide all necessary information about the bit fields. The formats of
the instructions are defined in Chapter 4, “Instruction Formats” on page 49. Together with the major and minor
opcode encodings, which can be derived from the tables in Chapter 7, “Opcode Map” on page 409, the complete
instruction encoding is provided.

Most register fields have a width of 5 bits. 5-bit register fields use linear encoding (r0=’00000’, r1=’00001’, etc.). For
16-bit instructions, whose register field size is variable, the register field width is explicitly stated in the instruction
table (Table 5.1 and Table 5.2), and the individual register and immediate encodings are shown in Table 5.3. The
‘other fields’ are defined by the respective column, with the order of these fields in the instruction encoding defined
by the order in the tables.

5.1 16-Bit Category

5.1.1 Frequent MIPS Instructions

These are frequent MIPS instructions with reduced register and immediate fields containing frequently used registers
and immediate values.

MOVE is a very frequent instruction. It therefore supports full 5-bit unrestricted register fields for maximum effi-
ciency. In fact, MOVE used to be a simplified macro of an existing MIPS instruction.

 microMIPS Instruction Set

56 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

There are 2 variants of the LW and SW instructions. One variant implicitly uses the SP register to allow for a larger
offset field. The value in the offset field is shifted left by 2 before it is added to the base address.

There are four variants of the ADDIU instruction:

1. A variant with one 5-bit register specifier that allows any GPR to be the source and destination register

2. A variant that uses the stack pointer as the implicit source and destination register

3. A variant that has separate 3-bit source and destination register specifiers

4. A variant that has the stack pointer as the implicit source register and one 3-bit destination register specifier

A 16-bit NOP instruction is needed because of the new 16-bit instruction alignment and the need in specific cases to
align instructions on a 32-bit boundary. It can save code size as well. NOP is not shown in the table because it is real-
ized as a macro (as is NEGU).

NOP16 = MOVE16 r0, r0

NEGU16 rt, rs = SUBU16 rt, r0, rs

Because microMIPS instructions are 16-bit aligned, the 16-bit branch instructions support 16-bit aligned branch tar-
get addresses. The offset field is left shifted by 1 before it is added to the PC.

The breakpoint instructions, BREAK and SDBBP, include a 16-bit variant that allows a breakpoint to be inserted at
any instruction address without overwriting more than a single instruction.

The instructions in the following tables are pre-Release 6 instructions. Refer to Section 2.7 “Release 6 of the MIPS
Architecture” to understand which instructions have been removed in Release 6.

Table 5.1 16-Bit Re-encoding of Frequent MIPS Instructions

Instruction

Major
Opcode
Name

Number of
Register
Fields

Immediate
Field Size

(bit)

Register
Field
Width
(bit)

Total
Size of
Other
Fields

Empty 0
Field Size

(bit)

Minor
Opcode
Size (bit) Comment

ADDIUS5 POOL16D 5bit:1 4 5 0 1 Add Immediate
Unsigned Word Same
Register

ADDIUSP POOL16D 0 9 0 0 1 Add Immediate
Unsigned Word to
Stack Pointer

ADDIUR2 POOL16E 2 3 3 0 1 Add Immediate
Unsigned Word
Two Registers

ADDIUR1SP POOL16E 1 6 3 0 1 Add Immediate
Unsigned Word
One Registers and
Stack Pointer

ADDU16 POOL16A 3 0 3 0 1 Add Unsigned Word

AND16 POOL16C 2 0 3 0 4 AND

ANDI16 ANDI16 2 4 3 0 0 AND Immediate

5.1 16-Bit Category

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 57

B16 B16 0 10 0 0 Branch

BREAK16 POOL16C 0 0 4 0 6 Cause Breakpoint
Exception

JALR16 POOL16C 1 0 5 0 5 Jump and Link
Register, 32-bit delay-
slot

JALRS16 POOL16C 1 0 5 0 5 Jump and Link
Register, 16-bit delay-
slot

JR16 POOL16C 1 0 5 0 5 Jump Register

LBU16 LBU16 2 4 3 0 0 Load Byte Unsigned

LHU16 LHU16 2 4 3 0 0 Load Halfword

LI16 LI16 1 7 3 0 0 Load Immediate

LW16 LW16 2 4 3 0 0 Load Word

LWGP LWGP16 1 7 3 0 0 Load Word GP

LWSP LWSP16 5bit:1 5 5 0 0 Load Word SP

MFHI16 POOL16C 1 0 5 0 5 Move from
HI Register

MFLO16 POOL16C 1 0 5 0 5 Move from
LO Register

MOVE16 MOVE16 2 0 5 0 0 Move

NOT16 POOL16C 2 0 3 0 4 NOT

OR16 POOL16C 2 0 3 0 4 OR

SB16 SB16 2 4 3 0 0 Store Byte

SDBBP16 POOL16C 0 0 4 0 6 Cause Debug
Breakpoint Exception

SH16 SH16 2 4 3 0 0 Store Halfword

SLL16 POOL16B 2 3 3 0 1 Shift Word Left
Logical

SRL16 POOL16B 2 3 3 0 1 Shift Word Right
Logical

SUBU16 POOL16A 3 0 3 0 1 Sub Unsigned

SW16 SW16 2 4 3 0 0 Store Word

SWSP SWSP16 5bit:1 5 5 0 0 Store Word SP

XOR16 POOL16C 2 0 3 0 4 XOR

Table 5.1 16-Bit Re-encoding of Frequent MIPS Instructions (Continued)

Instruction

Major
Opcode
Name

Number of
Register
Fields

Immediate
Field Size

(bit)

Register
Field
Width
(bit)

Total
Size of
Other
Fields

Empty 0
Field Size

(bit)

Minor
Opcode
Size (bit) Comment

 microMIPS Instruction Set

58 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

5.1.2 Frequent MIPS Instruction Sequences

These 16-bit instructions are equivalent to frequently-used short sequences of MIPS instructions. The instruction-spe-
cific register and immediate value selection are shown in Table 5.3.

Table 5.2 16-Bit Re-encoding of Frequent MIPS Instruction Sequences

Instruction

Major
Opcode
Name

Number of
Register
Fields

Immediate
Field Size

(bit)

Register
Field
Width
(bit)

Total
Size of
Other
Fields

Empty 0
Field Size

(bit)

Minor
Opcode
Size (bit) Comment

BEQZ16 BEQZ16 1 7 3 0 0 Branch on Equal Zero

BNEZ16 BNEZ16 1 7 3 0 0 Branch on
Not Equal Zero

JRADDIUSP POOL16C 0 5 5 Jump Register;
ADDIU SP

JRC POOL16C 1 0 5 0 5 Jump Register Com-
pact

LWM16 POOL16C 0 4 2 0 4 Load Word Multiple

MOVEP POOL16C 3 (encoded) 0 3(encoded) 0 1 Move Register Pair

SWM16 POOL16C 0 4 2 0 4 Store Word Multiple

5.1 16-Bit Category

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 59

5.1.3 Instruction-Specific Register Specifiers and Immediate Field Encodings

Table 5.3 Instruction-Specific Register Specifiers and Immediate Field Values

Instruction

Number
of

Register
Fields

Immediate
Field Size

(bit)

Register 1
Decoded

Value

Register 2
Decoded

Value

Register 3
Decoded

Value
Immediate Field Decoded

Value

ADDIUS5 5bit:1 4 rd: 5 bit field -8..0..7

ADDIUSP 0 9 (-258..-3, 2..257) << 2

ADDIUR2 2 3 rs1:2-7,16, 17 rd:2-7,16, 17 -1, 1, 4, 8, 12, 16, 20, 24

ADDIUR1SP 1 6 rd:2-7,16, 17 (0..63) << 2

ADDU16 3 0 rs1:2-7,16, 17 rs2:2-7,16, 17 rd:2-7,16, 17

AND16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17

ANDI16 2 4 rs1:2-7,16, 17 rd:2-7,16, 17 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63,
64, 128, 255, 32768, 65535

B16 0 10 (-512..511) << 1

BEQZ16 1 7 rs1:2-7,16, 17 (-64..63) << 1

BNEZ16 1 7 rs1:2-7,16, 17 (-64..63) << 1

BREAK16 0 4 0..15

JALR16 5bit:1 0 rs1:5 bit field

JALRS16 5bit:1 0 rs1:5 bit field

JRADDIUSP 0 5 (0..31) << 2

JR16 5bit:1 0 rs1:5 bit field

JRC 5bit:1 0 rs1:5 bit field

LBU16 2 4 rb:2-7,16,17 rd:2-7,16, 17 -1,0..14

LHU16 2 4 rb:2-7,16,17 rd:2-7,16, 17 (0..15) << 1

LI16 1 7 rd:2-7,16, 17 -1,0..126

LW16 2 4 rb:2-7,16,17 rd:2-7,16, 17 (0..15) << 2

LWM16 2bit list:1 4 (0..15)<<2

LWGP 1 7 rd:2-7,16,17 (-64..63)<<2

LWSP 5bit:1 5 rd:5-bit field (0..31)<<2

MFHI16 5bit:1 0 rd:5-bit field

MFLO16 5bit:1 0 rd:5-bit field

MOVE16 5bit:2 0 rd:5-bit field rs1:5-bit field

MOVEP 3 0 rd, re:
(5,6),(5,7),(6,7),
(4,21),(4,22),(4,

5),(4,6),(4,7)

rt:0,2,7,16-20 rs:0,2,7,16-20

NOT16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17

OR16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17

SB16 2 4 rb:2-7,16,17 rs1:0, 2-7, 17 0..15

 microMIPS Instruction Set

60 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

5.2 16-bit Instruction Register Set

Many of the 16-bit instructions use 3-bit register specifiers in their binary encodings. The register set used for most of
these 3-bit register specifiers is listed in Table 5.5. The register set used for SB16, SH16, SW16 source register is
listed in Table 5.5. These register sets are a true subset of the register set available in 32-bit mode; the 3-bit register
specifiers can directly access 8 of the 32 registers available in 32-bit mode (which uses 5-bit register specifiers).

In addition, specific instructions in the 16-bit instruction set implicitly reference the stack pointer register (sp), global
pointer register (gp), the return address register (ra), the integer multiplier/divider output registers (HI/LO) and the
program counter (PC). Of these, Table 5.6 lists sp, gp and ra. Table 5.7 lists the microMIPS special-purpose registers,
including PC, HI and LO.

The microMIPS also contains some 16-bit instructions that use 5-bit register specifiers. Such 16-bit instructions pro-
vide access to all 32 general-purpose registers.

SDBBP16 0 0 0..15

SH16 2 4 rb:2-7,16,17 rs1:0, 2-7, 17 (0..15) << 1

SLL16 2 3 rs1:2-7,16, 17 rd:2-7,16, 17 1..8 (see encoding tables)

SRL16 2 3 rs1:2-7,16, 17 rd:2-7,16, 17 1..8 (see encoding tables)

SUBU16 3 0 rs1:2-7,16, 17 rs2:2-7,16, 17 rd:2-7,16, 17

SW16 2 4 rb:2-7,16,17 rs1:0, 2-7, 17 (0..15) << 2

SWSP 5bit:1 5 rs1: 5 bit field (0..31) << 2

SWM16 2 bit list:1 4 (0..15)<<2

XOR16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17

Table 5.4 16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17

16-Bit
Register

Encoding1

32-Bit MIPS
Register

Encoding2

Symbolic Name
(From

ArchDefs.h) Description

0 16 s0 General-purpose register

1 17 s1 General-purpose register

2 2 v0 General-purpose register

3 3 v1 General-purpose register

4 4 a0 General-purpose register

5 5 a1 General-purpose register

6 6 a2 General-purpose register

Table 5.3 Instruction-Specific Register Specifiers and Immediate Field Values (Continued)

Instruction

Number
of

Register
Fields

Immediate
Field Size

(bit)

Register 1
Decoded

Value

Register 2
Decoded

Value

Register 3
Decoded

Value
Immediate Field Decoded

Value

5.2 16-bit Instruction Register Set

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 61

7 7 a3 General-purpose register

1. “0-7” correspond to the register’s 16-bit binary encoding and show how that encoding
relates to the MIPS registers. “0-7” never refer to the registers, except within the binary
microMIPS instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or
the symbolic names (s0, s1, v0, etc.) refer to the registers. For example, to access register
number 17 in the register file, the programmer references $17 or s1, even though the micro-
MIPS binary encoding for this register is 001.

2. General registers not shown in the above table are not accessible through the 16-bit instruc-
tion using 3-bit register specifiers. The Move instruction can access all 32 general-purpose
registers.

Table 5.5 SB16, SH16, SW16 Source Registers - $0, $2-$7, $17

16-Bit
Register

Encoding1

1. “0-7” correspond to the register’s 16-bit binary encoding and show how that encoding
relates to the MIPS registers. “0-7” never refer to the registers, except within the binary
microMIPS instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or
the symbolic names (s0, s1, v0, etc.) refer to the registers. For example, to access register
number 17 in the register file, the programmer references $17 or s1, even though the micro-
MIPS binary encoding for this register is 001.

32-Bit MIPS
Register

Encoding2

2. General registers not shown in the above table are not accessible through the 16-bit instruc-
tions using 3-bit register specifier. The Move instruction can access all 32 general-purpose
registers.

Symbolic Name
(From

ArchDefs.h) Description

0 0 zero Hard-wired Zero

1 17 s1 General-purpose register

2 2 v0 General-purpose register

3 3 v1 General-purpose register

4 4 a0 General-purpose register

5 5 a1 General-purpose register

6 6 a2 General-purpose register

7 7 a3 General-purpose register

Table 5.4 16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17 (Continued)

16-Bit
Register

Encoding1

32-Bit MIPS
Register

Encoding2

Symbolic Name
(From

ArchDefs.h) Description

 microMIPS Instruction Set

62 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

5.3 32-Bit Category

The instructions in the following tables are pre-Release 6 instructions. Refer to Section 2.7 “Release 6 of the MIPS
Architecture” to understand which instructions have been removed in Release 6.

5.3.1 New 32-bit instructions

The following table lists the 32-bit instructions introduced in the microMIPS ISA. Only instructions introduced prior
to Release 6 are included in this table. JALRS, JALRS.HB, JALS, and JALX have been removed in Release 6.

Table 5.6 16-Bit Instruction Implicit General-Purpose Registers

16-Bit
Register

Encoding

32-Bit MIPS
Register

Encoding

Symbolic Name
(From

ArchDefs.h) Description

Implicit 28 gp Global pointer register

Implicit 29 sp Stack pointer register

Implicit 31 ra Return address register

Table 5.7 16-Bit Instruction Special-Purpose Registers

Symbolic Name Purpose

PC Program counter. The PC-relative ADDIU can access this
register as an operand.

HI Contains high-order word of multiply or divide result.

LO Contains low-order word of multiply or divide result.

Table 5.8 32-bit Instructions introduced within microMIPS

Instruction

Major
Opcode
Name

Number of
Register
Fields

Immediate
Field Size

(bit)

Register
Field
Width
(bit)

Total
Size of
Other
Fields

Empty 0
Field Size

(bit)

Minor
Opcode
Size (bit) Comment

ADDIUPC ADDIUPC 1 23 3 0 0 ADDIU PC-Relative

BEQZC POOL32I 2:5 bit 16 5 0 Branch on
Equal to Zero, No
Delay Slot

BNEZC POOL32I 2:5 bit 16 5 0 Branch on
Not Equal to Zero, No
Delay Slot

JALRS POOL32A 2:5 bit 0 5 16 Jump and Link Regis-
ter, Short Delay Slot

5.3 32-Bit Category

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 63

JALRS.HB POOL32A 2:5 bit 0 5 16 Jump and Link Regis-
ter with Hazard Bar-
rier, Short Delay Slot

JALS JALS32 0 26 0 Jump and Link, Short
Delay Slot

JALX JALX 26 5 0 5 Jump and Link
Exchange

LWP POOL32B 2:5 bit 12 5 0 4 Load Word Pair

LWXS POOL32A 3:5 bit 0 5 0 1 10 Load Word Indexed,
Scale

LWM32 POOL32B 1:5bit 12 5 0 4 Load Word Multiple

SWP POOL32B 2:5 bit 12 0 4 Load Word Pair

SWM32 POOL32B 1:5bits 12 5 0 4 Store Word Multiple

Table 5.8 32-bit Instructions introduced within microMIPS (Continued)

Instruction

Major
Opcode
Name

Number of
Register
Fields

Immediate
Field Size

(bit)

Register
Field
Width
(bit)

Total
Size of
Other
Fields

Empty 0
Field Size

(bit)

Minor
Opcode
Size (bit) Comment

Chapter 5

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 64

5.4 Instructions Specific to microMIPS

This section describes instructions unique to microMIPS.

Only instructions supported in Release 6 are provided. Section 2.7, "Release 6 of the MIPS Architecture," lists
instructions that have been added, removed and recoded in Release 6.

ADDIUR1SP Add Immediate Unsigned Word One Register (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 65

Format: ADDIUR1SP rd, decoded_immediate_value microMIPS

Purpose: Add Immediate Unsigned Word One Register (16-bit instr size)

To add a constant to a 32-bit integer.

Description: GPR[rd]  GPR[29] + zero_extend(immediate << 2)

The 6-bit immediate field is first shifted left by two bits and then zero-extended. This amount is added to the 32-bit
value in GPR 29 and the 32-bit arithmetic result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

temp  GPR[29] + zero_extend(immediate || 02)
GPR[rd]  temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

15 10 9 7 6 1 0

POOL16E
011011

rd Immediate 1

6 3 6 1

ADDIUR2 Add Immediate Unsigned Word Two Registers (16-bit instr size)

66 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: ADDIUR2 rd, rs1, decoded_immediate_value microMIPS

Purpose: Add Immediate Unsigned Word Two Registers (16-bit instr size)

To add a constant to a 32-bit integer.

Description: GPR[rd]  GPR[rs] + sign_extend(decoded immediate)

The encoded immediate field is decoded to obtain the actual immediate value.

The decoded immediate value is sign-extended and then added to the 32-bit value in GPR rs, and the 32-bit arithmetic
result is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

temp  GPR[rs] + sign_extend(decoded immediate)
GPR[rd]  temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

15 10 9 7 6 4 3 1 0

POOL16E
011011

rd rs Encoded
Immediate

0

6 3 3 3 1

Table 5.9 Encoded and Decoded Values of the Immediate Field

 Encoded
Value of
Instr3..1

(Decimal)

 Encoded
Value of
Instr3..1
(Hex)

 Decoded
Value of

Immediate
(Decimal)

Decoded
Value of

Immediate
(Hex)

0 0x0 1 0x0001

1 0x1 4 0x0004

2 0x2 8 0x0008

3 0x3 12 0x000c

4 0x4 16 0x0010

5 0x5 20 0x0014

6 0x6 24 0x0018

7 0x7 -1 0xffff

ADDIUS5 Add Immediate Unsigned Word 5-Bit Register Select (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 67

Format: ADDIUS5 rd, decoded_immediate_value microMIPS

Purpose: Add Immediate Unsigned Word 5-Bit Register Select (16-bit instr size)

To add a constant to a 32-bit integer

Description: GPR[rd]  GPR[rd] + sign_extend(immediate)

The 4-bit immediate field is sign-extended and then added to the 32-bit value in GPR rd. The 32-bit arithmetic result
is placed into GPR rd.

The 5-bit register select allows this 16-bit instruction to use any of the 32 GPRs as the destination register.

No Integer Overflow exception occurs under any circumstances.

15 10 9 5 4 1 0

POOL16D
010011

rd Immediate 0

6 5 4 1

Table 5-1 Encoded and Decoded Values of Signed Immediate Field

 Encoded
Value of
Instr4..1

(Decimal)

 Encoded
Value of
Instr4..1
(Hex)

 Decoded
Value of

Immediate
(Decimal)

Decoded
Value of

Immediate
(Hex)

0 0x0 0 0x0000

1 0x1 1 0x0001

2 0x2 2 0x0002

3 0x3 3 0x0003

4 0x4 4 0x0004

5 0x5 5 0x0005

6 0x6 6 0x0006

7 0x7 7 0x0007

8 0x8 -8 0xfff8

9 0x9 -7 0xfff9

10 0xa -6 0xfffa

11 0xb -5 0xfffb

12 0xc -4 0xfffc

13 0xd -3 0xffffd

14 0xe -2 0xfffe

15 0xf -1 0xffff

ADDIUS5 Add Immediate Unsigned Word 5-Bit Register Select (16-bit instr size)

68 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Restrictions:

Operation:

temp  GPR[rd] + sign_extend(immediate)
GPR[rd]  temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

ADDIUSP Add Immediate Unsigned Word to Stack Pointer(16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 69

Format: ADDIUSP decoded_immediate_value microMIPS

Purpose: Add Immediate Unsigned Word to Stack Pointer(16-bit instr size)

To add a constant to the stack pointer.

Description: GPR[29]  GPR[29] + sign_extend(decoded immediate << 2)

The encoded immediate field is decoded to obtain the actual immediate value.

The actual immediate value is first shifted left by two bits and then sign-extended. This amount is added to the 32-bit
value in GPR 29, and the 32-bit arithmetic result is placed into GPR 29.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

Operation:

temp  GPR[29] + sign_extend(decoded immediate || 02)
GPR[29]  temp

15 10 9 1 0

POOL16D
010011

Encoded
Immediate

1

6 9 1

Table 5.10 Encoded and Decoded Values of Immediate Field

 Encoded Value of
Instr9..1

(Decimal)

 Encoded Value of
Instr9..1
(Hex)

 Decoded Value of
Immediate
(Decimal)

Decoded Value of
Immediate

(Hex)

0 0x0 256 0x0100

1 0x1 257 0x0101

2 0x2 2 0x0002

3 0x3 3 0x0003

...

254 0xfe 254 0x00fe

255 0xff 255 0x00ff

256 0x100 -256 0xff00

257 0x101 -255 0xff01

...

508 0x1fc -4 0xfffc

509 0x1fd -3 0xfffd

510 0x1fe -258 0xfefe

511 0x1ff -257 0xfeff

ADDIUSP Add Immediate Unsigned Word to Stack Pointer(16-bit instr size)

70 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

ADDU16 Add Unsigned Word (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 71

Format: ADDU16 rd, rs, rt microMIPS

Purpose: Add Unsigned Word (16-bit instr size)

To add 32-bit integers

Description: GPR[rd]  GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs, and the 32-bit arithmetic result is placed into
GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

temp  GPR[rs] + GPR[rt]
GPR[rd]  temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

15 10 9 7 6 4 3 1 0

POOL16A
000001

rs rt rd 0

6 3 3 3 1

AND16 And (16-bit instr size)

72 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: AND16 rt, rs microMIPS

Purpose: And (16-bit instr size)

To do a bitwise logical AND

Description: GPR[rt]  GPR[rs] AND GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is
placed into GPR rt.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

GPR[rt]  GPR[rs] and GPR[rt]

Exceptions:

None

POOL16C
010001

rt rs
AND16

0001

6 3 3 4

ANDI16 And Immediate (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 73

Format: ANDI16 rd, rs, decoded_immediate_value microMIPS

Purpose: And Immediate (16-bit instr size)

To do a bitwise logical AND with a constant

Description: GPR[rd]  GPR[rs] AND zero_extend(decoded immediate)

The encoded immediate field is decoded to obtain the actual immediate value

The decoded immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical
AND operation. The result is placed into GPR rd.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

GPR[rd]  GPR[rs] and zero_extend(decoded immediate)

Exceptions:

None

15 10 9 7 6 4 3 0

ANDI16
001011

rd rs Encoded
Immediate

6 3 3 4

Table 5-2 Encoded and Decoded Values of Immediate Field

 Encoded Value of
Instr3..0 (Decimal)

 Encoded Value of
Instr3..0 (Hex)

 Decoded Value of
Immediate (Decimal)

Decoded Value of
Immediate (Hex)

0 0x0 128 0x80

1 0x1 1 0x1

2 0x2 2 0x2

3 0x3 3 0x3

4 0x4 4 0x4

5 0x5 7 0x7

6 0x6 8 0x8

7 0x7 15 0xf

8 0x8 16 0x10

9 0x9 31 0x1f

10 0xa 32 0x20

11 0xb 63 0x3f

12 0xc 64 0x40

13 0xd 255 0xff

14 0xe 32768 0x8000

15 0xf 65535 0xffff

BC16 IUnconditional Branch Compact (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 74

Format: BC16 offset microMIPS Release 6

Purpose: Unconditional Branch Compact (16-bit instr size)

To do an unconditional branch

Description: branch

A 11-bit signed offset (the 10-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself) to form a PC-relative effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed when the branch is
taken.

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Operation:

target_offset  sign_extend(offset || 01)
PC  PC + 2 + target_offset

Exceptions:

None

Programming Notes:

With the 11-bit signed instruction offset, the branch range is  1 Kbytes. Use jump (JRC16 or JIC) or 32-bit branch
instructions to branch to addresses outside this range.

15 10 9 0

BC16
110011

offset

6 10

BEQZC16 Branch on Equal to Zero Compact (16-bit instr size)

75 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: BEQZC16 rs, offset microMIPS Release 6

Purpose: Branch on Equal to Zero Compact (16-bit instr size)

To compare a GPR to zero then do a PC-relative conditional branch

Description: if GPR[rs] = 0 then branch

A 8-bit signed offset (the 7-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself) to form a PC-relative effective target address.

If the contents of GPR rs equals zero, branch to the effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed if the branch is taken.

Restrictions:

The 3-bit register field can only specify GPRs $2-$7, $16, $17.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Operation:

target_offset  sign_extend(offset || 0)
condition  (GPR[rs] == 0)

if condition then
PC  PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 8-bit signed instruction offset, the conditional branch range is  64 Bytes. Use 32-bit branch, jump (JRC16
or JIC) instructions to branch to addresses outside this range.

15 10 9 7 6 0

BEQZC16
100011

rs
offset

6 3 7

BNEZC16 IBranch on Not Equal to Zero Compact (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 76

Format: BNEZC16 rs, offset microMIPS Release 6

Purpose: Branch on Not Equal to Zero Compact (16-bit instr size)

To compare a GPR to zero then do a PC-relative conditional branch

Description: if GPR[rs] != 0 then branch

A 8-bit signed offset (the 7-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

If the contents of GPR rs does not equal zero, branch to the effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed if the branch is taken.

Restrictions:

The 3-bit register field can only specify GPRs $2-$7, $16, $17.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Operation:

target_offset  sign_extend(offset || 0)
condition  (GPR[rs] != 0)

if condition then
PC  PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 8-bit signed instruction offset, the conditional branch range is  64 Bytes. Use 32-bit branch, jump (JRC16
or JIC) instructions to branch to addresses outside this range.

15 10 9 7 6 0

BNEZC16
101011

rs
offset

6 3 7

BREAK16 Breakpoint

77 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: BREAK16 microMIPS

Purpose: Breakpoint

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the
contents of the memory word containing the instruction.

Restrictions:

None

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

SignalException(Breakpoint)

Exceptions:

Breakpoint

15 10 9 6 5 0

POOL16C
010001

code BREAK16
011011

6 4 6

JALRC16 IJump and Link Register Compact (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 78

Format: JALRC16 rs microMIPS Release 6

Purpose: Jump and Link Register Compact (16-bit instr size)

To execute a procedure call to an instruction address in a register

Description: GPR[31]  return_addr, PC  GPR[rs]

For processors that do not implement the MIPS ISA:

• Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS ISA:

• Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Place the return address link in GPR r31. The return link is the address of the first instruction following the branch,
where execution continues after a procedure call.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS and if the ISAMode bit of the target is MIPS (bit 0 of GPR rs is 0) and
address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS ISA, if the intended target ISAMode is MIPS (bit 0 of GPR rs is zero), an
Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump; that is, delay slot restrictions
do not apply in Release 6.

Operation:

temp  GPR[rs]
GPR[31]  PC + 2

if Config3ISA = 1 then
PC  temp

else
PC  tempGPRLEN-1..1 || 0
ISAMode  temp0

endif

15 10 9 5 4 0

POOL16C
010001

rs
JALRC16

01011

6 5 5

JALRC16 Jump and Link Register Compact (16-bit instr size)

79 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Exceptions:

None

JRCADDIUSP IJump Register Compact, Adjust Stack Pointer (16-bit)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 80

Format: JRCADDIUSP decoded_immediate microMIPS Release 6

Purpose: Jump Register Compact, Adjust Stack Pointer (16-bit)

To execute a branch to an instruction address in a register and adjust stack pointer

Description: PC  GPR[ra]; SP  SP + zero_extend(Immediate << 2)

For processors that do not implement the MIPS ISA:

• Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS ISA:

• Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

The 5-bit immediate field is first shifted left by two bits and then zero-extended. This amount is then added to the 32-
bit value of GPR 29 and the 32-bit arithmetic result is placed into GPR 29. No Integer Overflow exception occurs
under any circumstances for the update of GPR 29.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS and the ISAMode bit of the target address is MIPS (bit 0 of GPR rs is 0) and
address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS ISA, if the intended target ISAMode is MIPS (bit 0 of GPR rs is zero), an
Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Operation:

PC  GPR[31]GPRLEN-1..1 || 0
if (Config3ISA > 1)

ISAMode  GPR[31]0
endif
temp  GPR[29] + zero_extend(immediate || 02)
GPR[29]  temp

15 10 9 5 4 0

POOL16C
010001

immediate
JRCADDIUSP

10011

6 5 5

JRCADDIUSP Jump Register Compact, Adjust Stack Pointer (16-bit)

81 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Exceptions:

None.

Programming Notes:

JRC16 IJump Register Compact (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 82

Format: JRC16 rs microMIPS

Purpose: Jump Register Compact (16-bit instr size)

To execute a branch to an instruction address in a register

Description: PC  GPR[rs]

For processors that do not implement the MIPS ISA:

• Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS ISA:

• Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS and the ISAMode bit of the target address is MIPS (bit 0 of GPR rs is 0) and
address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS ISA, if the intended target ISAMode is MIPS (bit 0 of GPR rs is zero), an
Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump; that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

temp  GPR[rs]
if Config3ISA = 1 then

PC  temp
else

PC  tempGPRLEN-1..1 || 0
ISAMode  temp0

endif

Exceptions:

None

15 10 9 5 4 0

POOL16C
010001

rs
JRC16
00011

6 5 5

LBU16 Load Byte Unsigned (16-bit instr size)

83 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: LBU16 rt, decoded_offset(base) microMIPS

Purpose: Load Byte Unsigned (16-bit instr size)

To load a byte from memory as an unsigned value

Description: GPR[rt]  memory[GPR[base] + decoded_offset]

The encoded offset field is decoded to get the actual offset value. This decoded value is added to the contents of base
register to create the effective address. Table 5.11 shows the encoded and decode values of the offset field.

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 4-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_offset  Decode(encoded_offset)

15 10 9 7 6 4 3 0

LBU16
000010

rt base
encoded

offset

6 3 3 4

Table 5.11 Offset Field Encoding Range -1, 0..14

Encoded Input
(Hex)

Decoded Value
(Decimal)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

a 10

b 11

c 12

d 13

e 14

f -1

LBU16 ILoad Byte Unsigned (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 84

vAddr  sign_extend(decoded_offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
pAddr  pAddrPSIZE-1.. || (pAddr..0 xor ReverseEndian)
memword  LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte  vAddr..0 xor BigEndianCPU
GPR[rt]  zero_extend(memword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

LHU16 Load Halfword Unsigned (16-bit instr size)

85 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: LHU16 rt, left_shifted_offset(base) microMIPS

Purpose: Load Halfword Unsigned (16-bit instr size)

To load a halfword from memory as an unsigned value

Description: GPR[rt]  memory[GPR[base] + (offset  2)]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 4-bit unsigned offset is left shifted by one bit and then added to the contents
of GPR base to form the effective address.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  zero_extend(offset || 0) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
pAddr  pAddrPSIZE–1.. || (pAddr..0 xor (ReverseEndian || 0))
memword  LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte  vAddr..0 xor (BigEndianCPU || 0)
GPR[rt]  zero_extend(memword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

15 10 9 7 6 4 3 0

LHU16
001010

rt base offset

6 3 3 4

LI16 ILoad Immediate Word (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 86

Format: LI16 rd, decoded_immediate microMIPS

Purpose: Load Immediate Word (16-bit instr size)

To load a 6-bit constant into a register.

Description: GPR[rd]  decoded_immediate

The 7-bit encoded Immediate field is decoded to obtain the actual immediate value. Table 5.12 shows the encoded
values of the Immeidiate field and the actual immediate values.

The actual decoded immediate value is sign-extended and placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_immediate  Decode(encoded_immediate)
temp  sign_extend(decoded_immediate)
GPR[rd]  temp..0

Exceptions:

None

15 10 9 7 6 0

LI16
111011

rd
Encoded

Immediate

6 3 7

Table 5.12 LI16 -1, 0..126 Immediate Field Encoding Range

Encoded Input
(Hex)

Decoded Value
(Decimal)

0 0

1 1

2 2

3 3

... ...

7e 126

7f -1

LWP Load Word Pair

87 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: LWP rd, offset(base) microMIPS

Purpose: Load Word Pair

To load two consecutive words from memory

Description: GPR[rd], GPR[rd+1]  memory[GPR[base] + offset]

The contents of the two consecutive 32-bit words at the memory location specified by the 32-bit aligned effective
address are fetched, sign-extended to the GPR register length if necessary, and placed in GPR rd and (rd+1). The
12-bit signed offset is added to the contents of GPR base to form the effective address.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The behavior of the instructions is UNPREDICTABLE if rd equals r31.

The behavior of the instruction is UNPREDICTABLE, if base and rd are the same. Reason for this is to allow
restartability of the operation if an interrupt or exception has aborted the operation in the middle.

Pre-Release 6: The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rd]  memword

vAddr  sign_extend(offset) + GPR[base] + 4
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rd+1] memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 12 11 0

POOL32B
001000

rd base
LWP
0001

offset

6 5 5 4 12

LW16 ILoad Word (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 88

Format: LW16 rt, left_shifted_offset(base) microMIPS

Purpose: Load Word (16-bit instr size)

To load a word from memory as a signed value

Description: GPR[rt]  memory[GPR[base] + (offset  4)]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 4-bit unsigned offset is left shifted by two
bits and then is added to the contents of GPR base to form the effective address.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  zero_extend(offset|| 02) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt]  memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

15 10 9 7 6 4 3 0

LW16
011010

rt base offset

6 3 3 4

LWM32 Load Word Multiple

89 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: LWM32 {sre16, } {ra}, offset(base) microMIPS

Purpose: Load Word Multiple

To load a sequence of consecutive words from memory

Description: {GPR[16],{GPR[17],{GPR[18],{GPR[19],{GPR[20],{GPR[21],{GPR[22],{GPR[23],
{GPR[30]}}}}}}}}}{GPR[31]} 
memory[GPR[base]+offset],...,memory[GPR[base]+offset+4*(fn(reglist))]

The contents of consecutive 32-bit words at the memory location specified by the 32-bit aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and placed in the GPRs defined by reglist. The 12-bit
signed offset is added to the contents of GPR base to form the effective address.

The following table shows the encoding of the reglist field.

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the

31 26 25 21 20 16 15 12 11 0

POOL32B
001000

reglist base
LWM32

0101
offset

6 5 5 4 12

reglist Encoding
(binary) List of Registers Loaded

0 0 0 0 1 GPR[16]

0 0 0 1 0 GPR[16], GPR[17]

0 0 0 1 1 GPR[16], GPR[17], GPR[18]

0 0 1 0 0 GPR[16], GPR[17], GPR[18], GPR[19]

0 0 1 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20]

0 0 1 1 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21]

0 0 1 1 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22]

0 1 0 0 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23]

0 1 0 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30]

1 0 0 0 0 GPR[31]

1 0 0 0 1 GPR[16], GPR[31]

1 0 0 1 0 GPR[16], GPR[17], GPR[31]

1 0 0 1 1 GPR[16], GPR[17], GPR[18], GPR[31]

1 0 1 0 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

1 0 1 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[31]

1 0 1 1 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[31]

1 0 1 1 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[31]

1 1 0 0 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[31]

1 1 0 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30], GPR[31]

All other combinations Reserved

LWM32 ILoad Word Multiple

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 90

left-most register on the list and ending with the right-most register on the list. The effective address is incremented
for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The behavior of the instruction is UNPREDICTABLE, if base is included in reglist. Reason for this is to allow
restartability of the operation if an interrupt or exception has aborted the operation in the middle.

Pre-Release 6: The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
for i0 to fn(reglist)

(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[gpr(reglist,i)]  memword
vAddr  vAddr + 4

endfor

function fn(list)
fn  (number of entries in list) - 1

endfunction

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

LWM16 Load Word Multiple (16-bit)

91 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: LWM16 s0, {s1, {s2, {s3,}}} ra, left_shifted_offset(sp) microMIPS

Purpose: Load Word Multiple (16-bit)

To load a sequence of consecutive words from memory

Description: GPR[16], {GPR[17], {GPR[18], {GPR[19],}}} GPR[31] 
memory[GPR[29]+(offset<<2)],...,memory[GPR[19]+(offset<<2)+4*(fn(reglist))]

The contents of consecutive 32-bit words at the memory location specified by the 32-bit aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and placed in the GPRs defined by reglist. The 4-bit
unsigned offset is first left shifted by two bits and then added to the contents of GPR sp to form the effective address.

The following table shows the encoding of the reglist field.

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented
for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

vAddr  zero_extend(offset||02) + GPR[sp]
if vAddr1..0 ≠ 0

2 then
SignalException(AddressError)

endif
for i 0 to fn(reglist)

(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[gpr(reglist,i)]  memword
vAddr  vAddr + 4

POOL16C
010001

reglist offset
LWM16

0010

6 2 4 4

reglist Encoding
(binary) List of Registers Loaded

0 0 GPR[16], GPR[31]

0 1 GPR[16], GPR[17], GPR[31]

1 0 GPR[16], GPR[17], GPR[18], GPR[31]

1 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

LWM16 ILoad Word Multiple (16-bit)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 92

endfor

function fn(list)
fn  number of entries in list - 1

endfunction

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

LWGP Load Word from Global Pointer (16-bit instr size)

93 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: LWGP
LW16 rt, left_shifted_offset(gp) microMIPS

Purpose: Load Word from Global Pointer (16-bit instr size)

To load a word from memory as a signed value

Description: GPR[rt]  memory[GPR[28] + (offset  4)]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 7-bit signed offset is left shifted by two
bits and then added to the contents of GPR 28 to form the effective address.

Restrictions:

The 3-bit register field can only specify GPRs $2-$7, $16, $17.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr  sign_extend(offset|| 02) + GPR[28]
if vAddr1..0 ≠ 0

2 then
SignalException(AddressError)

endif
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt]  memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

15 10 9 7 6 0

LWGP16
011001

rt offset

6 3 7

LWSP ILoad Word from Stack Pointer (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 94

Format: LWSP
LW16 rt, left_shifted_offset(sp) microMIPS

Purpose: Load Word from Stack Pointer (16-bit instr size)

To load a word from memory as a signed value

Description: GPR[rt]  memory[GPR[29] + (offset  4)]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 5-bit signed offset is left shifted by two
bits, zero-extended and then is added to the contents of GPR 29 to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr  zero_extend(offset|| 02) + GPR[29]
if vAddr1..0 ≠ 0

2 then
SignalException(AddressError)

endif
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt]  memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

15 10 9 5 4 0

LWSP16
010010

rt offset

6 5 5

MOVE16 Move Register (16-bit instr size)

95 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: MOVE16 rd, rs microMIPS

Purpose: Move Register (16-bit instr size)

To copy one GPR to another GPR.

Description: GPR[rd]  GPR[rs]

The contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd]  GPR[rs]

Exceptions:

None

15 10 9 5 4 0

MOVE16
000011

rd rs

6 5 5

MOVEP IMove a Pair of Registers

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 96

Format: MOVEP rd, re, rs, rt microMIPS

Purpose: Move a Pair of Registers

To copy two GPRs to another two GPRs.

Description: GPR[rd]  GPR[rs]; GPR[re]  GPR[rt];

The contents of GPR rs are placed into GPR rd. The contents of GPR rt are placed into GPR re.

The register numbers rd and re are determined by the encoded enc_dest field:

The register numbers rs and rt are determined by the encoded enc_rs and enc_rt fields:

15 10 9 7 6 4 3 2 1 0

POOL16C
010001

enc_dest enc_rt enc_rs 1 enc_rs

6 3 3 1 1 2

Table 5.13 Encoded and Decoded Values of the Enc_Dest Field

 Encoded Value
of Instr9..7
(Decimal)

 Encoded Value
of Instr9..7

(Hex)

 Decoded Value
of rd

(Decimal)

Decoded Value
of re

(Decimal)

0 0x0 5 6

1 0x1 5 7

2 0x2 6 7

3 0x3 4 21

4 0x4 4 22

5 0x5 4 5

6 0x6 4 6

7 0x7 4 7

Table 5.14 Encoded and Decoded Values of the Enc_rs and Enc_rt Fields

 Encoded Value
of Instr6..4 (or

Instr3..1)
(Decimal)

 Encoded Value
of Instr6..4 (or

Instr3..1)
(Hex)

 Decoded Value
of rt

(or rs)

(Decimal)

Symbolic Name
(From

ArchDefs.h)

0 0x0 0 zero

1 0x1 17 s1

2 0x2 2 v0

3 0x3 3 v1

4 0x4 16 s0

5 0x5 18 s2

6 0x6 19 s3

7 0x7 20 s4

MOVEP Move a Pair of Registers

97 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The destination register pair field, enc_dest, can only specify the register pairs defined in Table 5.13.

The source register fields enc_rs and enc_rt can only specify GPRs 0,2-3,16-20.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

GPR[rd]  GPR[rs]; GPR[re]  GPR[rt]

Exceptions:

None

NOT16 IInvert (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 98

Format: NOT16 rt, rs microMIPS

Purpose: Invert (16-bit instr size)

To do a bitwise logical inversion.

Description: GPR[rt]  GPR[rs] XOR 0xffffffff

Invert the contents of GPR rs in a bitwise fashion and place the result into GPR rt.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

GPR[rt]  GPR[rs] xor 0xffffffff

Exceptions:

None

Release 6

POOL16C
010001

rt rs
NOT16

0000

6 3 3 4

OR16 Or (16-bit instr size)

99 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: OR16 rt, rs microMIPS32

Purpose: Or (16-bit instr size)

To do a bitwise logical OR

Description: GPR[rt]  GPR[rs] or GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is
placed into GPR rt.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

GPR[rt]  GPR[rs] or GPR[rt]

Exceptions:

None

POOL16C
010001

rt rs
OR16
1001

6 3 3 4

SB16 IStore Byte (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 100

Format: SB16 rt, offset(base) microMIPS

Purpose: Store Byte (16-bit instr size)

To store a byte to memory

Description: memory[GPR[base]  offset]  GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The
4-bit unsigned offset is added to the contents of GPR base to form the effective address.

Restrictions:

The 3-bit base register field can only specify GPRs $2-$7, $16, $17.

The 3-bit rt register field can only specify GPRs $0, $2-$7, $17.

Operation:

vAddr  zero_extend(offset)  GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
pAddr  pAddrPSIZE-1.. || (pAddr..0 xor ReverseEndian)
bytesel  vAddr..0 xor BigEndianCPU
dataword  GPR[rt]–8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

15 10 9 7 6 4 3 0

SB16
100010

rt base offset

6 3 3 4

SDBBP16 Software Debug Breakpoint (16-bit instr size)

101 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SDBBP16 code EJTAG+microMIPS

Purpose: Software Debug Breakpoint (16-bit instr size)

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the DebugDExcCode field to the value 0x9 (Bp). The code field can be used for passing information to the debug

exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

 and Config5.SBRI = 0If DebugDM = 0 then
SignalDebugBreakpointException()

else
SignalDebugModeBreakpointException()

endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

15 10 9 6 5 0

POOL16C
010001

code
SDBBP16

111011

6 4 6

SH16 IStore Halfword (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 102

Format: SH16 rt, left_shifted_offset(base) microMIPS

Purpose: Store Halfword (16-bit instr size)

To store a halfword to memory

Description: memory[GPR[base] + (offset  2)]  GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 4-bit unsigned offset is left shifted by one bit and then added to the contents of GPR base to form
the effective address.

Restrictions:

The 3-bit base register field can only specify GPRs $2-$7, $16, $17.

The 3-bit rt register field can only specify GPRs $0, $2-$7, $17.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  zero_extend(offset|| 0) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
pAddr  pAddrPSIZE-1.. || (pAddr..0 xor (ReverseEndian || 0))
bytesel  vAddr..0 xor (BigEndianCPU || 0)
dataword  GPR[rt]–8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

15 10 9 7 6 4 3 0

SH16
101010

rt base offset

6 3 3 4

SLL16 Shift Word Left Logical (16-bit instr size)

103 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SLL16 rd, rt, decoded_sa microMIPS

Purpose: Shift Word Left Logical (16-bit instr size)

To left-shift a word by a fixed number of bits

Description: GPR[rd]  GPR[rt] << decoded_sa

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The bit-shift amount is specified by decoding the encoded_sa field. Table 5.15 lists the
encoded values of the encoded_sa field and the actual bit shift amount values.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_sa  DECODE(encoded_sa)
s  decoded_sa
temp  GPR[rt](31-s)..0 || 0

s

GPR[rd]  temp

Exceptions:

None

Programming Notes:

15 10 9 7 6 4 3 1 0

POOL16B
001001

rd rt
encoded

sa
0

6 3 3 3 1

Table 5.15 Shift Amount Field Encoding

Encoded Input
(Hex)

Decoded Value
(Decimal)

0 8

1 1

2 2

3 3

4 4

5 5

6 6

7 7

SRL16 IShift Word Right Logical (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 104

Format: SRL16 rd, rt, decoded_sa microMIPS

Purpose: Shift Word Right Logical (16-bit instr size)

To execute a logical right-shift of a word by a fixed number of bits

Description: GPR[rd]  GPR[rt] >> decoded_sa (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The bit-shift amount is specified by . by decoding the encoded_sa field. Table 5.16 lists
the encoded values of the encoded_sa field and the actual bit shift amount values.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_sa  DECODE(encoded_sa)
s  decoded_sa
temp  0s || GPR[rt]31..s
GPR[rd]  temp

Exceptions:

None

15 10 9 7 6 4 3 1 0

POOL16B
001001

rd rt
encoded

sa
1

6 3 3 3 1

Table 5.16 Shift Amount Field Encoding

Encoded Input
(Hex)

Decoded Value
(Decimal)

0 8

1 1

2 2

3 3

4 4

5 5

6 6

7 7

SUBU16 Subtract Unsigned Word (16-bit instr size)

105 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SUBU16 rd, rs, rt microMIPS

Purpose: Subtract Unsigned Word (16-bit instr size)

To subtract 32-bit integers

Description: GPR[rd]  GPR[rs]  GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic result is and
placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

temp  GPR[rs]  GPR[rt]
GPR[rd]  temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 10 9 7 6 1 0

POOL16A
000001

rs rt rd 1

6 3 3 3 1

SW16 IStore Word (16-bit instr size)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 106

Format: SW16 rt, left_shifted_offset(base) microMIPS

Purpose: Store Word (16-bit instr size)

To store a word to memory

Description: memory[GPR[base] + (offset  4)]  GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 4-bit unsigned offset is left-shifted by two bits and then added to the contents of GPR base to form the
effective address.

Restrictions:

The 3-bit base register field can only specify GPRs $2-$7, $16, $17.

The 3-bit rt register field can only specify GPRs $0, $2-$7, $17.

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  zero_extend(offset || 02) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
dataword  GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

15 10 9 7 6 4 3 0

SW16
111010

rt base offset

6 3 3 4

SWSP Store Word to Stack Pointer (16-bit instr size)

107 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SWSP rt, left_shifted_offset(base) microMIPS

Purpose: Store Word to Stack Pointer (16-bit instr size)

To store a word to memory

Description: memory[GPR[29] + (offset  4)]  GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 5-bit signed offset is left shifted by two bits, zero-extended and then is added to the contents of GPR 29
to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr  zero_extend(offset|| 02) + GPR[29]
if vAddr1..0 ≠ 0

2 then
SignalException(AddressError)

endif
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
dataword  GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

15 10 9 5 4 0

SWSP16
110010

rt offset

6 5 5

SWM16 IStore Word Multiple (16-bit)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 108

Format: SWM16 s0, {s1, {s2, {s3,}}} ra, left_shifted_offset(sp) microMIPS

Purpose: Store Word Multiple (16-bit)

To store a sequence of consecutive words to memory

Description: memory[GPR[29]],...,memory[GPR[29]+(offset<<2)+4*(2+fn(reglist))] 
GPR[16], {GPR[17], {GPR[18], {GPR[19],}}} GPR[31]

The least-significant 32-bit words of the GPRs defined by reglist are stored in memory at the location specified by the
aligned effective address. The 4-bit unsigned offset is added to the contents of GPR sp to form the effective address.

The following table shows the encoding of the reglist field.

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented
for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

vAddr  zero_extend(offset||02) + GPR[sp]
if vAddr1..0 ≠ 0

2 then
SignalException(AddressError)

endif
for i 0 to fn(reglist)

(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
dataword  GPR[gpr(reglist,i)]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
vAddr  vAddr + 4

endfor

POOL16C
010001

reglist offset
SWM16

1010

6 2 4 4

reglist Encoding
(binary) List of Registers Stored

0 0 GPR[16], GPR[31]

0 1 GPR[16], GPR[17], GPR[31]

1 0 GPR[16], GPR[17], GPR[18], GPR[31]

1 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

SWM16 Store Word Multiple (16-bit)

109 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

function fn(list)
fn  number of entries in list - 1

endfunction

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

SWM32 IStore Word Multiple

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 110

Format: SWM32 {sregs, } {ra}, offset(base) microMIPS

Purpose: Store Word Multiple

To store a sequence of consecutive words to memory

Description: memory[GPR[base]+offset],...,memory[GPR[base]+offset+4*(fn(reglist))] 
{GPR[16],{GPR[17],{GPR[18],{GPR[19],{GPR[20],{GPR[21],{GPR[22],{GPR[23],
{GPR[30]}}}}}}}}}{GPR[31]}

The least-significant 32-bit words of the GPRs defined by reglist are stored in memory at the location specified by the
aligned effective address. The 12-bit signed offset is added to the contents of GPR base to form the effective address.

The following table shows the encoding of the reglist field.

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented

31 26 25 21 20 16 15 12 11 0

POOL32B
001000

reglist base
SWM
1101

offset

6 5 5 4 12

reglist Encoding
(binary) List of Registers Loaded

0 0 0 0 1 GPR[16]

0 0 0 1 0 GPR[16], GPR[17]

0 0 0 1 1 GPR[16], GPR[17], GPR[18]

0 0 1 0 0 GPR[16], GPR[17], GPR[18], GPR[19]

0 0 1 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20]

0 0 1 1 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21]

0 0 1 1 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22]

0 1 0 0 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23]

0 1 0 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30]

1 0 0 0 0 GPR[31]

1 0 0 0 1 GPR[16], GPR[31]

1 0 0 1 0 GPR[16], GPR[17], GPR[31]

1 0 0 1 1 GPR[16], GPR[17], GPR[18], GPR[31]

1 0 1 0 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

1 0 1 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[31]

1 0 1 1 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[31]

1 0 1 1 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[31]

1 1 0 0 0 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[31]

1 1 0 0 1 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30], GPR[31]

All other combinations Reserved

SWM32 Store Word Multiple

111 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

Pre-Release 6: The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
for i0 to fn(reglist)

(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
dataword  GPR[gpr(reglist,i)]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
vAddr  vAddr + 4

endfor

function fn(list)
fn  (number of entries in list) - 1

endfunction

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

SWP IStore Word Pair

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 112

Format: SWP rs1, offset(base) microMIPS

Purpose: Store Word Pair

To store two consecutive words to memory

Description: memory[GPR[base] + offset]  GPR[rs1], GPR[rs1+1]

The least-significant 32-bit words of GPR rs1 and GPR rs1+1 are stored in memory at the location specified by the
aligned effective address. The 12-bit signed offset is added to the contents of GPR base to form the effective address.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The behavior of the instructions is UNDEFINED if rd equals $31.

Pre-Release 6: The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
dataword  GPR[rs1]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

vAddr  sign_extend(offset) + GPR[base] + 4
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
dataword  GPR[rs1+1]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 12 11 0

POOL32B
001000

rs1 base
SWP
1001

offset

6 5 5 4 12

XOR16 Exclusive OR (16-bit instr size)

113 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: XOR16 rt, rs microMIPS

Purpose: Exclusive OR (16-bit instr size)

To do a bitwise logical Exclusive OR

Description: GPR[rt]  GPR[rs] XOR GPR[rt]

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and place the result into
GPR rt.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

GPR[rt]  GPR[rs] xor GPR[rt]

Exceptions:

None

POOL16C
010001

rt rs
XOR16

1000

6 3 3 4

5.5 Recoded MIPS Instructions

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 114

5.5 Recoded MIPS Instructions

This section describes recoded 32-bit instructions from MIPS32 instruction sets specifically for use as part of the
microMIPS instruction set.

Only instructions supported in Release 6 are provided. Section 2.7, "Release 6 of the MIPS Architecture," lists
instructions that have been added, removed and recoded in Release 6.

ABS.fmt IFloating Point Absolute Value

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 115

Format: ABS.fmt
ABS.S ft, fs microMIPS
ABS.D ft, fs microMIPS

Purpose: Floating Point Absolute Value

Description: FPR[ft]  abs(FPR[fs])

The absolute value of the value in FPR fs is placed in FPR ft. The operand and result are values in format fmt.

The Cause bits are ORed into the Flag bits if no exception is taken.

If FIRHas2008=0 or FCSRABS2008=0 then this operation is arithmetic. For this case, any NaN operand signals invalid

operation.

If FCSRABS2008=1 then this operation is non-arithmetic. For this case, both regular floating point numbers and NAN

values are treated alike, only the sign bit is affected by this instruction. No IEEE exception can be generated for this
case.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Availability and Compatibility:

ABS.PS has been removed in Release 6.

Operation:

StoreFPR(ft, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 14 13 12 6 5 0

POOL32F
010101

ft fs 0 fmt
ABS

0001101
POOL32FXf

111011

6 5 5 1 2 7 6

ADD Add Word

116 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: ADD rd, rs, rt microMIPS

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd]  GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

None

Operation:

temp  (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32  temp31 then

SignalException(IntegerOverflow)
else

GPR[rd]  temp
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd
0 ADD

0100010000

6 5 5 5 1 10

ADD.fmt IFloating Point Add

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 117

Format: ADD.fmt
ADD.S fd, fs, ft microMIPS
ADD.D fd, fs, ft microMIPS

Purpose: Floating Point Add

To add floating point values.

Description: FPR[fd]  FPR[fs] + FPR[ft]

The value in FPR ft is added to the value in FPR fs. The result is calculated to infinite precision, rounded by using to
the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.

The Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt. If the fields are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Availability and Compatibility:

ADD.PS has been removed in Release 6.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) fmt ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 9 8 7 0

POOL32F
010101

ft fs fd 0 fmt
ADD

00110000

6 5 5 5 1 2 8

ADDIU Add Immediate Unsigned Word

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 118

Format: ADDIU rt, rs, immediate microMIPS

Purpose: Add Immediate Unsigned Word

To add a constant to a 32-bit integer.

Description: GPR[rt]  GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp  GPR[rs] + sign_extend(immediate)
GPR[rt]  temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 0

ADDIU32
001100

rt rs immediate

6 5 5 16

ADDIUPC Add Immediate to PC (unsigned - non-trapping)

119 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: ADDIUPC rt,immediate microMIPS32 Release 6

Purpose: Add Immediate to PC (unsigned - non-trapping)

Description: GPR[rt]  (PC & ~0x3 + sign_extend(immediate << 2))

This instruction performs a PC-relative address calculation. The 19-bit immediate is shifted left by 2 bits, sign-
extended, and added to the address of the ADDIUPC instruction. The result is placed in GPR rt.

Restrictions:

None

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation:

GPR[rst]  (PC & ~0x3 + sign_extend(immediate << 2))

Exceptions:

None

Programming Notes:

The term “unsigned” in this instruction mnemonic is a misnomer. “Unsigned” here means “non-trapping”. It does not
trap on a signed 32-bit overflow. ADDIUPC corresponds to unsigned ADDIU, which does not trap on overflow, as
opposed to ADDI, which does trap on overflow.

31 26 25 21 20 19 18 0

PCREL
011110

rt
ADDIUPC

00
immediate

6 5 2 19

ADDU Add Unsigned Word

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 120

Format: ADDU rd, rs, rt microMIPS

Purpose: Add Unsigned Word

To add 32-bit integers.

Description: GPR[rd]  GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

None

Operation:

temp  GPR[rs] + GPR[rt]
GPR[rd]  temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 0

POOL32A
000000

rt rs rd 0
ADDU

0101010000

6 5 5 5 1 10

ALIGN IConcatenate two GPRs, and extract a contiguous subset at a byte position

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 122

Exceptions:

None

ALUIPC Aligned Add Upper Immediate to PC

123 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: ALUIPC rt,immediate microMIPS32 Release 6

Purpose: Aligned Add Upper Immediate to PC

Description: GPR[rt]  ~0x0FFFF & (PC + sign_extend(immediate << 16))

This instruction performs a PC-relative address calculation. The 16-bit immediate is shifted left by 16 bits, sign-
extended, and added to the address of the ALUIPC instruction. The low 16 bits of the result are cleared, that is the
result is aligned on a 64K boundary. The result is placed in GPR rt.

Restrictions:

None

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation:

GPR[rt]  ~0x0FFFF & (PC + sign_extend(immediate << 16))

Exceptions:

None

31 26 25 21 20 16 15 0

PCREL
011110

rt
ALUIPC

11111
immediate

6 5 5 16

AND Iand

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 124

Format: AND rd, rs, rt microMIPS

Purpose: and

To do a bitwise logical AND.

Description: GPR[rd]  GPR[rs] and GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd]  GPR[rs] and GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
AND

1001010000

6 5 5 5 1 10

ANDI and immediate

125 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: ANDI rt, rs, immediate microMIPS

Purpose: and immediate

To do a bitwise logical AND with a constant

Description: GPR[rt]  GPR[rs] and zero_extend(immediate)

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical AND
operation. The result is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt]  GPR[rs] and zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ANDI32
110100

rt rs immediate

6 5 5 16

AUI Add Immediate to Upper Bits

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 126

Format: AUI rt, rs immediate microMIPS32 Release 6

Purpose: Add Immediate to Upper Bits

Add Upper Immediate

Description:

GPR[rt]  GPR[rs] + sign_extend(immediate << 16)

The 16 bit immediate is shifted left 16 bits, sign-extended, and added to the register rs, storing the result in rt.

In Release 6, LUI is an assembly idiom for AUI with rs=0.

Restrictions:

Availability and Compatibility:

AUI is introduced by and required as of Release 6.

Operation:

GPR[rt]  GPR[rs] + sign_extend(immediate << 16)

Exceptions:

None.

Programming Notes:

AUI can be used to synthesize large constants in situations where it is not convenient to load a large constant from
memory. To simplify hardware that may recognize sequences of instructions as generating large constants, AUI
should be used in a stylized manner.

To create an integer:
LUI rd, imm_low(rtmp)
ORI rd, rd, imm_upper

To create a large offset for a memory access whose address is of the form rbase+large_offset:
AUI rtmp, rbase, imm_upper
LW rd, (rtmp)imm_low

To create a large constant operand for an instruction of the form rd:=rs+large_immediate
or rd:=rs-large_immediate:

AUI rtmp, rs, imm_upper
ADDIU rd, rtmp, imm_low

31 26 25 21 20 16 15 0

AUI
000100

rt rs immediate

6 5 5 16

AUIPC Add Upper Immediate to PC

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 127

Format: AUIPC rt, immediate microMIPS32 Release 6

Purpose: Add Upper Immediate to PC

Description: GPR[rt]  (PC + (immediate << 16))

This instruction performs a PC-relative address calculation. The 16-bit immediate is shifted left by 16 bits, sign-
extended, and added to the address of the AUIPC instruction. The result is placed in GPR rt.

Restrictions:

None

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation:

GPR[rt]  (PC + (immediate << 16))

Exceptions:

None

31 26 25 21 20 16 15 0

PCREL
011110

rt
AUIPC
11110

immediate

6 5 5 16

BALC IBranch and Link, Compact

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 128

Format: BALC offset microMIPS32 Release 6

Purpose: Branch and Link, Compact

To do an unconditional PC-relative procedure call.

Description: procedure_call (no delay slot)

Place the return address link in GPR 31. The return link is the address of the instruction immediately following the
branch, where execution continues after a procedure call. (Because compact branches have no delay slots, see below.)

A 27-bit signed offset (the 26-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed when the branch is
taken.

Restrictions:

 Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Exceptions:

None

Operation:

target_offset  sign_extend(offset || 01)
GPR[31]  PC+4
PC  PC+4 + sign_extend(target_offset)

31 26 25 0

BALC
101101

offset

6 26

BC1EQZC BC1NEZC Branch if Coprocessor 1 (FPU) Register Bit 0 Equal/Not Equal to Zero

129 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: BC1EQZC BC1NEZC
 BC1EQZC ft, offset microMIPS32 Release 6
 BC1NEZC ft, offset microMIPS32 Release 6

Purpose: Branch if Coprocessor 1 (FPU) Register Bit 0 Equal/Not Equal to Zero

BC1EQZC: Branch if Coprocessor 1 (FPU) Register Bit 0 is Equal to Zero

BC1NEZC: Branch if Coprocessor 1 (FPR) Register Bit 0 is Not Equal to Zero

Description:

BC1EQZC: if FPR[ft] & 1 = 0 then branch
BC1NEZC: if FPR[ft] & 1  0 then branch

The condition is evaluated on FPU register ft.

• For BC1EQZC, the condition is true if and only if bit 0 of the FPU register ft is zero.

• For BC1NEZC, the condition is true if and only if bit 0 of the FPU register ft is non-zero.

If the condition is false, the branch is not taken, and execution continues with the next instruction.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed if the branch is taken.

Restrictions:

If access to Coprocessor 1 is not enabled, a Coprocessor Unusable Exception is signaled.

Because these instructions BC1EQZC and BC1NEZC do not depend on a particular floating point data type, they
operate whenever Coprocessor 1 is enabled.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Exceptions:

Coprocessor Unusable1

Operation:

tmp  ValueFPR(ft, UNINTERPRETED_WORD)

31 26 25 21 20 16 15 0

POOL32I
010001

BC1EQZC
01000

ft offset

POOL32I
010001

BC1NEZC
01001

ft offset

6 5 5 16

1. In Release 6, BC1EQZC and BC1NEZC are required, if the FPU is implemented. They must not signal a Reserved Instruc-
tion exception. They can signal a Coprocessor Unusable Exception.

BC1EQZC BC1NEZC IBranch if Coprocessor 1 (FPU) Register Bit 0 Equal/Not Equal to Zero

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 130

BC1EQZC: cond  tmp & 1 = 0
BC1NEZC: cond  tmp & 1  0
if cond then

target_PC  (PC+4 + sign_extend(offset << 1)
PC  target_PC

Programming Notes:

Release 6: These instructions, BC1EQZC and BC1NEZC, replace the pre-Release 6 instructions BC1F and BC1T.
These Release 6 FPU branches depend on bit 0 of the scalar FPU register.

Note: BC1EQZC and BC1NEZC do not have a format or data type width. The same instructions are used for
branches based on conditions involving any format, including 32-bit S (single precision) and W (word) format, and
64-bit D (double precision) and L (longword) format, as well as 128-bit MSA. The FPU scalar comparison instruc-
tions CMP.condn fmt produce an all ones or all zeros truth mask of their format width with the upper bits (where
applicable) UNPREDICTABLE. BC1EQZ and BC1NEZ consume only bit 0 of the CMP.condn.fmt output value, and
therefore operate correctly independent of fmt.

BC2EQZC BC2NEZC Branch if Coprocessor 2 Condition (Register) Equal/Not Equal to Zero

131 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: BC2EQZC BC2NEZC
BC2EQZC ct, offset microMIPS32 Release 6
BC2NEZC ct, offset microMIPS32 Release 6

Purpose: Branch if Coprocessor 2 Condition (Register) Equal/Not Equal to Zero

BC2EQZC: Branch if Coprocessor 2 Condition (Register) is Equal to Zero

BC2NEZC: Branch if Coprocessor 2 Condition (Register) is Not Equal to Zero

Description:

BC2EQZC: if COP2Condition[ct] = 0 then branch
BC2NEZC: if COP2Condition[ct]  0 then branch

The 5-bit field ct specifies a coprocessor 2 condition.

• For BC2EQZC if the coprocessor 2 condition is true the branch is taken.

• For BC2NEZC if the coprocessor 2 condition is false the branch is taken.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed if the branch is taken.

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is signaled.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Operation:

tmpcond  Coprocessor2Condition(ct)
if BC2EQZC then
 tmpcond  not(tmpcond)
endif

if tmpcond then
 PC  PC+4 + sign_extend(immediate << 1))

endif

31 26 25 21 20 16 15 0

POOL32I
BC2EQZC

01010
ct offset

POOL32I
BC2NEZC

01011
ct offset

6 5 5 16

BC2EQZC BC2NEZC IBranch if Coprocessor 2 Condition (Register) Equal/Not Equal to Zero

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 132

Implementation Notes:

As of Release 6 these instructions, BC2EQZC and BC2NEZC, replace the pre-Release 6 instructions BC2F and
BC2T, which had a 3-bit condition code field (as well as nullify and true/false bits). Release 6 makes all 5 bits of the
ct condition code available to the coprocessor designer as a condition specifier.

A customer defined coprocessor instruction set can implement any sort of condition it wants. For example, it could
implement up to 32 single-bit flags, specified by the 5-bit field ct. It could also implement conditions encoded as
values in a coprocessor register (such as testing the least significant bit of a coprocessor register) as done by Release
6 instructions BC1EQZ/BC1NEZ.

B{LE,GE,GT,LT,EQ,NE}ZALC Compact Zero-Compare and Branch-and-Link Instructions

133 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: B{LE,GE,GT,LT,EQ,NE}ZALC
BLEZALC rt, offset microMIPS32 Release 6
BGEZALC rt, offset microMIPS32 Release 6
BGTZALC rt, offset microMIPS32 Release 6
BLTZALC rt, offset microMIPS32 Release 6
BEQZALC rt, offset microMIPS32 Release 6
BNEZALC rt, offset microMIPS32 Release 6

Purpose: Compact Zero-Compare and Branch-and-Link Instructions

BLEZALC: Compact branch-and-link if GPR rt is less than or equal to zero

BGEZALC: Compact branch-and-link if GPR rt is greater than or equal to zero

BGTZALC: Compact branch-and-link if GPR rt is greater than zero

BLTZALC: Compact branch-and-link if GPR rt is less than to zero

BEQZALC: Compact branch-and-link if GPR rt is equal to zero

BNEZALC: Compact branch-and-link if GPR rt is not equal to zero

Description: if condition(GPR[rt]) then procedure_call branch

The condition is evaluated. If the condition is true, the branch is taken.

Places the return address link in GPR 31. The return link is the address of the instruction immediately following the
branch, where execution continues after a procedure call.

The return address link is unconditionally updated.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

31 26 25 21 20 16 15 0

POP60
110000

BLEZALC
offset

rt  00000 00000

POP60
110000

BGEZALC
rs = rt  00000 offset

rt rs

POP70
111000

BGTZALC
offset

rt  00000 00000

POP70
111000

BLTZALC
rs = rt  00000 offset

rt rs

POP35
011101

BEQZALC
rs < rt offset

rt  00000 00000

POP37
011111

BNEZALC
rs < rt offset

rt  00000 00000

6 5 5 16

B{LE,GE,GT,LT,EQ,NE}ZALC ICompact Zero-Compare and Branch-and-Link Instructions

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 134

BLEZALC: the condition is true if and only if GPR rt is less than or equal to zero.
BGEZALC: the condition is true if and only if GPR rt is greater than or equal to zero.
BLTZALC: the condition is true if and only if GPR rt is less than zero.
BGTZALC: the condition is true if and only if GPR rt is greater than zero.
BEQZALC: the condition is true if and only if GPR rt is equal to zero.
BNEZALC: the condition is true if and only if GPR rt is not equal to zero.

Compact branches do not have delay slots. The instruction after a compact branch is only executed if the branch is not
taken.

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Exceptions:

None

Operation:

GPR[31]  PC+4
target_offset  sign_extend(offset || 01)

BLTZALC: cond  GPR[rt] < 0
BLEZALC: cond  GPR[rt]  0
BGEZALC: cond  GPR[rt]  0
BGTZALC: cond  GPR[rt] > 0
BEQZALC: cond  GPR[rt] = 0
BNEZALC: cond  GPR[rt]  0

if cond then
 PC  (PC+4+ sign_extend(target_offset))
endif

Programming Notes:

Software that performs incomplete instruction decode may incorrectly decode these new instructions, because of their
very tight encoding. For example, a disassembler might look only at the primary opcode field, instruction bits 31-26,
to decode BLEZL without checking that the “rt” field is zero. Such software violated the pre-Release 6 architecture
specification.

With the 16-bit offset shifted left 2 bits and sign extended, the conditional branch range is ± 128 KBytes. Other
instructions such as pre-Release 6 JAL and JALR, or Release 6 JIALC and BALC have larger ranges. In particular,
BALC, with a 26-bit offset shifted by 2 bits, has a 28-bit range, ± 128 MBytes. Code sequences using AUIPC and
JIALC allow still greater PC-relative range.

B<cond>C Compact Compare-and-Branch Instructions

135 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: B<cond>C rs, rt, offset microMIPS32 Release 6

Purpose: Compact Compare-and-Branch Instructions

Format Details:

Equal/Not-Equal register-register compare and branch with 16-bit offset:
BEQC rs, rt, offset microMIPS32 Release 6
BNEC rs, rt, offset microMIPS32 Release 6

31 26 25 21 20 16 15 0

POP75
111101

BLEZC
offset

rt  00000 00000

POP75
111101

BGEZC rs = rt
offset

rt  00000 rs  00000

POP75
111101

BGEC (BLEC) rs  rt
offset

rt  00000 rs  00000

POP65
110101

BGTZC
offset

rt  00000 00000

POP65
110101

BLTZC rs = rt
offset

rt  00000 rs  00000

POP65
110101

BLTC (BGTC) rs  rt
offset

rt  00000 rs  00000

POP60
110000

BGEUC (BLEUC) rs  rt
offset

rt  00000 rs  00000

POP70
111000

BLTUC (BGTUC) rs  rt
offset

rt  00000 rs  00000

POP35
011101

BEQC rs < rt
offset

rt  00000 rs  00000

POP37
011111

BNEC rs < rt
offset

rt  00000 rs  00000

6 5 5 16

31 26 25 21 20 0

POP40
100000

BEQZC
rs  00000

rs
offset

POP50
101000

BNEZC
rs  00000

rs
offset

6 5 21

B<cond>C ICompact Compare-and-Branch Instructions

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 136

Signed register-register compare and branch with 16-bit offset:
BLTC rs, rt, offset microMIPS32 Release 6
BGEC rs, rt, offset microMIPS32 Release 6

Unsigned register-register compare and branch with 16-bit offset:
BLTUC rs, rt, offset microMIPS32 Release 6
BGEUC rs, rt, offset microMIPS32 Release 6

Assembly idioms with reversed operands for signed/unsigned compare-and-branch:
BGTC rt, rs, offset Assembly Idiom
BLEC rt, rs, offset Assembly Idiom
BGTUC rt, rs, offset Assembly Idiom
BLEUC rt, rs, offset Assembly Idiom

Signed Compare register to Zero and branch with 16-bit offset:
BLTZC rt, offset microMIPS32 Release 6
BLEZC rt, rs, offset microMIPS32 Release 6
BGEZC rt, offset microMIPS32 Release 6
BGTZC rt, rs, offset microMIPS32 Release 6

Equal/Not-equal Compare register to Zero and branch with 21-bit offset:
BEQZC rt, rs, offset microMIPS32 Release 6
BNEZC rt, rs, offset microMIPS32 Release 6

Description: if condition(GPR[rs] and/or GPR[rt]) then compact branch

The condition is evaluated. If the condition is true, the branch is taken.

An 18/23-bit signed offset (the 16/21-bit offset field shifted left 2 bits) is added to the address of the instruction fol-
lowing the branch (not the branch itself), to form a PC-relative effective target address.

The offset is 16 bits for most compact branches, including BLTC, BLEC, BGEC, BGTC, BNEQC, BNEC, BLTUC,
BLEUC, BGEUC, BGTC, BLTZC, BLEZC, BGEZC, BGTZC. The offsetis 21 bits for BEQZC and BNEZC.

Compact branches have no delay slot: the instruction after the branch is NOT executed if the branch is taken.

The conditions are as follows:

Equal/Not-equal register-register compare-and-branch with 16-bit offset:
BEQC: Compact branch if GPRs are equal
BNEC: Compact branch if GPRs are not equal

Signed register-register compare and branch with 16-bit offset:
BLTC: Compact branch if GPR rs is less than GPR rt
BGEC: Compact branch if GPR rs is greater than or equal to GPR rt

Unsigned register-register compare and branch with 16-bit offset:
BLTUC: Compact branch if GPR rs is less than GPR rt, unsigned
BGEUC: Compact branch if GPR rs is greater than or equal to GPR rt, unsigned

Assembly Idioms with Operands Reversed:
BLEC: Compact branch if GPR rt is less than or equal to GPR rs (alias for BGEC)
BGTC: Compact branch if GPR rt is greater than GPR rs (alias for BLTC)
BLEUC: Compact branch if GPR rt is less than or equal to GPR rt, unsigned (alias for BGEUC)
BGTUC: Compact branch if GPR rt is greater than GPR rs, unsigned (alias for BLTUC)

B<cond>C Compact Compare-and-Branch Instructions

137 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Compare register to zero and branch with 16-bit offset:
BLTZC: Compact branch if GPR rt is less than zero
BLEZC: Compact branch if GPR rt is less than or equal to zero
BGEZC: Compact branch if GPR rt is greater than or equal to zero
BGTZC: Compact branch if GPR rt is greater than zero

Compare register to zero and branch with 21-bit offset:
BEQZC: Compact branch if GPR rs is equal to zero
BNEZC: Compact branch if GPR rs is not equal to zero

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Exceptions:

None

Operation:

target_offset  sign_extend(offset || 01)

/* Register-register compare and branch, 16 bit offset: */
/* Equal / Not-Equal */
BEQC: cond  GPR[rs] = GPR[rt]
BNEC: cond  GPR[rs]  GPR[rt]
/* Signed */
BLTC: cond  GPR[rs] < GPR[rt]
BGEC: cond  GPR[rs]  GPR[rt]
/* Unsigned: */
BLTUC: cond  unsigned(GPR[rs]) < unsigned(GPR[rt])
BGEUC: cond  unsigned(GPR[rs])  unsigned(GPR[rt])

/* Compare register to zero, small offset: */
BLTZC: cond  GPR[rt] < 0
BLEZC: cond  GPR[rt]  0
BGEZC: cond  GPR[rt]  0
BGTZC: cond  GPR[rt] > 0
/* Compare register to zero, large offset: */
BEQZC: cond  GPR[rs] = 0
BNEZC: cond  GPR[rs]  0

if cond then
 PC  (PC+4+ sign_extend(offset))
end if

Programming Notes:

Legacy software that performs incomplete instruction decode may incorrectly decode these new instructions, because
of their very tight encoding. For example, a disassembler that looks only at the primary opcode field (instruction bits
31-26) to decode BLEZL without checking that the “rt” field is zero violates the pre-Release 6 architecture specifica-
tion. Complete instruction decode allows reuse of pre-Release 6 BLEZL opcode for Release 6 conditional branches.

BC IBranch, Compact

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 138

Format: BC offset microMIPS32 Release 6

Purpose: Branch, Compact

Description: PC  PC+4 + sign_extend(offset << 1)

A 27-bit signed offset (the 26-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

Compact branches have no delay slot: the instruction after the branch is NOT executed when the branch is taken.

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Exceptions:

None

Operation:

target_offset  sign_extend(offset || 01)
PC  (PC+4 + sign_extend(target_offset))

31 26 25 0

BC
100101

offset

6 26

BREAK Breakpoint

139 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: BREAK microMIPS

Purpose: Breakpoint

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the
contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(Breakpoint)

Exceptions:

Breakpoint

31 26 25 6 5 0

POOL32A
000000

code
BREAK32

000111

6 20 6

BITSWAP ISwaps (reverses) bits in each byte

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 140

Format: BITSWAP
BITSWAP rd,rt microMIPS32 Release 6

Purpose: Swaps (reverses) bits in each byte

Description: GPR[rd].byte(i)  reverse_bits_in_byte(GPR[rt].byte(i)), for all
bytes i

Each byte in input GPR rt is moved to the same byte position in output GPR rd, with bits in each byte reversed.

BITSWAP operates on all 4 bytes of a 32-bit GPR on a 32-bit CPU.

Restrictions:

None.

Availability and Compatibility:

The BITSWAP instruction is introduced by and required as of Release 6.

Operation:

BITSWAP:
for i in 0 to 3 do /* for all bytes in 32-bit GPR width */

tmp.byte(i)  reverse_bits_in_byte(GPR[rt].byte(i))
endfor
GPR[rd]  tmp
where

function reverse_bits_in_byte(inbyte)
outbyte7 inbyte0
outbyte6 inbyte1
outbyte5  inbyte2
outbyte4  inbyte3
outbyte3  inbyte4
outbyte2  inbyte5
outbyte1  inbyte6
outbyte0  inbyte7
return outbyte

end function

Exceptions:

None

Programming Notes:

The Release 6 BITSWAP instruction corresponds to the DSP Module BITREV instruction, except that the latter bit-
reverses the least-significant 16-bit halfword of the input register, zero extending the rest, while BITSWAP operates
on 32-bits.

31 26 25 21 20 16 15 12 11 6 5 0

POOL32A
000000

rt rd
0

0000
BITSWAP

101100
POOL32Axf

111100

6 5 5 4 6 6

BITSWAP Swaps (reverses) bits in each byte

141 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

BOVC BNVC IBranch on Overflow, Compact; Branch on No Overflow, Compact

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 142

Format: BOVC BNVC
BOVC rt,rs, offset microMIPS32 Release 6
BNVC rt,rs, offset microMIPS32 Release 6

Purpose: Branch on Overflow, Compact; Branch on No Overflow, Compact

BOVC: Detect overflow for add (signed 32 bits) and branch if overflow.

BNVC: Detect overflow for add (signed 32 bits) and branch if no overflow.

Description: branch if/if-not NotWordValue(GPR[rs]+GPR[rt])

• BOVC performs a signed 32-bit addition of rs and rt. BOVC discards the sum, but detects signed 32-bit inte-
ger overflow of the sum, and branches if such overflow is detected.

• BNVC performs a signed 32-bit addition of rs and rt. BNVC discards the sum, but detects signed 32-bit inte-
ger overflow of the sum, and branches if such overflow is not detected.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

The special case with rt=0 (for example, GPR[0]) is allowed.

The special case of rs=0 and rt=0 is allowed. BOVC never branches, while BNVC always branches.

Compact branches do not have delay slots. The instruction after the branch is NOT executed if the branch is taken.

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Operation:

temp1  GPR[rs]
temp2  GPR[rt]
tempd  temp1 + temp2 // wider than 32-bit precision
sum_overflow  (tempd32  tempd31)

BOVC: cond  sum_overflow
BNVC: cond  not(sum_overflow)

if cond then
PC  (PC+4 + sign_extend(offset << 1))

endif

31 26 25 21 20 16 15 0

POP35
011101

BOVC rs >=rt
offset

rt rs

POP37
011111

BNVC rs>=rt
offset

rt rs

6 5 5 16

BOVC BNVC Branch on Overflow, Compact; Branch on No Overflow, Compact

143 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Exceptions:

None

CACHE Perform Cache Operation

145 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

operations (where the address is used to index the cache but need not match the cache tag), software must use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit excep-
tions.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

As a result, a Cache Error exception may occur because of some operations performed by this instruction. For exam-
ple, if a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported
via a Cache Error exception. Also, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHE instruction and the memory transactions which are sourced by the CACHE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

Bits [22:21] of the instruction specify the cache on which to perform the operation, as follows:

Bits [25:23] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

When implementing multiple level of caches and where the hardware maintains the smaller cache as a proper subset
of a larger cache (every address which is resident in the smaller cache is also resident in the larger cache; also known
as the inclusion property). It is recommended that the CACHE instructions which operate on the larger, outer-level
cache; must first operate on the smaller, inner-level cache. For example, a Hit_Writeback _Invalidate operation tar-
geting the Secondary cache, must first operate on the primary data cache first. If the CACHE instruction implementa-
tion does not follow this policy then any software which flushes the caches must mimic this behavior. That is, the
software sequences must first operate on the inner cache then operate on the outer cache. The software must place a
SYNC instruction after the CACHE instruction whenever there are possible writebacks from the inner cache to
ensure that the writeback data is resident in the outer cache before operating on the outer cache. If neither the CACHE
instruction implementation nor the software cache flush sequence follow this policy, then the inclusion property of
the caches can be broken, which might be a condition that the cache management hardware cannot properly deal with.

When implementing multiple level of caches without the inclusion property, the use of a SYNC instruction after the
CACHE instruction is still needed whenever writeback data has to be resident in the next level of memory hierarchy.

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHE instruction oper-
ations may optionally affect all coherent caches within the implementation. If the effective address uses a coherent

Table 5.18 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache

0b00 I Primary Instruction

0b01 D Primary Data or Unified Primary

0b10 T Tertiary

0b11 S Secondary

CACHE IPerform Cache Operation

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 146

Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent
caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHE instruction, all of the affected cache levels
must be processed in the same manner - either all affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

Table 5.19 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

0b000 I Index Invalidate Index Set the state of the cache block at the specified
index to invalid.
This required encoding may be used by software
to invalidate the entire instruction cache by step-
ping through all valid indices.

Required

D Index Writeback
Invalidate / Index

Invalidate

Index For a write-back cache: If the state of the cache
block at the specified index is valid and dirty,
write the block back to the memory address
specified by the cache tag. After that operation
is completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.

For a write-through cache: Set the state of the
cache block at the specified index to invalid.
This required encoding may be used by software
to invalidate the entire data cache by stepping
through all valid indices. The Index Store Tag
must be used to initialize the cache at power up.

Required

S, T Index Writeback
Invalidate / Index

Invalidate

Index Required if S, T cache
is implemented

0b001 All Index Load Tag Index Read the tag for the cache block at the specified
index into the TagLo and TagHi Coprocessor 0
registers. If the DataLo and DataHi registers
are implemented, also read the data correspond-
ing to the byte index into the DataLo and
DataHi registers. This operation must not cause
a Cache Error Exception.
The granularity and alignment of the data read
into the DataLo and DataHi registers is imple-
mentation-dependent, but is typically the result
of an aligned access to the cache, ignoring the
appropriate low-order bits of the byte index.

Recommended

CACHE Perform Cache Operation

147 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

0b010 All Index Store Tag Index Write the tag for the cache block at the specified
index from the TagLo and TagHi Coprocessor 0
registers. This operation must not cause a Cache
Error Exception.
This required encoding may be used by software
to initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.

Required

0b011 All Implementation
Dependent

Unspecified Available for implementation-dependent opera-
tion.

Optional

0b100 I, D Hit Invalidate Address If the cache block contains the specified
address, set the state of the cache block to
invalid.
This required encoding may be used by software
to invalidate a range of addresses from the
instruction cache by stepping through the
address range by the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Required (Instruction
Cache Encoding
Only), Recom-

mended otherwise

S, T Hit Invalidate Address Optional, if
Hit_Invalidate_D is
implemented, the S

and T variants are rec-
ommended.

0b101 I Fill Address Fill the cache from the specified address. Recommended

D Hit Writeback Inval-
idate / Hit Invalidate

Address For a write-back cache: If the cache block con-
tains the specified address and it is valid and
dirty, write the contents back to memory. After
that operation is completed, set the state of the
cache block to invalid. If the block is valid but
not dirty, set the state of the block to invalid.
For a write-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.
This required encoding may be used by software
to invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Required

S, T Hit Writeback Inval-
idate / Hit Invalidate

Address Required if S, T cache
is implemented

Table 5.19 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

CACHE IPerform Cache Operation

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 148

0b110 D Hit Writeback Address If the cache block contains the specified address
and it is valid and dirty, write the contents back
to memory. After the operation is completed,
leave the state of the line valid, but clear the
dirty state. For a write-through cache, this oper-
ation may be treated as a nop.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Recommended

S, T Hit Writeback Address Optional, if
Hit_Writeback_D is
implemented, the S

and T variants are rec-
ommended.

0b111 I, D Fetch and Lock Address If the cache does not contain the specified
address, fill it from memory, performing a write-
back if required. Set the state to valid and
locked.
If the cache already contains the specified
address, set the state to locked. In set-associative
or fully-associative caches, the way selected on
a fill from memory is implementation depen-
dent.
The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate oper-
ation to the locked line, or via an Index Store
Tag operation to the line that clears the lock bit.
Clearing the lock state via Index Store Tag is
dependent on the implementation-dependent
cache tag and cache line organization, and that
Index and Index Writeback Invalidate opera-
tions are dependent on cache line organization.
Only Hit and Hit Writeback Invalidate opera-
tions are generally portable across implementa-
tions.
It is implementation dependent whether a locked
line is displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked
line remaining in the cache if an external invali-
date or intervention would invalidate the line if
it were not locked.
It is implementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the ref-
erenced address may be fetched and locked. It is
recommended that only the single line contain-
ing the referenced address be affected.

Recommended

Table 5.19 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

CACHE Perform Cache Operation

149 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented. In
Release 6, the instruction in this case should perform no operation.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able. In Release 6, the instruction in this case should perform no operation.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHE instruction is the
target of an invalidate or a writeback invalidate.

If this instruction is used to lock all ways of a cache at a specific cache index, the behavior of that cache to subsequent
cache misses to that cache index is UNDEFINED.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Any use of this instruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback data is not yet visible at the next level of the memory hierarchy.

This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

vAddr  GPR[base] + sign_extend(offset)
(pAddr, uncached)  AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

Release 6 architecture implements a 9-bit offset, whereas all release levels lower than Release 6 implement a 16-bit
offset.

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should always be converted to an
unmapped address (such as an kseg0 address - by ORing the index with 0x80000000 before being used by the cache
instruction). For example, the following code sequence performs a data cache Index Store Tag operation using the
index passed in GPR a0:

li a1, 0x80000000 /* Base of kseg0 segment */
or a0, a0, a1 /* Convert index to kseg0 address */
cache DCIndexStTag, 0(a1) /* Perform the index store tag operation */

CACHEE Perform Cache Operation EVA

151 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit excep-
tions.

The effective address may be an arbitrarily-aligned by address. The CACHEE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by this instruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported via a
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHEE instruction and the memory transactions which are sourced by the CACHEE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

Bits [22:21] of the instruction specify the cache on which to perform the operation, as follows:

Bits [25:23] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

When implementing multiple level of caches and where the hardware maintains the smaller cache as a proper subset
of a larger cache, it is recommended that the CACHEE instructions must first operate on the smaller, inner-level
cache. For example, a Hit_Writeback _Invalidate operation targeting the Secondary cache, must first operate on the
primary data cache first. If the CACHEE instruction implementation does not follow this policy then any software
which flushes the caches must mimic this behavior. That is, the software sequences must first operate on the inner
cache then operate on the outer cache. The software must place a SYNC instruction after the CACHEE instruction
whenever there are possible writebacks from the inner cache to ensure that the writeback data is resident in the outer
cache before operating on the outer cache. If neither the CACHEE instruction implementation nor the software cache
flush sequence follow this policy, then the inclusion property of the caches can be broken, which might be a condition
that the cache management hardware cannot properly deal with.

When implementing multiple level of caches without the inclusion property, you must use SYNC instruction after the
CACHEE instruction whenever writeback data has to be resident in the next level of memory hierarchy.

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHEE instruction
operations may optionally affect all coherent caches within the implementation. If the effective address uses a coher-
ent Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent

Table 5.21 Encoding of Bits[22:21] of CACHEE Instruction

Code Name Cache

0b00 I Primary Instruction

0b01 D Primary Data or Unified Primary

0b10 T Tertiary

0b11 S Secondary

CACHEE IPerform Cache Operation EVA

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 152

caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHEE instruction, all of the affected cache levels
must be processed in the same manner — either all affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

The CACHEE instruction functions the same as the CACHE instruction, except that address translation is performed
using the user mode virtual address space mapping in the TLB when accessing an address within a memory segment
configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also acces-
sible . Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to 1.

Table 5.22 Encoding of Bits [20:18] of the CACHEE Instruction

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

0b000 I Index Invalidate Index Set the state of the cache block at the specified
index to invalid.
This required encoding may be used by software
to invalidate the entire instruction cache by step-
ping through all valid indices.

Required

D Index Writeback
Invalidate / Index

Invalidate

Index For a write-back cache: If the state of the cache
block at the specified index is valid and dirty,
write the block back to the memory address
specified by the cache tag. After that operation
is completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.

For a write-through cache: Set the state of the
cache block at the specified index to invalid.
This required encoding may be used by software
to invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
power up.

Required

S, T Index Writeback
Invalidate / Index

Invalidate

Index Required if S, T cache
is implemented

0b001 All Index Load Tag Index Read the tag for the cache block at the specified
index into the TagLo and TagHi Coprocessor 0
registers. If the DataLo and DataHi registers
are implemented, also read the data correspond-
ing to the byte index into the DataLo and
DataHi registers. This operation must not cause
a Cache Error Exception.
The granularity and alignment of the data read
into the DataLo and DataHi registers is imple-
mentation-dependent, but is typically the result
of an aligned access to the cache, ignoring the
appropriate low-order bits of the byte index.

Recommended

CACHEE Perform Cache Operation EVA

153 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

0b010 All Index Store Tag Index Write the tag for the cache block at the specified
index from the TagLo and TagHi Coprocessor 0
registers. This operation must not cause a Cache
Error Exception.
This required encoding may be used by software
to initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.

Required

0b011 All Implementation
Dependent

Unspecified Available for implementation-dependent opera-
tion.

Optional

0b100 I, D Hit Invalidate Address If the cache block contains the specified
address, set the state of the cache block to
invalid.
This required encoding may be used by software
to invalidate a range of addresses from the
instruction cache by stepping through the
address range by the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Required (Instruction
Cache Encoding
Only), Recom-

mended otherwise

S, T Hit Invalidate Address Optional, if
Hit_Invalidate_D is
implemented, the S

and T variants are rec-
ommended.

0b101 I Fill Address Fill the cache from the specified address. Recommended

D Hit Writeback Inval-
idate / Hit Invalidate

Address For a write-back cache: If the cache block con-
tains the specified address and it is valid and
dirty, write the contents back to memory. After
that operation is completed, set the state of the
cache block to invalid. If the block is valid but
not dirty, set the state of the block to invalid.

For a write-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.
This required encoding may be used by software
to invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Required

S, T Hit Writeback Inval-
idate / Hit Invalidate

Address Required if S, T cache
is implemented

Table 5.22 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

CACHEE IPerform Cache Operation EVA

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 154

0b110 D Hit Writeback Address If the cache block contains the specified address
and it is valid and dirty, write the contents back
to memory. After the operation is completed,
leave the state of the line valid, but clear the
dirty state. For a write-through cache, this oper-
ation may be treated as a nop.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Recommended

S, T Hit Writeback Address Optional, if
Hit_Writeback_D is
implemented, the S

and T variants are rec-
ommended.

0b111 I, D Fetch and Lock Address If the cache does not contain the specified
address, fill it from memory, performing a write-
back if required. Set the state to valid and
locked.
If the cache already contains the specified
address, set the state to locked. In set-associative
or fully-associative caches, the way selected on
a fill from memory is implementation depen-
dent.
The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate oper-
ation to the locked line, or via an Index Store
Tag operation to the line that clears the lock bit.
Clearing the lock state via Index Store Tag is
dependent on the implementation-dependent
cache tag and cache line organization, and that
Index and Index Writeback Invalidate opera-
tions are dependent on cache line organization.
Only Hit and Hit Writeback Invalidate opera-
tions are generally portable across implementa-
tions.
It is implementation dependent whether a locked
line is displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked
line remaining in the cache if an external invali-
date or intervention would invalidate the line if
it were not locked.
It is implementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the ref-
erenced address may be fetched and locked. It is
recommended that only the single line contain-
ing the referenced address be affected.

Recommended

Table 5.22 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

CACHEE Perform Cache Operation EVA

155 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented. In
Release 6, the instruction in this case should perform no operation.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able. In Release 6, the instruction in this case should perform no operation.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHEE instruction is the
target of an invalidate or a writeback invalidate.

If this instruction is used to lock all ways of a cache at a specific cache index, the behavior of that cache to subsequent
cache misses to that cache index is UNDEFINED.

Any use of this instruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback data is not yet visible at the next level of the memory hierarchy.

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Operation:

vAddr  GPR[base] + sign_extend(offset)
(pAddr, uncached)  AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Reserved Instruction

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should always be converted to a kseg0
address by ORing the index with 0x80000000 before being used by the cache instruction. For example, the following
code sequence performs a data cache Index Store Tag operation using the index passed in GPR a0:

li a1, 0x80000000 /* Base of kseg0 segment */
or a0, a0, a1 /* Convert index to kseg0 address */
cache DCIndexStTag, 0(a1) /* Perform the index store tag operation */

CEIL.L.fmt IFixed Point Ceiling Convert to Long Fixed Point

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 156

Format: CEIL.L.fmt
CEIL.L.S ft, fs microMIPS
CEIL.L.D ft, fs microMIPS

Purpose: Fixed Point Ceiling Convert to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding up.

Description: FPR[ft]  convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounding toward +
(rounding mode 2). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRNAN2008=0, the default result is

263–1. On cores with FCSRNAN2008=1, the default result is:

• 0 when the input value is NaN

• 263–1 when the input value is + or rounds to a number larger than 263–1

• -263–1 when the input value is – or rounds to a number smaller than -263–1

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and fd for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 22 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
CEIL.L

01001100
POOL32FXf

111011

6 5 5 1 1 8 6

CEIL.W.fmt Floating Point Ceiling Convert to Word Fixed Point

157 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: CEIL.W.fmt
CEIL.W.S ft, fs microMIPS
CEIL.W.D ft, fs microMIPS

Purpose: Floating Point Ceiling Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding up

Description: FPR[ft]  convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounding toward +
(rounding mode 2). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRNAN2008=0, the default result is

231–1. On cores with FCSRNAN2008=1, the default result is:

• 0 when the input value is NaN

• 231–1 when the input value is + or rounds to a number larger than 231–1

• -231–1 when the input value is – or rounds to a number smaller than -231–1

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 22 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0
fm
t

CEIL.W
01101100

POOL32FXf
111011

6 5 5 1 1 8 6

CFC1 IMove Control Word From Floating Point

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 158

Format: CFC1 rt, fs microMIPS

Purpose: Move Control Word From Floating Point

To copy a word from an FPU control register to a GPR.

Description: GPR[rt]  FP_Control[fs]

Copy the 32-bit word from FP (coprocessor 1) control register fs into GPR rt.

The definition of this instruction has been extended in Release 5 to support user mode read and write of StatusFR
under the control of Config5UFR. This optional feature is meant to facilitate transition from FR=0 to FR=1 float-

ing-point register modes in order to obsolete FR=0 mode in a future architecture release. User code may set and clear
StatusFR without kernel intervention, providing kernel explicitly provides permission.

This UFR facility is not supported in Release 6 because Release 6 only allows FR=1 mode. Accessing the UFR and
UNFR registers causes a Reserved Instruction exception in Release 6 because FIRUFRP is always 0.

The definition of this instruction has been extended in Release 6 to allow user code to read and modify the
Config5FRE bit. Such modification is allowed when this bit is present (as indicated by FIRUFRP) and user mode

modification of the bit is enabled by the kernel (as indicated by Config5UFE). Setting Config5FRE to 1 causes all

floating point instructions which are not compatible with FR=1 mode to take an Reserved Instruction exception. This
makes it possible to run pre-Release 6 FR=0 floating point code on a Release 6 core which only supports FR=1 mode,
provided the kernel has been set up to trap and emulate FR=0 behavior for these instructions. These instructions
include floating-point arithmetic instructions that read/write single-precision registers, LWC1, SWC1, MTC1, and
MFC1 instructions.

The FRE facility uses COP1 register aliases FRE and NFRE to access Config5FRE.

Restrictions:

There are a few control registers defined for the floating point unit. Prior to Release 6, the result is UNPREDICT-
ABLE if fs specifies a register that does not exist. In Release 6 and later, a Reserved Instruction exception occurs if fs
specifies a register that does not exist.

The result is UNPREDICTABLE if fs specifies the UNFR or NFRE write-only control. Release 6 and later imple-
mentations are required to produce a Reserved Instruction exception; software must assume it is UNPREDICT-
ABLE.

Operation:

if fs = 0 then
temp  FIR

elseif fs = 1 then /* read UFR (CP1 Register 1) */
if FIRUFRP then

if not Config5UFR then SignalException(ReservedInstruction) endif
temp  StatusFR

else
if ConfigAR ≥ 2 SignalException(ReservedInstruction) /* Release 6 traps */
endif
temp  UNPREDICTABLE

endif

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

rt fs 00
CFC1

01000000
POOL32FXf

111011

6 5 5 2 8 6

CFC1 Move Control Word From Floating Point

159 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

elseif fs = 4 then /* read fs=4 UNFR not supported for reading - UFR suffices */
if ConfigAR ≥ 2 SignalException(ReservedInstruction) /* Release 6 traps */
endif
temp  UNPREDICTABLE

elseif fs=5 then /* user read of FRE, if permitted */
if ConfigAR  2 then temp  UNPREDICTABLE
else

if not Config5UFR then SignalException(ReservedInstruction) endif
temp  031 || Config5FRE

endif
elseif fs = 25 then /* FCCR */

temp  024 || FCSR31..25 || FCSR23
elseif fs = 26 then /* FEXR */

temp  014 || FCSR17..12 || 0
5 || FCSR6..2 || 0

2

elseif fs = 28 then /* FENR */
temp  020 || FCSR11.7 || 0

4 || FCSR24 || FCSR1..0
elseif fs = 31 then /* FCSR */

temp  FCSR
else

if Config2AR ≥ 2 SignalException(ReservedInstruction)
/*Release 6 traps; includes NFRE*/
endif
temp  UNPREDICTABLE

endif

if Config2AR < 2 then
GPR[rt]  temp

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For the MIPS I, II and III architectures, the contents of GPR rt are UNPREDICTABLE for the instruction immedi-
ately following CFC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
available in MIPS I, II, III, or IV.

MIPS32 Release 5 introduced the UFR and UNFR register aliases that allow user level access to StatusFR. Release 6

removes them.

CFC2 IMove Control Word From Coprocessor 2

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 160

Format: CFC2 rt, Impl microMIPS

The syntax shown above is an example using CFC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Control Word From Coprocessor 2

To copy a word from a Coprocessor 2 control register to a GPR

Description: GPR[rt]  CP2CCR[Impl]

Copy the 32-bit word from the Coprocessor 2 control register denoted by the Impl field. The interpretation of the
Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The result is UNPREDICTABLE if Impl specifies a register that does not exist.

Operation:

temp  CP2CCR[Impl]
GPR[rt]  temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt Impl
CFC2

1100110100
POOL32AXf

111100

6 5 5 10 6

CLASS.fmt IScalar Floating-Point Class Mask

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 161

Format: CLASS.fmt
CLASS fd, fs, fmt microMIPS32 Release 6
CLASS.S fd,fs microMIPS32 Release 6
CLASS.D fd,fs microMIPS32 Release 6

Purpose: Scalar Floating-Point Class Mask

Scalar floating-point class shown as a bit mask for Zero, Negative, Infinite, Subnormal, Quiet NaN, or Signaling
NaN.

Description: FPR[fd]  class(FPR[fs])

Stores in fd a bit mask reflecting the floating-point class of the floating point scalar value fs.

The mask has 10 bits as follows. Bits 0 and 1 indicate NaN values: signaling NaN (bit 0) and quiet NaN (bit 1). Bits
2, 3, 4, 5 classify negative values: infinity (bit 2), normal (bit 3), subnormal (bit 4), and zero (bit 5). Bits 6, 7, 8, 9
classify positive values: infinity (bit 6), normal (bit 7), subnormal (bit 8), and zero (bit 9).

This instruction corresponds to the class operation of the IEEE Standard for Floating-Point Arithmetic 754TM-2008.
This scalar FPU instruction also corresponds to the vector FCLASS.df instruction of MSA.

The input values and generated bit masks are not affected by the flush-subnormal-to-zero mode FCSR.FS.

The input operand is a scalar value in floating-point data format fmt. Bits beyond the width of fmt are ignored. The
result is a 10-bit bitmask as described above, zero extended to fmt-width bits. Coprocessor register bits beyond fmt-
width bits are UNPREDICTABLE (e.g., for CLASS.S bits 32-63 are UNPREDICTABLE on a 64-bit FPU, while bits
32-128 bits are UNPREDICTABLE if the processor supports MSA).

Restrictions:

No data-dependent exceptions are possible.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

CLASS.fmt is defined only for formats S and D. Other formats must produce a Reserved Instruction exception
(unless used for a different instruction).

Operation:

if not IsCoprocessorEnabled(1)
then SignalException(CoprocessorUnusable, 1) endif

if not IsFloatingPointImplemented(fmt))
then SignalException(ReservedInstruction) endif

fin  ValueFPR(fs,fmt)
masktmp  ClassFP(fin, fmt)
StoreFPR (fd, fmt, ftmp)
/* end of instruction */

function ClassFP(tt, ts, n)
/* Implementation defined class operation. */
endfunction ClassFP

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

fs fd 00000 fmt
CLASS

001100000

6 5 5 5 2 9

CLASS.fmt Scalar Floating-Point Class Mask

162 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

CLO ICount Leading Ones in Word

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 163

Format: CLO rt, rs microMIPS

Purpose: Count Leading Ones in Word

To count the number of leading ones in a word.

Description: GPR[rt]  count_leading_ones GPR[rs]

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading ones is counted
and the result is written to GPR rt. If all of bits 31..0 were set in GPR rs, the result written to GPR rt is 32.

Restrictions:

Operation:

temp  32
for i in 31 .. 0

if GPR[rs]i = 0 then
temp  31 - i
break

endif
endfor
GPR[rt]  temp

Exceptions:

None

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
CLO

0100101100
POOL32AXf

111100

6 5 5 10 6

CLZ Count Leading Zeros in Word

164 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: CLZ rt, rs microMIPS

Purpose: Count Leading Zeros in Word

Count the number of leading zeros in a word.

Description: GPR[rt]  count_leading_zeros GPR[rs]

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading zeros is counted
and the result is written to GPR rt. If no bits were set in GPR rs, the result written to GPR rt is 32.

Restrictions:

Operation:

temp  32
for i in 31 .. 0

if GPR[rs]i = 1 then
temp  31 - i
break

endif
endfor
GPR[rt]  temp

Exceptions:

None

Programming Notes:

Release 6 sets the ‘rt’ field to a value of 00000.

31 26 25 21 20 16 15 11 10 6 5 0

POOL32A
000000

rt rs
CLZ

0101101100
POOL32AXf

111100

6 5 5 10 6

CMP.condn.fmt IFloating Point Compare Setting Mask

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 165

Format: CMP.condn.fmt
CMP.condn.S fd, fs, ft microMIPS32 Release 6
CMP.condn.D fd, fs, ft microMIPS32 Release 6

Purpose: Floating Point Compare Setting Mask

To compare FP values and record the result as a format-width mask of all 0s or all 1s in a floating point register

Description: FPR[fd]  FPR[fs] compare_cond FPR[ft]

The value in FPR fs is compared to the value in FPR ft.

The comparison is exact and neither overflows nor underflows.

If the comparison specified by the condn field of the instruction is true for the operand values, the result is true; other-
wise, the result is false. If no exception is taken, the result is written into FPR fd; true is all 1s and false is all 0s,
repeated the operand width of fmt. All other bits beyond the operand width fmt are UNPREDICTABLE. For example,
a 32-bit single precision comparison writes a mask of 32 0s or 1s into bits 0 to 31 of FPR fd. It makes bits 32 to 63
UNPREDICTABLE if a 64-bit FPU without MSA is present. It makes bits 32 to 127 UNPREDICTABLE if MSA is
present.

The values are in format fmt. These instructions, however, do not use an fmt field to determine the data type.

The condn field of the instruction specifies the nature of the comparison: equals, less than, and so on, unordered or
ordered, signalling or quiet, as specified in Table 5.23 “Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt,
and MSA FP compares” on page 167.

Release 6: The condn field bits have specific purposes: cond4, and cond2..1 specify the nature of the comparison

(equals, less than, and so on); cond0 specifies whether the comparison is ordered or unordered, that is false or true if

any operand is a NaN; cond3 indicates whether the instruction should signal an exception on QNaN inputs. However,

in the future the MIPS ISA may be extended in ways that do not preserve these meanings.

All encodings of the condn field that are not specified (for example, items shaded in Table 5.23) are reserved in
Release 6 and produce a Reserved Instruction exception.

If one of the values is an SNaN, or if a signalling comparison is specified and at least one of the values is a QNaN, an
Invalid Operation condition is raised and the Invalid Operation flag is set in the FCSR. If the Invalid Operation
Enable bit is set in the FCSR, no result is written and an Invalid Operation exception is taken immediately. Otherwise,
the mask result is written into FPR fd.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is always true
and the others are false. The familiar relations are greater than, less than, and equal. In addition, the IEEE floating
point standard defines the relation unordered, which is true when at least one operand value is NaN; NaN compares
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such as less than or equal,
equal, not less than, or unordered or equal. Compare distinguishes among the 16 comparison predicates. The Bool-
ean result of the instruction is obtained by substituting the Boolean value of each ordering relation for the two FP val-
ues in the equation. For example: If the equal relation is true, then all four example predicates above yield a true
result. If the unordered relation is true then only the final predicate, unordered or equal, yields a true result.

31 26 25 21 20 16 15 11 10 6 5 4 0

POOL32F
010101

ft fs fd condn
CMP.condn.S

000101

POOL32F
010101

ft fs fd condn
CMP.condn.D

010101

6 5 5 5 5 6

CMP.condn.fmt Floating Point Compare Setting Mask

166 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

The predicates implemented are described in Table 5.23 “Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt,
and MSA FP compares” on page 167. Not all of the 16 IEEE predicates are implemented directly by hardware. For
the directed comparisons (LT, LE, GT, GE) the missing predicates can be obtained by reversing the FPR register
operands ft and fs. For example, the hardware implements the “Ordered Less Than” predicate LT(fs,ft); reversing the
operands LT(ft,fs) produces the dual predicate “Unordered or Greater Than or Equal” UGE(fs,ft). Table 5.23 shows
these mappings. Reversing inputs is ineffective for the symmetric predicates such as EQ; Release 6 implements these
negative predicates directly, so that all mask values can be generated in a single instruction.

Table 5.23 compares CMP.condn fmt to (1) the MIPS32 Pre-Release 6 C.cond fmt instructions, and (2) the (MSA)
MIPS SIMD Architecture packed vector floating point comparison instructions. CMP.condn fmt provides exactly the
same comparisons for FPU scalar values that MSA provides for packed vectors, with similar mnemonics.
CMP.condn fmt provides a superset of the MIPS32 Release 5 C.cond fmt comparisons.

In addition, Table 5.23 shows the corresponding IEEE 754-2008 comparison operations.

C
M

P.condn.fm
t

Floating Point C
om

pare Setting M
ask

167
M

IP
S

®
 A

rch
itectu

re for P
rogram

m
ers V

olum
e II-B

: m
icroM

IP
S

32™
 Instruction S

e
t, R

evision 6.05

.

Table 5.23 Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt, and MSA FP compares

Shaded entries in the table are unimplemented, and reserved.

Instruction Encodings
CMP.condn.fmt: 010001 fffff ttttt sssss ddddd 0ccccc

C.cond.fmt: 010001 fffff ttttt sssss CCC00 11cccc
MSA: 011110 oooof ttttt sssss ddddd mmmmmm

In
va

lid
 O

pe
ra

nd

E
xc

ep
tio

n

MSA: operation
oooo Bits 25…22

C: cond
cccc - Bits 3..0

CMP: condn
cccccc - Bits 3..0

MSA: minor opcode mmmmmm Bits 5…0 = 26 - 011010
CMP: condn Bit 5..4 = 00 C: only applicable

MSA: minor opcode mmmmmm Bits 5…0 = 28 - 011100
CMP: condn Bit 5..4 = 01 C: not applicable

Predicates Negated Predicates
Relation

C
co

nd
n.

fm
t

M
S

A

C
M

P
co

nd
n.

fm
t

Long names IEEE
Relation

C
co

nd
n.

fm
t

M
S

A

C
M

P
co

nd
n.

fm
t

Long names IEEE
> < = ? > < = ?

no
 (

no
n-

si
gn

al
lin

g)

ye
s

(a
lw

ay
s

si
gn

al
 S

N
aN

)

0 0000 F F F F F FCAF AF
False
Always False

T T T T T AT
True
Always True

1 0001 F F F T UN FCUN UN Unordered
compareQuietUnordered
?
isUnordered

T T T F OR FCOR OR Ordered
compareQuietOrdered
<=>
NOT(isUnordered)

2 0010 F F T F EQ FCEQ EQ Equal compareQuietEqual
=

T T F T NEQ FCUNE UNE Not Equal compareQuietNotEqual
?<>, NOT(=), 

3 0011 F F T T UEQ FCUEQ UEQ Unordered or Equal T T F F OGL FCNE NE
Ordered

Greater Than
or Less Than

4 0100 F T F F OLT FCLT LT Ordered Less Than compareQuietLess
isLess

T F T T UGE UGE
Unordered or

Greater Than
or Equal

compareQuietNotLess
?>=, NOT(isLess)

5 0101 F T F T ULT FCULT ULT
Unordered or Less

Than

compareQuietLessUnor-
dered

?<, NOT(isGreaterEqual)
T F T F OGE OGE

Ordered
Greater Than
or Equal

compareQuiet-
GreatrEqual

isGreaterEqual

6 0110 F T T F OLE FCLE LE
Ordered Less than or

Equal
compareQuietLessEqual
isLessEqual

T F F T UGT UGT
Unordered or

Greater Than

compareQuietGreaterUn-
ordered

?>, NOT(isLessEqual)

7 0111 F T T T ULE FCULE ULE
Unordered or Less

Than or Equal
compareQuietNotGreater
?<=, NOT(isGreater)

T F F F OGT OGT
Ordered

Greater Than
compareQuietGreater
isGreater

C
M

P.condn.fm
t

Floating Point C
om

pare Setting M
ask

168
M

IP
S

®
 A

rch
itectu

re for P
rogram

m
ers V

olum
e II-B

: m
icroM

IP
S

32™
 Instruction S

e
t, R

evision 6.05

.

ye
s

(s
ig

na
lli

ng
)

8 1000 F F F F SF FSAF SAF
Signalling False
Signalling

Always False
T T T T ST SAT

Signalling True
Signalling

Always True

9 1001 F F F T NGLE FSUN SUN
Not Greater Than or

Less Than or Equal
Signalling Unordered

T T T F GLE FSOR SOR

Greater Than or
Less Than or Equa

Signalling
Ordered

10 1010 F F T F SEQ FSEQ SEQ
Signalling Equal
Ordered Signalling

Equal
compareSignalling Equal T T F T SNE FSUNE SUNE

Signalling Not Equal
Signalling Unor-

dered or Not
Equal

compareSignalling-
NotEqual

11 1011 F F T T NGL FSUEQ SUEQ

Not Greater Than or
Less Than

Signalling Unordered
or Equal

T T F F GL FSNE SNE

Greater Than or
Less Than

Signalling
Ordered
Not Equal

12 1100 F T F F LT FSLT SLT
Less Than
Ordered Signalling

Less Than

compareSignallingLess
<

T F T T NLT SUGE

Not Less Than
Signalling

Unordered or
Greater Than or
Equal

compareSignallingNot-
Less

NOT(<)

13 1101 F T F T NGE FSULT SULT
Not Greater Than or Equal
Unordered or Less

Than

compareSignalling-
LessUnordered

NOT(>=)
T F T F GE SOGE

Signalling Ordered
Greater Than or
Equal

compareSignalling-
GreaterEqual

>=, 

14 1110 F T T F LE FSLE SLE
Less Than or Equal
Ordered Signalling

Less Than or Equal

compareSignalling-
LessEqual

<=, 
T F F T NLE SUGT

Not Less Than or
Equal

Signalling Unordered
or Greater Than

compareSignalling-
GreaterUnordered

NOT(<=)

15 1111 F T T T NGT FSULE SULE

Not Greater Than
Signalling Unordered

or Less Than or
Equal

compareSignalling-
NotGreater

NOT(>)
T F F F GT SOGT

Greater Than
Signalling Ordered

Greater Than

compareSignalling-
Greater

>

Table 5.23 Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt, and MSA FP compares (Continued)

Shaded entries in the table are unimplemented, and reserved.

Instruction Encodings
CMP.condn.fmt: 010001 fffff ttttt sssss ddddd 0ccccc

C.cond.fmt: 010001 fffff ttttt sssss CCC00 11cccc
MSA: 011110 oooof ttttt sssss ddddd mmmmmm

In
va

lid
 O

pe
ra

nd

E
xc

ep
tio

n

MSA: operation
oooo Bits 25…22

C: cond
cccc - Bits 3..0

CMP: condn
cccccc - Bits 3..0

MSA: minor opcode mmmmmm Bits 5…0 = 26 - 011010
CMP: condn Bit 5..4 = 00 C: only applicable

MSA: minor opcode mmmmmm Bits 5…0 = 28 - 011100
CMP: condn Bit 5..4 = 01 C: not applicable

Predicates Negated Predicates
Relation

C
co

nd
n.

fm
t

M
S

A

C
M

P
co

nd
n.

fm
t

Long names IEEE
Relation

C
co

nd
n.

fm
t

M
S

A

C
M

P
co

nd
n.

fm
t

Long names IEEE
> < = ? > < = ?

CMP.condn.fmt IFloating Point Compare Setting Mask

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 169

Restrictions:

Operation:
if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or

QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft, fmt))
then

less  false
equal  false
unordered  true
if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or

(cond3 and (QNaN(ValueFPR(fs,fmt)) or QNaN(ValueFPR(ft,fmt)))) then
SignalException(InvalidOperation)

endif
else

less  ValueFPR(fs, fmt) <fmt ValueFPR(ft, fmt)
equal  ValueFPR(fs, fmt) =fmt ValueFPR(ft, fmt)
unordered  false

endif
condition  cond4 xor (

(cond2 and less)
or (cond1 and equal)
or (cond0 and unordered))

StoreFPR (fd, fmt, ExtendBit.fmt(condition))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

COP2 Coprocessor Operation to Coprocessor 2

170 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: COP2 func microMIPS

Purpose: Coprocessor Operation to Coprocessor 2

To perform an operation to Coprocessor 2.

Description: CoprocessorOperation(2, cofun)

An implementation-dependent operation is performed to Coprocessor 2, with the cofun value passed as an argument.
The operation may specify and reference internal coprocessor registers, and may change the state of the coprocessor
conditions, but does not modify state within the processor. Details of coprocessor operation and internal state are
described in the documentation for each Coprocessor 2 implementation.

Restrictions:

Operation:

CoprocessorOperation(2, cofun)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 3 2 0

POOL32A
000000

cofun
COP2
010

6 23 3

CRC32B, CRC32H, CRC32W IGenerate CRC with reversed polynomial 0xEDB88320

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 171

Format: CRC32B, CRC32H, CRC32W
CRC32B rt, rs, rt microMIPS32 Release 6
CRC32H rt, rs, rt microMIPS32 Release 6
CRC32W rt, rs, rt microMIPS32 Release 6

Purpose: Generate CRC with reversed polynomial 0xEDB88320

Description: GPR[rt]  CRC32(GRP[rs], GPR[rt])

CRC32B/H/W generates a 32-bit Cyclic Redundancy Check (CRC) value based on the reversed polynomial
0xEDB88320. The new 32-bit CRC value is generated with a cumulative 32-bit CRC value input as GPR[rt] and a
byte or half-word or word message right-justified in GPR[rs]. The message size is encoded in field sz of the instruc-
tion.

The generated value overwrites the input CRC value in GPR[rt], as the original value is considered redundant once
the cumulative CRC value is re-generated with the additional message. More importantly, source-destroying defini-
tion of the CRC instruction allows the instruction to be included in a loop without having to move the destination to
the source for the next iteration of the instruction.

The CRC32B/H/W instruction does not pad the input message. It is software’s responsibility to ensure the input mes-
sage, whether byte, half-word, word or double-word is fully-defined, otherwise the result is UNPREDICTABLE and
thus unusable.

The reversed polynomial is a 33-bit polynomial of degree 32. Since the coefficient of most significance is always 1, it
is dropped from the 32-bit binary number, as per standard representation. The order of the remaining coefficients
increases from right to left in the binary representation.

Since the CRC is processed more than a bit at a time, the order of bits in the data elements of size byte, half-word,
word or double-word is important. The specification assumes support for an “lsb-first” (little-endian) standard, and
thus coefficients of polynomial terms that represent the message must be ordered from right to left in order of dec-
creasing significance.

The specification of the CRC instruction assumes the following in regards to a message of arbitrary length whose 32-
bit CRC value is to be generated. The message itself is a polynomial represented by binary coefficients of each term
of the polynomial.

• The message is a sequence of bytes or half-words or words as per use case. The appropriate instruction is chosen.

• For each message element of size byte/half-word/word/double-word, the least-significant bit corresponds to the
most significant coefficient, and significance decreases from right to left.

• Message elements themselves must be processed in order of decreasing significance, with reference to coeffi-
cients of the terms of the polynomial the message represents.

• The polynomial is thus reversed to match the order of coefficients for the message of arbitrary length.

• The resultant CRC is also a polynomial whose coefficients are arranged in decreasing significance from right to
left.

31 26 25 21 20 16 15 14 13 10 9 0

POOL32A
000000

rt rs sz 0000 0000110000

6 5 5 2 4 10

CRC32B, CRC32H, CRC32W IGenerate CRC with reversed polynomial 0xEDB88320

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 172

The typical use of CRC is to generate a checksum to accompany a message that is transmitted electronically in order
to detect transmission errors at the receiving end. If the message is considered to be a polynomial, the coefficient of
the most-significant term is transmitted first followed by remaining bits in order of decreasing significance, followed
by the 32-bit CRC. The specification for these CRC instruction is thus most appropriate for standards that transmit
least significant bit of data first (little-endian), such as IEEE 802 Ethernet. The least-significant bit of data conve-
niently maps to the coefficient of the most-significant term of the message polynomial.

Restrictions:

No data-dependent exceptions are possible.

Operation:

if (Config5CRCP = 0) then
SignalException(ReservedInstruction)

endif

if (sz = 0b00) then
temp  CRC32(GPR[rt], GPR[rs], 1, 0xEDB88320)

else if (sz = 0b01) then
temp  CRC32(GPR[rt], GPR[rs], 2, 0xEDB88320)

else if (sz = 0b10) then
temp  CRC32(GPR[rt], GPR[rs], 4, 0xEDB88320)

else if (sz = 0b11) then
 SignalException(ReservedInstruction)

endif
GPR[rt]  temp

// Bit oriented definition of CRC32 function
function CRC32(value, message, numbytes, poly)

value - right-justified current 32-bit CRC value
message - right-justified byte/half-word/word message
numbytes - size of message in bytes: byte/half-word/word
poly - 32-bit reversed polynomial

value  value xor {(32-(numbytes*8))’b0,message}
for (i=0; i<numbytes*8; i++)

if (value and 0d1) then // check most significant coefficient
value  (value >> 1) xor poly

else
value  (value >> 1)

endif
endfor
return value

endfunction

Exceptions:

Reserved Instruction Exception

Restriction:

These instructions are implemented in Release 6 only if CP0 Config5CRCP is set to 1.

Programing Notes:

When calculating CRC, it is recommended that the initial value of GPR[rt] be all ones, when the CRC instruction is
the first in the sequence to be referenced. This allows the CRC to differentiate between actual leading zeroes in the

CRC32B, CRC32H, CRC32W IGenerate CRC with reversed polynomial 0xEDB88320

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 173

message element, and zeros added by transmission errors. The initial all one’s value makes no difference to the CRC
calculation as long as both sender and receiver use the same assumption on the initial value, to generate and check
respectively.

If the order of bits in bytes assumes most-significant bit first, then Release 6 BITSWAP can be used to reverse the
order of bits in order to operate with these instructions. However BITSWAP would only apply to byte messages.

CRC32B/H/Winstructions are interchangeable: a series of low-order CRC instructions can be reduced to a series of
high-order CRC32H operations, to increase throughput of the overall CRC generation process. The process of doing
this will add trailing zeroes to the message for which CRC is being generated, since the data element is now larger,
however, this will not change the CRC value that is generated. It is the original message that must be transmitted
along with the CRC, without the trailing zeroes.

In pseudo-assembly, the following sequence of byte CRC operations may be used to generate a cumulative CRC
value. (Pseudo-assembly is used to clearly indicate terms which need to be modified for interchangeability.)

li $3, 0xFFFF_FFFF // initialize CRC value
la $4, memaddr // assume word-aligned for convenience

for (i=0; i < byte_cnt; i++)
lb $2, 0($4) // read message bytes
crc32b $3, $2, $3
add $4, $4, 1 // increment byte memory address by 1

endfor

This is equivalent to the sequence of word CRC operations. The simple example assumes some multiple of 4 bytes
are processed.

for (i=0; i < byte_cnt/4; i++)
lw $2, 0($4) // read message words
crc32w $3, $2, $3
add $4, $4, 4 // increment word memory address by 4

endfor

The throughput is thus increased by a multiple of 4 as only a quarter of the byte oriented operations occur.

CRC32CB, CRC32CH, CRC32CW IGenerate CRC with reversed polynomial 0x82F63B78

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 174

Format: CRC32CB, CRC32CH, CRC32CW
CRC32CB rt, rs, rt microMIPS32 Release 6
CRC32CH rt, rs, rt microMIPS32 Release 6
CRC32CW rt, rs, rt microMIPS32 Release 6

Purpose: Generate CRC with reversed polynomial 0x82F63B78

Description: GPR[rt]  CRC32C(GRP[rs], GPR[rt])

CRC32CB/H/W generates a 32-bit Cyclic Redundancy Check (CRC) value based on the reversed polynomial
0x82F63B78 (Castagnoli). The new 32-bit CRC value is generated with a cumulative 32-bit CRC value input as
GPR[rt] and a byte or half-word or word message right-justified in GPR[rs]. The message size is encoded in field sz
of the instruction.

The generated value overwrites the input CRC value in GPR[rt], as the original value is considered redundant once
the cumulative CRC value is re-generated with the additional message. More importantly, source-destroying defini-
tion of the CRC instruction allows the instruction to be included in a loop without having to move the destination to
the source for the next iteration of the instruction.

The CRC32CB/H/W instruction does not pad the input message. It is software’s responsibility to ensure the input
message, whether byte, half-word, word or double-word is fully-defined, otherwise the result is UNPREDICTABLE
and thus unusable.

The reversed polynomial is a 33-bit polynomial of degree 32. Since the coefficient of most significance is always 1, it
is dropped from the 32-bit binary number, as per standard representation. The order of the remaining coefficients
increases from right to left in the binary representation.

Since the CRC is processed more than a bit at a time, the order of bits in the data elements of size byte, half-word,
word or double-word is important. The specification assumes support for an “lsb-first” (little-endian) standard, and
thus coefficients of polynomial terms that represent the message must be ordered from right to left in order of dec-
creasing significance.

The specification of the CRC instruction assumes the following in regards to a message of arbitrary length whose 32-
bit CRC value is to be generated. The message itself is a polynomial represented by binary coefficients of each term
of the polynomial.

• The message is a sequence of bytes or half-words or words as per use case. The appropriate instruction is chosen.

• For each message element of size byte/half-word/word/double-word, the least-significant bit corresponds to the
most significant coefficient, and significance decreases from right to left.

• Message elements themselves must be processed in order of decreasing significance, with reference to coeffi-
cients of the terms of the polynomial the message represents.

• The polynomial is thus reversed to match the order of coefficients for the message of arbitrary length.

• The resultant CRC is also a polynomial whose coefficients are arranged in decreasing significance from right to
left.

31 26 25 21 20 16 15 14 13 10 9 0

POOL32A
000000

rt rs sz 0000 0000111000

6 5 5 2 4 10

CRC32CB, CRC32CH, CRC32CW IGenerate CRC with reversed polynomial 0x82F63B78

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 175

The typical use of CRC is to generate a checksum to accompany a message that is transmitted electronically in order
to detect transmission errors at the receiving end. If the message is considered to be a polynomial, the coefficient of
the most-significant term is transmitted first followed by remaining bits in order of decreasing significance, followed
by the 32-bit CRC. The specification for these CRC instruction is thus most appropriate for standards that transmit
least significant bit of data first (little-endian), such as IEEE 802 Ethernet. The least-significant bit of data conve-
niently maps to the coefficient of the most-significant term of the message polynomial.

Restrictions:

No data-dependent exceptions are possible.

Operation:

if (Config5CRCP = 0) then
SignalException(ReservedInstruction)

endif

if (sz = 0b00) then
temp  CRC32(GPR[rt], GPR[rs], 1, 0x82F63B78)

else if (sz = 0b01) then
temp  CRC32(GPR[rt], GPR[rs], 2, 0x82F63B78)

else if (sz = 0b10) then
temp  CRC32(GPR[rt], GPR[rs], 4, 0x82F63B78)

else if (sz = 0b11) then
 SignalException(ReservedInstruction)

endif
GPR[rt]  temp

// Bit oriented definition of CRC32 function
function CRC32(value, message, numbytes, poly)

value - right-justified current 32-bit CRC value
message - right-justified byte/half-word/word message
numbytes - size of message in bytes: byte/half-word/word
poly - 32-bit reversed polynomial

value  value xor {(32-(numbytes*8))’b0,message}
for (i=0; i<numbytes*8; i++)

if (value and 0d1) then // check most significant coefficient
value  (value >> 1) xor poly

else
value  (value >> 1)

endif
endfor
return value

endfunction

Exceptions:

Reserved Instruction Exception

Restriction:

These instructions are implemented in Release 6 only if CP0 Config5CRCP is set to 1.

Programing Notes:

When calculating CRC, it is recommended that the initial value of GPR[rt] be all ones, when the CRC instruction is
the first in the sequence to be referenced. This allows the CRC to differentiate between actual leading zeroes in the

CRC32CB, CRC32CH, CRC32CW IGenerate CRC with reversed polynomial 0x82F63B78

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 176

message element, and zeros added by transmission errors. The initial all one’s value makes no difference to the CRC
calculation as long as both sender and receiver use the same assumption on the initial value, to generate and check
respectively.

If the order of bits in bytes assumes most-significant bit first, then Release 6 BITSWAP can be used to reverse the
order of bits in order to operate with these instructions. However BITSWAP would only apply to byte messages.

CRC32CB/H/Winstructions are interchangeable: a series of low-order CRC instructions can be reduced to a series of
high-order CRC32CH operations, to increase throughput of the overall CRC generation process. The process of doing
this will add trailing zeroes to the message for which CRC is being generated, since the data element is now larger,
however, this will not change the CRC value that is generated. It is the original message that must be transmitted
along with the CRC, without the trailing zeroes.

In pseudo-assembly, the following sequence of byte CRC operations may be used to generate a cumulative CRC
value. (Pseudo-assembly is used to clearly indicate terms which need to be modified for interchangeability.)

li $3, 0xFFFF_FFFF // initialize CRC value
la $4, memaddr // assume word-aligned for convenience

for (i=0; i < byte_cnt; i++)
lb $2, 0($4) // read message bytes
crc32cb $3, $2, $3
add $4, $4, 1 // increment byte memory address by 1

endfor

This is equivalent to the sequence of word CRC operations. The simple example assumes some multiple of 4 bytes
are processed.

for (i=0; i < byte_cnt/4; i++)
lw $2, 0($4) // read message words
crc32cw $3, $2, $3
add $4, $4, 4 // increment word memory address by 4

endfor

The throughput is thus increased by a multiple of 4 as only a quarter of the byte oriented operations occur.

CTC1 IMove Control Word to Floating Point

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 177

Format: CTC1 rt, fs microMIPS

Purpose: Move Control Word to Floating Point

To copy a word from a GPR to an FPU control register.

Description: FP_Control[fs]  GPR[rt]

Copy the low word from GPR rt into the FP (coprocessor 1) control register indicated by fs.

Writing to the floating point Control/Status register, the FCSR, causes the appropriate exception if any Cause bit
and its corresponding Enable bit are both set. The register is written before the exception occurs. Writing to FEXR to
set a cause bit whose enable bit is already set, or writing to FENR to set an enable bit whose cause bit is already set
causes the appropriate exception. The register is written before the exception occurs and the EPC register contains
the address of the CTC1 instruction.

The definition of this instruction has been extended in Release 5 to support user mode read and write of StatusFR
under the control of Config5UFR. This optional feature is meant to facilitate transition from FR=0 to FR=1 float-

ing-point register modes in order to obsolete FR=0 mode in a future architecture release. User code may set and clear
StatusFR without kernel intervention, providing kernel explicitly provides permission.

This UFR facility is not supported in Release 6 since Release 6 only allows FR=1 mode. Accessing the UFR and
UNFR registers causes a Reserved Instruction exception in Release 6 since FIRUFRP is always 0.

The definition of this instruction has been extended in Release 6 to allow user code to read and modify the
Config5FRE bit. Such modification is allowed when this bit is present (as indicated by FIRUFRP) and user mode

modification of the bit is enabled by the kernel (as indicated by Config5UFE). Setting Config5FRE to 1 causes all

floating point instructions which are not compatible with FR=1 mode to take an Reserved Instruction exception. This
makes it possible to run pre-Release 6 FR=0 floating point code on a Release 6 core which only supports FR=1 mode,
provided the kernel has been set up to trap and emulate FR=0 behavior for these instructions. These instructions
include floating-point arithmetic instructions that read/write single-precision registers, LWC1, SWC1, MTC1, and
MFC1 instructions.

The FRE facility uses COP1 register aliases FRE and NFRE to access Config5FRE.

Restrictions:

There are a few control registers defined for the floating point unit. Prior to Release 6, the result is UNPREDICT-
ABLE if fs specifies a register that does not exist. In Release 6 and later, a Reserved Instruction exception occurs if fs
specifies a register that does not exist.

Furthermore, the result is UNPREDICTABLE if fd specifies the UFR, UNFR, FRE and NFRE aliases, with fs any-
thing other than 00000, GPR[0]. Release 6 implementations and later are required to produce a Reserved Instruction
exception; software must assume it is UNPREDICTABLE.

Operation:

temp  GPR[rt]31..0
if (fs = 1 or fs = 4) then

/* clear UFR or UNFR(CP1 Register 1)*/
if ConfigAR ≥ 2 SignalException(ReservedInstruction) /* Release 6 traps */ endif

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

rt fs 00
CTC1

01100000
POOL32FXf

111011

6 5 5 2 8 6

CTC1 Move Control Word to Floating Point

178 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

if not Config5UFR then SignalException(ReservedInstruction) endif
if not (rt = 0 and FIRUFRP) then UNPREDICTABLE /*end of instruction*/ endif
if fs = 1 then StatusFR  0
elseif fs = 4 then StatusFR  1
else /* cannot happen */

elseif fs=5 then /* user write of 1 to FRE, if permitted */
if ConfigAR  2 then UNPREDICTABLE
else

if rt ≠ 0 then SignalException(ReservedInstruction) endif
if not Config5UFR then SignalException(ReservedInstruction) endif
Config5UFR  0

endif
elseif fs=6 then /* user write of 0 to FRE, if permitted (NFRE alias) */

if ConfigAR  2 then UNPREDICTABLE
else

if rt ≠ 0 then SignalException(ReservedInstruction) endif
if not Config5UFR then SignalException(ReservedInstruction) endif
Config5UFR  1

endif
elseif fs = 25 then /* FCCR */

if temp31..8 ≠ 0
24 then

UNPREDICTABLE
else

FCSR  temp7..1 || FCSR24 || temp0 || FCSR22..0
endif

elseif fs = 26 then /* FEXR */
if temp31..18 ≠ 0 or temp11..7 ≠ 0 or temp2..0 ≠ 0then

UNPREDICTABLE
else

FCSR  FCSR31..18 || temp17..12 || FCSR11..7 ||
temp6..2 || FCSR1..0

endif
elseif fs = 28 then /* FENR */

if temp31..12 ≠ 0 or temp6..3 ≠ 0 then
UNPREDICTABLE

else
FCSR  FCSR31..25 || temp2 || FCSR23..12 || temp11..7
|| FCSR6..2 || temp1..0

endif
elseif fs = 31 then /* FCSR */

if (FCSRImpl field is not implemented) and(temp22..18 ≠ 0) then
UNPREDICTABLE

elseif (FCSRImpl field is implemented) and temp20..18 ≠ 0 then
UNPREDICTABLE

else
FCSR  temp

endif
else

if Config2AR ≥ 2 SignalException(ReservedInstruction) /* Release 6 traps */
endif
UNPREDICTABLE

endif
CheckFPException()

Exceptions:

Coprocessor Unusable, Reserved Instruction

CTC1 IMove Control Word to Floating Point

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 179

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Division-by-zero, Inexact, Overflow, Underflow

Historical Information:

For the MIPS I, II and III architectures, the contents of floating point control register fs are UNPREDICTABLE for
the instruction immediately following CTC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
available in MIPS I, II, III, or IV.

MIPS32 Release 5 introduced the UFR and UNFR register aliases that allow user level access to StatusFR.

MIPS32 Release 6 introduced the FRE and NFRE register aliases that allow user to cause traps for FR=0 mode emu-
lation.

CTC2 Move Control Word to Coprocessor 2

180 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: CTC2 rt, Impl microMIPS

The syntax shown above is an example using CTC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Control Word to Coprocessor 2

To copy a word from a GPR to a Coprocessor 2 control register.

Description: CP2CCR[Impl]  GPR[rt]

Copy the low word from GPR rt into the Coprocessor 2 control register denoted by the Impl field. The interpretation
of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The result is UNPREDICTABLE if rd specifies a register that does not exist.

Operation:

temp  GPR[rt]
CP2CCR[Impl]  temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt Impl
CTC2

1101110100
POOL32AXf

111100

6 5 5 10 6

CVT.D.fmt IFloating Point Convert to Double Floating Point

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 181

Format: CVT.D.fmt
CVT.D.S ft, fs microMIPS
CVT.D.W ft, fs microMIPS
CVT.D.L ft, fs microMIPS

Purpose: Floating Point Convert to Double Floating Point

To convert an FP or fixed point value to double FP.

Description: FPR[ft]  convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in double floating point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR ft. If fmt is S or W, then the operation is always exact.

Restrictions:

The fields fs and ft must specify valid FPRs, fs for type fmt and ft for double floating point. If the fields are not valid,
the result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.D.L, the result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit
FPU register model.

Operation:

StoreFPR (ft, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 21 20 16 15 14 13 12 6 5 0

POOL32F
010101

ft fs 0 fmt
CVT.D

1001101
POOL32FXf

111011

6 5 5 1 2 7 6

CVT.L.fmt Floating Point Convert to Long Fixed Point

182 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: CVT.L.fmt
CVT.L.S ft, fs microMIPS
CVT.L.D ft, fs microMIPS

Purpose: Floating Point Convert to Long Fixed Point

To convert an FP value to a 64-bit fixed point.

Description: FPR[ft]  convert_and_round(FPR[fs])

Convert the value in format fmt in FPR fs to long fixed point format and round according to the current rounding
mode in FCSR. The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRNAN2008=0, the default result is

263–1. On cores with FCSRNAN2008=1, the default result is:

• 0 when the input value is NaN

• 263–1 when the input value is + or rounds to a number larger than 263–1

• -263–1 when the input value is – or rounds to a number smaller than -263–1

Restrictions:

The fields fs and ft must specify valid FPRs, fs for type fmt and fd for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (ft, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact,

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
CVT.L

00000100
POOL32FXf

111011

6 5 5 1 1 8 6

CVT.S.fmt IFloating Point Convert to Single Floating Point

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 183

Format: CVT.S.fmt
CVT.S.D ft, fs microMIPS
CVT.S.W ft, fs microMIPS
CVT.S.L ft, fs microMIPS

Purpose: Floating Point Convert to Single Floating Point

To convert an FP or fixed point value to single FP.

Description: FPR[ft]  convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in single floating point format and rounded according to the
current rounding mode in FCSR. The result is placed in FPR ft.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type fmt and fd for single floating point. If the fields are not valid,
the result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.S.L, the result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit
FPU register model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on
a 32-bit FPU.

Operation:

StoreFPR(ft, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 14 13 12 6 5 0

POOL32F
010101

ft fs 0 fmt
CVT.S

1101101
POOL32FXf

111011

6 5 5 1 2 7 6

CVT.W.fmt Floating Point Convert to Word Fixed Point

184 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: CVT.W.fmt
CVT.W.S ft, fs microMIPS
CVT.W.D ft, fs microMIPS

Purpose: Floating Point Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point.

Description: FPR[ft]  convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRNAN2008=0, the default result is

263–1. On cores with FCSRNAN2008=1, the default result is:

• 0 when the input value is NaN

• 263–1 when the input value is + or rounds to a number larger than 263–1

• -263–1 when the input value is – or rounds to a number smaller than -263–1

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and ft for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
CVT.W

00100100
POOL32FXf

111011

6 5 5 1 1 8 6

DERET IDebug Exception Return

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 185

Format: DERET EJTAG microMIPS

Purpose: Debug Exception Return

To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained in the DEPC register. DERET does not execute the next instruction (i.e. it has
no delay slot).

Restrictions:

A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTC0 or a DMTC0 instruction, a
CP0 hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.

This instruction is legal only if the processor is executing in Debug Mode.

Pre-Release 6: The operation of the processor is UNDEFINED if a DERET is executed in the delay slot of a branch
or jump instruction. In Release 6, in the absence of delay/forbidden slots, this restriction does not apply.

Operation:

DebugDM  0
DebugIEXI  0
if IsMIPS16Implemented() | (Config3ISA > 0) then

PC  DEPC31..1 || 0
ISAMode  DEPC0

else
PC  DEPC

endif
ClearHazards()

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 16 15 6 5 0

POOL32A
000000

0
0000000000

DERET
1110001101

POOL32AXf
111100

6 10 10 6

DI Disable Interrupts

186 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: DI microMIPS
DI rs microMIPS

Purpose: Disable Interrupts

To return the previous value of the Status register and disable interrupts. If DI is specified without an argument, GPR
r0 is implied, which discards the previous value of the Status register.

Description: GPR[rs]  Status; StatusIE  0

The current value of the Status register is loaded into general register rs. The Interrupt Enable (IE) bit in the Status
register is then cleared.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

data  Status
GPR[rs]  data
StatusIE  0

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR,
clearing the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the DI
instruction cannot be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

0
00000

rs
DI

0100011101
POOL32AXf

111100

6 5 5 10 6

DIV.fmt IFloating Point Divide

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 187

Format: DIV.fmt
DIV.S fd, fs, ft microMIPS
DIV.D fd, fs, ft microMIPS

Purpose: Floating Point Divide

To divide FP values.

Description: FPR[fd]  FPR[fs] / FPR[ft]

The value in FPR fs is divided by the value in FPR ft. The result is calculated to infinite precision, rounded according
to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is
UNPREDICABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) / ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Unimplemented Operation, Division-by-zero, Overflow, Underflow

31 26 25 21 20 16 15 11 10 9 8 7 5 0

POOL32F
010101

ft fs fd 0 fmt
DIV

11110000

6 5 5 5 1 2 8

DIV MOD DIVU MODU IDivide Integers (with result to GPR)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 188

Format: DIV MOD DIVU MODU
DIV rd,rs,rt microMIPS32 Release 6
MOD rd,rs,rt microMIPS32 Release 6
DIVU rd,rs,rt microMIPS32 Release 6
MODU rd,rs,rt microMIPS32 Release 6

Purpose: Divide Integers (with result to GPR)

DIV: Divide Words Signed
MOD: Modulo Words Signed
DIVU: Divide Words Unsigned
MODU: Modulo Words Unsigned

Description:

DIV: GPR[rd]  (divide.signed(GPR[rs], GPR[rt])
MOD: GPR[rd]  (modulo.signed(GPR[rs], GPR[rt])
DIVU: GPR[rd]  (divide.unsigned(GPR[rs], GPR[rt])
MODU: GPR[rd]  (modulo.unsigned(GPR[rs], GPR[rt])

The Release 6 divide and modulo instructions divide the operands in GPR rs and GPR rt, and place the quotient or
remainder in GPR rd.

For each of the div/mod operator pairs DIV/M OD, DIVU/MODU, the results satisfy the equation
(A div B)*B + (A mod B) = A, where (A mod B) has same sign as the dividend A, and
abs(A mod B) < abs(B). This equation uniquely defines the results.

NOTE: if the divisor B=0, this equation cannot be satisfied, and the result is UNPREDICTABLE. This is commonly
called “truncated division”.

DIV performs a signed 32-bit integer division, and places the 32-bit quotient result in the destination register.

MOD performs a signed 32-bit integer division, and places the 32-bit remainder result in the destination register. The
remainder result has the same sign as the dividend.

DIVU performs an unsigned 32-bit integer division, and places the 32-bit quotient result in the destination register.

MODU performs an unsigned 32-bit integer division, and places the 32-bit remainder result in the destination regis-
ter.

Restrictions:

If the divisor in GPR rt is zero, the result value is UNPREDICTABLE.

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
DIV

0100011000

POOL32A
000000

rt rs rd 0
MOD

0101011000

POOL32A
000000

rt rs rd 0
DIVU

0110011000

POOL32A
000000

rt rs rd 0
MODU

0111011000

6 5 5 5 1 10

DIV MOD DIVU MODU DIV: Divide Words Signed MOD: Modulo Words Signed DIVU: Divide Words Un-

189 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Release 6 divide instructions have the same opcode mnemonic as the pre-Release 6 divide instructions (DIV, DIVU).
The instruction encodings are different, as are the instruction semantics: the Release 6 instruction produces only the
quotient, whereas the pre-Release 6 instruction produces quotient and remainder in HI/LO registers respectively, and
separate modulo instructions are required to obtain the remainder.

The assembly syntax distinguishes the Release 6 from the pre-Release 6 divide instructions. For example, Release 6
“DIV rd,rs,rt” specifies 3 register operands, versus pre-Release 6 “DIV rs,rt”, which has only two register
arguments, with the HI/LO registers implied. Some assemblers accept the pseudo-instruction syntax
“DIV rd,rs,rt” and expand it to do “DIV rs,rt;MFHI rd”. Phrases such as “DIV with GPR output” and
“DIV with HI/LO output” may be used when disambiguation is necessary.

Pre-Release 6 divide instructions that produce quotient and remainder in the HI/LO registers produce a Reserved
Instruction exception on Release 6. In the future, the instruction encoding may be reused for other instructions.

Programming Notes:

Because the divide and modulo instructions are defined to not trap if dividing by zero, it is safe to emit code that
checks for zero-divide after the divide or modulo instruction.

Operation

DIV, MOD:
s1  signed_word(GPR[rs])
s2  signed_word(GPR[rt])

DIVU, MODU:
s1  unsigned_word(GPR[rs])
s2  unsigned_word(GPR[rt])

DIV, DIVU:
quotient  s1 div s2

MOD, MODU:
remainder  s1 mod s2

DIV: GPR[rd]  quotient
MOD: GPR[rd]  remainder
DIVU: GPR[rd]  quotient
MODU: GPR[rd]  remainder
/* end of instruction */

Exceptions:

No arithmetic exceptions occur. Division by zero produces an UNPREDICTABLE result.

DVP IDisable Virtual Processor

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 190

Format: DVP rt microMIPS Release 6

Purpose: Disable Virtual Processor

To disable all virtual processors in a physical core other than the virtual processor that issued the instruction.

Description: GPR[rt]  VPControl ; VPControlDIS  1

Disabling a virtual processor means that instruction fetch is terminated, and all outstanding instructions for the
affected virtual processor(s) must be complete before the DVP itself is allowed to retire. Any outstanding events such
as hardware instruction or data prefetch, or page-table walks must also be terminated.

The DVP instruction has implicit SYNC(stype=0) semantics but with respect to the other virtual processors in the
physical core.

After all other virtual processors have been disabled, VPControlDIS is set. Prior to modification and if rt is non-

zero, VPControl is written to GPR[rt].If DVP is specified without rt, then rt must be 0.

DVP may also take effect on a virtual processor that has executed a WAIT or a PAUSE instruction. If a virtual proces-
sor has executed a WAIT instruction, then it cannot resume execution on an interrupt until an EVP has been executed.
If the EVP is executed before the interrupt arrives, then the virtual processor resumes in a state as if the DVP had not
been executed, that is, it waits for the interrupt.

If a virtual processor has executed a PAUSE instruction, then it cannot resume execution until an EVP has been exe-
cuted, even if LLbit is cleared. If an EVP is executed before the LLbit is cleared, then the virtual processor resumes in
a state as if the DVP has not been executed, that is, it waits for the LLbit to clear.

The execution of a DVP must be followed by the execution of an EVP. The execution of an EVP causes execution to
resume immediately—where applicable—on all other virtual processors, as if the DVP had not been executed. The
execution is completely restorable after the EVP. If an event occurs in between the DVP and EVP that renders state of
the virtual processor UNPREDICTABLE (such as power-gating), then the effect of EVP is UNPREDICTABLE.

DVP may only take effect if VPControlDIS=0. Otherwise it is treated as a NOP instruction.

If a virtual processor is disabled due to a DVP, then interrupts are also disabled for the virtual processor, that is, logi-
cally StatusIE=0. StatusIE for the target virtual processors though is not cleared though as software cannot

access state on the virtual processors that have been disabled. Similarly, deferred exceptions will not cause a disabled
virtual processor to be re-enabled for execution, at least until execution is re-enabled by the EVP instruction. The vir-
tual processor that executes the DVP, however, continues to be interruptible.

In an implementation, the ability of a virtual processor to execute instructions may also be under control external to
the physical core which contains the virtual processor. If disabled by DVP, a virtual processor must not resume fetch
in response to the assertion of this external signal to enable fetch. Conversely, if fetch is disabled by such external
control, then execution of EVP will not cause fetch to resume at a target virtual processor for which the control is
deasserted.

This instruction never executes speculatively. It must be the oldest unretired instruction to take effect.

This instruction is only available in Release 6 implementations. For implementations that do not support multi-
threading (Config5VP=0), this instruction must be treated as a NOP instruction.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt
0

00000
DVP

0001100101
POOL32AXf

111100

6 5 5 10 6

DVP Disable Virtual Processor

191 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

In implementations prior to Release 6 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

The pseudo-code below assumes that the DVP is executed by virtual processor 0, while the target virtual processor is
numbered ‘n’, where n is each of all remaining virtual processors.

if (VPControlDIS = 0)

// Pseudo-code in italics provides recommended action wrt other VPs
disable_fetch(VPn) {

if PAUSE(VPn) retires prior or at disable event
then VPn execution is not resumed if LLbit is cleared prior to EVP

}
disable_interrupt(VPn) {

if WAIT(VPn) retires prior or at disable event
then interrupts are ignored by VPn until EVP

}
// DVP0 not retired until instructions for VPn completed
while (VPn outstanding instruction)

DVP0 unretired
endwhile

endif

data  VPControl
GPR[rt]  data
VPControlDIS  1

Exceptions:

Coprocessor Unusable
Reserved Instruction (pre-Release 6 implementations)

Programming Notes:

DVP may disable execution in the target virtual processor regardless of the operating mode - kernel, supervisor, user.
Kernel software may also be in a critical region, or in a high-priority interrupt handler when the disable occurs. Since
the instruction is itself privileged, such events are considered acceptable.

Before executing an EVP in a DVP/EVP pair, software should first read VPControlDIS, returned by DVP, to deter-
mine whether the virtual processors are already disabled. If so, the DVP/EVP sequence should be abandoned. This
step allows software to safely nest DVP/EVP pairs.

Privileged software may use DVP/EVP to disable virtual processors on a core, such as for the purpose of doing a
cache flush without interference from other processes in a system with multiple virtual processors or physical cores.

DVP (and EVP) may be used in other cases such as for power-savings or changing state that is applicable to all virtual
processors in a core, such as virtual processor scheduling priority, as described below:

ll t0 0(a0)
dvp // disable all other virtual processors
pause // wait for LLbit to clear
evp // enable all othe virtual processors

DVP IDisable Virtual Processor

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 192

ll t0 0(a0)
dvp // disable all other virtual processors
<change core-wide state>
evp // enable all othe virtual processors

EHB Execution Hazard Barrier

193 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: EHB microMIPS

Purpose: Execution Hazard Barrier

To stop instruction execution until all execution hazards have been cleared.

Description:

EHB is used to denote execution hazard barrier. The actual instruction is interpreted by the hardware as SLL r0, r0, 3.

This instruction alters the instruction issue behavior on a pipelined processor by stopping execution until all execu-
tion hazards have been cleared. Other than those that might be created as a consequence of setting StatusCU0, there

are no execution hazards visible to an unprivileged program running in User Mode. All execution hazards created by
previous instructions are cleared for instructions executed immediately following the EHB. The EHB instruction does
not clear instruction hazards—such hazards are cleared by the JALR.HB, JR.HB, and ERET instructions.

Restrictions:

None

Operation:

ClearExecutionHazards()

Exceptions:

None

Programming Notes:

In Release 2 implementations, this instruction resolves all execution hazards. On a superscalar processor, EHB alters
the instruction issue behavior in a manner identical to SSNOP. For backward compatibility with Release 1 implemen-
tations, the last of a sequence of SSNOPs can be replaced by an EHB. In Release 1 implementations, the EHB will be
treated as an SSNOP, thereby preserving the semantics of the sequence. In Release 2 implementations, replacing the
final SSNOP with an EHB should have no performance effect because a properly sized sequence of SSNOPs will
have already cleared the hazard. As EHB becomes the standard in MIPS implementations, the previous SSNOPs can
be removed, leaving only the EHB.

31 26 25 21 20 16 15 11 10 6 5 0

POOL32A
000000

0
00000

0
00000

3
00011

0
00000

SLL32
000000

6 5 5 5 5 6

EI IEnable Interrupts

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 194

Format: EI microMIPS
EI rs microMIPS

Purpose: Enable Interrupts

To return the previous value of the Status register and enable interrupts. If EI is specified without an argument, GPR
r0 is implied, which discards the previous value of the Status register.

Description: GPR[rt]  Status; StatusIE  1

The current value of the Status register is loaded into general register rt. The Interrupt Enable (IE) bit in the Status
register is then set.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

data  Status
GPR[rs]  data
StatusIE  1

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR, set-
ting the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the EI
instruction cannot be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

0
00000

rs
EI

0101011101
POOL32AXf

111100

6 5 5 10 6

ERET IException Return

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 195

Format: ERET microMIPS

Purpose: Exception Return

To return from interrupt, exception, or error trap.

Description:

ERET clears execution and instruction hazards, conditionally restores SRSCtlCSS from SRSCtlPSS in a Release 2

implementation, and returns to the interrupted instruction at the completion of interrupt, exception, or error process-
ing. ERET does not execute the next instruction (that is, it has no delay slot).

Restrictions:

Pre-Release 6: The operation of the processor is UNDEFINED if an ERET is executed in the delay slot of a branch
or jump instruction. In Release 6, in the absence of delay/forbidden slots, this restriction does not apply.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

ERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the ERET returns.

In a Release 2 implementation, ERET does not restore SRSCtlCSS from SRSCtlPSS if StatusBEV = 1, or if StatusERL

= 1 because any exception that sets StatusERL to 1 (Reset, Soft Reset, NMI, or cache error) does not save SRSCtlCSS

in SRSCtlPSS. If software sets StatusERL to 1, it must be aware of the operation of an ERET that may be subse-

quently executed.

Operation:

if StatusERL = 1 then
temp  ErrorEPC
StatusERL  0

else
temp  EPC
StatusEXL  0
if (ArchitectureRevision() ≥ 2) and (SRSCtlHSS  0) and (StatusBEV = 0) then

SRSCtlCSS  SRSCtlPSS
endif

endif
if IsMIPS16Implemented() | (Config3ISA  0) then

PC  temp31..1 || 0
ISAMode  temp0

else
PC  temp

endif
LLbit  0
ClearHazards()

Exceptions:
Coprocessor Unusable Exception

31 26 25 16 15 6 5 0

POOL32A
000000

0
0000000000

ERET
1111001101

POOL32AXf
111100

6 10 10 6

ERETNC IException Return No Clear

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 196

Format: ERETNC microMIPS Release 5

Purpose: Exception Return No Clear

To return from interrupt, exception, or error trap without clearing the LLbit.

Description:

ERETNC clears execution and instruction hazards, conditionally restores SRSCtlCSS from SRSCtlPSS when imple-

mented, and returns to the interrupted instruction at the completion of interrupt, exception, or error processing.
ERETNC does not execute the next instruction (i.e., it has no delay slot).

ERETNC is identical to ERET except that an ERETNC will not clear the LLbit that is set by execution of an LL
instruction, and thus when placed between an LL and SC sequence, will never cause the SC to fail.

An ERET must continue to be used by default in interrupt and exception processing handlers. The handler may have
accessed a synchronizable block of memory common to code that is atomically accessing the memory, and where the
code caused the exception or was interrupted. Similarly, a process context-swap must also continue to use an ERET in
order to avoid a possible false success on execution of SC in the restored context.

Multiprocessor systems with non-coherent cores (i.e., without hardware coherence snooping) should also continue to
use ERET, because it is the responsibility of software to maintain data coherence in the system.

An ERETNC is useful in cases where interrupt/exception handlers and kernel code involved in a process context-
swap can guarantee no interference in accessing synchronizable memory across different contexts. ERETNC can also
be used in an OS-level debugger to single-step through code for debug purposes, avoiding the false clearing of the
LLbit and thus failure of an LL and SC sequence in single-stepped code.

Software can detect the presence of ERETNC by reading Config5LLB.

Restrictions:

ERETNC implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes. (For Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream.) The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction in the PC to which the ERETNC returns.

Operation:

if StatusERL = 1 then
temp  ErrorEPC
StatusERL  0

else
temp  EPC
StatusEXL  0
if (ArchitectureRevision() ≥ 2) and (SRSCtlHSS  0) and (StatusBEV = 0) then

SRSCtlCSS  SRSCtlPSS
endif

endif
if IsMIPS16Implemented() | (Config3ISA  0) then

PC  temp31..1 || 0
ISAMode  temp0

else

31 26 25 16 15 6 5 0

POOL32A
000000

0
000000000

1
ERET

1111001101
POOL32AXf

111100

6 9 1 10 6

ERETNC IException Return No Clear

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 197

PC  temp
endif
ClearHazards()

Exceptions:
Coprocessor Unusable Exception

EXT IExtract Bit Field

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 199

Exceptions:

Reserved Instruction

EXT Extract Bit Field

200 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

EVP IEnable Virtual Processor

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 201

Format: EVP rt microMIPS Release 6

Purpose: Enable Virtual Processor

To enable all virtual processors in a physical core other than the virtual processor that issued the instruction.

Description: GPR[rt]  VPControl ; VPControlDIS  0

Enabling a virtual processor means that instruction fetch is resumed.

After all other virtual processors have been enabled, VPControlDIS is cleared. Prior to modification, if rt is non-
zero, VPControl is written to GPR[rt].If EVP is specified without rt, then rt must be 0.

See the DVP instruction to understand the application of EVP in the context of WAIT/PAUSE/external-control
(“DVP” on page 190).

The execution of a DVP must be followed by the execution of an EVP. The execution of an EVP causes execution to
resume immediately, where applicable, on all other virtual processors, as if the DVP had not been executed, that is,
execution is completely restorable after the EVP. On the other hand, if an event occurs in between the DVP and EVP
that renders state of the virtual processor UNPREDICTABLE (such as power-gating), then the effect of EVP is
UNPREDICTABLE.

EVP may only take effect if VPControlDIS=1. Otherwise it is treated as a NOP

This instruction never executes speculatively. It must be the oldest unretired instruction to take effect.

This instruction is only available in Release 6 implementations. For implementations that do not support multi-
threading (Config5VP=0), this instruction must be treated as a NOP instruction.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 6 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

The pseudo-code below assumes that the EVP is executed by virtual processor 0, while the target virtual processor is
numbered ‘n’, where n is each of all remaining virtual processors.

 if (VPControlDIS = 1)

// Pseudo-code in italics provides recommended action wrt other VPs
enable_fetch(VPn) {

if PAUSE(VPn) retires prior or at disable event
then VPn execution is not resumed if LLbit is cleared prior to EVP

}
enable_interrupt(VPn) {

if WAIT(VPn) retires prior or at disable event
then interrupts are ignored by VPn until EVP

}

endif

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt
0

00000
EVP

0011100101
POOL32AXf

111100

6 5 5 10 6

EVP Enable Virtual Processor

202 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

data  VPControl
GPR[rt]  data
VPControlDIS  0

Exceptions:

Coprocessor Unusable
Reserved Instruction (pre-Release 6 implementations)

Programming Notes:

Before executing an EVP in a DVP/EVP pair, software should first read VPControlDIS, returned by DVP, to deter-
mine whether the virtual processors are already disabled. If so, the DVP/EVP sequence should be abandoned. This
step allows software to safely nest DVP/EVP pairs.

Privileged software may use DVP/EVP to disable virtual processors on a core, such as for the purpose of doing a
cache flush without interference from other processes in a system with multiple virtual processors or physical cores.

DVP (and EVP) may be used in other cases such as for power-savings or changing state that is applicable to all virtual
processors in a core, such as virtual processor scheduling priority, as described below:

ll t0 0(a0)
dvp // disable all other virtual processors
pause // wait for LLbit to clear
evp // enable all othe virtual processors

ll t0 0(a0)
dvp // disable all other virtual processors
<change core-wide state>
evp // enable all othe virtual processors

FLOOR.L.fmt IFloating Point Floor Convert to Long Fixed Point

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 203

Format: FLOOR.L.fmt
FLOOR.L.S ft, fs microMIPS
FLOOR.L.D ft, fs microMIPS

Purpose: Floating Point Floor Convert to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding down

Description: FPR[ft]  convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward 
(rounding mode 3). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRNAN2008=0, the default result is

263–1. On cores with FCSRNAN2008=1, the default result is:

• 0 when the input value is NaN

• 263–1 when the input value is + or rounds to a number larger than 263–1

• -263–1 when the input value is – or rounds to a number smaller than -263–1

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and ft for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 22 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
FLOOR.L
00001100

POOL32FXf
111011

6 5 5 1 1 8 6

FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point

204 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: FLOOR.W.fmt
FLOOR.W.S ft, fs microMIPS
FLOOR.W.D ft, fs microMIPS

Purpose: Floating Point Floor Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding down

Description: FPR[ft]  convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded toward –
(rounding mode 3). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRNAN2008=0, the default result is

231–1. On cores with FCSRNAN2008=1, the default result is:

• 0 when the input value is NaN

• 231–1 when the input value is + or rounds to a number larger than 231–1

• -231–1 when the input value is – or rounds to a number smaller than -231–1

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and ft for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 22 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
FLOOR.W
00101100

POOL32FXf
111011

6 5 5 1 1 8 6

GINVI IGlobal Invalidate Instruction Cache

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 205

Copyright © 2016 MIPS Technologies Inc. All rights reserved.

Format: GINVI rs microMIPS Release 6

Purpose: Global Invalidate Instruction Cache

In a multi-processor system, fully invalidate all remote primary instruction-caches, or a specified single cache. The
local primary instruction cache is also fully invalidated in the case where all the remote caches are to be invalidated.

Description: Invalidate_All_Primary_Instruction_Caches(null or rs)

Fully invalidate all remote primary instruction caches, or a specified single cache, whether local or remote. The local
primary instruction cache is also fully invalidated in the case where all remote caches are to be invalidated.

If rs field of the opcode is 0, then all caches are to be invalidated. ‘rs’ should be specified as 0 in the assembly syntax
for this case. If rs field of the opcode is not 0, then a single cache that is specified by an implementation dependent
number of lower bits of GPR[rs] is invalidated, which may be the local cache itself.

Software based invalidation of the primary instruction cache is required in a system if coherency of the cache is not
maintained in hardware. While typically limited to the primary cache, the scope of the invalidation within a processor
is however implementation dependent - it should apply to all instruction caches within the cache hierarchy that
required software coherence maintenance.

In legacy systems, it is software’s responsibility to keep the instruction cache state consistent through SYNCI instruc-
tions. This instruction provides a method for bulk invalidating the instruction caches in lieu of SYNCI.

The instruction’s action is considered complete when the both the local and remote cache invalidations are complete,
that is, the data in the cache is no longer available to the related instruction stream. Whether these invalidations are
complete can only be determined by the completion of a SYNC (stype=0x14) that follows the invalidate instruc-
tion(s). With the completion of the SYNC operation, all global invalidations preceding the SYNC in the program are
considered globally visible.

Whether the SYNC(stype=0x14) or the global invalidate itself cause synchronization of the instruction stream to new
state/context is implementation dependent.

A processor may send a global invalidate instruction remotely only when any preceding global invalidate for the pro-
gram has reached a global ordering point.

The GINVI has no instruction or execution hazard barrier semantics in itself.

If the implementation allows a cache line to be locked, i.e., not replaceable during a fill, GINVI will not invalidate the
line. A cache line can be locked through the optional CACHE “Fetch and Lock” instruction.

See Programming Notes for programming constraints.

Restrictions:

If an implementation does not support the instruction, a Reserved Instruction exception is caused.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In a single processor SOC, this instruction acts on the local instruction cache only.

Operation:

Local:
if (Config5GI ≠ 2’b1x)

31 26 25 21 20 16 15 13 12 11 10 6 5 0

POOL32A
000000

00000 rs 011
GINVI

00
00101

POOL32AXf
111100

6 5 5 3 2 5 6

GINVI Global Invalidate Instruction Cache

206 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Copyright © 2016 MIPS Technologies Inc. All rights reserved.

SignalException(ReservedInstruction) // if not implemented
break

endif
if IsCoprocessorEnabled(0) then

// Fully invalidate local instruction cache, if selected.
// Send invalidation message to other cores, if required.

else
SignalException(CoprocessorUnusable, 0)

endif

Remote:
// Fully invalidate remote instruction cache.

Exceptions:

Reserved Instruction, Coprocessor Unusable

Programming Notes:

For the local processor, the instruction stream is synchronized by an instruction hazard barrier such as JR.HB.

The instruction stream in the remote processor is synchronized with respect to the execution of GINVI once the
SYNC operation following GINVI completes.

The following sequence is recommended for use of GINVI.

ginvi /* fully-invalidate all caches*/
sync 0x14 /* Enforce completion - all instruction streams synchronized. */
jr.hb ra /* Clear instruction hazards*/

Implementation Notes:

None.

GINVT IGlobal Invalidate TLB

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 207

Copyright © 2016 MIPS Technologies Inc. All rights reserved.

Format: GINVT rs, type microMIPS Release 6

Purpose: Global Invalidate TLB

In a multi-processor system, invalidate translations of remote TLBs and local TLB.

Description: Invalidate_TLB(GPR[rs], MemoryMapID)

Invalidate a TLB in multiple ways - entire TLB, by Virtual Address and MemoryMapID, by MemoryMapID or Vir-
tual Address. The Virtual Address is obtained from GPR[rs]. The MemoryMapID is derived from CP0
MemoryMapID. The virtual address is associated with a specific Memory Map identified by MemoryMapID.

The virtual address within GPR[rs] is aligned to twice the size of the minimum page size of 4KB i.e., it is equivalent
to EntryHiVPN2: bit 13 of the virtual address is aligned to bit 13 of GPR[rs]. If the virtual address is not required,
such as in the case of invalidate All or by MemoryMapID, then ‘rs’ should be specified as 0 in the assembly syntax
but is otherwise ignored.

The MemoryMapID is a replacement for EntryHiASID. The MemoryMapID is an implementation-dependent num-
ber of bits that must be larger than the existing EntryHiASID (10-bits including EntryHiASIDX). The purpose of
a larger tag is to be able to uniquely identify processes in the system. A 16-bit MemoryMapID for example will iden-
tify 64K Memory Maps, while the current 8-bit ASID only identifies 256, and is thus subject to frequent recycling.
An implementation with MemoryMapID is designed to be backward compatible with software that uses EntryHiA-
SID. See CP0 MemoryMapID.

Table 5.1 specifies the different types of invalidates supported as a function of the “type” field of the instruction.

With reference to Table 5.1, if the Global bit in a TLB entry is set, then MemoryMapID comparison is ignored by the
operation.

The instruction is considered complete when the local and remote invalidations are complete. Whether these invalida-
tions are complete can only be determined by the completion of a SYNC (stype=0x14) that follows the invalidate
instruction(s). With the completion of the SYNC operation, all invalidations of this type preceding the SYNC in the
program are considered globally visible.

Whether the SYNC(stype=0x14) or the global invalidate itself cause synchronization of the instruction stream to new
state/context is implementation dependent.

A GINVT based invalidation is complete, whether local or remote, when the following has occurred: the TLB is
invalidated of matching entries, and all instructions in the instruction stream after the point of completion can only
access the new context.

31 26 25 21 20 16 15 13 12 11 10 9 8 6 5 0

POOL32A
000000

00000 rs 011
GINVT

10
type 101

POOL32AXf
111100

6 5 5 3 2 2 3 6

Table 5.1 Types of Global TLB Invalidates

Encoding of
“type” field Definition

00 Invalidate entire TLB

01 Invalidate by VA (MemoryMapID is globalized)

10 Invalidate by MemoryMapID

11 Invalidate by VA and MemoryMapID.

GINVT Global Invalidate TLB

208 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Copyright © 2016 MIPS Technologies Inc. All rights reserved.

A processor may send a global invalidate instruction remotely only when any preceding global invalidate for the pro-
gram has reached a global ordering point.

GINVT has no instruction or execution hazard barrier semantics in itself.

A GINVT operation that is specified to invalidate all entries will only invalidate non-wired entries. Other GINVT
operations will invalidate wired entries on a match.

Restrictions:

If an implementation does not support the instruction, or use of MemoryMapID is disabled, then a Reserved Instruc-
tion exception is caused.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable exception is signaled.

In a single processor SOC, this instruction acts on the local TLB only.

Operation:

Local:
if (Config5GI ≠ 2’b11) then

SignalException(ReservedInstruction, 0)
break

endif
if IsCoprocessorEnabled(0) then

if (Config5MI = 1)
// generate control from instruction encoding.
invAll  (ginvt[type] = 0b00)
invVA  (ginvt[type] = 0b01)
invMMid  (ginvt[type] = 0b10)
invVAMMid  (ginvt[type] = 0b11)
// generate data; how data is driven when unsupported is imp-dep.
// Format of GPR[rs] equals CP0 EntryHi.
InvMsgVPN2  GPR[rs]31..13
InvMsgMMid  MemoryMapID // imp-dep # of bits
// Broadcast invalidation message to other cores.
InvalidateTLB(InvMsgVPN2,InvMsgMMid,invAll,invVAMMid,invMMid,invVA)

else // if not implemented, MMid disabled
SignalException(ReservedInstruction)

endif
else

SignalException(CoprocessorUnusable, 0)
endif

Remote:
// Repeat in all remote TLBs
InvalidateTLB(InvMsgVPN2,InvMsgMMid,invAll,invVAMMid,invMMid,invVA)

function InvalidateTLB(InvMsgVPN2,InvMsgMMid,invAll,invVAMMid,invMMid,invVA)
// "Mask" is equivalent to CP0 PageMask.
// "G" is equivalent to the Global bit in CP0 EntryLo0/1.
for i in 0..TLBEntries-1

// Wired entries are excluded.
VAMatch  ((TLB[i]VPN2 and not TLB[i]Mask) = (InvMsgVPN2 and not

TLB[i]Mask))
MMidMatch  (TLB[i]MMid = InvMsgMMid)
if ((invAll and (i>CP0.Wired.Wired)) or // do not invalidate Wired
(VAMatch and ((TLB[i]G = 1) or MMidMatch) and invVAMMid) or
(VAMatch and invVA) or

GINVT IGlobal Invalidate TLB

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 209

Copyright © 2016 MIPS Technologies Inc. All rights reserved.

(MMidMatch and (TLB[i]G ≠ 1) and invMMid)) then
TLB[i]HW_Valid  0 // where HW_Valid is the entry valid bit

endif
endfor

endfunction

Exceptions:

Reserved Instruction, Coprocessor Unusable

Programming Notes:

Since CP0 MemoryMapID sources the value of MemoryMapID of the currently running process, the kernel must save/
restore MemoryMapID appropriately before it modifies it for the invalidation operation. Between the save and restore,
it must utilize unmapped addresses.

An MTC0 that modifies MemoryMapID must be followed by an EHB to make this value visible to a subsequent
GINVT. Where multiple GINVTs are used prior to a single SYNC (stype=0x14), each may use a different value of
MemoryMapID.

For the local processor, the instruction stream is synchronized to the new translation context (where applicable) by an
instruction hazard barrier such as JR.HB.

The instruction stream in the remote processor is synchronized with respect to the execution of GINVT once the
SYNC operation completes.

The following sequence is recommended for use of GINVT.

mtc0 0, C0_PWCtl /* disable Page Walker,where applicable;implementation-dependent*/
ehb /* Clear execution hazards to prevent speculative walks*/
ginvt r1, type /* Invalidate TLB(s) */
sync 0x14 /* Enforce completion */
jr.hb ra /* Clear instruction hazards */

Whether the hardware page table walker, if implemented, needs to be disabled as shown above, is implementation
dependent. It is recommended that hardware take the steps to locally disable the hardware page table walker to main-
tain TLB consistency, as it would for remote TLBs.

Software must take into account a system that may have potentially varying widths of MemoryMapID . While not rec-
ommended, different processors may have different implemented or programmed widths. Further, the interface
between processors may support yet another width. If this is the case, then software responsible for global invalidates
should be run on the processor with maximum width. Software must zero-fill any bits that are unused by a target.
Software should also be able to rely on the implementation zero-filling bits where widths increase across any inter-
face.

If an intermediate interface between source and target truncates the width of MemoryMapID, then software could
address this limitation through various means: It could restrict the use of MemoryMapID to the interface width, it
could program MemoryMapID with the expectation that over-invalidation may occur, or it should default to legacy
means of invalidating the caches to prevent unreliable system behavior.

INS IInsert Bit Field

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 211

The operation is UNPREDICTABLE if lsb > msb.

Operation:

if lsb > msb) then
UNPREDICTABLE

endif
GPR[rt]  GPR[rt]31..msb+1 || GPR[rs]msb-lsb..0 || GPR[rt]lsb-1..0

Exceptions:

Reserved Instruction

JALRC Jump and Link Register Compact

212 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: JALRC rs (rt = 31 implied) microMIPS Release 6
JALRC rt, rs microMIPS Release 6

Purpose: Jump and Link Register Compact

To execute a procedure call to an instruction address in a register

Description: GPR[rt]  return_addr, PC  GPR[rs]

Place the return address link in GPR rt. The return link is the address of the first instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

Restrictions Related to Multiple Instruction Sets: This instruction can change the active instruction set, if more than
one instruction set is implemented.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS and if the ISAMode bit of the target is MIPS (bit 0 of GPR rs is 0) and
address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS ISA, if the intended target ISAMode is MIPS (bit 0 of GPR rs is zero), an
Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump; that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

Release 6 maps JR and JR.HB to JALRC and JALRC.HB with rt = 0:

Release 6 assemblers should accept the JR and JR.HB mnemonics, mapping them to the Release 6 instruction encod-
ings.

Operation:

temp  GPR[rs]

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
JALRC

0000111100
POOL32AXf

111100

6 5 5 10 6

JALRC IJump and Link Register Compact

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 213

GPR[rt]  PC + 4
if (Config3ISA = 1) then

PC  temp
else

PC  tempGPRLEN-1..1 || 0
ISAMode  temp0

endif

Exceptions:

None

Programming Notes:

This jump-and-link register instruction can select a register for the return link; other link instructions use GPR 31.
The default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

JALRC.HB Jump and Link Register Compact with Hazard Barrier

214 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: JALRC.HB rs (rt = 31 implied) microMIPS Release 6
JALRC.HB rt, rs microMIPS Release 6

Purpose: Jump and Link Register Compact with Hazard Barrier

To execute a procedure call to an instruction address in a register and clear all execution and instruction hazards

Description: GPR[rt]  return_addr, PC  GPR[rs], clear execution and instruction hazards

Place the return address link in GPR rt. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

JALRC.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor
0 state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolv-
ing instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JALRC.HB instruction jumps. An equivalent
barrier is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0
is enabled, whereas JALRC.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the instruction hazard has been cleared with JALRC.HB, JALRSC.HB,
JR.HB, ERET, or DERET. Further, the operation is UNPREDICTABLE if the mapping of the current instruction
stream is modified.

Restrictions Related to Multiple Instruction Sets: This instruction can change the active instruction set, if more than
one instruction set is implemented.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS and if the ISAMode bit of the target address is MIPS (bit 0 of GPR rs is 0)
and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

For processors that do not implement MIPS ISA, if the intended target ISAMode is MIPS (bit 0 of GPR rs is zero), an

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
JALRC.HB
0001111100

POOL32AXf
111100

6 5 5 10 6

JALRC.HB IJump and Link Register Compact with Hazard Barrier

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 215

Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump; that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

Release 6 maps JR and JR.HB to JALRC and JALRC.HB with rt = 0:

Release 6 assemblers should accept the JR and JR.HB mnemonics, mapping them to the Release 6 instruction encod-
ings.

Operation:

temp GPR[rs]
GPR[rt]  PC + 4

if (Config3ISA = 1) then
PC  temp

else
PC  tempGPRLEN-1..1 || 0
ISAMode  temp0

endif
ClearHazards()

Exceptions:

None

Programming Notes:

This branch-and-link instruction can select a register for the return link; other link instructions use GPR 31. The
default register for GPR rt, if omitted in the assembly language instruction, is GPR 31.

Release 6 JR.HB rs is implemented as JALRC.HB r0,rs. For example, as JALRC.HB with the destination set
to the zero register, r0.

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALRC.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*
 * Code used to modify ASID and call a routine with the new
 * mapping established.
 *
 * a0 = New ASID to establish
 * a1 = Address of the routine to call
 */

mfc0 v0, C0_EntryHi /* Read current ASID */
li v1, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, v1 /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, C0_EntryHi /* Rewrite EntryHi with new ASID */
jalrc.hb a1 /* Call routine, clearing the hazard */

JALRC.HB Jump and Link Register Compact with Hazard Barrier

216 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

JIALC IJump Indexed and Link, Compact

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 217

Format: JIALC rt, offset microMIPS32 Release 6

Purpose: Jump Indexed and Link, Compact

Description: GPR[31]  PC+4, PC  (GPR[rt] + sign_extend(offset))

The jump target is formed by sign extending the offset field of the instruction and adding it to the contents of GPR
rt.

The offset is NOT shifted, that is, each bit of the offset is added to the corresponding bit of the GPR.

Places the return address link in GPR 31. The return link is the address of the following instruction, where execution
continues after a procedure call returns. Compact jumps do not have delay slots. The instruction after the jump is
NOT executed when the jump is executed.

For processors that do not implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that implement MIPS and if the ISAMode bit of the target is MIPS (bit 0 of GPR rs is 0) and address
bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

For processors that do not implement MIPS ISA, if the intended target ISAMode is MIPS (bit 0 of GPR rs is zero), an
Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Exceptions:

None

Operation:

temp  GPR[rt] + sign_extend(offset)
GPR[31]  PC + 4
if (Config3ISA = 1) then

31 26 25 21 20 16 15 0

POP50
101000

JIALC
00000

rt offset

6 5 5 16

JIALC Jump Indexed and Link, Compact

218 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

PC  temp
else

PC  (tempGPRLEN-1..1 || 0)
ISAMode  temp0

endif

Programming Notes:

JIALC does NOT shift the offset before adding it the register. This can be used to eliminate tags in the least signifi-
cant bits that would otherwise produce misalignment. It also allows JIALC to be used as a substitute for the JALX
instruction, removed in Release 6, where the lower bits of the target PC, formed by the addition of GPR[rt] and the
unshifted offset, specify the target ISAmode.

JIC IJump Indexed, Compact

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 219

Format: JIC rt, offset microMIPS32 Release 6

Purpose: Jump Indexed, Compact

Description: PC  (GPR[rt] + sign_extend(offset))

The branch target is formed by sign extending the offset field of the instruction and adding it to the contents of GPR
rt.

The offset is NOT shifted, that is, each bit of the offset is added to the corresponding bit of the GPR.

For processors that do not implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS32 ISA:

• Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Compact jumps do not have a delay slot. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that implement MIPS and if the ISAMode bit of the target is MIPS (bit 0 of GPR rs is 0) and address
bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

For processors that do not implement MIPS ISA, if the intended target ISAMode is MIPS (bit 0 of GPR rs is zero), an
Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Exceptions:

None

Operation:

temp  GPR[rt] + sign_extend(offset)
if (Config3ISA = 1) then

PC  temp
else

PC  (tempGPRLEN-1..1 || 0)
ISAMode  temp0

31 26 25 21 20 16 15 0

POP40
100000

JIC
00000

rt offset

6 5 5 16

JIC Jump Indexed, Compact

220 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

endif

Programming Notes:

JIC does NOT shift the offset before adding it the register. This can be used to eliminate tags in the least significant
bits that would otherwise produce misalignment. It also allows JIALC to be used as a substitute for the JALX instruc-
tion, removed in Release 6, where the lower bits of the target PC, formed by the addition of GPR[rt] and the unshifted
offset, specify the target ISAmode.

LB ILoad Byte

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 221

Format: LB rt, offset(base) microMIPS

Purpose: Load Byte

To load a byte from memory as a signed value.

Description: GPR[rt]  memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
memword  LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte  vAddr1..0 xor BigEndianCPU

2

GPR[rt]  sign_extend(memword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LB32
000111

rt base offset

6 5 5 16

LBE Load Byte EVA

222 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: LBE rt, offset(base) microMIPS

Purpose: Load Byte EVA

To load a byte as a signed value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt]  memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The LBE instruction functions the same as the LB instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode and executing in kernel mode. Memory segments using UUSK or MUSK
access modes are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional informa-
tion.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
memword  LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte  vAddr1..0 xor BigEndianCPU

2

GPR[rt]  sign_extend(memword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid

Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
LD-EVA

0110
LBE
100

offset

6 5 5 4 3 9

LBU ILoad Byte Unsigned

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 223

Format: LBU rt, offset(base) microMIPS

Purpose: Load Byte Unsigned

To load a byte from memory as an unsigned value

Description: GPR[rt]  memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
memword  LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte  vAddr1..0 xor BigEndianCPU

2

GPR[rt]  zero_extend(memword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LBU32
000101

rt base offset

6 5 5 16

LBUE Load Byte Unsigned EVA

224 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: LBUE rt, offset(base) microMIPS

Purpose: Load Byte Unsigned EVA

To load a byte as an unsigned value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt]  memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The LBUE instruction functions the same as the LBU instruction, except that address translation is performed using
the user mode virtual address space mapping in the TLB when accessing an address within a memory segment con-
figured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
memword  LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte  vAddr1..0 xor BigEndianCPU

2

GPR[rt]  zero_extend(memword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
LD-EVA

0110
LBUE

000
offset

6 5 5 4 3 9

LDC1 ILoad Doubleword to Floating Point

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 225

Format: LDC1 ft, offset(base) microMIPS

Purpose: Load Doubleword to Floating Point

To load a doubleword from memory to an FPR.

Description: FPR[ft]  memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR ft. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LDC132
101111

ft base offset

6 5 5 16

LDC2 Load Doubleword to Coprocessor 2

226 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: LDC2 rt, offset(base) microMIPS

Purpose: Load Doubleword to Coprocessor 2

To load a doubleword from memory to a Coprocessor 2 register.

Description: CPR[2,rt,0]  memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in Coprocessor 2 register rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

Programming Notes:

Release 6 implements a 9-bit offset, whereas all release levels lower than Release 6 implement a 16-bit offset.

31 26 25 21 20 16 15 12 11 10 0

POOL32B
001000

rt base
LDC2
0010

0
0

offset

6 5 5 4 1 11

LH ILoad Halfword

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 227

Format: LH rt, offset(base) microMIPS

Purpose: Load Halfword

To load a halfword from memory as a signed value

Description: GPR[rt]  memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor (ReverseEndian || 0))
memword  LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte  vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt]  sign_extend(memword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

LH32
001111

rt base offset

6 5 5 16

LHE ILoad Halfword EVA

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 228

Format: LHE rt, offset(base) microMIPS

Purpose: Load Halfword EVA

To load a halfword as a signed value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt]  memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

The LHE instruction functions the same as the LH instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor (ReverseEndian || 0))
memword  LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte  vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt]  sign_extend(memword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

Watch, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
LD-EVA

0110
LHE
101

offset

6 5 5 4 3 9

LHU ILoad Halfword Unsigned

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 229

Format: LHU rt, offset(base) microMIPS

Purpose: Load Halfword Unsigned

To load a halfword from memory as an unsigned value

Description: GPR[rt]  memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor (ReverseEndian || 0))
memword  LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte  vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt]  zero_extend(memword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LHU32
001101

rt base offset

6 5 5 16

LHUE Load Halfword Unsigned EVA

230 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: LHUE rt, offset(base) microMIPS

Purpose: Load Halfword Unsigned EVA

To load a halfword as an unsigned value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt]  memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

The LHUE instruction functions the same as the LHU instruction, except that address translation is performed using
the user mode virtual address space mapping in the TLB when accessing an address within a memory segment con-
figured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor (ReverseEndian || 0))
memword  LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte  vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt]  zero_extend(memword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
LD-EVA

0110
LHUE

001
offset

6 5 5 4 3 9

LL ILoad Linked Word

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 231

Format: LL rt, offset(base) microMIPS

Purpose: Load Linked Word

To load a word from memory for an atomic read-modify-write

Description: GPR[rt]  memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 9-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Availability and Compatibility:

This instruction has been reallocated an opcode in Release 6.

Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:

vAddr  sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 0

2 then
SignalException(AddressError)

endif
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] memword
LLbit  1

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
LL32
0011

0
000

offset

6 5 5 5 3 9

LL ILoad Linked Word

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 232

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

Programming Notes:

Release 6 implements a 9-bit offset, whereas all release levels lower than Release 6 implement a 16-bit offset.

LLE ILoad Linked Word EVA

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 233

Format: LLE rt, offset(base) microMIPS

Purpose: Load Linked Word EVA

To load a word from a user mode virtual address when executing in kernel mode for an atomic read-modify-write

Description: GPR[rt]  memory[GPR[base] + offset]

The LLE and SCE instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations using user mode virtual addresses while executing in kernel mode.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 9-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LLE is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SCE instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LLE on one processor does not cause an action that, by itself, causes an SCE for the same block to fail on
another processor.

An execution of LLE does not have to be followed by execution of SCE; a program is free to abandon the RMW
sequence without attempting a write.

The LLE instruction functions the same as the LL instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Segmentation Control for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SCE instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr  sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 0

2 then
SignalException(AddressError)

endif
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt]  memword
LLbit  1

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
LD-EVA

0110
LLE
110

offset

6 5 5 4 3 9

LLE Load Linked Word EVA

234 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch, Coprocessor Unusable

Programming Notes:

LLWP ILoad Linked Word Paired

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 235

Format: LLWP rt, rd, (base) microMIPS Release 6

Purpose: Load Linked Word Paired

To load two words from memory for an atomic read-modify-write, writing a word each to two registers.

Description: GPR[rd]  memory[GPR[base]]63..32, GPR[rt]  memory[GPR[base]]31..0

The LLWP and SCWP instructions provide primitives to implement a paired word atomic read-modify-write (RMW)
operation at a synchronizable memory location.

The 64-bit paired word, as a concatenation of two words, at the memory location specified by the double-word
aligned effective address is read. The least significant word is written into GPR rt,and the most significant word is
written into GPR rd.

A paired word read or write occurs as a pair of word reads or writes that is double-word atomic.

The instruction has no offset. The effective address is equal to the contents of GPR base.

rd is intentionally positioned in a non-standard bit-range.

The execution of LLWP begins a RMW sequence on the current processor. There can be only one active RMW
sequence per processor. When an LLWP is executed it starts an active RMW sequence replacing any other sequence
that was active. The RMW sequence is completed by a subsequent SCWP instruction that either completes the RMW
sequence atomically and succeeds, or does not and fails.

Successful execution of the LLWP results in setting LLbit and writing CP0 LLAddr, where LLbit is the least-signif-
icant bit of LLAddr. LLAddr contains the data-type aligned address of the operation, in this case a double-word.

Executing LLWP on one processor does not cause an action that, by itself, causes a store conditional instruction type
for the same block to fail on another processor.

An execution of LLWP does not have to be followed by execution of SCWP; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The architecture optionally allows support for Load-Linked and Store-Conditional instruction types in a cacheless
processor. Support for cacheless operation is implementation dependent. In this case, LLAddr is optional.

Providing misaligned support is not a requirement for this instruction.

Availability and Compatibility

This instruction is introduced by Release 6. It is only present if Config5XNP=0.

Operation:

vAddr  GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)

31 26 25 21 20 16 15 12 11 9 8 4 3 0

POOL32C
011000

rt base
LLWP
0001

0
000

rd
0

0000

6 5 5 4 3 5 4

LLWP Load Linked Word Paired

236 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

// PAIREDWORD: two word data-type that is double-word atomic
memdoubleword  LoadMemory (CCA, PAIREDWORD, pAddr, vAddr, DATA)
GPR[rt]  memdoubleword31..0
GPR[rd]  memdoubleword63..32
LLAddr  pAddr // double-word aligned i.e., pAddr2..0 are 0, or not supported.
LLbit  1

Exceptions:

TLB Refill, TLB Invalid, Reserved Instruction, Address Error, Watch

Programming Notes:

An LLWP instruction for which the two destination registers are the same but non-zero is UNPREDICTABLE. An
LLWP with two zero destination registers followed by a SCWP can be used to accomplish a double-word atomic
write.

LLWPE ILoad Linked Word Paired EVA

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 237

Format: LLWPE rt, rd, (base) microMIPS Release 6

Purpose: Load Linked Word Paired EVA

To load two words from memory for an atomic read-modify-write, writing a word each to two registers. The load
occurs in kernel mode from user virtual address space.

Description: GPR[rd]  memory[GPR[base]]63..32, GPR[rt]  memory[GPR[base]]31..0

The LLWPE and SCWPE instructions provide primitives to implement a paired word atomic read-modify-write
(RMW) operation at a synchronizable memory location.

The 64-bit paired word at the memory location specified by the double-word aligned effective address is read. The
least significant word is written into GPR rt. The most significant word is written into GPR rd.

A paired word read or write occurs as a pair of word reads or writes that is double-word atomic.

The instruction has no offset. The effective address is equal to the contents of GPR base.

rd is intentionally positioned in a non-standard bit-range.

The execution of LLWPE begins a RMW sequence on the current processor. There can be only one active RMW
sequence per processor. When an LLWPE is executed it starts an active RMW sequence replacing any other sequence
that was active. The RMW sequence is completed by a subsequent SCWPE instruction that either completes the
RMW sequence atomically and succeeds, or does not and fails.

Successful execution of the LLWPE results in setting LLbit and writing CP0 LLAddr, where LLbit is the least-sig-
nificant bit of LLAddr. LLAddr contains the data-type aligned address of the operation, in this case a double-word
aligned address.

The LLWPE instruction functions the same as the LLWP instruction, except that address translation is performed
using the user mode virtual address space mapping in the TLB when accessing an address within a memory segment
configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also acces-
sible. Refer to Volume III, Segmentation Control for additional information.

Executing LLWPE on one processor does not cause an action that, by itself, causes a store conditional instruction
type for the same block to fail on another processor.

An execution of LLWPE does not have to be followed by execution of SCWPE; a program is free to abandon the
RMW sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The architecture optionally allows support for Load-Linked and Store-Conditional instruction types in a cacheless
processor. Support for cacheless operation is implementation dependent. In this case, LLAddr is optional.

Providing misaligned support is not a requirement for this instruction.

Availability and Compatibility

This instruction is introduced by Release 6. It is only present if Config5XNP=0 and Config5EVA=1.

31 26 25 21 20 16 15 12 11 9 8 4 3 0

POOL32C
011000

rt base
LD-EVA

0110
LLWPE

010
rd

0
0000

6 5 5 4 3 5 4

LLWPE Load Linked Word Paired EVA

238 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Operation:

vAddr  GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
// PAIREDWORD: two word data-type that is double-word atomic
memdoubleword  LoadMemory (CCA, PAIREDWORD, pAddr, vAddr, DATA)
GPR[rt]  memdoubleword31..0
GPR[rd]  memdoubleword63..32
LLAddr  pAddr // double-word aligned i.e., pAddr2..0 are 0, or not supported.
LLbit  1

Exceptions:

TLB Refill, TLB Invalid, Reserved Instruction, Address Error, Watch, Coprocessor Unusable.

Programming Notes:

An LLWPE instruction for which the two destination registers are the same but non-zero is UNPREDICTABLE. An
LLWPE with two zero destination registers followed by a SCWPE can be used to accomplish a double-word atomic
write.

LSA ILoad Scaled Address

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 239

Format: LSA
LSA rt, rs, rd, sa microMIPS32 Release 6

Purpose: Load Scaled Address

Description:

GPR[rd]  sign_extend.32((GPR[rs] << (sa+1)) + GPR[rt])

LSA adds two values derived from registers rs and rt, with a scaling shift on rs. The scaling shift is formed by
adding 1 to the 2-bit sa field, which is interpreted as unsigned. The scaling left shift varies from 1 to 5, corresponding
to multiplicative scaling values of 2, 4, 8, 16, bytes, or 16, 32, 64, or 128 bits.

Restrictions:

None

Availability and Compatibility:

LSA instruction is introduced by and required as of Release 6.

Operation

GPR[rd]  sign_extend.32(GPR[rs] << (sa+1) + GPR[rt])

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 8 6 5 0

POOL32A
000000

rt rs rd sa 000
LSA

001111

6 5 5 5 2 3 6

LUI Load Upper Immediate

240 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: LUI rt, immediate microMIPS, Assembly Idiom Release 6

Purpose: Load Upper Immediate

To load a constant into the upper half of a word

Description: GPR[rt]  immediate || 016

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is
placed into GPR rt.

Restrictions:

None.

Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:

GPR[rt]  immediate || 016

Exceptions:

None

Programming Notes:

In Release 6, LUI is an assembly idiom of AUI with rs=0.

31 26 25 21 20 16 15 0

AUI
000100

rt 00000 immediate

6 5 5 16

LW ILoad Word

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 241

Format: LW rt, offset(base) microMIPS

Purpose: Load Word

To load a word from memory as a signed value

Description: GPR[rt]  memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the con-
tents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

LW32
111111

rt base offset

6 5 5 16

LWC1 Load Word to Floating Point

242 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: LWC1 ft, offset(base) microMIPS

Purpose: Load Word to Floating Point

To load a word from memory to an FPR

Description: FPR[ft]  memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR ft. If FPRs are 64 bits wide, bits 63..32 of FPR ft become UNPREDICTABLE. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
StoreFPR(ft, UNINTERPRETED_WORD, memword)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 0

LWC132
100111

ft base offset

6 5 5 16

LWC2 ILoad Word to Coprocessor 2

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 243

Format: LWC2 rt, offset(base) microMIPS

Purpose: Load Word to Coprocessor 2

To load a word from memory to a COP2 register.

Description: CPR[2,rt,0]  memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of COP2 (Coprocessor 2) general register rt. The signed offset is added to the contents of
GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if +EffectiveAddress1..0 ≠ 0 (not word-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
CPR[2,rt,0]  memword

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

Programming Notes:

Release 6 implements an 11-bit offset, whereas all release levels lower than Release 6 implement a 16-bit offset.

31 26 25 21 20 16 15 12 11 0

POOL32B
001000

rt base
LWC2
0000

0
0

offset

6 5 5 4 1 11

LWE Load Word EVA

244 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: LWE rt, offset(base) microMIPS

Purpose: Load Word EVA

To load a word from user mode virtual address space when executing in kernel mode.

Description: GPR[rt]  memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 9-bit signed offset is added to the contents
of GPR base to form the effective address.

The LWE instruction functions the same as the LW instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt]  memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
LD-EVA

0110
LWE
111

offset

6 5 5 4 3 9

LWPC ILoad Word PC-relative

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 245

Format: LWPC rt, offset microMIPS32 Release 6

Purpose: Load Word PC-relative

To load a word from memory as a signed value, using a PC-relative address.

Description: GPR[rt]  memory[PC & ~0x3 + sign_extend(offset << 2)]

The offset is shifted left by 2 bits, sign-extended, and added to the address of the LWPC instruction.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt.

Restrictions:

LWPC is naturally aligned, by specification.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation

vAddr  (PC & ~0x3 + sign_extend(offset)<<2)
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt]  memword

Exceptions:

TLB Refill, TLB Invalid, TLB Read Inhibit, Bus Error, Address Error, Watch

Programming Note

The Release 6 PC-relative loads (LWPC) are considered data references.

For the purposes of watchpoints (provided by the CP0 WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data reference rather than an instruction reference. That is, the watchpoint
or breakpoint is triggered only if enabled for data references.

31 26 25 21 20 19 18 0

PCREL
011110

rt
LWPC

01
offset

6 5 2 19

MADDF.fmt MSUBF.fmt Floating Point Fused Multiply Add, Floating Point Fused Multiply Subtract

246 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: MADDF.fmt MSUBF.fmt
MADDF.S fd, fs, ft microMIPS32 Release 6
MADDF.D fd, fs, ft microMIPS32 Release 6
MSUBF.S fd, fs, ft microMIPS32 Release 6
MSUBF.D fd, fs, ft microMIPS32 Release 6

Purpose: Floating Point Fused Multiply Add, Floating Point Fused Multiply Subtract

MADDF.fmt: To perform a fused multiply-add of FP values.

MSUBF.fmt: To perform a fused multiply-subtract of FP values.

Description:

MADDF.fmt: FPR[fd]  FPR[fd] + (FPR[fs]  FPR[ft])

MSUBF.fmt: FPR[fd]  FPR[fd] - (FPR[fs]  FPR[ft])

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
is calculated to infinite precision. The product is added to the value in FPR fd. The result sum is calculated to infinite
precision, rounded according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result
are values in format fmt.

(For MSUBF fmt, the product is subtracted from the value in FPR fd.)

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

None

Availability and Compatibility:

MADDF.fmt and MSUBF.fmt are required in Release 6.

MADDF.fmt and MSUBF.fmt are not available in architectures pre-Release 6.

The fused multiply add instructions, MADDF.fmt and MSUBF fmt, replace pre-Release 6 instructions such as
MADD.fmt, MSUB.fmt, NMADD.fmt, and NMSUB.fmt. The replaced instructions were unfused multiply-add, with
an intermediate rounding.

Release 6 MSUBF fmt, fdfd-fsft, corresponds more closely to pre-Release 6 NMADD fmt, fdfr-fsft,
than to pre-Release 6 MSUB.fmt, fdfsft-fr.

FPU scalar MADDF fmt corresponds to MSA vector MADD.df.

FPU scalar MSUBF fmt corresponds to MSA vector MSUB.df.

Operation:

if not IsCoprocessorEnabled(1)
then SignalException(CoprocessorUnusable, 1) endif

if not IsFloatingPointImplemented(fmt))
then SignalException(ReservedInstruction) endif

31 26 25 21 20 16 15 11 10 9 8 0

POOL32F
010101

ft fs fd fmt
MADDF

110111000

POOL32F
010101

ft fs fd fmt
MSUBF

111111000

6 5 5 5 2 9

MADDF.fmt MSUBF.fmt IFloating Point Fused Multiply Add, Floating Point Fused Multiply Subtract

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 247

vfr  ValueFPR(fr, fmt)
vfs  ValueFPR(fs, fmt)
vfd  ValueFPR(fd, fmt)
MADDF.fmt: vinf  vfd  (vfs * vft)
MADDF.fmt: vinf  vfd - (vfs * vft)
StoreFPR(fd, fmt, vinf)

Special Considerations:

The fused multiply-add computation is performed in infinite precision, and signals Inexact, Overflow, or Underflow
if and only if the final result differs from the infinite precision result in the appropriate manner.

Like most FPU computational instructions, if the flush-subnormals-to-zero mode, FCSR.FS=1, then subnormals are
flushed before beginning the fused-multiply-add computation, and Inexact may be signaled.

I.e. Inexact may be signaled both by input flushing and/or by the fused-multiply-add: the conditions or ORed.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt Scalar Floating-Point Max/Min/maxNumMag/minNumMag

248 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: MAX.fmt MIN.fmt MAXA.fmt MINA.fmt
MAX.S fd,fs,ft microMIPS32 Release 6
MAX.D fd,fs,ft microMIPS32 Release 6
MAXA.S fd,fs,ft microMIPS32 Release 6
MAXA.D fd,fs,ft microMIPS32 Release 6
MIN.S fd,fs,ft microMIPS32 Release 6
MIN.D fd,fs,ft microMIPS32 Release 6
MINA.S fd,fs,ft microMIPS32 Release 6
MINA.D fd,fs,ft microMIPS32 Release 6

Purpose: Scalar Floating-Point Max/Min/maxNumMag/minNumMag

Scalar Floating-Point Maximum

Scalar Floating-Point Minimum

Scalar Floating-Point argument with Maximum Absolute Value

Scalar Floating-Point argument with Minimum Absolute Value

Description:

MAX.fmt: FPR[fd] maxNum(FPR[fs],FPR[ft])
MIN.fmt: FPR[fd] minNum(FPR[fs],FPR[ft])
MAXA.fmt: FPR[fd] maxNumMag(FPR[fs],FPR[ft])
MINA.fmt: FPR[fd] minNumMag(FPR[fs],FPR[ft])

MAX.fmt writes the maximum value of the inputs fs and ft to the destination fd.

MIN.fmt writes the minimum value of the inputs fs and ft to the destination fd.

MAXA fmt takes input arguments fs and ft and writes the argument with the maximum absolute value to the desti-
nation fd.

MINA fmt takes input arguments fs and ft and writes the argument with the minimum absolute value to the desti-
nation fd.

The instructions MAX.fmt/MIN fmt/MAXA fmt/MINA.fmt correspond to the IEEE 754-2008 operations maxNum/

31 26 25 21 20 16 15 11 10 9 8 0

POOL32F
010101

ft fs fd fmt
MAX

000001011

6 5 5 5 2 9

31 26 25 21 20 16 15 11 10 9 8 0

POOL32F
010101

ft fs fd fmt
MAXA

000101011

6 5 5 5 2 9

31 26 25 21 20 16 15 11 10 9 8 0

POOL32F
010101

ft fs fd fmt
MIN

000000011

6 5 5 5 2 9

31 26 25 21 20 16 15 11 10 9 8 0

POOL32F
010101

ft fs fd fmt
MINA

000100011

6 5 5 5 2 9

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt IScalar Floating-Point Max/Min/maxNumMag/minNumMag

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 249

minNum/maxNumMag/minNumMag.

• MAX.fmt corresponds to the IEEE 754-2008 operation maxNum.

• MIN.fmt corresponds to the IEEE 754-2008 operation minNum.

• MAXA fmt corresponds to the IEEE 754-2008 operation maxNumMag.

• MINA fmt corresponds to the IEEE 754-2008 operation minNumMag.

Numbers are preferred to NaNs: if one input is a NaN, but not both, the value of the numeric input is returned. If both

are NaNs, the NaN in fs is returned.1

The scalar FPU instructions MAX fmt/MIN.fmt/MAXA.fmt/MINA fmt correspond to the MSA instructions
FMAX.df/FMIN.df/FMAXA.df/FMINA.df.

• Scalar FPU instruction MAX fmt corresponds to the MSA vector instruction FMAX.df.

• Scalar FPU instruction MIN fmt corresponds to the MSA vector instruction FMIN.df.

• Scalar FPU instruction MAXA.fmt corresponds to the MSA vector instruction FMAX_A.df.

• Scalar FPU instruction MINA.fmt corresponds to the MSA vector instruction FMIN_A.df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754TM-
2008. See also the section “Special Cases”, below.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Operation:

if not IsCoprocessorEnabled(1)
then SignalException(CoprocessorUnusable, 1) endif

if not IsFloatingPointImplemented(fmt)
then SignalException(ReservedInstruction) endif

v1  ValueFPR(fs,fmt)
v2  ValueFPR(ft,fmt)

if SNaN(v1) or SNaN(v2) then
then SignalException(InvalidOperand) jendifjj

if NaN(v1) and NaN(v2)then
ftmp  v1

elseif NaN(v1) then
ftmp  v2

elseif NaN(v2) then
ftmp  v1

else
case instruction of

1. IEEE standard 754-2008 allows either input to be chosen if both inputs are NaNs. Release 6 specifies that the first input must
be propagated.

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt Scalar Floating-Point Max/Min/maxNumMag/minNumMag

250 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

FMAX.fmt: ftmp  MaxFP.fmt(ValueFPR(fs,fmt),ValueFPR(ft,fmt))
FMIN.fmt: ftmp  MinFP.fmt(ValueFPR(fs,fmt),ValueFPR(ft,fmt))
FMAXA.fmt: ftmp  MaxAbsoluteFP.fmt(ValueFPR(fs,fmt),ValueFPR(ft,fmt))
FMINA.fmt: ftmp  MinAbsoluteFP.fmt(ValueFPR(fs,fmt),ValueFPR(ft,fmt))
end case

endif

StoreFPR (fd, fmt, ftmp)
/* end of instruction */

function MaxFP(tt, ts, n)
/* Returns the largest argument. */

endfunction MaxFP

function MinFP(tt, ts, n)
/* Returns the smallest argument. */

endfunction MaxFP

function MaxAbsoluteFP(tt, ts, n)
/* Returns the argument with largest absolute value.

For equal absolute values, returns the largest argument.*/
endfunction MaxAbsoluteFP

function MinAbsoluteFP(tt, ts, n)
/* Returns the argument with smallest absolute value.

For equal absolute values, returns the smallest argument.*/
endfunction MinAbsoluteFP

function NaN(tt, ts, n)
/* Returns true if the value is a NaN */
return SNaN(value) or QNaN(value)

endfunction MinAbsoluteFP

Table 5.24 Special Cases for FP MAX, MIN, MAXA, MINA

Operand
Other

Release 6 Instructions

fs ft MAX MIN MAXA MINA

-0.0 0.0 0.0 -0.0 0.0 -0.0

0.0 -0.0

QNaN # # # # #

QNaN

QNaN1 QNaN2 Release 6 QNan1 QNaN1 QNaN1 QNaN1

IEEE
754 2008

Arbitrary choice. Not allowed to clear sign bit.

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt IScalar Floating-Point Max/Min/maxNumMag/minNumMag

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 251

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

Either or both operands
SNaN

Invalid
Operation
exception
enabled

Signal Invalid Operation Exception.
Destination not written.

... disabled Treat as if the SNaN were a QNaN (do not quieten the result).

Table 5.24 Special Cases for FP MAX, MIN, MAXA, MINA

Operand
Other

Release 6 Instructions

fs ft MAX MIN MAXA MINA

MFC0 Move from Coprocessor 0

252 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: MFC0 rt, rs microMIPS
MFC0 rt, rs, sel microMIPS

Purpose: Move from Coprocessor 0

To move the contents of a coprocessor 0 register to a general register.

Description: GPR[rt]  CPR[0,rs,sel]

The contents of the coprocessor 0 register specified by the combination of rs and sel are loaded into general register
rt. Not all coprocessor 0 registers support the sel field. In those instances, the sel field must be zero.

Restrictions:

Pre-Release 6: The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rs and sel.

Release 6: Reading a reserved register or a register that is not implemented for the current core configuration returns
0.

Operation:

reg = rs
if IsCoprocessorRegisterImplemented(0, reg, sel) then

data  CPR[0, reg, sel]
GPR[rt]  data

else
if ArchitectureRevision() ≥ 6 then

GPR[rt]  0
else

UNDEFINED
endif

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 14 13 11 10 6 5 0

POOL32A
000000

rt rs 00 sel
MFC0
00011

POOL32AXf
111100

6 5 5 3 5 6

MFC1 IMove Word From Floating Point

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 253

Format: MFC1 rt, fs microMIPS

Purpose: Move Word From Floating Point

To copy a word from an FPU (CP1) general register to a GPR.

Description: GPR[rt]  FPR[fs]

The contents of FPR fs are loaded into general register rt.

Restrictions:

Operation:

data  ValueFPR(fs, UNINTERPRETED_WORD)
GPR[rt]  data

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For MIPS I, MIPS II, and MIPS III the contents of GPR rt are UNPREDICTABLE for the instruction immediately
following MFC1.

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

rt fs 00
MFC1

10000000
POOL32FXf

111011

6 5 5 2 8 6

MFC2 Move Word From Coprocessor 2

254 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: MFC2 rt, Impl microMIPS

The syntax shown above is an example using MFC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word From Coprocessor 2

To copy a word from a COP2 general register to a GPR.

Description: GPR[rt]  CP2CPR[Impl]

The contents of the coprocessor 2 register denoted by the Impl field are and placed into general register rt. The inter-
pretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The results are UNPREDICTABLE if the Impl field specifies a coprocessor 2 register that does not exist.

Operation:

data  CP2CPR[Impl]
GPR[rt]  data

Exceptions:

Coprocessor Unusable

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt Impl
MFC2

0100110100
POOL32AXf

111100

6 5 5 10 6

MFHC0 IMove from High Coprocessor 0

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 255

Format: MFHC0 rt, rs microMIPS Release 5
MFHC0 rt, rs, sel microMIPS Release 5

Purpose: Move from High Coprocessor 0

To move the contents of the upper 32 bits of a Coprocessor 0 register, extended by 32-bits, to a general register.

Description: GPR[rt]  CPR[0,rs,sel][63:32]

The contents of the Coprocessor 0 register specified by the combination of rs and sel are loaded into general register
rt. Not all Coprocessor 0 registers support the sel field, and in those instances, the sel field must be zero.

The MFHC0 operation is not affected when the Coprocessor 0 register specified is the EntryLo0 or the EntryLo1 reg-
ister. Data is read from the upper half of the 32-bit register extended to 64-bits without modification before writing to
the GPR. This is because RI and XI bits are not repositioned on write from GPR to EntryLo0 or the EntryLo1.

 Restrictions:

Pre-Release 6: The results are UNDEFINED if Coprocessor 0 does not contain a register as specified by rs and sel,
or the register exists but is not extended by 32-bits,or the register is extended for XPA, but XPA is not supported or
enabled.

Release 6: Reading the high part of a register that is reserved, not implemented for the current core configuration, or
that is not extended beyond 32 bits returns 0.

Operation:

if Config5MVH = 0 then SignalException(ReservedInstruction) endif
reg  rs
if IsCoprocessorRegisterImplemented(0, reg, sel) and

IsCoprocessorRegisterExtended(0, reg, sel) then
data  CPR[0, reg, sel]
GPR[rt]  data63..32

else
if ArchitectureRevision() ≥ 6 then

GPR[rt]  0
else

UNDEFINED
endif

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 14 13 11 10 6 5 0

POOL32A
000000

rt rs 00 sel
MFHC0
00011

POOL32P
110100

6 5 5 3 5 6

MFHC1 Move Word From High Half of Floating Point Register

256 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: MFHC1 rt, fs microMIPS

Purpose: Move Word From High Half of Floating Point Register

To copy a word from the high half of an FPU (CP1) general register to a GPR.

Description: GPR[rt]  FPR[fs]63..32

The contents of the high word of FPR fs are loaded into general register rt. This instruction is primarily intended to
support 64-bit floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

The results are UNPREDICTABLE if StatusFR = 0 and fs is odd.

Operation:

data  ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)63..32
GPR[rt]  data

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

rt fs 00
MFHC1
1100000

POOL32FXf
111011

6 5 5 2 8 6

MFHC2 IMove Word From High Half of Coprocessor 2 Register

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 257

Format: MFHC2 rt, Impl microMIPS

The syntax shown above is an example using MFHC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word From High Half of Coprocessor 2 Register

To copy a word from the high half of a COP2 general register to a GPR.

Description: GPR[rt]  CP2CPR[Impl]63..32

The contents of the high word of the coprocessor 2 register denoted by the Impl field are placed into GPR rt. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results are UNPREDICTABLE if the Impl field specifies a coprocessor 2 register that does not exist, or if that
register is not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

data  CP2CPR[Impl]63..32
GPR[rt]  data

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt Impl
MFHC2

1000110100
POOL32AXf

111100

6 5 5 10 6

MOV.fmt Floating Point Move

258 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: MOV.fmt
MOV.S ft, fs microMIPS
MOV.D ft, fs microMIPS

Purpose: Floating Point Move

To move an FP value between FPRs.

Description: FPR[ft]  FPR[fs]

The value in FPR fs is placed into FPR ft. The source and destination are values in format fmt. In paired-single format,
both the halves of the pair are copied to ft.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Availability and Compatibility:

MOV.PS has been removed in Release 6.

Operation:

StoreFPR(ft, fmt, ValueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

31 26 25 21 20 16 15 14 13 12 6 5 0

POOL32F
010101

ft fs 0 fmt
MOV

0000001
POOL32FXf

111011

6 5 5 1 2 7 6

MTC0 IMove to Coprocessor 0

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 259

Format: MTC0 rt, rs microMIPS
MTC0 rt, rs, sel microMIPS

Purpose: Move to Coprocessor 0

To move the contents of a general register to a coprocessor 0 register.

Description: CPR[0, rs, sel]  GPR[rt]

The contents of general register rt are loaded into the coprocessor 0 register specified by the combination of rs and
sel. Not all coprocessor 0 registers support the sel field. In those instances, the sel field must be set to zero.

Restrictions:

Pre-Release 6: The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rs and sel.

Release 6: Writes to a register that is reserved or not defined for the current core configuration are ignored.

Operation:

data  GPR[rt]
reg  rs
if IsCoprocessorRegisterImplemented (0, reg, sel) then

CPR[0,reg,sel]  data
else

if ArchitectureRevision() ≥ 6 then
// nop (no exceptions, coprocessor state not modified)
else

UNDEFINED
endif

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 14 13 11 10 6 5 0

POOL32A
000000

rt rs 00 sel
MTC0
01011

POOL32AXf
111100

6 5 5 2 3 5 6

MTC1 Move Word to Floating Point

260 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: MTC1 rt, fs microMIPS

Purpose: Move Word to Floating Point

To copy a word from a GPR to an FPU (CP1) general register.

Description: FPR[fs]  GPR[rt]

The low word in GPR rt is placed into the low word of FPR fs.

Restrictions:

Operation:

data  GPR[rt]31..0
StoreFPR(fs, UNINTERPRETED_WORD, data)

Exceptions:

Coprocessor Unusable

Historical Information:

For MIPS I, MIPS II, and MIPS III the value of FPR fs is UNPREDICTABLE for the instruction immediately fol-
lowing MTC1.

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

rt fs 00
MTC1

10100000
POOL32FXf

111011

6 5 5 2 8 6

MTC2 IMove Word to Coprocessor 2

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 261

Format: MTC2 rt, Impl microMIPS

The syntax shown above is an example using MTC1 as a model. The specific syntax is implementation-dependent.

Purpose: Move Word to Coprocessor 2

To copy a word from a GPR to a COP2 general register.

Description: CP2CPR[Impl]  GPR[rt]

The low word in GPR rt is placed into the low word of a Coprocessor 2 general register denoted by the Impl field.
The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the
architecture.

Restrictions:

The results are UNPREDICTABLE if the Impl field specifies a Coprocessor 2 register that does not exist.

 Operation:

data  GPR[rt]
CP2CPR[Impl]  data

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt Impl
MTC2

0101110100
POOL32AXf

111100

6 5 5 10 6

MTHC0 Move to High Coprocessor 0

262 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: MTHC0 rt, rs microMIPS Release 5
MTHC0 rt, rs, sel microMIPS Release 5

Purpose: Move to High Coprocessor 0

To copy a word from a GPR to the upper 32 bits of a CP0 general register that has been extended by 32 bits.

Description: CPR[0, rs, sel][63:32]  GPR[rt]

The contents of general register rt are loaded into the Coprocessor 0 register specified by the combination of rs and
sel. Not all Coprocessor 0 registers support the sel field; the sel field must be set to zero.

Restrictions:

Pre-Release 6: The results are UNDEFINED if Coprocessor 0 does not contain a register as specified by rs and sel,
or if the register exists but is not extended by 32 bits, or the register is extended for XPA, but XPA is not supported or
enabled.

Release 6: A write to the high part of a register that is reserved, not implemented for the current core, or that is not
extended beyond 32 bits is ignored.

Operation:

if Config5MVH = 0 then SignalException(ReservedInstruction) endif
data  GPR[rt]
reg  rs
if IsCoprocessorRegisterImplemented (0, reg, sel) and

IsCoprocessorRegisterExtended (0, reg, sel) then
CPR[0, reg, sel][63:32]  data

else
if ArchitectureRevision() ≥ 6 then

// nop (no exceptions, coprocessor state not modified)
else

UNDEFINED
endif

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 14 13 11 10 6 5 0

POOL32A
000000

rt rs 00 sel
MTHC0
01011

POOL32P
110100

6 5 5 2 3 5 6

MTHC1 IMove Word to High Half of Floating Point Register

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 263

Format: MTHC1 rt, fs microMIPS

Purpose: Move Word to High Half of Floating Point Register

To copy a word from a GPR to the high half of an FPU (CP1) general register.

Description: FPR[fs]63..32  GPR[rt]

The word in GPR rt is placed into the high word of FPR fs. This instruction is primarily intended to support 64-bit
floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

The results are UNPREDICTABLE if StatusFR = 0 and fs is odd.

Operation:

newdata  GPR[rt]
olddata  ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)31..0

StoreFPR(fs, UNINTERPRETED_DOUBLEWORD, newdata || olddata)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes

When paired with MTC1 to write a value to a 64-bit FPR, the MTC1 must be executed first, followed by the MTHC1.
This is because of the semantic definition of MTC1, which is not aware that software is using an MTHC1 instruction
to complete the operation, and sets the upper half of the 64-bit FPR to an UNPREDICTABLE value.

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

rt fs 00
MTHC1

11100000
POOL32FXf

111011

6 5 5 2 8 6

MTHC2 Move Word to High Half of Coprocessor 2 Register

264 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: MTHC2 rt, Impl microMIPS

The syntax shown above is an example using MTHC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word to High Half of Coprocessor 2 Register

To copy a word from a GPR to the high half of a COP2 general register.

Description: CP2CPR[Impl]63..32  GPR[rt]

The word in GPR rt is placed into the high word of coprocessor 2 general register denoted by the Impl field. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results are UNPREDICTABLE if the Impl field specifies a coprocessor 2 register that does not exist, or if that
register is not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

data  GPR[rt]
CP2CPR[Impl]  data || CPR[2,rd,sel]31..0

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes

When paired with MTC2 to write a value to a 64-bit CPR, the MTC2 must be executed first, followed by the
MTHC2. This is because of the semantic definition of MTC2, which is not aware that software is using an MTHC2
instruction to complete the operation, and sets the upper half of the 64-bit CPR to an UNPREDICTABLE value.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt Impl
MTHC2

1001110100
POOL32AXf

111100

6 5 5 10 6

MUL MUH MULU MUHU IMultiply Integers (with result to GPR)

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 265

Format: MUL MUH MULU MUHU
MUL rd,rs,rt microMIPS32 Release 6
MUH rd,rs,rt microMIPS32 Release 6
MULU rd,rs,rt microMIPS32 Release 6
MUHU rd,rs,rt microMIPS32 Release 6

Purpose: Multiply Integers (with result to GPR)

MUL: Multiply Words Signed, Low Word
MUH: Multiply Words Signed, High Word
MULU: Multiply Words Unsigned, Low Word
MUHU: Multiply Words Unsigned, High Word

Description:

MUL: GPR[rd]  lo_word(multiply.signed(GPR[rs]  GPR[rt]))
MUH: GPR[rd]  hi_word(multiply.signed(GPR[rs]  GPR[rt]))
MULU: GPR[rd]  lo_word(multiply.unsigned(GPR[rs]  GPR[rt]))
MUHU: GPR[rd]  hi_word(multiply.unsigned(GPR[rs]  GPR[rt]))

The Release 6 multiply instructions multiply the operands in GPR[rs] and GPR[rd], and place the specified high or
low part of the result, of the same width, in GPR[rd].

MUL performs a signed 32-bit integer multiplication, and places the low 32 bits of the result in the destination regis-
ter.

MUH performs a signed 32-bit integer multiplication, and places the high 32 bits of the result in the destination regis-
ter.

MULU performs an unsigned 32-bit integer multiplication, and places the low 32 bits of the result in the destination
register.

MUHU performs an unsigned 32-bit integer multiplication, and places the high 32 bits of the result in the destination
register.

Restrictions:

MUL behaves correctly even if its inputs are not sign extended 32-bit integers. Bits 32-63 of its inputs do not affect
the result.

MULU behaves correctly even if its inputs are not zero or sign extended 32-bit integers. Bits 32-63 of its inputs do
not affect the result.

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
MUL

0000011000

POOL32A
000000

rt rs rd 0
MUH

0001011000

POOL32A
000000

rt rs rd 0
MULU

0010011000

POOL32A
000000

rt rs rd 0
MUHU

0011011000

6 5 5 5 1 10

MUL MUH MULU MUHU Multiply Integers (with result to GPR)

266 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Programming Notes:

The low half of the integer multiplication result is identical for signed and unsigned. Nevertheless, there are distinct
instructions MUL MULU. Implementations may choose to optimize a multiply that produces the low half followed
by a multiply that produces the upper half. Programmers are recommended to use matching lower and upper half
multiplications.

The Release 6 MUL instruction has the same opcode mnemonic as the pre-Release 6 MUL instruction. The semantics
of these instructions are almost identical: both produce the low 32-bits of the 3232=64 product; but the pre-Release
6 MUL is unpredictable if its inputs are not properly sign extended 32-bit values on a 64 bit machine, and is defined
to render the HI and LO registers unpredictable, whereas the Release 6 version ignores bits 32-63 of the input, and
there are no HI/LO registers in Release 6 to be affected.

Operation:

MUL, MUH:
s1  signed_word(GPR[rs])
s2  signed_word(GPR[rt])

MULU, MUHU:
s1  unsigned_word(GPR[rs])
s2  unsigned_word(GPR[rt])

product  s1  s2 /* product is twice the width of sources */

MUL: GPR[rd]  lo_word(product)
MUH: GPR[rd]  hi_word(product)
MULU: GPR[rd]  lo_word(product)
MUHU: GPR[rd]  hi_word(product)

Exceptions:

None

MUL.fmt IFloating Point Multiply

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 267

Format: MUL.fmt
MUL.S fd, fs, ft microMIPS
MUL.D fd, fs, ft microMIPS

Purpose: Floating Point Multiply

To multiply FP values.

Description: FPR[fd]  FPR[fs] x FPR[ft]

The value in FPR fs is multiplied by the value in FPR ft. The result is calculated to infinite precision, rounded accord-
ing to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Availability and Compatibility:

MUL.PS has been removed in Release 6.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) fmt ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

31 26 25 21 20 16 15 11 10 9 8 7 0

POOL32F
010101

ft fs fd 0 fmt
MUL

10110000

6 5 5 5 1 2 8

NEG.fmt Floating Point Negate

268 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: NEG.fmt
NEG.S ft, fs microMIPS
NEG.D ft, fs microMIPS

Purpose: Floating Point Negate

To negate an FP value.

Description: FPR[ft]  -FPR[fs]

The value in FPR fs is negated and placed into FPR ft. The value is negated by changing the sign bit value. The oper-
and and result are values in format fmt.

If FIRHas2008=0 or FCSRABS2008=0 then this operation is arithmetic. For this case, any NaN operand signals invalid

operation.

If FCSRABS2008=1 then this operation is non-arithmetic. For this case, both regular floating point numbers and NAN

values are treated alike, only the sign bit is affected by this instruction. No IEEE 754 exception can be generated for
this case.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE. The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

Availability and Compatibility:

NEG.PS has been removed in Release 6.

Operation:

StoreFPR(ft, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 14 13 12 6 5 0

POOL32F
010101

ft fs 0 fmt
NEG

0101101
POOL32FXf

111011

6 5 5 1 2 7 6

NOP INo Operation

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 269

Format: NOP Assembly Idiom microMIPS

Purpose: No Operation

To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware as SLL
r0, r0, 0.

Restrictions:

None

Operations:

None

Exceptions:

None

Programming Notes:

The zero instruction word, which represents SLL, r0, r0, 0, is the preferred NOP for software to use and to pad out
alignment sequences.

31 26 25 21 20 16 15 11 10 5 0

POOL32A
000000

0
00000

0
00000

0
00000

0
00000

SLL
000000

6 5 5 5 5 6

NOR Not Or

270 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: NOR rd, rs, rt microMIPS

Purpose: Not Or

To do a bitwise logical NOT OR.

Description: GPR[rd]  GPR[rs] nor GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical NOR operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd]  GPR[rs] nor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
NOR

1011010000

6 5 5 5 1 10

OR IOr

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 271

Format: OR rd, rs, rt microMIPS

Purpose: Or

To do a bitwise logical OR.

Description: GPR[rd]  GPR[rs] or GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is
placed into GPR rd.

Restrictions:

None

Operations:

GPR[rd]  GPR[rs] or GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
OR

1010010000

6 5 5 5 1 10

ORI Or Immediate

272 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: ORI rt, rs, immediate microMIPS

Purpose: Or Immediate

To do a bitwise logical OR with a constant.

Description: GPR[rt]  GPR[rs] or immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical OR
operation. The result is placed into GPR rt.

Restrictions:

None

Operations:

GPR[rt]  GPR[rs] or zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ORI32
010100

rt rs immediate

6 5 5 16

PAUSE IWait for the LLBit to clear.

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 273

Format: PAUSE microMIPS

Purpose: Wait for the LLBit to clear.

Description:

Locks implemented using the LL/SC instructions are a common method of synchronization between threads of con-
trol. A lock implementation does a load-linked instruction and checks the value returned to determine whether the
software lock is set. If it is, the code branches back to retry the load-linked instruction, implementing an active busy-
wait sequence. The PAUSE instruction is intended to be placed into the busy-wait sequence to block the instruction
stream until such time as the load-linked instruction has a chance to succeed in obtaining the software lock.

The PAUSE instruction is implementation-dependent, but it usually involves descheduling the instruction stream
until the LLBit is zero.

• In a single-threaded processor, this may be implemented as a short-term WAIT operation which resumes at the
next instruction when the LLBit is zero or on some other external event such as an interrupt.

• On a multi-threaded processor, this may be implemented as a short term YIELD operation which resumes at the
next instruction when the LLBit is zero.

In either case, it is assumed that the instruction stream which gives up the software lock does so via a write to the lock
variable, which causes the processor to clear the LLBit as seen by this thread of execution.

The encoding of the instruction is such that it is backward compatible with all previous implementations of the archi-
tecture. The PAUSE instruction can therefore be placed into existing lock sequences and treated as a NOP by the pro-
cessor, even if the processor does not implement the PAUSE instruction.

Restrictions:

Pre-Release 6: The operation of the processor is UNPREDICTABLE if a PAUSE instruction is executed placed in
the delay slot of a branch or jump instruction. This restriction does not apply in Release 6.

Operations:

if LLBit ≠ 0 then
EPC  PC + 4 /* Resume at the following instruction */
DescheduleInstructionStream()

endif

Exceptions:

None

Programming Notes:

The PAUSE instruction is intended to be inserted into the instruction stream after an LL instruction has set the LLBit
and found the software lock set. The program may wait forever if a PAUSE instruction is executed and there is no
possibility that the LLBit will ever be cleared.

An example use of the PAUSE instruction is shown below:

acquire_lock:

31 26 25 6 5 0

POOL32A
000000

0
00000

0
00000

5
00101

0
00000

SLL
000000

6 5 5 5 5 6

PAUSE Wait for the LLBit to clear.

274 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

ll t0, 0(a0) /* Read software lock, set hardware lock */
bnezc t0, acquire_lock_retry: /* Branch if software lock is taken; */

/* Release 6 branch */
addiu t0, t0, 1 /* Set the software lock */
sc t0, 0(a0) /* Try to store the software lock */
bnezc t0, 10f /* Branch if lock acquired successfully */
sync

acquire_lock_retry:
pause /* Wait for LLBIT to clear before retry */
bc acquire_lock /* and retry the operation; Release 6 branch */

10:

Critical region code

release_lock:
sync
sw zero, 0(a0) /* Release software lock, clearing LLBIT */

/* for any PAUSEd waiters */

PREF IPrefetch

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 275

Format: PREF hint,offset(base) microMIPS

Purpose: Prefetch

To move data between memory and cache.

Description: prefetch_memory(GPR[base] + offset)

PREF adds the signed offset to the contents of GPR base to form an effective byte address. The hint field supplies
information about the way that the data is expected to be used.

PREF enables the processor to take some action, typically causing data to be moved to or from the cache, to improve
program performance. The action taken for a specific PREF instruction is both system and context dependent. Any
action, including doing nothing, is permitted as long as it does not change architecturally visible state or alter the
meaning of a program. Implementations are expected either to do nothing, or to take an action that increases the per-
formance of the program. The PrepareForStore function is unique in that it may modify the architecturally visible
state.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., kseg1), the programmed cacheability
and coherency attribute of a segment (e.g., the use of the K0, KU, or K23 fields in the Config register), or the per-
page cacheability and coherency attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and cacheability&coherency attribute used for the
operation are determined by the memory access type and cacheability&coherency attribute of the effective address,
just as it would be if the memory operation had been caused by a load or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREF instruction and the memory transactions which are sourced by the PREF instruction, such as cache refill or
cache writeback, obey the ordering and completion rules of the SYNC instruction.

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

hint base
PREF
0010

0
000

offset

6 5 5 5 3 9

Table 6.25 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

PREF Prefetch

276 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

1 store Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

2 L1 LRU hint Pre-Release 6: Reserved for Architecture.
Release 6: Implementation dependent. This hint code marks the line as LRU in
the L1 cache and thus preferred for next eviction. Implementations can choose
to writeback and/or invalidate as long as no architectural state is modified.

3 Reserved for Implementation Pre-Release 6: Reserved for Architecture.
Release 6: Available for implementation-dependent use.

4 load_streamed Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.
Action: Fetch data as if for a load and place it in the cache so that it does not
displace data prefetched as “retained.”

5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused exten-
sively; it “streams” through cache.
Action: Fetch data as if for a store and place it in the cache so that it does not
displace data prefetched as “retained.”

6 load_retained Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a load and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

7 store_retained Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a store and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

8-15 L2 operation Pre-Release 6: Reserved for Architecture.
Release 6: In the Release 6 architecture, hint codes 8 - 15 are treated the same
as hint codes 0 - 7 respectively, but operate on the L2 cache.

16-23 L3 operation Pre-Release 6: Reserved for Architecture.
Release 6: In the Release 6 architecture, hint codes 16 - 23 are treated the same
as hint codes 0 - 7 respectively, but operate on the L3 cache.

24 Reserved for Architecture Pre-Release 6: Unassigned by the Architecture - available for implementation-
dependent use.
Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

25 writeback_invalidate (also
known as “nudge”)
Reserved for Architecture in
Release 6

Pre-Release 6:
Use—Data is no longer expected to be used.
Action—For a writeback cache, schedule a writeback of any dirty data. At the
completion of the writeback, mark the state of any cache lines written back as
invalid. If the cache line is not dirty, it is implementation dependent whether
the state of the cache line is marked invalid or left unchanged. If the cache line
is locked, no action is taken.
Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

Table 6.25 Values of hint Field for PREF Instruction (Continued)

Value Name Data Use and Desired Prefetch Action

PREF IPrefetch

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 277

Restrictions:

None

This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

vAddr  GPR[base]  sign_extend(offset)
(pAddr, CCA)  AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

In the Release 6 architecture, hint codes 2:3, 10:11, 18:19 behave as a NOP if not implemented. Hint codes 24:31 are
not implemented (treated as reserved) and always signal a Reserved Instruction exception (RI).

As shown in the instruction drawing above, Release 6 implements a 9-bit offset, whereas all release levels lower than
Release 6 of the MIPS architecture implement a 16-bit offset.

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of

26-29 Reserved for Architecture Pre-Release 6: Unassigned by the Architecture—available for implementa-
tion-dependent use.
Release 6: These hints are not implemented in the Release 6 architecture and
generate a Reserved Instruction exception (RI).

30 PrepareForStore
Reserved for Architecture in
Release 6

Pre-Release 6:
Use—Prepare the cache for writing an entire line, without the overhead
involved in filling the line from memory.
Action—If the reference hits in the cache, no action is taken. If the reference
misses in the cache, a line is selected for replacement, any valid and dirty vic-
tim is written back to memory, the entire line is filled with zero data, and the
state of the line is marked as valid and dirty.
Programming Note: Because the cache line is filled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used as
a fast bzero-type function.
Release 6: This hint is not implemented in the Release 6 architecture and gen-
erates a Reserved Instruction exception (RI).

31 Reserved for Architecture Pre-Release 6: Unassigned by the Architecture—available for implementa-
tion-dependent use.
Release 6: This hint is not implemented in the Release 6 architecture and gen-
erates a Reserved Instruction exception (RI).

Table 6.25 Values of hint Field for PREF Instruction (Continued)

Value Name Data Use and Desired Prefetch Action

PREF Prefetch

278 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to be truly
retained, software should use the Cache instruction to lock data into the cache.

PREFE IPrefetch EVA

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 279

Format: PREFE hint,offset(base) microMIPS

Purpose: Prefetch EVA

To move data between user mode virtual address space memory and cache while operating in kernel mode.

Description: prefetch_memory(GPR[base] + offset)

PREFE adds the 9-bit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
plies information about the way that the data is expected to be used.

PREFE enables the processor to take some action, causing data to be moved to or from the cache, to improve program
performance. The action taken for a specific PREFE instruction is both system and context dependent. Any action,
including doing nothing, is permitted as long as it does not change architecturally visible state or alter the meaning of
a program. Implementations are expected either to do nothing, or to take an action that increases the performance of
the program. The PrepareForStore function is unique in that it may modify the architecturally visible state.

PREFE does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREFE instruction.

PREFE neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (for example, kseg1), the programmed
cacheability and coherency attribute of a segment (for example, the use of the K0, KU, or K23 fields in the Config
register), or the per-page cacheability and coherency attribute provided by the TLB.

If PREFE results in a memory operation, the memory access type and cacheability & coherency attribute used for the
operation are determined by the memory access type and cacheability & coherency attribute of the effective address,
just as it would be if the memory operation had been caused by a load or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREFE instruction and the memory transactions which are sourced by the PREFE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

The PREFE instruction functions in exactly the same fashion as the PREF instruction, except that address translation
is performed using the user mode virtual address space mapping in the TLB when accessing an address within a
memory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access
modes are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to one.

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

hint base
ST-EVA

1010

PREFE
010 offset

6 5 5 4 3 9

PREFE Prefetch EVA

280 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Table 6.26 Values of hint Field for PREFE Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

1 store Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

2 L1 LRU hint Pre-Release 6: Reserved for Architecture.
Release 6: Implementation dependent. This hint code marks the line as LRU in
the L1 cache and thus preferred for next eviction. Implementations can choose
to writeback and/or invalidate as long as no architectural state is modified.

3 Reserved for Implementation Pre-Release 6: Reserved for Architecture.
Release 6: Available for implementation-dependent use.

4 load_streamed Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.
Action: Fetch data as if for a load and place it in the cache so that it does not
displace data prefetched as “retained.”

5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused exten-
sively; it “streams” through cache.
Action: Fetch data as if for a store and place it in the cache so that it does not
displace data prefetched as “retained.”

6 load_retained Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a load and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

7 store_retained Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a store and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

8-15 L2 operation Pre-Release 6: Reserved for Architecture.
Release 6: Hint codes 8 - 15 are treated the same as hint codes 0 - 7 respec-
tively, but operate on the L2 cache.

16-23 L3 operation Pre-Release 6: Reserved for Architecture.
Release 6: Hint codes 16 - 23 are treated the same as hint codes 0 - 7 respec-
tively, but operate on the L3 cache.

24 Reserved for Architecture Pre-Release 6: Unassigned by the Architecture - available for implementation-
dependent use.

Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

PREFE IPrefetch EVA

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 281

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Operation:

vAddr  GGPR[base]  sign_extend(offset)
(pAddr, CCA)  AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error, Address Error, Reserved Instruction, Coprocessor Usable

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

In the Release 6 architecture, hint codes 0:23 behave as a NOP and never signal a Reserved Instruction exception
(RI). Hint codes 24:31 are not implemented (treated as reserved) and always signal a Reserved Instruction exception
(RI).

25 writeback_invalidate (also
known as “nudge”)
Reserved for Architecture in
Release 6

Pre-Release 6:
Use—Data is no longer expected to be used.
Action—For a writeback cache, schedule a writeback of any dirty data. At the
completion of the writeback, mark the state of any cache lines written back as
invalid. If the cache line is not dirty, it is implementation dependent whether
the state of the cache line is marked invalid or left unchanged. If the cache line
is locked, no action is taken.
Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

26-29 Reserved for Architecture Pre-Release 6: Unassigned by the Architecture - available for implementation-
dependent use.
Release 6: These hint codes are not implemented in the Release 6 architecture
and generate a Reserved Instruction exception (RI).

30 PrepareForStore
Reserved for Architecture in
Release 6

Pre-Release 6:
Use—Prepare the cache for writing an entire line, without the overhead
involved in filling the line from memory.
Action—If the reference hits in the cache, no action is taken. If the reference
misses in the cache, a line is selected for replacement, any valid and dirty vic-
tim is written back to memory, the entire line is filled with zero data, and the
state of the line is marked as valid and dirty.
Programming Note: Because the cache line is filled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used as
a fast bzero-type function.
Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

31 Reserved for Architecture Pre-Release 6: Unassigned by the Architecture - available for implementation-
dependent use.
Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

Table 6.26 Values of hint Field for PREFE Instruction (Continued)

Value Name Data Use and Desired Prefetch Action

PREFE Prefetch EVA

282 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREFE instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to be truly
retained, software should use the Cache instruction to lock data into the cache.

RDHWR IRead Hardware Register

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 283

Format: RDHWR rt,rs,sel microMIPS

Purpose: Read Hardware Register

To move the contents of a hardware register to a general purpose register (GPR) if that operation is enabled by privi-
leged software.

The purpose of this instruction is to give user mode access to specific information that is otherwise only visible in
kernel mode.

In Release 6, a sel field has been added to allow a register with multiple instances to be read selectively. Specifically
it is used for PerfCtr.

Description: GPR[rt]  HWR[rs]; GPR[rt]  HWR[rs, sel]

If access is allowed to the specified hardware register, the contents of the register specified by rs (optionally sel in
Release 6) is loaded into general register rt. Access control for each register is selected by the bits in the coprocessor
0 HWREna register.

The available hardware registers, and the encoding of the rs field for each, are shown in Table 6.27.

31 26 25 21 20 16 15 14 13 11 10 9 8 0

POOL32A
000000

rt rs
0

00
sel

0
0

RDHWR
0111000000

6 5 5 2 3 1 10

Table 6.27 RDHWR Register Numbers

Register
Number

(rs Value) Mnemonic Description

0
CPUNum Number of the CPU on which the program is currently running. This register pro-

vides read access to the coprocessor 0 EBaseCPUNum field.

1
SYNCI_Step Address step size to be used with the SYNCI instruction, or zero if no caches need

be synchronized. See that instruction’s description for the use of this value.

2
CC High-resolution cycle counter. This register provides read access to the coprocessor

0 Count Register.

3

CCRes Resolution of the CC register. This value denotes the number of cycles between
update of the register. For example:

4
PerfCtr Performance Counter Pair. Even sel selects the Control register, while odd sel

selects the Counter register in the pair. The value of sel corresponds to the value of
sel used by MFC0 to read the CP0 register.

CCRes Value Meaning

1 CC register increments every CPU cycle

2 CC register increments every second CPU cycle

3 CC register increments every third CPU cycle

etc.

RDHWR Read Hardware Register

284 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Restrictions:

In implementations of Release 1 of the Architecture, this instruction resulted in a Reserved Instruction Exception.

Access to the specified hardware register is enabled if Coprocessor 0 is enabled, or if the corresponding bit is set in
the HWREna register. If access is not allowed or the register is not implemented, a Reserved Instruction Exception is
signaled.

In Release 6, when the 3-bit sel is undefined for use with a specific register number, then a Reserved Instruction
Exception is signaled.

Availability and Compatibility:

This instructions has been recoded for Release 6. The instruction supports a sel field in Release 6.

Operation:

if ((rs!=4) and (sel==0))
case rs

0: temp  EBaseCPUNum
1: temp  SYNCI_StepSize()
2: temp  Count
3: temp  CountResolution()

if (>=2) // #5 - Release 6
5: temp  Config5XNPendif

29: temp  UserLocal

endif
30: temp  Implementation-Dependent-Value
31: temp  Implementation-Dependent-Value
otherwise: SignalException(ReservedInstruction)

endcase
elseif ((rs==4) and (>=2) and (sel==defined)// #4 - Release 6

temp  PerfCtr[sel]
else
endif

GPR[rt]  temp

5

XNP Indicates support for the Release 6 Paired LL/SC family of instructions. If set to 1,
the LL/SC family of instructions is not present, otherwise, it is present in the imple-
mentation. In absence of hardware support for double-width or extended atomics,
user software may emulate the instruction’s behavior through other means. See
Config5XNP.

6-28
These registers numbers are reserved for future architecture use. Access results in a
Reserved Instruction Exception.

29
ULR User Local Register. This register provides read access to the coprocessor 0

UserLocal register, if it is implemented. In some operating environments, the
UserLocal register is a pointer to a thread-specific storage block.

30-31
These register numbers are reserved for implementation-dependent use. If they are
not implemented, access results in a Reserved Instruction Exception.

Table 6.27 RDHWR Register Numbers

Register
Number

(rs Value) Mnemonic Description

RDHWR IRead Hardware Register

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 285

Exceptions:

Reserved Instruction

For a register that does not require sel, the compiler must support an assembly syntax without sel that is ‘RDHWR rt,
rs’. Another valid syntax is for sel to be 0 to map to pre-Release 6 register numbers which do not require use of sel
that is, ‘RDHWR rt, rs, 0’.

RDPGPR Read GPR from Previous Shadow Set

286 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: RDPGPR rt, rs microMIPS

Purpose: Read GPR from Previous Shadow Set

To move the contents of a GPR from the previous shadow set to a current GPR.

Description: GPR[rt]  SGPR[SRSCtlPSS, rs]

The contents of the shadow GPR register specified by SRSCtlPSS (signifying the previous shadow set number) and rs

(specifying the register number within that set) is moved to the current GPR rt.

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction excep-
tion.

Operation:

GPR[rt]  SGPR[SRSCtlPSS, rs]

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
RDPGPR

1110000101
POOL32AXf

111100

6 5 5 10 6

RECIP.fmt IReciprocal Approximation

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 287

Format: RECIP.fmt
RECIP.S ft, fs microMIPS
RECIP.D ft, fs microMIPS

Purpose: Reciprocal Approximation

To approximate the reciprocal of an FP value (quickly).

Description: FPR[ft]  1.0 / FPR[fs]

The reciprocal of the value in FPR fs is approximated and placed into FPR ft. The operand and result are values in for-
mat fmt.

The numeric accuracy of this operation is implementation dependent. It does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from the both the exact result and the IEEE-mandated
representation of the exact result by no more than one unit in the least-significant place (ULP).

It is implementation dependent whether the result is affected by the current rounding mode in FCSR.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Availability and Compatibility:

RECIP.S and RECIP.D: Required in all versions of MIPS64 since MIPS64 Release 1. Not available in MIPS32
Release 1. Required in MIPS32 Release 2 and all subsequent versions of MIPS32. When required, required whenever
FPU is present, whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRF64=0 or 1,

StatusFR=0 or 1).

Operation:

StoreFPR(ft, fmt, 1.0 / valueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Op, Invalid Op, Overflow, Underflow

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
RECIP

01001000
POOL32FXf

111011

6 5 5 1 1 8 6

RINT.fmt Floating-Point Round to Integral

288 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: RINT.fmt
RINT fd, fs microMIPS32 Release 6

Purpose: Floating-Point Round to Integral

Scalar floating-point round to integral floating point value.

Description: FPR[fd]  round_int(FPR[fs])

The scalar floating-point value in the register fs is rounded to an integral valued floating-point number in the same
format based on the rounding mode bits RM in the FPU Control and Status Register FCSR. The result is written to
fd.

The operands and results are values in floating-point data format fmt.

The RINT.fmt instruction corresponds to the roundToIntegralExact operation in the IEEE Standard for Floating-

Point Arithmetic 754TM-2008. The Inexact exception is signaled if the result does not have the same numerical value
as the input operand.

The floating point scalar instruction RINT.fmt corresponds to the MSA vector instruction FRINT.df. I.e. RINT.S cor-
responds to FRINT.W, and RINT.D corresponds to FRINT.D.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754TM-
2008.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation:

RINT fmt:
if not IsCoprocessorEnabled(1)

then SignalException(CoprocessorUnusable, 1) endif
if not IsFloatingPointImplemented(fmt))

then SignalException(ReservedInstruction) endif

fin  ValueFPR(fs,fmt)
ftmp RoundIntFP(fin, fmt)
if(fin  ftmp) SignalFPException(InExact)
StoreFPR (fd, fmt, ftmp)

function RoundIntFP(tt, n)
/* Round to integer operation, using rounding mode FCSR.RM*/

endfunction RoundIntFP

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

fs fd 00000 fmt
RINT

000100000

6 5 5 5 2 9

RINT.fmt IFloating-Point Round to Integral

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 289

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

ROTR Rotate Word Right

290 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: ROTR rt, rs, sa SmartMIPS Crypto, microMIPS

Purpose: Rotate Word Right

To execute a logical right-rotate of a word by a fixed number of bits.

Description: GPR[rt]  GPR[rs] (right) sa

The contents of the low-order 32-bit word of GPR rs are rotated right; the word result is placed in GPR rt. The bit-
rotate amount is specified by sa.

Restrictions:

Operation:

if ((ArchitectureRevision()  2) and (Config3SM = 0)) then
UNPREDICTABLE

endif
s  sa
temp  GPR[rs]s-1..0 || GPR[rs]31..s
GPR[rt]  temp

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

POOL32A
000000

rt rs sa 0
ROTR

0011000000

6 5 5 5 1 10

ROTRV IRotate Word Right Variable

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 291

Format: ROTRV rd, rt, rs SmartMIPS Crypto, microMIPS

Purpose: Rotate Word Right Variable

To execute a logical right-rotate of a word by a variable number of bits.

Description: GPR[rd]  GPR[rt] (right) GPR[rs]

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The bit-
rotate amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

Operation:

if ((ArchitectureRevision()  2) and (Config3SM = 0)) then
UNPREDICTABLE

endif
s  GPR[rs]4..0
temp  GPR[rt]s-1..0 || GPR[rt]31..s
GPR[rd]  temp

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
ROTRV

0011010000

6 5 5 5 1 10

ROUND.L.fmt Floating Point Round to Long Fixed Point

292 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: ROUND.L.fmt
ROUND.L.S ft, fs microMIPS
ROUND.L.D ft, fs microMIPS

Purpose: Floating Point Round to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding to nearest.

Description: FPR[ft]  convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded to nearest/
even (rounding mode 0). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. The Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRNAN2008=0, the default result is

263–1. On cores with FCSRNAN2008=1, the default result is:

• 0 when the input value is NaN

• 263–1 when the input value is + or rounds to a number larger than 263–1

• -263–1 when the input value is – or rounds to a number smaller than -263–1

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and fd for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model. It is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
ROUND.L
11001100

POOL32FXf
111011

6 5 5 1 1 8 6

ROUND.W.fmt IFloating Point Round to Word Fixed Point

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 293

Format: ROUND.W.fmt
ROUND.W.S ft, fs microMIPS
ROUND.W.D ft, fs microMIPS

Purpose: Floating Point Round to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding to nearest.

Description: FPR[ft]  convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format rounding to nearest/even
(rounding mode 0). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. The Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation exception is
taken immediately. Otherwise, a default result is written to ft. On cores with FCSRNAN2008=0, the default result is

231–1. On cores with FCSRNAN2008=1, the default result is:

• 0 when the input value is NaN

• 231–1 when the input value is + or rounds to a number larger than 231–1

• -231–1 when the input value is – or rounds to a number smaller than -231–1

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and fd for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation

31 26 25 22 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
ROUND.W
11101100

POOL32FXf
111011

6 5 5 1 1 8 6

RSQRT.fmt Reciprocal Square Root Approximation

294 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: RSQRT.fmt
RSQRT.S ft, fs microMIPS
RSQRT.D ft, fs microMIPS

Purpose: Reciprocal Square Root Approximation

To approximate the reciprocal of the square root of an FP value (quickly).

Description: FPR[ft]  1.0 / sqrt(FPR[fs])

The reciprocal of the positive square root of the value in FPR fs is approximated and placed into FPR ft. The operand
and result are values in format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from both the exact result and the IEEE-mandated
representation of the exact result by no more than two units in the least-significant place (ULP).

The effect of the current FCSR rounding mode on the result is implementation dependent.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Availability and Compatibility:

RSQRT.S and RSQRT.D: Required in all versions of MIPS64 since MIPS64 Release 1. Not available in MIPS32
Release 1. Required in MIPS32 Release 2 and all subsequent versions of MIPS32. When required, required whenever
FPU is present, whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRF64=0 or 1,

StatusFR=0 or 1).

Operation:

StoreFPR(ft, fmt, 1.0 / SquareRoot(valueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Operation, Invalid Operation, Overflow, Underflow

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
RSQRT fmt
00001000

POOL32FXf
111011

6 5 5 1 1 8 6

SB IStore Byte

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 295

Format: SB rt, offset(base) microMIPS

Purpose: Store Byte

To store a byte to memory.

Description: memory[GPR[base]  offset]  GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr  sign_extend(offset)  GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
bytesel  vAddr1..0 xor BigEndianCPU

2

dataword  GPR[rt]31–8*bytesel..0 || 0
8*bytesel

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

SB32
000110

rt base offset

6 5 5 16

SBE Store Byte EVA

296 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SBE rt, offset(base) microMIPS

Purpose: Store Byte EVA

To store a byte to user mode virtual address space when executing in kernel mode.

Description: memory[GPR[base]  offset]  GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The
9-bit signed offset is added to the contents of GPR base to form the effective address.

The SBE instruction functions the same as the SB instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to 1.

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
bytesel  vAddr1..0 xor BigEndianCPU

2

dataword  GPR[rt]31-8*bytesel..0 || 0
8*bytesel

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable,

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
ST-EVA

1010

SBE
100 offset

6 5 5 4 3 9

SC IStore Conditional Word

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 297

Format: SC rt, offset(base) microMIPS

Purpose: Store Conditional Word

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset]  GPR[rt], GPR[rt]  1
else GPR[rt]  0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations on syn-
chronizable memory locations. In Release 5, the behavior of SC is modified when Config5LLB=1.

Release 6 (with Config5ULS =1) formalizes support for uncached LL and SC sequences, whereas the pre-Release 6

LL and SC description applies to cached (coherent/non-coherent) memory types. (The description for uncached sup-
port does not modify the description for cached support and is written in a self-contained manner.)

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective
address. The signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

• The 32-bit word of GPR rt is stored to memory at the location specified by the aligned effective address.

• A one, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If either of the following events occurs between the execution of LL and SC, the SC fails:

• A coherent store is completed by another processor or coherent I/O module into the block of synchronizable
physical memory containing the word. The size and alignment of the block is implementation-dependent, but it is
at least one word and at most the minimum page size.

• A coherent store is executed between an LL and SC sequence on the same processor to the block of synchroniz-
able physical memory containing the word (if Config5LLB=1; else whether such a store causes the SC to fail is not

predictable).

• An ERET instruction is executed. (Release 5 includes ERETNC, which will not cause the SC to fail.)

Furthermore, an SC must always compare its address against that of the LL. An SC will fail if the aligned address of
the SC does not match that of the preceding LL.

A load that executes on the processor executing the LL/SC sequence to the block of synchronizable physical memory
containing the word, will not cause the SC to fail (if Config5LLB=1; else such a load may cause the SC to fail).

If any of the events listed below occurs between the execution of LL and SC, the SC may fail where it could have suc-
ceeded, i.e., success is not predictable. Portable programs should not cause any of these events.

• A load or store executed on the processor executing the LL and SC that is not to the block of synchronizable
physical memory containing the word. (The load or store may cause a cache eviction between the LL and SC that
results in SC failure. The load or store does not necessarily have to occur between the LL and SC.)

• Any prefetch that is executed on the processor executing the LL and SC sequence (due to a cache eviction
between the LL and SC).

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
SC

1011
0

000
offset

6 5 5 5 3 9

SC IStore Conditional Word

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 298

• A non-coherent store executed between an LL and SC sequence to the block of synchronizable physical memory
containing the word.

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

CACHE operations that are local to the processor executing the LL/SC sequence will result in unpredictable behav-
iour of the SC if executed between the LL and SC, that is, they may cause the SC to fail where it could have suc-
ceeded. Non-local CACHE operations (address-type with coherent CCA) may cause an SC to fail on either the local
processor or on the remote processor in multiprocessor or multi-threaded systems. This definition of the effects of
CACHE operations is mandated if Config5LLB=1. If Config5LLB=0, then CACHE effects are implementation-depen-

dent.

The following conditions must be true or the result of the SC is not predictable—the SC may fail or succeed (if
Config5LLB=1, then either success or failure is mandated, else the result is UNPREDICTABLE):

• Execution of SC must have been preceded by execution of an LL instruction.

• An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

• Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

• MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

• I/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made with
a memory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

Release 6 (with Config5ULS =1) formally defines support for uncached LL and SC with the following constraints.

• Both LL and SC must be uncached, and the address must be defined as synchronizable in the system. If the
address is non-synchronizable, then this may result in UNPREDICTABLE behavior. The recommended response
is that the sub-system report a Bus Error to the processor.

• The use of uncached LL and SC is applicable to any address within the supported address range of the system, or
any system configuration, as long as the system implements means to monitor the sequence.

• The SC that ends the sequence may fail locally, but never succeed locally within the processor. When it does not
fail locally, the SC must be issued to a “monitor” which is responsible for monitoring the address. This monitor
makes the final determination as to whether the SC fails or not, and communicates this to the processor that initi-
ated the sequence.

It is implementation dependent as to what form the monitor takes. It is however differentiated from cached LL
and SC which rely on a coherence protocol to make the determination as to whether the sequence succeeds.

• Same processor uncached (but not cached) stores will cause the sequence to fail if the store address matches that
of the sequence. A cached store to the same address will cause UNPREDICTABLE behavior.

SC IStore Conditional Word

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 299

• Remote cached coherent stores to the same address will cause UNPREDICTABLE behavior.

• Remote cached non-coherent or uncached stores may cause the sequence to fail if they address the external mon-
itor and the monitor makes this determination.

As emphasized above, it is not recommended that software mix memory access types during LL and SC sequences.
That is all memory accesses must be of the same type, otherwise this may result in UNPREDICTABLE behavior.

Conditions that cause UNPREDICTABLE behavior for legacy cached LL and SC sequences may also cause such
behavior for uncached sequences.

A PAUSE instruction is no-op’d when it is preceded by an uncached LL.

The semantics of an uncached LL/SC atomic operation applies to any uncached CCA including UCA (UnCached
Accelerated). An implementation that supports UCA must guarantee that SC does not participate in store gathering
and that it ends any gathering initiated by stores preceding the SC in program order when the SC address coincides
with a gathering address.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached coherent; if it does not, the
result is UNPREDICTABLE. Release 6 (with Config5ULS =1) extends support to uncached types.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:

vAddr  sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 0

2 then
SignalException(AddressError)

endif
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
dataword  GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt]  031 || LLbit
LLbit  0 // if Config5LLB=1, SC always clears LLbit regardless of address match.

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQC T2, 0, L1 # if not atomic (0), try again

SC IStore Conditional Word

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 300

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

As shown in the instruction drawing above, Release 6 implements a 9-bit offset, whereas all release levels lower than
Release 6 of the MIPS architecture implement a 16-bit offset.

SCE IStore Conditional Word EVA

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 301

Format: SCE rt, offset(base) microMIPS

Purpose: Store Conditional Word EVA

To store a word to user mode virtual memory while operating in kernel mode to complete an atomic read-modify-
write.

Description: if atomic_update then memory[GPR[base] + offset]  GPR[rt], GPR[rt]  1 else
GPR[rt]  0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

Release 6 (with Config5ULS =1) formalizes support for uncached LLE and SCE sequences. (The description for

uncached support does not modify the description for cached support and is written in a self-contained manner.)

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective
address. The 9-bit signed offset is added to the contents of GPR base to form an effective address.

The SCE completes the RMW sequence begun by the preceding LLE instruction executed on the processor. To com-
plete the RMW sequence atomically, the following occurs:

• The 32-bit word of GPR rt is stored to memory at the location specified by the aligned effective address.

• A 1, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If either of the following events occurs between the execution of LL and SC, the SC fails:

• A coherent store is completed by another processor or coherent I/O module into the block of synchronizable
physical memory containing the word. The size and alignment of the block is implementation dependent, but it is
at least one word and at most the minimum page size.

• An ERET instruction is executed.

If either of the following events occurs between the execution of LLE and SCE, the SCE may succeed or it may fail;
the success or failure is not predictable. Portable programs should not cause one of these events.

• A memory access instruction (load, store, or prefetch) is executed on the processor executing the LLE/SCE.

• The instructions executed starting with the LLE and ending with the SCE do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SCE is UNPREDICTABLE:

• Execution of SCE must have been preceded by execution of an LLE instruction.

• An RMW sequence executed without intervening events that would cause the SCE to fail must use the same
address in the LLE and SCE. The address is the same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LLE/SCE semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
ST-EVA

1010
SCE
110

offset

6 5 5 4 3 9

SCE Store Conditional Word EVA

302 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

• Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached non coherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

• MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

• I/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made with
a memory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

The SCE instruction functions the same as the SC instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to 1.

The definition for SCE is extended for uncached memory types in a manner identical to SC. The extension is defined
in the SC instruction description.

Restrictions:

The addressed location must have a memory access type of cached non coherent or cached coherent; if it does not,
the result is UNPREDICTABLE. Release 6 (with Config5ULS =1) extends support to uncached types.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr  sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 0

2 then
SignalException(AddressError)

endif
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
dataword  GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt]  031 || LLbit

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

Programming Notes:

LLE and SCE are used to atomically update memory locations, as shown below.

L1:
LLE T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SCE T2, (T0) # try to store, checking for atomicity
BEQC T2, 0, L1 # if not atomic (0), try again

Exceptions between the LLE and SCE cause SCE to fail, so persistent exceptions must be avoided. Examples are
arithmetic operations that trap, system calls, and floating point operations that trap or require software emulation
assistance.

SCE IStore Conditional Word EVA

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 303

LLE and SCE function on a single processor for cached non coherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

SCE Store Conditional Word EVA

304 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

SCWP IStore Conditional Word Paired

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 305

Format: SCWP rt, rd, (base) microMIPS Release 6

Purpose: Store Conditional Word Paired

Conditionally store a paired word to memory to complete an atomic read-modify-write.

Description: if atomic_update then memory[GPR[base]]  {GPR[rd],GPR[rt]}, GPR[rt]  1
else GPR[rt]  0

The LLWP and SCWP instructions provide primitives to implement a paired word atomic read-modify-write (RMW)
operation at a synchronizable memory location.

Release 6 (with Config5ULS =1) formalizes support for uncached LLWP and SCWP sequences. (The description

for uncached support does not modify the description for cached support and is written in a self-contained manner.)

A paired word is formed from the concatenation of GPR rd and GPR rt. GPR rd is the most-significant word of the
paired word, and GPR rt is the least-significant word of the paired word. Thepaired word is conditionally stored in
memory at the location specified by the double-word aligned effective address from GPR base.

A paired word read or write occurs as a pair of word reads or writes that is double-word atomic.

The instruction has no offset. The effective address is equal to the contents of GPR base.

rd is intentionally positioned in a non-standard bit-range.

The SCWP completes the RMW sequence begun by the preceding LLWP instruction executed on the processor. To
complete the RMW sequence atomically, the following occur:

• The paired word formed from the concatenation of GPRs rd and rt is stored to memory at the location specified
by the double-word aligned effective address.

• A one, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

Though legal programming requires LLWP to start the atomic read-modify-write sequence and SCWP to end the
same sequence, whether the SCWP completes is only dependent on the state of LLbit and LLAddr, which are set by
a preceding load-linked instruction of any type. Software must assume that pairing load-linked and store-conditional
instructions in an inconsistent manner causes UNPREDICTABLE behavior.

The SCWP must always compare its double-word aligned address against that of the preceding LLWP. The SCWP
will fail if the address does not match that of the preceding LLWP.

Events that occur between the execution of load-linked and store-conditional instruction types that must cause the
sequence to fail are given in the legacy SC instruction description.

Additional events that occur between the execution of load-linked and store-conditional instruction types that may
cause success of the sequence to be UNPREDICTABLE are defined in the SC instruction description.

A load that executes on the processor executing the LLWP/SCWP sequence to the block of synchronizable physical
memory containing the paired word, will not cause the SCWP to fail.

Effect of CACHE operations, both local and remote, on a paired word atomic operation are defined in the SC instruc-
tion description.

31 26 25 21 20 16 15 12 11 9 8 4 3 0

POOL32C
011000

rt base
SCWP
1001

0
000

rd
0

0000

6 5 5 4 3 5 4

SCWP Store Conditional Word Paired

306 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location. Requirements for Uniprocessor, MP and I/O atomicity are given in the SC definition.

The definition for SCWP is extended for uncached memory types in a manner identical to SC. The extension is
defined in the SC instruction description.

Restrictions:

Load-Linked and Store-Conditional instruction types require that the addressed location must have a memory access
type of cached noncoherent or cached coherent, that is the processor must have a cache. If it does not, the result is
UNPREDICTABLE. Release 6 (with Config5ULS =1) extends support to uncached types.

The architecture optionally allows support for Load-Linked and Store-Conditional instruction types in a cacheless
processor. Support for cacheless operation is implementation dependent. In this case, LLAddr is optional.

Providing misaligned support is not a requirement for this instruction.

Availability and Compatibility

This instruction is introduced by Release 6. It is only present if Config5XNP=0.

Operation:

vAddr  GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
datadoubleword31..0  GPR[rt]
datadoubleword63..32  GPR[rd]
if (LLbit && (pAddr == LLAddr))then
// PAIREDWORD: two word data-type that is double-word atomic

StoreMemory (CCA, PAIREDWORD, datadoubleword, pAddr, vAddr, DATA)
GPR[rt]  031 || 1’b1

else
GPR[rt]  032

endif
LLbit  0

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Reserved Instruction, Address Error, Watch

Programming Notes:

LLWP and SCWP are used to atomically update memory locations, as shown below.

L1:
LLWP T2, T3, (T0) # load T2 and T3
BOVC T2, 1, U32 # check whether least-significant word may overflow
ADDI T2, T2, 1 # increment lower - only
SCWP T2, T3, (T0) # store T2 and T3
BEQC T2, 0, L1 # if not atomic (0), try again

U32:
ADDI T2, T2, 1 # increment lower
ADDI T3, T3, 1 # increment upper
SCWP T2, T3, (T0)
BEQC T2, 0, L1 # if not atomic (0), try again

SCWP IStore Conditional Word Paired

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 307

Exceptions between the LLWP and SCWP cause SC to fail, so persistent exceptions must be avoided. Some examples
of these are arithmetic operations that trap, system calls, and floating point operations that trap or require software
emulation assistance.

LLWP and SCWP function on a single processor for cached noncoherent memory so that parallel programs can be
run on uniprocessor systems that do not support cached coherent memory access types.

SCWP Store Conditional Word Paired

308 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

SCWPE IStore Conditional Word Paired EVA

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 309

Format: SCWPE rt, rd, (base) microMIPS Release 6

Purpose: Store Conditional Word Paired EVA

Conditionally store a paired word to memory to complete an atomic read-modify-write. The store occurs in kernel
mode to user virtual address space.

Description: if atomic_update then memory[GPR[base]] {GPR[rd],GPR[rt]}, GPR[rt]  1
else GPR[rt]  0

The LLWPE and SCWPE instructions provide primitives to implement a paired word atomic read-modify-write
(RMW) operation at a synchronizable memory location.

Release 6 (with Config5ULS =1) formalizes support for uncached LLWPE and SCWPE sequences. (The description

for uncached support does not modify the description for cached support and is written in a self-contained manner.)

A paired word is formed from the concatentation of GPR rd and GPR rt. GPR rd is the most-significant word of the
double-word, and GPR rt is the least-significant word of the double-word. Thepaired word is conditionally stored in
memory at the location specified by the double-word aligned effective address from GPR base.

A paired word read or write occurs as a pair of word reads or writes that is double-word atomic.

The instruction has no offset. The effective address is equal to the contents of GPR base.

rd is intentionally positioned in a non-standard bit-range.

The SCWPE completes the RMW sequence begun by the preceding LLWPE instruction executed on the processor.
To complete the RMW sequence atomically, the following occur:

• The paired word formed from the concatenation of GPRs rd and rt is stored to memory at the location specified
by the double-word aligned effective address.

• A one, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

Though legal programming requires LLWPE to start the atomic read-modify-write sequence and SCWPE to end the
same sequence, whether the SCWPE completes is only dependent on the state of LLbit and LLAddr, which are set
by a preceding load-linked instruction of any type. Software must assume that pairing load-linked and store-condi-
tional instructions in an inconsistent manner causes UNPREDICTABLE behavior.

The SCWPE must always compare its double-word aligned address against that of the preceding LLWPE. The
SCWPE will fail if the address does not match that of the preceding LLWPE.

The SCWPE instruction functions the same as the SCWP instruction, except that address translation is performed
using the user mode virtual address space mapping in the TLB when accessing an address within a memory segment
configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also acces-
sible. Refer to Volume III, Segmentation Control for additional information.

Events that occur between the execution of load-linked and store-conditional instruction types that must cause the
sequence to fail are given in the legacy SC instruction definition..

Additional events that occur between the execution of load-linked and store-conditional instruction types that may
cause success of the sequence to be UNPREDICTABLE are defined in the SC instruction definition.

31 26 25 21 20 16 15 12 11 9 8 4 3 0

POOL32C
011000

rt base
ST-EVA

1010
SCWPE

000
rd

0
0000

6 5 5 4 3 5 4

SCWPE IStore Conditional Word Paired EVA

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 310

A load that executes on the processor executing the LLWPE/SCWPE sequence to the block of synchronizable physi-
cal memory containing the paired word, will not cause the SCWPE to fail.

Effect of CACHE operations, both local and remote, on a paired word atomic operation are defined in the SC instruc-
tion definition.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location. Requirements for Uniprocessor, MP and I/O atomicity are given in the SC definition.

The definition for SCWPE is extended for uncached memory types in a manner identical to SC. The extension is
defined in the SC instruction description.

Restrictions:

Load-Linked and Store-Conditional instruction types require that the addressed location must have a memory access
type of cached noncoherent or cached coherent, that is the processor must have a cache. If it does not, the result is
UNPREDICTABLE. Release 6 (with Config5ULS =1) extends support to uncached types.

The architecture optionally allows support for Load-Linked and Store-Conditional instruction types in a cacheless
processor. Support for cacheless operation is implementation dependent. In this case, LLAddr is optional.

Providing misaligned support is not a requirement for this instruction.

Availability and Compatibility

This instruction is introduced by Release 6. It is only present if Config5XNP=0 and Config5EVA=1.

Operation:

vAddr  GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
datadoubleword31..0  GPR[rt]
datadoubleword63..32  GPR[rd]
if (LLbit && (pAddr == LLAddr))then

// PAIREDWORD: two word data-type that is double-word atomic
StoreMemory (CCA, PAIREDWORD, datadoubleword, pAddr, vAddr, DATA)
GPR[rt]  031 || 1’b1

else
GPR[rt]  032

endif
LLbit  0

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Reserved Instruction, Address Error, Watch, Coprocessor Unusable.

Programming Notes:

LLWPE and SCWPE are used to atomically update memory locations, as shown below.

L1:
LLWPE T2, T3,(T0) # load T2 and T3
BOVC T2, 1, U32 # check whether least-significant word may overflow
ADDI T2, T2, 1 # increment lower - only
SCWPE T2, T3, (T0) # store T2 and T3
BEQC T2, 0, L1 # if not atomic (0), try again

SCWPE IStore Conditional Word Paired EVA

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 311

U32:
ADDI T2, T2, 1 # increment lower
ADDI T3, T3, 1 # increment upper
SCWPE T2, T3, (T0)
BEQC T2, 0, L1 # if not atomic (0), try again

Exceptions between the LLWPE and SCWPE cause SC to fail, so persistent exceptions must be avoided. Some exam-
ples of these are arithmetic operations that trap, system calls, and floating point operations that trap or require soft-
ware emulation assistance.

LLWPE and SCWPE function on a single processor for cached noncoherent memory so that parallel programs can be
run on uniprocessor systems that do not support cached coherent memory access types.

SDBBP ISoftware Debug Breakpoint

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 312

Format: SDBBP code EJTAG microMIPS

Purpose: Software Debug Breakpoint

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the DebugDExcCode field to the value 0x9 (Bp). The code field can be used for passing information to the debug

exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

if Config5.SBRI=1 then /* SBRI is a MIPS Release 6 feature */
SignalException(ReservedInstruction) endif

If DebugDM = 1 then SignalDebugModeBreakpointException() endif // nested
SignalDebugBreakpointException() // normal

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

31 26 25 16 15 6 5 0

POOL32A
000000

code - use syscall
SDBBP

1101101101
POOL32AXf

111100

6 10 10 6

SDC1 Store Doubleword from Floating Point

313 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SDC1 ft, offset(base) microMIPS

Purpose: Store Doubleword from Floating Point

To store a doubleword from an FPR to memory.

Description: memory[GPR[base] + offset]  FPR[ft]

The 64-bit doubleword in FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation(vAddr, DATA, STORE)
datadoubleword  ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SDC132
101110

ft base offset

6 5 5 16

SDC2 IStore Doubleword from Coprocessor 2

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 314

Format: SDC2 rt, offset(base) microMIPS

Purpose: Store Doubleword from Coprocessor 2

To store a doubleword from a Coprocessor 2 register to memory

Description: memory[GPR[base] + offset]  CPR[2,rt,0]

The 64-bit doubleword in Coprocessor 2 register rt is stored in memory at the location specified by the aligned effec-
tive address. The 12-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation(vAddr, DATA, STORE)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

As shown in the instruction drawing above, Release 6 implements an 11-bit offset, whereas all release levels lower
than Release 6 of the MIPS architecture implement a 16-bit offset.

31 26 25 21 20 16 15 12 11 10 0

POOL32B
110110

rt base
SDC2
1010

0
0

offset

6 5 5 4 1 11

SEB Sign-Extend Byte

315 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SEB rt, rs microMIPS

Purpose: Sign-Extend Byte

To sign-extend the least significant byte of GPR rs and store the value into GPR rt.

Description: GPR[rt]  SignExtend(GPR[rs]7..0)

The least significant byte from GPR rs is sign-extended and stored in GPR rt.

Restrictions:

Prior to architecture Release 2, this instruction resulted in a Reserved Instruction exception.

Operation:

GPR[rt]  sign_extend(GPR[rs]7..0)

Exceptions:

Reserved Instruction

Programming Notes:

For symmetry with the SEB and SEH instructions, you expect that there would be ZEB and ZEH instructions that
zero-extend the source operand and expect that the SEW and ZEW instructions would exist to sign- or zero-extend a
word to a doubleword. These instructions do not exist because there are functionally-equivalent instructions already
in the instruction set. The following table shows the instructions providing the equivalent functions.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
SEB

0010101100
POOL32AXf

111100

6 5 5 10 6

Expected Instruction Function Equivalent Instruction

ZEB rx,ry Zero-Extend Byte ANDI rx,ry,0xFF

ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,0xFFFF

SEH ISign-Extend Halfword

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 316

Format: SEH rt, rs microMIPS

Purpose: Sign-Extend Halfword

To sign-extend the least significant halfword of GPR rs and store the value into GPR rt.

Description: GPR[rt]  SignExtend(GPR[rs]15..0)

The least significant halfword from GPR rs is sign-extended and stored in GPR rt.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

GPR[rt]  signextend(GPR[rs]15..0)

Exceptions:

Reserved Instruction

Programming Notes:

The SEH instruction can be used to convert two contiguous halfwords to sign-extended word values in three instruc-
tions. For example:

lw t0, 0(a1) /* Read two contiguous halfwords */
seh t1, t0 /* t1 = lower halfword sign-extended to word */
sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */

Zero-extended halfwords can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

For symmetry with the SEB and SEH instructions, you expect that there would be ZEB and ZEH instructions that
zero-extend the source operand and expect that the SEW and ZEW instructions would exist to sign- or zero-extend a
word to a doubleword. These instructions do not exist because there are functionally-equivalent instructions already
in the instruction set. The following table shows the instructions providing the equivalent functions.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
SEH

0011101100
POOL32AXf

111100

6 5 5 10 6

Expected Instruction Function Equivalent Instruction

ZEB rx,ry Zero-Extend Byte ANDI rx,ry,0xFF

ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,0xFFFF

SEL.fmt Select floating point values with FPR condition

317 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SEL.fmt
SEL fd, fs, ft, fmt microMIPS32 Release 6

Purpose: Select floating point values with FPR condition

Description: FPR[fd]  FPR[fd].bit0 ? FPR[ft] : FPR[fs]

SEL fmt is a select operation, with a condition input in FPR fd, and 2 data inputs in FPRs ft and fs.

• If the condition is true, the value of ft is written to fd.

• If the condition is false, the value of fs is written to fd.

The condition input is specified by FPR fd, and is overwritten by the result.

The condition is true only if bit 0 of the condition input FPR fd is set. Other bits are ignored.

This instruction has floating point formats S and D, but these specify only the width of the operands. SEL.S can be
used for 32-bit W data, and SEL.D can be used for 64 bit L data.

This instruction does not cause data-dependent exceptions. It does not trap on NaNs. It does not set the FPU Cause
bits.

Restrictions:

None

Availability and Compatibility:

SEL fmt is introduced by and required as of microMIPS32 Release 6.

Special Considerations:

Only formats S and D are valid. Other format values may be used to encode other instructions. Unused format encod-
ings are required to signal the Reserved Instruction exception.

Operation:

tmp  ValueFPR(fd, UNINTERPRETED_WORD)
cond  tmp.bit0
if cond then

tmp  ValueFPR(ft, fmt)
else

tmp  ValueFPR(fs, fmt)
endif
StoreFPR(fd, fmt, tmp)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

ft fs fd fmt
SEL

010111000

6 5 5 5 2 9

SELEQZ SELNEZ ISelect integer GPR value or zero

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 318

Format: SELEQZ SELNEZ
SELEQZ rd,rs,rt microMIPS32 Release 6
SELNEZ rd,rs,rt microMIPS32 Release 6

Purpose: Select integer GPR value or zero

Description:

SELEQZ: GPR[rd]  GPR[rt] ? 0 : GPR[rs]
SELNEZ: GPR[rd]  GPR[rt] ? GPR[rs] : 0

• SELEQZ is a select operation, with a condition input in GPR rt, one explicit data input in GPR rs, and implicit
data input 0. The condition is true only if all bits in GPR rt are zero.

• SELNEZ is a select operation, with a condition input in GPR rt, one explicit data input in GPR rs, and implicit
data input 0. The condition is true only if any bit in GPR rt is nonzero

If the condition is true, the value of rs is written to rd.

If the condition is false, the zero written to rd.

This instruction operates on all GPRLEN bits of the CPU registers, that is, all 32 bits on a 32-bit CPU, and all 64 bits
on a 64-bit CPU. All GPRLEN bits of rt are tested.

Restrictions:

None

Availability and Compatibility:

These instructions are introduced by and required as of MIPS32 Release 6.

Special Considerations:

None

Operation:

SELNEZ: cond  GPR[rt]  0
SELEQZ: cond  GPR[rt] = 0
if cond then

tmp  GPR[rs]
else

tmp  0
endif
GPR[rd]  tmp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

POOL32A
000000

rt rs rd 0
SELEQZ

0101000000

POOL32A
000000

rt rs rd 0
SELNEZ

0110000000

6 5 5 5 1 10

SELEQZ SELNEZ Select integer GPR value or zero

319 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Programming Note:

Release 6 removes the Pre-Release 6 instructions MOVZ and MOVN:
MOVZ: if GPR[rt] = 0 then GPR[rd]  GPR[rs]
MOVN: if GPR[rt] ≠ 0 then GPR[rd]  GPR[rs]

MOVZ can be emulated using Release 6 instructions as follows:
SELEQZ at, rs, rt
SELNEZ rd, rd, rt
OR rd, rd, at

Similarly MOVN:
SELNEZ at, rs, rt
SELEQZ rd, rd, rt
OR rd, rd, at

The more general select operation requires 4 registers (1 output + 3 inputs (1 condition + 2 data)) and can be
expressed:

rD  if rC then rA else rB

The more general select can be created using Release 6 instructions as follows:
SELNEZ at, rB, rC
SELNEZ rD, rA, rC
OR rD, rD, at

SELEQZ.fmt SELNEQZ.fmt ISelect floating point value or zero with FPR condition.

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 320

Format: SELEQZ.fmt SELNEQZ.fmt
SELEQZ.S fd,fs,ft microMIPS32 Release 6
SELEQZ.D fd,fs,ft microMIPS32 Release 6
SELNEZ.S fd,fs,ft microMIPS32 Release 6
SELNEZ.D fd,fs,ft microMIPS32 Release 6

Purpose: Select floating point value or zero with FPR condition.

Description:

SELEQZ.fmt: FPR[fd]  FPR[ft].bit0 ? 0 : FPR[fs]
SELNEZ.fmt: FPR[fd]  FPR[ft].bit0 ? FPR[fs]: 0

• SELEQZ.fmt is a select operation, with a condition input in FPR ft, one explicit data input in FPR fs, and
implicit data input 0. The condition is true only if bit 0 of FPR ft is zero.

• SELNEZ.fmt is a select operation, with a condition input in FPR ft, one explicit data input in FPR fs, and
implicit data input 0. The condition is true only if bit 0 of FPR ft is nonzero.

If the condition is true, the value of fs is written to fd.

If the condition is false, the value that has all bits zero is written to fd.

This instruction has floating point formats S and D, but these specify only the width of the operands. Format S can be
used for 32-bit W data, and format D can be used for 64 bit L data. The condition test is restricted to bit 0 of FPR ft.
Other bits are ignored.

This instruction has no execution exception behavior. It does not trap on NaNs. It does not set the FPU Cause bits.

Restrictions:

FPR fd destination register bits beyond the format width are UNPREDICTABLE. For example, if fmt is S, then fd
bits 0-31 are defined, but bits 32 and above are UNPREDICTABLE. If fmt is D, then fd bits 0-63 are defined.

Availability and Compatibility:

These instructions are introduced by and required as of MIPS32 Release 6.

Special Considerations:

Only formats S and D are valid. Other format values may be used to encode other instructions. Unused format encod-
ings are required to signal the Reserved Instruction exception.

Operation:

tmp  ValueFPR(ft, UNINTERPRETED_WORD)
SELEQZ: cond  tmp.bit0 = 0
SELNEZ: cond  tmp.bit0  0
if cond then

tmp  ValueFPR(fs, fmt)
else

tmp  0 /* all bits set to zero */

31 26 25 21 20 16 15 11 10 6 5 0

POOL32F
010101

ft fs fd fmt
SELEQZ fmt
000111000

POOL32F
010101

ft fs fd fmt
SELNEZ fmt
001111000

6 5 5 5 2 9

SELEQZ.fmt SELNEQZ.fmt Select floating point value or zero with FPR condition.

321 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

endif
StoreFPR(fd, fmt, tmp)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

SH IStore Halfword

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 322

Format: SH rt, offset(base) microMIPS

Purpose: Store Halfword

To store a halfword to memory.

Description: memory[GPR[base] + offset]  GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor (ReverseEndian || 0))
bytesel  vAddr1..0 xor (BigEndianCPU || 0)
dataword  GPR[rt]31-8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SH32
001110

rt base offset

6 5 5 16

SHE Store Halfword EVA

323 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SHE rt, offset(base) microMIPS

Purpose: Store Halfword EVA

To store a halfword to user mode virtual address space when executing in kernel mode.

Description: memory[GPR[base] + offset]  GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The SHE instruction functions the same as the SH instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to 1.

Restrictions:

Only usable in kernel mode when accessing an address within a segment configured using UUSK, MUSK or
MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor (ReverseEndian || 0))
bytesel  vAddr1..0 xor (BigEndianCPU || 0)
dataword  GPR[rt]31-8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
ST-EVA

1010
SHE
101

offset

6 5 5 4 3 9

SIGRIE ISignal Reserved Instruction Exception

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 324

Format: SIGRIE code MIPS32 Release 6

Purpose: Signal Reserved Instruction Exception

The SIGRIE instruction signals a Reserved Instruction exception.

Description: SignalException(ReservedInstruction)

The SIGRIE instruction signals a Reserved Instruction exception. Implementations should use exactly the same
mechanisms as they use for reserved instructions that are not defined by the Architecture.

The 16-bit code field is available for software use.

Restrictions:

The 16-bit code field is available for software use. The value zero is considered the default value. Software may pro-
vide extended functionality by interpreting nonzero values of the code field in a manner that is outside the scope of
this architecture specification.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Pre-Release 6: this instruction encoding was reserved, and required to signal a Reserved Instruction exception. There-
fore this instruction can be considered to be both backwards and forwards compatible.

Operation:

SignalException(ReservedInstruction)

Exceptions:

Reserved Instruction

31 26 25 22 21 6 5 0

POOL32A
000000

0000 code
SIGRIE
111111

6 4 16 6

SLL Shift Word Left Logical

325 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SLL rt, rs, sa microMIPS

Purpose: Shift Word Left Logical

To left-shift a word by a fixed number of bits.

Description: GPR[rt]  GPR[rs] << sa

The contents of the low-order 32-bit word of GPR rs are shifted left, inserting zeros into the emptied bits. The word
result is placed in GPR rt. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

s  sa
temp  GPR[rs](31-s)..0 || 0

s

GPR[rt]  temp

Exceptions:

None

Programming Notes:

SLL r0, r0, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL r0, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that causes an issue break on
superscalar processors.

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs sa 0
SLL32

0000000000

6 5 5 5 1 10

SLLV IShift Word Left Logical Variable

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 326

Format: SLLV rd, rt, rs microMIPS

Purpose: Shift Word Left Logical Variable

To left-shift a word by a variable number of bits.

Description: GPR[rd]  GPR[rt] << GPR[rs]

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits. The result-
ing word is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

None

Operation:

s  GPR[rs]4..0
temp  GPR[rt](31-s)..0 || 0

s

GPR[rd]  temp

Exceptions:

None

Programming Notes:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
SLLV

00000010000

6 5 5 5 1 10

SLT Set on Less Than

327 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SLT rd, rs, rt microMIPS

Purpose: Set on Less Than

To record the result of a less-than comparison.

Description: GPR[rd]  (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as signed integers; record the Boolean result of the comparison in
GPR rd. If GPR rs is less than GPR rt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
GPR[rd]  0GPRLEN-1 || 1

else
GPR[rd]  0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 0

POOL32A
000000

rt rs rd 0
SLT

1101010000

6 5 5 5 1 10

SLTI ISet on Less Than Immediate

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 328

Format: SLTI rt, rs, immediate microMIPS

Purpose: Set on Less Than Immediate

To record the result of a less-than comparison with a constant.

Description: GPR[rt]  (GPR[rs] < sign_extend(immediate))

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; record the Boolean result of the
comparison in GPR rt. If GPR rs is less than immediate, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
GPR[rt]  0GPRLEN-1|| 1

else
GPR[rt]  0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTI32
100100

rt rs immediate

6 5 5 16

SLTIU Set on Less Than Immediate Unsigned

329 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SLTIU rt, rs, immediate microMIPS

Purpose: Set on Less Than Immediate Unsigned

To record the result of an unsigned less-than comparison with a constant.

Description: GPR[rt]  (GPR[rs] < sign_extend(immediate))

Compare the contents of GPR rs and the sign-extended 16-bit immediate as unsigned integers; record the Boolean
result of the comparison in GPR rt. If GPR rs is less than immediate, the result is 1 (true); otherwise, it is 0 (false).

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
GPR[rt]  0GPRLEN-1 || 1

else
GPR[rt]  0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTIU32
101100

rt rs immediate

6 5 5 16

SLTU ISet on Less Than Unsigned

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 330

Format: SLTU rd, rs, rt microMIPS

Purpose: Set on Less Than Unsigned

To record the result of an unsigned less-than comparison.

Description: GPR[rd]  (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as unsigned integers; record the Boolean result of the comparison in
GPR rd. If GPR rs is less than GPR rt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
GPR[rd]  0GPRLEN-1 || 1

else
GPR[rd]  0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
SLTU

1110010000

6 5 5 5 1 10

SQRT.fmt Floating Point Square Root

331 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SQRT.fmt
SQRT.S ft, fs MIPS32
SQRT.D ft, fs MIPS32

Purpose: Floating Point Square Root

To compute the square root of an FP value.

Description: FPR[ft]  SQRT(FPR[fs])

The square root of the value in FPR fs is calculated to infinite precision, rounded according to the current rounding
mode in FCSR, and placed into FPR ft. The operand and result are values in format fmt.

If the value in FPR fs corresponds to – 0, the result is – 0.

Restrictions:

If the value in FPR fs is less than 0, an Invalid Operation condition is raised.

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, fmt, SquareRoot(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Inexact, Unimplemented Operation

31 26 25 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
SQRT.fmt
00101000

POOL32FXf
111011

6 5 5 1 1 8 6

SRA IShift Word Right Arithmetic

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 332

Format: SRA rt, rs, sa microMIPS

Purpose: Shift Word Right Arithmetic

To execute an arithmetic right-shift of a word by a fixed number of bits.

Description: GPR[rt]  GPR[rs] >> sa (arithmetic)

The contents of the low-order 32-bit word of GPR rs are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GPR rt. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

s  sa
temp  GPR[rs]31)

s || GPR[rs]31..s
GPR[rt]  temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs sa 0
SRA

0010000000

6 5 5 5 1 10

SRAV Shift Word Right Arithmetic Variable

333 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SRAV rd, rt, rs microMIPS

Purpose: Shift Word Right Arithmetic Variable

To execute an arithmetic right-shift of a word by a variable number of bits.

Description: GPR[rd]  GPR[rt] >> GPR[rs] (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

None

Operation:

s  GPR[rs]4..0
temp  (GPR[rt]31)

s || GPR[rt]31..s
GPR[rd]  temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
SRAV

0010010000

6 5 5 5 1 10

SRL IShift Word Right Logical

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 334

Format: SRL rt, rs, sa microMIPS

Purpose: Shift Word Right Logical

To execute a logical right-shift of a word by a fixed number of bits.

Description: GPR[rt]  GPR[rs] >> sa (logical)

The contents of the low-order 32-bit word of GPR rs are shifted right, inserting zeros into the emptied bits. The word
result is placed in GPR rt. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

s  sa
temp  0s || GPR[rs]31..s
GPR[rt]  temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs sa 0
SRL32

0001000000

6 5 5 5 1 10

SRLV Shift Word Right Logical Variable

335 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SRLV rd, rt, rs microMIPS

Purpose: Shift Word Right Logical Variable

To execute a logical right-shift of a word by a variable number of bits.

Description: GPR[rd]  GPR[rt] >> GPR[rs] (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

None

Operation:

s  GPR[rs]4..0
temp  0s || GPR[rt]31..s
GPR[rd]  temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
SRLV

00010010000

6 5 5 5 1 10

SSNOP ISuperscalar No Operation

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 336

Format: SSNOP microMIPS

Purpose: Superscalar No Operation

Break superscalar issue on a superscalar processor.

Description:

SSNOP is the assembly idiom used to denote superscalar no operation. The actual instruction is interpreted by the
hardware as SLL r0, r0, 1.

This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP instruction to
single-issue. The processor must then end the current instruction issue between the instruction previous to the SSNOP
and the SSNOP. The SSNOP then issues alone in the next issue slot.

On a single-issue processor, this instruction is a NOP that takes an issue slot.

Restrictions:

None

Availability and Compatibility

Release 6: the special no-operation instruction SSNOP is deprecated: it behaves the same as a conventional NOP. Its
special behavior with respect to instruction issue is no longer guaranteed. The EHB and JR.HB instructions are pro-
vided to clear execution and instruction hazards.

Assemblers targeting specifically Release 6 should reject the SSNOP instruction with an error.

Operation:

None

Exceptions:

None

Programming Notes:

SSNOP is intended for use primarily to allow the programmer control over CP0 hazards by converting instructions
into cycles in a superscalar processor. For example, to insert at least two cycles between an MTC0 and an ERET, one
would use the following sequence:

mtc0 x,y
ssnop
ssnop
eret

The MTC0 issues in cycle T. Because the SSNOP instructions must issue alone, they may issue no earlier than cycle
T+1 and cycle T+2, respectively. Finally, the ERET issues no earlier than cycle T+3. Although the instruction after an
SSNOP may issue no earlier than the cycle after the SSNOP is issued, that instruction may issue later. This is because
other implementation-dependent issue rules may apply that prevent an issue in the next cycle. Processors should not
introduce any unnecessary delay in issuing SSNOP instructions.

31 26 25 11 10 6 5 0

POOL32A
000000

0
00000

0
00000

1
00001

0
0000

SLL32
000000

6 5 5 5 5 6

SUB Subtract Word

337 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SUB rd, rs, rt microMIPS

Purpose: Subtract Word

To subtract 32-bit integers. If overflow occurs, then trap.

Description: GPR[rd]  GPR[rs]  GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs to produce a 32-bit result. If the sub-
traction results in 32-bit 2’s complement arithmetic overflow, then the destination register is not modified and an Inte-
ger Overflow exception occurs. If it does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

None

Operation:

temp  (GPR[rs]31||GPR[rs]31..0)  (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd]  temp31..0
endif

Exceptions:

Integer Overflow

Programming Notes:

SUBU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
SUB

0110010000

6 5 5 5 1 10

SUB.fmt IFloating Point Subtract

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 338

Format: SUB.fmt
SUB.S fd, fs, ft microMIPS
SUB.D fd, fs, ft microMIPS

Purpose: Floating Point Subtract

To subtract FP values.

Description: FPR[fd]  FPR[fs]  FPR[ft]

The value in FPR ft is subtracted from the value in FPR fs. The result is calculated to infinite precision, rounded
according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in for-
mat fmt.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Availability and Compatibility:

SUB.PS has been removed in Release 6.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) fmt ValueFPR(ft, fmt))

CPU Exceptions:

Coprocessor Unusable, Reserved Instruction

FPU Exceptions:

Inexact, Overflow, Underflow, Invalid Op, Unimplemented Op

31 26 25 21 20 16 15 11 10 9 8 7 5 0

POOL32F
010101

ft fs fd 0 fmt
SUB fmt
01110000

6 5 5 5 1 2 8

SUBU Subtract Unsigned Word

339 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SUBU rd, rs, rt microMIPS

Purpose: Subtract Unsigned Word

To subtract 32-bit integers.

Description: GPR[rd]  GPR[rs]  GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic result is and
placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp  GPR[rs]  GPR[rt]
GPR[rd]  temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

POOL32A
000000

rt rs rd 0
SUBU32

0111010000

6 5 5 5 1 10

SW IStore Word

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 340

Format: SW rt, offset(base) microMIPS

Purpose: Store Word

To store a word to memory.

Description: memory[GPR[base] + offset]  GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
dataword  GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SW32
111110

rt base offset

6 5 5 16

SWE Store Word EVA

341 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SWE rt, offset(base) microMIPS

Purpose: Store Word EVA

To store a word to user mode virtual address space when executing in kernel mode.

Description: memory[GPR[base] + offset]  GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The SWE instruction functions the same as the SW instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5EVA field being set to 1.

Restrictions:

Only usable in kernel mode when accessing an address within a segment configured using UUSK, MUSK or
MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
dataword  GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 16 15 12 11 9 8 0

POOL32C
011000

rt base
ST-EVA

1010
SWE
111

offset

6 5 5 4 3 9

SWC1 IStore Word from Floating Point

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 342

SWC1 ft, offset(base) microMIPS

Purpose: Store Word from Floating Point

To store a word from an FPR to memory.

Description: memory[GPR[base] + offset]  FPR[ft]

The low 32-bit word from FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation(vAddr, DATA, STORE)
dataword  ValueFPR(ft, UNINTERPRETED_WORD)
StoreMemory(CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SWC132
100110

ft base offset

6 5 5 16

SWC2 Store Word from Coprocessor 2

343 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SWC2 rt, offset(base) microMIPS

Purpose: Store Word from Coprocessor 2

To store a word from a COP2 register to memory

Description: memory[GPR[base] + offset]  CPR[2,rt,0]

The low 32-bit word from COP2 (Coprocessor 2) register rt is stored in memory at the location specified by the
aligned effective address. The signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:

vAddr  sign_extend(offset) + GPR[base]
(pAddr, CCA)  AddressTranslation(vAddr, DATA, STORE)
dataword  CPR[2,rt,0]
StoreMemory(CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

As shown in the instruction drawing above, Release 6 implements an 11-bit offset, whereas all release levels lower
than Release 6 of the MIPS architecture implement a 16-bit offset.

31 26 25 21 20 16 15 12 11 10 0

POOL32B
001000

rt base
SWC2
1000

0
0

offset

6 5 5 4 1 11

SYNC ISynchronize Shared Memory

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 344

Format: SYNC (stype = 0 implied) microMIPS
SYNC stype microMIPS

Purpose: Synchronize Shared Memory

To order loads and stores for shared memory.

Release 6 (with Config5GI =10/11) extends SYNC for Global Invalidate instructions (GINVI/GINVT).

Description:

These types of ordering guarantees are available through the SYNC instruction:

• Completion Barriers

• Ordering Barriers

Completion Barrier — Simple Description:

• The barrier affects only uncached and cached coherent loads and stores.

• The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must be
completed before the specified memory instructions after the SYNC are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is
visible to every other processor in the system.

Completion Barrier — Detailed Description:

• Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must be already globally performed before any synchronizable speci-
fied memory instructions that occur after the SYNC are allowed to be performed, with respect to any other
processor or coherent I/O module.

• The barrier does not guarantee the order in which instruction fetches are performed.

• A stype value of zero will always be defined such that it performs the most complete set of synchronization
operations that are defined.This means stype zero always does a completion barrier that affects both loads
and stores preceding the SYNC instruction and both loads and stores that are subsequent to the SYNC
instruction. Non-zero values of stype may be defined by the architecture or specific implementations to per-
form synchronization behaviors that are less complete than that of stype zero. If an implementation does not
use one of these non-zero values to define a different synchronization behavior, then that non-zero value of
stype must act the same as stype zero completion barrier. This allows software written for an implementation
with a lighter-weight barrier to work on another implementation which only implements the stype zero com-
pletion barrier.

• A completion barrier is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture)
or EHB (in Release 2 of the Architecture), to guarantee that memory reference results are visible across
operating mode changes. For example, a completion barrier is required on some implementations on entry to
and exit from Debug Mode to guarantee that memory effects are handled correctly.

31 26 25 16 15 6 5 0

POOL32A
000000

0
0000000000

stype
SYNC

0110101101
POOL32AXf

111100

6 5 5 10 6

SYNC Synchronize Shared Memory

345 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

SYNC behavior when the stype field is zero:

• A completion barrier that affects preceding loads and stores and subsequent loads and stores.

Ordering Barrier — Simple Description:

• The barrier affects only uncached and cached coherent loads and stores.

• The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must
always be ordered before the specified memory instructions after the SYNC.

• Memory instructions which are ordered before other memory instructions are processed by the load/store
datapath first before the other memory instructions.

Ordering Barrier — Detailed Description:

• Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must reach a stage in the load/store datapath after which no instruction
re-ordering is possible before any synchronizable specified memory instruction which occurs after the
SYNC instruction in the instruction stream reaches the same stage in the load/store datapath.

• If any memory instruction before the SYNC instruction in program order, generates a memory request to the
external memory and any memory instruction after the SYNC instruction in program order also generates a
memory request to external memory, the memory request belonging to the older instruction must be globally
performed before the time the memory request belonging to the younger instruction is globally performed.

• The barrier does not guarantee the order in which instruction fetches are performed.

As compared to the completion barrier, the ordering barrier is a lighter-weight operation as it does not require the
specified instructions before the SYNC to be already completed. Instead it only requires that those specified instruc-
tions which are subsequent to the SYNC in the instruction stream are never re-ordered for processing ahead of the
specified instructions which are before the SYNC in the instruction stream. This potentially reduces how many cycles
the barrier instruction must stall before it completes.

The Acquire and Release barrier types are used to minimize the memory orderings that must be maintained and still
have software synchronization work.

Implementations that do not use any of the non-zero values of stype to define different barriers, such as ordering bar-
riers, must make those stype values act the same as stype zero.

For the purposes of this description, the CACHE, PREF and PREFX instructions are treated as loads and stores. That
is, these instructions and the memory transactions sourced by these instructions obey the ordering and completion
rules of the SYNC instruction.

If Global Invalidate instructions are supported in Release 6, then SYNC (stype=0x14) acts as a completion barrier to
ensure completion of any preceding GINVI or GINVT operation. This SYNC operation is globalized and only com-
pletes if all preceding GINVI or GINVT operations related to the same program have completed in the system. (Any
references to GINVT also imply GINVGT, available in a virtualized MIPS system. GINVT however will be used
exclusively.)

A system that implements the Global Invalidates also requires that the completion of this SYNC be constrained by
legacy SYNCI operations. Thus SYNC (stype=0x14) can also be used to determine whether preceding (in program
order) SYNCI operations have completed.

SYNC ISynchronize Shared Memory

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 346

The SYNC (stype=0x14) also act as an ordering barrier as described in Table 6.28.

In the typical use cases, a single GINVI is used by itself to invalidate caches and would be followed by a SYNC
(stype=0x14).

In the case of GINVT, multiple GINVT could be used to invalidate multiple TLB mappings, and the SYNC
(stype=0x14) would be used to guaranteed completion of any number of GINVTs preceding it.

Table 6.28 lists the available completion barrier and ordering barriers behaviors that can be specified using the stype
field.

Table 6.28 Encodings of the Bits[10:6] of the SYNC instruction; the SType Field

Code Name

Older instructions
which must reach

the load/store
ordering point

before the SYNC
instruction
completes.

Younger
instructions

which must reach
the load/store
ordering point
only after the

SYNC instruction
completes.

Older instructions
which must be

globally
performed when

the SYNC
instruction
completes Compliance

0x0 SYNC
or

SYNC 0

Loads, Stores Loads, Stores Loads, Stores Required

0x4 SYNC_WMB
or

SYNC 4

Stores Stores Optional

0x10 SYNC_MB
or

SYNC 16

Loads, Stores Loads, Stores Optional

0x11 SYNC_ACQUIRE
or

SYNC 17

Loads Loads, Stores Optional

0x12 SYNC_RELEASE
or

SYNC 18

Loads, Stores Stores Optional

0x13 SYNC_RMB
or

SYNC 19

Loads Loads Optional

0x1-0x3, 0x5-0xF Implementation-Spe-
cific and Vendor Spe-

cific Sync Types

0x14 SYNC_GINV Loads, Stores Loads, Stores GINVI, GINVT,
SYNCI

Release 6 w/
Config5GI =10/11
otherwise Reserved

0x15 - 0x1F RESERVED Reserved for MIPS
Technologies for

future extension of
the architecture.

SYNC Synchronize Shared Memory

347 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Terms:

Synchronizable: A load or store instruction is synchronizable if the load or store occurs to a physical location in
shared memory using a virtual location with a memory access type of either uncached or cached coherent. Shared
memory is memory that can be accessed by more than one processor or by a coherent I/O system module.

Performed load: A load instruction is performed when the value returned by the load has been determined. The result
of a load on processor A has been determined with respect to processor or coherent I/O module B when a subsequent
store to the location by B cannot affect the value returned by the load. The store by B must use the same memory
access type as the load.

Performed store: A store instruction is performed when the store is observable. A store on processor A is observable
with respect to processor or coherent I/O module B when a subsequent load of the location by B returns the value
written by the store. The load by B must use the same memory access type as the store.

Globally performed load: A load instruction is globally performed when it is performed with respect to all processors
and coherent I/O modules capable of storing to the location.

Globally performed store: A store instruction is globally performed when it is globally observable. It is globally
observable when it is observable by all processors and I/O modules capable of loading from the location.

Coherent I/O module: A coherent I/O module is an Input/Output system component that performs coherent Direct
Memory Access (DMA). It reads and writes memory independently as though it were a processor doing loads and
stores to locations with a memory access type of cached coherent.

Load/Store Datapath: The portion of the processor which handles the load/store data requests coming from the pro-
cessor pipeline and processes those requests within the cache and memory system hierarchy.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:

SyncOperation(stype)

Exceptions:

None

Programming Notes:

A processor executing load and store instructions observes the order in which loads and stores using the same mem-
ory access type occur in the instruction stream; this is known as program order.

A parallel program has multiple instruction streams that can execute simultaneously on different processors. In mul-
tiprocessor (MP) systems, the order in which the effects of loads and stores are observed by other processors—the
global order of the loads and store—determines the actions necessary to reliably share data in parallel programs.

When all processors observe the effects of loads and stores in program order, the system is strongly ordered. On such
systems, parallel programs can reliably share data without explicit actions in the programs. For such a system, SYNC
has the same effect as a NOP. Executing SYNC on such a system is not necessary, but neither is it an error.

If a multiprocessor system is not strongly ordered, the effects of load and store instructions executed by one processor
may be observed out of program order by other processors. On such systems, parallel programs must take explicit
actions to reliably share data. At critical points in the program, the effects of loads and stores from an instruction
stream must occur in the same order for all processors. SYNC separates the loads and stores executed on the proces-
sor into two groups, and the effect of all loads and stores in one group is seen by all processors before the effect of
any load or store in the subsequent group. In effect, SYNC causes the system to be strongly ordered for the executing
processor at the instant that the SYNC is executed.

SYNC ISynchronize Shared Memory

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 348

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they operate as strongly
ordered for at least one memory access type. The MIPS architecture also permits implementation of MP systems that
are not strongly ordered; SYNC enables the reliable use of shared memory on such systems. A parallel program that
does not use SYNC generally does not operate on a system that is not strongly ordered. However, a program that does
use SYNC works on both types of systems. (System-specific documentation describes the actions needed to reliably
share data in parallel programs for that system.)

The behavior of a load or store using one memory access type is UNPREDICTABLE if a load or store was previ-
ously made to the same physical location using a different memory access type. The presence of a SYNC between the
references does not alter this behavior.

SYNC affects the order in which the effects of load and store instructions appear to all processors; it does not gener-
ally affect the physical memory-system ordering or synchronization issues that arise in system programming. The
effect of SYNC on implementation-specific aspects of the cached memory system, such as writeback buffers, is not
defined.

Processor A (writer)
Conditions at entry:
The value 0 has been stored in FLAG and that value is observable by B
SW R1, DATA # change shared DATA value
LI R2, 1
SYNC # Perform DATA store before performing FLAG store
SW R2, FLAG # say that the shared DATA value is valid

Processor B (reader)
LI R2, 1

1: LW R1, FLAG # Get FLAG
BNE R2, R1, 1B# if it says that DATA is not valid, poll again
NOP
SYNC # FLAG value checked before doing DATA read
LW R1, DATA # Read (valid) shared DATA value

The code fragments above shows how SYNC can be used to coordinate the use of shared data between separate writer
and reader instruction streams in a multiprocessor environment. The FLAG location is used by the instruction streams
to determine whether the shared data item DATA is valid. The SYNC executed by processor A forces the store of
DATA to be performed globally before the store to FLAG is performed. The SYNC executed by processor B ensures
that DATA is not read until after the FLAG value indicates that the shared data is valid.

SYNCI Synchronize Caches to Make Instruction Writes Effective

349 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: SYNCI offset(base) microMIPS

Purpose: Synchronize Caches to Make Instruction Writes Effective

To synchronize all caches to make instruction writes effective.

Description:

This instruction is used after a new instruction stream is written to make the new instructions effective relative to an
instruction fetch, when used in conjunction with the SYNC and JALR.HB, JR.HB, or ERET instructions, as
described below. Unlike the CACHE instruction, the SYNCI instruction is available in all operating modes in an
implementation of Release 2 of the architecture.

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used to address the cache line in all caches which may need to be synchronized with the write of
the new instructions. The operation occurs only on the cache line which may contain the effective address. One
SYNCI instruction is required for every cache line that was written. See the Programming Notes below.

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur as a by product of this
instruction. This instruction never causes TLB Modified exceptions nor TLB Refill exceptions with a cause code of
TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit exceptions.

A Cache Error exception may occur as a by product of this instruction. For example, if a writeback operation detects
a cache or bus error during the processing of the operation, that error is reported via a Cache Error exception. Simi-
larly, a Bus Error Exception may occur if a bus operation invoked by this instruction is terminated in an error.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a SYNCI instruction whose address matches the
Watch register address match conditions.

Restrictions:

The operation of the processor is UNPREDICTABLE if the effective address references any instruction cache line
that contains instructions to be executed between the SYNCI and the subsequent JALR.HB, JR.HB, or ERET instruc-
tion required to clear the instruction hazard.

The SYNCI instruction has no effect on cache lines that were previously locked with the CACHE instruction. If cor-
rect software operation depends on the state of a locked line, the CACHE instruction must be used to synchronize the
caches.

Full visibility of the new instruction stream requires execution of a subsequent SYNC instruction, followed by a
JALR.HB, JR.HB, DERET, or ERET instruction. The operation of the processor is UNPREDICTABLE if this
sequence is not followed.

SYNCI globalization:

The SYNCI instruction acts on the current processor at a minimum. Implementations are required to affect caches
outside the current processor to perform the operation on the current processor (as might be the case if multiple pro-
cessors share an L2 or L3 cache).

In multiprocessor implementations where instruction caches are coherently maintained by hardware, the SYNCI
instruction should behave as a NOP instruction.

POOL32I
010000

SYNCI
01100

base offset

6 5 5 16

SYNCI ISynchronize Caches to Make Instruction Writes Effective

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 350

In multiprocessor implementations where instruction caches are not coherently maintained by hardware, the SYNCI
instruction may optionally affect all coherent icaches within the system. If the effective address uses a coherent
Cacheability and Coherency Attribute (CCA), then the operation may be globalized, meaning it is broadcast to all of
the coherent instruction caches within the system. If the effective address does not use one of the coherent CCAs,
there is no broadcast of the SYNCI operation. If multiple levels of caches are to be affected by one SYNCI instruc-
tion, all of the affected cache levels must be processed in the same manner - either all affected cache levels use the
globalized behavior or all affected cache levels use the non-globalized behavior.

Pre-Release 6: Portable software could not rely on the optional globalization of SYNCI. Strictly portable software
without implementation specific awareness could only rely on expensive “instruction cache shootdown” using inter-
processor interrupts.

Release 6: SYNCI globalization is required. Compliant implementations must globalize SYNCI, and portable soft-
ware can rely on this behavior.

Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:

vaddr  GPR[base] + sign_extend(offset)
SynchronizeCacheLines(vaddr) /* Operate on all caches */

Exceptions:

Reserved Instruction exception (Release 1 implementations only)
TLB Refill Exception
TLB Invalid Exception
Address Error Exception
Cache Error Exception
Bus Error Exception

Programming Notes:

When the instruction stream is written, the SYNCI instruction should be used in conjunction with other instructions
to make the newly-written instructions effective. The following example shows a routine which can be called after the
new instruction stream is written to make those changes effective. The SYNCI instruction could be replaced with the
corresponding sequence of CACHE instructions (when access to Coprocessor 0 is available), and that the JR.HB
instruction could be replaced with JALR.HB, ERET, or DERET instructions, as appropriate. A SYNC instruction is
required between the final SYNCI instruction in the loop and the instruction that clears instruction hazards.

/*
 * This routine makes changes to the instruction stream effective to the
 * hardware. It should be called after the instruction stream is written.
 * On return, the new instructions are effective.
 *
 * Inputs:
 * a0 = Start address of new instruction stream
 * a1 = Size, in bytes, of new instruction stream
 */

beq a1, zero, 20f /* If size==0, */
nop /* branch around */
addu a1, a0, a1 /* Calculate end address + 1 */
rdhwr v0, HWSYNCIStep /* Get step size for SYNCI from new */

/* Release 2 instruction */
beq v0, zero, 20f /* If no caches require synchronization, */

SYNCI Synchronize Caches to Make Instruction Writes Effective

351 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

nop /* branch around */
10: synci 0(a0) /* Synchronize all caches around address */

addu a0, a0, v0 /* Add step size in delay slot */
sltu v1, a0, a1 /* Compare current with end address */
bne v1, zero, 10b /* Branch if more to do */
nop /* branch around */
sync /* Clear memory hazards */

20: jr.hb ra /* Return, clearing instruction hazards */
nop

SYSCALL ISystem Call

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 352

Format: SYSCALL microMIPS

Purpose: System Call

To cause a System Call exception.

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but may be retrieved by the exception handler by loading
the contents of the memory word containing the instruction. Alternatively, if CP0 BadInstr is implemented, the code
field may be obtained from BadInstr.

Restrictions:

None

Operation:

SignalException(SystemCall)

Exceptions:

System Call

31 26 25 16 15 6 5 0

POOL32A
000000

code
SYSCALL

1000101101
POOL32AXf

111100

6 10 10 6

TEQ Trap if Equal

353 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: TEQ rs, rt microMIPS

Purpose: Trap if Equal

To compare GPRs and do a conditional trap.

Description: if GPR[rs] = GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers. If GPR rs is equal to GPR rt, then take a Trap excep-
tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software may load the instruction word from memory. Alternatively, if CP0
BadInstr is implemented, the code field may be obtained from BadInstr.

Restrictions:

None

Operation:

if GPR[rs] = GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 12 11 6 5 0

POOL32A
000000

rt rs code
TEQ

000000
POOL32AXf

111100

6 5 5 4 6 6

TGE ITrap if Greater or Equal

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 354

Format: TGE rs, rt microMIPS

Purpose: Trap if Greater or Equal

To compare GPRs and do a conditional trap.

Description: if GPR[rs]  GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers. If GPR rs is greater than or equal to GPR rt, then take
a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, the system software may load the instruction word from memory. Alternatively, if CP0
BadInstr is implemented, the code field may be obtained from BadInstr.

Restrictions:

None

Operation:

if GPR[rs]  GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 12 11 6 5 0

POOL32A
000000

rt rs code
TGE

001000
POOL32AXf

111100

6 5 5 4 6 6

TGEU Trap if Greater or Equal Unsigned

355 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: TGEU rs, rt microMIPS

Purpose: Trap if Greater or Equal Unsigned

To compare GPRs and do a conditional trap.

Description: if GPR[rs]  GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers. If GPR rs is greater than or equal to GPR rt, then
take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, the system software may load the instruction word from memory. Alternatively, if CP0
BadInstr is implemented, the code field may be obtained from BadInstr.

Restrictions:

None

Operation:

if (0 || GPR[rs])  (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 12 11 6 5 0

POOL32A
000000

rt rs code
TGEU
010000

POOL32AXf
111100

6 5 5 4 6 6

TGEU ITrap if Greater or Equal Unsigned

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 356

TLBINV TLB Invalidate

357 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: TLBINV microMIPS

Purpose: TLB Invalidate

TLBINV invalidates a set of TLB entries based on ASID and Index match. The virtual address is ignored in the entry
match. TLB entries which have their G bit set to 1 are not modified.

Implementation of the TLBINV instruction is optional. The implementation of this instruction is indicated by the IE
field in Config4.

Support for TLBINV is recommend for implementations supporting VTLB/FTLB type of MMU.

Implementation of EntryHIEHINV field is required for implementation of TLBINV instruction.

Description:

On execution of the TLBINV instruction, the set of TLB entries with matching ASID are marked invalid, excluding
those TLB entries which have their G bit set to 1.

The EntryHIASID field has to be set to the appropriate ASID value before executing the TLBINV instruction.

Behavior of the TLBINV instruction applies to all applicable TLB entries and is unaffected by the setting of the Wired
register.

• For JTLB-based MMU (ConfigMT=1):

All matching entries in the JTLB are invalidated. The Index register is unused.

• For VTLB/FTLB -based MMU (ConfigMT=4):

If TLB invalidate walk is implemented in software (Config4IE=2), then software must do these steps to flush the

entire MMU:

1. one TLBINV instruction is executed with an index in VTLB range (invalidates all matching VTLB entries)

2. a TLBINV instruction is executed for each FTLB set (invalidates all matching entries in FTLB set)

If TLB invalidate walk is implemented in hardware (Config4IE=3), then software must do these steps to flush the

entire MMU:

1. one TLBINV instruction is executed (invalidates all matching entries in both FTLB & VTLB). In this case,
Index is unused.

Restrictions:

When Config4MT = 4 and Config4IE = 2, the operation is UNDEFINED if the contents of the Index register are

greater than or equal to the number of available TLB entries.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Availability and Compatibility:

Implementation of the TLBINV instruction is optional. The implementation of this instruction is indicated by the IE

31 26 25 16 15 6 5 0

POOL32A
000000

0000000000
TLBINV

0100001101
POOL32Axf

111100

6 10 10 6

TLBINV ITLB Invalidate

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 358

field in Config4.

Implementation of EntryHIEHINV field is required for implementation of TLBINV instruction.

Pre-Release 6, support for TLBINV is recommended for implementations supporting VTLB/FTLB type of MMU.
Release 6 (and subsequent releases) support for TLBINV is required for implementations supporting VTLB/FTLB
type of MMU.

Release 6: On processors that include a Block Address Translation (BAT) or Fixed Mapping (FM) MMU (ConfigMT =
2 or 3), the operation of this instruction causes a Reserved Instruction exception (RI).

Operation:

if (ConfigMT=1 or (ConfigMT=4 & Config4IE=2 & Index < VTLBsize()))
startnum  0
endnum  VTLBsize() - 1

endif
// treating VTLB and FTLB as one array
if (ConfigMT=4 & Config4IE=2 & Index ≥ VTLBsize();)

startnum  start of selected FTLB set // implementation specific
endnum  end of selected FTLB set - 1 //implementation specifc

endif

if (ConfigMT=4 & Config4IE=3))
startnum  0
endnum  VTLBsize() + FTLBsize() - 1;

endif

for (i = startnum to endnum)
if (TLB[i]ASID = EntryHiASID & TLB[i]G = 0)

TLB[i]VPN2_invalid  1
endif

endfor

function VTLBsize
SizeExt = ArchRev() ≥ 6 ? Config4VTLBSizeExt

: Config4MMUExtDef == 3 ? Config4VTLBSizeExt
: Config4MMUExtDef == 1 ? Config4MMUSizeExt
: 0
;

 return 1 + ((SizeExt << 6) | Config1.MMUSize);
endfunction

function FTLBsize
if (Config1MT == 4) then

return (Config4FTLBWays + 2) * (1 << C0_Config4FTLBSets);
else

return 0;
endif

endfunction

Exceptions:

Coprocessor Unusable,

TLBINV TLB Invalidate

359 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

TLBINVF ITLB Invalidate Flush

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 360

Format: TLBINVF microMIPS

Purpose: TLB Invalidate Flush

TLBINVF invalidates a set of TLB entries based on Index match. The virtual address and ASID are ignored in the
entry match.

Implementation of the TLBINVF instruction is optional. The implementation of this instruction is indicated by the IE
field in Config4.

Support for TLBINVF is recommend for implementations supporting VTLB/FTLB type of MMU.

Implementation of the EntryHIEHINV field is required for implementation of TLBINV and TLBINVF instructions.

Description:

On execution of the TLBINVF instruction, all entries within range of Index are invalidated.

Behavior of the TLBINVF instruction applies to all applicable TLB entries and is unaffected by the setting of the
Wired register.

• For JTLB-based MMU (ConfigMT=1):

TLBINVF causes all entries in the JTLB to be invalidated. Index is unused.

• For VTLB/FTLB-based MMU (ConfigMT=4):

If TLB invalidate walk is implemented in your software (Config4IE=2), then your software must do these steps to

flush the entire MMU:

1. one TLBINVF instruction is executed with an index in VTLB range (invalidates all VTLB entries)

2. a TLBINVF instruction is executed for each FTLB set (invalidates all entries in FTLB set)

If TLB invalidate walk is implemented in hardware (Config4IE=3), then software must do these steps to flush the

entire MMU:

1. one TLBINVF instruction is executed (invalidates all entries in both FTLB & VTLB). In this case, Index is
unused.

Restrictions:

When ConfigMT=4 and ConfigIE=2, the operation is UNDEFINED if the contents of the Index register are greater than
or equal to the number of available TLB entries.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Availability and Compatibility:

Implementation of the TLBINVF instruction is optional. The implementation of this instruction is indicated by the IE
field in Config4.

Implementation of EntryHIEHINV field is required for implementation of TLBINVF instruction.

31 26 25 16 15 6 5 0

POOL32A
000000

0000000000
TLBINV

0101001101
POOL32Axf

111100

6 10 10 6

TLBINVF TLB Invalidate Flush

361 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Pre-Release 6, support for TLBINVF is recommended for implementations supporting VTLB/FTLB type of MMU.
Release 6 (and subsequent releases) support for TLBINV is required for implementations supporting VTLB/FTLB
type of MMU.

Release 6: On processors that include a Block Address Translation (BAT) or Fixed Mapping (FM) MMU (ConfigMT =
2 or 3), the operation of this instruction causes a Reserved Instruction exception (RI).

Operation:

if (ConfigMT=1 or (ConfigMT=4 & Config4IE=2 & Index < VTLBsize()))
startnum  0
endnum  VTLBsize() - 1

endif
// treating VTLB and FTLB as one array
if (ConfigMT=4 & Config4IE=2 & Index ≥ VTLBsize();)

startnum  start of selected FTLB set // implementation specific
endnum  end of selected FTLB set - 1 //implementation specifc

endif

if (ConfigMT=4 & Config4IE=3))
startnum  0
endnum  TLBsize() + FTLBsize() - 1;

endif

for (i = startnum to endnum)
TLB[i]VPN2_invalid  1

endfor

function VTLBsize
SizeExt = ArchRev() ≥ 6 ? Config4VTLBSizeExt

: Config4MMUExtDef == 3 ? Config4VTLBSizeExt
: Config4MMUExtDef == 1 ? Config4MMUSizeExt
: 0
;

 return 1 + ((SizeExt << 6) | Config1.MMUSize);
endfunction

function FTLBsize
if (Config1MT == 4) then

return (Config4FTLBWays + 2) * (1 << C0_Config4FTLBSets);
else

return 0;
endif

endfunction

Exceptions:

Coprocessor Unusable,

TLBP IProbe TLB for Matching Entry

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 362

Format: TLBP microMIPS

Purpose: Probe TLB for Matching Entry

To find a matching entry in the TLB.

Description:

The Index register is loaded with the address of the TLB entry whose contents match the contents of the EntryHi reg-
ister. If no TLB entry matches, the high-order bit of the Index register is set.

• In Release 1 of the Architecture, it is implementation dependent whether multiple TLB matches are detected on a
TLBP. However, implementations are strongly encouraged to report multiple TLB matches only on a TLB write.

• In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write.

• In Release 3 of the Architecture, multiple TLB matches may be reported on either TLB write or TLB probe.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Release 6: Processors that include a Block Address Translation (BAT) or Fixed Mapping (FM) MMU (ConfigMT = 2
or 3), the operation of this instruction causes a Reserved Instruction exception (RI).

Operation:

Index  1 || UNPREDICTABLE31

for i in 00 ... TLBEntries-1
if ((TLB[i]VPN2 and not (TLB[i]Mask)) =

(EntryHiVPN2 and not (TLB[i]Mask))) and
((TLB[i]G = 1) or (TLB[i]ASID = EntryHiASID))then
Index  i

endif
endfor

Exceptions:

Coprocessor Unusable, Machine Check

31 26 25 16 15 6 5 0

POOL32A
000000

0
0000000000

TLBP
0000001101

POOL32AXf
111100

6 10 10 6

TLBR Read Indexed TLB Entry

363 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: TLBR microMIPS

Purpose: Read Indexed TLB Entry

To read an entry from the TLB.

Description:

The EntryHi, EntryLo0, EntryLo1, and PageMask registers are loaded with the contents of the TLB entry pointed
to by the Index register.

• In Release 1 of the Architecture, it is implementation dependent whether multiple TLB matches are detected on a
TLBR. However, implementations are strongly encouraged to report multiple TLB matches only on a TLB write.

• In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write.

• In Release 3 of the Architecture, multiple TLB matches may be detected on a TLBR.

In an implementation supporting TLB entry invalidation (Config4IE ≥ 1), reading an invalidated TLB entry causes

EntryLo0 and EntryLo1 to be set to 0, EntryHiEHINV to be set to 1, all other EntryHi bits to be set to 0, and

PageMask to be set to a value representing the minimum supported page size..

The value written to the EntryHi, EntryLo0, and EntryLo1 registers may be different from the original written value
to the TLB via these registers in that:

• The value returned in the VPN2 field of the EntryHi register may have those bits set to zero corresponding to the
one bits in the Mask field of the TLB entry (the least-significant bit of VPN2 corresponds to the least-significant
bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed after a TLB
entry is written and then read.

• The value returned in the PFN field of the EntryLo0 and EntryLo1 registers may have those bits set to zero cor-
responding to the one bits in the Mask field of the TLB entry (the least significant bit of PFN corresponds to the
least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
after a TLB entry is written and then read.

• The value returned in the G bit in both the EntryLo0 and EntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits in EntryLo0 and EntryLo1 when
the TLB was written.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

 Release 6: Processors that include a Block Address Translation (BAT) or Fixed Mapping (FM) MMU (ConfigMT = 2
or 3), the operation of this instruction causes a Reserved Instruction exception (RI).

Operation:

i  Index
if i > (TLBEntries - 1) then

UNDEFINED
endif

31 26 25 16 15 6 5 0

POOL32A
000000

0
0000000000

TLBR
0001001101

POOL32AXf
111100

6 10 10 6

TLBR IRead Indexed TLB Entry

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 364

if ((Config4IE ≥ 1) and TLB[i]VPN2_invalid = 1) then
PagemaskMask  0 // or value representing minimum page size
EntryHi  0
EntryLo1  0
EntryLo0  0
EntryHiEHINV  1

else
PageMaskMask  TLB[i]Mask
EntryHi 

(TLB[i]VPN2 and not TLB[i]Mask) || # Masking implem dependent
05 || TLB[i]ASID

EntryLo1  02 ||
(TLB[i]PFN1 and not TLB[i]Mask) || # Masking mplem dependent
TLB[i]C1 || TLB[i]D1 || TLB[i]V1 || TLB[i]G

EntryLo0  02 ||
(TLB[i]PFN0 and not TLB[i]Mask) || # Masking mplem dependent
TLB[i]C0 || TLB[i]D0 || TLB[i]V0 || TLB[i]G

endif

Exceptions:

Coprocessor Unusable, Machine Check

TLBWI Write Indexed TLB Entry

365 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: TLBWI microMIPS

Purpose: Write Indexed TLB Entry

To write or invalidate a TLB entry indexed by the Index register.

Description:

If Config4IE == 0 or EntryHiEHINV=0:

The TLB entry pointed to by the Index register is written from the contents of the EntryHi, EntryLo0, EntryLo1,
and PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a
TLBWI. In such an instance, a Machine Check Exception is signaled.

In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write. The information
written to the TLB entry may be different from that in the EntryHi, EntryLo0, and EntryLo1 registers, in that:

• The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the
one bits in the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the
least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or
zeroed during a TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero correspond-
ing to the one bits in the Mask field of PageMask register (the least significant bit of PFN corresponds to
the least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or
zeroed during a TLB write.

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1
registers.

If Config4IE ≥ 1 and EntryHiEHINV = 1:

The TLB entry pointed to by the Index register has its VPN2 field marked as invalid. This causes the entry to be
ignored on TLB matches for memory accesses. No Machine Check is generated.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Release 6: Processors that include a Block Address Translation (BAT) or Fixed Mapping (FM) MMU (ConfigMT = 2
or 3), the operation of this instruction causes a Reserved Instruction exception (RI).

Operation:

i  Index
if (Config4IE ≥ 1) then

TLB[i]VPN2_invalid  0
if (EntryHIEHINV=1) then

31 26 25 16 15 6 5 0

POOL32A
000000

0000000000
TLBWI

0010001101
POOL32Axf

111100

6 10 10 6

TLBWI IWrite Indexed TLB Entry

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 366

TLB[i]VPN2_invalid  1
break

endif
endif
TLB[i]Mask  PageMaskMask
TLB[i]VPN2  EntryHiVPN2 and not PageMaskMask # Implementation dependent
TLB[i]ASID  EntryHiASID
TLB[i]G  EntryLo1G and EntryLo0G
TLB[i]PFN1  EntryLo1PFN and not PageMaskMask # Implementation dependent
TLB[i]C1  EntryLo1C
TLB[i]D1  EntryLo1D
TLB[i]V1  EntryLo1V
TLB[i]PFN0  EntryLo0PFN and not PageMaskMask # Implementation dependent
TLB[i]C0  EntryLo0C
TLB[i]D0  EntryLo0D
TLB[i]V0  EntryLo0V

Exceptions:

Coprocessor Unusable, Machine Check

TLBWR Write Random TLB Entry

367 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: TLBWR microMIPS

Purpose: Write Random TLB Entry

To write a TLB entry indexed by the Random register, or, in Release 6, write a TLB entry indexed by an implemen-
tation-defined location.

Description:

The TLB entry pointed to by the Random register is written from the contents of the EntryHi, EntryLo0, EntryLo1,
and PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWR.
In such an instance, a Machine Check Exception is signaled.

In Release 6, the Random register has been removed. References to Random refer to an implementation-determined
value that is not visible to software.

In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write. The information writ-
ten to the TLB entry may be different from that in the EntryHi, EntryLo0, and EntryLo1 registers, in that:

• The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bits in the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least signif-
icant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed during a
TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bits in the Mask field of PageMask register (the least significant bit of PFN corresponds to the least sig-
nificant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed during a
TLB write.

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1 regis-
ters.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Release 6: Processors that include a Block Address Translation (BAT) or Fixed Mapping (FM) MMU (ConfigMT = 2
or 3), the operation of this instruction causes a Reserved Instruction exception (RI).

Operation:

i  Random
if (Config4IE ≥ 1) then

TLB[i]VPN2_invalid  0
endif

TLB[i]Mask  PageMaskMask
TLB[i]VPN2  EntryHiVPN2 and not PageMaskMask # Implementation dependent
TLB[i]ASID  EntryHiASID
TLB[i]G  EntryLo1G and EntryLo0G
TLB[i]PFN1  EntryLo1PFN and not PageMaskMask # Implementation dependent
TLB[i]C1  EntryLo1C
TLB[i]D1  EntryLo1D
TLB[i]V1  EntryLo1V
TLB[i]PFN0  EntryLo0PFN and not PageMaskMask # Implementation dependent

31 26 25 16 15 6 5 0

POOL32A
000000

0000000000
TLBWR

0011001101
POOL32Axf

111100

6 10 10 6

TLBWR IWrite Random TLB Entry

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 368

TLB[i]C0  EntryLo0C
TLB[i]D0  EntryLo0D
TLB[i]V0  EntryLo0V

Exceptions:

Coprocessor Unusable, Machine Check

TLT Trap if Less Than

369 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: TLT rs, rt microMIPS

Purpose: Trap if Less Than

To compare GPRs and do a conditional trap.

Description: if GPR[rs] < GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers. If GPR rs is less than GPR rt, then take a Trap excep-
tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory. Alternatively, if CP0
BadInstr is implemented, the code field may be obtained from BadInstr.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 12 11 6 5 0

POOL32A
000000

rt rs code
TLT

100000
POOL32AXf

111100

6 5 5 4 6 6

TLTU ITrap if Less Than Unsigned

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 370

Format: TLTU rs, rt microMIPS

Purpose: Trap if Less Than Unsigned

To compare GPRs and do a conditional trap.

Description: if GPR[rs]  GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers. If GPR rs is less than GPR rt, then take a Trap
exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory. Alternatively, if CP0
BadInstr is implemented, the code field may be obtained from BadInstr.

Restrictions:

None

Operation:

if (0 || GPR[rs])  (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 12 11 6 5 0

POOL32A
000000

rt rs code
TLTU

101000
POOL32AXf

111100

6 5 5 4 6 6

TNE Trap if Not Equal

371 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: TNE rs, rt microMIPS

Purpose: Trap if Not Equal

To compare GPRs and do a conditional trap.

Description: if GPR[rs] ≠ GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers. If GPR rs is not equal to GPR rt, then take a Trap
exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory. Alternatively, if CP0
BadInstr is implemented, the code field may be obtained from BadInstr.

Restrictions:

None

Operation:

if GPR[rs] ≠ GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 12 11 6 5 0

POOL32A
000000

rt rs code
TNE

110000
POOL32AXf

111100

6 5 5 4 6 6

TRUNC.L.fmt IFloating Point Truncate to Long Fixed Point

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 372

Format: TRUNC.L.fmt
TRUNC.L.S ft, fs microMIPS
TRUNC.L.D ft, fs microMIPS

Purpose: Floating Point Truncate to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding toward zero.

Description: FPR[ft]  convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long-fixed point format and rounded toward zero
(rounding mode 1). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation
exception is taken immediately. Otherwise, a default result is written to ft. On cores with FCSRNAN2008=0, the default

result is 263–1. On cores with FCSRNAN2008=1, the default result is:

• 0 when the input value is NaN

• 263–1 when the input value is + or rounds to a number larger than 263–1

• -263–1 when the input value is – or rounds to a number smaller than -263–1

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and fd for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(ft, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact

31 26 25 22 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0 fmt
TRUNC.L
10001100

POOL32FXf
111011

6 5 5 1 1 8 6

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point

373 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: TRUNC.W.fmt
TRUNC.W.S ft, fs microMIPS
TRUNC.W.D ft, fs microMIPS

Purpose: Floating Point Truncate to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding toward zero.

Description: FPR[ft]  convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format using rounding toward
zero (rounding mode 1). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation
exception is taken immediately. Otherwise, a default result is written to ft. On cores with FCSRNAN2008=0, the default

result is 231–1. On cores with FCSRNAN2008=1, the default result is:

• 0 when the input value is NaN

• 231–1 when the input value is + or rounds to a number larger than 231–1

• -231–1 when the input value is – or rounds to a number smaller than -231–1

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and fd for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(ft, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Unimplemented Operation

31 26 25 22 21 20 16 15 14 13 6 5 0

POOL32F
010101

ft fs 0
fm
t

TRUNC.W
10101100

POOL32FXf
111011

6 5 5 1 1 8 6

WAIT IEnter Standby Mode

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 374

Format: WAIT microMIPS

Purpose: Enter Standby Mode

Wait for Event

Description:

The WAIT instruction performs an implementation-dependent operation, involving a lower power mode. Software
may use the code bits of the instruction to communicate additional information to the processor. The processor may
use this information as control for the lower power mode. A value of zero for code bits is the default and must be
valid in all implementations.

The WAIT instruction is implemented by stalling the pipeline at the completion of the instruction and entering a
lower power mode. The pipeline is restarted when an external event, such as an interrupt or external request occurs,
and execution continues with the instruction following the WAIT instruction. It is implementation-dependent whether
the pipeline restarts when a non-enabled interrupt is requested. In this case, software must poll for the cause of the
restart. The assertion of any reset or NMI must restart the pipeline and the corresponding exception must be taken.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).

In Release 6, the behavior of WAIT has been modified to make it a requirement that a processor that has disabled
operation as a result of executing a WAIT will resume operation on arrival of an interrupt even if interrupts are not
enabled.

In Release 6, the encoding of WAIT with bits 25:16 of the opcode set to 0 will never disable CP0 Count on an active
WAIT instruction. In particular, this modification has been added to architecturally specify that CP0 Count is not dis-
abled on execution of WAIT with default code of 0. Prior to Release 6, whether Count is disabled was implementa-
tion-dependent. In the future, other encodings of WAIT may be defined which specify other forms of power-saving or
stand-by modes. If not implemented, then such unimplemented encodings must default to WAIT 0.

Restrictions:

Pre-Release 6: The operation of the processor is UNDEFINED if a WAIT instruction is executed in the delay slot of
a branch or jump instruction.

Release 6: Implementations are required to signal a Reserved Instruction exception if WAIT is encountered in the
delay slot or forbidden slot of a branch or jump instruction.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

Pre-Release 6:
I: Enter implementation dependent lower power mode
I+1:/* Potential interrupt taken here */

Release 6:
I: if IsCoprocessorEnabled(0) then

while (!interrupt_pending_and_not_masked_out() &&
!implementation_dependent_wake_event())

< enter or remain in low power mode or stand-by mode>

31 26 25 16 15 6 5 0

POOL32A
000000

Implementation-dependent code
WAIT

1001001101
POOL32AXf

111100

6 10 10 6

WAIT Enter Standby Mode

375 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

else
SignalException(CoprocessorUnusable, 0)

endif

I+1: if (interrupt_pending() && interrupts_enabled()) then

EPC  PC + 4
< process interrupt; execute ERET eventually >

else
// unblock on non-enabled interrupt or imp dep wake event.
PC  PC + 4
< continue execution at instruction after wait >

endif

 function interrupt_pending_and_not_masked_out
 return (Config3VEIC && IntCtlVS && CauseIV && !StatusBEV)

? CauseRIPL > StatusIPL : CauseIP & StatusIM;
endfunction

function interrupts_enabled

 return StatusIE && !StatusEXL && !StatusERL && !DebugDM;
 endfunction

function implementation_dependent_wake_event

 <return true if implementation dependent waking-up event occurs>
 endfunction

Exceptions:

Coprocessor Unusable Exception

WRPGPR IWrite to GPR in Previous Shadow Set

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 376

Format: WRPGPR rt, rs microMIPS

Purpose: Write to GPR in Previous Shadow Set

To move the contents of a current GPR to a GPR in the previous shadow set.

Description: SGPR[SRSCtlPSS, rt]  GPR[rs]

The contents of the current GPR rs is moved to the shadow GPR register specified by SRSCtlPSS (signifying the pre-

vious shadow set number) and rt (specifying the register number within that set).

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction excep-
tion.

Operation:

SGPR[SRSCtlPSS, rt]  GPR[rs]

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
WRPGPR

1111000101
POOL32AXf

111100

6 5 5 10 6

WSBH Word Swap Bytes Within Halfwords

377 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: WSBH rt, rs microMIPS

Purpose: Word Swap Bytes Within Halfwords

To swap the bytes within each halfword of GPR rs and store the value into GPR rt.

Description: GPR[rt]  SwapBytesWithinHalfwords(GPR[rs])

Within each halfword of GPR rs the bytes are swapped, and stored in GPR rt.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction exception.

Operation:

GPR[rt]  GPR[r]23..16 || GPR[r]31..24 || GPR[r]7..0 || GPR[r]15..8

Exceptions:

Reserved Instruction

Programming Notes:

The WSBH instruction can be used to convert halfword and word data of one endianness to another endianness. The
endianness of a word value can be converted using the following sequence:

lw t0, 0(a1) /* Read word value */
wsbh t0, t0 /* Convert endiannes of the halfwords */
rotr t0, t0, 16 /* Swap the halfwords within the words */

Combined with SEH and SRA, two contiguous halfwords can be loaded from memory, have their endianness con-
verted, and be sign-extended into two word values in four instructions. For example:

lw t0, 0(a1) /* Read two contiguous halfwords */
wsbh t0, t0 /* Convert endiannes of the halfwords */
seh t1, t0 /* t1 = lower halfword sign-extended to word */
sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */

Zero-extended words can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

.

31 26 25 21 20 16 15 6 5 0

POOL32A
000000

rt rs
WSBH

0111101100
POOL32AXf

111100

6 5 5 10 6

XOR IExclusive OR

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 378

Format: XOR rd, rs, rt microMIPS

Purpose: Exclusive OR

To do a bitwise logical Exclusive OR.

Description: GPR[rd]  GPR[rs] XOR GPR[rt]

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and place the result into
GPR rd.

Restrictions:

None

Operation:

GPR[rd]  GPR[rs] xor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 9 0

POOL32A
000000

rt rs rd 0
XOR

1100010000

6 5 5 5 1 10

XORI Exclusive OR Immediate

379 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Format: XORI rt, rs, immediate microMIPS

Purpose: Exclusive OR Immediate

To do a bitwise logical Exclusive OR with a constant.

Description: GPR[rt]  GPR[rs] XOR immediate

Combine the contents of GPR rs and the 16-bit zero-extended immediate in a bitwise logical Exclusive OR operation
and place the result into GPR rt.

Restrictions:

None

Operation:

GPR[rt]  GPR[rs] xor zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

XORI32
011100

rt rs immediate

6 5 5 16

 Opcode Map

381 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Every major opcode name starting with “POOL” requires a minor opcode, as defined in Section 7.2 “Minor
Opcodes”. All other major opcodes refer to a particular instruction.

Release 6 introduces additional nomenclature to the opcode tables for Release 6 instructions. For new instructions,
bits 31:26 are generically named POPXY where X is the row number, and Y is the column number. This convention is
extended to sub-opcode tables, except bits 5:0 are generically named SOPXY where X is the row number, and Y is the
column number. This naming convention is applied where a specific encoded value are shared by multiple instruc-
tions.

In the opcode tables, MSB denotes either bit 15 or 31, depending on instruction size.

Table 7.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

 Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

 (Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values
for another instruction field.

 Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level or a new revision of the Architecture. Executing such an instruction must cause
a Reserved Instruction Exception.

 Operation or field codes marked with this symbol represent instructions which were only legal if
64-bit operations were enabled on implementations of Release 1 of the Architecture. In Release 2
of the architecture, operation or field codes marked with this symbol represent instructions which
are legal if 64-bit floating point operations are enabled. In other cases, executing such an instruc-
tion must cause a Reserved Instruction Exception (non-coprocessor encodings or coprocessor
instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which access is not allowed).

 Instructions formerly marked  in some earlier versions of manuals, corrected and marked  in
revision 5.03. Legal on MIPS64r1 but not MIPS32r1; in release 2 and above, legal in both
MIPS64 and MIPS32, in particular even when running in “32-bit FPU Register File mode”,
FR=0, as well as FR=1.

 Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner in
selecting appropriate encodings if requested by the partner. The partner is not required to consult
with MIPS Technologies when one of these encodings is used. If no instruction is encoded with
this value, executing such an instruction must cause a Reserved Instruction Exception
(SPECIAL2 encodings or coprocessor instruction encodings for a coprocessor to which access is
allowed) or a Coprocessor Unusable Exception (coprocessor instruction encodings for a copro-
cessor to which access is not allowed).

 Field codes marked with this symbol represent an EJTAG support instruction and implementa-
tion of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is
implemented, it must match the instruction encoding as shown in the table.

 Operation or field codes marked with this symbol are reserved for MIPS Application-Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

7.2 Minor Opcodes

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 382

Examples:

1. The 32-bit instruction LW32 is assigned to the major opcode LW32 with the encoding “111111”.

2. The 16-bit instruction SUBU16 is assigned to the major opcode POOL16A with the encoding “000001”.

7.2 Minor Opcodes

While major opcodes have a fixed length of 6 bits, minor opcodes are variable in length. The minor opcodes are
defined by opcode tables of one, two, or three dimensions, depending on the size of the opcode. Minor opcodes less
than four bits are represented in a one-dimensional table (see Table 7.14), from four to six bits in a two-dimensional
table (shown in Figure 7.1 and Table 7.10), and from 7 to 10 bits in a three-dimensional table (Table 7.4). In a three-
dimensional table, the two-dimensional table is expanded to include a column on the right side that encodes the extra
bits. In the case of minor opcodes requiring multiple table cells, the instruction name appears in all cells, but the addi-
tional entries have a black background to indicate that this opcode is blocked (see Table 7.4 and the legend shown in
Table 7.3).

Example:

SRL r1, r1, 7 binary opcode fields: 000000 00001 00001 00111 00001 000000
interpretation: POOL32A r1 r1 7 SRL
hex representation: 0021 3840

All minor opcode fields are right-aligned except those in 16-bit instructions and in 32-bit instructions with a 16-bit
immediate field. These left-aligned fields are defined in a bit-reverse order, which is why, in order to accommodate
the variable length of the field to the right, a given row and column in POOL32I represents bit 20..22 and 23..25
instead of bit 22..20 and 25..23.

If table entries are marked grey, then not all available bits of the instruction have been used for the encoding, leaving
a field of empty bits. The empty bits are shown in the instruction tables in Chapter 5, “microMIPS Instruction Set” on
page 55.

Table 7.2 microMIPS32 Encoding of Major Opcode Field
Major MSB..MSB-2

MSB-3..
MSB-5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 POOL32A  POOL32B  POOL32I  POOL32C  BEQZC/JIC BNEZC/JIALC

BLEZALC/
BGEZALC/

BGEUC

BGTZALC/
BLTZALC

BLTUC

1 001 POOL16A  POOL16B  POOL16C  LWGP16 * * * *

2 010 LBU16 LHU16 LWSP16 LW16 SB16 SH16 SWSP16 SW16

3 011 MOVE16 ANDI16 POOL16D  POOL16E  BEQZC16 BNEZC16 BC16 LI16

4 100 AUI32 ADDIU32 ORI32 XORI32 SLTI32 SLTIU32 ANDI32 

5 101 LBU32 LHU32 POOL32F 

BOVC/
BEQZALC/

BEQC BC BALC

BGTZC/
BLTZC/
BLTC

BLEZC/
BGEZC/
BGEC

6 110 SB32 SH32 * PCREL SWC132   SW32

7 111 LB32 LH32 

BNVC/
BNEZALC/

BNEC LWC132   LW32

 Opcode Map

383 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Not Shown
SLL r0, r0, r0 = NOP
SLL r0, r0, 1 = SSNOP
SLL r0, r0, 3 = EHB
SLL, r0, r0, 5 = PAUSE

Table 7.3 Legend for Minor Opcode Tables

Symbol Meaning

OPCODE Occupied by Opcode

OPCODE Space Utilized by another Opcode

Table 7.4 POOL32A Encoding of Minor Opcode Field
Minor bit 5..3

bit 2..0

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

 bit 9..6

0 000 SLL32 * SLLV MUL * * * * 0000 0

0 000 SRL32 * SRLV MUH * * * * 0001 1

0 000 SRA * SRAV MULU * * * * 0010 2

0 000 ROTR * ROTRV MUHU * * * * 0011 3

0 000 * * ADD DIV * * * * 0100 4

0 000 SELEQZ * ADDU32 MOD * * * * 0101 5

0 000 SELNEZ * SUB DIVU * * * * 0110 6

0 000 RDHWR * SUBU32 MODU * * * * 0111 7

0 000 * * * * * * * * 1000 8

0 000 * * AND * * * * * 1001 9

0 000 * * OR32 * * * * * 1010 a

0 000 * * NOR * * * * * 1011 b

0 000 * * XOR32 * * * * * 1100 c

0 000 * * SLT * * * * * 1101 d

0 000 * * SLTU * * * * * 1110 e

0 000 * * * * * * * * 1111 f

1 001 SPECIAL2  SPECIAL2  SPECIAL2  SPECIAL2  SPECIAL2  SPECIAL2  SPECIAL2  SPECIAL2 

*

2 010 COP2  COP2  COP2  COP2  COP2  COP2  COP2  COP2 

3 011 UDI  UDI  UDI  UDI  UDI  UDI  UDI  UDI 

4 100 * INS * * * EXT * POOL32Axf 

5 101        

6 110   POOL32P

7 111 BREAK32 LSA * ALIGN  * * SIGRIE

7.2 Minor Opcodes

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 384

Table 7.5 POOL32P Encoding of Minor Extension Field
Extension bit 11..9

bit 8..6 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * MFHC0 MTHC0

4 100 * * * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Table 7.6 POOL32Axf Encoding of Minor Opcode Extension Field
Extension bit 11..9

bit 8..6 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 TEQ TGE TGEU * TLT TLTU TNE *

1 001   *    * 

2 010        

3 011 MFC0 MTC0 * * MFC0 MTC0

 bit15..12

4 100   * * * BITSWAP * JALRC 0000 0

4 100   * * * * * JALRC.HB 0001 1

4 100  * * * * SEB * * 0010 2

4 100  * * * * SEH * * 0011 3

4 100  * * * * CLO MFC2 * 0100 4

4 100  * * * * CLZ MTC2 * 0101 5

4 100  * * * * * * 0110 6

4 100   * * * WSBH * 0111 7

4 100 * * * * * MFHC2 * 1000 8

4 100   * * * * MTHC2 * 1001 9

4 100 * * * * * * * 1010 a

4 100   * * * * * * 1011 b

4 100 * * * * * * CFC2 * 1100 c

4 100   * * * * CTC2 * 1101 d

4 100 * * * * * * * * 1110 e

4 100  * * * * * * * 1111 f

bit15..12

5 101 * TLBP  * * * * * 0000 0

 Opcode Map

385 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Not Shown: JR = JALR r0

5 101 * TLBR  * * * * * 0001 1

5 101 * TLBWI  * * * * * 0010 2

5 101 * TLBWR  * * * * * 0011 3

5 101 * * * DI * * * * 0100 4

5 101 * * * EI * * * * 0101 5

5 101 * * * * * SYNC * * 0110 6

5 101 * * * * * * * * 0111 7

5 101 * * * * * SYSCALL * * 1000 8

5 101 * WAIT * * * * * * 1001 9

5 101 * * * * * * * * 1010 a

5 101 * * * * * * * * 1011 b

5 101 * * * * * * * * 1100 c

5 101 *  * * * SDBBP * * 1101 d

5 101 RDPGPR DERET * * * * * * 1110 e

5 101 WRPGPR ERET * * * * * * 1111 f

6 110   * *  * * *

7 111    * * * * *

Table 7.7 POOL32F Encoding of Minor Opcode Field
Minor bit 5..3

bit 2. 0

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

bit 8..6

0 000 * * *  RINT.fmt * ADD.fmt SELEQZ.fmt 000 0

0 000 * * *  CLASS.fmt * SUB.fmt SELNEZ.fmt 001 1

0 000 * * *  * * MUL.fmt SEL.fmt 010 2

0 000 * * *  * * DIV.fmt * 011 3

0 000 * * * * * ADD.fmt * 100 4

0 000 * * * * * SUB.fmt * 101 5

0 000 CVT.PS.S  * * * * * MUL.fmt MADDF.fmt 110 6

0 000 * * * * * * DIV.fmt MSUBF.fmt 111 7

1 001 * * * * * * * *

Table 7.6 POOL32Axf Encoding of Minor Opcode Extension Field (Continued)

7.2 Minor Opcodes

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 386

2 010 * * * * * * * *

3 011 MIN.fmt MAX.fmt * * * MAXA.fmt * POOL32Fxf 

4 100 * * *  * * * *

5 101 COMP.cond.S * CMP.cond.D * * * * *

6 110 * * * * * * * *

7 110 * * * * * * * *

Table 7.8 POOL32Fxf Encoding of Minor Opcode Extension Field
Extension bit10..8

bit 7..6

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

bit
13..11

0 00 * CVT.L.fmt  RSQRT.fmt  FLOOR.L.fmt  * * *  000 0

0 00 * CVT.W.fmt SQRT.fmt FLOOR.W.fmt * * *  001 1

0 00 CFC1 * RECIP.fmt  CEIL.L.fmt  * * * * 010 2

0 00 CTC1 * * CEIL.W.fmt * * * * 011 3

0 00 MFC1 * * TRUNC.L.fmt  * * 100 4

0 00 MTC1 * * TRUNC.W.fmt * * * 101 5

0 00 MFHC1  * * ROUND.L.fmt  * * * 110 6

0 00 MTHC1  * * ROUND.W.fmt * * * * 111 7

bit
12..11

1 01 MOV.fmt * * ABS.fmt * * *  00 0

1 01 * * * NEG.fmt * * * * 01 1

1 01 * * * CVT.D.fmt * * *  10 2

1 01 * * * CVT.S.fmt * * * * 11 3

*

2 10 * * * * * * * *

3 11 * * * * * * * *

Table 7.7 POOL32F Encoding of Minor Opcode Field (Continued)

 Opcode Map

387 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Table 7.9 POOL32B Encoding of Minor Opcode Field
Minor bit 15

bit 14.12

0 1

0 1

0 000 LWC2 SWC2

1 001 LWP SWP

2 010

3 011  
4 100

5 101 LWM32 SWM32

6 110 CACHE *

7 111

Table 7.10 POOL32C Encoding of Minor Opcode Field
Minor bit 15

bit 14..12 0 1

0 000 * *

1 001 * *

2 010 PREF ST-EVA 

3 011 LL SC

4 100  

5 101  

6 110 LD-EVA 

7 111  

Table 7.11 LD-EVA Encoding of Minor Opcode Field
Minor

bit 11..9

0 000 LBUE

1 001 LHUE

2 010 LLWPE

3 011 *

4 100 LBE

5 101 LHE

6 110 LLE

7 111 LWE

7.2 Minor Opcodes

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 388

Table 7.12 ST-EVA Encoding of Minor Opcode Field
Minor

bit 11..9

0 000 SCWPE

1 001 *

2 010 PREFE

3 011 CACHEE

4 100 SBE

5 101 SHE

6 110 SCE

7 111 SWE

Table 7.13 POOL32I Encoding of Minor Opcode Field
Minor bit 22..21

bit 25..23

0 1 2 3

00 01 10 11

0 000 BNZ.df BNZ.df BNZ.df BNZ.df

1 001 BZ.df BZ.df BZ.df BZ.df

2 010 BC1EQZ BC1NEZC BC2EQZC BC2NEZC

3 011 SYNCI *  

4 100 * * BNZ.V BZ.V

5 101 * * * *

6 110 * *  
bit16

7 111 * * * * 0

7 111     1

Table 7.14 POOL16A Encoding of Minor Opcode Field
Minor

bit 0

0 ADDU16

1 SUBU16

 Opcode Map

389 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

For Release 6:

• NOT16, AND16, XOR16, OR16, LWM16, SWM16, and BREAK16, and SDBBP16 instructions have been
repositioned in POOL16C and are not shown in the above table.

• JRADDIUSP has been converted to JRCADDIUSP and repositioned in POOL16C.

• MOVEP has moved from POOL16F to POOL16C.

Table 7.15 POOL16B Encoding of Minor Opcode Field
Minor

bit 0

0 SLL16

1 SRL16

Table 7.16 POOL16C Encoding of Minor Opcode Field
Minor bit 6..4

bit 9..7

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 NOT16 XOR16 NOT16 XOR16 NOT16 XOR16 NOT16 XOR16

1 001 AND16 OR16 AND16 OR16 AND16 OR15 AND16 OR16

2 010 LWM16 SWM16 LWM16 SWM16 LWM16 SWM16 LWM16 SWM16

3 011 JRC16 JALRC16 JRCADDIUSP BREAK16 JRC16 JALRC16 JRCADDIUSP SDBBP16

4 100 MOVEP MOVEP MOVEP MOVEP MOVEP MOVEP MOVEP MOVEP

5 101 MOVEP MOVEP MOVEP MOVEP MOVEP MOVEP MOVEP MOVEP

6 110 MOVEP MOVEP MOVEP MOVEP MOVEP MOVEP MOVEP MOVEP

7 111 MOVEP MOVEP MOVEP MOVEP MOVEP MOVEP MOVEP MOVEP

Table 7.17 POOL16D Encoding of Minor Opcode Field
Minor

bit 0

0 ADDIUS5

1 ADDIUSP

7.3 Floating Point Unit Instruction Format Encodings

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 390

7.3 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section.

If the instruction allows Single, Double and Pair-Single formats, the following encoding is used:

If the instruction only allows Single and Double formats, the following encoding is used:

Table 7.18 POOL16E Encoding of Minor Opcode Field
Minor

bit 0

0 ADDIUR2

1 ADDIUR1SP

Table 7.19 PCREL Encoding of Minor Opcode Field
Extension bit 20..18

bit 17..16 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 00 ADDIUPC ADDIUPC LWPC LWPC LWUPC LWUPC LDPC *

1 01 ADDIUPC ADDIUPC LWPC LWPC LWUPC LWUPC LDPC *

2 10 ADDIUPC ADDIUPC LWPC LWPC LWUPC LWUPC LDPC AUIPC

3 11 ADDIUPC ADDIUPC LWPC LWPC LWUPC LWUPC LDPC ALUIPC

Table 7.20 Floating Point Unit Format Encodings - S, D, PS

fmt field

Mnemonic Name Bit Width Data TypeDecimal Hex

0 0 S Single 32 Floating
Point

1 1 D Double 64 Floating
Point

2 2 PS Paired Sin-
gle

2  32 Floating
Point

3 3 Reserved for future use by the architecture.

Table 7.21 Floating Point Unit Format Encodings - S, D 1-bit

fmt field

Mnemonic Name Bit Width Data TypeDecimal Hex

0 0 S Single 32 Floating
Point

 Opcode Map

391 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

If the instruction allows Single, Word and Long formats, the following encoding is used:

If the instruction allows Double, Word and Long formats, the following encoding is used:

1 1 D Double 64 Floating
Point

Table 7.22 Floating Point Unit Instruction Format Encodings - S, D 2-bits

fmt field

Mnemonic Name Bit Width Data TypeDecimal Hex

0 0 S Single 32 Floating
Point

1 1 D Double 64 Floating
Point

2, 3 2, 3 Reserved for future use by the architecture.

Table 7.23 Floating Point Unit Format Encodings - S, W, L

fmt field

Mnemonic Name Bit Width Data TypeDecimal Hex

0 0 S Single 32 Floating
Point

1 1 W Word 32 Integer

2 2 L Long 64 Integer

3 3 Reserved for future use by the architecture.

Table 7.24 Floating Point Unit Format Encodings - D, W, L

fmt field

Mnemonic Name Bit Width Data TypeDecimal Hex

0 0 D Double 64 Floating
Point

1 1 W Word 32 Integer

2 2 L Long 64 Integer

Table 7.21 Floating Point Unit Format Encodings - S, D 1-bit

fmt field

Mnemonic Name Bit Width Data TypeDecimal Hex

7.3 Floating Point Unit Instruction Format Encodings

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 392

3 3 Reserved for future use by the architecture.

Table 7.24 Floating Point Unit Format Encodings - D, W, L

fmt field

Mnemonic Name Bit Width Data TypeDecimal Hex

 Opcode Map

393 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Chapter 8

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 394

Compatibility

This chapter covers various aspects of compatibility. microMIPS is the preferred replacement for the existing
MIPS16e ASE and uses the same mode-switch mechanism. Although microMIPS includes almost all MIPS instruc-
tions and therefore does not require the original MIPS encodings, initially it will be implemented together with
MIPS-encoded instruction execution.

8.1 Assembly-Level Compatibility

microMIPS includes a re-encoding of the MIPS instructions, including all ASEs and UDI space. Therefore, micro-
MIPS provides assembly-level compatibility. Only the following cases cause some side effects:

• Re-encoded MIPS instructions with reduced operand fields

There are 3 classes of reduced fields:

1. Reserved or unsupported bits and encodings. This category is not a problem because utilizing a reserved or
unsupported field causes an exception, no operation, or undefined behavior, and often these cannot be
accessed by the compiler anyway. An example of this category is the ‘fmt’ field.

2. Bit fields and ranges which are defined but typically never used. This category is usually not a problem. The
assembler generates an error message if a constant is outside of the re-defined range.

3. Bit fields which are used but were reduced in order to utilize the new opcode map most efficiently. The han-
dling of these cases is similar to category 2 above—compilers do not generate such scenarios, and assem-
blers generate error messages. In the latter case, the programmer has to either fix the code or switch to the
MIPSencoding.

• Re-encoded Branch and Jump instructions

Branch instructions support 16-bit aligned branch target addresses, providing full flexibility for microMIPS.
Because the offset field size of the 32-bit encoded branch instructions is the same as the MIPS-encoded instruc-
tions, and because all branch target addresses of the MIPS encoding are 32-bit aligned, the branch range in
microMIPS is smaller. This is partially compensated by the smaller code size of microMIPS.

Jump instructions also support 16-bit aligned target addresses. This reduces the addressable target region for J,
JAL to 128 MB instead of 256 MB. For these instructions, the effective target address is in the ‘current’ 128 MB-
aligned region. For larger ranges, the jump register instructions (JR, JRC, and JRADDIUSP) can be used.

• MIPS assembly instructions manually encoded using the .WORD directive

Manual encoding of MIPS assembly instructions can be used in assembly code as well as assembly macros in C
functions. To differentiate between microMIPS-encoded instructions and other encoded instructions or data, the
following compiler directives have been introduced:

 Compatibility

395 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

.set micromips ; instruction stream is microMIPS

.set nomicromips ; instruction stream is MIPS

.insn ; If in microMIPS instruction stream mode, the location associated
; with the previous label is aligned to 16-bit bits instead of
; 32-bits
; If in microMIPS instruction stream mode and if the previous
; label is loaded to a register as the target of a jump or branch,
; the ISAMode bit is set within the branch/jump register value.

The programmer must use these directives to encode instructions in microMIPS.

For example, to manually encode a microMIPS NOP:

.set micromips

label1:
.insn
.word 0 ; label1 location - represents microMIPS NOP32 instruction

label2:
.insn
.half 0x0c00 ; label2 location - represents microMIPS NOP16 instruction

label3:
.half 0x0c00 ; label3 location - represents data value of 3072 (decimal)

To manually encode a MIPS NOP:

.set nomicromips

.word 0 ; represents MIPS NOP instruction

For MIPS instruction stream mode, the “.insn” directive has no effect.

• Branch likely instructions

microMIPS does not support branch likely instructions in hardware. Assembly-level compatibility is maintained
because assemblers replace branch likely instructions either by an instruction sequence or by a regular branch
instruction, and they perform some instruction reordering if reordering is possible.

8.2 ABI Compatibility

microMIPS is compatible with the existing ABIs o32, n32, and n64 calling conventions. However, a few new reloca-
tion types need to be added to these ABIs for microMIPS support, as some of the additional offset field sizes required
for microMIPS become visible to the linker. For example, the offset fields of J and SW using GP are visible to the
linker, while B and SWSP are hidden within the object files.

Functions remain 32-bit aligned as in the MIPS encoding as well as MIPS16e. This guarantees that static and
dynamic linking processes can link microMIPS object files with MIPS object files.

8.3 Branch and Jump Offsets

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 396

Programs can be composed of both microMIPS and MIPS modules, using either the JALX instructions (and/or JR
instructions with setting the ISAMode bit appropriately) to switch instruction set modes when calling routines com-
piled in an ISA different from that of the caller routine.

microMIPS provides flexibility for potential future ABIs.

8.3 Branch and Jump Offsets

microMIPS branch targets are half-word (16-bit) aligned to match half-word sized instructions. Please refer to
Section 2.5, "Branch and Jump Offsets."

8.4 Relocation Types

Compiler and linker toolchains need to be modified with new relocation types to support microMIPS. Reasons for
these new relocation types include:

1. The placement of instruction halfwords is determined by memory endianness. MIPS instructions are always of
word size, so there were no halfword placement issues.

2. microMIPS has 7-bit, 10-bit and 16-bit PC-relative offsets.

3. Branch and Jump offset fields are left-shifted by 1 bit (instead of 2 bits in MIPS) to create effective target
addresses.

4. Some code-size optimizations can only be done at link time instead of compile time. Some new relocation types
are used solely within the linker to keep track of address and data information.

8.5 Boot-up Code shared between microMIPS and MIPS

In some systems, it would be advantageous to place both microMIPS and MIPSexecutables in the same boot memory.
In that way, a single system could be used for either instruction set.

To enable this, a binary code sequence is required that can be run in either instruction set and change code paths
depending on the instruction set that is being used.

The following binary sequence achieves this goal:

0x1000wxyz // where w,x,y,z represent hexadecimal digits
0x00000000

For the MIPSinstruction set, this binary sequence is interpreted as:

BEQ $0, $0, wxyz // branch to location of more MIPSinstructions
NOP

For the microMIPS instruction set, this binary sequence is interpreted as:

ADDI32 $0, $0, wxyz // do nothing
NOP // fall through to more microMIPS instructions

 Compatibility

397 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

8.6 Coprocessor Unusable Behavior

When a coprocessor instruction is executed when the associated coprocessor has not been implemented, it is allowed
for the RI exception to be signalled instead of the Coprocessor Unusable exception. Please refer to Section 2.6,
"Coprocessor Unusable Behavior."

8.7 Other Issues Affecting Software and Compatibility

microMIPS instructions can cross cache lines and page boundaries. Hardware must handle these cases so that soft-
ware need not avoid them. Since MIPS requires instructions to be 32-bit aligned, there is no forward compatibility
issue when transitioning to microMIPS.

Appendix A

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 398

References

This appendix lists other publications available from MIPS, some of which are referenced else-
where in this document. They may be included in the $MIPS_HOME/$MIPS_CORE/doc area of a typical soft or
hard core release, or in some cases may be available on the MIPS web site, http://www.mips.com.

• MIPS® Architecture For Programmers, Volume I: Introduction to the MIPS32® Architecture

• MIPS® Architecture For Programmers, Volume II: The MIPS32® Instruction Set

• MIPS® Architecture For Programmers, Volume III: The MIPS32® and microMIPS32TM Privileged Resource
Architecture

 References

399 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

Appendix B

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 400

Revision History

 Revision Date Description

1.08 November 25, 2009 • Clean-up for external release.

1.09 January 7, 2010 • Added shared boot-up code sequence in Compatibility Chapter.

3.00 March 25, 2010 • Changed document revision numbering to match other Release 3 documents.
Hopefully this will be less confusing.

• Moved MIPS32/64 version of JALX to Volume II-A.

3.01 October 30, 2010 • User mode instructions not allowed to product UNDEFINED results.
• Updated copyright page.
• Removed Margin Note - “Preliminary - Subject to Change” in some chap-

ters.

3.02 December 6, 2010 • POOL32Sxf binary encoding was incorrect for individual instruction
description pages.

3.03 December 10, 2010 • microMIPS AFP versions security reclassification.

3.04 March 21, 2011 • RSQRT/RECIP does not need 64-bit FPU.
• MADD fmt/NMADD fmt/MSUB fmt/NMSUB fmt psuedo-code was incor-

rect for PS format check.

3.05 April 4, 2011 • The text description was incorrect for the offset sizes for these instructions -
CACHE, LDC2, LL, LWC2, LWL, LWR, PREF, SDC2, SWL, SWR.

• CACHE & WAIT instruction descriptions were using the wrong instruction
bit numbers.

• LWU was incorrectly included int the microMIPS32 version.

3.06 October 17, 2012 • CVT.D.fmt and CVT.S fmt were in wrong positions within Table
POOL32Fxf.

3.07 October 26, 2012 • Fix Figure 6.1 - columns & rows were transposed from the real tables.

5.00 December 14, 2012 • Some of the microMIPS instructions were not listed in alphabetical order.
Fixed. No content change.

• R5 changes: DSP and MT ASEs -> Modules
• NMADD.fmt, NMSUB.fmt - for IEEE2008 negate portion is arithmetic.

5.01 December 16, 2012 • No technical context change:
• Update cover with microMIPS logo
• Update copyright text.
• Update pdf filname.

5.03 August 21, 2012 • Resolved inconsistencies with regards to the availability of instructions in
MIPS32r2: MADD fmt family (MADD.S, MADD.D, NMADD.S,
NMADD.D, MSUB.S, MSUB.D, NMSUB,S, NMSUB.D), RECIP fmt fam-
ily (RECIP.S, RECIP.D, RSQRT.S, RSQRT.D), and indexed FP loads and
stores (LWXC1, LDXC1, SWXC1, SDXC1). These instructions are required
to be available in all FPUs. .

 Revision History

401 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

5.04 January 15, 2014 LLSC Related Changes
• Added ERETNC. New.
• Modified SC handling: refined, added, and elaborated cases where SC can

fail or was UNPREDICTABLE.
XPA Related Changes
• Added MTHC0, MFHC0 to access extensions. All new.
• Modified MTC0 for MIPS32 to zero out the extended bits which are write-

able. This is to support compatibility of XPA hardware with non XPA soft-
ware. In pseudo-code, added registers that are impacted.

• MTHC0 and MFHC0 - Added RI conditions.

6.0 February 27, 2015 • Release 6 compatible microMIPS. See Section 2.7, "Release 6 of the MIPS
Architecture," for instructions that have been added, removed, and recoded.

6.01 June 9, 2015 • Removed the Release 6 NAL instruction; it is not required in microMIPS.
• Removed the “Jump and Link Restartability” paragraph from JAL-type

instructions; it is not applicable for compact jumps.
• Fixed text in jump instructions related to the behavior of ISAMode switch-

ing, or lack thereof, in microMIPS.
• Removed delay-slot references; all branches/jumps are compact.
• Removed references to JALX.
• Removed LWXS (bug).
• MOVEP: in encoding, changed bit 2 to 1 (bug).
• All PC-related instructions: qualify PC with 0x3. Always word aligned.

microMIPS only (ADDIUPC, LWPC, AUIPC, ALUIPC).
• Release 6 BC: shift-corrected to 1 bit. microMIPS only.
• JALRC, JALRC.HB: replace Config1.CA with Config3.ISA (bug).
• Added Release 5 TLBINV/TLBINVF (incorrectly excluded from book).
• Added Release 6 DVP/EVP instructions.
• Added new Release 6 LLX/SCX family instructions.
• General opcode map cleanup for consistency with Release 6.
• CACHE, PREF, LL, SC, LLD, SCD, LLX, SCX, LLDX, AND SCDX off-

sets changed to 9 bits.
• LWC2, SWC2, LDC2, AND SDC2 offsets changed to 11-bits for consis-

tency with MIPS Release 6.
Specific opcode map changes:
• Moved BGTZC/BLTZC/BLTC to (5,6) location
• Moved BLEZC/BGEZC/BGEC to (5,7) location to free up 16-bit instruction

rows for 16-bit instructions (only)
• Moved BEQZC/JIC to (0,4) location.
• Moved BNEZC/JIALC to (0,5) location bit for differentiating EQ vs NE

type made consistent with other branches of this type.

6.02 July 13, 2015 • Added SIGRIE instruction.
• Added Config5.SBRI dependence to SDBBP16 as in SDBBP(32).
• Corrected mistake in 6.01. AUIPC PC should not be qualified with 0x3.
• Added misaligned ld/st support. ld/st that must be aligned are indicated as

such.
• Added RDHWR with sel field - read all.

 Revision Date Description

MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05 402

6.03 November 13, 2015 microMIPS32 and microMIPS64:
• J/JAL now indicated as deprecated (but not removed).
• DVP: added text indicating that a disabled VP will not be re-enabled for exe-

cution on deferred exception.
• CACHE/CACHEE: Undefined operations are really NOP.
• CMP.condn fmt: removed fmt related text in description section. .S/.D

explicitly encoded.
• Fixed minor textual typos in MAXA/MINA.fmt functions.
• DERET: restriction – if executed out of debug mode, then RI, not UNDE-

FINED.
• TLBWR: Updated reference to Random. No longer supported in Release 6.
• PCREL instructions: added PCREL minor opcode table, fixed conditional

text bugs in register reference.
• BGTZ/BLTZ/BLTC major opcodes fixed.
• JALRC16: in operation section, PC+2 assigned to GPR[31], not PC+4.
• LW16: offset is an unsigned value. Legacy bug.
• BC16: In operation section change PC<-PC+target_offset to

PC+2+target_offset.
• Fixed minor encoding of MUH.
• Fixed typo ROUND/TRUNC/FLOOR/CEIL.W fmt. Range value should be

231-1 not 263-1.
microMIPS64 only:
• DMFC0/DMTC0: now indicates what happens with 32-bit COP0 registers.

6.04 June 6, 2016 microMIPS32 and microMIPS64:
• RDHWR: Changed Double-Width LLX/SCX to Paired LL/SC.
• DMTC2: Changed CPR[2, rd, sel] to CP2CPR[Impl].
• WAIT: Fixed a bit range typo.
• LSA: Removed the word optional; the scaling shift on rs is not optional.
• SYSCALL, TEQ, TGE, and TGEU: If COP0 BadInstr is implemented, the

code field may be obtained from BadInstr.
• JALRC, JALRC.HB, JIALC, and JIC: Added parentheses to condition for
PC  temp in the Operation pseudocode.

microMIPS32:
• Removed the LLX, LLXE, SCX, and SCXE instructions.
• Added the LLWP, LLWPE, SCWP, and SCWP instructions.
microMIPS64:
• Removed the LLDX and SCDX instructions.
• Added the LLDP, LLWP, LLWPE, SCDP, SCWP, and SCWPE instructions.

 Revision Date Description

 Revision History

403 MIPS® Architecture for Programmers Volume II-B: microMIPS32™ Instruction Set, Revision 6.05

6.05 December 15, 2016 microMIPS32 and microMIPS64:
• Added CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, CRC32CW.
• DVP/EVP instructions incorrectly used ‘rs’. Changed to use ‘rt.’
• Added GINVI, and GINVT instructions.
• SC, SCE, SCWP, SCWPE: Updated description for uncached handling.
• MTHC0: updated description, fixed typo. ‘COP2’ changed to ‘COP0’.
• MTC0: changed Config5MVH to new Config5XPA.

• DERET: updated pseudocode to describe what happens if DebugDM=0.

• TLT, TLTU, TNE: Mention that contents of the code field can be retrieved
from COP0 BadInstr if present.

• Added ArchitectureRevision(), IsCoprocessorRegisterImplemented(), and
IsCoprocessorRegisterExtended() pseudocode descriptions (ARM only, not
AFP)

microMIPS64:
• Added CRC32D, CRC32CD.
• SCD, SCDP: Updated description for uncached handling.
• LLDP: Fixed typos. Swapped rd and rt in the GPR references and descrip-

tion; in the pseudocode, doubled the bit range in both cases where GPR is
loaded. (typos).

• SCWP, SCWPE: fixed typo due to conditional text.

 Revision Date Description

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

